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Abstract

In the way to facilitate the scope of Computer Aided Diagnosis (CAD) into the treatment of

breast cancer, which is a leading issue of concerns for women worldwide in recent times, the

task of breast lesion segmentation is a very critical processing step that needs to be auto-

mated. Although Digital Mammography (DM) is the most popular screening tool in breast

cancer detection, Ultrasound (US) imaging has recently emerged as a popular alternative

due to its non-invasive nature, real time and low cost imaging.

Breast lesion segmentation from US images using deep learning techniques is quite challeng-

ing. US images contain many fuzzy contours and false edges along with the original mask.

Again, there has been shortage of publicly available large annotated datasets of Breast US

images for training the deep learning model. Moreover, the introduction of adversarial train-

ing for segmentation task has been quite nascent which poses major challenges of convergence

and stability issues.

We have implemented a Conditional Generative Adversarial Network (CGAN) based ap-

proach for the task of breast lesion segmentation from US Images. Specifically, the network

has been designed as an upgradation to the architecture associated with CGAN by imposing

multi tasking learning in the training process. Convergence as well as stability of the newly

designed model has been largely improved compared with CGAN. Also, overall performance

of the segmentation task has been assessed in terms of the state of the art model such

as U-Net, Pix2Pix, SegNet-cGAN. In addition to this, performance improvement has been

attained for different scenarios such as different dataset, different model etc.

xiv



Chapter One

Introduction

1.1 Motivation

The rapid advancement of deep learning approaches in various practical fields continues to

fuel the medical imaging community’s interest in implementing these techniques to improve

the accuracy of cancer screening. Breast cancer has been a leading issue of concern for women

worldwide in recent times. As mentioned in [1], more than 8% of women will develop breast

cancer during their lifetime. However, periodic clinical checkups and self-tests help in early

detection and thereby significantly increase the scope of survival. Early detection of breast

cancer as well as accurate assessment of lesions are the goals of various imaging modalities.

The most commonly used screening tool for this purpose is the Digital Mammography [2].

Mammography is a specialized medical imaging tool that uses a low dose X-Ray system

to detect cancer early before women experience symptoms and when it is most treatable.

Digital Mammography (DM), also called full-field digital mammography (FFDM), is a mam-

mography system in which the x-ray film is replaced by electronics that convert x-rays into

mammographic pictures of the breast. These systems are similar to those found in digital

cameras and they are able to produce better pictures with a lower radiation dose. These

images of the breast are transferred to a computer for review by the radiologist and for long

term storage. While mammography is the most widely used screening tool for breast cancer,
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mammograms do not detect all breast cancers [3]. This is called a false negative result. On

the other hand, when a mammogram looks abnormal but no cancer lesion is present, this is

called a false positive result. Therefore, in order to determine the existence of a benign or

malignant tumor, only one screening tool is not enough. Again, interpretations of mammo-

grams can be difficult because a normal breast looks different for each woman. In addition

to this, the appearance of an image may be compromised if there is powder or salve on the

breasts or if the examined patient has undergone breast surgery. Recently increased breast

density has attracted attention due to the limitations of mammography in terms of finding

cancer[4][5]. Apart from those described above, breast implants can also impede accurate

mammogram readings because both silicone and saline implants are not transparent on x-

rays and can block a clear view on tissues around them, especially if the implant has been

placed in front of, rather than beneath, the chest muscles. In terms of risks, there is always

a slight chance of cancer from excessive exposure to radiation.

Considering all these serious limitations in DM, research has been ongoing on a variety

of breast imaging techniques that can contribute to the early detection of breast cancer

and improve the accuracy in distinguishing non-cancerous breast conditions from breast

cancer. Recently, Ultrasound (US) Imaging is being considered as an alternative to DM

imaging due to leading a very important role in breast cancer detection [6], image guided

biopsy [7] and lymph node diagnosis. US imaging of the breast uses sound waves to produce

pictures of the internal structures of the breast. Because US images are captured in real-

time, they can show the structure and movement of the body’s internal organs. It is safe,

noninvasive, widely available, easy-to-use, less expensive than most other imaging methods

and most of all, does not use radiation. Its performance on the weaker aspects of DM imaging

methods is quite satisfactory. Still it poses the limitations of poor quality images caused by

speckle noise, low contrast and shadow effect [8]. Considering the non-invasive nature of

US imaging, a sophisticated Computer Aided Diagnosis (CAD) model can be designed to

assist the radiologists in detecting and segmenting the breast lesions more efficiently and

2



effectively.

1.2 Challenges associated with the research

Breast US images contain too much confusing contours due to noise associated with it. So it

is very difficult to find out the region of interest regarding breast lesions. It is quite obvious

that the path of tracing the region of interest from the breast US images among the fuzzy,

misleading surrounding region is not that much easy to perform. Along with it, the scarcity

and unavailability of largely annotated datasets complicates the problem in US based breast

lesion segmentation.

The popular deep learning techniques applied to image segmentation are U-Net seg-

mentation [9], multiple domain features [10], Patch based Le-Net [6], a transfer learning

approach with a Pre-trained FCN- AlexNet [7] etc. However, these approaches have been

practiced much on datasets of very large size which is very usual practice for computer vi-

sion based tasks. Recently, learning from adversaries has gained huge reputation in solving

many computer vision based tasks on natural images such as Image Synthesis, Image to

Image Translation [7], Superresolution [11] etc. There is a trend to replace all discriminative

approaches to solve different computer vision based problems with different versions of Gen-

erative Adversarial Network (GAN) in a way to make the network more smart and immune

to external adversaries. Although due to the robustness in the training procedure [12], the

training of GAN imposes major difficulties due to instabilities caused by a difficult minimax

optimization problem leading to mode collapse both partially and completely as will be dis-

cussed in the subsequent chapter. Again, as breast US images contain too much confusing

contours due to noise associated with it and also GAN has its implementation complexities

associated with the design of generator and discriminator loss functions subject to more in-

sightful research, GAN architecture has not been practiced in breast US segmentation task

yet.
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1.3 Segmentation basic

Medical image segmentation is a vital area in medical image analysis and is necessary for

diagnosis, monitoring and treatment. Due to the variable size, shape and location of the

target tissue, medical image segmentation is one of the most challenging tasks in medical

image analysis. The main purpose of the segmentation task is to assign label to each pixel

of the images. It normally includes two steps: firstly, detect the unhealthy tissue or areas of

interest; secondly, delineate the different anatomical structures or areas of interest. Figure

1.1 depicts the summary of overall segmentation task.

Figure 1.1 Segmentation map for medical image

Despite the variety of the proposed segmentation network architectures, it is still hard

to compare the performance of different available architectures. In order to obtain accurate

segmentation and compare different state of the art methods on the same ground, some

well-known public challenges for segmentation have been developed, such as Brain tumor

Segmentation (BraTS) [13], Ischemic Stroke Lesion Segmentation (ISLES), Neonatal Brain

Segmentation [14], MR Brain Image Segmentation (MRBrainS) [15], Combined (CT-MR)

Healthy Abdominal Organ Segmentation (CHAOS), 6-month infant brain MRI Segmentation
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(Iseg-2017) [16] and Automatic intervertebral disc localization and segmentation from 3D

Multi-Modality MR (M3) Images (IVDM3Seg). Table 1.1 depicts some commonly used

evaluation metrics in performing the segmentation task.

Evaluation Metric Mathematical Description

Dice Score (DSC) DSC = 2∗TP
2∗TP+FP+FN

Sensitivity Sensitivity = TP
TP+FN

Specificity Specificity = TN
TN+FP

Hausdorff distance (HD) HD = max{supr∈dRdm(s, r),

sups∈dSdm(s, r)}

Average boundary distance (ABD) ABD(Xs, Ys) =
1

N∗Xs+N∗Ys (
∑

x∈Xs
miny∈Ysd(x, y)

+
∑

y∈Ys minx∈Xsd(y, x))

Table 1.1 Mathematical Definition of different types of Evaluation Metric

Here, TP, FP, FN and TN refer to True Positive, False Positive, False Negative and True

Negative pixels respectively. For the case of Hausdorff distance (HD), dS and dR are the sets

of lesion border pixels/voxels for the predicted and the truth segmentations, and dm(v, u)

is the minimum of the Euclidean distances between a voxel v and voxels in a set u. For

ABD, Xs and Ys are the sets of surface points of the reference and algorithm segmentations

respectively. The operator d is the Euclidean distance operator.

1.4 Contribution of the thesis

This thesis deals with the complex task of US image segmentation with a view to making the

CAD system more precise by adopting an adversarial training procedure. Our contribution

of the thesis are as follows:

• We have developed a deep learning method based on adversarial training so that the

GAN model can be utilized in the biomedical image segmentation task. It can also

5



be mentioned that GAN is replacing many discriminative deep learning models with

better generalization performance.

• A new conditional GAN model termed as Modified CGAN (Mod-CGAN) has been

developed to utilize the labeled data more efficiently. The training stage has been

divided into two steps such that it takes much less iteration to converge as compared

to the conventional conditional GAN model. The proposed model can also perform

quite satisfactorily without utilizing any data augmentation task.

• The way our proposed method has been implemented, it can be assimilated to the

concept of self supervised learning. For the purpose of learning in the extra added

network named modifier, no further annotation is required. Available raw image as

well as ground truth image will suffice to the learning of the modifier network.

• The experimental result shows that robustness of the GAN framework can be improved

by training both generator and discriminator for an extended number of epochs even

after the equilibrium.

• In terms of performance, our proposed method surpasses the state of the art model

U-Net as well as the raw Conditional GAN model by a moderate margin.

