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Abstract 

 

 

At the nanoscale, two-dimensional (2D) materials are showing great promise in improving 

device mobility, on current density, on/off current ratio, subthreshold swing, and contact 

resistance, etc. Furthermore, contemporary three-dimensional integration of logic, 

memory, and optoelectronic devices into a single nanoscaled chip requires 2D materials for 

transistor channel, thermal insulator, light emitters, and photodetectors etc. Since the 

emergence of graphene, researchers have been investigating novel 2D materials that can 

combine structural stability with superior electronic, thermal and optical properties. Group-

IV elemental monolayers (graphene, silicene, germanene, and stanene) offer many 

fascinating characteristics such as tunable energy bandgap, very high charge carrier 

mobility, superconductivity, enhanced optical conductivity. However, these materials have 

limited their application in digital electronics due to their semimetallic property. Other two-

dimensional materials have been studied, including transition metal dichalcogenides, 

hexagonal boron nitrides, and phosphorene, but they do not surpass graphene in terms of 

other electrical, thermal, and optical characteristics. Stable two-dimensional materials with 

graphene-like characteristics and a considerable energy bandgap are of great scientific 

interest. In this work, the structural, electronic, optical, and electron transport properties of 

three different atomically thin novel hybrid monolayers comprising of Si, Ge, and Sn atoms 

with varying proportions are studied using first principles calculations within the 

framework of density functional theory that combine superior electronic and optical 

properties with considerable energy bandgap.  The fabrication of similar hybrid materials 

is practically realizable but the study of different properties of these novel monolayers is 

yet to explore. The proposed hybrid buckled honeycomb monolayers with sp2-sp3 like 

orbital hybridization, are mechanically and dynamically stable, confirmed by the analysis 

of in-plane elastic constants, phonon dispersion curve and cohesive energy of the 

monolayers. The electronic bandstructures of these hybrid 2D monolayers, namely 

Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50 show considerable direct energy 

bandgap ranging from 120 meV to 283.8 meV while preserving the linear energy-

momentum relation at the K point of the Brillouin zone. The calculated significantly low 

effective mass (0.063×m0 – 0.101×m0), where m0 is the rest mass of electron, and very high 

acoustic phonon limited mobility (~106 cm2V-1s-1) of the charge carriers inside the hybrid 

monolayers ensure the presence of relativistic-massless Dirac fermion. In order to further 
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investigate the electronic properties, we have calculated atom projected density of states 

and differential charge density. Optical properties e.g. dielectric function, electron loss 

function, absorption coefficient, refractive index, reflectivity, and optical conductivity are 

also explored for parallelly and perpendicularly polarized incident light. These hybrid 

monolayers show anisotropic optical response for parallel and perpendicular polarization 

as a function of frequency of the incident light.  Polarization tunable plasma frequency, 

high absorption coefficient (~104 cm-1) over a wide range of frequency, high refractive 

indices (~1.8) suggest these hybrid monolayers as potential candidates for optoelectronic 

applications. Three different armchair nanoribbons have been designed using these novel 

monolayers to study the effect of the adsorption of NH3 molecules on these hybrid 

nanoribbons. Calculated electron transport properties ensure the applications of these 

nanoribbons as NH3 sensor at the molecular level. Electron transport properties are also 

investigated in the presence of point defects to understand the effect of defects on the 

transport properties of these nanoribbons. Thus, these results suggest that the proposed 

SixGeySn1-x-y hybrid monolayers can be a potential candidate for nanoelectronics, 

optoelectronics and, sensor-based applications. 
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CHAPTER 1 

Introduction 

 

 

1.1 Preface 

The necessity for nanoscaled, high-performance and low-cost field effect transistors (FET) 

is steadily increasing. Researchers have been constantly exploring for ingenious ways and 

novel materials for the next generation devices to serve this ever-increasing demand [1]–

[3]. According to the Moore's law, the scaling of the FET channel length, dielectric 

thickness results in smaller, faster transistors than the preceding generation [4]. Due to 

manufacturing and other performance constraints, such scaling approach has achieved 

saturation [5]. The scalability of the conventional form of MOSFETs presents significant 

challenges. Short channel field effect transistors frequently suffer from reduced 

electrostatic control that results in high leakage current, threshold voltage roll-off, drain 

induced barrier lowering and impaired drain current saturation [6]–[9]. The off-state current 

increases as the gate control over the short channel is decreased, increasing the switching 

power loss of the devices. The thermal management of the devices will be problematic due 

to increased switching power loss. In addition, ineffective thermal management will further 

deteriorate the device's performance. This has been one of the major impediments to further 

field effect transistor's scaling down. Many innovative ways based on Silicon technology 

have been developed to mitigate such effects, including the use of high-k dielectrics [10] 

and multi-gate transistor [11], gate all-around cylindrical transistors [12]. In addition, 

several novel materials [13] other than Silicon have been recommended to address the 

challenges mentioned above. 

 

To continue with the Moore’s law, researchers have been working on three-dimensional 

(3D) integration of nanoscaled memory and logic devices to enhance the performance of 

the devices and systems. In such platforms, atomically thin two-dimensional materials are 

excellent choices that can be combined with conventional Silicon devices.  Since the 

discovery of graphene, researchers have been focusing their efforts on novel two-

dimensional (2D) materials due to their remarkable properties in comparison to their bulk 



 

2 

 

counterparts [14], [15]. At the nanoscale, 2D materials can complement silicon CMOS 

technology by improving device mobility, on current, on/off current ratio, subthreshold 

swing, and contact resistance, etc. [16]. Additionally, current 3D integration of logic, 

memory, and optoelectronic devices into a single nanoscaled chip [17] necessitates the use 

of two-dimensional materials for transistor channel material, thermal insulator, light 

emitters, and photodetectors [18], [19]. However, group-IV elemental monolayers 

(graphene, silicene, germanene, and stanene) have restricted their applications in digital 

electronics due to their semimetallic nature [20], [21]. Other two-dimensional materials 

have been studied, including transition metal dichalcogenides, hexagonal boron nitrides (h-

BN), and phosphorene, but they do not surpass graphene in terms of other electrical, 

thermal, and optical characteristics [22], [23]. Stable two-dimensional materials with 

graphene-like characteristics and a considerable energy bandgap are of great scientific 

interest [24].  

 

Recent investigations indicate that 2D binary and ternary compounds of Group-IV elements 

(C, Si, Ge, and Sn) have promising mobility and energy bandgap properties [25], [26]. 

Additionally, the Molecular Beam Epitaxy (MBE) approach has been used to fabricate 

monolayers and few layers of GeSiSn, SiSn, and Ge on Si (100) substrates [27]. The 

characteristics of ternary hybrid monolayers of Si, Ge, and Sn atoms have not been studied 

yet, which may hold great promise for next-generation nanotechnology. Thus, a 

comprehensive investigation of the structural, electrical, optical, and electron transport 

properties of novel hybrid monolayers of Si, Ge, and Sn, SixGeySn1-x-y, based on first-

principles calculations, can be significant in giving insight into the intriguing properties of 

these hybrid monolayers and their potential applications. 
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1.2 Literature Review 

After the emergence of graphene, exploring atomically thin novel and stable two-

dimensional (2D) materials and investigating their properties have drawn intensive 

attention of the researchers since 2D materials possess fascinating electronic, optical, 

mechanical and thermal properties as compared to their bulk counterparts [28]–[30]. 

Utilizing 2D materials, it is possible to exploit the intriguing characteristics of the quantum 

mechanical realm such as tunable energy bandgap, very high charge carrier mobility, 

superconductivity, topology protected conductivity, enhanced optical conductivity in the 

visible region [31]–[34], and thus 2D materials offer a great promise for the future of nano-

scaled technology and physical science [35], [36]. Graphene, atomically thin honeycomb 

structure of carbon atoms, has initiated the quest for the extraordinary properties such as 

relativistic-massless Dirac fermion, high charge carrier mobility, ballistic electron transport 

at room temperature [37], [38] which hold great promises for future nanoscaled electronics. 

But the application of graphene is limited due to its chemically inert character and 

semimetallic property [23]. Presence of energy bandgap is necessary to implement digital 

switching devices such as field effect transistor (FET). To open considerable energy 

bandgap in graphene various approaches have been taken which include patterning 

graphene layers into nanoribbons [39]–[42], applying external electric field [43]–[46], 

applying uniaxial and biaxial strain [47]–[49], functionalizing with other materials [50], 

[51], forming van der Waals heterostructures [52]. In general, the wider the band gap 

opened by external factors, the more parabolic (rather than cone shaped) the valence and 

conduction bands become: this reduces the curvature around the K point and increases the 

effective mass of the charge carriers [53], lowering the charge carrier mobility eventually. 

Higher charge carrier mobility holds promise for future electronic and optoelectronic 

devices such as ultrafast transistors [54], negative differential resistance, [55] spin filter 

effects, [56] large magneto-resistance response [57], [58], and photodiodes. Furthermore, 

2D materials' superior thermal and optical properties might complement conventional 

silicon devices [59], [60]. 

 

With the emergence of graphene, researchers have explored other alternative 2D materials 

such as transition metal dichalcogenides (TMDCs), hexagonal boron nitrides (h-BN), 

phosphorene, metal carbides, nitrides etc. Researchers have recently been utilizing TMDCs 
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as transistor channel material, but these materials offer very low mobility [61].  Monolayer 

h-BN is being utilized in thermal applications [62] and phosphorene nanoribbons are 

reported to become unstable under external strain [63]. These monolayers cannot 

outperform graphene in terms of electronic, thermal, and optical properties. In recent years, 

graphene analogue of Si, Ge and Sn atoms also known as silicene, germanene and stanene, 

respectively have also attracted great interest due to their extra-ordinary characteristics 

[20], [21]. These stable monolayers have been experimentally realized using Molecular 

Beam Epitaxy (MBE) growth and mechanical exfoliation method [64]–[68]. Silicene, 

germanene and stanene are buckled honeycomb structures composed of Si, Ge and Sn 

atoms respectively due to the presence of sp2-sp3 like orbital hybridization and these 

monolayers have very small energy bandgap in their energy band structures in the presence 

of spin-orbit coupling (SOC) as reported by Balendhran et al [69]. Although linear energy-

momentum relation is observed near the K point of the Brillouin Zone (BZ), the energy 

bandgap present in silicene, germanene and stanene are not sufficient enough to overcome 

the semimetallic characteristics. So, exploring stable 2D materials which combine the 

fascinating characteristics of graphene and possess considerable energy bandgap is of great 

scientific quest. Researchers have applied various techniques on these novel 2D materials 

as on graphene such as applying uniaxial and biaxial strain, applying vertical electric field, 

creating multilayer nano-structures [70], [71] to combine high charge carrier mobility with 

significant energy bandgap. Atomically thin  binary compounds of Group-IV elements (C, 

Si, Ge, Sn) such as monolayer SiC, SiGe, SiB, SnGe have also been studied to harness 

extraordinary characteristics [72]. Researchers have also studied ternary hybrid monolayers 

of C, Si, Ge atoms to implement a potential 2D materials that may offer high charge carrier 

mobility with considerable energy bandgap. These monolayers show significant energy 

bandgap but lack the linear-energy momentum relation [73]. 2D materials are also being 

utilized in highly efficient optoelectronic devices [74] to extract near unity 

photoluminescence quantum yield. These materials have also potential applications in 

designing highly efficient sensing devices. Recently, 2D MoS2 nanopores are designed to 

sense DNA molecules [75], and other 2D materials are widely studied as gas sensors [76].  

Electronic, optical, and charge transport characteristics of monolayer ternary compound 

honeycomb structures of Si, Ge, and Sn atoms have not been studied yet which may hold a 

great promise for the next-generation nanotechnology. Moreover, Timofeev et al have 
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reported the growth techniques of monolayer and few layers GeSiSn, SiSn, and Ge on 

Si(100) substrate using Molecular Beam Epitaxy (MBE) method [27]. 

 

Motivated by the above considerations, in this work novel hybrid monolayers have been 

designed and characterized that offer considerable energy bandgap with high charge carrier 

mobility, superior optical and electron transport properties. Three different novel hybrid 

monolayers consisting of Si, Ge, and Sn atoms namely Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 

and, Sn0.25Si0.25Ge0.50 were modelled based on Density Functional Theory (DFT). These 

novel hybrid monolayers are mechanically and dynamically stable which are testified by 

calculating the elastic constants, phonon dispersion characteristics and cohesive energy. 

The structural properties, e.g. lattice constant, buckling height and bond length are 

investigated in detail. These proposed novel hybrid monolayers of Si, Ge and Sn possess 

significant energy bandgap at the K point of the BZ as well as linear energy-momentum 

relation which ensures very high charge carrier mobility. The energy band structure with 

and without considering the spin-orbit coupling (SOC), atom projected density of states, 

differential charge density have been calculated. In order to investigate the charge 

conductivity of these hybrid monolayers, effective mass and acoustic phonon limited 

mobility of the charge carriers have been computed. To understand the interaction of these 

proposed hybrid monolayers with electromagnetic wave i.e. light, the optical properties, 

such as dielectric function, electron loss function, absorption coefficient, refractive index, 

reflectivity, and optical conductivity as a function of frequency for parallelly and 

perpendicularly polarized incident light have been calculated. This study presents detail 

insight of the optical properties of these hybrid monolayers. Then hydrogen passivated 

relaxed armchair nanoribbons were designed utilizing the proposed hybrid monolayers and 

their electron transport characteristics e.g. transmission function, I-V characteristics were 

calculated using Non-Equilibrium Green’s Function (NEGF) formalism within DFT. The 

calculated electron transport characteristics further ensure the semiconducting 

characteristics of the hybrid monolayers. The significant changes in electron transport 

characteristics due to adsorption of NH3 molecules and the presence of point defects in 

these proposed hybrid monolayers have also been studied which confirms the sensing 

application of these hybrid armchair nanoribbons. 
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1.3 Thesis Objectives 

The primary objective of this thesis is to model the geometrically optimized structure of 

three different novel hybrid monolayers comprising of Si, Ge, and Sn atoms with varying 

proportions namely Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50 using first 

principle calculations within the framework of density functional theory (DFT). The 

modelled atomically thin structures will be geometrically relaxed with optimum energy and 

atomic force thresholds and the structural properties, e.g. lattice constant, buckling height, 

and bond length of respective monolayers will be determined with accuracy. The 

mechanical and dynamic stability of the modeled hybrid monolayers will be examined by 

studying their in-plane elastic constants, phonon dispersion characteristics and cohesive 

energy. The positive value of in-plane elastic constants, absence of imaginary frequency in 

the phonon dispersion curves and the negative cohesive energy will be the indicators of 

mechanical and dynamic stability of the structures. Then the electronic properties of the 

novel hybrid monolayers will be computed in detail, e.g., electronic band structure 

considering spin-orbit coupling, atom projected density of states, differential charge 

density, effective mass, and acoustic phonon limited mobility of the charge carriers. The 

computed parameters will be compared and validated by the reported parameters of the 

neighboring monolayers. To gain insights on the interaction of these novel hybrid 

monolayers with electromagnetic wave, i.e. light optical properties will be calculated as a 

function of frequency for parallelly and perpendicularly polarized incident light. Optical 

properties such as, dielectric function, electron energy loss function, absorption coefficient, 

refractive index, reflectivity, and optical conductivity will be calculated for the hybrid 

monolayers of Si, Ge, and Sn. Then charge transport characteristics of these novel hybrid 

monolayers will be studied. In order to do these three novel hybrid monolayers will be 

patterned into nanoribbons to build transport devices, voltage will be applied across the 

transport devices and output current is measured. Electron transport properties of the novel 

hybrid monolayers, e.g., current-voltage characteristics, transmission function will be 

calculated for pristine nanoribbons and also in the presence of NH3 molecules and point 

defects. Such studies may open the prospects sensing applications of these novel hybrid 

monolayers of Si, Ge, and Sn. 
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1.4 Thesis Outline 

The layout of the thesis is as follows. The theory and the details of density functional theory 

for the characterization of electronic, optical, charge transport properties of novel hybrid 

monolayers of Si, Ge, and Sn are discussed in Chapter 2. A brief discussion of the properties 

and the theory to obtain them with DFT are also given in this chapter. Chapter 3 deals with 

the atomic structures of novel hybrid monolayers of Si, Ge, and Sn along with the 

computational details and methodologies for obtaining the results. Chapter 4 contains the 

detailed results of the electronic, optical, and charge transport properties of novel hybrid 

monolayers of Si, Ge, and Sn. Finally, the conclusions are drawn in Chapter 5 with a brief 

discussion on the future scope for work in this direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 

 

CHAPTER 2 

Theoretical Foundation 

 

 

The density functional theory (DFT) is addressed in this chapter, which is essential for the 

characterization of structural, electrical, optical, and electron transport characteristics. 

