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Abstract 

 

Single wall carbon nanotubes (SWCNTs), double wall carbon nanotubes (DWCNTs) and graphene 

nanoribbons (GNRs) have unique electronic and optical properties. SWCNT is uniquely 

characterized by two positive integers (n, m), termed as chirality and DWCNT is identified by 

constituent SWCNTs whereas GNR is identified by type of its cross-section at the edges and number 

of dimer lines N. Selection of appropriate CNTs or GNRs for various applications requires prior 

information of their chirality and interband optical transition energies. Each SWCNT has a unique 

set of interband optical transition energies which depends on their chirality and other factors. Optical 

transitions of DWCNTs vary according to constituent SWCNTs whereas bandgaps of GNRs vary 

according to type and width of GNRs. Calculation of optical transitions of CNTs and GNRs from 

existing models was found to be deviated significantly from experimental results. It also ignored 

excitonic effects in optical transitions. A set of empirical models is proposed to predict different optical 

transitions in CNTs and bandgaps of GNRs. Experimental values of optical transitions of a large 

number of SWCNTs species (4, 2) to (35, 34) having diameter range 0.42 nm to 4.75 nm are 

considered here. There are total 654 SWCNTs in between these two chiral indices where 426 are 

semiconducting tubes and 228 are metallic tubes. Besides, DWCNTs and armchair GNRs of different 

chiralities synthesized and reported so far are studied. Based on the observations and findings, the 

empirical model is developed that gives a set of effective empirical equations to predict optical 

transitions in semiconducting and metallic SWCNTs and DWCNTs as well as bandgaps in GNRs with 

high accuracy. Calculated values from the empirical relations showed excellent agreement with 

experimental values. Such relations also lead to new method for characterizing CNTs or GNRs after 

synthesis. Empirical relations and family behavior of SWCNTs are also exploited to find a new 

technique for chirality assignment of individual SWCNT. Implications of the proposed empirical 

model in CNT-based devices are also demonstrated.  
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CHAPTER 1 

INTRODUCTION 

 

Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) are two most intensively 

studied materials in current decade [1-4]. For their unique nanostructure and 

extraordinary electronic, optical, mechanical and chemical properties, both CNTs and 

GNRs are considered as ideal building block of next-generation electronic devices and 

circuits. The research effort devoted by both academic and industrial community has 

induced a great advance of the science and technology for CNTs and GNRs including 

their synthesis, property and device applications. It is becoming evident that CNTs and 

GNRs have the ability to replace silicon in electronic devices that dominates the present 

data driven world [1-4].  

1.1 Structure of Single Wall and Double Wall Carbon Nanotubes and Graphene 

Nanoribbons 

1.1.1 Single wall carbon nanotubes 

Carbon nanotubes can be single-walled, double-walled or multi-walled. First two 

categories can be either semiconducting or metallic depending on their geometrical 

structure whereas the third category is always metallic [1, 2].  

A single wall carbon nanotube (SWCNT) can be viewed as a hollow cylinder formed by 

rolling graphite sheets. Bonding in CNTs is essentially sp2. When a graphene sheet is 

rolled over to form a nanotube, the sp2 hybrid orbital is deformed for rehybridization of 

sp2 toward sp3 orbital or σ-π bond mixing. This re-hybridization structural feature, 

together with π electron confinement, gives nanotubes’ unique properties. Consequently, 

nanotubes are electrically and thermally more conductive, mechanically stronger and 

chemically and biologically more active than graphite [1, 5, 6]. 

The structure of a single wall carbon nanotube (SWCNT) can be uniquely characterized 

by a vector Ch in terms of two positive integers (n, m), Ch = na1 + ma2 ≡ (n, m), as shown 

in Fig. 1.1(a). 
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Where, a1 and a2 are the basis vectors of graphite lattice separated by 60o. The SWCNT 

is constructed by rolling up the sheet such that the two end-points of the vector Ch are 

superimposed. The vector Ch connects two crystallographically equivalent sites O and A 

on a two-dimensional (2D) graphene sheet. When the line AB' is joined to the parallel 

line OB in Fig.1.1 (a), a seamlessly joined SWCNT classified by the integers (n, m) is 

found, since the parallel lines AB' and OB cross the honeycomb lattice at equivalent 

points. Ch is also termed as the circumferential vector. The direction of SWCNT axis 

corresponds to OB. 

                                 (a)                                                                 (b) 

                

Figure 1.1: (a) The unrolled honeycomb lattice of a nanotube. (b) Three different 

rolling direction of graphene sheet results three different types of nanotubes [6]. 

Three categories of SWCNTs can be formed, as shown in Fig.1.1 (b): the armchair (n, n), 

the zigzag (n, 0), and the chiral (n,m) with n > m > 0. When the circumferential vector 

Ch is along the direction exactly between the two basis vectors, n = m, C-C bonds become 

perpendicular to the tube axis and the carbon nanotube is said to be of “armchair” type. 

When the circumferential vector Ch lies purely along one of the two basis vectors, m=0, 

C-C bonds become parallel to the tube axis and the carbon nanotube is said to be of 

“zigzag” type. Any other directions of circumferential vector results ‘chiral’ type 

nanotube [1, 5, 6].  

The diameter of a (n, m) nanotube dt is given by, dt = L/π =   /22

0 mnmna  , where, 

ao= length of graphite basis vector (lattice constant) = |a1| = |a2| 249.03  cca nm with 

acc= C–C bond length = 0.144 nm and L = |Ch| = length of the chiral vector Ch.  
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The chiral angle (θ) is defined as the angle between the chiral vector Ch and the zigzag 

direction a1, 
mn

m


 

2

3
tan 1 . For zigzag, armchair and chiral nanotubes, Chiral angle, 

θ = 0◦, θ = 30◦, and 0 ≤ |θ| ≤ 30◦, respectively. 

In terms of electronics property, a SWCNT (n, m) will be metallic if its n-m = 3k (k is 

integer), i.e. mod(n-m, 3) = 0 and it will be semiconducting if  its n-m ≠ 3k, i.e. mod(n-m, 

3) = 1 or 2 [7]. This relation is always found true except for SWCNT with very small 

diameter, where curvature effect dominates its properties [8, 9].This relation indicates that 

theoretically two third of the total SWCNTs are semiconducting and one third are 

metallic.  

1.1.2 Double wall carbon nanotubes 

A double wall carbon nanotube (DWCNT) is made of two concentric SWNT-equivalent 

nanotubes with an inter-wall spacing <0.5 nm [2, 10], as shown in Fig. 1.2.  Electronic 

band gap of the DWNTs depend on the interwall distance as well as on the chirality and 

intrinsic properties of the constituent SWCNTs [11]. However, the electronic properties 

of DWNTs may not be a simple superposition of the electronic properties of inner and 

outer layer. The inter-wall distance may also affect the electronic properties of a DWNT.  

Interwall distance and average diameter of DWNT can be calculated from chirality of 

constituent SWCNTs. For a DWNT, average diameter, )(
2

1
0 iddD  , and inter wall 

 

Figure 1.2: Double wall carbon nanotube [2] 
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separation, )(
2

1
0 iddw  , where, do and di are outer tube and inner tube diameter, 

respectively. 

1.2 Graphene Nanoribbons 

Graphene is a two-dimensional (2D) monolayer honeycomb structure of carbon [12]. 

Graphene nanoribbons (GNRs) are strips of graphene with ultra-thin width on the order 

of nanometers up to tens of nanometers. The nanoribbons can have arbitrarily long length 

and, as a result of their high aspect ratio, they are considered quasi-1D nanomaterials. 

GNRs are a relatively new class of nanomaterials that can have metallic or 

semiconducting character, and are currently being investigated for their interesting 

electrical, optical, mechanical, thermal, and quantum-mechanical properties [3]. 

                                              (a)                                                (b)  

 

Figure 1.3: The finite-width honeycomb structure of GNRs The lattice of a (a) 6-

ZGNR and (b) 9-AGNR [3]. 

There are two types of ideal GNR, which are called armchair GNRs (AGNRs) and zigzag 

GNRs (ZGNRs). The AGNR has an armchair cross-section at the edges, while the ZGNR 

has a zigzag cross-section, both illustrated in Fig. 1.3. In addition, the GNRs are also 

labeled by the number of armchair or zigzag chains present in the width direction of the 

AGNR and ZGNR respectively. If Na be the number of armchair chains and Nz the 

number of zigzag chains, then the nanoribbon can be conveniently denoted as Na-AGNR 

and Nz-ZGNR respectively. The three types of AGNR are determined from whether Na = 

3p or Na = 3p + 1 or Na = 3p+2, where p is a positive integer. 
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Earlier theoretical studies [13-15], mainly based on simple tight-binding (TB) 

approximations, predicted that GNRs can be either metallic or semiconducting depending 

on GNR types. As per TB calculations, zigzag-edged GNRs are all metallic regardless of 

their widths, and armchair-edged Na-AGNR is metallic if Na = 3p + 2 (where p is a 

positive integer) otherwise, it is semiconducting [3, 15]. 

Recently, both theoretical and experimental works have shown that quantum confinement 

and edge effects introduce a band gap in narrow GNRs independent of their chirality [3]. 

According to first-principles calculations there are no metallic nanoribbons [15]. Density 

functional theory (DFT) calculation clearly showed that all zigzag-edged and armchair-

edged GNRs have a finite band gap [3] and this energy gap depends strongly on the width 

of the channel for GNRs [15]. Sub-10 nm GNRs with smooth edges were obtained 

recently and demonstrated to be semiconductors with band gap inversely proportional to 

w [3]. All the sub-10-nm GNRs were found semiconducting with adequate bandgaps [3]. 

1.3 Motivation of the Research 

Each SWCNT has a unique set of interband optical transition energies that depend on 

their chirality. Optical transitions of DWCNTs vary according to constituent SWCNTs 

whereas bandgaps of GNRs vary according to type and width of GNRs. Both CNTs and 

GNRs are highly sensitive to their chirality and a slight change in chirality can drastically 

changes their electronic properties. Besides, any application of CNTs or GNRs in the 

field of electronics or optoelectronics requires prior information of their optical transition 

energies. Hence, accurate calculation of their optical transition energies is a necessity. 

Calculation of optical transitions of CNTs and GNRs from existing models was found to 

be deviated significantly from experimental results. This motivated us to develop a set of 

empirical models to predict different optical transitions in CNTs and bandgaps of GNRs. 

Proposed empirical relations and family behavior of SWCNTs can be also exploited to 

find a new technique for chirality assignment of individual SWCNT. The proposed 

empirical model help in selecting appropriate CNT and GNR for relevant applications 

and can predict the absorption and emission in CNT-based devices. 
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1.4 Objectives of the Research 

The objectives of this research are, 

i. To develop empirical relations of inter-band optical transitions of 

semiconducting and metallic SWCNTs and DWCNTs with their physical 

structures denoted by chirality. 

ii. To formulate empirical relations for bandgaps of armchair GNRs.   

iii. To validate proposed model by comparing estimated results from this work 

with relevant experimental reports. 

iv. To demonstrate the potential of the proposed empirical model in selecting 

appropriate CNT and GNR for relevant applications and predicting the absorption and 

emission in CNT-based devices. 

1.5 Outline of the Dissertation 

Succeeding chapters of this dissertation are organized to provide background theory, 

related previous works and the methodology and results of proposed empirical models. In 

order to build the context of present work, chapter-2 will give the detailed background and 

previous works that lead to the necessity of developing proposed empirical models. The 

empirical models for optical transitions in SWCNTs are developed in Chapter-3 and 

Chapter-5 and the empirical models for bandgaps in DWCNTs and AGNRs are developed 

in Chapter-6 and Chapter-7, respectively. Besides, potential applications of the proposed 

empirical models are presented in Chapter-4. Finally, the overall conclusions, limitations 

of this work and future scopes are presented in chapter-8.    
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CHAPTER 2 

OPTICAL TRANSITIONS IN  

CARBON NANOTUBES AND GRPAHENE NANORIBBONS 

 

2.1 Optical Transitions in Single Wall Carbon Nanotubes 

Electronic and optical properties of single-wall carbon nanotubes (SWCNT) are directly 

associated with their geometrical structures [4-6] which are uniquely specified by a pair 

of chiral index (n, m). A SWCNT (n, m) will be metallic if its n-m = 3k (k is integer), i.e. 

mod (n-m, 3) = 0 and it will be semiconducting if its n-m ≠ 3k, i.e. mod(n-m, 3) = 1 or 2 

[7]. This relation gives two types of semiconducting SWCNTs, mod 1 type and mod 2 

types, except for very small diameter tubes [7], where curvature effect dominates [8, 9]. 

Also, this relation indicates that theoretically two third of the total SWCNTs are 

semiconducting and one third are metallic. 

Accurate information of various optical transition energies of single-wall carbon nanotubes 

(SWCNTs) has been always a necessity for their characterization and potential applications 

as well as for pure theoretical interest about their internal band structure. The one-

dimensionality of the nanotubes gives rise to 1D sub-bands instead of one wide electronic 

energy band in nanotube density of states (DOS), as shown in Fig. 2.1. Each SWCNT (n, 

m) has a unique set of interband transition energies Eij denoting the energy differences 

between the i-th conduction and j-th valence bands and optical transitions can only occur 

between these sub-bands [7, 8]. These singularities are unique feature of nanotubes and 

also primarily responsible for many distinguished electronic and optical properties of 

SWCNTs. Due to the one-dimensional nature of SWCNTs, their optical responses are 

strongly dependent on the polarization direction of the incident light with respect to the 

nanotube axis. The next section will highlight this matter in details. 

2.1.1 Optical polarization in SWCNTs 

SWCNTs are extremely anisotropic which leads to significantly differing polarizabilities 

for external fields applied parallel and perpendicular to the tube axis. Therefore, light 

polarization can be used as an external parameter for tuning the optical properties of 
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nanotube-based optoelectronic devices. This is of importance since, in this case, internal 

changes to the device will not be needed, and the orientation of the device with respect 

to the incident light can modify the wavelength of absorption or emission.  

2.1.2 Selection rules for optical transitions in SWCNTs 

To properly predict, model, and interpret the optical properties of SWCNTs in their 

respective spectra in processes like optical absorption and Raman scattering, it needs to 

be known which optical transitions are allowed between which energy states [16].  

 

Figure 2.1: Sketch of the absorption energy transitions in carbon nanotubes for parallel 

(//) and perpendicular (⊥) light polarization, also called parallel and cross-polarized 

configuration, respectively [17]. 

Using the k · p method [17], Ajiki and Ando [18] first predicted the allowed optical 

transitions and optical conductivities for SWCNT. According to their calculation, 

interband transitions between the massive, hyperbolic bands of the valence and 

conduction bands, with the same band index, q, are allowed if the polarization of the 

incident light is parallel to the nanotube axis. Subsequent theoretical calculations [19-27] 

and experimental observations [28-37] also support this. However, interband optical 
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transitions between the massless, linear bands are not allowed for any light polarization 

due to symmetry. In the case where the polarization of the excitation is perpendicular to 

the nanotube axis, interband transitions are allowed only between bands where the band 

index changes by 1, i.e., ∆q = ±1 for both massive and massless bands [16, 17].  

Similar selection rules are arrived at by Milosevic et al. [19] using a group theoretical 

approach. Subsequently, Jiang et al., [20] using the tight-binding method, calculated the 

electric dipole matrix elements (whose square is proportional to optical absorption), 

yielding analytical expressions as a function of chiral index and wavevector, k. By 

examining the k-dependence of the matrix element, they found that the dipole matrix 

element reaches a maximum for k-values that coincide with the positions of the van Hove 

singularities (VHS) in the electronic density-of-states for each band. As a result, the 

strong optical absorption observed in nanotubes is a result of the combination not only of 

the singularity in the density-of-states but also the coinciding maxima in dipole matrix 

elements. Additionally for armchair SWCNTs, it was shown that the dipole matrix 

element is zero for all bands at the k = 0 point, indicating a node in optical absorption for 

armchair species due to their high symmetry. 

The absorption energy transitions, including the selection rules, are sketched in Fig. 2.1 

where both conduction and valence bands are labeled with i (or j) starting from the Fermi 

level. Energy transitions are denoted by Eij with i, j = {1, 2, 3, 4, . . .} corresponding to 

the transitions between the vi valence subband and the cj conduction subband. More 

particularly, in semiconducting and metallic tubes they are labeled Sij and Mij, 

respectively [17].  

2.2 Perpendicular Polarization and Antenna Effect 

For a perpendicular electric field, the induced charges on the surface of the nanotube 

produce a depolarizing field inside the nanotube that largely cancels the external field 

[18-27]. Such local field suppression does not occur in the parallel field because the 

induced charges occur only at the ends of the nanotube. Assimilating the CNT to an 

infinite cylinder, this phenomenon can be understood in the static approximation; the 

incident E-field creates surface charges as shown in Fig. 2.1 (top), and consequently a 

depolarization field opposing the incident one is induced on the surface of the nanotube. 
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In other words, the self-consistently induced charge appearing on the surface of a SWNT 

in the presence of an electric field perpendicular to the nanotube axis cancels the field of 

the incident light resulting strong damping of perpendicular-polarized absorption [17]. 

This self-consistent screening effect depends on the geometry of the nanotubes, and it is 

thus expected that in a SWNT bundle the screening effect is not perfect, since the 

depolarization field from the neighboring nanotubes may smear out the perfect 

cancellation of the electric field that occurs for isolated SWNTs in vacuum [21]. Even 

for an isolated SWNT on SiO2 surface, this perfect cancellation might not occur because 

of the surface effect of the dielectric Si substrate. 

This depolarization effect (also called antenna effect) was first described theoretically by 

Ajiki and Ando [18] combining a tight-binding model and the electrostatic argument. 

Jiang et al. [20] reached similar conclusions for polarization perpendicular to the tube 

axis, with the further refinement that only transitions between “linear” and parabolic 

bands are significant in intensity as they are allowed everywhere in k-space. Transitions 

between massive bands around k-points near the VHSs, however, are heavily suppressed 

due to the appearance of nodes in the dipole matrix elements at the positions of the VHS. 

Due to this depolarization effect, perpendicular transitions are expected to be heavily 

suppressed, although excitonic effects are predicted to retain this transition as a well-

defined peak in absorption at a renormalized energy [16].  

Compared with the works on parallel-polarized excitation, there are relatively less 

theoretical and experimental works on perpendicular-polarized excitation. As for the 

previous theoretical works on cross-polarized excitonic resonances, Ando’s group [18, 

22-24] has taken much attribute into the depolarization effect by involving both the 

screening effect and the dynamical screening effect on interband Coulomb interactions 

(ICIs). They have also reported the obvious depolarization effect, such as the lower 

intensity compared with the longitudinal situations and the blue shift of excitation peaks.  
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Grüneis et al. [21] analyzed previously published RBM Raman spectra of SWCNTs and 

assigned the features that could only be explained by optical transitions with light 

polarization perpendicular to the SWNT axis. Considering relatively small transition 

energies, they neglected both the trigonal warping effect and the electron–hole 

asymmetry and used the following simplification: E12
S = (E22

S + E11
S)/2. Thus, the 

resonance energy E12
S for perpendicular polarization appears in the energy gap of E11

S 

and E22
S. 

Uryu et al. [22, 23] systematically studied the exciton absorption for perpendicular light 

with emphasis on the depolarization effect and dependence on the strength of the 

Coulomb interaction and the tube diameter. Although a strong depolarization effect tends 

to shift the position to the higher energy side and suppress the intensity, excitons manifest 

themselves as prominent peaks because of their large binding energy. The resulting 

absorption energy is closer to that associated with that of the second gap for light 

polarized parallel to the axis. 

Kilina et al. [25] investigated computationally and analyzed in detail the properties of all 

fundamental excitonic bands arising from E11, E12, and E21 single-particle transitions in 

eight species of SWNTs (Fig. 2.2). The results of their simulations show intricate details 

of excited state properties in carbon nanotubes focusing on the electronic states 

corresponding to the cross-polarized transitions responsible for transverse optical  

 

Figure 2.2: Schematics of optical transitions in SWNTs corresponding to collinear, 

parallel- polarized (red and green color) and perpendicular, cross-polarized (blue color) 

excitations with the directions of the respective transition dipole moments μij [25]. 
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absorption in nanotubes. Because of degeneracy of the corresponding molecular orbitals, 

each considered transition between the van Hove singularities gives rise to four distinct 

excitonic bands. Excitations originating from E11 and E12/E21 transitions have transition 

dipole moments parallel- and cross-polarized to the tube axis, respectively. However, 

most of these transitions are optically forbidden (dark). They observed a single, strongly 

optically allowed excitation related to the E11 transition and two near degenerate, weakly 

allowed excitations related to the E12 and E21 transitions. Such properties driven by 

excitonic effects are dramatically different from predictions of the one electron theory 

assigning the cross-polarized transition to be exactly in the middle between E11 and E22 

transitions. The distribution of the transition density matrix along a tube axis is similar 

for all excitons. However, four parallel-polarized excitons associated with the E11 

transition are more localized along the circumference of a tube, compared with others 

related to the E12 and E21 cross-polarized transitions. Calculated splitting between 

optically active parallel- and cross-polarized transitions increases with tube diameter, 

which compares well with experimental spectroscopic data. 

Motavas et al. [26] studied the effect of light polarization on the interband optical 

transition spectra of nanotubes, independently from the depolarization effect. Using 

density functional theory, they calculated the absorption spectra of periodic zigzag carbon 

nanotubes for parallel and perpendicular polarization of light in a wide, infrared-visible-

ultraviolet range (0– 11 eV). Their results showed an overall suppression of the transition 

rate spectra for perpendicular polarization compared to those for parallel polarization in 

all three nanotubes under investigation, although at certain photon energies (ultraviolet) 

the probability of absorption for perpendicular light turned out to be surprisingly high. 

This can be important in optoelectronic applications of carbon nanotubes for ultraviolet 

absorption and emission. 

H. Liu et al. [27] derived analytical equations for incident light polarized perpendicular 

to the tube axis that involve various screened interband Coulomb interactions (ICIs). The 

strong screening effect on direct ICIs is taken into account in the perpendicular polarized 

linear excitonic absorption spectra. The calculated E12 peak for incident light polarized 

perpendicular to the tube axis is very close to the longitudinal excitonic peak E22, which 

is in good agreement with the experimental data [32]. Compared with the previous 
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theoretical peak positions, the blue-shift of the peak in their results is about 0.5 eV. They 

showed that the screening effect on the diagonal ICIs (D-ICIs) plays a key role in this big 

blue-shift.  

In resonant Raman processes, the optical selection rules are similar to those of optical 

absorption with the added considerations of the inclusion of the emission or absorption 

of a phonon of a given symmetry and the emission of the scattered photon. When the 

Raman spectra from an isolated SWNT is observed by changing the polarization of the 

light, usually there is no signal for light with a polarization perpendicular to the nanotube 

axis [29, 33]. Thus in the assignment of (n, m) values, the resonant condition for the light 

polarized parallel to the nanotube axis have only been considered. In fact, this assignment 

is sufficient for explaining most of the Raman spectra observed for isolated SWNTs. 

However, for SWNT bundles, all the RBM data observed within the Raman process 

occurring for parallel polarized light cannot be explained without considering resonance 

Raman process with perpendicular polarization [14, 30]. Because of the strong 

suppression of perpendicular transitions due to the depolarization effect, phonons excited 

via Eii typically dominate Raman spectra of ensemble samples [21, 28, 29]. 

Experimentally this phenomenon was first observed via absorption measurements on 

assemblies of aligned nanotubes [30]. Rayleigh experiments at the single nanotube level 

have also confirmed the strong antenna effect in CNTs [28]. On the contrary, weak but 

distinct peaks have been observed in some photoluminescence experiments of individual 

single-walled nanotubes (SWNTs) under the perpendicular polarization and its peak 

position is shifted to the higher energy side [31, 32]. These features are described by 

advanced theory including excitonic effects [22-25]. The observation of weaker antenna 

effect is also reported when nanotubes are deposited on various substrates [24, 33]. These 

suggest that although the depolarization effect is known to play a major role, other factors 

might also be influential in the polarization dependence of the absorption spectra of 

nanotubes.  

Yu et al. [28] obtained Rayleigh scattering spectra and Raman spectra from single 

bundles of aligned single-wall carbon nanotubes (SWNTs) with dark field optical 

microscopy and Raman microscopy. Rayleigh scattering spectrum reveals resonance 

peaks which are completely suppressed when the incident light polarization is 
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perpendicular to the nanotube axis. In case of polarized Raman measurements, Raman 

scattering signal was found to be much stronger for polarization of incident laser parallel 

to the tube axis than that polarized perpendicular to the tube axis with the intensity ratio 

varying from ∼20 to more than 100. 

Jorio et al. [29] studied the polarization dependence of the resonance Raman spectra for 

several different isolated SWNTs. They showed that a single isolated SWNT acts as a 

dipolar antenna, polarized along the tube axis, with the emission of Raman scattered light 

being strongly suppressed when the incident or scattered light is polarized perpendicular 

to the nanotube axis, in agreement with previous studies. For light polarized parallel to 

the tube axis, the strong resonance-effect breaks the symmetry-selection rules, and 

symmetry-forbidden modes appear in the Raman spectrum.  