1.5 Outline of the thesis

The subsequent chapter has been designed as follows:

• Chapter 2 discusses briefly about the emergence of deep learning framework in solv-

ing complex problems. Then, it mentions some of the most popular deep learning

architectures established to replicate the human level performance. It introduces the

reader with the difference between discriminative and generative architectures and

henceforth, the frameworks associated with generative adversarial network have been

discussed. Also, it includes some problems associated with the training of GAN. In the

last part of the chapter, it specifies some recent practice in mitigating the convergence

6



and mode collapsing problem.

• Chapter 3 mentions about the evolution of deep learning in biomedical imaging ap-

plications and also briefly discusses some of the fields where deep learning has been

incorporated. Then, it broadly discusses specifically about biomedical image segmenta-

tion task via deep learning. After that, a brief overview about GAN in medical imaging

analysis has been included. In the end, some architectures regarding biomedical image

segmentation task from the literature have been covered.

• Chapter 4 discusses the proposed methodology, objective function of our framework as

well as the intuition behind the expected improvement. Explicitly it also covers the

detailed architecture associated with different parts of our proposed method.

• Chapter 5 is actually about discussing and analyzing the performance of the proposed

method. Our method along with two other familiar methods (one is state of the

art segmentation approach named U- Net and other is the basic Conditional GAN

approach) have actually been simulated to make the comparison more transparent

and fair. Again, those models have been evaluated not only qualitatively but also

quantitatively. Also there have been covered different versions of our proposed method

as well as the loss function analysis associated with the model.

• Chapter 6 mentions about the future scope associated with this proposed method and

also recommends to incorporate it in many computer vision tasks of natural image in

a way to mitigate the problems with basic framework of GAN.
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Chapter Two

Introduction to Generative Adversarial

Network and Literature review

People often throw around words like “artificial intelligence” and “neural networks” and “ma-

chine learning” and “deep learning” quite interchangeably. But significance of these words

are not similar. The history of Artificial Intelligence (AI) predated to 1956 in United States,

where engineers decided they would write a computer program that would try to imitate

natural intelligence. Within AI, a new field emerged called machine learning. Instead of

writing a step-by-step program to do something - which is a traditional approach in AI —

people may collect lots of data about something that they are trying to understand. For

example, they are trying to recognize objects, so they collect lots of images of their interest.

Then, with machine learning, it’s an automated process that dissects out various features,

and figures out that one thing is an automobile and the other is a stapler. It is a very large

field and goes way back. Originally, people were calling it “pattern recognition,” but the algo-

rithms became much broader and much more sophisticated mathematically. Within machine

learning are neural networks inspired by the brain. In the mid-1980s and early 1990s, many

important architectural advancements were made in neural networks. However, the amount

of time and data needed to get good results slowed adoption, and thus interest cooled. In the

early 2000s, computational power expanded exponentially and the industry saw a “Cambrian
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explosion” of computational techniques that were not possible prior to this. Deep learning

emerged from that decade’s explosive computational growth as a serious contender in the

field, winning many important machine learning competitions. The contribution from [17],

[18], [19], [20] [21] heavily ensures the acceleration in the current deep learning frameworks.

However, the sheer dominance of deep learning in the world can be pinpointed to the par-

ticular moment of history: December 2012 at the NIPS meeting, which is the biggest AI

conference. There, computer scientist Geoff Hinton and two of his graduate students showed

it is feasible to take into account a very large dataset called ImageNet, with 10,000 cate-

gories and 10 million images, and reduce the classification error by 20 percent using deep

learning. With the availability of more data and complex data structure, here emerges the

introduction of deep learning. Deep learning is a branch of machine learning that deploys

algorithms for data processing, decision making and automatic feature extraction in a way

to imitate the thinking process and even develop abstractions. Deep networks are trained

from the data in the same way that babies experience the fresh world, adopts with the ongo-

ing world and thereby gradually acquires the skills needed to navigate novel environments.

Learning algorithms extract information from raw data; information can be used to create

knowledge; knowledge underlies understanding and thereby leading to wisdom. In the next

subsequent section, a brief insight about some popular deep learning architectures will be

covered. From then, we will focus our attention to generative models and thereby will have

a thorough description about Generative Adversarial Network.

2.1 Popular Deep Learning Architectures

Google’s inception network is an advanced and deep architecture that was applied suc-

cessfully for several tasks [22] like classification, detection etc. Its main highlight is the

introduction of the so-called inception block that essentially allows to compute convolutions

and pooling operations in parallel. By repeating this block in a network, the network can
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select by itself in which sequence convolution and pooling layers should be combined in order

to solve the task at hand effectively.

ResNets have been designed to enable training of very deep networks [23]. Even with

earlier methods, networks will not benefit from more than 30 to 50 layers, as the gradient

flow becomes numerically unstable in such deep networks. In order to alleviate the problem,

a so-called residual block is introduced, and layers take the form f(x) = x+f(x), where f(x)

contains the actual network layer. Doing so has the advantage that the addition introduces a

second parallel branch into the network that lets the gradient flow from end to end. ResNets

also have other interesting properties, e.g., their residual blocks behave like ensembles of

classifiers [24].

Variational networks enable the conversion of an energy minimization problem into a

neural network structure [25]. We consider this type of network as particular interesting, as

many problems in traditional medical image processing are expressed as energy minimization

problems. The main idea is as follows: energy function is typically minimized by optimization

programs such as gradient descent. Thus, we are able to use the gradient of the original

problem to construct a so-called variational unit that describes exactly one update step of

the optimization program. Succession of such units then describe the complete variational

network. Two observations are noteworthy: First, this type of framework allows to learn

operators within one variational unit, such as parsifying transform for compressed sensing

problems. Second, the variational units generally form residual blocks, and thus variational

networks are always ResNets as well.

Recurrent Neural Networks (RNNs) enable the processing of sequences with long

term dependencies. Furthermore, recurrent nets introduce state variables that allow the

cells to carry memory and essentially model any finite state machine. Extensions are long

short-term memory (LSTM) networks [26] and gated recurrent units (GRU) [27] that can

model explicit read and write memory transactions similar to a computer.
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2.2 Generative vs Discriminative models

Before digging deep into the details of Generative Adversarial Network (GAN), we first have

to make ourselves familiar with the idea of generative modelling in contrast to discriminative

modelling. Generative modeling is an unsupervised learning task in machine learning that

involves automatically discovering and learning the regularities or patterns in input data in

such a way that the model can be used to generate or output new examples that plausibly

could have been drawn from the original dataset. In contrast, discriminative modeling refers

to find a discriminant function f(x) that maps each x directly onto a class label, thereby

combining the decision and inference stages into a single learning problem. So, generative

modeling tends to create or generate new examples in the input distribution after sufficiently

summarizing the input distribution. In terms of complexities, generative modeling tackles a

more difficult task due to trying to figure out how data is placed throughout the space in

contrast to draw the boundaries in the data space for the case of discriminative modeling.

So in generative modeling, the challenge is to imitate the input data distribution from an

unsupervised training of different types of tasks. The idea behind the recent progress of

generative modeling is to convert the generation problem to a prediction one and use deep

learning algorithms to learn such a problem.

2.3 Different types of generative networks:

2.3.1 Autoencoder

Autoencoders and their encoder/ decoder frameworks are the inspiration behind generative

models. It work by taking input and generating a smaller vector representation for the pur-

pose of later reconstructing its input. It is done by using an encoder to impose an information

bottleneck on input data and then utilizing a decoder to recreate the input data based on

that representation. This is based on the idea that there are hidden structures within the
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data (that is, correlations, and so on), but that are not readily apparent. Autoencoders are a

means of automatically learning these relationships without explicitly doing so. Structurally,

autoencoders consist of an input layer, a hidden layer and an output layer as shown in Fig-

ure 2.1. The encoder learns to preserve as much of the relevant information as possible in

the limited encoding and intelligently discards irrelevant parts. This forces the network to

maintain only the data required to recreate the data; we do this using a reconstruction loss

Figure 2.1 Graphical representation of an autoencoder network

with a regularization term to prevent over fitting. It is particularly useful in the task of

dimensionality reduction [28] due to its performance in both linear and nonlinear manifolds

in contrast to the basic technique of Principal Component Analysis. There have been used

different types of autoencoders depending on the task of encoding [29], [30]. Although it

offers a much suitable way to deal with compression and inter layer transfer learning, yet it

produces blurry samples considering the no. of parameters in the bottleneck representation

where in the bottleneck layer, higher no. of parameters can’t be allowed. Also, it imposes
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the risk of not learning the true posterior distribution.