Following that, descriptions of various characteristics and ways for getting them using DFT 

are briefly presented.   

 

2.1 Density Functional Theory 

 

In solid-state and condensed matter physics, the density functional theory (DFT) has been 

one of the most successful and promising ways to examine electronic, thermal, spintronic, 

and optical structure computations. This theory determines the features of a many-electron 

system that is spatially dependent on the three-dimensional electron density functional. The 

phrase "density functional theory" was coined as a result. Apart from providing a distinct 

and rigorous technique to handling interacting issues and parametrizing empirical facts, it 

has been a thorough alternative to the Schrodinger equation for many particle systems. This 

approach is widely used to accurately determine the ground-state electrical structure of 

many-body systems, such as atoms, molecules, and condensed phases. 

 

2.1.1 Schrödinger Equation for Many-Body systems 

 

All the necessary information about a system can be harnessed from the quantum 

mechanical wave-function of that system. As a result, the most important objective in solid-

state physics, and material sciences is to solve the time-independent, non-relativistic 

Schrödinger equation. The time independent form of Schrödinger equation is as follows, 

�̂�Ψ(𝒓,𝑹) = 𝐸Ψ(𝒓,𝑹) (2.1) 
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Also, the time dependent form of Schrödinger equation is as follows, 

�̂�Ψ(𝒓,𝑹) = −iℏ
𝛿

𝛿𝑡
Ψ(𝒓,𝑹) (2.2) 

 

Here �̂� is the Hamiltonian for a system consisting of 𝑁 nuclei and 𝑛 electrons which is 

given by: 

 

�̂� = Te + TN + 𝑉(𝒓, 𝑹) (2.3) 

 

Here, 

𝑇𝑒= Kinetic energy of the interacting electrons with mass m 

𝑇𝑁= Kinetic energy of nucleus with mass M 

𝑉(𝒓,𝑹)= Total potential energy 

r= Position vector of electrons  

R = Position vector of nuclei 

 

Again, 

 

TN = −∑
ℏ2

2𝑀𝜇
∇𝑹𝜇

2

𝜇

(2.4)  

 

Te = −∑
ℏ2

2𝑚
∇𝒓𝑖

2

𝑖

(2.5)  

 

𝑉(𝒓,𝑹) =  −∑
𝑍𝜇𝑒2

|𝒓𝑖 − 𝑹𝜇|
+

1

2
∑

𝑒2

|𝒓𝑖 − 𝒓𝑗|
+

1

2
∑

𝑍𝜇𝑍𝜈𝑒
2

|𝑹𝜇 − 𝑹𝜈|𝜇≠𝜈𝑖≠𝑗𝑖,𝜇

(2.6) 

 

where, 

ℏ = Reduced Planck’s constant 

Z= Atomic number of the nucleus 

 

Here, i and j represent the n electrons in the system, whereas μ and ν run over the N nuclei. 

The three variables in 𝑉(𝒓,𝑹) stand for the attractive electrostatic interaction between 
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nuclei and electrons, as well as repulsive potential owing to electron-electron and nucleus-

nucleus interactions. 

The precise solution of the Schrödinger equation may be determined in order to get the 

wave-function and allowable energy levels of a basic 2D square potential or even a 

hydrogen atom. This is owing to the fact that the complexity of certain problems, such as 

the number of electrons, is not very great. Due to the tremendous complexity, it is hard to 

obtain a precise solution to the Schrödinger equation for a many-body system. As a result, 

some estimates are required to solve the problem. 

 

2.1.2 Born-Oppenheimer Approximation 

 

In quantum chemistry simulations of molecular wave-functions, the Born–Oppenheimer 

(BO) approximation has been widely employed to minimize computing difficulties without 

sacrificing accuracy. Because the nucleus has a far bigger mass than the electron, the wave 

functions of the nucleus and electrons are considered to be independent. The nucleus is 

believed to be a point charge that does not move. Because the Coulombic forces on 

electrons and nuclei are approximately comparable in magnitude, the resulting change in 

their momenta is likewise expected to be similar. This assumption permits the wave-

function of a molecule to be split down into its electronic and nuclear (vibrational, 

rotational) components in mathematical terms. 

Ψ𝑡𝑜𝑡𝑎𝑙 = Ψ𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 × Ψ𝑛𝑢𝑐𝑙𝑒𝑎𝑟 (2.7) 

 

This approach greatly simplifies the computation of the energy and wave-function of an 

average-size molecule. A water molecule, for example, has three nuclei and ten electrons. 

For this situation, the time-independent Schrödinger equation becomes a partial differential 

eigenvalue equation with 39 variables — the spatial coordinates of the electrons and nuclei. 

 

The electronic Schrödinger equation is solved first using the BO approximation, resulting 

in the wave-function Ψ𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐, which is purely dependent on electrons. Ψ𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐 relies 

on 30 electronic coordinates for water. Interactions between electrons and nuclei are still 
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existent. The Coulomb potential of the nuclei, which is clamped at particular points in 

space, is nonetheless felt by the electrons. The Clamped Nuclei Approximation is the name 

given to the first phase of the BO approximation. The electronic Schrödinger equation is 

therefore reduced to 

(−
ℏ

2𝑚
∑∇𝒓𝒊

2 + 𝑉(𝒓,𝑹)

𝑖

)Ψ𝑹(𝒓) = 𝐸(𝑹)Ψ𝑹(𝒓) (2.8) 

For a given 𝑹 and once obtained, potential energy surface 𝐸(𝑹) determines the nuclear 

motion. 

The obtained function from the previous stage is used as a potential of the Schrödinger 

equation in the following portion of the computation. This time, the equation just comprises 

the nuclei, such as a 9-variable equation for water. With the aid of this approximation, 

similar techniques may solve a differential equation of enormous complexity for a huge 

system. This approximation makes obtaining the answer considerably easier, which leads 

to the molecule's energy and wave-function. 

 

2.1.3 Hohenberg-Kohn Theory 

The charge density of the ground state, n(r), is at the core of density functional theory. It is 

defined as follows for N electrons: 

n(r) = N∫ |Ψ(𝐫, 𝐫2, …… , 𝐫N)|2d𝐫𝟐 …d𝐫𝐍 (2.9)  

 

The Eigen function of Hamiltonian H is Ѱ (𝑟1, 𝑟2, . . . , 𝑟𝑁). The spatial coordinates for n are 

reduced to merely three variables when state charge density is used n(𝐫).. The Eigen 

function is indicated by Ѱ0 for the ground state of Hamiltonian H, and its corresponding 

electron density is n 𝑛0(𝒓) is defined by Eq (2.9). Eq. (2.3) should be solved self 

consistently for n(𝐫) instead of ψ(r). 

The Hohenberg-Kohn theorems [77] can be applied to any system consisting of electrons 

moving under the influence of an external potential V(𝐫, 𝐑). It states that: 
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Theorem I: The external potential V(𝐫, 𝐑), and hence the total energy, is a unique functional 

of the electron density n(𝐫).  

 

Theorem II: The ground state energy can be obtained variationally; the density that 

minimizes the total energy is the exact ground state density. 

In a summary, there is a single potential V(𝐫, 𝐑)  with the charge density n(𝐫)as the ground 

state. The Hohenberg-Kohn theorems offer a method for determining our desired n(𝐫). The 

following are the ramifications of these theorems: 

• The electronic part of the energy can be written as a functional of 𝑛(𝑟): 

 

𝐸[𝑛(𝒓)] = 𝐹[𝑛(𝒓)] + ∫ 𝑛(𝒓)𝑉(𝒓)𝑑𝒓𝒗 (2.10) 

 

Where, 𝐹[𝑛(𝒓)] is a universal functional of the density, 𝑉(𝒓) is the external (nuclear) 

potential acting on each electron: 

 

𝑉(𝒓) = −∑
𝑍𝜇𝑒2

|𝒓 − 𝑅𝜇|
𝜇

(2.11) 

 

• 𝐸[𝑛(𝒓)] is minimized by the ground-state charge density 𝑛(𝒓). 

 

2.1.4 Kohn-Sham Equations 

Kohn-Sham equations [78] are obtained from the Hohenberg-Kohn theorems. The Kohn-

Sham density functional theory is based on these equations. For both a many electron 

interacting system and a non-interacting system, they are derived by inducing similar 

ground state electron density and assuming the same external potential. Following these 

theorems and the 'one electron theory,' the orbitals ψi for a non-interacting set of electrons 

with the charge density: 

𝑛(𝒓) = ∑|𝜓𝑖|
2

𝑖

 (2.12) 
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where, ⟨𝜓𝑖|𝜓𝑗⟩ = 𝛿𝑖𝑗. 𝑛(𝒓) is identical to the actual system's. 

 

The energy functional can be written as: 

 

𝐸 = 𝑇𝑠[𝑛(𝒓)] + 𝐸𝐻[𝑛(𝒓)] + 𝐸𝑥𝑐[𝑛(𝒓)] + ∫ 𝑛(𝒓)𝑉(𝒓)𝑑𝒓 (2.13) 

 

Here 𝑇𝑠[𝑛(𝒓)] is the kinetic energy of the non-interacting electron, 

 

𝑇𝑠[𝑛(𝒓)] = −
ℏ2

2𝑚
∑ ∫ 𝜓𝑖

⋆(𝒓)∇2𝜓𝑖(𝒓)𝑑𝒓

𝑖

(2.14) 

 

𝐸𝐻[𝑛(𝒓)] is the Hartee energy, due to electrostatic interactions, 

 

𝐸𝐻[𝑛(𝒓)] =
𝑒2

2
∫(

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
) 𝑑𝒓𝑑𝒓′ (2.15) 

 

Exchange-correlation is denoted by Exc[n(𝐫)]. It contains all of the quantum mechanics-

related energy concepts that are yet unknown. The Kohn-Sham (KS) equations are obtained 

by minimizing the energy with respect to ψi 

 

(−
ℏ2

2𝑚
∇2 + 𝑉(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑥𝑐(𝒓))𝜓𝑖 = 𝜖𝑖𝜓𝑖(𝒓) (2.16) 

 

The Hartee and exchange-correlation potentials are given by, 

 

𝑉𝐻(𝒓) =
𝛿𝐸𝐻[𝑛(𝒓)]

𝛿𝑛(𝒓)
= 𝑒2 ∫

𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝑟′  (2.17) 

 

𝑉𝑥𝑐(𝒓) =
𝛿𝐸𝑥𝑐[𝑛(𝒓)]

𝛿𝑛(𝒓)
(2.18) 
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These potentials are strongly intertwined to 𝜓𝑖 via the charge density. The energy may be 

represented in a different way using Kohn-Sham (KS) eigenvalues. 

 

𝐸 = ∑𝐸𝑖 − 𝐸𝐻[𝑛(𝒓)] − ∫ 𝑛(𝒓)𝑉𝑥𝑐(𝒓)𝑑𝑟 + 𝐸𝑥𝑐[𝑛(𝒓)]

𝑖

(2.19) 

 

With the information of 𝐸𝑥𝑐[𝑛(𝒓)] and 𝑉𝑥𝑐[𝑛(𝒓)], the solution to the Kohn-Sham equation 

may be obtained. 

 

2.1.5 Exchange-Correlational Functionals 

In Kohn-Sham DFT, the exchange correlation functional is essentially an aggregation of 

all the electronic energy contributions that cannot be represented correctly as a function of 

the electronic density. Except for the free electron gas, the exact functionals for exchange 

and correlation are unknown. These might include non-interacting kinetic and potential 

energy, self-interaction of a single electronic density with itself, anti-symmetry of a 

fermionic wavefunction, and so on. However, employing approximations to calculate some 

physical variables yields results that closely resemble genuine data. The uniform-electron-

gas is used to simulate Exchange-Correlation functionals. For a wide variety of densities, 

Monte-Carlo algorithms offer correlation energy (and potential). A density functional was 

created by parameterizing this correlation energy. Local Density Approximation (LDA), 

Generalized Gradient Approximation (GGA), meta-GGA, van der Waals functionals, and 

others are examples of functionals. The choice of functionals has a big impact on the 

calculation's correctness. LDA [79] and GGA [80], [81] are the most extensively utilized 

approximations in solid-state computations. Special functionals are employed for 

specialized goals, such as structural optimization in layered systems with the vdW-DF 

functional [82]. 

 

 

2.1.5.1 Local Density Approximation 

 

All approximate exchange correlation functionals are based on the local density 

approximation (LDA). The value of the electronic density in each place in space determines 
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the exchange-correlation energy functional. LDA is based on the concept of a uniform 

electron gas. This is a system in which electrons travel against a positive background charge 

distribution, resulting in a neutral ensemble. LDA is mostly governed by the assumption of 

substituting the energy functional with a function of the local density n(r). The exchange-

correlation energy and potential are given by the following equations using this 

approximation: 

𝐸𝑥𝑐 = ∫ 𝑛(𝒓)𝜖𝑥𝑐(𝑛(𝒓))𝑑𝒓 (2.20) 

 

 𝑉𝑥𝑐(𝒓) = 𝜖𝑥𝑐(𝑛(𝒓)) + 𝑛(𝒓)
𝑑𝜖𝑥𝑐(𝑛)

𝑑𝑛
|
𝑛=𝑛(𝒓)

(2.21) 

 

where, 𝜖𝑥𝑐(𝑛) is the exchange-correlation energy per particle of a uniform electron gas 

density of 𝑛.  

The quantity 𝜖𝑥𝑐(𝑛)  can be further subdivided into contributions to exchange and 

correlation as follows,  

𝜖𝑥𝑐(𝑛) = 𝜖𝑐(𝑛) + 𝜖𝑋(𝑛) (2.22) 

 

The exchange portion, 𝜖𝑋(𝑛), which reflects an electron's exchange energy in a 

homogeneous electron gas of a certain density. Bloch and Dirac [83] were the first to derive 

it. It can be calculated using the following formula: 

 

𝜖𝑋(𝑛) = −
3

4
(
3

𝜋
)

1
3
𝑛(𝒓) (2.23) 

 

 

 

For the correlation portion, 𝜖𝑐(𝑛), there is no such explicit formulation. To get the right 

values for this portion, quantum Monte Carlo computations were used [84]. Then, to get a 

closed expression, interpolation is performed [85]. 
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2.1.5.2 Generalized Gradient Approximation 

LDA is unable to detect rapid changes in charge density and produces inaccurate 

conclusions. Apart from utilizing the knowledge about the density  𝑛(𝑟)  at a given site, the 

first logical step to avoid such scenarios is to utilize the gradient of the charge density, 

|∇𝑛(𝑟)|, to account for the non-homogeneity of the actual electron density. As a result, we 

write the exchange-correlation energy in the generalized gradient approximation form 

(GGA) as follows, 

 

𝐸𝑥𝑐 = ∫ 𝑛(𝒓)𝜖𝐺𝐺𝐴(𝑛(𝒓), |∇𝑛(𝒓)|)𝑑𝒓 (2.24) 

 

For molecular structures and ground-state energies, GGA produces excellent results. It 

outperforms other proven correlated wavefunction algorithms [86] and is a significant 

improvement over LDA. Unlike LDA, which has just one form, multiple parameterizations 

of the GGA may be derived using a variety of approaches, such as first principles, semi-

empirical form utilizing experimental data, and so on. The increased computational 

difficulties come at the cost of increased accuracy in outcomes. 

