
A Novel Cloud Storage Ecosystem for Efficient and
Secured Multimedia Services

by

Jannatun Noor Mukta

DOCTOR OF PHILOSOPHY

Department of Computer Science & Engineering

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

(BUET)

Dhaka 1000

June, 2023

PhD Thesis

A Novel Cloud Storage Ecosystem for Efficient and
Secured Multimedia Services

A thesis submitted to the

Department of Computer Science & Engineering

In partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE AND ENGINEERING

by

Jannatun Noor Mukta (0419054004 P)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA 1000, BANGLADESH

June, 2023

Dedicated to my loving parents

Author’s Contact

Jannatun Noor Mukta

Candidate for degree of Doctor of Philosophy

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET), Dhaka.

Email: jannatun.noor@bracu.ac.bd

jannatun.noor@bracu.ac.bd

Acknowledgement

Foremost, my utmost gratitude to the Almighty Allah Subhanahu Tayala for blessing me with the

opportunity, strength, and resources to work on and complete this research work. Then, I express my

heart-felt gratitude to my supervisor, Dr. A. B. M. Alim Al Islam, for his constant supervision of this

work. He helped me a lot in every aspect of this work and guided me with proper directions whenever

I sought one. His patient hearing of my ideas, critical analysis of my observations, and detecting flaws

(and amending thereby) in my thinking and writing have made this thesis a success.

I would also like to thank the members of my thesis committee: Prof Dr. Mahmuda Naznin, Prof.

Dr. Abu Sayed Md. Latiful Hoque, Prof. Dr. Md. Mostafa Akbar, Prof. Dr. Mohammand Abdullah

Adnan, Dr. Rezwana Reaz, Prof. Dr. Md. Abdur Razzaque, and specially the external member Prof.

Dr. M. Kaykobad, for their encouragement, insightful comments, and valuable suggestions.

I am also thankful to Prof. Dr. Md. Shohrab Hossain (Professor, CSE, BUET), Dr. Mahbub

Majumder (Dean, SDS, BRAC University), Dr. Sadia Hamid Kazi (Chairperson, CSE, BRAC Uni-

versity), and my colleagues from BRAC University who always help me whenever I seek help and

need official leave to complete the coursework and thesis work. Additionally, I want to express my

heartfelt gratitude to my sincere, talented, hard working, and dedicated Research Assistants Joyanta

Jyoti Mondal and Nazrul Huda Shanto. Besides, I like to thank Sadiqul Sakif, Rezwanul Ratul,

Mir Rownak, my thesis students, Dr. Novia Nurain, and Ishrat Jahan for their help and valuable

suggestions regarding writing and presentation of this thesis.

I believe, only I did not work for the Ph.D, rather my whole family did the same. I am grateful

to my little son Aanas Noor (6 y), my daughter Ayisha Noor (only 1.5 y), my better half Dr. Md.

Golam Zel Asmaul Husna, and my mother Jahanara Rahman. Their sacrifice and continuous support

iv

helped me a lot every time. Without their cooperation, it would never be possible to finish my work.

Throughout the Ph.D period, many times I decided to quit my Ph.D. Playing a diversified role, as a

mother of two children, as a faculty, as a thesis supervisor, and as a Ph.D. student, I sometimes feel

lost and can not breathe. That time, two people always encouraged me to continue my research work

- my supervisor and my better half. I do not know how to express my gratitude towards them.

Moreover, I extend my appreciation to the Deputyship for Research & Innovation, Ministry of Edu-

cation in Saudi Arabia for funding this research work through project 764 number (DRI-KSU-762).

Special thanks to Prof. Dr. Najla Abdulrahman Al-Nabhan for her kind collaboration. Last but not

the least, I remain ever grateful to my beloved parents, who always exist as sources of inspiration

behind every success of mine.

Abstract

Since massive numbers of images are now being communicated from, and stored in different cloud

systems, faster retrieval has become extremely important. This is more relevant, especially after

COVID-19 in bandwidth-constrained environments. However, to the best of our knowledge, a coherent

solution to overcome this problem is yet to be investigated in the literature. Hence, by customizing

the Progressive JPEG method, we propose a new Scan Script and a new lossy PJPEG architecture to

reduce the file size as a solution to overcome our Scan Script’s drawback. We improve the scanning of

Progressive JPEG’s picture payloads to ensure Faster Image Retrieval using the change in bit pixels of

distinct Luma and Chroma components (Y , Cb, and Cr). The orchestration improves user experience

even in bandwidth-constrained cases. We evaluate our proposed orchestration in a real-world setting

across two continents encompassing a private cloud. Compared to existing alternatives, our proposed

orchestration can improve user waiting time by up to 54% and decrease image size by up to 27%. Our

proposed work is tested in cutting-edge cloud apps, ensuring up to 69% quicker loading time.

In addition, the demand for a robust as well as a highly-available surveillance system with efficient

media sharing capability has considerably risen in recent times. To face these challenges, we propose

a new methodology to utilize OpenStack Swift’s object storage to efficiently store and archive media

data. Our method leverages expanding the cloud file sharing capabilities from storing media files to

also processing and archiving them along with performing encryption. Our proposed approach first

segments, encodes, and transcodes the videos according to several resolutions for covering diversified

remote devices. Then, we store the processed video footage in the storage server of OpenStack Swift.

Afterwards, we perform necessary media encryption-decryption, compress the files containing the

video data, and archive them using an archive server. We carry out rigorous experiments over a

real setup comprising machines deployed in two different countries (Canada and Bangladesh), located

vi

over two different continents, to validate the efficacy and efficiency of our proposed architecture

and methodology. Experimental results demonstrate substantial performance improvement using our

approach over conventional alternative solutions.

Moreover, we propose a novel Content-Based Searching (CoBS) architecture to extract additional

information from images and documents and store it in an Elasticsearch-enabled database, which

helps us to search for our desired data based on its contents. This approach works in two sequential

stages. First, it will be uploaded to a classifier that will select the data type and send it to the

specific model for the data. The images that are being uploaded are sent to our trained model for

object detection, and the documents are sent for keyword extraction. Next, the extracted information

is sent to Elasticsearch, which enables searching based on the contents. We train our models with

comprehensive datasets (Microsoft COCO Dataset) for multimedia data and SemEval2017 Dataset for

document data. Besides, we propose a generalized architecture for smooth and efficient management

as well as retrieval of multimedia data in cloud systems. Here, we demonstrate that video segment

download time improves by up to 30% when segmentation is done in the object server rather than

in the proxy server. After, we present a generalized architecture named ‘RemOrphan’ for detecting

the orphan garbage data using OpenStack Swift hash Ring and scripts. We deploy a private media

cloud SPMS and find that around 35% data can be orphan garbage data. Due to the huge amount

of orphan data, rsync replication needs higher time and more network overhead which hampers the

system sustainability. We lower around 25% sync delay and 30% network overhead after deploying a

deletion daemon to remove the orphan garbage data.

Furthermore, we propose a test-driven automated architecture for load testing, named as ‘svLoad’

to compare the performance of cache and backend servers. Here, we designed test cases considering

diversified real scenarios such as different protocol types, same or different URLs, with or without load,

cache hit or miss, etc. using tools namely JMeter, Ansible, and some custom utility bash scripts. To

validate the efficacy of our proposed methodology, we conduct a set of experiments by running these

test cases over a real private cloud development setup using two open source projects - Varnish as the

cache server and OpenStack Swift as the backend server. Our focus is also to find out bottlenecks

of Varnish and Swift by executing load requests, and then tune the system based on our load test

analysis. After successfully tuning the Swift, Varnish, and network system, based on our test analysis,

we were able to improve the response time by up to 80%.

Contents

Candidate’s Declaration ii

Board of Examiners iii

Acknowledgement iv

Abstract vi

1 Introduction 1

1.1 Reserach Focus I: Image Loading and Retrieval from Cloud at Low-BW Context . . . 2

1.2 Research Focus II: Device-sensitive Multimedia Uploading, Retrieval, Searching, and

Archival . 4

1.3 Research Focus III: Storage Sustainability through Middleware Placement and Orphan

Garbage Data Deletion . 5

1.4 Research Focus IV: System-level Load Testing of Cloud Storage Ecosystem 6

1.5 Our Key Research Questions and Motivation Behind the Study 7

1.6 Our Contributions in this Study . 9

1.7 Outline of this Study . 11

2 Background 12

2.1 Overview of OpenStack Swift . 14

2.1.1 Proxy Servers . 15

2.1.2 Storage Servers . 16

2.1.3 Data Model in Swift . 17

viii

2.1.4 Swift Architecture . 18

2.1.5 Rings . 20

2.1.6 Swift Consistency Process . 22

2.2 Quality of Experience (QoE) . 23

2.2.1 MOS . 23

2.2.2 PSNR . 24

2.2.3 SSIM . 25

2.2.4 VQM . 25

Part I: Image Loading and Retrieval from Cloud at Low-BW Context 27

3 Orchestrating Image Retrieval and Storage over A Cloud System 28

3.1 Introduction . 28

3.2 Related Work . 31

3.3 Background . 32

3.4 System Design and Implementation . 36

3.4.1 Faster Image Retrieval . 36

3.4.2 Lossy PJPEG Architecture . 39

3.5 Performance Evaluation . 42

3.5.1 Experimental Testbed Setup . 44

3.5.2 Experimental Results . 49

3.5.2.1 Faster Image Retrieval . 49

3.5.2.2 Lossy PJPEG Architecture . 50

3.5.2.3 System Resource Usage . 52

3.5.3 Experimental Findings . 52

3.5.3.1 Faster Image Retrieval . 53

3.5.3.2 Lossy PJPEG Architecture . 55

3.5.4 Comparison of Our Approach with Other Studies 56

3.6 Conclusion and Future Work . 57

Part II: Device-sensitive Multimedia Uploading, Retrieval, Searching, and Archival 58

4 Secure Processing-aware Media Storage and Archival System (SPMSA) 59

4.1 Introduction . 59

4.1.1 Existing Studies on Media Storage and Archival Systems 60

4.1.2 Motivations and Challenges . 60

4.1.3 Implications of Our Study . 62

4.1.4 Our Contributions . 63

4.2 Background . 63

4.2.1 OpenStack Swift . 64

4.2.2 QoE Measurements . 65

4.3 Related Work . 66

4.3.1 Literature on Media Storage Clouds . 67

4.3.2 Literature on Video Surveillance System . 68

4.4 Our Proposed Methodology . 70

4.4.1 Image Processing . 70

4.4.2 Video Transcoding . 70

4.4.3 Media Security . 72

4.4.4 Surveillance System . 74

4.4.4.1 Local Storage . 74

4.4.4.2 FFmpeg Media Converter . 76

4.4.4.3 User Interface . 76

4.4.4.4 Object Expiration . 79

4.4.5 Storage Server . 80

4.4.6 Archive Server . 80

4.5 Experimental Evaluation and Comparative Analysis 81

4.5.1 Experimental Settings . 81

4.5.1.1 Testbed for SPMS Server . 81

4.5.1.2 Testbed for Surveillance System . 84

4.5.1.2.1 Experimental Data . 84

4.5.2 Experimental Results . 86

4.5.3 Experimental Findings . 91

4.6 Discussion . 93

4.6.1 Scalability of the Framework . 95

4.6.2 Reproducibility of the Framework . 95

4.7 Conclusion . 95

5 A Novel Approach of Content-Based Searching in Object Storage System 97

5.1 Introduction . 97

5.2 Related Work . 100

5.2.1 Metadata Searching . 101

5.2.2 Query Searching . 101

5.2.3 Content-based Image Retrieval System . 104

5.2.4 Keyword Extraction from Document . 106

5.3 Background . 107

5.3.1 Architectural Overview of Swift . 108

5.3.2 YOLOv4 . 110

5.3.3 YOLOv8 . 111

5.3.4 BERT . 113

5.3.5 ElasticSearch Overview . 114

5.4 System Design and Implementation . 114

5.4.1 Developing Client-side . 114

5.4.2 Developing Keyword Extraction . 116

5.4.3 Developing Object Detection . 116

5.4.4 Developing the Storage System . 117

5.4.5 ElasticSearch Cluster . 117

5.5 Performance Evaluation . 117

5.5.1 Experimental Setup . 117

5.5.2 Dataset . 118

5.5.3 Experimental Results . 119

5.5.3.1 Image Dataset Test . 120

5.5.3.2 Detection Time Test . 122

5.5.3.3 Upload Time Test . 122

5.5.3.4 Total Time for Proposed Model . 122

5.5.3.5 Uploading and Detection Time Comparison 122

5.5.3.6 Result Evaluation for Document . 123

5.5.4 Search Analysis . 124

5.5.4.1 Completion Suggester . 124

5.5.4.2 Search Based on Image Content . 125

5.5.4.3 Search Based on Metadata . 125

5.5.4.4 Search Timing Results . 126

5.6 Discussion and Comparative Analysis . 129

5.6.1 Different Swift Models . 129

5.6.2 Different CBIR Engines . 130

5.7 Conclusion and Future Work . 130

Part III: Storage Sustainability through Middleware Placement and Orphan Garbage

Data Deletion 132

6 Object Storage Sustainability through Removing Offline-Processed Orphan

Garbage Data 133

6.1 Introduction . 133

6.2 Related Work . 137

6.3 Background . 141

6.3.1 SPMS (Secure Processing-aware Media Storage) 141

6.3.2 Middleware in Object Storage System . 142

6.3.3 Orphan Garbage Data . 145

6.4 System Design and Implementation . 146

6.4.1 Video Segmenter Middleware . 147

6.4.2 ‘RemOrphan’ : Orphan Data Deletion . 151

6.5 Performance Evaluation . 153

6.5.1 Experimental Testbed Setup . 153

6.5.2 Experimental Results . 155

6.5.3 Overhead Analysis . 158

6.6 Discussion and Comparative Analysis . 158

6.7 Conclusion and Future Work . 161

Part IV: System-level Load Testing of Cloud Storage Ecosystem 162

7 svLoad: An Automated Case-Driven Load Testing in Cloud Systems 163

7.1 Introduction . 163

7.2 Literature Survey . 165

7.3 Proposed Methodology . 168

7.3.1 Load Test Planning . 168

7.3.2 Creating Test Scenarios . 169

7.3.3 Creating and Disseminating Scripts . 170

7.4 Experimental Evaluation . 172

7.4.1 Experimental Settings . 174

7.4.2 Experimental Results . 175

7.4.3 Experimental Findings . 201

7.5 Conclusion and Future Work . 202

8 Conclusion and Future Work 204

8.1 Conclusion . 204

8.2 Complexity Analysis . 205

8.3 Future Work . 207

List of Publications 208

Appendices 211

A Request Analysis of Several HTTP Requests 212

A.1 Account Authentication . 212

A.2 Account Verification . 213

A.3 Account Creation . 214

A.4 Container Creation for Objects . 215

A.5 Container Creation for Images . 216

A.6 Container Listing of a Created Account . 216

A.7 Object Upload . 217

A.8 Object List of First Container . 218

A.9 Object Download . 219

A.10 Image Upload . 221

A.11 Image List for Second Container . 222

A.12 Another Image Upload . 223

A.13 Image List for Second Container . 224

B Documents for Keyword Extraction 226

B.1 Document A . 226

B.2 Document B . 227

References 227

List of Figures

1.1 Interdependent components of a cloud storage ecosystem 1

1.2 Structured and unstructured data growth over time [1] 2

1.3 The demand for an easily-accessible and sustainable cloud storage ecosystem that can

potentially grow without bounds or limits . 2

1.4 Image loading and retrieval from cloud at low-BW context 3

1.5 Device-sensitive multimedia uploading, retrieval, searching, and archival 4

1.6 System-level load testing of cloud storage ecosystem 6

1.7 Motivation behind our study . 7

2.1 An architecture of cloud computing [2] . 13

2.2 Overview of Swift architecture [3] . 15

2.3 Objects can have the same name as long as they are in different accounts or containers [4] 18

2.4 How nodes, zones, and regions are organized into a cluster [4] 19

2.5 Eventual consistency of OpenStack Swift using consistent hash ring [5] 20

2.6 Execution of a PUT request in Swift [4] . 21

2.7 Execution of a GET request in Swift [4] . 21

2.8 Execution of a DELETE request in Swift . 22

2.9 MOS calculation depends on an user [6] . 24

2.10 Structural Similarity Index measurement [7] . 25

3.1 Average bytes per page by content type [8] . 29

3.2 JPEG encoding technique . 32

3.3 Subsampling by 30% [9] . 33

xv

3.4 Discrete Cosine Transform (DCT) [10] . 34

3.5 An example of 8 x 8 block JPEG structure of Luma and Chroma components. Here,

the scan iteration sample is explained for progressive JPEG type images. 36

3.6 Separate quantization matrix tables for luminance 3.6a and chrominance 3.6b 40

3.7 In Fig. 3.7a identifies the lower frequency (LF) and higher frequency (HF) coefficients.

(1, 1) is the DC coefficient. Fig. 3.7b and Fig. 3.7c show the number of data bits we

skip from each of the coefficients. Skipped bits are the same for component Cr and Y . 41

3.8 Testbed setup comprising a server in Canada and a client in Bangladesh 47

3.9 Comparison of first scan images for eight combinations. Here, Scan1 is (SSs1 of SS1),

Scan2 is (SSs1 of SS2, Scan3 is (SSs1 of SS3), Scan4 is (SSs1 of SS4), Scan5 is (SSs1

of SS5), Scan6 is (SSs1 of SS6), Scan7 is (SSs1 of SS7), and Scan8 is (SSs1 of SS8). . 47

3.10 Testbed server setup to obtain performance of diversified remote devices using the web

hosting server . 49

3.11 Time needed to load different Scan Scripts under different bandwidth availability (Ss

= Scan Script, Sc = Scan number) . 51

4.1 Overview of OpenStack Swift architecture [11] . 64

4.2 Conventional and proposed models for storing and retrieving media files from the cloud 71

4.3 Conventional and proposed models of processing media files 72

4.4 Our proposed model comprises SPMS server for media files storing and retrieval, and

archival server for CCTV surveillance system . 73

4.5 Flow diagram of video uploading and transcoding for ‘Response after all uploading’

scenario . 77

4.6 Flow diagram of video uploading and transcoding for proposed ‘Quick response with

background processing’ scenario . 78

4.7 Designed user interface for uploading and downloading CCTV surveillance data 80

4.8 Expiration of an object using the X − Delete − After header when uploading a seg-

mented CCTV footage . 80

4.9 Three types of storage servers for ensuring high availability, less storage, and long-

lasting archive system. Local storage server has the direct connection with CCTV

camera. Cloud storage and archival storage servers are located in data centers. 81

4.10 Server setup for our proposed framework for testing SPMS server [12] (in 4.10a and

4.10b). Figure 4.10c presents the multi-node Swift setup used for CCTV surveillance

system. 82

4.11 Video data used in experiment . 85

4.12 Time comparison for uploading videos in Swift and proposed SPMS server for both

local and remote settings . 88

4.13 Time comparison of storing video files in conventional storage services and proposed

SPMS server . 89

4.14 Rate of change of video size for different preset modes 89

4.15 Comparison between time to convert and file length 90

4.16 Comparison of video bit-rate before and after applying presets 90

4.17 Comparison of content upload time between different storage systems 91

4.18 Comparison of video snapshots before and after applying FFmpeg presets 92

5.1 Overview of the storage architecture [3] . 107

5.2 Different consistency processes and layers in proxy and storage nodes of OpenStack Swift108

5.3 Workflow of YOLOv4 . 109

5.4 Overview of the proposed architecture . 112

5.5 Java library for OpenStack Swift (JOSS) . 112

5.6 Overview of the modified YOLOv4 and YOLOv8 object detectors 115

5.7 Workflow for JSON document in Elastic Cluster . 116

5.8 Experimental setup overview . 118

5.9 Class distribution of MSCOCO image dataset (number of images = 5000) 119

5.10 Class distribution of MSCOCO image dataset (number of images = 20000) 119

5.11 Object detection (single and multiple) . 120

5.12 Time graph (YOLOv4) . 121

5.13 Time graph (YOLOv8) . 121

5.14 Comparison graph . 123

5.15 Our implemented completion suggester UI using Elasticsearch API in the backend . . 124

5.16 Searching based on image content using Elasticsearch API 125

5.17 Searching based on metadata using Elasticsearch API 126

6.1 A use case of offline processing media data storage. Here, several crowd media files are

accessed from cloud storage by the Hajj management personnel using several diversified

remote devices whenever needed. Hence, different versions of media files (images and

videos) are stored in the cloud storage using offline processing beforehand. 134

6.2 Offline processing models for storing and retrieving media files from the cloud. Here,

multiple versions of media files are processed and stored in the cloud. During the

processing time, orphan data may be stored in the cloud. 138

6.3 How different layers of middleware work in Web Server Gateway Interface (WSGI) for

Object Storage System . 140

6.4 Different consistency processes and layers in proxy and storage nodes of OpenStack Swift140

6.5 How orphan garbage data are created due to network disconnection, client timeout

problem, object versioning, etc. Here, data.mp4 file is uploaded from the client. For

this single video file, five versions are uploaded in the storage nodes having three copies

for each versions. Two versions are successfully stored while background processing is

done, however, other versions are not uploaded successfully due to different reasons.

Hence, the final response is failed and the url is not stored in AUTH database. The

above six copies are orphan garbage data, which are still in the storage server without

any use whatsoever. 142

6.6 Case-1: ‘Response after all uploading’ . 143

6.7 Case-2: ‘Quick response with background processing’ 144

6.8 Our proposed architecture of VideoSegmenter middleware, which presents how a

streaming server requests for a segment from the cloud storage 147

6.9 An example of segment GET request using proposed X-Time-Range-Header (VideoSeg-

menter middleware (Vs) is deployed in the object server) 148

6.10 Flow diagram for orphan data deletion daemon . 152

6.11 Test bed setup servers in Canada and client in Bangladesh 153

6.12 Comparison of download time for segments of three different file categories. S1, S2,

S3, and S4 denote the average segment of 10 and 15 minutes of 1st to 4th segments

respectively. In the graph, 1st bar (blue) represents the download time of the segment

from the object server at first time request, 2nd bar (orange) represents the same

segment download time from object server at second time request. Besides, 3rd bar

(green) represents the download time of the same segment from the proxy server. . . . 155

6.13 Relation between sync delay and network overhead with respect to the number of

objects per node (n). Here, the value mentioned as nK (in x-axis), i.e., 10 values

represent 10,000 objects. 158

7.1 Architectural overview of our proposed load test model 166

7.2 Overview of client, backend, varnish, and management servers 167

7.3 Test case hierarchy of proposed load test metrics . 169

7.4 Architecture of svLoad for single client . 171

7.5 Experimental settings of testbed . 174

7.6 Testcase results - case 1 . 195

7.7 Testcase results - case 2 . 196

7.8 Testcase results - case 3 . 197

7.9 Average memory and CPU usage of cache and backend server for 20 test cases 200

List of Tables

3.1 The order to scan DCT coefficients [13] . 33

3.2 The quality factor [13] . 34

3.3 Cumulative size for five different images using default Scan Script (SS) [14] 42

3.4 Cumulative size for five images using SS1 . 42

3.5 Cumulative size for five images using SS2 . 43

3.6 Cumulative size for five images using SS3 . 43

3.7 Cumulative size for five images using SS4 (Proposed) 44

3.8 Cumulative size for five images using SS5 . 44

3.9 Cumulative size for five images using SS6 . 45

3.10 Cumulative size for five images using SS7 . 45

3.11 Cumulative size for five images using SS8 . 46

3.12 MOS and SSIM values of four images for the first Scan of all the 8 Scan Scripts. First

Scan for different eight combinations are denoted as Scan1 - Scan8. MOS is calculated

using 25 observers and SSIM is calculated using the VQMT tool [15] 46

3.13 Configuration of machines used in testbed setup . 48

3.14 PJPEG lossy architecture’s results for the custom dataset 50

3.15 Load time comparison between the actual picture and the picture generated by our

proposed faster image retrieval scan script in state of she art cloud applications. Here,

we counted the load time of only the image, not the UI 52

3.16 Comparison of our proposed approach with other existing research studies 53

xx

3.17 Quantitative comparison over improvement in performance achieved by our proposed

approach and other existing research studies along with corresponding datasets under

experimentation as reported in respective studies (CR refers to Compression Rate and

BPP refers to Bits Per Pixel) . 54

4.1 Cameras resolutions used in CCTV surveillance system [16] 74

4.2 Calculation of DVR and NVR . 75

4.3 Information of files used for video quality testing . 83

4.4 Information of files used for uploding in several storage services 83

4.5 Comparison of size, bit rate, and time needed for different preset option of FFmpeg

command . 85

4.6 Size, bit rate, and time comparison of different files for two FFmpeg preset options . . 86

4.7 QoE measurement of MSE, PSNR, SSIM, and VQM for different preset options of

FFmpeg command . 87

4.8 Comparison of required time and CPU usage for two scenarios in the local server . . . 87

4.9 Comparison of required time and CPU usage for two scenarios in the remote server . . 87

4.10 Time improvement of 2nd scenario over 1st scenario in the remote settings 91

4.11 Improvement in uploading time using proposed SPMS server compared to that using

Swift server in the remote settings . 93

4.12 Improvement in uploading time using proposed SPMS server compared to that using

conventional storage services . 93

4.13 Comparison of various implemetation based on the metrics element (H=high, L=low,

and A=average) . 94

5.1 Findings from literature review . 102

5.2 Dataset testing metrics . 120

5.3 Average time (in seconds) to do different tasks for different data sizes with YOLOv4 . 123

5.4 Average time (in seconds) to do different tasks for different data sizes with YOLOv8 . 123

5.5 Extracted keywords from BERT . 124

5.6 Average query time and request time for different data sizes 127

5.7 Difficulty and availability of various implementations of Swift 127

5.8 Comparison between various CBIR engines (here, TBIR = Texture Based Image Re-

trieval) . 128

5.9 Comparison of various implementations of Swift (here, ✓=Yes and X=No) 129

5.10 Resolution check for different uploaded images showing no change in the image quality

(SSIM 100% and VQM 100%) after the images are passed through the detection algorithm130

6.1 Configuration of machines used in testbed setup . 154

6.2 Demographic information of three file categories . 155

6.3 Time improvement percentage status for different segments with respect to retrieving

the segment from 2nd time versus 1st time from the object server, if we place the

middleware in the object server. Moreover, segment download time comparison is

presented by placing the middleware in the proxy server (object vs proxy). 156

6.4 Orphan garbage data deletion status per node for testbed server 157

6.5 CPU and memory overhead for video segmentation and orphan data deletion 158

6.6 A qualitative comparison of related research studies according to several features such

as algorithm type, memory and storage management, developers deployment effort,

orphan data collection, middleware placement and deployment, etc. (here, GC refers

to Garbage Collection) . 159

7.1 Test case scenarios for different metrics . 169

7.2 Geographic locations of all machines . 173

7.3 Configuration of machines used in our load testing . 173

7.4 Results for TC0 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 175

7.5 Results for TC1 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 176

7.6 Results for TC2 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 176

7.7 Results for TC3 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 177

7.8 Results for TC7 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 177

7.9 Results for TC8 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 178

7.10 Results for TC9 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 178

7.11 Results for TC10 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 179

7.12 Results for TC11 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 179

7.13 Results for TC12 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 180

7.14 Results for TC13 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 180

7.15 Results for TC14 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 181

7.16 Results for TC15 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 181

7.17 Results for TC18 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 182

7.18 Results for TC19 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 182

7.19 Results for TC20 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 183

7.20 Results for TC21 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 183

7.21 Results for TC22 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 184

7.22 Results for TC23 before tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 184

7.23 Results for TC0 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 185

7.24 Results for TC1 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 185

7.25 Results for TC2 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 186

7.26 Results for TC3 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 186

7.27 Results for TC6 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 187

7.28 Results for TC7 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 187

7.29 Results for TC8 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 188

7.30 Results for TC9 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 188

7.31 Results for TC10 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 189

7.32 Results for TC11 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 189

7.33 Results for TC12 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 190

7.34 Results for TC13 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 190

7.35 Results for TC14 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 191

7.36 Results for TC15 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 191

7.37 Results for TC18 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 192

7.38 Results for TC19 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 192

7.39 Results for TC20 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 193

7.40 Results for TC21 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 193

7.41 Results for TC22 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 194

7.42 Results for TC23 after tuning. Here, we use header size - 397 byte, size download -

11742 byte, and request size - 124 byte. All the sizes and time are represented in byte

and seconds respectively. 194

7.43 Varnish cache server tuning parameters . 198

7.44 Swift backend server tuning parameters . 198

7.45 System network tuning parameters . 198

7.46 Success and miss rates (%) of requests . 199

7.47 Percentage of average response time improvement for all clients 200

7.48 Improvement of cache server response times over backend server 201

7.49 Comparison of HTTP request response times over HTTPS request response times . . 201

8.1 A qualitative comparison of time and storage complexity for different object storage

systems using several data structures. Here, N is the total number of files in the

filesystem, n represents the number of files stored in a certain directory, m is the

number of direct children under a certain directory, P is the resizing and transcoding

time, M is the time for object and document detection, and F denotes the size of the

object. 206

Chapter 1

Introduction

A cloud storage ecosystem [17, 18] is a complex system of interdependent components that all work

together to enable efficient and secured cloud storage services having retrieval, searching, archiving,

faster inter-communication from one server to another server, etc (in Figure 1.1). Besides, with

the rapid growth of embedded devices, media industries have started facing challenges in storing,

processing, and managing large amounts of multimedia data including video, photos, audio, and

text through several Software-as-a-Service applications [3]. All these applications present a common

Figure 1.1: Interdependent components of a cloud storage ecosystem

need for an easily-accessible and sustainable cloud storage ecosystem for multimedia data that can

potentially grow without bounds or limits (in Figure 1.2 and Figure 1.3). For building a novel storage

ecosystem to embrace this demand, some major components under consideration are - a) data loading

1

CHAPTER 1. INTRODUCTION 2

and retrieval, b) efficient multimedia data storing, c) archival, d) searching, e) orphan data deletion,

f) storage load testing, etc., [17, 18].

Figure 1.2: Structured and unstructured data growth over time [1]

Figure 1.3: The demand for an easily-accessible and sustainable cloud storage ecosystem that can
potentially grow without bounds or limits

1.1 Reserach Focus I: Image Loading and Retrieval from Cloud at

Low-BW Context

Multimedia communication through cloud-based applications has become increasingly popular, due

to the numerous benefits it provides. In order to access image data more efficiently and quickly, many

of these systems utilize open-source projects. The JPEG format is the most commonly used method

CHAPTER 1. INTRODUCTION 3

for storing images, and is supported by almost all image-capturing devices. In fact, as of 2015, over

7 billion images were produced daily in JPEG format. This number has increased significantly since

then, with an expected 10.7% increase in the number of images stored in JPEG format from 2022 to

2023. JPEG uses the DCT (Discrete Cosine Transform) algorithm for lossy compression. The baseline

method, which encodes all pixels sequentially, is the most widely used for JPEG operations as it offers

the highest compression ratio and ensures the best image quality. Another method, called Progressive

JPEG (PJPEG), is less commonly used. It loads lower frequency pixels of an image first, providing a

lower quality preview of the image. Then, it refers to higher frequency pixels of the image, eventually

displaying the complete image. This method is advantageous in bandwidth-constrained environments,

as it allows for faster preview of the images.

Progressive image loading and retrieval has gained great interest in the research community in recent

times which mostly explore Progressive images’ performance from the perspective of high-bandwidth

network connections [3, 19, 20]. The user experience has become very important in recent years, as

the Internet traffic keeps increasing (more so due to the recent COVID-19 pandemic). Accordingly,

to enhance the level of user experience, the performance of Progressive image loading and retrieval

in a cloud environment needs to be improved even sustaining slow Internet connections and limited

bandwidths [21] (in Figure 3.2).

Figure 1.4: Image loading and retrieval from cloud at low-BW context

CHAPTER 1. INTRODUCTION 4

1.2 Research Focus II: Device-sensitive Multimedia Uploading, Re-

trieval, Searching, and Archival

The rise of embedded devices has created a significant challenge for media industries in terms of

storing, processing, and managing vast amounts of data, including video, photos, audio, and text.

This is due to the increasing production and consumption of such data by users through social media,

online video, user-uploaded content, gaming, Software-as-a-Service applications, and other platforms.

These applications all require accessible storage systems that can potentially scale infinitely without

limitations.

With the advancement of technology, one important sector that is experiencing rapid growth in its

field nowadays is the media retrieval and archival system specially for CCTV data [12,22,23]. Existing

literature is yet to focus on an important realm of cloud-based video surveillance systems involving

long-term storing and archiving [12]. In the CCTV data handling task, the video data needs to go

through some processing to be ready to store in a cloud server with ease to ensure the availability

and long term usage. Hence, we need to focus on storing large video files efficiently and archive the

data for long-term purposes in a better manner enabling more space utilization.

Figure 1.5: Device-sensitive multimedia uploading, retrieval, searching, and archival

Every day, an enormous amount of data is created and stored on various cloud servers. Object storage

is preferred due to its flexibility and consistency in storing such vast amounts of data. OpenStack is a

distributed and consistent open-source cloud system that provides cloud object storage using an API

called OpenStack Swift, which is scalable, durable, and designed to store unstructured data. Unlike

CHAPTER 1. INTRODUCTION 5

file-based storage or block storage, Swift stores each piece of data as an object, making it an ideal

storage system for handling massive amounts of data. However, retrieving and searching relevant data

becomes challenging as the amount of data increases. The storage of consumer and business data in

public or private clouds further complicates the efficient retrieval of meaningful data.

Recently, the problem of storing massive amounts of data is solved due to the complex architecture of

object-based storage systems (S3, Swift, Swarm), still retrieving or searching for a certain object/file

has become a major challenge [24–26]. Moreover, finding the real path using the linear searching

method inside this storage is very time-consuming as the different replica copies are located in different

regions [27]. Hence, Content-Based Search (CoBS) is starting to grow as the usage of data is increasing

and metadata-based systems are struggling to work on a large amount of data.

1.3 Research Focus III: Storage Sustainability through Middleware

Placement and Orphan Garbage Data Deletion

The management and communication of data in Object Storage Systems heavily rely on the design

and placement of middleware in proxy or storage servers. To ensure data availability, multiple copies

of big data are stored, and regular syncing and checking are necessary to detect bit rot and file

degradation and ensure long-term preservation storage. Various studies have been conducted to

ensure data storage sustainability and prevent undesirable consequences [28,29]. Crowd management,

real-time location-aware services, and medical systems require access to multimedia data from diverse

remote devices. For instance, crowd management of millions of pilgrims is challenging and requires

appropriate processing and communication from the cloud [30, 31]. Hence, emerging context-aware

and location-aware cloud-based frameworks and services need both online and offline processing of

unstructured data such as images and videos. Real-time video streaming is another significant feature

of managing these services using cloud infrastructures.

Another important realm, efficient cloud side operation management [12] is needed for ensuring differ-

ent features such as smooth video streaming, dynamic adaptive streaming, etc. Besides, proper and

updated video segments need to be supplied from the cloud storage systems to achieve the features.

Recent studies focus on several methods of mobile and web streaming [32,33], gateway-based shaping

methods for HTTP adaptive streaming (HAS), quality of experience of HAS, optimal transcoding and

CHAPTER 1. INTRODUCTION 6

caching for adaptive streaming in content delivery networks [34], etc. In addition, offline processing

(in Figure 1.5) of large multimedia data produces orphan data that have no information either in

client side or in AUTH database, and the non-existence of information can occur due to network

disconnection, client timeout problem, object versioning, etc., [35]. Research studies focus on sev-

eral aspects of such redundant data deletion such as Linux container based deletion [36], Smartbin

based deletion in wireless sensor networks [37], and assured deletion [38, 39] present some deletion

approaches, which are not applicable to the case of orphan data in the cloud.

Figure 1.6: System-level load testing of cloud storage ecosystem

1.4 Research Focus IV: System-level Load Testing of Cloud Storage

Ecosystem

The demand for faster and easier access to data from connected systems is increasing, and designers

need to test these distributed architectures under massive loads to ensure proper design. Service

providers use caches to retrieve data faster from distributed private cloud systems, and analyzing the

time elapsed for retrieving data from cache or backend is necessary to design a reliable system. Load

testing is also needed to optimize software, hardware, and network parameters used in the system.

Currently, both private and public cloud service providers create their own distributed storage systems

using multiple data centers. However, determining the optimal locations for deploying cache and

backend cloud servers in these data centers is a challenging task. The time it takes to upload and

download objects is directly affected by how the cache and backend servers are distributed.

Furthermore, for successful deployment of distributed architectures including caches and clouds in

CHAPTER 1. INTRODUCTION 7

production environments, proper load testing is mandatory (in Figure 1.6). As such, several existing

research studies focus on load testing tools and architectures based on performance and functional

testing criteria. The study in [40] proposes empirical testing by monitoring user experience and system

health in a feedback loop between traffic shifts. Other studies [41,42] propose automated approaches to

validate whether a performance test resembles the field workload or not. Unfortunately, these studies

propose and analyze only real-time test cases without focusing on network and software tuning using

the outcomes of the test analysis.

Figure 1.7: Motivation behind our study

1.5 Our Key Research Questions and Motivation Behind the Study

Till now, to the best of our knowledge, no research study focuses on this aspect (storage ecosystem)

towards achieving better user experiences through performing faster Progressive image and multimedia

data loading, storing, retrieval, searching, orphan data deletion, and proper system load testing even

under bandwidth constraints (in Figure 1.7). Based on the challenges and limitation that are presented

in the previous Sections, we design our key research question. Our key research question is -

“How can we design a novel cloud storage ecosystem for efficient and secured multimedia

services?”

Besides, we dig down deeper based on the components of a storage ecosystem and formulate depended

research questions for every components. They are -

CHAPTER 1. INTRODUCTION 8

• How can we devise a methodology for efficient image retrieval from and storage to cloud even in

low-BW context?

• How can we develop a new and faster content-based searching architecture for object storage

systems?

• How can we design a private cloud system for device-sensitive multimedia uploading, retrieval,

and long-time archival?

• How can we develop methods for finding orphan data in multimedia storage and to remove the

orphan data in an efficient way to lessen system-level delay and overhead?

• How can we design case-driven system-level load testing methodology for cloud storage (consid-

ering both cache and backend)?

Our work is motivated by the limitations of state-of-the-art research studies and the challenges in-

volved in developing a novel cloud storage ecosystem. Here, we plan to focus on efficient and secured

multimedia data retrieval and communication over the cloud storage. Accordingly, our goal is to de-

sign different system-level frameworks of the storage ecosystem, develop a private multimedia cloud,

and devise load-testing methods. Thus, the specific objectives of this research study are as follows:

• To propose a novel cloud storage ecosystem for efficient multimedia data operations such as

retrieval, searching, storing, archiving, communication, etc.

• To investigate retrieval of Progressive JPEG (PJPEG) architecture to optimize the scan scripts

of PJPEG, and based on the findings of the investigation, develop a new lossy PJPEG architec-

ture for faster image retrieval.

• To develop a new content-based searching architecture for object storage systems containing

massive amounts of content.

• To devise a new mechanism for faster multimedia data storing and retrieval from the cloud

storage, pertinent to several dimensions of remote devices.

• To devise an efficient multimedia data archival framework to store and archive large videos (such

as surveillance data).

• To develop methods for finding orphan data in multimedia storage and to remove the orphan

CHAPTER 1. INTRODUCTION 9

data in an efficient way.

• To develop a new load-testing framework using cache and backend storage through network and

software tuning.

1.6 Our Contributions in this Study

In this study, we propose a novel cloud storage ecosystem for efficient and secured multimedia services.

Based on our work, we make the following set of contributions for proposing the ecosystem in this

study:

• We investigate PJPEG loading, having DC and AC components, and develop a new Progressive

Scan Script through optimizing the libjpeg library [43]. At first, we encode four DC coefficient

data bits in the First Scan of libjpeg without degradation in the image quality. Furthermore,

we propose a new lossy PJPEG architecture to reduce the image size and improve the scanning

of PJPEG’s picture payloads. The scanning is improved by using the change in bit pixels of

distinct Luma and Chroma components.

