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ABSTRACT 

This study focuses on developing an automated road distress identification and 

classification framework using state-of-art edge detection and deep machine learning 

technique. In this study, the Convolutional Neural Network (CNN) and Sobel Edge 

Detection (SED) have been harmonized to automatically identify and classify road 

distresses using a moving camera. The Sobel Edge Detection techniques have been used 

to determine the 2-D spatial gradient of a pavement image to identify the distress from it. 

The pavement image has been converted into machine readable binary image, where the 

distress area contains a specific identification flag. This identification flag has then been 

recognized and categorized by blob analysis. A bounding box with measurable 

dimensions has also been created using the Blob analysis. The image within the bounding 

box has been given as input in the CNN architecture for classification. A layer of CNNs 

consists of three main sublayers, which include: convolutional layers, pooling layers, and 

fully connected layers.  

In this research, two types of data have been collected: (i) Static image; and (ii) Dynamic 

image. Three thousand five hundred static pavement images having a resolution of 3264 

×2448 were collected from different streets and highways within the Dhaka region. The 

dynamic image dataset is divided into two parts: (a) Synthetic data; and (b) Real-time 

data. An artificial video using Macromedia MX has been made and used as synthetic 

data. At the same time, two real-time videos were collected from DIT Road and Dhaka 

Mymensingh Highway from coordinates 23.7547° N, 90.4154° E to   24.3654° N, 

91.1641° E. The static dataset has been enriched using the image augmentation technique. 

Training of the CNN model is done using the randomly selected static image data. The 

hyperparameters (i.e., number of layers, number of filters, number of epochs, initial 

learning rate, and percent of training data) have been tuned using the graphical 

optimization technique. The synthetic dataset has been used to estimate the initial guess 

value of the hyperparameters. The optimum parameter value has been found to be: 

Number of layers = 2, Max Epoch = 9; Training Data = 70%; Learning Rate = 3.64E-05; 

Number of Filters = 30. The training and testing accuracy were found to be 99.22% and 

98.78%, respectively, with the optimum hyperparameters. The hyperparameter 

optimization process involved a total of 992 hours of processing time. Confusion Matrix 

(CM) and Receiver Operating Characteristics (ROC) analysis were done over the trained 

and tested results and the analysis shows consistent efficacy in classifying each distress 
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accurately. The results have been compared with the baseline method Support Vector 

Machine (SVM). The comparison shows that SVM achieved 94.2% and 80.3% accuracy 

in distress identification and classification, respectively. In contrast, the CNN model has 

achieved 98.1% and 97.7% accuracy in distress identification and classification, 

respectively, which shows that the developed CNN model performs better than the 

baseline method SVM. Pavement Relative Scoring has been conductive which is 

indicative of pavement health. Finally, A tool is developed named Road Distress Training 

and Classification (RoadDisTrac) using MATLAB runtime environment.  
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CHAPTER 1  

INTRODUCTION 

1.1  Background of the Study 

Automatic recognition of various road distresses is of considerable interest since it 

facilitates preventive road maintenance before cracks and potholes become too severe, 

leading to economic benefits. The current approach of using human operators to 

categorize road distresses is both labor-intensive and time-consuming. Especially in 

Bangladesh, transportation agencies routinely collect road condition data as part of their 

pavement management activities to maintain pavements cost-effectively. Since 

pavements tend to deteriorate with time under the influence of repeated traffic loading 

and environmental variations, accurate condition or health monitoring techniques become 

critical for the timely detection of distress development in the pavements. Efficient 

condition monitoring strategies can aid engineers in developing appropriate scheduling 

of pavement maintenance and repair activities leading to a significant reduction in 

pavement life-cycle maintenance costs. Nowadays, pavement distress evaluation has 

come a long way from manual visual surveys to acquiring pavement images using 

downward looking high-speed digital camera attached to pavement data collection 

vehicles moving at highway speed (Chambon et al., 2011; Mahler et al., 1991). Currently, 

many highway agencies are moving towards pavement condition data collection using 

the so-called 3-D automated survey systems that can acquire high-resolution images 

containing more information elevation and intensity than 2-D images and are capable of 

achieving 1-mm crack identification (Barnich and Van Droogenbroeck, 2009). Statement 

of the problems and opportunities. 

 

1.1.1 Costly pavement maintenance 

Road management authorities, i.e., Roads and Highways Department (RHD), Local 

Government Engineering Department (LGED), Bangladesh Bridge Authority (BBA), 

and Dhaka City Corporation (DNCC, DSCC) allocate a large amount of budget for 

pavement expenditure related to road maintenance. Alarmingly, this expenditure is 

increasing each year due to the involvement of various direct and indirect costs. The 

road network administered by the Roads and Highways Department (RHD) consisted of 

about 22, 476 km of roads in 2022. A substantial amount of money is being spent every 
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year for repairs and maintenance of these roads. However, funding for maintenance 

remained insufficient, resulting in many roads not reaching their economic life. Unless 

periodic maintenance is undertaken regularly, roads may rapidly deteriorate and 

rehabilitation expenses can become very high. Periodic maintenance practices are 

inadequate due to a lack of strategic planning, financing, and execution. 

 

The adequacy of funding for road maintenance is a critical issue. The government 

financed road maintenance from the revenue budget and the Annual Development Plan 

(ADP). The RHD of the Ministry of Road Transport and Bridges regularly uses project 

funding in the ADP to supplement its budget for periodic maintenance. Periodic 

maintenance works financed from the revenue budget and ADP fell short of the amount 

required to meet the sustainable level stated in the Annual Road Maintenance Plan 

(ARMP) and reduce the maintenance backlog. As a result, the government is using 

available funds to improve capacity by rehabilitating the existing road network rather 

than expanding the road network to meet demand increases. The maintenance backlog 

is gradually increasing, as the available funds could not meet the 13–16% growth in 

demand. To reduce the backlog, the government needed to access additional sources of 

external and domestic funding for maintenance. In order to do so, the government needed 

to implement several measures, including the following: (i) a policy commitment to 

prepare road maintenance and periodic maintenance budgets using the Highway 

Development and Management (HDM-4) model under the ARMP; (ii) transparent 

budgeting to enable monitoring of periodic maintenance expenditure; (iii) setting the 

periodic maintenance budget at the level required for asset sustainability; (iv) funding 

the periodic maintenance budget on a permanent basis from domestic sources; and (v) 

adequately resourcing the maintenance directorate. Asian Development Bank, ADB’s 

assistance in addressing the backlog was based on the need for the government to 

improve road conditions and develop sustainable sources of funding from the public and 

private sectors to finance the maintenance backlog and meet periodic road maintenance 

requirements. 
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1.1.2 Absence of accurate pavement condition or health monitoring technique 

Existing road management authorities (RHD, LGED, BBA, DNCC, DSCC) use 

International Roughness Index (IRI) as a measure of pavement condition. The IRI is a 

widely used measure of the roughness of a longitudinal road surface profile. This index 

is obtained from the response of a specific quarter-car model traveling on the pavement 

profile. With increasing IRI values, it denotes decreasing pavement conditions. The 

extent of IRI value, whether pavement condition is good or bad, varies with the type of 

road. However, this health monitoring technique suffers from different limitations. Road 

profiles or surfaces have too much information to be used at a network level – at this 

level, a simple indicator of pavement condition is needed. Most transportation authorities 

use the International Roughness Index (IRI), a single number that is intended to provide 

a measure of pavement condition. However, IRI is not well correlated with pavement 

remaining service life and the correlation between damage and IRI is poor. 

 

1.1.3 Inefficient condition monitoring strategies 

Different road management authorities have accepted the International Roughness index 

as the parameter for pavement monitoring. However, it was developed as an indicator of 

passenger comfort as they travel in a vehicle on the pavement. It does not represent 

precisely which pavements are more vulnerable to damage than others. In addition, RHD 

has defined the pavement condition according to a range of IRI value, i.e., for the 

national highway, if the IRI value is within the range of 0-3.9, 4-5.9, 6-7.9, 8-9.9 and 

greater than 10, they denote pavement condition is good, fair, poor, bad, very bad 

respectively. However, this single parameter cannot solely represent the actual condition 

of the pavement.     

 

1.1.4 Limitations of manual visual survey  

The essence of digitizing data is to increase speed and efficiency to have more things 

done in a fraction of a second. Imagine a situation where manual data entry is used in an 

environment where a high-speed data processing system is installed; it will result in the 

system becoming slow and with a buildup queue that will defeat the whole process 

automation to increase speed and system efficiency. Therefore, the manual survey 

system has some disadvantages. It is undertaken by a human who is not infallible in the 
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performance of repetitive tasks. When a man faces a tedious job, he is bound to commit 

errors due to the dynamism of human nature, unlike a machine that follows a set of 

instructions and never gets tired unless when it breaks down. Lower data entry speed is 

another drawback of the manual survey. There is no way a man can compete with a 

machine in terms of processing speed. In a data security situation involving going 

through millions of items to check for data integrity and data validation to ensure high 

accuracy of data elements going into a system, the low-speed nature of manual data input 

will cause a system failure. Imagine a surveillance system where a human is allowed to 

check every person entering a premise manually; the low speed in reviewing everyone's 

incoming and outgoing people will create high traffic that may shut down the system. In 

an environment where consistency of data is crucial to the success of the system, manual 

data entry service is always a disadvantage as maintaining consistency for humans is a 

challenging task that must be avoided. One of the advantages of the automated system 

is the low cost of doing business, but using a manual data entry system means more 

personnel will be engaged to increase service delivery and each member of the 

workforce must be trained to meet the basic standard required to perform assigned tasks. 

 

1.2  Research Objectives and Scope of Work 

This study is concerned with the development of a model that detect the distress from 

image. The specific objectives are: 

a) Detecting road distress from real-time video using dynamic illumination 

adaptive        background model and foreground segmentation formulation.  

b) Developing algorithm to extract crack features (i.e., orientation, length, density, 

displacement, location), crack maps, and summary statistics. 

c) Developing a classification paradigm to identify different types of road distress. 

d) Developing a tool for real-time road distress detection and providing pavement 

health score. 

It is expected that the outcome of this research will contribute into automatic road 

distress management strategies along with continuous road health monitoring.  
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1.3  Organization of the Thesis 

Chapter 1 gives an introduction of the relevant research background, statement of 

problems as well as the objectives and scope of this research. 

 

Chapter 2 presents comprehensive reviews of previous works on crack identification, 

edge detection and Neural Network models. The Neural Network models are reviewed 

with respect to their categories in terms of level of detail and data collection 

methodology. 

 

Chapter 3 shows the methodology of crack identification and crack classification. It 

includes description of the mechanism behind the Sobel Edge Filter design for crack 

identification. This chapter also describes methodology for the classification paradigm 

incorporating Convolutional Neural Network.  

 

Chapter 4 presents a detailed description of data collection methodology and extensive 

analysis over the collected data. Pictorial data for calibrating the classification model 

with crack data using CNN Architecture is presented here.  

 

Chapter 5 includes the calibration and validation of the crack classification model. 

Sensitivity analysis of different parameters have been done and a set of optimum 

parameters is obtained. 

 

Chapter 6 includes a discussion on the obtained result. The results of the calibrated 

model is compared with another State-of-Art image classification technique in terms of 

several measures of performance. 

 

Chapter 7 concludes the thesis with recommendations and future research direction. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

Pavements are primary elements of a transportation structure. A nation’s highway 

network is supposed to be capable enough to maximize trade, industrial and social 

benefits. In order to ensure the required pavement performance, periodic road health 

monitoring surveys are indispensable to collect information about pavement conditions. 

Conventionally, road inspection surveys have been performed manually. However, with 

the ever-increasing growth of road networks and the amount of traffic they handle, the 

time-consuming visual analysis techniques are not preferred any more. In addition, 

manual highway surveys also suffer heavily from the associated subjectivity of human 

decision making. In contrast, automated pavement surveying systems, when designed and 

validated appropriately, are able to be very fast, accurate and remove the subjectivity 

involved.  

 

Cracks are generally produced by the partial or entire fractures of the pavement surface. 

There is an extensive variety of road distresses starting from single crack (longitudinal 

and traverse crack) to interrelated crack patterns spread over the entire pavement surface 

(block, crescent-shaped and crocodile cracks). The load-spreading and water-resistant 

capacity of the road is lost due to these cracks which also speed up the deterioration 

process of pavement surface. If road distresses are kept untreated, then the consequences 

become more severe and these cracks transform into potholes, deform the road and 

sometimes even produce differential settlement of road. Both 2D and 3D imaging 

techniques have been used for distress measurements. Usually, 2D imaging can be 

performed by simpler hardware, hence is generally preferred. But 3D imaging becomes 

irreplaceable in certain situations, e.g. depth measurements. The automated detection of 

road distresses, the subject of this research, is a topical issue with numerous publications 

in recent years. 

 

2.2 Crack Identification 

The first steps for a road maintenance assessment is distress labeling and quantification 

of pavement in term of type, severity, and extension. This phase sometimes become very 
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difficult because of a lack of standardization in the distress definition that could lead to 

the inconsistency of the classification. 