 

2.1.5.3 Other Functionals 

By combining a component of the actual exchange energy computed from Hartree–Fock 

theory with the remainder of the exchange–correlation energy from other sources, 

difficulties in describing the exchange part of the energy can be alleviated (ab-initio or 

empirical). Hybrid functionals are those that are obtained from a mix of sources. HSE, 

B3LYP, PBE0, and another hybrid functionals are extensively employed [87]-[89]. Despite 

the fact that they produce more accurate results than LDA or GGA, their computational 

complexity is quite high. Non-local correlation is estimated together with a mixture of LDA 

and GGA in the van der Waals functional, making it a good choice for layered materials to 

confront their inter-layer interactions. 
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2.1.6 Plane-wave Basis Sets 

We can identify the quantum 𝜓𝑖(𝒓) as 𝜓𝑛𝑘(𝒓) by applying boundary conditions to the 

Kohn-Sham equations, where n is the band index and k is the crystal momentum. The 

equations become, 

(−
ℏ2

2𝑚
∇2 + 𝑉(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑥𝑐(𝒓))𝜓𝑛𝑘 = 𝜖𝑛𝑘𝜓𝑛𝑘(𝒓) (2.25) 

 

𝑉𝐾𝑆 =  𝑉(𝒓) + 𝑒2 ∫
𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ + 𝑉𝑥𝑐(𝒓) (2.26) 

 

𝑛(𝒓) = ∑|𝜓𝑛𝑘|
2

𝑛𝑘

(2.27) 

 

How to solve these coupled equations efficiently from this explicit Hamiltonian is a real 

challenge. In order to solve the Kohn-Sham equations numerically, an appropriate basis for 

expanding the wave functions 𝜓𝑛𝑘 is required. The simulation time will be limited due to 

the truncation of the basis. Plane waves are the most appropriate basis option for two 

reasons: the Bloch states 𝜓𝑛𝑘 contain a periodic portion and may be enlarged in Fourier 

series. 

 

𝜓𝑛𝑘(𝑟) = 𝑒𝑖𝒌.𝒓𝑢𝑛𝒌(𝒓) = 𝑒𝑖𝒌.𝒓 ∑𝐶𝑛𝒌 (
𝑒𝑖𝑮.𝒓

√Ω
)

𝑮

(2.28) 

 

where 𝛺 =  𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙. 

 

Inserting 𝜓𝑛𝑘(𝒓) into the Kohn-Sham equations we find that 𝐶𝑛𝒌(𝑮) satisfy, 

 

|𝑲 + 𝑮|2

2
𝐶𝑛𝒌(𝑮) + ∑�̃�𝐾𝑆(𝑮 − 𝑮′)𝐶𝑛𝒌(𝑮

′) = 𝜖𝑛𝑘𝐶𝑛𝒌(𝑮)

𝑮′

(2.29) 

 

Where �̃�𝐾𝑆 is the Fourier transform of 𝑉𝐾𝑆. To get a finite number of {𝑮} basis, a cut off 

𝐸𝑐𝑢𝑡 is obtained, 
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|𝑲 + 𝑮|2

2
≤ 𝐸𝑐𝑢𝑡 (2.30) 

 

In theory, it appears that raising 𝐸𝑐𝑢𝑡  can attain any level of precision. However, because 

the core electrons in molecules are strongly bonded to the nuclei, this strategy does not 

function in actuality. Furthermore, at the core area, their wave functions vary fast and 

quickly degrade. With multiple plane waves, expansion is required to adequately 

characterize the wave functions. Those core electrons, on the other hand, are so securely 

bonded to the nuclei that their contribution to solid or molecular bonding is negligible. As 

a result, solely using the plane wave basis will result in massive calculations to describe 

electrons that only play a small part in determining the desired attributes. 

 

2.1.7 Projected Augmented Wave Basis and Pseudo-Potentials 

The materials' bonding characteristics are mostly determined by valence electrons rather 

than core electrons. The Frozen Core Approximation is used to acknowledge this reality. 

This approximation treats the core electrons as stationary. As a result, they are not included 

in the calculation. Numerical computations utilizing valence electron wave functions, on 

the other hand, are enormous. Excess plane wave basis is required to explain the fast 

oscillation of wave functions in the core area caused by valence electrons. 

The PAW (Projected Augmented Wave) technique is used to solve this problem. The 

valence wavefunctions are then substituted within the core region with smoother node-less 

pseudo-wavefunctions that are equal to the original wavefunctions outside the core region. 

The transformation of these quickly oscillating wave-functions into smooth wave-functions 

is more computationally efficient and allows all-electron characteristics to be calculated. 

The pseudo-potentials [90] are a formalization of this concept. The pseudo-wavefunctions 

must be equal to the all-electron wavefunctions outside the core in order for a 

pseudopotential calculation to generate the same energy differences as an all-electron 

calculation. This is referred to as 'norm-conservation' [91]. 

The linear transformation T in the PAW approach converts the fictional pseudo wave-

function �̃� to the all-electron wave-function 𝜓 as follows, 
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|𝜓⟩ = 𝑇|�̃�⟩ (2.31) 

 

In order to have 𝜓 and �̃� differ only in the regions near the ion cores, 𝑇 becomes 

𝑇 = 1 + ∑�̂�𝑅

𝑅

 (2.32) 

 

Only inside some spherical augmentation area Ω𝑅 surrounding atom at R is �̂�𝑅 non-zero. 

Expanding the pseudo wave-function into pseudo partial waves around each atom is 

beneficial. 

 

|�̃�⟩ = ∑|�̃�𝑖⟩𝑐𝑖

𝑖

 , 𝑤𝑖𝑡ℎ𝑖𝑛 Ω𝑅 (2.33) 

 

Because T is a linear operator, the coefficients 𝑐𝑖 may be expressed as an inner product 

with a set of projector functions, |𝑝𝑖⟩. 

 

𝑐𝑖 = ⟨𝑝𝑖|�̃�⟩ (2.34)  

 

where ⟨𝑝𝑖|�̃�𝑗⟩ = 𝛿𝑖𝑗. 

The solutions to the Kohn-Sham Schrödinger equation for an isolated atom are commonly 

considered to be all electron partial waves |𝜙𝑖⟩ = 𝑇|�̃�𝑖⟩. As a result, three quantities define 

the transformation T: 

       a) Set of all-electron partial waves |𝜙𝑖⟩  

       b) Set of pseudo partial waves |�̃�𝑖⟩ 

       c) Set of projector functions |𝑝𝑖⟩ 

 

and we can explicitly write it down as 

 

𝑇 = 1 + ∑(|𝜙𝑖⟩ − |�̃�𝑖⟩)

𝑖

⟨𝑝𝑖| (2.35) 
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Numerous investigations have shown that using the PAW approach with pseudo-potential 

in realistic simulations saves computing costs greatly when chemical bonding is well 

described. 

 

2.1.8 Ultrasoft Pseudo-Potentials 

Ultrasoft pseudopotentials (USP) were developed to allow computations to be done with 

the lowest possible cutoff energy for the plane-wave basis set. A novel approach has been 

devised since it is well known that optimizing the convergence of norm-conserving 

pseudopotentials has inherent restrictions. In most cases, a high cutoff energy for the plane-

wave basis set is only required when there are densely linked orbitals that have a 

considerable proportion of their weight inside the atom's core area, according to the theory 

behind USP. In these circumstances, breaking the norm-conservation criterion by removing 

the charge associated with these orbitals from the core region is the only way to decrease 

the basis set. The pseudo wavefunctions within the core are thus allowed to be as soft as 

possible, resulting in a considerable reduction in the cutoff energy. 

This is achieved by proposing an extended orthonormality requirement. The square moduli 

of the wavefunctions enhance the electron density in the core regions in order to restore the 

whole electronic charge. As a result, the electron density may be divided into two parts: a 

soft component that spans the unit cell and a hard part focused in the core. 

 

2.1.9 Electronic Minimization 

Ground state can be achieved in one of two ways.  

• Direct Minimization 

• Self-consistent Cycle 

Between these two, the self-consistent cycle is the most frequently employed strategy. It 

starts with a trial density, then builds and solves the matching Kohn-Sham Hamiltonian to 

get a collection of orbitals. These orbitals define a new density, which in turn defines a new 

Hamiltonian, bringing the system back to self-consistency. The cycle finishes and the final 
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result is attained if the difference between the old and new density for a term (e.g. energy 

or force) falls below a specific threshold. To obtain the self-consistent charge density (or 

potential), the following procedures are carried out in a self-consistent manner: 

• Initialize with a trial charge density 

• Calculate the potential from the charge density 

• Solve (diagonalize) the Kohn-Sham equations at fixed potential 

• Calculate the charge density from Kohn-Sham orbitals 

• Compare the results and either continue or stop the loop based on the tolerance 

 

2.1.10 Variable Cell Structural Optimization 

The goal of geometry optimization is to create the optimized (lowest energy) structure of 

atomic systems from any initial condition. The use of the Born-Oppenheimer 

approximation to geometry optimization often results in a series of single point energy 

calculations. For the basic beginning geometry, a single point energy calculation is 

conducted. By minimizing the function 𝐸(𝑅1, 𝑅2, …… , 𝑅𝑁), the global ground state may be 

determined. For a system of N atoms, this function is based on the 3N atomic coordinates. 

The Hellmann-Feynman theorem [92] may be used to compute the forces on the nuclei 

from the wavefunction. In general, equilibrium is obtained in a crystal when all forces on 

atoms in the unit cell are zero, as well as all stresses. 

The derivatives of the total energy with respect to the atomic coordinates are the forces on 

atoms. Forces are just the anticipated value of the derivative of the external potential, 

according to the Hellmann-Feynman theorem. 

 

𝐹𝜇 = −
𝛿𝐸

𝛿𝑅𝜇
= −∑𝑓𝑖 ⟨𝜓𝑖 |

𝛿𝑉

𝛿𝑅𝜇
| 𝜓𝑖⟩

𝑖

(2.36) 

 

The stress 𝜎 is the derivative of the energy w.r.t the strain 𝜖, 

 

𝜎 = −
1

Ω
(
𝛿𝐸

𝛿𝜖
) (2.37) 
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2.1.11 Brillouin Zone sampling 

In the reciprocal lattice, a Brillouin zone is defined as a Wigner-Seitz primitive cell. The 

first Brillouin zone is the smallest volume totally encompassed by planes traced from the 

origin that are perpendicular bisectors of reciprocal lattice vectors. It comprises all points 

in the reciprocal lattice that are closest to the contained reciprocal lattice point. Planes that 

are perpendicular to the reciprocal lattice vectors define the limits of the first BZ. Bloch's 

theorem states that the electrons in the unit cell can only be considered at an unlimited 

number of k-points within the first Brillouin zone. It is also feasible to employ a finite 

number of k-points if they are chosen to sample the reciprocal space suitably. As a result, 

an integrated function f(r) over the Brillouin zone may be written as: 

  

𝑓(𝑟) =
Ω

(2𝛱)3
∫F(k)𝑑k

 

= ∑ω𝑗(𝑘𝑗)

𝒋

(2.38) 

where F(k) is the Fourier transform of 𝑓(𝑟), Ω is the cell volume and ω𝑗 are weighting 

factors. The set of ``special'' k-points chosen to appropriately sample the Brillouin zone. 

 

2.1.12 Deformation Potential Theory 

Bardeen and Shockley [93] originally developed the deformation potential theory. Herring 

and Vogt [94] generalized this theory. Bir and Pikus [95] studied various semiconductors 

via group theory and showed how to calculate strain effects on the band structure with 

deformation potentials. The deformation potential theory introduces an additional 

Hamiltonian H(ɛ), that is attributed to strain and its effects on the band structure. This 

Hamiltonian is based on first order perturbation theory and its matrix elements are defined 

by  

{𝑯(ɛ)} = ∑ 𝑫𝒊𝒋
𝜶,𝜷

ɛ𝜶,𝜷

𝟑

𝜶,𝜷=𝟏
(2.39) 

 

𝑫𝒊𝒋
𝜶,𝜷

denotes the deformation potential operator which transforms under symmetry 

operations as second rank tensor and ɛ𝜶,𝜷 describes the (α,β) strain tensor component. The 

subscripts (i,j) in 𝑫𝒊𝒋
𝜶,𝜷

 denote the matrix element of the operator. Due to the symmetry of 
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the strain tensor with respect to α and β, also the deformation potential operator has to obey 

this symmetry 𝑫𝒊𝒋
𝜶,𝜷

= 𝑫𝒊𝒋
𝜷,𝜶

 and thus limits the number of independent deformation 

potential operators to six.  

In the case of cubic semiconductors, the edges of the conduction band and the valence band 

are located on symmetry lines. These symmetries are reproduced in the energy band 

structure and in the basis states. Furthermore, the symmetry of the basis states allows to 

describe the deformation potential operator of a particular band via two or three 

deformation potential constants [94]. Theoretically the deformation potential constants can 

be calculated via the empirical pseudo potential method or by ab initio methods. Theoretical 

predictions and measurements match quite well, deformation potentials can be used to 

measure mobility of the charge carriers [96].  

 

2.1.13 Non-Equilibrium Green’s Function 

The NEGF formalism provides a generalized microscopic theory for quantum transport. It 

addresses the problem of dissipative transport and describes open systems fully quantum 

mechanically. The theory behind it is deeply rooted in the many-body theory [97]. The 

information of the many-particle system is put into self-energies, which are part of the 

equations of motion for the Green’s functions. The Green’s functions can be calculated 

from perturbation theory and describe the correlation between two operators at times t and 

t′. A detailed description and justification of the Green’s functions and self-energies can be 

found for instance in the work of Datta [98].  

The Hamiltonian of an open system coupled to a reservoir can be written as [99]  

                                                              H̑ = (
  H̑𝐷            𝜎

  σ†             H̑𝑅

)                                                 (2.39) 

Where ĤD and Ĥ R denote the Hamilton operators of the device and reservoir, respectively, 

and σ is the coupling matrix. The corresponding Schrödinger equation of the channel-

reservoir system can be expressed as [100]  
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                                                  E (
  𝜓𝐷

 𝜓𝑅 
) = (

  H̑𝐷            𝜎

  σ†             H̑𝑅

) (
  𝜓𝐷

 𝜓𝑅 
)                                    (2.40) 

ψD and ψR denote the wave functions of the channel and the reservoir. The steady state 

equation for the Green’s function is defined as  

                                                                       (1E −  H̑ )𝐺 = 1                                               (2.41) 

Thus, the corresponding Green’s function to the device-reservoir system can be written as 

                                         (
𝐺            𝐺𝐷𝑅

  𝐺𝑅𝐷             G𝑅
) =  (

1E −  H̑𝐷           − 𝜎

 −σ†            1E −  H̑𝑅

)

−1

                     (2.42) 

The coupling between the device and the reservoir is described by GDR and GRD. The 

retarded Green’s function G reads  

                                           𝐺 = (1E −  H̑𝐷 − ∑(𝐸) )
−1

                                                    (2.43) 

and includes the self-energy which describes the interaction between the device and the 

reservoir [101]. The inclusion of the self-energy reduces the Green’s function of the 

reservoir to the dimension of the Hamiltonian of the device. The self-energy is 

determined iteratively and satisfies  

                                                                          𝛴 = 𝜎𝐺σ†                                                          (2.44) 

The matrix form of the density of states is the spectral function As which is given by  

                                                                        𝐴𝑠(𝐸) = 𝑖(𝐺(𝐸) − G†(𝐸))                             (2.45) 

The electron density is provided by the density matrix 

                                                                  𝑛 = ∫ (𝑓𝐸(𝐸 − 𝐸𝐹)𝐴(𝐸)𝑑𝐸
∞

0
                                (2.46)  

where fE is the Fermi-Dirac distribution function and EF denotes the Fermi energy.  
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2.2 Electronic and Optical Properties 

 

2.2.1 Electronic Band Structure 

One of the most central tenets in solid state physics is electronic band structure. The band 

structure of a solid explains the energy bands that an electron within the solid may have 

(allowed bands) and the energy gaps (forbidden bands or bandgap) that it may not have 

(forbidden bands or bandgap). It is typically the plot of energy in the first Brillouin zone 

for a crystalline structure with regard to specified wavevectors (moments). The band 

structure may be used to explain many electrical, optical, and even magnetic characteristics 

of crystals. It also offers information about a material's condition. The material is insulating 

(or semiconducting) if the Fermi energy is positioned in a band gap, but it is metallic 

otherwise. It also creates the bandgap and determines whether the substance is direct or 

indirect. It also lays the path for determining a material's effective mass. A key step in 

characterizing a material's characteristics is to compute its band structure. In recent years, 

DFT has been widely employed to calculate a material's energy band structure. For both 

valence and conduction bands, electronic eigenvalues along high symmetry directions in 

the Brillouin Zone (BZ) are estimated non-self-consistently utilizing electronic charge 

densities and potentials generated during the DFT simulation. Despite the fact that DFT 

underestimates the bandgap's magnitude, the band shape and its derivatives match well with 

experimental data. At the price of high computational complexity, time dependent DFT or 

hybrid functionals offer superior results for bandgap. 