• Next, we develop a content-based object searching architecture (using BERT, Darknet model,

YOLOv4/YOLOv8 algorithm, and Elasticsearch) to extract additional metadata from images

and keywords from documents. The extracted metadata is stored in a database that helps in

searching for the desired data. In addition, a secured OpenStack Swift JOSS client user interface

is created in order to access Swift and Elasticsearch clusters at the same time using user-level

authentication tokens.

• Afterwards, a new mechanism for private cloud unifying object storage (Storage-as-a-Service)

with cloud security, media processing (Processing-as-a-Service), and archiving media is proposed

for covering diversified devices. we develop three new middleware services named ‘PhotoPool’,

‘MediaBucket’, and ‘SecureCloud’ to perform media processing, transcoding, and encryption-

decryption tasks to make the system more secure, highly-scalable, and faster-accessible to end

users.

• Besides, we propose a new archival framework for large videos (such as surveillance data) that

stores data in multiple locations - local storage (for short-time), cloud storage (intermediate

CHAPTER 1. INTRODUCTION 10

time), and archival storage (for long-time) - for ensuring improved retrieval, availability, and

fault tolerance.

• Then, a new middleware ‘VideoSegmenter’ is designed for supporting HTTP adaptive streaming

in object storage systems. We analyze the deployment of the middleware (either in a proxy server

or in an object server) and improve it for avoiding extra overhead due to orphan data. Besides,

a ‘deletion daemon’ named ‘RemOrphan’ is developed for removing the orphan garbage data

using OpenStack rings and custom scripts.

• Moreover, we develop a new load-testing framework based on diversified real scenarios covering

different types of protocols, URLs, loads, and servers using diversified tools such as JMeter,

Ansible, and custom bash scripts.

• Finally, a performance evaluation of the components of the proposed ecosystem is done based

on QoE (Quality of Experience) and QoS (Quality of Service). Performance metrics under

consideration are: a) Quality of multimedia data, b) Size of resized images and videos, and

c) Storing, downloading, and archival time. To evaluate the metrics, we perform the following

tasks:

– We deploy two different testbed setups (a local testbed in Bangladesh and a remote testbed

in Toronto, Canada). In each of these setups, eight different servers are installed - two for

Proxys, three each for Account and Container, and three for Objects. The reason behind

having two different setups is to analyze how agnostic the proposed ecosystem is with

respect to network latency.

– For rigorous load-testing, one varnish cache server in front of the proposed Swift backend

server and ten clients from different geographical locations are set up to evaluate the real

scenarios.

– System-level performance of different proposed frameworks is measured and compared with

different alternative methods and existing studies. User-level evaluation is done by pre-

senting converted images and videos of the proposed systems to different observers, and

visual evaluations is analyzed using a standardized method [11].

CHAPTER 1. INTRODUCTION 11

1.7 Outline of this Study

This is how the rest of this study is organized.

• In Chapter 2, we present an overview of the architecture of OpenStack Swift and the QoE metrics

based on which we perform our study. All the necessary components are briefly described in

this Chapter.

• Then, we present the image loading and retrieval from cloud at low-BW context as our research

focus I. Hence, in Chapter 3, we demonstrate the orchestrating of image retrieval and storage

over a cloud system.

• Next, we present device-sensitive multimedia uploading, retrieval, searching, and archival (re-

search focus II). At first, in Chapter 4, we illustrate secure processing-aware media storage

and archival (SPMSA). Then we present a novel approach of content-based searching in object

storage system in Chapter 5.

• After, we present storage sustainability through middleware placement and orphan garbage data

deletion (research focus III). In Chapter 6, we demonstrate object storage sustainability through

removing offline-processed orphan garbage data.

• Furthermore, we illustrate system-level load testing of cloud storage ecosystem (research focus

IV). In Chapter 7, we present ‘svLoad’, an automated test-driven architecture for load testing

in cloud systems.

• Finally, We present our future plan and conclude this study in Chapter 8.

Chapter 2

Background

Cloud storage systems play a crucial role in various aspects, as highlighted in the literature [44].

Firstly, they simplify the overall system by providing a centralized storage solution that can be

accessed from anywhere. Additionally, cloud storage systems ensure data redundancy and backup

by storing data across multiple servers, offering protection against physical threats such as hardware

failures or disasters. This data redundancy also enhances data availability, allowing users to access

their data at any time and from any location.

Moreover, cloud storage systems offer scalability and flexibility, providing room for growth as stor-

age needs increase. They enable collaboration by allowing multiple users to access and share data

simultaneously, facilitating seamless teamwork and data exchange. Figure 2.1 illustrates an environ-

ment for cloud computing [2], showcasing the various components and interactions within a cloud

storage system. For the purpose of our study, we specifically focus on private cloud storage due to its

practicality and applicability in different scenarios.

In this chapter, we present important background information relevant to our study [12]. We delve

into storage evaluation techniques and provide an overview of OpenStack Swift, which is an open-

source Object Storage System (OSS) widely used in cloud storage environments. Additionally, we

explore various methods and approaches related to Quality of Experience (QoE) in the context of

cloud storage systems. This comprehensive background information sets the foundation for our study

and helps to establish a solid understanding of the key concepts and factors involved in cloud storage

and its evaluation.

12

CHAPTER 2. BACKGROUND 13

Figure 2.1: An architecture of cloud computing [2]

CHAPTER 2. BACKGROUND 14

2.1 Overview of OpenStack Swift

In this section, we present a brief overview of a baseline architecture for secure and parallel processing

of large-scale data stored in a cloud storage environment. The foundation of this architecture is built

upon the principles of open-source software, which provides the freedom to modify and redistribute

the source code. One such open-source platform that embodies these principles is OpenStack [3].

OpenStack is a widely used open-source platform that offers a comprehensive set of tools and services

for building and managing cloud storage environments. It provides a flexible and scalable infrastruc-

ture for storing and processing massive amounts of data. OpenStack’s modular architecture allows for

customization and integration with other technologies, making it a versatile choice for cloud storage

deployments.

The baseline architecture outlined in this section focuses on ensuring the security and efficient pro-

cessing of data in a parallelized manner. By leveraging the capabilities of OpenStack, this architecture

addresses the challenges associated with handling and analyzing large volumes of data stored in the

cloud. It provides mechanisms for secure data storage, access control, and parallel processing tech-

niques, enabling efficient and reliable processing of mass data.

Overall, this baseline architecture serves as a foundation for designing and implementing secure and

parallel processing systems in a cloud storage environment. It takes advantage of the open-source

nature of OpenStack to provide a flexible and customizable solution for organizations seeking to

leverage the benefits of cloud storage while ensuring data security and efficient data processing.

OpenStack Swift is a widely adopted open-source cloud storage solution that provides a highly avail-

able, distributed, and consistent object/blob store for the OpenStack platform [3]. It functions as an

object storage system, prioritizing eventual consistency over immediate consistency, which allows it

to achieve high availability, redundancy, throughput, and capacity. One of the key features of Swift is

its ability to store and manage a vast number of objects across multiple nodes. It employs a REST-

ful HTTP API, allowing users to interact with the storage system by submitting GET requests to

download files and PUT requests to upload files [3].

In OpenStack Swift, a Proxy Server plays a crucial role in managing metadata. When a GET or PUT

request is received, the server consults a ring structure to determine the locations of the account,

container, or data object involved in the request. The ring serves as a mapping between the names

CHAPTER 2. BACKGROUND 15

of entities stored on disk and their physical locations [4]. Based on this information, the request is

routed to the appropriate storage nodes. The architecture of OpenStack Swift is illustrated in Figure

2.2. It showcases the various components involved in the storage system, including the Proxy Server,

the Ring, and the distributed storage nodes. This architecture enables Swift to provide a scalable and

resilient storage infrastructure for storing and retrieving objects in a cloud environment.

Overall, OpenStack Swift offers a powerful and scalable solution for cloud-based object storage. Its

focus on high availability and eventual consistency, combined with its distributed architecture, makes

it well-suited for storing large amounts of data while ensuring data redundancy, accessibility, and

performance. The architecture comprises several components as described in following sections:

Figure 2.2: Overview of Swift architecture [3]

2.1.1 Proxy Servers

Proxy servers in OpenStack Swift play a crucial role in the storage system by handling incoming API

requests and managing the routing of those requests to the appropriate storage nodes. Positioned

after the load balancer, the proxy servers are responsible for determining which storage node should

handle each request based on the URL of the objects. One important characteristic of the proxy

servers is their shared-nothing architecture, which allows them to operate independently and scale

horizontally as needed to accommodate varying workloads. This scalability is achieved by adding

more proxy servers to the system when projected workloads increase.

Proxy servers also handle a significant number of failures. In the event that a server is unavailable

for an object PUT operation, the proxy server will consult the ring structure to identify a handoff

CHAPTER 2. BACKGROUND 16

server, which can take over the responsibility of storing the object. This ensures that data is not lost

or inaccessible in the face of server failures. Additionally, proxy servers play a role in coordinating

responses and timestamps. They ensure that responses from different storage nodes are synchronized

and consistent, and they assign timestamps to objects for tracking purposes.

Overall, proxy servers in OpenStack Swift are essential components that handle request routing,

handle failures, enable scalability, and coordinate responses and timestamps, contributing to the

efficient and reliable operation of the storage system.

2.1.2 Storage Servers

Storage servers are mainly account, container, and Object servers. Each type of storage servers are

described in below subsections:

Object Server. The Object Server in OpenStack Swift is a straightforward yet important component

responsible for storing, retrieving, and deleting objects within the storage system. An object represents

the data to be stored, such as documents or images. Objects are stored as binary files on the local

devices, utilizing the underlying file system of the object server. The object’s metadata is stored

in the file’s extended attributes (xattrs), which provide additional information about the object. It

should be noted that the chosen file system must support xattrs for proper functionality. Some file

systems, like ext3, have xattrs turned off by default, requiring specific configuration.

Each object is stored using a path derived from the hash of the object’s name and the timestamp

of the operation. This path ensures unique identification and organization of objects within the file

system. In case of conflicts, where multiple versions of an object exist, the “last write wins” policy

is applied. This means that the most recent version of the object will be served. Deletion of objects

is treated as a versioning process. A deleted object is represented by a 0-byte file with the extension

‘.ts’, standing for “tombstone”. This tombstone file ensures that deletions are correctly replicated

across the system and that older versions of objects do not reappear due to failure scenarios.

By utilizing the Object Server, OpenStack Swift provides a reliable and efficient mechanism for storing,

retrieving, and managing objects within the storage system, ensuring data integrity and consistency.

Container Server. A Container in OpenStack Swift represents a logical storage space where related

objects are grouped together. The Container Server plays a crucial role in managing object listings

CHAPTER 2. BACKGROUND 17

within a container. Its main function is to handle the listings of objects, providing information about

what objects exist in a specific container. Although the Container Server does not have knowledge of

the precise locations of the objects, it maintains a record of the objects contained within the container.

The listings, which contain details like object names, are stored as sqlite database files. Similar to

objects, these listings are replicated across the cluster to ensure data redundancy and availability.

In addition to managing the listings, the Container Server keeps track of statistics related to the

container. This includes monitoring the total number of objects stored in the container and tracking

the overall storage usage. These statistics provide valuable insights into the container’s contents and

assist in effectively managing storage resources. By handling object listings and tracking essential

container information, the Container Server plays a vital role in organizing and facilitating the retrieval

of data within the OpenStack Swift storage system.

Account Server. An Account in OpenStack Swift defines the access rights and permissions for

Containers and Objects. The Account Server, similar to the Container Server, fulfills the role of

managing listings. However, its focus is on the listings of containers rather than individual objects.

The Account Server maintains a database known as the Account database. This database contains

a comprehensive list of all the Containers that are associated with a particular Account. These

containers are distributed across the Swift cluster and are accessible to the specified Account based

on the assigned permissions.

The Account database serves as a central repository of information about the containers available to

an Account. It provides a means to organize and manage the containers associated with the Account

within the distributed storage system. By handling the listings of containers and maintaining the

Account database, the Account Server plays a critical role in managing access and facilitating control

over containers within the OpenStack Swift storage environment.

2.1.3 Data Model in Swift

OpenStack Swift allows users to store unstructured data objects with a canonical name containing

three parts: account, container, and object. Using one or more of these parts allows the system to

form a unique storage location for data.

• Account: The account storage location is a uniquely named storage area that will contain the

CHAPTER 2. BACKGROUND 18

Figure 2.3: Objects can have the same name as long as they are in different accounts or containers [4]

metadata (descriptive information) about the account itself, as well as the list of containers in

the account. In Swift, an account is not a user identity rather than storage area.

• Container: The container storage location is the user-defined storage area within an account

where metadata about the container itself and the list of objects in the container will be stored.

• Object: The object storage location is where the data object and its metadata will be stored.

If three objects with the name ObjectBlue are uploaded to different containers or accounts, each

one has a unique storage location, as shown in Figure 2.3. The storage locations for the three

objects are:

/AccountA/Container1/ObjectBlue

/AccountA/Container2/ObjectBlue

/AccountB/Container1/ObjectBlue

2.1.4 Swift Architecture

Swift data, including accounts, containers, and objects, is ultimately stored on physical hardware. A

node refers to a machine that executes Swift processes. A Swift cluster consists of multiple nodes

that work together to perform all the necessary processes and services required for functioning as

a distributed storage system. In order to enhance reliability and minimize the impact of failures,

developers arrange the nodes within a cluster into regions and zones (Figure 2.4).

CHAPTER 2. BACKGROUND 19

Figure 2.4: How nodes, zones, and regions are organized into a cluster [4]

The terms related to Swift architecture are:

• Cluster: A Swift cluster is the distributed storage system used for object storage. It is a

collection of machines that are running Swift’s server processes and consistency services.

• Region: Swift allows a physically distinct part of the cluster to be defined as a region. Regions

are often defined by geographical boundaries; for example, several racks of servers (nodes) can be

placed in higher-latency, off-site locations. When a multi-region cluster receives a read request,

Swift will favor copies of the data that are closer, as measured by latency.

• Zone: A Zone represents a location that can isolate data. This could be a drive, a server, a

cabinet, a switch, or even a data center.

• Nodes: Nodes are physical servers responsible for executing one or more Swift server processes.

The primary Swift server processes include the proxy, account, container, and object processes.

When a node runs an account or container server process, it also stores the corresponding

account or container data and metadata. Similarly, a node running an object server process is

responsible for storing objects and their associated metadata.

CHAPTER 2. BACKGROUND 20

Figure 2.5: Eventual consistency of OpenStack Swift using consistent hash ring [5]

2.1.5 Rings

The Ring is responsible for maintaining the mapping between logical data locations and their corre-

sponding physical locations on specific disks. It is a static data structure that exists outside of the

cluster. Devices within the Ring are assigned to partitions based on various policies such as regions,

zones, and other constraints, ensuring fault tolerance and load balancing. Each Ring represents a

mapping between the names of entities stored on disk (such as accounts, containers, and objects)

and their physical locations. To perform any operation on an object, container, or account, other

components in the system need to interact with the relevant Ring to determine its location within

the cluster.

The Ring utilizes a customizable number of bits from the MD5 hash of an item’s path to generate a

partition index. This index determines the device(s) where the item should be stored. The number

of bits retained from the hash is referred to as the partition power, and it defines the total partition

count, which is equal to 2 raised to the power of the partition power. Partitioning the MD5 hash ring

enables the cluster components to process resources in batches.

The Ring maintains the mapping of zones, devices, partitions, and replicas. By default, each partition

in the ring is replicated three times across the cluster, and the ring’s mapping stores the locations

CHAPTER 2. BACKGROUND 21

Figure 2.6: Execution of a PUT request in Swift [4]

Figure 2.7: Execution of a GET request in Swift [4]

for each partition. In the event of failures, the ring also determines which devices should be used for

handoff, ensuring data redundancy and fault tolerance. Other terms related to rings are:

• Consistent hashing: Swift uses the principle of consistent hashing for making ring. A ring

represents the space of all possible computed hash values divided in equivalent parts. Each part

of this space is called a partition. Fig. 2.5 presents the architecture of eventual consistency of

OpenStack Swift using consistent hash ring [5].

• Partition: A Partition stores Objects, Account databases, and Container databases.

CHAPTER 2. BACKGROUND 22

Figure 2.8: Execution of a DELETE request in Swift

2.1.6 Swift Consistency Process

In addition to the components, Swift has several consistency processes. the processes are as follows:

• Auditor: The Auditor process scans the disks at the same node to ensure that the stored data

has not suffered any file system corruption.

• Replicator: The Replicator process ensures that enough copies of the most recent version of

the data are stored where they should be in the cluster. The process also handles object and

container deletions.

• Account Reaper: The Account reaper process locates an account marked as deleted and

performs stripping out all objects and containers associated with the account. These actions

ultimately removes the account records. To guard against error, the reaper can be configured

with a delay so that it will wait for a specified period of time before it starts removing records.

• Container and Object Updaters: Container updater consistency process is responsible for

keeping the container listings up-to-date in the accounts. Additionally, it updates the object

count, container count, and bytes used in the account metadata. Besides, Object updater up-

dates the container listing as well as the object count and bytes used in the container metadata.

• Object Expirer: This process allows designated objects to be automatically deleted at a

certain time.

These components and processes of Swift can be used for performing different operations such as

CHAPTER 2. BACKGROUND 23

PUT, GET, DELETE, etc. Fig. 2.6, 2.7, and 2.8 depict sequential steps for such operation. Details

of these operations are given in [3].

2.2 Quality of Experience (QoE)

In order to achieve optimal quality of experience (QoE) for lossy image compression, developers must

employ popular QoE techniques. Evaluating a user’s QoE involves considering both objective and

subjective factors. Objective factors encompass parameters at the network layer (such as jitter, packet

loss, and delay) and the application layer (including resolution and frame rate) [45]. These objective

factors determine the visual disparity between an image and its original definition, with resolution

playing a significant role. However, subjective factors are more intricate in nature. Subjective factors

extend to users’ psychological conditions, preferences, and profile information (such as age and gender).

For subjective and objective measurements of QoE, commonly used image quality metrics are [46,47]

as follows:

2.2.1 MOS

In accordance with ITU-T Recommendation P.910, the Mean Opinion Score (MOS) is selected as

the scoring criterion for subjective QoE measurement, representing the assessment provided by a test

panel. In the realm of multimedia communication, the perceived quality typically determines whether

the experience is considered good or bad. Alongside qualitative descriptions such as ‘good’ or ‘very

bad’, there exists a numerical method for expressing quality, known as the Mean Opinion Score (MOS).

MOS provides a numerical indication of the perceived quality of transmitted and compressed media

after being processed by codecs.

MOS is expressed in one number, from 1 to 5, 1 being the worst and 5 the best. MOS is quite

subjective, as it is based on figures that result from what is perceived by people during tests. However,

there are software applications that measure MOS on networks. The MOS is expressed on a five-point

scale (in Figure 2.9), where-

• 5 = excellent

• 4 = good

• 3 = fair

CHAPTER 2. BACKGROUND 24

• 2 = poor and

• 1 = bad

. The minimum threshold for acceptable quality corresponds to a MOS of 3.5 [48]. Due to the human

tendency to avoid perfect ratings (now reflected in the objective approximations), somewhere around

4.3 - 4.5 is considered an excellent quality target.

Figure 2.9: MOS calculation depends on an user [6]

2.2.2 PSNR

Peak-Signal-to-Noise-Ratio gives the ratio (in dB) between power of the original signal and power of

a reconstructed compressed signal. PSNR is usually derived via mean squared error (MSE) between

two signals in relation to the maximum possible luminance of images. MSE and PSNR are calculated

as [46,47]:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (2.1)

PSNR = 10 log10

(
MAXI

2

MSE

)
(2.2)

Equation 4.1 and 2.2 present equations of MSE and PSNR of a noise-free m× n monochrome image

I and its noisy approximation K. Here, MAXI is the maximum possible pixel value of the image.

Although PSNR may not always accurately reflect the QoE, as demonstrated in [49], it continues to

be a popular method to evaluate quality difference among videos.

CHAPTER 2. BACKGROUND 25

2.2.3 SSIM

Structural Similarity Index (SSIM) is a perceptual metric that quantifies image quality degradation

caused by processing such as data compression or by losses in data transmission. It is a full reference

metric that requires two images from the same image capture — a reference image and a processed

image (in Figure 2.10).

Figure 2.10: Structural Similarity Index measurement [7]

Structural Similarity Index [50] uses a structural distortion based measurement approach. Structure

and similarity in this context refer to samples of the signals having strong dependencies between

each other, specially when they are close in space [51]. Here, the rationale is that human vision is

specialized in extracting structural information from the viewing field, not in extracting errors.

2.2.4 VQM

The Video Quality Metric, as referenced in [52], is a measurement that assesses the perceptual impact

of various image impairments in videos. These impairments include blurring, jerky or unnatural

motion, global noise, block distortion, color distortion, and combinations thereof. Video quality is a

characteristic of a video signal as it traverses a transmission or processing system, quantifying the

perceived degradation in comparison to the original source video. When video processing systems

are employed, they may introduce certain distortions or artifacts into the video signal. However,

CHAPTER 2. BACKGROUND 26

the extent of these distortions can vary depending on the complexity of the content and the selected

parameters for processing.

The extent of degradation in video quality can vary, and whether it is perceivable or acceptable to an

end user depends on individual preferences. Determining a universally acceptable quality level for all

users is challenging, but it remains an important goal in video quality evaluation studies. It is crucial

to understand the various types of visual degradations or artifacts in terms of their annoyance factors

and to evaluate the perceived quality of a video from the end user’s perspective.

The Video Quality Metric (VQM) is also utilized for comparing two interpolated images. In summary,

higher Mean Opinion Score (MOS), higher Peak Signal-to-Noise Ratio (PSNR), higher Structural

Similarity Index (SSIM), and lower Video Quality Metric (VQM) values indicate better quality for

multimedia data, such as images and videos.

CHAPTER 2. BACKGROUND 27

Part I: Image Loading and Retrieval from Cloud
at Low-BW Context

Chapter 3

Orchestrating Image Retrieval and

Storage over A Cloud System

3.1 Introduction

With so many applications, multimedia communication over the cloud is gaining significant interest in

recent times [11,53]. These systems often leverage various open-source projects for faster and storage

efficient access to image data, which is a critical component in multimedia communication over the

Internet today.

There exists many formats to store images, among which JPEG is the most popular [54]. JPEG is

used by almost all image-capturing devices today. In 2015, 7 billion images were produced in JPEG

format every day [55], which is much higher now. The number of images stored in JPEG format from

2022 to 2023 is expected to increase by 10.7%. Besides, 74.2% of the websites use JPEG as their

image format. Thus, as there is a huge amount of data stored in this format, and as such, optimizing

retrieval of JPEG images is of utmost significance today.

JPEG performs lossy compression using an algorithm called DCT (Discrete Cosine Transform). For

performing JPEG operations, baseline method is mostly used. This method works by encoding all the

pixels sequentially. It produces the highest compression ratio and guarantees the best image quality.

A less used method is Progressive JPEG (PJPEG). It works by loading lower frequency pixels of an

image (or a low-quality presentation of the image) first. Later, it refers to the higher frequency pixels

28

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 29

Figure 3.1: Average bytes per page by content type [8]

of the image. It shows a faster preview of the images. Hence, Progressive JPEG offers advantages

under bandwidth-constrained environments.

Investigating the notion of Progressive image loading and retrieval has gained great interest in the

research community in recent times [19]. Research studies [21, 56] in this regard mostly explore

Progressive images’ performance from the perspective of high-bandwidth network connections. How-

ever, slow Internet connections and limited bandwidths are a reality in many countries all over the

world [57]. The user experience has become very important in recent years, as the Internet traffic keeps

increasing (more so due to the recent COVID-19 pandemic [58]). Accordingly, to enhance the level of

user experience, the performance of Progressive image loading and retrieval in a cloud environment

needs to be improved even sustaining slow Internet connections and limited bandwidths.

In the case of Progressive Image Retrieval, the existing method for encoding PJPEG consists of

loading 7 DC coefficient bits in the First Scan [14]. As the DC coefficient (pixel) usually contains

high-magnitude values, it takes substantial time to load the 7 bits. To decrease the loading time,

one way is to load a lower number of DC coefficient bits that can provide a solution for Faster Image

Retrieval. Till now, to the best of our knowledge, no research study focuses on this aspect towards

achieving better user experiences through performing faster Progressive image loading even under

bandwidth constraints. Besides, existing research studies are also yet to focus on this important realm

in multimedia cloud operation and communication covering Faster Image Retrieval using progressing

schemes sustaining the bandwidth limitation. This is equally applicable to popular OpenStack-like

systems such as SPMS (Secure Processing aware Media Storage) [11].

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 30

To address this, in this Chapter, we propose a new Progressive Scan Script using fewer bits in the First

Scan. We encode only 4 DC coefficient data bits in the First Scan without degradation in the image

quality. Hence, it shows a much faster visualization of the image. User Waiting Time significantly

decreases to 54% after using our new Script. A potential downside of the Scan Script is that it tends

to make image size larger. Hence, we also propose a PJPEG lossy Architecture to overcome the

drawback by reducing image file size.

Based on our study, we make the following set of contributions in this Chapter:

• We propose a new Scan Script for Faster Image Retrieval. Our proposal is inspired by a thor-

ough investigation of the open-source libjpeg library [43] and optimization of scan scripts for

Progressive JPEG.

• To overcome a potential downside of our proposed Scan Script of making image size larger, we

propose a new lossy PJPEG architecture to produce smaller-sized image files.

• We implement our proposed architecture in a real testbed comprising a high-configuration server

in Canada and a client in Bangladesh, which embraces the notion of a private cloud. Besides,

our testbed setup realizes limited bandwidth and slow Internet connection perspectives. In the

process of implementing the testbed, we elaborate system design and deployment details of the

proposed architecture.

• We conduct rigorous experimentation over the testbed setup to evaluate the performance of

our proposed architecture. We compare our experimental results against that of alternative

solutions over various devices. The comparison confirms the better performance of our proposed

architecture compared to that of the existing alternative solutions.

• Further, we compare the performance of our proposed work with that of other state-of-the-

art cloud applications such as Dropbox and Google Drive. Our results demonstrate superior

performance than the default image loading methods of the state-of-the-art cloud applications.

Nonetheless, we also compare advantages of our proposed approach compared to other recent

state-of-the-art research studies.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 31

3.2 Related Work

Fetching large images from public storage systems to own processing systems and then processing

those images in the own processing systems — both appear to be expensive and time-consuming. Our

previous work [59] focus to retrieve image efficiently and securely in a private cloud. We integrate

resizing and encryption–decryption algorithms as a secured proxy service combined with a cloud

file sharing environment named Swift. High-resolution images often take a substantial amount of

time to load with average network bandwidth speed. In cases, it even considerably takes longer

on mobile devices over wireless connections. Hence, many research studies focus on partial visual

contents for better user experience. Study [20] presents CBIR (Content-Based Image Retrieval)

system that achieves coarse-to-fine progressive RS (Remote Sensing) image description and retrieval

in the partially decoded JPEG-2000 compressed domain. Study [60] proposes a cloud-based face video

retrieval system with deep learning. Studies [61,62] proposed a progressive image transmission scheme

based on strategic decomposition and block truncation coding, respectively.

It is now popular to access images progressively [63]. A study of over 10, 000 JPEG images from all

over the web reveals that images of file size 10KB or higher have a better chance of being smaller

when the Progressive JPEG method is used [64]. Studies [21, 56] present results from image-loading

experiments that offer quantitative comparisons between common loading methods. Finally, they

suggest a simple spiral variant. Open-source library libjpeg [43] contains the Scan Scripts. Scan

Script is mainly responsible for progressive image loading. Besides, another study [65] focuses on field

devices that rely on battery power to further economize on data transmissions. They do it to prolong

deployment duration with particular use cases in wireless sensor networks. Moreover, study [66]

approaches for tackling energy-beneficial VSN (Visual Sensor Networks) constraint problems include

adapting JPEG by exploiting the DCT (Discrete Cosine Transform) energy compaction property.

Their exploitation is performed by processing only a portion of each block of 8× 8 DCT coefficients

of the captured images using the global and local methods.

They propose that transmitting a subset of image data could potentially enhance the battery life of

power-constrained devices. Such kind of progressive refinements exists in applications ranging from

telemedicine, security, and surveillance where an initial assessment can lead to further exploration of

only a small region. Hence, they propose to select minimum information for a coarser reconstruction

by transmitting only the DC coefficients as the first or base layer. After, they will transmit more data

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 32

Figure 3.2: JPEG encoding technique

representing an entire image or a selected region-of-interest (RoI).

To the best of our knowledge, our proposed methodology is the first to focus on faster and smoother

progressive image retrieval for a bulk amount of images even in the presence of bandwidth-constrained

scenarios. As we have discussed previously, to overcome our scan scripts drawback, we work with

PJPEG compression. Researchers have always been trying to make JPEG compression more efficient

in many different ways [67]. Study [68] proposes reducing redundant data in the DCT domain by

performing selective quantization and optical encoding for Baseline JPEG. Study [69] suggests im-

age pre-processing steps to improve standard JPEG compression ratio by increasing color repetition

probability. Study [70] modify JPEG based on quick DCT that removes the majority of zeros. More-

over, Study [71] propose to use segmented entropy encoding. Lastly, study [72] shows that dynamic

resizing with progressive JPEG saves 2.5× read data over baseline JPEG at a Peak Signal-to-Noise

Ratio (PSNR) of 32 dB.

3.3 Background

JPEG compression is a lossy compression. JPEG deletes data bits while performing different processes

like chroma subsampling, quantization, entropy encoding, etc. In Fig. 3.2, we see the encoding process

of JPEG compression. To start, JPEG turns images from RGB to a different color space named

Y CbCr. JPEG uses this color space to delete specific data bits. Y or luminance is the light intensity.

Cb and Cr represents red chrominance, and blue chrominance respectively. Our eyes are more sensitive

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 33

Table 3.1: The order to scan DCT coefficients [13]

0 1 5 6 14 15 27 28
2 4 7 13 16 26 29 42
3 8 12 17 25 30 41 43
9 11 18 24 31 40 44 53
10 19 23 32 39 45 52 54
20 22 33 38 46 51 55 60
21 34 37 47 50 56 59 61
35 36 48 49 57 58 62 63

to luminance. Whereas, less sensitive to sudden changes in chrominance components [9,13]. Fig. 3.3

shows changes in components after subsampling by 30%. Our eyes cannot detect sudden changes in

chrominance. Hence, JPEG divides only the chrominance information by a factor of 2. This process

is called chroma subsampling.

Figure 3.3: Subsampling by 30% [9]

Next, JPEG divides a picture into chunks of 8× 8 blocks. Sequence for pixels in a 8× 8 is shown in

Table 3.1. Every block contains 64(0 − 63) pixels and every pixels consist of 3 components(Y , Cb,

Cr). Pixel values are from 0-255. JPEG subtracts every pixel value by 128.

Later, JPEG uses DCT to convert 8× 8 block components to a frequency domain.

F (u, v) = 1
4C(u)C(v)

∑7
x=0

∑7
y=0

f(x, y) cos
[
π(2x+1)u

16

]
cos

[
π(2y+1)v

16

]
for u = 0, . . . , 7 and v = 0, . . . , 7

where C(k) =

 1√
2

for k = 0

1 otherwise

(3.1)

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 34

Figure 3.4: Discrete Cosine Transform (DCT) [10]

Table 3.2: The quality factor [13]

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Equation 3.1 [73], [74] represents DCT. JPEG gets 64 new coefficients or pixel values after using

DCT for all of the components. The First Coefficient of a block represents the DC coefficient. This

coefficient shows the general intensity of the whole image block. AC coefficients change the intensity

and have a much less magnitude than the DC coefficient.

In Fig. 3.4, we see, from the DC coefficient, as we go horizontally by moving right or vertically

by moving down to AC coefficients, the frequency keeps increasing. DC coefficient has much more

effective than AC coefficients as our eyes are not good at differentiating high-frequency data bits.

JPEG further reduces these coefficients by dividing these coefficients by quantization matrix. Quanti-

zation matrix values are lower for DC and its closer AC coefficients. There are separate quantization

matrix tables for luminance and chrominance. In Table 3.2, we see the quantization table for lumi-

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 35

nance. As shown In Equation 3.2, JPEG only preserves the rounded values after the division. The

data we lost in the process of rounding value is not renewable. That is why JPEG is a lossy compres-

sion. This process is called quantization. Quantization helps to get lower values for high-frequency

AC coefficients.

Fq(u, v) = Round

(
F (u, v)

Q(u, v)

)
(3.2)

The last step for encoding JPEG is entropy encoding. Entropy encoding encodes coefficients with

the same values in a zigzag format. The zigzag format is helpful to encode the image from a lower

frequency to higher frequency data bits. Normally, Huffman Coding is used for entropy encoding. To

decode the image, the processes are done again reversely.

The baseline method and the Progressive method encode pixels differently. The baseline method

encodes images block by block. Where Progressive JPEG encodes specific pixels for every block script

by script. Many social sites and websites are now using compressed and resized JPEG files to cover

diversified remote devices [11, 53]. Hence, we briefly present the library of JPEG (libjpeg) [43] and

OpenStack Swift-like media storage systems to provide a background related to our approach.

Libjpeg: Libjpeg library (written in C) is used in many platforms for handling JPEG image data

format through implementing JPEG codec (encoding and decoding). It performs conversions between

images inserting and exerting textual comments and transforming JPEG files using libjpeg-turbo [43].

SPMS (Secure Processing aware Media Storage): Recently, many media cloud storage such

as SPMS are deployed using OpenStack Swift. Swift is an open-source object storage system having

some special features. Such as eventual consistency, high availability, fault tolerance, replication, etc.

It has two types of servers-proxy for management and processing and 3 storage servers (account,

container, and object) for storing database and data objects [3]. Besides, the SPMS system has some

special features of media securing, image data conversion to PJPEG, image resizing, video transcoding

and resizing to various sizes, etc [11]. As SPMS-like media storage systems are used for multipurpose

media management tasks (Such as video streaming and storing many versions of images), optimizing

multimedia retrieval comes into play.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 36

Figure 3.5: An example of 8 x 8 block JPEG structure of Luma and Chroma components. Here, the
scan iteration sample is explained for progressive JPEG type images.

3.4 System Design and Implementation

We evaluate the performance of our proposed architectures through a real implementation. First, we

briefly present our experimental testbed setup. Later, we present experimental results and findings

for our architectures. Lastly, we compare our method with other existing studies.

3.4.1 Faster Image Retrieval

To ensure Faster Image Retrieval, partial loading is essential. Since Progressive JPEG allows partial

encoding and decoding, we use Progressive JPEG. A Progressive JPEG is loaded Scan by Scan. The

First Scan sets the parameter for the number of bits it will encode in the first partial loading. Hence,

the less bit we use in the first Scan, the faster we load the first partial image. However, loading fewer

bits can produce bad image quality. Our target is to encode a minimal number of bits for the first

Scan while maintaining the visual quality same as the default Scans produced image.

For a better understanding of the architecture, here, we first present the structure of JPEG images

in Fig. 3.5. The 0th pixel contains DC particle or coefficient and 1st to 63rd pixels contain AC

coefficients [56]. Scan iterations over the pixels are represented with some variables. For example,

each Scan Script can be represented by c : x − y,m, e. Here, c : 0, 1, 2 (0 : Y component, 1 : Cr

component, and 2 : Cb component). x − y represents the pixel range that needs to be scanned for

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 37

each 8 x 8 block. Thus, 0 − 0 means scanning 0thth pixel for each block. Additionally, m : refers to

Scan ‘m′ last bits, i.e., bits after this index need to be scanned. Here, ‘0′ refers to the beginning or

MSB. Nonetheless, e refers to skip ‘e′ bits counting from LSB. In Fig. 3.5, we present the sample of

0thth pixel for Y component. Here, we select all the DC coefficients.

We have already seen in Fig. 3.5 how a scan works, Now, we break down the Scan Scripts. Table 3.4

for instance, contains a total of 17 Scans. The First Scan is 0, 1, 2 : 0− 0, 0, 7. It instructs the libjpeg

library to encode only the first pixels (0− 0) of the luma and chroma components (0, 1, 2). Encoding

starts from the MSB and excludes 7 LSBs (0, 7). Afterwards, the second Scan (0, 1, 2 : 0−0, 7, 6) tells

to start scanning from 7thth MSB and ignore last 6 LSB’s. Therefore, it completes scanning all the

bits from the first bytes (0− 0) for each component in the 8thth Scan. In 9thth Scan (0 : 1− 27, 0, 1),

it scans only the luma components from each blocks. It instructs to encode pixel 1 to pixel 27.

Encoding starts from 0thth MSB . It skips the last LSB. In the next two Scans: 10th (2 : 1− 27, 0, 1)

and 11th (1 : 1−27, 0, 1); it encodes the red chrominance and next blue chrominance correspondingly.

Human eyes are more sensitive to red particles than to blue ones. Therefore, we firstly encode red

chrominance and then the blue chrominance. Afterwards, 12thth Scan (0 : 28− 63, 0, 1), 13thth Scan

(2 : 28 − 63, 0, 1) and 14thth Scan (1 : 28 − 63, 0, 1); encode first 7 MSBs (0, 1) for the remaining

pixels (28 − 63) for luma (0), red (2) and blue (1) components respectively. Final 3 scans: 15th

(0 : 1 − 63, 1, 0), 16th (2 : 1 − 63, 1, 0) and 17th (1 : 1 − 63, 1, 0); encode the remaining last LSB

(1, 0) for all of the remaining pixels (1st to 63rd) for luma, red and blue components correspondingly.

Finally, it completes all of the sequential rounds for the progressive conversion of the given baseline

image. In the later Scan approaches, from Table 3.5 to Table 3.11, we have reduced the exclusion bit

count in the first Scan. It results in loading more bits. This reduced exclusion of bit counts, making

the images bigger in size even in the first Scan. From the corresponding tables, we see that the size

for the corresponding images increases eventually after each round of the progressive Scans. At the

end of the last Scan, it gets its full size.

Default Scan Script iterations are available online.1. First Scan of Default Scan Script is 0, 1, 2 : 0−

0, 0, 1. Hence, the default Scan Script encodes 7 bits from the DC coefficient for all three components

in the First Scan. Our target is to encode the lowest number of bits for the First Scan with maximum

visual quality. Hence, we make eight different Scan Scripts (SS1 to SS8) by increasing bit by bit

1https://github.com/libjpeg-turbo/libjpeg-turbo/blob/1.0.x/jcparam.c (Line No. 508-526)

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 38

gradually for the First Scan. For example, we encode 1 bit from DC coefficient in the First Scan

of SS1, 2 bits for SS2, and 8 bits SS8, etc. For maximum visual quality, we select both luma (or

luminance) and chroma (or chrominance) components; otherwise, the First Scan will be only black

and white.

The First Scan for Scan Script 1 (SS1) is (0, 1, 2 : 0− 0, 0, 7), the First Scan for Scan Script 2 (SS2)

is (0, 1, 2 : 0− 0, 0, 6), the First Scan for Scan Script 8 (SS8) is (0, 1, 2 : 0− 0, 0, 0), etc. Out of these

8 Scan Scripts, to challenge the default Scan Script, we need a script that encodes fewer bits in the

first Scan and produces image quality the same as the default Scan Script’s First Scan. Our proposed

First Scan Script will be as follows:

SSs1 = min
i∈A

(Vqi+1 − Vqi), where A ={j} such that SSzj ≤
SSzj−min + SSzj−max

2
(3.3)

We find that encoding less than 4 bits in the first Scan does not produce the image quality we want.

Again, encoding more than 4 bits does not make our image quality better. We represent SS as the

Scan Scripts and SSs as the Scan number of the Scan Scripts. SSs1 represents the first Scan of the

Scan Scripts. SSzj represents the size of the image using the first Scan. Vqi represents the visual

quality of the ith Scan.

However, there is a drawback to this architecture. The lower number of bits in the first scan results

in a higher number of scan iterations. For example, for the SS1, we have 17 scan iterations, where

our default scan script has only 10 iterations. It creates an increased file size for the corresponding

image. To solve this issue, in the next subsection, we are proposing a new compression architecture

for Progressive JPEG. We will present the performance evaluation in an SPMS-like system.