2.3.2 Generative Adversarial Network:

It is revealed in recent works that deep learning models are often vulnerable to adversarial

examples [31], [32]. So, adversarial examples are maliciously designed to deceive the target

model by generating carefully crafted adversarial perturbations on original clean inputs. In

response to this susceptibility of deep learning models, researchers have found the adversarial

training as a promising approach [33] to defend against different types of real time adver-

saries in contrast to the stationary and benign environments assumption for training and

test data. In motivation for introducing adversaries in the learning process, a new type of

generative modeling approach invented by IAN Godfellow and his colleagues in 2014 [34], has

been designed in the way to solve the min-max problem. This network is called Generative

Adversarial Network (GAN). GANs are based on a game theoretic scenario with an objective

Figure 2.2 Block diagram of GAN architecture

to find Nash equilibrium between two networks, Generator and Discriminator. The idea is

to sample from a simple distribution like Gaussian and then learn to transform this noise

to data distribution using universal function approximators such as neural networks. The
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generator network must compete against an adversary. The generator network directly pro-

duces samples. Its adversary, the discriminator network, attempts to differentiate between

the samples drawn from the generator and from the training data. Figure 2.2 illustrates

how GAN works. The generator output is connected directly to the discriminator input. As

described earlier, the GANs are formulated as a minimax game, where the Discriminator is

trying to minimize its reward, V (D,G), and the Generator is trying to minimize the Dis-

criminator’s reward, in other words maximize its loss. It can be mathematically formulated

as below:

min
G

max
D

V (D,G)

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))] (2.1)

Where

G = Generator

D = Discriminator

Pdata(x) = distribution of real data

Pz(z) = distribution for generator latent variable

x = sample from Pdata(x)

z = sample from Pz(z)

Ex∼pdata(x) = Expectation operator acted on sample from the distribution of real data

Ez∼pz(z) = Expectation operator acted on sample from the distribution of generator latent variable

2.4 Training of GANs

Phase 1: The Discriminator is trained while the Generator is idle. In this phase, the network

is only forward propagated and no back-propagation is done. The Discriminator is trained
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on real data to have the idea of real data distribution, and see if it can correctly predict

them as real. Also, in this phase, the Discriminator is also trained on the fake generated

data from the Generator and see if it can correctly predict them as fake. Mathematically,

the discriminator network can be formulated as follows:

∇θd

1

m

m∑
i=1

[logD(x(i)) + log(1−D(G(z(i))))]

Here, m is the number of samples in a batch, θ is the model parameter in the generic

sense where subscript "g" signifies about the generator operation. The first part within the

summation makes sure that real samples are classified as being real and the second part

makes sure generated samples are classified as unreal. Discriminator, D wants to maximize

the first part and also intends to minimize the second part.

Phase 2: The Generator is trained while the Discriminator is idle. After the Discriminator

is trained by the generated fake data of the Generator, we can get its predictions and use

the results for training the Generator and get better from the previous state to try and fool

the Discriminator. Mathematically, the generator network can be formulated as follows:

∇θd

1

m

m∑
i=1

[log(1−D(G(z(i))))]

Here, subscript "d" signifies about the discriminator operation. Generator, G determines

how realistic the generated samples are. G wants to maximize this. In this way, after

completing reasonable number of iterations/ epochs, convergence will be done after ensuring

the fact that the generator is clever enough to mislead the discriminator. In the space of

arbitrary functions G and D, a unique solution exists.

2.5 Applications of GAN

After the invention of GAN, it has been widely used to replace normal convolutional neural

network based deep learning approaches in many computer vision tasks. And today, it has
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already outclassed many state of the art results based on normal deep learning approach.

Some of its applications has been listed below:

• Image Synthesis: This includes font generation, Text2Image as well as 3D image

generation [35].

• Data Augmentation: It aims to reduce the need for labeled data (GAN is only used

as a tool for enhancing the training process of another model). Because of this, it is

possible to sample from generator which we can use to enhance our original dataset.

• Style Transfer and Manipulation: It includes Face Aging, painting, pose estima-

tion and manipulation, inpainting, and blending [36].

• Image Super-Resolution: Image super resolution means to increase the resolution

of the image artificially from the available low resolution images. GAN supports quite

satisfactorily in this ill-posed case [37] as there are always available many High Reso-

lution images corresponding to Low Resolution images.

2.6 Common Challenges for GAN models

• Mode Collapse and mode drop: One of the major failure modes in training a

GAN model is mode collapse both partially and fully. Mode collapse is a problem that

refers to the situation when the generator generates samples having little variety or the

generator generates same samples at every steps. In terms of probability distributions,

sometimes the probability distribution is multi-modal and very complex in nature,

means that it contains samples from different observations. In this case, GANs fail

to model the multi-modal distributions of data and suffers from mode collapse. As

depicted from [38] in Figure 2.3, the two rows are produced by two different GANs,

where top row produce digits from all modes (from 0 to 9), but bottom row only

produces images of mode 6 (digit 6).

• Non Convergence: According to game theory, the GAN model converges when the
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Figure 2.3 Illustration of mode collapse on MNIST dataset from [38]

generator and the discriminator reach a Nash equilibrium. Since the actions of both

sides are fully in reverse direction, a Nash equilibrium happens when one side does

not change its action regardless of what the opponent will do. This can be referred

to the fact that Gradient descent based GAN optimization does not correspond to

convex-concave game even for simple parameterizations [38]. The generator objective

function of the first original GAN paper has the issue of vanishing gradients and the

alternative cost function has fluctuating gradients that cause instability to the training

of the models [39]. Moreover, as mentioned in [39], if the supports of unknown data

distribution and generator data distribution are disjoint or lie in lower dimensional

manifolds, then there is always a perfect discriminator between them leading to an

unreliable training of the generator.

2.7 Recent practice to mitigate problems in training GAN

In this section, we will try to have some insight on how to improve GAN. In practice,

the following practices have been exercised in the recent literature in order to mitigate the
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problems of GAN.

• Penalize the generator and discriminator based on the loss functions assessed from the

intermediate layer

• Change the cost function for better optimization goal

• Add additional penalties to the cost function to enforce constraints

• Avoid overconfidence and overfitting

• Better ways of optimizing the goal

• Add labels

As research regarding optimization with GAN has been a dynamic topic, so quest for new

techniques has been always ongoing to adapt this architecture in solving many complex

problems. Now, we will some of the above mentioned techniques in more details.

2.7.1 Loss assessment from the intermediate layer

During the training of GANs, we maximize the objective function of the discriminator net-

work and minimize the objective function for the generator network. But there has been

some serious flaws in the training process as it does not count on the statistics of real data

and generated data. Feature matching technique was proposed by Tim Salimans, Ian Good-

fellow and others in their paper [40] to improve the convergence of GANs by introducing

a new objective function, thereby rectifying some flaws in the training process. The new

objective function leans the generator to generate data with statistics that is similar to the

real data. Here, the network does not prompt the discriminator to provide binary labels,

instead, the discriminator provides activations or feature maps of the input data, extracted

from an intermediate layer in the discriminator network. From the training perspective, we

train the discriminator network to learn the important statistics of the real data. So, dis-

criminator learns those discriminative features. The new objective function can be described

mathematically as follows. Let’s assume
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f(x) – the activation or feature maps for the real data from an intermediate layer in the

discriminator network;

f(G(z)) – the activation or feature maps for the data generated by the generator network

from an intermediate layer in the discriminator network.

Now we can represent the new objective function as:

||Ex∼pdataf(x)− Ez∼pz(z))f(G(z))||22

This objective function can achieve better results compared to the conventional objective

function mentioned in equation (2.1).

2.7.2 Optimizing the model by mini-batch discrimination

During the phase of mode collapse, all images created look similar. To mitigate the problem,

real images and generated images can be fed into the discriminator separately in different

batches and compute the similarity of the image x with images in the same batch. If the

mode starts to collapse, then the similarity of the generated images increases. The overall

similarity O(xi) between the image xi and other images in the same batch is computed after

passing through a Transformation matrix T, which is of dimension A X B X C.

In Figure 2.4, xi is the input image and xj is the rest of the images in the same batch.

Transformation matrix is to transform the features xi to Mi which is a B X C matrix. So,

the individual similarity c(xi, xj) can be derived between image xi and xj using the L1-norm.

cb(xi, xj) = exp(−||Mi,b −Mj,b||1)

The overall similarity O(xi) between image xi and the rest of the image in the batch is-

O(xi)b =
n∑
j=1

cb(xi, xj)

O(xi) = [O(xi)1, O(xi)2, . . . . . . . . . ., O(xi)B]
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Figure 2.4 Full framework for Mini-batch discrimination

After computing the overall similarity, as per Figure 2.5, the discriminator can be guided

to penalize the generator in the case of mode collapsing along with the task of detecting

generated images.This similarity O(x) can be appended in one of the dense layers in the

discriminator to classify whether the image is real or generated.

f(xi), O(xi)

In terms of generating visually appealing samples, this method can be regarded as superior

to feature matching.
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Figure 2.5 Discriminator framework in Mini-batch discrimination

2.7.3 Avoiding over-fitting by historical averaging

Historical averaging is a technique that keeps tracking of the parameters of the past. Then,

it takes average of the parameters in the past and adds an L2 cost to the cost function to

penalize model different from the historical average.

||θ − 1

t

t∑
i=1

θ[i]||2

According to [40], for GANs with non-convex objective function, historical averaging may

stop models circling around the equilibrium point and act as a damping force to converge

the model.

2.7.4 One-sided label smoothing

Label smoothing can reduce the risk of generating adversarial examples in GANs. Instead

of classifying real and fake images through binary labels, we can smooth the target labels

for both real and fake images. So, we can consider applying labels 0.9, 0.8, 0.7 and 0.1, 0.2,

0.3 to the images respectively.

2.7.5 Using labels (Conditional GAN)

In GAN, there is no control over the modes of the data to be generated. The conditional

GAN changes that by adding label to the generator, thereby guiding the GAN training.
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Labels can also be added to the discriminator input to distinguish real images better. Figure

2.6 depicts the framework for Conditional GAN.

Figure 2.6 Framework for Conditional GAN

2.7.6 Cost functions

Cost function is one major research area in GAN, so research has been ongoing to find the

best suitable cost functions on all the datasets. Considering that, Table 2.1 lists some of

the cost functions for some common GAN models. In the table, for the sake of simplicity,

we omit the use of any subscript in the expectation operator (E) in order to specify its

data region, which we have previously used. Also, instead of using minmax operator in the

GAN equation, in contrast to our previously described format, we separately describe the

Generator and Discriminator equation in Table 2.1.

