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Abstract

Precise cell nucleus segmentation is very critical in many biologically related analy-
ses and disease diagnoses. Two of the major challenges in this task are the precise
delineation of the small-shaped nucleus and the characterization of the edge region.
In this thesis, deep neural network based nucleus segmentation methods are proposed
where a unique idea of generating various types of boundary aware guiding signal is
introduced to guide the spatial information of the segmentation architectures through
attention mechanism.

In the first method, the attention module of the segmentation network is guided by a
separate boundary extractor shallow encoder-decoder network which minimizes a sep-
arate objective function from a synthetically generated nucleus edge mask. The edge
aware information found from different decoder stages of this shallow network acts as
the guiding signal. Although the network offers comparatively better segmentation per-
formance with respect to the other network, the complexity of the network increases
because of the utilization of separate shallow network.

Considering the inspiring characteristics of various transformation techniques, a con-
tourlet driven attention network, namely ConDANet, is developed which utilizes con-
tourlet transformed signal as the guiding signal. The contourlet transform based control-
ling signal generation scheme exploits the advantage of the multi-scale time frequency
localization and provides a high degree of directionality. Additionally, the wavelet pool-
ing strategy is incorporated to the network which preserves the textural content of the
nucleus.

Furthermore, a boundary aware wavelet guided network (BAWGNet) is proposed which
utilizes the wavelet transform based guiding signal generation along with three separate
loss function for optimization purpose. A boundary aware unit is designed that captures
the nuclei’s boundary information by employing a unique boundary aware loss function,
ensuring accurate prediction of the nuclei pixels in the edge region.

The proposed method is employed for analyzing three publicly available histopathology
datasets to manifest its effectiveness. Using the proposed framework, significant perfor-
mance improvement is found over the other state-of-the-art techniques while evaluating
on these datasets.
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Chapter 1

Introduction

In this chapter, the biological background required to understand this work is presented.
Next, the biological significance of the cell nuclei segmentation and the necessity of an
automated computer-aided technique to address this issue is delineated. Later on, the
past and present scenarios of state-of-the-art research in cell nuclei segmentation from
histopathology images are described. Following that, the scope of potential future work
in this area and the objective of this thesis are highlighted. Finally, the organization of
the thesis is outlined at the end of this chapter.

1.1 Nuclei Segmentation: Challenges and Significance

The cell is the most fundamental and basic unit of life [1, 2]. A typical human body
contains 30 trillion cells, each with its own nucleus containing Deoxyribonucleic acid
(DNA) that programs the cell. Cells, like humans, can grow, reproduce, and interact
with their surroundings by processing information and responding to environmental
stimuli. A plasma membrane, cytoplasm, organelles, and a well-defined nucleus are
all features of a eukaryotic cell (Fig.1.1) [3]. The nucleus is an essential part of the
cell. It contains genetic material, the chromosomes (DNA + proteins), which contain
information about how the cell works. Every cell has a copy of the genetic information,
but depending on the function of the cell, some genes are turned off and others are
turned on. This explains the variety of cells that make up the human body [2].

Cell nuclei segmentation is important from different biological point of view. For in-
stance, it provides valuable information about the DNA content [4], chromatin conden-
sation [5] and nuclei morphology [6]. This information can be used, for example, to
study the cell cycle [4] or to study mutations in proteins associated with cancer [7].
Cell overlapping, image noise and non-uniform acquisition and preparation parameters
make the nuclei segmentation procedure a challenging task [5, 6].
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Figure 1.1: Structure of the cell.

Moreover, nuclei segmentation is important for several applications, for instance, it can
be used to address the important problem of cell cycle staging. Cell cycle is a funda-
mental mechanism of living organisms. The main goal is to ensure that when a cell
divides it passes correctly the genetic information to the next generation. Additionally,
it plays an important role in many diseases. For instance, dysregulation of the cell cycle
is at the origin of many diseases, such as cancer, ischemia, neurodegenerative disorders
and infection. Therefore, by studying and controlling the cell cycle one can under-
stand the mechanisms of various diseases, and consequently find ways to tackle them.
Furthermore, cell cycle control and manipulation can have numerous applications in
regenerative medicine [8]. A visualization of the change in nuclear structure is depicted
in Fig 1.3. It is found that nuclei can become irregular and begin to fold in the tumor
cell, and coarse heterochromatin aggregates are frequently observed. Nucleoli can be
enlarged and PML bodies can mislocalize in microspeckles [9].

Among the different types of nuclei, two types are usually the object of particular in-
terest: lymphocyte and epithelial nuclei. Nuclei may look very different according to
a number of factors such as nuclei type, malignancy of the disease, and nuclei life cy-
cle as shown in Fig 1.2. Lymphocyte is a type of white blood cell that has a major
role in the immune system. Lymphocyte nuclei are inflammatory nuclei having regular
shape and smaller size than epithelial nuclei. Nonpathological epithelial nuclei have
nearly uniform chromatin distribution with smooth boundary. In high-grade cancer tis-

2



Figure 1.2: Different types of nuclei. (a) Lymphocyte nuclei (b) Epithelial Nuclei (c)
Epithelial Nuclei (Cancer). (d) Epithelial Nuclei (Mitosis).

Figure 1.3: Nuclear structure in normal and cancer cells.
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sue, epithelial nuclei are larger in size, may have heterogeneous chromatin distribution,
irregular boundaries, referred to as nuclear pleomorphism, and clearly visible nucleoli
as compared to normal epithelial nuclei. The variation in nuclei shape, size, and texture
during nuclei life cycle, mitotic nuclei, is another factor of complexity.

Automated nuclei segmentation is now a well-studied topic for which a large number of
methods have been described in the literature and new methodologies continue to be in-
vestigated. Segmentation of nuclei in routinely stained histopathological images pose a
difficult computer vision problem due to high variability in images caused by a number
of factors including differences in slide preparation (dyes concentration, evenness of the
cut, presence of foreign artifacts or damage to the tissue sample, etc.) and image acqui-
sition (artifacts introduced by the compression of the image, presence of digital noise,
specific features of the slide scanner, etc.). Furthermore, nuclei are often organized
in overlapping clusters and have heterogeneous aspects. All these problems make the
nuclei segmentation a challenging problem. A successful image processing approach
can overcome these issues in a robust way in order to maintain a high level in the qual-
ity and accuracy in all situations. To avoid tedious manual analysis of histopathology
images, automatic nuclei segmentation schemes are getting importance. An automatic
computer aided nucleus segmentation scheme can segment thousands of nucleus within
seconds and assists the physicians for quick assessment of cellular activities.

1.2 Live-cell Imaging Microscopy Techniques

When selecting an optical microscopy system for live-cell imaging, three factors should
be considered: detector sensitivity (signal-to-noise), specimen viability, and image ac-
quisition speed [10]. The system used should maximize the use of light while utiliz-
ing the fewest optical elements in the light path. To improve signal-to-noise ratio, the
combination of filters used for live-cell imaging needs to be closely match the spectral
profiles of the fluorophores used in experiments. Because of advancements in detector
technology, illumination levels can now be reduced. The camera’s sensitivity is also
an important consideration. This can be accomplished with an intensified camera or a
sensitive back-illuminated charged couple device (CCD) camera. Switching between
filters or output from a monochromator will reduce acquisition time, especially when
imaging multiple fluorophores simultaneously or performing radiometric analysis on a
single probe.

There is currently no all-purpose live-cell imaging system that can be used for all pos-
sible investigations. As a result, the imaging system can be selected by determining
the best parameters while minimizing cell damage or death. The majority of cellular
processes take place in three dimensions over time.
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Figure 1.4: Microscopy images extracted from Fluorescence (First row) and Brightfield
(second row) microscopy techniques.

Live-cell imaging is currently mainly performed by fluorescence microscopy [11]. Some
of the more common systems used for imaging live cells are discussed below; the more
widely used systems are discussed first and then the less commonly used systems are
described.

1.2.1 Fluorescent Microscopy

Fluorescence microscope techniques offer powerful tools for studying almost any cel-
lular process under the microscope [12]. Multicolor imaging is widely used to visualize
distinct cellular and subcellular components, as well as other materials of interest, such
as nanoparticles. Because of the abundance of synthetic fluorophores, live cell imaging
dyes, and fluorescent protein tags available, this approach is feasible. The main experi-
mental challenges in (multicolor) live-cell imaging are keeping cells physiological and
minimizing photodamage while extracting data with the highest spatial and temporal
resolution possible.

1.2.2 Widefield Microscopy

For observing dynamics in live cells, wide-field microscopes provide excellent tem-
poral resolution and submicrometer spatial resolution. Background fluorescence from
out-of-focus planes, on the other hand, is not discriminated, resulting in a blurry image
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of 3D objects such as cells and tissues [13]. This problem was solved with the intro-
duction of confocal microscopy, in which out-of-focus signals are effectively blocked
by a pinhole placed in front of the detector. This key feature of confocal microscopes
enables the creation of 3D images of thick specimens by acquiring successions of thin
optical sections along the Z-axis [13,14]. Despite this, laser scanning microscopes have
very slow acquisition speeds because the specimen is raster scanned point by point by a
single-beam laser light. The most certain way to reduce photodamage is to limit expo-
sure to excitation light as much as possible. Spinning disk confocal microscopy is one
of the best solutions for multicolor 3D live-cell imaging in real time (SDCM). SDCM is
the most widely used high-resolution imaging method for intracellular dynamics [12].
It combines the benefits of scanning confocal microscopy with high-performance real-
time imaging, making it particularly suitable for imaging for quantitative analysis [15].

1.3 Literature Survey

Cell nuclei segmentation in histopathology images is a critical step for microscopy-
based cellular image analysis, which is the foundation of investigating many biolog-
ically related tasks, such as phenotype classification and cell function identification.
Given the biological significance of this work, an efficient computer-aided system that
can assist pathologists in automating this process is very demanding.

Traditional techniques for nuclei segmentation, also known as handcrafted feature based
approaches, include a combination of methods for nuclei detection, which can provide a
seed for each nucleus or the area of nuclei, and nuclei splitting [16–21]. The most com-
mon and popular method applied for nuclei detection is thresholding based in Otsu’s
method [4, 5, 22]. Several shape and size based features such as, area, perimeter, shape
factor, aspect ratio, color texture, blue ratio, color histograms, Laplacian of Gaussian
response are also extracted from nucleus region to quantify the nucleus morphology
and are utilized to guide the models in distinguishing between nuclei and non-nuclei
regions [5, 23–26]. Other approaches include, for example K-means clustering, graph
cuts based methods, H-maxima transform and combination of Laplacian of Gaussian
with Euclidean distance map [4, 5]. However, cell overlapping commonly occurs in
biopsy images. Therefore, if nuclei detection step generates the area of nuclei, after this
stage many overlapping nuclei appear. In order to split them, several methods can be
applied, for example: least square ellipse fitting, concavity detection, edge path selec-
tion, Fourier shape descriptor [5,27]. On the other hand, if the seed of each nucleus has
been obtained in the nuclei detection step, region growing [28], or marker-controlled
watershed [28, 29] can be applied to obtain the contour of each nucleus. Nonetheless,
several issues are associated with these traditional techniques. In some cases manual
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tuning of parameters is necessary [4], in other cases the methods developed can be very
specific to a given type of tissue or image [30]. Recently, the deep learning based ap-
proaches, which have been successfully applied in several tasks of computer vision, like
image classification and object detection , are attracting the attention of researchers [30].
These methods have the ability to automatically extract important features from the im-
age and present a good generalization capability, hence their superiority when compared
to traditional techniques mentioned above [30].

deep learning frameworks have recently gained popularity as they have shown promis-
ing performance in different biomedical image segmentation tasks [31–40]. However,
task of nuclei segmentation necessitates consideration of several issues, such as blurri-
ness in the edge region of cells, diversity in image modalities, and variation in intensities
across cancer subtypes [5, 41]. Among different deep learning based nuclei segmenta-
tion methods, U-net based architectures are most widely used such as U-net [42], U-
net+ [43], U-net++ [44], FPN [45], FU-Net [46], and Micro-net [47]. In U-net+ [43] and
U-net++ [44], the higher accuracy in nucleus segmentation is achieved by redesigning
the encoding branch of the traditional U-net architecture to fuse more image features.
A fast U-net architecture (FU-Net) is proposed in [46], where a bottleneck convolution
layer is introduced in the encoder and decoder layer of the traditional U-net to make
the model computationally efficient and accurate. Another variant of U-net, namely
Micro-net, extends the U-net by utilizing a weighted loss function and processing the
inputs at multiple resolutions [47]. However, accurate segmentation of nuclei is still a
challenging task due to the difficulty in finding the segregation of the clustered nuclei
in cell microscopy images [48]. One major concern in U-net based network is the use
of downsampling operations, such as max or average pooling that usually ignore the
Nyquist sampling theorem, resulting in partial or complete loss of high frequency data
details and distorted basic structure presented by the low frequency components [49]. In
the search of detail preserving pooling approaches, discrete wavelet transform (DWT)
based pooling are reported in several previous works by replacing the pooling oper-
ation with DWT operation [49, 50]. However, considering the capability of pooling
operation in finding relevant spatial information, it is more appropriate to combine the
DWT information in a separate path for better data represerentation. Furthermore, the
non-accountability of boundary or edge information in U-net based architectures may
result in loss of prominent features in the edge and even small nucleus region, which is
another important issue to be considered.