Scan Script 4(SS4) encodes 4 bits in the first scan. We propose to use SS4 rather than the default

Scan Script. SS4 have 14 Scans where the first Scan is 0, 1, 2 : 0− 0, 0, 4. Since we are trying to work

on faster image retrieval, we focus on the first Scan; several Scans are not important.

A higher number of bits take more time to encode. we propose to encode only 4 bits rather than 7

bits of the DC coefficient in the first Scan for each component (Y,Cb, Cr). Hence, the user will be able

to load the first Scan faster. Therefore, the first Scan (SSs1) of Scan Script 4 (SS4) is much faster

than the default Scan Script.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 39

3.4.2 Lossy PJPEG Architecture

JPEG compression is a lossy compression. In JPEG, many databits from the original image are

deleted. JPEG deletes data bits while performing different processes like chroma subsampling, quan-

tization, entropy encoding, etc. In Fig. (3.2), we see the encoding process of JPEG compression. To

start, JPEG turns images from RGB to a different color space named Y CbCr. JPEG uses this color

space to delete specific databits. In Y CbCr, if we sort the components in descending order by eyes

sensitivity, the serial will appear like this: Y (Luminance), Cb (Blue Difference), Cr (Red Difference).

About 64% of the cones are red-sensitive, and about 2% are blue-sensitive [75,76]. Moreover, bright-

ness is more sensitive than colors. Less sensitive data bits are less noticeable to our eyes. JPEG

takes advantage of this by removing a lot of color data bits from an image. This technique is called

Chroma Subsampling. Another key point of JPEG is, it removes some of the high-frequency data bits

from the image. Our eye is more sensitive to low-frequency data. To some extent, our eyes can not

differentiate if the high-frequency data bits are removed from an image. To determine to what extent

we can remove data bits, we try to use DCT to detect the higher frequency and the lower frequency

pixels. Later, we delete some of the data bits by using quantization. [77].

Consequently, JPEG divides a picture into chunks of 8 × 8 blocks. JPEG needs 8 x 8 blocks to

perform DCT on them. Every block contains 64 coefficients and every coefficients has 3 components

(Y,Cb, Cr). To start, We subtract −128 from each of the pixel components to center all the values to

0. We find new values for our 8 x 8 blocks. Afterwards, we use Fast DCT (Discrete Cosine Transform)

on our 8 × 8 matrix.

In (3.1), we see the equation of DCT [73], [74]. DCT is an algorithm that uses mathematical terms of

cosine waves to transform values. In 8 × 8 blocks, DCT makes 64 cosine waves and sums all of them

up. Hence, the final cosine wave of the block has some impact from all the 64 coefficients.

After using DCT, we find our new transformed 64 values, and we now have one Direct Current (DC)

coefficient and 63 other Alternative Current (AC) coefficients. DC coefficient is the first coefficient

and the most important one. It represents the general intensity of the whole block. DC coefficient

remains flat. Other 63 coefficients excluding DC coefficient are Alternative Coefficients(AC). AC

coefficients have less impact on the image as it only changes the intensity. If we take a closer look at

Fig. 3.4, we see, in DCT, from the DC coefficient as we go horizontally by moving right or vertically

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 40

(a) DCT Frequency coefficients (b) Skipped Bits for Y and Cr component

Figure 3.6: Separate quantization matrix tables for luminance 3.6a and chrominance 3.6b

by moving down to AC coefficients, the frequency keeps increasing.

We have our new 64 decimal values. Afterwards, we divide our values by the quantization matrix

for quantization. DCT does not remove any data itself. It only identifies the lower frequency and

higher frequency waves. Quantization is the process of removing the higher frequency data, which

has less contribution to the image. There are separate quantization matrix tables for luminance and

chrominance in Fig. (3.6a) and Fig. (3.6b). To find quantized DCT coefficients, we divide the values

according to the quantization matrix tables. After dividing, we keep only the rounded values, delete

the rest.

The data we just deleted is not renewable. Hence, it is a lossy process. We find the rounded values

are mostly 0 or small numbers for high-frequency components [78]. We observe that the quantization

matrix is smaller for those coefficients which are close to DC coefficients. Since we divide lower

frequency components with small numbers, we get bigger (in a sense, it takes more bits to represent)

values. Again, we divide the higher frequency components with larger numbers, resulting in smaller

(in a sense, fewer bits to represent) numbers.

We modify our proposed Scan Script 4 (SS4) and propose a lossy PJPEG architecture. First, We

identify comparatively lower frequency coefficients. In Fig. 3.7a, we denote comparatively lower fre-

quency pixels as LF, and comparatively higher frequency pixels as HF. We identify them by rigorously

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 41

(a) DCT Frequency coefficients (b) Skipped Bits for Y and Cr

component
(c) Skipped Bits for Cb

component

Figure 3.7: In Fig. 3.7a identifies the lower frequency (LF) and higher frequency (HF) coefficients.
(1, 1) is the DC coefficient. Fig. 3.7b and Fig. 3.7c show the number of data bits we skip from each

of the coefficients. Skipped bits are the same for component Cr and Y .

experimenting with the script. The pixels that have a huge impact on the image while skipping a

data bit, we consider these as LF. Hence, we denote Coefficients 0−5, 8−12, 16−20, 24−27, 32−33

as LF. Coefficients 6− 7, 13− 15, 21− 23, 28− 31, 34− 63 are HF.

We do not skip any bits for pixels 0− 5, 8− 12, 16− 20, 24− 27, and 32− 33. They have the highest

impact on the image as it includes the DC and its closest AC coefficients. Later, We find 13− 15 and

21 − 23; these pixels have a higher impact on the image compared to other AC coefficients. Hence,

we skip only 1 bit from these pixels for all three components. For pixels 6 − 7, 28 − 31 and 34 − 39,

we skip 2 bits for all of the components. Cb is the least sensitive color to our eyes. From 40 − 63

pixels, we skip 3 bits for Cb. Only 2 bits for Y and Cr. Default Scan Script do not skip these bits

and produce a larger image file size.

Fig. 3.7b and Fig. 3.7c show the number of data bits we skip each of the pixels. We skip 0 bits from

0th - 5th, 8th - 12th, 16th - 20th, 24th - 27th, 32nd - 33rd coefficients, 1 bit from 13th - 15th, 21st - 23rd

coefficients, 2 bits from 6th - 7th, 28th - 31st, 34th - 39th coefficients for all the three components. Last,

we skip 2 bits for Y and Cr, 3 bits for Cb from 40th - 63rd coefficients. We skip the bits from LSB.

The bits we are skipping are deleted from the image.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 42

Table 3.3: Cumulative size for five different images using default Scan Script (SS) [14]

Scan Script Size
Image1 Image2 Image3 Image4 Image5

0,1,2: 0-0, 0, 1; 41K 346.75K 271.71K 1.19M 2.4M

0: 1-5, 0, 2; 128K 713.06K 657.11K 2.56M 5.4M

2: 1-63, 0, 1; 145K 836.36K 803.46K 2.92M 5.8M

1: 1-63, 0, 1; 163K 976.48K 947.92K 3.42M 6.3M

0: 6-63, 0, 2; 267K 1.08M 1.09M 4.03M 8.4M

0: 1-63, 2, 1; 406K 1.45M 1.60M 5.40M 14M

0,1,2: 0-0, 1, 0; 413K 1.51M 1.64M 5.67M 15M

2: 1-63, 1, 0 ; 433K 1.63M 1.76M 6.42M 15M

1: 1-63, 1, 0 ; 455K 1.75M 1.89M 7.15M 16M

0: 1-63, 1, 0 ; 636K 1.89M 2.77M 9.39M 25M

Table 3.4: Cumulative size for five images using SS1

Scan Script Size
Image1 Image2 Image3 Image4 Image5

0,1,2: 0-0, 0, 7; 9.1K 84.24K 64.83K 317.19K 734K

0,1,2: 0-0, 7, 6; 17K 144.15K 107.01K 597.58K 1.4M

0,1,2: 0-0, 6, 5; 24K 204.05K 148.32K 878.17K 2.1M

0,1,2: 0-0, 5, 4; 30K 263.82K 189.39K 1.13M 2.9M

0,1,2: 0-0, 4, 3; 37K 323.33K 230.44K 1.40M 3.6M

0,1,2: 0-0, 3, 2; 43K 382.75K 271.46K 1.67M 4.2M

0,1,2: 0-0, 2, 1; 50K 442.05K 312.49K 1.94M 4.9M

0,1,2: 0-0, 1, 0; 57K 501.34K 353.49K 2.21M 5.5M

0: 1-27, 0, 1 ; 381K 1.34M 1.42M 5.63M 16M

2: 1-27, 0, 1 ; 397K 1.46M 1.56M 5.99M 16M

1: 1-27, 0, 1 ; 415K 1.60M 1.70M 6.49M 17M

0: 28-63, 0, 1 ; 431K 1.60M 1.70M 6.49M 17M

2: 28-63, 0, 1 ; 431K 1.60M 1.70M 6.49M 17M

1: 28-63, 0, 1 ; 431K 1.60M 1.70M 6.49M 17M

0: 1-63, 1, 0 ; 612K 1.74M 2.58M 8.73M 26M

2: 1-63, 1, 0 ; 632K 1.86M 2.71M 9.48M 27M

1: 1-63, 1, 0 ; 654K 1.99M 2.84M 10.21M 28M

3.5 Performance Evaluation

We evaluate the performance of our proposed architectures through a real implementation.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 43

Table 3.5: Cumulative size for five images using SS2

Scan Script Size
Image1 Image2 Image3 Image4 Image5

0,1,2: 0-0, 0, 6; 12K 105.72K 84.84K 362.15K 802K

0,1,2: 0-0, 6, 5; 19K 165.63K 126.15K 642.74K 1.5M

0,1,2: 0-0, 5, 4; 26K 225.40K 167.21K 923.05K 2.3M

0,1,2: 0-0, 4, 3; 32K 284.91K 208.27K 1.17M 3.0M

0,1,2: 0-0, 3, 2; 39K 344.32K 249.29K 1.44M 3.6M

0,1,2: 0-0, 2, 1; 46K 403.63K 290.32K 1.71M 4.3M

0,1,2: 0-0, 1, 0; 52K 462.91K 331.31K 1.98M 4.9M

0: 1-27, 0, 1; 377K 1.30M 1.39M 5.40M 15M

2: 1-27, 0, 1; 393K 1.42M 1.54M 5.76M 16M

1: 1-27, 0, 1; 411K 1.56M 1.68M 6.26M 16M

0: 28-63, 0, 1; 426K 1.56M 1.68M 6.26M 17M

2: 28-63, 0, 1; 427K 1.56M 1.68M 6.26M 17M

1: 28-63, 0, 1; 427K 1.56M 1.68M 6.26M 17M

0: 1-63, 1, 0; 607K 1.70M 2.56M 8.50M 26M

2: 1-63, 1, 0; 628K 1.83M 2.69M 9.25M 26M

1: 1-63, 1, 0; 650K 1.95M 2.82M 9.98M 27M

Table 3.6: Cumulative size for five images using SS3

Scan Script Size
Image1 Image2 Image3 Image4 Image5

0,1,2: 0-0, 0, 5; 17K 138.02K 115.44K 445.45K 921K

0,1,2: 0-0, 5, 4; 24K 197.79K 156.51K 725.76K 1.7M

0,1,2: 0-0, 4, 3; 30K 257.29K 197.56K 0.98M 2.4M

0,1,2: 0-0, 3, 2; 37K 316.71K 238.58K 1.25M 3.0M

0,1,2: 0-0, 2, 1; 43K 376.02 279.61K 1.52M 3.7M

0,1,2: 0-0, 1, 0; 50K 435.30K 320.61K 1.79M 4.4M

0: 1-27, 0, 1; 374K 1.28M 1.38M 5.21M 15M

2: 1-27, 0, 1; 391K 1.40M 1.53M 5.56M 15M

1: 1-27, 0, 1; 408K 1.53M 1.67M 6.07M 16M

0: 28-63, 0, 1; 424K 1.54M 1.67M 6.07M 16M

2: 28-63, 0, 1; 424K 1.54M 1.67M 6.07M 16M

1: 28-63, 0, 1; 425K 1.54M 1.67M 6.07M 16M

0: 1-63, 1, 0; 605K 1.68M 2.55M 8.30M 25M

2: 1-63, 1, 0; 625K 1.80M 2.68M 9.06M 26M

1: 1-63, 1, 0; 647K 1.92M 2.81M 9.79M 27M

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 44

Table 3.7: Cumulative size for five images using SS4 (Proposed)

Scan Script Size
Image1 Image2 Image3 Image4 Image5

0,1,2: 0-0, 0, 4; 22K 186.71K 150.79K 577.73K 1.1M

0,1,2: 0-0, 4, 3; 29K 246.22K 191.85K 857.32K 1.8M

0,1,2: 0-0, 3, 2; 36K 305.64K 232.87K 1.10M 2.5M

0,1,2: 0-0, 2, 1; 42K 364.94K 273.90K 1.37M 2.1M

0,1,2: 0-0, 1, 0; 49K 424.23K 314.89K 1.65M 3.8M

0: 1-27, 0, 1; 373K 1.27M 1.38M 5.06M 14M

2: 1-27, 0, 1; 389K 1.39M 1.52M 5.42M 15M

1: 1-27, 0, 1; 407K 1.52M 1.66M 5.92M 15M

0: 28-63, 0, 1; 423K 1.52M 1.66M 5.92M 15M

2: 28-63, 0, 1; 423K 1.52M 1.66M 5.92M 15M

1: 28-63, 0, 1; 423K 1.52M 1.66M 5.92M 15M

0: 1-63, 1, 0; 604K 1.67M 2.54M 8.16M 25M

2: 1-63, 1, 0; 624K 1.79M 2.67M 8.91M 25M

1: 1-63, 1, 0; 646K 1.91M 2.80M 9.64M 26M

Table 3.8: Cumulative size for five images using SS5

Scan Script Size
Image1 Image2 Image3 Image4 Image5

0,1,2: 0-0, 0, 3; 28K 238.35K 190.20K 743.16K 1.4M

0,1,2: 0-0, 3, 2; 35K 297.77K 231.22K 0.99M 2.1M

0,1,2: 0-0, 2, 1; 42K 357.07K 272.25K 1.26M 2.8M

0,1,2: 0-0, 1, 0; 48K 416.36K 313.24K 1.53M 3.4M

0: 1-27, 0, 1; 373K 1.26M 1.38M 4.95M 14M

2: 1-27, 0, 1; 389K 1.38M 1.52M 5.31M 14M

1: 1-27, 0, 1; 407K 1.52M 1.66M 5.81M 15M

0: 28-63, 0, 1; 422K 1.52M 1.66M 5.81M 15M

2: 28-63, 0, 1; 423K 1.52M 1.66M 5.81M 15M

1: 28-63, 0, 1; 423K 1.52M 1.66M 5.81M 15M

0: 1-63, 1, 0; 603K 1.66M 2.54M 8.05M 24M

2: 1-63, 1, 0; 624K 1.78M 2.67M 8.80M 25M

1: 1-63, 1, 0; 646K 1.91M 2.80M 9.53M 26M

3.5.1 Experimental Testbed Setup

We use real high-resource machines for deploying testbed servers in Canada. We create these servers

using virtual machines, hosted in a physical data center. Here, we use two proxy servers, three account-

container servers, three object servers for the media storage cluster. We use AMD Opteron 62xx class

CPU, and OS Cent-OS 7. The memory and disk configurations of our Swift servers here cover- 1) two

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 45

Table 3.9: Cumulative size for five images using SS6

Scan Script Size
Image1 Image2 Image3 Image4 Image5

0,1,2: 0-0, 0, 2; 35K 294.39K 231.18K 0.94M 1.9M

0,1,2: 0-0, 2, 1; 41K 353.70K 272.21K 1.21M 2.5M

0,1,2: 0-0, 1, 0; 48K 412.98K 313.20K 1.48M 3.2M

0: 1-27, 0, 1; 372K 1.25M 1.38M 4.89M 14M

2: 1-27, 0, 1; 389K 1.38M 1.52M 5.25M 14M

1: 1-27, 0, 1; 406K 1.51M 1.66M 5.75M 14M

0: 28-63, 0, 1; 422K 1.51M 1.66M 5.75M 15M

2: 28-63, 0, 1; 422K 1.51M 1.66M 5.75M 15M

1: 28-63, 0, 1; 423K 1.51M 1.66M 5.75M 15M

0: 1-63, 1, 0; 603K 1.66M 2.54M 7.99M 24M

2: 1-63, 1, 0; 623K 1.78M 2.67M 8.75M 25M

1: 1-63, 1, 0; 645K 1.90M 2.80M 9.47M 26M

Table 3.10: Cumulative size for five images using SS7

Scan Script Size
Image1 Image2 Image3 Image4 Image5

0,1,2: 0-0, 0, 1; 41K 346.75K 271.71K 1.19M 2.4M

0,1,2: 0-0, 1, 0; 48K 406.03K 312.71K 1.46M 3.1M

0: 1-27, 0, 1; 372K 1.25M 1.38M 4.88M 13M

2: 1-27, 0, 1; 389K 1.37M 1.52M 5.23M 14M

1: 1-27, 0, 1; 406K 1.51M 1.66M 5.73M 14M

0: 28-63, 0, 1; 422K 1.51M 1.66M 5.73M 15M

2: 28-63, 0, 1; 422K 1.51M 1.66M 5.73M 15M

1: 28-63, 0, 1; 422K 1.51M 1.66M 5.73M 15M

0: 1-63, 1, 0; 603K 1.65M 2.54M 7.97M 24M

2: 1-63, 1, 0; 623K 1.77M 2.67M 8.73M 25M

1: 1-63, 1, 0; 645K 1.90M 2.80M 9.45M 25M

proxies each having one 8 GB memory and one 20 GB disk. 2) three account-containers each having

one 8 GB memory and three disks each of 50 GB. 3) three objects having one 8 GB memory and

three disks each of 700 GB. Each server has six 1 GB network interface cards. Fig. 3.8 and Table 3.13

present the experimental setup of our testbed. In addition, we deploy a private media cloud Secure

Processing-aware Media Storage (SPMS) using OpenStack Swift (stable newton branch) with three

replicas (r = 3) and 16384 partitions (p = 16384). There are nine devices for the account, container,

and object ring files. Hence, each device has around 5461 partitions in /srv/node/ < server > folders

(devices are mount in this location according to OpenStack Swift guide [3]). Moreover, we implement

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 46

Table 3.11: Cumulative size for five images using SS8

Scan Script Size
Image1 Image2 Image3 Image4 Image5

0,1,2: 0-0, 0, 0; 48K 397.61K 312.96K 1.45M 3.0M

0: 1-27, 0, 1; 372K 1.24M 1.38M 4.87M 13M

2: 1-27, 0, 1; 389K 1.36M 1.52M 5.23M 14M

1: 1-27, 0, 1; 406K 1.50M 1.66M 5.73M 14M

0: 28-63, 0, 1; 422K 1.50M 1.66M 5.73M 15M

2: 28-63, 0, 1; 422K 1.50M 1.66M 5.73M 15M

1: 28-63, 0, 1; 423K 1.50M 1.66M 5.73M 15M

0: 1-63, 1, 0; 603K 1.64M 2.54M 7.96M 24M

2: 1-63, 1, 0; 623K 1.76M 2.67M 8.72M 24M

1: 1-63, 1, 0; 645K 1.89M 2.80M 9.45M 25M

Table 3.12: MOS and SSIM values of four images for the first Scan of all the 8 Scan Scripts. First
Scan for different eight combinations are denoted as Scan1 - Scan8. MOS is calculated using 25

observers and SSIM is calculated using the VQMT tool [15]

First Scan Avg. MOS SSIM
Images Image1 Image2 Image3 Image4

Scan1 0.51 0.29 0.62 0.60 0.54

Scan2 0.58 0.38 0.69 0.65 0.60

Scan3 0.65 0.42 0.82 0.69 0.65

Scan4 0.67 0.44 0.85 0.69 0.69

Scan5 0.68 0.45 0.87 0.70 0.70

Scan6 0.68 0.45 0.87 0.70 0.70

Scan7 0.68 0.45 0.87 0.70 0.70

Scan8 0.68 0.45 0.87 0.70 0.70

a social site for both mobile and web users. The mobile site contains different features for social

interactions such as free video calls, chats, feeds, stickers, and so on. The site has already experienced

more than 5 million downloads. The images that are saved and processed on this site leverage the

architectures we propose in this Chapter.

In this setup, we upload different types of data from clients to the development server for around eight

months2. Besides, we create 10, 000 accounts and 10, 000 containers in the Swift cluster. We upload

around 1M images and video files in those accounts. Hence, the number of objects (n) is 1M for our

test-bed server. We upload around 1.5TB data. Therefore, total data becomes 1.5TB×3 = 4.5TB in

our development server.

2The users have uploaded objects (images) according to their personal preferences and choice in their real usages.
Thus, all the objects are mostly different as they come from real usages. We choose these images as they represent the

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 47

Figure 3.8: Testbed setup comprising a server in Canada and a client in Bangladesh

Figure 3.9: Comparison of first scan images for eight combinations. Here, Scan1 is (SSs1 of SS1),
Scan2 is (SSs1 of SS2, Scan3 is (SSs1 of SS3), Scan4 is (SSs1 of SS4), Scan5 is (SSs1 of SS5), Scan6

is (SSs1 of SS6), Scan7 is (SSs1 of SS7), and Scan8 is (SSs1 of SS8).

Moreover, we use another web hosting server (Fig. 3.10) for a different purpose. We use this server to

test a real case scenario for the difference between the load time of a normal image and our proposed

algorithms. This server is located in London, UK. The client is located in Dhaka, Bangladesh. It has

30 hops from the client to London through hopping over Kansas, USA. Additionally, it hops to Kansas,

United States, and then to London, UK. Note that, the performance will be affected depending on the

distance between the locations of the client and the server. The loading time will increase by some

milliseconds if the distance gets increased and vice versa. It will exhibit a similar effect in the case of

the hop distance, i.e., the loading time will increase if the number of hops increases. To explore the

real-life testing of our proposed architecture.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 48

Table 3.13: Configuration of machines used in testbed setup

Informations
Proxy
Server

Object
Server

Account-
container

Server

Client
Machine

Architecture x86 64 x86 64 x86 64 x86 64

CPU(s) 16 48 16 1

On-line CPU(s)
list

0-15 0-47 0-15 0

Thread(s) per
core

2 1 2 1

Core(s) per socket 4 12 4 1

Socket(s) 2 4 2 1

NUMA node(s) 2 8 2 1

CPU family 6 16 6 6

Model name

Intel(R)
Xeon(R)

CPU E5620
@2.40GHz

AMD
Opteron-

(tm)
Processor

6174

Intel(R)
Xeon(R)

CPU E5620
@2.40GHz

QEMU
Virtual
CPU

version
1.5.3

CPU MHz 2394.141 2199.967 2394.103 2393.998

Virtualization
Type

VT-x AMD-V VT-x
Full

Storage

impact, we change the location of the server to Singapore minimizing the number of hops from 30 to

11 while keeping the client in Dhaka, Bangladesh. After minimizing the number of hops, we observe

a change of up to 25% difference in the loading time.

We create a custom dataset of 1333 pictures. Our selected dataset includes different sizes, resolutions,

colorful, black and white images. We collect these pictures from datasets published in Kaggle [79], [80].

Table 3.14 shows the number of pictures of different sizes in the dataset.

To further evaluate our architectures, we use the MSCOCO2015 Test Dataset [81], which contains

almost 81, 000 images of various categories.

Furthermore, we use a local virtual machine (Cent-OS 7) to calculate the cumulative size of our

proposed scan scripts. We install libjpeg, libjpeg-turbo, and libjpeg-turbo-utils in the virtual machine

[43]. We use thousands of images of different sizes for testing our proposed Scan Scripts.

We use Structural Similarity Index (SSIM) to calculate image quality to perform an objective-based

evaluation using QoE [47]. For calculating SSIM, we use VQMT software [15] and method available

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 49

Figure 3.10: Testbed server setup to obtain performance of diversified remote devices using the web
hosting server

to calculate SSIM in Scikit-Learn library in Python [82]. A higher SSIM value means more similar to

the original image. Also, we use Python script to find the difference in file size between the original

and compressed image.

3.5.2 Experimental Results

We describe the Experimental Results by our contributions separately.

3.5.2.1 Faster Image Retrieval

Table 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11 present the cumulative size of each Scan files using

default Scan Script and Scan Script 1− 8 for five images. For our benchmarking process, each table

contains the combinations of scanning images while converting them from baseline to progressive.

Furthermore, we upload them into our cloud. Later, comparing their sizes after each phase of the

Scans.

In Fig. 3.9, we present three images (Image1 of 670 KB, Image5 of 26 MB, and Image6 of 77.5KB)

implementing the First Scans(SSS1) for 8 Scan Scripts (SS1-SS8). We find, Scan4 to Scan8 all the

images look exactly the same. As we use fewer bits for Scan4, we choose Scan Script 4 to compare

with the default Scan Script. Scan7 encodes 7 DC coefficient bits same as default Scan Script in the

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 50

Table 3.14: PJPEG lossy architecture’s results for the custom dataset

Size (kb) 1 30 100 500 1000 3000
-30 -100 -500 -1000 -3000 -8500

Pictures 198 419 467 72 81 96

Reduced % 10.49 20.84 23.26 24.93 21.72 25.31

SSIM 0.96 0.96 0.96 0.97 0.98 0.98

First Scan. Hence, we refer to Scan7 as the First Scan for default Scan Script.

For subjective-based evaluation, we use Mean Opinion Score (MOS) [46, 47] metric. We request 25

observers to differentiate among the images of Fig. 3.9 to perform a subjective evaluation. All of

them confirm that visual quality (Vq) is the same for the First Scan of Scan Script 4 (SS4) and Scan

Script 7 (SS7). For objective based evaluation, Table 3.12 shows the MOS and SSIM values of four

images for the First Scans of 8 Scan Scripts. In Table 3.12, We see the SSIM values are almost the

same for Scan4 and Scan7.

Furthermore, we test First Scan of (SS4) and (SS7) in MSCOCO2015 Dataset. We find the average

SSIM is 0.551 and 0.553 respectively. That verifies we get the same quality images for the First Scan’s

of Scan Script 4 and default Scan Script.

Lastly, we compare the load time of the actual picture and the picture generated by our proposed script

in various State of The Art Cloud Applications such as Google Drive and Dropbox. Table 3.15 shows

the load time difference between the pictures using the network section of Chrome DevTools [83]. We

use 3 images (Image3, Image4, and Image5) to load our proposed First Scan of Scan Script 4. We

load the images in different bandwidths. For example, Image3 in 0.125MBps, the original image loads

in 66 seconds. Moreover, the image using our proposed Script takes only 34.06 seconds to load. It

shows 48.39% improvement in our proposed Script. Table 3.15 confirms our images load faster on

state-of-the-Art cloud applications as well.

3.5.2.2 Lossy PJPEG Architecture

In Table 3.14, we test our PJPEG Lossy Architecture using our custom dataset. We see 198 images

are within the range of file size 1 − 30kb. For these small-sized images, the average SSIM result is

0.96. On average, the image file size is reduced up to 10%. A slightly larger image produces a greater

compression result. In the last group, 96 images within the file size of 3MB to 8MB produce the

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 51

(a) Image3 (Desktop) (b) Image4 (Desktop) (c) Image5 (Desktop)

(d) Image3 (Mobile) (e) Image4 (Mobile) (f) Image5 (Mobile)

Figure 3.11: Time needed to load different Scan Scripts under different bandwidth availability (Ss =
Scan Script, Sc = Scan number)

highest SSIM value of 0.98. It also produces the highest compression rate of reducing 25.31 percent

more than regular JPEG standard compression.

Furthermore, we test our compression algorithm in the MSCOCO2015 dataset [81]. Our compression

offers a 27.40% of reduction in file size than standard JPEG. The average SSIM result is 0.952.

In the first group, we have 198 images from 1− 30 kb. For these small-size images, the Average SSIM

result is 0.96. On average, the image file size is reduced up to 10%. For images sized 30− 100 kb, we

have 419 images. This group has an average SSIM of 0.96, and the file size reduction percentage is

20.84. A slightly larger image produce a greater compression result. This pattern continues for other

groups too. In the last group, 96 images of 3 MB to 8 MB produce the highest SSIM values of 0.98.

On average, it gives an SSIM value of 0.968. It also produces the highest compression rate of reducing

25.31 percent more than regular JPEG compression.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 52

3.5.2.3 System Resource Usage

We explore system resource usages by our proposed solutions and the default mechanism. As per

our exploration, both our proposed solutions and the default mechanism consume nearly the same

amount of resources. To be specific, as measured by System Monitor, memory usage is almost 100

MB and CPU usage is close to 10− 15% in both cases.

When it comes to resource consumption, both architectures need nearly 0.1 GB of memory on average

in both the cases and the CPU usage hasn’t changed considerably since all work is performed in

memory.

Table 3.15: Load time comparison between the actual picture and the picture generated by our
proposed faster image retrieval scan script in state of she art cloud applications. Here, we counted

the load time of only the image, not the UI

Image3
Loading Time and

Its Improvement in Google Drive
Loading Time and

Its Improvement in Dropbox

Speed Original Image (s)
Image using

proposed Script (s)
Improvement in

Proposed Script (%)
Original Image (s)

Image using
proposed Script (s)

Improvement in
Proposed Script (%)

10Mbps 1.17 0.832 28.89 1.86 1.73 6.99

5Mbps 1.83 1.18 35.52 2.62 1.79 31.68

3Mbps 3.52 1.36 61.36 6.21 5.66 8.86

1Mbps 10.05 5.99 40.40 19.79 17.37 12.23

0.5Mbps 17.44 9.43 45.93 28 18.76 33

0.25Mbps 34.29 17.16 49.95 72 72 0

0.125Mbps 66 34.06 48.39 114 96 15.79

Image4
Loading Time and

Its Improvement in Google Drive
Loading Time and

Its Improvement in Dropbox

Speed Original Image (s)
Image using

proposed Script (s)
Improvement in

Proposed Script (%)
Original Image (s)

Image using
proposed Script (s)

Improvement in
Proposed Script (%)

10Mbps 1.95 0.928 52.41 2.45 1.91 22.04

5Mbps 4.16 1.3 68.75 3.73 3.56 4.56

3Mbps 2.92 2.48 15.07 6.34 6.04 4.73

1Mbps 9.61 8.55 11.03 19.78 19.07 3.59

0.5Mbps 15.91 12.15 23.63 39.11 38.25 2.20

0.25Mbps 54.06 33.56 37.92 66 57.53 12.83

0.125Mbps 114 66 42.11 150 144 4

Image5
Loading Time and

Its Improvement in Google Drive
Loading Time and

Its Improvement in Dropbox

Speed Original Image (s)
Image using

proposed Script (s)
Improvement in

Proposed Script (%)
Original Image (s)

Image using
proposed Script (s)

Improvement in
Proposed Script (%)

10Mbps

No Preview Available
due to a

big Resolution size of
21600 x 10800

N/A

1.6 1.57 1.88
5Mbps 3.01 2.99 0.66
3Mbps 5.08 5.07 0.197
1Mbps 16.69 16.67 0.12
0.5Mbps 33.68 32.52 3.44
0.25Mbps 66 66 0
0.125Mbps 138 138 0

3.5.3 Experimental Findings

Findings are discussed separately for both of our contributions as before.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 53

Table 3.16: Comparison of our proposed approach with other existing research studies

Name
Progre-

ssive
loading

Private
cloud

Retrieving
image
faster

Efficient
image

storage

User
waiting

time

Underlying
technology

Noor et
al., [59]

✓ ✓ ✓ ✓
Bicubic interpolation

in iBuck

Yan et al., [72] ✓ ✓ Dynamic Resizing

Abuzaher et
al., [84]

✓
RGB Percentage

Replacement

Hussain et
al., [70]

✓
Modified

Quantization and
Arithmetic Encoding

Louie et
al., [85]

✓ ✓ ✓
Segmented

Compression and
Transmission

Iqbal et
al., [86]

✓
Modified Entropy

Encoding

Mali et
al., [87]

✓

Sparse RNN
Smoothing and

Learned
Quantization

Lee et al., [88] ✓ ✓
Trit-Planes
Algorithm

Cai et al., [89] ✓ ✓

CNN Based
Progressive Image

Compression
Framework

Byju et
al., [20]

✓ ✓
Coarse Resolution

and Wavelet
Features

Lu et al., [90] ✓ ✓
PLONQ with Nested

Quantization

Abdollahi et
al., [91]

✓
Recursive Least
Squares(RLS)

Adaptive Algorithm

Our
Proposed
Approach

✓ ✓ ✓ ✓ ✓
Encoding Less bits
in the First Scan

3.5.3.1 Faster Image Retrieval

We approach to balance the trade-off between the number of Scans and the size of the images in the

first scan. We focus to ensure that viewers get an optimum view after the first partial image loading.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 54

Table 3.17: Quantitative comparison over improvement in performance achieved by our proposed
approach and other existing research studies along with corresponding datasets under

experimentation as reported in respective studies (CR refers to Compression Rate and BPP refers to
Bits Per Pixel)

Name
Transmission

time
efficiency

Image
quality

Storage
effi-

ciency

User
waiting

time
Dataset

Noor et al., [59] Upto 25%
SSIM:
0.9113

By
31.75%

-
3 Datasets; [92], [93]

and a Custom
Dataset

Yan et al., [72] -
PSNR:
32 dB

By 41% -
MIR Flickr
Dataset [94]

Abuzaher et
al., [84]

- - By 55% - Not Mentioned

Hussain et
al., [70]

-
PSNR:
38.9 dB

CR =
6.202 : 1

- Custom Dataset

Louie et al., [85] Upto 50% . - By 50% - Not Mentioned

Iqbal et al., [86] -
SSIM:
0.999

1 BPP -
Air Jet Image from

JPEG AI
Dataset [95]

Mali et al., [87] -
SSIM:
0.8413

0.371
BPP

-
Kodak Dataset [96],

Div2K [97]

Lee et al., [88] -
PSNR:
35 dB

0.75
BPP

-

Kodak Dataset (For
Verification) [96],

and Vimeo90k
Dataset [98]

Cai et al., [89] -
PSNR:
40 dB

1.72
BPP

26%
More
than

JPEG

Kodak Dataset [96]

Byju et al., [20]
Decoding

Time 127.56s
- - -

Big Earth
Dataset [99]

Lu et al., [90] -
PSNR:
39 dB

1.5 BPP - JPEG AI Testset [95]

Abdollahi et
al., [91]

-
PSNR:
21.7 dB

CR = 76
: 1

- Custom Dataset

Our Proposed
Approach

Upto 69%
SSIM:
0.952

Upto
27%

54%
Less
than
JPEG

MSCOCO2015
Dataset [81] and
Custom Dataset

Moreover, we ensure viewers do not wait for a long time to get the full image view because of a higher

number of Scans. Considering these, after going through a rigorous bench-marking with some 50

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 55

images on our testbed, we observe that Scan Script 4 to Scan Script (SS8) produce the same quality

images in the First Scan. From them, Table 3.7 has a considerably fewer number of bits in the First

Scan to generate a balanced view.

That means they are of the same quality. 25 observers also confirm that visual quality (Vq) is the

same for the First Scan of Scan Script 4 (SS4) and Scan Script 7 (SS7).

Fig. 3.11 shows the improvement of time and size of the candidate images in our test-bed with our

proposed Scan Script, compared with the default Scan Script. Our proposed Scan Script gains over

50% improvement (54% to be exact) considering the time it takes for the first view of a progressive

image to satisfy a viewer with an optimum view. Besides, for remote and local VM servers, the

network hop is 16 and 2, respectively. Moreover, the average incoming and outgoing network speeds

in a client machine is 400 Bit/s where Ttl is 43.61 MByte.

However, while using MSCOCO2015 Dataset, 73 out of 81, 000 images are showing errors. These 73

images are black and white, and very small in size. The error does not occur for slightly larger-sized

images. Later, we find that the default Scan Script also can not load these 73 images as well. We fix

the error in our proposed script by removing chrominance components.

However, after loading all the scans, the image size is slightly larger for our proposed Scan Script 4.

That is a minor drawback for our proposed Script.

3.5.3.2 Lossy PJPEG Architecture

While modifying our proposed Scan Script 4 (SS4) to make a lossy architecture, we discover something

unusual. we can not encode 32nd pixel alone. To solve this we had to encode 32nd and 33rd pixel

together, despite the fact that 33rd pixel should be in the HF section. However, for making our scripts,

we put 33rd pixel in LF.

To make the lossy compression, we try making many Scan Scripts. At first, we make a script that can

reduce the file size up to 40% without even compromising image quality. However, it makes images

a bit blurry while compressing a smaller image file size. The script produces good quality images for

greater than 700kb file size. The median size for images user usually consume is 200 to 2200kb on

the Internet [8]. Hence, the script can not handle small size images. Therefore, we move forward to

make another script that can maintain good quality for smaller images too. We come to know, the

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 56

higher the image size is, the more we can delete data bits. Additionally, the more we delete data bits,

the worse the image’s quality becomes. Hence, we try removing fewer data bits to ensure the image

quality. After experimenting more, we make a lossy PJPEG scan script that works for the smaller

image file size. To use our lossy PJPEG architecture with having great results, we need a minimum

image size of at least 6kb. Most used pictures on the Internet are greater than 6kb. Hence, it is

not something that we should worry about. The bigger the image file size, the better SSIM we get,

and the more we can reduce the image size. In our result Table 3.14, we see that our compression

approach works better with larger images.

3.5.4 Comparison of Our Approach with Other Studies

As we have discussed earlier, progressive JPEG offers advantages under environments where band-

width is a big factor of constraint. We compare our proposed approach with other recent existing

research studies in Table 3.16 and 3.17. These tables compare the studies in qualitative and quantita-

tive manners respectively. Here, Table 3.16 presents a qualitative comparison and Table 3.17 presents

a quantitative comparison among the studies under. As shown in the Table 3.16, existing progressive

JPEG based related research studies [20, 72, 85, 88–91] use different technologies such as Dynamic

Resizing, Segmented Compression, Trit-Planes Algorithm, Progressive Latent Ordering Nested Quan-

tization (PLONQ), etc., to reduce file size for the overall image. Reducing file size leads to less

retrieval time and transmission time for the full quality image. However, most of the existing studies

do not focus on the notion of faster image preview even though faster image preview decreases user

waiting time. A research study [89] significantly improves first preview time from JPEG2000 [100],

BPG [101], Balle [102], WebP [103], and Toderici [104]. However, this study do not perform better

than JPEG [73] and eventually have ended up with 26% increased user waiting time for JPEG. On the

contrary, our proposed approach decreases user waiting time for JPEG by 54%. Here, our proposed

approach adopts a new Scan Script for performing the first scan in road to ensuring a faster image

preview. This, in turn, results in a faster loading of images using our proposed approach compared

to other existing technologies.

Besides, storing images in public clouds can significantly increase retrieval delay. Using private clouds

for managing images could present a remedy here, which is sparsely focused in the literature. In

this regard, our previous study [59] works on a framework for secured image processing in a private

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 57

cloud. Following our previous study, this Chapter attempts to fill up the gap in the literature by

using a private cloud for the purposes of faster loading and retrieving images along with managing

the storage efficiently. Thus, in summary, this Chapter realizes the notion of first scan to enable

progressive loading and manages images over a private cloud, which in combination result in faster

image retrieval as well as efficient image storage. Such a combination is new in the literature to the

best of our knowledge as shown in Table 3.16 when positioned against state-of-the-art. Nonetheless,

Table 3.17 demonstrates that our proposed approach mostly works better than all other state-of-the

art approaches in terms of transmission efficiency, image quality, storage efficiency, and user waiting

time in combination.

3.6 Conclusion and Future Work

In this Chapter, we investigate an important problem in the realm of cloud-related image commu-

nication and storage from the perspective of its efficient retrieval. In this regard, we point to a

significant gap in the literature on efficient retrieval and storage of progressive images - especially

in bandwidth-constrained cases. Accordingly, we propose an orchestration methodology through a

new image scanning technique and a new lossy compression technique. We implement the proposed

orchestration in a real setup over two different continents, comprising a server in Canada and a client

in Bangladesh enabling a private cloud architecture. We conduct rigorous experimentation to per-

form both system-level and subjective evaluations over the experimental setup. The evaluation results

confirm that we can achieve substantial performance improvement using our proposed orchestration.