 

2.2.2 Density of States and Atom Projected Density of States 

The number of states per interval of energy at each energy level accessible to be occupied 

is described by the density of states (DOS) of a system. A density distribution is used to 

express it quantitatively. It's usually a weighted average of the system's many states in the 

space and time domains. DOS is a critical indication of a material's electrical 

characteristics, or conduction. It has a direct relationship with the dispersion relations of a 

system's attributes. At a given energy level, a high DOS indicates that numerous states are 

accessible for occupancy. At that energy level, a DOS of zero indicates that no states may 
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be inhabited. At the bandgap of a material, DOS is zero, while at the bands, it has a finite 

value. The entire electronic density of states (DOS) is split into the projected density of 

states associated with each individual molecular orbital in atom projected density of states 

(PDOS). The bonding process among the components of a system is depicted clearly in 

PDOS. Electronic eigenvalues, calculated non-self-consistently for both valence and 

conduction bands using electronic charge densities and potentials created during the 

simulation, are used to determine the DOS and PDOS of a system in DFT. 

 

2.2.3  Charge Density 

The charge distribution throughout the volume of a particle, such as a molecule, atom, or 

ion, is referred to as charge density. Charge density 𝜌 is linked to wave function Ψ in 

quantum physics by the equation, 

𝜌(𝒓) = 𝑞|Ψ(𝒓)|2 (2.47) 

where 𝑞 is the charge of the particle and |Ψ(𝒓)|2 = Ψ⋆(𝒓)Ψ(𝒓) is the probability density 

function i.e. probability per unit volume of a particle located at 𝑟. 

 

When the wave-function is normalized the average charge in the region 𝒓 ∈  𝑅 is, 

Q =  ∫𝑞|Ψ(𝒓)|2𝑑𝒓3 
𝑅

(2.48) 

 

Where, 𝑑𝒓3 is the 3D position space integration measure. Charge density in a grid point 

may be easily determined using these formulae. 

 

2.2.4 Spin-Orbit Coupling (SOC) 

Spin-Orbit coupling is an interaction of particles that depends on the values and mutual 

orientations of the particles’ orbital and spin angular momenta and that leads to the fine-

structure splitting of the system’s energy levels. Spin-orbit coupling is a relativistic effect. 

A simple physical interpretation of spin-orbit coupling can be obtained by considering, for 

example, the motion of an electron in a hydrogen atom where the electron is viewed as 

moving around the nucleus along some “orbit.” The electron has an intrinsic angular 

momentum, or spin, which is responsible for the existence of the electron’s spin magnetic 
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moment. The electric charge of the nucleus generates a Coulomb electric field that should 

affect the spin magnetic moment of the electron moving along its orbit. This situation can 

be easily understood if we imagine the frame of reference where the electron is at rest—

that is, the frame of reference moves with the electron. For this stationary electron, the 

nucleus will appear as moving, and, like any moving charge, it will produce a magnetic 

field H. The magnetic field will affect the magnetic moment H. of the electron. The 

contribution thereby made to the electron energy depends on the orientation of µ, and H 

and is equal to – µH = – µ.HH. Since the projection of the magnetic moment µ, on the vector 

of the field H can assume two values (±ℏ/2, where ℏ is Planck’s constant), the spin-orbit 

coupling leads to the splitting of energy levels in the hydrogen atom and in hydrogen-like 

atoms into two close-lying sublevels (a doublet structure). For atoms with more than one 

electron, a complicated multiple splitting of energy levels occurs. 

 

2.2.5 Effective Mass of the charge carriers 

The idea of effective mass bridges the gap between quantum mechanics and Newton's 

equations of motion. The particles, electrons and holes, are viewed as free particles inside 

a crystal when there is no external field. The effective mass of a particle indicates the 

particle's responsiveness to external influences. It does not take into consideration the 

material's intrinsic forces, such as atom-electron interaction. The parabolic dispersion 

approximation to the band structure is used to get the formula for effective mass. The 

following is the formula for the inverse effective mass tensor: 

1

𝒎∗
= 

1

ℏ2
∙

[
 
 
 
 
 
 
 
𝑑2휀𝑛(𝑘)

𝑑𝑘𝑥
2

𝑑2휀𝑛(𝑘)

𝑑𝑘𝑥𝑑𝑘𝑦

𝑑2휀𝑛(𝑘)

𝑑𝑘𝑥𝑑𝑘𝑧

𝑑2휀𝑛(𝑘)

𝑑𝑘𝑦𝑑𝑘𝑥

𝑑2휀𝑛(𝑘)

𝑑𝑘𝑦
2

𝑑2휀𝑛(𝑘)

𝑑𝑘𝑦𝑑𝑘𝑧

𝑑2휀𝑛(𝑘)

𝑑𝑘𝑧𝑑𝑘𝑥

𝑑2휀𝑛(𝑘)

𝑑𝑘𝑧𝑑𝑘𝑦

𝑑2휀𝑛(𝑘)

𝑑𝑘𝑧
2 ]

 
 
 
 
 
 
 

(2.49) 

 

Here, 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 refer to the direction in the reciprocal Cartesian space. And 휀𝑛(𝒌) is 

the dispersion relation for the nth energy band.  
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2.2.6 Acoustic phonon limited charge carrier mobility 

The scattering by acoustic phonons is intrinsic to the semiconductor and cannot be 

eliminated. The free electrons in covalent semiconductor like Si, Ge, etc. interact 

dominantly only with acoustic phonons through deformation potential. The momentum 

relaxation times for acoustic phonon scattering can be calculated according to traditional 

theory both for parabolic as well as non-parabolic band structure. The acoustic mode lattice 

vibration induced changes in lattice spacing, which change the band gap from point to  

point. Since the crystal is "deformed" at these points, the potential associated is called the 

deformation potential. Using the corresponding relaxation time for parabolic band 

structure, the mobility associated with the deformation potential scattering can be written 

as 

𝜇𝐷𝑃
𝜌

(𝑇𝐿) =  𝐴1𝑇𝐿
−3/2 (2.50) 

Where A1 is the deformation potential constant which depends on average sound velocity 

in crystal and Boltzmann’s constant and  𝜌  is the crystal mass density. 

  

2.2.7 Optical Properties 

The dielectric function determines the majority of a material's optical characteristics. The 

dielectric function can readily determine all other parameters such as absorption 

coefficient, reflectance, transmittance, refractive index, and so on. The absorption 

coefficient is a measurement of how well a material converts electromagnetic energy, such 

as light energy, into internal energy, such as electrical or heat energy. The frequency 

dependent dielectric function may be calculated using DFT by forming the necessary tensor 

from the transition between the conduction and valence bands. The additional beneficial 

features are generated as a result of this. 
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2.2.8 Transmission function and Current-Voltage 

characteristics 

Transmission and current are calculated by using the NEGF formalism. The electrostatic 

potential that is passed to the NEGF solver is calculated self-consistently with the quantum 

charge obtained from a previous NEGF calculation. Once the quantum charge and potential 

have converged, the transmission and current from the last NEGF calculation are treated as 

the result. Once the quantum charge density for the non-equilibrium and the equilibrium 

reservoir region is obtained, it is concatenated with the semiclassical density obtained for 

the at band region in the terminals. From this charge profile, a quasi-Fermi level is extracted 

and a semiclassical density-Poisson self-consistent calculation is carried out. The 

transmission function can be calculated by the multiplication of the number of modes and 

transmission probability. Then the current can be computed using the Green’s function and 

transmission function. 
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CHAPTER 3 

Structural and Computational Details 

 

 

In the first section of this chapter, the structure of the novel hybrid monolayers of Si, Ge, 

and Sn atoms namely, SixGeySn1-x-y are discussed. In the next section, detailed 

computational methods for the characterization of structural, electronic, optical, and 

electron transport properties of the structures are delineated. Moreover, methodologies and 

applied parameters for determining electronic, optical, and transport properties i.e. band 

structure, DOS, effective mass, mobility, charge density, dielectrics, transport 

characteristics are also discussed in brief. 

 

3.1 Structural Details 

 

3.1.1 SixGeySn1-x-y monolayers 

Novel hybrid monolayers of Si, Ge, and Sn atoms shares the similar structures with 

graphene analogues of Si, Ge, and Sn atoms namely silicene, germanene, and stanene 

respectively. Three different atomically thin alloys have been considered here based on 

relative proportion of the constituent atoms. While the elemental analogues of graphene 

consist of only one type of atom (Si or Ge or Sn), the exception of three kinds of atoms in 

SixGeySn1-x-y monolayers breaks the inversion symmetry and gives rise to interesting 

properties for these monolayers. All these hybrid monolayers are buckled honeycomb 

structures, which are defined as a hexagonal unit cell with eight atoms. Figure 3.1(a) and 

3.1(d) show the top and side views of Ge0.25Sn0.25Si0.50 monolayer respectively which 

consists of 25% Ge, 25% Sn and 50% Si atoms. Similarly, Figure 3.1(b) and 3.1(e) show 

the top and side views of Si0.25Ge0.25Sn0.50 monolayer respectively consisting which 

consists of 25% Si, 25% Ge and 50% Sn atoms and Figure 3.1(c) and 3.1(f) show the top 

and side views, respectively of Sn0.25Si0.25Ge0.50 monolayer which consists of 25% Sn, 25% 

Si and 50% Ge atoms.   
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3.2 Computational Methodology 

 

3.2.1 DFT simulation tools and parameters 

For structural and electronic calculations, First Principles calculations are carried out using 

the Density Functional Theory (DFT) [102] framework, which is implemented in the 

Quantum Espresso (QE) software package [103], while optical calculations are carried out 

using the Cambridge Serial Total Energy Package (CASTEP) [104]. Without Spin-Orbit 

coupling, scalar relativistic ultrasoft pseudopotentials with nonlinear core correction were 

employed, and complete relativistic projected augmented wave pseudopotentials were used 

to include Spin-Orbit coupling. Both QE and CASTEP are well-known for their 

computational material science studies. The following are the key reasons for selecting 

these softwares: 

• These are two of the best electronic structure calculation and material modeling 

packages which are freely available to researcher around the world under the terms 

of the GNU General Public License. 

• These softwares are equipped with multi-threading tools to run on multiple 

processors and GPU (graphics processing unit) which is necessary to handle the 

large data and computational complexity related with the simulation. 

Figure 3.1: Top and side view of monolayer hybrid structures of Si, Ge and Sn. Fig. 3.1(a), (b), (c) represent 

top views and Fig.3.1(d), (e), (f) represents side views of Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and 

Sn0.25Si0.25Ge0.50 respectively. The black hexagons represent the unit cells. 
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• They come with large verities of exchange-correlation functionals and suitable 

pseudo-potentials for DFT and MD calculations. 

• The acceptance of these tools is quite high in comparison to the other free electronic 

structure calculation software. 

• They can provide results with similar accuracy as compared to the renowned and 

widely accepted DFT calculation software Vienna ab initio simulation package 

(VASP). 

 

 

Figure 3.2 briefly describe the processes involved in the computations. For electronic 

structure computations, ultrasoft type pseudopotentials were utilized without taking into 

account Spin-Orbit coupling. Scalar relativistic techniques are used to construct these 

pseudopotentials, which incorporate nonlinear core correction. When computations 

including Spin-Orbit coupling need completely relativistic treatment of the atoms with non-

linear core correction, Projected Augmented Wave (PAW) type pseudopotentials have been 

used. All of them are from the Quantum Espresso and CASTEP PS library. The generalized 

gradient approximation (GGA) inside the Perdew-Burke-Ernzerhof (PBE) [105], [106] 

Figure 3.2: Flowchart of computational method 
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functional is used to account for exchange-correlation effects between valence band 

electrons. As previously documented in the literature [107], PBE is well-known for 

delivering great outcomes for alloy systems. The Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) [108] minimal energy structure optimization approach is used. Even for non-

smooth examples, BFGS, an iterative approach for tackling unconstrained nonlinear 

optimization problems, works pretty well. Table 3.1 summarizes all of the parameters that 

were used. 

Table 3.1: Used parameters and their values in DFT calculation 

Parameter  Value 

Exchange-correlation  GGA 

Pseudopotential (without SOC) 

Pseudopotential (with SOC) 

 Scalar Relativistic Ultrasoft 

Full Relativistic PAW 

Functional  PBE 

Optimization  BFGS 

 

3.2.2 Structure Optimization 

Optimized structures are obtained by performing variable cell relaxation (vc-relax). This 

method has been widely used to calculate the optimized electronic structures of Group-IV 

elemental and hybrid monolayers [20]. The steps involved in this process are given below: 

 

i. At first, the completely variable cell relaxed structures of novel hybrid monolayers 

of Si, Ge, and Sn atoms are calculated. As the initial guess, the 2 × 2 × 1  supercell 

pristine monolayers are used. 

ii. Next, using both cell parameters for each monolayer self-consistent field 

calculations are performed. The structures obtained from vc-relax serve as the basis 

for futher calculation.  

iii. Finally, after the SCF calculations are completed, the structural, electronic and 

optical properties of the systems are extracted. 

 

The value of energy cutoff was set to 640 eV for the expansion of plane wave function.  

The Brillouin zone (BZ) integration is sampled by 8×8×1 K-points for structural 
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optimization and 10×10×1 K-points for electronic and optical calculations within the 

Monkhorst-Pack scheme. The convergence tolerance of the self-consistent calculations in 

energy change is set to 13.6×10-6 eV for all calculations. All structural optimizations are 

carried out until the force on each atom is less than 0.0025 eV/Å. Periodic boundary 

condition is employed along the in-plane directions and a vacuum region of 30 Å is placed 

along perpendicular direction between two adjacent monolayers to eliminate the interaction 

between the periodic images. The unit cell of Ge0.25Sn0.25Si0.50 monolayer contains 8 atoms; 

four Si, two Sn and two Ge atoms. Similarly, the unit cell of Si0.25Ge0.25Sn0.50 monolayer 

contains 8 atoms; four Sn, two Si and two Ge atoms and the unit cell of Sn0.25Si0.25Ge0.50 

monolayer contains 8 atoms; four Ge, two Si and two Sn atoms. All these parameters along 

with other necessary ones for calculation are listed in Table 3.2. 

Table 3.2: Used parameters and their values in for structure optimization 

Parameter 
 Value 

  

Kinetic energy cutoff  640 eV 

Energy threshold  13.6 × 10−6𝑒𝑉/ 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 

Force threshold  0.0025 eV/Å 

MP grid  10 × 10 × 1 

Mixing factor  0.7 

Electron convergence threshold  10−6 

Cell factor  8 

 

Another important consideration is that in the case of vc-relax calculation no constraint was 

placed along any direction.  

 

3.2.3 In-Plane Elastic Constants 

The elastic constants are calculated using the stress-strain relationship for 2D materials 

which is shown in the following matrix form [109]. 
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                   [

 𝜎1 
𝜎2
𝜎3
 

] = [

𝐶11                      𝐶12                    0
𝐶12                      𝐶22                    0

          0                          0            (𝐶11−𝐶12)

2
   

 

] [

 ɛ1 
ɛ2
ɛ3
 

]                                      (3.1)         

where σ, Cij and ε represent in-plane stress, elastic constants, and strain, respectively. Then 

the in-plane Young’s modulus, YS and the Poisson’s ratio, ν are computed from the 

following equations [110].  