So, after having an insight about all these cost functions, we can infer that there is no

single cost function that performs the best among all different datasets. It can also be

concluded after comparing the FID score (lower the value, better the model) of different

GAN models on some of the datasets as per Table 2.2 according to [41]. Along with these,

good hyper-parameters and learning rate selection for both the generator and discriminator
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Name Value Function

GAN LGAND = E[log(D(x))] + E[log((1−D(G(z)))]

LGANG = E[log(D(G(z))]

LSGAN LLSGAND = E[(D(x)− 1)2] + E[D(G(z))2]

LLSGANG = E[(D(G(z))− 1)2]

WGAN LWGAN
D = E[D(x)]− E[D(G(z))]

LWGAN
G = E[D(G(z))]

WD ← clip by value(WD,−0.01, 0.01)

WGAN-GP LWGAN−GP
D = LWGAN

D + λE[(|∇D(ax− (1− αG(z)))| − 1)2]

LWGAN−GP
G = LWGAN

G

DRAGAN LDRAGAND = LGAND + λE[(|∇D(ax− (1− αxp))| − 1)2]

LDRAGANG = LGANG

CGAN LCGAND = E[log(D(x, c))] + E[log((1−D(G(z), c))]

LCGANG = E[log(D(G(z), c)]

infoGAN LinfoGAND,Q = LGAND − λL1(c, c′)

LinfoGANG = LGANG − λL1(c, c′)

ACGAN LACGAND,Q = LGAND + E[P (class = c\x)] + E[P (class = c\G(z))]

LACGANG = LGANG + E[P (class = c\G(z))]

EBGAN LEBGAND = DAE(x) +max(0,m−DAE(G(z)))

LEBGANG = DAE(G(z)) + λ ∗ PT

BEGAN LBEGAND = DAE(x)− kt ∗DAE(G(z))

LBEGANG = DAE(G(z))

kt+1 = kt + λ(γ ∗DAE(x)−DAE(G(z)))

Table 2.1 Cost functions assoiated with different types of GANs

are required. A carefully tuned GAN models may mitigate some serious GAN’s problems

like mode collapse, stability issue.
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Variants MNIST FASHION CIFAR CELEBA

MMGAN 9.8± 0.9 29.6± 1.6 72.7± 3.6 65.6± 4.2

NSGAN 6.8± 0.5 26.5± 1.6 58.5± 1.9 55.0± 3.3

LSGAN 7.8± 0.6 30.7± 2.2 87.1± 47.5 53.9± 2.8

WGAN 6.7± 0.4 21.5± 1.6 55.2± 2.3 41.3± 2.0

WGAN-GP 20.3± 0.5 24.5± 2.1 55.8± 0.9 30.0± 1.0

DRAGAN 7.8± 0.4 27.7± 1.2 69.8± 2.0 42.3± 3.0

BEGAN 13.1± 1.0 22.9± 0.9 71.4± 1.6 38.9± 0.9

VAE 23.8± 0.6 58.9± 1.2 155.7± 11.6 85.7± 3.8

Table 2.2 FID score associated with different types of GANs for different
datasets from [41]

In final, it can be concluded that GAN models are becoming popular after solving issues

associated with the training process. We know that deep learning models do not introduce

much diversity in terms of the design of the architecture. So,after solving convergence and

stability concerns of GAN, shifting the research toward introducing diversity in the design

of the GAN architecture will be much more challenging task and insightful too.

2.8 Insight about CGAN

As our work is associated with the architecture of Conditional Generative Adversarial Net-

work (CGAN), we would like to delve into its architectural framework, thereby paving the

way to guide to our work. It is a supervised type of GAN that involves the conditional

generation of samples by a generator. GAN can be extended to a conditional model if both

the generator and discriminator are conditioned on some extra information. In essence, the

conditioning can be done by feeding y into both the discriminator and generator as an extra

part in loss function. Basically, in an unconditioned generative model, there is no control on
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modes of the data being generated. However, by conditioning the model on additional infor-

mation it is possible to direct the data generation process. Such conditioning could be based

on class labels, on some part of data for inpainting, or even on data from different modality

[42]. To be very broad, Image-to-image translation problems can often be formulated as per-

pixel classification or regression. These formulations treat the output space as unstructured

in the sense that each output pixel is considered conditionally independent from all oth-

ers given the output image. Conditional GANs instead learn a structured loss. Structured

losses penalize the joint configuration of the output. Inspired from these kind of behavior of

CGAN model, popular image to image translation network named Basic Pix2Pix framework

has been developed in such a way that loss is learned here and any possible structural dif-

ference between target and generated output can be penalized. Its two most inevitable part,

generator and discriminator architectures differ from the traditional design of generator and

discriminator in the GAN structure. In this framework, generator has been designed via U-

Net based architecture as we will describe in the subsequent chapter, whereas convolutional

PatchGAN classifier [43] is used in the discriminator design.

2.8.1 Basic Architecture

Figure 2.7 Different parts of conditional generative adversarial network

For the deep insight about this architecture, the basic architecture has been shown in

25



Figure 2.7. Here, without z, the network could still learn a mapping from x to y, but only

tends to produce deterministic outputs thereby failing to match any distribution other than

a delta function. Instead, in its final implementation, noise has only been introduced in

the form of dropout such that the transition from the domain of original raw image to the

domain of translated image will be much smoother.

2.8.2 Methodology

In contrast to GANs which learn a mapping from random noise vector z to output image

y : G : z → y, CGANs learn a mapping from observed image x and random noise vector z,

to y : G : x, z → y. The objective of a conditional GAN can be expressed as-

LCGAN(G,D) = Ex,y∼pdata(x,y)[logD(x, y)] + Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z))]

Where G tries to minimize this objective against an adversarial D that tries to maximize it,

i.e. G∗ = argminGmaxD LCGAN(G,D). From the previous experience [44], it is apparent

that GAN objective should be mixed with L2 distance loss as a regularizer to converge the

two conflicting model. Also, due to the problem of having blurring effect after using L2

distance loss in the final translated image, it is beneficial to use L1 distance loss.

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[||y −G(x, z)||]1

So our final objective function should be:

G∗ = argminGmax
D

LCGAN(G,D) + λ ∗ LL1(G)

As evident from [7], this Pix2Pix framework has been successfully experimented on many

computer vision tasks, such as Semantic Labels ↔ photo trained on Cityscapes dataset,

Architectural labels → photo trained on the CMP facades dataset, Map ↔ aerial photo

trained on data scraped from Google Maps, BW → color photos, Edges → photo, Day →

Night etc. Also, the success of this model is to produce superior results even in the case
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of small training dataset. The following figures present some illustration of this Pix2Pix

framework on natural images. Based on this framework, we will design our proposed

Figure 2.8 Example results on Google Maps at 512x512 resolution

Figure 2.9 Example results on Cityscape Labels → photo, compared to
ground truth

framework in the chapter 4.
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Figure 2.10 Example results of our method on facades labels → photo,
compared to ground truth be implemented via Pix2Pix framework along
with our proposed upgradation methodology to Pix2Pix framework and
also it will be shown how both the methods surpass state of the art result
in the field of medical imaging segmentation task.
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Chapter Three

Biomedical Image Segmentation via

Deep Learning

3.1 Evolution of Deep Learning in Medical Imaging

Considering the success of deep learning approaches into many computer vision tasks, it

seems quite imminent to introduce the deep learning methods of computer vision in med-

ical imaging applications. Initially from the 1970s to 1990s, after the advent of scanning

and loading medical images into computer, automated medical image analysis included the

sequential application of low level pixel processing (edge and line detector filters, region

growing) and mathematical modeling (fitting lines, circles and ellipses) to construct com-

pound rule based systems that solved particular tasks. At the end of 1990s, after training

data was becoming popular to upgrade automated system then, supervised techniques such

as active shape models for image segmentation [45], atlas methods (where the atlases that

are fit to new data, form the training data), the concept of feature extraction and the use

of statistical classifiers for computer aided detection and diagnosis. So this really indicates

the shift from human designed systems to systems trained by computers using example data

from which feature vectors are extracted.

The next step is to train computers in a way to learn features that optimally represent
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the data for the problem at hand. Much of the actual effort in deploying machine learn-

ing algorithms goes into the feature engineering which is too much labor intensive and also

highlights the weakness of the existing machine learning algorithms. The most successful

type of image modeling network to date is Convolutional Neural Networks (CNNs) were first

applied to medical image analysis by 1995 [46]. But due to lack of computing power of the

computers, both the real world and medical imaging application did not gather momentum

through the use of CNNs. But its major contribution has been visible to world after 2012,

when the proposed CNN, called AlexNet, won the ImageNet competition by a large margin

[47]. However, the medical image analysis community has taken notice of these huge piv-

otal developments due to transition from handcrafted features to analyzing complex deep

features. Because, many existing medical image processing methods rely on morphological

feature representations to identify local anatomical characteristics. However, such feature

representations were designed mostly by human experts. So, the image features, assume

for 1.5-T T1-weighted brain MR images, are not applicable to work for other image types

such as 7.0-T T1-weighted MR images. The superior performance of the deep learning based

optimally extracted features can be evident from the comparison found in [48] through the

process of absorbing the feature engineering step into the learning step. [49] includes some

of these representative and automatically designed features such as layer-wise stacking of

feature extraction, sparse coding scheme along with the inference of Maximum A Posteriori

value etc. After the success of deep features in medical imaging applications, the number

of papers grew rapidly after 2015. The development after advent of deep feature extraction

process has been represented graphically in [50], which also includes a survey on 300 research

papers regarding deep learning approaches in medical imaging applications.
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3.2 Deep Learning in Medical Imaging Applications

Due to high resolution of medical images and unavailability of large annotated medical

imaging datasets, traditional methods in medical imaging analysis suffer from poor model

generalization ability. Deep learning based methods, the most breathtaking branch of the

machine learning field, provide the most effective way to construct an end to end model in

pursuit of Computer Aided Diagnosis (CAD) systems. However, the applications of deep

models in the medical image analysis domain require great effort to catch up with other

areas of imaging because deep architectures require large datasets to obtain outstanding

features. However, medical images are usually difficult to acquire and thus, medical datasets

are typically relatively small. Therefore, the approach is apt to lead to overfitting of the

model if we directly use deep model to address a small dataset. Instead, deep learning

based medical imaging analysis has been improvised in such a robust way that it overcomes

the barrier of so called small datasets as well as overfitting issue. Generally, deep-learning

pipelines for medical image analysis comprise many interconnected and common components.

