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ABSTRACT 
 
Field Programmable Gate Array (FPGA) is a popular electronic component used in 

many applications due to their cost-effectiveness, competitive performance, and 

power efficiency. However, some third-party vendors in the semiconductor industry 

collect used FPGAs and refurbish them to sell as a new, posing security and reliability 

issues for mission-critical systems. Researchers have proposed various methods to 

detect recycled FPGAs, including ring oscillator-based delay analysis or fingerprint 

(FP) analysis using supervised machine learning (ML) technique. However, these 

methods require a large amount of data and time, which is not practical due to the 

rapidly changing technology and large number of FPGAs in the industry. 

Unsupervised machine learning approaches require less data but still require a 

significant amount of comparison calculations to achieve high accuracy, which is 

costly and time-consuming. Finding a faster and cheaper solution to this problem is 

necessary. Fresh FPGAs have different FP patterns than that of recycled FPGAs. This 

property has been used by other researchers for classification of recycled FPGAs from 

fresh FPGAs. However huge computation is required in this case. This thesis has 

introduced a novel technique to reduce the computational complexities using the 

property of symmetricity of the structure of FPGAs. Due to systematic process 

variation within the FPGA, the neighboring combinational logic blocks (CLBs) of 

FPGAs have similar or symmetrical array structures, leading to similar FPs in the 

neighboring logic blocks. This symmetrical property has been exploited for detecting 

recycled FPGAs using Clustering Algorithm (CA)-based anomaly or outlier detection 

scheme with K-means++ technique which analyzes the neighboring ring oscillator 

(RO) frequencies’ symmetrical or similarity information. The proposed symmetry 

analysis method efficiently detects all the recycled FPGAs through outlier detection, 

achieving 92% accuracy in a very short period of time with around 41% less 

computations compared to the previous unsupervised ML-based method. In future, 

research can be carried out to improve the accuracy using more reduced 

computations. 
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Chapter 1 
Introduction 

 

1.1 Introduction 

Nowadays, modern civilization inevitably relies on computer systems to improve 

our lives in every sector. The dependability of these systems is essential to ensure 

good functionality and performance in delivering the services to the systems. In 

general, the hardware dependability includes the attribute of availability, reliability, 

safety, integrity, maintainability, and confidentiality [1]. Specifically, hardware 

security is currently one of the most important reliability issues for the computer 

system. 

 

Field-programmable gate arrays (FPGAs) have become highly prevalent among 

integrated circuits (ICs) due to their advantageous features such as low 

development expenses and quick time-to-market. Consequently, even reused 

FPGAs are frequently employed, considering the complex nature of contemporary 

electronics supply chains. As a result, FPGAs are now regarded as the most 

sought-after ICs. [2]. Moreover, there is a novel trend of using FPGAs as 

accelerators for artificial neural networks. [3]. PGAs offer multiple benefits, 

including cost-effective integration, superior performance, and energy efficiency, 

which are driving their adoption in edge AI devices, AI workstations, and High-

Performance Computing (HPC) applications. AI-enabled FPGAs are employed in 

several data center devices, such as networking equipment, storage racks, and 

server systems, enabling users to manage high-speed data processing and monitor 

network traffic. Furthermore, the major data center operators' concerted efforts to 

enhance process efficiency will encourage market growth. [4]. 
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The FPGA market has experienced growth in the healthcare industry since 2020, 

largely due to the COVID-19 pandemic. The heightened need for high-performance 

detection devices in hospitals has spurred developers to create infection detection 

systems based on FPGAs. For instance, ALDEC Inc. developed a COVID-19 lung 

infection detection system. The ongoing research and development and innovations 

in the healthcare sector are expected to foster market expansion in the years to 

come. [4]. 

 
To address the aforementioned challenge and explore new opportunities in the 

industry, FPGA market players are concentrating on developing cutting-edge 

SRAM memory solutions. For example, in February 2022, QuickLogic 

Corporation, a California-based semiconductor manufacturing company, launched 

a low-power FPGA based on SRAM technology to mitigate semiconductor supply 

and availability issues. These advancements are expected to foster market growth 

in the projected timeline. [4].  

 

In Fig. 1.1, the low-range segment in the FPGA market is anticipated to exhibit a 

growth rate of approximately 15% until 2028, primarily driven by the numerous 

high-end features it offers, including low logic density, high power efficiency, and 

reduced complexity. These features have accelerated the adoption of low-range 

FPGAs in several portable electronic devices such as wearable devices, edge 

computing devices, and wireless gateways. [4]. The <28 nm segment of the FPGA 

market generated over USD 1.5 billion in revenue in 2021 and is expected to grow 

at a rate of 14% during the forecast period. The growth can be attributed to the 

various high-end features offered by this segment, such as high-speed processing, 

compact size, and improved efficiency, among others. These characteristics have 

accelerated the adoption of <28 nm FPGAs in multiple markets, including 

automotive electronics, high-performance computing, and telecommunications. [4]. 
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Fig. 1.1: Rising demand for low-power FPGAs in portable devices for high energy 

efficiency [4] 

 

In 2021, the consumer electronics sector accounted for approximately 9% of the 

FPGA market share. The growing disposable income in developing countries is 

driving the demand for new appliances, leading to an increasing market demand. 

FPGA solutions are integrated into various consumer electronics such as 

smartphones, laptops, digital cameras, game consoles, and tablets. Furthermore, the 

rising adoption of new technologies such as IoT, Natural Language Processing 

(NLP), and AI in smart speakers, smart TVs, and edge AI devices will fuel market 

growth in the future. [4]. 

 

The North American FPGA market is projected to grow at a CAGR of over 14% 

from 2022 to 2028, driven by the increasing government initiatives and funding 

activities to boost the regional semiconductor sector. For instance, in July 2021, the 

U.S. government passed the U.S. Innovation and Competition Act (USICA), which 

is an initiative aimed at boosting semiconductor manufacturing. The bill includes a 

total funding of USD 250 billion to launch innovative products and USD 52 billion 

for R&D activities in semiconductors, among other initiatives. [4].  
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The security of the integrated circuits (ICs), which is the most essential part of any 

computer system, is now becoming a rising threat, especially the counterfeit ICs 

[5]. Counterfeited electronics components are now a deep-rooted problem that has 

created significant concern in the ICs supply chain, and are impacting the IC 

industries, computers, communication systems, medical, and telecommunication 

systems. Specifically, the problem of counterfeit ICs attracts a lot of attention not 

only to the private sectors but also the government because the global counterfeit 

market has grown significantly compared to the past history. Fig. 1.2 shows the 

recent data provided by Electronic Resellers Association International (ERAI) 

showing the scenarios of recent incidents of counterfeit components since 2005 [6]. 

These results indicate that the risk of counterfeit material still exists in large 

numbers although some preventive measures have been taken.  

 
Counterfeit ICs can be classified into several categories, including recycled, 

remarked, overproduced, defective, cloned, and more. Recycled components are the 

most common type of counterfeit ICs, accounting for over 80% of the total 

counterfeit components. Recycled components refer to those that have been 

previously used or recycled and are being sold as new, genuine products. This type 

of counterfeit ICs poses a significant risk to the electronics industry, as recycled 

components may not function as intended and can compromise the safety and 

reliability of electronic devices. [5]. 

 
Certainly, recycling of FPGAs is a significant concern given their increasing usage 

and the prevalence of recycled counterfeit components in the market. Using 

recycled FPGAs may compromise the performance, reliability, and safety of 

electronic devices. Therefore, it is crucial for the electronics industry to ensure the 

authenticity and quality of FPGAs and other semiconductor components to avoid 

the risks associated with using counterfeit or recycled components. This can be 

achieved through proper testing, inspection, and certification procedures, as well as 

by working with trusted suppliers and distributors. [7].  
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Fig. 1.2: Counterfeit incident report [6] 

 
Of course, recycled FPGAs pose significant risks to the reliability and performance 

of electronic devices. Due to their prior usage, recycled FPGAs may have already 

undergone wear and tear, leading to degradation in performance over time. 

Additionally, recycled FPGAs may be compromised and contain hidden defects or 

malicious code, which can cause serious reliability and security issues in critical 

applications. 

Preventing the infiltration of recycled FPGAs is a challenging and costly task, as it 

requires stringent testing and verification procedures to ensure the authenticity and 

quality of the components. This is particularly important in critical applications, 

such as aerospace, defense, and medical devices, where the reliability and safety of 

the system are of utmost importance. To mitigate these risks, it is essential for the 

electronics industry to work with trusted suppliers and distributors and implement 

robust testing and inspection procedures to ensure the authenticity and quality of 

FPGAs and other semiconductor components. So, it can be understood that the 

importance and usages of the FPGAs in the current time are very huge. And so, as 
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the preparing and infiltrating of the recycled FPGAs are also booming for the 

many dishonest suppliers or third-party vendors. So, this is the concern of this 

work to tackle the infiltration of these recycled FPGAs in the supply chain of the 

FPGA market. 

1.2 Existing Works & Challenges 

It has been realized that the recycled FPGAs are a major concern in the IC supply 

chain due to the increasing number of third-party IC vendors, leading to a higher 

risk of counterfeit components. As mentioned earlier, recycled components account 

for more than 80% of the counterfeit components, which can pose a significant 

threat to the reliability and performance of critical applications. [5]. These recycled 

FPGAs may have reliability risks and trustworthiness issues due to the aging-

induced performance degradation. As FPGAs are used, they may experience wear 

and tear, which can lead to degradation in performance over time. This aging 

process can impact the reliability and trustworthiness of recycled FPGAs, making 

them less suitable for critical applications. As a result, it is essential to take steps to 

prevent the infiltration of recycled FPGAs in the IC supply chain and ensure the 

authenticity and reliability of FPGAs used in critical applications. Meanwhile, 

presently FPGAs are extensively used in autonomous applications such as UAVs 

and self-driving cars owing to the excellent performance of AI implementation in 

safety and critical applications [8]. If untrusted FPGAs infiltrate these mission-

critical systems, the system’s reliability may suffer, causing significant incidents.  