Islam et al. [30] presented the first experimental measurements of absolute linear 

absorption cross sections of single-wall carbon nanotubes for incident light polarized 

parallel and perpendicular to the nanotube axis. They demonstrated that perfectly aligned 

ensembles of nanotubes are not necessary to obtain absolute polarized absorbance cross 

sections. Instead, a combination of Raman scattering and linear optical absorbance can 

be used to extract the anisotropic optical absorbance spectra, even from samples that are 

weakly ordered. They found that parallel absorption cross section peaks at energies Enn, 

while for the perpendicular polarization such diagonal transitions are forbidden and the 

absorption threshold occurs at E12. Higher peaks in the perpendicular absorption are 

suppressed due to a vanishing matrix element. Their observations thus explicitly 

demonstrated the depolarization effect due to screening by induced charge.  

Miyauchi et al. [31] performed anisotropic photoluminescence excitation (PLE) 

measurements on SWNTs in aqueous suspension for the UV-VIS-NIR range. They 

observed distinct absorption peaks of several isolated SWNTs for the polarization 

perpendicular to the SWNT axis, although the perpendicular excitation has been 

considered to be strongly suppressed due to the induced self-consistent local field 

depolarization effect. Using a procedure to determine the fractional contribution of 

parallel and perpendicular absorption and emission dipoles, they decomposed the PLE 

spectra into “pure” components for parallel and perpendicularly polarized excitations. 

The measured transition energies for perpendicular excitations were blueshifted from 
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(E22
S + E11

S)/2 which was the qualitative values predicted within a single-particle theory 

without considering excitonic effects.  

Lefebvre et al. [32] reported polarized photoluminescence excitation spectra of twenty-

five single-walled carbon nanotube species. Along with longitudinal excitations, several 

transverse excitations (polarization perpendicular to the SWNT axis) are identified with 

greatly reduced absorption intensity. Still, resonances not visible for the longitudinal case 

were present in the transverse spectrum. The transverse E12 transition is identified. In the 

simplest approximation, where electron-hole symmetry is assumed, two degenerate 

transitions E12 and E21 (E12 and E21 are not distinguished here) are expected halfway 

between E11 and E22. In reality, carrier hoping between the two carbon sublattices 

produces a modest energy splitting. Experimental E12 values deviate from the simpler 

predictions E12 = 0.5E22 + 0.5E11, and are closer to 0.8E22 + 0.2E11. Using E12 = (1-x) E22 

+ x E11, they found that x ranges from 0 and 0.25. Thus, the transverse E12 transition is 

close to E22, in line with the excitonic picture. 

Blancon et al. [33] determined the spectrum and amplitude of the absorption cross-section 

of individual semiconducting single-wall carbon nanotubes using spatial modulation 

spectroscopy, over a broad optical spectral range (Fig. 2.3). Within the sensitivity limit  

                                         (a) (b) 

 

Figure 2.3: Absorption and Raman spectroscopy of a free-standing individual (22,6) 

semiconducting SWNT. (a) Absolute absorption cross-section spectrum for incident 

light parallel (full dots) and perpendicular (open dots) to the nanotube. (b) Light 

polarization-dependent absorption cross-section for two laser excitation energies [33]. 
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of their experimental setup, no absorption was measured for incident light polarized 

perpendicular to the nanotube main axis (open dots in Fig. 2.3a). This is illustrated by 

plotting the absorption cross-section measured close to the resonances of lowest and 

highest energy as a function of the light polarization direction, relative to the CNT axis 

(Fig. 2.3b). 

K Liu et al. [34] demonstrated high-sensitivity absorption spectroscopy for more than 50 

individual chirality-defined SWCNTs over broad spectral range. They did not observe 

any resonances in the spectra for perpendicularly polarized light, when transitions 

between higher subbands are probed. From detailed theoretical analysis, they showed that 

although transitions between adjacent cutting lines are symmetry allowed, their matrix 

elements are always zero close to the band gap, except for the S12 and S21 transitions. 

This matrix element effect strongly suppresses exciton transition (as well as van Hove 

singularity at the band edge), resulting in no spectral resonances for higher-order 

transitions under perpendicularly polarized light (Fig. 2.4a). 

                                           (a)                                              (b) 

          

Figure 2.4: (a) Polarization-optimized homodyne detection of (24,24) single-walled 

carbon nanotube. The absolute optical absorption cross-section per carbon atom with 

both parallel (//) and perpendicular (⊥) light polarization to nanotube axis. (b)Cutting 

line scheme of optical transitions between subbands with angular momentum difference 

of ±Z in nanotubes [34]. 

They explained the suppression of higher-order perpendicular transitions as a direct 

consequence of the pseudospin of Dirac electrons in grapheme [34]. As illustrated in (Fig. 

2.4b), transitions between subbands with angular momentum difference of ±Z correspond 

to transitions between adjacent parallel lines in the graphene Brillouin zone in the zone-

folding picture, and the electrical field direction is parallel to the momentum of band gap 

electrons (red dots in (Fig. 2.4b) in the graphene Brillouin zone. When the electrical field 
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and electron momentum are parallel to each other, the pseudospin of Dirac electron has 

to be conserved. For parallel lines at the same side of the K point, conduction and valence 

states have opposite pseudospin. Therefore, higher-order transitions associated with 

parallel lines at the same side of K point ((Fig. 2.4b), such as E13 and E24, are forbidden. 

E12 and E21 transitions, however, are special because the two parallel lines are on the 

opposite side of the K point. In this case, valence electron in the first subband and 

conduction electron in the second subband have the same pseudospin, and the transitions 

are allowed. Indeed, prominent absorption peak corresponding to S12 and S21 transitions 

have been observed before by other research groups in semiconducting nanotubes with 

perpendicular polarization excitation [31, 32]. 

Barkelid et al. [37] performed polarization-dependent photocurrent spectroscopy on a 

single suspended semiconducting carbon nanotube p –n junction. The E11 and E22 optical 

transitions could be readily probed in parallel polarization and is suppressed for 

perpendicularly polarized light. An external quantum efficiency of 12.3% and 8.7% were 

measured for the E11 and E22 optical resonances, respectively, and this states a lower limit 

for the absorption coefficient for a single semiconducting carbon nanotube. By studying 

the polarization dependence of the photocurrent, a dielectric constant of 3.6 ± 0.2 was 

experimentally determined for this semiconducting carbon nanotube. Figure 2.5 displays 

the photocurrent spectra for light polarized parallel (black) and perpendicular (red) to the 

carbon nanotube axis. In Fig. 2.5 (a) and (b), clear peaks for the E11 and E22 transitions 

are visible at 0.85 eV and 1.36 eV, respectively, which were probed with parallel 

polarized light and suppressed for perpendicular polarization. The insets in Fig. 2.5 (a) 

and (b) show the angular dependence of the photocurrent for E11 and E22 as a function of 

the polarization angle of the incident laser light. A smaller polarizability of E22 was found 

compared to E11, as a result of the smaller absorption cross section for the E22 transition, 

in agreement with previous calculations [30]. On a resonance the polarizability of the 

carbon nanotube is a result of both the depolarization effect and the optical selection rules. 

For light polarized perpendicular to the carbon nanotube axis, though the E12 / E21 

transition was expected to show up on the low-energy side of the E22 resonance [32] but, 

this transition was considerably suppressed as a result of the depolarization effect and 

therefore not visible in their measurements.  
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                                    (a)                                                                       (b) 

 

Figure 2.5: Polarized photocurrent spectroscopy on a p-n junction. Light polarized 

parallel (black) and perpendicular (red) to the carbon nanotube axis for (a) E11 transition 

and (b) E22 transitions. In both cases, for light polarized perpendicular to the carbon 

nanotube axis (red) suppresses optical transitions. Inset (a) and (b) angular dependence 

of the photocurrent (units: pA) on the polarization angle of the excitation light [37]. 

Based on all these reports on theoretical investigations and experimental measurements 

of optical transitions for polarization of incident light perpendicular to nanotube axis, the 

general conclusion is, perpendicular transitions are highly suppressed except in some 

cases mentioned above. Thus, in case of SWCNTs, subsequent focus will be on optical 

transitions due to polarization of incident light parallel to nanotube axis. 

2.3 Optical Transitions in SWCNTs for Parallel Polarization 

For polarization of incident light parallel to nanotube axis, each SWCNT (n, m) has a 

unique set of interband transition energies Eii denoting the energy differences between 

the i-th conduction and valence bands and optical transitions can only occur between 

these mirror sub-bands [7, 8, 38-40], as shown in Fig. 2.6.  

The tight-binding (TB) model of π-bands of graphene using the zone-folding 

approximation was initially used for modeling electronic band structure of single-wall 

carbon nanotube (SWCNT) due to its simplicity and low computational cost. In simplest 

TB model, for polarization of incident light parallel to the nanotube axis, the interband 

transition energy (Eii) between the i-th pair of  sub-bands of semiconducting (S) or 

metallic (M) SWCNTs is given by [41, 42], 

diaE ccii /2 0    .                                          (2.1) 

  



19 
 
 

 

 

 

Figure 2.6: Schematic density of states diagram for a semiconducting single-walled 

carbon nanotube, in a simple band theory model [17]. 

Here, γ0 is the nearest-neighbor hopping parameter, acc= 1.42 Å is carbon-carbon bond 

length, d is nanotube diameter in nm, given by  2 23 /ccd n nm m a     and j is an integer. 

Eii corresponds to the first, second, third, fourth…… inter-band transitions (E11
S, E22

S, 

E33
S, E44

S….) of semiconducting SWCNTs when  i = 1, 2, 4, 5… and to the first and 

second interband transitions (E11
M, E22

M ) of metallic SWCNTs, when i = 3 and 6, 

respectively. This inverse proportional trend of optical transitions of SWCNTs with its 

diameter was also observed from Kataura plot [43] and other optical spectroscopic 

experiments [44]. 

Equation (2.1) derived from simple TB model fails both qualitatively and quantitatively to 

predict various optical transitions [45]. It fails to reflect the experimentally observed fact 

that, for odd transitions (E11
S, E33

S, ….) mod 1 type semiconducting SWCNTs have 

smaller transition energies than that of mod 2 type with comparable diameters whereas, 

for even transitions (E22
S, E44

S, ….) the matter is reverse [44]. It also fails to account the 

experimentally observed ratio between different transitions, known as ‘ratio problem’ in 

literatures [46, 47]. 

Improved and extended tight binding models were proposed [40-42, 48-50] but, none of 

those models could completely describe all experimental observations [41, 44, 46, 47]. 

Consequently, empirical relation became necessary and useful attempts [45, 47, 51-53] 
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were made to devise model independent empirical equations mainly to predict first two 

optical transitions of semiconducting SWCNTs. However, calculation of optical transitions 

using those empirical relations were complicated and also limited in calculating only first 

two optical transitions. They overlooked the symmetry between different optical transitions 

and used random forms for different transitions.  

Here, we will present a brief review of different computation models for calculating 

electronic band structure and optical transitions in nanotubes along with their limitations. 

Then, we will highlight the main factors that cause the existing models to calculate optical 

transitions that deviate from experimental results. 

2.3.1 Experimental observations regarding optical transitions in SWCNTs 

Sfeir et al. [44] observed from their Rayleigh scattering experiment that the mod 1 type 

semiconducting SWCNT have smaller transition energies than mod 2 type for odd 

transitions (E11, E33,….) whereas, mod 2 type semiconducting SWCNT have smaller 

transition energies than mod 1 type for even transitions (E22, E44,….) with comparable 

diameters. This observation is not reflected by Eqn (2.1) as it gives comparable values of 

transition energies for comparable diameters, irrespective of mod type. Okada et al. [54] 

also reported the relative difference between optical transition energies of mod 1 and mod 

2 types. They studied the electronic structure of all the semiconducting SWCNTs having 

diameters between 0.75 nm and 1.55 nm. The Kataura plot calculated by them differed 

from the corresponding plot obtained from zone-folding model. 

Besides, experimental observation showed a systematic pattern of optical transition 

energies in Kataura plot (Eii vs dt plot), depending on their mod (n-m, 3) = 0, 1 or 2. As 

shown in Fig. 2.7, SWCNTs having same (2n+m) values form branches in kataura plot, 

showing “family behavior” of transition energies [41, 55]. SWCNTs associated with each 

branch are termed as member of that (2n+m) family [55]. This family behaviour cannot 

be explained by TB model predicted simple Eii α 1/dt relation. 
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Figure 2.7: An illustration of Kataura plot. The gray symbols indicate mod 1 (closed 

circles) and mod 2 (open circles) semiconducting tubes. The lines connect 2n + m 

families [55]. 

Equation (2.1) also fails to account experimentally observed ratio of first two optical 

transition energies of semiconducting SWCNTs (E22
S/E11

S). Simple linearized tight-

binding model predicted this ratio to be 2 from Eqn (2.1). Extended TB model later 

predicted that this ratio will be lesser than 2 at small diameters but will asymptotically 

approach 2 for large diameters [46]. In practice, experimentally observed ratio converges 

to only around 1.8 for large diameters [46, 56-59]. This problem is often referred as ‘ratio 

problem’ in literatures [46]. Neither the simple TB model nor the extended TB model 

could account this observation fully. 

Bachilo et al. [47] and O’ Connel et al. [60] independently performed flourescence 

spectroscopy experiments and observed that absorption (E22) and emission (E11) energies 

from SWCNTs differ from theoretical predictions of tight binding calculations as shown 

in Fig. 2.8. Their measured optical transition frequencies (υii) significantly deviate from 

simple diameter dependence. For example, they found υ22 value of the (9,2) tube is 26% 

higher (by 3700 cm-1 or 0.46 eV) than that of (9,1), even though its diameter is only 6% 

larger [47]. In addition, as tube diameter increases, they found the υ22/ υ11 (or, E22/E11) 

ratio apparently approaches a value around 1.75, smaller than tight binding prediction, 

i.e. the ‘ratio problem’. Their excitation vs emission frequency plot also showed a blue 

shift of these frequencies. 
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                                      (a)                                                             (b) 

 

Figure 2.8: Comparison of flourescence spectroscopy result with TB calculation. (a) 

Measured ratios of excitation to emission frequencies (b) Computed ratio from an 

extended TB model for mod 1 type (blue) and mod 2 type (red). Soild lines connect 

families with equal n – m values and dotted line connects 2n+m families [47]. 

Kane et al. [46] and Mele et al. [56] reported ‘blue shift’ of transition energies which is 

also not reflected through Eqn (2.1) They observed this problem after scrutinizing 

flourescence spectroscopy results reported by Bachilo et al. [47] and O’ Connel et al. 

[60]. They plotted observed optical energies of SWCNTs measured in fluorescence 

spectroscopy as a function of n/3R (Fig. 2.9) and showed that E11 and E22 deviate from  

 

Figure 2.9: Observed ‘blue shift’ of optical transition energies measured from 

fluorescence spectroscopy, for mod 1 type (ν =+1) and mod 2 type (ν = -1) 

semiconducting SWCNTs. The solid line gives the prediction of linearized TB model 

theory [56]. 

simple linearized tight binding model and are blue shifted by a nonlinear 1/R scaling. They 

termed this observation as ‘blue shift problem’ [44, 56, 61]. Zhao et al. [59] discussed 



23 
 
 

 

both the ‘ratio problem’ and the ‘blue shift problem’. As per their analysis, the ratio 

problem is a simple consequence of nearly equal blue shifts of the two lowest optical 

absorptions (E11 and E22) from TB frequencies. 

2.3.2 Factors contributing variations of optical transitions in SWCNTs 

Above experimental observations can be attributed to three main factors. First is 

nanotube’s ‘curvature’ induced band structure deviation from simple π-orbital graphene 

picture [8, 9, 49, 61]. Other two factors are ‘trigonal warping effect’ [9, 42, 44] and 

‘chirality effect’ [50]. 

The first factor is the nanotube’s ‘curvature effect’ [8, 9, 48-50, 61] that causes deviations 

in the electronic properties of nanotubes derived from the simple π-orbital graphene 

picture. As SWCNTs are not just stripes of graphene but small cylinders, so, tube 

curvature forces the naturally flat sp2 bonds to bend. 

There are important consequences of this curvature on nanotube structure. Curvature 

causes hybridization between σ and π orbitals and charge self-consistency become 

important. The degree of hybridization becomes larger as the diameter of a SWCNT gets 

smaller. Also, due to curvature, C-C bonds perpendicular and parallel to the axis are 

slightly different and therefore the graphene basis vectors a1 and a2 are not of exactly 

equal length anymore. The σ–π hybridization effect has been considered and calculated 

in the literature [48-50, 62]. The main result is that nanotubes satisfying |n−m| = 3k (k=0, 

1, 2….) develop a small curvature-induced bandgap, and hence become quasi-metallic or 

small gap semiconductor [62]. Armchair nanotubes are an exception because of their 

special symmetry, and only they remain truly metallic for all diameters [62]. On the other 

hand, some lowest diameter tubes with |n−m| ≠ 3I are found to be metallic due to high 

curvature in them. Zeng [8], Popov et al. [49], Okada et al. [54] and Gulseren et al.  [61] 

studied the effects of nanotube curvature on electronic and optical properties of isolated 

single-walled carbon nanotubes and the calculated transition energies were found to 

deviate widely from π-band tight-binding model calculation, especially for small radius 

tubes [8]. Reported first principle calculations of SWCNTs of different chirality also 

confirmed this [63-67]. 
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The second factor is the ‘trigonal warping effect’ [9, 44, 42, 54]. Reported deviations of 

TB model derived band structure and transition energies of nanotubes are not only due to 

the linearity of the graphene bands, but also due to their variation with directions in the 

Brillouin zone, termed as ‘trigonal warping’ [42]. This causes difference of transitions for 

mod 1 and mod 2 types. Though zone folding provides an explanation of this trigonal 

warping and consequent energy difference, but, it cannot fully account it. Zolyomi et al. 

[9] showed on the basis of their LDA calculation that trigonal warping effect found by 

their DFT calculation, is higher than that predicted by zone folding approach.  

Saito et al. [42] investigated the ‘trigonal warping effect’ analytically to estimate the 

corresponding deviation in optical transitions of metallic and semiconducting SWCNTs. 

They showed that trigonal warping causes splitting of the density of State (DOS) peaks 

of metallic SWCNTs except for armchair tubes. Okada et al. [54] reported the relative 

difference between optical transition energies of mod 1 and mod 2 type based on their 

calculation, and attributed it to ‘trigonal warping effect’. Sfeir et al. [44] provided a firm 

experimental basis for ‘trigonal warping effect’ and family behavior as they observed 

these from their Rayliegh scattering experimental. They also discussed the cause of 

relative difference between optical transition energies of mod 1 and mod 2 type for even 

and odd transitions. 

The third factor is ‘chirality effect’ [49,68] that originates from individual nanotube 

chirality and results unique features for each tube. Dependence of band structure and 

transition energies of nanotubes on their precise chiral structure is discussed theoretically 

and also observed from many experiments [45, 47, 62, 69-81]. 

Gulseren et al. [62], Ding et al. [50], Saito et al. [42], Maultzsch et al. [53], Yorikawa et 

al. [78, 79], and Jorio et al. [77] –all discussed relation of nanotube band gaps to chirality 

and proposed chirality dependent term to be included with Eqn. (2.1) to account this 

effect. It is noticed from Kataura plot that the upper and lower bounds of the widths of 

the optical transitions (Eii) curves alternate with increasing i between the mod 1 and mod 

2 zigzag semiconducting SWCNTs. Also, chirality changes from armchair to zigzag 

along (2n+m) family lines [53]. Another family is observed in experimental E22/E11 plot 

where nanaotubes having same (n-m) values fall along same symmetric lines or family 

branches [47]. These families are directly linked with their chiral index values. All these 
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clearly establish that band structure and transition energies of nanotubes shows unique 

features for different chiralities and indicate their dependency on chiral index (n, m) value 

of each tube.  

2.3.3 Improved models for optical transition of SWCNTs 

Improved models were proposed by authors within or beyond TB model framework. The 

model within TB model framework includes TB model for third nearest neighbors [48], 

symmetry-adapted non-orthogonal TB model [49] and TB sp3s*model (where 2s, 2px, 

2py, 2pz, and s∗ orbitals of each carbon atom are used as the basis set) [81]. Expanding 

the basic TB model expression of Eqn 2.1 for calculating optical transitions were also 

proposed.  

Jorio et al. [77] presented the experimental Kataura plot where they plotted 

experimentally obtained optical transition energies for 200 SWCNTs as a function of tube 

diameter in a broad range of excitation laser energies (1.26–2.7 eV) and nanotube 

diameters (0.7–2.3 nm). They proposed following expression to interpret their results, 

2
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l

ii l p
t tl

p
E

d d


 

 
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In the polynomial expansion on (p/dt), l is a positive integer and terms up to l = 5 are 

needed for a good description of the observed Eii, where, p = 1, 2, 3, 4 and 5 stands for 

E11
S, E22

S, E11
M, E33

S and E44
S , respectively, αl is determined by the linear dispersion 

relation of π-electrons in graphite in tight binding method and βp measures the chiral 

angle dependence of optical transitions which is different for each Eii subband, increasing 

for larger i due to the increase of the trigonal warping effect. These two parameters are 

measured empirically. The deviation of their result from experimental data goes up to 0.2 

eV, which is not ignorable.  

Weisman et al. [45] came up with a set of empirical equations to calculate first and second 

optical transitions in semiconducting SWCNTs. They fitted their spectrofluorimetric data 

for a large number of identified single-walled carbon nanotubes to following empirical 

expressions designed separately for mod 1 and mod 2 types, 
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Liu et al. [39] studied the matter and demonstrated it extensively than anyone before. 

They carried a series of optical experiments and measured optical transition energies of 

numerous semiconducting and metallic SWCNTs. They proposed following empirical 

formula to fit their experimental values of different optical transitions of a number of 

semiconducting and metallic nanotubes, 

2 2( ) 2 ( ) ( ) cos(3 )     p FE k p k k p k    .               (2.7) 

where, p is the transition index, k is the magnitude of wave vector in the graphene 

Brillouin zone that varies with nanotube chirality (n, m) and transition index p. Magnitude 

of k is given by p× 2/(3d), where d is the nanotube diameter. Ep(k) is the effective 

dispersion for transition p, ħ is the reduced Planck constant = 6.582×10-16 ev.s and β=-

0.173 ev. nm2. Rest two parameters vF and η have different values for different transition 

index p. Thus, lot of parameters are involved in calculating any optical transition energy 

from the above equation. 

2.3.4 First principle calculation of optical transitions 

Failure of TB models or extended TB models leads to first principle (ab initio) calculation 

of electronic bandstructure and corresponding optical transition energies in SWCNTs. It 

was found that, while tight-binding calculations predict small diameter (4, 0) and (5, 0) 

zigzag nanotubes to be semiconducting with bandgaps exceeding 1 eV, ab initio 

calculation shows that they are metallic. Similarly, while tight binding calculations 

predict that the (6, 0) zigzag nanotube is quasi- metallic with a bandgap of approximately 

200 meV, ab initio calculations indicate that they are truly metallic [63]. 
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Zolyomi et al. [9] performed first-principles calculations of the electronic band structure 

of 40 different small diameter single-wall carbon nanotubes (9 armchairs, 17 zigzags, 14 

chirals). They compared (Fig. 2.10) their calculated bandgaps to zone folding (ZF) tight 

binding (TB) values for all tubes. Significant differences were observed by them from 

what was expected from ZF-TB. Some of the ZF predicted semiconducting tubes proved 

to be metallic, due to σ-π mixing caused by high curvature, whereas eight of the ZF 

predicted metallic tubes (4 zigzags, 4 chirals) showed a small gap in the band structure.  

 

Figure 2.10: Band gaps of (4, 0) to (20, 0) zigzag tubes versus diameter. The squares 

show TB values, while the diamonds show DFT results [9]. 

Bertoni et al. [64] presented first principles calculations of the electronic structure of 

small carbon nanotubes with different chiral angles and different diameters (d<1 nm). 

They compared the band structure and density of states (DOS) of chiral nanotubes with 

those of zigzag and armchair tubes with similar diameters. They evaluated the degree of 

hybridization occurs in these small diameters tubes due to higher curvature. 

Machon et al. [65] and Yang et al. [66] performed first principle calculation using local 

density function approximation (LDA) to study their optical properties of lowest diameter 

0.4 nm SWCNT that refers to (4, 2), (3,3) and (5, 0) tubes. Li et al. [67] also studied the 

structure of these tubes using transmission electron microscopy (TEM) and compared 

their observation with LDA calculations. LDA calculation of band structure of this 

smallest diameter tube showed that the chiral (4, 2) tube is a semiconductor with a small 

indirect band gap, armchair (3,3) is a metal, and zigzag (5, 0) is a metal, too, with a finite 

electronic density of state near the Fermi energy level [50]. Their conclusion that (5, 0) 

nanotube is metallic is in contrast to the prediction of the zone folding approximation 



28 
 
 

 

which considered this tube to be a mod 2 type semiconducting tube. They explained this 

feature as an effect of the strong curvature of the nanotube walls. 