In recent years, attention module based deep neural networks have achieved tremendous
performance in segmenting cell nuclei in histopathology images [51–58]. A hybrid-
attention nested U-Net , namely Han-Net, is proposed in [59], which is integrated with
a dense network to capture more effective feature information. In [60], a dual encoder
attention U-net is proposed which employs a new secondary encoder input to the at-
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tention U-net to capture the best attention for the input. A multi-task network based
on U-Net is proposed in [61], where a context encoding layer is introduced behind
each encoder and its output is processed by an attention module to fuse with the fea-
tures of the decoding layer. In [62], a deep neural network is proposed, where a robust
residual block is introduced for the extraction of high level semantic maps and an atten-
tion mechanism is incorporated with the decoder block for robust nuclei segmentation.
However, all these attention based approaches consider the down-sampled signal as the
attention input, which are prone to noise interruption.

Traditional data augmentation techniques, which mostly rely on performing geometric
transformations, such as rotation, zoom, scaling, have been commonly used for train-
ing deep learning models for medical image segmentation [63–66]. The generative
adversarial network (GAN) provides an alternative approach for generating synthetic
images [67]. When used for the image segmentation task, such technique yields an in-
herent challenge of generating masks for synthetically generated images [68]. In [65],
a two-stage GAN is proposed for nucleus segmentation, where the first stage generates
synthesis masks and then incorporates them into the second GAN to produce synthetic
image. In [66], both the training and testing datasets are augmented followed by the
prediction of both of these sets which exhibits promising performance in the nucleus
segmentation task. However, despite their dominating performances, GAN-based ap-
proaches can perpetuate biases inherent in the dataset or even amplify them [69].

There are several other methods which address the issue of segmenting the overlapping
nuclei in histopathology images. For example, in [70], a deep learning approach is
proposed to detect superior markers by regressing nuclear distance map for segmenting
overlapping nuclei. Another deep neural network is proposed based on the prediction
of horizontal and vertical distances of nuclear pixels to their centres of mass to separate
clustered nuclei [71]. Although this method can significantly capture the separation of
the nuclei, it fails to give more emphasis on boundary information. In ASPPU-net, a
modified U-net is proposed to capture multi-scale nuclei features and obtain nuclei con-
text information [72]. However, all of these techniques consider the spatial sampling
operation to encode the spatial content of an image into low dimensional space which
can eventually distort the low frequency components in the decoding stage resulting
in loss of information. Moreover, these kind of architectures are not capable in cap-
turing global contextual information and limited in modelling the long range semantic
dependencies due to the small receptive field [73].
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1.4 Motivation of This Research

The motivation of this thesis is to develop computer-aided schemes to segment cell
nuclei in histopathology images. Accurate nuclei segmentation is the starting point for
different cell-based analyses, such as cell function identification, its reactions to various
treatments, and the underlying biological processes. Hence, automatic cell nuclei seg-
mentation in histopathology images plays a crucial role in this regard. Among different
cell nuclei segmentation methods, deep learning-based frameworks have been widely
used recently due to their supremacy in terms of accuracy. Different deep learning
frameworks are investigated in the nuclei segmentation task previously. Morpholog-
ical operations are also utilized as the post processing stage in convolutional neural
networks to obtain the approximate segmented masks and refine the obtained masks.
Attention mechanism-based encoder-decoder architectures are also explored to address
the nuclei segmentation task. However, these methods concentrate on utilizing the spa-
tial or channel level information which can be distorted over subsequent downsampling
operation of the encoder decoder architectures. Besides, no particular importance was
provided in the edge regions of the nucleus regions. Deep neural network based on the
prediction of horizontal and vertical distances of nuclear pixels to their centres of mass
to separate clustered nuclei is also proposed in several works. Although this method
can significantly capture the separation of the nuclei, it fails to give more emphasis
on boundary information. Considering all the shortcomings of the previous works, an
automatic computer-aided segmentation scheme utilizing a properly guided attention
mechanism to prevent the loss of information problem present in the encoder-decoder
architecture with more emphasis on boundary level information is in great demand.

1.5 Objective of this thesis

The objectives of this research with specific aims are as follows:

• To develop a method to transform different histopathology images into a common
intensity level and color statistics that can leverage the segmentation performance.

• To develop an attention mechanism that can utilize multi-resolution features to
guide the spatial level information of the encoder-decoder architecture.

• To investigate the performance of different multi-resolution transformations e.g.
wavelet, contourlet, and Gabor transforms as the guide signal of the attention
mechanism in nuclei segmentation task.

9



• To propose a boundary preserving unit along with a separate loss function that
gives more emphasis on the boundary of the nuclei regions.

• To develop a technique for producing three segmented images from three different
paths of the network by minimizing three separate loss functions and combining
them to produce the final segmented output.

• To validate the performance of the proposed method by conducting experiments
on three publicly available histopathology datasets.

1.6 Oraganization of the Thesis

The rest of the thesis is organized as follows:

In Chapter 2, an automated nuclei segmentation method is proposed based on atten-
tion network in which the attention module is guided by the boundary aware feature
maps generated by another encoder-decoder network. This boundary extractor network
is an encoder decoder network which is utilized to generate boundary aware signal.
This boundary aware signal is then injected to the attention module of another encoder-
decoder network which acts as the final segmentation network.

In Chapter 3, multi-scale directional contourlet filter driven attention network, namely
ConDANet, is proposed which utilizes both the spatial attention of the convoluted out-
put of the encoder-decoder network and multi-directional edge preserved output from
contourlet transform. The contourlet filter helps to provide additional edge level infor-
mation which allows the network to focus on the boundary region of the nuclei cell.
Since the contourlet filtered output is directly injected to the network, the chance of
losing important edge information can be minimized, which is a major concern in the
deep neural network architecture. Additionally, wavelet based pooling technique is em-
ployed to prevent the loss of detail information and low frequency components present
in the histopathology images. The combined operation of the proposed method is more
effective in preserving the small sized nucleus which is present in a compact data space.

In Chapter 4, a boundary aware wavelet guided network, termed as BAWGNet is pro-
posed. Prior to applying the data in the network, a preprocessing step is proposed to
handle the lack of data diversity, and the variation in color statistics in different image
modalities. Unlike the skip connection strategy of conventional encoder-decoder archi-
tecture, we propose an aggregation unit that introduces a guided attention mechanism
to combine the encoder and decoder information and also generates boundary Aware
information. In the guided attention unit, the spatial domain information at different
encoder-decoder levels is further processed under the guidance of the wavelet domain
information extracted from discrete wavelet transform. Moreover, the proposed bound-
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ary aware unit inside the aggregation unit helps preserve the boundary information of
the nucleus by incorporating a separate loss function which gives more attention to the
nuclei edge regions. The proposed wavelet guided attention unit and boundary aware
unit jointly leverage to identify small nucleus regions and separate the boundary of
adjacent individual nuclei very efficiently.

Chapter 5 summarizes the outcome of this thesis with some concluding remarks and
possible future works.

11



Chapter 2

Proposed Cell Nuclei Segmentation
Framework Using Boundary Aware
Feature Map Guided Attention
Network

In cell nuclei segmentation, it is very important to extract each nucleus with a high level
of precision. When conventional encoder-decoder based deep neural network architec-
tures are used to segment nuclei in a cell, two problems are observed. Firstly, the ex-
tracted nucleus boundary does not match accurately with the ground truth with different
types of distortions and discontinuities. Secondly, in some cases, neighboring bound-
aries are very close to each other and actual boundary cannot be found in the extracted
boundaries. In order to overcome these problems, in this chapter, attention mechanism
and wavelet based sampling strategy are incorporated in the encoder-decoder based seg-
mentation architecture. Moreover, in order to extract boundary information precisely, a
separate shallow boundary extractor (BE) encoder-decoder network is used that gener-
ates boundary preserving signal to guide the attention mechanism of the segmentation
network. In order to get a very precise nucleus boundary estimation, a separate loss
function is introduced for the shallow BE network. For this purpose, boundary only
mask is generated using image morphological operation on given nucleus mask. Fi-
nally, Extensive experimentations have been done over three publicly available datasets
containing a large number of subjects with complex nucleus orientations in different
organs and wide varieties of patients.
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2.1 Proposed Method

The cell segmentation task involves a pre-processing step followed by the proposed
boundary aware feature map generation scheme and the proposed attention module
based segmentation network. Details of these steps are presented in the subsequent
subsections.

2.1.1 Preprocessing

In histopathology images, there are usually two types of modalities- brightfield and flu-
orescence used as depicted in Fig.2.1. In order to handle the data diversity present in
this task, the images need to be augmented, contrast of histopathology images needs
to be enhanced and different modalities of images needs to be transformed into a com-
mon intensity level. Three preprocessing steps involved in this proposed method are
discussed here.

Figure 2.1: Histopathology mage sample acquired from (a) Brightfield (b) Fluorescence
microscopy techniques.

2.1.1.1 Augmentation

In dealing with histopathology images, one major fact is the variation in images due
to different acquisition techniques, which causes variation in angular position of the
images as well as the deformation in the shape of the nucleus. Keeping this fact in
mind, in order to handle the problem of limited number of samples, image formation
based augmentation techniques such as rotation, flipping, and shearing are considered.
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2.1.1.2 Intensity Level Transformation

One of the critical issues in the nucleus segmentation task is the generalization of the
network to work equally well for different image modalities. Due to their variation in
visual appearance and intensity level, it is difficult to train a universal model to work
equally well for both of these modalities. The lack of abundant data further complicates
this process and demands a preprocessing step to transfer all these modalities into a
common intensity range. To achieve this objective, LAB color space transformation
scheme is employed [74]. Transforming all the three channel images to LAB color
space helps to preserve the original structure and maintains similar brightness and color
statistics level leveraging the uniformity of data characteristics. At this stage, the two
modalities show opposite color statistics (second row of Fig. 2.2).

Figure 2.2: Visualization of microscopy images at different stages of preprocessing
step.

2.1.1.3 Contrast Enhancement and Color Inversion

Usually, the nucleus possesses a small region in the cell space that might be neglected
by a nucleus segmentation algorithm. In order to overcome this problem, various types
of contrast enhancement techniques are employed that enhance the visibility range of
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the small nuclei region. In this proposed method, contrast limited adaptive histogram
equalization (CLAHE) algorithm is applied to enhance the contrast of the histopathol-
ogy images [75]. Ordinary adaptive histogram equalization (AHE) tends to overamplify
the contrast in near-constant regions of the image, since the histogram in such regions is
highly concentrated. As a result, AHE may cause noise to be amplified in near-constant
regions. Contrast Limited AHE (CLAHE) is a variant of adaptive histogram equal-
ization in which the contrast amplification is limited, so as to reduce this problem of
noise amplification. Among the two modalities of the histopathology images, bright-
field images are widely employed in clinical institutions. The overall intensity level
of Fluorescent images are much higher than that of brightfield histopathology images.
Hence, a color inversion operation is performed on all images to shift the intensity lev-
els of fluorescent histopathology images. The inversion process of a random pixel xij
in an image X with mean intensity level X̄ is as follows

xij =

255− xij if X̄ > 127

xij if X̄ ≤ 127
(2.1)

This operation ensures that the images with mean intensity below a threshold level (first
two columns in Fig. 2.2) have no effect whereas, those having the opposite intensity
statistics shift their intensity to match the intensity level of brightfield images.