Our future work includes system-level exploration of the next-generation JPEG images to improve

image storage quality further.

CHAPTER 3. ORCHESTRATING IMAGE RETRIEVAL AND STORAGE OVER A CLOUD
SYSTEM 58

Part II: Device-sensitive Multimedia Upload-
ing, Retrieval, Searching, and Archival

Chapter 4

Secure Processing-aware Media

Storage and Archival System (SPMSA)

4.1 Introduction

With the rapid growth of embedded devices, media industries have started facing challenges in storing,

processing, and managing large amount of data. The data include video, photos, audio, text, etc.

Users are producing and consuming such data more than ever with social media, online video, user-

uploaded contents, gaming, Software-as-a-Service applications, etc., [3]. All these applications present

a common need for easily-accessible storage systems that can potentially grow without bounds or

limits.

Besides, with the advancement of technology, one important sector that is experiencing rapid growth

in its field nowadays is media the archival system. As a part of conventional methods, many aspects

such as CCTV usage is perhaps at its peak in recent times [23]. In most cases, CCTV videos are

stored locally and demand a huge amount of storage space as the stored uncompressed video data

is of substantial size. Moreover, the data is only stored at the local hard drive, which is vulnerable

to physical damage, hardware failure, firmware corruption, etc. Overcoming these vulnerabilities

demands a system that can handle large video files easily and keep them safe. In this regard, cloud

storage has often become a necessity for the purpose of ensuring high availability of video data, as

one might need to access the video data from a remote place using diversified devices.

59

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 60

4.1.1 Existing Studies on Media Storage and Archival Systems

Conventional services such as Dropbox, Sync, SugarSync, Live drive, Google drive, etc., provide

popular storage systems for storing all types of files including media files [105–110]. These public

storage service providers are popular for their file syncing features. The offered services appear

mostly to be a black box to the users, where the users can put files without having any idea of

background processing. However, extra processing is needed in the middle for the services. Examples

of extra processing of media server include the tasks of media processing to retrieve data from storage

to the end devices. Imemories [111], Cloudinary [112], etc. provide media cloud to perform such tasks

of media processing on the fly, which are generally costly for the media servers. While performing

the tasks of media processing, some cloud providers offer higher security without giving any type

of conversion of files, whereas others provide facilities to process video without guaranteeing user

privacy [105].

Recent research studies investigate CCTV surveillance systems with cloud storage servers [22,23,113].

A study in this regard [114] proposes a three-layer cloud-based video monitoring and analysis system

that investigates several aspects such as processing time, human monitoring, GPU space and seeks

to find a solution. But the entire process is very GPU intensive and their system was tested with

low-resolution videos (704×528). Another study [115] , the proposed method includes exploring large-

scale video retrieval using a layered architecture and deep learning being augmented with semantic

approaches. named IntelliBVR. Though the processing power is very high to make it available to

everyone with the minimal financial cost and its results are not generated as fast as expected. However,

none of these existing research studies investigates efficient storing and long-term archiving of the video

data.

4.1.2 Motivations and Challenges

Conventional cloud-storage services enforce security mostly on public-facing data transfers using

SSL/TLS of HTTPS [116]. The usage authenticates web servers and encrypts messages sent be-

tween browsers and web servers [117]. On top of that, in SPMSA, our method is to enforce security

on internal-traffic between proxy and storage nodes while syncing between different regions and on-

disk data. Such enforcement escalate the level of overall security specially for the needs that are

owned and managed by different entities.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 61

Existing literature is yet to focus on an important realm of cloud-based video surveillance systems

involving long-term storing and archiving [11, 53]. Here, handling a huge amount of video data on a

daily basis and making it available to regular clients at any given time present a challenging problem

to solve. This happens as CCTV produces a huge amount of video data on a regular basis, and data

needs to be handled carefully. In the data handling task, the video data needs to go through some

processing to be ready to store in a cloud server with ease. In addition to that, the availability and

the process of storing and retrieving the data easily has the most priority. Hence, we need to focus

on storing large video files efficiently and archive the data for long-term purposes in a better manner

enabling more space utilization.

The focus has become more important for developing and underdeveloped countries, which often have

limited Internet access and employ limited storage space. Accordingly, CCTV applications in such

countries use direct storage systems that can only hold videos for a limited period of time [118]. Here,

continuous access to public cloud-based systems is not viable as it demands large upfront costs, high

bandwidth, and continuous internet access [119]. Thus, the conventional alternative solutions utilized

in this regard experience the following challenges.

• Challenge-1: Conventional media data storing and archival systems use online pre-processing

rather than offline pre-processing.

• Challenge-2: Storing media data on a local storage device creates a single point of failure and

a high cost of data storage [118]. This approach also has the risk of physical damages and

hardware failure.

• Challenge-3: Storing media directly to a cloud storage location addresses the problem of a single

point of failure, however, requires large upfront costs, high bandwidth, and constant internet

access [120].

• Challenge-4: Using application-specific solutions such as security-enabling direct facial recogni-

tion technology and event triggers an attempt to minimize the number of recordings, however,

such systems cannot be 100% accurate [121].

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 62

4.1.3 Implications of Our Study

To address these challenges, we propose a new private cloud paradigm namely ‘Secure Processing-

aware Media Storage and Archival’ (SPMSA), which unifies object storage (Storage-as-a-Service) with

cloud security, media processing (Processing-as-a-Service) and archiving media. Here, our method is

to design an in-storage media processing system along with performing encryption-decryption based on

user demand. To do so we exploit middleware services available in OpenStack Swift, an open-source

object storage platform [4]. Besides, we design a new proxy server for performing not only proxy

related tasks but also tasks related to media processing, resizing, video transcoding, and encryption-

decryption of media files. Hence, we name the proxy server as proxy-media server. The proxy-media

server is scalable by nature and can easily be DNS-load-balanced. Here, both upload/download

traffic can be separated and backed by each-other through properly designed domain-name (DNS-

entry) [122]. Thus, the proxy-media server omits the need of conventional public cloud servers to

use different media servers for processing media files. This saves substantial bandwidth and time of

conventional public cloud spent in communicating with media servers.

In road to implementing our proposed SPMSA, we develop three new middleware services named

‘PhotoPool’, ‘MediaBucket’, and ‘SecureCloud’. Here, PhotoPool middleware is mainly responsible for

resizing and converting images to PJPEG. SecureCloud middleware performs encryption-decryption

of the image files using PFCC algorithm [53]. Besides, MediaBucket middleware is responsible for

video related processing such as transcoding. Combination of all these three middleware services make

our proposed cloud architecture more secure, highly-scalable, and faster-accessible to end users for all

types of media files. There are many diverse and sensitive applications for our proposed architecture.

Examples include medical imaging systems, military media communication, mobile commerce, social

media, etc. To achieve large volume of media data such a surveillance data we also propose an archival

system for such activities.

Additionally, in this Chapter, we propose a new CCTV surveillance system that stores video data in

multiple locations - at first in the local storage, where the CCTV data will be stored for a short period,

and then cloud storage at an interval of the regular time period for better data availability and fault

tolerance. Finally, in the archive storage, compressed data will be archived for a long time throughout

the replication process. In this system, the video data will have high availability. Additionally, through

a proposed intuitive user interface in our system, a client with no prior knowledge about security can

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 63

easily access the video data. Nonetheless, as per real experimentation, our proposed system uses

55% less storage compared to SPMS [11] without demanding constant internet connectivity such as

Google’s NEST CAM [121]. Moreover, our proposed system is far more robust than conventional

physical storage [118] and provides improved storing time when compared to popular solutions such

as Google drive, Dropbox, and iCloud.

4.1.4 Our Contributions

We make the following set of contributions in this Chapter.

• We propose a new private cloud paradigm that enables media processing in parallel to enforcing

security and we implement the proposed paradigm through developing three new middleware

services to demonstrate its applicability in real systems.

• We propose an efficient media data archival system to store and archive large videos such as

surveillance data through segmentation and compression by leveraging a private OpenStack

Swift object service.

• We store multiple replicas of the same video data in two separate servers (storage server and

archive server), thereby ensuring reliability and fault tolerance. We use video encoding to

compress the video data and segment them before uploading them to servers.

• We perform rigorous experimentation to evaluate the performance of the proposed and developed

system in a real testbed and compare its performance against conventional popular alternatives

such as Dropbox, iCloud, and Google Drive.

• Experimental results demonstrate significant performance improvement using our proposed

paradigm compared to the conventional one.

4.2 Background

In this Section, at first we discuss about OpenStack Swift an open source object storage system.

After, we present the QoE metrics used for validating our experimental results.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 64

4.2.1 OpenStack Swift

OpenStack Swift provides many services in this one software, among these computing services, storage

services are mostly used to create a cloud computing service experience.

Figure 4.1: Overview of OpenStack Swift architecture [11]

It is part of OpenStack and is completely free to use. Because of its efficiency and scalability, many

major companies use Swift as their go-to cloud storage. Swift is meant to be run on Linux distributions

and on any x86 hardware setup. Swift has an architecture called “Eventual Consistency Architecture”.

This allows Swift to create enormous cloud infrastructures, which can store tons of unstructured data.

Objects in Object Storage have an unique identifier. In Swift, each object has an URL given to them.

Objects can be accessed by going to the provided URL. Data can be stored and retrieved from the

Swift server in a specific way. Globally popular RESTful HTTP API is the most popular way to do

so. More on these is discussed in the Swift API section.

Figure 4.1 shows the architectural overview of SWIFT. The first step is understanding how a file is

being saved on an object storage system. The object storage system is divided into several parts or

components. A proxy server is located in the first layer. Data that goes in and out of the storage has

to go through the HTTP file transfer protocol. The requests for data are done by API requests. The

task of the proxy server is to capture the requests and work accordingly. The proxy server determines

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 65

the location of the data or it’s storage node by the URL. After this, there are Rings, which keep the

address of the information like names and entries which are stored on the cluster and also keep track

of the actual physical location of the data.

The way Rings keep the mapping work by introducing zones, devices, partitions, and replicas. Zones

might be any storage device like a hard drive to a full server. After that, there are containers and

accounts. The list of containers in a particular account is stored in that account’s database [123].

4.2.2 QoE Measurements

To quantify user’s QoE, both objective factors and subjective factors need to be considered. Objective

factors include parameters in Nework layer (jitter, packet loss, delay, etc.) and Application layer

(resolution, frame rate, etc.) [52]. Objective factors determine visual difference of a video from its

definition, which is influenced by resolution and bit rate. Compared with the objective factors,

subjective factors are more complex. The subjective factors can be extended to users psychological

conditions such as preference and users profile information (age, gender, etc.). For subjective and

objective measurements of QoE, commonly used video quality metrics are [46, 47] as follows:

MOS: According to ITU-T Recommendation P.910, MOS is chosen as the score criterion for subjective

QoE measurement, which reflects the appraisal of some test panel. The MOS is expressed on a five-

point scale, where 5 = excellent, 4 = good, 3 = fair, 2 = poor and 1 = bad. The minimum threshold

for acceptable quality corresponds to a MOS of 3.5 [48].

PSNR: Peak-Signal-to-Noise-Ratio gives the ratio (in dB) between power of the original signal and

power of a reconstructed compressed signal. PSNR is usually derived via mean squared error (MSE)

between two signals in relation to the maximum possible luminance of images. MSE and PSNR are

calculated as [46,47]:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (4.1)

PSNR = 10 log10

(
MAXI

2

MSE

)
(4.2)

Equation 4.1 and 4.2 present equations of MSE and PSNR of a noise-free m× n monochrome image

I and its noisy approximation K. Here, MAXI is the maximum possible pixel value of the image.

Although PSNR may not always accurately reflect the QoE, as demonstrated in [49], it continues to

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 66

be a popular method to evaluate quality difference among videos.

SSIM: Structural Similarity Index [50] uses a structural distortion based measurement approach.

Structure and similarity in this context refer to samples of the signals having strong dependencies

between each other, specially when they are close in space [51]. Here, the rationale is that human

vision is specialized in extracting structural information from the viewing field, not in extracting

errors.

VQM: Video Quality Metric [52] measures the perceptual effects of video impairments including

blurring, jerky/unnatural motion, global noise, block distortion, color distortion, and combination of

them.

In summary, higher MOS, higher PSNR, higher SSIM, and lower VQM describe videos as better one.

4.3 Related Work

Images and videos have considerable value for diversified purposes including sensitive applications

such as medical diagnosis, military communication, etc. Security is becoming an utmost important

issue in communication and storage of such files. A possible solution to this issue is using private

image clouds [1,12,53], which can provide image security as well as faster availability of those images

at any ends. Nonetheless, increasing quality factors such as high frame rates and ultra-high resolution

videos raise the need for efficient and scalable computation. However, to the best of our knowledge,

there is still no such efficient and scalable private cloud for both maintaining image data securely,

transcoding video files, and archiving media data while making them highly available. Such clouds

are necessary when a user wants to securely access important media files anywhere using any type

of remote devices. Hence, resizing of images [53], transcoding of videos [11], and archival of video

surveillance system come into play. If computations needed for such resizing and transcoding are done

on the fly, then processing power and delay can severely increase [111, 112] undermining the overall

goal. In below subsections, at first we present the existing studies on media storage clouds. After, we

discuss on recent studies related to video surveillance system and media archival.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 67

4.3.1 Literature on Media Storage Clouds

Best cloud-storage solutions available to date, e.g, Dropbox, Sync, SugarSync, Live drive, Google

drive, etc., provide inexpensive benefits with their own limitations [105]. For example, Sync offers

a robust, well-rounded service with fast transfer speed, end-to-end encryption using AES-256, and

automatic backup features. However, the encryption slows down uploads and previews. Besides,

mobile clients lack file sharing and limited syncing in this cloud often makes discomforts to maximum

middle-sized companies [107]. Alternatively, users of SugarSync get access to up-to-date data on any

device exploiting local encryption and TLS in transit. However, limitations of this cloud service include

slow response time, lack of backup scheduling, etc., [108]. Besides, Livedrive offers web and client

applications with extra features such as integrated media player, file sharing, etc. However, its hidden

pricing and clunky user interface are the main obstacles in road to make it popular [109]. In addition,

Dropbox [106] offers syncing, sharing, and third-party integrity with backup solutions. Google drives

[110] also offer sharing and document collaborating features. However, all these cloud solutions provide

only storage without providing any scalable media processing such as image processing or resizing,

video transcoding, etc.

Cloudinary [112] provides a simple integration facility to users to upload, transcode, manipulate and

deliver videos via a global Content Delivery Network (CDN). Besides, iMemories [111] turns movies

and photos into a digital format so that they can easily be viewed and shared on different modern

devices. These media cloud solutions perform media processing while delivering from the storage,

not in cloud-storage. Furthermore, vendors can use such type of storage solutions through paying

their own. But, if they want to build their own media cloud with special facility enhancing security

through choosing best encryption algorithms, add more media features, and so on, then they should

not depend on traditional storage systems. They have to find out which tools are good for resizing

and transcoding of video files, what resolutions are needed for serving diversified client devices, how

to encrypt and decrypt video files for faster outcome. These studies focus on many traditional cloud

storage systems, but they are just service providers, not focus on how to build a secured media cloud

from scratch. Recently, many social networking applications are emerging such as ringID, ringID

Studio, etc. [124] using their own private cloud. Hence, there are still many vendors who want to

make their own distributed system for media cloud.

Current research interest grows towards in-cloud media processing instead of having the contemporary

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 68

flavour of using separate storage and processing units. To do so, Active Media Store (AMS) [125]

extends OpenStack Swift to enable computations such as transcoding, automated metadata extraction,

quality checks, etc. However, it does not focus on how to deploy secured media cloud along with

media processing methodology. Besides, another study [126] designs a software platform based on

Google cloud that supports various video analysis tasks in addition to transcoding. Additionally, a

recent study [53] shows deployment of a secured private cloud for image resizing and storing using

a middleware named iBuck on OpenStack Swift. Focus of this study only covers images and not

extendable for other media files such as videos.

4.3.2 Literature on Video Surveillance System

One of cloud computing’s five essential characteristics is on-demand self-service which ensures cost

efficiency as the user is only paying for the services he or she is using [127]. Furthermore, in study [128],

the authors proposed an on-demand cost-efficient method for storing video streams in the hierarchical

storage of the cloud which enables the method to decide the video streams that should be pre-

transcoded as it requires a large storage space. Which can be costly and this method can minimize

the cost up to 40% and this method talks about video streams that can be divided into many sequences

which are created by Group Of Pictures (GOP). In addition to mobile-based video streaming, [129]

proposed an efficient framework for smooth and high quality video transmitting based on DASH

protocol for personal cloud such as Dropbox, OneDrive. Study [130] proposed a cloud-based Video on

Demand(VOD) system that can ensure concurrency and scalability. This is much needed for this sort

of environment that can be used as computers or smartphones, to continue providing services around

the globe.

Cloud-based Video Storage System (CVSS) is one of the most extensively used services of cloud

system which brings the concern of security and privacy policies of cloud-based systems. Study [131]

provided a method that is able to provide security for CVSS. With the increasing use of video data,

most organizations prefer CCTV footage or video data monitoring for security purposes and it rises the

necessity of constant monitoring which can be quite challenging. In study [114], the authors proposed

a three-layered cloud-based video monitoring and analysis system that address these problems such as

processing time, human monitoring, GPU space, and so on and seeks to find a solution. Studies [11,53]

proposed an architecture named SPMS through expanding cloud file-sharing capabilities. Real-time

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 69

Cloud-based people counter system is proposed for security, tracking, and marketing purposes using

Raspberry Pi embedded system [132]. Study [133] proposed a method to find a certain person through

a video query system using cheap object detection and priority ranking to analyze relevant video. Here,

they proposed an in-storage media processing system along with performing encryption-decryption

on user demand. This Chapter presents a new methodology that can utilize cloud media file-sharing

capabilities beyond just storing files.

CCTV footages can be troublesome to deal with for face recognition as it can be affected by the

footage quality or rain or expression, clothing, light, and so on. Studies [23, 113] propose an access

control method based on video surveillance. It also includes a face recognition system based on CCTV

machine learning using Radio Frequency Identification (RFID). Study [22] proposed a new method

named deduplication which uses hashing to verify if the data is deduplicated.

But biometric authentication and face recognition can be quite challenging in order to secure individual

privacy and identification [134]. Besides, for streaming data, study [135] proposed a method of

RealEdgeStream (RES) an edge enhanced stream analytic system with filtration and identification

phases.

As most of the CCTV environment deals with large video files, storing them in separate storage ef-

ficiently will be a challenging task. In study [136], we can learn how to process a video on a cloud

platform including uploading and downloading footage and converting in different resolutions, seg-

menting, and retrieving the whole file. Study [11] created a Secure Processing-Aware Media Storage,

then evaluated different types of video quality, bitrate, resolution, duration, and size by comparing in

two different ways (subjective and objective evaluation).

Moreover, to the best of our knowledge, these studies are yet to focus the approach of using private

clouds to process media files along with enhancing security, efficient storing and long-term archiving

of video surveillance data. Moreover, the approach of using two different servers for better availability

and ensuring fault tolerance using OpenStack Swift is yet to be focused in the literature. In this

Chapter, we attempt to focus this approach for secure in-cloud media processing based on Swift.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 70

4.4 Our Proposed Methodology

We propose to use a private cloud in place of using public clouds, where media processing is done in

the cloud-storage. Figure 4.2a presents the architecture of conventional storage services and Figure

4.2b presents our proposed architecture for storing and retrieval of media files from SPMS server. As

the figures depict, the basic difference in performing operations in our proposed model is to enable

off-line preprocessing of media files. Thus, we name our proxy server (as shown in Figure 4.1 as proxy

process) as proxy-media server. Here, we propose to add three different middleware services namely

PhotoPool, MediaBucket, and SecureCloud on OpenStack Swift proxy server for image processing,

video transcoding, and performing encryption-decryption tasks.

Figure 4.4 presents the methodology of our proposed system. Where we first upload a file to the

system. If the file is a regular media file we forward it to the SPMS server and do the media conversions.

If the file is a surveillance data then we push the file to process as a surveillance file. We first split the

files then do conversions using FFmpeg, then store the metadata in the database. Finally we store all

the files in the storage and archive servers as archival is necessary for surveillance data. Our proposed

operational methodology over this architecture comprises several key steps, which we present in the

following subsections.

4.4.1 Image Processing

We add a new middleware named PhotoPool for only image processing and resizing (based on PIL

algorithm). Security related tasks are performed by another middleware for both image and video

type files. Figure 1 and 2 describe algorithms for uploading media files and PhotoPool middleware.

Note that in Figure 2, we use an algorithm from [53], which was our prior study focusing only on

image files.

4.4.2 Video Transcoding

In conventional model of video processing server, all compression and processing are done on different

video servers and then all video files are sent to the proxy for uploading. This can cause substantial loss

of time and bandwidth. Figure 4.3a presents the conventional model of processing video files outside

the cloud storage. In contrast, we propose to do the processing related tasks in the proxy-media

server through adding a new middleware MediaBucket. Here, users can transcode videos according to

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 71

(a) Conventional model

(b) Proposed model

Figure 4.2: Conventional and proposed models for storing and retrieving media files from the cloud

several resolutions. We consider transcoding videos in two resolution: high resolution (720 to aspect

ratio) and mobile resolution (480 to aspect ratio), which can be extended for other cases. Figure 4.3b

presents our proposed model for uploading video files along with several transcoded versions. In our

model we adopt FFmpeg tool for video transcoding, which can transcode good quality video with

optimized resolution and size [137]. Figure 3 presents the algorithm of MediaBucket middleware.

Here, we also propose two scenarios for uploading video files based on file size and user demand.

Though, we transcode videos in several resolutions using FFmpeg tool, for larger file there may have

chances to occur client timeout. Hence, users can choose an appropriate algorithm from the following

options based on their requirements.

Response after all uploading: In this scenario, users get success response only if all versions of a

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 72

(a) Conventional model of processing videos outside the cloud storage

(b) Proposed model of processing videos inside the cloud storage

Figure 4.3: Conventional and proposed models of processing media files

media file are successfully uploaded.

Quick response with background processing: In this scenario, users get a response quickly after

uploading the original video file and other processing tasks are done on background. After uploading

all other transcoded video files, server notifies the users as per the query head request.

Figure 4.5 and 4.6 present flow diagrams of the proposed two scenarios as mentioned above.

4.4.3 Media Security

We use PFCC (P-Fibonacci transform of Discrete Cosine Coefficients) algorithm for encryption-

decryption of image files [138]. Besides, encryption-decryption of video files are done while on transit

from proxy-media server to storage server, as data is encrypted with SSL/TLS certificate here. We

propose to use pycrypto module [139] for the perpose of video encryption-decryption. Thus, users

can use pycrypto any cipher, eg. AES, ARC2, ARC4, Blowfish, CAST, DES, DES3, PKCS1 OAEP,

PKCS1 v1 5 and XOR, in different modes such as CBC, CFB, CTR, ECB, OFB, etc., based on their

needs. We implement all tasks related to encryption-decryption in SecureCloud middleware. Figure

4 describes the algorithm of SecureCloud middleware. Here, we consider only AES cipher for the

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 73

Figure 4.4: Our proposed model comprises SPMS server for media files
storing and retrieval, and archival server for CCTV surveillance system

purpose of video encryption-decryption even though other alternatives could have been chosen.

This part focuses on how we can store the video files into our servers and archiving them as part of

the process. For this we use two servers: the first server will be a storage server which will store the

raw video files and after a certain period, one month, in this case, the video file will be automatically

deleted. The second server will be an archive server where the files will be stored indefinitely in

compressed form. The reason for selecting two different servers is consumers may require some files

immediately after a certain incident had occurred. There is no compression in the storage server which

ensures better performance as the videos are uploaded simultaneously in two servers and the archive

servers already requires compression. Any kind of compression in the storage server may result in

hardware throttling of the client machine as video compression requires a lot of processing power.

They can access the storage server with ease and retrieve uncompressed and untampered data. But

they might wish to access past videos for varied reasons, then they can retrieve their data from the

archive server.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 74

Algorithm 1 Algorithm for uploading media file

1: procedure UploadMedia(app,media, path, env) ▷ Uploading media to destination path using
application and environment

2: MAX FILE SIZE ← 5Gb
3: if (media > MAX FILE SIZE) then
4: raise uploadError
5: end if
6: new env ← createNewEnv(env) ▷ Function of Swift
7: req ← createObjectReq(path, new env) ▷ Function of Swift
8: response← req.getResponse(app) ▷ Function of Swift
9: if (response ̸= SUCCESS) then

10: raise uploadError
11: end if
12: end procedure

4.4.4 Surveillance System

To make a surveillance system, we use a good IP/CCTV camera because resolution depends on the

number of pixels in the CCD (Charge-coupled device) chip. In Table 4.1 we present the resolution

used in CCTV cameras [16]. In other words, the resolution is directly proportional to the number

of pixels in the CCD chip [140]. Additionally, CCTV is much lower in terms of resolution than IP

cameras. The resolution of analog cameras results in very small field of view when compared to IP

cameras from an old evaluation. Our proposed surveillance system comprises several key steps, which

we present in the following subsections.

Table 4.1: Cameras resolutions used in CCTV surveillance system [16]

Designation HxV

CIF 352x240

2CIF 704x240

4CIF 704x480

D1 720x480

720p HDTV 1280x720

1.3MP 1280x1028

2MP 1600x1200/1920x1080

4.4.4.1 Local Storage

We use Network Video Recorder (NVR) or Digital Video Recorder (DVR) for storing the footage

which depends on the user’s demand. NVR is the more powerful storage system for storing data

compared to DVR and NVR is recommended for long-distance areas. Before going to the cloud

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 75

Algorithm 2 Algorithm for the PhotoPool middleware

1: procedure photopool(app, env)
2: origImage← OriginalImage
3: resize dimensions← UserGivenDimensions ▷ Example = [150, 300, 600]
4: path← UploadedPathFromEnvironment
5: if requestMethod ̸= PUT then
6: return app
7: end if
8: if original image not in right format then
9: im.save(origImage, JPEG) ▷ PIL library function

10: end if
11: UploadMedia(app, origImage, path, env)
12: im.save(origImage, JPEG, prograssive = True)
13: UploadMedia(app, origImage, path, env)
14: for d in resize dimensions do
15: i← ResizeImage(d, origImage)
16: UploadMedia(app, i, path, env)
17: im.save(i, JPEG, prograssive = True)
18: UploadMedia(app, i, path, env)
19: end for
20: return app
21: end procedure

storage part, we have to consider few more things for efficiency as well as a cost-effective system.

Table 4.2: Calculation of DVR and NVR

Storage Type DVR NVR

Camera Stream H.264 H.264

Camera Resolution 2 MP(1920x1080) 2 MP(1920x1080)

Video Quality Medium Medium

Average Frame Size 13.714 KB 21.2KB

Frame Rate 15 15

Hours/Day 24 24

Bandwidth Required 2.4 Mbps/Cam 2.6 Mbps/Cam

Desired days of Storage 1 1

Estimated Storage 16-37GB(Approx.) 18-28GB(Approx.)

HDD, flash drive, SD card, SSD can be used as storage device for NVR. Since we focus on large

footage, we choose HDD for storing the footage as in Table 4.2 shows the expected storage for DVR

and NVR. We calculate the values on Seagate and SuperCircuits website.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 76

Algorithm 3 Algorithm for the MediaBucket middleware

1: procedure MediaBucket(app, env)
2: origV ideo← Originalvideo
3: vInfo← OriginalV ideoInformation ▷ Get all video related information [137]
4: resize resolutions← UserGivenResolutions ▷ Example = [720, 480]
5: path← UploadedPathFromEnvironment
6: if requestMethod ̸= PUT then
7: return app
8: end if
9: UploadMedia(app, origV ideo, path, env)

10: for r in resolutions do
11: v ← TranscodeV ideo(r, origV ideo, vInfo) ▷ Transcode video from original video using

FFmpeg command based on algorithms given in Fig. 4.5, 4.6
12: UploadMedia(app, v, path, env)
13: end for
14: tImage← ThumbTranscode(origV ideo, vInfo) ▷ Create thumb image from video using

FFmpeg [137]
15: UploadMedia(app, tImage, path, env)
16: return app
17: end procedure

4.4.4.2 FFmpeg Media Converter

We chose to segment our files before compressing and uploading them because in case of network

failure the file will get damaged. This is also more convenient for the users because they request a

certain footage, they have the ability to download a smaller video file from the specific time they

need instead of the whole 24-hour footage. We use the following command to convert the file into 30

minutes segments using ffmpeg presets.

ffmpeg -i input.mp4 -c copy -map 0 -segment time 1800 -f segment -c:v libx264 -preset veryslow out-

put%03d.mp4

FFmpeg is built with a number of self-contained libraries which provide discreet functionality that can

be included in other applications. These features include codec encoding and decoding, compression,

image scaling, resampling, and format conversion.

4.4.4.3 User Interface

Our proposed architecture is designed for simplicity and high effectiveness. Hence, we design a user-

friendly interface that is both intuitive and provide fast results. Most of the task, which starts from

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 77

Figure 4.5: Flow diagram of video uploading and transcoding for ‘Response after all uploading’
scenario

getting the video data from CCTV to splitting to processing and compression; most of these are

handled automatically on the cloud by the system. Very few times when clients may try to connect

to the storage manually. To this extent, we design an user interface (Figure 4.7) where clients can get

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 78

Figure 4.6: Flow diagram of video uploading and transcoding for proposed ‘Quick response with
background processing’ scenario

the job done without any technical understanding of the entire video storage system.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 79

Algorithm 4 Algorithm for the SecureCloud middleware

1: procedure SecureCloud(app,media)
2: if media = image then
3: if requestMethod = PUT then
4: EncryptPFCC(media) ▷
5: end if
6: if requestMethod = GET then
7: DecryptPFCC(media) ▷
8: end if
9: end if

10: if media = video then
11: if requestMethod = PUT then
12: EncryptAES(media) ▷ Encryption algorithm is given in [139]
13: end if
14: if requestMethod = GET then
15: DecryptAES(media) ▷ Decryption algorithm is given in [139]
16: end if
17: end if
18: return app
19: end procedure

4.4.4.4 Object Expiration

Object expiration is Swift’s built-in feature, which is designed to expire an object. It automatically

deletes objects after a given time that the user can set. We adopt the expiration feature in our system

to ensure efficient storage. In our architecture, after we upload an object to our server, we pass an

expiration header X −Delete − At or X −Delete − After header with a POST request. After the

time we send in the header passes, it automatically deletes that particular object. Besides, once the

object is deleted, Swift will no longer serve the object and it will be deleted from the cluster shortly

thereafter.

The X−Delete−At header takes a Unix Epoch timestamp, in integer form. The X−Delete−After

header takes a positive integer number of seconds. The proxy server that receives the request will

convert this header into an X−Delete−At header using the request timestamp plus the value given.

Figure 4.8 presents the expiration feature of the proposed architecture. This command is used to use

the expirer middleware for the archive storage:

swift -A http://127.0.0.1:8080/auth/v1.0/ -U test:tester -K testing post archive storage sam-

ple video.mp4 -H ”X-Delete-After:2592000”.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 80

Figure 4.7: Designed user interface for uploading and downloading CCTV surveillance data

Figure 4.8: Expiration of an object using the X −Delete−After header when uploading a
segmented CCTV footage

4.4.5 Storage Server

Figure 4.9 shows the three different storage servers in our architecture - local storage, storage server,

and archive server. The storage server functions as follows: The video will be uploaded unmodified

and unchanged with the expiration header set to “X − Delete − After: 2592000”. Which means

it will be deleted automatically after a month. We have set the replication count to three when we

constructed our ring so if one server fails, users will still have two backups of their files. This will

ensure the safety of their files.

4.4.6 Archive Server

In the archive server, we first split the files using FFmpeg, compress them, and then upload it with

no expiration headers. We set the replication count to two here since the data here will increase over

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 81

Figure 4.9: Three types of storage servers for ensuring high availability, less storage, and long-lasting
archive system. Local storage server has the direct connection with CCTV camera. Cloud storage

and archival storage servers are located in data centers.

time and keeping more replicas will become more and more expensive as time goes on. Replication

count two also ensures better data availability than one as in case of one server or storage node fails,

user still have a backup for all the data [141]. Since it is an archive server, a replication count of 3 is

going to be too expensive as the number of files increases.

4.5 Experimental Evaluation and Comparative Analysis

We evaluate performance of our proposed methodology through a real implementation. Besides, we

compare the performance against that obtained from conventional methodology, as shown in Figure

4.3a. Before presenting the evaluation results, we first briefly elaborate our experimental settings.

4.5.1 Experimental Settings

We use two different server setup for evaluating our SPMSA system. At first, we present the server

configurations, media files information of SPMS system testbed. After, we discuss the server settings

of CCTV surveillance system.

4.5.1.1 Testbed for SPMS Server

Our experimentation covers transcoding of different video files in different resolution minimizing

size, time, and bit rate along with maximizing the video output quality to the end user. Here, we

choose client machine located in Bangladesh having configuration of Intel(R) Core(TM) i3-4150, CPU

3.50GHz, and memory 16 Gb for transcoding and uploading videos. We chose several video files having

different sizes, however, with same video resolution. We transcode the chosen video files at different

resolutions varying FFmpeg command options such as profile, level, preset, constant rate factor,

frame rate, X264opts, etc. Table 4.3 shows the informations of files used for quality measurement.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 82

Proxy

Storage (Account,
Container, Object)

Local VM

Swift SAIO Bangladesh

Ram: 8 GB
Hard disk:

3*8 GB

Client

(a) Local server setup in virtual machine

Proxy

Remote Machine 1

Canada

Ram: 32 GB
Hard disk: 102 TB

6 NIC of 1GB

Remote Machine 2

Ram: 32 GB
Hard disk: 3*400 GB

6 NIC of 1GB

Remote Machine 3

Ram: 32 GB
Hard disk: 3*400 GB

6 NIC of 1GB

Object

Account Container

Client
(Bangladesh)

(b) Remote server setup

(c) Multi-node Swift setup

Figure 4.10: Server setup for our proposed framework for testing SPMS server [12] (in 4.10a and
4.10b). Figure 4.10c presents the multi-node Swift setup used for CCTV surveillance system.

We evaluate the quality of videos in two different ways:

• Subjective evaluation: Video is used to be watched by people. Therefore, this method is

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 83

Table 4.3: Information of files used for video quality testing

Quality test
file

Size
(Mb)

Bit rate
(kbps)

Resolution
Duration

(min)

File 1 36 1061 1280× 720 4.07

File 2 54 2291 1280× 720 3.06

File 3 66 1873 1280× 720 3.34

Table 4.4: Information of files used for uploding in several storage services

Upload test
file

Size
(Mb)

Bit rate
(kbps)

Resolution
Duration

(min)

File 1 18 583 320× 240 4.07

File 2 36 1061 1280× 720 3.06

File 3 98 1836 1280× 720 3.34

more suitable to evaluate quality of transcoded videos. We invited 20 observers to observe

videos and calculate MOS based on their evaluations [11].

• Objective evaluation: We compressed File 2 (as shown in Table 4.3) to 480× 270 resolution

using different preset values for obtaining corresponding time, sizes and bit rates. We utilize

a video quality measurement tool [15] to calculate QoE metrics, i.e., MSE, PSNR, SSIM, and

VQM.

Furthermore, we evaluate the time needed for storing video files in our proposed SPMS server. Table

4.4 shows information of the video files used for uploading time performance measurement. We

perform the uploading through conducting experiments in two different setups. One setup is in local

machine in Bangladesh, where servers are setup in a local virtual machine. Another setup is in a

remote data center in Canada. For each setup, we install three different servers - one for proxy, one

for account-container, and the last one for object server. The memory and disk configurations of

testing servers are as follows:

• Local SPMS Server: Proxy, account-container, and object servers are installed in a local

virtual machine having 8 Gb memory and 3 disks each of 8 Gb (in Figure 4.10a). The machine

is network connected through bridge connection.

• Remote SPMS Server: The remote server consist of one proxy having 32 Gb memory and

1.2 Tb disk, one account-container having 32 Gb memory and 3 disks each of 400 Gb, and one

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 84

object having 32 Gb memory and 3 disks each of 400 Gb. Each server has six 1 Gb network

interface cards (in Figure 4.10b).

Furthermore, we setup dropbox and google drive in our local client machine in Bangladesh. The

uploading and average network speed were around 1.95 Mbps and 1.5 Mbps respectively when we

conduct our experiments.

4.5.1.2 Testbed for Surveillance System

Our experimentation includes the comparison of videos segmented and compressed with FFmpeg

along with the bit-rate of various presets of FFmpeg tools. Here, we conduct our video conversion

and segmentation experiment in a client machine located in Dhaka, Bangladesh having a specification

of Processor Intel Core i7 9850H, CPU 2.6-4.6 GHz, Memory 16 GB, and GPU nvidia 1050. Besides,

we compare different presets of FFmpeg tools.

Furthermore, we set up our own storage server and archive server in the remote machine located using

Google Cloud Platform (GCP). We store these experimental videos on our server. We perform the

uploading through conducting experiments in a setup that is in a multi-node setup, where we install a

multi-node Swift with two different servers - one for proxy server another one for account, container,

and object server [4]. We calculate the average metrics of these setup while evaluating the proposed

architecture. The memory and disk configurations of testing servers are as follows:

• Multi-Node Swift Setup: We have a total of four virtual machines in this setup. The

storage and archive server each has two virtual machines where the proxy server of Swift is

running in one server and the other three account, container and object servers are running

on another virtual machine. The virtual machines have 4GB of memory and 100GB of storage

each. The OS is Ubuntu 18.04 server for all the virtual machines. In Figure 4.10c we can see

the setup for one of the archive and storage server which are identical.

In our storage nodes, we use Swift replication count of 3 and in archive nodes we have used a replication

count of 2.

4.5.1.2.1 Experimental Data

In order to evaluate our proposed architecture we use a benchmark video surveillance data set from

the VIRAT [142]. We use 125 videos ranging in size from 3.8MB to 1.4GB. Figure 4.11 presents the

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 85

Table 4.5: Comparison of size, bit rate, and time needed for different preset option of FFmpeg
command

Preset option Notation
Size
(Mb)

Bit rate
(kbps)

Time
(s)

Medium Pm 19.0 736 35.3

Fast Pf 19.1 738 33.9

Faster Pfr 18.8 725 26.4

Faster, Subme=6 Pfrs6 19.2 743 31.0

Veryfast Pv 18.7 724 23.8

Veryfast, Subme=6 Pvs6 18.7 724 31.1

Superfast Ps 22.7 902 24.6

Superfast, Subme=6 Pss6 19.0 734 25.0

Ultrafast Pu 30.1 1234 21.1

Ultrafast, Subme=6 Pus6 21.4 844 24.4

video files which are used to test the efficacy of the proposed architecture. The different sizes of the

video files are used to evaluate the proposed systems performance for different scenarios.

Figure 4.11: Video data used in experiment

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 86

Table 4.6: Size, bit rate, and time comparison of different files for two FFmpeg preset options

File Resolution
Veryfast Superfast, Subme=6

Size
(Mb)

Bit
rate

(kbps)

Time
(s)

Size
(Mb)

Bit
rate

(kbps)

Time
(s)

File 1
480× 270 11.3 267 23.1 13.3 332 26.3
560× 316 13.4 337 24.4 15.9 420 29.1

File 2
480× 270 18.7 724 20.2 19.0 734 20.9
560× 316 23.4 934 22.8 23.8 952 23.6

File 3
480× 270 17.9 430 30.6 20.0 493 32.6
560× 316 22.1 557 34.1 24.9 645 36.0

4.5.2 Experimental Results

Table 4.5 shows the size, bit rate and time needed for compressing File 2 (in Table 4.3) into 480×270

resolution using 3 different preset values and FFmpeg options.

Here we set values of profile, level, constant rate factor, and frame rate to baseline, 3.0, 25 and

24 respectively. From observations of participants of our experiment, we calculate MOS for each

transcoded videos.