Recently, Niranjan et al. [82] performed theoretical study of electronic band gaps of 

semiconducting single-walled carbon nanotubes (SWNTs) with different sets of chiral 

indices using semi-empirical tight binding and density functional (DFT) based ab-initio 

methods. They performed the calculations for (n, m) chiral SWNTs, (9, 0), (12, 0) and 

(15, 0) ‘metallic’ zigzag SWNTs, (n, 0) zigzag SWNTs for 10 ≤ n ≤ 30 and also pairs of 

SWNTs having same diameters but different chiral angles. From the comparison of bands 

gaps of tubes with same diameter, the electronic band gaps were found to vary with chiral 

angles with opposing trend as compared to that reported for experimental optical band 

gaps. 

Tetik et al. [83] reported the structural and electronic properties of SWCNTs by using ab 

initio density functional theory. They considered zigzag (6, 0), zigzag (7, 0), chiral (6, 2), 

chiral (6, 3), and armchair (7, 7) tubes. Zigzag (6, 0) and armchair (7, 7) tubes showed 

metallic behavior whereas, zigzag (7, 0) and Chiral (6, 2) tubes showed semiconducting 

behavior with band gap 0.5022 eV and 0.8291 eV, respectively (Fig. 2.11).  

(a) (6,0)                                                                          (b) (7,0) 

 

(c) (7, 7)                                                                       (d) (6,2) 

 

Figure 2.11: Electronic band structure and DOS of the Zigzag (a) (6,0)  (b) (7,0), 

(c)armchair (7,7) and (d)chiral (6, 2) nanotubes [83]. 
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They [83] also investigated the effect of rolling for nanotubes and observed that, for a (6, 

3) chiral graphene, the band gap is 0.0516 eV but, when this graphene is transformed to 

a chiral (6, 3) nanotube, it showed quasimetallic chiral (6, 3) nanotube with band gap 

0.0488 eV. 

Umari et al. [84] found that the most common methods based on density functional theory 

(DFT) within local approximations for the exchange and correlation functional usually 

yield a significant underestimation of electronic gaps and cannot provide reliable 

estimations for CNTs.  Within the many-body perturbation theory GW method, they 

calculated electronic band gaps for optically allowed transitions and investigated the 

dependence of electronic band gaps on tube diameter for (7,0), (8,0), (10,0), (11,0), (13,0) 

(14,0) and (16,0) semiconducting single-walled zigzag carbon nanotubes with diameters 

ranging from 0.56 nm to 1.27 nm (Fig. 2.12). Though their GW results were found to be 

in good agreement with previous estimates from optical measurements but, not only is  

 

Figure 2.12: Electronic band gaps for semiconducting zigzag SWCNT, corresponding 

to optical transitions. Black discs and white circles are first-principles GW results for 

mod 1 and mod 2 zigzag CNTs, respectively, compared with theoretical estimates 

(green line) for generic tubes, for mod 1 (purple line) and mod 2 (brown line) zigzag 

tubes along with the experimental STS measurement (blue) [84]. 

the computational cost of GW approaches significantly higher than that of simpler DFT 

schemes but also particular care is required for obtaining converged results. Thus, GW 

method is not a realistic choice to be used in general. 
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                                           (a) (b) 

 

Figure 2.13: (a) Band gaps of zigzag SWNTs and (b) metallic zigzag (3m,0) SWNTs 

calculated by B3LYP (blue circles) as a function of diameter and compared with 

experimental, PBE, LDA and LDA+GW approximation + many-body effects [85]. 

Matsuda et al. [85] noticed that previous quantum mechanical (QM) calculations were 

not able to account for the observed band gaps. They reported ab initio quantum 

mechanical calculations of band structures of single-walled carbon nanotubes (SWNTs) 

using the B3LYP (Becke -Lee -Yang Parr) flavor of density functional theory (Fig. 2.13). 

They found that the (5,0) tube, expected to be a large gap semiconductor, is metallic. 

They also found that, for (7,0), (6,0), and (5,0) small zigzag CNTs, the π* and σ* states 

mix and repel each other, leading to lower pure π* states and this σ* -π* hybridization is 

not included in common tight-binding (TB) calculations so that TB fails to describe 

asymmetrical charge transfer of the atoms, leading to finite gaps for (5,0) and (6,0). Their 

results were in contrasts with the results from LDA, which lead to band gaps 70 -100% 

too small, and with those from the GW correction to LDA, which leads to a gap too large 

by 213%. They found that B3LYP leads to accurate values of the small band gaps 

observed in the metallic zigzag (9,0), (12,0), and (15,0) SWNTs, whereas previous 

calculations using LDA, PBE, PW91, GW, and TB do not. 

Thus, in summary, the electronic structures and band gaps computed using TB model 

deviates significantly, both qualitatively and quantitatively, from the original band 

structures. Those computed within DFT framework and using local density (LDA) and 

generalized gradient (GGA) approximations for the exchange-correlation (xc) functional 
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are generally underestimated significantly. Also, there are few semi-empirical tight 

binding models with adjustable parameters which are fitted to first-principles calculations 

or experimental results. Improved estimates of band gaps of few selected SWCNTs have 

also been reported using GW approximation which usually provides band gap estimates 

with good accuracy, but, the method is hugely expensive computationally. Furthermore, 

care in calculations is required in order to obtain converged results. The band gaps of few 

SWCNTs computed using DFT framework and hybrid xc-functionals have also been 

reported. Like the GW scheme, the hybrid functional schemes are highly expensive 

computationally, although they usually provide reasonably accurate predictions of 

electronic structures. 

Hence, it is required to develop an effective empirical model that counts the relations of 

chirality and structure of each SWCNT with its optical transitions which can be used to 

estimate optical transition energies of any SWCNT with high accuracy.  

2.4 Optical Transitions in Double Wall Carbon Nanotubes 

2.4.1 Introduction to the structure and properties of DWCNT 

A DWCNT consists of exactly two concentric and weakly van der Waals coupled single-

walled carbon nanotubes and an emerging class of carbon nanostructures [2, 10]. 

DWCNTs are the most ideal and fundamental systems to explore the mechanical and 

electronic couplings between concentric carbon layers. Although DWCNTs were 

discovered in 1991 and the first synthesis was reported in 1998, this structure has received 

relatively little attention until the synthesis [86, 87] and separation [88] of high purity 

samples. Compared to SWCNT, DWCNTs have higher mechanical strength and thermal 

stability and they also possess interesting electronic and optical properties [10, 11, 89-

91].  

A DWNT is uniquely characterized by the chiral indices (ni, mi) and (no, mo) of the 

constituent inner and outer SWCNTs, respectively. Hereafter the structure of a DWCNT 

is identified as (ni, mi)@(no, mo), i.e. inner@outer wall. From the lattice symmetry point 

of view, the inner-tube and outer-tube can be either incommensurate or commensurate. 

A DWCNT is commensurate if the ratio between the unit cell lengths of the inner and 

outer-tubes is a rational number and incommensurate if the ratio is irrational [2, 10]. A 



32 
 
 

 

commensurate DWCNT has a periodical lattice structure while for incommensurate 

DWCNTs the symmetry is broken. 

Earlier calculations [92] showed that the interwall distance between inner and outer tubes 

vary between 0.33 and 0.41 nm, with an ideal separation of 3.39 Å. Endo et al. [86] 

measured diameter distribution of highly purified DWCNTs using high-resolution TEM 

and found that they fall between 0.4 and 1.3 nm for inner tubes and 1.0 and 2.2 nm for 

outer tubes.  

2.4.2 Electronic structure and optical transitions in DWCNTs 

Because the inner and outer SWNTs can be either semiconducting (S) or metallic (M), 

DWNTs display four different configurations; S@S, S@M, M@S, and M@M —where 

the notation is inner@outer wall and each of them possess distinct electronic properties 

[90, 91]. All the properties of DWNTs are related to the individual nature of the layers 

and their interactions. A DWCNT must be considered as a new and separate 

nanostructure rather than the combination of two SWCNTs and hence, the electronic 

properties of DWCNTs are not a simple superposition of the electronic properties of inner 

and outer layer [10, 11, 90, 91]. Electronic properties of DWCNTs depend on the 

interwall distance as well as on the chirality and intrinsic properties of the constituent 

SWCNTs [10, 11, 89-91].  

In DWNTs, the inner tube possesses a special status, granted by the outer tube, which 

acts as a shield and protects effectively the inner tubes from perturbations, thus provides 

higher mechanical, thermal, and chemical stability even in aggressive environments 

compared to SWNTs. Several experiments [93-100] performed on individual index-

identified DWNTs demonstrated that the optical transitions of inner semiconducting tube 

(ISCT) of DWNTs can be significantly shifted compared to their SWNT constituent 

counterparts. Combining electron diffraction (ED) and Raman/optical spectroscopy to 

examine individual DWNTs appeared to be the most direct and unambiguous method to 

address the relationship between their structure and physical properties [96].  

Shimamoto et al. [93] examined the optical features of single wall carbon nanotubes and 

the inner tubes within double walled carbon nanotubes having the same  (n, m) chirality. 

They observed brighter and more stable photoluminescence signals as well as larger 
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absorbance and a redshift of both the E11 and E22 for the semiconducting inner tubes 

within DWNTs as compared to SWNTs. They opined that outer layers of DWNTs 

maintain the high structural integrity of the inner tubes during both oxidative purification 

and strong sonication steps and are responsible in increasing the dielectric screening due 

to weaker Coulomb interaction ; thus leading to a redshift of the excitonic transitions.  

Liu et al. [94] showed experimentally that electronic coupling from van der Waals 

interactions can be surprisingly strong in incommensurate DWNTs. They performed 

combined electron diffraction and single-tube absorption measurements on 28 individual 

suspended DWNTs with a total of 99 optical transitions. In all studied DWNTs, they 

mapped each observed optical transition to that from an isolated constituent SWNT, but 

the resonance energy was always shifted for all optical transitions in DWNTs, varying 

from a red shift of 190 meV to a blueshift of 50 meV in different DWNT species. They 

also observed that the exact energy shift depends sensitively on the DWNT chirality. 

Even for the same inner tube, the energy shift of an optical transition varies significantly 

with the outer-wall tube species.  

Tran et al. [95] reported optical absorption and resonant Raman scattering experiments 

on two individual free-standing DWNTs index identified by electron diffraction. The 

observed peaks of (16,12)@(27,10) (SC@SC) DWNT  at 1.81, 2.15, and 2.71 eV are 

associated with optical transitions of the semiconducting inner tube, assigned to the S33, 

S44 and S55 transitions, respectively. 

Levshov et al. [96] reported direct and unambiguous evidence of the existence of inner 

semiconducting tube (ISCT) photoluminescence (PL) from measurements performed on 

individual freestanding index-identified double-walled carbon nanotubes (DWNTs). The 

DWNTs were characterized by high resolution transmission electron microscopy 

(HRTEM) and ED. On the basis of thorough Rayleigh scattering, Raman scattering, PL, 

and PL excitation (PLE) experiments, they were able to demonstrate that the PL of the 

ISCT of DWNTs is observed for both semiconducting and metallic outer tubes. They 

observed the shifts of the first optical transition energies compared to that of SWNTs. 

The first optical transition Si11 measured by them were found to be redshifted compared 

to the S11 of the corresponding SWNTs by an amplitude varying from −20 to −100 meV. 

These shifts were mainly attributed to the electronic coupling between the 
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incommensurate inner and outer tubes and to the effect of the interlayer dielectric 

screening of Coulomb interactions on the optical transitions in DWNTs. The magnitudes 

of the energy shifts depend sensitively on the specific optical transition and on the inner- 

and outer-tube species, which explains the tube-to-tube variations reported in their work. 

Zhao et al. [97] experimentally combined Rayleigh scattering spectroscopy and electron 

beam diffraction on the same individual DWCNTs to probe the optical transitions of 30 

structure-identified DWCNTs in the visible spectral range. Comparing with the transition 

energies in isolated single nanotubes in air, all the optical resonances observed in 

DWCNTs with weak coupling exhibit noticeable energy redshifts by a few tens to 200 

meV. 

Chalin et al. [98] reported that weak van der Waals coupling between the layers leads to 

a small shift of transition energies in optical spectra of double-walled carbon nanotubes 

(DWCNTs) with respect to their values in pristine single-walled nanotubes. They 

calculated the energy shifts for 94 optical transitions, and the maximum deviation lies 

within the range from −28 to 47 meV.  

All structurally identified double-walled carbon nanotubes (DWCNTs) investigated so 

far are incommensurate. Commensurate DWNTs have never been observed 

experimentally because it is almost impossible to have two commensurate SWNTs with 

the radius difference matching the tube–tube separation in a DWNT [94,98]. Electronic 

structure calculations of incommensurate DWNTs are challenging because a finite unit 

cell does not exist [94]. Several theoretical attempts studying incommensurate DWNTs 

suggest that inter-tube electronic coupling is negligible between the incommensurate 

inner- and outer-wall carbon lattices because couplings at different carbon atom sites 

oscillate with random phases and cancel each other [94]. However, Liu et al. [94] showed 

experimentally that, contrary to previous theoretical predictions, electronic coupling from 

van der Waals interactions can be surprisingly strong in incommensurate DWNTs. It has 

been shown in previous studies of nanotubes in different environments that dielectric 

screening can lead to a redshift in optical transition energies, and the redshift value is 

similar for all optical transitions [94]. This dielectric screening effect can account for an 

average redshift of optical transition energies observed in DWNTs, but it cannot explain 

the very large and strongly transition-dependent variations in optical transition shifts, 
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especially the significant blueshifts for certain optical transitions. The residual deviation 

might be due to a dielectric screening-induced redshift different from the assumed 

constant shift (−55meV) and the uncertainty in experimental data (∼20meV) [94]. So far, 

there is no reliable theoretical or empirical models to calculate the electronic band 

structure of DWNTs or the energy shifts in inner semiconducting tube of DWNTs. The 

reason might be due to the fact that, SWCNTs have been studied extensively for last three 

decades, both theoretically and experimentally, whereas, serious study on DWCNT has 

started only in last decade and as a result, there are still ambiguities regarding its exact 

electronic structure for different combinations of inner and outer tubes. Thus, an 

empirical model to estimate the experimentally observed blueshifted optical transitions 

of inner semiconducting tubes in DWNTs would be useful.  

2.5 Electronic Structure and Bandgaps in Graphene Nanoribbons (GNRs) 

2.5.1 Structure and electronic properties of GNRs 

Graphene nanoribbons (GNRs) have recently emerged as attractive organic materials for 

applications in new generations of electronic devices [3, 101-104]. Their greatly tunable 

properties as a function of their precise atomic structure are among the most appealing 

attributes that make GNRs so interesting. There are two types of ideal GNR, namely 

armchair GNRs (AGNRs) and zigzag GNRs (ZGNRs) depending on their armchair and 

ZGNR cross-section at the edges, respectively, both illustrated in Fig. 2.14. In addition, 

the GNRs are also labeled by the number of armchair or zigzag chains present in the 

width direction of the AGNR and ZGNR, respectively. If Na be the number of armchair 

chains and Nz the number of zigzag chains, then the GNR can be conveniently denoted 

as Na-AGNR and Nz-ZGNR, respectively [105, 106].  

According to conventional notation, a GNR is specified by the number of dimer lines or 

zigzag chains along the ribbon forming the width, for the AGNR and ZGNR, 

respectively, as explained in Fig. 2.14. For example, the structure of Fig. 2.14(a) is 

referred as a 11-AGNR and the structure in Fig. 2.14(b) as a 6-ZGNR. In addition, when 

referring to the width of a GNR here, the width is defined without including the hydrogen 

atoms at the edge, as shown in Fig. 2.14. 
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                                               (a)                                              (b) 

 

Figure 2.14: The finite-width honeycomb structure of GNRs. The lattice of a (a) 6-

ZGNR and (b) 9-AGNR. The dashed box represents the primitive unit cell. The open 

circles at the edges denote passivation atoms such as hydrogen. The bold gray lines are 

the zigzag or armchair chains that are used to determine Nz or Na respectively [3]. 

Among GNRs, the armchair GNRs are believed to be the most promising candidates 

towards the design of graphene based circuits due to their highly tunable electronic 

properties [25, 107], making them an interesting material for room-temperature electronic 

and optoelectronic switching devices. For example, Tayo et al. [107] reported GNR 

heterojunction of 7-AGNR and 11-AGNR, having individual bandgap of 1.54 eV and 

0.16 eV, respectively. They showed that, by increasing the length of the 11-AGNR, band 

gap of the 7-11 GNR heterojunction can be tuned continuously between the band gap of 

the 7-AGNR (1.54 eV) and the band gap of the 11-AGNR (0.16 eV). 

First principle calculations reveal that AGNRs can be classified into three different 

subfamilies depending on Na = 3p, 3p + 1 or 3p+2, where p is a positive integer, their 

band gaps being inversely proportional to the ribbon width within each of those families 

[106]. The reported band gap values of the various AGNRs synthesized to date confirm 

this picture for each of the GNR families. This result is clearly indicative of width-

dependence physics in the armchair GNRs.  

Earlier theoretical studies, mainly based on simple tight-binding (TB) approximations, 

predicted that GNRs can be either metallic or semiconducting depending on GNR types 

[108]. As per TB calculations, armchair-edged Na-AGNR is metallic if Na = 3p+2, 

otherwise, it is semiconducting. However, simple TB model calculation of bandgaps of 

GNRs was found to be incorrect. Subsequent theoretical models [108–114] and 
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experimental works [105-107, 115-122] showed that quantum confinement and edge 

effects introduce a band gap in all narrow GNRs and there are no metallic nanoribbons.  

Wang et al. [106] measured energy gaps of atomically precise armchair graphene 

sidewall nanoribbons with widths ranging from Na = 6 to Na = 26. All the armchair GNRs 

exhibited semiconducting gaps due to quantum confinement and the GNRs were well 

grouped into three categories according to their electronic structures. The origin of the 

energy gaps for GNRs with armchair edges is the quantum confinement. Their result 

indicated that the electronic structures of the armchair GNRs can be tuned dramatically 

by simply adding or cutting one dimer line along the ribbon width. However, the lack of 

exact number of carbon dimer lines Na across the width of these GNRs, owing to the 

measurement error and the atomic-scale edge irregularities, did not allow a more 

systematic insight. 

2.5.2 Earlier models for calculating bandgaps in armchair GNRs 

The studied armchair GNRs with atomically well-defined widths and edge orientation are 

limited up to now [116, 121, 122]. STM study of armchair GNRs with widths ranging 

from about 3.5 ± 0.5 nm to 10.5 ± 0.5 nm revealed that these GNRs can be grouped into 

two families; one displays large gaps, which is attributed to the ribbons belonging to Na 

= 3p and Na = 3p + 1 classes; the other exhibits no detectable gap, which is attributed to 

the ribbons belonging to the Na = 3p + 2 class [106]. An example is the observation of 

about 100-meV bandgap in a Na = 5 armchair GNR (the length of the studied GNR is 

about 5 nm), which indicates that the Na = 3p + 2 (here p = 1) armchair GNR should 

exhibit a very small bandgap [106, 121]. Another example is, with p = 5, the armchair 

GNRs with Na = 15(Na = 3p) and Na = 16(Na = 3p + 1) display energy gaps Eg = 0.556 

eV and Eg = 0.657 eV, respectively, whereas the armchair GNR with Na = 17(Na = 3p + 

2) is predicted to exhibit a much smaller gap Eg = 0.118 eV [106]. Therefore, in 

subsequent sections, focus will be on calculation of bandgaps of AGNRs for Na = 3p and 

Na = 3p + 1 classes only.  

Son et al. [108] showed that GNRs with hydrogen passivated AGNR always have 

nonzero and direct band gaps. Their LDA calculations showed that the Na-AGNRs are 

semiconductors with energy gaps which decrease as a function of increasing ribbon 
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widths (wa). The gaps as a function of ribbon width are well separated into three different 

subfamilies and the gap size hierarchy is 3p+1 > 3p >3p+2 ≠0. They derived following 

relations by modifying TB model approximation using their ab-initio calculation, 
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Where, t=2.7 and δ=0.12 

Wakabayashi et al. [109] presented simple derivations of the energy spectrum and wave 

functions for GNRs using the nearest-neighbour tight-binding model and a wave 

mechanics approach that resulted following expressions for bandgaps in AGNRs, 
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After Taylor expansion under the condition of 1/W < 1, the above expressions can be 

further simplied as, 
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Yang et al. [110] carried out a first-principles calculation using the GW approximation 

to determine the quasiparticle energy spectrum and the band gaps of the GNRs. They 

found that, because of the quasi-one-dimensional nature of a GNR, electron-electron 

interaction effects due to the enhanced screened Coulomb interaction and confinement 

geometry greatly influence the quasiparticle band gap. Compared with previous tight-

binding and density functional theory studies, their calculated quasi-particle band gaps 

showed significant self-energy corrections for AGNRs, in the range of 0.5–3.0 eV for 
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ribbons of width 2.4–0.4 nm. They derived following equation to fit the quasi-particle 

bandgaps from their GW calculation, 
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Pandya et al. [111] deduced a relation to predict band gap of GNRs. They deduced 

following relation using expression of Fermi velocity to calculate the energy band gap of 

GNRs, 
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Han et al. [112] presented electronic transport measurements of lithographically 

patterned GNR structures where the lateral confinement of charge carriers creates an 

energy gap. They measured more than two dozen GNRs of different widths and 

crystallographic orientations. They found that the energy gap depends strongly on the 

width of the channel for GNRs in the same crystallographic direction. They fitted their 

band gaps with following relation, 
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where α= 0.2 to 1.5 and w* = 16 nm.  

H. Raza et al. [113] reported electronic structure and electric-field modulation 

calculations in the width direction for armchair graphene nanoribbons AGNRs using a 

semiempirical extended Hückel theory. They found that, for each type of AGNR, band 

gaps are inversely proportional to the width with a different proportionality constant. 

Their band gap versus width w relations are given as, 
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2.5.3 Limitations of the earlier models for bandgaps of GNRs 

Although the aformentioned models and equations described the low energy properties 

of graphene very well, a careful consideration of edge effects in nanometer sized ribbons 

are required to determine their band gaps because, unlike the situation in graphene, the 

bonding characteristics between atoms change abruptly at the edges. One of the major 

limitations of each of the above equations for calculating bandgaps of AGNRs is, none 

of them predicts measured bandgaps of different AGNRs reported from various 

experiments [105-107, 115-122] with good accuracy. Some of these equations highly 

underestimates [107, 108, 111, 112] the experimental bandgaps while others 

overestimates [109, 110, 113] them significantly.  

Owing to the challenges involved in the fabrication of atomically precise GNRs, only 

very limited experimental data on atomically well-defined structures are presently 

available.  Available experimental data of bandgaps of AGNR is summarized below. 

It was noted that the GW quasiparticle band gaps calculated for isolated AGNRs [110] 

are significantly larger compared to the experimentally measured band gaps, where the 

AGNRs are supported on a Au (111) surface or on a NaCl (001) monolayer which is itself 

on top of a Au (111) surface [116, 122]. This overestimation is attributed to the lowering 

of Coulomb interaction in AGNRs by the screening from the underlying substrate [114]. 

For example, if we consider N = 7 AGNR (corresponds to a width of about 0.74 nm), a 

gap of 3.8 eV has been calculated by the GW method [110] compared to 1.5–1.6 eV 

obtained by DFT [108, 110] whereas, measured gaps are 2.3–2.8 eV [116]. Thus, 

calculated bandgaps from above equations need to be treated as estimates rather than 

accurate predictions, and those obtained by DFT calculations as a lower limit.  

Díez et al. [105] performed the synthesis of the first 5 members of 3p-AGNR family, 

namely 3- 6-, 9-, 12-, and 15-AGNRs on the same Au (111) surface and found the 

bandgaps by means of STS to be 3.23 ev, 1.69 ev, 1.35 ev, 1.13 eV and 1.04 eV, 
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respectively. A continuously decreasing band gap was observed as the GNRs structures 

get wider. 

Söde et al. [115] found Eg = 2.37 ± 0.06 eV for the 7-AGNR on Au(111) by scanning 

tunneling spectroscopy. Angle-resolved photoelectron spectroscopy and scanning 

tunneling spectroscopy data from armchair graphene nanoribbons of width N = 7 

supported on Au(111) reveal a band gap of 2.3 eV. An electronic band gap of Δ = 2.3±0.1 

eV is derived for the 7-AGNRs supported on a gold substrate [116]. 

Talirz et al. [118] estimated the (fundamental) band gap of the 9-AGNRs while adsorbed 

on Au(111). They combined the quasiparticle corrections computed for the freestanding 

9-AGNR at the G0W0 level with a classical image charge (IC) model that takes both the 

adsorption distance of 9-AGNRs on Au(111) and their intrinsic polarizability into 

account. This method yields ΔGW + ΔIC = 2.1 eV − 1.0 eV = 1.1 eV, in acceptable 

agreement with the experimental value of 1.4 eV considering the approximations 

involved, (one-shot GW with plasmon pole model, classical image charge model for the 

substrate). 