 

Several supervised machine learning (ML) based methods for detecting recycled 

FPGAs have been proposed in [9-13]. These methods use a combination of data-

driven techniques and statistical analysis to identify recycled FPGAs. For instance, 

some researchers have proposed using Support Vector Machines (SVM), Decision 

Trees, Random Forests, and Neural Networks to detect recycled FPGAs by 

analyzing their electrical characteristics such as power consumption, delay, and 
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power supply noise. These methods have shown promising results in detecting 

recycled FPGAs with high accuracy. The key idea behind these methods is to 

employ the ring oscillator (RO) frequency to analyze the deterioration of circuit 

characteristics caused by the aging process. Fresh FPGA’s RO frequencies are 

measured and used to train the supervised ML models. As these frequencies 

degrade with use, the trained model can determine whether the FPGA under test 

(FUT) is new or recycled. These supervised ML methods [9, 11, 12, 14] are 

predicated on the presence of known fresh FPGAs (KFFs). But a very large number 

of FPGA datasets have been required for the supervised ML methods for the 

accurate classification [9-10]. As the FPGA manufacturing technology is 

improving very rapidly, so this vast dataset collection is very difficult as well as 

costlier. Besides, for the preprocessing of the datasets and the training of the 

supervised ML models with these large datasets will require a very large amount of 

time and huge amount of memory for the whole process of the detection for every 

FPGA, training requires a significant number of measurements for the ROs with 

these supervised ML models which is very time-consuming. This is time 

consuming because the KFF datasets are not readily available and also the recycled 

datasets are unavailable to the researchers. But the overall performance is not up to 

the mark. 

 

Due to the lesser accuracy, exhaustive fingerprint (X-FP) analysis method, based 

on another supervised ML model, has been proposed for better detection of 

recycled FPGAs in [12]. Here, the frequencies for all paths of look-up tables (LUT) 

in all combinational logic blocks (CLB) are taken into account. This method 

correctly detected the aging issues, means it has detected all the recycled FPGAs. 

However, the X-FP method can lead to a large number of frequencies, which in 

turn increases the dimensionality of the feature-vector of the ML model. This can 

severely degrade the accuracy of the model. This is a problem because in real-life 

scenarios, hundreds of thousands of ICs or FPGAs have to be tested in a unit time 
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(such like within 24 hours assuming) otherwise the testing cost will be increased, 

so it is required to find other ways in order to reduce this extra-cost.  

 
These methods are unrealistic approaches to get desired the accuracy. Because, for 

accurate classification through supervised ML, FPGA manufacturers require the 

measurement of a significant number of KFFs, but this large volume of KFFs is 

unavailable due to many factors such as rapid upgradation of technology, costing 

etc. These methods do not work properly to get desired level of accuracy if there 

are fewer KFFs available. Another thing is that the recycled FPGA datasets are not 

available beforehand, because there are so many third-party vendors who are 

distributing FPGAs, whether those are fresh or recycled, and it is impossible to 

collect the FP data of those for the training and testing purpose as the rapid 

advancement of technologies, process variations etc. In order to tackle these 

problems, unsupervised ML algorithms based methods have been proposed in [16-

17]. Unsupervised ML algorithms doesn’t require too many datasets for the 

training. These methods [16-17] used clustering algorithm (CA) which is the 

widely used unsupervised ML algorithm. This algorithm is one kind of anomaly or 

outlier detection scheme, which can be used to detect the recycled FPGAs as the 

anomalous data. As mentioned above, CA’s most intriguing characteristics is that it 

doesn't require so many KFFs for the accurate classifications, and also it can be 

used without the negative-class data.  

 
There are different types of clustering algorithms available, among which K-

means++ is one. To address the limitations of supervised methods, previous works 

[16-17] proposed unsupervised methods for detecting recycled FPGAs. However, 

the classification accuracies of these methods are limited due to process variation in 

the KFFs, which use the measured frequencies as input vectors for the K-means++ 

method. Choosing the correct logic blocks for RO measurement is crucial, as 

selecting the wrong or inadequate ones can significantly reduce classification 

accuracy. To detect recycled FPGAs, previous approaches exhaustively compared 
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the frequencies of neighboring blocks using direct density ratio estimation 

technique, which is a lengthy process. Moreover, these methods require a large 

dataset to increase accuracy, which is not always feasible in real-life scenarios and 

also requires a significant amount of memory for the huge amount of computations 

comparisons of those ICs or FPGAs which increases the testing-time and testing-

cost. But it is required to achieve the desired accuracy faster and cheaper.  

 
In brief it can be said that, the existing methods require a very large number of 

computations of neighboring RO FPs. And also, they require a large number of 

FPGA datasets in the supervised ML approaches which is impractical. As the 

technology is rapidly changing, the collection of these vast datasets not feasible. 

Meanwhile, the unsupervised methods don’t require a very number of datasets for 

the whole work, but existing unsupervised methods require a large number of 

calculations to achieve desired accuracy. So, there are scopes for finding some 

different approaches for achieving desired accuracy with lesser amount of 

computations. 
 

1.3 Motivation 

It is already mentioned that FPGA is an electronic component that is widely used in 

many applications due to its competitive performance and power benefits, as well 

as low non-recurring engineering costs. However, the use of the recycled 

components in counterfeit FPGAs has threatened the security and reliability of 

critical systems such as those used in airplanes, automobiles, and medical 

equipment etc. Several research works have been conducted to detect those 

recycled FPGAs, including using ML approaches based on RO delay information. 

However, these methods require a large number of computation measurements and 

are time-consuming and memory-expensive. An alternative method is the 

exhaustive fingerprint (X-FP) analysis, which takes into account the frequencies for 

all paths of look-up tables in all CLB. This method accurately detects aging issues 
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but increases the dimensionality of the feature-vector of the ML model, which 

reduces accuracy. These issues have been addressed using with-in die (WID) 

modelling in literature [10]. However, accurate classification through supervised 

machine learning requires a large volume of known-fresh FPGAs (KFF), which 

may not be available due to various factors such as technology upgrades and cost. 

Also, the unsupervised ML methods addressed in [16-17] improves the accuracy 

but leaves one issue that is the huge comparison computations which leads to very 

time-consuming testing and costing. Recycled FPGAs exhibit distinct FP patterns 

compared to their fresh counterparts, which has been leveraged by previous 

researchers to differentiate between the two types in studies [16-17]. However, this 

approach requires extensive computation, and it is crucial to find a more efficient 

and cost-effective solution to address this issue.  

 

This thesis has introduced a novel technique to reduce the computational 

complexities using the property of symmetricity of the structure of FPGAs that 

does not depend on KFFs or requires a low amount of KFFs [18]. Due to 

systematic process variation within the FPGA, the neighboring combinational logic 

blocks (CLBs) of FPGAs have similar or symmetrical array structures. This 

symmetrical property has been exploited for detecting recycled FPGAs using 

Clustering Algorithm (CA)-based anomaly or outlier detection scheme with K-

means++ technique which analyzes the neighboring ring oscillator (RO) 

frequencies’ symmetrical or similarity information. The proposed symmetry 

analysis method efficiently detects all the recycled FPGAs through outlier detection 

in a very short period of time with lesser computations compared to the previous 

unsupervised ML-based method. The proposed method eliminates the necessity of 

KFFs by exhaustively comparing all neighboring ROs, regardless of their 

frequency values [19-20]. This is because the assumption that the frequency 

distributions of neighboring columns ideally match due to the systematic 

component of process variation does not hold if there is any aging-induced 
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degradation on either side [21]. As this method will utilize the symmetry analysis, 

the number of computations will be reduced which in turn will yield lesser time and 

lesser memory requirement. So, there are the scope of research in this area. 

 

1.4 Objective with Specific Aims 

The objective of this research is to develop a technique for improving the recycled 

FPGA detection performance using unsupervised machine learning approach. To 

achieve this goal this research will have the following aims: 

i. To develop a CA-based unsupervised ML-model using with K-means++ 

method to solve the proposed research problem by exploring the 

symmetricity of the fingerprint (FP) data of the neighboring columns. 

ii. To train the model using available FP data of the KFFs by finding the PDF 

values and anomaly scores of their neighboring columns. 

iii. To test and verify the model by finding the best accuracy of that 

unsupervised K-means++ model. 

 

1.5 Organization of the Report 

In Chapter 1, the introductory information has been discussed. The common 

preliminaries used throughout the related works or topics and the fundamentals of 

the recycled FPGA detection are discussed in Chapter 2. The details of the 

proposed method have been discussed in Chapter 3. Simulation results and its 

discussions are provided in Chapter 4. Finally, the conclusions from this work 

along with the recommendations for the future works of this research are presented 

in Chapter 5. 
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Chapter 2 
Preliminaries and Fundamentals of Recycled 

FPGA Detection 
 

2.1 Introduction 

In this chapter, recycled FPGAs and various terminologies related to detecting 

recycled FPGAs are presented as preliminaries. In the related terms section, the 

topics regarding this research work and its previous works in fingerprint analysis to 

detect recycled FPGAs will be summarized. 

 

2.2 Counterfeit ICs 

The global economic market has now reduced the cost of electronics due to a 

growing large horizontal business model that offers low-cost fabrications. As like 

ASIC, FPGA vendors similarly design and develop FPGA in their own lab, but 

fabricate them in offshore countries. This trend in the supply chain makes the 

backdoor for the corrupt market who instigate attacks like counterfeiting, malicious 

activities, or stealing of intellectual properties (IP) in real design etc. Specifically, 

the problem of counterfeiting of IC is now a major concern issue that drawn much 

attention to not only the media and industry but also government because of the 

global counterfeited market increasing exponentially over the past decades. Table 

2.1 shows reports from 2021 of the five most commonly counterfeited electronic 

components. Among all incidents, the programmable logic IC is 8.3% of the 

counterfeited components [21]. 