 

In literature, there are several distress identifications catalogues by different researchers 

and organizations (Shahin, 1994; ASTM, 2018), which almost adopt the same 

identification and evaluation criteria. One of the most well-known and diffused 

references is the ASTM D6433-16 (Coenen and Golroo, 2017), which provides distress 

criteria identification and classification for both flexible and rigid pavement. Another 

American reference that is commonly used is the manual for the Long-Term Pavement 

Performance Program by the US Department of Transportation (Chambon and Moliard, 

2011), which aims to collect pavement performance data in the United States and Canada. 

This classification is important for its widely experienced and international orientation 

and integrity of classification, but no numerical threshold for distress severity 

classification is provided (Chaussees, 1998). The European background in distress 

identification and management is limited to some isolated cases. Based only on the 

surface condition evaluation, a guideline for pavement distress identification have been 

developed by the French Institute of Science and Technology for Transport (GEC, 2003) 

and the Swiss Association of Road and Transport Professionals (Tech Transport Institute, 

2015), while only recently Ireland has included the assessment of road pavement 

(Instruction for Road Maintenance Planning, 1988). In Italy, the standard procedures for 

distress identification are few and limited to guidelines of the National Research Council 

and isolated in case of application of any road officers (EC Policy Orientation on Road 

Safety, 2010). The common aim of all the above-mentioned Distress Catalogues, is to 

provide a common set of criteria to evaluate the pavement condition and define 

management strategies. In fact, almost of the methods to perform a Pavement 

Management System (PMS) are based on the development of pavement condition indices 

to express the structural and operational performance, by combining different distress 

type expressed in terms of severity and extension, such as Pavement Condition Index 

(PCI) (Chambon et al., 2011; Mahler et al., 1991; Barnich and Van Droogenbroeck, 

2009).  

 

To perform a preventive maintenance approach for a whole road network, the availability 

of detailed information about actual road conditions is required. This can be obtained 

only through an accurate distress identification and classification. On the other side to 
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reach high level information, high investments in technologies and qualified staff are 

necessary. In recent years, inspired by the challenging goal of the European Union (EU) 

in Road Safety (Chan et al., 2010), many researchers and public agencies have used their 

energies and resources in investigating the importance of road condition in the incidental 

phenomena (Loprencipe and Pantuso, 2017; Shah et al., 2013; Tighe et al., 2000; Bennett 

et al., 2006). Moreover, due to the lack of economic resources, many countries find 

difficulties to investigate in sophisticated PMS and expensive extensive surveys. From 

these considerations, the importance of a pavement classification tool emerges. A defined 

set of information acquired by different surveys (Loprencipe and Pantuso, 2017; 

Loprencipe et al., 2017; Bennett et al., 2017) can provide a safety and comfort-oriented 

tool. 

 

As a guideline for the distress classification, the most well-known and appreciated 

Distress Catalogues have been considered (Shahin, 1994; Coenen, 2017) to identify the 

most frequent distresses in flexible road pavement tightly coupled with the comfort and 

safety of the vehicles. The contribution of comfort or safety reduction has been 

considered for each type of distress, according to its severity and extension. According 

to the literature (Shahin, 1994; ASTM, 2018; Coenen, 2017), the distress types have been 

grouped into four families as described below: 

i. Cracking. 

ii. Visco-plastic deformation 

iii. Surface defects. 

iv. Miscellaneous distresses. 

In order to facilitate their identification and to evaluate their contribution to comfort and 

safety level for road users. 

 

2.2.1 Cracking group 

The pavement cracking group includes several kinds of distress, such as fatigue cracking, 

block cracking, edge cracking, longitudinal and transverse cracking, and reflection 

cracking. Most are related to climatic causes, load, and repetitive traffic load. Moreover, 

they have different effects on the global safety and comfort level of the road: for example, 

fatigue cracking advises the end of lifecycle for the e pavement. 
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2.2.2 Visco-plastic deformation group 

All the deformations involving both superficial and bottom layers are considered as the 

visco-plastic deformation group. Corrugation, and lane/shoulder drop off generally 

correlate with horizontal and vertical displacement of the top layer of the pavement 

structure, while bumps and sags, rutting, depression, potholes, and swell may affect the 

whole structure of the pavement. The main reason of visco-plastic distresses is the load, 

followed by traffic and climatic effects.  

 

2.2.3 Surface defect group 

The surface defect group encompasses bleeding, polish aggregate and raveling. When 

bleeding occurs, an excess of bituminous binder is present in the top layer surface, while 

in case of raveling an inadequate asphalt binder can cause the dislodging of aggregate. In 

the case of Polish aggregate, the top layer surface becomes smooth because of the 

aggregated exposition to the traffic, producing a reduction in adhesion. Causes of surface 

defects are related to bituminous materials characteristics and to the traffic effect. 

 

2.2.4 Miscellaneous distress 

The Miscellaneous distress includes patching due to utility, cut patching, railroad 

crossing, catch basins and manholes cover. They are frequent in the urban area and are 

easily recognizable by their peculiar shape. 

 

2.2.5 Automated devices in distress detection 

An integral solution by means of a single vehicle is sought for determining the pavement 

condition, location and severances of distresses which consists of different detection 

measuring methods and supporting equipment. More than a decade ago, this has been 

discussed by Bennett et al. (2006), but the technology has not developed that way. For 

data collection, synchronization and analysis additional equipment such as Global 

positioning system (GPS), frame grabber, data storage and Distance Measurement 

Instrument (DMI) have been used (Zhang et al., 2014). 
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2.3 Neural Networks 

Artificial intelligence technique that mimics the operation of the human brain (nerves and 

neurons), and comprises of densely interconnected computer processors working 

simultaneously (in parallel). A key feature of neural networks is that they are 

programmed to 'learn' by sifting data repeatedly, looking for relationships to build 

mathematical models, and automatically correcting these models to refine them 

continuously. Also called neural net. Artificial neural networks are computational models 

which work similar to the functioning of a human nervous system. There are several kinds 

of artificial neural networks. These types of networks are implemented based on the 

mathematical operations and a set of parameters required to determine the output. Some 

of the types that are most used in today’s machine learning (ML) applications are given 

below. 

 

This neural network is one of the simplest forms of ANN, where the data or the input 

travels in one direction. The data passes through the input nodes and exit on the output 

nodes. This neural network may or may not have the hidden layers. In simple words, it  

has  a  front  propagated  wave  and  no  back  propagation  by  using  a classifying 

activation function usually. Figure 2.1 shows a Single layer feed forward network. 

 

 

Figure 2.1: Simple Diagram of Feedforward Neural Network 

 

Here, the sum of the products of inputs and weights are calculated and fed to the output. 

The output is considered if it is above a certain value i.e threshold (usually 0) and the 

neuron fires with an activated output (usually 1) and if it does not fire, the deactivated 

value is emitted (usually -1). Application of Feed forward neural networks are found in 

computer vision and speech recognition where classifying the target classes are 
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complicated. These kinds of Neural Networks are responsive to noisy data and easy to 

maintain. 

 

Radial basic functions consider the distance of a point with respect to the center. RBF 

functions have two layers, first where the features are combined with the Radial Basis 

Function in the inner layer and then the output of these features are taken into 

consideration while computing the same output in the next time-step which is basically a 

memory. Figure 2.2 is a diagram which represents the distance calculating from the center 

to a point in the plane similar to a radius of the circle. Here, the distance measure used in 

euclidean, other distance measures can also be used. The model depends on the maximum 

reach or the radius of the circle in classifying the points into different categories.  If the 

point is in or around the radius, the likelihood of the new point begins classified into that 

class is high. There can be a transition while changing from one region to another and 

this can be controlled by the beta function. This neural network has been applied in Power 

Restoration Systems. Power systems have increased in size and complexity. Both factors 

increase the risk of major power outages. After a blackout, power needs to be restored as 

quickly and reliably as possible. 

 

 

 

Figure 2.2: Simple Diagram of Radial Basis Function Neural Network 

 

The objective of a Kohonen map is to input vectors of arbitrary dimension to discrete 

map comprised of neurons. The map needs to me trained to create its own organization 

of the training data. It comprises of either one or two dimensions. When training the map, 

the location of the neuron remains constant but the weights differ depending on the value. 
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This self-organization process has different parts, in the first phase every neuron value is 

initialized with a small weight and the input vector. In the second phase, the neuron 

closest to the point is the ‘winning neuron’ and the neurons connected to the winning 

neuron will also move towards the point like in the graphic below (Figure 2.2). The 

distance between the point and the neurons is calculated by the euclidean distance, the 

neuron with the least distance wins. Through the iterations, all the points are clustered 

and each neuron represents each kind of cluster. This is the gist behind the organization 

of Kohonen Neural Network.  

 

 

Figure 2.3: Simple Diagram of Kohonen Self-Organizing Neural Network 

 

Kohonen Neural Network is used to recognize patterns in the data. Its application can be 

found in medical analysis to cluster data into different categories. Kohonen map was able 

to classify patients having glomerular or tubular with a high accuracy.  The Recurrent 

Neural Network works on the principle of saving the output of a layer and feeding this 

back to the input to help in predicting the outcome of the layer. Here, the first layer 

(Figure 2.4) is formed similar to the feed forward neural network with the product of the 

sum of the weights and the features. The recurrent neural network process starts once this 

is computed; this means that from one time step to the next each neuron will remember 

some information it had in the previous time-step. This makes each neuron act like a 

memory cell in performing computations. In this process, it is needed to let the neural 

network to work on the front propagation and remember what information it needs for 

later use. Here, if the prediction is wrong the learning rate or error correction is used to 
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make small changes so that it will gradually work towards making the right prediction 

during the back propagation. The application of Recurrent Neural Networks can be found 

in text to speech (TTS) conversion models. 

 

 

Figure 2.4: Simple Diagram of Recurrent Neural Network 

 

Many types of artificial neural networks (ANNs), including the probabilistic neural 

network (NN) (Ahmadlou and Adeli, 2010), have been developed and adapted to research 

and industrial fields, but convolutional neural networks (CNNs) have been highlighted in 

image recognition, which are inspired by the visual cortex of animals (Ciresan et al., 2011). 

CNNs can effectively capture the grid-like topology of images, unlike the standard NNs, 

and they require fewer computations due to the sparsely connected neurons and the 

pooling process. Moreover, CNNs are capable of differentiating a large number of classes 

(Krizhevsky et al., 2012). These aspects make CNNs an efficient image recognition method 

(Simard et al., 2012; LeCun, 2015). The previous issue of CNNs was the need for a vast 

amount of labeled data, which came with a high-computational cost, but this issue was 

overcome through the use of well-annotated databases (ImageNet, no date; CIFAR-10 

and CIFAR-100 data set, no date; MNIST Database, no date) and parallel computations 

using graphic processing units (Steinkrau et al., 2005). Owing to this excellent 

performance, a study for detecting railway defects using a CNN was later proposed 

(Soukup et al., 2014). Rail surfaces are homogenous, and the images are collected under 

controlled conditions. This cannot be considered the same as detecting   concrete   surface 

defects due to non- homogenous surface.  
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Therefore, a carefully configured deep architecture and abundant data set, taken under 

extensively varying conditions, is essential for dealing with the true variety of real-world 

problems. There has been a number of research in detecting cracks automatically on 

concrete surfaces using deep neural networks to reduce human conducted on-site 

inspections. Some are in basic levels others focusing on increasing accuracy. In 2017 Cha 

et al. proposed a vision-based method using a deep architecture of Convolutional Neural 

Networks (CNNs) for detecting concrete cracks without calculating the defect features. 

Which allowed the architecture to detect cracks in concrete surfaces in the extensively 

varying real-world situations (e.g., lighting and shadow changes). The CNN has three 

convolutional layers, 3 pooling layers, uses Rectified Linear Unit (ReLU) at the end of 

the hidden layers and uses max pooling. To classify input data into binary output the 

CNN architecture uses softmax function. The overall architecture ends up detecting 

cracks with 98% accuracy. Feng et al. (2017) proposed a deep Active Learning (AL) 

framework. Addressing the efficient training and deployment of an automatic defect 

detection system. A deep residual network (ResNet) is designed as the classifier for 

detection and classification of defects in an input image patch. In their paper, they 

prepared a labelled dataset, then fed it to an existing deep neural architecture, designed a 

suitable cost function for optimization and tuned hyper parameters for training to achieve 

a best performance. The model is able to detect cracks, deposit and water leakage on 

concrete surface with an accuracy of 87.5%. 

 

Salman et al. (2013) proposed an approach to automatically distinguish cracks in digital 

images based on the Gabor filtering. Multi- directional crack detection can be achieved 

by high potential Gabor filter. The Gabor filter is a highly potential technique for 

multidirectional crack detection. The image analysis of the Gabor filter function was 

directly related to the manual visual perception. Once filtering was completed, the cracks 

aligned to different directions are detected. They have a detection precision of 95% for 

their proposed methodology.  