                                                              Ys = (C112 −  C122) / C11                                               (3.2) 

                   
                                                                                     ν =  C12 / C11                                                      (3.3)        

                   

3.2.4 Cohesive Energy 

Cohesive energies of the hybrid monolayers are computed using the following formula. 

 

Ecohesive = EHybrid monolayer - ESi - EGe - ESn                              (3.4) 

 

Here, EHybrid monolayer is the total energy of the hybrid monolayer, and ESi, EGe, ESn are the 

total energy of the monolayer if Si, Ge, or Sn atoms are considered separately in the lattice 

structure. The negative values of the cohesive energy indicate the thermodynamic stability 

of these structures, the more negative the cohesive energy is, the more stable the structure 

is. 

 

3.2.5 Phonon Dispersion Calculation 

Phonons of a nonzero wavevector play an important role in the thermophysical properties 

of crystalline solids and the physics of many solid-state phase transitions. Proving the 

mechanical stability of a crystal structure by testing for real frequencies requires a 

vibrational calculation over the full Brillouin Zone. Phonon calculation consists of more 

than one stage, the usual sequence being a geometry optimization followed by the phonon 

calculation itself. The structures are geometrically optimized to energy minimum structures 

- the energy expansion in lattice dynamics makes the explicit assumption that the system is 

in mechanical equilibrium and that all atomic forces are zero. If a lattice dynamics 

calculation is performed at the configuration which minimizes the energy the force constant 

matrix Φκ,κ′ α,α′ is positive definite, and all of its eigenvalues are positive. Consequently, 
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the vibrational frequencies which are the square roots of the eigenvalues are real numbers. 

If on the other hand the system is not at a minimum energy equilibrium configuration Φκ,κ′ 

α,α′ is not necessarily positive definite, the eigenvalues may be negative. In that case the 

frequencies are imaginary and do not correspond to a physical vibrational mode. 

                                      

3.2.6 Band Structure Calculation 

 

The Self Consistent Field (SCF) computation is used to produce the essential 

wavefunctions for computing the band structures of the unique hybrid monolayers of Si, 

Ge, and Sn atoms. This option for occupation is temporal smearing, which incorporates the 

temperature impact in the DFT computation by spreading or smearing the energy over 

multiple occupation levels. With a degauss value of 0.02 and Methfessel-Paxton first-order 

spreading [111], In each iteration, the wave-function was calculated using the mixing mode 

of 'plain' and a mixing beta of 0.7. Later, a high-verbosity 'bands' computation is used to 

obtain the data needed for band visualization. The path of integration in the first Brillouin 

zone is along Г → M → K → Г. 

 

3.2.7 Density of States and Atom Projected Density of States 

Quantum Espresso's post-processing tools dos.x and projwfc.x were used to calculate 

density of states (DOS) and partial density of states (PDS) (PDOS). The occupancy 

parameter is specified as tetrahedra [112], which differs from the band structure and DOS 

computation. Another thing worth highlighting is that the degauss factor is lowered to 0.004 

to prevent PDOS smearing or spreading for each atomic orbital. The collected numbers 

may then be further analyzed with MATLAB scripts to gain more insights into the data. 

 

3.2.8 Differential Charge Density 

pp.x, a Quantum Espresso post processing tool capable of creating charge density for 

atomic structures, was used to calculate charge density. The differential charge density Δ𝜌 

is calculated as follows: 

Δ𝜌 =  𝜌Hybrid Monolayer − 𝜌𝑆𝑖 − 𝜌𝐺𝑒 − 𝜌𝑆𝑛 (3.5) 
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Where, Δρ is the differential charge density, ρHybrid Monolayer is charge density of the hybrid 

monolayers of Si, Ge, Sn, and ρSi, ρGe and ρSn are charge densities of isolated Si, Ge, and 

Sn atoms respectively. The difference charge density can then be found in every grid point 

using pp.x. VESTA [113] software is used to produce difference charge density iso-surface 

plots. 

 

3.2.9 Spin-Orbit Coupling (SOC) incorporation 

To incorporate Spin-Orbit coupling in SCF calculation Projected Augmented Wave (PAW) 

pseudopotentials with full relativistic treatment of atoms were utilized. Nonlinear 

calculations were performed by setting ‘lspinorb’ to ‘true’ to account SOC into calculation. 

Again, smearing has been used as the value for occupation parameter for band structure 

and DOS calculation, respectively. 

 

3.2.10 Effective Mass of the charge carriers 

The parabolic character of the conduction band minima (CBM) and valence band maxima 

(VBM) is implicit in the formula for effective mass of electron and hole (VBM). In fact, a 

considerable region in reciprocal space between the two extreme points does not always 

represent parabolic nature fully. Another issue is that at its most extreme points, the 

curvature may not give useful results. For all semiconducting structures in our simulation, 

the Fermi-energy level is located between the conduction and valence bands. As a result, 

the electron concentration in the VBM and CBM is increased. To compute the effective 

mass of an electron, the entire system must take into account the curvature of a large region 

surrounding CBM. In this case, parabolic fitting across the ideal area surrounding those 

extreme points is recommended. 

When examining the parabolic fitting, another issue arises. For parabola, the distance 

between the sampled k-points must be carefully evaluated. The quantity of k-points plays 

a significant influence as well. Furthermore, there is no limitation on the minimum point in 

the generic parabola fitting approach. As a result, the constraint has been set to mean square 

minimization for parabola fitting. The constraint pins the computed parabola's 
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minima/maxima to the same place as CBM/VBM, resulting in a better parabolic 

approximation by include the true position of CBM/VBM in the computation. 

To meet the aforementioned conditions, a method has been built that uses the VBM/CBM 

as an input to produce the appropriate k-points around the VBM/CBM. The parabolic fitting 

is then done by reducing the mean square error. This has been cleverly implemented by 

allowing the user to adjust the number of points and the distance between the k-points using 

a slider, as illustrated in Figure 3.3. The visual help, together with the slider, makes 

selecting the suitable parabola a breeze. The code's output has been compared to the 

effective mass of graphene. For this calculation, a great agreement has been reached. 

 

3.2.11 Acoustic phonon limited mobility of charge carriers 

Using the calculated values of effective mass of the charge carriers and by applying 

Deformation Potential theory as proposed by Bardeen and Shockley [93], [114], we have 

computed the acoustic phonon limited mobility of the charge carriers in our novel hybrid 

Figure 3.3: A visual representation of parabolic approximation of non-parabolic 

band structure for performing the effective mass calculation. 
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monolayers of Si, Ge and Sn. The mobility of the charge carriers in the monolayers is 

calculated using the following formula [115].                   

µ2D = 
𝑒ħ3𝐶2𝐷

3𝐾𝐵𝑇𝑚∗𝑚𝑑(𝐸𝑖)
2                                                       (3.6) 

Where, e is the charge of an electron,  ħ is the reduced Planck’s constant, KB is the 

Boltzmann’s constant, T is the absolute temperature considered as 300K, m* and md are 

effective mass and average effective mass of the charge carrier respectively. 𝐸𝑖 is the rate 

of change of conduction band minimum (CBM) or valence band maximum (VBM) as a 

function of strain which are computed by calculating the slope of the CBM or VBM with 

respect to applied strain. C2D is the elastic modulus along the direction of applied stress 

which is calculated using the following formula [115]. 

2(𝐸−𝐸0)

𝑆0
 = C2D × (

𝛥𝑙

𝑙0
)2                                                         (3.7) 

Where, E0 is the ground state energy and E is the energy of the monolayer under tensile 

strain. S0 is the area of the relaxed unit cell and 
𝛥𝑙

𝑙0
 is the amount of tensile strain with respect 

to relaxed condition. 

 

3.2.12 Optical Properties 

Optical properties are computed by calculating the complex dielectric function ɛ(𝜔)= 

ɛ1(𝜔)+ i ɛ2(𝜔) first [116]. The imaginary part of the dielectric function is calculated using 

the following formula. 

ɛ2(ω) = 
2𝑒2𝜋

Ωɛ0
∑ |⟨𝜓𝑘

𝑐 |𝒖. 𝒓|𝜓𝑘
𝑣

𝑘,𝑣,𝑐 ⟩|2𝛿(𝐸𝑘
𝑐 − 𝐸𝑘

𝑣 − ħ𝜔)                    (3.8) 

where, ɛ0 is the dielectric constant of the vacuum and Ω represents the volume of the 

crystal. ħω and u represent the energy and the polarization direction of the incident photon 

respectively. The superscripts  𝑐 and 𝑣 imply the conduction and valence bands 

respectively. The Ek and 𝜓𝑘 represent the energy and the wavefunction at the k point of 

conduction or valence band. The real part of the dielectric function is calculated applying 

Kramer’s-Kronig relation using the imaginary part of the dielectric function.  
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                           ɛ1(ω) = 1+
2

𝜋
𝑃 ∫

ɛ2(𝜔′)𝜔′

𝜔′2−𝜔2

∞

0
𝑑𝜔′                                           (3.9) 

Where P represents the principal value of the integral. The complex refractive index, 

N=n(w)+ik(w) is calculated using the complex dielectric function by applying the following 

formula. 

                             ɛ(𝜔) = ɛ1(𝜔)+ i ɛ2(𝜔) = N2                                                             (3.10) 

                            ɛ1(𝜔) = n(w)2-k(w)2                                                                        (3.11) 

                             ɛ2(𝜔) = 2n(w)k(w)                                                                           (3.12) 

Optical conductivity 𝜎(𝜔), absorption coefficient 𝛼(𝜔), reflectivity 𝑅(𝜔) and electron loss 

function L(𝜔) are computed using the following formula. 

𝜎(𝜔) = -i
2𝜔

4𝜋
 (ɛ(𝜔)-1)                                                                       (3.12) 

     𝛼(𝜔) =  
√2𝜔

𝑐
[{ɛ1(𝜔)2 + ɛ2(𝜔)2}

1

2 − ɛ2(𝜔)]
1

2                                 (3.13) 

𝑅(𝜔) = |
√{ɛ1(𝜔)+ 𝒊 ɛ2(𝜔)}−1

√{ɛ1(𝜔)+ 𝒊 ɛ2(𝜔)}+1
|2                                                             (3.14) 

 L(𝜔) = Im(-
1

ɛ(𝜔)
)                                                                                 (3.15) 

 

3.2.13 Electron Transport Properties 

Electron transport calculations are carried out based on Non-Equilibrium Green’s Function 

(NEGF) within Density Functional Theory using DMOL3 code [117]. The ‘DFT Semi-core 

pseudopots’ is taken as core treatment and calculations are carried out using Double 

Numeric Plus (DNP) basis set. Generalized Gradient Approximation (GGA) with the 

Perdew–Burke–Ernzerhof (PBE) is used to describe the exchange correlation interaction 

with a basis cut-off of 3.5 Å [105] 106]. Geometric optimization was carried out before 

calculation as described previously, and when NH3 atoms are introduced, they were also 

geometrically relaxed on the nanoribbons. 
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CHAPTER 4 

Results and Discussion 

 

In this chapter, the structural, electronic, optical, and electron transport properties of three 

different novel hybrid monolayers of Si, Ge, and Sn atoms are characterized and the results 

are validated with previously reported literatures. For structural properties, optimized 

lattice constants, buckling height, bond length were calculated. To examine mechanical and 

dynamical stability of the structures in-plane lattice constants, phonon dispersion curves 

and cohesive energy were calculated. Energy band structure with and without considering 

Spin-Orbit coupling, effective mass, acoustic phonon limited charge carrier mobility, 

density of states, and differential charge density were computed to characterize the 

electronic propertied of each monolayer. Then dielectric constant, absorption coefficient, 

electron energy loss function, optical conductivity, refractive index and reflectivity were 

analyzed to under the optical properties. To characterize electron transport properties and 

sensing application of the monolayers transmission function and I-V characteristics were 

calculated for pristine monolayer, NH3 adsorbed monolayer, and monolayers with point 

defects. 

 

4.1 Geometrically Optimized Structures 

First, the structural properties of the novel hybrid monolayers of Si, Ge, and Sn are 

investigated. Three different hybrid monolayers of Si, Ge, and Sn which are different in 

their relative atomic proportions have been studied. All the hybrid monolayers are buckled 

honeycomb structures, which are defined as a hexagonal unit cell with eight atoms. Figure 

3.1(a) and 3.1(d) show the top and side views of Ge0.25Sn0.25Si0.50 monolayer respectively 

which consists of 25% Ge, 25% Sn and 50% Si atoms. After complete geometric 

optimization of the system, the computed lattice constant is 8.19 Å, bond length of Sn-Si 

and Ge-Si are 2.51 Å, 2.39 Å, respectively and buckling height of Sn-Si and Ge-Si are 0.67 

Å and 0.63 Å, respectively. Similarly, Figure 3.1(b) and 3.1(e) show the top and side views 

of Si0.25Ge0.25Sn0.50 monolayer respectively consisting which consists of 25% Si, 25% Ge 
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and 50% Sn atoms and Figure 3.1(c) and 3.1(f) show the top and side views, respectively 

of Sn0.25Si0.25Ge0.50 monolayer which consists of 25% Sn, 25% Si and 50% Ge atoms.   

The value of different computed parameters after complete geometric relaxation of the 

three hybrid structures are listed in the Table 4.1. These computed values of the lattice 

constants of all the hybrid monolayers of Si, Ge, and Sn are consistent with the calculated 

values derived from Vegard’s law considering the reported lattice constants of monolayer 

SiSn, GeSn and SiGe. To confirm this claim, lattice constants of the proposed hybrid 

monolayers have been calculated using the reported lattice constants of monolayer hybrids 

of SiGe, SiSn and GeSn as 3.963 Å, 4.29 Å, and 4.35 Å, respectively [118]-[121]. So, 

employing Vegard’s law the calculated values of the lattice constant of monolayer 

Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50 are 8.253 Å, 8.64 Å, and 8.313 Å, 

respectively which are very close to the computed values of the lattice constants of the 

hybrid monolayers. If the hybrid monolayers are closely observerd, there is a slight 

compression in the Sn-Si, Sn-Ge bonds and slight tensile stress in the Ge-Si bonds. This is 

due to the presence of Sn atoms which possess comparatively low electron affinity and low 

ionization energy than Si and Ge atoms. The bond length between Si-Ge, Ge-Sn, and Sn-

Si are longer compared to that of graphene, and this longer bond length weakens the 

bonding between the π orbitals. Hence sp2 hybrid orbitals further hybridize with the π 

orbitals, forming sp2-sp3 like orbitals. This phenomenon is primarily responsible for the 

buckling structure of these hybrid monolayers [122], [123].  The optimized values of the 

structural properties are shown in Table 1. 

 

4.2 Mechanical and dynamic stability 

 

4.2.1 In-Plane Elastic Constants 

The in-plane elastic constants (C11, C12), Young’s modulus, Ys and Poisson’s ratio, ν of 

these novel hybrid monolayers of Si, Ge, and Sn atoms have been calculated and that are 

shown in Table 1. The positive values of in-plane lattice constants and Young’s modulus 

of the structures indicate their mechanical stability. Tao et al.  [124] reported mechanical 

stability of monolayer stanene following similar approach.  For each of the monolayers, the 
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elastic constant along x direction, C11 is equal to the elastic constant along y direction, C22 

which proves the isotropic in-plane stiffness of these materials [110]. The calculated values 

of these parameters are comparable to those of monolayer silicene, germanene, and stanene 

[110] [125]. The Young’s modulus of monolayer Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and 

Sn0.25Si0.25Ge0.50 derived from Vegard’s law using the reported Young’s modulus of 

silicene, germanene, and stanene [110] are 49.03, 45.53, and 39.57 N/m respectively which 

are close to our computed values.  