 

The impact of counterfeited IC is more vulnerable in case of some critical 

applications like communication systems, medical equipment, aero-space etc. The 
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U.S. Department of Commerce reported over ten thousand occurrences relating to 

recycled ICs itself than other types of counterfeited components [22]. Moreover,  

Table 2.1: Top-5 Most Counterfeited Semiconductors in 2021 [21] 

 
Rank Commodity Type % of Reported Incidents 

1 Analog IC 25.3 

2 Microprocessor IC 13.4 

3 Memory IC 13.1 

4 Programmable logic IC 8.3 

5 Transistor 7.6 

 
 
according to statistical reports, FPGAs are among the top five most counterfeited 

electronic components. [23]. Yes, that's correct. With the increasing adoption of 

advanced technologies like IoT, Artificial Intelligence (AI), and Advanced Driver-

Assistance System (ADAS), the demand for FPGAs has been on the rise. As a 

result, the global FPGA market is expected to grow rapidly and reach a value of 

USD 9.50 Billion in 2022. This growth can be attributed to the unique benefits that 

FPGAs offer, such as flexibility, low power consumption, and high performance, 

which make them ideal for use in real-time applications. [24]. Due to the increasing 

popularity of FPGAs, they have become an even more attractive target for 

counterfeiters, which raises concerns about their reliability for both government 

and industry stakeholders. 

2.2.1 Classification of Counterfeit ICs 

The Semiconductor Industry Association (SIA) recommends that the best way to 

avoid counterfeit components is to purchase semiconductor products directly from 
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the Original Component Manufacturer (OCM) or from authorized distributors or 

resellers. This ensures the authenticity of the components and helps to mitigate the 

risks associated with counterfeit components [25]. On the base of these points, the 

US Department of Commerce has marked some following points to classify a 

counterfeit component [22]:  

1. Unauthorized copy: The component is not authorized or licensed by the 

original component manufacturer. 

2. Non-conformance: The component does not meet the original design, model, 

and/or performance standards of the original component manufacturer. 

3. Unauthorized production: The component is produced by unauthorized 

contractors or manufacturers, not by the original component manufacturer. 

4. False representation: The component is misrepresented as new, working, or 

meeting specifications when it is actually off-specification, defective, or 

used. It may also have incorrect or false markings and/or documentation. 

 

Fig. 2.1 shows a comprehensive classification of different types of counterfeiting 

components that are widely accepted in the community [26-27]. This expanded 

classification will help us understand the counterfeiting components more deeply 

and take potential techniques to measure and avoid counterfeited components in the 

supply chain.  

 
Fig. 2.1: Classification of counterfeit types [26-27] 
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A brief idea of each of counterfeit parts is given as follows:  

 
1. Recycled: Refers to electronic components that were previously used and 

recovered from a system, then transferred to the supply chain as new 

components from the Original Component Manufacturer (OCM). 

2. Remarked: Counterfeiters remove the original marking from a recycled IC 

and add fake information to uniquely identify it. 

3. Overproduced: An untrusted foundry illegally accesses the IC layout and 

fabricates more ICs than authorized, transferring them into the supply chain. 

4. Out-of-spec/Defective: ICs that failed post-manufacturing tests are sold into 

the supply chain instead of being destroyed. 

5. Cloned: Counterfeiters reproduce ICs using reverse engineering or pirated 

intellectual property. 

6. Forged Documentation: Counterfeiters may ship ICs without documentation 

and then forge fake documentation before transferring them into the supply 

chain. 

7. Tampered: Malicious alterations or insertions, such as hardware Trojans, or 

external factors like high temperature, are used to decrease the security and 

reliability of ICs. 

Recycled ICs are one of the most common types of counterfeit components in the 

electronics supply chain, and it has been reported that they make up more than 80% 

of all reported counterfeit components. This is due to the fact that recycled ICs can 

be more difficult to detect and identify compared to other types of counterfeits, as 

they may look like genuine components and have similar markings. [24]. In the 

next subsection, the recycled ICs will be discussed more elaborately. 
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2.2.2 Recycled ICs 

Although recycled ICs show lower performance due to aging effects for their prior 

usage, the reliability issue will become more vulnerable as it undergoes very harsh 

environments during the recycling process. Initially, discarded printed circuit board 

(PCB) from different damaged or old systems is collected. The PCB is then heated 

to a specific high temperature so that soldering material begins to melt in order to 

collect used-ICs. Recycled ICs undergo a process of surface cleaning and 

polishing, following which a new set of markings such as PIN number, lot number, 

manufacturer logo, country of manufacture, etc. are printed on the surface. This 

gives the recycled ICs a fresh appearance, and they are then introduced into the 

supply chain as new components. [58]. 

 

Despite having good functionality initially, the performance of recycled ICs 

deteriorates rapidly due to the aging effects caused by their previous use. 

Furthermore, the recycling process subjects them to extreme electrical, mechanical, 

and temperature stresses, which contribute to a significant decrease in their 

performance. However, preventing the entry of recycled ICs into the IC market is 

challenging due to the increasingly complex supply chain. Therefore, it is crucial to 

have an effective method for detecting recycled ICs, especially recycled FPGAs. 

 

2.3 Field Programmable Gate Array (FPGA) 

The FPGAs are reconfigurable ICs where any logic function can be performed by 

appropriately configuring logic elements. Unlike the ASICs, fabricated for a 

specific application, FPGAs can be reprogrammed for any desired applications. 

This versatility makes FPGAs more popular day-by-day. Specific hardware 

description languages (HDL) like Verilog HDL or VHDL (Very High-Speed 

Integrated Circuit HDL) can be used to configure the logic function on its own 

field; thus, it is called field-programmable. CLBs and complex routing 
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interconnection make it possible to implement complex logic functions inside any 

part of the FPGAs. Presently, most of the FPGAs are SRAM-based and it is used to 

store information. 

2.3.1 Basic Structure of FPGAs 

Fig. 2.2 depicts the basic structure of an FPGA. In an FPGA, the CLB 

(Configurable Logic Block), connection block, and switch block are arranged to 

form an array. The CLB is composed of one or more clusters of basic logic blocks 

(LB) that are interconnected within the cluster. Each LB is made up of several 

LUTs (Look-Up Tables), a carry chain, and flip-flops as shown in Fig. 2.2. 

 

       

Fig. 2.2: Typical structure of an FPGA 
 
An LUT, or Lookup Table, is a fundamental logic element that defines a function 

in an FPGA. It is capable of implementing an arbitrary i-input Boolean function 

through a chain of multiplexers (MUX), with n being the number of inputs. The 

input of the LUT is selected to utilize the value stored in a memory element with 2i 

bits as the input of the truth table for the function. In modern SRAM-based FPGAs, 

these memory element entries are represented by configuration bits stored in 

SRAM cells.  
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Fig. 2.3 shows a 3-input LUT can be implemented using pass transistors or 

transmission gates. The inputs of the LUT are connected to the SRAM cells which 

store the configuration bits. Each input is connected to two pass transistors or 

transmission gates, and the gates of these transistors are connected to the 

corresponding configuration bit. The output of each pass transistor or transmission 

gate is connected to the input of a buffer. The output of the buffer is the output of 

the LUT. When the LUT is configured with a particular set of values, the pass 

transistors or transmission gates corresponding to those values are turned on, 

allowing the values to pass through to the output buffer [31]. The FPGA 

architecture consists of an array of CLBs, connection blocks, and switch blocks. 

Each CLB contains one or more clusters of basic logic blocks (LBs), which are 

made up of multiple LUTs, carry chains, and flip-flops. LUTs are the basic logic 

elements that determine the function of the FPGA. In modern SRAM-based 

FPGAs, each LUT is typically implemented as an n-input LUT using configuration 

bits stored in SRAM cells. 

        
Fig. 2.3: Basic idea of implementation of RO in CLBs using LUTs in the FPGA 

A 3-input LUT can be designed with pass transistors or transmission gates to 

transfer the value from SRAM cells to the output. This LUT requires eight SRAM 

bits to set the truth table value for any 3-input Boolean function. The direction of 

the LUT path can be changed by altering the input values of the LUTs. The FF 

logic circuit enables FPGAs to implement sequential circuits by storing the output 
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value obtained from the corresponding LUTs at each clock cycle. The CLBs are 

connected to the switch boxes via programmable interconnection blocks.  

 
In order to implement specific logic functions, the signals between the CLBs and 

the I/O blocks are routed through the programmable interconnects, which are 

controlled by the switch box. In this way, the interconnects can be configured to 

create specific logic elements. For the purpose of detecting recycled FPGAs, this 

study uses a RO (Ring Oscillator) logic circuit, which collects frequency 

information from each CLB and uses it as a measure of aging. 

2.3.2 Applications of FPGAs 

FPGAs have a wide range of applications due to their reprogrammable and 

customizable nature. They are often used in low volume and high complexity 

projects where flexibility and performance are critical. Some of the main 

applications of FPGAs include medical and scientific equipment, video and image 

processing, telecommunications and data communications, aerospace and defense, 

and server and cloud computing. In medical and scientific applications, FPGAs are 

used in equipment such as MRI and CT scanners, as well as in research equipment 

for simulations and data analysis. In video and image processing, FPGAs are used 

for real-time video processing and image recognition. In telecommunications and 

data communications, FPGAs are used in network routers and switches, and for 

encryption and decryption. In aerospace and defense, FPGAs are used in radar and 

sonar systems, as well as in navigation and guidance systems. In server and cloud 

computing, FPGAs are used for acceleration of specialized workloads such as 

machine learning and big data processing [36]. Fig. 2.4 shows some important 

applications of FPGAs. 