Deniz et al. [119] revealed the electronic structure of substrate supported AGNRs by 

Scanning Tunneling Spectroscopy and found bandgaps of 2.7 eV, 1.5 eV, 0.2 eV, 0.9 eV, 

0.7 eV of 7-, 9--,14-,18- and 21-AGNRs, respectively. 

Yamaguchi et al. [120] made the first demonstration of the synthesis of GNRs having a 

bandgap smaller than 1 eV in a controlled manner. They revealed that the 17-AGNRs 

have a bandgap of 0.19 eV on Au(111), which is consistent with a theoretically obtained 

bandgap of 0.63 eV for a freestanding 17-AGNR.  For 13-AGNRs on Au (111), the 

energy gap is estimated to be ΔSTS = 1.34 ± 0.03 eV from the energy difference between 

those peaks. This energy gap is also consistent with the previous one (1.4 ± 0.1 eV). With 

the GW calculations, the quasiparticle gap is predicted to be ΔGW= 2.25 eV for a 

freestanding 13-AGNR, and the renormalized gap of the 13-AGNR supported by the 

Au(111) substrate is corrected as ΔGW′ = 1.29 eV using the advanced image-charge 

model. The corrected theoretical gap shows good agreement with their experimental 

findings. 
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Chen et al. [122] conducted STS to find the band gap for 13-AGNRs featuring atomically 

smooth hydrogen-terminated armchair edges and 13 carbon dimer lines across their 

width. STS reveals the An average band gap for 13-AGNRs on Au(111) of 1.4 ± 0.1 eV. 

Narrower 7-AGNRs, by comparison, have an energy gap of Δ ≈ 2.6 eV using similar 

measurement criteria. 

All experimental bandgap values of different AGNRs, as reported above, are different 

from the predicted or calculated bandgap values from various theoretical models and 

corresponding equations. 

2.5.4 Improved models 

Kharche et al. [114] developed an integrated first-principles approach to calculate the 

quasiparticle energies of GNRs weakly interacting with the underlying substrate. In their 

approach, the energy levels of the substrate-supported GNRs are determined by 

correcting the GW quasiparticle energies of isolated GNRs with the energy shifts arising 

from screening of quasiparticle excitations by the substrate. The energy shifts were 

determined using an image-charge model. 

Ruffieux et al. [116] showed that, when the AGNR is absorbed on a metal surface, its 

bandgap is reduced as an effect of the substrate polarization, which they estimated by 

including image charge (IC) corrections on top of GW calculations for the isolated GNR. 

Earlier, it was shown by state-of-the-art many-body perturbation theory (GW) 

calculations [110] that electron electron (e-e) interactions play a dominant role in GNRs 

due to their quasi-1D nature and the weak screening. These effects give rise to an energy 

gap as large as 3.7 eV for the isolated 7 AGNR, significantly larger than the one predicted 

by single particle (e.g., tight binding or DFT) approaches [108, 110]. GW correction 

brings the LDA gap of the isolated AGNR from 1.6 to 3.7±0.1 eV. The IC correction that 

mimics the presence of the metallic substrate reduces the energy gap by 1.0 to 1.4 eV. 

Overall, this results in an energy band gap of 2.3 to 2.7 eV for the 7-AGNR on Au(111), 

which is in very good agreement with the experimental value of 2.3 ± 0.1 eV.  

Linden et al. [117] derived band gap Eg =2.8±0.4 and Eg=1.6±0.4, respectively, for 

straight 7-AGNRs and 13-AGNRs. Quasiparticle corrections in the GW approximation 

[110] increase the gap energy significantly to 3.8 eV for 7-AGNR and 2.3 eV for 13-
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AGNRs. A subsequent consideration of the electron-hole interaction by solving the 

Bethe-Salpeter equation leads further to excitonic states with binding energies of 1.8 eV 

with respect to the lowest unoccupied molecular orbital, thus reducing the optical gap 

considerably [117]. 

From the above review of earlier models for bandgaps of GNRs, it is clear that existing 

models have limitations in estimating experimentally measured bandgaps of GNRs. 

Proposed improvement by image charge (IC) corrections on top of GW calculations gives 

reliable prediction but it is computationally intensive and challenging to converge 

numerically. Therefore, a simple and empirical relation would be useful for estimating 

the bandgaps of AGNRs with high accuracy. 

2.6 Utility of Knowing Optical Transitions in SWCNTs and Bandgaps in GNRs 

2.6.1 Characterizing SWCNTs and DWCNTs from higher optical transitions 

Characterizing SWCNTs requires accurate information about their optical transitions and 

in many cases there is no option for characterizing SWCNTs except by using their higher 

transitions [123-143]. For example, Rayleigh spectra over a photon energy range 1.2–2.7 

eV is sensitive to the 2nd transition of metallic tubes and 3rd and 4th transitions of 

semiconducting tubes. For small diameter nanotubes, the 1st metallic transition may be 

observed, while the E55 transition may appear below 2.7 eV for semiconducting SWCNTs 

with d > 2.5 nm.  

Semiconducting and metallic SWCNTs and DWCNTs have been characterized using 

their higher optical transitions E22(M), E33(S), E44(S) and E55(S). Fig. 2.15 (a) to (e) 

presents the experimentally measured Rayleigh and Raman spectra of some single wall 

and double wall CNTs [132, 133, 137]. They assigned the observed emission peaks to 

higher transitions of possible CNTs.  
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(a)                                                                            (b) 

    

                           (c)                                          (d)                                         (e) 

 

Fig 2.15: Rayleigh and Raman spectra of (a) an armchair M-SWNT assigned to (19,19) 

or (20,20) (b) a near zigzag semiconducting SWNT assigned to (20,3) or (21,1) [132]. 

Rayleigh spectra of (c) a single undoped nanotube assigned to (26,0) or (25,2) [133] (d) 

(7,6)@(16,6) DWCNT and (e) (10, 6)@(14, 13) DWCNT [137]. 

2.6.2 Describing emission spectra of CNT based LEDs 

Information on optical transitions help describing experimental reports on emission 

spectra measured from SWCNT based LEDs. Wang et al. [144] carried out 

electroluminescence (EL) measurements on a two-terminal carbon nanotube (CNT) 

based light-emitting diode (LED), composed of a semiconducting SWCNT which is 

asymmetrically contacted on the one terminal by Sc and on the other terminal by Pd (Fig. 

2.16). Earlier studies have shown that Sc can make a perfect Ohmic contact with the  
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(a)                                                                               (b) 

   

Figure 2.16: Structure and characteristics of a CNT light-emitting diode. (a) Schematic 

diagram illustrating the structure of an asymmetrically contacted CNT device. (b) EL 

spectrum of the diode when operated at large forward bias [144]. 

conduction band of the CNT while Pd makes perfect Ohmic contact with the valence 

band of the CNT. Thus it was a contact doped p–n junction, and the current-voltage (I-V) 

characteristic measured from the device behaved as a diode. At large forward bias, with 

the Sc contact being grounded, the injected electrons and holes recombine radiatively in 

the SWCNT channel yielding a narrowly peaked emission peak. They determined the 

diameter of the CNT to be 1.14 nm and observed EL spectrum with clear emission peak 

at 0.925 eV which was identified as that resulting from the excitonic state of a (12, 4) 

SWCNT.  

Mueller et al. [145] used well-characterized CVD growth method that delivers spatially 

separated single-walled carbon nanotubes and observed a single, semiconducting single-

walled carbon nanotube, as confirmed independently by AFM, electrical transport, and 

electroluminescence measurements. From electroluminescence measurements of their p-

n diode in the ambipolar regime, they obtained the maximum of the spectral intensity 

distribution at E11 ~ 0.635 eV. They also presented the results obtained from the same 

device with different SWCNT where the dominant emission was found to be 0.755 eV. 

From resonance Raman spectroscopy and atomic force microscopy (AFM), the nanotube 

diameter was determined to be 1.41 nm and 1.24 nm, respectively in devices with two 

different SWCNTs (Fig. 2.17).  
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                     (a)                                           (b)                                      (c) 

   

Figure 2.17: Device structure and electronic characteristics. (a) Schematic of the 

carbon nanotube LED. (b) Electroluminescence spectrum of a nanotube diode at the 

device. (c) Comparison between electroluminescence spectra at two different gate 

biases (normalized) for the same device with different SWCNT [145]. 

Yu et al. [146] reported the fabrication and performance characteristics of light-emitting 

devices that use serpentine CNTs, having multiple parallel CNT channels of identical 

chirality, grown directly on quartz (Fig. 2.18). This represents the ideal structure for 

scaling up the power of the CNT LEDs, which are free of the usual negative effects that 

are due to the complicated interactions between CNTs of different diameters and  

                               (a)                                                                       (b) 

                          

Figure 2.18: Structure and operation principle of CNT LED arrays. (a) SEM image 

showing serpentine-CNT-based diode arrays on quartz. (b) EL spectrum obtained from 

the CNT-diode-array device. This spectrum can be fitted by using two Gaussian 

functions (red lines) that peak at 0.85 and 0.94 eV. The lower peak corresponds to E11 

of the SWCNT [146]. 

chiralities. The semiconducting CNTs were asymmetrically contacted by Sc and Pd 

contacts that acts effectively as a p–n junction with high carrier-injection efficiency and 

low operating voltage. Two emission peaks were identified from their CNT-based LED 
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where the lower energy emission peak was at 0.85 eV. From atomic force microscopy 

(AFM), the diameter of the nanotube was estimated to be 1.1 ± 0.2 nm. The emission 

peak was identified as the E11 excitonic transition of the CNT. 

Pfeiffer et al. [147] measured the electroluminescence and photoluminescence of (9, 7)-

semi-conducting carbon nanotube devices (Fig. 2.19) and demonstrate that the 

electroluminescence wavelength is determined by the nanotube’s chiral index (n, m). The 

(n,m)-nanotube devices have been prepared by low-frequency dielectrophoresis from 

single-chirality nanotube dispersions. They have studied in detail the 

electroluminescence signal from the devices and assigned the 825 nm peaks to the 

excitonic E22 K-point interband transition by comparison of the electroluminescence 

spectra with corresponding photoluminescence excitation maps. 

                                 (a)                                                                          (b) 

     

Figure 2.19: (a) Schematic cross section of the (9,7)-nanotube device. (b) Evolution of 

the electroluminescence spectra with driving power of (9,7)-CNT device [147] 

Vijayaraghavan et al. [148] adopted a combination of single chirality nanotube 

suspensions made by chirality-selective polymer wrapping with ultra-large scale directed 

assembly by dielectrophoresis as the route to fabricating high-density arrays of 

individual, single chirality nanotube devices (Fig. 2.20). From Raman and 

photoluminescence (PL) spectroscopy, the single chirality assembly was confirmed. The  
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Figure 2.20: Photoluminescence spectra from 10 adjacent devices on a (9,7) SWCNT 

array, for 800 nm excitation wavelength. Each shows emission at 1345 nm, indicating 

the presence of a (9, 7) SWCNT [148]. 

Raman spectra was obtained on adjacent devices on an array deposited from the (9,7) 

suspension. The characteristic bright-exciton (BE) PL emission of a (9,7) nanotube, at 

1345 nm was seen which corresponds to E11. Their devices showed similar characteristics 

in PL, Raman, and VC-SEM, as expected for single-chirality devices.  

                                               (a)                                                (b) 

 

Figure 2.21:  (a) Absorption and photoluminescence (PL) spectra of the (6,5) SWCNTs 

used as emitter material. The inset shows the molecular structure of a (6,5) SWCNT. (b) 

Schematic illustration for the OLED stack used by Graf et al. [134]. 
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Graf et al. [134] demonstrated the first near-infrared (nIR) organic LED based on single-

walled carbon nanotubes as the emitter (Fig. 2.21). They used (6,5) SWCNTs synthesized 

and purified by selective polymer-wrapping. A bare film of the purified material shows 

the characteristic absorption and photoluminescence (PL) spectrum of (6,5) SWCNTs 

with an emission peak at 1010 nm (corresponds to 1.228 eV),  associated with excitonic 

emission from (6,5) SWCNTs. By using a multilayer stacked architecture with matching 

charge blocking and charge-transport layers, narrow-band electroluminescence at 

wavelengths between 1000 and 1200 nm was achieved by them, with spectral features 

characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs. 

Tayo et al. [107] reported GNR heterojunction of 7-AGNR and 11-AGNR, having 

individual bandgap of 1.54 eV and 0.16 eV, respectively. They showed that, by increasing 

the length of the 11-AGNR, band gap of the 7-11 GNR heterojunction can be tuned 

continuously between the band gap of the 7-AGNR (1.54 eV) and the band gap of the 11-

AGNR (0.16 eV).  

2.6.3 Selecting appropriate SWCNTs in CNT based LEDs for visible and NIR 

spectrum 

a) SWCNTs for emitting light in visible spectrum 

Retina of human eye consists of various nerve cells that can sense the change of light- its 

intensity, saturation, and most importantly—color. There are mainly two kinds of 

optically sensitive cells in retina- Rod cells and Cone cells. While rod cells work at dim 

light and show colorless contrast images at low-light environment, the cone cells respond 

at brighter light, and can differentiate among colors. There are three types of cone cells- 

one is most active at RED region of visible wavelength, another at GREEN region, and 

the third one at BLUE region.  

A monochromatic light (or combination of monochromatic lights, that is a polychromatic 

or ordinary light) excites only these three kinds of cone cells, regardless of wavelength 

combination of light, Hence, combination of three, and only three wavelengths of light 

can give ordinary humans exact perception of color of any wavelength of light (Fig. 2.22). 
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                   Figure 2.22: Human spectral sensitivity to color [55]. 

Different SWCNTs exhibit different optical transitions based on their chirality. For 

visible light emission from a SWCNT based LED, a number of SWCNTs and AGNRs 

can be identified using the information of their optical transition energies, specially the 

first optical transitions.  

b) SWCNTs and AGNRs for emitting light in CIR (Color Infrared) spectrum 

According to USDA Forest Service (2008), CIR imagery is a form of “multispectral data 

that includes part of the visible light spectrum as well as the near infrared….” And “…is 

especially useful for vegetation mapping.” 

CIR image is a false color photograph (digital or film) that shows the reflected 

electromagnetic waves from an object accordingly, 

 Near Infrared (NIR), which is invisible to the human eye, as red 

 Green light as blue 

 Red light as green 

Although CIR photography was originally developed for the U.S. military in WWII to 

detect enemy camouflaged tanks, it is now used by government agencies (county, state, 

and federal) as well as the private sector and academia in numerous applications, such 

as the following, 
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 Crop and timber inventory and analysis in order to estimate yields  

 Damage assessment to prioritize recovery efforts as after a forest fire or to verify 

insurance claims as after a hail storm on a field  

 Impervious surface mapping in order to estimate stormwater run-off 

The reasons for utilizing the tool of CIR imagery in addition to (or instead of) color 

imagery is, CIR imagery has better penetration through atmospheric haze than normal 

color imagery, because the shorter, easily scattered wavelengths (i.e. blue and violet) 

are filtered out CIR’s ability to detect how an object responds to Near infrared (NIR) 

light (i.e. absorbs, transmits, or reflects) can reveal such land cover conditions, which 

are undetectable on color imagery, as, 

 Stressed vegetation 

 Moist areas in fields 

 Plant identification (e.g. differentiate between hardwoods and conifers) 

CIR uses reflected solar radiation in the 500 to 900 nm range, which encompasses 

portions of the following electromagnetic spectrum sections (Fig. 2.23), 

 

 

 

Figure 2.23: Color Infrared (CIR) Spectrum [55] 
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Visible light- The electromagnetic spectrum section from 0.4 to 0.7 µm (400 to 700 nm), 

which the human eye can detect as the colors from violet through red. CIR filters out blue 

wavelengths for a crisper image. 

 

Near Infrared (NIR)- The electromagnetic spectrum section that extends beyond red 

from 0.7 to 1.0 µm (700 to 1000 nm), which the human eye cannot detect. CIR filters out 

the longer wavelength range of NIR from 0.9 to 1.0 µm (900 to 1000 nm) due to the 

decrease in atmospheric transmission or conversely the increase in absorption in this 

wavelength range. 

The frequency equivalent of the wavelength range for CIR, which extends from 500 to 

900 nm, would be 6.0 x 108 to 3.3 x 108 MHz. For emission in CIR spectrum using 

SWCNTs and AGNRs, appropriate SWCNTs and AGNRs can be identified using the 

information regarding their optical transitions.  
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CHAPTER 3 

EMPIRICAL MODELING OF  

OPTICAL TRANSITIONS IN SWCNTS 

 

In this chapter, a set of empirical relations between optical transitions and chirality of 

SWCNTs is devised which can predict parallel polarized optical transitions of any 

SWCNTs with high accuracy. Such relations between optical transitions and chirality (n, 

m) and consequent set of empirical equations can be an effective solution for estimating 

any optical transition energy of any SWCNTs, where required. 

3.1 Empirical Modeling of Different Optical Transitions in SWCNTs 

3.1.1 Semiconducting SWCNTs 

As mentioned earlier, A SWCNT (n, m) is semiconducting if mod (n-m, 3) = 1 or 2. This 

gives rise to two types of semiconducting SWCNTs, mod 1 type and mod 2 type. For 

developing proposed empirical model, focus will be on first seven optical transitions of 

semiconducting SWCNTs because so far experimental data are available only for these 

transitions. Also, studying these transitions are enough for almost all theoretical and 

practical purposes.  

A large number of SWCNTs having chiral indices from (4, 2) to (35, 34) are considered. 

Corresponding diameter starts from 0.42 nm and extends up to 4.75 nm. There are total 

654 SWCNTs in between these two chiral indices or diameter range where 426 are 

semiconducting tubes and 228 are metallic tubes. Out of 426 semiconducting SWCNTs, 

218 tubes were found to be mod 1 type and 208 were mod 2 type based on (n-m, 3) = 1 

or 2. Values of first seven optical transitions energies of these semiconducting SWCNTs 

were recorded from multiple reports of relevant optical spectroscopic experiments 

[39,44,45,47,53, 123-127].  

After examining measured optical transitions, it was observed that, for odd transitions 

(E11
S, E33

S, …..), mod 1 type semiconducting SWCNTs have smaller transition energies 

than that of mod 2 type whereas, for even transitions (E22
S, E44

S, …..), mod 1 type 



54 
 
 

 

semiconducting SWCNTs have larger transition energies than that of mod 2 type with 

comparable diameters. This is expected as discussed earlier [44]. This observation 

suggests that it will be convenient to study optical transition energies of mod 1 type and 

mod 2 type semiconducting SWCNTs separately so as to address their individual trend 

more precisely. For the same reason, it will be more effective to devise separate empirical 

relation for optical transitions of mod 1 and mod 2 types with their chiral indices. 

First seven optical transitions of semiconducting SWCNTs were plotted against their 

diameters (d) which results an experimental ‘Kataura plot’, as shown in Fig. 3.1 (a) and 

(b), with upper and lower family branches for each transition. It was observed from the 

‘Kataura plot’ that there is a basic symmetry in the nature of variation of each optical 

transition energy. Due to this observed symmetry, it is possible to express lower branches 

of all curves (representing mod 1 type for odd transitions and mod 2 type for even 

transitions) through a general empirical formula. Similarly, it is possible to express upper 

branches of all curves (representing mod 2 type for odd transitions and mod 1 type for 

even transitions) through another general empirical formula.  

In order to discover the form of this general empirical formula, first seven optical 

transitions of semiconducting SWCNTs were again plotted against their diameters (d) 

but, now separately for both mod 1 and mod 2 types of each transition. All those plots 

were closely studied followed by some important findings. It was observed that, optical 

transitions decrease in general with increasing diameter (d) for each mod type but, this 

decreasing way follows abrupt ups and downs for each tube. This abrupt decreasing trend 

cannot be reflected just by a simple inverse relation of optical transition with diameter 

and need to incorporate other parameters. It is logical to assume that this abrupt trend is 

linked with unique chiral index of each tube. So, representation of this abrupt trend 

requires inclusion of suitable combination of chiral indices (n, m) in empirical relation. We 

found that all optical transitions maintain specific variation pattern with respect to two 

specific chiral indices combinations (n+2m) and (2n-m) for lower and upper branches in 

Kataura plot, respectively. These suggests family behavior of SWCNTs for (n+2m) and 

(2n-m) families in addition to previously reported (2n+m) and (n-m) families and 

incorporating these terms can precisely reflect the variation pattern for all optical transitions 

through an exponential relation. Thus, a 1/d term to represent the basic inverse relation of  
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Figure 3.1. First seven optical transition energies of semiconducting SWCNTs, plotted 

against their diameters (Experimental ‘Kataura plot’) separately in (a) for odd 

transitions and in (b) for even transitions. Mod 1 type transitions (blue) form lower 

branches in odd transitions and upper branches in even transitions. Mod 2 type 

transitions (green) form lower branches in even transitions and upper branches in odd 

transitions. 

optical transitions with diameter and an exponential term including these two specific 

chiral indices combinations (n+2m) and (2n-m) can give the complete form of proposed 

proposed empirical relation for lower and upper branches, respectively along with some 



56 
 
 

 

numerical fitting parameters. An additional d term is included in the exponential term to 

incorporate curvature effect. If properly designed with other necessary numerical fitting 

parameters, it can faithfully reproduce all experimental Kataura plots of Fig. 3.1. 

Following are the two resultant general empirical relation of first seven optical transitions 

with diameter and chiral indices of any semiconducting SWCNTs. For mod 1 type odd 

transitions (E11
S, E33

S, E55
S, E77

S) and mod 2 type even transitions (E22
S, E44

S, E66
S) [lower 

branches of semiconducting curves in Kataura plot, 





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2
exp                                                    (3.1) 

For mod 2 type odd transitions (E11
S, E33

S, E55
S, E77

S) and mod 1 type even transitions (E22
S, 

E44
S, E66

S) [upper branches of semiconducting curves in Kataura plot], 
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Here, only the values of A and B are different for different transition energies and mod 

types as given in Table 3.1.  
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Table 3.1 Parameters A and B for different optical transitions of semiconducting 

SWCNTs 

Optical 

Transitions 

No.  of 

SWCNT 

Samples 

MOD 

Type 

A B % Mean 

Percentage 

Error 

1st transition 

(E11
S) 

208 1 1.11 3.5 0.84 % 

2 1.094 1.9 0.92 % 

2nd transition 

(E22
S) 

212 1 1.94 2 1.42 % 

2 1.96 4 2.27 % 

3rd transition 

(E33
S) 

187 1 4.12 6.8 1.06 % 

2 4.14 4.3 0.80 % 

4th transition 

(E44
S) 

256 1 4.98 3.6 0.84 % 

2 5.1 7.9 0.98 % 

5th transition 

(E55
S) 

246 1 7.2 10.5 1.07 % 

2 7.0 5.1 0.45 % 

6th transition 

(E66
S) 

159 1 8.06 5.9 0.51 % 

2 8.27 12.3 0.91 % 

7th transition 

(E77
S) 

 

70 1 10.75 18 0.47 % 

2 9.79 5.9 0.23 % 

  

Using the above two general format of Eqn (3.1) and (3.2) and with the help of Table 3.1, 

a set of empirical formula will appear to predict the first seven optical transition energies 

of any semiconducting SWCNTs with high accuracy.  

Experimental and empirical values of first seven optical transitions of semiconducting 

SWCNTs are plotted in Fig. 3.2 (a) and (b) for odd and even transitions, respectively, 

against their diameters. It can be easily noticed from these plots that empirical estimations 

matches very closely with experimental data over the full diameter range for all 

transitions both for mod 1 and mod 2 types. Accuracy is much high at higher diameters. 

Slight deviation is observed in some lower diameter tubes only but, they are within the  
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Figure 3.2:  Experimental (black dot) and empirical (green circle) values of first seven 

optical transitions, plotted against diameters of semiconducting SWCNTs in (a) for four 

odd transitions and in (b) for three even transitions. 

tolerance margin. For seven transitions with each mod type, there are total 14 cases listed 

in Table 3.1. For 10 of these cases, the average absolute error over the full diameter range 

is below 1%, for another 2 cases it goes slightly over 1% and only for one case it exceeds 
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2%. Thus, the proposed empirical relation can predict first seven optical transitions for 

both mod types with very high accuracy. 

3.1.2 Metallic SWCNTs 

A SWCNT (n, m) will be metallic if its n-m = 3k (k is integer). This relation indicates that 

theoretically two third of the total SWCNTs are semiconducting and one third are 

metallic. Metallic nanotubes are a potential choice for nano-scale electrodes and 1-D 

quantum wires [128], transparent conductors and semi-transparent conductive coating 

[129, 130] and many similar nano-device applications. 