Table 4.1: Structural properties of Novel Hybrid monolayers of Si, Ge and Sn and 

comparison with monolayer silicene, germanene, stanene, and graphene: Lattice constant 

(Å), bond length (Å), buckling height (Å), elastic constants, and cohesive energy (eV/ unit 

cell) 

Structure 
Atomic 

Proportion 

Lattice 

Constant (Å) 
Bond Length (Å) 

Buckling 

Height (Å) 

Elastic 

Constants 

Young’s 

modulus    

Poiss

on’s 

ratio 

Cohesi

ve 

Energy 

(eV/ 

unit 

cell) 

C11 

(N/m) 

C12 

(N/m) 

Ys 

(N/m) 
ν 

Ge0.25Sn0.25Si0.50 

Ge = 25%, 

Sn = 25%, 

Si = 50% 

OA = 8.19602 

OB = 8.17580 

OC = 34.6128 

Sn-Si = 2.518 

Ge-Si = 2.396 

Sn-Si = 0.6714 

Ge-Si = 0.6395 
63.93 20.72 56.96 0.33 -31.370 

Si0.25Ge0.25Sn0.50 

Si = 25%, 

Ge = 25%, 

Sn = 50% 

OA = 8.60555 

OB = 8.59812 

OC = 34.8955 

Si-Sn = 2.569 

Ge-Sn = 2.617 

Si-Sn = 0.6496 

Ge-Sn = 0.8305 
48.53 13.27 50.01 0.37 -28.790 

Sn0.25Si0.25Ge0.50 

Sn = 25%, 

Si = 25%, 

Ge = 50% 

OA = 8.29414 

OB = 8.25572 

OC = 34.8512 

Sn-Ge = 2.415 

Si-Ge = 2.581 

Sn-Ge = 0.6322 

Si-Ge = 0.7807 
52.62 18.03 43.62 0.31 -30.273 

Silicene Si = 100% 3.88 [110] Si-Si = 2.27 [110] 
Si-Si = 0.41 

[110] 
- - 

61.33 

[110]  

0.31 

[110] 
- 

Germanene Ge = 100% 4.03 [110] Ge-Ge = 2.42 [110] 
Ge-Ge = 0.68 

[110] 
- - 

42.05 

[110] 

0.33 

[110] 
- 

Stanene Sn = 100% 4.66 [110] Sn-Sn = 2.83[110] 
Sn-Sn = 0.9 

[110] 
- - 

24.46 

[110] 

0.39 

[110] 
- 

Graphene C = 100% 2.46 [110] C-C = 1.42 [110] Planar - - 
337.1 

[110] 

0.18 

[110] 
- 

 

4.2.2 Phonon Dispersion Curves 

In order to study the electronic and optical properties of the hybrid monolayers, it is 

necessary to investigate the structural stability of the nanostructures. The hybrid 

monolayers of group IV binary elements e.g. SiGe, SiSn, and GeSn are reported to have 

stable structures [121], [122]. In order to explore the stability of the novel hybrid 

monolayers, the phonon dispersion curves and cohesive energy of each of the monolayers 



 

44 

 

have been computed. From Figure 4.1 it is clear that all the branches possess positive 

vibrational frequency. The absence of imaginary frequencies in all of the branches of the 

phonon dispersion curves indicate that all the hybrid monolayers are dynamically stable. 

The phonon dispersion curves demonstrate 3 acoustical, and 21 optical branches. Among 

the three acoustical branches- LA, TA and ZA, the in-plane vibrational modes LA and TA 

show linear phonon dispersion near the Γ point, whereas the out of plane vibrational mode, 

ZA is quadratic near the Γ point, which indicates rapid attenuation of out of plane 

vibrational modes. Similar results are reported by Xu et al. for hybrid monolayers of Si, Ge 

and C [26].  

 

 

4.2.3 Cohesive Energy 

Furthermore, the cohesive energies of the hybrid monolayer have been calculated using the 

following formula. 

 

Ecohesive = EHybrid monolayer - ESi - EGe - ESn                                    (4.1) 

 

 

Here, EHybrid monolayer is the total energy of the hybrid monolayer, and ESi, EGe, ESn are the 

total energy of the monolayer if Si, Ge, or Sn atoms are considered separately in the lattice 

structure.  

The negative values of the cohesive energy indicate the thermodynamic stability of these 

structures, the more negative the cohesive energy is, the more stable the structure is [127]. 

Figure 4.1: Phonon dispersion curves of monolayer hybrids of Si, Ge and Sn- (a) 

Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50 and (c) Sn0.25Si0.25Ge0.50 respectively. 
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The calculated values of cohesive energy of Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and 

Sn0.25Si0.25Ge0.50 are -31.370, -28.790 and -30.273 eV/unit cell respectively as shown in 

Table 1. All the hybrid monolayers have significantly negative cohesive energy which 

indicates stable structures with strong atomic bonding. Among the three hybrid monolayers, 

Ge0.25Sn0.25Si0.50 is comparatively more stable. 

 

4.3 Electronic Properties 

In this part the study, concentration will be given on the electronic properties of the novel 

hybrid monolayers of Si, Ge, and Sn. It is reported that graphene like 2D elemental 

monolayers of other group-IV materials (Si, Ge, Sn) are semimetallic with negligible 

energy bandgap at the K point of the Brillouin Zone (BZ) in their band structures [69]. 

These monolayers possess high electron mobility due to quantum confinement of the 

charge carriers along the plane and the presence of relativistic massless Dirac fermion 

which is discernible from the Dirac cone demonstrating the linear energy band dispersion 

relation around the K point of the Brillouin Zone (BZ). But the semimetallic property 

restricts their applications in the field of digital electronics. Moreover, the binary compound 

monolayers SiSn, GeSn, and SiGe also demonstrate similar band structures near K point of 

the BZ as reported by Fadaie et al. [118]. In the band structures of the monolayer SiSn and 

GeSn, there are energy bandgap opening at the K point of the BZ which is due to the 

breaking of the inversion symmetry. 

 

4.3.1 Energy Band Structure 

Calculations show that the hybrid ternary monolayers of Si, Ge, and Sn are semiconductors 

with direct energy bandgap at K point of the BZ and the presence of the Dirac cone at the 

K point indicates the presence of relativistic massless Dirac fermion. The breaking of the 

inversion symmetry in the lattice structure and strong spin-orbit coupling present in the Sn, 

Si, and Ge atoms are responsible for the energy splitting at K point [128]. During the 

simulation, the system relaxation was followed by a self-consistent field (scf) calculation 

and band-structure energy data was calculated with and without considering spin-orbit 
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coupling and plotted (E-k diagram) for equally spaced K point samples as shown in Figure 

4.2. 

The energy band structure of three hybrid monolayers without and with spin-orbit coupling 

(SOC) is shown in Figure 4.2(a), (d), (g) (blue color) and Figure 4.2(b), (e), (h) (red color) 

respectively and the magnified view of the bandstructures are shown in Figure 4.2(c), (f), 

(i). The Fermi level is set as the reference. As observed in Figure 4.2(a) and 3(b), there is a 

direct bandgap opening of 133 meV and 174 meV at K point of the BZ for the 

Ge0.25Sn0.25Si0.50 monolayer, without and with considering the spin-orbit coupling 

respectively, and Figure 4.2(c) shows the band degeneracy in the conduction and valence 

band due to strong spin orbital interaction. Similar bandgap opening is also studied by Liu 

et al. and Khan et al. [129]-[131]. The figures also show that the linear band dispersion 

relation is well preserved near K point of the BZ. Shao et. al. calculated the values of charge 

charge carrier mobility in Silicene which shows similar linear energy band dispersion using 

First-Principles calculations [132] and a resent experiment has shown charge carrier 

mobility inside silicene field effect transistors is around 102 cm2V-1s-1 [133] which is larger 

than many experimental mobility of 2D FETs and also this can be improved by creating 

more defect free materials.  So, the presence of Dirac cone results in a semiconductor 

material with high mobility of the charge carriers [131], [134], [135]. For the 

Si0.25Ge0.25Sn0.50 hybrid monolayer a similar direct energy bandgap of 242 meV (without 

spin-orbit coupling) and 283.8 meV (with spin-orbit coupling) are introduced at the K point 

of the BZ as shown in Figure 3(d) and 3(e), respectively. Linear band dispersion relation is 

also preserved with band degeneracy from spin orbital interaction as shown in Figure 4.2(f). 

A similar direct bandgap of 120 meV (without spin-orbit coupling) and 151 meV (with 

spin-orbit coupling) for the Sn0.25Si0.25Ge0.50 hybrid monolayer is introduced at the K point 

of the BZ as shown in Figure 4.2(g) and 4.2(h), respectively preserving the linear energy 

band dispersion relation around the K point of the BZ with band degeneracy from spin 

orbital interaction as shown in Figure 4.2(i). The energy bandgap is found to increase with 

increasing proportion of Sn atoms. Hence, increasing proportion of Sn atoms encourages 

further energy bandgap due to its significant contribution to breaking of the inversion 

symmetry and strong spin orbital interaction. The energy bandgap of these novel hybrid 

monolayers of Si, Ge, and Sn atoms are also computed using Heyd–Scuseria–Ernzerhof 

(HSE) functionals. The shape of the bandstructures calculated using HSE functionals are 
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identical to those of using GGA-PBE functionals. The calculated energy bandgaps of 

Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and Sn0.25Si0.25Ge0.50 using HSE hybrid functional are 

194, 249, and 125 meV respectively which are close to the respective energy bandgaps 

calculated using GGA-PBE functionals. So, the reported electronic and optical properties 

of these novel hybrid monolayers are not largely underestimated if GGA-PBE functionals 

are used.  

 

Figure 4.2: Electronic Band Structure of Ge0.25Sn0.25Si0.50 (a) without SOC, (b) with SOC, (c) 

magnified view at K point; of Si0.25Ge0.25Sn0.50 (d) without SOC, (e) with SOC (f) magnified 

view at K point; of Sn0.25Si0.25Ge0.50 (g) without SOC, (h) with SOC, (i) magnified view at K 

point. The blue and red lines represent energy spectrum in the absence and presence of SOC 

respectively.  
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Jing Shi et al. [136] reported energy bandgaps of GeSi, SnSi, and SnGe monolayers using 

HSE and GGA-PBE functionals in a similar way. Table 4.2 summarizes the value of the 

energy bandgaps and conduction band and valence band energy splitting. Literatures 

reported similar kind of bandgap opening due to breaking of inversion symmetry and strong 

spin-orbit coupling [137]-[139]. These novel hybrid monolayers possess larger bandgap 

compared to other structures like graphene, silicene, germanene [139], [140]. 

 

4.3.2 Effective Mass of the Charge Carrier 

Significant energy bandgap along with high carrier mobility due to the linear band 

dispersion relation near the K point of the BZ indicates possible applications in high speed 

nano-structured switching devices [141], [142]. The effective mass of the electron and hole 

at the K point of BZ have been calculated using parabolic band approximation. The 

calculated values of electron effective mass in Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and 

Sn0.25Si0.25Ge0.50 are 0.065×mo, 0.101×mo 0.063×mo, respectively, where mo is the mass of 

the rest electron. And the calculated values of hole effective mass in Ge0.25Sn0.25Si0.50, 

Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50 as a function of rest mass of electron are 0.063×mo, 

0.97×mo, 0.061×mo, respectively. These results demonstrate a very small effective mass 

[143] of electron and hole which in turn result in higher charge carrier mobility as reported 

in literatures [130], [133].  

 

4.3.3 Acoustic Phonon limited Charge Carrier 

The calculated values of acoustic phonon limited electron mobility of Ge0.25Sn0.25Si0.50, 

Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50 monolayers are 7.556×106, 6.847×105, and 

5.504×105 cm2v-1s-1, respectively. And the acoustic phonon limited hole mobility of 

Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and Sn0.25Si0.25Ge0.50 monolayers are 5.058×106, 

5.49×105, and 1.852×105 cm2v-1s-1, respectively. The results are summarized in the Table 

4.2. The difference in energy as function of tensile strain is plotted in Figure 4.3(d), (e), (f) 

and C2D is computed from the fitting parameter of the energy versus strain curve. As 

predicted earlier, the charge carriers’ mobility in our proposed hybrid monolayers are 
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significantly higher and in agreement with the studies carried out on the charge carrier 

mobility by Zhou et al. [144]. 

 

Table 4.2: Electronic properties of Novel Hybrid monolayers of Si, Ge and Sn and 

comparison with similar 2D materials: Energy bandgap (with and without SOC), Energy 

band splitting due to SOC, effective mass and acoustic phonon limited mobility of the 

charge carrier. 

 

Structure 

Bandgap 
(GGA-

PBE) 

without 

SOC 

(meV) 

Bandgap 
(HSE) 

without 

SOC 

(meV 

Bandgap 

with 

SOC 

(meV) 

Band 

Splitting 

at K point 

due to 

SOC 

(meV) 

Effectiv

e Mass 

of 

Electro

n 

(m/mo) 

Effective 

Mass of 

Hole 

(m/mo) 

Electron 

Mobility 
(cm2V-1s-1) 

Hole 

Mobility 
(cm2V-1s-1) 

Ge0.25Sn0.25Si0.50 133 194 174 
CB = 12 

VB = 44 
0.065 0.063 7.556×106 5.058×106 

Si0.25Ge0.25Sn0.50 242 249 283.8 
CB = 8 

VB = 65 
0.101 0.097 6.847×105 5.49×105 

Sn0.25Si0.25Ge0.50 120 125 151 
CB = 30 

VB = 33 
0.063 0.061 5.504×105 1.852×105 

Si0.50Sn0.50 210 [118] - - - - - - - 

Ge0.50Sn0.50 230 [118] - - - - - - - 

Silicene - - - - 

First-Principles 

[132] 
2.75×105 2.22×105 

Experimental  

[133] 
102 102 
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4.3.4 Density of States and Atom Projected Density of States 

In order to understand the characteristics of atomic bonds, and contribution of each of the 

atomic orbitals to the molecular orbital, the total density of states and atom projected 

density of states of these novel hybrid monolayers have been calculated and analyzed. The 

total and atom projected density of states of Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and 

Sn0.25Si0.25Ge0.50 are shown in Figure 4.4(a), (b), and (c) respectively. From Figure 4.4(a), 

it can be seen that the total density of states of Ge0.25Sn0.25Si0.50 is similar to the contribution 

of the P orbitals of the Si atoms. So, the electronic properties of Ge0.25Sn0.25Si0.50 monolayer 

is dominated by Si atoms which is widely present in the structure [130], [137]. In Figure  

Figure 4.3: Change of CBM and VBM as a function of strain for (a) Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50, 

(c)Sn0.25Si0.25Ge0.50 and Shift in energy as a function of strain for (d) Ge0.25Sn0.25Si0.50, (e) Si0.25Ge0.25Sn0.50, 

(f)Sn0.25Si0.25Ge0.50 hybrid monolayer. 
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Figure 4.4: Atom projected Density of states as a function of energy for (a) 

Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50, and (c)Sn0.25Si0.25Ge0.50 hybrid monolayer. 
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4.4(a) the atom projected density of states also shows that the valence band states and the 

conduction band states of the Ge0.25Sn0.25Si0.50 monolayer is dominated by the P orbitals of 

the Si, Ge, and Sn atoms with small contribution from the S orbitals, this result confirms 

the presence of the orbital hybridization among S and P orbitals [123] in this monolayer. 

Other two monolayers also depict the similar characteristics. As it can be observed from 

Figure 4.4(b), the total density states of the Si0.25Ge0.25Sn0.50 monolayer is similar to the 

contribution of the P orbitals of Sn atoms indicating that the electronic properties of the 

Si0.25Ge0.25Sn0.50 monolayer will be dictated by the Sn atoms, and the valence and the 

conduction bands of the total density of states are dominated by the P orbitals of the Sn, Si, 

and Ge atoms with small contribution from the S orbitals indicating the presence of orbital 

hybridization. Figure 4.4(c) shows the total and atom projected density of states of the 

Sn0.25Si0.25Ge0.50 monolayer, where the line shape of the total density of states is similar to 

that of the P orbitals of the Ge atoms which tells that the electronic properties of 

Sn0.25Si0.25Ge0.50 will be dominated by the Ge atoms. Figure 4.4(c) also indicates the 

presence of orbital hybridization among S and P orbitals of Si, Ge, and Sn atoms as the 

valence and conduction bands are dominated by the P orbitals with small contribution from 

S orbitals of Ge, Si, and Sn atoms. From the analysis of the density of states, it is evident 

that the electronic properties of the hybrid monolayers will be similar to the dominant atom 

present and there is sp2-sp3 like orbital hybridization which is also consistent with the 

buckled structures of the monolayers. 