 

FPGAs are commonly used in both wired and wireless communication systems. In 

wired communications, FPGAs are used in applications such as serial backplanes, 

network switches and routers, and high-performance computing systems. In 
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wireless communications, FPGAs are used for networking solutions and to address 

standards such as WiMAX, 5G/6G, and HSDPA. FPGAs are also used in the 

infrastructure side of communication systems to process and analyze data at high 

speeds [36]. 

 

 
 

Fig. 2.4: Applications of FPGAs 

FPGA chips find applications in medical equipment for processing data and serving 

diagnostic and monitoring purposes [36]. 

 
FPGA chips also find extensive applications in the aerospace and defense 

industries, where they are utilized for image processing, generating waveforms, and 

for enabling partial reconfigurations in software-defined radios (SDRs) [36]. 

 
FPGA technology presents an option for ASIC companies to quickly prototype and 

test ideas and concepts without undergoing a lengthy process. This is helpful in 

improving time to market of various technological products and reducing 

engineering costs in several processes such as industrial automation and 

surveillance [36]. 
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The reconfigurability of FPGA technology makes it an attractive option for 

reducing the long-term maintenance costs of a system. This flexibility also enables 

FPGA to keep up with modifications and changes, further reducing costs associated 

with system updates. Even developers at Microsoft have access to FPGA chips, and 

they use open source tools like the Microsoft Cognitive Toolkit. Microsoft utilizes 

Intel FPGA chips to increase their use of AI in their operations. 

 
FPGAs have emerged as a key technology for the development of deep neural 

networks (DNNs), which are the foundation of artificially intelligent systems. 

When compared to GPUs, high-performance FPGAs can be even more beneficial 

in certain applications, making them the preferred choice for developing machine 

learning technology [36]. 

 
The recent acquisitions of Altera by Intel and Xilinx by AMD demonstrate the 

increasing importance of FPGAs in the server and computing market. This market 

segment is expected to show significant growth for the FPGA industry [36]. 

 

2.3.3 FPGA Fingerprinting using ROs 

Ring oscillators (ROs) are commonly used in the semiconductor industry for 

process control and characterization. They are simple to design and can provide 

valuable information about process variations, such as timing delays and device 

performance, which can impact the overall functionality of integrated circuits 

(ICs). ROs can also be used for frequency testing and calibration of various 

electronic systems. [32-33]. In addition, ROs are also extensively used in FPGAs 

for delay variation to use it as fingerprint in recycled FPGA detection [34-35]. The 

output of a ring oscillator (RO) is a periodic waveform with a frequency that 

depends on the delay of the inverters in the ring. A ring oscillator typically consists 

of an odd number of inverters (such as 3, 5, or 7) connected in a chain to form a 

closed loop, as you mentioned. When the output of the last inverter feeds back to 
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the input of the first inverter, the circuit can oscillate at a certain frequency 

determined by the delay of each inverter. The oscillation frequency is typically 

measured and used to extract information about the manufacturing process 

variation and delay characterization in ICs. Fig. 2.5 depicts a 7-stage inverter-based 

RO with an enable logic showing oscillation. 

 

 
Fig. 2.5: 7-stage ring oscillator (RO) with enable signal 

2.4 Exhaustive Fingerprint Analysis (X-FP) 

A new technique called X-FP has been introduced to enhance the efficiency of 

detecting recycled FPGAs. [12]. Using advanced RO design, the method X-FP can 

thoroughly analyze the aging deterioration of all paths in LUTs of all the CLBs, 

fully characterizing their frequencies. Results from experiments conducted on 10 

commercially available FPGAs demonstrate that X-FP can effectively capture the 

degradation effects with high accuracy. 

 
The main contributions of this method can be outlined as follows: 

 To improve the detection of recycled FPGAs and effectively observe aging 

degradation, the proposed method utilizes X-FP. This technique enables the 

examination of the aging-induced delay characteristics of all paths in all 

LUTs of all the CLBs. 

 
 The X-FP characterization of 10 commercial Xilinx Artix-7 FPGAs, 

including aging acceleration of 3 FPGAs, revealed various path differences 

between fresh and aged FPGAs, as demonstrated in the experiments.  
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Fig. 2.6 shows the RO implementation within a single CLB for the capturing of 

the FP values of all paths in an FPGA. As the LUTs in the Xilinx Artix-7 are 

made of 6-input, thus there are total 26-1 = 32 paths for a single FPGA. And every 

FPGA contains 3,173 CLBs, thus total 3,173 ROs were placed on a geometrical 

grid of 33×120 (except the empty space of the layout) using Verilog HDL script. 

With the X-FP analysis, it becomes possible to observe the aging degradation of 

all paths in all LUTs within the FPGA. However, although X-FP analysis 

accurately captures aging information of recycled FPGAs, it raises two potential 

issues with ML-based detection. Firstly, to characterize the X-FP, a larger 

number of RO measurements are required which increases the testing cost 

considerably. Secondly, the X-FP technique generates a significant amount of 

measurement data, which cannot be effectively handled by typical machine 

learning algorithms for the purpose of detecting recycled FPGAs [12]. 

 

 

Fig. 2.6: An array of ROs in the Xilinx Artix-7 FPGA 
 

2.5 Virtual Probe (VP) Technique 

The main concept behind the virtual probe (VP) technique [41] is to strategically 

place and measure a small number of test structures at specific locations on a 
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wafer or chip. The parametric variations at other locations are not directly 

measured during hardware testing. Instead, virtual probes are virtually placed at 

these locations to predict the variation information using a numerical algorithm, 

as shown in Fig. 2.7. In contrast to the conventional approach that involves 

monitoring variability at many locations using numerous test structures, the 

virtual probe technique proposes to monitor variability at only a few specific 

locations and then employ an intelligent algorithm to predict the complete spatial 

variation accurately. This is made possible by leveraging the sparse structure in 

the spatial frequency domain. 

 
Fig. 2.7 illustrates an example of the virtual probe technique. The left side shows 

the conventional approach, where a large number of test structures are deployed 

and measured to completely characterize process variations. On the right side, the 

virtual probe technique proposes to deploy and measure only a few test 

structures, while virtual probes are conceptually added to recover the spatial 

variation using a numerical algorithm. 

 

 
Fig. 2.7: Virtual Probe Technique 

 

 



25 
 

 

To summarize, the virtual probe technique provides several key advantages over 

traditional techniques, such as [41]: 

 
1. Cost-effectiveness: VP minimizes the number of required test structures, 

which reduces the cost of testing and measurements, such as area overhead, 

testing/characterization time, and yield loss during testing. 

2. High accuracy: VP can accurately reconstruct the spatial variation with a 

probability close to 1. The accuracy can be verified in real time using 

efficient techniques such as cross-validation and Bayesian inference. 

Additional sampling points can be collected to further improve accuracy 

until the prediction error is sufficiently small. 

3. Versatility: VP can predict the spatial pattern of both inter-die and 

spatially-correlated intra-die variations. The prediction is based on the 

measurement data from the current wafer/chip only. 

 
The virtual probe (VP) technique has a wide range of potential applications in 

various fields beyond integrated circuits. It can be used in semiconductor 

manufacturing for testing and characterizing process variations, as well as in 

design verification and optimization. Additionally, VP can be applied in other 

fields such as biotechnology, environmental monitoring, and material science, 

where spatial variability measurements are critical. In summary, the versatility of 

the VP method makes it a valuable tool in various applications that require spatial 

variability measurements. Some important of them are listed below [41]: 

 
1. Wafer-level Silicon Characterization 

2. Chip-level Silicon Characterization 

3. Speed-binning of the manufactured chips to determine their maximum 

operation frequency 

4. Post-Silicon tuning technique to measure the presence of large-scale process 

variation 
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2.6 Clustering Analysis 

Clustering, also known as clustering analysis, is a process of organizing a collection 

of objects into groups or clusters, where objects within a cluster are more similar to 

each other than to objects in other clusters. Clustering is an essential component of 

exploratory data analysis and a widely used technique for statistical data analysis. It 

finds its application in several fields, including but not limited to pattern 

recognition, image analysis and classification, information retrieval, 

bioinformatics, data compression and processing, information encoding and 

decoding, computer graphics, and machine learning (ML) [44]. Clustering analysis 

is not a single algorithm, but rather a task that involves grouping objects together 

based on their similarities in a specific way. There are many algorithms available to 

perform clustering, each with their own understanding of what makes up a cluster 

and how to find them efficiently. Clusters can be defined as groups with small 

distances between members, dense areas in the data space, particular statistical 

distributions, or other criteria. Clustering can be thought of as a multi-objective 

optimization problem, with different algorithms and parameter settings suited to 

different datasets and intended uses. Cluster analysis is an iterative process that 

involves knowledge discovery and interactive optimization, often requiring 

adjustments to data preprocessing and model parameters until desired properties are 

achieved. [44]. 

 

2.6.1 Cluster Analysis Algorithms 

There have been approximately 100 types of clustering algorithms published so far, 

though not all provide models for their clusters and cannot be easily categorized. 

There is no objectively "correct" clustering algorithm, and the most appropriate one 

for a particular problem often needs to be chosen experimentally. Clustering is 

subjective and dependent on the individual's perspective. One cluster model may 

work well for a particular dataset, while another model may fail. Therefore, it is 
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important to carefully consider the problem at hand and experiment with various 

algorithms until a satisfactory solution is achieved. 

 
A list of some of the clustering algorithms is as follows: [45] 

1. BFR algorithm 

2. Canopy clustering algorithm 

3. Cluster-weighted modeling 

4. DBSCAN 

5. K-means clustering 

6. K-means++ 

7. K-medians clustering 

8. Nearest-neighbor chain algorithm 

 
K-means++ clustering algorithm has been chosen for this research purpose because 

of its advantages such as it is faster and provides a better performance. Not all 

clustering algorithms have their models or library codes because most of them are 

still theoretical, and also some of them are being used in the industries in recent 

time, and K-means++ has most advantages and least disadvantages in contrast to 

others. That’s why it has been chosen for this research work.  