Table 4.5 presents that both preset option veryfast and superfast with subme value 6, provide lower

values of size, bit rate and time after compression. Besides, MOS results for this two preset options are

almost same. Accordingly, we transcoded three different files given in Table 4.3 into two resolutions

480 × 270 and 560 × 316 using these two chosen preset options for finding the better preset. In

every case, compression using veryfast preset option provides lower size, bit rate and time needed

compared to that obtained using superfast with subme value 6. Table 4.6 shows the size, bit rate and

time needed for compression of different files. We run the commands for 20 times and present their

averages as our experimental results.

For obtaining the QoE values through objective test, first, we transcode the File 2 (in Table 4.3) into

480×270 resolution without changing any other FFmpeg options. Size and bit rate of this new file are

20.8 Mb and 798 kbps. We find its transcoded time to be 43.5 s. We use this file for QoE comparison.

Table 4.7 shows the values of MSE, PSNR, SSIM, and VQM comparing each transcoded video files

with the new compressed file. This table shows that the video file transcoded using veryfast preset

option exhibits higher quality than superfast preset option with subme value 6.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 87

Table 4.7: QoE measurement of MSE, PSNR, SSIM, and VQM for different preset options of
FFmpeg command

Preset option MSE PSNR SSIM VQM

Medium 12.13 37.29 0.97 0.94

Fast 12.17 37.28 0.97 0.94

Faster 11.98 37.35 0.97 0.93

Faster, Subme=6 12.16 37.28 0.97 0.94

Veryfast 14.09 36.64 0.96 1.02

Veryfast, Subme=6 12.87 37.03 0.96 0.98

Superfast 14.50 36.52 0.96 1.02

Superfast, Subme=6 15.52 36.22 0.96 1.04

Ultrafast 17.42 35.72 0.94 1.14

Ultrafast, Subme=6 16.24 36.03 0.94 1.05

Table 4.8: Comparison of required time and CPU usage for two scenarios in the local server

Upload
test
file

1st scenario 2nd scenario
Uploading
time (s)

CPU usage
(avg)

Uploading
time (s)

CPU usage
(avg)

File 1 23.8 98.2 23.6 98.2

File 2 91.7 98.2 91.4 98.2

File 3 185.6 99.3 185.6 99.3

Table 4.9: Comparison of required time and CPU usage for two scenarios in the remote server

Upload
test
file

1st scenario 2nd scenario
Uploading
time (s)

CPU usage
(avg)

Uploading
time (s)

CPU usage
(avg)

File 1 92.6 16.3 88.9 16.0

File 2 190.6 34.5 181.1 33.6

File 3 489.4 38.5 450.2 37.0

Afterwards, we test our proposed two scenarios (Figure 4.5 and Figure 4.6) for uploading video files.

Table 4.8 and 4.9 show time required for uploading and average CPU usage during the uploading task

for local and remote SPMS servers respectively.

As our local SPMS server configuration is not heavy weight enough and FFmpeg command needs

higher processing, average CPU usage in the local server becomes almost 98%. Besides, timing

difference in the local server is very small for both scenarios. However, in the remote server, average

CPU usage is 15%-40% depends on file size, bit rate, etc. Here, uploading time decreases while using

the 2nd scenario compared to the 1st scenario. The 2nd scenario is good for any size of video files.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 88

Besides, for the 1st scenario, there is a substantial chance of getting timeout due to high processing

time for large video files. If user wants to upload only small size videos, then the 1st scenario will be

a good choice. Additionally, we compare uploading times for different video files both in Swift and

Figure 4.12: Time comparison for uploading videos in Swift and proposed SPMS server for both
local and remote settings

in our proposed SPMS servers for local and remote settings. In Swift server, only original video files

were uploaded. In proposed SPMS server, four different media files were uploaded for each video file.

We take the average time of all the uploading for SPMS server. For the local server, uploading time is

higher than the conventional Swift server and lower for remote server due to the server configuration

and network latency. Figure 4.12 comprises the results.

We compare the uploading time of three different files given in Table 4.4 in our SPMS server along

with conventional storage services such as Dropbox and Google Drive. Figure 4.13 shows that SPMS

server always takes less time for video storing, than other conventional storage services. While storing,

first, we transcode each file into different versions using the FFmpeg command in our local machine.

Transcoding time for file 1, 2, and 3 are 19, 31 and 45 second respectively. Total time of uploading

these transcoded videos in Dropbox and Google Drive is presented in this figure.

We use Linux based FFmpeg media converter tool to convert three videos into different resolutions

with 3 different preset settings of FFmpeg and collect those data. The three presets are: default,

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 89

Figure 4.13: Time comparison of storing video files in conventional storage services and proposed
SPMS server

veryfast and ultrafast. Figure 4.14 shows that veryfast preset method gives the best conversion

results in terms of file size reduction.

Figure 4.14: Rate of change of video size for different preset modes

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 90

If one has ample storage space for their servers he can choose ultrafast mode but if limited in storage

it will be wiser to use veryfast preset mode of FFmpeg. Figure. 4.15 presents the time conversion for

different sizes of videos from our data-set.

Figure 4.15: Comparison between time to convert and file length

From Figure 4.16 we can see the video quality before and after of the converted files.

Figure 4.16: Comparison of video bit-rate before and after applying presets

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 91

Table 4.10: Time improvement of 2nd scenario over 1st scenario in the remote settings

Upload test file Time improvement

File 1 4%

File 2 5%

File 3 8%

In Figure 4.17, we present the comparison between our proposed system, google drive, and iCloud.

Figure 4.17: Comparison of content upload time between different storage systems

We conduct the tests five times with standard deviation of 3.92 for proposed system, 22.92 for google

drive and 15.40 for icloud. We cap the bandwith to 30 megabits while uploading the files to different

storage systems. If we compress the video data and store it in the archive server it takes less time. We

use three replications on the storage server and two in the archive server. As a result storage server is

taking more space than the archive server. Our proposed server shows significant improvement both

in storing and archiving time.

4.5.3 Experimental Findings

Table 4.10 shows improvement in required time using the 2nd scenario compared to that using the

1st scenario in the remote server. Here, the improvement spans over 4%-8%. In the local server,

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 92

(a) Before - File Size less than 10 MB (b) After - File Size less than 10 MB

(c) Before - File Size less than 100 MB (d) After - File Size less than 100 MB

(e) Before - File Size less than 500 MB (f) After - File Size less than 500 MB

(g) Before - File Size more than 500 MB (h) After - File Size more than 500 MB

Figure 4.18: Comparison of video snapshots before and after applying FFmpeg presets

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 93

Table 4.11: Improvement in uploading time using proposed SPMS server compared to that using
Swift server in the remote settings

Upload test file Remote server

File 1 62%

File 2 60%

File 3 63%

Table 4.12: Improvement in uploading time using proposed SPMS server compared to that using
conventional storage services

Upload test file Dropbox Google Drive

File 1 78% 67%

File 2 78% 64%

File 3 70% 67%

the improvement remains within 2%. Besides, Table 4.11 shows improvement in uploading time for

remote servers with respect to conventional Swift server. Here, the improvement spans 60%-63% for

the remote server. Besides, improvement of video file uploading time in remote server with using the

proposed SPMS compared to that using conventional storage services such as Dropbox and Google

Drive is given in Table 4.12. This table shows that users can save up to 78% and 67% time using

SPMS server compared to Dropbox and Google Drive, respectively.

4.6 Discussion

Our proposed system solves some of the main issues with current implementations and achieves

improved metrics [143] when compared to other popular implementations. Table 4.13 presents the

theoretical comparison between On-site Physical Storage System [118], Google’s cloud-based NEST

Cam [121] and SPMS [11]. We present four challenges in the Introduction section. Our current

implementations and proposed system provide the following solutions to address those challenges.

• Solution-1: We propose SPMS server for offline pre-processing rather than on demand process-

ing. Though it costs more space but take less time and faster availability.

• Solution-2: Our proposed method promises high fault tolerance and availability, resulting in low

equipment costs, as our proposed solution does not require any additional hardware upgrades and

is compliant with existing implementations. Both physical storage [118] and NEST Cam [121]

cost more than our proposed method and SMPS requires more storage as it keeps different

versions of the files in different formats for faster access. Our proposed CCTV surveillance

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 94

Table 4.13: Comparison of various implemetation based on the metrics element (H=high, L=low,
and A=average)

Methods
Physical
Storage

[118] SPMS [11] NEST [121] Proposed

Performance L H A H
Response Time H A A A
Scalibility L H H H
Through Put H H H H
Reliability L H A H
Availability H H L H
Usability H H A H
Cost effectiveness L A L H

system doesn’t require any new upfront cost as it can be operated on existing servers. If we take

one video and store it on SPMS it will make three versions of the files in three different formats

and store them. If we consider replication count three then we get nine copies in total for each

file uploaded. On the other hand, our CCTV surveillance system only has a replication count

of 3 for the storage server and a replication count of two for the achieve server. So we only get

five copies for each file uploaded. This saves 45% of the storage need in the long run.

• Solution-3: Our proposed system does not need constant high bandwidth since we can use local

storage as a buffer period. This is especially helpful for developing countries with poor internet

connectivity. This ensures the high throughput of our system. SPMS shows improved results in

terms of data accessibility as it stores multiple copies with different formats.

• Solution-4: Our proposed system stores all videos that ensure that no detail is lost since we

do not use any event triggering approaches. We use FFmpeg to split files, making it easier

to look for the desired files with a simple timestamp when needed. Unlike NEST and other

cloud-based offerings which only store event-based video for a limited period of time which does

not guarantee the usability of the data stored. Our system can segment large files and compress

them which saves space and makes the data more usable when needed. This makes our system

more efficient when compared to physical storage and cloud-based offerings. SPMS also provides

efficient data retrieval methods.

Our proposed system is highly scalable without sacrificing lower cost, reliability, effectiveness, and

efficiency.

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 95

4.6.1 Scalability of the Framework

Until now, we work with relatively small video files. In the real world scenario, however, the surveil-

lance system may have thousands of cameras which would equate to a huge amount of video data.

But because of the scalable and distributed architecture of OpenStack Swift’s object storage, this will

not be an issue. OpenStack Swift’s cluster of servers can store petabytes of data. When a server

begins to reach its storage capacity, we can add other servers in the ring file. This process can be

repeated however many times we need, so it will always be scalable and expandable.

4.6.2 Reproducibility of the Framework

To deploy the system we need to have two object storage servers with OpenStack Swift installed and

FFmpeg installed on the machine where the CCTV footage are being stored. Then the user just

needs the interface we develop to upload and download the videos to their own private object storage

system.

4.7 Conclusion

A key challenge for any large-scale computation today, whether in big data or in handling large-

scale web services, is to guarantee efficient management as well as security of data. As media file

sharing services are becoming capable of storing billions of objects distributed across server nodes,

it becomes highly important to effectively manage as well as secure digital data of these services.

Efficient storing and long-term archiving of video data is an important concern nowadays. However,

these are not explored in the literature enough to date. Therefore, in this Chapter, we focus on

this important topic pertaining to storage and archival of CCTV footage in the cloud. To do so,

this Chapter presents a new methodology to expand cloud media file sharing capabilities from only

storing media to perform sorting, resizing, and security tasks through moving and processing the data

inside an object storage cloud. Our goal behind such a method is to extend the traditional role of

object storage from being only a media repository to offering high availability and fast accessibility

to secured data.

Here, we propose a new storing and long-term archiving methodology for CCTV footage leveraging the

OpenStack Swift. Our proposed methodology cover all system-level aspects that need to be considered

CHAPTER 4. SECURE PROCESSING-AWARE MEDIA STORAGE AND ARCHIVAL SYSTEM
(SPMSA) 96

to deploy a real system. Accordingly, we deploy our proposed methodology in a real testbed. We

perform rigorous experimentation over the deployed real testbed setup to evaluate efficacy of our

proposed methodology. The evaluation results confirm that we can achieve substantial performance

improvement using our proposed methodology.

There is plenty of room though to extent our study. Our future plans for such extensions include

implementing customized encryption-decryption algorithms to take advantage of specified format of

video files, in-cloud segmentation of video files to support adaptive streaming, partial transcoding

algorithm of segmentation to minimize long-term cost, customized hierarchical PJPEG algorithm

to reduce both store size at server side and loading time at client side, etc. Besides, we also plan

to develop a new algorithm for transcoding the video with better quality in future. Furthermore,

in future, we aim to integrate machine learning techniques into our system to detect unexpected

behaviour in real time.

Chapter 5

A Novel Approach of Content-Based

Searching in Object Storage System

5.1 Introduction

Tremendous amount of data is being produced every day which is stored and retrieved from various

cloud servers. A recent estimation [144] shows people create about 328.77 million terabytes of data

on a daily basis. In order to store these huge amounts of data, object storage is well-known to have

an upper hand because of its flexibility and consistency. One of the distributed and consistent open-

source cloud systems is OpenStack. It provides cloud object storage, allowing us to preserve and

pull up large amounts of data using an API called OpenStack Swift. It is scalable and has been

designed to be durable, and available for the whole data set. Swift is a well-suited storage system

for unstructured data that can be increased immensely [12]. Swift object storage stores every single

piece of data as an object, unlike the storage systems like file-based storage or block storage, which

stores data as a file. This storage system is built to house massive amounts of data at a time because

of its flexibility. The retrieval of relevant data has become a significant issue as the amount of data

increases significantly [145]. Storing consumer and business data in either public clouds or private

clouds has made it difficult to efficiently and effectively retrieve meaningful data [145].

As a result, cloud-based storage is being developed using object storage. Various well-known cloud

service providers such as Amazon S3, OpenStack Swift, Caringo Swarm, and many others provide

97

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 98

object storage. Although the problem of storing massive amounts of data is solved due to the complex

architecture of object-based storage systems, retrieving or searching for a certain object/file has

become a major challenge [146]. Object storage, for instance, OpenStack Swift uses the HEAD or

GET method in order to get an object from the storage which is not very efficient when it comes to

content-based searching. Moreover, the exact path of the object is also needed in order to get some

data from this storage system, which is an inefficient task if there are massive amounts of data.

Even so, compared to block and file storage, object storage may produce higher delay and require

more processing time, but it also has a number of advantages, including scalability, cost-effectiveness,

robustness, and easier management. It offers great redundancy and data durability, making it partic-

ularly useful for managing massive amounts of unstructured data, another benefit of using Open Stack

Swift as an Object Storage is, Swift object storage allows simultaneous access from several servers,

therefore server binding is not a problem. A chaotic object storage system is present. It provides

fault tolerance, scalability, and adaptability without impairing system performance.

Furthermore, the linear searching method inside this storage is very time-consuming as the different

replica copies are located in different regions. Searching in object storage is not significant or efficient

that way, since it stands. Content-Based Search (CoBS) primarily denotes the search that investigates

the contents of inputted data rather than the metadata connected with the data, such as keywords,

tags, or descriptions. In this usage, “content” may indicate colors, forms, materialistic details, or any

other information obtained from the data itself. Manually annotating photos by inserting keywords

or information into a huge database takes time and may not catch the keywords intended to identify

the data.

The interest in CoBS is starting to grow as the usage of data is increasing and metadata-based

systems are struggling to work on a large amount of data. Existing technology can rapidly search

for information about any data, but this requires humans to manually characterize each image in

the database. This can be difficult for extremely big databases or photos created automatically, such

as those from surveillance cameras. Images that utilize various synonyms in their descriptions may

also be overlooked. Systems based on classifying photos in semantic classes like “cat” as a subclass

of “animal” may avoid the miscategorization problem, but will take more labor by a user to locate

images that may be “cat”, but are only classed as an “animal”. Many standards for categorizing

photos have been proposed, but all encounter scaling and miscategorization difficulties. Also, to our

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 99

knowledge, there has been no work based on content searching across different types of information

in one architecture.

In this Chapter, we propose Sherlock, a CoBS architecture for an object storage system that enables

us to extract additional metadata from images and keywords from documents and store them in a

metadata database that helps us search for our desired data based on its contents. In this Chapter,

we are referring to content as the objects present in images and documents. In order to do so, we

firstly identify the type of the file. Considering the file is image, we extract the information using

an object detection Convolutional Neural Network (CNN) model named DarkNet, YOLOv4 [147]

and YOLOv8 [148] architecture to detect objects. On the other hand, for document files, we extract

the information using one of the Natural Language Processing (NLP) architecture, BERT [149].

Afterwards, we retrieve additional data such as the object path in the form of an HTTP link. The

data is passed to an Elasticsearch Cluster (ESC) [150] and the object is uploaded to object storage

systems like OpenStack Swift. When the user searches for an object, our proposed interface takes

input from the user, performs a search in the ESC, and returns a list of objects. The user can be able

to access the objects from Swift. In this way, there is only one GET request to the object storage

system. Besides, the enriched content metadata are created using BERT and DarkNet and stored in

ESC ensuring more relevant content searching for the user. The basic objective of our study is as

followed:

1. To find an alternative method of content (documents and images) search for object storage

systems like OpenStack Swift.

2. How does our alternate method perform in an average computational environment?

3. How can it be used as a user-centered image retrieval system?

4. How much delay can occur depending on the size of the images when uploaded as significant

batches?

5. How does Elasticsearch respond to massive amounts of images?

We propose the following contributions to this Chapter based on our findings -

• Our work is the first to come up with an architecture that can jointly do CoBS inside images

and documents.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 100

• We create the OpenStack Swift JOSS client User Interface (UI) in order to access Swift and the

Elasticsearch cluster at the same time using user-level authentication tokens.

• We rigorously test our BERT, DarkNet, YOLOv4 and YOLOv8 algorithm with different custom-

weighted files to get maximum accuracy. We use three different datasets and calculate the

response time of the YOLOv4 and YOLOv8 object detector as well as its precision in detecting

multiple objects in a single image.

• We use a pre-trained BERT model to extract keywords from Documents. Besides, in the Elas-

ticsearch cluster, we perform multiple query requests from our User Interface to get the elastic

cluster’s response time and the average query time. Lastly, we add different filters to the search

engine using the elastic cloud API.

We structure rest of our study as followed: Firstly, we look into some of the recent state-of-the-

art research studies on different types of searching, extraction, and retrieval system in Section 5.2.

Afterward, we investigate the backgrounds of the architectures that we use to make our whole study

effective in Section 5.3. Then, in Section 5.4, we illustrate the methodology with implementation,

which uses different cloud and deep learning-based technologies. Then, in Section 5.5, we evaluate

the proposed architecture. After that, we discuss the evaluation of our experimental results and do

a comparative study with some related works in Section 5.6. Finally, in Section 5.7, we discuss and

demonstrate possible future works.

5.2 Related Work

The concept of searching in Object storage is not entirely new to us. Platforms like Amazon S3, and

OpenStack Swift- all have their own kind of searching approaches. Although there has been very

little research related to searching in object storages they have not been implemented on platforms

like OpenStack Swift and other object storages. As a result, we study these research papers in order

to understand their work and the complications they faced while working with object storage. We

segment the search into two different categories. The first part aims to review previous relevant works

in the field of searching in object storage, specifically different types of metadata-related searches.

The second part emphasizes on Query related searches in Object storage.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 101

5.2.1 Metadata Searching

Leung et al. [151] suggest a scalable index-based file metadata search system that outperforms compet-

ing solutions in terms of query performance while using less disk space, [151] named “The SpyGlass”.

The type of programs that operate with millions of data generate need to be analyzed petabytes of

data which are divided into millions of files or objects, according to Singh et al. [152]. Additionally,

they must maintain their metadata, which exponentially increases the total amount of data in the ob-

ject storage. There are many types of metadata, ranging from their date of creation to size. So, they

propose a Metadata Catalog Service (MCS) which can store and access different types of metadata,

and users can query for any type of metadata they want.

In 2015, the creators of the OpenStack Swift platform introduce a new type of metadata searching at

a Summit in Tokyo. In this Chapter, a metadata enrichment engine is proposed which extracts addi-

tional metadata from the objects and adds them on top of the already available metadata. Moreover,

this metadata is indexed using the ‘Indexer Middleware’ and RabbitMQ [153] in the Elasticsearch

cluster [150]. So whenever a search request comes in, the indexer middleware will intercept it and

forward it to the Elasticsearch cluster where it can be searched and the search result will be provided

using the same path. As a result of the metadata enrichment engine, the metadata of the object store

will be far better and will be able to perform data analytics far more precisely on the object storage

than ever before. Using the Elasticsearch engine they are able to get desired results in no time. A

massive amount of data and metadata can be indexed properly using RabbitMQ. But this project

has not been able to provide a standardized search API. As a result, it still depends on the PUT

GET methods of the original OpenStack Swift. However, while adding extra metadata manually we

also need to provide the already provided metadata too. Otherwise, the previous metadata will be

overwritten.

5.2.2 Query Searching

Searching in object storage is now common in cloud systems. Through our studies and findings, we

try to find out the drawbacks, and issues of searching, and how they can be solved. A study [171]

describes that Swift is a proxy server-based design that has the scale-ability of clusters. From this

study, we get to know that it has a common performance issue in context-switching and that it buffers

when messages are copied for each feedback transfer. So, basically, they propose a change in Swift’s

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 102

Table 5.1: Findings from literature review

Reference Purpose of the study Technologies used Findings

Ren et al., 2023. [154]
Image Retrieving from large
amount of image pool

Zero-shot, NormSoftmax loss,
Challenges and solution
for image retrieving
from sketch-based images

Kakizaki et al., 2023. [155]
Defense approach for deep
neural network (DNN) based
content-based image retrieval (CBIR)

Interval bound propagation (IBP), DNN
Attack defense against
content-based image
retrieving

Wang et al., 2023. [156]
Content based image
retrieving in industrial section

CNN, Binarization, Pre-trained Alexnet

Deep learning to retrieve
image with feature
extraction and use of
binarization in CBIR

Choe et al., 2022. [157]
deep learning based
image retrieving

CNN
CNN based image
retrieving improved
accuracy than before

Monowar et al., 2022. [158]
New AutoRet content-
based image retrieval system

Deep CNN, AutoEmbedder framework
Functionality of a CBIR
system with spatial pooling,
DCNN

Keisham et al., 2022. [159]
Search and Rescue based
CBIR approach

SAR (search and rescue),
Deep Nural Network-SAR (DNN-SAR)

Deep dive into DNN-SAR based
CBIR workflows and positive
outcome on image retrieving

Noor et al., 2022. [1]
Workflow of image
retrieving in cloud system

Openstack , Image compression
Image retrieving technique
in cloud.

Ahmadvand et al., 2021. [160] Big data processing
DVFS (dynamic voltage
and frequency scaling)

Big data processing technique
using DVFS in variety of data

Xue et al., 2020. [161]

How mass metadata can be
kept without reducing
performance and
make better transition in
files retrieving

Openstack, UCARP
Faster file retrieve and better
performance

Lima et al., 2019. [162] OpenStack Architecture
Openstack, PRISMA,
Horizon, Neutron, Zaqar,
Swift, Barbican

A complete view of openstack architecture.

Evans et al., 2018. [163]
Object Storage searching with indexing
and metadata.

SQL, Clueso,
Amazon Athena, Cassandra

A few more options for searching metadata

Gugnani et al., 2017. [164]
Find out the common issues of Swift
default architecture and designs and
new implements.

InfiniBand, RoCE
such as RDMA

Workload increases up to
2x and performance
boosted up to 7.3x

Noor et al., 2017 [53] Reliable and secure image processing
P-Fibonacci transform
of Discrete Cosine Coefficients(PFCC),
Openstack Swift

Performance improvement of image
processing and retrieving with
the proposed framework

Yigal et al., 2016. [165] Monitoring tools for OpenStack
Openstack, Elasticsearch,
Logstash, Kibana

A way to monitor and retrieve
Openstack’s data
with middleware tools

Biswas et al., 2015 [166] ACL in OpenStack
Openstack Swift, Swift ACL,
JSON

User-level access with ACL feature to
retrieve the object.

Wang et al., 2015 [167] Ciphertext based CBIR system
CKKS (Cheon-Kim-Kim-Song)
homomorphic encryption, DNN

Using DNN and CKKS, LHS
(locally sensitive hash) retrieved
image from ciphertext

Raghuveer et al., 2007 [168] How Intelligent storage works for data
Node based ISN OSD,
Squad framework

Squad framework performs better
than database-file system

Brandt et al., 2003 [169]
How to access large scale of metadata
avoiding bottleneck

LH (Lazy Hybrid),
OBSD, ACL

High performance cluster with
scalability and flexibility.

LeCun et al., 1998 [170]
Character recognition
using supervised learning

Graph transformer (GT),
Optical character recognition (OCR),
K-NN (K-nearest Neighbor),
SDNN (space displacement neural network)

Hand fullness of GTN
(Graph transformer network)
in text retrieving

architecture that will provide much faster bandwidth with minimal latency while interacting with

technology like RoCE, InfiniBand, and Remote Direct Memory Access (RDMA) [164]. They also

propose other changes in Swift’s operation design to improve its performance in transferring objects

faster through the I/O module, which is based on RDMA. They also try an efficient hashing algorithm

to make the verification faster in Swift. According to the study, they work on Swift bench-marking

and find an improvement in managing workloads that is twice as fast as before, as well as performance

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 103

boosts of up to 7.3×. According to Swift problem findings, the proxy-based architectures omits the

best output can be produced and capacity of Swift clusters. They also make changes to the network.

They find out the reasons for bottlenecks in the default Swift architecture and designs, implement a

high-performance I/O framework for faster object transferring, and experiment with the use of various

hashing algorithms to enhance object verification procedures.

Imran et al. [172] present some probable problems with metadata-related issues that we may face. In

cloud storage, a lot of metadata are created which hampers the performance of the system. They pro-

pose an optimized solution for storing massive metadata which has improved load balancing modules

and merges storage facility. Xue et al. [161] use HAproxy and UCARP to handle when huge amounts

of metadata and it also reduces the buffering and accelerates read and write performances and overall

throughput. Metadata is basically stored in a system as small files and with the increasing use of

automated technology and remote sensing technology, lots of metadata is produced every day. As

from the study, the traditional ways of retrieving metadata from relational databases become an issue

for performance and hard to scale and maintain. On the other hand, storage performance reduces

when lots of small files are stored. They use OpenStack Swift and optimize its frameworks and as for

the load balancing module they used HAproxy and UCARP technology to overcome the bottleneck

in the storage server. To make the performance better they transformed small files into large files so

that small files cannot hamper the performance.

Biswas et al. [166] show how Access Control List (ACL) maintains accessibility and data security for

all users. With ACL, it can be described who to give access to or not. On the other hand, they use

JSON-based data to be sorted and how to protect data with JSON with labeling access control. In

Swift, ACL and data security keystone has been used and stated how user data is checked through

keystone and label user for granted for access data. For these, they change inside of the object server

and its storing policies. Each time a request is made for downloading data it is checked by ACL, if it

has been granted access or not. If it has, then it sends a request to read data from a server through

a proxy server, otherwise, it stops it when it finds out for no ACL access. As for the storing policies

they made, two types of policies for two types of data. One is LaBAC for user label data and objects

label values, another is content level for JSON paths and labels. They find a drawback to their work,

stating as it can only work with objects with applications or in JSON. Objects without a JSON file

create issues with sending the full content of the files without requesting.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 104

5.2.3 Content-based Image Retrieval System

Ren et al. [154] propose an Approaching-and-Centralizing Network (termed “ACNet”) to jointly opti-

mize sketch-to-photo synthesis and the image retrieval where the retrieval module guides the synthesis

module to generate large amounts of diverse photo-like images which gradually approach the photo

domain. Here, these diverse images generated with retrieval guidance can effectively reduce the over-

fitting problem troubling concrete category-specific training samples with high gradients.

Kakizaki et al. [155] introduce a defense approach for deep neural network (DNN) based content

based image retrieval (CBIR) against adversarial examples (AXs). They first define newly certified

robustness of CBIR, which guarantees that no AX that changes the ranking of CBIR exists around

the query or candidate images. Then, they propose computationally tractable verification algorithms

that verify whether the certified robustness of CBIR is achieved by utilizing upper and lower bounds of

distances between feature representations of perturbed and non-perturbed images. Afterward, they

propose new objective functions for training feature extraction DNNs that increase the number of

inputs that satisfy the certified robustness of CBIR by tightening the upper and lower bounds.

According to Wang et al. [167], the industrial CBIR as well as second processes: first, the task consists

of two processes, firstly images are handled to the file server and recorded during the collection process,

and secondly, the indexing step consists of three steps: feature processing and feature indexing,

also feature extraction—relationships between the queries and images, including contents of collected

images and computing them during the search step.

LeCun et al. [170] have accomplished the first excellent outcomes in character recognition using super-

vised back-propagation networks. Machine learning and image processing research are getting quite

popular, and the operations of CNN have recently skyrocketed to a massive reduction in computer

hardware, especially Graphics processing units. Krizhevsky et al. [173] present an eight-laayered CNN

model, which win the championship for the analysis task of ImageNet’s large-scale visual recognition

challenge in 2012 (ILSVRC-2012). VGG [174] increases the depth of the convolutional network to 19

layers and wins first and runners-up place in the ILSVRC-2014 localization and classification. He et

al. [175] present an approach by which they outperform GoogLeNet by 26 percent when studying rec-

tifier neural networks. Choe et al. [157] propose a convolutional neural network based CBIR approach

to diagnosing Interstitial Lung Disease with Chest CT. Monowar et al. [158] introduce AutoRet, a

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 105

deep convolutional neural network (DCNN) based self-supervised image retrieval system. The sys-

tem can work in self-supervision and can also be trained on a partially labeled dataset. The overall

strategy includes a DCNN that extracts embeddings from multiple patches of images. Further, the

embeddings are fused for quality information used for the image retrieval process.

Keisham et al. [159] present a Deep Search and Rescue (SAR) Algorithm-based CBIR approach. The

steps involved in the proposed Deep Neural Network-SAR (DNN-SAR) are pre-processing, multiple

feature extraction, feature fusion, clustering, and classification. Initially, Fast Average Peer Group

(FAPG) filter is used to remove the noise in the pre-processing stage. Then multiple features like

color, shape, and texture are extracted and feature vectors are calculated. All these three features are

fused into a single feature using average and weighted average techniques. Next, the fused features are

clustered using the adaptive Sunflower optimization (SFO) algorithm. Finally, the relevant images

are retrieved using DNN-SAR optimization algorithm.

Schall et al. [176] come up with a protocol for testing deep learning based models for their general-

purpose retrieval qualities. After analyzing the currently existing and commonly used evaluation

datasets they conclude with the result that none of the available test sets are suitable for the desired

purpose and present the GPR1200 (General Purpose Retrieval) test set. Unlike the existing datasets,

this dataset focuses on high domain diversity to test retrieval systems for their generalization abil-

ity. Images were manually selected to ensure solvability and exclude overlaps between categories of

different domains.

Wang et al. [156] propose a secure and efficient ciphertext image retrieval scheme based on image

content retrieval (CBIR) and approximate homomorphic encryption (HE). First, they use approximate

homomorphic encryption to encrypt images after resizing and uploading the ciphertext images to the

cloud for feature extraction of ciphertext. At the same time, the large images (size, dimension,

and resolution) will generate data inflation after using homomorphic encryption. Therefore, the

original images are encrypted using the chaotic image encryption scheme to reduce ciphertext size

and computation costs. Second, they propose two deepening network depth optimization strategies

that address the problem of insufficient neural network depth. Finally, reducing the dimensionality

of the ciphertext feature vector using locally sensitive hashing (LSH) can accelerate the retrieval of

ciphertext images.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 106

Ahmadvand et al. [177] develop a data variety aware approximation approach, named Gapprox. They

use a certain type of cluster sampling to improve the accuracy of data variety estimation. They divide

the input data into some blocks considering the intra/inter cluster variance. The size of the block

and the sample size are determined in such a way that by processing small amount of input data, an

acceptable confidence interval and error bound is achieved. Then, the researchers use a data-variety-

aware resource allocation approach [178] to reduce the processing cost of the considered job. For

this issue, they divide the input data into some data blocks. They define the “significance” of each

data block and based on it we choose the appropriate VMs to reduce the cost. For detecting the

significance of each data portion, they use a specific sampling method. This approach is applicable

to accumulative applications. They also [160] use Dynamic Voltage and Frequency Scaling (DVFS)

architecture to reduce the energy consumption of computation to work with Data variety. Afterwards,

they present an updated approach [179], named SAIR, to improve Quality of Result (QoR) of big

data processing for budget-constrained aggregative usages based on significance variety.

Noor et al. [1] propose a novel approach to retrieve images faster by customizing the attributes in

bit pixels of distinct luma and chroma components (Y, Cb, and Cr) of progressive JPEG images.

Furthermore, new lossy PJPEG users of architecture to reduce the file size as a solution to overcome

the possible drawback of this change proposed by them. Their proposed orchestration is reported

to have a better response time from users up to 54% and a decreased image size of close to 27%.

Moreover, this approach ensures up to 69% faster loading times. However, they only focus on image

retrieval, which does not focus specifically on content.

In most recognition tasks, CNN-extracted features are considered the primary candidates. Razavian

et al. use [180] to measure CNN performance, implement the OverFeatand perform network as a

feature decoder on a variety of detection tasks and provide a platform for various datasets. According

to Koskela et al. [181], CNN has been prepared on various object identification datasets can extract

features for scene recognition tasks. These findings indicate that feature mining is possible, compelling,

and extremely positive with CNN.

5.2.4 Keyword Extraction from Document

Researchers [182] present a multimodal key-phrase extraction approach, namely Phraseformer, using

transformer and graph embedding techniques. Xiong et al. [183] propose Semantic Clustering Tex-

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 107

tRank (SCTR), a semantic clustering news keyword extraction algorithm based on TextRank that uses

BERT to perform k-means clustering to represent semantic clustering. Then, the clustering results

are used to construct a TextRank weight transfer probability matrix. Finally, Iterative calculation of

word graphs and extraction of keywords is performed.

The recent solutions for searching in object storage and their findings are presented in Table 5.1. Their

drawbacks inspire us to come up with a new solution with the help of object detection and natural

language processing that is robust. Previous solutions do not have content-based data extracting and

searching options and also do not have a floor to optimize the searching mechanism for best interests

and also the integration of third-party search engine adaptation. To the best of our knowledge, our

proposed methodology is the first to focus on these aspects.

5.3 Background

Figure 5.1: Overview of the storage architecture [3]

This section goes over the fundamental architectural framework of Swift, YOLO, BERT, and Elastic-

search.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 108

Figure 5.2: Different consistency processes and layers in proxy and storage nodes of OpenStack Swift

5.3.1 Architectural Overview of Swift

OpenStack Swift is a highly scalable object storage that is designed keeping in mind the phrase that

“Failure is a common occurrence”. As a result, Swift is divided into 4 subsections: Proxy, Account,

Container, and Object nodes. A proxy server is located in the first layer. Data that goes in and out

of the storage has to go through the HTTP file transfer protocol. The requests for data are done

by API requests. The task of the proxy server is to capture the requests and work accordingly. The

proxy server determines the location of the data or its storage node by the URL. There are Rings,

which keep the address of the information like names and entries that are stored on the cluster. It

also keeps track of the path of the data. The way Rings keep the mapping work is by introducing

zones, devices, partitions, and replicas. Zones may be any storage device like a hard drive to a full

server. After that, there are containers and accounts. The list of containers in a particular account

is stored in that account’s database. Swift has multiple object nodes which are independent of each

other. These object nodes are easily replaceable in the event of any failure. However, Swift has an

internal replication system that replicates the stored object into a minimum of three different nodes.

So when one node is replaced the objects are not lost [162]. Figure 5.1 presents the architectural

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 109

overview of OpenStack Swift and Figure 5.2 presents the different consistency processes and layers in

proxy and storage nodes of OpenStack Swift.

Input image

Bounding
boxes for
prediction

Objectness
Score>

0.5

Ignore the
bounding box

Identifying
the class

confidence

Applying the
non maximum

suppresion

Output image
with object
detection

Figure 5.3: Workflow of YOLOv4

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 110

5.3.2 YOLOv4

YOLOv4 [184], You Only Look Once Version 4, is a sophisticated technique for single-stage object

detection that utilizes regression techniques to gain a good precision score and can be performed

concurrently, It is the predecessor of the YOLO line of algorithms. This algorithm is introduced in

2020 by Bochkovskiy et al. [184] and builds upon the capabilities of previous versions such as YOLOv1,

YOLOv2, and YOLOv3., achieving the finest potential balance between detection efficiency and

precision at this time. Its architecture, which includes of the backbone, the neck, and the prediction,

is shown in Figure 5.3.

An identical YOLO head used in YOLOv3 is applied in YOLOv4 for detection with three levels of

granularity and anchor-based detecting steps [184]. The backbone of YOLOv3 combines the ResNet

structure with a residual module to create Darknet53 [185]. Essentially, an object detector’s backbone

network undergoes pretraining on ImageNet classification. Pretraining alludes to the network’s weights

being modified for the new task of object identification even when they have already been trained to

produce better feature extraction in an image.

The authors suggested the following backbones for the YOLOv4 object detector: CSPResNext50,

CSPDarknet53, and EfficientNet-53 [184]. As for our purpose, we use CSPDarknet53. YOLOv4

resembles YOLOv3 in this way but adding Cross-Stage Partial Network’s greater learning capacity

(CSPNet) on Darknet53 emerges as a new addition and efficiency in YOLOv4 [186]. In YOLOv4,

the CSPDarkNet53 architecture is introduced. This architecture includes a residual module where

the feature layer is re-entered, resulting in increased feature information. This entitles the model to

learn the distinction between output and input. In the residual module, enabling residual learning

while also reducing the model’s parameters and improving feature extraction [184]. The SPPNet and

PANet can be merged to form the neck of the model. The SPPNet involves designing and simulating

the feature layer multiple times before applying maximal pooling with a large number of pooling cores

of various sizes to the input feature layer [184]. The aggregated results are then concatenated and

fused multiple times to strengthen the network’s receptive field. Using the operations of Backbone

and SPPNet, PANet convolves the feature layers. Then it up-samples them, doubling the height

and width of the original feature layers, and then concatenates the feature layers generated after

convolution and up-sampling with the feature layers obtained by CSPDarkNet53 to achieve feature

fusion [184], and then down-sampling, compressing the height and width, and finally stacking with the

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 111

previous feature layers to realize 5× more feature fusion. The Prediction module can bring predictions

based on the network features. Using a 13 × 13 grid, for example, is equivalent to dividing the input

image into 13 × 13 grids, with every grid being pre-set with three earlier frames. The network’s

prediction results will shift the placements of the three previous frames, and finally, it will be filtered

by the non-maximum suppression (NMS) [187] algorithm to obtain the final forecast frame.

YOLOv4 introduces a novel panoramic data augmentation strategy to boost the dataset and use

Complete Intersection over Union (CIoU) as the precision loss function, which make the network

more probable to optimize in the direction of enhancing overlapping areas, thus stimulating the

accuracy [188].

CloU is the loss function that combines classification loss, confidence loss, and complete intersection

over the union. Up until the Intersection over Union (IoU) loss calculates the overlap between the

expected and true bounding boxes. The CIoU loss eliminates this by introducing new terms that

penalize differences in the aspect ratio and center point of the predicted and ground truth bounding

boxes. This produces more precise findings and eliminates errors in localization and misclassification.

5.3.3 YOLOv8

YOLOv8 is the successor of all the previous YOLO models presented. It is introduced by Jocher et

al. [148]. YOLOv8 has an architecture similar to one of its ancestors, YOLOv5. It does not have

a Darknet backbone like its’ predecessors. It is based on PyTorch. And it has a Python backbone

rather than Darknet, which is based on C used in YOLOv4. This is convenient for the users to make

it customizable and bring improvements through the model. These inspire researchers and engineers

to create new models based on that. There are three main aspects of the YOLOv8 model. Firstly, this

model is anchored free and it does the prediction from the center of the object and has the attributes

of an anchor-free model. Then, the architecture of the convolutional kernel has been changed from

1×1 to 3×3, and lastly, it uses mosaic augmentation at the time of training which is quite a praise able

work [189]. As a classification loss, YOLOv8 employs DFL (Distribution Focal Loss) Loss + CIoU

Loss and VFL (Vertical Flipped Label) Loss. VFL loss flips the labels of good examples. The label

is substituted by its vertical inverse for each positive example, resulting in a new negative example.

It solves the localization problem and also adds other confidences and classification losses to measure

the weight [190]. On the MS COCO dataset, YOLOv8x achieve an AP of 53.9% with a 640-pixel

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 112

image size (compared to 50.7% for YOLOv5 on the same input size) at a speed of 280 FPS on an

NVIDIA A100 and TensorRT [191].