2.1.2 Proposed Boundary Aware Feature Map Guided Attention
Network

There are several major challenges lie in nuclei segmentation task such as, intensity
variation among images acquired from different imaging techniques and the unclear
appearance of the boundary pixels due to blurriness. While the first issue can be solved
by traditional image processing techniques like the preprocessing step of our proposed
method, the later issue requires special consideration. However, most of the studies
in this research direction fail to consider this issue. Hence, to address this concern, a
deep learning framework is proposed in this chapter which comprises of two separate
networks. The first one is the the primary network which is termed as the boundary
extractor network due to its acquisition of edge or boundary level information. It is a
traditional encoder-decoder network with less number of parameters compared to the
original U-net architecture. The second one is the final segmentation network which
is responsible to collect the boundary level information from the primary network and
utilize it through an attention module. Additionally, we adapt the wavelet based pooling
strategy in our final segmentation network which is effective in preserving the high
frequency signal and can prevent the loss of information compared to the traditional
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sampling techniques like max or average pooling and unpooling.

Figure 2.4: Morphological dilation based edge extraction.

2.1.2.1 Boundary Extractor Network

The proposed boundary extractor network is a U-net like architecture but with less
number of convolutional filters to reduce the computational complexity. The network is
depicted in Fig 2.3. Here, instead of using the segmented mask of the nucleus regions,
we exploit the synthetic edge of the nucleus regions in a histopathology image as the
true mask of this network. The boundary of the nucleus from the ground truth mask is
obtained by image dilation operation which is visualized in Fig 2.4 [76]. The encoder
and decoder part of this network is similar in structure. Both the encoder and decoder
have three blocks which contain two convolutional layers followed by a batch normal-
ization layer and a recursive linear unit (ReLU) activation function. Batch Norm is a
normalization technique done between the layers of a Neural Network instead of in the
raw data. It is done along mini-batches instead of the full data set. It serves to speed
up training and use higher learning rates, making learning easier. The Convolutional
layers in each stage contains 2i−1 × 16 number of filters with kernel size 3 × 3 (both
in encoder and decoder level) where, i = 1, 2, 3. A 2 × 2 max pooling layer is placed
after each convolutional layers to reduce the feature dimension. We extracted the fea-
ture maps from both the encoder and decoder of the proposed network and analysed
their ability in extracting the boundary information. The feature maps extracted from
the encoder part and the decoder part are visualized in Fig. 2.5. After careful inspection,
it is found that the decoder part are more efficient in learning the edge characteristics
of the nucleus while the encoder mostly concentrate on the overall structural of the nu-
cleus region. Since, the decoder serve the purpose of extracting boundary information
more efficiently, the feature maps extracted from the three decoder stages are chosen
for the boundary aware signal, which are utilized to guide the second network i.e. the
segmentation network.
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Figure 2.5: Visualization of feature maps at different stages of encoder and decoder. (a-
b) feature maps extracted from encoder stage, (c-d) feature maps extracted from decoder
stage, (e) a closer look of the feature maps extracted from decoder stage.

2.1.2.2 Boundary Aware Feature Map Guided Attention Network

The proposed segmentation network is similar to the boundary aware signal genera-
tion network except the attention module part and the wavelet sampling strategy. The
deatiled architecture is shown in Fig. 2.6. In order to provide edge level information
to the network, an attention mechanism is added to the network which is guided by
the boundary aware feature map extracted from the previous network containing the
edge aware information. Additional, Wavelet based sampling strategy can overcome
the problem of loss of information originated from the traditional down sampling of the
encoder part by preserving the spectral content of the encoder unit and reconstruct the
original content with a minimal loss in the decoder part.
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Wavelet Based Pooling Strategy Usually, feature dimension reduction of neural net-
work known as sampling strategy has traditionally been performed by the max or av-
erage pooling strategy in well-known encoder-decoder architectures such as U-net and
Unet++. These downsampling operations, however, frequently disregard the Nyquist
sampling theorem, resulting in aliasing of different data frequency components of the
signal. As a result, data details may be lost as a result of these operations. The max-
unpooling or bilinear interpolation approaches, on the other hand, are widely used for
up-sampling operations in the decoder part. Although they are used to recover data
details, they cannot be completely reconstructed. To solve this problem 2D discrete
wavelet transform (DWT) and the inverse DWT (IDWT) are adopted in this method. A
wavelet-based sampling strategy can address this issue by preserving the spectral con-
tent in the encoder unit and reconstructing the original content with minimal loss in
the decoder. The input image is first processed through a series of encoding operations
using a convolution filter, a batch normalization layer, and a ReLu activation operation.
The down-sampling and up-sampling operations are then replaced by the DWT and
IDWT operations at each encoder and decoder stage. The DWT decomposes the signal
into three high frequency components and one low frequency components as follows:

Imn = (fmn ∗ I)↓2, (2.2)

where (.)↓2 stands for the 2-times downsampling process, fmn stands for one of the four
filters (high and low pass filters) to be applied, and * denotes the convolution operation.
The filtered output is denoted by the subscript Imn, where ll denotes a low pass filter
and lh, hl, and hh denote three high pass filters. In order to recover the feature map
in the decoder stage the IDWt operation is performed by combining the low frequency
component transmitted into the network’s subsequent layers and the high frequency
components comingg from the encoder stages.

I =
∑

fmn ∗ I↑2 (2.3)

Here, (.)↑2 represents the 2 times upsampling operation.

Attention Module In order to guide the spatial level information with the extracted
boundary aware information, an attention mechanism is designed in the proposed method
which is shown in Fig. 2.7. In this block, the boundary aware feature maps (g) to guide
the network to leverage the salient edge region of the given images. First, g and the input
tensor (X) are linearly transformed using a 1 × 1 convolution block, batch normalized
and added together. The introduction of the batch normalization in the attention module
plays a significant role here. Since, the extracted feature maps are coming from another
network, it is important to keep their values consistent with the feature maps coming
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Figure 2.7: A visualization of the attention mechanism used in the segmentation net-
work to combine the boundary aware and spatial domain information.

from the decoder part of our segmentation network. Here, batch normalization acts as
the feature normalization that creates consistency between two different features. The
convolution operation allows to extract the most promising features from them and the
addition operation further enhance the features those are found relevant in both spatial
and frequency domain. The resultant output is then passed through a ReLU activation
function σ1, to prevent vanishing gradient problem followed by a 1 × 1 convolution
layer φ to find the gating coefficient, gatt,c. An additive attention is used to obtain this
gating coefficient. The overall process can be represented by the following expression,

gatt,c = φT(σ1(w1
Tx+ w2

Tg + bg)) + bφ, (2.4)

where w1, w2, and φ are the linear transformations and σ1 is the ReLU activation op-
erator which is defined as σ1(x) = max(0, x). Afterward, the attention coefficient α is
obtained by applying a sigmoid activation function σ2 to gatt,c. The reason for selecting
sigmoid function over softmax is that the sequential use of softmax function may result
in sparse activation of the output [77]. Finally, the output of the wavelet guided attention
block (Mw) is found from the element wise multiplication of the attention coefficient
and the input tensor X . The final output is as follows,

Mw,i = σ2(gatt,c) . X (2.5)

Since, the problem is a binary class segmentation problem, the conventional binary
cross-entropy loss is utilized as the loss function of this network which is defined by the
following equation:

L =
1

N

N∑
j=1

pj log yj + (1− pj) log(1− yj) (2.6)

where pj denotes the predicted probability value of jth sample, yj represents the corre-
sponding label, and N is the total number of samples.
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2.2 Results and Discussions

In this section, the description of the datasets used in this method, the required setup
for our experiment and results found from extensive experimentation on several pub-
licly available datasets are presented and discussed to validate the effectiveness of the
proposed scheme.

2.2.1 Dataset Description

To verify the effectiveness of the proposed algorithm, three publicly available datasets
are employed. The first one is Data Science Bowl (DSB-2018) which was released
by Kaggle for competition purpose [78]. The dataset contains a large number of seg-
mented nuclei images that were acquired under different conditions and vary in cell
type, shape, magnification, illumination status, and imaging modality (brightfield and
fluorescence). The training set of this dataset contains 670 images in which 546 images
are brightfield and the rests are fluorescence. The test set contains 65 images and their
manual segmentations are provided for the evaluation purpose.

The second dataset used for evaluation purpose is multi-organ nuclei segmentation chal-
lenge (MoNuSeg) which contains a diverse set of Hematoxylin-Eosin (HE) stained tis-
sue images [79]. It contains 30 images with around 22,000 nuclear boundary annota-
tions for training and 14 images with 7,000 nuclear boundary annotations for testing
purpose. This dataset was collected from 18 hospitals and a wide range of patients. The
size of all the images is 1000×1000.

The final dataset is the triple negative breast cancer (TNBC) dataset which consists of
50 images with a total of 4,022 annotated cells, including normal epithelial and my-
oepithelial breast cells (localized in ducts and lobules), invasive carcinomatous cells,
fibroblasts, endothelial cells, adipocytes, macrophages and inflammatory cells (lym-
phocytes and plasmocytes) [70]. The size of the images is 500 × 500. The sample
images collected from these three datasets are visualized in Fig 2.8.

2.2.2 Experimental Setup

In the data augmentation step, the images are augmented by three operations. The im-
ages are rotated by 30◦ and 60◦, flipped horizontally, and sheared by following affine

transformation

1 0 0

s 1 0

0 0 1

, where s is selected as 0.3. During the training period, dif-

ferent hyperparameters are chosen based on the performance of the model. Adam op-
timizer with a learning rate of 0.001 and a decaying rate of 0.99 after each 10 epochs
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Figure 2.8: A visualization of the samples collected from (a) Data Science Bowl 2018,
(b) MoNuSeg and (c) TNBC datasets.

is chosen for the primary network and the network is trained for 50 epochs. Adam is a
method for efficient stochastic optimization that only requires first-order gradients with
little memory requirement. The method computes individual adaptive learning rates for
different parameters from estimates of first and second moments of the gradients; the
name Adam is derived from adaptive moment estimation. This method is designed to
combine the advantages of two popular methods: AdaGrad [80], which works well with
sparse gradients, and RMSProp [81], which works well in on-line and non-stationary
settings. Some of Adam’s advantages are that the magnitudes of parameter updates are
invariant to rescaling of the gradient, its stepsizes are approximately bounded by the
stepsize hyperparameter, it does not require a stationary objective, it works with sparse
gradients, and it naturally performs a form of step size annealing. The secondary or
segmentation network is optimised with same hyperparameters, but is trained for 100
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epochs. All the experimentations have been implemented on the Google cloud platform
with NVIDIA P-100 GPU as the hardware accelerator.

For the DSB dataset, all the images are resized into 256× 256 to feed into our network.
The size of each images of the MoNuSeg dataset 1000 × 1000. To make it compatible
with the input size of our network, each images are zero padded to change the size of the
network to 1024× 1024 and then 16 non-overlapping image patches of size 256× 256

are extracted. These cropped images are then acted as the inputs of the network. Finally,
for TNBC dataset, the size of the images are 512×512. Hence, each images are tiled to
four image patches with size of 256×256 are employed for the training purpose. During
the testing phase, the similar patches are employed in the model and their segmented
images are merged to obtain the segmentation results of the whole image.

Several standard evaluation metrics are utilized to assess the performance of the pro-
posed model which are stated as follows:

Dice =
2TP

2TP + FP + FN
(2.7)

IOU =
TP

TP + FP + FN
(2.8)

Precision =
TP

TP + FP
(2.9)

Recall =
TP

TP + FN
(2.10)

The dice score is a statistic used to gauge the similarity of two samples [82]. Intersec-
tion over Union (IoU) is a measure that specifies the amount of overlap between the
predicted and ground truth bounding box. Here, TP, FP, and FN represent true posi-
tive, false positive, and false negative, respectively. For training and testing purpose
of the DSB-2018 and TNBC datasets, the images are splitted as 80:10:10 for training,
validation, and testing. Moreover, the results on the test set of MoNuSeg dataset are
also reported and we compare it with the state of the art image segmentation as well as
nuclei segmentation networks to corroborate the effectiveness of the proposed network.