 

2.6.2 K-means++ 

K-means++ is a widely used clustering algorithm that aims to partition a given set 

of observations into k clusters, where each observation is assigned to the cluster 

with the nearest mean. This algorithm is used for vector quantization, originally 

from signal processing, and is commonly used in data mining for choosing the 

initial values or "seeds" for the K-means clustering algorithm. The algorithm was 

proposed by David Arthur and Sergei Vassilvitskii in 2007 as an approximation 

algorithm for the K-means problem, and it addresses the limitations of the standard 
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K-means algorithm that sometimes results in poor clusterings [46]. In Fig. 2.8, the 

basic idea of K-means++ scheme of clustering algorithm has been shown. 

 

 
Fig. 2.8: K-means++ clustering algorithm 

 

The standard approach to finding an approximate solution to the K-means problem 

is widely used due to its efficiency in finding reasonable solutions quickly. The 

algorithm works by randomly selecting k initial cluster centers, then assigning each 

data point to the nearest cluster center, and finally computing new cluster centers 

based on the mean of the data points assigned to each cluster. This process iterates 

until convergence, that is, until the cluster centers no longer change or a maximum 

number of iterations is reached. 

 

To elaborate, the K-means++ algorithm starts by selecting a single data point as the 

first cluster center randomly from the given data set. Then, the algorithm selects the 

next cluster center from the remaining data points in such a way that the probability 

of choosing a data point as the next center is proportional to its squared distance 

from the closest existing center. This approach ensures that the new cluster centers 

are well separated from each other and have a high chance of representing different 

regions of the data. The remaining cluster centers are selected using the same 

probabilistic approach until k centers have been chosen. Finally, the standard K-

means optimization iterations are performed starting from these initial cluster 
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centers to obtain the final cluster assignments. This initialization step often results 

in better clustering results than the random initialization used by the standard K-

means algorithm. 

 
By choosing the initial centers in a way that spreads them out across the data space, 

K-means++ aims to avoid getting stuck in suboptimal solutions that can occur 

when the initial centers are too close together or too far apart. The idea is to 

increase the chances of finding good starting points for the K-means algorithm that 

are representative of the overall data structure. This is achieved by selecting centers 

that are far from each other and from previously chosen centers, which is 

accomplished by assigning higher probabilities to data points that are farther from 

the nearest center [46]. 

 

2.6.3 Applications of K-means++ 

K-means++ has been widely applied since its initial proposal. According to a 

review by Shindler [47], which covers various types of clustering algorithms, the 

K-means++ approach successfully overcomes some of the problems associated 

with other methods of defining initial cluster centers for K-means clustering. Lee et 

al. [48] used K-means++ to create geographical clusters of photographs based on 

latitude and longitude information attached to the photos. Howard and Johansen 

reported an application of K-means++ to financial diversification. Ongoing 

discussions and support for the method can also be found online. 

 

2.7 Anomaly Detection 

Anomaly detection is an important task in various fields, including data mining, 

machine learning, and computer security. It is used to detect unusual or suspicious 

behavior, which can be indicative of fraud, errors, or attacks. Anomalies can be 

detected by comparing data points to a statistical model of normal behavior, or by 

using unsupervised learning techniques to identify data points that are significantly 
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different from the majority of the data. Anomaly detection has applications in many 

areas, including fraud detection in finance, intrusion detection in computer 

networks, and fault detection in industrial processes [50]. 

 
Anomalies or outliers may represent critical events or rare occurrences that are of 

particular interest and value to the analyst. For example, in fraud detection, 

detecting an unusual pattern of financial transactions could help uncover fraudulent 

activity. Similarly, in medical diagnosis, identifying unusual symptoms or test 

results can aid in the detection of rare diseases or disorders. In these cases, anomaly 

detection techniques can be used to identify and highlight these rare or unusual 

events, allowing analysts to investigate further and take appropriate actions [50]. 

 
Anomaly detection is a critical task in many real-world applications where 

detecting rare and unusual events can provide valuable insights and prevent 

potentially dangerous or costly situations. For example, in cyber security, detecting 

anomalous network traffic patterns can help identify potential threats and prevent 

cyber-attacks. In the medical field, anomaly detection can help diagnose diseases 

by identifying abnormal patterns in medical images or patient data. In finance, 

detecting unusual patterns in financial transactions can help prevent fraud and 

financial crimes. 

 
Anomaly detection can be performed using various techniques, including statistical 

methods, machine learning algorithms, and deep learning techniques. Statistical 

methods such as the Z-score or Mahalanobis distance are commonly used to detect 

anomalies based on the deviation from the mean or normal distribution. Machine 

learning algorithms such as k-nearest neighbors (k-NN) or support vector machines 

(SVM) can also be used to detect anomalies based on the distance from 

neighboring points or the separation of classes. 
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In recent years, deep learning techniques such as autoencoders and generative 

adversarial networks (GANs) have shown promising results in anomaly detection. 

Autoencoders can learn to reconstruct input data and detect anomalies based on the 

reconstruction error, while GANs can generate synthetic data that mimics the real 

data distribution and detect anomalies based on the difference between the real and 

generated data. 

 

Despite the growing interest in anomaly detection, it remains a challenging task due 

to the inherent difficulty in defining what constitutes an anomaly and the high 

variability and complexity of real-world data. Anomaly detection algorithms often 

require careful tuning and domain-specific knowledge to achieve satisfactory 

results. However, with the increasing availability of large and diverse data sets and 

the development of more advanced algorithms, anomaly detection is becoming an 

increasingly important and powerful tool in many fields. 

 

There are three main categories of techniques used in anomaly detection: 

1. Supervised anomaly detection 

2. Semi-supervised anomaly detection 

3. Unsupervised anomaly detection 

 

2.7.1 Anomaly scores 

Anomaly detection techniques involve identifying data points that are significantly 

different from the majority of the data. One approach involves developing a model 

of the normal behavior of the data and marking any data points that fall outside of 

the predicted range as anomalies. To provide a clear understanding of the results, 

an anomaly score is typically calculated for each time interval. According to [16], 

lower anomaly scores indicate positive-class or accepted data, while higher (even 

very high) scores indicate negative-class or not-acceptable data. 
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2.8 Probability Density Function (PDF) 

Probability distributions are a fundamental concept in probability theory and 

statistics. They are used to describe and analyze various phenomena in the real 

world, such as the distribution of heights or weights in a population, the frequency 

of certain types of weather events, or the likelihood of various outcomes in a game 

of chance. Different types of probability distributions are used to model different 

kinds of phenomena, depending on the characteristics of the data and the research 

question of interest. In Fig. 2.9, the PDF curve for the normal distribution case has 

been shown. 

 

 
Fig. 2.9: PDF curve of Normal Distribution 

 
The normal distribution is a very common probability distribution that is widely 

used in statistics and many other fields. It is also known as the Gaussian 

distribution, after the mathematician Carl Friedrich Gauss who first described it. 

The normal distribution has a bell-shaped curve, with the mean, median, and mode 

all being equal and located at the center of the curve. Many natural phenomena, 

such as measurements of physical properties, tend to follow a normal distribution, 

which makes it a useful tool for modeling and analysis. The general form of its 

probability density function (PDF) is,  
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………………………(2.1) 

In eqn. 2.1, The parameter µ represents the mean or expected value of the 

distribution, and it also serves as its median and mode. On the other hand, the 

parameter σ corresponds to the distribution's standard deviation. The variance of 

the distribution is σ2. 

 

2.9 Symmetry Analysis 

Symmetry has a more precise definition in mathematics than in everyday language. 

It refers to an object that remains unchanged under certain transformations, such as 

translation, reflection, rotation, or scaling. In other words, a symmetric object looks 

the same before and after the transformation. Symmetry can be observed in various 

ways, including with respect to time, spatial relationships, geometric and other 

functional transformations, as well as in abstract objects like models, language, and 

music. Asymmetry, on the other hand, refers to the absence or violation of 

symmetry [49]. 

 
 

                
(a) (b) 

Fig. 2.10: (a) Difference between symmetrical and asymmetrical shapes. (b) Some 
other symmetrical shapes 

 

 
In this work, symmetry analysis or symmetrical neighborhood means the FP data of 

the KFFs have symmetry because the FPGAs have the similar or symmetrical type 
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of architecture. But this will not be held true for the recycled or aged FPGAs 

because after starting of the using of the FPGAs, their fingerprint will be changed. 

This indicates that, for the fresh FPGAs, there will be symmetricity, but for aged or 

recycled FPGAs these FP will be changed and thus there will be no symmetricity. 

Thus, if this symmetric property can be analyzed then the recycled FPGAs can be 

detected. This theory is explained below in the Fig. 2.11. 

 

 
Fig. 2.11: Key idea of the Symmetry Analysis 

 

In Fig. 2.11, fingerprints for two different paths of the same KFF have been 

analyzed, and it has been shown as the high values of the PDFs in Red and Blue 

curves. Both of them are having similar types of curves with almost in the same 

region. They are equivalent but not fully same due to the process variation of the IC 

chips. And again this process has been done with that FPGA but making it 
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artificially aged or recycled, and after analyzing it’s PDF in small red curve in the 

left-side, we see that fresh and recycled FPGAs have different types of PDF curves 

which can be used to analyze the binary classification of fresh or recycled FPGAs. 

 

2.10 uLSIF Method 

The least squares (LS) method is a type of mathematical regression analysis utilized 

to determine the line of best fit for a given set of data, which can visually illustrate 

the relationship between the data points. The data points represent the connection 

between a known independent variable and an unknown dependent variable [51]. In 

this study, the uLSIF (unconstrained Least-Squares Importance Fitting) method was 

employed, which is a variant of the LS method. The uLSIF-based approach to 

anomaly detection is computationally efficient, enabling it to be applied to large-

scale datasets. 