These include-

• Separation of data into training, testing and validation sets;

• Randomized sampling during training;

• Image data loading and sampling;

• Data augmentation;

• A network architecture defined as the composition of many simple functions

• A fast computational framework for optimization and inference;

• Metrics for evaluating performance during training and inference.

Recent reviews [48], [50] have highlighted that deep learning has been applied to a wide

range of medical image analysis tasks such as deep feature representation learning in medi-

cal images, detection of structures (organs, body parts, different cell etc.) for segmentation,

for Computer Aided Detection, for Computer Aided Diagnosis, for image registration, re-
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construction etc. As this work is solely focused on the segmentation task regarding deep

learning approaches, in the subsequent section, we will discuss broadly about the deep learn-

ing approaches in biomedical image segmentation task.

3.3 Medical Image Segmentation via deep learning

The principal modalities in medical image analysis are Computed Tomography (CT), Mag-

netic Resonance Imaging (MRI) and Positron Emission Tomography (PET). The CT image

can diagnose muscle and bone disorders, such as bone tumors and fractures, while the MR

image can offer a good soft tissue contrast without radiation. Functional images, such as

PET, lack anatomical characterization, which can provide quantitative metabolic and func-

tional information about diseases.

Lung cancer is by definition a malignant tumor early detection of which could reduce the

mortality rate and increase the patient’s survival rate. CT imaging is an efficient medical

screening test used for lung cancer diagnosis and detection. With the help of CAD sytem, the

physicians analyze and diagnose the lung tissues. However, designing an effective lung seg-

metation method is a challenging problem, especially for abnormal lung parenchyma tissue,

where the nodules and blood vessels need to be segmented with the lung parenchyma. More-

over, the lung parenchyma needs to be separated from the bronchus regions that are often

confused with the lung tissue. Here, the proper utilization of popular image segmentation

architecture, U-Net has eased the path to malignant lung tissue segmentation [51]. Brain

extraction, specifically skull stripping, from magnetic resonance imaging (MR) data is an

essential step in many neuroimaging applications, amongst other surgical planning, cortical

structure analysis, surface reconstruction etc. It has been reported in [52] that anatomical

variability, as well as age and the extent of brain atrophy, e.g. due to neurodegeneration

have influenced the results of brain extraction methods. When considering the MR brain

scans for the purpose of brain tumors, the problem becomes even more severe. 3D Deep Con-
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volutional Neural Network (CNN) has been implemented in [53] in such way that requires

minimal to no parameter tuning and still handle images from clinical routine i.e. from a

wide age range, possibly including artifacts, contrast agent and pathologically altered brain

tissue. Also, it facilitates the use of both single modality and the combination of several

modalities (e.g. T1, T2, T2-FLAIR etc.). While training their 3D CNN, they constructed

mini batches of multiple cubes that were larger than the actual input to their 3D CNN for

computational efficiency. Again, it utilized the concept of FCNNs, so the output could be

the block of predictions per input, rather than one single output. [54] presented a method

using CNNs for the segmentation of three tissue types: white matter (WM), gray matter

(GM) and cerebrospinal fluid (CSF), in MR brain images of 6-8 months old infants, which

have low contrast between WM and GM. Automatic segmentation of MR brain images into a

number of tissue classes has been implemented in [55] through the use of multiple patch sizes

and multiple convolution kernel sizes to acquire multi scale information about each voxel.

This method allows to obtain accurate segmentation details as well as spatial consistency

which also omits the use of explicit spatial features in contrast to the previous work [56] in

the brain segmentation task.

The most well-known architecture in medical image analysis, specifically image segmenta-

tion task is U-net [9]. The two most architectural contribution of U-Net are the combination

of an equal amount of upsampling & downsampling layers and the introduction of skip con-

nections between the upsampling & downsampling layers. In the upsampling layers, there

are a large number of feature channels, which allow the network to propagate contextual

information to higher resolution layers. As a consequence, the expansive path is more or

less symmetric to the contracting path yielding a u-shaped architecture. So it facilitates the

processing of full images in one forward pass in contrast to patch based CNNs [57]. Figure

3.1 represents the trademark architecture of U-Net. Also, this work can be extended to

3D image segmentation task [58] by feeding U-Net with a few 2D annotated slice from the

same volume. Moreover, there have been 3D variant defined over U-Net called V-Net [59]
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by redefining the objective function based on Dice coefficient.

Figure 3.1 U-net architecture
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3.3.1 Generative Adversarial Network in Medical Imaging Analysis

Recently, Generative Adversarial Network (GAN) has been emerged as a very strong and

popular tool for medical imaging synthesis due to the scope of data augmentation to allevi-

ate the data scarcity and overfitting problem in medical imaging applications and also the

advantages regarding adversarial training schemes. The basic idea behind this network has

already been discussed in the previous chapter. It has already emerged as an auto choice in

computer vision tasks. After analyzing from internet, only one review paper [60] regarding

GAN in Medical Imaging Analysis has been found to date. According to [60], GANs can be

used in medical imaging applications in two ways; the first one is focused on the generative

aspect, which can help in exploring and discovering the underlying structure of training data

and learning to generate new images. The second one focuses on the discriminative aspect,

where the discriminator can be regarded as a learned prior for normal images so that it can

be used as a regularizer or a detector when presented with abnormal images.

As we have previously discussed, U-Net architecture has provided the state of the art

results in biomedical image segmentation tasks. Still it lacks the guarantee of spatial con-

sistency in the final segmentation map. Traditionally, conditional random field and graph

cut methods are usually adopted for segmentation refinement by incorporating spatial cor-

relation. Their limitation is that they only take into account pair wise potentials which

might cause serious boundary leakages in low contrast regions, thereby reducing the sharp-

ness in the final segmentation map. Another recently introduced paper in [61] implements

U-Net after some modification to the original U-Net architecture, like the case of addition of

dropout layers, binary cross entropy function being expanded to ternary cross entropy func-

tion. But still the representation does not seem very much convincing, as it does not ensure

the model’s generalization capability. In contrast to that, problem of refinement in the final

segmentation map has been alleviated in [62] by introducing adversarial loss along with the

encoder decoder based architecture. It helped to count on the fact of higher order potentials
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which formed the basis of considering the discriminator as a shape regulator. Laterly, this

contribution has been extended to achieve the domain invariance [63], [64] such as between

different modalities, image protocols etc. In work [65], extracted features coming from differ-

ent depths has been compared in the discriminator through multi scale L1 loss. It imposed

multi scale spatial constraints on the final segmentation map and the system achieved state

of the art performance in the BRATS 13 and 15 challenges. In work [66], segmentation task

has been performed in semi supervised way. In the annotated images, both the element wise

loss and adversarial loss has been applied, whereas the unannotated images are only used to

compute final segmentation map in a way to confuse the discriminator. Also, the network

invariance to small perturbations of the training samples in order to reduce overfitting has

been implemented through the adversarial training scheme [67]. Recently, a popular archi-

tecture named SegNet-cGAN has been successfully implemented in both for mammograms

as well as X-ray based breast lesion segmentation task [68] [69]. This architecture has its

association with the popular supervised ways of GAN training named CGAN, which can be

rooted to the basic of [7]. The basic architecture for SegNet-cGAN has been shown in figure

3.2.

3.4 Cases for Ultrasound Images

As our work is concerned with Segmentation of Breast Lesions from Ultrasound Images using

Generative Adversarial Networks, before delving deep into our proposed method, it would

be better to through some insights about Ultrasound images. In terms of imaging modal-

ities, Ultrasound (US) has become one of the most recognized and powerful screening as

well as diagnostic tool for physicians and radiologists. Over the decades, it has been widely

demonstrated that US has several advantages over other imaging modalities such as X-ray,

Magnetic Resonance Imaging (MRI) and computed tomography, including its non-ionizing

radiation, portability, non-invasive nature, accessibility as well as cost effectiveness. In cur-
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Figure 3.2 SegNet-cGAN Architecture

rent clinical practice, medical US has been applied to specialties such as echocardiography,

breast US, abdominal US, transrectal US, intravascular US and prenatal diagnosis US, which

is specially used in obstetrics and gynecology (OB-GYN). Whatever, US also imposes unique

challenges, such as low imaging quality caused by noise and artifacts, high dependence on

abundant operator experience, and high inter- and intra- observer variability across different

institutes and manufacturer’s US systems. For example, a study on the prenatal detection

of malformations using US images demonstrated that the sensitivity ranged from 27.5% to

96% among different medical institutes [70]. So, in order to overcome these challenges, it

is essential to develop advanced automatic US image analysis methods to make US diagno-

sis and assessment, as well as image guided interventions/ therapy, more objective, accurate

and intelligent. After emerging as the top-most breakthrough technologies, deep learning has

been adopted in developing Computer Aided Diagnosis system. A recently published review
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[71] regarding deep learning in medical ultrasound analysis has mentioned many of the areas

where deep learning has been adopted in a way to overcome the challenges in this image

modalities and also discusses about the future challenges as well as room of improvement.