2.2.3 Analysis of the Segmentation Performance

At first, an ablation study is provided to describe the performance of each of the modules
of the proposed methodology. Eventually, the performance of the proposed network is
compared with that obtained by the other state-of-the-art segmentation networks and its
superiority is explained in qualitative and quantitative manner.
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Table 2.1: Ablation study of the proposed Network on three datasets.

Prepr. Wavelet Pooling Attention Unit DSB-2018 MoNuSeg TNBC
Dice IOU Dice IOU Dice IOU

X X X 82.46 73.52 73.08 58.92 66.51 51.41
X X X 84.34 76.97 76.02 62.97 70.45 54.83
X X X 85.40 77.57 78.01 65.09 71.98 55.55
X X X 88.05 79.98 80.96 69.92 74.25 55.87

Table 2.2: Performance comparison of different architectures in the DSB-2018 dataset (8:1:1 split setup)

Network Dice(%) IOU(%) Precision(%) Recall(%)
Segnet [83] 75.48 62.36 84.08 68.47
U-Net [42] 86.75 76.97 85.55 87.98

nucleAIzer [84] 86.92 75.89 82.32 90.91
Attention U-net [51] 87.30 77.51 79.97 94.81

CENet [85] 87.25 76.50 79.21 91.90
FPN [45] 87.34 77.97 80.34 95.67

Our Method 88.05 79.98 81.07 95.81

2.2.3.1 Ablation Study

To represent the individual performance contributed by different components of our
proposed model, an ablation study is performed under different settings of the method.
The summary of this study is depicted in Table.2.1. Here, we utilized two standard
performance evaluation metric, dice coefficient and intersection over union (IOU) to
represent the improvement contributed by each module. When utilizing preprocessing
methods, dice score improvement between 2.28 and 5.92 percent is seen for the three
datasets compared to the baseline. The IOU performance also increases by 4.7% to
6.9%. This improvement in performance demonstrates the efficacy of the preparing
the data to the model’s input and removing discrepancies between various the imaging
modalities used in histopathology. Additionally, the wavelet pooling module in paral-
lel produces somewhat improved DSB-2018 results (upto 1.25 percent), while a better
improvement is found in the MoNuSeg and TNBC datasets (2.17–2.61%). Finally, we
integrates the attention module into the network. Integrating the attention module with
the wavelet pooling module, the best results are obtained in all three datasets with an
improvement between 4.36-4.74% in terms of dice score and 4.17-8.91% in terms IOU.
Here, while wavelet pooling works as a simple pooling strategy on the convoluted sig-
nal in intermediate layers, the attention module utilizes the additional boundary aware
information to the network and works as an effective tool to identify the contour around
the nucleus region.

2.2.3.2 Quantitative Analysis

In order to compare the effectiveness of our proposed method, a comperative analysis
is presented for the TNBC, MoNuSeg, and DSB-2018 datasets in Table 2.2, Table 2.3,
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Table 2.3: Performance comparison of different architectures in the MoNuSeg dataset (8:1:1 split setup)

Network Dice(%) IOU(%) Precision(%) Recall(%)
Unet [42] 74.67 60.89 71.24 78.44
DIST [70] 77.31 63.77 75.31 79.41
Segnet [83] 77.44 63.3 73.91 81.32

Attention U-net [51] 78.67 66.51 77.87 82.33
CENet [85] 79.35 65.86 77.86 81.55
FPN [45] 80.02 66.89 74.98 82.19

Our Method 80.96 69.92 78.82 87.21

Table 2.4: Performance comparison of different architectures in the TNBC dataset (8:1:1 split setup)

Network Dice(%) IOU(%) Precision(%) Recall(%)
U-Net [42] 68.61 52.92 65.94 72.54

Mask-RCNN [86] 70.54 52.97 66.27 75.39
DIST [70] 70.51 56.34 66.82 74.63

Micro-Net [47] 71.23 53.71 66.52 76.61
Attention U-net [51] 71.43 54.21 70.01 76.03

FCN [87] 72.67 50.62 67.53 78.53
CEnet [83] 73.88 54.93 71.11 76.71

Our Method 74.25 55.87 71.32 78.42

and Table 2.4, respectively. It is noticed that our proposed network outperforms all the
previously proposed segmentation networks by a significant amount in all the evalu-
ation metrics. The proposed networks exhibits performance improvement over FCN,
Unet, Segnet and other benchmark networks in nucleus segmentation task. Aside from
these networks, it has also shown its superiority compared to the state-of -the-art nu-
clei segmentation network, CE-Net. Using the proposed framework, 4.25%, 2.15%,
and 1.47% dice improvements are achieved over the results obtained in CE-net for the
TNBC, MoNuSeg, and DSB-2018 datasets, respectively. The proposed network’s ro-
bustness and efficacy in determining the nuclei region can be corroborated by the high
scores of other metrics reported. The proposed network’s ability to provide additional
boundary aware information from the feature generation network through the attention
mechanism provides additional information to the network. Moreover, with the help of
wavelet pooling strategy and the preprocessing steps, it performs efficiently in capturing
the small nuclei regions and thus improves both the precision and recall.

2.2.3.3 Qualitative Analysis

Quantitative analysis alone cannot always define the effectiveness and superiority of a
method. The efficacy of the model can only be identified if the model performs out-
standingly in the critical cases of a particular problem. Hence, the segmentation per-
formance of different networks along with our proposed network in some challenging
cases are presented in Fig.2.9. The presence of other cell organelles with similar in-
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Table 2.5: Computational Efficiency Analysis of Numerous Architectures along with the Performance of the proposed method.

Methods Number of Parameters (millions) Inference Time (seconds)

Unet 31.0 0.1
MicroNet 184 0.18
DIST 8 0.12
SegNet 14.7 0.17
Attention U-net 8.727 0.09
CENet 38.8 0.12
FPN 8.4 0.137
Our Proposed 3.4 0.1

tensity levels to the nucleus, as well as the position of the nucleus in close proximity
to each other, might be responsible for a significant number of false positive cases. It
is evident from the segmentation performance of the other networks that all of them
struggle to address these issues. On the other hand, our proposed method with its effi-
cient utilization of spatial and boundary level information considerably addresses these
issues and significantly shows its performance in the challenging situation of nuclei
segmentation task. The computational efficiency of different networks are summarized
in Table 2.5. Although the proposed method utilizes a separate architecture to extract
the boundary preserving signal, the utilization of the shallow encoder decoder network
limits the overall computational cost. Also, the network works almost equally faster
with respect to the the Attention U-net with almost 2.5 times memory efficiency.

2.3 Conclusion

In this paper, we address two major issues present in the nulcei characteristics. The first
one is the small sized nuclei region and the other one is the blurred edge region. Both
of them are challenging situations because of their presence in low dimensional space
for which they can be excluded during the segmentation operation. To handle these
issues, two necessary modifications are conducted in the traditional encoder-decoder
architecture. First, a boundary aware feature map generation network is introduced
which produces edge level feature map that are used to guide our segmentation network
through an attention mechanism. Additionally, it is found that the wavelet pooling
based sampling strategy can solve the problem of identifying the small-sized nuclei
regions by its effective reconstruction capability in the decoder part which can not be
possible in the sampling technique like max-pooling or average-pooling operation. The
qualitative and quantitative analysis of the proposed method with other modern deep
learning architectures including the attention based network and context aware deep
learning architectures clearly demonstrates the superior performance of this network.
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Chapter 3

Proposed Cell Nuclei Segmentation
Scheme Based on Contourlet Driven
Attention Mechanism

A typical human body contains 30 trillion cells, each with its nucleus containing DNA
that programs the cell [78]. The morphology and nucleus polymorphism presented on
slides of Hematoxylin and Eosin (HE) stained microscopic tissue images allow doctors
to identify cell functions and even grade a patient’s cancer stage. As a result, accurate
nuclei segmentation from histopathology images can help doctors treat patients more
effectively and assess treatment efficacy. Usually the manual segmentation of nuclei
in cell histopathology images is exhausting and time-consuming for clinicians which
creates a demand for an accurate and efficient computer-aided technique. Despite pre-
vious efforts to automate this process, it still remains a difficult task due to the presence
of overlapping nuclei and complicated boundary properties [41, 88]. Therefore, appro-
priate automation in reliable and accurate cell nuclei segmentation in medical image
analysis is highly desired to assist expert clinicians and increase the efficacy of this
task.

In this chapter, a deep learning-enabled segmentation framework, namely ConDANet, is
developed which consists of an attention mechanism driven by the contourlet transform
of the histopathology images. Contourlet transform not only exploits the advantage of
the multi-scale and time frequency localization properties of wavelets but also provides
a high degree of directionality. These features enhance the proposed attention mech-
anism to extract the find edge details of the nuclei regions. Additionally, the wavelet
pooling strategy instead of the traditional max-pooling and average-pooling operation
of a convolutional neural network which preserves the original textural content of the
nucleus in histopathology images and prevents the loss of information in the subsequent
sampling operation of the encoder-decoder part of the network. Finally, the proposed
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Figure 3.1: Visualization of microscopy images at different stages of preprocessing
step.

method is employed for analyzing three publicly available histopathology datasets to
manifest its effectiveness of it in segmenting nuclei from cellular images extracted from
a wide variety of organs and patients.

3.1 Proposed Method

The cell segmentation task involves a pre-processing step followed by the proposed
contourlet driven attention network (ConDANet). Details of these steps are presented
in the subsequent subsections.

3.1.1 Preprocessing

Usually, the two most commonly employed microscopy systems are fluorescent and
brightfield microscopy which are used to visualize a single molecules and whole cell
structure. The images acquired from these two modalities vary in their intensity level,
color statistics and contrast information. In order to reduce such variations among im-
ages acquired from two different modalities, transformation of these images into similar
intensity level and color statistics is required. Moreover, considering the lack of data
availability is a major concern. To address these issues, a set of preprocessing opera-
tions are employed in this method. At first, several augmentation techniques are applied
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to handle the data scarcity issue. Next, to handle the variation in intensity level across
the modalities, all the three channel images are transformed to LAB color space which
ensures the preservance of the original cell structure and maintains the uniformity along
the data [74]. To enhance the visibility range of each of the nuclei more specifically in
the brightfield images, contrast level image enhancement is an important step. Hence,
contrast limited adaptive histogram equalization (CLAHE) is applied to enhance the
contrast of the histopathology images [75]. At this stage, the two modalities namely
the fluorescent and the brightfield microscopy images show opposite intensity charac-
teristics where intensity levels of nuclei in fluorescent histopathology images are much
lower than that of brightfield histopathology images . Hence, the following color in-
version process is applied. For a random pixel, xij in an image, X with mean intensity
level, X̄ , the inversion process can be expressed as:

xij =

255− xij if X̄ > 127

xij if X̄ ≤ 127
(3.1)

At this stage, all the images from two different modalities show similar intensity level
and color statistics as shown in Fig.3.1.

3.1.2 Proposed Contourlet Driven Attention Network

Here, a contourlet driven attention network, namely ConDANet, is proposed which
utilizes directional multi-resolution signal to inject additional fine scale detail features
to the network. The traditional U-net like architecture is utilized as the baseline network
of this proposed method which comprises of an encoding part and a decoding part. In
this traditional encoder-decoder architecture, two separate modifications are introduced
as follows:

• Our primary objective is to inject multi-level directional feature to guide the spa-
tial level information found from the traditional U-net architecture. The moti-
vation of this approach is to enrich the spatial information with the edge-aware
information to make the model more capable in capturing the faded boundary
region of the nuclei structure. To serve this purpose, contourlet transform is ex-
ploited to produce edge aware transformed signal. However, instead of working
with the contourlet transformed images as the input of the network, we propose
an attention mechanism which takes the spatial domain information at different
levels of encoder-decoder architecture as the input and the contourlet transformed
images as the controlling signal which assists the model to focus on the edge por-
tion, eventually captures the find edge details of the network.

• The subsequent downsampling operation in the encoder part of the network can
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Figure 3.3: Visualization of contourlet driven attention mechanism.

have an unwanted impact in the spatial level information, especially on the objects
present in a small spatial domain. Due to the capability of wavelet transform in
preserving the original texture of the image in a small spatial domain, a wavelet
pooling is adopted instead of the traditional max or average pooling operation in
this method.

The detailed architecture of the proposed network is shown in Fig.3.2.