 

Iyer et al. (2005) have designed a three-step method for the crack detection from the high 

contrast images. The proposed method detects the crack like pattern in the noisy 

environment using curvature evaluation and mathematical morphology technique. It was 

based on mathematical morphology and curvature evaluation that detects crack-like 

patterns in a noisy environment. In their study, segmentation is done defining the crack 
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like pattern with respect to a precise geometric model. Linear filtering was performed 

after cross curvature evaluation to distinguish them from analogous background pattern. 

They have identified the irregularity sequentially by the geometry-based recognition 

crack features. Nguyen et al. (2014) have proposed a method based on the edge detection 

of concrete cracks from noisy 2D images of concrete surfaces. They have observed the 

cracks as tree-like topology. Then based on the PSCEF non-crack objects were removed. 

After the separation, thresholding filter, and morphological thinning algorithm have been 

used to binarize the image for the crack center line estimation. Then the center line was 

fitted by cubic splines. They have linked the edge points to form the desired continuous 

crack edge. From the crack edge, the surface of the crack was attained. 

 

Yang et al. (2015) have proposed an image analysis method to capture thin cracks and 

minimize  the  requirement  for  pen  marking  in  reinforced  concrete structural tests. 

They have used the studies like crack depth prediction, change in detection without image 

registration, crack pattern recognition based on artificial neural networks, applications to  

micro-cracks  of  rocks  ,  and  efficient  sub-pixel width measurement. Stereo 

triangulation method was the adopted technique based on cylinder formula 

approximation and image rectification. Once they have the rectified output, the surface 

of the observed regions can be unfolded and presented in a plane image for following 

displacement and deformation analysis. From which the crack detection was analyzed. 

Wang et al. (2010) have proposed a system for the image based crack detection and to 

characterize the crack based upon their effectiveness. They have categorized the present 

image-based crack detection into four categories. They are an   integrated   algorithm   

morphological   approach, percolation   approach   and practical technique. A shading 

correction was done using integrated algorithm. The unclear crack prediction was 

detected using percolation method.  The crack detection was done using morphological 

approach for the micro crack detection with the practical method providing high- 

performance feature extraction with more than 95% of accuracy.  

 

2.4 Edge Detection 

Different methods are used to detect edges in image processing among these is Roberts 

Cross Algorithms. Robert processes a photograph into a line drawing, transform the line 

drawing into a three-dimensional representation and finally display the three-dimensional 

structure with all the hidden lines removed, from any point of view (Sparr, 2002). The 
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Roberts (1965) cross algorithm performs a 2-D spatial gradient convolution on the image. 

The main idea is to bring out the horizontal and vertical edges individually and then to 

put them together for the resulting edge detection. The two filters highlight areas of high 

special frequency, which tend to define the edge of an object in an image. The two filters 

are designed with the intention of bringing out the diagonal edges within the image. The 

𝐺𝑥 image will enunciate diagonals that run from thee top-left to the bottom-right whereas 

the 𝐺𝑦 image will bring out edges that run top right to bottom-left. The two individual 

images 𝐺𝑥 and 𝐺𝑦 are combined using the approximation equation 𝐺 = | 𝐺𝑥|  + | 𝐺𝑦|. 

The Canny edge detection operator was developed by John F. Canny in 1986 and uses a 

multistage algorithm to detect a wide range of edges in images. In addition, canny edge 

detector is a complex optimal edge detector which takes significantly longer time in result 

computations. The image is firstly run through a Gaussian blur to get rid of the noise. 

When the algorithm is applied, the angle and magnitude is obtained which is used to 

determine portions of the edges to retain. There are two threshold cut-off points where 

any value in the image below the first threshold is dropped to zero and values above the 

second threshold is raised to one. 

 

Canny (1986) considered the mathematical problem of deriving an optimal smoothing 

filter given the criteria of detection, localization and minimizing multiple responses to a 

single edge. He showed that the optimal filter given these assumptions is a sum of four 

exponential terms. He also showed that this filter can be well approximated by first-order 

derivatives of Gaussians. Canny also introduced the notion of non-maximum 

suppression, which means that given the pre-smoothing filters, edge points are defined as 

points where the gradient magnitude assumes a local maximum in the gradient direction. 

Another algorithm used is the Susan edge detector. This edge detection algorithm follows 

the usual method of taking an image and using a predetermined window centered on each 

pixel in the image applying a locally acting set of rules to give an edge response (Vincent 

et al., 2006). The response is then processed to give the output as a set of edges. The 

Susan edge filter has been implemented using circular masks (kernel) to give isotopic 

responses with approximations used either with constant weighting within it or with 

Gaussian weighting. The usual radius is 3.4 pixels, giving a mask of 37 pixels, and the 

smallest mask considered is the traditional 3´3 mask. The 37 pixels circular mask used in 

all feature detection experiments is placed at each point in the image and for each point 
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the brightness of each pixel within the mask is compared with that of nucleus. The 

comparison equation is, 

C( 𝑟  ⃗, 𝑟0 ⃗⃗⃗⃗  ) = {
1, 𝑖𝑓 | 𝐼( 𝑟  ⃗ ) − 𝐼( 𝑟0 ⃗⃗⃗⃗  ) |  ≤ 𝑡

0 𝑖𝑓  | 𝐼( 𝑟  ⃗ ) − 𝐼( 𝑟0 ⃗⃗⃗⃗  ) | > 𝑡
 

(2.1) 

 

where  𝑟  ⃗ is the position of the nucleus in the dimensional image, 𝑟0 ⃗⃗⃗⃗  is the position of any 

other point within the mask, I( 𝑟  ⃗) is the brightness of any pixel, t is the brightness in 

difference threshold and C is the output of the comparison. This comparison is done for 

each pixel within the mask where total n of the outputs (c) is given as 

n(𝑟0 ⃗⃗⃗⃗  ) = ∑ C( 𝑟  ⃗, 𝑟0 ⃗⃗⃗⃗  
𝑛

𝑟 ⃗⃗ 
) (2.2) 

 

2.5 Object Detection 

Image processing is important in modern data storage and data transmission especially in 

progressive transmission of images, video coding (teleconferencing), digital libraries, and 

image database, remote sensing. It has to do with manipulation of images done by 

algorithm to produce desired images (Milan et al., 2002). Digital Signal Processing (DSP) 

improve the quality of images taken under extremely unfavorable conditions in several 

ways: brightness and contrast adjustment, edge detection, noise reduction, focus 

adjustment, motion blur reduction etc. (Gonzalez and Woods, 2002). The advantage is 

that image processing allows much wider range of algorithms to be applied to the input 

data in order to avoid problems such as the build-up of noise and signal distortion during 

processing (Vincent et al.,2006). Many of the techniques of digital image processing were 

developed in the 1960's at the Jet Propulsion Laboratory, Massachusetts Institute of 

Technology (MIT), Bell laboratory and few other places. But the cost of processing was 

fairly high with the computing equipment of that era. 

 

With the fast computers and signal processors available in the 2000's, digital image 

processing became the most common form of image processing and is general used 

because it is not only the most versatile method but also the cheapest. The process allows 

the use of much more complex algorithms for image processing and hence can offer both 

more sophisticated performance at simple tasks, and the implementation of methods 

which would be impossible by analog means (Michael, 2003). Thus, images are stored 

on the computers as collection of bits representing pixel or points forming the picture 

elements (Vincent et al., 2006). Firstly, images are a measure of parameter over space, 
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while most signals are measures of parameter over time. Secondly, they contain a great 

deal of information (Guthe and Strasser, 2004); image processing is any form of 

information processing for which the input is an image, such as frames of video; the 

output is not necessarily an image, but can be for instance be a set of features of the image 

(Yuval, 1996). Most image-processing techniques involve treating the image as a two-

dimensional signal and applying standard signal-processing techniques to it. The process 

involves the enhancement or manipulation of an image which resulted in another image, 

removal of redundant data and the transformation of a 2-D pixel array into a statically 

uncorrelated data set (Priotr, 2004). Since images contain lots of redundant data, scholars 

have discovered that the most important information lies in it edges (Canny, 1986). Edges 

being the local property of a pixel and its immediate neighborhood, characterizes 

boundary (Chang-Huang, 2002). They correspond to object boundaries, changes in 

surface orientation and describe defeat by a small margin. Edges typically correspond to 

points in the image where the gray value changes significantly from one pixel to the next. 

Edges represents region in the image with strong intensity contrast; representing an image 

by its edges has the fundamental advantage that the amount of data is reduced 

significantly while retaining most of image’s vital information with high frequencies 

(Keren et al., 2001). Thus, detecting Edges help in extracting useful information 

characteristics of the image where there are abrupt changes (Folorunso et al., 2007). Edge 

detection is a process of locating an edge of an image. Detection of edges in an image is 

a very important step towards understanding image features. Edges consist of meaningful 

features and contained significant information. It’s reduced significantly the amount of 

the image size and filters out information that may be regarded as less relevant, preserving 

the important structural properties of an image. Most images contain some number of 

redundancies that can sometimes be removed when edges are detected and replaced, 

when it is reconstructed (Osuna et al., 1997). Eliminating the redundancy could be done 

through edge detection. When image edges are detected, every kind of redundancy 

present in the image is removed (Sparr, 2002). The purpose of detecting sharp changes 

in image brightness is to capture important events. Applying an edge detector to an image 

may significantly reduce the amount of data to be processed and may therefore filter out 

information that may be regarded as less relevant, while preserving the important 

structural properties of an image. The image quality reflects significant information in 

the output edge and the size of the image is reduced. This in turn explains further that 

edge detection is one of the ways of solving the problem of high volume of space images 
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occupy in the computer memory. The problems of storage, transmission over the Internet 

and bandwidth could be solved when edges are detected. Since edges often occur at image 

locations representing object boundaries, edge detection is extensively used in image 

segmentation when images are divided into areas corresponding to different objects. 

 

2.6 Feature Extraction 

Labeling of connected components in a binary image is one of the most fundamental 

operations in pattern analysis (recognition), computer (robot) vision, and machine 

intelligence (Ronsen  and Denjiver, 1984; Gonzalez and Woods, 1992; Rosenfeld and 

Kak, 1982). By use of the labeling operation, a binary image is transformed into a 

symbolic image in which all pixels belonging to a connected component are assigned a 

unique label. Labeling is required whenever a computer or a system needs to recognize 

objects (connected components) in binary images; in other words, labeling is required in 

almost all image-based applications such as fingerprint identification, character 

recognition, automated inspection, target recognition, face identification, medical image 

analysis, and computer-aided diagnosis (Suzuki et al., 2003; Suzuki et al., 2008; Suzuki 

et al., 2005). Especially in real-time applications such as traffic-jam detection, automated 

surveillance, and target tracking, faster labeling algorithms are always demanded. Many 

algorithms have been proposed for addressing this issue, because the improvement of the 

efficiency of labeling is critical in many applications. For ordinary computer architectures 

such as the Von Neumann architecture and two-dimensional images, there aremainly the 

following four classes of algorithms: 

 

 (1) Multi-scan algorithms. Algorithms (Haralick, 1981; Hashizume et al., 1990) scan an 

image in the forward and backward raster directions alternately to propagate label 

equivalences until no label changes. 

 

 (2) Two-scan algorithms. Algorithms (Rosenfeld and Pfalts, 1966; Rosenfeld, 1970; 

Lumia et al., 1983; Lumia, 1983; Shirai, 1987; Gotoh et al., 1987; Komeichi et al., 1988; 

Haralick and Shapiro, 1992; Naoi, 1995; Otoo and Suzuki, 2008; He et al., 2008) 

complete labeling in two scans: during the first scan, they assign provisional labels to 

object pixels, and record label equivalences. Label equivalences are resolved during or 
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after the first scan. During the second scan, all equivalent labels are replaced by their 

representative label. 

 

 (3) Hybrid algorithms. The algorithm (Suzuki et al., 2003) is a hybrid between multi-

scan algorithms and two-scan algorithms. Like multi-scan algorithms, the hybrid 

algorithm scans an image in the forward and backward raster directions alternately. 

During the scans, as in two-scan algorithms, a one-dimensional table is used for recording 

and resolving label equivalences. Experimental results demonstrated that four is the upper 

limit on the number of scans (Suzuki et al., 2003; Hu et al., 2005). 

 

 (4) Tracing-type algorithms. These algorithms (Rosenfeld; 1970; Hu et al., 2005; 

Ballard, 1982; Chang et al., 2004) avoid analysis of label equivalences by tracing the 

contours of objects (connected components) or by use of an iterative recursion operation. 