 

4.3.5 Differential Charge Density 

In order to understand the electronic and structural properties more deeply, the differential 

charge density (DCD) of the hybrid monolayers of Si, Ge, and Sn have been studied, which 

basically represents the rearrangement of the charge due to the formation of monolayers 

from the isolated atoms [135, [145], [146]. DCD is defined as  

Δρ = ρHybrid Monolayer - ρSi - ρGe – ρSn                                        (4.2) 

Where Δρ is the differential charge density, ρHybrid Monolayer is charge density of the hybrid 

monolayers of Si, Ge, Sn, and ρSi, ρGe and ρSn are charge densities of isolated Si, Ge, and 

Sn atoms respectively.  
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Figure 4.5 shows DCD for different hybrid monolayers, where the yellow and magenta 

colored isosurfaces depict electron accumulation and electron depletion regions 

respectively. Figure 4.5(a) shows the top and side views of DCD of Ge0.25Sn0.25Si0.50, which 

illustrate electron accumulation region near Si atoms and the electrons are depleted near 

Ge and Sn atoms. Similarly, Figure 4.5(b) shows the top and side views of the DCD of 

Si0.25Ge0.25Sn0.50 hybrid monolayer, from the figure it is clear that electron accumulation 

region around the Sn atoms and electron depletion region near Si and Ge atoms. Similar 

result is obtained from Figure 4.5(c) which shows an electron depletion region near Sn and 

Si atoms whereas electrons are accumulated around the Ge atoms of the Sn0.25Si0.25Ge0.50 

hybrid monolayer. Large bond lengths between Si, Ge, and Sn atoms are accountable for 

the redistribution of the charge carriers which further creates an internal electric field in the 

planar structure of the monolayers. This interaction among the atoms is responsible for 

breaking the inversion symmetry thus opening an energy bandgap at the K point of the BZ 

[145], [147], [148]. When spin-orbit coupling in the atoms is considered, these interactions 

strengthen further, which can be understood from the wider energy bandgap at the K point 

of the band structure at the presence of the spin orbital interaction. The charge density of 

the iso-surfaces of electron accumulation and electron depletion regions in the figure are 

0.04 electron/Å3 and 0.001 electron/Å3 respectively which indicate very small charge 

rearrangement in the intermediate region of the three hybrid monolayers. As a result of 

which linear energy-momentum relation is quite well preserved in these structures [135] 

which ensures the presence of the relativistic massless Dirac fermion as high mobility 

charge carrier. 

Figure 4.5: Top (top) and side (bottom) view of Differential Charge Density of (a) Ge0.25Sn0.25Si0.50, (b) 

Si0.25Ge0.25Sn0.50, and (c)Sn0.25Si0.25Ge0.50 hybrid monolayer. 

 



 

54 

 

4.4 Optical Properties 

Optical properties of semiconducting 2D monolayer materials are seeking more attention 

of the researchers due to their potential applications in optical processes, e.g. absorbing 

sheets, anti-reflection coating, biosensors, etc. [149]-[151]. In this study, optical properties 

such as dielectric function, electron loss function, absorption coefficient, reflectivity, 

refractive index, optical conductivity etc. for parallel and perpendicular polarization of 

incident light with respect to the plane of the monolayer from 0 eV to 25 eV energy of the 

incident light have been calculated. Although in this study many-body interactions among 

excited electrons and holes are not considered for the optical calculations they will not 

create large errors. Consideration of such interactions will not cause wide change in 

frequencies for these monolayers, they are expected to insignificantly change the amplitude 

of the optical responses. For example, Matthes et al [152].  have reported the optical 

properties of monolayer graphene, silicene, germanene, and stanene using first principles 

calculations with and without considering excitonic effects, and excitonic effects have very 

negligible effects on the optical response of those monolayers. 

 

4.4.1 Real part of Complex Dielectric Function and Electron 

Energy Loss Function 

The complex dielectric function is closely related to the response of the material in the 

presence of electromagnetic wave: the real part is related to the portion of stored 

electromagnetic energy in a dielectric medium and the imaginary part is related to the 

energy dissipation of the electromagnetic wave [149]. The real part of the dielectric 

function, Re[ε(ω)] of the hybrid monolayers are shown in Figure 4.6(a) and (b) for 

perpendicularly and parallelly polarized incident light, respectively. The static dielectric 

constant, i.e. the value of Re[ε(ω)] at ħω=0 eV indicates whether the material is 

semiconducting or metallic; very high value of static dielectric constant is related to the 

metallic property of the material [153]. From Figures 4.6(a) and (b) it is observed that the 

static dielectric constant of Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.5, and Sn0.25Si0.25Ge0.50 

monolayers for perpendicularly polarized incident light are 1.448, 1.501, and 1.49, 

respectively and for parallelly polarized incident light are 3.289, 3.496, and 3.502, 

respectively. These small values of static dielectric constants reflect the semiconducting 
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property of the hybrid monolayers which is also confirmed by the energy band structures 

of the nanostructure as they have been discussed in section 4.3.1. However, the static 

dielectric constant for parallelly polarized light is more than twice than that for 

perpendicularly polarized light. The minimum value of the Re[ε(ω)] is related to the 

collective response of the electrons inside the materials [149]. From Figure 4.6(a) it is seen 

that Ge0.25Sn0.25Si0.50 and Sn0.25Si0.25Ge0.50 monolayers show a minimum value of Re[ε(ω)] 

around 8eV. Moreover, the negative value of Re[ε(ω)] implies the forbidden region of light 

transmission, as in this energy range, light cannot propagate through the material [151]. 

Narrow forbidden region in the UV range of the electromagnetic wave is apparent from the 

figures of dielectric function. From Figure 4.6(a) and (b), for parallelly polarized light the 

Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50 monolayers show forbidden 

interval from 4.005 eV to 5.066 eV, 3.804 eV to 4.706 eV and 3.969 eV to 4.876 eV 

respectively; for perpendicularly polarized light Si0.25Ge0.25Sn0.50 monolayer shows a 

forbidden energy interval from 7.401 eV to 7.728 eV. When Re[ε(ω)] = 0 occurs and 

changes from negative to positive for an incident light energy, the collective oscillation of 

the charge carriers form standing waves leads to resonant oscillation, also known as 

plasmonic oscillation; and the frequency at which such oscillation occurs is called plasma 

frequency. Near the plasma frequency the electron energy loss (Eloss) function also shows 

a peak in energy indicating the maximum loss of electron energy passing through the 

material [150], [151]. The Eloss function shown in Figure 4.7(a) and (b), implies the 

amount of energy loss in the electrons propagating through the materials. For parallel 

polarization, the plasma frequency of the Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and 

Sn0.25Si0.25Ge0.50 monolayers are 5.006 eV, 4.706 eV, and 4.876 eV, respectively and also 

in this case the peaks in the Eloss function for Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and 

Sn0.25Si0.25Ge0.50 monolayers are found at 5.829 eV, 4.981 eV and 4.996 eV, respectively. 

For perpendicular polarization, the plasma frequency and the peaks in the Eloss function of 

Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50  monolayers are listed in the Table 

4.3. Surface plasmon resonance in 2D materials can be utilized in various applications e.g., 

plasmonic switches [154], ultrasensitive biochemical sensors [155] etc. The plasma 

frequency can be modulated by controlling the composition of the hybrid materials and the 

polarization of the incident light. Although many factors may be responsible for the peaks 

in the Eloss function such as, phonon excitation, inter and intra-band transition, inner shell 

ionization, the results above demonstrate that surface plasmon oscillation plays an 
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important role in the maximum values of the Eloss function. These results are summarized 

in Table 4.3. 

 

 

Table 4.3: Real part of dielectric function, peak in Eloss function, plasma frequency, 

forbidden region and in novel hybrid monolayers of Si, Ge and Sn  

 

Structure 

 

 

Static Dielectric 

Constant 

 

Peak in Electron 

Loss Function 

(eV) 

Plasma 

Frequency 

(eV) 

Forbidden Region (eV) 

ε(0)⊥ ε(0)|| ⊥ || ⊥ || ⊥ || 

Ge0.25Sn0.25Si0.50 1.488 3.289 8.485 5.829 - 5.066 - 4.005 to 5.066 

Si0.25Ge0.25Sn0.50 1.501 3.496 7.924 4.981 7.728 4.706 7.401 to 7.728 
3.804 to 4.706 

 

Sn0.25Si0.25Ge0.50 1.49 3.502 8.462 4.996 - 4.876 - 3.969 to 4.876 

 

 

 

 

Figure 4.6: Real Part of Dielectric Function when Electromagnetic field is polarized in (a) 

001(⊥) and (b) 100(||) direction of Monolayer Hybrid of Si, Ge and Sn. 
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4.4.2 Imaginary part of Complex Dielectric Function and 

Absorption Coefficient 

Imaginary part of the dielectric function, Im[ε(ω)] of the three hybrid monolayers are 

shown in Figure 4.8(a) and (b) for perpendicularly and parallelly polarized incident light, 

respectively. Imaginary part of the dielectric function relies on the inter-band and intra-

band transition of electrons from occupied state to unoccupied state [156], and provides an 

indication of the energy bandgap within the nanostructures. As it can be seen from Figure 

4.8(a) and (b), the Im[ε(ω)] is zero up to around 0.5 eV of incident light energy, it rises 

immediately after 0.5 eV; this is known as fundamental absorption edge [157]. The value 

of this fundamental absorption edge can also be confirmed by observing the energy 

bandgap from the band structures of the hybrid monolayers. The hybrid monolayers 

demonstrate highly anisotropic response with respect to perpendicularly and parallelly 

polarized incident light from 0 eV to 10 eV and isotropic response for the incident light of 

above 10eV, which will be further demonstrated in the discussion of refractive index. The 

peaks of the imaginary part of the dielectric function, Im[ε(ω)] is related to the inter-band 

and intra-band transition of electron from occupied state to unoccupied state, and this can  

Figure 4.7: Electron Loss Function when Electromagnetic field is polarized in (e) 001(⊥) and (f) 100(||) 

direction, of Monolayer Hybrid of Si, Ge and Sn. 
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Figure 4.8: Imaginary part of Dielectric Function when Electromagnetic field is polarized in 

(a) 001(⊥) and (b) 100(||) direction, of Monolayer Hybrid of Si, Ge and Sn. 

 

 

Figure 4.9: Absorption coefficient when Electromagnetic field is polarized in (a) 001(⊥) and (b) 100(||) direction, 

Log of Absorption coefficient when Electromagnetic field is polarized in (c) 001(⊥) and (d) 100(||) direction, of 

Monolayer Hybrid of Si, Ge and Sn. 
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also be confirmed by studying the absorption spectra of the hybrid monolayers [31]. The 

absorption spectra of the hybrid monolayers of Si, Ge and Sn as a function of energy for 

perpendicularly and parallelly polarized incident light are shown in Figure 4.9(a) and (b), 

respectively. The positions of the peaks in the absorption spectra are consistent with the 

positions of the peaks in the Im[ε(ω)]. These results are summarized in Table 4.4. As listed 

in Table 4.3, the forbidden energy interval of the monolayer Ge0.25Sn0.25Si0.50 for parallelly 

polarized light is 4.005 eV to 5.006 eV, and also Figure 4.9(a) illustrates a sharp decline in 

absorption in this energy interval. The absorption spectra for other hybrid monolayers also 

show similar characteristics. For both perpendicular and parallel polarization of the incident 

light, absorption sharply increases around 0.12 meV, 0.23 meV, 0.11 meV for 

Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50 monolayers respectively which are 

close to the energy bandgaps measured previously. The peaks of the absorption spectra are 

due to direct and indirect inter-band and intra-band transitions, as a result several peaks are 

evident in the spectra. From the absorption spectra it is clear that, the hybrid monolayers 

exhibit significantly higher absorption coefficient from the near infrared (1.58 eV) region 

to extreme UV region (16eV) and lower absorption coefficient in the mid and far infrared, 

deep into the extreme UV region. Considering the above results, the hybrid monolayers are 

suitable as ultra-broadband optical absorber ranging from visible to extreme UV region.  

 

Table 4.4: Imaginary part of dielectric function, absorption coefficient and Static 

Refractive index of Novel Hybrid monolayers of Si, Ge and Sn 

Structure 

 

Positions of peaks in 

Imaginary part of 

dielectric function (eV) 

 

Positions of peaks in 

absorption spectra 

(eV) 

Static Refractive Index 

 

⊥ || ⊥ || η(0)⊥ η(0)|| 

Ge0.25Sn0.25Si0.50 

4.451, 

6.193, 

7.476, 9.363 

1.307, 

3.507 

4.49, 6.311, 

7.647, 9.402 
1.477, 4.189 1.22 1.814 

Si0.25Ge0.25Sn0.50 

3.961, 

5.844, 

7.218, 9.102 

1.279, 

3.764 

4.065, 5.949, 

7.388, 9.154 
1.737, 3.948 1.225 1.87 

Sn0.25Si0.25Ge0.50 

4.263, 

6.156, 

7.436, 9.435 

1.263, 3.29 
4.316, 6.276, 

7.582, 9.475 
1.423, 4.156 1.22 1.871 
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4.4.3 Complex Refractive Index 

The real and imaginary part of the complex refractive index represent the refractive index 

and the extinction coefficient respectively, which are important for characterizing the  

Figure 4.10: Real part of Refractive index when Electromagnetic field is polarized in (a) 001(⊥) and (b) 100(||) 

direction, (c) Birefringence characteristics of Monolayer Hybrid of Si, Ge and Sn. 
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optical properties of a material. Figure 4.10(a) and (b) show the real part of the refractive 

index as a function of energy of the incident light for perpendicularly and parallelly 

polarized light, respectively for the novel hybrid monolayers of Si, Ge, and Sn. The line 

shapes of the real refractive index for each of the monolayers are similar, they follow 

similar trend of change. The values of the static refractive index are greater for parallelly 

polarized incident light compared to that of the perpendicularly polarized incident light 

since the parallelly polarized light interacts within a plane which has higher density of 

atoms [149], the obtained results are summarized in Table 4.4. The real refractive index   

spectra demonstrate anisotropic response for parallelly and perpendicularly polarized light 

in the range from 0 to 10 eV. As the real refractive index is different for different  

 

polarization of the incident light, the velocity of the parallelly and perpendicularly polarized 

light will also be different, which indicates each of the hybrid monolayers will show 

Figure 4.11: Imaginary part of Refractive index when Electromagnetic field is 

polarized in (a) 001(⊥) and (b) 100(||) direction, of Monolayer Hybrid of Si, Ge and Sn. 
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birefringence characteristics. The birefringence characteristics, calculated from the 

difference between the real part of the refractive indices for the parallelly and 

perpendicularly polarized incident light [149], shown in Figure 4.10(c) as a function of the 

energy of the incident light. These results are also consistent from the anisotropic response 

in the imaginary part of the dielectric function. These birefringence properties of two-

dimensional materials are used to create a variety of optical applications, including optical 

waveplates [158] and polarization-controlled spontaneous emission [159]. Moreover, as the 

energy of the incident light increases, the value of the refractive index tends to reach the 

unity, which indicates vacuum like response of the hybrid monolayers for UV lights [153].  

The imaginary part of the refractive index, extinction coefficient as a function of the energy 

of the incident light are shown in Figure 4.11(a) and (b) for perpendicularly and parallelly 

polarized light respectively, for the hybrid monolayers. The extinction coefficient is related 

to the dissipation of the optical energy inside the material [160], hence it is closely related 

to the absorption spectra and imaginary part of the dielectric function. The response shown 

in Figure 4.11(a), 4.11(b) follow similar trend as the plot of Figure 4.8(a), (b) and 4.9(a), 

(b). As the energy of the incident light increases beyond 10 eV, the extinction coefficient 

and absorption coefficient tend to be zero; indicating no energy absorption in deep UV 

region. 