Theoretical model derived from electronic band theory fails quantitatively to predict 

experimentally observed values of optical transitions for both semiconducting and 

metallic SWCNTs. Nanotube’s ‘curvature effect’ [8, 9, 40, 49] and ‘trigonal warping 

effect’ [42] cause deviations in the electronic properties of nanotubes derived from the 

simple π-orbital graphene picture. Curvature causes π and σ states of nanotube’s chemical 

bond to mix. This leads to increased hybridization between σ and π orbitals as the 

diameter of a SWCNT gets smaller [8, 9]. The σ–π hybridization effect has been 

considered and calculated in the literature [8, 9, 49]. The main result is that nanotubes 

satisfying |n−m| = 3k (k=0, 1, 2….) develop a small curvature-induced bandgap, and 

hence become quasi-metallic or small gap semiconductor [62]. Armchair nanotubes (n, 

n) are an exception because of their special symmetry, and only they remain truly metallic 

for all diameters [62]. Saito et al. [42] investigated the ‘trigonal warping effect’ 

analytically and derived expressions to estimate the corresponding deviation in optical 

transitions of metallic and semiconducting SWCNTs. They showed that trigonal warping 

causes splitting of the DOS peaks of metallic SWCNTs except for armchair tubes. Thus 

only armchair SWCNTs are unaffected due to curvature and trigonal warping and remain 

truly metallic. 

As armchair nanotubes are the most pure kind of metallic SWCNTs, focus will be on 

armchair tubes. In many applications, researchers need to find or measure the optical 

transitions in metallic nanotubes. Authors [16, 39, 53, 127, 131-133] studied the 

properties of metallic SWCNTs and discussed the first, second and third optical transition 

energies of metallic SWCNTs. However, there is no easy way to calculate or predict those 
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transitions and one has to rely solely on experimental reports which are limited in number. 

Some empirical relations have been proposed [53, 127, 131-133] earlier but they are 

involve too many parameters.  Here, in this work, a concise empirical relation is devised 

to predict the second and third optical transitions in armchair metallic nanotubes which 

directly relates the optical transition value with any of the chiral index of armchair tubes. 

The proposed relation can give a quick as well as highly accurate prediction of the second 

and third optical transitions in armchair metallic SWCNTs. 

Optical transition energies for metallic armchair (n, n) SWCNTs with chiral index 

(15,15) to (35,35) are closely studied here. There are total 21 armchair SWCNTs within 

these two chiral index range having diameter from 2 nm to 4.8 nm. The main reason for 

using this chiral indices range is experimental data of the second and third optical 

transition energies is available only for these diameter range till now. Values of optical 

transition energies of these tubes are taken from various experimental reports [39, 53,  

127, 131-133] which gives the second optical transition energy of 16 armchair tubes 

ranging from chiral index (15,15) to (30,30) and the third optical transition energy of 13 

armchair tubes ranging from chiral index (23,23) to (35,35).  

The objective here is to devise a simple empirical relation between the chirality and 

optical transition of armchair metallic tubes so that the value of the second or third optical 

transition of these tubes can be predicted directly from its chiral index (n, n). 

From Kataura plot of metallic transitions, it was noticed that armchair tubes lie at the 

center of each (2n+m) family branch. This observation regarding position of armchair 

SWCNTs in Kataura plot is important for next steps. After a careful study of the 

symmetry in the structure of armchair tubes, their optical transitions and their relation 

with corresponding chiral index, it was observed that an exponential empirical relation 

that we already discovered for semiconducting tubes can also be used here after necessary 

modifications and symmetry considerations for armchair SWCNTs. Accordingly, the 

following empirical formula was devised to predict the optical transitions from 

corresponding chiral index n of any armchair nanotube (n, n). 
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For the second optical transition energy (E66) of armchair SWCNTs, 
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The empirical values of the second and third optical transition energies of these 

armchair SWCNTs with chiral index (15,15) to (35,35) have been calculated using the 

empirical Eqn. (3.3) and (3.4). The results agree well with experimental values of the 

second and third optical transitions of corresponding metallic armchair SWCNTs.  

Eqn. (3.3) and (3.4) can be further analyzed in following way, 

The diameter of a SWCNT (n, m) is expressed by,   /3 22

ccamnmnd  , where, acc 

=carbon-carbon bond length= 0.142 nm. For armchair SWCNTs, n=m, which gives, d = 

0.1356 n nm or, n = 7.375 d nm. If the exponential term of Eqn. (3.3) and (3.4)are 

expanded using this trivial relation between n and d, the expressions for the second and 

third optical transitions become, 

)5.3(.....
224.015.195.378.6

43266 
dddd

E
 

)6.3(.....
91.036.327.817.10
43299 

dddd
E  

For higher diameter tubes, only the first and second term of each equation is significant 

and subsequent terms can be ignored. This gives a second order relation for armchair 

tubes. 

Experimental [39] and the empirical values of optical transition energies along with chiral 

index (n, n) and diameter of these armchair tubes are shown in Table 3.2 and 3.3 and 

plotted in Fig. 3.3 (a) and (b).  
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Table 3.2 Experimental [39] and the empirical values of the second optical transition 

energy (Eqn. 3.3) of 16 armchair SWCNTs 

n m Diameter 

(nm) 

Exp 

E66 

(eV) 

Emp 

E66 

(eV) 

15 15 2.063 2.52 2.503 

16 16 2.200 2.38 2.389 

17 17 2.338 2.30 2.284 

18 18 2.475 2.19 2.188 

19 19 2.613 2.11 2.099 

20 20 2.750 2.02 2.016 

21 21 2.888 1.94 1.940 

22 22 3.026 1.87 1.869 

23 23 3.163 1.80 1.803 

24 24 3.301 1.74 1.742 

25 25 3.438 1.68 1.684 

26 26 3.576 1.62 1.630 

27 27 3.713 1.57 1.579 

28 28 3.851 1.49 1.531 

29 29 3.988 1.48 1.487 

30 30 4.126 1.43 1.444 
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Table 3.3 Experimental [39] and the empirical values of the third optical transition 

energy (Eqn. 3.4) of 13 armchair SWCNTs 

n m Diameter 

(nm) 

Exp 

E99 

(eV) 

Emp 

E99 

(eV) 

23 23 3.163 2.52 2.512 

24 24 3.301 2.44  2.434 

25 25 3.438 2.36  2.360 

26 26 3.576 2.29  2.290 

27 27 3.713 2.23 2.224 

28 28 3.851 2.14 2.162 

29 29 3.988 2.10 2.103 

30 30 4.126 2.05 2.047 

31 31 4.263 1.99 1.994 

32 32 4.401 1.94 1.943 

33 33 4.538 1.89 1.895 

34 34 4.676 1.84 1.849 

35 35 4.813 1.80 1.805 

In Table 3.2 and 3.3, the empirical result for the second and third optical transition (E66) 

from this work using Eqn. (3.3) and Eqn. (3.4), respectively, and the experimentally 

measured values, both are provided so as to compare them. From these two Tables it can 

be observed clearly that the predicted values from Eqn. (3.3) and (3.4) are very close to 

the experimental values. For the second optical transition (E66) the average absolute error  
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(a) 

 

(b) 

Figure 3.3: Experimental value(black), the empirical value from this work(red) and the 

empirical value from earlier work (blue) of optical transition vs diameter of armchair 

SWCNTs,  (a) the second optical transition,  (b) the third optical transition. 

in prediction using Eqn. (3.3) was found to be only 0.009 ev and corresponding percent 

average absolute error is only 0.53%.  Similarly, for the third optical transition (E99) the 

average absolute error in prediction using Eqn. (3.4) was found to be only 0.006 ev and 
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corresponding percent average absolute error is only 0.27%. Thus, the empirical model 

proposed here can predict the value of optical transition energies of armchair tubes with 

higher accuracy. 

Figure 3.3 (a) and (b) shows the plot of experimental and the empirical values of the 

second and third optical transition energies, respectively, of metallic armchair SWCNTs 

with respect to their diameters. Again it can be observed from these two plots that, for 

both optical transitions, the empirical values estimated by Eqn. (3.3) and (3.4) closely 

follow the experimental values over the full diameter range under consideration. This 

curve can be extrapolated using the two empirical relations from above to predict other 

armchair tubes beyond this diameter range. 

One interesting observation from the second and third optical transition energies of 

armchair SWCNTs is, the ratio of the third transition to the second transition of same 

armchair tubes are equal to a constant whose value around 1.4. This observation further 

facilitate the calculation of higher optical transitions in metallic armchair tubes as one 

can know the third transition energy value of a tube by knowing the value of the second 

transition multiplied by that constant. This relation also indicates the built in high 

symmetry in armchair SWCNTs which causes their higher optical transition energy 

values to grow in a systematic order. This relation may also help to study the behaviour 

of metallic armchair tubes in a more systematic manner. 

3.1.3 Zigzag SWCNTs 

As mentioned earlier, based on the direction of wrapping vector Ch = na1 + ma2, 

SWCNTs are divided into three categories; armchair (n, n), zigzag (n, 0), and chiral (n, 

m) with n > m > 0. When the wrapping vector Ch lies purely along one of the two basis 

vectors, m=0, C-C bonds become parallel to the tube axis and the carbon nanotube is said 

to be of “zigzag” type due to zigzag-like pattern of its atoms around the tube 

circumference having mirror symmetry. For zigzag case (m=0), the expression of 

diameter reduces to, dt = , where, ao= length of graphite basis vector (lattice constant) = 

|a1| = |a2| 249.03  cca  nm with acc= C–C bond length = 0.144 nm. Also, for zigzag 

tubes, Chiral angle θ = 0o. 
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Among three categories of SWCNTs, Zigzag tubes bear special symmetry and can be 

both metallic and semiconducting depending on the value of n. Zigzag SWCNTs have 

some other special features for which they are studied extensively by the researchers. It 

has been reported that curvature effect is more dominant on zigzag (n, 0) than armchair 

tubes (n, n) [135].  Due to special symmetry in zigzag tubes, many authors [9, 61, 81, 

136] preferred this type to carry out first principle (quantum mechanical) calculations of 

SWCNT band structure [135] as same calculation require a large amount of 

computational time for chiral tubes. They reported large discrepancies between tight 

binding and first principles calculations of the band gap values of different zigzag 

nanotubes. It has been found that, while tight-binding calculations predict small diameter 

(4,0) and (5,0) zigzag nanotubes to be semiconducting with band gaps exceeding 1 eV, 

first principle calculation shows that they are metallic. Similarly, while tight binding 

calculations predict that the (6,0) zigzag nanotube is quasi metallic with a band gap of 

approximately 200 meV, first principle calculations indicate that they are truly metallic 

[62]. 

Also, due to trigonal asymmetry near the six corners of hexagonal grapheme Brillouine 

zone, difference in transition energies for mod 1 and mod 2 type semiconducting 

SWCNTs occurs which is known as ‘Trigonal warping effect’[42]. Trigonal warping 

splits DOS of metallic tubes which is highest for (3n, 0) metallic zigzag tubes, whereas 

no splitting for Semiconducting tubes [42]. Thus, Both curvature-induced gap and 

trigonal-warping splitting are maximum for (3n, 0) zigzag species. 

Sfeir et al. [44] observed that the mod 1 type zigzag or chiral semiconducting SWCNT 

have smaller transition energies than mod 2 type for odd transitions (E11
S, E33

S,….) 

whereas, mod 2 type semiconducting SWCNT have smaller transition energies than mod 

1 type for even transitions (E22
S, E44

S,….) with comparable diameters. Also, systematic 

pattern of optical transition energies is observed in Kataura plot, depending on their mod 

value. SWCNTs with same (2n+m) values form branches in Kataura plot [41]. SWCNTs 

associated with each branch are termed as member of that (2n+m) family [135].  

The main focus of this work will be semiconducting zigzag SWCNTs due to their unique 

features discussed so far. It is necessary for the scientist to know the optical transitions 

in semiconducting zigzag SWCNTs for their suitable application. Authors[9, 61, 81, 
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135,] studied the properties of semiconducting Zigzag SWCNTs but their studies are 

limited to mainly first and second optical transition energies of semiconducting 

SWCNTs. Recently Liu et al. [39] studied the matter more extensively and carried a 

series of optical experiments to measure optical transition energies of numerous 

SWCNTs. Experimental data from the work of Liu et al. [39] is the primary source of 

optical transitions of semiconducting zigzag SWCNTs used in this work which were 

cross checked with the earlier report of Weisman et al. [45] for first and second optical 

transition energies. Though it is needed to know the optical transitions in semiconducting 

zigzag nanotubes for their relevant applications but, at present no simple method exists 

to calculate their optical transitions due to failure of conventional TB model. Few 

empirical models exist only for 1st and 2nd optical transition energies, but higher optical 

transitions are also important for the optics of large diameter semiconducting SWCNTs, 

since for dt>1.3 nm, E22 is already in the infrared range.  

The nature of first five optical transitions in semiconducting SWCNTs was studied and 

then devised a concise equation that can give highly accurate estiumation of these five 

higher optical transitions i.e. 1st, 2nd, 3rd, 4th and 5th transitions of semiconducting zigzag 

SWCNTs directly from their chiral index n.  

Optical transition energies for semiconducting zigzag (n,0) and nearly zigzag (n, 1) 

SWCNTs with chiral index (7,0) to (35,0) and nearly zigzag tubes with chiral index  (6,1) 

to (35,1) were closely studied here. There are total 59 SWCNTs within these two chiral 

index range of which 29 are zigzag having diameter from 0.556 nm to 2.78 nm and 30 

are nearly zigzag having diameter from 0.521 nm to 2.82 nm. Values of optical transition 

energies of these tubes were recorded from various experimental reports [45, 39] with a 

special focus on the work of Liu et al. [39] which is relatively recent and provides wide 

range of experimental data. From these experimental reports, 1st, 2nd, 3rd, 4th, and 5th 

optical transition values were available for 26, 28, 25, 19 and 8 samples, respectively, out 

of 59 zigzag and nearly zigzag tubes.  

Now, an attempt will be made here to devise a simple empirical relation between the 

chiral index and optical transition of semiconducting zigzag SWCNTsso that the value 

of 1st to 5th optical transition of these tubes can be predicted directly from just one of their 

first chiral index n. It is noticed from Fig. 3.4 (a) that chirality changes from armchair (or  
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Figure 3.4 Experimental Kataura plot. The lines connect 2n + m families of both 

mod 1 and mod 2 type SWCNTs [71]. 

nearly armchair) to zigzag (or nearly zigzag) along same (2n+m) family lines. The lines 

connect 2n + m families. Thus, all zigzag and nearly zigzag SWCNTs lie at the tip of 

each branch. This observation regarding position of zigzag SWCNTs in Kataura plot is 

important for next steps. 

After a careful study of the symmetry in the structure of zigzag and nearly zigzag tubes 

as well as considering the placement of their optical transitions in Kataura plot, it was 

found that all zigzag and nearly zigzag tubes can be brought under a single non-linear 

curve by connecting the tip of each branch in Kataura plot either for mod 1 or for mod 2 

type semiconducting SWCNTs. Thus, an exponential empirical relation that was already 

discovered for semiconducting tubes can also be used here after necessary modifications 

and symmetry considerations for zigzag SWCNTs. Based on these observation, following 

empirical formula was devised to predict the 1st, 2nd, 3rd, 4th and 5th optical transition 

energies of Semi-conducting zigzag (n, 0) and nearly zigzag (n,1) SWCNTs (denoted by 

E11, E22, E33, E44 and E55, respectively) from corresponding chiral index n, 

)7.3(n
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Where, values of A and B from 1st to 5th transitions (both mod 1 and mod 2 type) of zigzag 

and nearly zigzag SWCNTs are given in Table 3.4 and corresponding transitions are 

plotted from Fig. 3.5 to 3.7. 

Table 3.4 Parameters A and B for different optical transitions of semiconducting zigzag 

SWCNTs 

Optical 

Transitions 

No.  of 

SWCNT 

Samples 

MOD 

Type 

A B % Mean 

Percentage 

Error 

1st transition (E11
S) 

 
26 

1 15 3.6 1.09 % 

2 14.1 1 1.95 % 

2nd transition (E22
S) 28 

1 25.5 1 2.65 % 

2 27 4.5 2.50 % 

3rd transition (E33
S) 25 

1 56.5 6.5 0.80 % 

2 54.5 2.5 0.89 % 

4th transition (E44
S) 19 

1 65.4 1.9 0.91 % 

2 69.7 7.5 0.67 % 

5th transition (E55
S) 8 

1 99 10 0.57 % 

2 91.5 3 0.86 % 
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(a) 

 

(b) 

 

Figure 3.5 Experimental value(blue dot) and empirical value from this work(red cross) for 

(a) first transition (E11) and (b) second transition (E22) energies of semiconducting zigzag 

and nearly zigzag SWCNTs. 
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(a) 

 

(b) 

 

Figure 3.6 Experimental value(blue dot) and empirical value from this work(red cross) for 

(a) third transition (E33) and (b) fourth transition (E44) energies of semiconducting zigzag 

and nearly zigzag SWCNTs. 
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Figure 3.7 Experimental value(blue dot) and empirical value from this work(red cross) for 

fifth transition (E55)  energies of semiconducting zigzag and nearly zigzag SWCNTs. 

Empirical values of 1st to 5th transitions (both mod 1 and mod 2 type) of zigzag SWCNTs 

with chiral index (7,0) to (35,0) and nearly zigzag SWCNTs with chiral index (6,1) to (35,1) 

were calculated using empirical equations (3.7). Calculated results agree well with 

experimental values of all five optical transitions of corresponding semiconducting zigzag 

and nearly zigzag SWCNTs. Thus, Eqn (3.7) gives quite simple expressions to calculate the 

value of optical transitions directly from their only chiral index n. 

Table 3.4 also shows % average absolute error between experimental [39] and empirical 

values of five optical transition energies of these zigzag tubes. The % average absolute error 

is within 2% for 1st transition, within 3% for 2nd transition and within 1% for 3rd, 4th and 5th 

transitions. Thus, the proposed empirical relation can give the value of first optical transition 

energies of semiconducting zigzag and nearly zigzag SWCNTs with good accuracy. 

Figure 3.5 to 3.7 show the plot of experimental and empirical values of 1st to 5th optical 

transition energies, respectively, of semiconducting zigzag and nearly zigzag SWCNTs with 

respect to their diameters. It can be once again observed from these plots that, for all five 
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optical transitions, empirical values predicted by Eqn. (3.7) are very close to the experimental 

values over the full diameter range under consideration. This curve can be extrapolated using 

above two empirical relations to predict other zigzag tubes beyond this diameter range. 

In general, the proposed empirical equations from Eqn (3.7) give nearly accurate prediction 

of first five optical transitions of semiconducting zigzag and nearly zigzag SWCNTs. The 

general form of the equations for all five transitions also shows how optical transitions in 

any zigzag type SWCNTs are symmetrically linked with its single chiral index n. 

The result of this work is significant because though there are good number of works on how 

to calculate or determine optical transition energies in SWCNTS, but, none of those works 

made dedicated investigation of zigzag tubes so as to discover the unique characteristics of 

optical transitions in this type of tubes as depicted in Kataura plot. Also, most of the previous 

works concentrated mainly on first and second optical transitions only whereas this work 

covered first to fifth optical transitions. Noticeable symmetry was found in the relative 

position of optical transitions of semiconducting zigzag and nearly zigzag SWCNTs in 

Kataura plot for all five transitions which made it possible for us to express them through a 

single expression of Eqn. (3.7). Thus, this work revealed that optical transitions in 

semiconducting zigzag and nearly zigzag SWCNTs have symmetrical characteristics with 

respect to their chirality and can be expressed through a general relation. 

3.2 Conclusions 

Theoretical model derived from electronic band theory failed to give accurate calculation of 

optical transitions in SWCNTs. Here, optical transitions energies in semiconducting and 

metallic SWCNTS are closely studied. New symmetrical behavior of different optical 

transitions in experimental Kataura plot is observed which is exploited here to find a 

correlation between optical transitions and chirality of individual tubes. The observations 

and findings are coined with other relevant observations from earlier theoretical and 

experimental models. Based on these analysis, a set of empirical relations for calculating 

different optical transitions in semiconducting and metallic SWCNTs are developed here. 
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Metallic armchair tubes and semiconducting zigzag and nearly zigzag tubes are studied 

separately due to their unique geometric symmetry and some exceptional electronic 

behaviors which made them different from other tubes. It is noticed that, nanotubes satisfying 

|n−m| = 3k (k is an integer) develop a small curvature-induced bandgap and hence become 

quasi-metallic or small gap semiconductor except the armchair nanotubes (n, n) which 

remain truly metallic for all diameters. Similarly, curvature effect and tigonal warping effect 

on electronic bandstructure are maximum for zigzag types. Based on the position of armchair 

tubes at the center and that of zigzag tubes at the tip of each (2n+m) family branch in Kataura 

plot, a nonlinear relation is devised between their optical transitions and chiral index n.   

Using the proposed empirical models, first seven optical transitions of 426 semiconducting 

(n, m) SWCNTs, second and third optical transitions of 21 metallic armchair (n, n) SWCNTs 

and first five optical transitions of 29 zigzag (n,0) and 30 nearly zigzag (n,1) SWCNTs are 

calculated.  Estimated values were compared with available experimental data and excellent 

agreement was found with experimentally measured values for all transitions over the full 

diameter range. Thus, proposed empirical relations provide a quick method to calculate the 

optical transition energies of these SWCNTs. The empirical model proposed here is much 

simpler than earlier models and the resultant expressions from the proposed model are 

concise and compact involving only few parameters. Furthermore, the proposed empirical 

model has practical implications in developing empirical Kataura plot for determining chiral 

index (n, m) of unknown semiconducting SWCNTs and predicting the electronic behaviour 

of a particular SWCNT in CNT based diodes and FETs.  Moreover, because of the symmetry 

in Kataura plot for different transitions, the proposed empirical model can be extended 

further for higher diameters or higher transitions of semiconducting or metallic SWCNTs in 

future. Thus, the proposed empirical model provides an insight into electronic structure of 

SWCNTs as well as helps selecting appropriate SWCNTs for relevant applications. 

 

 

 



75 
 
 

 

CHAPTER-4 

POTENTIAL APPLICATIONS OF THE  

PROPOSED EMPIRICAL MODELS FOR SWCNTS 

  

4.1 Potential Applications of the Proposed Model 

The proposed empirical models for optical transitions in semiconducting and metallic 

SWCNTs, as presented in the last chapter, and corresponding empirical relations for 

estimating different optical transition energies in SWCNTs can be used for a number of 

purposes. Few potential applications are, 

 After the synthesis of SWCNTs, assignment of proper chirality to each produced sample 

is always a necessity for their sorting and precise applications. So far no single method 

can be considered as fully dependable to determine the chirality of unknown samples of 

SWCNTs. Proposed empirical relations of this work can help in determining chiral index 

(n, m) of unknown SWCNT through back calculation if its diameter and one of the optical 

transitions is known.  

 Using prior information of first optical transitions in semiconducting SWCNTs, the 

emission spectrum of a chirality specified SWCNT based LED can be predicted.  

 Suitable combination of SWCNTS can be identified for emitting different colors of light 

in the visible and NIR spectrum from SWCNT based LEDs.  

 The proposed empirical relation can also provide the insight to find internal symmetry 

between different optical transitions of semiconducting and metallic SWCNTs and how 

they are precisely linked with nanotube chirality.  

Subsequent sections will demonstrate these applications. 

4.2 Improved Technique for Chirality Assignment of SWCNTs  

Experimental determination of the chirality (n, m) of SWCNTs has been a requirement ever 

since their discovery. Identification of spectroscopic features and correlating them with 
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nanotube’s physical structure is always necessary to purify, identify, separate and sort 

nanotubes after their production [126, 136]. Knowing the chirality is also important for many 

applications of SWCNTs in device level so as to select the specific SWCNT with required 

electronic and optical properties. 

Resonant Raman Scattering (RRS) is a reliable, straight-forward and hence most widely used 

technique for nondestructive chiral index assignment [127]. RRS provides two important 

pieces of information; one of the optical transition energies (Eii) and the RBM frequency 

(ωrbm). This ωrbm then gives diameter dt as they two are inversely related through a semi-

empirical relation [138, 139]. Earlier approach was to plot all Eii versus dt (from ωrbm) to form 

an experimental Kataura plot which is mapped with an existing theoretical plot to give one-

to-one correspondence for each chirality by observing the (2n+m) family pattern [127]. 

Unfortunately, the uniqueness of this transformation may be hampered in this process by 

possible error involved in experimental Eii value or empirical calculation of dt from ωrbm. 

Moreover, pattern recognition is possible only if the Raman spectrum shows a set of different 

RBMs. This is only the case for samples containing different kinds of nanotubes, i.e. 

produced as ensembles of nanotubes. When all observed Raman spectra show only one 

RBM, e.g. for an isolated tube or when the sample contains only one kind of chiral indices 

(n, m), there is no scope for pattern recognition. In such case, quality of the assignment fully 

depends on the chosen theoretical plot and may lead to ambiguity.  

The objective of this part is to propose an improved method for chirality assignment of 

isolated SWCNT using Raman G- mode versus diameter plot in addition to Kataura plot so 

as to determine the (2n+m) family of an unknown SWCNT more accurately and then using 

this to determine the chiral index (n,m) of unknown SWCNT by solving basic structural 

relation between diameter and chiral index (n,m) of  SWCNT without any need of existing 

pattern recognition process.  