Such algorithms had been considered to be efficient only for simple images, but not for 

complicated images, until Chang's contour-tracing algorithm (Chang, 2004) was 

proposed. There are other labeling algorithms for special image representations and 

special computer architectures. Algorithms (Samet, 1981; Gargantini, 1982; Taminen et 

al., 1984; Samet, 1985; Samet, 1986; Samet, 1988; Hecquard and Acharya, 1991; 

Dillencourt et al., 1992) were developed for the images represented by hierarchical tree 

structures (Srihari, 1980; Jackins and Tanimoto, 1980; Samet, 1984), i.e., n-array trees 

such as ‘bintree’, ‘quadtree’, ‘octree’, etc. The efficiency of such algorithms may be 

better than that of other conventional ones, but in the worst case, it is the same as that of 

conventional two-scan algorithms. On the other hand, parallel algorithms (Hirschberg et 

al., 1979; Nassimi and Sahani, 1980; Schiloach and Vishkin, 1982; Tucker, 1986; 

Manohar and Ramapriyan, 1989; Alnuweiri and Prasanna, 1992; Olariu et al., 1993; 

Choudhary and Thakur; 1996; Bhattacharya, 1996) were developed for parallel machine 

models such as a mesh connected massively parallel processor or systolic array 

processors. This paper presents a new two-scan algorithm for labeling of connected 

components in binary images. We propose an efficient strategy for assigning provisional 

labels to object pixels and checking label equivalence by case analysis, and we use the 

equivalent-label sets and a representative label table for solving label equivalences (He 

et al., 2008; He et al., 2007). Experimental results showed that our algorithm is efficient 

for connected-component labeling. The rest of this paper is organized as follows: we 

review the method for assigning provisional labels to object pixels and checking label 
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equivalence in conventional raster-scan labeling algorithms in the next section, and we 

introduce our algorithm in Section 3. In Section 4, we show experimental results, and in 

Section 5, we present a discussion. We give our concluding remarks in Section 6. The 

preliminary version of this paper was presented at the 2007 IEEE International 

Conference on Image Processing (ICIP 2007) (He et al., 2007). However, the efficient 

strategy for assigning provisional labels for object pixels by case analysis given in Section 

3, the correctness of our algorithm given in Section 5.1, the complexity analysis, and the 

efficiency analysis of the proposed algorithm given in Sections 5.2 and 5.3, respectively, 

the comparison with other conventional labeling algorithm given in Sections 5.4, 5.5, 5.6 

and 5.7, and the method for generating consecutive labels for connected components 

given in Section 5.8 are new. 

 

For an N × N binary image, we use b(x, y) to denote the pixel value at (x, y) in the image, 

where 1 ≤ x, y ≤ N, and VO for the value of object pixels and VB for that of background 

pixels. We assume that VO and VB are larger than the value of any provisional label, and 

VO <VB. 

 

For convenience, we consider only the case for eight-connected connectivity in this 

paper, because our algorithm can easily be extended to that for labeling with four-

connected connectivity.  

 

By using the mask (Rosenfeld, 1982) shown in Fig. 2.5, all conventional pixel-based 

raster-scan algorithms except the one proposed in Ref. (He et al., 2007) scan a given 

image in the raster scan direction once (the first scan) to process pixels one by one. If the 

current pixel b(x, y) is a background pixel, nothing needs to be done. On the other hand, 

if there is no object pixel in the mask other than the current pixel, it is assigned a new 

label. Otherwise, it is assigned the minimal label in the mask, and all different labels (if 

any) in the mask are recorded to be equivalent labels. 

By the above first scan, the connected component illustrated in Fig. 2.6(a), for example, 

is provisionally labeled as the one shown in Fig. 2.6(b), where label 1 and label 4, label 

2 and label 5, label 2 and label 3, and label 3 and label 4 are recorded to be equivalent 

labels. 
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There are several methods for recording and resolving label equivalences. One uses an L 

× L two-dimensional array table (Shirai, 1987; Otoo and Suzuki, 2009) to record label 

equivalences, where L is the number of provisional labels assigned to an image.2 Each 

element Xij of the table is initialized to 0. If provisional labels u and v are found to be 

equivalent labels, then the element Xuv is set to 1. After the first scan, for each 

provisional label m from 0 to L, it analyzes the table to find all m's equivalent labels, and 

m is used as their representative label.  

 

Another method is an application of the so-called union-find algorithm (Wu et al., 2004; 

Najafabadi et al., 2015; LeCun et al., 2015; Albelwi and Mahmood, 2017; 

Gopalakrishnan et al., 2017). It records label equivalences by use of union find trees. 

When two provisional labels are found to be equivalent, the two union-find trees 

corresponding to the two labels are connected together. Thus, after the first scan, all 

equivalent provisional labels will be combined in the same union-find tree, and the label 

on the root is used as their representative label. 

 

 The third method was proposed in Refs. (He, 2008; He, 2007). By this method, all 

equivalent labels are combined in a set (called and equivalent label set), and the smallest 

label among them is used as their representative label, whose relation is recorded in the 

so-called representative label table. When two provisional labels are found to be 

equivalent, the two equivalent label set corresponding to the two labels are combined 

together, and the representative label table is updated at the same time. Thus, after the 

first scan, all equivalent provisional labels will be combined in the equivalent label set 

and hold the same representative label.  

 

After label equivalences are resolved, the second scan is executed by replacement of all 

equivalent labels with their representative label. 
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Figure 2.5: Mask for Eight-Connected Connectivity 

 

 
Figure 2.6: Illustration of Provisional Labeling by the First Scan. (a) Connected-

Component Example. (b) Provisional Labels Assigned after the First Scan 

 

2.7 Summary 

This chapter gives an overview of the recent studies regarding crack identification, neural 

networks, edge detection, object detection and feature extraction methodology. In 

literature, there are several distress identification catalogues by different researchers and 

organizations, which almost adopt the same identification and evaluation criteria. One of 

the most well-known and diffused references is the ASTM D6433-16 (ASTM, 2018), 

which provides distress criteria identification and classification for both flexible and rigid 

pavement. Different methods are used to detect edges in image processing among these 

is Roberts Cross Algorithms. Robert processes a photograph into a line drawing, 

transform the line drawing into a three-dimensional representation and finally display the 

three-dimensional structure with all the hidden lines removed, from any point of view. 
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Among many types of artificial neural networks (ANNs), convolutional neural networks 

(CNNs) have been highlighted in image recognition, which are inspired by the visual 

cortex of animals. CNNs can effectively capture the grid-like topology of images that can 

easily differentiate a large number of classes, unlike the standard NNs, and they require 

fewer computations due to the sparsely connected neurons and the pooling process. 

Moreover, CNNs are capable of differentiating a large number of classes. 
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CHAPTER 3  

METHODOLOGY  

3.1 Introduction  

Current pavement condition inspections are conducted by visual inspections, heavily 

related on the human factors, which makes them expensive and not affordable for 

continuous network-scale pavement inspections. Therefore, in the last few years, several 

research activities have been conducted to design and develop new algorithms and 

methods for detecting, localizing and classifying road damages in an automatic or semi-

automatic way. Amongst the others, several effective applications for automatic 

pavement distress detection have been conducted, exploiting Image Processing 

techniques (LeCun et al., 2015; Steinkrau et al., 2005; Soukup and Huber-Mö rk, 2014) 

and Machine Learning (ML) algorithms (Cha et al., 2017; Feng et al., 2017). The 

techniques mentioned first are applied for image segmentation procedures, which are 

usually implemented to identify the selected items of interest within a chosen dataset of 

images (Salman et al., 2013). The second ones, are exploited to classify the selected items 

to one of several possible classes (Iyer and Sinha; 2005) . In the context of pavement 

damage detection, the image segmentation process is often made more difficult by critical 

factors, such as lighting and shadows effects, frequently shown in road images. 

Furthermore, the different accuracy and level of detail required to identify different 

features of pavement distresses, still adds complexity to this operation (Nguyen et al., 

2014). For this purpose, in order to overcome these occurrences, several techniques based 

on thresholding (Yang et al., 2015) and edge detection (Wang and Huang, 2010) have 

been proposed in the literature.  

 

Concerning the classification process, several ML techniques have been proposed in the 

literature, based on different types of features, such as Scale-Invariant Feature Transform 

(SIFT) (Milan, 2002), Histogram of Oriented Gradients (HOG) (Gonzalez, 2002) and 

classification algorithms, such as Support Vector Machine (SVM) (Baker and Nayar, 

1996) and Bayesian Classifier (Michael, 2003). More recently, the application of Deep 

Learning techniques (Vincent et al., 2009) has provided significant development in the 

field of Artificial Intelligence (Guthe and Strasser, 2004) and, more specifically, in Image 

Recognition (Yuval, 1996). In this context, several studies have demonstrated that Deep 

Learning algorithms can provide significant advantages in the recognition and 
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classification of pavement distresses (Priotr, 2004). In (Canny, 1986), for instance, the 

authors present a system in which the transfer learning technique (Chang-Huang, 2002) 

is applied to a deep Convolutional Neural Network (CNN) to identify road damages 

within the ImageNet dataset. In the literature (Keren et al., 2001), the authors apply the 

same technique to a Region Based Convolutional Neural Network (R-CNN) for the same 

issue, but in more complex scenarios, whilst in (Folorunso et al., 2007) an architecture 

based on multiple Faster R-CNNs is optimized to achieve the best performance in 

pavement distress detection. In (Osuna et al., 1997), the authors propose a modified 

version of the YOLO (You Look Only Once) network specifically designed to identify 

and classify a consistent number of pavement distresses. In (Sparr, 2002), Majidifard et 

al. propose a hybrid model based on a YOLO v2 network to classify road damages and a 

U-net network to diagnose its severity. The experimental results are obtained on a 

labelled pavement dataset (Roberts, 1965) created from images extracted from Google 

Street View and annotated using nine different classes of distress. 

 

3.2 Sobel Filter Design 

Most edge detection methods work on the assumption that the edge occurs due to 

discontinuity in the intensity function or a very steep intensity gradient in the image. 

Using this assumption, if one takes the derivative of the intensity value across the image 

and find points, where the derivative is maximum, then the edge could be located. The 

gradient is a vector, whose components measure how rapid pixel value are changing with 

distance in the x and y direction. Thus, the components of the gradient may be found 

using the following approximation: 

𝛿𝑓(𝑥, 𝑦)

𝛿𝑥
= 𝛥x =

𝑓(𝑥 + 𝑑𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

𝑑𝑥
 

(3.1) 

𝛿𝑓(𝑥, 𝑦)

𝛿𝑥
= 𝛥y =

𝑓(𝑥, 𝑦 + 𝑑𝑦) − 𝑓(𝑥, 𝑦)

𝑑𝑦
 

(3.2) 

 

where 𝑑𝑥 and 𝑑𝑦  measure distance along the x and y directions respectively. In discrete 

images, one can consider 𝑑𝑥 and 𝑑𝑦 in terms of numbers of pixel between two points. 

𝑑𝑥 = 𝑑𝑦  = 1 (pixel spacing) is the point at which pixel coordinates are (𝑖, 𝑗) thus, 

 

𝛥x = f(i + 1, j) − f(i, j) (3.3) 

𝛥y = f(i, j + 1) − f(i, j) (3.4) 

 

To detect the presence of a gradient discontinuity, one could calculate the change in the 
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gradient at (i, j). This can be done by finding the following magnitude measure 

𝑀 = √(𝛥𝑥2 + 𝛥𝑦2) (3.5) 

 

and the gradient direction  is given by 

 =  tan−1 𝛥x

𝛥y

 (3.6) 

 

3.2.1 Method of the filter design 

There are many methods of detecting edges; most different methods may be grouped into 

these two categories: 

 

i. Gradient: The gradient method detects the edges by looking for the maximum 

and minimum in the first derivative of the image. For example, Roberts, Prewitt, 

Sobel where detected features have very sharp edges.  

 

ii. Laplacian: The Laplacian method searches for zero crossings in the second 

derivative of the image to find edges e.g., Marr-Hildreth, Laplacian of Gaussian 

etc. An edge has one dimensional shape of a ramp and calculating the derivative 

of the image can highlight its location. Edges may be viewpoint dependent: these 

are edges that may change as the viewpoint changes and typically reflect the 

geometry of the scene which in turn reflects the properties of the viewed objects 

such as surface markings and surface shape. A typical edge might be the border 

between a block of red color and a block of yellow, in contrast. However, what 

happens when one looks at the pixels of that image is that all visible portion of 

one edge is compacted. The Sobel operator is an example of the gradient method. 

The Sobel operator is a discrete differentiation operator, computing an 

approximation of the gradient of the image intensity function (Sobel and 

Feldman, 1968). The different operators in eq. (3.7) and (3.6) correspond to 

convolving the image with the following mark. 