 

4.4.4 Reflectivity 

Reflectivity of the novel hybrid monolayers of Si, Ge and Sn as a function of energy of the 

incident light is shown in Figure 4.12(a) and (b) for perpendicularly and parallelly polarized 

incident light, respectively. The line shape of the reflectivity of the three monolayers are 

almost similar. In the infrared, visible light, deep in to extreme UV (>10eV) spectra the 

value of the reflectivity is very negligible.  
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The value of reflectivity is dominant in the UV region (5 eV-10 eV). Table 4.5 summarizes 

the value of maximum reflectivity and the frequency at which maximum reflection occurs. 

Similar anisotropic response is also visible for parallelly and perpendicularly polarized 

incident light from 0 eV to 10 eV. As it can be seen from these results, the reflectivity and 

absorption spectra are very insignificant in infrared, visible light (0 eV to 5 eV) and deep 

in to the extreme UV region (> 10 eV). So, the hybrid monolayers act as transparent 

medium of light for infrared, visible and extreme UV lights [161].  

 

4.4.5 Optical Conductivity 

Optical conductivity relates the density of current in a material with respect to the applied 

electric field as a function of frequency. Complex optical conductivity is closely related to 

the complex dielectric function. The real part of the complex optical conductivity of novel 

hybrid monolayers of Si, Ge, and Sn for perpendicularly and parallelly polarized incident 

light are shown in Figure 4.13(a) and 4.13(b), respectively. The real part of the optical 

conductivity is related to imaginary part of the dielectric function, extinction coefficient 

and absorption spectra etc. [149]. As it can be seen from Figure 4.13(a) and 4.13(b), the 

threshold value of the real part of the optical conductivity is consistent with the fundamental 

absorption edge (0.5 eV), which is closely related to the optical bandgap of the material. 

The line shape and position of the peaks are also consistent with the absorption spectra and 

the imaginary part of the dielectric function. The imaginary part of the conductivity for 

Figure 4.12: Reflectivity when Electromagnetic field is polarized in (a) 001(⊥) and (b) 

100(||) direction, of Monolayer Hybrid of Si, Ge and Sn. 
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perpendicularly and parallelly polarized light are shown in Figure 4.14(a) and 4.14(b) 

respectively for the hybrid monolayers. The imaginary part of complex conductivity is 

related to the real part of the dielectric function. As we can see in Figure 4.14(a) and 

4.14(b), the zero crossing are consistent with the values of plasma frequency derived from 

the real part of the dielectric function. Table 4.5 summarizes these results. The results of 

the optical properties computed for our novel hybrid monolayers of Si, Ge and Sn are 

consistent with the reported values of optical properties of silicene, germanene and stanene 

[149], [162]. 

 

Figure 4.13: Real part of Optical Conductivity when Electromagnetic field is polarized 

in (a) 001(⊥) and (b) 100(||) direction of Monolayer Hybrid of Si, Ge and Sn. 

 

 

Figure 4.14: Imaginary part of Optical Conductivity when Electromagnetic field is 

polarized in (a) 001(⊥) and (b) 100(||) direction, of Monolayer Hybrid of Si, Ge and Sn. 
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Table 4.5: Value of maximum reflectivity and frequency at which maximum reflection 

occurs, Positions of peaks in Real part of complex conductivity and Zero crossings in 

Imaginary part of complex conductivity in Novel Hybrid monolayers of Si, Ge and Sn  

Structure 

Value of 

Maximum 

Reflectivity 

 

Frequency at 

which Maximum 

Reflectivity 

occurs (eV) 

Positions of peaks 

in Real part of 

complex 

conductivity (eV) 

Zero crossings in 

Imaginary part of 

complex 

conductivity (eV) 

⊥ || ⊥ || ⊥ || ⊥ || 

Ge0.25Sn0.25Si0.50 0.1244 0.3323 7.817 4.385 

4.47, 

6.206, 

7.49, 

9.363 

1.359, 

3.534 
7.398 3.6 

Si0.25Ge0.25Sn0.50 0.2163 0.2682 7.584 4.409 

4.052, 

5.871, 

7.218, 

9.115 

1.37, 

3.791 
7.153 3.215 

Sn0.25Si0.25Ge0.50 0.15 0.3255 7.716 4.118 

4.47, 

6.206, 

7.49, 

9.363 

1.359, 

3.534 
7.382 3.343 

 

 

4.5 Electron Transport Properties and Sensing 

Applications 

To investigate quantum transport phenomena of the proposed hybrid monolayers, in this 

study, transport devices have been modeled using armchair nanoribbon (ANR) of the 

hybrid monolayers of Si, Ge and Sn. In experimentally fabricated transistor or sensing 

devices which include 2D materials as channel or sensing materials, these monolayers are 

considered as nanoribbons. So, to understand the electron transport properties of designed 

novel hybrid monolayers of Si, Ge, and Sn atoms, we have considered armchair 

nanoribbons as our transport device. The edge of the ANRs are passivated with hydrogen 

atoms, the length and the width of the nanoribbons are 42 Å and 13 Å, respectively. There 

are two electrodes composed of hybrid monolayers on each side, and a scattering region 

resides at the center. Singh et al. [163] modeled similar transport devices to investigate the 

electron transport properties of silicene. The electrodes are considered as ideal contacts for 

transport calculation. The top and side views of the relaxed structures of the hydrogen (H) 

passivated armchair nanoribbons of Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and 

Sn0.25Si0.25Ge0.50 monolayers are shown in Figure 4.15(a), (c), and (e), respectively. 
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4.5.1 NH3 Sensing  

In order to sense the presence of NH3 using electron transport properties, three NH3 

molecules are adsorbed on top of the nanoribbons. The absorption bond length of the 

relaxed structure between NH3 molecule and Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and 

Sn0.25Si0.25Ge0.50 nanoribbons are 2.194 Å, 2.614 Å, and 2.413 Å respectively.  

 

The top and side views of the relaxed structures of the H passivated armchair nanoribbons 

of Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50 monolayers with NH3 

molecules are shown in Figure 4.15(b), (d) and (f), respectively and the computed 

differential charge density of the Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and Sn0.25Si0.25Ge0.50 

armchair nanoribbons in the presence of NH3 molecules are shown in Figure 4.16(a), (b) 

Figure 4.15: Top and side views of the Ge0.25Sn0.25Si0.50 (a) pristine (b) with NH3 molecule and; 

top and side views of the Si0.25Ge0.25Sn0.50 (c) pristine (d) with NH3 molecule; top and side views 

of the Sn0.25Si0.25Ge0.50 ANR electron transport device (e) pristine (f) with NH3 molecule. 
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and 4.16(c), respectively. As it can be seen from these figures, due to adsorption of NH3 

molecules there is a redistribution of charge density in the nanoribbons. The blue regions 

depict electron accumulation and the yellow regions represent electron depletion regions.  

Due to NH3 adsorption, there is electron accumulation near the nitrogen atoms and electron 

depletion regions near the hydrogen atoms and the nanoribbons. This charge redistribution 

is responsible for the difference in electron transport properties of the nanoribbons in the 

presence of NH3 molecules. 

 

 

Figure 4.16: Top and side views of the Differential Charge Density in the presence of NH3 

molecule of (a) Ge0.25Sn0.25Si0.50 (b) Si0.25Ge0.25Sn0.50, (c) Sn0.25Si0.25Ge0.50 ANR electron transport 

device. 
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To study the electron transport characteristics of the nanoribbons with and without NH3 

molecules a bias voltage from 0 V to 1 V is applied and the resulting current-voltage (I-V) 

characteristics of the Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and Sn0.25Si0.25Ge0.50 armchair 

nanoribbons with and without NH3 molecules are calculated and shown in Figure 4.17(a), 

(b) and (c), respectively. From the I-V characteristics, it can be understood that the applied 

voltage must be greater than a threshold voltage for the current to increase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: I-V characteristics of (a) Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50, (c) Sn0.25Si0.25Ge0.50 ANR  
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The threshold voltage of Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and Sn0.25Si0.25Ge0.50 

monolayers are around 0.15 V, 0.25 V, and 0.1 V, calculated from Figure 4.17(a), (b) and 

(c), respectively. These results further confirm the presence of energy bandgap at the energy 

band structure as calculated in the electronic properties and the semiconducting 

characteristics of nanoribbons. Similar results are observed in other studies [163], [164].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Conductance plot of (a) Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50, (c) Sn0.25Si0.25Ge0.50 

ANR 
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As the bias voltage increases beyond the threshold voltage the current increases 

significantly, which confirms the high mobility of the proposed monolayers. With the 

presence of NH3 molecules the value of current in Ge0.25Sn0.25Si0.50 armchair nanoribbon 

from 0 V to 0.5 V is higher than pristine nanoribbon while beyond 0.5 V bias voltage the 

current is lower than the pristine counterpart.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Transmission Function of (a) Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50 , (c) Sn0.25Si0.25Ge0.50 

electron transport device pristine (blue) and with NH3 molecules (red).   
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Furthermore, for Si0.25Ge0.25Sn0.50 and Sn0.25Si0.25Ge0.50 armchair nanoribbons the value of 

current is lower in the presence of NH3 molecules as compared to the pristine nanoribbons. 

The conductance as a function of voltage for Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and 

Sn0.25Si0.25Ge0.50 armchair nanoribbons as shown in Figure 4.18(a), (b), (c) respectively. 

The change in the value of current or conductance can be utilized to indicate the presence 

of NH3 molecules. The difference in the value of currents can be understood by studying 

the transmission function of the hybrid monolayers [163] with and without NH3 molecules.  

 

Figure 4.19(a), (b), and (c) show the transmission function, the product of the number of 

sub-bands available in a particular energy state and the probability of transmission of 

Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and Sn0.25Si0.25Ge0.50 armchair nanoribbons, 

respectively. The value of transmission function in the presence of the NH3 molecules 

reduces significantly, and as a result the value of current in the presence of NH3 molecules 

is also low compared to pristine nanoribbons. However, the transport characteristics of the 

armchair nanoribbons represent a nonlinear decreasing trend in conductance at some bias 

voltages, otherwise increases almost linearly [165]. Change in current of the hybrid 

nanoribbons in the presence of NH3 molecules is shown in Figure 4.20; Sn0.25Si0.25Ge0.50 

armchair nanoribbon shows consistent in current over wide range of applied voltage. 

Similar results are reported for current with respect to bias voltage in other monolayer 

structures [166], [167]. 

Figure 4.20: ΔI-V characteristics of (a) Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50, (c) Sn0.25Si0.25Ge0.50 ANR 

in the presence of NH3 molecules.  
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Optical absorption coefficient in the presence of NH3 molecule is also calculated and 

compared with the absorption coefficient of pristine monolayer. The optical absorption 

coefficient of Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and Sn0.25Si0.25Ge0.50 monolayer in the 

presence of NH3 and in pristine 2D form is shown in Figure 4.21 for perpendicular and 

parallel polarization of incident light. In the presence of NH3 molecule absorption 

coefficient of the monolayers increase significantly which can be a signifying attribute with 

difference in conductance to identify the presence of NH3 molecules on the monolayers. 

 

 

 

4.5.2 Effects of Point Defect  

In order to understand the effect of point defects on electron transport properties, point 

vacancies on the nanoribbons are considered. The top and side views of the relaxed 

structures of the armchair nanoribbons of Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and 

Sn0.25Si0.25Ge0.50 monolayers with point vacancies are shown in Figure 4.22(a), (b) and (c), 

respectively. To study the electron transport characteristics of the nanoribbons with and 

Figure 4.21: Optical absorption in log scale of (a) Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50, (c) 

Sn0.25Si0.25Ge0.50 monolayer for perpendicular polarization and (d) Ge0.25Sn0.25Si0.50, (e) Si0.25Ge0.25Sn0.50 , 

(f) Sn0.25Si0.25Ge0.50 monolayer for parallel polarization of incident light.   
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without point vacancy a bias voltage from 0 V to 1 V is applied and the resulting current-

voltage (I-V) characteristics of the Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50 and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: (a) Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50, (c) Sn0.25Si0.25Ge0.50 electron transport 

devices 
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Sn0.25Si0.25Ge0.50 armchair nanoribbons with and without point vacancy are calculated and 

shown in Figure 4.23(a), (b) and (c), respectively. In the presence of point vacancies 

(without NH3 molecules), the value of current in armchair nanoribbons is lower than that 

of the pristine nanoribbon. The difference in the value of currents can be understood by 

studying the transmission function as shown in Figure 4.23(d), (e) and (f), respectively of 

the hybrid monolayers [163] with and without defects. Similar aspects have been studied 

in other literatures [166], [167]. 

 

Figure 4.23: I-V characteristics of (a) Ge0.25Sn0.25Si0.50, (b) Si0.25Ge0.25Sn0.50 , (c) Sn0.25Si0.25Ge0.50 ANR; , and 

Transmission Function of (d) Ge0.25Sn0.25Si0.50, (e) Si0.25Ge0.25Sn0.50 , (f) Sn0.25Si0.25Ge0.50 electron transport 

device pristine (blue) and with point defect (red).   
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CHAPTER 5 

Conclusion 

 

 

5.1 Summary  

 

In summary, three different novel hybrid monolayers of Si, Ge and Sn atoms have been 

modeled and their structural, electronic, optical and electron transport characteristics have 

been characterized using first principles calculations. All of the proposed hybrid 

monolayers are mechanically and dynamically stable which are examined by studying in-

plane elastic constants, phonon dispersion curves, and cohesive energy. These atomically 

thin novel alloys are semiconductor materials having direct energy bandgap ranging from 

120 meV to 283.8 meV due to breaking of inversion symmetry and spin-orbital interaction 

and also preserves linear energy-momentum relation around K point of the BZ. The 

effective mass of the charge carriers inside the hybrid monolayers are very low ranging 

from 0.063 × m0 to 0.101× m0, where m0 is the rest mass of the electron. And the computed 

acoustic phonon limited mobility of the charge carriers is very high (~105 cm2V-1s-1) in 

these materials. Study of the atom projected density of states and differential charge density 

ensures the presence of sp2-sp3 orbital hybridization due to the charge transfer within the 

atomic structure. Investigation of the optical properties of the hybrid monolayers 

demonstrate remarkable characteristics. Thorough study of these materials indicates the 

presence of tunable plasma frequency, high optical absorption (~104 cm-1) over wide range 

frequency, high refractive indices (~1.8) from visible to UV and birefringence 

characteristics etc. The study of the electron transport characteristics of the proposed hybrid 

nanoribbons confirm the semiconducting property of the monolayers and also show the 

potential application of these nanoribbons as the sensors of NH3 molecules. Transport 

characteristics of these materials in the presence of point defects was also carried out to 

understand the effect of imperfections of the nanoribbons. With such extra-ordinary 

characteristics, these stable forms of 2D hybrid monolayers of Si, Ge and Sn atoms would 

be a potential addition in the field of nanoscaled electronics, optoelectronics and sensing 

applications. 
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5.2 Scope for Future Works 

 

This thesis provides an insight on the structural, electronic, optical, and electron transport 

properties of novel hybrid monolayers of Si, Ge, Sn atoms. This study can certainly 

facilitate further study about such atomically thin novel materials. In the following part, 

some suggestions for future work are presented: 

 

• Future studies may include thermal and mechanical characterization of such hybrid 

monolayers of Si, Ge, and Sn atoms based on Molecular Dynamics 

• The outcome of external effects, such as, strain, electric field, forming 

heterostructures, functionalization with molecules, doping, defect engineering can 

be studied to modulate the electronic and optical properties of these monolayers. 

• In this study, optical properties are studied and understood in detail. Some key 

optical properties can be utilized to design novel devices, such as, plasmonic 

resonance characteristics can be exploited to design sensors, plasmonic 

waveguides. Anisotropic optical response can be utilized to design polarized optical 

filter etc. Optical properties of other atomically thin materials can be modulated by 

making bilayer or multilayer heterostructures with these monolayers. 

• Electron transport characteristics are calculated in this thesis using ideal contacts. 

In future various real contacts such as Au, Pt etc. can be considered and the electron 

transport properties can be calculated.  
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