Figure 3.3 illustrates the different stages of medical ultrasound analysis.

Figure 3.3 Illustration of Medical US Analysis
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Chapter Four

Proposed Segmentation Method:

Modified-CGAN (Mod-CGAN)

4.1 Multi-Task Learning

Multi-Task Learning (MTL) is a very effective area for deep learning applications, where

limited training samples are trained for deep models. In MTL, there can be many different

as well as general learning tasks such as supervised tasks (classification and regression), un-

supervised tasks (clustering problems), semi supervised tasks, reinforcement learning tasks,

multi view learning tasks etc. Among these learning tasks, all of them or atleast a subset

of them are related to each other. After getting inspired from the fact that knowledge con-

tained in a task can be leveraged by the other tasks, it can be inferred that learning these

tasks jointly can lead to much better performance improvement compared to learning these

tasks individually, thereby giving rise the scope of MTL. So, MTL can be mathematically

characterized such that given m learning tasks {Ti}mi=1 where all the tasks or subset of them

are related, MTL aims to improve the learning of a model for Ti by using the knowledge

contained in all or some of the m tasks. In MTL, the relatedness can be defined in three

ways: when to share, what to share and how to share.The ‘when to share’ issue is to make

choices between single task and multi task models for a multi task problem. ‘What to
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share’ refers to the form consisting either of feature, instance and parameter through which

knowledge sharing among all the tasks will occur. After determining ‘what to share’, ‘how

to share’ specifies concrete ways to share knowledge among tasks. The majority of MTL

studies mainly focus on feature based and parameter based methods. In connection with our

work, we will take into consideration some details of feature based MTL studies.

In feature based MTL, the primary approach is- feature learning approach. The feature

learning approach focuses on learning common feature representations for multiple tasks

based on shallow or deep models, where the learned common feature representation can be a

subset or a transformation of the original feature representation. Based on the relationship

between the original feature representation and the learned one, one can further categorize

into feature transformation and feature selection approach respectively. The feature trans-

formation approach is the learned features different from the original feature representations

as these features are linear or non-linear transformations of the original feature representa-

tions. On the other hand, in feature selection approach, the learned feature representations

are similar to the original features by eliminating useless features based on different criteria.

In many real life applications, some of the input matrices or output vectors can be shared

among different tasks. Based on whether the inputs or outputs are shared among different

tasks, MTL problems can be categorized into three different models, namely Multi-input

single-output (MISO), Single-input multi-output (SIMO) and Multi-input multi-output (MIMO).

All these three categories have different applications based on how it relates the input data

to the output target. For the sake of analyzing the correlation of MTL with our task, we will

only be concerned about SIMO which paves the way to interpret our work quite satisfactorily.

In the case of SIMO, single data source will be utilized for different tasks. There will

exist a shared/ common network for all the tasks in hand. Each task can be defined in such

a way that every task will try to benefit from the shared / common network. The case arises

when we intend to have the segmentation, classification, detection all available in the final

inference problem. The graphical representation of SIMO has been shown in Figure 4.1. The
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mean square loss formulation for the data fidelity term in this case is given as:

L(x, Y,W ) =
S∑
s

||x ∗ ws − ys||2F

where Y = {y1, y2, ..., yS} denotes the set of multi-output inference, x denotes the single

data source, andW = [w1w2...wS] denotes the weight matrix with its s-th column ws denoting

the weight vector corresponding to the mapping of x to ys.

Figure 4.1 single-input multi-output (SIMO), where single set of input
are mapped to multiple target

4.2 Proposed Method: Modified - CGAN (Mod-CGAN)

As depicted from chapter 2, Pix2Pix framework has been designed on the theory of con-

ditional GAN. It is one kind of supervised learning when making use of adversary during
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learning. Our goal here is to generate the image in a domain which is different from the

input domain. As we have our translated/ annotated images available, so we can utilize

these images more by taking a sample layer output from the encoder part of the generator

and compare it with the annotated images after taking it to the sample layer output domain

to ensure the fact that generator is tracking its hunt for the right direction. This additional

network has been termed as the Modifier network. This modifier network is actually the

one which facilitates the use of Multi Tasking learning (MTL) in the CGAN framework. As

the incorporation of MTL introduces a modification into the existing CGAN framework, the

newly introduced network has been termed as Modified- CGAN, in short it can be termed as

Mod-CGAN. Also, it is to be clarified that although this extra architecture has been operated

in parallel with the generator during the training process only, it is not included in the test

stage. Figure 4.2 represents the full architecture of this new proposed improvement to the

Pix2Pix framework. In the modifier part, output represents the mask matching score which

is ultimately a scalar value between 0 and 1. Mask matching score "1" interprets about

the complete matching of features between raw image and ground truth image after those

intermediate layers of operation. In the generator architecture, each encoder layer includes

the functionality of down convolution, batch normalization and Relu activation whereas each

decoder layer consists of transposed convolution, batch normalization, dropout, Relu acti-

vation and concatenation with corresponding encoder layer through skip connections. Here,

the idea of skip connections has been undertaken from the architecture of previously de-

scribed U-Net architecture. Also, it is to be clarified that the implementation of this new

architecture do not incorporate the data augmentation technique here. The motivation here

is that data augmentation technique includes stretching, shifting, rotating of the original

images, which does not coincide with natural deformation of the body organs. Most of all,

problem here is that it may bias the result in a random direction.
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4.2.1 Basic Architecture

Figure 4.2 Basic architecture of Mod-CGAN
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4.2.2 Training Structure

Figure 4.3 Detailed Modifier Architecture
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Figure 4.4 Detailed Generator Architecture
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Figure 4.5 Detailed Discriminator Architecture
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4.2.3 Test Structure

Figure 4.6 Architecture during test time

During the part regarding testing of the selected portion of our datasets, we have to

utilize both the modifier and generator section, but in the modifier part, only the flow from

original raw image has to be maintained due to not having the availability of ground truth
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annotated image. Segmented image will be the final generated image of our interest. Our

model’s performance will be assessed on the basis of final generated / segmented image.

Figure 4.6 depicts the architecture during test time.

4.3 Features of Mod-CGAN

As evident from the previous section, Mod-CGAN consists of three networks, named as

Modifier, Generator and Discriminator. Here, implementation for modifier network has been

generalized so that actually it can be imposed on any encoder-decoder based architecture.

Figure 4.3 depicts that the modifier network consists of some common initial layers of the

encoder part from the generator. This modifier network is trained through the mask match-

ing score. Generator and Discriminator network will remain same like the case of CGAN

framework. Here, in order to implement the Mod-CGAN architecture, we do not require any

extra additional information apart from raw image as well as ground truth image. Rather

through this modifier network, more utilization of the available data can be ensured. Figure

4.7 and 4.8 clearly represent about the better visualization of Generator network between

CGAN and Mod-CGAN architecture.

Figure 4.7 Diagram for Generator of CGAN
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Figure 4.8 Diagram for Mod - CGAN

4.4 Objective Function

Here, our proposed architecture consists of three different architectures. We can define them

as generator, discriminator and modifier architecture which is inclined within the generator

architecture yet having different loss functions. The intention of generator is to fool the

discriminator by its generated output, the discriminator trains itself from the pattern/ data

structure of original ground truth output in order to deny the generator any chance to skip

it. As the loss function of generator and discriminator are mutually exclusive, the issues of

convergence still remain a big issue for GAN. In the case of conditional GAN, generator is

trained in a supervised way. The modifier architecture has been developed in such a way

that it guides the generator to the right direction. So, it is emerged from the part of the
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generator, yet having different loss function. For this case, the objective of a MTGAN can

be written as -

LMTGAN(G,D) = Ex,y∼pdata(x,y)[logD(x, y)] + Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(M(z, x/y)))]

Where G tries to minimize this objective against an adversarial D that tries to maximize it,

i.e. G∗ = argminGmaxD LMTGAN(G,D). Also, as like the case in Pix2Pix framework, L1

distance loss has been utilized.

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[||y −G(M(z, x/y))||]1

So our final objective function for the part of MTGAN should be:

G∗ = argmin
G

max
D

LMTGAN(G,D) + λ ∗ LL1(G)

Along with these conditional GAN part, also modifier network needs to be optimized in

order to assist the generator to the path of convergence. Its final objective function can be

defined simply as-

Lmodifier = Ex,y∼pdata(x,y),z∼pz(z)[logM(z, x/y)]

As in this part of the network, modifier has been designed conditionally such that available

translated data have been more efficiently utilized. Modifier and GAN network will be

trained independently, but during the execution of same training batch. In final, here, it can

be said that it is a network of dual platform where adversaries has been introduced via the

practice of conditional GAN network and idea of multi tasking learning have been utilized

through the inclusion of modifier network. To the best of our knowledge, this is the first

time, where biomedical image segmentation has been implemented through the exercise of

dual network based architecture.
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4.5 Distinction with Multi Tasking based GAN architec-

ture

As the days go on, learning task for deep learning model will be more challenging such that

there will be small room for the model to be generalized. Also, data scarcity always remains a

concern for the model to upgrade to the next level. It refers to the fact that model’s capacity

is a key issue in terms of designing deep learning models for new researchers. Keeping

it on mind, multi task based learning recently brings an extra addition to the existing

deep learning models. As already discussed in Section 4.1, multi tasking based learning

can rather be regarded as an art which can be followed through different way in different

framework as required. That’s why in literature, this multi tasking based learning has been

incorporated in different formats despite being the same general name. In [72], multi task

GANs has been utilized for performing two different tasks named Semantic Segmentation

and Depth Completion Tasks with Cycle Consistency. The name multi task here is due

to the fact that the outcome of Semantic Segmentation task has been fed as input to the

Depth Completion task. Figure 4.9 depicts how the two tasks have been accomplished in

the ideology of multi tasking. In [73], small object detection has been done via multi task

Generative Adversarial Network. Here, multi task learning has been achieved completely

in the discriminator network in the form of adversarial learning, classification learning and

bounding box regression offset learning. Figure 4.10 depicts the situation. Figure 4.11

depicts the Mod-CGAN implementation on the basis of task.