 

𝛥x = | 
−1     1
0         0 

| (3.7) 

𝛥y = | 
−1     0
1         0 

| (3.8) 

 

When this is done, then: 
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i. The top left-hand corner of the appropriate mask is super-imposed over each 

pixel of the image in turn, 

ii.  A value is calculated for ∆x or ∆y by using the mask coefficients in a weighted 

sum of the value of pixels (i, j) and its neighbors,  

iii. These masks are referred to as convolution masks or sometimes convolution 

kernels. Instead of finding approximate gradient components along the x and y 

directions, approximation of the gradient components could be done along 

directions at 45° and 135° to the axes respectively. In this case 

∆x = f (i + ,1 j +1) − f (i, j) (3.9) 

∆y = f (i, j +1) − f (i + ,1 j) (3.10) 

 

This form of operator is known as the Roberts edge operator and was one of the first set 

of operators used to detect edges in images (Robert, 1965). The corresponding 

convolution masks are given by: 

∆1=| 
0      1

−1      0 
| (3.11) 

∆2=| 
1     0
0 − 1 

| (3.12) 

 

An advantage of using a larger mask size is that the errors due to the effects of noise are 

reduced by local averaging within the neighborhood of the mask. An advantage of using 

a mask of odd size is that the operators are centered and can therefore provide an estimate 

that is based on a center pixel (i,j). One important edge operator of this type is the Sobel 

edge operator. The Sobel edge operator masks are given as : 

𝛥x = | 
−1     0      1
−2      0      2
−1      0      1

|,          
(3.13) 

𝛥y = | 
1         2        1
0         0        0

−1     − 2   − 1
| 

(3.14) 

 

The operator calculates the gradient of the image intensity at each point, giving the 

direction of the largest possible increase from light to dark and the rate of change in that 

direction. The result therefore shows how "abruptly" or "smoothly" the image changes at 

that point and therefore how likely it is that part of the image represents an edge, as well 

as how that the edge is likely to be oriented. In practice, the magnitude (likelihood of an 

edge) calculation is more reliable and easier to interpret than the direction calculation. 

Mathematically, the gradient of a two-variable function (the image intensity function) at 
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each image point is a 2D vector with the components given by the derivatives in the 

horizontal and vertical directions. At each image point, the gradient vector points to the 

direction of largest possible intensity increase, and the length of the gradient vector 

corresponds to the rate of change in that direction. This implies that the result of the Sobel 

operator at any image point which is in a region of constant image intensity is a zero 

vector and at a point on an edge is a vector which points across the edge, from darker to 

brighter values. The algorithm for developing the Sobel model for edge detection is given 

below. 

 

3.2.2 Pseudo-codes for sobel edge detection method  

Input: A Sample Image 

Output: Detected Edges 

Step 1: Accept the input image  

Step 2: Apply mask 𝐺𝑥, 𝐺𝑦 to the input image The Gx image will enunciate diagonals 

that run from the top-left to the bottom-right where as the Gy image will bring out edges 

that run top-right to bottom-left. The two individual images Gx and Gy are combined 

using the approximation equation G = Gx + Gy 

Step 3: Apply Sobel edge detection algorithm and the gradient  

Step 4: Masks manipulation of 𝐺𝑥, 𝐺𝑦 separately on the input image 

Step 5: Results combined to find the absolute magnitude of the gradient  

  | 𝐺 |  =  √( 𝐺𝑥2 +  𝐺𝑦2)  (3.15) 

Step 6: the absolute magnitude is the output edges 

 

3.3 Classification Paradigm: Convolutional Neural Network 

Deep learning is a machine learning method based on neural networks that applied 

multiple layers of processing information enabling computers to automatically extract 

features from data with multiple levels of abstraction; in each transition of layers, 

representation at one-layer transforms into representation at a higher abstract level in the 

next layer (Najafabadi et al., 2015). The distinctive property of deep learning is that layers 

of the feature are learned automatically from data (Le Cun, 2015). 

Deep learning can be used for supervised, unsupervised, and semi-supervised learning 

and has a widespread application in computer vision, analysis of big data, speech 
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recognition, object detection, handwriting recognition, image classification, audio 

processing, robotics, self-driving car, drug discovery.  

 

CNN is a special form of deep neural networks that was designed to process data that 

have multiple arrays and grid-like topology (Albelwi and Mahmood, 2017). CNNs can 

be used on 3D (video), 2D (image), and 1D (text or audio) input data to perform one of 

the mentioned deep learning applications (Baker and Nayar, 1996). In recent years, a 

large number of researches were conducted in pavement management systems to 

automatic feature extraction and distress detection by applying CNN on the pavement 

image as input data (Gopalakrishnan et al., 2017). 

 

3.3.1 Convolutional neural network 

The structure of CNNs consisted of three main substructures, which include: 

convolutional layers, pooling layers, fully connected layers. A convolution layer 

performs the following three operations throughout an input array as shown in Figure 

2.13. First, it performs element-by-element multiplications (i.e., dot product) between a 

subarray of an input array and a receptive field. The receptive field is also often called 

the filter, or kernel. The initial weight values of a receptive field are typically randomly 

generated. Those of bias can be set in many ways in accordance with networks’ 

configurations (Krizhevsky et al., 2012). Both values are tuned in training using a 

stochastic gradient descent (SGD) algorithm.  The size of a subarray is always equal to a 

receptive field, but a receptive field is always smaller than the input array. Second, the 

multiplied values are summed, and bias is added to the summed values. Figure 3.1 (a) 

shows the convolutions of the subarrays (solid and dashed windows) with an input array 

and a receptive field. One of the advantages of the convolution is that it reduces input 

data size, which reduces computational cost. An additional hyper parameter of the layer 

is the stride. The stride defines how many of the receptive field’s columns and rows 

(pixels) slide at a time across the input array’s width and height. A larger stride size leads 

to fewer receptive field applications and a smaller output size, which also reduces 

computational cost, though it may also lose features of the input data. The output size of 

a convolution layer is calculated by the equation shown in Figure 3.1 (a). 
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(a) 

(b) 

Figure 3.1: Convolution Process to Create Feature Map 

 

Convolutional layers are also made from several feature maps, and each unit of feature 

maps is made from convolving a small region in input data which is called the local 

receptive field. As can be seen in Fig. 3.1 (b), a new feature map is created by sliding a 

local receptive field over the input. The convolution can be used in various kinds of data 

such as image, text. For example, in the image, an area of pixels is convolved, and in the 

text, a group of characters or words are convolved. Unlike the standard neural network, 

each neuron in the layers is not connected to all the nodes (neurons) in the previous layer 

but is just connected to nodes in a special region known as the local receptive field 

(LeCun, 2015). 

 

Another key aspect of the CNNs is a pooling layer, which reduces the spatial size of an 

input array.  This process is often defined as down sampling.  There are two different 
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pooling options. Max pooling takes the max values from an input array’s subarrays, 

whereas mean pooling takes the mean values. Figure 3.2 shows the pooling method with 

a stride of two, where the pooling layer output size is calculated by the equation in the 

figure. Owing to the stride size being larger than the convolution example in Figure 3.2, 

the output size is further reduced to 3 × 3. Max pooling performance in image data sets 

is better than that of mean pooling. 

 

Figure 3.2: Illustration of CNN Architecture 

 
(a)  

(b) 

Figure 3.3: Pooling Layer 

 

Pooling layers are commonly used immediately after convolutional layers. These layers 

were generated to simplify the information and reduce the scale of feature maps. In other 

words, pooling layers make a condensed feature map from each feature map in 

convolutional layers. In some references, these layers are called the subsampling layer. 

Pooling operation can be performed in various types such as geometric average, harmonic 

average, maximum pooling (Ioffe and Szegedy, 2015). Max-pooling and average-pooling 
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are two of the most prevalent processes for pooling that have been presented in Fig. 3.2. 

The pooling layers are necessary to reduce the computational time and overfitting issues 

in the CNN (LeCun et al., 2015). 

 

The most typical way to give nonlinearity in the standard ANN is using sigmoidal 

functions, such as y = tanh(x), but saturating nonlinearities slows computations (Nair and 

Hinton, 2010). Recently, the ReLU was introduced as a nonlinear activation function. 

Figure 3.3 depicts the several examples of nonlinear functions. Briefly, while other 

nonlinear functions are bounded to output values (e.g., positive and negative ones and 

zeros), the ReLU has no bounded outputs except for its negative input values. Intuitively, 

the gradients of the ReLU are always zeros and ones. These features facilitate much faster 

computations than those using sigmoidal functions and achieve better accuracies. 

 

 

Figure 3.4: Non-Linear Activation Functions 

 
Overfitting has been a long-standing issue in the field of machine learning. This is a 

phenomenon where a network classifies a training data set effectively but fails to provide 

satisfactory validation and testing results. To address this issue, dropout layers are used 

(Srivastava et al., 2014).  Training a network with a large amount  of  neurons  often 

results in overfitting due to complex coadaptation. The main idea of dropout is to 

randomly disconnect the connections between neurons of connected layers with a certain 

dropout rate. Accordingly, a network can generalize training examples much more 

efficiently by reducing this coadaptation. A well-known trick, taking the average values 

of a training data set (i.e., whitening), has often been used to shorten network training 

time (Ioffe and Szegedy, 2015).  However, the distribution of layer’s input shifts by 
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passing through layers, which is defined as internal covariate shift, and this has been 

pointed out as being the major culprit of slow training speed. A Batch Normalization  was 

proposed to adapt the similar effect of whitening on layers (Bengio et al., 2016). As a 

result, this technique facilitates high-learning rate and leads to much faster network 

convergence. 

 

To classify input data, it is necessary to have a layer for predicting classes, which is 

usually located at the last layer of the CNN architecture.  The most  prominent method to 

date is using the softmax function given by the equation given below, which is expressed 

as the probabilistic expression 𝑝(𝑦( 𝑖 )  =  𝑛 | 𝑥( 𝑖 ) ;𝑊) for the 𝑖th training  example  

out  of  m  number  of  training  examples,  the  𝑗th  class  out  of  𝑛 number of classes, 

and weights 𝑊, where 𝑊𝑛 ,𝑇, 𝑥(𝑖) are inputs of the softmax layer. The sum of the right-

hand side for the 𝑖th input always returns as 1, as the function always normalizes the 

distribution. In other words, this equation returns probabilities of each input’s individual 

classes. 

𝑃(𝑦(𝑖) = 𝑛|𝑥(𝑖);𝑊) =

[
 
 
 
 
𝑝(𝑦(𝑖) = 1|𝑥(𝑖);𝑊)

𝑝(𝑦(𝑖) = 2|𝑥(𝑖);𝑊)

⋮
𝑝(𝑦(𝑖) = 𝑛|𝑥(𝑖);𝑊)]

 
 
 
 

=
1

∑ 𝑒𝑊𝑗
𝑇𝑥(𝑖)𝑛

𝑖=1
[
 
 
 
 𝑒

𝑊1
𝑇𝑥(𝑖)

𝑒𝑊2
𝑇𝑥(𝑖)

⋮

𝑒𝑊𝑛
𝑇𝑥(𝑖)]

 
 
 
 

 

(3.16) 

 

As the initial values of 𝑊 are randomly assigned during training, the predicted and actual 

classes do not usually coincide.  To calculate the amount of deviations between the 

predicted and actual classes, the softmax loss function is defined by a equation. 

𝐿 =
1

𝑚
[∑ ∑1{𝑦(𝑖) = 𝑗}

𝑛

𝑗=1

𝑚

𝑖=1
log

𝑒𝑊𝑗
𝑇𝑥(𝑖)

∑ 𝑒𝑊𝑗
𝑇𝑥(𝑖)𝑛

𝑖=1

] +
𝜆

2
∑𝑒𝑊𝑗

2

𝑛

𝑗=1

 

(3.17) 

 

The new index L is introduced to indicate that ∑𝑛𝑙 =  𝑒𝑥𝑝(𝑊𝑇𝑥(𝑖)) is independent of 

∑𝑛𝑗 = 11{. }. The term 1{𝑦(𝑖) = 𝑗} is the logical expression that always returns either 

zero or ones. In other words, if a predicted class of the 𝑖th input is true for j class, the 

term returns ones, returning zeros otherwise. The last hyper-parameter 𝜆 in the equation 

is a regularization (i.e., weight decay) parameter to penalize large weights, which is also 

a well-known trick for preventing overfitting (Bottou, 2012; Aszemi and Dominic, 2019).  

To narrow the deviations, an algorithm that updates receptive field weights is necessary 

for obtaining the expected results (i.e., predicting true classes). This process is considered 
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for CNN training. There are several known methods, but SGD using back-propagation is 

considered the  most efficient  and  simplest  way  to minimize  the  deviations  (Ioffe 

and Szegedy, 2015). The standard gradient descent algorithm performs updating 𝑊 on an 

entire training data set, but the SGD algorithm performs it on single or several training 

samples. To accelerate the training speed, the momentum algorithm (Bottou, 2012) is 

also often  used  in  SGD.  The overall updating process is as follows. First, the gradient 

𝛻𝑊 of a loss function is calculated with respect to 𝑊. 

 

Second, the hyper-parameters of momentum ε and learning rate α are introduced to 

update (←) velocity  υ,  where  momentum  is  defined  as  mass  times  velocity  in 

physics, but with unit mass being what is considered in SGD. Finally, the weights are 

updated. A network can be tuned by repeating the explained process several times until  

𝑊𝑗 ← 𝑊𝑗 + 𝜐  converges.  The superscript (𝑖)  indicates  the  𝑖th  training sample, where 

the range of 𝑖 is dependent on a mini-batch size, which defines how many training 

samples out of the whole data set are used. For example, if 100 images are given as the 

training data set and 10 images are assigned as the mini- batch size, this network updates 

weights 10 times; each complete update out of the whole data is called an epoch. 