4.2.1 Chirality assignment using the empirical model 

The one-dimensionality of the nanotubes gives rise to 1D subbands and optical transitions 

can only occur between those mirror subbands. During Resonant Raman Spectroscopy 
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(RRS) of SWCNT, one of the sub-band comes in resonance with incident laser from which 

the value of that optical transition energy can be known. Radial Breathing Mode (RBM) 

[138, 139] and G mode [140, 141] are two main features for SWCNT in Raman spectra. 

RBM corresponds to the coherent vibration of the carbon atoms in radial direction, usually 

occurs between frequency 120 and 350 cm-1 [126]. G-band comprises two main features, the 

so-called G- and G+ components, associated, respectively, with vibrations of the carbon 

atoms along the circumferential direction and along the nanotube axis and usually occur 

between frequency 1500 and 1600 cm-1 [140, 141]. Thus, three important pieces of 

information can be collected from RRS of SWCNT; one of the optical transition energies 

(Eii), the RBM frequency (ωrbm) and G (G- and G+) mode frequencies.  

In the proposed new technique, two main tools are needed; an experimental or empirical G- 

frequency vs dt plot and experimental or empirical optical transition energies vs dt  plot, 

commonly known as Kataura plot, which is now available from the empirical model 

presented in previous chapter. Necessary data to construct these two plots can be found from 

numerous experimental reports on resonant Raman spectroscopy (RRS) of SWCNTs. Here, 

for demonstration purpose, concise version of two such plots are presented based on values 

of second optical transition energy (E22), RBM mode and G mode frequencies of 13 

SWCNTs. Experimental data of E22 and ωrbm are taken from [140] and experimental data of 

G- mode frequency shift of these SWCNTs are taken from [142, 143] who obtained the G- 

and G+ peak position from RRS experiments on a number of highly purified single chirality 

(n, m) samples. The value of dt of each SWCNT can now be calculated from ωrbm as they 

two are correlated through following semi empirical relation [139], ωrbm = A/dt + B. It is 

important to note that value of A and B varies due to different experimental environment. 

So, value of RBM mode frequency and the value of A and B must be taken from same 

experimental report for correct determination of the diameter of SWCNTs. For present 

source of RRS data of ωrbm, A=223 and B=10 [127]. Using the calculated dt, the sample 

version of G- frequency vs dt plot and E22 vs dt  plot are found, as shown in Fig. 4.1 and Fig. 

4.2, respectively. 
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Figure 4.1: Experimental G- shift [141] against calculated dt from experimental ωrbm [141] 

for 13 SWCNTs. Dot (blue) shows individual SWCNT and solid lines (black) connect 

members of same (2n+m) family. 

 

Figure 4.2: Empirical E22 from proposed model against calculated dt from experimental 

ωrbm [141] for 13 SWCNTs. Dot (red) shows individual SWCNT and solid lines (black) 

connect members of same (2n+m) family. 
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The points whose value of 2n+m is equal are belongs to the same family. It is reported both 

theoretically and experimentally [141] that both G- frequency vs dt plot and E22 vs dt plot 

shows distinguished (2n+m) family pattern. In both of these Figures, (2n+m) families are 

shown by solid lines connecting members of a particular family. It must be noted that, here 

limited number of SWCNTs were used to build these plots and hence all members of each 

(2n+m) family branch are not present in these two graphs.  

To find out the chiral index (n, m) of an unknown SWCNT, three Raman data are needed 

namely, frequency of RBM mode, frequency of G- mode and one of the optical transition 

energies (for this case, E22). All these data can be found from resonant Raman spectroscopy 

(RRS) of the unknown SWCNT. The value of G- shift against its diameter (calculated from 

its ωrbm) need to put into the G- frequency vs dt plot of Fig. 4.1 to identify the (2n+m) family 

with which the data point is closest. Within acceptable experimental error margin in 

measuring ωrbm and G- Raman shift and similar error margin in calculating dt from ωrbm due 

to different experimental environment, it is expected that the point will be near to its own 

(2n+m) family or its closest neighboring family. It can be seen from both Fig. 4.1 and Fig. 

4.2 that two neighboring (2n+m) families have difference 1 and two families with difference 

more than 1 are relatively distant. Thus, within tolerable error margin, the choice is only 

limited to two neighboring families with whom the unknown SWCNT is closest. From these 

two options the precise (2n+m) family belongs to the unknown SWCNT need to be 

confirmed. To confirm the family of unknown SWCNT, one needs to move to Fig. 4.2 and 

to put value of E22 against its diameter (calculated from its ωrbm) to identify the (2n+m) family 

in this plot with which this data point is closest now. Using the same previous argument, it 

can be said that within acceptable experimental error margin in measuring E22, the point will 

be near to its own (2n+m) family or its closest neighboring family. Now, the precise (2n+m) 

family of the unknown SWCNT is determined as the one with which it is closest in both the 

plots. 

Once the exact (2n+m) family of the unknown SWCNT is confirmed, the next job is to use 

some calculation based on structural relation between diameter and Chiral index (n, m) of 

SWCNTs so as to find the value of n and m.  
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Let the true family of unknown SWCNT is, 2n+m =k, i.e. m=k-2n, and it is known that, 

  /3 22

cct amnmnd  , where, acc = C-C bond length = 0.142 nm. So, with m=k-2n, 

it can be written as, 
222 166.16333 tdkknn   

4.2.2 Assignment of chiral index (n, m) using the proposed method 

If an specific case is taken, where experimental values are ωrbm=216.4 for which dt = 

1.080426, E22 =1.58 ev, and G- shift is 1557.4 cm-1, then, after comparing two plots in Fig. 

4.1 and Fig. 4.2, the precise family of the unknown SWCNT is found to be, k=25, then, 3n2-

75n+434.6 =0; From this equation, one gets two values of n, where, n1=15.87 and n2= 9.13, 

and corresponding, m1=-6.75 and m2= 6.75. As n and m are always positive integer, So, 

taking the nearest positive integer, the valid chirality is (9,7). Using same process, the 

chirality of 12 more SWCNTs can be found unambiguously and the result is summarized in 

Table 4.1.  

These results were compared with the results of H. Telg el al. [141] and it was found that all 

the chiral assignments are correct. This proves the strength and accuracy of proposed method. 

Thus, using this technique chiral index (n,m) of any unknown SWCNT can be found from 

Raman data. One fundamental advantages of proposed method over all previous methods is, 

this technique works well for both isolated and bundled SWCNTS whereas other techniques 

are applicable only for bundled SWCNTs using pattern regenerating from Kataura plot. 

4.2.3 Characterizing SWCNTs and DWCNTs from higher optical transitions using the 

proposed empirical model 

Section 4.2.1 and 4.2.2 demonstrated a new technique for assignment of chirality to unknown 

SWCNTs using E11 and E22 from the empirical model. The proposed empirical model can 

also estimate higher optical transitions (E33 to E77) in semiconducting and metallic SWCNTs 

and hence can be used to validate characterization of SWCNTs and DWCNTs using their 

higher transitions. In fact, in many cases there is no option for characterizing SWCNTs 

except by using their higher transitions. For example, Rayleigh spectra over a photon energy 

range 1.2–2.7 eV is sensitive to the 2nd transition of metallic tubes and 3rd and 4th transitions 
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Table 4.1 Assignment of chiral index (n, m)  

Calculated 

dt (nm) 

Predicted 

(2n+m) 

Family 

n1 n2 m1 m2 
Assigned 

(n, m) 

1.0804264 25 15.87 9.13 - 6.75 6.75 (9,7) 

1.0352832 25 14.99 10.01 - 4.98 4.98 (10,5) 

1.0136364 23 14.93 8.07 - 6.86 6.86 8,7) 

0.9612069 23 13.98 9.02 - 4.96 4.96 (9,5) 

0.9489362 22 13.94 8.06 - 5.87 5.87 (8,6) 

0.902834 22 12.99 9.00 - 3.99 3.99 (9,4) 

0.8814229 20 12.98 7.01 - 5.97 5.97 (7,6) 

0.8745098 22 12.12 9.88 - 2.23 2.23 (10,2) 

0.8259259 20 11.94 8.06 - 3.87 3.88 (8,4) 

0.8189497 19 12.03 6.97 - 5.05 5.05 (7,5) 

0.7745745 19 11.09 7.90 - 3.18 3.19 (8,3) 

0.7443258 17 10.96 6.04 - 4.91 4.91 (6,5) 

0.680916 16 9.97 6.03 - 3.93 3.94 (6,4) 

of semiconducting tubes. For small diameter nanotubes, the 1st metallic transition may be 

observed, while the E55 transition may appear below 2.7 eV for semiconducting SWCNTs 

with d > 2.5 nm. 
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Table 4.2 Reported chirality assignment of CNTs [132, 133, 137]  

and validation from proposed empirical model  

Measured          

[132, 133, 137] 

/Empirical 

E11 E22 E33 E44 Assigned 

Chiral index 

Rayleigh/ 

Raman [132] 

 1.98   (19,19) or (20,20) 

Empirical  2.1   (19,19) 

Empirical  2.02   (20,20) 

Rayleigh/ 

Raman [132] 

  2.25 2.33 (20,3) or (21,1) 

Empirical   2.25 2.34 (20,3) 

Empirical   2.275 2.28 (21,1) 

Rayleigh [133]   1.9 2.1 (26,0) or (25,2) 

Empirical   1.921 1.974 (26,0) 

Empirical   1.91 2.016 (25,2) 

PL [137] 1.128 2.21   (8,4) 

Empirical 1.12 2.1 2.14  (8,4)@(18,2) 

DWCNT 

PL [137] 0.828 1.6   (10,6) 

Empirical 0.9 1.64   (10,6) 

PL [137] 0.793 1.54   (14,1) 

Empirical 0.83 1.63 2.5  (14,1) 

Semiconducting and metallic SWCNTs and DWCNTs have been characterized using their 

higher optical transitions E22(M), E33(S), E44(S) and E55(S). Here, some of those reports [132, 
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133, 137] are used to validate the estimated higher transitions from proposed empirical 

model. Table 4.2 gives their assignment along with the estimation from the proposed 

empirical model for those CNTs. It can be noted from Table 4.2 that in all observed cases, 

proposed empirical model can faithfully made the same chirality assignment made by the 

authors from their observations. These results confirm the validity of chirality assignments 

made by the authors and at the same time validates the accuracy of the empirical model.  

4.3 Using Proposed Empirical Model for Describing Emission Spectra of CNT Based 

LEDs 

In this section, few experimental  reports on emission spectra measured from SWCNT based 

LEDs are presented and the observations are compared and explained with the help of 

proposed empirical model. 

Wang et al. [144] carried out electroluminescence (EL) measurements on a two-terminal 

carbon nanotube (CNT) based light-emitting diode (LED). They determined the diameter of 

the CNT to be 1.14 nm and observed EL spectrum with clear emission peak at 0.925 eV 

which was identified as that resulting from the excitonic state of a (12, 4) SWCNT. From 

proposed empirical equation, the estimated value of E11 for (12, 4) SWCNT with diameter 

1.14 nm is 0.92 eV which is strikingly close with the observed emission peak. Thus, the 

experimental observation by Wang et al. [144] from SWCNT based LED validates proposed 

estimation. Also, by correlating the E11 with the chiral index (12, 4), this result clearly proves 

that proposed equation can precisely identify the SWCNT used in single chirality nanotube 

device. 

Mueller et al. [145] obtained the maximum of the spectral intensity distribution at E11 ~ 0.635 

eV from electroluminescence measurements of their p-n diode in the ambipolar regime. They 

also presented the results obtained from the same device with different SWCNT where the 

dominant emission was found to be 0.755 eV. From resonance Raman spectroscopy and 

atomic force microscopy (AFM), the nanotube diameter was determined to be 1.41 nm and 

1.24 nm, respectively in devices with two different SWCNTs. The empirical calculation 

gives an E11-energy of around 0.7 eV for a ~1.41 nm diameter which corresponds to (16, 3) 
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SWCNT and around 0.8 eV for a 1.24 nm diameter which corresponds to (10, 8) SWCNT. 

Thus, the empirical result suggests that they used (16, 3) and (10, 8) SWCNTs, respectively, 

in their two devices though they did not characterize the chirality of those SWCNTs. This 

finding not only validates the empirical prediction but also helps to reproduce such 

experimental results by using (16, 3) and (10, 8) tubes, respectively. 

Yu et al. [146] reported the fabrication and performance characteristics of light-emitting 

devices that use serpentine CNTs, having multiple parallel CNT channels of identical 

chirality, grown directly on quartz. Two emission peaks were identified from their CNT-

based LED where the lower energy emission peak was at 0.85 eV. From atomic force 

microscopy (AFM), the diameter of the nanotube was estimated to be 1.1 ± 0.2 nm. The 

emission peak was identified as the E11 excitonic transition of the CNT. The empirical 

calculation gives an E11-energy around 0.84 eV for a 1.17 nm diameter tube which 

corresponds to (13, 3) SWCNT and around 0.88 eV for a 1.18 nm diameter tube which 

corresponds to (11, 6) SWCNT. Thus, empirical result suggests that they used either (13, 3) 

or (11,6) SWCNT in their devices though they did not characterize the chirality of those 

SWCNTs. 

Pfeiffer et al. [147] measured the electroluminescence and photoluminescence of (9, 7)-semi-

conducting carbon nanotube devices and demonstrate that the electroluminescence 

wavelength is determined by the nanotube’s chiral index (n, m). They assigned the 825 nm 

peaks to the excitonic E22 K-point interband transition by comparison of the 

electroluminescence spectra with corresponding photoluminescence excitation maps. From 

proposed empirical equation, the estimated value of E22 for (9, 7) SWCNT with diameter 1.1 

nm is 1.566 eV which is very close to the observed emission peak at 1.5 eV (825 nm). Thus, 

the experimental observation by Pfeiffer et al. validates proposed estimation. Also, this result 

clearly proves, by correlating the E22 with the chiral index (9, 7), the proposed equation can 

precisely identify the SWCNT used in that experiment. 

Vijayaraghavan et al. [148] adopted a combination of single chirality nanotube suspensions 

made by chirality-selective polymer wrapping with ultra-large scale directed assembly by 
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dielectrophoresis as the route to fabricating high-density arrays of individual, single chirality 

nanotube devices. The characteristic bright-exciton (BE) PL emission of a (9,7) nanotube, at 

1345 nm was seen which corresponds to E11. From proposed empirical equation, the 

estimated value of E11 for (9, 7) SWCNT with diameter 1.1 nm is 0.922 eV which is exactly 

equal to the observed emission peak at 0.922eV (1345 nm). Thus, the experimental 

observation by Vijayaraghavan et al. [148] in their device validates the estimation. Also, this 

result clearly proves, by correlating the E11 with the chiral index (9, 7), the proposed equation 

can precisely identify the SWCNT used in single chirality nanotube device. 

Graf et al. [134] demonstrated the first near-infrared (nIR) organic LED based on single-

walled carbon nanotubes as the emitter. A bare film of the purified material shows the 

characteristic absorption and photoluminescence (PL) spectrum of (6,5) SWCNTs with an 

emission peak at 1010 nm (corresponds to 1.228 eV),  associated with excitonic emission 

from (6,5) SWCNTs. From the empirical equation, the estimated value of E11 for (6, 5) 

SWCNT is 1.235 eV which is very close to the observed emission peak at 1010 nm (1.228 

eV). Thus, the experimental observation by Graf et al. [134] validates the estimation. 

4.4 Empirical Calculation of Optical Transitions for Perpendicular Polarization of 

Light 

The polarization of light absorbed, emitted, or scattered by an object can reveal information 

not otherwise available optically, e.g., the axis of symmetry of an unresolved emitter. Thus, 

polarization provides a handle on understanding the structures key for manipulating and 

controlling electromagnetic fields at the nanoscale. SWCNTs are extremely anisotropic 

which leads to significantly differing polarizabilities for external fields applied parallel and 

perpendicular to the tube axis. Therefore, light polarization can be used as an external 

parameter for tuning the optical properties of nanotube-based optoelectronic devices. This is 

of importance since, in this case, internal changes to the device will not be needed, and the 

orientation of the device with respect to the incident light can modify the wavelength of 

absorption or emission.  
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This is already discussed under section 2.1 that interband optical transitions between the 

massless, linear bands are not allowed for any light polarization due to symmetry. The 

perpendicular-polarized absorption has been considered to be strongly suppressed due to the 

induced self-consistent local field depolarization effect. However, weak but distinct peaks 

have been observed in some photoluminescence experiments of individual single-walled 

nanotubes (SWNTs) under the perpendicular polarization and its peak position is shifted to 

the higher energy side [31, 32].  

K. Liu et al. [34] demonstrated high-sensitivity absorption spectroscopy for 57 individual 

chirality-defined SWCNTs over broad spectral range and showed that although transitions 

between adjacent cutting lines are symmetry allowed, their matrix elements are always zero 

close to the band gap, except for the E12 and E21 transitions. This matrix element effect 

strongly suppresses exciton transition (as well as van Hove singularity at the band edge), 

resulting in no spectral resonances for higher-order transitions under perpendicularly 

polarized light. Thus, when considering optical transitions due to perpendicular polarization, 

 

Figure 4.3: Calculated nanotube absorption cross sections cross sections for parallel (solid 

line) and perpendicular with (dashed line) and without (dotted line) a depolarization 

correction [30]. 

only the E12 and E21 transitions are worth to be discussed and not E13 and E24 etc, as they are 

forbidden. Indeed, prominent absorption peak corresponding to E12 and E21 transitions in 

semiconducting SWCNTs have been observed before by other research groups with 

perpendicular polarization excitation [31, 32]. Grüneis et al. [21] neglected both the trigonal 
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warping effect and the electron–hole asymmetry in their calculation and used the following 

simplification, E12
S = 0.5(E22

S + E11
S). However, several analytical and experimental works 

[25, 27, 30-32] reported the obvious depolarization effect, such as the lower intensity 

compared with the longitudinal situations and the blue shift of excitation peaks for E12. Uryu 

et al. [22, 23] calculated it to be closer to that associated with that of the second gap for light 

polarized parallel to the axis. Islam et al. [30] and H. Liu et al. [27] calculated E12 peak for 

incident light polarized perpendicular to the tube axis and found it very close to the 

longitudinal excitonic peak E22,  as shown in Fig. 4.3, which is in good agreement with the 

experimental data [30-32]. Miyauchi et al. [31] performed anisotropic photoluminescence 

excitation (PLE) measurements on SWNTs in aqueous suspension for the UV-VIS-NIR 

range and observed distinct absorption peaks of several isolated SWNTs for the polarization 

perpendicular to the SWNT axis and the measured transition energies E12
S were blueshifted 

from (E22
S + E11

S)/2 which was the qualitative values predicted within a single-particle theory 

without considering excitonic effects. Lefebvre et al. [32] reported polarized 

photoluminescence excitation spectra of twenty-five single-walled carbon nanotube species 

and identified several transverse excitations (polarization perpendicular to the SWNT axis) 

with greatly reduced absorption intensity. Their experimental E12 values deviate from the 

simpler predictions E12 = 0.5 (E22 + E11) and are closer to 0.8E22 + 0.2E11. Using E12 = (1-x) 

E22 + x E11, they found that x ranges from 0 and 0.25.  

Thus, all these indicate that E12 and E21 optical transitions due to perpendicular polarization 

can be calculated from E11 and E22 using the relation derived in earlier reports [25, 27, 31, 

32]. As the empirical relations developed in chapter-3 can estimate E11 and E22 with good 

accuracy, thus it can also estimate the empirical value of optical transitions E12 and E21 for 

perpendicular polarization using the theoretically calculated as well as experimentally 

measured relation of E12 and E21 with E11 and E22. Therefore, the empirical relations are not 

only capable for estimating optical transitions for polarization of incident light parallel to 

nanotube axis but also can be easily extended for estimating optical transitions for 

polarization of incident light perpendicular to nanotube axis. 
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4.5 Selection of SWCNTs in CNT Based LEDs for Visible and NIR Spectrum Using the 

Empirical Model 

4.5.1 SWCNTs for emitting light in visible spectrum 

Different SWCNTs exhibit different optical transitions based on their chirality. Chirality 

specific optical transitions can be estimated from the empirical models.  For visible light 

emission from a SWCNT based LED, a number of SWCNTs can be identified from the 

empirical estimation. For LED emission, mainly the information on first optical transition 

energy is required. Table 4.3 shows the wavelength, frequency and photon energy of  

Table 4.3 SWCNTs for emitting light in visible spectrum 

Color  
Wavelength 

(nm)  

Frequency 

(THz)  

Photon energy 

(eV)  

Potential SWCNT with  

E11 (eV) 

  violet 380–450  670–790  2.75–3.26   

  blue 450–485  620–670  2.56–2.75   

  cyan 485–500  600–620  2.48–2.56   

  green 500–565  530–600  2.19–2.48  (5,0)→2.44 eV 

  yellow 565–590  510–530  2.10–2.19   

  orange 590–625  480–510  1.98–2.10  (4,2) →2.03 eV 

  Red 625–750  400–480  1.65–1.98  

(5,3) →1.72 eV 

(4,3) →1.70 eV 

(6,1) →1.85 eV 

 

https://en.wikipedia.org/wiki/Nanometer
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Photon_energy
https://en.wikipedia.org/wiki/Electronvolt
https://en.wikipedia.org/wiki/Violet_(color)
https://en.wikipedia.org/wiki/Blue
https://en.wikipedia.org/wiki/Cyan
https://en.wikipedia.org/wiki/Green
https://en.wikipedia.org/wiki/Yellow
https://en.wikipedia.org/wiki/Orange_(colour)
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different lights in visible spectrum and corresponding SWCNTs that can be used in LED for 

emission of a particular color of light. It needs to mention here that, according to 

experimental reports, small radius SWCNTs having diameter below that of a (4, 2) tube tend 

to be metallic (instead of showing higher bandgap for smaller diameter) due to very high 

curvature effect in those tubes. As a result, no SWCNTs can be offered for emitting the blue 

color. Thus, white light emission directly from SWCNT-only LEDs won’t be possible. 

4.5.2 SWCNTs for Emitting Light in CIR (Color Infrared) Spectrum 

For emission in CIR spectrum (section 2.6.3) using SWCNTs, a number of SWCNTs can be 

identified from the empirical estimation. Table 4.3 shows the wavelength, frequency and 

photon energy of different lights in CIR spectrum and corresponding SWCNTs that can be 

used in the emission process.  

Table 4.4 SWCNTs for emitting light in CIR spectrum 

Color  
Wavelength 

(nm)  

Photon energy 

(eV)  

Potential SWCNT  with  

E11 (eV) 

Green to Red 

(visible light) 
500-700 1.77-2.48 

(6,1) →1.85 eV 

(4,2) →2.03 eV 

 (5,0)→2.44 eV 

NIR  

(Near Infrared) 
700-900 1.38-1.77 

(5,4) →1.43 eV 

(6,2) →1.45 eV 

(7,2) →1.51 eV 

 (8,0) →1.59 eV 

(5,3) →1.62 eV 

(4,3) →1.70 eV 

https://en.wikipedia.org/wiki/Nanometer
https://en.wikipedia.org/wiki/Photon_energy
https://en.wikipedia.org/wiki/Electronvolt
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It can be observed from the table that SWCNT-alone CIR emission device is possible as the 

full CIR spectrum can be covered by using optical transitions from different SWCNTs. 

4.6 Conclusions 

In this chapter, few promising applications of the proposed empirical models are presented. 

An improved technique for chirality assignment of SWCNTs is demonstrated which work 

for both isolated and bundles SWCNTs. Using three Raman data namely, frequency of RBM 

mode, frequency of G- mode and one of the optical transition energies of an unknown 

SWCNT, its chiral index (n. m) can be determined even for an isolated SWCNT. The 

technique exploits the (2n+m) family pattern both in optical transitions vs diameter plot 

(which can be found from the empirical model) and Raman G- mode frequency vs diameter 

plot of SWCNTs. Using two different plots can give accurate value of the (2n+m) family 

which can be used to determine the chiral index (n,m)  of unknown SWCNT unambiguously 

in most of the cases by solving basic structural relation between diameter and chiral index 

(n,m). Unlike existing methods, graphical comparison or pattern recognition with an existing 

Kataura plot is not required here. Validity of assigned chirality is cross checked from 

previous experimental reports. The technique is especially useful for determining chirality 

of isolated SWCNT.  

Furthermore, the proposed empirical model can be used to estimate the E12 and E21 optical 

transitions in SWCNTs for perpendicular polarization of light, which comes from 

corresponding first and second optical transitions (E11 and E22) for parallel polarization. The 

proposed empirical model also helps explaining the emission spectra observed from different 

SWCNT based LEDs. When the estimated optical transition matches with experimentally 

measured spectra, this also independently validates the accuracy of the prediction from the 

empirical models. Finally, the proposed empirical model also helps identifying suitable 

SWCNTs to be used in CNT devices for emitting light in visible (400-700 nm) or CIR (500-

900 nm) spectrum. 
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CHAPTER-5 

MANY BODY CORRECTIONS FOR HIGHER OPTICAL 

TRANSITIONS IN SEMICONDUCTING SWCNT 

 

5.1 Excitons in SWCNTs 

The optical properties of semiconducting carbon nanotubes are intrinsically important for 

potential applications in photonics and also provide insight into their structural and electrical 

properties [149]. As discussed in previous chapters, early optical spectra in SWCNTs had 

been interpreted in terms of free electron–hole carriers. Indeed, the electronic structure of 

SWCNTs, predicted by tight-binding Hamiltonian models, provides equally spaced sub-

bands of valence and conduction bands with diverging density of states at the edges, known 

as van Hove singularities, which result from one-dimensional (1D) confinement conditions 

[150]. Most of the experimental results have been discussed and analyzed in terms of these 

inter-band transitions and associates the observed optical transitions with van Hove 

resonances.  