From the figure shown in 4.9, 4.10, 4.11, it can be inferred that our proposed multi

tasking based implementation is completely different from those available in the literature.

Our proposed multi tasking based implementation works on several initial layers of the

generator. For our case, only defined explicit task is lesion segmentation. That’s why we

have defined a new implicit but performance boosting task in the form of mask matching

score.
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Figure 4.9 Multi Tasking GAN from [72]

Figure 4.10 Diagram for MTGAN from [73]
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Figure 4.11 Task based Mod-CGAN implementation
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Chapter Five

Performance Evaluation of the Proposed

System

In this chapter, the impact of our proposed approach will be evaluated in terms of the baseline

architecture. In this case, quantitative assessment based on the average dice score co-efficient

will be determined in terms of comparison with the baseline architecture of CGAN named

Pix2Pix. After that, the proposed approach will implemented along with its different versions

and the results will be compared among themselves and also with the Pix2Pix framework.

In line with this, performance of the imposed approach for different dataset will also be

assessed. Also, the loss functions associated with both the generator and discriminator will

be analyzed so that the impact of the modifier network can be assessed more deeply. After

that, our proposed approach will be analyzed for a different GAN based network named

SegNet-cGAN, which is very popular in the field of biomedical image segmentation task.

Here, our proposed network, named as Mod-SegNet-cGAN, will be assessed in terms of both

SegNet-cGAN as well as another state of the art approach named Extended U-Net. In the

end, qualitative assessment based on all of the described network have been made.
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5.1 Dataset Details

The research has been carried out generally on a publicly available dataset of only 163 US

raw images and corresponding 163 skillfully annotated segmented labels collected by UDIAT

Diagnostic Centre of the Parc Tauli Corporation, Sabadell (Spain) with a Siemens ACUSON

Sequoia C512 System 17L5 HD Linear Array Transducer (8.5 MHz). Among them, randomly

picked 125 images have been selected for training purpose and remaining 38 images have been

selected for testing purpose. Assessment has been made on the basis of comparing average

dice co-efficient of the test dataset. In this book, we have named this dataset as Dataset I.

Along with this, in order to have better insight about our work, we have also used another

dataset, acquired from [74]. This dataset in [74] contains breast ultrasound images of women

aged between 25 and 75 years old. This dataset consists of 780 images with an average size

of 500*500 pixels. The images are categorized into three classes named as benign, malignant,

normal. It also includes ground truth annotation by expert radiologists. In this book, we

have termed this dataset as Dataset II.

5.2 Simulation Environment

First of all, popular CGAN based implementation named Pix2Pix has been implemented

for our ultrasound based biomedical dataset. As already described in Chapter 2, Pix2Pix

is a encoder decoder based network and it has already been successfully implemented in

literature for various applications in the field of natural images. So, its modified version

on the basis of Multi Task Learning named Mod-CGAN has been implemented such that

our proposed modification can be evaluated in line with its original framework. The hyper

parameters used for Pix2Pix and Mod-CGAN models have been described as follows:

Features Pix2Pix Mod-CGAN

Nos. of sub network 02 03
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Features Pix2Pix Mod-CGAN

Sub Network Name Generator, Discriminator
Generator, Discriminator,

Modifier

Nos. of Generator

Layer used
19 16

Nos. of Modifier Layer

used
No modifier network 04

Nos. of Discriminator

Layer used
05 05

Learning rate for Gen-

erator and Discrimina-

tor

2x10− 04 2x10− 04

Learning rate for Mod-

ifier
No Modifier Network 1x10− 08

Cross Entropy Utilized Sigmoid Sigmoid

Data Augmentation No data augmentation No data augmentation

Size of Train Dataset 125 125

Size of Test Dataset 38 38

Average epochs simu-

lated
391 246

Table 5.1 Structural Difference between Pix2Pix and Mod-CGAN

It is to be noted from Table 5.1 that modifier learning rate has been made very low

compared to that of generator as well as discriminator. It can be attributed to the fact

that modifier network is a very small but effective addition from its part for the generator.

So, it needs to be synchronized with the learning of comparatively large sized generator.
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Otherwise, possibility here is that generator may be passing through some transition period

whereas modifier has already ended its learning.

5.3 Analysis

5.3.1 Quantitative Assessment of Segmentation performance

With a view to assessing the model’s performance quantitatively regarding the segmentation

task, evaluation metrics in the form of Dice Score Co-efficient (DSC) has been utilized.

Details about DSC have already been discussed in chapter 1. For the sake of comparison,

whole dataset has been segregated into four folds on which both of the above described

models have been assessed. In Table 5.2, quantitative assessment based on Average Dice

Score Co-efficient have been highlighted for both of the models. Mod-CGAN is a kind

of further enhancement of CGAN and also better utilization of available resources. This

enhancement has been clearly indicated in the improvement of performance for Mod-CGAN.

Dice Score Co-efficient (DSC)

Fold Pix2Pix Mod-CGAN

Fold-1 0.663496481 0.761219858

Fold-2 0.784143845 0.774587966

Fold-3 0.659522533 0.696189301

Fold-4 0.776714678 0.802293774

Average DSC 0.720969384 0.758572725

Improvement - 5.215663974%

Table 5.2 Quantitative Assessment on the dataset
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5.3.2 Loss Function Analysis

In this section, loss function corresponding with the three networks for our architecture

will be shown graphically. Then, it will be compared with the loss functions of CGAN

architecture.

Figure 5.1 shows loss function against no. of iterations associated with three different

networks of Mod-CGAN. Loss values have been shown for no. of iterations up to the point

of convergence. For reaching to the convergence of our architecture, we have to iterate the

Figure 5.1 Loss functions regarding three networks of Mod-CGAN

model around 256 times for this specific fold. But for the issue of checking stability in Mod-

CGAN, we have run our model for around 288 times. In these extra 32 epochs, although

generator improves its individual performance, but still its generalization ability remains
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fixed.

In Figure 5.2, the loss function regarding two networks of CGAN has been shown graph-

ically. For reaching to the convergence of Conditional GAN architecture, we have to impose

Figure 5.2 Loss functions regarding two networks of CGAN

the architecture on the training dataset for around 400 times. Also, it can be clearly noted

that up to some iterations, generator behaves very randomly and therefore the loss value is

very high. After then, generator starts to track the path to convergence. Whatever, with

the introduction of our very simple modifier network, generator, from the very beginning,

remains very much focussed on the assigned task. Moreover, in the later phase, the speed of

generator’s tracking to the convergence is much higher than the speed of CGAN as our model

reaches to its point of convergence after 256 epochs comparing to the 400 epochs of CGAN.

The case of generator and discriminator for both the architectures are shown in figure 5.3

and figure 5.4 respectively for better understanding. So, it is evident from figure 5.4 that

level of discriminator for Mod-CGAN has been achieved by the level of discriminator for
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Figure 5.3 Generator loss functions for two models: CGAN and Mod-
CGAN

CGAN after around 100 epochs later. Correspondingly, the case is same for generator. Also,

from figure 5.3, it can be inferred about the much higher convergence speed for generator of

Mod-CGAN model than the CGAN model.

5.3.3 Different versions of Mod-CGAN

Our method utilizes the scope of multi tasking learning. As depicted from [75], there exists

two types of hidden layers in a network, i.e. the shared layers and the task specific layers. The

shared layers learn the intrinsic low level representation of the data, which are general among

all the tasks, while the task specific layers learn the network’s task specific parameters that

map the learned latent representations from the previous shared layers to the task specific

output layers. In short, as we go deep into the hidden layers, the correspondence of its

features will be more and more task oriented. As, MTL deals with the issue of joint feature

learning which is common among all the tasks, so if we bring more encoder layers within
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Figure 5.4 Discriminator loss functions for two models: CGAN and Mod-
CGAN

the modifier architecture, the possibility will be to enter into the task specific layers, due to

which our method can lose its generality, thereby leading to overfitting. In Table 5.3, we have

shown average DSC on a specific fold of our dataset for different versions of Mod-CGAN.

In the table mentioned above, Mod-CGAN refers to the same as our proposed method.

(Mod-CGAN) - 1 refers to Mod-CGAN having one less modifier layer and correspondingly

that layer will be included in the generator network. Similarly, (Mod-CGAN) + 1 refers to

Mod-CGAN having one more modifier layer and a less generator layer than our proposed

Mod-CGAN. (Mod-CGAN) + 2 has also been described in this way.