 

2.11 Receiver Operating Characteristic (ROC) Curve 

An ROC curve is a visualization tool that displays the performance of a binary 

classifier system across various discrimination thresholds. The name "ROC curve" 

originated from its use in military RADAR receiver operations during World War 

II. The curve is constructed by plotting the true positive rate (TPR) against the false 

positive rate (FPR) at different threshold values. TPR is also known as sensitivity, 

recall, or probability of detection, while FPR is also known as probability of false 

alarm. A true positive (TP) indicates a correct detection of the presence of a 

condition or characteristic, while a false positive (FP) indicates an incorrect 

detection of a condition or characteristic that is not present. In Fig.2.12, the ROC 

curve has been shown for more clarity. 
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Fig. 2.12: ROC curve 

 
ROC curves are commonly used in medical research, machine learning, and other 

fields where binary classification is important. In medical research, for example, 

ROC curves are often used to evaluate the accuracy of diagnostic tests. In machine 

learning, ROC curves are used to evaluate the performance of binary classifiers, 

such as support vector machines (SVM) or neural networks. 

 
A perfect classifier would have a TPR of 1 and an FPR of 0, meaning it would 

correctly identify all positive cases and never mistakenly identify a negative case as 

positive. In reality, however, most classifiers have limitations, and ROC curves 

help to illustrate the trade-off between sensitivity and specificity. 

 
One way to summarize the diagnostic ability of a binary classifier using the ROC 

curve is to calculate the area under the curve (AUC). The AUC provides a single 

number that represents the overall performance of the classifier. An AUC of 1 

indicates perfect discrimination, while an AUC of 0.5 indicates a classifier that is 

no better than random guessing. 

 
ROC curves are a useful tool for selecting a threshold that balances sensitivity and 

specificity based on the needs of the application. For example, in medical research, 

a test with high sensitivity may be preferred if a false negative result could be life-

threatening, while a test with high specificity may be preferred if false positives 

would lead to unnecessary treatments or procedures. 
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2.11.1 Area Under the Curve (AUC) 

It is worth noting that the area under the curve (AUC) can have various 

interpretations and applications in different fields. For example, in economics and 

finance, the area under the demand curve can represent the total revenue generated 

by a product, while in probability theory, the area under the probability density 

function curve represents the total probability of an event occurring. In addition, the 

area under the ROC curve, as mentioned earlier, is a common evaluation metric for 

binary classifiers in machine learning. 

 
Overall, the concept of area under the curve and its calculation through integration 

is a fundamental concept in calculus and has many practical applications in 

different fields. 

 
Finding the area between a curve and a line involves similar steps, with the addition 

of finding the point(s) of intersection between the curve and the line. Once these 

points are found, the limits of integration can be set accordingly. The integral is 

then taken between the limits, with the absolute value taken if the curve dips below 

the line. 

 
Finding the area between two curves involves finding the points of intersection 

between the curves and setting the limits of integration accordingly. The integral is 

then taken between the limits, with the difference between the integrals of the upper 

and lower curves taken to obtain the area between them. 

 

It should be noted that the process of integration can be quite complex for some 

curves, especially those that do not have a simple equation. In such cases, 

numerical methods, such as the trapezoidal rule or Simpson's rule, can be used to 

approximate the area under the curve. 
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The concept of area under the curve is widely used in various fields such as 

physics, engineering, economics, and finance. It is often used to calculate the total 

value or quantity of a variable over a given time period or range of values. For 

example, the area under a velocity-time graph gives the total distance traveled by 

an object over a given time period. 

 
Overall, the calculation of area under the curve is a fundamental concept in calculus 

and has many practical applications in various fields. In Fig.2.13, the AUC 

calculation process has been shown for more clarity. 

 

 Area =  ∫ y. dx
𝑏

𝑎
 =  ∫ f(x). dx

𝑏

𝑎
 ………………………(2.2) 

 
Fig. 2.13: AUC calculation 

 

2.12 Understanding IC Cost 

The complexity of ICs has grown tremendously over the years, and this has led to 

debates and discrepancies in calculating the final cost of an IC. As technology 

advances at a rapid pace, chip designers have to keep up with the changes and 

advancements in order to accurately estimate the IC cost. In the past, silicon die 

size used to be the dominant factor in calculating the cost of an IC. However, this is 

no longer the case, as there are now numerous other components and factors that 

play an equally important role in determining the final cost. 
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It is no longer enough to simply focus on the silicon die size when estimating IC 

costs. Other factors, such as the number of layers in the chip, the complexity of the 

design, the type and amount of memory, the manufacturing process, and the 

packaging, all play a significant role in determining the final cost. This complexity 

has led to a variety of methods for calculating the cost of an IC, which can 

sometimes lead to differing opinions on the final cost [54]. 

 
Despite the challenges in determining the final cost of an IC, experts have 

developed equations and models to estimate the cost. While these models can be 

helpful, they are not foolproof and can sometimes lead to inaccuracies. As 

technology continues to evolve and ICs become even more complex, it is likely that 

debates over the final cost of an IC will continue. Experts have noted that there is a 

very simple equation one can use in order to determine the final chip cost: 

 
Final IC cost = package cost + test cost + die cost + Shipping cost 

 
In addition, it's important to consider the scale of production when calculating IC 

costs. The cost per unit of an IC can be significantly reduced with large-scale 

production, as the fixed costs of setting up the manufacturing process can be spread 

over a greater number of units. This is known as the "economy of scale" and can 

have a significant impact on the final cost of the IC. 

 
Another factor to consider is the complexity of the IC design. More complex 

designs may require specialized manufacturing processes or materials, which can 

increase the cost of production. On the other hand, a simple design may require less 

testing and verification, which can lower the overall cost. 

 
Ultimately, calculating the cost of an IC is a complex process that requires 

consideration of multiple factors. However, with a clear understanding of the key 

components that impact cost and early analysis of the project, it's possible to make 

an accurate estimate and keep costs under control. [54] 
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Chapter 3 
Symmetry Analysis based Recycled FPGA 

Detection 
 

3.1 Introduction 

In this chapter, the details of the proposed method for the detection of recycled 

FPGAs will be discussed including its experimental setup and workflows. The 

required hardware and software will be mentioned at the last of this chapter. 
 

3.2 Methodology of the Work 

The proposed methodology will be divided into the following possible stages: 
 

 Collection of FP data for different FPGAs (KFFs) etc. 

 Jupyter Notebook platform on online-GPU which is of Google Colab will 

be used for designing, preprocessing, training, testing and validating of 

the unsupervised CA-based K-means++ model for anomaly detection of 

the FPGAs.  

 Numpy, Pandas, Scikit-learn, Sci-Pi etc. library modules of Python 

programming will be used to implement this model. 

 After the collection of datasets, the preprocessing and training of those 

dataset will be performed on online-GPU as mentioned above. 

 Then test set will be used to evaluate the performance of the trained 

network. Appropriate weights and other results will be saved which will 

give better performance. 

 The system will then be simulated for measuring accuracy, anomaly 

scores and other performance metrics to detect the FUT as fresh or 

recycled based on their anomaly scores. 

 Then the performance of the proposed model will be compared with that 

of other researchers. 
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3.3 Dataset Collection and Details of the Fingerprint Values 

The datasets of 10 known fresh FPGAs or KFFs used in this work have been 

collected from Dependable System Lab at Nara Institute of Science and 

Technology (NAIST), Japan. All of them were designed with RO circuits with 2-

input XOR & XNOR gates with 32 paths (16 paths for both XOR and XNOR gate-

based RO circuits). For each path, there data are measured similarly for all 10 KFFs 

and then 3 of them are artificially accelerated aged FPGAs. 

 

In the experimental study of the proposed method, a total of 13 FPGAs were 

utilized, comprising of 10 newly acquired ones and 3 that had already been in use, 

to showcase the precision of the method. The FP (heatmap) values are ranging from 

90.0 to 140.0 MHz for the 33×120 dimension (=3,960) values in which there about 

787 positions are NaN values (Not a Number) or empty place because there RO 

circuits couldn’t be placed. There are pre-set or installed hardware circuits for 

FPGAs such as multiplier circuit and others in those empty places. So, total 3,960 – 

787 = 3,173 ROs can be placed in the FPGA. These fingerprint values were 

transformed into the heatmaps using gnuplot software. Now, some of those 

heatmaps of the fresh FPGAs are shown in the Fig. 3.1. Aged FPGAs have also 

same type of heatmaps but with higher values than that of their fresh counterparts. 

There are total 13 FPGAs × 32 paths = 416 fingerprints. All these fingerprint 

datasets are stored in .csv (Comma Separated Values) format files. A sample 

snippet of the datasets has been shown in the Appendix I. 

 

3.4 Recycled FPGA Detection using Symmetric Path Analysis 

In this work, the aim is to reduce the number of computations of the comparison for 

the anomaly score by the symmetry analysis. The proposed method performs the 

RO measurement and the frequency comparisons in the unsupervised recycled 
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Fig. 3.1: Heatmaps of some paths of some fresh FPGAs 

 
FPGA detection. This method includes an additional step that analyzes the 

symmetry among the different FPs to get the best match for minimizing the number 

of comparisons. The score for detecting anomalies is determined exclusively from 

the symmetrical FPs. The X-FP measurement technique is employed to conduct RO 

measurements for all the LUT paths of every CLB. To classify the data, a self-

referencing outlier detection approach is devised, utilizing the unconstrained least 

squares importance fitting (uLSIF) algorithm. 