3.1.2.1 Wavelet Based Pooling Strategy

Our backbone network is an encoder.-decoder network similar to U-net like architec-
tures. However, instead of using the traditional up and down-sampling operation in the
encoder-decoder part, the 2D discrete wavelet transform (DWT) and the inverse DWT
(IDWT) are utilized as the sampling method. Traditionally, the well-known encoder-
decoder architectures, such as U-net and Unet++, perform the down-sampling opera-
tion by the max or average pooling strategy. However, these down-sampling operations
usually neglect the Nyquist sampling theorem resulting in aliasing of different data fre-
quency components of signal. As a result, data details may lost in these operations. On
the other hand, for up-sampling operation in the decoder part, the max-unpooling or bi-
linear interpolation approach are widely used. Although they are applied to recover the
data details, that cannot be reconstructed completely. Wavelet based sampling strategy
can overcome this problem by preserving the spectral content in the encoder unit and
reconstruct the original content with a minimal loss in the decoder part. First, the input
image is passed through a sequence of encoding operation with convolution filter, batch
normalization layer, and ReLu activation operation. Next, at each encoder and decoder
stages, the down-sampling and up-sampling operations are replaced by the DWT and
IDWT operations. The DWT decomposes the signal into three high frequency compo-
nents and one low frequency components as follows:

Xij = (fij ∗X)↓2, (3.2)
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Figure 3.4: Contourlet filter bank.

where * denotes convolution operation, (.)↓2 represents the 2 times downsampling op-
eration, and fij represents one of the four filters (high and low pass filters) to be used.
Xij is the corresponding filtered output where, Subscript ‘ij’ refers to filter type i.e. ll
for low pass filter, and lh, hl, and hh for three high pass filters. The low frequency com-
ponent is transmitted into the subsequent layers of the network and the high frequency
components are combined with the decoding stage outputs to recover the feature map
using IDWT operation which is as follows:

X =
∑

fij ∗X↑2 (3.3)

Here, (.)↑2 represents the 2 times upsampling operation.

3.1.2.2 Contourlet Driven Attention Mechanism (ConDAM)

Utilization of DWT operation instead of the max or average pooling operation in the
encoder-decoder architecture cannot always ensure the prevention of loss of informa-
tion, especially in edge regions where the image quality is not prominent. It may create
unwanted noise and hamper the segmentation performance. In order to provide edge
level information to the network, an attention mechanism is required which is driven
by a controlling signal containing the edge aware information at multiple directions.
To accomplish this objective, a contourlet transform driven attention mechanism is pro-
posed here. The proposed attention mechanism is depicted in Fig.3.4 and described in
the following subsections.
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Figure 3.5: Directional filter bank. Frequency partitioning where level (a) l = 2 and
there are 22 = 4 real wedge-shaped frequency bands, and (b) l = 3 and there are 23 = 8
real wedge-shaped frequency bands.

Controlling Signal The contourlet transform is an effective method which can realize
multi-resolution and direction decomposition flexibly and grasp essential information
from a two dimensional image [89–91]. It is well suited for multiscale edge-based im-
age analysis due to its superior performance in representing the image salient features
such as edges, lines, curves, and contours [92–94]. The contourlet operation consists
of two separate filtering techniques. The first one is a Laplacian pyramid filter which
can extract the multi-resolution features of an image and the other one is the directional
filter banks that can decompose the image into multi directional components. A typical
contourlet filter with a combination of a Laplacian pyramid (LP) and a directional filter
bank (DFB) is shown in Fig.3.4. At first, the Laplacian Pyramid decomposition at each
level generates a lowpass filtered coarser image and a bandpass image resulting from
the difference between the original and the coarse image, which is termed as detail im-
age. The LP decomposition at each level generates a downsampled lowpass version of
the original and the difference between the original and the prediction, resulting in a
bandpass image. Fig. 3.7 depicts this decomposition process, where H and G are called
(lowpass) analysis and synthesis filters, respectively, and M is the sampling matrix. The
process can be iterated on the coarse (downsampled lowpass) signal. Note that in mul-
tidimensional filter banks, sampling is represented by sampling matrices; for example,
downsampling x[n] by M yields xd[n] = x[Mn], where M is an integer matrix [95].
Bandpass images from the LP are fed into a DFB so that directional information can
be captured. The scheme can be iterated on the coarse image. The combined result is
a double iterated filter bank structure, named contourlet filter bank, which decomposes
images into directional subbands at multiple scales.Next, the DFB is applied on the de-
tail image to capture the directional information of the edge signal. DFB is basically a

35



Figure 3.6: Example of the contourlet transform on the histopathology image. For clear
visualization, each image is only decomposed into one pyramidal level, which are then
decomposed into four directional subbands. Small coefficients are shown in black while
large coefficients are shown in white.

l-level binary decomposition of a signal that leads to a 2l subbands with wedge-shaped
frequency partitioning as shown in Fig.3.5 [96]. In our case, two level directional filter
bank decomposition is followed which creates one coarser image and four band pass
filtered directional image components as shown in Fig.3.6.

Figure 3.7: Laplacian pyramid. (a) One level of decomposition. The outputs are a
coarse approximation a[n] and a difference b[n] between the original signal and the
prediction. (b) The new reconstruction scheme for the Laplacian pyramid

Figure 3.8: Effect of Contourlet driven attention module (CDAM). (a) Original image
(b) Ground truth (b) feature map without CDAM (d) feature map with CDAM
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Driven Attention Module An attention mechanism is proposed to incorporate the
contourlet transformed bandpass directional information (S) of image data with the low
level semantics of the decoder as shown in Fig.3.3. Initially, the directional components
coming from the countourlet transform operation are passed through a 1 × 1 convolu-
tional operation and concatenated with each other to form the controlling signal. On
the other hand, the decoder level information is utilized as the input of our attention
block and also linearly transformed using a 1× 1 convolution block. The resultant con-
trolling and input signal are then multiplied and passed through a softmax activation
function to create a new feature map M . The softmax operation is performed to cre-
ate the probability distribution over the controlling signal. The resultant feature map is
further multiplied with the convoluted controlling signal (SC) to extract the prominent
regions found from the controlling signal. The overall operation can be summarized by
the following equation:

SO = Softmax(φ1(X)φ2(S)T )φ2(S) (3.4)

Here, φ1 and φ2 are the 1×1 convolution operation. At this stage, to regulate the degree
of enhancement of input signal, a gating mechanism is proposed to prevent information
overload. The gating mechanism, G comprises of a sigmoid activation function fol-
lowed by a linear layer. The gating mechanism creates the final feature map φatt which
can be represented as follows:

φatt = G.X + (1−G).SO (3.5)

Since, the problem is a binary class segmentation problem, the conventional binary
cross-entropy loss is utilized as the loss function of this network which is defined by the
following equation:

L =
1

N

N∑
j=1

pj log yj + (1− pj) log(1− yj) (3.6)

where pj denotes the predicted probability value of jth sample, yj represents the corre-
sponding label, and N is the total number of samples.

3.2 Results and Discussion

The datasets used for the evaluation of the proposed method are described briefly in
this section. Next, the simulation details are discussed thoroughly. Finally, the perfor-
mance of the modules of the proposed method and the method itself are presented and
discussed compared to the other state-of-the-art methods.
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3.2.1 Datasets

Three publicly available datasets are utilized in this work to verify the functioning of
the proposed model.

3.2.1.1 Data Science Bowl (DSB-2018)

The first one is released as a Kaggle competition dataset known as data science bowl
(DSB-2018) [78]. The training set comprises of total 670 images microscopy images
that were acquired under different conditions and vary in cell type, shape, magnifi-
cation, illumination status, and imaging modality (brightfield and fluorescence). The
distribution of nuclei particle size varies from 21 to 1037 pixels. The data can be found
in [97]

3.2.1.2 MoNuSeg Dataset

Multi-organ nuclei segmentation challenge (MoNuSeg) [79] is selected as the second
dataset evaluated in this work. It contains a diverse set of Hematoxylin-Eosin (HE)
stained tissue images where 30 images with around 22,000 nuclear boundary annota-
tions is available for training and 14 images with 7,000 nuclear boundary annotations
are available for testing purpose. The histopathology images of this dataset are col-
lected from wide range of patients and their resolution is 1000× 1000. The data can be
found in [98]

3.2.1.3 TNBC Dataset

The final dataset is the triple negative breast cancer (TNBC) dataset [70], which in-
cludes 50 images with a total of 4,022 annotated cells, including normal epithelial and
myoepithelial breast cells (localized in ducts and lobules), invasive carcinomatous cells,
fibroblasts, endothelial cells, adipocytes, macrophages, and inflammatory cells (lym-
phocytes and plasmocytes). The images are 500 × 500 in size. The data can be found
in [99]

3.2.2 Training and Implementation Details

In order to match the image resolution of the datasets used in this method with the input
size of our proposed model, some modifications are done on those three datasets. The
images in the DSB-2018 dataset are resized into 256 × 256 to feed into the network.
Since, the image size of the MoNuSeg dataset is 1000×1000, each image is zero padded
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to convert the image size to 1024×1024 to make it divisible by the input size of the net-
work. Then each of these images are cropped to 16 non-overlapping images with size
of 256 × 256 and finally these image patches are fed into the network. Similarly, for
TNBC datsaset, the images are converted to 512×512 and then four image patches with
size of 256× 256 are obtained. In the preprocessing step, two commonly used augmen-
tation techniques —rotation and flipping, are followed in our methods. Following these
two techniques, the original images are rotated by 30◦ and 60◦, and flipped horizontally,
respectively. To make our proposed model perform better for the nuclei segmentation
task, different hyperparameters are chosen based on empirical analysis. The network is
trained for 70 epochs. To optimize the network, Adam optimizer with a learning rate
of 0.005 is used and a decaying rate of 0.99 after each 10 epochs is chosen to reduce
the loss of the network. The model is implemented on the Google cloud platform with
NVIDIA P-100 GPU as the hardware accelerator.

To assess the model performance on the datasets, several performance evaluation met-
rics are utilized. Since, it is a segmentation task, we have selected the most commonly
used metrics of the typical segmentation tasks which are as follows [100]:

Dice =
2TP

2TP + FP + FN
(3.7)

IOU =
TP

TP + FP + FN
(3.8)

Precision =
TP

TP + FP
(3.9)

Recall =
TP

TP + FN
(3.10)

where, TP, FP, and FN represent true positive, false positive, and false negative pre-
dictions, respectively. Since, only the training data are available for the DSB-2018 and
TNBC datasets, 80% of the training images are considered for training stage and the rest
are equally divided for validation and testing purpose. Moreover, the result on the test
set of MoNuSeg are also reported and compared with the state of the art segmentation
networks to validate the effectiveness of the proposed network.

3.2.3 Ablation Study of the proposed nuclei segmentation Network

To represent the individual performance contributed by different components of our
proposed model, an ablation study is performed under different settings of the method.
The summary of this study is depicted in Table.3.1. Here, we utilized two standard
performance evaluation metric, dice coefficient and intersection over union (IOU) to
represent the improvement contributed by each module. Compared to the baseline,
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dice score improvement between 2.28-5.92% is observed over the three dataset while
using preprocessing steps. The IOU performance also improves between 4.7-6.9%.
This performance improvement indicates the effectiveness of the preprocessing steps
in preparing the data to feed into the model and removing the inconsistencies between
different modalities of the histopathology images. Moreover, having the wavelet pool-
ing module in parallel brings slightly better results (1.25% improvement) in DSB-2018,
while obtains a better improvement (2.17-2.61%) in MoNuSeg and TNBC dataset. The
reason for this scenario is found by observing the complex cases of the three datasets.
The overlapping nuclei and the small sized nucleus cases are less likely in DSB-2018
dataset compared to the other two. Thats why the impact of the wavelet pooling is less
promising in the DSB-2018. Next, we have utilized the proposed CBGA module with-
out WP approach and find a 2.98-3.7% improvement in dice score is achieved. Finally,
integrating the ConDaM with the wavelet pooling module, the best results are obtained
in all three datasets with an improvement between 4.36-4.74% in terms of dice score
and 4.17-8.91% in terms IOU compared to the case when ConDAM module is not ap-
plied. Here, while wavelet pooling works as a simple pooling strategy on the convoluted
signal in intermediate layers, the ConDAM injects the additional wavelet domain infor-
mation to the network and works as an effective tool to identify the contour around the
nucleus region.