Figure 5.4: Overview of the proposed architecture

Figure 5.5: Java library for OpenStack Swift (JOSS)

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 113

5.3.4 BERT

The BERT (Bidirectional Encoder Representations from Transformers) model architecture is based

on a multi-layer Transformer encoder, which was originally implemented by Vaswani et al. [192].

Devlin et al. [149] introduce the BERT Transformer based on using bidirectional self-attention. This

bidirectional mechanism removes the restrictions that self-attention can only incorporate the context

from one side: left or right. Different from other embedding generation architecture, such as Word2Vec

[193], the input to the BERT model is not vectors that represent words. Instead, the input includes

token, segment, and position embeddings. The token embedding is WordPiece embeddings [194] that

contain 30,000 tokens. The base BERT model is pre-trained using two unsupervised tasks:

1. Masked Language Model (LM) - a task to predict some random masked tokens in the input.

The objective is to train a bidirectional encoder.

2. Next Sentence Prediction (NSP) - a task to predict the following sentence of the input sentence.

The objective is to understand sentence relationships so that the pre-trained BERT model can be

a better fit for other NLP applications, such as Question Answering (QA) and Natural Language

Inference (NLI) where sentence relationships are crucial. In this research, we make use of the base

BERT model that is in TensorFlow Hub. It has 12 transformer blocks, 12 self-attention heads, and a

hidden size of 768. The BERT base model can be fine-tuned for text classification by simply adding a

softmax classification layer on top of the BERT model to predict the class c of a given text sequence,

as Equation 5.1. The input to the softmax layer is the last hidden layer output H of the first token

that represents the original text sequence.

p(c | H) = softmax(WH) (5.1)

Here, W are the parameters for the classification layer. They are fine-tuned with all the parameters

from BERT to maximize the log probability of the correct label. Even though The BERT model is

large and slow to train due to its complex structure and extensive corpus, but its advantages include

increased accuracy, better generalization, and the capacity to apply acquired information to different

tasks. Additionally, methods and improvements, such as model pruning, knowledge distillation, and

hardware acceleration, can be utilized to lower the computational cost of developing and utilizing the

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 114

model.

5.3.5 ElasticSearch Overview

Elasticsearch is a full-text search library based on the open-source search engine Apache Lucene. It is

capable of performing a full-text search. It can conduct a structured search, analytics, or a combination

of all three as this is built for real-time, distributed search and data analysis [195]. The highly

adaptable query API of Elasticsearch allows for the simultaneous use of filtering, sorting, pagination,

and aggregation in a single query [150]. Elasticsearch is capable of easily handling unstructured data,

and allowing for the indexing of JSON files without the need for a prior schema. It automatically

attempts to identify class mappings and adjusts for new or removed fields. It also offers built-in

functionality for clustering, data replication, and instantaneous fail-over, all of which are transparent

to the user [150].

On the other hand, Elasticsearch is a data store with fast and powerful search capabilities, real-time

indexing and analytics, and flexible data modeling capabilities. It is best suited for full-text search and

analytics use cases, Hadoop for distributed computing and large-scale data processing, and MongoDB

for document-oriented data storage and retrieval needs.

5.4 System Design and Implementation

Figure 5.4 presents the methodology of our proposed system. First, it checks if the file is an image or

a document. Based on the file type, the content is sent to extract the crucial information. For images,

the content is sent to extract the metadata. And for documents, the content is inputted to extract the

keyword. Darknet (for image) and BERT (for document) process the metadata and send the data to

the Elasticsearch cluster. The object detection/keyword extraction is done on the client app. When

the metadata is uploaded in the Elasticsearch cluster, the content is uploaded to the Swift server.

5.4.1 Developing Client-side

We use Java client for OpenStack Swift (JOSS) [196], in Figure 5.5, to build the client app. We use

Elasticsearch as it offers multi-language support for handling request and response data, language

detection libraries, and plugins and integrations to provide additional language-specific functionality.

And our JOSS client connects well with Elasticsearch. The location path of the content in our storage

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 115

Swift
client

Dump
resized
copy

JSON
Document

Bounding box
prediction

Make an object
detection set

Draw bounding
boxes

Resized
Copy

Image metadata

Figure 5.6: Overview of the modified YOLOv4 and YOLOv8 object detectors

server is saved in the Elasticsearch cluster. We use Elasticsearch as it offers multi-language support for

handling request and response data, language detection libraries, and plugins and integrations to pro-

vide additional language-specific functionality. And our JOSS client connects well with Elasticsearch.

When the user searches for content, the client app performs a search in the Elasticsearch cluster and

returns content suggestions to the user with the Swift location path. This ensures minimum load

on the Swift server and accurate searching based on the metadata. Because of this extraction, the

proposed system has a sound knowledge of each content.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 116

OpenStack has a few libraries to interact with the Swift object storage system [171]. We use the

Java library for Openstack Swift (JOSS) [196] to develop our client app. It is a desktop-based

application where we have our object detection model as well. Object detection is done using the

client device’s computational power. Then we upload the metadata data to the Elasticsearch cluster

and the content to the Swift server. JOSS provides many features to interact with the Swift servers

including authentication, object uploading, content location path generation, and so forth [197].

YOLOv4
JSON
output

Input Filters Output Elasticsearch
Data source

9

Figure 5.7: Workflow for JSON document in Elastic Cluster

5.4.2 Developing Keyword Extraction

BERT is one of the state-of-the-art models to solve problems related to Natural Language Processing

(NLP) which uses Attention-based mechanisms. In our case, we take a document (docx/pdf) and

then take all the text from that document and put it in the BERT model and we the get best five

three-word keywords out of the document we input.

5.4.3 Developing Object Detection

Figure 5.6 shows how our proposed YOLOv4 algorithm works after it gets an image. YOLOv4

provides us with fast and accurate object detection with the help of bounding boxes and non-maximum

suppression. However, in our case, we do not want an edited image with bounding boxes. As a result,

we propose a different workflow for the YOLOv4 where after getting an image it will make a copy

of that image and perform necessary detections. We also followed the same approach for the latest

YOLOv8 too And we used a pre-trained YOLOv8 like we used a pre-trained model for YOLOv4

which is already trained with the MSCOCO-17 dataset which has 80 classes of data.

At that time, the actual image will be sent directly to the storage server. And after that, the detection

is done the copied image will be dumped and the object detection set with other metadata related to

the image including the object URL path will be written into a JSON document. Lastly, the JSON

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 117

document will be pushed into the Elasticsearch server.

5.4.4 Developing the Storage System

Figure 5.1 shows the overall architecture of the storage system. After Detection is done and the object

is pushed to Swift, it goes into Swift using the Swift proxy pipeline. In our model, we use a multi-node

Swift setup. There are 3 proxy servers and multiple object servers. The load balancer chooses the

suitable proxy server for the object. The proxy server sends the object to the Ring, from where the

object is sent to the appropriate object server. In our model, we do not change how Swift handles

these requests in order to maintain its scalability and compactness.

5.4.5 ElasticSearch Cluster

Figure 5.7 shows the workflow for JSON document in Elastic cluster. We set up an Elasticsearch

server in a different Virtual Machine with a Logstash pipeline where the JSON file generated by the

object detector gets pushed. Our Logstash pipeline filters out the unnecessary data from the JSON

file such as the coordinates of the bounding boxes, class id. It also formats the JSON file in a way

that is easier for Elasticsearch to index properly based on the image file name and the contents of the

image which in our case are the detected objects.

5.5 Performance Evaluation

We measure the performance of our suggested architecture using a real-world implementation. Before

this, we first elaborate on proposed experimental settings.

5.5.1 Experimental Setup

We set up multiple virtual machines using the Google Cloud Platform (GCP). One machine work as a

proxy server and the other one as the object server node. Account and container servers are included

in the object server machines which are shown in Figure 5.8. We use our local machine to detect and

upload images for this testing. The configuration for our local machine is as follows: Intel(R) Core

i5-7300HQ CPU having a 2.50 GHz base clock speed, 8 GB ram, and an Nvidia GTX 1050 Graphics

Unit.

Next, we use another graphics unit Nvidia RTX 2070 where we run our testbed with YOLOv8.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 118

Figure 5.8: Experimental setup overview

Furthermore, we use another virtual machine as the Elasticsearch server, which is configured to get

data dumps from our local machine. For all the Virtual machines, we use the same kind of setup: 4

GB ram, 60 GB storage, and the operating system is Ubuntu 18.04.

5.5.2 Dataset

We utilize the Microsoft COCO Dataset [198] for our object detection module. The dataset comprises

a total of 26,000 images and 80 classes. To conduct our testing, we divide the dataset into three

segments, containing 1,000, 5,000, and 20,000 images, respectively. The distribution of these segments

can be observed in Figure 5.9 and Figure 5.10. To evaluate the images, we employ pre-trained YOLOv4

and YOLOv8m models. The class distribution of the MSCOCO image dataset is illustrated in Figure

5.9 and Figure 5.10.

We employ the SemEval2017 Dataset [199] for our keyword extraction task. This dataset is composed

of paragraphs that have been extracted from 500 journal papers sourced from the domains of Computer

Science, Material Sciences, and Physics, available on ScienceDirect.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 119

Figure 5.9: Class distribution of MSCOCO image dataset (number of images = 5000)

Figure 5.10: Class distribution of MSCOCO image dataset (number of images = 20000)

5.5.3 Experimental Results

In this section, we present the outcomes obtained from employing the datasets in our system. We

begin by showcasing the results obtained from the image dataset, followed by the results from the

document dataset.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 120

(a) Aeroplane (b) Aeroplane (Detected)

(c) Man on horse (d) Man on horse (Detected)

Figure 5.11: Object detection (single and multiple)

Table 5.2: Dataset testing metrics

5000 Images 20000 Images

Detection time (sec) 681 2907

mAP 0.71 0.73

Average IoU 0.55 0.56

F1 score 0.68 0.69

Recall 0.68 0.69

Precision 0.68 0.69

5.5.3.1 Image Dataset Test

Table 5.2 displays various metrics obtained from our testing sets. The precision metric holds signif-

icance for our model as it indicates the system’s ability to accurately provide users with the desired

images. In our case, we achieved an mAP (Mean Average Precision) of 0.71 for the 5,000-image

dataset and 0.73 for the 20,000-image dataset, resulting in an overall precision of 68.5%. Figure 5.11

illustrates the detection of both single and multiple objects by our model.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 121

(a) Detection time graph (seconds) (b) Upload time graph (seconds)

(c) Upload & detection time graph
(seconds)

Figure 5.12: Time graph (YOLOv4)

(a) Detection time graph (seconds) (b) Upload time graph (seconds)

(c) Upload & detection time graph
(seconds)

Figure 5.13: Time graph (YOLOv8)

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 122

5.5.3.2 Detection Time Test

Figure 5.12a and Figure 5.13a depict the time taken to detect 1,000, 5,000, and 20,000 images.

The curves in both graphs exhibit a slight upward slope, indicating that the detection time remains

relatively low in comparison to the number of images. This efficiency is attributed to the YOLO

algorithm, which lives up to its name by examining each image only once. Furthermore, the negligible

impact on speed by removing the bounding box drawing method further supports the algorithm’s

efficiency.

5.5.3.3 Upload Time Test

During the uploading process, we impose a speed restriction of 2 Mbps (megabits per second) and

compute the upload time for the images. Figure 5.12b and Figure 5.13b display a relatively steep

curve, which is a result of the low upload speed in comparison to the file sizes of the images. This

discrepancy leads to longer upload times, as depicted in the graphs.

5.5.3.4 Total Time for Proposed Model

Following the individual calculations of detection and upload time, we proceed to initialize our system

to determine the combined time required for both uploading and detecting the various image sets.

Figure 5.12c and Figure 5.13c illustrate a slight increase in the curve, indicating the cumulative time

for uploading and detection.

5.5.3.5 Uploading and Detection Time Comparison

Based on Figure 5.14, we observe the comparison between the uploading time and the combined time

for detection and upload. It indicates that the additional requirements of object detection and our

system slightly increase the overall time needed to deliver the image to Swift. However, this difference

is relatively insignificant considering the extensive work taking place behind the scenes.

It is important to note that our system utilizes an older graphical processing unit model, the Nvidia

GTX 1050, without CUDNN functionality. As a result, the GPU usage reaches a maximum of 15-20%.

Upgrading to a newer GPU model or using an older version with CUDNN enabled would significantly

decrease the detection time, subsequently reducing the overall upload and detection time. This would

bring the curves in Figure 5.14 much closer to each other.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 123

Table 5.3: Average time (in seconds) to do different tasks for different data sizes with YOLOv4

Image
count

Average
detection
time
(YOLOv4)

Average
upload
time

Total
upload &
detection
time
(YOLOv4)

1000 153.6 1050 1204

5000 864 4999 5887

20000 3438 19980 23472

Table 5.4: Average time (in seconds) to do different tasks for different data sizes with YOLOv8

Image
count

Average
detection
time
(YOLOv8)

Average
upload
time

Total
upload &
detection
time
(YOLOv8)

1000 87.5 1050 1138

5000 443 4999 5442

20000 1790 19980 21770

Table 5.3 and Table 5.4 present the average time taken by our models to detect and upload various

data segments.

Figure 5.14: Comparison graph

5.5.3.6 Result Evaluation for Document

Table 5.5 presents the tentative document and the extracted keywords. We mention the exact docu-

ments in the appendix section. We find the documents which are most similar to the document and

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 124

Table 5.5: Extracted keywords from BERT

Document
Extracted
Keyword 1

Extracted
Keyword 2

Extracted
Keyword 3

Document A
neural
networks
deep

including
computer
vision

deep
neural
networks

Document B
numerical
insight
recent

thermodynamic
limit
recent

theories
complex
boltzmann

these are those keywords that can best represent our document. We use cosine similarity between vec-

tors and the document. We select only top three keywords from most similar candidates (documents)

to the input document which has three words on each.

5.5.4 Search Analysis

Here, we discuss the functionalities of searching within our system.

5.5.4.1 Completion Suggester

The completion suggester is a valuable feature that offers auto-complete and search-as-you-type func-

tionality within our system. It assists users by providing relevant results while they are typing,

thereby enhancing the precision of their searches. Figure 5.15 demonstrates the completion suggester

in action. To implement this feature, we utilized the Elasticsearch API, which we integrated with our

Client API to generate completion suggestions for users.

Figure 5.15: Our implemented completion suggester UI using Elasticsearch API in the backend

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 125

5.5.4.2 Search Based on Image Content

The Elasticsearch API serves as the interface to the Elasticsearch cluster, where all the documents

are stored and indexed. In Figure 5.16, we can observe the search results based on detected objects.

Notably, the “objects path” field is visible, representing the address of the specific image in the Swift

storage. This path encompasses the proxy address, account name, container name, and object name.

In the given example, “http://34.67.51.120” denotes our proxy server, “Bracu” signifies the account

name, “Thesis” represents the container name, and finally, “499.jpg” is the name of the object itself.

Figure 5.16: Searching based on image content using Elasticsearch API

5.5.4.3 Search Based on Metadata

Figure 5.17 illustrates metadata-based searching within our system. In this example, “Bracu” repre-

sents our account name, which is one of the metadata fields collected and stored in the traditional

Swift database. It is worth noting that other OpenStack platforms, like devstack and searchlight, uti-

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 126

lize this type of metadata to perform searches within Swift. Our system demonstrates its capability

not only to search based on image content but also to seamlessly conduct metadata-based searches.

Figure 5.17: Searching based on metadata using Elasticsearch API

5.5.4.4 Search Timing Results

In our dataset, we have a total of 80 classes. To evaluate the performance, we conducted a search using

these 80 keywords and measured the average query time and average request time, as indicated in

Table 5.6. Upon analysis, we observed that while the average request time displayed slight fluctuations,

the average query time remained consistently low and stable.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 127

Table 5.6: Average query time and request time for different data sizes

Documents
Total

Keywords

Average
Query

Time(ms)

Average
Request

Time(ms)

1000 80 54 440

5000 80 57 570

20000 80 58 680

Table 5.7: Difficulty and availability of various implementations of Swift

Features DevStack
Traditional

Swift
SwiftStack Proposed

Deployment Developer Developer Commercial Developer

Supported
Operating
Systems

Ubuntu,
CentOS

Ubuntu,
Fedora,
CentOS

Windows,
Ubuntu,
CentOS

Windows,
Ubuntu

Multi-Node
Supports

No Yes Yes Yes

OpenSource Yes Yes No Yes

Stability of
Deployed Setup

No
Stable than
Devstack

Yes Yes

Difficulty to use Low High Low Low

Setup Difficulty Low High Average Average

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 128

Table 5.8: Comparison between various CBIR engines (here, TBIR = Texture Based Image
Retrieval)

Author Dataset
Images &
number of

classes
Techniques Application

Query
technique

Precision

Ashraf et al,
2020. [24]

Corel
1000

100 images
with 10
classes

Video,
Image data
for content-

based
imagery

collection
via several
methods

CBIR Image 0.875

Ahmed et al,
2019. [25]

Corel
1000

1000
images with
10 classes

Image
features

information
fusion

CBIR Image 0.90

Nazir et al,
2018. [27]

Corel 1-
K

1000
images with
10 classes

HSV
analysis of

colors,
wavelength
determina-
tion as well
as the edge
histogram
characteri-

zation

CBIR Image Text 0.735

Mistry et al,
2018. [200]

Wang
1000

images with
10 classes

Hybrid
features

and various
distance
metric

CBIR Image 0.875

Liu et al,
2017. [201]

Brodatz

1856 and
600 texture

images,
consisting
of 640 and
864 texture

images

Fusion of
color

histogram
and

LBP-based
features

TBIR Image 0.841

Our Proposed
Approach

MS
COCO

26000
images with
80 classes

Object
Detection

using
Darknet-53

and
YOLOv4

CBIR Text 0.74

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 129

Table 5.9: Comparison of various implementations of Swift (here, ✓=Yes and X=No)

Methods DevStack
Traditional

Swift
SwiftStack Proposed

Metadata ✓ ✓ ✓ ✓
Image
Content
Extraction

X X X ✓

Elasticsearch ✓ X ✓ ✓
Search
Optimization

X X ✓ ✓

Search based
on Contents

X X X ✓

5.6 Discussion and Comparative Analysis

The model we propose represents a novel approach to image searching in OpenStack Swift. As a result,

conducting a direct comparison with other Swift models becomes challenging. Our model adopts

a middleware approach to enhance search efficiency and promote object-awareness throughout the

storage system. This middleware component improves the speed and effectiveness of searching within

the object storage, simplifying the process of locating and retrieving specific objects. Additionally, it

enhances the system’s object awareness, offering increased functionality and flexibility in managing

and accessing objects. Overall, our proposed solution brings significant improvements to OpenStack

Swift, enhancing the effectiveness and functionality of the object storage system.

However, for the purpose of comparison, we divide the comparison into two sub-sections. Firstly, we

compare how different Swift models perform searching based on specific parameters. Secondly, we

compare the performance of content-based image search models to our proposed model.

5.6.1 Different Swift Models

Table 5.9 presents a comparison of different implementations of Swift using various techniques for

searching, along with the parameters set for effective image search in Swift storage. This comparison

allows for an evaluation of the strengths and weaknesses of each implementation, providing insights

into how they perform in terms of image search functionality.

In Table 5.7, we compare the user availability level of the different implementations based on the

model’s availability and scalability to work in different environments.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 130

Table 5.10: Resolution check for different uploaded images showing no change in the image quality
(SSIM 100% and VQM 100%) after the images are passed through the detection algorithm

Number of Object Image Resolution Before Uploading Resolution After Uploading SSIM VQMT

Single
horse.jpg 640 x 425 640 x 425 1 1
flower.jpg 501 x 640 501 x 640 1 1
aeroplane,jpg 640 x 425 640 x 425 1 1

Multiple
truck with car.jpg 640 x 425 640 x 425 1 1
cat on laptop.jpg 640 x 480 640 x 480 1 1
man on horse.jpg 640 x 426 640 x 426 1 1

5.6.2 Different CBIR Engines

Table 5.8 provides a comparison between our proposed model and different models from related works,

focusing on the features extracted from images and the search methods employed. Additionally, the

precision of these various models is compared to assess their performance.

Regarding the image upload process, it is important to note that when an image is uploaded to

the server and processed by YOLOv4 or YOLOv8, the image itself does not undergo any loss or

degradation. In Table 5.10, we present the resolutions of the images, along with the SSIM (Structural

Similarity Index) and VQMT (Video Quality Measurement Tool) results before and after the image

upload process.

5.7 Conclusion and Future Work

In our work, we combine machine learning features with OpenStack Swift to develop an enhanced

solution for efficient searching. By leveraging Elasticsearch, we successfully integrate all components

of the design. While our primary objective is to address the searching method in Swift, we also

introduce a secondary objective of creating a user-centered content-based image searching system [27].

This system utilizes a text-based database where users have the flexibility to manipulate the YOLOv4

and YOLOv8 algorithms according to their preferences. Importantly, this secondary objective does

not compromise the performance of the Swift storage or the Elasticsearch cluster, as they operate

independently of each other.

By incorporating the YOLOv4 and YOLOv8 algorithms, which support object detection for both

images and live video feeds, we offer users a wide range of choices to cater to their specific needs and

requirements. This inclusion adds versatility and expands the functionality of our system, catering to

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 131

different types of users.

In this chapter, we address the limited focus on content-level metadata search techniques in OpenStack

Swift literature. To overcome this limitation, we externally integrate an object detection framework

and an Elasticsearch cluster with our Swift storage. Through a series of tests, we assess the viability

and responsiveness of our model. While the results demonstrate minimal delay, we acknowledge that

further improvements can be made.

As a result, we have identified below future goals to enhance the robustness and user-friendliness of

our system:

• Desktop-based Application: We plan to integrate the whole system more compactly using a

desktop-based application.

• Authentication Token System: We aim to add an authentication token system in our Elastic-

search server to keep the documents safe from unauthorized access.

• Storing Live Video Feeds: Our target is to use our system to store live video feeds in order to

find out the viability of our system as a state-of-the-art video surveillance application.

• Optimization for Faster Performance: We aim to optimize the system to achieve even faster

performance in terms of searching and retrieving objects. This may involve refining algorithms,

fine-tuning parameters, and exploring parallel processing techniques to reduce response time.

• Enhanced User Interface: We strive to improve the user interface of our system to make it

more intuitive and user-friendly. This includes enhancing the search functionalities, providing

clear feedback and suggestions, and optimizing the user experience for smooth navigation and

interaction.

• Scalability and Flexibility: We plan to enhance the scalability and flexibility of our system to ac-

commodate larger datasets and diverse user requirements. This involves designing efficient data

storage and retrieval mechanisms, incorporating advanced indexing techniques, and enabling

seamless integration with other tools and platforms.

By focusing on these future goals, we aim to make our system more robust, efficient, and user-friendly,

thereby enhancing the overall searching experience within OpenStack Swift.

CHAPTER 5. A NOVEL APPROACH OF CONTENT-BASED SEARCHING IN OBJECT
STORAGE SYSTEM 132

Part III: Storage Sustainability through Mid-
dleware Placement and Orphan Garbage Data
Deletion

Chapter 6

Object Storage Sustainability through

Removing Offline-Processed Orphan

Garbage Data

6.1 Introduction

With myriad diversified applications, multimedia communication over cloud is gaining a great interest

in recent times [1, 202, 203]. Such communication entails general user services as well as special user

services such as services to management personnel. The management personnel can be law enforcing

agency people, crowd monitoring authority persons, etc. A classical example in this regard is the

authority of Hajj crowd monitoring authority [30]. A use case for the authority for our focused

context is shown in Figure 6.1. To serve such use cases, promising multimedia based cloud systems

are now emerging [11,12]. These systems often leverage various open-source Object Storage Systems

(OSS) for faster and easier access to image and video type data, which are the two foremost ingredients

in multimedia communication over the Internet.

Here comes the necessity of Object Storage Sustainability in a long run with respect to the continuous

growth of unstructured data. Besides, Object storage Systems data management and communication

is highly dependent on middlewares design and placement of the middeware in proxy or storage servers

[3]. For ensuring data availability, multiple copies of big data is stored in OSS. Hence, regular syncing

133

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 134

Crowd media file

Desktop

Laptop
iPad

Mobile

accessed by
management
personnel

Figure 6.1: A use case of offline processing media data storage. Here, several crowd media files are
accessed from cloud storage by the Hajj management personnel using several diversified remote

devices whenever needed. Hence, different versions of media files (images and videos) are stored in
the cloud storage using offline processing beforehand.

and checking is necessary for finding bit rot and file degradation to ensure long-term preservation

storage. Several studies focus on data storage sustainability and their impact to ensure long-term

sustainability to avoid undesirable consequences [28, 29].

Besides, several applications such as crowd management, real-time location-aware services, and med-

ical systems need to access multimedia data from diversified remote devices (in Figure 6.1). As an

example, crowd management of millions of pilgrims for performing Hajj, Umrah, and Kumbh Mela is

challenging and appropriate processing and communication from the cloud is a must [30, 31]. Hence,

context-aware and location-aware cloud-based frameworks and services are emerging [204]. These

frameworks need both online and offline processing of unstructured data such as images and videos.

Additionally, real-time video streaming is another prominent feature for managing these kinds of

services using cloud infrastructures [205].

Similarly, video experiences slower responses from important sites, as the sizes of video files are

generally much higher than that of corresponding image files. Many video streaming service providers

in this regard provide their services using cloud-based video storage systems. Here, efficient cloud-

side operation management is needed for ensuring different features such as smooth video streaming,

dynamic adaptive streaming, etc. Besides, proper and updated video segments need to be supplied

from the cloud storage systems to achieve the features. In this regard, Recent studies focus on several

methods of mobile and web streaming [202,203,206,207], gateway-based shaping methods for HTTP

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 135

adaptive streaming (HAS) [208], quality of experience of HAS [209], optimal transcoding and caching

for adaptive streaming in content delivery networks [210], etc. However, none of these studies focuses

on video streaming support for a cloud specifically for an Object Storage System, which is now treated

as a well-adopted solution for cloud service development.

Yet another aspect worth investigating for image and video delivering clouds is efficient usage of

the cloud storage. Due to diversification in operations and usages, there can arise different types of

data and objects in such a storage. For example, components such as client database, AUTH server

database, etc., can produce data and objects that will be never required at all. To be more specific,

in the multimedia cloud storage [11,211], there can be different versions of data for images and videos

that are never going to be accessed by a user.

Irrespective of the future requirements, all the data or objects of a storage are generally considered

to be an asset for the cloud storage, as data storage has no concern about what data is stored or

whether the data is necessary or not. However, there are some other components such as client

database, AUTH server database, etc., which are always necessary components for designing a full

system. Therefore, in reality, all data in the cloud storage may not always be an asset for other

components. For example, a user can upload some personal images to a media cloud system. All the

versions of the images were uploaded successfully, however, when returning the response the network

got disconnected (in Figure 6.2).

Hence, there will be no information about these images in the AUTH server where all the lists of

files are stored for users. This data can be useful for cloud storage, however, never be used for users’

purposes. We use a new term for this kind of data - orphan garbage data - to imply such data to be

garbage as well as having no effective linkage to its ancestor. Such data gets generated by different

types of cloud operations, e.g., when a cloud operation produces different versions of the same data.

This happens in the case of offline processing media clouds that produce different versions of data

both for images and videos. Such productions result in orphan garbage data in a multimedia cloud

storage.

Furthermore, research studies focus on several aspects of such redundant data deletion architecture.

Some studies present the memory garbage collector algorithms in big data context [212, 213]. Other

studies, Linux container based deletion [36], Smartbin based deletion in wireless sensor networks [37],

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 136

orphan process detection [214, 215], and assured deletion [38, 39] present some deletion approaches,

which are not applicable to the case of orphan garbage data in cloud due to architectural as well as

operational mismatches between cloud and the cases focused on these studies.

In summary, research studies are yet to focus on these important realms in multimedia cloud operation

and communication covering impact of middleware placement through designing adaptive segmented

video streaming, and orphan garbage data deletion and management for ensuring Object Storage

sustainability. Therefore, in this Chapter, we first propose a new middleware named ‘VideoSegmenter’,

which is used for making video segments according to any kind of time range using FFmpeg [216].

One specialty of our middleware architecture is that it can give the user/streaming server any playable

segment on the fly. Another specialty is the ability to deploy this middleware in the object server

rather than in the proxy server in OpenStack Swift.

Besides, we propose a novel approach ‘RemOrphan’ for detecting and deleting orphan garbage data

in a multimedia cloud. Here, we develop a deletion daemon to find and remove orphan data in an

efficient manner to make the data storage sustainable along with enhancing CPU usage. In proposing

all these new techniques, we present a video segmenter middleware, impact of middleware placement,

and a deletion daemon to eventually perform the tasks from the same OpenStack-like system. We

evaluate performance of the system in a real setup comprising a server in Canada and a client in

Bangladesh. Our rigorous experimental results demonstrate that we can achieve up to 30% lower

video segment download time, 30% reduced network overhead, and 25% reduced sync delay through

utilizing our proposed techniques.

Based on our study, we make the following set of contributions in this Chapter:

• We analyze two important factors related to long-term Object Storage sustainability - impact

of middleware placement and orphan garbage data in Object Storage System.

• We design a new middleware ‘VideoSegmenter’ for supporting HTTP adaptive streaming in

OpenStack Swift-like systems such as SPMS. Accordingly, we implement a new package using

setup-tools [217], which can be easily integrated in the existing OpenStack Swift. We analyze

and present that the proposed middleware should be deployed in the object server for getting

faster responses and for avoiding extra overhead and maintaining long-term sustainability.

• We present a new technique for finding out unused orphan garbage data in multimedia storage

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 137

systems, which poses a great threat for sustainable storage systems. This orphan data is respon-

sible for unnecessary sync delay in replication and extra network overhead related to replica (r)

and number of objects per node (n).

• Moreover, we design a deletion daemon named ‘RemOrphan’ for removing the orphan data

using OpenStack rings and scripts in an efficient way. Our custom deletion daemon presents a

configurable solution that offers options to run it once or in a periodic manner.

• Finally, we perform rigorous experimental evaluation of our proposed techniques in a real testbed

comprising a high-configuration server in Canada and a client in Bangladesh. Our experimental

results confirm efficacies of all our proposed techniques against that of classical alternatives.

The organization of this Chapter is further segmented into different sections. Section 6.2 contains

the literature reviews of recent papers related to our study. After, in Section 6.3, we present three

important concepts - an OpenStack Swift like object storage system, middleware in OSS, and the

definition of orphan garbage data. Next, system design and implementation is presented in Section 6.4.

Besides, Section 6.5 contains experimental test-bed setup and performance evaluation. Furthermore,

in Section 6.6, we present the discussion and comparative analysis of our proposed methodology with

the existing literature. Finally, the conclusion and future prospects of this research are stated in

Section 6.7 respectively.

6.2 Related Work

In this Section, we present the related studies exploring object storage sustainability, on-demand

video segmentation and streaming and orphan garbage data deletion. In the literature, we find very

few studies on object storage sustainability. Study [28] demonstrates that long-term preservation

storage requires more than just storing multiple copies of a file. It is also essential to regularly check

those copies for bit rot and other types of degradation. Therefore, file integrity tools are necessary

to ensure the ongoing integrity of the stored data. Another study [29] presents that the utilization

of big data at a massive scale is likely to result in some negative repercussions. While some of these

consequences can be predicted, others may be completely unforeseeable. This essay focuses on the

sustainability-related issues that arise from the implementation of big data.

Besides, efficient and smoother video streaming, dynamic adaptive streaming, etc., are some special

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 138

(a) Offline processing in media cloud [11]

Proxy-media
processing

server

Storage
server

Original media file

High resolution
Mobile resolution
Thumb image

Swift storage
cluster

Media file

(b) Media file is converted to different resolutions to support diversified
devices

Figure 6.2: Offline processing models for storing and retrieving media files from the cloud. Here,
multiple versions of media files are processed and stored in the cloud. During the processing time,

orphan data may be stored in the cloud.

features, which need both cloud server side and streaming server side operation management. For

achieving these features, studies [11, 12, 53] mainly focus on faster and secure management of media

files through designing middlewares. Due to a demand hike of video streaming services over the mobile

networks, the wireless link capacity fails to cope up with the growing traffic load resulting in poor

service quality of video streaming. A research study in this regard [207] constructs a private agent

for each active mobile user in the cloud to adaptively adjust the video quality utilizing scalable video

coding technique based on the feedback of link condition and social network interactions.

Furthermore, study [203] has developed a new framework called EMS for streaming ultra-high-

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 139

definition video. This framework combines erasure-coded storage with multi-source streaming. More-

over, they created two metrics, one for deadline awareness and the other for latency sensitivity, to

measure the quality of service provided by video servers. Additionally, they propose a federated

learning approach to adaptively update the service quality, which includes a reinforcement learning

based multi-server selection process for local user training, and a global aggregation of service qual-

ity. Study [202] introduces a new approach called Segment Prefetching and Caching at the Edge for

Adaptive Video Streaming (SPACE). They have developed and analyzed several segment prefetch-

ing policies that vary in terms of resource usage, required player and radio metrics, and deployment

complexity.

Moreover, study [218] presents the WVSNP-DASH framework, which relies on video segments that

can be played independently and have a particular naming syntax that conveys elementary metadata.

This system facilitates flexible search, transfer, distribution, and playback of the video segments.

To enhance the adaptive video streaming performance in CCN, study [219] suggests a hop-by-hop

adaptive video streaming approach known as HAVS-CCN. Other studies focus on several methods

of mobile and web streaming [206], gateway-based shaping methods for HTTP adaptive streaming

(HAS) [208], survey on quality of experience of HAS [209], etc.

In addition, existing CDNs may not be sufficiently cost effective for distributing adaptive video stream-

ing due to the lack of orchestration on storage, computing and bandwidth resources. Hence, a research

study [210] leverages the notions of media cloud to deliver on demand adaptive video streaming ser-

vices, where those resources can be dynamically scheduled minimizing the total operational cost by

optimally orchestrating multiple resources. For this, study formulates and utilizes an optimization

problem by examining a three-way trade-off between the caching, transcoding, and bandwidth costs.

However, there is no study on video streaming support for object storage systems and the impact

of middleware placement for storage sustainability. Furthermore, the research study [38] presents

a notion of SmartBin in place of old-fashioned practice such as hiring people to regularly check and

empty filled dustbins. SmartBin, integrates the idea of IOT with Wireless Sensor Networks. Another

study [39] discusses the need for assured deletion in cloud along with identifying cloud features that

pose a threat to assured deletion and describes various assured deletion challenges as well. Besides,

study [220] focuses on analyzing the GREEDY Garbage Collector strategy under the condition of

uniformly independently distributed write accesses.

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 140

request modified
request

modified
request

modified
request

modified
request

response modified
response

modified
response

modified
response

modified
response

Core Swift
middleware

middlewaremiddleware

Figure 6.3: How different layers of middleware work in Web Server Gateway Interface (WSGI) for
Object Storage System

Figure 6.4: Different consistency processes and layers in proxy and storage nodes of OpenStack Swift

Moreover, study [213] examines existing Big Data platforms and their memory profiles to inves-

tigate why traditional algorithms, which remain widely used, are inadequate. It also evaluates

newly suggested memory management algorithms that are specifically designed for Big Data environ-

ments [221–225]. The research assesses the scalability of these recent memory management algorithms

by comparing their throughput (improvement in application throughput) and pause time (reduction in

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 141

application latency) to that of classic algorithms. Besides, study [212] performs a thorough evaluation

of three widely used garbage collectors, namely Parallel, CMS, and G1, using four typical Spark appli-

cations. Their evaluation involves a comprehensive analysis of the relationship between the memory

usage patterns of these big data applications and the GC patterns of the collectors, leading to several

insights into GC inefficiencies. Based on the findings, the authors provide empirical guidelines for

application developers and offer useful optimization strategies for developing garbage collectors that

are suitable for big data environments.

On the other hand, in distributed systems, orphan processes may be generated as a result of remote

procedure calls (RPC). There are two types of orphans: crash-orphans, which occur when the client

crashes, and abort-orphans, which occur when the parent process is aborted. Orphan processes are

problematic because they consume system resources and can result in inconsistent data. To address

this issue, several studies develop new methods for detecting orphan processes [214, 215]. However,

none of these studies deal with the problem of removing orphan garbage data.

To the best of our knowledge, our proposed methodology is the first to focus on video streaming

data retrieval and impact of middleware placement in object storage systems. Besides, we present

an architecture named ‘RemOrphan’ for orphan garbage data detection and deletion to maintain a

healthy and sustainable storage, which is yet to be focused in the literature.

6.3 Background

Our goal is to focus on object storage sustainability through analyzing the impact of middleware

placement and orphan garbage data deletion. Hence, in this section, at first, we present a media

cloud storage system named SPMS which is designed using OpenStack Swift. After, we describe

the details on middlewares in OSS. Finally, the definition of orphan garbage data is presented using

appropriate examples.

6.3.1 SPMS (Secure Processing-aware Media Storage)

Recently, many media cloud storages have been deployed using OpenStack Swift. Swift is an open-

source object storage system having some special features such as eventual consistency, high avail-

ability, fault tolerance, replication, etc. Swift has two types of servers - proxy for management and

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 142

 original: ../account/container/<orig_123456random>.mp4
 high: ../account/container/<h_123456random>.mp4
 mobile: ../account/container/<m_123456random>.mp4
 thumb: ../account/container/<th_123456random>.jpg
 Pthumb: ../account/container/<pth_123456random>.jpg

Proxy-media processing server

data.mp4

put url: ../account/container/data.mp4

data.mp4 -> randomGen() ->123456random.mp4

Storage server

P1 1681971317.data

P5 1681971317.data

P6 1681971317.datarequest
response

P12 1681971320.data

P25 1681971320.data

P36 1681971320.data

request

response

P44 1681971325.data

P46 1681971325.data

P90 1681971325.data

request

response

request
response

request

response

Two versions
successfully

stored in
storage server -
Orphan data

(6 copies)

Other versions
are not stored

in storage
server - Failed

response

request

Auth server
../123466ertfg456.jpg
../123456random.mp4
../123456random.mp4

failed
response

123456random.mp4 will not
be stored in auth server

Figure 6.5: How orphan garbage data are created due to network disconnection, client timeout
problem, object versioning, etc. Here, data.mp4 file is uploaded from the client. For this single video

file, five versions are uploaded in the storage nodes having three copies for each versions. Two
versions are successfully stored while background processing is done, however, other versions are not
uploaded successfully due to different reasons. Hence, the final response is failed and the url is not

stored in AUTH database. The above six copies are orphan garbage data, which are still in the
storage server without any use whatsoever.

processing, and storage servers (account, container, and object) for storing database and data ob-

jects [3]. SPMS, which is designed using OpenStack Swift through adding several new middlewares.

SPMS system has every feature of Swift. Additionally, it also has some special features of media secur-

ing, image data conversion to PJPEG, image resizing to multiple dimensions, and video transcoding

and resizing to various sizes [11]. As SPMS-like media storage systems are used for multipurpose me-

dia management tasks such as video streaming and storing of many versions of objects, the tasks of

optimizing multimedia retrieval and orphan garbage data deletion comes into play to ensure long-term

sustainability.

6.3.2 Middleware in Object Storage System

An Object Storage System like OpenStack Swift is built on Python’s Web Services Gateway Interface

(WSGI) model and configured using the Python Paste framework. In the WSGI model, middlewares

are a vital part and they are designed to pass the requests through several layers to reach the core

application. Besides, middleware wraps other middlewares one by one down to the core application

in the center without knowing anything about the other layers. Hence, developing middleware codes

are easy and straightforward for the developer to design new features.