Δ𝑤𝐿(𝑊; 𝑥(𝑖), 𝑦(𝑖)) =
1

𝑚
∑[𝑥(𝑖){1(𝑦(𝑖) = 𝑗) − 𝑝(𝑦(𝑖) = 𝑗|𝑥(𝑖);𝑊)}]

𝑚

𝑖=1

+ 𝜆𝑊𝑗  (3.18) 

 

Fully connected layers are the final layers in the CNN structure that can be one or more 

layers and placed after a sequence of convolution and pooling layers. This part of CNN 

comprises the composite and aggregates of the most important information from all 

procedures of CNN. Consequently, these layers provide the feature vector for the input 

data, which can be used for some machine learning tasks such as classification, prediction 

(Albelwi and Mahmood, 2017). The last layer of fully connected layers is known as 

softmax classifier and determines the probability of each class label over N classes 

(LeCun and Bengio, 2015).  

 

Designing the CNN structure is a big challenge because there are many hyperparameters 

that have significant influence on the efficiency of CNNs such as depth (which includes 

the number of convolutional, pooling, and fully-connected layers), the number of filters, 

stride (step-size that the local receptive field must be moved), pooling types, locations, 

and sizes, and the number of units in fully-connected layers. Finding the proper 
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hyperparameters combination needs rigorous analysis. Computational intelligence for 

modeling of asphalt pavement surface distress (Manohar and Ramapriyan, 1989) 

knowledge and is often performed as a trial-and-error process. Recently, this challenge 

has been raised as an optimization problem. 

 

Generally, there are two methods for applying CNN models that include: training from 

scratch and performing transfer learning by use of pre-trained models. If the first method 

(training from scratch) was applied for training a CNN model, it would be necessary to 

define the number of layers and filters and use massive amounts of data which are a time-

consuming procedure.  

 

In the other method (transfer learning), one of the pre-trained CNN models is being used 

that was trained on the source domain (big image data set). This means that in transfer 

learning, the ability of pre-trained models to learn the predictive function helps to train 

the new target domain (new image dataset) instead of training from scratch. Transfer 

learning is a much faster and easier method for applying deep learning, and in this 

method, it is not necessary to understand the structure and combinations of network 

layers. As can be seen, it is possible to create a pavement distress detector and classifier 

model by using transfer learning techniques, and a proper dataset of pavement distresses 

image.  

 

3.4 Summary 

CNN is a special form of deep neural networks that was designed to process data that 

have multiple arrays and grid-like topology. CNNs can be used on 3D (video), 2D 

(image), and 1D (text or audio) input data to perform one of the mentioned deep learning 

applications. The structure of CNNs consisted of three main substructures, which include: 

convolutional layers, pooling layers, fully connected layers. Designing the CNN structure 

is a big challenge because there are many hyperparameters that have significant influence 

on the efficiency of CNNs such as depth (which includes the number of convolutional, 

pooling, and fully-connected layers), the number of filters, stride (step-size that the local 

receptive field must be moved), pooling types, locations, and sizes, and the number of 

units in fully-connected layers. 
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CHAPTER 4  

DATA COLLECTION AND ANALYSIS 

 4.1 Introduction 

Data collection and data analysis are considered the major subjects for any ideal 

pavement management system. The majority of the necessary information for pavement 

administration is provided by effective pavement surveys. For any vital pavement project, 

the following are considered the most important requirements: a quantified condition of 

networks, more precise and attainable information, forecasting the maintenance and 

rehabilitation requirements, setting the rehabilitation and maintenance priorities, tracking 

interpretation treatments, prediction of the pavement evaluation, and assigning funding. 

Therefore, it is important to acquire precise pavement condition data, in an effective and 

secure way, to ensure a credible analysis and interpretation system. 

 

4.2 Data Collection and Dataset Preparation 

4.2.1 Synthetic data 

The synthetic video sequence is generated considering illumination variation, and camera 

displacement analogous to urban condition. The construction of synthetic video includes 

two steps: (1) frame production and (2) ground truth extraction. The major step in 

synthetic video construction is the frame production. The frame must consist of: (1) 

background (2) object. The background is compared with the pavement of the road and 

the object is compared with the distress on the road. The object shall be named as road 

distress object in these sections. For producing artificial video, various software is 

available. However, in this research work, Macromedia MX has been used. The software 

mostly uses the basic drawing concepts of which makes it flexible and user friendly. At 

the same time, it supports object importing from the Microsoft or Autodesk applications. 

For producing a frame, the steps of generating synthetic video using Macromedia MX is 

given in Figure 4.1 with proper illustration. 
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 
(f) 
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(g) 

Figure 4.1: Process of Generating Synthetic Data 

 

4.2.2.1 Image resizing 

Images from dataset varies from 2816x2112 pixels to 3264 ×2448 pixels before cropping. 

This variation in resolution cannot be adopted by the training algorithm, rather a constant 

size pixel is needed for all the images. Here in this study, all the input images are resized 

into 99x99 pixels considering time and resource constraints. Such size not only makes 

 

4.2.2 Real-time image data collection 

For classifying cracks into binary crack or non-crack, a standardized dataset was used. 

The dataset  contains different  types of crack image.  The data is  collected at  the 

different street and roads in the Dhaka region by using a smart phone as the data sensor. 

The dataset is divided into two as negative and positive crack images for distress 

classification. Total 52000 images has been used in this research with 99 x 99 pixels with 

RGB channels (Fig 3.3). The dataset is generated from 4000 high-resolution images 

(varies from 3264 ×2448 pixel to 2816x2112 pixel) with the method proposed by Zhang 

et al (2014). High-resolution images have variance in terms of surface finish and 

illumination conditions.  
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the images uniform but also provided higher training speed with adequate image details 

for the training algorithm. 

 

4.2.2.2 Image augmentation 

In this study image data were augmented to increase image numbers in order to increase 

accuracy. In this study, to achieve a good compromise between computational cost and 

accuracy of the detection results (Instruction for Road Maintenance Planning, 1988; EC 

Policy Orientations on Road Safety, 2018), each sample is a 3-channel (RGB) 99×99-

pixel image patch generated by the image data augmentation procedure described in the 

following steps:  

 

1. A patch whose center is within 𝑓 =  5 pixels of the crack centroid is regards as a 

positive patch; otherwise it is considered as a negative patch.  

 

2. To reduce the similarity between training samples, the overlap of two positive patches 

𝑃1 and 𝑃2, expressed as 𝑂 =  𝑎𝑟𝑒𝑎 (𝑃1 ∩ 𝑃2)/𝑎𝑟𝑒𝑎(𝑃1 ∪ 𝑃2), should be kept at a 

low level. In this study, we choose the distance between the centers of two adjacent 

patches to be 𝑑 = 0.75𝑤, where 𝑤 is the width of a patch. For the negative patches, two 

adjacent patches should have no overlap.  

 

3. Given a patch center 𝑐, each candidate patch is rotated around 𝑐 by a random angle 

𝛼 ∈  [0 ◦ ,360 ◦]. This plays an important role to increase the number of crack samples 

because crack patches only consist of a small proportion of the collected images.  

 

4.2.2.3 Data organization 

Out of the generated samples from the above steps, 26000 samples are used as total 

dataset, 18200 samples are used as for training and the other 7800 samples are used as 

the testing purpose. From the generated data, the images are put into two folders naming 

‘training set’ and ‘Testing set’ for testing and validation purpose. In each folder, there are 

11 subfolders containing 9 classes of road distress image and remaining one is non-crack 

image. All the images in the folder are labeled with the type and a number to give them 

a serial.  In total 11 classes of images were distinguished and stored in separate hard-disk 
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drive folder. Afterwards, these images are included in a dataset named ‘RoadCrack2019’ 

and compressed in a .zip folder to ensure shareability. 

 

4.3 Data Analysis 

In this section, the distance between the patch center and the crack center is determined. 

The percent mean overlapping among the synthetic and real-time image has also been 

calculated. Table 4.1 and Table 4.2 shows the summary of the analysis on the synthetic 

image and the real-time captured image.  

 

Table 4-1: Analysis Result of the Synthetic Data 

Serial 

 

Name of the 

Distress 

Illustration Number 

of 

Images 

Distance, 

f 

Percent 

Mean 

Overlapping, 

O 

1 Fatigue 

 

500 6.4038 55.1699 

2 Block 

Cracking 

 

500 3.2655 36.6024 

3 Corrugation 

and Shoving 

 

500 6.2187 70.9343 
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Serial 

 

Name of the 

Distress 

Illustration Number 

of 

Images 

Distance, 

f 

Percent 

Mean 

Overlapping, 

O 

4 Longitudinal 

Crack 

 

500 6.1742 65.6452 

5 Patching 

 

500 5.7427 48.9096 

6 Polished 

Aggreagate 

 

500 5.0681 41.0718 

7 Potholes 

 

500 6.1895 52.8668 

8 Ravelling 

 

500 6.4778 60.2066 
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Serial 

 

Name of the 

Distress 

Illustration Number 

of 

Images 

Distance, 

f 

Percent 

Mean 

Overlapping, 

O 
9 Rutting 

 

500 5.0988 46.7264 

10 Depression 

 

500 6.7119 62.4985 

11 No Crack 

 

500 5.8017 47.6345 

 

Table 4-2: Analysis Result of the Real-Time Data 

Serial Name of the 

Distress 

Illustration Number 

of 

Images 

Distance, 

f 

Percent 

Mean 

Overlapping, 

O 

1 Fatigue 

 

1580 0.7207 1.4963 
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Serial Name of the 

Distress 

Illustration Number 

of 

Images 

Distance, 

f 

Percent 

Mean 

Overlapping, 

O 

2 Block 

Cracking 

 

1792 2.7426 1.9012 

3 Corrugation 

and Shoving 

 

1641 1.7107 1.7935 

4 Depression 

 

1606 0.6840 0.7040 

5 Join 

Reflection 

crack 

 

1568 1.2204 0.5679 
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Serial Name of the 

Distress 

Illustration Number 

of 

Images 

Distance, 

f 

Percent 

Mean 

Overlapping, 

O 

6 Longitudinal 

Crack 

 

1617 3.7870 1.3222 

7 Patching 

 

1566 2.1245 2.0669 

8 Polished 

Aggregate 

 

1549 0.7034 2.0764 

9 Potholes 

 

1656 2.5087 1.2191 
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Serial Name of the 

Distress 

Illustration Number 

of 

Images 

Distance, 

f 

Percent 

Mean 

Overlapping, 

O 

10 Rutting 

 

1236 0.9840 1.7040 

11 No Crack 

 

12000 N/A N/A 

 

4.4 Summary 

In this chapter, data collection, data augmentation, and data analysis which are three 

major important factors of the preprocessing task has been included. Again, dynamic 

image dataset divided into two parts: (a) Synthetic Data; and (b) Real-time Data. An 

artificial video using Macromedia MX has been used as synthetic data. After image 

augmentation about 500 pictures from each synthetic image class are generated. In case 

of real-time data set with more than 3500 pavement static image of size 3264 ×2448 are 

collected at the different street and roads in the Dhaka region by using a camera as the 

data sensor. Using these images augmentation technique is performed and the data set 

turned into 26000 samples. 

 

 

 

 

 



 

49 

 

CHAPTER 5  

OPTIMIZATION OF THE MODEL PARAMETERS 

5.1 Introduction 

Optimizing hyperparameters in Convolutional Neural Network (CNN) is a tedious 

problem for many researchers and practitioners. To get hyperparameters with better 

performance, experts are required to configure a set of hyperparameter choices manually. 

The best results of this manual configuration are thereafter modeled and implemented in 

CNN.  

 

5.2 Optimization Process 

Building CNN requires a set of configurations which is external to the data and manually 

tune by the machine learning researcher. The variable of the network structure and the 

network trained of CNN are known as hyperparameters (Chambon and Moliard, 2011). 

Finding a set of hyperparameters that gives an accurate model in a reasonable time is also 

part of the hyperparameter optimization problem. 

 

5.2.1 Parameters of the model  

An actual machine learner will ask the machine to perform this exploration and configure 

the optimal model architecture automatically. The variable in the configuration can be 

called hyperparameters which it is external to the model, and the value cannot be 

estimated from the data. Hyperparameters can be divided into two types: 

 

a) Hyperparameter that determines the network structure such as: 

1. Kernel Size –the size of the filter. 

2. Kernel Type–values of the actual filter (e.g., edge detection, sharpen). 

3. Stride–the rate at which the kernel pass over the input image. 

4. Padding–add layers of 0s to make sure the kernel pass over the edge of the image. 

5. Hidden layer–layers between input and output layers.  

6. Activation functions–allow the model to learn nonlinear prediction boundaries. 

 

b) Hyperparameter that determines the network trained 

such as: 

1. Learning rate–regulates on the update of the weight at the end of each batch. 
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2. Momentum–regulates the value to let the previous update influence the current 

weight update. 