3.2.4 Comparison to the State-of-the-art Methods

In order to corroborate the effectiveness of the proposed method in segmenting nuclei
region compared to the other popular deep neural frameworks, the experimental results
of several state-of-the-art networks are reported for DSB-2018, MoNuSeg, and TNBC
datasets in Table.4.1, Table.4.2, and Table.4.3, respectively. In the DSB-2018 dataset,
compared to the other encoder-decoder networks that were used for medical image seg-
mentation purpose- i.e., U-net, FPN, and Segnet - our network achieves an overall per-
formance improvement of 2.48%, 2%, and 17.8% in terms of dice score, respectively.
The huge difference in performance improvement is because of the liability of Segnet
in rounding edges which is already proved in [101]. On the other hand, compared to
the attention based network like Attention U-net, a 2% improvement is observed. This
improvement proves the superiority of contourlet driven attention mechanism instead
of the attention of the encoding signal. Finally, we also compared our model with some
of the recent context aware deep learning frameworks applied for the nuclei segmenta-
tion task i.e., CENet and nucleAIzer- in which context information is utilized in order
to elevate the performance. After coparing the result with our technique, an average
of 1.9-2.28% improvement is observed. In addition to dice score comparison, three
other standard performance evaluation metrics are also utilized which provides the sim-
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Table 3.1: Ablation study of the proposed network on three datasets.

Pre-
proces

sing

wavelet
pooling ConDAM DSB-2018 MoNuSeg TNBC

Dice IOU Dice IOU Dice IOU
X X X 82.46 73.52 73.08 58.92 66.51 51.41
X X X 84.34 76.97 76.02 62.97 70.45 54.83
X X X 85.40 77.57 78.01 65.09 71.98 55.55
X X X 87.95 80.21 81.02 69.92 74.65 56.12
X X X 88.91 80.81 81.71 70.89 75.12 56.87

Table 3.2: Performance comparison of different architectures in the DSB-2018 dataset (8:1:1 split setup).

Network Dice(%) IOU(%) Precision(%) Recall(%)
Segnet [83] 75.48 62.36 84.08 68.47
U-Net [42] 86.75 76.97 85.55 87.98

nucleAIzer [84] 86.92 75.89 82.32 90.91
Attention U-net [51] 87.30 77.51 79.97 94.81

CENet [85] 87.25 76.50 79.21 91.90
FPN [45] 87.34 77.97 80.34 95.67

ConDANet 88.91 80.81 82.11 96.73

ilar observation as well. The similar scenario is observed in other two datasets as well
which is summarized in Table.4.2 and Table.4.3.

3.2.5 Qualitative evaluation

In addition to quantitative performance measurement, a qualitative analysis of the pro-
posed method is conducted by visual representation of the segmented nucleus obtained
by using different state-of-the-art methods along with our proposed approach. Fig.4.6
displays the segmentation performance on three separate cases obtained from three
datasets. Inspite of the close results found in the quantitative study, some interesting
observations are found from the visual expectation. Here, we considered three differ-
ent network architectures for the comparison purpose which are —the basic encoder-
decoder architecture U-net, the attention based network attention U-net, and the context

Table 3.3: Performance comparison of different architectures in the MoNuSeg dataset (8:1:1 split setup).

Network Dice(%) IOU(%) Precision(%) Recall(%)
FCN [87] 79.77 62.45 73.21 87.46
Unet [42] 74.67 60.89 71.24 78.44
DIST [70] 77.31 63.77 75.31 79.41
Segnet [83] 77.44 63.3 73.91 81.32

Attention U-net [51] 78.67 66.51 76.71 82.33
CENet [85] 79.35 65.86 77.86 81.55
FPN [45] 80.02 66.89 74.98 82.19

ConDANet 81.71 70.89 79.95 88.33
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Table 3.4: Performance comparison of different architectures in the TNBC dataset (8:1:1 split setup).

Network Dice(%) IOU(%) Precision(%) Recall(%)
U-Net [42] 68.61 52.92 65.94 72.54

Mask-RCNN [86] 70.54 52.97 66.27 75.39
DIST [70] 70.51 56.34 66.82 74.63

Micro-Net [47] 71.23 53.71 66.52 76.61
Attention U-net [51] 71.43 54.21 70.01 76.03

FCN [87] 72.67 50.62 67.53 78.53
CEnet [83] 73.88 54.93 71.11 76.71
ConDANet 75.12 56.87 72.02 79.13

aware network CENet. First, we consider a comperatively simple case from DSB-2018
dataset with farely separable and no clustered or adjacent nuclei. Since the edge char-
acteristics are distinguishable in this particular case, the three networks performs quite
well in this segmentation task except some false positive and negative cases around the
contour of some nuclei. Afterward, two comperatively difficult scenarios are considered
from MoNuSeg and TNBC dataset. These two cases contain several challenging issues,
for example, the presence of small nuclei with confound edge characteristics and the
clustered nuclei regions. In the case from MoNuSeg dataset (second row of Fig.4.6),
the proposed method is found very effective in identifying the edge characteristics and
small regions compared to the best performing method CENet. On the other hand, the
other two methods- attention U-net and U-net architecture barely distinguish the adja-
cent nuclei separation and many false positive cases which is wrongly identified as the
nuclei regions. The most possible reason of this founding is the non-accountability of
giving attention to the contour regions and the subsequent down-sampling operations of
traditional pooling operation in both of these architectures. The same scenario is hap-
pened in the case from TNBC dataset (third row of Fig.4.6), where a fairly clear picture
of segmentation performance of the proposed method along with the other state-of-the-
art architectures is observed. In this case, the U-net performs badly in identifying the
edge regions of the nucleus thus creating false negative cases. The other two archi-
tectures perform in a similar manner with less portion of false negative cases because
of their context aware nature and attention mechanism. However, these methods mis-
takenly identify some of the regions as nucleus region whereas our method success-
fully discard those regions because of its capability of identifying boundaries of the
object of interest. The computational efficiency of different networks are summarized
in Table 3.5. From the computational perspective it can be concluded that the network
possesses less number of parameters and performs faster with respect to the other net-
work. The network takes equal time to infer with respect to the the Attention U-net with
almost 4.84 times memory efficiency.
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Table 3.5: Computational Efficiency Analysis of Numerous Architectures along with the Performance of the proposed method.

Methods Number of Parameters Inference Time

Unet 31.0 0.1
MicroNet 184 0.18
DIST 8 0.12
SegNet 14.7 0.17
Attention U-net 8.727 0.09
CENet 38.8 0.12
FPN 8.4 0.137
ConDANet 1.8 0.09

3.3 Conclusion

In this Chapter, a contourlet driven attention based deep neural network architecture
is proposed to address the nuclei segmentation task in histopathology images. The
proposed architecture addresses two major issues present in the nulcei characteristics.
The first one is the small sized nuclei region and the other one is the blurred edge
region. Both of them are challenging situations because of their presence in low di-
mensional space for which they can be excluded during the segmentation operation.
To handle these issues, two necessary modifications are conducted in the traditional
encoder-decoder architecture. First, a contourlet guided attention module introduced
which guides the convoluted output signal by the edge aware directional filtered output
from contourlet transform. The additional attention to the contour of the nuclei regions
has a significant impact in the performance which is observed in our analysis. Addition-
ally, it is found that the wavelet pooling based sampling strategy can solve the problem
of identifying the small-sized nuclei regions by its effective reconstruction capability in
the decoder part which can not be possible in the sampling technique like max-pooling
or average-pooling operation. The qualitative and quantitative analysis of the proposed
method with other modern deep learning architectures including the attention based net-
work and context aware deep learning architectures clearly demonstrates the superior
performance of this network.
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Chapter 4

Proposed Cell Nuclei Segmentation
Scheme Based on Boundary Aware
Wavelet Guided Network

In this chapter, a boundary aware wavelet guided network, termed as BAWGNet is pro-
posed. Prior to applying the data in the network, a preprocessing step is proposed to
handle the lack of data diversity, and the variation in color statistics in different image
modalities. Unlike the skip connection strategy of conventional encoder-decoder archi-
tecture, we propose an aggregation unit that introduces a guided attention mechanism
to combine the encoder and decoder information and also generates boundary Aware
information. In the guided attention unit, the spatial domain information at different
encoder-decoder levels is further processed under the guidance of the wavelet domain
information extracted from discrete wavelet transform. Moreover, the proposed bound-
ary aware unit inside the aggregation unit helps preserve the boundary information of
the nucleus by incorporating a separate loss function which gives more attention to the
nuclei edge regions. The proposed wavelet guided attention unit and boundary aware
unit jointly leverage to identify small nucleus regions and separate the boundary of ad-
jacent individual nuclei very efficiently. Finally, Extensive experimentations have been
done over three publicly available datasets containing a large number of subjects with
complex nucleus orientations in different organs and wide varieties of patients.

4.1 Proposed Cell Nuclei Segmentation Scheme

In this section, the proposed methodology is described in details including the prepro-
cessing steps, the network architecture, and the hybrid loss function.
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4.1.1 Preprocessing

Data generalisability is a major concern in convolutional neural network specifically
when the image data is collected from multiple sources. Since different microscopy
techniques are used to collect the histopathaology images, it is important to make all
the data consistent with each other and prepare them for the netwrk. In the cell imag-
ing data, two most commonly used acquisition techniques are fluorescent and bright-
field microscopy which are used to prepare the live-cell images to capture the single
molecules and whole cell structure. Due to the difference in their acquisition proce-
dures, the images from these two modalities vary in their intensity level, color statistics
and contrast information. Hence, it is important to process them and make them pre-
pared for computational analysis. In order to do this, a set of preprocessing steps are
adopted in this method. At first, all the microscopy images acquired from different
acquisition techniques are converted into LAB color space to maintain the consistency
among the data. Neat, the images are contrast enhanced by applying the contrast level
adaptive histogram equalization (CLAHE) technique to enhance the visual appearance
and contrast of the nucleus structure in the histopathology images [75]. Upto this po-
sition, the Fluorescent and Brightfield microscopy images show exactly opposite in-
tensity characteristics, where the intensity of the nuclei region is darker in Fluorescent
microscopy images and brighter in the Brightfield images. To solve this issue, a color
inversion process is applied which leaves the Brightfield images as before but opposes
the color characteristics of the Fluorescent images. The overall process can be sum-
marised by the following equation:

imn =

255− imn if Ī > 127

imn if Ī ≤ 127
(4.1)

where, imn is the intensity of the (m,n) spatial position of image, I and Ī is the mean
intensity.

4.1.2 Proposed Boundary Aware Wavelet Guided Network

In this paper, a boundary Aware wavelet guided network is proposed to segment the
nuclei in the cell structure using histopathology images. U-net architecture is used as
the backbone of this network that consists of an encoding part, a decoding part. The
structures of the encoding and decoding part are similar but converse in their internal
arrangements. In order to represent the basic structure of this network, a simplified
diagram is shown in Fig. 4.1. The proposed structure consists of three basic operations
as follows:
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Figure 4.1: A simplified representation of the proposed architecture. Here, Ei, Di,
and Gi correspond to the encoder, decoder and guide unit at ith stage of the network,
respectively.
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• The primary objective is to utilize spatial information obtained at different stages
of encoder and decoder. We developed a processing block called aggregation unit
(AU) which is the heart of our proposed network. At a particular stage i (i ∈
1, 2, 3) of the encoder-decoder architecture, it incorporates the spatial domain
information (UE,i and UD,i) present in the cell structure from encoder and decoder
block (Ei and Di). Moreover, a decoder loss function, LD is defined to produce a
segmented output from this part.

• Instead of directly utilize the encoder decoder information, we followed an at-
tention mechanism approach. In this regard, our idea is to incorporate wavelet
domain information along with spatial domain information in the attention mech-
anism. Hence, a guide signal, g containing frequency level information is utilized
to guide the spatial information through an attention mechanism inside the AU.
AU at the final stage produces another segmented output,M by minimizing a loss
function LA. It is to be mentioned that we propose to use wavelet transform to
get g.

• Finally, a boundary Aware unit is proposed inside the AU, which utilizes the mor-
phological features to preserve the boundary or edge information of the nucleus
region and produces a boundary Aware map B. By combining boundary infor-
mation from AUs at different stages, another segmented output is produced. A
boundary Aware loss function, LB is also incorporated with this part.