After analyzing table 5.2 and table 5.3, it is clearly evident that Mod-CGAN, (Mod-

CGAN) - 1, (Mod-CGAN) +1 perform better than original core GAN network, Pix2Pix.
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Dice Score Co-efficient (DSC)

(Mod-CGAN) - 1 Mod-CGAN (Mod-CGAN) + 1 (Mod-CGAN) + 2

0.72951096 0.77716871 0.76105495 0.67999989

Table 5.3 DSC associated with different variants of Mod-CGAN

From (Mod-CGAN) + 2, network degrades in generalization capability, which refers to the

fact that modifier network has been deep into task specific layers rather than being confined

into shared hidden layers. Figure 5.5 shows some visual depiction for different versions of

Mod-CGAN. Apart from the assessment made in Table 5.3, it is also of interest to have

more insight through loss function of its different parts. For the case of Generator loss

function as depicted in Figure 5.6, although the Generator loss values for (Mod-CGAN)

+2 is less than other Mod-CGAN variant, its performance is worst among the four Mod-

CGAN variants as evident from Table 5.2. Here another issue is obvious that convergence

is achieved quite early for (Mod-CGAN) +2 than other Mod-CGAN variants. Therefore,

with the introduction of more deeper layers into the modifier part, model starts to lose its

generalization capability. As apparent from the distinction between shared and task specific

layers, we have dived deep into task specific layers in (Mod-CGAN) +2 version. Now for the

case of Discriminator loss function as shown in Figure 5.7, Discriminator is more optimized in

Mod-CGAN (our best performed model) compared with other Mod-CGAN variants, thereby

leading the Generator to optimize itself through more adversaries. Here, one thing needs to

be mentioned that upon iterating (Mod-CGAN) +2 for much more epochs, its generalization

capability degrades quite rapidly, although its generator loss reduces then. From Figure 5.8,

there is nothing significant to interpret as modifier acts as a performance booster as well as

an assistance for generator.
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Figure 5.5 Depiction for different versions of Mod-CGAN

63



(a) Complete Figure

(b) Zoom Version

Figure 5.6 Generator loss function (Original and Zoom Version) for dif-
ferent versions of Mod-CGAN
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(a) Complete Figure

(b) Zoom Version

Figure 5.7 Discriminator loss function (Original and Zoom Version) for
different versions of Mod-CGAN
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Figure 5.8 Modifier loss function for different versions of Mod-CGAN

5.3.4 Performance Evaluation for Dataset II

In this section, we will consider Dataset II for the evaluation of our proposed approach. As

we are interested in the segmentation of breast lesion from ultrasound images, so we only

take into consideration the benign and malignant lesions. Based on this, size of the train

dataset is 504 images and size of the test dataset is 126 images. Both of the above described

models have been simulated for this dataset and average dice score co-efficient has been

evaluated as shown in Table 5.4.
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Dice Score Co-efficient (DSC)

Pix2Pix Mod-CGAN

0.74056696 0.75596155

Improvement 2.07875733%

Table 5.4 Quantitative Assessment on Dataset II

5.4 Performance evaluation of Modifier imposition for

different CGAN architecture

In the previous subsection, imposition of modifier network on a basic CGAN framework

has been assessed in the form of Mod-CGAN architecture. In this section, another model

named SegNet-cGAN has been analyzed. SegNet-cGAN has been successfully implemented

for X-Ray based breast mass segmentation in 2018 [68] and also for Mammogram based

breast tumor segmentation in 2020 [69]. Based on this, this model has been imposed for

Ultrasound based breast tumor segmentation which brings a huge improvement compared

to that of Pix2Pix. Model assessment through average dice score coefficient based on the

four fold on Dataset I as previously described has been shown in Table 5.5.

Dice Score Co-efficient (DSC)

Fold Pix2Pix SegNet-cGAN

Fold-1 0.6635 0.8164

Fold-2 0.7841 0.8236

Fold-3 0.6595 0.7431

Fold-4 0.7767 0.8017

Average DSC 0.7210 0.7962

Improvement - 10.4299%

Table 5.5 Quantitative Assessment between Pix2Pix and SegNet-cGAN

67



As results have been improved significantly compared to Pix2Pix network, so our multi

tasking based modifier implementation can be imposed on this SegNet-cGAN approach,

which can be descibed as Mod-SegNet-cGAN. Comparison between architectural features

has been given in table 5.6.

Features SegNet-cGAN Mod-SegNet-cGAN

Total nos. of Generator Layer 42 39

Total nos. of Modifier Layer No modifier network 04

Total nos. of Discriminator Layer 14 14

Cross Entropy Utilized Sigmoid Sigmoid

Data Augmentation No data augmentation No data augmentation

Table 5.6 Structural Features of SegNet-cGAN and Mod-SegNet-cGAN

From Table 5.6, it can easily be stated that SegNet-cGAN is a large network compared

to Pix2Pix network. Now, in Table 5.7, performance of Mod-SegNet-cGAN has been as-

sessed with respect to SegNet-cGAN as well as Extended U-Net approach [61] as a different

upgraded form of U-Net architecture.

Dice Score Co-efficient (DSC)

Fold Extended U-Net SegNet-cGAN Mod-SegNet-cGAN

Fold-1 0.788873235 0.816445409 0.823337554

Fold-2 0.656127464 0.823639439 0.838176944

Fold-3 0.744901166 0.743076897 0.750324451

Fold-4 0.572751655 0.801700179 0.798747811

Average DSC 0.69066338 0.796215481 0.80264669

Improvement - 15.28271283% 16.21387686%

Table 5.7 Quantitative Assessment on the dataset

Also it can be stated that improvement for our proposed approach from SegNet-cGAN is
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0.8077%. So, the improvement has been made, but it is small compared to the case between

Pix2Pix and Mod-CGAN. It may be due to the fact that SegNet-cGAN is a very large

network in comparison with Pix2Pix. So, there is a possibility that network may reach to

its limit with this dataset. As a result, the imposition of this small, performance boosting

modifier network into the CGAN implementation improves the result for both the small and

large networks, but not in a very significant way for large network.

5.5 Qualitative interpretation on Dataset I

Figure 5.9 depicts the qualitative assessment on Dataset I based on different cases like small

sized lesions, complex lesion boundary lines, lesion surrounding fuzzy contour lines etc. This

figure also infers about the superior performance for the modifier based implementation.
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Figure 5.9 Qualitative Assessment on dataset I

70



Chapter Six

Conclusion

This thesis work deals with the segmentation of breast lesions from Ultrasound Images using

of Conditional Generative Adversarial Network. Our proposed system can identify, localize

as well as segment the breast lesions from the fuzzy and mostly confusing Ultrasound images.

Here, the system has been designed with a view to utilizing the scarcely available annotated

dataset. In general, conditional GAN has the luxury to be trained in a supervised way

through the introduction of both raw images and labeled images in the loss function. Our

proposed system is also a supervised one but by the use of multi tasking learning, it can

lead the generator to the path of convergence much easily. In this way, convergence as well

as stability of conditional GAN has been ensured. Also, our work tends to perform within

the territory of a very small dataset without the risk of overfitting or underfitting and data

augmentation has also not been incorporated here. In order to evaluate its performance on

the specific task, both the architectures of U-Net and conditional GAN have been investigated

which ensures the fact that our proposed system can surpass them and behaves quite well in

pretty critical condition. In addition to this, significance of our imposition has been analyzed

for different dataset. The performance improvement of our proposed imposition for Dataset

I are as follows:

• Mod-CGAN performs 5.22% better than Pix2Pix (CGAN).

• Mod-SegNet-cGAN performs 16.21% better than Extended U-net.
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• Mod-SegNet-cGAN performs 0.81% better than SegNet-cGAN.

whereas, performance improvement of our proposed imposition for Dataset II is as follows:

• Mod-CGAN performs 2.08% better than Pix2Pix (CGAN).

In the conclusion, we can include some of the facts that may possess the scope of further

advancement as per following:

F Our proposed modifier network includes only one dense layer after the shared network.

As we dig deep from Mod-CGAN to (Mod-CGAN) + 1 as well as (Mod-CGAN) + 2,

performance degrades in terms of generalization capability. It is evident that as the no.

of latent representation layers increase in the modifier network, the no. of features as

well as neurons rise quite extremely. As a result, conversion from such a high number

of features/ neurons to a single value in one single dense layer may insert the possibility

of losing general data. So, here the question arises whether the inclusion of additional

dense layers in the case of higher versions of Mod-CGAN is beneficial or not. Also, the

performance of different hyper parameters at different values needs to be evaluated,

as it might cast some more insight into the convergence and stability of the overall

network.

F Our proposed system is only assessed on the task of biomedical image segmentation.

As we know that deep learning approaches have been incorporated into biomedical

imaging task and it has thereby changed the view of medical imaging analysis, so we

can anticipate that it will obviously have a huge influence on computer vision based

real time tasks. The possibility here is that it can replace for example, the so-called

state of the art object recognition system.

F Our work has been implemented without the exercise of any data augmentation, such

that work can be analyzed for the core network. Although, data augmentation can

not assimilate the natural deformation of the internal body organs, still exercise of
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data augmentation for enlarging the dataset could be a point of case study for our

proposition.

F Our proposed architecture is more of its kind of supervised training, opening the door

for more research to migrate towards the kind of unsupervised training.

F In our datasets, we have single breast lesion to detect in each of its individual image. As,

this architecture is not trained for the rare case of more than one lesion detectable in our

original raw image, we should exaggerate this model’s evaluation towards determining

lesions in all the possible places of single uniform image. In this way, it also can be

guaranteed whether our method is properly generalized or not.

F Our proposed imposition has been utilized for both small and large CGAN imple-

mentation. Although, performance has been improved significantly for small network,

performance improvement is no that much large for very big network. So, further

analysis can be made regarding performance improvement for large network.

F In the case of GAN network training, there has been provision of implementing different

cost functions, none of which still are not totally optimized for all the datasets. One cost

function may perform superior for one dataset, whereas another cost function performs

better than other for other dataset. Research has been ongoing still to find the most

optimized one which can outperform every other cost functions for every dataset. A

glimpse of still available cost function for GAN training purpose are covered in chapter

2. It also gives the scope for further extension of our work.
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