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 143

Figure 6.6: Case-1: ‘Response after all uploading’

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 144

Figure 6.7: Case-2: ‘Quick response with background processing’

Figure 6.3 presents how a middleware system with multiple layers works. When a user request enters

the system, the request is potentially altered by each middleware layer as it moves inward towards

the final processing by core application. The response then travels back out the layers of middleware,

with each layer having the option to modify the response. Each middleware layer can either modify

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 145

a request or let it pass through unchanged. Finally, the final response is returned to the user. Each

middleware layer can inspect, modify, or short-circuit a request or response. Different features are

implemented using middleware. In OpenStack Swift, processing related tasks are handled in the proxy

server. There are other consistency services to maintain replication, audit, update of objects in both

proxy and storage servers. Figure 6.4 presents different consistency processes and layers in proxy and

storage nodes (servers) of OpenStack Swift. Here, Each node consists of middleware layers to perform

several tasks. Hence, middleware placement is a concerning issue for long-term sustainability and

efficiency of an Object Storage System.

6.3.3 Orphan Garbage Data

Data management with optimization of CPU and memory usage in data centers is now the most

challenging topic for data scientists. Any kind of data is valuable, as all the data in a storage system

can be used for further processing or mining purposes. A big question is now, is there any garbage

data in the cloud? For example, resizing of images and transcoding of videos according to several

resolutions for covering diversified remote devices and data versioning must be needed in the media

cloud. To do so, recent studies present offline processing models for storing and retrieving media files

from the cloud (in Figure 6.2a). Therefore, for a single object, there are several different resolutions

of the original one (in Figure 6.2b). The data which is never used for quite a long time, is referred to

‘unused data’. This data can be archived using erasure coding policy or different kinds of mechanisms.

However, there is some kind of data which exists in cloud storage, which has no information both

on the client side or in the AUTH database. This can happen for network disconnection, client

timeout problems, etc. This is the orphan garbage data which can be a great threat for data storage

sustainability.

Moreover, several studies introduce and design middleware for image and video processing tasks in the

Object Storage System. In SPMS-like systems, for covering diversified remote devices, many versions

of images (200, 300, 600, etc., to aspect ratio) along with progressive JPEG images are stored. Same

applies for video files, e.g., high-resolution (720 to aspect ratio) video files, mobile-resolution (400 to

aspect ratio) video files, etc. Besides, study [211] presents that the different versions of photos viewed

in Facebook is around 80-100 Billion. Among them, the Thumbnails version is viewed around 10.2%,

the Small version is 84.4%, 0.2% is the Medium version, and the Large version is 5.2%. This is one of

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 146

the main reasons for getting orphan garbage data created, where no information either in client side

or in AUTH database about the orphan data gets stored. The non-existence of information can occur

due to network disconnection, client timeout problem, object versioning, etc., [11, 53]. Furthermore,

transcoding large video files into different resolutions is a challenging task, hence, some research

studies propose background processing rather than waiting for all the versions to upload and send a

successful response.

In study [11], the researchers propose two different designs to convert and upload high resolution,

mobile resolution, and other versions along with the original video file. In the first case (Case-1:

‘Response after all uploading’), the system sends response after successfully uploading all the versions,

hence it takes much longer time and the possibility of failed response is higher (in Figure 6.6). On

the other hand, in the second case (Case-2: ‘Quick response with background processing’), the system

sends a success response immediately after getting a success response for the original video file, and

starts background processing for all other versions (in Figure 6.7). For both cases, the system may

create orphan garbage data due to network disruption, client-timeout, internal server communication

error, and so on.

We present an example of how orphan garbage data is created due to network disconnection, client

timeout problem, object versioning, etc. Here, data.mp4 file is uploaded from the client (in Figure

6.5). Then, for maintaining security and integrity, the file name is changed using some random

function. After, for this single video file, five requests are sent from proxy server to storage/object

server having three copies for each version. Two versions are successfully stored when background

processing, but somehow other versions are not uploaded successfully due to several reasons. In the

storage node, the object is stored using the system’s own convention (i.e ¡epoch-time¿.data). Hence,

the final response is failed and the URL is not stored in the AUTH database. However, the six

copies which are successfully stored through internal communication from proxy to storage nodes,

will remain as the orphan garbage data.

6.4 System Design and Implementation

We propose a general architecture for managing multimedia data smoothly and efficiently in media

cloud storage systems. Hence, first, we describe the background of our proposal. Then, we present

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 147

Figure 6.8: Our proposed architecture of VideoSegmenter middleware, which presents how a
streaming server requests for a segment from the cloud storage

our proposed architecture in the following subsections.

6.4.1 Video Segmenter Middleware

Nowadays, smoother and efficient video streaming including dynamic adaptation of streaming has

become popular for its diversified usages. To understand its underlying methodology, first, we need to

know how streaming works in a large system. Figure 6.8 presents the architecture of how a streaming

server and cloud system gets interconnected while streaming videos to multiple clients. Here, first the

streaming server collects necessary segments or full files from the storage server. Then, the streaming

manager creates small chunks from the segment for sending those chunks to the clients. There is

another component named viewer server which is responsible for publishing the chunks to clients.

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 148

Figure 6.9: An example of segment GET request using proposed X-Time-Range-Header
(VideoSegmenter middleware (Vs) is deployed in the object server)

It is worth mentioning that, for streaming a video, the streaming server needs all information of the

video so that it can download the full video or any segments from the original file. For saving unnec-

essary processing, the storage server emphasizes on storing segments of the original file beforehand.

In this case, when the storage server has no segment stored or the downloaded segment is found to be

corrupted, ‘VideoSegmenter’ middleware comes into play. We design the middleware having it similar

to that for partial range requests. The only difference is that our design takes input of a time range

header, X-Time-Range: startTime-endTime. Such a range request is supported by HTTP protocols

and it only gives some bytes within the requested range. However, segment requests of our proposed

middleware provide any playable segment within the requested time range. Figure 6.9 presents a

time range request example of our proposed middleware along with object storage architecture of

OpenStack Swift.

As Swift has its own architecture, predefined variables, iterators, etc., for downloading an object, we

need to investigate Swift object storage implementation very deeply and find out which parts of the

implementation need to be refactored when returning segments rather than the full object. Moreover,

to enable ease of deployment and maintenance, our target is not to change the open source code,

rather to deploy a new middleware package so that it can be deployed and integrated easily with the

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 149

Algorithm 5 Algorithm for the VideoSegmenter middleware

1: procedure VideoSegmenter(app, env, start response) ▷ Each middleware has a
start response method which need status and headers of the response

2: timeRange← env.get(TimeRangeHeader)
3: if requestMethod = GET and timeRange then
4: itr ← app(env, start response) ▷ Here, itr is a dictionary having important attributes in

OpenStack Swift, or list insatance if any error occurs
5: if isinstance(itr, list) then
6: return itr
7: end if ▷ isinstance, list both are python keyword
8: sT, eT ← timeRange.split()
9: validT imePattern← CheckRegex ▷ Check valid time pattern using Regular expressions

10: outF ← SegmentedF ileLocation
11: outputFp, etag ← SegmentV ideo(itr. data file, outF, sT, eT)
12: itr. fp← open(outputFp, rb)
13: itr. diskfile. data file← outputFp
14: itr. obj size← os.path.getsize(output fp)
15: itr. etag ← etag
16: UpdateHeader() ▷ According to new content-length and new etag of video segment
17: start response(staus[0], headers[0])
18: return itr
19: end if
20: return app
21: end procedure

system.

Accordingly, we find that two classes (BaseDiskFile and DiskFileReader) from two sep-

arate files in OpenStack Swift (/usr/lib/python3.8/site-packages/swift/obj/mem diskfile.py,

/usr/lib/python3.8/site-packages/swift/obj/diskfile.py) are responsible for downloading an object.

We change the values according to new segment size, etag (MD5 hash in this files of the downloading

object), and location (fp, diskfile. data file, obj size, etag). We present the VideoSegmenter

algorithm here (Algorithm 5 and 6).

Subsequently, we consider another key aspect- as the proxy server is responsible for all the processing,

can we deploy VideoSegmenter in the proxy server? Here, the problem is, for segmenting a video file,

we need the full file first. Hence, the proxy server needs to download the full file in some temporary

location and then clip the video to send segments to the requester. This procedure is slower and

needs more network overhead. On the contrary, if we deploy VideoSegmenter in the object server, full

object downloading is not needed any more as the clipping is done directly on data location. Here we

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 150

Algorithm 6 Algorithm for segmenting video file

1: procedure SegmentVideo(inP, otP, sT, eT) ▷ Here, i = Input file path, o = Output file path,
sT = startTime, eT = endTime

2: temp, fileWOExt← inP.rsplit()
3: swiftExt← .data
4: videoExt← .mp4
5: otP+ = join(fileWOExt.clip(swiftExt), sT, eT)
6: matchedF ile← glob.glob(otP)
7: tStamp← time.time()
8: if (mathedF ile) then
9: pathWBF, etag ← matchedF ile.rsplit()

10: otP ← join(pathWBF, etag, tStamp) + videoExt
11: os.rename(matchedF ile[0], otP)
12: return otP, etag
13: else
14: tempPath← otp + randomInt + videoExt
15: clipCmnd← FFmpegCommand ▷ FFmpeg command for clipping the video segment

using sT and Et [216]
16: output, error ← subprocess.Popen(clipCmnd).communicate()
17: if output then
18: raise Exception
19: end if
20: etag ← md5(tempPath) ▷ New etag calculation for segment video
21: otP ← join(otP, str(etag), str(tStamp)) + videoExt os.rename(tempPath, otP)
22: return otP, etag
23: end if
24: end procedure

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 151

need r times processing in all replicated locations of the original object. However, the segment will

automatically be deleted from its location after a predefined time in this case.

All the middleware are written in /usr/lib/python3.8/site-packages/swift/common/middleware/

package of OpenStack Swift. If we add a new middleware there, then upgradation of a new release will

be required making the implementation process complex. Hence, we implement a new distribution

of VideoSemter middleware using python setup-tools [217]. Besides, in our deployed SPMS object

server, we change the object − server.conf file and add VideoSegmenter egg file for including our

new middleware (use = egg : video segmenter#video segmenter in paste.filter factory [226]). In the

next subsection, we delineate orphan data deletion daemon pertinent to both video and image data.

6.4.2 ‘RemOrphan’ : Orphan Data Deletion

The data that is never used for quite a long time is referred to as unused data. This data can be

archived using some erasure policy or using different types of mechanisms. However, there is another

kind of data called orphan data or garbage data, which exposes a great threat for data storage

sustainability. Main reasons for the threat of orphan data includes storing of each object using some

random names, existence of different types of object versions [11, 53], network connection timeout

with client or AUTH database, etc. Hence, we propose an architecture for detecting such orphan data

using OpenStack Swift hash rings and scripts.

It is worth mentioning that the main two design goals of OpenStack Swift and similar systems are

eventual consistency and high availability through replicated data objects across multiple nodes. A

research study in [227] presents how sync delay and network overhead get related when r > 3 and

n >> 1000. Hence, a high number of objects are always responsible for sync delay and network

overhead. Moreover, if this scenario happens for some unnecessary orphan data, then it appears to

be a great loss for storage service providers.

To tackle this problem, we propose some key steps in our orphan data detection and deletion daemon.

1) We collect all data list from client/AUTH database for certain time interval. 2) Then, we collect all

object lists of all accounts from the Swift account and container database for the same time interval.

3) We create black list and white list from all versions of the objects. 4) We delete black listed

files using bulk DELETE request [3]. Figure 6.10 presents the flow diagram of orphan data deletion

daemon.

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 152

Figure 6.10: Flow diagram for orphan data deletion daemon

Our custom daemon server is configurable from the perspective of its considered time interval for

collection of lists. This offers us options to run once or in forever mode by daily, weekly, or monthly

based on our configured time interval.

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 153

Figure 6.11: Test bed setup servers in Canada and client in Bangladesh

6.5 Performance Evaluation

We evaluate performance of our proposed architectures through a real implementation. We, first,

briefly present our experimental testbed setup. Then, we present our experimental results and findings

for our three different architectures.

6.5.1 Experimental Testbed Setup

We use real high-resource machines for deploying testbed servers in Canada. Here, we use two proxy

servers, three account-container servers, and three object servers for the media storage cluster having

model AMD Opteron 62xx class CPU, and OS CentOS 7. The memory and disk configurations of

our Swift servers here cover- 1) two proxys each having one 8 GB memory and one 20 GB disk, 2)

three account-containers each having one 8 GB memory and three disks each of 50 GB, and 3) three

objects having one 8 GB memory and three disks each of 700 GB. Each server has six 1 GB network

interface cards. Figure 6.11 and Table 6.1 present the experimental setup of our testbed.

In addition, we deploy a private media cloud SPMS using OpenStack Swift (stable newton branch)

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 154

Table 6.1: Configuration of machines used in testbed setup

Informations
Proxy
server

Object
server

Account-
container

server

Client
machine

Architecture x86 64 x86 64 x86 64 x86 64

CPU(s) 16 48 16 1

On-line
CPU(s) list

0-15 0-47 0-15 0

Thread(s)
per core

2 1 2 1

Core(s) per
socket

4 12 4 1

Socket(s) 2 4 2 1

NUMA
node(s)

2 8 2 1

CPU family 6 16 6 6

Model name

Intel(R)
Xeon(R)

CPU
E5620

@2.40GHz

AMD
Opteron(tm)
Processor

6174

Intel(R)
Xeon(R)

CPU
E5620

@2.40GHz

QEMU
Virtual
CPU

version
1.5.3

CPU MHz 2394.141 2199.967 2394.103 2393.998

Virtualization
type

VT-x AMD-V VT-x
full

Storage

with three replicas (r = 3) and 16384 partitions (p = 16384). There are nine devices for account, con-

tainer, and object ring file, hence, each device has around 5461 partitions in /srv/node/ < server >

folders (devices are mount in this location according to OpenStack Swift guide [3]). Here, a server

can be an account, container, or object. Moreover, we implement a social site for both mobile and

web users, and then upload different types of data from clients to the development server for around

eight months. Besides, in order to evaluate our proposed architecture, we upload large media files

from a benchmark video surveillance data set. We use 125 videos ranging in size from 3.8 MB to 1.4

GB and upload the videos in a periodic manner. Furthermore, we create 10,000 accounts and 10,000

containers in Swift cluster and upload around 1M images and video files in those accounts. Hence, no

of objects (n) are 1M for our testbed server. We upload around 1.5TB data, and hence, total data

becomes 1.5TB × 3 in our development server.

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 155

Table 6.2: Demographic information of three file categories

File category Avg. Size (GB) Avg. Duration (min)

Short file 0.49 94.85

Medium file 0.66 152.2

Long file 0.87 177.7

(a) Download time for four segments for file
category-1

(b) Download time for four segments for file
category-2

(c) Download time for four segments for file
category-3

Figure 6.12: Comparison of download time for segments of three different file categories. S1, S2, S3,
and S4 denote the average segment of 10 and 15 minutes of 1st to 4th segments respectively. In the

graph, 1st bar (blue) represents the download time of the segment from the object server at first
time request, 2nd bar (orange) represents the same segment download time from object server at
second time request. Besides, 3rd bar (green) represents the download time of the same segment

from the proxy server.

6.5.2 Experimental Results

For testing VideoSegmenter middleware, we make different segments of 10 minutes and 15 minutes

of different video files (Category-1 of having the average size 0.49GB and average duration 94.85

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 156

Table 6.3: Time improvement percentage status for different segments with respect to retrieving the
segment from 2nd time versus 1st time from the object server, if we place the middleware in the

object server. Moreover, segment download time comparison is presented by placing the middleware
in the proxy server (object vs proxy).

File category
% Improvement (1st segment)
Object 2nd vs Object 1st Object vs Proxy

Short file 25.3 30.25

Medium file 15.15 25

Long file 20 29.69

% Improvement (2nd segment)
Object 2nd vs Object 1st Object vs Proxy

Short file 62.33 20

Medium file 37.96 14.91

Long file 30.19 14.97

% Improvement (3rd segment)
Object 2nd vs Object 1st Object vs Proxy

Short file 50.45 13.28

Medium file 44.12 20.93

Long file 38.21 14.58

% Improvement (4th segment)
Object 2nd vs Object 1st Object vs Proxy

Short file 19.75 36.22

Medium file 43.61 30.73

Long file 40.72 18.14

Avg time improvement Object 2nd vs Object 1st: 22.39% Object vs Proxy: 35.65%

minutes; Category-2: average size 0.66GB and average duration 152.2 minutes; Category-3: average

size 0.87GB and average duration 177.7 minutes). We deploy VideoSegmenter middleware in both

proxy server and object server. There was some difference in the middleware code for the proxy server.

In our proposed architecture of VideoSegmenter for object server, we store or cache the segment for

around one to two days in object segment location. Hence, a download request of the same segment

(second download request onward) needs lower time than the first time request from the object server.

Figure 6.12 and Table 6.3 present a comparison of download times from object server and proxy server

for three different categories. Here, we show download times for different segments of different files.

We take 100 iterations for each single segment for each type of download, and present an average of

the 100 iterations in the graph. The download times correspond to three different types of download-

1) download from the object server for the first time, 2) download from the object server for the

second time, and 3) download from the proxy server. As Figure 6.12 demonstrates, downloading from

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 157

Table 6.4: Orphan garbage data deletion status per node for testbed server

1st round - Deletion status

Metrics
Before

deletion
After

deletion
Improvement

Object
count

1M 650K
lower 35%

data

Sync
delay

1440s 1080s
lower 25%

delay

Network
delay

500MB 350MB
lower 30%
overhead

2nd round - Deletion status after one year

Metrics
Before

deletion
After

deletion
Improvement

Object
count

1G 630M
lower 30%

data

Sync
delay

1280s 965s
lower 25%

delay

Network
delay

500MB 350MB
lower 30%
overhead

3rd round - Deletion status after two days

Metrics
Before

deletion
After

deletion
Improvement

Object
count

700M 678M
lower 4%

data

Sync
delay

1280s 1100s
lower 20%

delay

Network
delay

500MB 350MB
lower 30%
overhead

the object server always takes much lower time than that from the proxy server. Nevertheless, the

second download from the object server takes lower time than the first download utilizing the caching.

Furthermore, Table 6.4 presents that around 35% data is orphan data according to our setup testbed

at the first round when we run the deletion daemon. After removing the orphan data, sync delay and

network overhead get lower by up to 25% and 30% respectively. Next, several users upload a bulk

amount of images and videos regularly and we run the deletion daemon after one year again. Table

6.4 presents the values after removing the new orphan data in the second experiment. Furthermore,

we run the deletion daemon after two days of the second experiment. Table 6.4 presents the values

after running the deletion daemon a third time.

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 158

(a) (b)

Figure 6.13: Relation between sync delay and network overhead with respect to the number of
objects per node (n). Here, the value mentioned as nK (in x-axis), i.e., 10 values represent 10,000

objects.

Table 6.5: CPU and memory overhead for video segmentation and orphan data deletion

Metrics
Video

Segmen-
tation

Orphan
data

deletion

CPU 3% 14%

Memory 5% 16%

6.5.3 Overhead Analysis

Figure 6.13 presents the relation between sync delay in seconds and network overhead in MB with

respect to the number of objects (n) per node/server when replica r = 3. When n grows, then the

sync delay increases with r. Here, an interesting observation is that, when n > 1M , the sync delay

increases quite slowly (for a fixed r). This happens owing to the number of partitions [227]. When

n > 1M >> 2.5M (for a fixed r), though the number of sync messages keeps stable, the size of each

sync message still grows with n and each sync message contains more hash values of more data objects.

Hence, network overhead continues to grow with n when n > 1M . Besides, Table 6.5 presents the

memory and CPU overhead of overall architecture.

6.6 Discussion and Comparative Analysis

This study, for the first time in the literature, establishes the necessity of object storage sustainability

as long-term storage has diverse effects such as performance, efficiency, energy consumption, fault

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 159

Table 6.6: A qualitative comparison of related research studies according to several features such as
algorithm type, memory and storage management, developers deployment effort, orphan data

collection, middleware placement and deployment, etc. (here, GC refers to Garbage Collection)

Research study Algorithm Management
Deploy-

ment
effort

Platform Focus metrices

Middle-
ware
place-
ment

Orphan
garbage
collec-

tor

Althaus et al.,
2022 [220]

Greedy
Garbage

Collection
Memory GC Medium

Solid State
Drives
(SSDs)

Throughput X X

Noor et al.,
2022 [1]

Modified
scan

scripts and
DCT

quantiza-
tion

Storage
manage-
ment, no

orphan data
deletion

Low
Object
storage

Throughput,
Latency

✓ X

PokeMem
(Kweun et al.,

2022) [228]

Modified
GC

Memory GC Medium
Processing
(Enhanced

Spark)
Throughput X X

Noor et al.,
2021 [12]

Resizing
and

security
enforce-

ment

Storage
manage-
ment, no

orphan data
deletion

Low
Object
storage

Throughput,
Latency,

Concurrency
✓ X

GC-CR (Louati
et al., 2017) [36]

Checkpoint-
Restart

Decentralized
GC

(snapshot)
High Storage Latency X X

iCSI (Kim et
al., 2017) [229]

Lightweight
VM

collector

Cloud
Garbage

VM
Collector

High Stoarge Latency X X

NG2C (Bruno
et al.,

2017) [230]

Modified
GC

Memory GC Low
Processing,

storage
Latency X X

Deca (Lu et al.,
2016) [222]

Unmodified
GC

Memory GC High
Processing

(Spark)
Throughput X X

Taurus (Maas et
al., 2016) [221]

Unmodified
GC

Memory GC Low
Processing,

storage
Latency X X

Broom (Gog et
al., 2015) [224]

Modified
GC

Memory GC High
Processing

(Naiad)
Throughput X X

FACADE
(Nguyen et al.,

2015) [225]

Unmodified
GC

Memory GC Low
Iterative

processing
Throughput X X

NumaGiC
(Gidra et al.,
2015) [223]

Modified
GC

Memory GC None
Processing,

storage
Throughput X X

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 160

Research study Algorithm Management
Deploy-

ment
effort

Platform
Focus

metrices

Middle-
ware
place-
ment

Orphan
garbage
collec-

tor

DSA (Cohen
and Petrank et
al., 2015) [231]

Modified
GC

Memory GC Medium
Processing,

storage
Throughput X X

Sabbaghi et al.,
2013 [215]

Orphan
process

detection

Remote
Procedure

Call
None Processing

Fault
tolerance

X X

C4 (Tene et al.,
2011) [232]

Modified
GC

Memory GC None
Processing,

storage
Latency X X

Jahanshahi et
al., 2005 [214]

Orphan
process

detection

Remote
Procedure

Call
None Processing

Fault
tolerance

X X

G1 (Detlefs et
al., 2004) [233]

Modified
GC

Memory GC None
Processing,

storage
Latency X X

RemOrphan
(our

proposed)

Orphan
garbage
data

collector

Storage
manage-
ment

Low

Proce-
ssing,
object
storage

Through-
put,

Latency,
Concur-
rency,
Fault

tolerance

✓ ✓

tolerance, and so on. In this Section, we discuss some important aspects of our study and present

comparison of related research studies according to several features (in Table 6.6). We illustrate the

features such as algorithm type, memory and storage management, developers deployment effort,

intended platform, focus metrics, orphan data collection, middleware placement and deployment,

etc. In the algorithm feature, we discuss what kind of algorithm the studies present in their work.

Some studies use Modified Garbage Collector algorithm, i.e., they extended the traditional Garbage

Collection algorithms [223, 224, 228, 230–233]. On the other hand, several studies do not modify the

traditional Garbage collection algorithms, hence we refer to them as Unmodified Garbage Collector

[221,222,225].

As the management perspective, we discover mainly four types of categories - Memory Garbage

Collector [220–225,228,230–233], Garbage VM Collector [36,229], Orphan Process Collector [214,215],

and Orphan Garbage Data Collector. However, no existing literature focuses on the later issue

i.e. orphan garbage data. Besides, we present the system deployment effort as high, low, medium,

and none with respect to the algorithms proposed in recent studies. Next, the target platform and

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 161

performance metrics are presented in the comparison table. Most of the studies focus on the metrics -

throughput and latency. However, study [12] works on throughput, latency, and concurrency whereas

our proposed architecture improves the throughput, latency, concurrency and makes the system more

fault-tolerant. By adopting a completely new methodology, we can achieve long-term object storage

sustainability through analyzing the proper middleware placement and removing orphan garbage data

regularly using deletion daemon. The time needs for listing and copying a directory using OpenStack

Swift hash rings is O(mlogN) and O(n + logN) respectively. Hence, the time complexity of our

proposed ‘RemOrphan’ algorithm is O(mlogN) + O(n + logN). Here, N is the total number of files

in the file system, n represents the number of files stored in a certain directory, and m is the number

of direct children under a certain directory.

6.7 Conclusion and Future Work

In this Chapter, we delineate three important realms related to multimedia data management on

the cloud and the diverse effect on storage sustainability. Here, we point three key vacancies in

the literature comprising retrieval of video streaming data, middleware placement based on their

responsibility, and detection and deletion of orphan garbage data (a new type of data that is of no

use however retained for a long time over cloud storage).

Hence, we design a new middleware in object server for downloading a time interval playable video

segments which can be easily integrated in OpenStack Swift and similar systems such as SPMS. Fur-

thermore, we propose a mechanism for removing orphan garbage data from cloud storage. We perform

rigorous experimentation over a real setup established in Canada and accessed from Bangladesh. Our

experimentation covers both system level and subjective evaluations. The evaluation results confirm

that we can achieve substantial performance improvement using our proposed mechanisms.

Our future work includes exploration of SSYNC for account, container, and object servers using

multiple replicas. We also plan to explore recursive deletion daemon algorithms using different hash

rings. Besides, experimenting over different server setups with large scale simulations is yet another

aspect worth investigating in future.

CHAPTER 6. OBJECT STORAGE SUSTAINABILITY THROUGH REMOVING
OFFLINE-PROCESSED ORPHAN GARBAGE DATA 162

Part IV: System-level Load Testing of Cloud
Storage Ecosystem

Chapter 7

svLoad: An Automated Case-Driven

Load Testing in Cloud Systems

7.1 Introduction

In this era of connected devices, the demand of storage systems are increasing exponentially [3]. Us-

ing various open-source projects [3, 234], several distributed private cloud storage systems are now

emerging [11, 53]. At the same time, clients are increasingly demanding faster and easier access to

data from these systems. In addition, system designers need to test the behavior of these distributed

architectures under massive operational loads to designing architectures properly and flawlessly. Fur-

thermore, service providers use cache(s) in front of backend servers for retrieving data faster from

distributed private cloud systems. Hence, information about the time elapsed for retrieving data

from cache or backend in different test scenarios is necessary to design a reliable system. Analyzing

that information, service providers can find out numbers and appropriate locations of the cache and

backend servers for achieving the best outcome. Apart from these, load testing is also needed to tune

the parameters of the software, hardware, and network used in the system.

As of today, private and public cloud service providers design their own distributed storage systems

using several data centers. Choosing best locations for deploying cache and backend cloud servers

in data centers is one of the challenging task for most service providers. Here, time delays in object

uploading and downloading are directly related to how the cache and backend servers are distributed.

163

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 164

Furthermore, for successful deployment of distributed architectures including caches and clouds in

production environments, proper load testing is mandatory. As such, several existing research studies

focus on load testing tools and architectures based on performance and functional testing criteria.

The study in [40] proposes an empirical testing by monitoring user experience and system health in

a feedback loop between traffic shifts. Other studies [41, 235, 236] propose automated approaches to

validate whether a performance test resembles the field workload or not. Unfortunately, these studies

propose and analyze only real-time test cases without focusing on network and software tuning using

the outcomes of the test analysis.

Furthermore, recent studies do not focus on finding a general load testing architecture for testing

distributed systems that combine both cache and backend servers. Hence, in this Chapter, by means

of a rigorous study we propose a load test architecture ‘svLoad’ that facilitates the process of finding

out the best values of parameters based on real scenarios. We also locate the bottlenecks of OpenStack

Swift and Varnish cache servers when they are operating with extensive load. In our study, we offer

extensive load requests from some predefined clients based on our proposed test cases. Hence, the

server will be busy on handling the requests. At the same time, we send concurrent download requests

using bash scripts and observe percentage of success rates among the requests, and how much time

they need for ending up with successful responses. Besides, we identify resource utilization bottlenecks

in both system and network performances, and tune the system and networks parameters accordingly,

and analyze the system behavior through subsequent load tests.

Based on our study, we make the following set of specific contributions in this Chapter:

• We propose 20 different test cases based on diversified real scenario covering different protocol

types (HTTP or HTTPS), URL types (same or different URLs) , load types (with or without

loads), and server types (backend, cache) for performing load test on cloud systems using several

tools - JMeter [237], Ansible [238], and our custom bash scripts.

• We perform continuous rigorous load testing on two open source cloud systems namely Varnish

[234] and Swift [3], and find out bottlenecks in the system and network that are worthy of

tuning.

• Subsequently, we perform parameter tuning as per our findings of load testing. Here, first we

come up with a comparison of response times for downloading files from cache and backend

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 165

servers for each test case through rigorous experimentation. Then, we improve the response

times and success rates of concurrent requests up to 80% and 90% respectively through our

tuning in the Swift, Varnish, and network systems.

7.2 Literature Survey

The main goal of load testing is to identify the upper limit of systems in terms of performance of the

database, hardware, network, etc. Hence, realistic test case based architectures for distributed cloud

storage system is critical. Also, while, functional tests may ensure the general performance of a cloud,

load tests ensure system reliablity and fault tolerance at even very demanding load requests. Load

tests give developers confidence that the cloud is well sized. Hence, the importance of realistic and

generalized load tests for cache and backend, today.

Furthermore, load tests for open source caches like Varnish [234], and cloud systems like OpenStack

Swift [3] are needed for tuning system parameters for vendors who merge these two components for

building large distributed cloud architectures. Recently, several works have appeared on load test

tools, cloud evaluation criteria based on load test, performance testing of web applications, workload

optimization, continuous validation, etc. in this realm. Here, we present a short summary of these

works to movitate our new architecture ‘svLoad’ for testing load capabilities in cache and backend

cloud servers.

A comparative performance study [42] among different testing tools shows Webload is better in terms

of assessing response time and throughput, compared to tools like Neoload, LoadImpact, Loadster and

LoadUI. The study in [239] presented important factors in cloud computing performance, and analyzed

and evaluated cloud performance in various scenarios based on criteria, characteristics, and simulation.

The study in [235] used the Load Runner testing tool to capture end-user business processes and

created automated performance testing virtual scripts to organize, manage, and monitor load testing

through running virtual users. Another study in [40] analyzed the behavior of individual systems and

groups of systems to identify resource utilization bottlenecks to ensure Facebook’s allocated capacity

for servicing download requests via tuning.

In addition, studies like [240, 241] analyze system performance degradation or problems handling

required system throughput. Studies in [242–245] presented late-cycle measurement-based and model-

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 166

Figure 7.1: Architectural overview of our proposed load test model

based approaches. Measurement-based approaches apply testing, diagnosis and tuning late in the

development cycle. The study in [41] presented that performance analysts must continually validate

whether their tests are reflective of the field or not. Such validation may be performed by comparing

execution logs from the test and the field. After going through all these studies, we can say that these

studies on load tests address some real time test cases, and do focus on load test based on automated

framework, but they did not cover the general load test scenarios based on real metrics. Furthermore,

these studies barely concentrated on network and software tuning along with load tests to make the

system best suited while using open source projects such as Swift, Varnish, etc. To the best of our

knowledge, load test architectures that vary real metrics such as network protocol, URL type, load

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 167

Figure 7.2: Overview of client, backend, varnish, and management servers

amount, and server type using JMeter, Ansible, and use case centric bash scripts as load test aids for

load testing in distributed storage system are yet to be accomplished. This motivates our Chapter.

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 168

7.3 Proposed Methodology

In this Chapter, we propose a general load test architecture for distributed storage system. Figure

7.1 and Figure 7.2 presents the architectural overview of our proposed load test model. Our proposed

operational methodology over this architecture comprises several key steps, which we present in the

following subsections.

7.3.1 Load Test Planning

The main technique for measuring performance of servers is to give extensive concurrent requests to

respective servers. For this, we need to run the load tests in regular basis as the results vary with

software and system variable factors such as network bandwidth, CPU, memory usage, etc. Hence,

we focus on automating the whole process with minimal effort. We give importance on several

necessary questions as follows:

1) Which tools should be used for load testing purpose?

2) How many machines should be used?

3) What would be the required machine configurations?

4) How to automate the whole process?

5) What would be the most important metrics for designing the test cases?

6) What components of the hardware, software, and network systems would be the limiting factors

of the performance?

In recent times, there are several tools for load testing with various use cases. Among them, finding

the appropriate tools for serving vendors purposefully is tough. Besides, designing the test bed

using available machines, picking the highly configured machines, designing test case scenarios based

on real findings are most challenging. Furthermore, for getting better and optimized performance

from distributed systems, developers need to find out the hardware, software, and network system

components which limit the performance. However, there are many open source software for testing

functional behavior and performance. We choose Apache JMeter [237] as a testing tool and Ansible

as IT automation engine because as they are simple, powerful and cross platform supportive. We use

10 client machines for giving concurrent loads.

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 169

Table 7.1: Test case scenarios for different metrics

Test
case
ID

Protocol URL Load Server

HTTP HTTPS Same Different Without With Backend
Cache

Hit Miss

TC0 ✓ ✓ ✓ ✓
TC1 ✓ ✓ ✓ ✓
TC2 ✓ ✓ ✓ ✓
TC3 ✓ ✓ ✓ ✓
TC4 ✓ ✓ ✓ ✓
TC5 ✓ ✓ ✓ ✓
TC6 ✓ ✓ ✓ ✓
TC7 ✓ ✓ ✓ ✓
TC8 ✓ ✓ ✓ ✓
TC9 ✓ ✓ ✓ ✓
TC10 ✓ ✓ ✓ ✓
TC11 ✓ ✓ ✓ ✓
TC12 ✓ ✓ ✓ ✓
TC13 ✓ ✓ ✓ ✓
TC14 ✓ ✓ ✓ ✓
TC15 ✓ ✓ ✓ ✓
TC16 ✓ ✓ ✓ ✓
TC17 ✓ ✓ ✓ ✓
TC18 ✓ ✓ ✓ ✓
TC19 ✓ ✓ ✓ ✓
TC20 ✓ ✓ ✓ ✓
TC21 ✓ ✓ ✓ ✓
TC22 ✓ ✓ ✓ ✓
TC23 ✓ ✓ ✓ ✓

7.3.2 Creating Test Scenarios

Figure 7.3: Test case hierarchy of proposed load test metrics

Our strategy is to make servers busy with highest concurrent loads. In the meantime, we send

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 170

requests to download a specific file concurrently using curl request [246] as much as possible during

heavy loads and save the data output metrics for further analysis. To compare the performances

between conditions with and without load, we send request to download a specific file repeatedly

as much as possible without load. Recently, maximum systems support HTTPS along with HTTP

requests for enhancing the security. A simple overhead arises related to HTTPS requests, as it takes

more time to download HTTPS type URL for resolving SSL/TLS keys.

Furthermore, concurrent requests may contain same URL or different URL which can also affect

performances. Hence, request protocol type and URL type are two necessary metrics to design test

case scenarios. As we have two type of servers, cache and backend cloud server, the server type is also

a variable metric. Cache hits and misses are other obvious metrics to design test case scenarios for

cache servers. Since in case of a cache miss, it takes more time to deliver a response than in the case

of a cache hit. To summarize, we state that server type, protocol type, URL type, with or without

load conditions, cache hits and misses are our metrics for designing test case scenarios. We propose

several test case scenarios varying those parameter metrics such as:

1) Protocol: Request protocol types are of two types i.e. HTTP and HTTPS request protocol.

2) URL: Test cases vary according to request URL (Uniform resource locater). Hence, performance

of cache and backend servers depend on the concurrent hits of same or different URL.

3) Server: Backend and cache servers are two parameter metrics for designing the test cases. For

cache server, two other important metrics are cache hit and miss based on different URL.

4) Load: For analyzing the system’s functionality properly, developers should find out how the

system will behave with or without load conditions. Hence, we choose them as important metrics for

designing the test case scenarios.

From the combination of these parameters, we design a total of 24 test case scenarios i.e. TC0, TC1,

TC2, up to TC23. Table 7.1 and Figure 7.3 presents the test case scenarios. Here, TC4, TC5, TC16,

and TC17 are invalid test cases as same URL cache miss can not be possible. Hence, we run load

tests for each of the other 20 test cases.

7.3.3 Creating and Disseminating Scripts

We design several shell scripts for determining some metrics e.g. download time, connection time,

HTTPS resolve time, etc. We run the scripts to hit URL either in backend or cache, depending

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 171

Figure 7.4: Architecture of svLoad for single client

on test cases. We also run JMeter [237] in every machine independently. Hence, we have machine

independent data for further processing. Furthermore, we design JMeter scripts for all 20 test cases

and a bash script to send a specific requests multiple times for measuring performances. We manage

the whole task from one management machine using Ansible [238] to install required software, transfer

scripts to all machines and run test cases for specified durations.

After running test cases, results are saved to a specific folder in each machine. They are then moved

to a management node to merge them for analysis, and converted to a central excel file. The whole

task is completed from management node using minimal commands. Since we also need to extract

all URL information of user accounts from backend server for concurrent get requests, we design the

following script files:

1) UrlExtractScript: Scripts used to extract all URL from backend server. These script were run

from management node.

2) JMeterScript: JMeter script for all test cases. This script was run individually from all test

client machines.

3) ResponseMetricsScript: This script is used to collect data variables from each curl requests

after a complete transfer of requests. This script extracts some predefined data metrics from every

URL request and averages the data results. We collect several necessary data metrics among the

responses from curl requests. Besides, we find out that these data metrics are important for analyzing

system behavior for further improvement. Here, we summarize the critical data variable metrics from

curl response [246]:

Size download: The total amount of bytes that are downloaded. Size header: The total amount

of bytes of the downloaded headers. Size request: The total amount of bytes that are sent in the

HTTP request. Speed download: The average download speed that curl measured for the complete

download. Time appconnect: The time, in seconds, needed from the start until the SSL/SSH/etc

connect/handshake to the remote host is completed. Time connect: The time, in seconds, it takes

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 172

from the start until the TCP connect to the remote host (or proxy) is completed. Time namelookup:

The time, in seconds, it takes from the start until the name resolving is completed. Time pretransfer:

The time, in seconds, it takes from the start until the file transfer is just about to begin. Time redirect:

The time, in seconds, it takes for all redirection steps including name lookup, connect, pre-transfer

and transfer before the final transaction is started. Time starttransfer: The time, in seconds, it takes

from the start until the first byte is just about to be transferred. This includes time pretransfer and

also the time the server needs to calculate the result. Time total: The total time, in seconds, that

the full operation lasted.

4) DataAnalysisScript: This script moves all files to central management node and generates an

excel file from response metrics.

Furthermore, in a distributed denial-of-service (DDoS) attack, multiple compromised computer sys-

tems attack a server, website or other network resource. In our proposed methodology, our target

is also to flood requests in cache or backend server using proposed test cases and observe miss rate,

CPU, and memory usages. From statistics of these usages, we can check stability of our system under

DDoS attacks as well.

In summary, JMeter allows maximum 400 to 500 concurrent requests from a single machine. We

ran around concurrent 4000 load requests using JMeter from all client machines to the respective

cache or backend servers. Besides, we sent a single get request sequentially using our proposed script

algorithm for obtaining download related necessary information under this huge load test (in Figure

7.4). We also transfer and collect files and automate the architecture using Ansible tool. This test

based architecture using tools JMeter, Ansible and proposed scripts for load testing is not proposed

yet in any literature.

7.4 Experimental Evaluation

We evaluate performance of our proposed load test architecture through a real implementation. We

also present a comparison of performance between Varnish cache and Swift backend server after tuning

the network system, Varnish cache, and Swift backend parameters in real scenarios. Before this, we

first elaborate our experimental settings.