The detailed architecture of our proposed network is shown in Fig. 4.2. In the backbone
encoder-decoder structure, both the encoder and decoder have three blocks and the
outputs at each stage are denoted as UE,i and UD,i, respectively; where i ∈ [1, 2, 3].
Each block contains three convolutional layers followed by batch normalization layer
and ‘ReLU’ activation function. Convolutional layers in each block (same encoder and
decoder level i) have 3×3 kernel size with number of kernel equal to 2i−1×32. A 2×2

max pooling layer is placed after each convolutional layers.

As the previously mentioned guide signal, we propose to utilize discrete wavelet trans-
form (DWT) which provides relevant frequency information at different levels of de-
composition. Another advantage of DWT is that at every level of DWT, the change in
dimension of the input level exactly corresponds to the change occurs at every stage of
the encoder. Here in our case, the 2D- DWT decomposes the 2D histopathology image
(X) as follows:

Xab = (fab ∗X)↓2, (4.2)

where * denotes convolution operation, (.)↓2 represents the 2 times downsampling op-
eration, and fab represents one of the four filters to be used and Xab represents the
corresponding filtered output. Subscript ‘ab’ refers to filter type i.e. ll for low pass
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filter, and lh, hl, and hh for three high pass filters.

The network consists of three AU blocks that receives the feature maps from the encoder
and decoder blocks of the backbone network at the same level i, the high frequency
components (Xlh, Xhl, andXhh) at a particular level of the DWT, and the output (Mi−1)
from the previous AU block. Each of these main stream blocks consists of two separate
units. The first unit is the wavelet guided attention unit (WGAU) to guide the signal
from encoder-decoder architecture by the wavelet information into the network and
the other is boundary Aware unit (BAU) to learn the morphological features. In what
follows these major units are explained in subsequent sections.

4.1.2.1 Wavelet Guided Attention Unit (WGAU)

The wavelet guided attention unit is separately shown in detail in Fig.4.3a. It is utilized
to fuse the high frequency components of image data with the low level textures of en-
coder and high level semantics of decoder of the backbone network. Initially, a 1 × 1

convolutional block is used to extract features individually from the high frequency
components of 2D-DWT (Xlh,i, Xhl,i, Xhh,i). The resultant features are concatenated
to create a new feature map, gi. Parallely, the feature maps from encoder and decoder
block of the backbone network are incorporated to capture the textures and semantics
representations which is represented as Uc,i. Afterward, this feature map is integrated to
the previous main stream block output, Mi−1. Prior to this integration, Mi−1 is passed
through a 2 × 2 upsampling block to recover the resolution. Also, a dilated convolu-
tional layer with dilation rate 2 is applied to capture the global information. The two
simultaneous operation produces Mi,dil. Afterwards, Mi,dil is added with Uc,i to pro-
duce the integrated output X . Finally, X and g are applied as the input of the attention
block.

In order to guide the spatial level information with the extracted wavelet domain infor-
mation (g), an attention block is designed in the proposed method which is shown in
Fig. 4.4. In this block, the wavelet component (g) is used as the gating vector which
guides the network to leverage the salient region of the given images. It also contains
the contextual information that can cut off the lower level feature responses in the nat-
ural image classification task. First, the gated vector (g) and the input tensor (X) are
linearly transformed using a 1× 1 convolution block and added together. The convolu-
tion operation allows to extract the most promising features from them and the addition
operation further enhance the features those are found relevant in both spatial and fre-
quency domain. The resultant output is then passed through a ReLU activation function
σ1, to prevent vanishing gradient problem followed by a 1 × 1 convolution layer φ to
find the gating coefficient, gatt,c. An additive attention is used to obtain this gating
coefficient. The overall process can be represented by the following expression,
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gatt,c = φT(σ1(w1
Tx+ w2

Tg + bg)) + bφ, (4.3)

where w1, w2, and φ are the linear transformations and σ1 is the ReLU activation op-
erator which is defined as σ1(x) = max(0, x). Afterward, the attention coefficient α is
obtained by applying a sigmoid activation function σ2 to gatt,c. The reason for selecting
sigmoid function over softmax is that the sequential use of softmax function may result
in sparse activation of the output [77]. Finally, the output of the wavelet guided attention
block (Mw) is found from the element wise multiplication of the attention coefficient
and the input tensor X . The final output is as follows,

Mw,i = σ2(gatt,c) . X (4.4)

4.1.2.2 Boundary Aware Unit (BAU)

In order to focus on the boundary region of the nuclei in histopathology images, a
boundary aware unit (BAU) is developed inside the AU which operates on the output
of the WGAU (Mw,i) as shown in Fig.4.3a. BAU first uses a set of 1×1 and 3×3 con-
volutional operations on Mw,i to extract Bc,i. Afterwards, it is passed into a 1 × 1
convolutional layer to get the boundary prediction map Bi (as shown in Fig.4.3a). At
each stage i of the aggregation block corresponding boundary prediction (Bi) will be
generated. However, the size of this predicted map will change at each stage due to up-
sampling/downsampling operation of the encoder/decoder architecture. As a result in
order to combine boundary Aware output of different stages, Bi at lower stages (i > 1)
need to be upsampled as shown in Fig.4.3b. For example, for the ith stage, output Bi

needs to be upsampled by 2i−1 × 2i−1. After 3 × 3 convolution operation on the com-
bined output, the final boundary aware map, B is obtained. The B is learned under the
supervision of the boundary constraint map YB which is shown in Fig 4.5. YB is created
in such a way so that it can help the network to focus more on the boundary pixels
instead of equal consideration of all the pixels inside the nucleus region. Let e ∈ E

denote the point collection of nuclei boundary and p denote the pixel point collection in
a microscopy image. YB(i, j) can be computed by optimizing the function as follows:

YB(i, j) = f(min
e∈E

d(e; p)) (4.5)

where d(e; p) denotes the Cartesian distance between each pixel point p(i, j) inside
the nucleus and the boundary pixel e of that nucleus region, and f(x) is defined as
f(x) = max(x)–x. Intuitively, the pixel value YB(i, j) will be larger if the pixel point
p is closer to the edge. Finally, utilizing YB(i, j) and output B, an additional loss
function LB is proposed to get the segmentation result from this path. It is expected
that the segmentation obtained based on this boundary constraint map can preserve the
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Figure 4.3: (a) Proposed aggregation unit (AU): It consists of two major parts- wavelet
guided attention unit (WGAU) and boundary aware unit (BAU). (b) Boundary Aware
information fusion: It fuses multi-level boundary information Si (i= 1, 2, 3) generated
from BAU.

Figure 4.4: A visualization of the attention mechanism used in WGAU to combine the
wavelet and spatial domain information.

nucleus boundary region more precisely. As a result, when such a boundary aware op-
eration is conducted jointly with the baseline Unet based segmentation and aggregation
block based segmentation, a superior nuclei segmentation is obtained. Finally, three
segmented binary outputs are found from the proposed network. Since it is a binary
class segmentation problem it is more appropriate to follow majority voting approach.
Hence in this method, we used the majority voting strategy to produce the final nuclei
segmentation output from the three segmented outputs.

4.1.3 Hybrid Loss Function

Since, there are three loss functions, namely the decoder loss (LM), the aggregation loss
(LA), and the boundary aware loss (LB), a hybrid loss function is employed summing
all the three loss functions. The total loss L is defined as following,

L = LM + LA + LB. (4.6)

Here, LA and LM are defined by the conventional binary cross-entropy loss, LC which
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Figure 4.5: A visualization of the (a) original segmented output and (b) the correspond-
ing boundary constraint map.

is defined by the following equation:

LC =
1

N

N∑
i=1

pi log yi + (1− pi) log(1− yi) (4.7)

where pi denotes the predicted probability value of ith sample and yi represents the
corresponding label.

Conversely, boundary aware loss is needed to constrain the whole unit to pay attention
to boundary-focused morphological information, which is defined as the mean square
error between B and YB

LB = lmse(B;YB) (4.8)

where lmse is the mean squared error loss.

4.2 Results and Discussions

In this section, the description of the datasets used in this method, the required setup
for our experiment and results found from extensive experimentation on several pub-
licly available datasets are presented and discussed to validate the effectiveness of the
proposed scheme.

4.2.1 Dataset Description

To verify the effectiveness of the proposed algorithm, three publicly available datasets
are employed. The first one is Data Science Bowl (DSB-2018) which was released
by Kaggle for competition purpose [78]. The dataset contains a large number of seg-
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Table 4.1: Ablation study of the proposed network on three datasets.

Prepr. WGAU BAU DSB-2018 MoNuSeg TNBC
Dice IOU Dice IOU Dice IOU

X X X 83.50 74.57 74.28 60.23 68.21 52.24
X X X 87.20 78.26 79.54 66.97 72.45 57.23
X X X 89.40 80.57 83.67 71.02 75.98 59.89
X X X 90.82 82.43 85.74 74.89 78.57 61.90

mented nuclei images that were acquired under different conditions and vary in cell
type, shape, magnification, illumination status, and imaging modality (brightfield and
fluorescence). The training set of this dataset contains 670 images in which 546 images
are brightfield and the rests are fluorescence. The test set contains 65 images and their
manual segmentations are provided for the evaluation purpose.

The second dataset used for evaluation purpose is multi-organ nuclei segmentation chal-
lenge (MoNuSeg) which contains a diverse set of Hematoxylin-Eosin (HE) stained tis-
sue images [79]. It contains 30 images with around 22,000 nuclear boundary annota-
tions for training and 14 images with 7,000 nuclear boundary annotations for testing
purpose. This dataset was collected from 18 hospitals and a wide range of patients. The
size of all the images is 1000×1000.

The final dataset is the triple negative breast cancer (TNBC) dataset which consists of
50 images with a total of 4,022 annotated cells, including normal epithelial and my-
oepithelial breast cells (localized in ducts and lobules), invasive carcinomatous cells,
fibroblasts, endothelial cells, adipocytes, macrophages and inflammatory cells (lym-
phocytes and plasmocytes) [70]. The size of the images is 500× 500.

4.2.2 Experimental Setup

For the augmentation techniques used in our methods, the original images are rotated
by 30◦ and 60◦, flipped horizontally, and sheared by following affine transformation1 0 0

s 1 0

0 0 1

, where s = 0.3 is selected. To make our proposed model perform better for

the nuclei segmentation task, different hyperparameters are chosen based on empirical
analysis. Adam optimizer with a learning rate of 0.001 and a decaying rate of 0.99 after
each 10 epochs is chosen to reduce the loss of the network. The network is trained for
100 epochs on each dataset which is found sufficient in these cases. All the experimen-
tations have been implemented on the Google cloud platform with NVIDIA P-100 GPU
as the hardware accelerator.

For the DSB dataset, all the images are resized into 256 × 256 to feed into our net-
work. For the implementations of pre-state-of-the-art methods, Segnet, Micro-Net, and
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Table 4.2: Performance comparison of different architectures in the TNBC dataset (8:1:1 split setup).

Network Dice(%) IOU(%) Precision(%) Recall(%)
U-Net [42] 68.61 52.92 65.94 72.54

Mask-RCNN [86] 70.54 52.97 66.27 75.39
DIST [70] 70.51 56.34 66.82 74.63

Micro-Net [47] 71.23 53.71 66.52 76.61
FCN [87] 72.67 50.62 67.53 78.53

Segnet [83] 73.88 54.93 71.11 76.71
HoVer-Net [71] 74.32 57.13 68.91 80.61

Our Method 78.57 61.90 73.45 81.90

HoVer-Net, as per the requirement stated there, the input size of the images are re-
sized to 224× 224, 252× 252, and 270× 270, respectively [47, 71, 83]. For MoNuseg
dataset, each image is zero padded to convert the size to 1024× 1024 and then 16 non-
overlapping image patches of size 256 × 256 are created. Each image patch thus cre-
ated is considered as an independent image in the training process. Finally, for TNBC
dataset, since the size of the images are 512×512, four image patches from a single im-
age are obtained, which are employed for the training purpose. During the testing phase,
the similar patches are employed in the model and their segmented images are merged
to obtain the segmentation results of the whole image. The batch size are selected as
32, 16, and 16 for the DSB-2018, MoNuSeg, and TNBC datasets, respectively.