 

X-FP measurement is carried out for every LUT path across all CLBs within the 

FPGA, thoroughly capturing the impact of aging. If a LUT contains P paths, the 

total number of X-FPs can be denoted as F = F1, F2, ..., Fp, where Fp is the X-FP of 

the p-th path and each FP contains n number of RO measurements. For finding the 

symmetry among the X-FPs, a Virtual Probe (VP)-based X-FP estimation have 

been utilized by using various sample frequencies. The root-mean-square error 
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(RMSE) is computed by comparing the estimated X-FP with the measured X-FP. 

The symmetry path fingerprints are then obtained based on the RMSE values. For 

instance, the RMSE value of F1 and F2 are very similar, so they are considered as 

symmetry path fingerprints. In this proposed method, the comparisons are 

performed only on the symmetry path fingerprints. The proposed method detects 

recycled FPGAs by assessing the anomaly score determined through the uLSIF 

algorithm. To compute the anomaly score, the RO frequencies of the X-FPs are 

denoted as Fp = fp;1, fp;2, ..., fp;n, where fp;n is the RO frequency of the n-th RO in the 

p-th path, and are compared with symmetry path FP based on the RMSE value of 

the estimated X-FP using the VP technique. To compute the anomaly scores, the 

uLSIF algorithm is provided with two vectors of X-FPs for the symmetrical path 

FPs, denoted as F and F'. The key advantage of this method is that it does not 

necessitate comparing all possible combinations. If there are C columns in each X-

FP, then the total number of comparisons required is C × P/2, whereas in prior 

works [10], a total of (C − 1) × P comparisons were needed. 

 

3.5 Implementation of uLSIF Method 

If there are two data samples x1 and x2 from which the probability distribution 

functions are p(x) and q(x) respectively, then, estimated density ratio function, 

 

 
w(x) =  

 p(x) 

q(x)
 

............................(3.1) 

There is a Python package called densratio which provides a function densratio() 

which computes the density ratio function w(x), and it implies the value of anomaly 

score. 

 

This package is based upon RuLSIF method which is also called the α-relative 

density ratio, 
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w(x) =  

 p(x) 

α .p(x) + (1 − α) .q(x)
 

............................(3.2) 

 
where α is in the range [0, 1]. 

 
If α is 0, this reduces to the ordinary density ratio w(x) like eqn. (3.1) which 

provides the anomaly scores. In this way, uLSIF with Python has been 

implemented in this work. 

 

3.6 Experimental Setup 

To validate the efficacy of the proposed method, experiments were conducted using 

the Xilinx Artix-7 FPGA (XC7A35T-ICPG236C) produced using 28 nm process 

technology. The experimental datasets used in this study were obtained from the 

DS Lab of NAIST, Japan, and were used for simulation analysis. A total of 10 

FPGAs (FPGA-1 to FPGA-10) were utilized, in addition to 3 artificially aged or 

recycled FPGAs (FPGA-1a to FPGA-3a), to showcase the results of the 

experiment. It should be noted that these 10 FPGAs were manufactured in different 

production lots and obtained from various distributors at different times. Since the 

proposed method depends on the systematic component of process variation, it is 

crucial to evaluate FPGAs with diverse process variations from different lots. 

 
The schedule for the three FPGAs was designed to reflect the actual stress and 

recovery phases. The stress phases were limited to 24 hours (one day) only. 

Fingerprint measurements were conducted solely at room temperature after the 5-

day recovery phase. The FPGA states at the start and end of the recovery phases 

during fingerprint measurement were referred to as the "stress state" and the 

"recovery state," respectively. In the ML learning detection, only 5 days of 

recovery measurement data were utilized to simulate a real-life scenario. Once 

again, it should be noted that these aging processes were carried out by researchers 

at the DS Lab of NAIST, Japan. 
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3.7 Algorithm of the Proposed Method 

The step-by-step algorithm of the proposed method is mentioned below: 
 

(i) The data collected from DS Lab of Japan has been preprocessed before 

feeding into the program algorithm. Preprocessing includes data-

cleaning, renaming the filenames etc. Here the X-FP data of the KFFs 

have been collected. 

(ii) Find the PDF (Probability Density Function) values from the column 

frequencies of each of the paths of each FPGAs. 

(iii) If the adjacent columns of each path have 120 numbers of data then they 

are fed into the uLSIF method to find the anomaly scores based on their 

density ratios. To maintain the symmetricity and similar amount of data 

for each comparison, only the column FP data which have 120 values 

were chosen. 

(iv) The maximum anomaly scores were stored for the detection of recycled 

FPGAs. 

(v) Those maximum valued anomaly scores were fed into the K-means++ 

algorithm using SciKit-Learn library of Python language to find the 

binary-clusters, 0 means fresh and 1 means aged/recycled. 

(vi) Finally plotting the ROC-AUC curve, and calculating of the accuracy. 
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3.8 Flowchart of the Proposed Method 

Fig. 3.2 shows the flowchart of the program code of the proposed method. 

 
Fig. 3.2: Flowchart of the Program Code of the Proposed Method 

 

3.9 Required Hardware and Software 

To implement the uLSIF and K-means++ clustering algorithms for the detection of 

the anomalies, Jupyter Notebook with Python Development Environment using 

Google Colab or Colaboratory cloud-platform has been used. The reasons for 

using this platform are: 

 

1. ML requires huge calculations with very long time with CPU, but Google 

provides online GPU which can reduce this time requirement by 10-times. 
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2. GPU costs very high, but due to Google this cost did not occurred. 

3. No need to install any software on the local PC neither to install locally the 

libraries of Python language 

 

So, hardware used in this work are: 

1. Asus Notebook, Intel core i3 processor of 1.8 GHz, 8 GB RAM 

2. Google’s online-GPU available on Google Colab 

 

And the software required in this work are: 

1. Python 3.8 on Google’s online-GPU 

2. gnuPlot 
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Chapter 4 
Results and Discussion 

4.1 Introduction 

This chapter shows the results achieved from the experiments using the model as 
developed in this thesis. Then it has been compared with that of other researches 
followed by necessary discussion. 
 

4.2 Anomaly Score Computation Details 

A sample picture of the column frequencies of each path known as heatmap of each 

FPGA has been shown in Fig. 4.1. Sample snippet of the datasets is presented in  

 
Fig. 4.1: A sample heatmap with 120 rows × 33 columns 
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Appendix I. At first, for FPGA-01, XNOR01 and XOR01 paths (path 01 & 17 

respectively) have been selected for column frequencies comparison. For both 

paths, the frequency values of adjacent columns, for example columns 1&2, 2&3, 

3&4 etc. were at first compared or checked whether they both have 120 values or 

not. If they have 120 values, then their Mean, Standard Deviation and PDF values 

were calculated using the Sci-Py library of Python language. These PDF values 

were then given input to the uLSIF method to find the density ratios and then the 

anomaly scores for those paths were computed. In this way, 19 acceptable anomaly 

scores out of 32 comparisons have been found for XNOR01 and XOR01 paths 

(path 01 & 17 respectively) of FPGA-01. Only the maximum anomaly score from 

those 19 values for XNOR01 and XOR01 paths of FPGA-01 has been stored for the 

training and testing phase to detect the recycled FPGAs using K-means++ 

algorithm. 

This process is then repeated for FPGA-01’s XNOR02 and XOR02 paths (path 02 

& 18 respectively), then FPGA-01’s XNOR03 and XOR03 paths (path 03 & 19 

respectively) and so on for ten(10) fresh FPGAs (FPGA-01 to FPGA-10) and 

three(3) recycled/aged (accelerated aged) FPGAs (FPGA-01 to FPGA-03). 

 

4.3 Measurement Results 

At first, the RMSE data of 10 fresh FPGAs is shown in Fig. 4.2 at different paths of 

the X-FP. This RMSE data is obtained from the estimated X-FP over the actual 

measurement of each X-FP. From this figure, the symmetry among various paths is 

clearly observed. For example, the RMSEs of path-15 and path-31 of FPGA-01 are 

3.20 MHz and 3.17 MHz, respectively. As the RMSE values of path-15 and path-

31 are very similar, they could be considered as symmetry paths and these 

symmetry paths are used for the comparison (CP) in determining the anomaly  
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Fig. 4.2: RMSE of 10 fresh FPGAs samples data. 

 
scores. In Fig. 4.2, a slight peak is found at path=20 for FPGA-06 because of the 

systematic process variation. Thus, based on these RMSE values of 10 fresh 

FPGAs at 32 paths, the 16 symmetry CPs are considered in this study. 

 
Table 4.1: Comparison Table of Different Paths for the Anomaly Scores 

CP no. 

Path 

CP1 

1, 17 

CP2 

2, 18 

CP3 

3, 19 

CP4 

4, 20 

CP5 

5, 21 

CP6 

6, 22 

CP7 

7, 23 

CP8 

8, 24 

CP no. 

Path 

CP9 

9, 25 

CP10 

10, 26 

CP11 

11, 27 

CP12 

12, 28 

CP13 

13, 29 

CP14 

14, 30 

CP15 

15, 31 

CP16 

16, 32 

 

The 16 CPs of different symmetry paths are shown in Table 4.1. Based on the CP 

values shown in Table 4.1, the anomaly scores using the proposed method. Fig. 4.3 

presents the anomaly scores of 10 fresh FPGAs (FPGA-01 to FPGA-10) and 3 aged 

FPGAs (FPGA-01 to FPGA-03). The vertical axis shows the anomaly scores at 16 

different CPs. From Fig. 4.4, it has been observed that, in most cases the anomaly 

score of the aged FPGAs is higher than the fresh FPGAs. For instance,  
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Fig. 4.3: Maximum anomaly scores of the 16 CPs using the proposed approach 

where used 10 fresh FPGAs and three aged FPGAs 

 
aged FPGA-01 (red color) and FPGA-03 (green color) are found high anomaly 

scores in three CPs (1, 2, and 11) and four CPs (1, 2, 8, and 11), respectively. There 

are few cases found when fresh FPGAs have shown higher anomaly values because 

of the process variation, buying from different manufacturers at different times etc. 