3. A number of epochs–the iterations of the entire training dataset to the network 

during training. 

4. Batch size–the number of patterns shown to the network before the weights are 

updated. 

 

5.2.2 Parameter optimization using synthetic data 

The main purpose of using synthetic data is to get the preliminary idea of the initial values 

and scales of the hyper parameter. The use of synthetic data reduces consumption of time 

resources by reducing the calibration time. Thus, the synthetic data has been used in the 

first place to identify the initial values of the hyper parameter. The candidate parameter 

values of the hyperparameters are chosen to be Max Epoch = {1,3,5,7,9}, Training Data 

= (60%, 65%, 70%, 75%, 80%), Learning Rate = {1E-5, 2E-05, 3E-05, 4E-05, 5E-05}. 

Number of Filters = {10,20,30,40,50}. In total, the training has been iterated for 625 

times. And after finishing the iteration, the following optimum value has been found: 

 

Table 5-1: Preliminary Calibrated Parameters Values Using Synthetic Data 

Calibrated parameter 

values from Synthetic 

Data 

Training Accuracy Testing Accuracy 

Max Epoch = 7  

Training Data = 70% 

Learning Rate = 2E-05 

Number of Filters = 30 

99.98% 98.68% 

 

 

It can be seen that the training accuracy has reached to 99.98% after iterating 625 times. 

It should be noted that each of this iteration took around 20 minutes to complete each 

iteration. In total 9 days were required to complete the 625 iterations. 
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5.2.3 Parameter optimization using real time data 

Using the initially identified parameter value from the previous sub-section, the actual 

calibrated parameter value is determined in this sub-section.   Figure 5.1 shows the 

relation between the batch accuracy of the training algorithm and the classification 

accuracy of the trained model.  

 

Figure 5.1: Accuracy vs Training data (%) 

 

From the Figure 5.2 it is observed that batch accuracy is increased with classification 

accuracy. The graph is also showing classification accuracy vs batch accuracy for 

different learning rates. When batch accuracy is close to 100% the classification accuracy 

goes to 60-65% (parameters are still uncalibrated). 

  

 
Figure 5.2: Classification Accuracy Vs Batch Accuracy For Different Learning 
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From the figure 5.3, it is observed for certain learning rate (3.64× 10-5) that batch 

accuracy is increased with maximum epoch. But, for the learning rate below this certain 

value, the model is under fitting for max epoch vs batch accuracy. Similarly, for the 

learning rate above the certain value the model is overfitting. So, for learning rate 3.64× 

10-5 the model shows the best performance as after this point the model become unstable. 

 

 
Figure 5.3: Max Epoch vs Batch Accuracy for Different Learning Rates 

 

Figure 5.4 shows processing time vs max epoch for different learning rates. It is observed 

that processing time increases with max epoch. It is also observed that processing time is 

decreased with increasing learning rate. Though processing time is decreased with 

increasing learning time, there will be a risk of overfitting due to increase of learning rate. 

Because with increasing learning rate, there is a probability to propagate the model to 

local solution rather than global solution.  
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Figure 5.4: Processing Time Vs Max Epoch for Different Learning Rates 

 

The figure 5.5 shows accuracy vs learning rate for different max epoch. For a certain 

range of the value of learning rate (<3.9E-05), the model shows the benefit of increasing 

max epoch and the accuracy rises with the increasing learning rate and max epoch 

number. However, beyond that limit of learning rate, accuracy does not increase with the 

increasing learning rate and max epoch number.  

 

 
Figure 5.5: Accuracy vs Learning Rate for Different Max Epoch 
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max epoch and the elapsed time rises with the increasing learning rate and max epoch 

number. However, beyond that limit of learning rate, elapsed time does not increase with 

the increasing learning rate and max epoch number.   

 

Figure 5.6: Elapsed time vs Learning rate for Different Epoch Numbers 

 

Figure 5.7 shows batch accuracy vs elapsed time for different epoch number. For epoch 

9, the model reaches in 100% accuracy within the shortest possible time.  

 

 

Figure 5.8 shows batch accuracy vs elapsed time for different learning rates. For higher 

learning rate (> 4.34 E-05), the model does not reach the 100% accuracy. For learning 

rate 3.46 E-05, the model reaches 100% accuracy within the shortest possible time. 
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Figure 5.7: Batch Accuracy Vs Elapsed Time for Different Epoch Numbers 
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However, this accuracy does not sustain for the time being. For learning rate 2.93 E-05, 

the model reaches towards solution within 2nd lowest possible time, but the solution 

sustains over the time being. From the above Analysis, it is observed that with increasing 

learning rate accuracy decreases and processing time also decreases. At the same time 

with increasing epoch processing time increases, and accuracy also increases. However, 

after a certain value of epoch with increasing epoch accuracy does not have significant 

change. From this analysis the optimum value for learning rate and max epoch has been 

determined as 3.46 E-05 and 9 respectively where maximum accuracy can be obtained 

with lowest possible time.  

 

Figure 5.8: Batch Accuracy vs Elapsed Time for Different Learning Rates 

 

The Figure 5.8 shows Accuracy vs Filter number with respect to determined optimum 

learning rate and maximum epoch. The other hyper parameters are kept optimum as 

found before. It is observed that for filter number 30 maximum accuracy can be obtained 

for optimum learning rate and max epoch value. 

0

0.2

0.4

0.6

0.8

1

1.2

0.00 1.00 2.00 3.00 4.00

B
a
tc

h
 A

cc
u

ra
cy

Elapsed Time (hr)

1.00E-06

8.07E-06

1.51E-05

2.22E-05

2.93E-05

3.64E-05

4.34E-05

5.05E-05

5.76E-05

6.46E-05



 

56 

 

Figure 5.9: Accuracy vs Filter Number for Optimum Epoch and Learning Rate 

 

The Figure 5.9 shows accuracy vs training data. From the figure it is observed that for 

70% training dataset maximum accuracy has been obtained. 

 

From 5.2.2 it is noted that with increasing learning rate, accuracy decreases, and 

processing time also decreases. At the same time with increasing epoch processing time 

increases and accuracy also increases. However, after a certain value of epoch with 

increasing epoch accuracy does not have significant change. In this regard, the maximum 

learning rate and minimum epoch where accuracy is maximum will be the optimum 

value. From this analysis the optimum value for learning rate and max epoch has been 

determined as 3.46 E-05 and 9 respectively. For filter number 30 and 70% training dataset 

maximum accuracy can be obtained.  

 

Table 5-2: Optimized Parameters of the Model for both Real-Time data 

Calibrated parameter values 

for real-time data 

Training 

Accuracy 

Testing Accuracy 

Max Epoch = 9 

Training Data = 70% 

Learning Rate = 3.64E-05 

Number of Filters = 30 

99.22% 97.68% 

 

5.3 Summary 

In this chapter, calibration and validation of all the models using different data set are 

presented. Calibration of the CNN model is done using graphical method. At first, the 
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preliminary calibration has been done using the synthetic data to obtain initial starting 

point of the parameter values. Afterwards, the in-depth calibration is done using the real-

time images. From the analysis it has been found that if the training data is taken 70% of 

the total data, initial learning rate is kept as 3.64E-05, number of filters is used as 30 and 

the max epoch is taken as 10, the model yields the maximum training accuracy of 99.22% 

with a testing/validation accuracy of 97.68%.  
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CHAPTER 6  

RESULTS AND DISCUSSION 

6.1 Introduction 

The calibration of the selected models involved the use of a training dataset and a 

validation dataset. At the stage of this research, the parameters used for the training are 

set as default ones according to the authors of the models (Mario and Maltoni, 1997; 

Vincent et al., 2006). As a result of the implemented model, the recognition stage implies 

the detection of the damage location in the image and the recognition of the damage type. 

Additionally, in order to further improve the precision of the model and reduce the 

inaccuracies (i.e., false-positive or errors in the damage type recognition), the fine-tuning 

of the model hyperparameters is suggested for future developments. 

 

6.2 Road Distress Identification Result  

This chapter includes a detailed analysis over the compiled data. Initially the correlation 

among the variables is revealed. Afterwards, the data has been fitted into newly proposed 

model and the performance of the models have been compared. Ultimately, compares the 

accuracy of the baseline method and CNN, with CNN achieving 99.22% accuracy, which 

is significantly higher than that for the baseline method. 

 

Table 6-1: Sample Optimization Output of a CNN Train Process 

Epoch Iteration 
Mini-batch 

Accuracy 

Mini-batch 

Loss 

1 1 10.16% 11.0402 

1 50 58.59% 2.0749 

2 100 73.44% 0.9859 

2 150 82.81% 0.5868 

3 200 86.72% 0.4832 

3 250 89.06% 0.4182 

4 300 87.50% 0.4885 

5 350 94.53% 0.2808 

5 400 93.75% 0.2021 

6 450 96.88% 0.1932 

6 500 97.66% 0.0818 

7 550 98.44% 0.1027 

8 600 98.44% 0.0735 

8 650 99.22% 0.0537 

9 700 99.22% 0.037 
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Epoch Iteration 
Mini-batch 

Accuracy 

Mini-batch 

Loss 

9 750 99.22% 0.0817 

 

From Table 6-1, it is observed that for iteration 650 maximum accuracy 99.22% has been 

achieved and after certain iteration 650, maximum accuracy has been reached the 

saturation limit.  

  

The trained models were evaluated using some known metrics, including the Jaccard 

Index which is useful for defining the percentage of overlap between the label and the 

prediction of the neural network, and the threshold score applied to exclude those 

predictions with a probability lower than a selected value of threshold. These parameters 

determine two acceptance thresholds for the results produced by the neural networks. 

Moreover, further evaluation metrics, such as Precision and Recall, were computed from 

the confusion matrix. In addition, the harmonic average between Precision and Recall, 

known as the F1-Score, was determined. The confusion matrix shows the performance of 

a classifier given some truth values/instances that is made up at least of four components 

for each label, which exemplifies three different instances Generally, an algorithm labels 

a pixel as either positive or negative in a binary decision problem, where ‘positive’ and 

‘negative’ respectively represent foreground pixel and background pixel. For a given 

frame in a video sequence, a comparison can be drawn between the resultant image and 

the ground truth image. A pixel is denoted as white when it is a part of an object in the 

foreground, and black when it actually belongs to the background. To quantify the 

classification performance with respect to ground-truth, four basic measures are used, 

such as, (1) true positives (TP): correctly classified foreground pixels; (2) true negatives 

(TN): correctly classified background pixels; (3) false positives (FP): incorrectly 

classified foreground pixels; and (4) false negatives (FN): incorrectly classified 

background pixels. In addition, Precision-Recall curves are good performance indicator 

providing an optimistic appraisal of the classifier’s performance when there is a 

significant skewness in the class distribution (Milan, 2002). Other measures for fitness 

quantification, in the context of background subtraction techniques, were proposed in the 

literature (Michael, 2003), such as, Percentage of Correct Classification (PCC) and F-

measure.  
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( )Precision PR  =
TP

TP FP+
 

(6.1) 

( )Recall RE =
TP

TP FN+
 

(6.2) 

 =
TP TN

PCC
TP FN FP TN

+

+ + +
 

(6.3) 

𝐹 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(6.4) 

 

 
Figure 6.1: Change in Mini-Batch Loss with Iteration 

 

Figure 6.1 illustrates the learning curves recorded during the training phase for the 

calibrated parameters. The value shown on the vertical axis is the Total Loss, that is, the 

sum of the loss values useful for the training of the deep neural networks. 