However, a number of theoretical calculations of the optical spectra [151-165] and recent 

experiments [166-177] suggest that the observed transitions correspond to exciton energies, 

not interband transitions. In chapter two, this reality was skipped by developing an empirical 

model that incorporated suitable arrangement of chiral and empirical parameters for directly 

estimating the final optical transition energies in SWCNTs without considering the 

components that contributed to make such optical transitions. In this chapter, a semi-

empirical approach will be taken to treat this reality separately in order to consider excitonic 

effects in optical transitions of SWCNTs.  

The exciton binding energies in nanotubes have been predicted and are found to be large, as 

great as several hundred meVs, and reported to depend inversely on nanotube diameter [178, 

179]. In bulk three-dimensional semiconductors the exciton binding energy is small, whereas 

in confined structures it is much bigger. The optical properties of semiconducting single-
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walled CNTs (SWCNTs) are governed by excitons because of the large exciton binding 

energy. Experimentally it has been shown that for a (6,5) SWCNT with a diameter of 0.76 

nm the exciton binding energy is roughly 0.42 eV, which is a significant fraction of the band 

gap of the CNT. The exciton binding energy (Eb ) for a CNT with d = 1.1 nm and embedded 

in SiO2 /PMMA dielectric is about 0.2–0.3 eV. Indeed, when band gaps are optically probed 

the recorded energies account not only for the electronic band gaps but also for the exciton 

binding energies. The electronic band gaps could in principle be obtained just by subtracting 

the exciton energies but these cannot be easily measured [178, 179]. 

Due to this excitonic effect, the band gaps computed by authors are generally underestimated 

significantly. The exciton binding energies can be significant for the nanotubes with smaller 

diameters. Improved estimates of band gaps of few selected SWNTs have also been reported 

using GW approximation wherein many-body self-energy operator is expressed as the 

product between electronic Green’s function (G) and the screened Coulomb interaction (W). 

Though GW scheme usually provides band gap estimates with good accuracy, the method is 

hugely expensive computationally. Furthermore, care in calculations is required in order to 

obtain converged results [178]. 

The experimental measurement of the electronic band gaps of CNTs are generally nontrivial 

and challenging as the observed optical band gap energies include contributions of exciton 

binding energies. Thus, theoretical models are required to estimate exciton energies since 

direct measurements of these energies are generally difficult. 

5.2 Effect of Excitons on Optical Transitions in SWCNTs  

An exciton is a bound pair of a photoexcited electron (e) and a hole (h). In conventional 

semiconductors, an exciton exists only at low temperature, below 10o K. Since the exciton 

binding energy for a SWCNT is very large (up to 1 eV) due to their quasi-one-dimensional 

nature, an exciton can exist even at room temperature [151, 152, 157, 160]. Recent transient 

spectroscopy and nonlinear absorption have unambiguously revealed that the photophysics 

of SWCNTs is dominated by strongly bound excitons rather than free particles [150].  
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In particular, the optical transition energies of semiconducting nanotubes, along with their 

dependence on the nanotube diameter and chiral angle, have been studied in a number of 

fluorescence and Raman spectroscopy experiments [157]. Several observations from those 

experiments have attracted attention. First, optical gaps in SWCNTs are greater than those 

predicted from the tight binding (TB) model. Second, the ratio of the threshold energy 

corresponding to the second optical transition polarized along the SWCNT axis to that of the 

first such transition is less than the value 2 predicted within the TB model for wide SWCNTs 

[153]. Kane and Mele [153-155] pointed out that this ‘‘ratio problem’’ is a signature of 

electron-electron interactions [160]. More elaborate tight-binding calculation including 

orbital overlap and interactions beyond nearest neighbours partly account for the observed 

dependence of optical spectra on chirality. Though some aspects of the experiments can be 

interpreted within the context of a simple, noninteracting electron model, it is now 

established [157] from both theoretical calculations [151-165] and experimental 

measurements [166-177] that a simple band-structure calculation is insufficient for an 

accurate description of optical transition energies in SWCNTs. This is due to the omission 

of two highly important effects in low-dimensional semiconductors; (i) quasi-particle 

corrections to the simple band-structure and (ii) exciton effects. Both quasi-particle and 

exciton shifts are due to screened Coulomb interactions. The former describes the repulsive 

energy needed to add an additional electron to the system and, hence, raises the energy of 

the conduction band or, equivalently, increases the band gap. In contrast, the exciton shift 

describes the attractive Coulomb interaction between electrons and holes, which lowers the 

excitation energy. The experimental results [167, 168] demonstrate that, in fact, the overall 

effect is a blue-shift so that the positive quasi-particle correction actually dominates over the 

negative exciton binding energy [157]. 

Starting from the pioneering study by Ando [151] a large amount of theoretical and 

experimental works has confirmed strong excitonic effects in SWCNTs. Ando [151] 

originally predicted that the many-body interactions would shift the band gaps of 

semiconducting SWCNTs to higher energies and create excitons with significant electron-

hole binding energy in the excited electronic state. Such strong many-body interactions are 
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supported by further theoretical work [152-165] and several recent experiments [166-177, 

180, 181]. Dukovic et al. [172] has shown experimentally that for a (6,5) SWCNT with a 

diameter of 0.76 nm, the exciton binding energy is roughly 0.42 eV, which is a significant 

fraction (around 33%) of the band gap. This is about one hundred times larger than that for 

bulk semiconductors, but comparable to other 1D materials. Thus, excitonic effects cannot 

be largely neglected or treated as a small perturbation to the bandgap of SWCNTs as it was 

assumed in earlier studies [150]. Such result also suggests that excitonic effects dominate 

absorption and emission spectra and hence, all aspects of the optical properties of carbon 

nanotubes; optical absorption, fluorescence, Raman, and Rayleigh scattering of SWCNTs 

[172]. 

Current understanding of the photophysical properties of semiconducting carbon nanotubes 

are based mostly on experimental results for the first (E11) and second (E22) optical transitions 

in a small diameter range. Recently, third and fourth optical transitions (E33 and E44) of 

semiconducting SWCNTs also gained some theoretical and experimental attention [174-177, 

180, 181]. The results of Araujo et al. [176] have produced new physical insight into the 

behavior of the higher lying transitions in carbon nanotubes, with these results ultimately 

demonstrating that the E33 and E44 transitions cannot be described by simple extensions of 

E11 and E22 patterns. In fact, higher optical transitions are important for the optics of large 

diameter semiconducting SWCNTs, since for dt>1.3 nm, E22 is already in the infrared range. 

From a fundamental standpoint, expanded studies of the higher energy regions are necessary 

for developing a more complete understanding of the underlying electronic structure at 

higher energies. 

The objective of this chapter is to review the nature of many body effect in first four optical 

transitions and then to devise a semi-empirical equation that can give complete description 

of experimentally observed values of next three higher optical transitions i.e. 5th, 6th and 7th 

transitions of semiconducting SWCNTs under the many body electronic picture. The many 

body effect on these three transitions will be revealed partially through this approach. 
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5.3 Developing Semi-empirical Model for Many Body Correction in SWCNTs 

The transition energies for parallel polarization to a semiconducting SWCNT are denoted by 

Eii (i= 1, 2, 3, 4, . . .) for a transition between i-th conduction(an electron) and i-th valence (a 

hole) energy bands [42]. Originally Eii denoteda van Hove singular energy for the joint 

density of states for the one-particle energy bands of a SWCNT. Here same notation will be 

used for the transition energies of the exciton [159]. 

For a better description of the electronic structure within the tight binding method one has to 

consider an extended tight-binding model that considers the effects of chirality and curvature, 

plus the blue-shift correction due to many-body effects. The transition energy of a SWCNT 

can be considered as the sum of a one-particle energy and a many-body energy which is 

further decomposed into an exciton binding energy and a self-energy. The one particle 

energy is calculated by the energy difference between the i-th conduction and the i-th valence 

energy bands. The exciton binding energy and self energy are the Coulomb interaction for a 

photo-excited electron with a hole and with other electrons in the valence energy bands, 

respectively [159]. The latter interaction increases the energy of the electron (decreases the 

energy of a hole), and this interaction thus contributes to the increase in the energy gap 

compared with the single-particle energy difference between an electron and a hole. This 

energy difference is called the self-energy.Theexciton excitation energy is thus given by 

(single-particle energy) + (self-energy) – (exciton binding energy) ≡ (quasi-particle energy) 

– (exciton binding energy). Here, (self-energy) –(exciton binding energy) is the many-body 

effect.  

Earlier pioneering work by Kane and Mele [154] predicted that both electron–electron and 

electron–hole long range one-dimensional coulomb interactions (with length scales larger 

than tube circumference) strongly depend on the inverse tube diameter, competing and nearly 

cancelling each other [153, 154, 158, 159]. As a result of this cancellation, the observed 

optical transitions in carbon nanotubes are dominated by short range two-dimensional 

graphene self-energy effects, leading to a logarithmic correction to the electronic self-energy 
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of the first (E11) and second (E22) related levels [154, 177], commonly known as KM 

correction in literatures [158, 165, 175,180] as given by, 

)1.5(
3/2

3
log

3

2
55.0 


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dpd
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Where,  p=1, 2, 4, 5, 7, 8 with i=1, 2, 3, 4, 5, 6, respectively, for  1st, 2nd, 3rd, 4th, 5th and 6th 

optical  transitions (Eii) of semi-conducting SWCNTs.  

The ability of KM correction, given by Eqn. (5.1), to fit first and second optical transitions 

(E11 and E22) of semiconducting SWCNTs is already proven [165, 175]. The many-body 

correction to E11 and E22 energies is reported to be around 0.2 eV, while the correction to E33 

and E44 energies can be 0.6 eV [158, 159, 165]. These results have shown that the nonlinear 

scaling laws can be used as an accurate basis for calculating Kataura plots useful for 

identifying spectral features at these higher energies [180]. Moreover, the many-body 

correction does not contribute to the family spread in E11 and E22 in the Kataura plot, while 

it contributes significantly to the family spread in E33 and E44 [158, 159, 180]. Experimental 

values of third and fourth optical transitions (E33 and E44) of semiconducting SWCNTs are 

found to deviate from same scaling law and the deviation from the extended tight binding 

method can be successfully fit by summing a ΔE ≈ 0.3/dt dependence to the above many-

body logarithmic corrections [174-177]. The E33 and E44 are, therefore, blue-shifted from the 

excitonic scaling law, and the blueshift goes with inverse diameter, like the exciton binding 

energy whose value is found to be similar like earlier experiment [172]. Authors [174-177, 

180, 181] interpreted this result as weaker (or even null) exciton binding energy  for E33 and 

E44 transitions when compared to the lower lying levels.  

However, so far there is no significant report that revealed the nature of many body 

corrections for fifth, sixth or higher optical transitions in semiconducting SWCNTs. Here, 

KM correction term will be used to fit experimentally reported higher optical transitions, E55, 

E66 and E77 of semiconducting SWCNTs to reveal the excitonic picture in these transitions. 

As a first approximation, considering the linear dispersion of the graphene and wave vector 

quantization, the optical transition energies in carbon nanotubes are given by, Eii = (4p/3dt) 
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× ħvF, where, ħ is plank’s constant (=6.582×10-16eV.s) and vF = 9.3×105 m/s, is the Fermi 

velocity in semiconducting SWCNT [182] and p =1, 2, 4, 5, 7, 8 for Eii with i=1, 2, 3, 4, 5, 

6, respectively [39, 42, 176, 177, 180, 182, 183]. The resultant approximation is Eii ≈ p(0.8/dt) 

[182,183]. The Eii values also exhibit a dependence on the nanotube’s curvature and chiralily 

which can be expressed by a term Cos(3θ)/d2 comprising diameter and chiral angle to account 

for curvature effect and chirality effect, respectively [16, 39, 180, 184-191]. Finally, to 

complete the picture, many body correction to optical transitions needs to be added as derived 

by Kane and Mele [153, 154, 158, 159, 165]. The complete equation is represented by Eqn 

(2) along with two fitting parameters A and B. 
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Equation (2) describes three higher optical transitions E55, E66 and E77, for p = 7, 8 and 10, 

respectively, where, first term of the equation carries the linear dependence of Eii on p/dt 

expected from quantum confinement of the 2D electronic structure of graphene, second term 

accounts for curvature and chirality dependence of optical transitions and the third term 

stands for many-body logarithmic corrections. The number of samples for each mod type 

and best fit of the fitting parameters A and B to the reported experimental data for E55, E66 

and E77 are given in Table 5.1. In fact, the value of A is expected to be close to 0.8p as shown 

earlier which is reflected from the values of A for three transitions given in Table 4.1. Hence, 

mainly B is the only fitting parameter and it can be observed that it takes opposite sign for 

mod 1 and mod 2 type semiconducting SWCNTs and this alters with odd and even 

transitions. It was observed that, with these fitting parameters, the calculated values for 5th, 

6th and 7th optical transitions in semiconducting SWCNTs excellently match with 

experimentally reported values over the full diameter range. The average absolute error for 

all three transitions is below 10 meV and the corresponding %average absolute error was 

found to be less than 0.5%. The error in each transition rapidly decreases further for higher 

diameter SWCNTs, as expected from the theory. 
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Table 5.1 Fitting parameters in Eqn (5.2) for 5th, 6th and 7th optical transitions of 

semiconducting SWCNTs 

Eii p Mod Total 

Samples 

A 

≈0.8p 

B Average 

Error 

% 

Error 

E55 

  

7 1 137 5.63 -1.1 0.01 0.47% 

2 109 5.63 1.1 .008 0.35% 

E66 

  

8 1 82 6.5 1.2 .008 0.36% 

2 77 6.45 -1.4 .008 0.39% 

E77 10 1 37 8.12 -1.6 .012 0.54% 

2 33 8.2 1.6 .007 0.29% 
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Figure 5.1:  Experimental value(black dot), calculated value from this work (green 

triangle) and many body correction (blue dot) of 5th , 6th and 7th optical transitions in (a), 

(b) and (c), respectively, plotted vs diameter of semiconducting SWCNTs. 
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Figure 5.5 (a), (b) and (c) show the plot of experimental data as well as values calculated in 

this work for 5th, 6th and 7th optical transitions, respectively, along with their many body 

corrections against their diameters. It can be observed from these three plots that, for all three 

optical transitions, calculated values predicted by Eqn. (5.2) are almost inseparably too close 

to the experimental values over the full diameter range under consideration.  

As many body correction in the single particle electronic picture of semiconducting 

SWCNT almost accurately reproduce experimental result of these three optical transitions, 

it indicates that, unlike 3rd and 4th optical transitions [174-177, 180, 181], Coulomb effect is 

significant in 5th, 6th and 7th transitions and must be considered for calculating these 

transitions. This also means, exciton binding energy is not negligible for these three 

transitions. Future experiments may reveal the validity of this conclusion by measuring the 

exciton binding energies of these three transitions. Nevertheless, this work can be taken as a 

guide to understand the optical process involved in these higher transitions of 

semiconducting SWCNTs. Future experiments are needed to through more light on this 

matter. 

5.4 Conclusions 

Due to their quasi-one-dimensional structure, electron-electron and electron-hole interaction 

and corresponding self-energy and exciton binding energy are important in SWCNTs. In this 

chapter, a brief review of Coulomb effect on determining optical transition energies of 

semiconducting single wall carbon nanotubes is presented. The difference between electron-

electron and electron-hole energies gives many body effect and corresponding correction is 

called many body correction. Proposed correction by authors in the conventional single 

particle electronic picture of SWCNT to include many body effect in first four optical 

transitions has been discussed. Here, next three higher optical transitions of semiconducting 

SWCNTs namely, i.e. 5th, 6th and 7th transitions are investigated. Experimental values of 

these higher transitions are collected from recent experimental reports. A semi-empirical 

model is developed to explain those data by extending single-particle picture corrected for 

nanotube curvature and chirality effect along with many body corrections. The result shows 
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that these three transitions excellently follow the proposed corrected picture with less than 

0.5% average absolute error. This result is an indirect proof that excitonic behavior is strong 

in 5th, 6th and 7th optical transitions of semiconducting SWCNTs unlike 3rd and 4th transitions 

as reported by earlier authors. This also suggests a significant value of exciton binding 

energies in these higher transitions. Future experimental measurements are expected to 

reveal such excitonic behaviour and their values in higher optical transitions of SWCNTs.  
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CHAPTER 6 

EMPIRICAL MODELING OF INNER TUBE OPTICAL 

TRANSITIONS IN DOUBLE WALL CARBON NANOTUBES 

 

As discussed in chapter-2, section 2.4, Double wall carbon nanotubes (DWCNTs) display 

four different configurations; S@S, S@M, M@S, and M@M, depending on the 

semiconducting (S) or metallic (M) type of the inner and outer SWNTs —where the notation 

is inner@outer wall [90, 91]. The chirality, average diameter and inter-wall distance of the 

DWCNT are important parameters when determining the electronic band structure. The most 

important parameter is the chirality of the constituent tubes, because the chiral index (n, m) 

determines to a greater degree the optical transitions of the constituent SWCNTs and overall 

DWCNT.  

6.1 Zigzag@zigzag DWCNTs 

For theoretical calculations or first principle based simulations, DWNTs made of two 

concentric zigzag type SWCNTs are preferred because of their structural symmetry and 

consequent computational advantages. 

Using the general relation given in Chapter 1 (section 1.1.2), the average diameter and inter-

wall distance of a DWCNT made of two concentric zigzag SWCNTs can be calculated as 

follows,  
 

If d is nanotube diameter in nanometer, then,   /22

0 mnmnad 
, 
where, ccaa 30 

(acc = 1.42 Å is c-c bond length) 

For, zigzag (n, 0) SWCNTs,  

n
a

d cc



3
  
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Now, for a DWNT with outer tube (no, 0) and inner tube (ni, 0), having diameter do and di, 

respectively, average diameter of DWNT, 

)(03915.0)(
2

3
)(

2

1
000 ii

cc
i nnnn

a
ddD 


, and inter-wall separation of 

DWNT, )(03915.0)(
2

3
)(

2

1
0000 ii

cc
ii nnnn

a
ddrrw 


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Earlier calculations [92, 93] showed that the inter-wall distance between inner and outer 

tubes vary between 0.33 and 0.41 nm, with an ideal separation of 3.39 Å. Endo et al. [86] 

measured diameter distribution of highly purified DWCNTs using high-resolution TEM and 

found that they fall between 0.4 and 1.3 nm for inner tubes and 1.0 and 2.2 nm for outer 

tubes. 

To keep w in between theoretically calculated and experimentally reported inter-wall 

separation, value of (no-ni) is limited to, no-ni=8, 9, 10, 11, that corresponds to inter-wall 

distance 0.313 nm, 0.352 nm, 0.392 nm and 0.431 nm, respectively. Based on this, following 

selection criteria have been derived for the constituent zigzag SWCNTs of possible 

zigzag@zigzag DWCNTs, 
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Table 6.1 Possible combinations of inner and outer tubes of zigzag@zigzag Double Wall 

Carbon Nanotubes 

DWNT Type Inner tube (ni) and 

Outer tube (no) 

Explanation Constituent 

SWCNTs 

ni no 

m@s 

(metallic inner 

tube and  

semiconducting 

outer tube) 

ni= 3k  

no= 3k+8,10,11 

where, 

no =3k+10 (mod1) 

=3k+8,11 (mod2) 

no =3k+9  

= 3(k+3) 

is metallic  

6 14, 16, 17 

9 17, 19, 20 

12 20, 22, 23 

15 23, 25, 26 

s@s 

(Both inner and 

outer tubes are 

semiconducting) 

 

ni = 3k+1 (mod1) 

no = ni +9,10 

where, 

no =3k+10 (mod1) 

=3k+11 (mod2) 

no= ni +8,11 

=3k+9, 3k+12  

are metallic 

7 16, 17 

10 19, 20 

13 22, 23 

16 25, 26 

ni = 3k+2 (mod2) 

no = ni +8, 9, 11 

where, 

no =3k+10, 13 

(mod1) 

=3k+11 (mod2) 

no= ni +10 

=3k+12  

is metallic 

5 13, 14, 16 

8 16, 17, 19 

11 19, 20, 22 

14 22, 23, 25 

17 25, 26, 28 
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DWNT Type Inner tube (ni) and 

Outer tube (no) 

Explanation Constituent 

SWCNTs 

ni no 

s@m 

(semiconducting 

inner tube and  

metallic outer 

tube) 

ni = 3k+1 (mod1) 

no = ni +8,11 

 

no= ni+9,10 

=3k+10, 3k+11  

are 

semiconducting 

7 15, 18 

10 18, 21 

13 21, 24 

16 24, 27 

ni = 3k+2 (mod2) 

no = ni +10 only 

 

no= ni +8,9,11 

=3k+10, 3k+11, 

3k+13 are 

semiconducting 

5 15 

8 18 

11 21 

14 24 

17 27 

 

6.2 Empirical Model for Optical Transitions of Inner Semiconducting tubes of 

DWCNTs 

The selection criteria given in Table 6.1 is only for the DWNTs having two concentric zigzag 

type SWCNTs. But, in practice the constituent SWNTs of a DWNT are not necessarily of 

zigzag types. In fact, most of the recent experiments [93-100] probed DWNTs that 

constitutes chiral type of SWCNTs. Combining electron diffraction (ED) and Raman/optical 

spectroscopy to examine individual DWNTs appeared to be the most direct and unambiguous 

method to address the relationship between their structure and physical properties [96]. 

In DWNTs, the inner tube possesses a special status, granted by the outer tube, which acts 

as a shield and protects effectively the inner tubes from perturbations, thus provides higher 
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mechanical, thermal, and chemical stability even in aggressive environments compared to 

SWNTs. Several experiments [93-100] performed on individual index-identified DWNTs 

demonstrated that the optical transitions of inner semiconducting tube (ISCT) of DWNTs 

can be significantly shifted compared to their SWNT constituent counterparts. It has been 

shown in previous studies of nanotubes in different environments that dielectric screening 

can lead to a redshift in optical transition energies [94]. This dielectric screening effect can 

account for an average redshift of optical transition energies observed in DWNTs, but it 

cannot explain the very large and strongly transition-dependent variations in optical 

transition shifts. So far, there is no reliable theoretical or empirical models to calculate the 

electronic band structure of DWNTs or the energy shifts in inner semiconducting tube of 

DWNTs. The reason might be due to the fact that, SWCNTs have been studied extensively 

for last three decades, both theoretically and experimentally, whereas, serious study on 

DWCNT has started only in last decade and as a result, there are still ambiguities regarding 

its exact electronic structure for different combinations of inner and outer tubes. Thus, an 

empirical model to estimate the experimentally observed shifts in optical transitions of inner 

semiconducting tubes in DWNTs would be useful.   

For inner semiconducting tubes, only S@S and S@M DWCNTs are considered as the 

remaining two species of DWCNTs denoted by M@S and M@M contain metallic inner 

tubes. Now, for developing the empirical model, reported [93-100] trend of the red shifts of 

optical transition energies of inner semiconducting tubes of S@S and S@M DWCNTs were 

studied. Their optical transitions were found to be dependent on the average diameter, inter-

wall distance as well as on the chirality and intrinsic properties of the constituent SWCNTs. 