Since high anomaly scores were observed in the aged FPGAs at various critical 

paths (CPs), it is anticipated that the unsupervised ML model can accurately detect 

the aged FPGAs. 

 

4.4 Calculation of Comparison Computations 

To demonstrate the difference of the computation numbers in this proposed method 

with respect to other unsupervised methods, how the calculation of those previous 

method’s process of the comparison computations has been done is shown which is 

as follows: 

 

For each FP data, the computations done as follows: For PDF calculations, column 

data of (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8), (15,16), (16,17), (17,18), (18,19), 
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(19,20), (20,21), (25,26), (26,27), & (27,28) are used and fed into the densratio 

library package of Python. Here total 16 comparisons have been done for all the 32 

paths of a single FPGA. The sample heatmaps are shown in Fig. 4.4. Here one 

thing is to be noted that, each FPGA has total 32 paths. 16 of them named as 

XNOR1, XNOR2,…..,XNOR16, and other 16s are named as XOR1, 

XOR2,….,XOR16. These paths are named in this way because the ROs are 

designed with the XNOR and XOR logic gates.  

 

                      
(a)         (b) 

Fig. 4.4: Sample heatmaps with XNOR1 circuit in (a) and XOR1 in (b) 

 

So, total calc1 = 16 × 32 = 512 comparison calculations per FPGA 

 
And, in this proposed method, the calculation of the comparison computations are 

as follows: 

 
For each FPGA, the computations has been done on the FP data for similar or 

symmetric paths of (XNOR, XOR) with the columns (1,1), (2,2), (3,3), (4,4), (5,5), 

(6,6), (7,7), (8,8), (15,15), (16,16), (17,17), (18,18), (19,19), (20,20), (21,21), 

(25,25), (26,26), (27,27), & (28,28). And these column data will be fed into the 

densratio package. Here total 19 comparisons have been done for all 16 similar 

paths of a single FPGA. 

 

So, total calc2 = 19 × 16 = 304 comparison calculations per FPGA 
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And the difference, 

     𝑑 =
  calc1 −  calc2   

calc1 
×  100 % =  40.63 % less calculations 

𝑑          =
  512 −  304   

512 
×  100 % =  around 41 % less calculations 

 

4.5 Recycled FPGA Detection and Comparison 

The proposed method for recycled FPGA detection was evaluated by analyzing the 

anomaly score obtained from the symmetry critical paths. The results were 

presented using a receiver operating characteristics (ROC) curve in Fig. 4.5 to 

visualize the classification outcomes. The "Recycled FPGA detection ratio" in the 

figure refers to the true positive rate, while the "Misclassification ratio of fresh 

FPGAs" represents the false positive rate. The best performance is indicated by the 

upper left corner of the ROC curve. Based on the results presented in Fig. 4.5, it 

can be observed that the proposed method was successful in detecting all aged 

FPGAs in all cases, as indicated by the high true positive rate. However, in one  

 
Fig. 4.5: ROC curve of the proposed recycled FPGA detection method using 

10 fresh FPGAs and 3 aged FPGAs 
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instance, the fresh FPGA-03 was misclassified due to the effects of process 

variation, leading to a lower value for fresh FPGA detection. Overall, it can be 

concluded that the unsupervised ML algorithm effectively detected recycled 

FPGAs using the proposed technique. 

 
The FPGA detection results are as follows: 

 
Table 4.2: Detection Results of the FPGAs 

Sl. No. FPGA No. Output actual_label K-means++ 
K-means++ 

label 

1.  FPGA-01 0 fresh 0 fresh 

2.  FPGA-02 0 fresh 0 fresh 

3.  FPGA-03 0 fresh 1 aged 

4.  FPGA-04 0 fresh 0 fresh 

5.  FPGA-05 0 fresh 0 fresh 

6.  FPGA-06 0 fresh 0 fresh 

7.  FPGA-07 0 fresh 0 fresh 

8.  FPGA-08 0 fresh 0 fresh 

9.  FPGA-09 1 aged 1 aged 

10.  FPGA-10 1 aged 1 aged 

11.  FPGA-03a 1 aged 1 aged 

12.  FPGA-04a 1 aged 1 aged 

13.  FPGA-05a 1 aged 1 aged 

 

It is showing that, 12 out of 13 FPGAs are correctly detected by this proposed 

method. Here ‘a’ means artificially or accelerated aged. Thus, for k = 2 clusters, 

K-means++ Accuracy =  
 No.of correct detections 

Total no.of samples
  × 100 % 

  = 
12

13
  × 100 %   = 92.31 % 
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Table 4.3: Comparison of the Proposed Method with Other Research Results 

 

Method 
Fresh 

FPGAs 

Aged 

FPGAs 

ML 

Algorithm 

Accuracy 

% 

Computations 

per FPGA 

Ref. [16] 10 2 (6h) K-means++ 95 512 

Ref. [17] 35 9 (6h) K-means++ 100 512 

Proposed 

Method 
10 3 (24h) K-means++ 92.31 

304 

(41% less) 

 
Table 4.2 shows the comparison of the proposed method with the previous works 

on detecting the recycled FPGAs using different ML algorithms. Most of the time, 

amount of KFFs are very low, and the unsupervised methods provide better result 

with lesser KFFs. Though some unsupervised methods require either large volume 

of KFFs or vast calculations of the fingerprint analysis of the RO frequencies to 

achieve better result, but the proposed method achieves an almost similar accuracy 

using around 41% fewer computations for each FPGA. As the proposed method 

require less calculations, thus there will be lesser time require to test the ICs or 

FPGAs with this method. Also, the memory requirement will be lesser too. Though 

the proposed method didn’t yet achieve 100% accuracy as like the [17], but that 

method requires more than 3 times KFFs for getting that result. Practically, such a 

large amount of KFFs are not available for testing in the industry level because it 

will then increase the testing cost, testing time and memory requirement for the 

FUTs. So, overall it can be said that the proposed method lowers the testing cost, 

testing time by around 41%, and also the memory requirement. 
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4.6 Discussion 

In this work, to detect the recycled FPGAs, a novel mechanism has been used. As 

the FPGAs have the symmetrical structures in their design, so those symmetry will 

be in the neighboring columns, and thus their FP values will be similar. In order to 

find those symmetries, the same columns (with maximum number of values which 

is 120) of symmetrical paths of an FPGA have been chosen to find the PDF values. 

Those values then fed into the densratio package of Python to get the anomaly 

scores of those paths. For the fresh FPGAs, those anomaly score should be low 

values, and for the aged or recycled FPGAs it will be higher or large numbers. This 

is shown in Fig. 4.4. In this work, the similar results of anomaly scores have been 

found and then those will be used to determine whether the FPGAs are fresh or 

recycled by using the unsupervised ML algorithm K-means++. 

 

It has been shown in Fig. 4.5 that the all the aged/recycled FPGAs were detected 

correctly in this proposed method with around 41% less computation and around 

92% accuracy in overall, which is really a desired outcome of this work. This is 

desired because in the real-life scenarios, there are hundreds of thousands of ICs 

have to be checked with as minimum as possible time required, and if there are 

recycled ICs or FPGAs which were not checked before releasing into the market, 

then those companies will lose their reputation and many valuable worth. But if 

these computations can be done with lesser time, as this work showed, then the 

time-to-market will be reduced and thus the goodwill of those companies will be 

increased. 

 

This novel method has shown that the around 41% less computations has been 

reduced which gives around 92% accuracy. The accuracy can be increased by 

tweaking the different parameters of the K-means++.  
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Chapter 5 
Conclusion 

 

5.1 Conclusion 

As the IC supply chain continues to expand, recycled FPGA poses a significant 

threat not only to IC manufacturing companies, but it also leads to vulnerabilities in 

mission-critical applications. This research work adequately investigated and 

addressed the problems of the existing methods in detecting recycled FPGA by 

introducing symmetry analysis. The proposed detection method is based on 

exhaustive fingerprinting, which involves collecting aging information from all 

paths in all LUTs of the FPGA. This approach enables comprehensive analysis and 

detection of any anomalies or changes caused by aging, resulting in more accurate 

and effective detection of recycled FPGAs. The prospective advantage of this 

proposed recycled FPGAs detection method includes a lesser amount of testing-

time requirement as well as the lesser amount memory. 

 

In this work, a novel method using symmetry analysis has been proposed for 

unsupervised detection of recycled FPGAs between X-FPs with the K-means++ 

algorithm. The method calculates the anomaly score by estimating the direct 

density from the symmetry comparisons. It uses the K-means++ clustering 

algorithm to detect recycled FPGAs from the fresh samples. The proposed method 

is able to detect all aged FPGAs with 92% accuracy and with 41% less 

computational effort than the previous method. This symmetry analysis based 

proposed method makes it a faster and more cost-effective way of detecting 

recycled FPGAs with less memory usage. 
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5.2 Recommendations for Future Works 

Some of the recommendations regarding the future works based upon this proposed 

method can be stated as follow: 

 
1. While this method has been demonstrated using FPGAs, it can also be 

extended to other types of integrated circuits (IC) for hardware security. 

2. Accuracy can potentially be increased and time-complexity or computations 

can potentially be reduced by selecting a different and smaller number of 

symmetric fingerprint (FP) patterns. 
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Appendix I – Sample Snippet of Datasets 
 
There are some snippets of the datasets shown below which are used in this 

research work: 

 
Fig. Appendix I: Sample snippet of the dataset of FPGA-01’s XNOR01 path 
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Outcome of the Thesis 
 

 T. A. Tarique, F. Ahmed, M. Jenihhin and L. Ali, "Unsupervised Recycled 

FPGA Detection Using Symmetry Analysis," in the Proceedings of 

International Conference on Electrical and Computer Engineering, ICECE, 
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