 

6.3 Comparison between CNN and the Baseline Method for the Classification Task 

Recently several other algorithms are used for image classification e.g., Support Vector 

Machine (SVM), Artificial Neural Network (ANN), Adaptive Neuro Fuzzy Inference 

(ANFIS). However, among these algorithms SVM performs best (Mahler et al., 2011; 

Soukup and Huber-Mö rk, 2014). Thus, SVM has been chosen as baseline method. For 

the experiment using the baseline method, we randomly selected the same number 

(26575) of crack images and non-crack images. We computed the average result over 10 

trials. Table 3 compares the accuracy of the baseline method namely Support Vector 

Machine (SVM). and CNN, with CNN achieving 97.68% accuracy, which is significantly 

higher than that for the baseline method. Figure 5 shows some examples of images 

incorrectly detected by CNN. These images would seem to be hard to detect, even by 

human observation. 
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Table 6-2: Confusion Matrix for Support Vector Machine (SVM) 
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Fatigue 0.6 0.05 0.07 0 0 0.06 0.02 0.07 0.07 0.02 0.04 

Block Cracking 0 0.99 0 0 0 0 0 0 0 0.01 0.01 

Corrugation and shoving 0.03 0 0.7 0 0 0.01 0.03 0.15 0.05 0.03 0.04 

Depression 0 0 0 1 0 0 0 0 0 0 0 

Joint Reflection cracking 0 0 0 0 1 0 0 0 0 0.01 0 

Longitudinal cracking 0.02 0.12 0.07 0 0.01 0.53 0.1 0.03 0.05 0.03 0.07 

Patching 0 0.04 0.04 0.01 0 0.02 0.76 0.01 0.1 0.02 0.02 

Polished Aggregate 0 0 0.01 0 0 0.01 0 0.98 0.01 0.01 0 

Potholes 0.11 0.04 0.04 0.02 0.01 0.05 0.04 0.02 0.67 0.05 0.01 

Rutting 0.03 0.02 0.05 0.01 0 0.01 0.06 0.01 0.07 0.75 0.01 

No Crack 0 0.01 0.01 0.01 0 0.01 0.03 0.01 0.01 0.03 0.89 

 

Table 6-3: Confusion Matrix for CNN 
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Fatigue 0.86 0.00 0.03 0.00 0.00 0.05 0.00 0.01 0.03 0.00 0.01 

Block Cracking 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Corrugation and shoving 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Depression 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Joint Reflection cracking 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

Longitudinal cracking 0.00 0.00 0.01 0.00 0.00 0.98 0.01 0.00 0.00 0.00 0.01 

Patching 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
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Potholes 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.96 0.00 0.00 

Rutting 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

No Crack 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.96 

 

*Red cells show the class of high probability. Blue cells show confusion probabilities 

exceeds 10%.  

 

Table 6.2 shows the confusion matrix for the crack and non-crack image using SVM 

(Support vector machines) method and CNN (Convolutional Neural Network) method. 

From the confusion matrix, it is observed that CNN gives more accuracy than SVM 

method.  In case of SVM method, the model obtained 100% in two cases, more than 90% 

accuracy in 2 cases, more than 80% accuracy in one case and more than 50% accuracy in 

5 cases. On the other hand, In case of CNN method, the model obtained 100% in 5 cases, 

more than 90% accuracy in 4 cases, more than 80% accuracy in one case. From the above-

mentioned analysis, it can be finalized that CNN gives better and higher accuracy than 

SVM. 

 

Table 6-4: Comparison of Accuracy between CNN and SVM Method for Crack 

Detection and Crack Classification 

Crack Detection Accuracy Crack Classification Accuracy 

Measure of performance SVM CNN SVM CNN 

Precision 0.91562 0.9687 

80.30% 97.68% 
Recall 0.97441 0.9978 

PCC 

(Percent of Correct 

Classification) 

0.94166 0.9813 

 



 

63 

 

From table 6.4   the value of precision as a measure of performance for crack detection 

accuracy in SVM method is 91.56% on the other hand, in CNN method it is 96.87%. 

Similarly, the value of Recall and PCC (percent of correct classification) as a measure of 

performance for crack detection accuracy is significantly higher for CNN than SVM. 

From above explanation, it can be finalized that in case of crack detection CNN provides 

better performance than SVM method. In case of classification accuracy, CNN provides 

97.68% and SVM provides 80.32% accuracy which represents that CNN method perform 

better than SVM method. 

  

(a) 

 

(b) 

Figure 6.2: ROC Curve for (a) CNN model (b) and SVM model 
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(a) 

 

(b) 

Figure 6.3: Comparison between SVM and CNN Method with respect to ROC and 

AUC as a Measure of Performance 

 

From the ROC (Receiver Operating Characteristic) curve (Figure 6.2), it is observed that 

for SVM method the value of AUC (Area Under the Curve) for most of road distresses 

is lower than 1. On the other hand, for CNN method, the value of AUC (Area Under 
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Curve) for all type of cracks is 1 (Figure 6.3) except fatigue failure, which represent the 

better performance of CNN in classification of road distress. 

 

6.4 Field Testing and Pavement Scoring 

Field test has been conducted from Abul Hotel (23.7547° N, 90.4154° E) to Abdullahpur 

(24.3654° N, 91.1641° E) of the Dhaka region for crack detection and crack 

classification. The distance from Abul Hotel to Abdullahpur has been divided into two 

segments: (i) Abul Hotel to Kuril flyover; and (ii) Kuril flyover to Abdullahpur. The 

sample video that has been collected from the field. Afterwards, Sobel edge detection 

performed on the video to convert the RGB images into binary image. After the binary 

conversion, image morphological operation has been done to remove unnecessary noises 

and fill the void within the images. Ultimately, blob analysis is done to extract the crack 

features (i.e., area, centroid, orientation etc.) by creating a bounding box. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 6.4: Crack Detection from the Collected Video Sequence 

Pothole 
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The above-mentioned procedure has been run through the calibrated and validated CNN 

model for crack detection and crack classification. The result has been shown in Table 

6.4 and Table 6.5. The blob analysis extracts the features (orientation, length, density, 

displacement, location) of the crack. An equivalent patch size of 99×99 pixel was 

considered and the number of crack patches required to cover the whole distress region 

were determined. The total number of crack patches is directly related to the pavement 

health score. An increased number of total crack patches indicates deteriorated pavement 

health. A reduced number of crack patches indicates improved pavement health. An 

analysis of total number of crack patch before and after conducting a pavement treatment 

can give quantitative result of the improved pavement health. 

 

Two types of road segment has been considered for field testing; (i) Urban City Road 

(Khilgaon to Kuril), (ii) National Highway N3 (Kuril road to Abdullahpur). It is observed 

from the Table-1 and Table-2 that urban city road has lower number of crack patches than 

National highway. As construction work of BRT and MRT is ongoing in Kuril to 

Abdullahpur road segment, number of cracks is higher. 

 

Table 6-5: Crack Classification of Abul Hotel to Kuril Road (Urban City Road) 

Type of the crack Equivalent number of patches 
Bleeding 3 
Patching 57 
Polished Aggregate 11 
Raveling 11 
Rutting 7 
Stripping 5 
Corrugation and Shoving 1 
Alligator Crack 24 
Block Cracking 0 
Longitudinal Cracking 5 
Slippage Cracking 5 
Transverse Cracking 4 
Pot Hole 135 
Rutting 38 

Total 306 

 

Table 6-6: Crack Classification of Kuril Road to Abdullahpur (National Highway) 

Type of the crack Equivalent number of patches 

Bleeding 14 
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Type of the crack Equivalent number of patches 

Patching 135 
Polished Aggregate 58 
Raveling 112 
Rutting 91 
Stripping 32 
Corrugation and Shoving 71 
Alligator Crack 29 
Block Cracking 10 
Longitudinal Cracking 18 
Slippage Cracking 15 
Transverse Cracking 29 
Pot Hole 194 
Rutting 50 
Total 858 

6.5 Development of Tool for Practice 

A tool is developed to help practitioners for implementing the road distress classification 

paradigm named Road Distress Training and Classification (RoadDisTrac). The tool is 

designed in MATLAB runtime environment. The Tool uses a Graphical User Interface 

(GUI) to interact with user for taking commands. The tool requires 4 GB of minimum 

ram with processor clock speed greater than 2.6 GHz. If multiple core in the processor is 

available the tool will impart more faster calculation. Additionally, installing a Graphics 

Processor Unit (GPU) may reduce the runtime more drastically. The tool requires 

MATLAB RUNTIME ENVIROMENT to be installed in the machine to operate properly. 

This tool mainly facilitates training CNN models and classify any input image. The tool 

takes all the parameters using interacting the dialogue box and passes these parameters 

to the model.  
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Figure 6.5: Interface of RoadDisTrac 

 

6.6 Summary 

In this chapter, with the optimized value of different hyper-parameters the accuracy of 

crack detection for CNN method has been determined. From the confusion matrix, it is 

observed that CNN gives more accuracy than SVM method.  In case of SVM method, 

the model obtained 100% in two cases, more than 90% accuracy in 2 cases, more than 

80% accuracy in one case and more than 50% accuracy in 5 cases. On the other hand, In 

case of CNN method, the model obtained 100% in 5 cases, more than 90% accuracy in 4 

cases, more than 80% accuracy in one case. From the above-mentioned analysis, it can 

be finalized that CNN gives better and higher accuracy than SVM. Field testing shows 

that the model is capable of classifying road distresses on movement incorporating Sobel 

edge detection.  
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CHAPTER 7  

CONCLUSION AND RECOMMENDATIONS 

7.1 Concluding Remarks 

This study investigated the capability of Convolutional Neural Network (CNN) 

algorithms to develop and test an innovative health-monitoring methodology for road 

pavements. For this purpose, in this study, several images of road distress in the Dhaka 

region were processed and encouraging results were obtained. Furthermore, this study 

aims at low-cost instrumentation with higher accuracy for detecting and classifying road 

distress using CNN. More comprehensive health monitoring and the assessment of the 

condition of road pavement. Overall, this thesis contributes to proving that CNN is a 

promising method for monitoring deformation phenomena and the identification and 

classification of damages in road pavements and, more in general, in transport 

infrastructures exposed to various natural hazards. This research paves the integration 

between remote-sensing data and non-destructive information collected on-site to 

improve and optimize the road maintenance system of the transport agency. The 

implementation of the model is to provide a technologically enhanced and reliable 

methodology for identification and classifying road distress which to be more rapidly 

processed and conclusively actioned by asset owners and management agencies, giving 

crucial information that could be implemented for the prioritization of maintenance 

activities within Pavements Management Systems (PMSs). The main key points from 

this research are summarized below. 

 

(1) From the analysis it has been found that if the training data is taken 70% of total data, 

initial learning rate is kept 3.64E-05, number of filters is used as 30 and the max 

epoch is taken as 10 the models yields maximum training accuracy of 99.22% with a 

testing/validation accuracy of 97.68%.  

 

(2) From the confusion matrix, it is observed that CNN gives more accuracy than SVM 

method.  In case of SVM method, the model obtained 100% in two cases, more than 

90% accuracy in 2 cases, more than 80% accuracy in one case and more than 50% 

accuracy in 5 cases. On the other hand, In case of CNN method, the model obtained 

100% in 5 cases, more than 90% accuracy in 4 cases, more than 80% accuracy in one 

case.  
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(3) Field testing shows that the model is capable of classifying road distresses on 

movement incorporating Sobel edge detection. 

 

(4) The accuracy of the calibrated CNN model in crack identification is 98.78% which is 

compared with base line method (94.17%). In case of Classification of road distress 

CNN model (97.68%) perform better than base line method SVM (80.31%). 

 

7.2 Recommendations for Future Research  

Since the CNN model for crack identification and classification has been studied for more 

than a decade in the developed world, research on this topic in Bangladesh as well as in 

other south-east Asian countries, is extremely scarce and challenging. This is mainly due 

to the complexity of data collection and processing and the absence of a proper 

mathematical framework. Even though the current study tried to focus some effort on this 

sector, it can’t be viewed as a complete understanding of the highly complex behavior 

involved in road distress identification and classification.  Although the model performed 

well and attained a well goodness of fit, there are some limitations of this study: 

 

(1) The main limitation of the developed CNN model in this study is not capable of 

capturing the background dynamics in night time pavement images.  

 

(2) The Patch size considered in the study to train the developed CNN architecture is 99 

×99. The CNN model can take input image size of 99 ×99 only. If any other size of 

image is provided as input in the model will cause abnormal behavior of the program.  

 

(3) The CNN model developed using pavement images having background pixels 

consisting of only pavement.  Pavement images with foreign objects (i.e. tree, sky, 

vehicle, pedestrian) have not been considered in this study.  

 

Further research is to explore other forms of crack classification and identification of 

deep learning models with greater accuracy. In this section, some recommendations are 

provided for future research following the studies carried out in this dissertation. These 

are listed below,  
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(1) The challenge with night time images can be investigated using more sophisticated 

camera with infrared (IR) facility. The CNN architecture needs to be redesigned to 

cope up with the IR images; which can lead towards road distress identification even 

in night time. 

 

(2) Presence of foreign objects (i.e. manhole cover, tree, vehicle, sky) in captured 

pavement image makes identification and detection task more complex. The CNN 

structure needs to be redesigned to cope up with the images with foreign objects. 

Moreover, sophisticated edge detection methods (i.e. Prewitt, Canny, fuzzy) needs to 

be adopted to cope up with presence of the foreign objects. 

 

(3) Field dimension of the road distress (i.e. width, length, depth, perimeter, area) can be 

obtained if the camera calibration is done. The camera calibration may include the 

correction for the perspective view of the camera and the estimation of the 

corresponding magnification factor. 
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Mü ller (eds.), Neural Net- works: Tricks of the Trade, 2nd edn., Springer, Berlin Hei- 

delberg, pp. 421–36.      

Canny, J. F. (1986). A computational approach to edge detection. IEEE Trans Pattern 

Analysis and Machine Intelligence, 8(6), 679-698.      

Canny, J. F. (1986). A computational approach to edge detection. IEEE Trans Pattern 

Analysis and Machine Intelligence, 8(6), 679-698.                     
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