Several standard evaluation metrics are utilized to assess the performance of the pro-
posed model which are stated as follows:

Dice =
2TP

2TP + FP + FN
(4.9)

IOU =
TP

TP + FP + FN
(4.10)

Precision =
TP

TP + FP
(4.11)

Recall =
TP

TP + FN
(4.12)

where, TP, FP, and FN represent true positive, false positive, and false negative predic-
tions, respectively. The images available in the DSB-2018 and TNBC data are splitted
as 80:10:10 for training, validation, and testing. Moreover, the results on the stage-1 test
set of DSB-2018 and on the test set of MoNuSeg are also reported and compared with
the state of the art segmentation networks to validate the superiority of the proposed
network.
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Table 4.3: Performance comparison of different architectures in the MoNuSeg dataset (8:1:1 split setup).

Network Dice(%) IOU(%) Precision(%) Recall(%)
FCN [87] 79.77 62.45 73.21 87.46
Unet [42] 74.67 60.89 71.24 78.44

U-net++ [44] 75.68 62.01 72.12 79.60
DIST [70] 77.31 63.77 75.31 79.41
Segnet [83] 77.44 63.3 73.91 81.32

HoVer-Net [71] 79.63 66.47 77.02 82.42
MicroNet [47] 80.24 68.02 77.98 82.63

NucleiSegNet [62] 83.59 72.06 78.95 88.81
Our Method 85.74 74.89 79.95 92.43

Table 4.4: Performance comparison of different architectures in the DSB-2018 dataset

Network 8:1:1 split
Dice(%) IOU(%) Precision(%) Recall(%)

FCN [87] 74.12 60.67 83.01 66.94
U-Net [42] 86.75 76.97 85.55 87.98
Segnet [83] 75.48 62.36 84.08 68.47

HoVer-Net [71] 89.42 80.14 87.92 90.97
Micro-Net [47] 89.23 79.97 85.78 92.96

FPN [45] 87.34 77.97 80.34 95.67
U-Net++ [44] 89.74 79.92 82.34 98.60
Our Method 90.82 82.43 88.56 98.65

4.2.3 Analysis of the Segmentation Performance

At first, an ablation study is provided to describe the performance of each of the modules
of the proposed methodology. Eventually, the performance of the proposed network is
compared with that obtained by the other state-of-the-art segmentation networks and its
superiority is explained in qualitative and quantitative manner.

Table 4.5: Performance comparison of different architectures in the DSB-2018 dataset.

Network Test Set
Dice(%) IOU(%) Precision(%) Recall(%)

FCN [87] 71.86 60.69 80.56 64.85
U-Net [42] 81.2 74.28 82.85 79.61
Segnet [83] 73.84 62.06 82.01 67.15

HoVer-Net [71] 83.57 74.97 83.85 83.29
Micro-Net [47] 83.79 73.13 82.12 85.52

FPN [45] 82.75 72.56 82.56 82.94
U-Net++ [44] 83.98 73.56 84.56 83.40
Our Method 85.45 75.61 87.45 86.53
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4.2.3.1 Ablation Study

As it is mentioned earlier, a traditional U-net architecture is utilized as the baseline
network of our proposed model. Over the top of that, three additional techniques/-
modules are incorporated and their individual and joint performances are compared to
analyze the contribution of each of them. The ablation study is summarized in Table
4.1 where only Dice and IOU metrics are utilized for evaluation purpose. After an-
alyzing the table, it is found that 4.4%, 7.1%, and 6.2% improvements in dice score
are achieved after incorporating the preprocessing step in DSB-2018, MoNuSeg, and
TNBC datasets, respectively. The preprocessing steps allow to reduce the variations in
intensities across cell subtypes and leverage the model to distinguish between the nu-
cleus and non-nucleus characteristics. Moreover, the introduction of WGAU to guide
the spatial features by the frequqency domain information from DWT through an atten-
tion mechanism contributes to an efficient representation of the features by combining
both the spatial and frequency level information and provide feature maps with fine
scale details. This unit contributes to additional 2.5%, 5.2%, and 4.9% improvements
in the three datasets, respectively. Finally, the boundary Aware unit provides the edge
information to the network to capture the boundary or edge level information. By pro-
viding edge information, it indirectly represents the edge or boundary representation of
the blocks and increases the performance by 1.6%, 2.5%, and 3.4% dice improvement in
DSB-2018, MoNuSeg, and TNBC databases, respectively. Similar scenario is observed
in the perspective of another standard evaluation metric, IOU, in all three databases.

4.2.3.2 Quantitative Analysis

In order to compare the effectiveness of our proposed method, a comperative analysis
is presented for the TNBC, MoNuSeg, and DSB-2018 datasets in Table 4.2, Table 4.3,
and Table 4.5, respectively. It is noticed that our proposed network outperforms all the
previously proposed segmentation networks by a significant amount in all the evalu-
ation metrics. The proposed networks exhibits performance improvement over FCN,
Unet, Segnet and other benchmark networks in nucleus segmentation task. Aside from
these networks, it has also shown its superiority compared to some specific networks
previously employed for nuclei segmentation task such as, HoVer-Ner and NucleiSeg-
Net. Using the proposed framework, 4.25%, 2.15%, and 1.47% dice improvements
are achieved over the results obtained in HoVer-net for the TNBC, MoNuSeg, and
DSB-2018 datasets, respectively. The proposed network’s robustness and efficacy in
determining the nuclei region can be corroborated by the high scores of other metrics
reported. The proposed network’s ability to provide additional wavelet domain infor-
mation from DWT through the attention mechanism provides additional information to
the network. Moreover, with the help of boundary aware unit, it performs efficiently in
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capturing the small nuclei regions and thus improves both the precision and recall.

Table 4.6: Computational Efficiency Analysis of Numerous Architectures along with the Performance of the proposed method.

Methods Number of Parameters Inference Time

Unet 31.0 0.1
MicroNet 184 0.18
DIST 8 0.12
SegNet 14.7 0.17
Attention U-net 8.727 0.09
CENet 38.8 0.12
FPN 8.4 0.137
HoVerNet 7.7 0.15
NucleiSegNet 15.7 0.10
BAWGNet 1.5 0.09

4.2.3.3 Qualitative Analysis

Quantitative analysis alone cannot always define the effectiveness and superiority of a
method. The efficacy of the model can only be identified if the model performs out-
standingly in the critical cases of a particular problem. Hence, the segmentation per-
formance of different networks along with our proposed network in some challenging
cases are presented in Fig.4.6. The presence of other cell organelles with similar inten-
sity levels to the nucleus, as well as the position of the nucleus in close proximity to
each other, might be responsible for a significant number of false positive cases. It is ev-
ident from the segmentation performance of the other networks that all of them struggle
to address these issues. On the other hand, our proposed method with its efficient uti-
lization of spatial and frequency level information along with the boundary information
considerably addresses these issues and significantly shows its performance in the chal-
lenging situation of nuclei segmentation task. The computational efficiency of different
networks are summarized in Table 4.6. The efficient incorporation of boundary aware

Table 4.7: Performance of the proposed method on DSB dataset (10 fold cross validation)

Fold No. Dice IOU Precision Recall
1 88.91 81.03 86.98 85.23
2 89.67 81.23 87.40 85.76
3 88.65 81.12 87.11 85.34
4 90.92 83.03 88.89 86.97
5 91.51 83.78 89.43 87.51
6 88.93 80.93 86.99 85.02
7 89.86 81.34 87.81 85.91
8 90.25 82.24 88.34 86.23
9 90.51 82.39 88.87 86.91
10 89.61 81.58 87.78 85.83
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unit with the attention mechanism makes the model computationally efficient with re-
spect to the other models. Also, the inference time of the network is really noteworthy
in comparison to the state-of-the-art HoVerNet and NucleiSegNet. The network is 1.66
times faster than the HoVerNet. Although the network infers equally faster with respect
to the NucleiSegNet, the memory efficiency of this network is 10.46 times better.

Additionally, a ten fold cross validation technique is utilized to validate the consistency
among the data present in individual folds. The analysis is done on DSB-2018 dataset
and the results found from different folds of data is summarized in Table 4.7. It can be
concluded from the table that the results are consistent with each other at different folds
with a minimal deviation. Moreover, the performance of this method is compared with
the other two proposed methods of this thesis and summarised in Table 4.8. It is found
that a significant improvement over the other two methods is achieved because of the
introduction of three separate loss functions and the proposed aggregation unit.

4.3 Conclusion

Accurate nuclei segmentation is a challenging task due to varying characteristics of nu-
clei in contrast level and color statistics, and varieties of acquisition-specific modalities.
The proposed BAWGNet architecture overcomes these challenges by introducing an ag-
gregation unit, which includes the WGAU and BAU. The proposed preprocessing steps
in our work are found very effective to increase the performance of the segmentation
task. Guiding the spatial level information by the high-frequency wavelet coefficients
through the WGAU compensates the loss of information resulting from the subsequent
downsampling operation of traditional encoder-decoder architecture. On top of that,
the proposed boundary aware unit preserves the spatial content and improves the dis-
criminative capability of intermediate features for separating the adhesion and clustered
nuclei. From experimentation, it is found that the incorporation of the WGAU and BAU
provides an average of 5.3% improvement on three benchmark datasets of histopathol-
ogy images. The dominating performance of the proposed method compared to the
other conventional encoder-decoder architecture and modern deep learning architec-
tures demonstrates the superiority of this network in the accurate segmentation of nuclei
in cell microscopy images.
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Chapter 5

Conclusions

5.1 Contribution of This Thesis

The major contributions of the thesis are described below:

• In this thesis, several deep learning frameworks are proposed which can segment
both the simple and complex structured nuclei from histopathology images by
creating a edge/boundary level awareness in the networks. To create this bound-
ary level awareness three different boundary preserving guiding signal generation
schemes are proposed.

• A shallow encoder-decoder architecture is utilized which preserves boundary pre-
serving signal to guide the attention mechanism of the proposed boundary aware
feature map guided attention network. A separate loss function is used to min-
imize the primary network by utilizing the boundary only mask as the ground
truth.

• Contourlet transform based boundary preserving signal generation scheme is also
explored in this thesis. The features found from the contourlet transform is found
very effective in extracting the fine edge details of the nuclei regions.

• One of the critical issues in the nucleus segmentation task is the generalization
of the network to work equally well for different image modalities. Due to their
variation in visual appearance and intensity level, it is difficult to train a universal
model to work equally well for both of these modalities. The lack of abundant
data further complicates this process and demands a preprocessing step to transfer
all these modalities into a common intensity range. We have proposed an effective
preprocessing step to bring all the image modalities in a common intensity range
so that they are consistent with each other.
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• One major concern in U-net based network is the use of downsampling opera-
tions, such as max or average pooling that usually ignore the Nyquist sampling
theorem, resulting in partial or complete loss of high frequency data details and
distorted basic structure presented by the low frequency components. In the pro-
posed networks, we considered both the wavelet based pooling and guiding mech-
anism to address the issue which is found very effective in preserving the content
of the nucleus structure.

• In the proposed approaches, multiple loss functions are considered to make the
final prediction which improves the segmentation performance. Jointly optimized
and hybrid loss functions are developed to utilize this multiple loss functions.

• The feature maps generated at different encoder and decoder stages are visualized
to show the boundary aware information generated by the network.

• Extensive experimentations have been done over three datasets and the results are
compared with the state-of -the-art methods to corroborate their superiority and
effectiveness.

5.2 Future Prospects of Our Work

Although the proposed schemes presented in this thesis achieve significant performance,
some other studies can also be conducted in future. While consistent performance on
nucleus segmentation has been achieved, the proposed segmentation approaches will
be expanded with the incorporation of diverse datasets such as patient-based studies
taking into account age, gender, health conditions, and geographical locations of the
patients. These factors can provide additional information which may assist a better
performance. Hence, for a better understanding of the nature of the cellular structure,
an in-depth, closer, patient-specific study should be conducted. Our current study only
focuses to segment the nuclei in a histopathology images. However, as a future work, a
separate study can be explored to determine whether the nucleus is cancerous or not by
utilizing the morphological information. The segmentation of the nucleus along with
the identification of the nucleus type will assist the clinicians to assess the current stage
of cancer which eventually makes the diagnosis process more efficient.
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