In section 3.1.1 of chapter-3, the empirical model for the first seven optical transitions in 

semiconducting SWCNTs was already developed. Now, when these same SWCNTs become 

the inner tube of DWNTs, their optical transitions energy are significantly red shifted, as 

found from experiments [93-100], and the amount of shift varies with chirality. Following 

Table shows the reported experimental values of first five optical transitions of inner 

semiconducting tubes of DWNT with corresponding value in as isolated SWCNT of same 

chirality, 
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Table 6.2 Optical transitions in Inner Semiconducting Tubes (ISCT) of DWNTs and 

corresponding isolated SWCNTs of same chirality 

ISCT 

Optical 

Transitions 

DWNTs 

inner@outer  

Optical transition 

energy 

 (eV) 

SWCNT 

(exp[39]) 

ISCT of 

DWNT 

(exp[94-98]) 

  
E11

S 

 (mod 1) 

  

(8,4)@(18,2) 1.15 1.128[96] 

(7,6)@(16,6) 1.13 1.058[96] 

(10,6)@(14,13) 0.926 0.828[96] 

(14,1)@(15,12) 0.869 0.792[96] 

E22
S  

(mod 1) 

 

(7,6)@(16,6) 1.926 1.82[96] 

(10,6)@(14,13) 1.649 1.6[96] 

(10,6)@(16,11) 1.649 1.6[96] 

(14,1)@(15,12) 1.671 1.55[96] 

(12,5)@(16,12) 1.57 1.5[94] 

E22
S 

 (mod 2) 

  

(13,2)@(21,3) 1.46 1.39[94] 

(12,4)@(16,11) 1.46 1.38[94] 

(13,5)@(23,3) 1.35 1.28[94] 

E33
S 

 (mod 1) 

  

  

  

  

  

  

(12,5)@(16,12) 2.26 2.44[94] 

(12,8)@(25,2) 2.03 2.3[94] 

(17,1)@(16,14) 2.55 2.13[94] 

(18,5)@(20,14) 2.41 1.94[94] 

(18,5)@(27,5) 2.02 1.905[94] 

(16,9)@(24,10) 1.76 1.92[94] 

(16,12)@(27,10) 2.03 1.81[95,98] 

(23,4)@(22,18) 1.76 1.68[97] 

(16,15)@(23,18) 1.88 1.66[94] 
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ISCT 

Optical 

Transitions 

DWNTs 

inner@outer  

Optical transition 

energy 

 (eV) 

SWCNT 

(exp[39]) 

ISCT of 

DWNT 

(exp[94-98]) 

E33
S  

(mod 2)  

 

(13,8)@(16,15) 2.29 2.28[94] 

(15,7)@(20,12) 2.67 2.24[94] 

(14,9)@(17,16) 2.38 2.11[94] 

(15,10)@(27,6) 2.13 2.02[94] 

(19,8)@(21,18) 2.01 1.96[94] 

(15,13)@(21,17) 1.94 1.9[97] 

E44
S 

 (mod 1) 

 

(16,9)@(24,10) 2.58 2.39[94] 

(16,12)@(27,10) 2.34 2.15[95,98] 

(16,15)@(23,18) 2.13 2.09[94] 

E44
S 

 (mod 2) 

  

(15,7)@(20,12) 2.58 2.42[94] 

(15,10)@(27,6) 2.41 2.28[94] 

(19,8)@(21,18) 2.2 2.15[94] 

(15,13)@(21,17) 2.28 2.21[97] 

E55
S 

(mod 1) 
(16,12)@(27,10) 2.9 2.75[95,98] 

 

In Table 6.2, optical transitions are grouped according to the mod value of inner 

semiconducting tubes and it was already showed in Chapter-3 that optical transitions in 

semiconducting SWCNTs vary with mod values for comparable diameters. As first seven 

optical transitions in semiconducting SWCNTs has already been modeled in chapter-3, so 

we can use the same model for representing the optical transitions in ISCTs of DWNTs with 

necessary modification of relevant parameters. 

The proposed model for isolated SWCNT used  a 1/d term to represent the basic inverse 

relation of optical transitions with diameter and then an exponential term with two specific 
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chiral indices combinations (n+2m) and (2n-m) along with an additional d term to incorporate 

curvature effect. In case of optical transitions of ISCTs of DWNTs, similar decreasing trend of 

the optical transitions was observed with respect to D, average diameter of DWNTs. This 

suggests us to replace 1/d term of SWCNT model by 1/D for DWNTs. In the proposed model 

of optical transitions of ISCTs of DWNTs, inner tube diameter (di), chiral indices combinations 

(ni+2mi) and (2ni-mi) are kept same as before to include the curvature effect and chirality 

specific behavior of inner semiconducting tube. The effect of outer tube is now included by 

the inclusion of D term which comes from the chirality of both inner and outer tubes.  Thus, if 

1/d of SWCNT model is replaced by 1/D (average diameter of DWNT) and the numerical 

fitting parameters are readjusted then it can faithfully reproduce all experimentally observed 

red shifted optical transitions of ISCTs of S@M and S@S DWNTs. 

Following are the two resultant general empirical relation that relates first five optical 

transitions of ISCTs of DWNTs with diameter and chiral indices of inner tubes and average 

diameter of DWNTs. For mod 1 type odd transitions (E11
S, E33

S, E55
S) and mod 2 type even 

transitions (E22
S, E44

S, E66
S), 















mn

Bd

D

A
Eii

2
exp                                                    (6.1) 

For mod 2 type odd transitions (E11
S, E33

S, E55
S, E77

S) and mod 1 type even transitions (E22
S, 

E44
S, E66

S), 

                                   













mn

Bd

D

A
Eii

2
exp                                                   (6.2)        

       

Here, only the values of A and B are different for different transition energies and mod types 

as given in Table 6.3   

Using the above two general format of Eqn (6.1) and (6.2) and with the help of Table 6.3, a 

set of empirical formula would appear to predict the first five optical transition energies of 

inner semiconducting tubes of S@M and S@S DWNTs with good accuracy. For five 

transitions with each mod type, there are total 8 cases listed in Table 6.3. For 7 of these cases, 
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the average absolute error over the full diameter range is below 2% and only for the first 

optical transitions it exceeds 2%. Calculated optical transitions are given in Table 6.4 along 

with the experimental values for the convenience of comparison.  

Table 6.3 Parameters A and B for different optical transitions of ISCTs of DWNTs  

Optical 

Transitions 

MOD 

Type 

A B Mean 

Percentage 

Error 

1st transition 

(E11
S) 

1 1.45 3.2 5.61 % 

2nd transition 

(E22
S) 

1 2.4 1.6 1.33 % 

2 2.3 3.6 0.99 % 

3rd transition 

(E33
S) 

1 4.4 4.7 1.34 % 

2 4.9 4.7 1.42 % 

4th transition 

(E44
S) 

1 5.1 2.7 1.79 % 

2 5.4 6.6 1.83 % 

5th transition 

(E55
S) 

1 7.5 9.7 0.097 % 
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Table 6.4 Optical transitions in Inner Semiconducting Tubes (ISCT) of DWNTs calculated 

from the proposed empirical model 

ISCT 

Optical 

Transitions 

Chirality of 

DWNTs 

inner@outer  

Inner 

tube 

diameter 

di 

(nm) 

Average 

diameter 

D 

(nm) 

Optical 

transitions 

energy 

 (eV) 

ISCT 

of 

DWNT 

(exp) 

 

ISCT 

of 

DWNT 

(Emp) 

 

  
E11

S 

 (mod 1) 

  

(8,4)@(18,2) 0.83 1.16 1.128 1.081 

(7,6)@(16,6) 0.88 1.21 1.058 1.063 

(10,6)@(14,13) 1.09 1.46 0.828 0.904 

(14,1)@(15,12) 1.13 1.48 0.792 0.861 

E22
S  

(mod 1) 

 

(7,6)@(16,6) 0.88 1.21 1.82 1.816 

(10,6)@(14,13) 1.09 1.46 1.6 1.587 

(10,6)@(16,11) 1.09 1.46 1.6 1.582 

(14,1)@(15,12) 1.13 1.48 1.55 1.593 

(12,5)@(16,12) 1.18 1.54 1.5 1.525 

E22
S 

 (mod 2) 

  

(13,2)@(21,3) 1.10 1.43 1.39 1.385 

(12,4)@(16,11) 1.12 1.48 1.38 1.374 

(13,5)@(23,3) 1.26 1.59 1.28 1.308 

E33
S 

 (mod 1) 

  

  

  

  

  

  

(12,5)@(16,12) 1.20 1.57 2.44 2.396 

(12,8)@(25,2) 1.38 1.73 2.3 2.264 

(17,1)@(16,14) 1.39 1.73 2.13 2.140 

(18,5)@(20,14) 1.66 2.01 1.94 1.967 

(18,5)@(27,5) 1.66 2.02 1.905 1.959 

(16,9)@(24,10) 1.74 2.07 1.92 1.946 

(16,12)@(27,10) 1.93 2.28 1.81 1.799 

(23,4)@(22,18) 2.00 2.38 1.68 1.695 

(16,15)@(23,18) 2.13 2.48 1.66 1.678 
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ISCT 

Optical 

Transitions 

Chirality of 

DWNTs 

inner@outer  

Inner 

tube 

diameter 

di 

(nm) 

Average 

diameter 

D 

(nm) 

Optical 

transitions 

energy 

 (eV) 

ISCT 

of 

DWNT 

(exp) 

 

ISCT 

of 

DWNT 

(Emp) 

 

E33
S  

(mod 2)  

 

(13,8)@(16,15) 1.46 1.79 2.28 2.280 

(15,7)@(20,12) 1.55 1.88 2.24 2.267 

(14,9)@(17,16) 1.59 1.93 2.11 2.154 

(15,10)@(27,6) 1.73 2.07 2.02 2.037 

(19,8)@(21,18) 1.91 2.30 1.96 1.945 

(15,13)@(21,17) 1.93 2.27 1.9 1.832 

E44
S 

 (mod 1) 

 

(16,9)@(24,10) 1.71 2.04 2.39 2.400 

(16,12)@(27,10) 1.90 2.24 2.15 2.186 

(16,15)@(23,18) 2.09 2.44 2.09 2.021 

E44
S 

 (mod 2) 

  

(15,7)@(20,12) 1.52 1.85 2.42 2.448 

(15,10)@(27,6) 1.70 2.04 2.28 2.304 

(19,8)@(21,18) 1.87 2.26 2.15 2.092 

(15,13)@(21,17) 1.89 2.23 2.21 2.157 

E55
S 

(mod 1) 
(16,12)@(27,10) 1.90 2.24 2.75 2.753 

It can be noted from Table 6.4 that estimated values of different optical transitions from 

proposed model are very close to the experimentally reported values. Incorporation of 

average diameter of DWNT in proposed model also enabled it to reflect some specific and 

precise experimental observations. One such reported observation is, even for the same inner 

tube, the energy shift of an optical transition varies significantly with the outer-wall tube 

species. For example, (18,5)@(20,14) and (18,5)@(27,5) DWNTs, both have same inner 

semiconducting tube (18,5) but the optical transitions of (18,5) is different in two DWNTs 

due to the different chirality of outer tubes. As the model includes average diameter D, which 
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is different for two DWNTs having same inner tube but different outer tubes, so, the model 

can estimate the experimentally observed difference in optical transitions of the inner tube. 

 

Figure 6.1: Empirical values of five optical transitions of inner semiconducting tubes of 

S@M and S@S DWNTs compared with experimental data with respect to average 

diameter of the DWNTs. 

Experimental and empirical values of first five optical transitions of ISCTs of DWNTs are 

plotted in Fig. 6.1 against the average diameters of corresponding DWNTs. It can be easily 

noticed from this plot that empirical estimations matches very closely with experimental data 

for all transitions. Accuracy is relatively higher at higher diameters DWNTs as observed 

from both Fig. 6.1 and Table 6.3. Slight deviation is observed in some lower diameter tubes 

only but, they are within the tolerance margin. Thus, the proposed empirical relation can 

predict the experimentally reported red shift in optical transitions of inner semiconducting 

tubes of S@M and S@S DWNTs for both mod types with reasonable accuracy. 
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6.3 Conclusions 

Different experimental work reported significant red shift of optical transitions of inner 

semiconducting tubes (ISCT) of S@M and S@S DWNTs. Here,  an empirical model for 

estimating different optical transitions of ISCTs of S@M and S@S DWNTs from the 

chirality of inner SWCNTs and average diameter of DWNTs are proposed. The proposed 

model is used to calculate optical transitions of ISCTs of a number of DWCNTs and the 

result was found in good agreement with experimentally reported values. The proposed 

relation can help to understand the electronic behavior of DWNTs in terms of its structural 

parameters and can help identifying the chirality of unknown DWCNTs from their electronic 

properties. 
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CHAPTER 7 

EMPIRICAL MODEL FOR BAND GAPS IN  

GRAPHENE NANORIBBONS 

 

In second chapter, it was discussed that the armchair GNRs are believed to be the most 

promising candidates towards the design of graphene based circuits due to their highly 

tunable electronic properties [105, 106], making them an interesting material for room-

temperature electronic and optoelectronic switching devices. Various models proposed by 

earlier authors along with their limitations in estimating the bandgaps in GNRs were also 

reviewed. Although first-principles approach combining density functional theory (DFT), 

the many-body perturbation theory with GW (single particle Green’s function G and 

screened coulomb interaction W) approximation, and a semi-classical image-charge model 

to compute the electronic band gaps in GNRs weakly interacting with the underlying 

substrate gives bandgaps values close to experimental values, but, the GW method is 

computationally intensive and challenging to converge numerically. Besides, image charge 

(IC) corrections on top of GW calculations makes the computation more intensive. That’s 

why a simple and model independent empirical relation is required to predict the bandgaps 

of AGNRs with high accuracy. 

7.1 Experimental Observations Regarding Armchair GNRs 

As a first step to develop the proposed empirical model for estimating the bandgaps of 

AGNRs with their width and number of armchair chains N, following facts can be recalled 

from earlier theoretical calculation [108, 110, 113, 114] and experimental observations [106, 

119],  

i) All AGNRs are semiconductors with some energy gaps. 

ii) Their bandgaps as a function of ribbon width are well separated into three different 

subfamilies for N = 3p, 3p + 1 or 3p+2, where p is a positive integer. 
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iii) Their bandgaps decreases with increasing ribbon width (w) within each of those families 

and the gap size hierarchy is 3p+1 > 3p >3p+2 ≠0. 

iv) N = 3p + 2 AGNRs display a much smaller gap comparing to that of the other two 

categories. 

Recently, Wang et al. [106] studied electronic structures of the armchair GNRs with 

atomically well-defined widths (0.6 to 3.1 nm) ranging from N=6 to N=26 by using a 

scanning tunneling microscope. Their result demonstrated explicitly that all the studied 

armchair GNRs exhibit semiconducting gaps and, more importantly, the observed gaps as a 

function of N are well grouped into the three categories. For each category, the energy gaps 

of the GNRs decrease with increasing N, as expected to be observed due to the quantum 

confinement. A notable feature of the spectra is that the N = 3p + 2 armchair GNRs display 

a much smaller gap comparing to that of the other two categories. Thus, in formulating 

proposed empirical relations, the focus will be on N=3p and 3p+1 subfamilies, ignoring 

N=3p+2 AGNRs. 

7.2 Proposed Empirical Model for Bandgaps of Armchair GNRs 

Proposed empirical equation is composed of two terms. First term is to reflect the decreasing 

trend of bandgaps with increasing ribbon width (w) and is expressed by the form a/(w+b) 

where, a and b are fitting constant. The second term is to incorporate the difference in 

bandgaps due to two different categories N=3p and N=3p+1. After careful observation, it 

was found that a term Cos (pπ/(N+1)) can reflect this difference precisely. Based on these 

findings, here two simple empirical relations for bandgaps of AGNRs are proposed 

separately for N=3p and 3p+1 subfamilies, 
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These equations reflect well established dependence of AGNRs bandgap on ribbon width w 

and number of armchair chains N and predicts experimental bandgaps of AGNRs reported 

till date with very good accuracy.  

Table 7.1 and 7.2 presents the comparison of the predicted bandgaps from the proposed 

empirical Eqn (7.1) and (7.2) with the calculated results from Eqn (2.8) through Eqn (2.19) 

along with the measured bandgaps of AGNRs from different experiments.  

Table 7.1 and 7.2 clearly show that earlier models [108-111, 113] either underestimate or 

overestimate the bandgaps of different AGNRs whereas the empirical relation predicts the 

experimental results very well with a high degree of accuracy. 

Table 7.1 For AGNRs with N=3p 

Arm-

chair 

chains 

N(=3p) 

GNR 

width 

(w)  

nm 

Eg
[108] 

eV 

Eg
[109] 

eV  

Eg
[110] 

eV  

Eg
[111] 

eV  

Eg
[113] 

eV 

Exp 

eV 

Emp 

eV  

3 0.246 1.913 2.825 4.034 12.341 3.496 3.23± 0.08 3.239 

6 0.615 1.107 2.121 2.734 4.937 1.398 1.69± 0.10 1.791 

9 0.984 0.778 1.698 2.067 3.085 0.874 1.35± 0.07 1.347 

12 1.353 0.600 1.416 1.662 2.244 0.636 1.13 ± 0.05 1.130 

15 1.722 0.488 1.214 1.390 1.763 0.499 1.03± 0.04 1.002 

18 2.091 0.411 1.062 1.194 1.452 0.411 0.90 0.917 

 

 



118 
 
 

 

Table 7.2 For AGNRs with N=3p+1 

Arm-

chair 

chains 

N(=3p+1) 

GNR 

width 

(w)  

nm 

Eg
[108] 

eV 

Eg
[109] 

eV  

Eg
[110] 

eV  

Eg
[111] 

eV  

Eg
[113] 

eV 

Exp 

eV 

Emp 

eV  

7 0.738 1.544 4.257 3.834 4.114 1.409 2.37±0.06 2.327 

13 1.476 0.864 2.128 2.342 2.057 0.705 1.4±0.1 1.550 

16 1.845 0.708 1.703 1.960 1.646 0.564 - 1.366 

Measured and calculated bandgaps of AGNRs are plotted in Fig. 7.1 (a) and (b) against the 

ribbon width. It shows the calculations by Son et al. [108], Wakabayashi et al. [109], Yang 

et al. [110], Pandya et al. [111] and Raza et al. [113]   along with the result from proposed 

empirical equations and the experimental values of bandgaps [105, 115, 119, 122]. From this 

Figure, the overestimation or underestimation of experimental bandgaps calculated by 

previous models and the relative high accuracy of the prediction by the empirical model can 

be observed very clearly.  
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(a) 

 

(b) 

 

Figure 7.1: Measured and calculated bandgaps of AGNRs vs ribbon width including the 

result from empirical equations for (a) N=3p and (b) N=3p+1. The experimental bandgaps 

for AGNRs are taken from ref. [105-107, 115-122]. Bandgaps calculated by different 

authors are taken from ref [108-111, 113]. 
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Proposed empirical equation can be taken as a guide to predict the bandgaps of unknown 

AGNRs before considering them or selecting them for relevant optoelectronic applications. 

One such application is emission of light in visible and CIR spectrum as discussed in section 

4.5. Table 4.3 and 4.4 of chapter-4 are updated here as Table 7.3 and 7.4, respectively, by 

including AGNRs. 

    Table 7.3 SWCNTs and AGNRs for emitting light in visible Spectrum 

Color  
Wavelength 

(nm)  

Frequency 

(THz)  

Photon energy 

(eV)  

Potential SWCNT or 

AGNR with E11 (eV) 

  violet 380–450  670–790  2.75–3.26  

3-AGNR→3.24 eV 

7-AGNR→2.86 eV 

[114, 117] 

  blue 450–485  620–670  2.56–2.75  7-AGNR→2.7 eV [119] 

  cyan 485–500  600–620  2.48–2.56  7-AGNR→2.5 eV [122] 

  green 500–565  530–600  2.19–2.48  
(5,0)→2.44 eV 

7-AGNR→2.33 eV 

  yellow 565–590  510–530  2.10–2.19  7-AGNR→2.1 eV [194] 

  orange 590–625  480–510  1.98–2.10  (4,2) →2.03 eV 

  Red 625–750  400–480  1.65–1.98  

(5,3) →1.72 eV 

(4,3) →1.70 eV 

(6,1) →1.85 eV 

6-AGNR→1.79 eV 

       

https://en.wikipedia.org/wiki/Nanometer
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Photon_energy
https://en.wikipedia.org/wiki/Electronvolt
https://en.wikipedia.org/wiki/Violet_(color)
https://en.wikipedia.org/wiki/Blue
https://en.wikipedia.org/wiki/Cyan
https://en.wikipedia.org/wiki/Green
https://en.wikipedia.org/wiki/Yellow
https://en.wikipedia.org/wiki/Orange_(colour)
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       Table 7.4 SWCNTs and AGNRs for emitting light in CIR Spectrum 

Color  
Wavelength 

(nm)  

Photon energy 

(eV)  

Potential SWCNT or 

AGNR with E11 (eV) 

Green to Red 

(visible light) 
500-700 1.77-2.48 

6-AGNR→1.79 eV 

(6,1) →1.85 eV 

(4,2) →2.03 eV 

7-AGNR→2.1 eV [194]  

7-AGNR→2.33 eV 

(5,0)→2.44 eV 

NIR  

(Near Infrared) 
700-900 1.38-1.77 

(5,4) →1.43 eV 

(6,2) →1.45 eV 

(7,2) →1.51 eV 

13-AGNR→1.55 eV 

(8,0) →1.59 eV 

(5,3) →1.62 eV 

(4,3) →1.70 eV 

 

It can be noted that 7-AGNR is placed in multiple spectrum. According to the multiple 

STM/STS studies and also voltage dependent conductance studies [110, 114-117, 119, 122,  

192-196], the 7-AGNR has a quasiparticle band gap of 2.3 −2.8 eV [192], the lowest values 

were registered for the Au-supported nanoribbons (with a bandgap~2.3 eV) [116], while the 

highest values were reported for the nanoribbons supported on an insulator NaCl layer (with 

a bandgap~2.8 eV) [114]. Reported experimental values of bandgap in 7-AGNRs are 2.3 

https://en.wikipedia.org/wiki/Nanometer
https://en.wikipedia.org/wiki/Photon_energy
https://en.wikipedia.org/wiki/Electronvolt
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[116], 2.4 [115], 2.5 [122], 2.7 [119], 2.8 [117] and 2.86 eV [114]. Controlling the substrate 

interaction is thus considered a prerequisite for studying the on-surface synthesis process and 

accessing the intrinsic electronic structure of GNRs [193]. One can expect even higher values 

of the band gap up to 3.7 eV for the freestanding 7-AGNRs, as found from GW quasiparticle 

band gap calculations for isolated AGNRs [110, 114, 192, 193]. Besides, reported 

experimental excitonic optical transition E11 (which slightly differs from bandgap due to 

binding energy) of 7-AGNR gives different values as 2.05 [192], 2.1 [194, 195] and 2.2 eV 

[196]. 
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CHAPTER 8 

CONCLUSIONS 

Single wall carbon nanotubes, double wall carbon nanotubes and grapheme nanoribbons are 

highly sensitive to their chirality. Slight change in chirality drastically changes their overall 

behavior. Conventional models do not fully include chirality dependent behaviours of CNTs 

and GNRs. As a result, estimated result from conventional models deviate significantly from 

experimental values. Here, Chirality dependent empirical modeling of optical transition 

energies in different types of single and double wall carbon nanotubes and GNRs have been 

developed. Empirical models for bandgaps of GNRs are also developed. Proposed empirical 

model can estimate different optical transition energies in semiconducting and metallic 

SWCNTs and Double wall carbon nanotubes (DWCNTs) and also bandgaps of armchair 

GNRs with great accuracy. Based on the empirical model, a new technique for chirality 

assignment is demonstrated. Experimental reports and emission from SWCNT based LEDs 

were used to check the validity of the estimated results from the proposed models. Striking 

similarity was observed between the estimated and experimentally observed emission. The 

model was found to predict the absorption and emission in CNT-based devices reliably. 

Based on the empirical model, combination of different SWCNTs and armchair GNRs are 

identified to be used in Light emitting devices in visible and CIR spectrum. 

Furthermore, a semi-empirical model is developed to estimate the higher optical transitions 

in SWCNTs after many body correction. Proposed empirical relations and overall findings 

on Chirality dependence of different properties of SWCNTs and GNRs have great impact on 

selection and applications of these materials in nanoelectronics. 

8.1 Novelty of the Work 

Systematic variation and new family behavior of optical transition with chirality of the 

nanotubes and GNRs were found. An empirical model have been devised for SWCNTs, 

DWCNTs and GNRs based on the findings which delivers a number of empirical relations. 

The model was extended for estimating optical transitions for perpendicular polarization of 
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light too. A semi-empirical model is developed to include the excitonic effect in CNTs for 

many body corrections in higher optical transitions of semiconducting SWCNTs. Estimated 

values show excellent agreement with experimental values for different transitions over the 

full diameter range and matches with the emissions observed from CNT based LEDs. 

Moreover, proposed empirical model gives a new technique for determining chiral index (n, 

m) of unknown semiconducting SWCNTs. 

8.2 Limitations 

This work proposes empirical models for estimating inter-band optical transitions of 

semiconducting and metallic SWCNTs and DWCNTs and bandgaps in armchair GNRs. 

Though the estimated optical transitions are validated by experimental results but, this is an 

empirical model, not analytical. Hence, it is not the substitute of, and does not eliminate the 

necessity of a complete theoretical model that could analytically explain experimentally 

reported various electronic behaviors of CNTs and GNRs till date. Also, though there are 

sufficient experimental data on different optical transitions in SWCNTs, there are not still 

sufficient experimental data for bandgaps of armchair GNRs. Besides, there are still 

ambiguities regarding the bandgaps of some AGNRS of specific chirality. So, compared to 

CNTs, enough data for validating the proposed empirical model for bandgaps of armchair 

GNRs could not be used. 

8.3 Future Scopes 

A complete analytical model can be developed in future that can remove the limitations of 

the proposed empirical model. Though it was demonstrated how the proposed model can be 

extended for estimating optical transitions for perpendicular polarization of light, but in 

future a separate model of optical transitions for perpendicular polarization of light can be 

developed. Besides, advanced first-principles simulation methods can be used to validate and 

readjust the parameters used in the proposed empirical model. Finally, with the availability 

of more unambiguous experimental reports on bandgaps of AGNRs, the proposed model for 

estimating bandgaps can be fine-tuned further.  
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