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 173

Table 7.2: Geographic locations of all machines

Machine name Machine type Geographic location

Ba1
Backend
Server

Montreal, Canada

Ca1 Cache Server Montreal, Canada

Ma1
Management

Server
Montreal, Canada

A Client 1 Montreal, Canada

B Client 2 Montreal, Canada

C Client 3 Toronto, Canada

D Client 4 Montreal, Canada

E Client 5 Toronto, Canada

F Client 6 Toronto, Canada

G Client 7 New Jersey, USA

H Client 8 Montreal, Canada

I Client 9 Toronto, Canada

J Client 10 Montreal, Canada

Table 7.3: Configuration of machines used in our load testing

Informations
Backend

server
Cache
server

Management
machine

Client
machine

Architecture x86 64 x86 64 x86 64 x86 64

CPU(s) 16 48 16 1

On-line
CPU(s) list

0-15 0-47 0-15 0

Thread(s)
per core

2 1 2 1

Core(s) per
socket

4 12 4 1

Socket(s) 2 4 2 1

NUMA
node(s)

2 8 2 1

CPU family 6 16 6 6

Model name

Intel(R)
Xeon(R)

CPU
E5620

@2.40GHz

AMD
Opteron(tm)
Processor

6174

Intel(R)
Xeon(R)

CPU E5620
@2.40GHz

QEMU
Virtual
CPU

version
1.5.3

CPU MHz 2394.141 2199.967 2394.103 2393.998

Virtualization
type

VT-x AMD-V VT-x
full

Storage

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 174

Figure 7.5: Experimental settings of testbed

7.4.1 Experimental Settings

We use state-of-the-art configured machines i.e. one Swift cluster, one Varnish cache, one management

machine, and ten client machines which are distributed to three different geographical locations i.e.,

Montreal and Toronto in Canada, and New Jersey in USA (Table 7.2). Table 7.3 presents the hardware

and software related informations of machines used for load testing. The average upload speeds of

machines located in Montreal, Toronto, and New Jersey are 5.66 Mbps, 8.64 Mbps, and 207.9 Mbps

respectively. Average download speeds are 14.35 Mbps, 3.98 Mbps, and 9.33 Mbps respectively.

Varnish cache server has 16 Gb memory, 64 Gb hard disk and six 1 Gb network interface cards. We

install one proxy, one account-container, and one object server for Swift cluster. The memory and

disk configurations of Swift servers are as follows: one proxy having 32 Gb memory and 1.2 Tb disk,

one account-container having 32 Gb memory and 3 disks each of 400 Gb, and one object having 32

Gb memory and 3 disks each of 400 Gb. Each server had six 1 Gb network interface cards. Figure

7.5 presents the experimental setups of our testbeds. Here, we focus on proxy server as backend

server as all requests hit through proxy server for further processing. We create 10, 000 accounts

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 175

Table 7.4: Results for TC0 before tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.019084 60742.78516 0.181213 0.020035 0.181265 0.201807 0.202337

B 0.028005 54005.11328 0.199899 0.029095 0.19996 0.219461 0.220196

C 0.004699 43284.96484 0.241165 0.014015 0.24128 0.267824 0.274486

D 0.016236 50454.20703 0.219792 0.017153 0.219866 0.239778 0.240297

E 0.00502 41436.89453 0.253942 0.014245 0.254066 0.299559 0.306093

F 0.004529 43304.47266 0.24062 0.013669 0.240748 0.267333 0.27393

G 0.00554 44184.625 0.232295 0.016577 0.232384 0.261546 0.26961

H 0.014866 43963.67578 0.250164 0.015741 0.250259 0.269775 0.270343

I 0.00518 40665.79297 0.25983 0.01497 0.259972 0.286211 0.292828

J 0.030641 59550.21094 0.183136 0.03137 0.183174 0.200973 0.201464

and 10, 000 containers in Swift cluster and upload around 55, 000 image files in those accounts for

concurrent requests. We use 10 clients to provide concurrent loads on server, and from each client,

400 concurrent requests are sent for each test case.

7.4.2 Experimental Results

In this section, first, we present experimental results. Next, we delineate the parameters for system

and network tuning.

Running the Scenario: We run the whole testing process 5 to 6 times with 2 hours duration for

each test cases. We needed around 15 to 20 days for collecting the results and tuning the system. We

also collect some predefined data response metrics from curl responses i.e., HTTP connection time,

dns lookup time, download speed, app connection time, connection time, pre-transfer, start transfer,

total response time, etc. to measure performances for each test case [246]. Table 7.4 - Table 7.22

present the testcase results before tuning the system. Moreover, Table 7.23 - Table 7.42 present the

testcase results after tuning the system. Additionally, Figure 7.6, Figure 7.7, and Figure 7.8 present

the comparison of average testcase results.

Monitoring the Scenario: We monitor and collect the output of CPU and memory usage, disk

utilization, process queues, JVM out of memory exceptions, etc. while running test cases in corre-

sponding server. We observed that 70% to 80% memory is used for all 48 cores in Varnish cache due

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 176

Table 7.5: Results for TC1 before tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.025941 44218.06641 0.210628 0.026847 0.210681 0.295597 0.296356

B 0.028007 40094.87891 0.226313 0.030835 0.226381 0.310806 0.312144

C 0.004875 32523.82031 0.278864 0.016339 0.278988 0.370114 0.379062

D 0.02888 37737.80859 0.257613 0.029798 0.257688 0.342154 0.342998

E 0.005202 31722.86719 0.287869 0.015415 0.287953 0.378094 0.387241

F 0.004695 32471.86719 0.278408 0.015789 0.278544 0.371103 0.380134

G 0.005815 33870.49219 0.259371 0.018575 0.259466 0.355652 0.366421

H 0.025132 33845.66406 0.286241 0.025839 0.286297 0.372405 0.373271

I 0.005172 31428.41211 0.29311 0.016017 0.293246 0.382293 0.391595

J 0.036088 43424.09766 0.211516 0.036895 0.211562 0.294506 0.295291

Table 7.6: Results for TC2 before tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.016666 61303.80859 0.192907 0.01802 0.192965 0.194661 0.195684

B 0.028009 56993.98438 0.20456 0.029003 0.204622 0.205325 0.206063

C 0.004555 43706.6875 0.252417 0.013446 0.252517 0.261421 0.269657

D 0.015336 51187.59766 0.22953 0.016648 0.229614 0.231076 0.23216

E 0.004752 43076.37109 0.25647 0.013766 0.256587 0.265583 0.27392

F 0.004524 44794.70703 0.245845 0.013504 0.24594 0.254876 0.263174

G 0.008603 46317.6875 0.237745 0.019059 0.237822 0.248561 0.258655

H 0.020079 44458.49219 0.266636 0.021554 0.266702 0.268365 0.269538

I 0.004739 42573.92578 0.259644 0.013798 0.259754 0.268843 0.27727

J 0.034873 60438.15234 0.199091 0.036552 0.19913 0.200547 0.201592

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 177

Table 7.7: Results for TC3 before tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.200632 8288.029297 1.472068 0.491215 1.472116 1.651441 1.99448

B 0.028011 10122.91699 1.061443 0.272406 1.061518 1.246851 1.575193

C 0.008518 7939.221191 1.187393 0.27813 1.18751 1.362424 1.690457

D 0.19884 8567.459961 1.417034 0.482272 1.417104 1.59278 1.923229

E 0.00983 7846.32959 1.202856 0.278967 1.202953 1.378434 1.703074

F 0.008206 7962.175781 1.208611 0.29059 1.208725 1.385451 1.71428

G 0.013085 7755.3125 1.199246 0.298278 1.199332 1.397689 1.728491

H 0.193529 7419.634277 1.466874 0.503384 1.466984 1.647716 1.984346

I 0.010136 7754.857422 1.224849 0.300677 1.224939 1.403824 1.736876

J 0.176198 9551.195312 1.327161 0.454495 1.327202 1.503813 1.840092

Table 7.8: Results for TC7 before tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.032118 528282.0625 0 0.033104 0.033108 0.051514 0.051642

B 0.028008 293970.4375 0 0.037151 0.037165 0.070662 0.071871

C 0.004442 365599.8438 0 0.023067 0.023118 0.062519 0.064248

D 0.040462 536258.5 0 0.041397 0.041432 0.060239 0.060324

E 0.004598 362341.5625 0 0.022558 0.022618 0.063979 0.065797

F 0.00447 364735.125 0 0.023572 0.023623 0.061455 0.063675

G 0.004902 328410.8438 0 0.024676 0.024762 0.06443 0.066232

H 0.038558 526368.3125 0 0.039501 0.039505 0.058656 0.058732

I 0.005307 42833.24219 0.265848 0.032531 0.266014 0.341607 0.34974

J 0.054316 310260.4063 0 0.055128 0.055128 0.076465 0.076535

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 178

Table 7.9: Results for TC8 before tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.01634 793150.625 0 0.017545 0.017553 0.018657 0.018711

B 0.028006 403035.5 0 0.02901 0.029011 0.029043 0.029048

C 0.004241 542713.5625 0 0.013129 0.013243 0.021509 0.021669

D 0.01867 819641.875 0 0.019915 0.019918 0.02098 0.021005

E 0.004355 537195.6875 0 0.013345 0.013416 0.021766 0.021968

F 0.004219 540506 0 0.013219 0.013248 0.021513 0.021775

G 0.004637 463077.7813 0 0.01495 0.015119 0.025573 0.025766

H 0.016679 800007.125 0 0.017859 0.01787 0.01898 0.019023

I 0.004487 528053.625 0 0.013589 0.013639 0.02217 0.022476

J 0.031539 388759.25 0 0.032659 0.032662 0.033766 0.033794

Table 7.10: Results for TC9 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.035501 779714.875 0 0.03955 0.03956 0.041618 0.042822

B 0.031233 365632.7813 0 0.035398 0.035413 0.03876 0.044857

C 0.005066 483237.6875 0 0.019073 0.019181 0.030652 0.036963

D 0.04306 797047.0625 0 0.047339 0.047343 0.050148 0.051527

E 0.005443 479925.0938 0 0.018925 0.019012 0.030551 0.036844

F 0.004677 482887.625 0 0.01913 0.019178 0.03065 0.036974

G 0.004998 417355.4688 0 0.019258 0.019437 0.032841 0.038926

H 0.04442 783647.875 0 0.048976 0.048988 0.051447 0.052671

I 0.00532 474259.5938 0 0.019547 0.019606 0.031274 0.037624

J 0.057037 380339 0 0.062501 0.062507 0.065914 0.067976

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 179

Table 7.11: Results for TC10 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.015693 791184 0 0.017008 0.017017 0.018218 0.018355

B 0.028436 401120.625 0 0.029506 0.029508 0.029616 0.029686

C 0.004224 540269.9375 0 0.013374 0.013499 0.021853 0.022126

D 0.015018 812451.875 0 0.016396 0.0164 0.017575 0.017709

E 0.004389 532594.25 0 0.013691 0.013759 0.022222 0.022571

F 0.004252 536894.25 0 0.013624 0.013664 0.022023 0.022366

G 0.004508 462244.4063 0 0.015063 0.01522 0.025754 0.026082

H 0.01524 793786.25 0 0.016703 0.016716 0.017917 0.018047

I 0.004396 529712.6875 0 0.013796 0.01384 0.022363 0.022779

J 0.030542 386226.125 0 0.031954 0.031958 0.033186 0.033347

Table 7.12: Results for TC11 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.019634 721993.6875 0 0.025823 0.025838 0.031075 0.039147

B 0.029113 354770.1563 0 0.03693 0.036943 0.043712 0.056926

C 0.004572 474768.75 0 0.021725 0.021837 0.036444 0.049059

D 0.022678 725800.625 0 0.030354 0.030365 0.036878 0.047431

E 0.005447 471577.6563 0 0.02177 0.021853 0.036596 0.049283

F 0.004729 474586.25 0 0.021748 0.0218 0.03631 0.048698

G 0.004847 415515.6875 0 0.021476 0.021635 0.037804 0.049496

H 0.023517 718484.625 0 0.03138 0.0314 0.037769 0.048055

I 0.006019 466451.1875 0 0.022209 0.02227 0.037181 0.050129

J 0.03905 349520.0313 0 0.047338 0.047348 0.05411 0.06533

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 180

Table 7.13: Results for TC12 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.015487 65150.70313 0.165426 0.016397 0.165461 0.182837 0.183459

B 0.028004 54259.375 0.199812 0.029462 0.199873 0.217369 0.218188

C 0.004641 44056.16016 0.237686 0.014099 0.23782 0.263421 0.26915

D 0.015714 48451.64453 0.228081 0.016631 0.228154 0.245271 0.245894

E 0.004814 43232.64063 0.243494 0.014178 0.243625 0.268547 0.274406

F 0.004703 44301.62109 0.235781 0.014175 0.235909 0.2616 0.267554

G 0.005404 47149.33984 0.220683 0.01673 0.220772 0.248511 0.255698

H 0.01869 47133.57422 0.23321 0.019336 0.233289 0.25055 0.251207

I 0.004654 43755.59766 0.239956 0.01418 0.240084 0.265467 0.271249

J 0.029555 60144.29297 0.180714 0.030234 0.180757 0.197452 0.198023

Table 7.14: Results for TC13 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.041417 19062.94531 2.036389 3.376111 2.036472 2.130972 49.295055

B 0.028 29693.16602 0.516917 0.021208 0.516917 0.564125 35.015644

C 0.015971 14744.48535 2.164771 0.5622 2.164829 2.254543 49.066856

D 0.047805 22182.56055 0.955463 2.089927 0.955512 1.011781 43.456512

E 0.033533 12407.09961 0.945433 1.299933 0.9455 1.002933 56.644001

F 0.021182 14687.39356 2.490757 2.880212 2.490849 2.56397 53.642487

G 0.024212 12590.90918 2.097788 0.997849 2.097788 2.170788 51.814091

H 0.472769 11528.07715 1.276885 0.318577 1.276923 1.322808 64.375961

I 0.028 10858.63867 2.319195 0.164028 2.319278 2.415361 49.175667

J 0.184943 21486.14258 2.061286 0.290429 2.061314 2.1414 48.794056

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 181

Table 7.15: Results for TC14 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.020115 62194.66797 0.192363 0.021179 0.192394 0.194189 0.195367

B 0.028013 56497.32031 0.205968 0.029005 0.206037 0.207074 0.208006

C 0.004756 43348.76172 0.254602 0.013649 0.254656 0.263959 0.27223

D 0.01754 47940.11328 0.246648 0.01869 0.246721 0.248382 0.249612

E 0.005014 41433.00391 0.267606 0.01408 0.267665 0.277162 0.285528

F 0.004945 43368.67969 0.254148 0.013957 0.254247 0.263593 0.27189

G 0.005551 47390.875 0.227961 0.015854 0.228029 0.239059 0.249047

H 0.020341 44710.39844 0.263499 0.021508 0.263541 0.265465 0.266742

I 0.005045 41742.18359 0.264999 0.014134 0.265111 0.274604 0.283046

J 0.032237 62011.65625 0.191228 0.033577 0.191266 0.192807 0.193995

Table 7.16: Results for TC15 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.340213 8257.826172 1.36538 0.531221 1.365437 1.531829 1.830516

B 0.034971 12095.40039 0.770803 0.17654 0.770899 0.914825 1.181145

C 0.027634 8160.665039 1.055008 0.185498 1.05425 1.226756 1.506746

D 0.289014 10514.98438 1.167743 0.462584 1.167833 1.329151 1.609664

E 0.027378 8218.579102 1.059135 0.185662 1.058348 1.225625 1.509194

F 0.022364 8316.642578 1.022973 0.187677 1.023064 1.192021 1.476339

G 0.020126 8962.051758 0.934746 0.179293 0.934823 1.098645 1.380445

H 0.441911 6006.353516 2.069026 0.645061 2.069109 2.283316 2.605666

I 0.039189 7751.248047 1.136165 0.210912 1.136281 1.314614 1.601192

J 0.244803 11135.72363 1.078655 0.426397 1.078705 1.234622 1.517611

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 182

Table 7.17: Results for TC18 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.019293 60225.92188 0.180424 0.020203 0.180472 0.200928 0.202637

B 0.028007 53157.89063 0.201172 0.029367 0.201236 0.221682 0.223546

C 0.004801 42564.10547 0.242631 0.014366 0.242767 0.271225 0.279649

D 0.014409 46712.40234 0.232744 0.015332 0.232821 0.252631 0.254377

E 0.00479 42623.89063 0.243128 0.013958 0.24325 0.270935 0.279285

F 0.004605 43994.09375 0.233621 0.013787 0.233751 0.261823 0.27013

G 0.005396 46249.87891 0.216528 0.016403 0.216617 0.247287 0.257283

H 0.024845 46774.11719 0.240828 0.025588 0.240914 0.261036 0.262604

I 0.004869 42543.89063 0.242976 0.014103 0.243102 0.270995 0.279492

J 0.032789 58923.96875 0.185032 0.03347 0.185072 0.204127 0.205782

Table 7.18: Results for TC19 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.022756 32821.96484 0.420519 0.054385 0.420473 0.563559 0.65878

B 0.028035 31139.11719 0.439933 0.04509 0.440003 0.58818 0.687048

C 0.011461 24325.25586 0.490483 0.031592 0.490622 0.644817 0.828277

D 0.019447 28145.87891 0.473768 0.053924 0.473855 0.623012 0.726451

E 0.011898 24212.84961 0.553785 0.054419 0.553932 0.712399 0.830077

F 0.006669 26799.12109 0.445243 0.024845 0.44537 0.60379 0.771398

G 0.012083 27614.77344 0.49808 0.075417 0.498157 0.650564 0.75882

H 0.034107 23120.46289 0.578881 0.093225 0.578979 0.738059 0.857449

I 0.007579 26166.95508 0.505028 0.046531 0.505162 0.663324 0.774317

J 0.030267 34310.60156 0.410355 0.059561 0.410398 0.553371 0.6474

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 183

Table 7.19: Results for TC20 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.014341 58309.9375 0.200236 0.015643 0.200278 0.202193 0.203155

B 0.028 57137.01563 0.203484 0.028994 0.203511 0.204654 0.205273

C 0.004954 44078.00781 0.2506 0.013957 0.250719 0.260073 0.268345

D 0.015503 48502.86719 0.241705 0.016509 0.241774 0.243328 0.244321

E 0.00519 42452.80859 0.26077 0.014328 0.260834 0.270235 0.278604

F 0.004716 45191.86328 0.243213 0.013777 0.243311 0.252698 0.261034

G 0.006003 48840.25391 0.220463 0.01635 0.220527 0.231495 0.241529

H 0.018507 45689.35938 0.258577 0.019776 0.258653 0.260429 0.261422

I 0.005427 41473.03906 0.267132 0.01468 0.267256 0.276866 0.285513

J 0.030655 62132.97656 0.18865 0.031407 0.188692 0.19024 0.1912

Table 7.20: Results for TC21 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.068964 55690.34375 0.291737 0.082238 0.291787 0.300865 0.312276

B 0.04071 48872.01953 0.249366 0.04903 0.249433 0.258767 0.273809

C 0.012136 37919.80078 0.331486 0.031305 0.331602 0.349638 0.367839

D 0.093904 38641.80078 0.381017 0.108879 0.381109 0.391742 0.407276

E 0.011802 36455.53125 0.336256 0.028871 0.336372 0.354912 0.374287

F 0.01087 37726.29297 0.326415 0.030176 0.32652 0.346393 0.366749

G 0.012572 40000.26563 0.308993 0.032168 0.309062 0.330024 0.350814

H 0.086221 37405.98047 0.426654 0.102479 0.426682 0.43697 0.449293

I 0.021803 35802.99609 0.353976 0.040418 0.354098 0.373446 0.393639

J 0.071201 53370.94531 0.272788 0.086979 0.272828 0.283183 0.296794

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 184

Table 7.21: Results for TC22 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.016235 62523.93359 0.188493 0.017258 0.188548 0.190152 0.190908

B 0.028025 57322.53906 0.203324 0.029013 0.203364 0.204289 0.2049

C 0.004918 42840.45313 0.258386 0.01391 0.258495 0.267569 0.275848

D 0.018143 48220.06641 0.245875 0.019264 0.245946 0.247225 0.248126

E 0.005063 43041.34375 0.257357 0.014125 0.257471 0.266589 0.27494

F 0.004793 45082.66016 0.244508 0.01383 0.24462 0.253679 0.262001

G 0.006339 47189.92188 0.229855 0.016726 0.22989 0.240695 0.250738

H 0.02028 45725.02734 0.260411 0.02123 0.260492 0.262018 0.262962

I 0.012978 41760.20703 0.272946 0.022405 0.273014 0.282621 0.29142

J 0.032245 62336.39453 0.190522 0.033311 0.190562 0.191841 0.19267

Table 7.22: Results for TC23 before tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.032456 58487.58594 0.238117 0.040948 0.238175 0.244805 0.254168

B 0.04302 51359.41016 0.242575 0.049136 0.242628 0.24959 0.261084

C 0.011445 39702.35938 0.330751 0.033481 0.330871 0.347802 0.365594

D 0.02911 43205.52344 0.293325 0.04106 0.293395 0.301226 0.313982

E 0.008601 39221.67188 0.30985 0.026888 0.309957 0.326395 0.348524

F 0.009166 40093.44922 0.315406 0.031505 0.315463 0.331211 0.347473

G 0.008819 41766.10156 0.279098 0.029201 0.279176 0.29651 0.316196

H 0.034602 44148.99609 0.305516 0.045171 0.305604 0.312865 0.322424

I 0.011835 37385.64063 0.335938 0.030722 0.336067 0.352669 0.376666

J 0.044108 56492.02734 0.230668 0.054705 0.230714 0.237998 0.249817

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 185

Table 7.23: Results for TC0 after tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.10765 299715.0625 0 0.10774 0.107743 0.116995 0.117044

B 0.028007 303402.4375 0 0.029666 0.029673 0.039327 0.039455

C 0.039049 209277.9688 0 0.048028 0.048137 0.066085 0.066308

D 0.096488 305289.9063 0 0.097115 0.097116 0.106006 0.10607

E 0.040415 204297.125 0 0.049519 0.049687 0.067847 0.068296

F 0.042825 209526.125 0 0.052306 0.052434 0.070326 0.070588

G 0.05625 197519.0313 0 0.067622 0.067663 0.087348 0.087627

H 0.094761 301850.4063 0 0.094821 0.094822 0.104054 0.104111

I 0.034882 40178.30469 0.273846 0.044552 0.273989 0.293171 0.299291

J 0.032298 311329.6875 0 0.033161 0.033185 0.041944 0.041999

Table 7.24: Results for TC1 after tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.067637 145203.6875 0 0.067831 0.067837 0.125331 0.125383

B 0.028009 145929.1875 0 0.029539 0.029562 0.089791 0.09001

C 0.039765 118106.8594 0 0.04956 0.049679 0.118349 0.118649

D 0.061503 145939.3906 0 0.062224 0.062221 0.121291 0.121366

E 0.04205 115116.9375 0 0.052436 0.052595 0.11983 0.120133

F 0.042369 117443.1563 0 0.052442 0.052565 0.120164 0.120453

G 0.044978 114642.3594 0 0.056354 0.056392 0.127184 0.127475

H 0.059853 143400.4375 0 0.059905 0.059911 0.119873 0.119946

I 0.034539 31739.08398 0.304247 0.045303 0.304393 0.369301 0.378297

J 0.034022 149101.1875 0 0.034971 0.034984 0.094316 0.094377

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 186

Table 7.25: Results for TC2 after tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.116203 368656.1875 0 0.117548 0.117647 0.118984 0.119065

B 0.02801 401086.4375 0 0.029002 0.029003 0.029019 0.029046

C 0.039732 252284.1875 0 0.048287 0.04835 0.057011 0.057301

D 0.104565 374345.5938 0 0.105981 0.106103 0.107341 0.107514

E 0.040403 246212.7344 0 0.04921 0.049322 0.058276 0.058566

F 0.042676 249357.9375 0 0.051287 0.051349 0.06012 0.060389

G 0.067534 235360.8125 0 0.078744 0.078808 0.089003 0.089184

H 0.085421 371751.2188 0 0.086837 0.086939 0.08822 0.088297

I 0.044008 238947.6719 0 0.054079 0.054224 0.063682 0.063994

J 0.030642 382722.1875 0 0.032001 0.032072 0.033333 0.033471

Table 7.26: Results for TC3 after tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.146231 20884.95508 0 0.427179 0.427258 0.648401 1.001198

B 0.028009 35605.76563 0 0.249395 0.249489 0.447604 0.766879

C 0.03911 17577.25391 0 0.312375 0.312513 0.539352 0.887114

D 0.147004 29269.55664 0 0.443464 0.443536 0.661681 1.004843

E 0.044525 17732.80273 0 0.302281 0.30242 0.534231 0.88254

F 0.041005 17342.20508 0 0.310395 0.310512 0.545381 0.896785

G 0.036223 19518.44531 0 0.304416 0.304496 0.524989 0.864168

H 0.168334 18560.92578 0 0.444694 0.444815 0.664194 1.019172

I 0.076361 16309.88086 0 0.361308 0.36146 0.611714 0.97024

J 0.122749 35183.44922 0 0.411043 0.411097 0.627534 0.968778

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 187

Table 7.27: Results for TC6 after tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.122962 298700.0313 0 0.123179 0.1232 0.133059 0.133141

B 0.028006 302500.8125 0 0.029867 0.029903 0.040155 0.040306

C 0.035432 210188.2813 0 0.045173 0.045271 0.063434 0.063812

D 0.088303 305859.375 0 0.089006 0.089016 0.098406 0.09847

E 0.033706 206180.9688 0 0.043384 0.043541 0.061963 0.062299

F 0.045874 209175.0313 0 0.055513 0.055651 0.073926 0.074258

G 0.073808 197484.8125 0 0.085548 0.085587 0.105414 0.105684

H 0.078407 302724.4063 0 0.078563 0.078585 0.088393 0.088449

I 0.031144 40812.83984 0.268727 0.040492 0.268867 0.287963 0.291605

J 0.031761 311123 0 0.032771 0.032789 0.041853 0.041924

Table 7.28: Results for TC7 after tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 1.67896 49763.36328 0 1.706753 1.706809 1.941898 2.008173

B 0.028024 58926.67578 0 0.246364 0.246457 0.513585 0.659237

C 0.040843 44555.34766 0 0.282338 0.282466 0.56904 0.689125

D 1.499186 63897.85938 0 1.522197 1.522277 1.723761 1.769869

E 0.032921 42916.48828 0 0.290343 0.290501 0.590388 0.734961

F 0.032915 43657.5625 0 0.258 0.258117 0.521686 0.649974

G 0.046218 41702.34375 0 0.304511 0.304579 0.589784 0.708805

H 1.496822 50696.59375 0 1.525238 1.525311 1.735355 1.789202

I 0.037667 13996.31738 0.879221 0.25594 0.879358 1.257474 1.341999

J 1.247882 78833.97656 0 1.271957 1.272009 1.458364 1.534731

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 188

Table 7.29: Results for TC8 after tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.121152 317083.4063 0 0.126362 0.12642 0.129896 0.130925

B 0.028007 357492.4375 0 0.030598 0.030664 0.032629 0.033117

C 0.041317 221385.7656 0 0.051658 0.051771 0.062223 0.065592

D 0.098539 322316.5313 0 0.102699 0.102767 0.10608 0.107098

E 0.042338 217506.1719 0 0.052928 0.05306 0.06369 0.067101

F 0.041741 221004.3438 0 0.052133 0.052244 0.062685 0.066075

G 0.069422 207286.4844 0 0.081606 0.081687 0.09394 0.097337

H 0.085646 317117.375 0 0.090281 0.090353 0.093861 0.094908

I 0.040539 218907.75 0 0.051188 0.05131 0.061898 0.065299

J 0.037918 330787.0313 0 0.043065 0.043112 0.046336 0.047362

Table 7.30: Results for TC9 after tuning. Here, we use header size - 397 byte, size download - 11742
byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.098253 20289.54102 0 0.265381 0.265462 0.427985 0.74953

B 0.033502 28759.43164 0 0.189196 0.189292 0.34482 0.6546

C 0.041264 20311.50977 0 0.213177 0.213307 0.381978 0.701197

D 0.082821 20711.39844 0 0.25351 0.253581 0.416711 0.738841

E 0.041839 19842.51953 0 0.212823 0.212961 0.383283 0.703608

F 0.032192 19807.03125 0 0.202582 0.20272 0.372227 0.693343

G 0.032553 20552.39844 0 0.204543 0.204625 0.374911 0.694146

H 0.094832 20246.43164 0 0.264151 0.264237 0.42907 0.750191

I 0.043163 19454.21094 0 0.216397 0.216535 0.387461 0.70931

J 0.09828 21789.10742 0 0.266704 0.266771 0.428656 0.750028

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 189

Table 7.31: Results for TC10 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.109053 310066.3438 0 0.114703 0.114764 0.118507 0.119811

B 0.028009 360215.25 0 0.030494 0.030559 0.032412 0.032861

C 0.045282 222911.0781 0 0.055466 0.055576 0.0659 0.069109

D 0.109091 316136.125 0 0.114804 0.114869 0.118306 0.119398

E 0.048539 217243.4063 0 0.059087 0.059221 0.069819 0.073001

F 0.041192 222510.4844 0 0.051459 0.051574 0.061928 0.065059

G 0.077574 210076.7813 0 0.089679 0.089758 0.101769 0.104879

H 0.094859 310203.7813 0 0.100064 0.100136 0.103813 0.105048

I 0.045027 220924.6094 0 0.055358 0.055478 0.065903 0.069094

J 0.050513 325287.9063 0 0.056423 0.05647 0.059906 0.061035

Table 7.32: Results for TC11 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.17411 19115.00977 0 0.36944 0.369524 0.544364 0.877221

B 0.040811 20336.81055 0 0.198448 0.198554 0.35551 0.66927

C 0.040568 18661.69727 0 0.218807 0.218941 0.387952 0.706972

D 0.247955 19564.65039 0 0.430383 0.430455 0.59688 0.918507

E 0.058938 18110.55273 0 0.229887 0.23004 0.400459 0.720509

F 0.047221 18554.41016 0 0.228322 0.228449 0.396933 0.716511

G 0.03774 18407.44727 0 0.209022 0.209109 0.380037 0.700079

H 0.238769 17983.19922 0 0.429372 0.429478 0.61019 0.940805

I 0.049686 18344.14844 0 0.219779 0.21992 0.389719 0.719838

J 0.184146 20149.44141 0 0.363277 0.363335 0.526633 0.846268

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 190

Table 7.33: Results for TC12 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.046509 59324.42969 0.195983 0.046603 0.196041 0.213169 0.213805

B 0.030416 54052.91406 0.203737 0.032058 0.203799 0.222387 0.223231

C 0.034157 41076.43359 0.260509 0.043517 0.260635 0.286311 0.293313

D 0.038341 43991.16016 0.258883 0.0388 0.258958 0.27519 0.275748

E 0.033781 37778.83203 0.285702 0.043257 0.285855 0.314414 0.321503

F 0.034308 40537.43359 0.266227 0.045239 0.26635 0.291825 0.29896

G 0.028588 44458.07813 0.231495 0.04012 0.231573 0.258673 0.266938

H 0.045345 46533.58984 0.248955 0.045471 0.249029 0.266138 0.266747

I 0.033376 38022.46875 0.28374 0.043295 0.283893 0.308942 0.316035

J 0.032407 59665.14453 0.186089 0.03324 0.18613 0.201693 0.202251

Table 7.34: Results for TC13 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.038 8491.333008 0.599611 3.530944 0.599667 0.666 66.779945

B 0.028 15219.26074 0.584348 2.765261 0.584348 0.646304 52.331654

C 0.045778 7516.944336 0.7935 0.035278 0.7935 0.857167 64.468613

D 0.03592 14342.91992 4.14224 2.70924 4.14228 4.215 49.243999

E 0.04345 7119.299805 2.10545 7.10665 2.10565 2.1839 63.258598

F 0.042 7435.388672 2.345667 0.368056 2.345667 2.448056 64.50322

G 0.03975 7346.350098 1.0473 3.3987 1.0473 1.11985 58.862949

H 0.049095 8922.428711 1.422286 0.171429 1.422476 1.496286 56.023903

I 0.048778 5274.666504 7.635334 5.275667 7.635389 7.758056 66.93589

J 0.028034 13864.31055 5.309345 1.680172 5.309345 5.442207 43.481346

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 191

Table 7.35: Results for TC14 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.047081 60383.50781 0.208612 0.048339 0.208667 0.210799 0.212028

B 0.028006 55999.375 0.207801 0.029 0.207861 0.209077 0.209956

C 0.044569 40603.31641 0.286762 0.053037 0.286858 0.296194 0.304425

D 0.047634 43580.29297 0.285038 0.048982 0.285102 0.286907 0.288204

E 0.039416 40343.89453 0.28391 0.047913 0.284014 0.293353 0.301616

F 0.039358 40846.46094 0.280156 0.047868 0.280256 0.289728 0.298017

G 0.031337 45470.62891 0.240585 0.04177 0.24064 0.251664 0.261638

H 0.037871 44804.20703 0.267458 0.039357 0.267541 0.269753 0.271024

I 0.041897 38727.53906 0.298022 0.050516 0.298137 0.30757 0.315926

J 0.034492 59667.71094 0.201569 0.036854 0.201613 0.203473 0.20469

Table 7.36: Results for TC15 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.35707 7803.44043 1.412992 0.576727 1.413062 1.577758 1.87939

B 0.028016 12360.51758 0.783515 0.181574 0.783585 0.923822 1.188147

C 0.086548 7777.142578 1.100523 0.261093 1.100631 1.265544 1.555208

D 0.439214 9289.480469 1.342854 0.627902 1.342925 1.499444 1.782461

E 0.09305 7701.704102 1.117403 0.259847 1.117503 1.287387 1.578319

F 0.082823 8205.996094 1.063078 0.252081 1.063172 1.226385 1.507088

G 0.048291 8908.886719 0.951703 0.214641 0.951776 1.113022 1.396486

I 0.086838 7970.237793 1.101108 0.250776 1.101217 1.268172 1.5534

J 0.33687 10613.62598 1.214724 0.544958 1.214772 1.375362 1.650916

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 192

Table 7.37: Results for TC18 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.044639 57777.29297 0.199848 0.044795 0.199905 0.217248 0.21818

B 0.028006 53953.33203 0.201666 0.030277 0.201728 0.219097 0.220068

C 0.033054 38811.60156 0.274838 0.042663 0.274965 0.300516 0.308592

D 0.030923 43428.54297 0.255092 0.031528 0.255162 0.272638 0.273538

E 0.032797 39234.98047 0.271352 0.042438 0.271473 0.297152 0.305357

F 0.033114 39242.30078 0.270677 0.042744 0.270801 0.296887 0.30534

G 0.031502 42824.78125 0.242036 0.042309 0.242118 0.26954 0.279485

I 0.038657 38076.58594 0.284776 0.047611 0.28491 0.311073 0.319201

J 0.031169 58410.91406 0.187668 0.032048 0.187717 0.204357 0.205281

Table 7.38: Results for TC19 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 1.815939 7984.039551 2.47743 1.826362 2.477499 2.949667 3.274169

B 0.028042 9743.496094 1.068403 0.331369 1.068485 1.56011 2.010433

C 0.075415 7761.455078 1.266104 0.320756 1.266208 1.769846 2.175009

D 2.22124 10353.21289 2.755175 2.221749 2.755261 3.254259 3.536749

E 0.085086 7540.192383 1.261645 0.337047 1.261764 1.771196 2.193308

F 0.05637 7319.6875 1.213675 0.307117 1.213769 1.737784 2.172541

G 0.050893 7952.11084 1.185294 0.30274 1.185367 1.706245 2.140634

I 0.108906 7405.003906 1.400635 0.397145 1.40075 1.925076 2.372691

J 1.605437 11368.0459 2.097303 1.606558 2.097339 2.554706 2.92649

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 193

Table 7.39: Results for TC20 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.057733 52590.73828 0.242454 0.059412 0.242518 0.245388 0.247385

B 0.028015 55625.87109 0.208716 0.029007 0.208786 0.210272 0.211366

C 0.043405 38375.66797 0.301444 0.052007 0.301553 0.311235 0.319555

D 0.046675 44012.375 0.280012 0.048432 0.280038 0.282457 0.284235

E 0.044299 38735.38281 0.299418 0.052961 0.299448 0.309213 0.317485

F 0.046672 39293.33984 0.297359 0.055274 0.297458 0.307017 0.315345

G 0.033059 43397.3125 0.258155 0.047159 0.258227 0.269552 0.279592

I 0.0579 35526.03906 0.339059 0.069975 0.339183 0.349865 0.358972

J 0.030094 57875.92969 0.202875 0.03289 0.202918 0.205184 0.206927

Table 7.40: Results for TC21 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.894368 6970.936523 2.141484 1.138863 2.141538 2.351189 2.694182

B 0.033189 12356.10645 0.769806 0.16748 0.769878 0.916205 1.1912

C 0.102406 7579.007324 1.168664 0.257739 1.168757 1.341535 1.635483

D 0.639094 8022.671875 1.6413 0.845463 1.641397 1.83482 2.176845

E 0.077719 7801.708496 1.143136 0.231843 1.143241 1.315901 1.605047

F 0.088172 7754.935059 1.139159 0.242088 1.139275 1.310096 1.602945

G 0.045875 8900.506836 0.99461 0.201546 0.99468 1.162849 1.447641

I 0.356673 6354.593262 1.631673 0.547038 1.631774 1.843522 2.138974

J 0.516642 8869.533203 1.452288 0.7241 1.452345 1.642395 1.964673

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 194

Table 7.41: Results for TC22 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.063536 53110.67969 0.245477 0.066303 0.24554 0.248158 0.249992

B 0.028014 55510.45313 0.208884 0.029007 0.208957 0.210549 0.211867

C 0.033416 39147.69531 0.286105 0.041948 0.286219 0.296087 0.30439

D 0.059045 42649.90625 0.295486 0.059841 0.295563 0.297918 0.299696

E 0.045436 38713.27344 0.301409 0.053995 0.301506 0.311222 0.319542

F 0.034773 38861.05859 0.289704 0.043332 0.28981 0.299603 0.307894

G 0.033258 43369.83984 0.254754 0.043714 0.254825 0.266222 0.276288

I 0.056157 35340.35938 0.337512 0.065862 0.337635 0.348377 0.35724

J 0.037149 57498.22266 0.210251 0.038759 0.210295 0.212711 0.214395

Table 7.42: Results for TC23 after tuning. Here, we use header size - 397 byte, size download -
11742 byte, and request size - 124 byte. All the sizes and time are represented in byte and seconds

respectively.

ID
Lookup

time
Download

speed

App
conn
time

Conn
time

Pre
transfer

Start
transfer

Time

A 0.301887 7322.029297 1.388417 0.47247 1.388477 1.566566 1.886102

B 0.033683 10623.19531 0.813872 0.18062 0.813957 0.973608 1.269982

C 0.07948 7473.799316 1.15516 0.246792 1.155246 1.335187 1.644288

D 0.213517 9621.334961 1.069908 0.377284 1.06999 1.235521 1.53714

E 0.077606 7577.475586 1.137657 0.242391 1.137762 1.318299 1.626053

F 0.066898 7676.483398 1.112433 0.232253 1.112535 1.289089 1.595072

G 0.042545 8334.337891 0.988497 0.205532 0.988571 1.164895 1.471552

I 0.102632 6709.590332 1.331898 0.274095 1.331996 1.523117 1.830178

J 0.101291 10405.08106 0.924151 0.261743 0.924199 1.091777 1.393926

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 195

(a) TC0 vs TC2 (b) TC1 vs TC3

(c) TC12 vs TC14 (d) TC13 vs TC15

Figure 7.6: Testcase results - case 1

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 196

(a) TC6 vs TC8 (b) TC6 vs T10

(c) TC18 vs TC20 (d) TC18 vs TC22

Figure 7.7: Testcase results - case 2

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 197

(a) TC7 vs TC9 (b) TC7 vs T11

(c) TC19 vs TC21 (d) TC19 vs TC23

Figure 7.8: Testcase results - case 3

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 198

Table 7.43: Varnish cache server tuning parameters

Parameters
Default
values

Intermediate
tuned
values

Final tuned
values

Thread pool minimum 5 5 400

Thread pool maximum 500 1000 5000

Thread queue limit 20 50 100

Workspace thread 2k 4k 8k

Workspace session 4k 0.5k 0.5k

Pipe timeout 60 sec 15 sec 30 sec

Lru interval 2 sec 10 sec 20 sec

Listen depth 1024 2048 4096

Table 7.44: Swift backend server tuning parameters

Parameters Variables
Default
values

Intermediate
tuned
values

Final tuned
values

Memcached
MAXCONN 1024 2048 4096
CACHESIZE 64k 1024k 4096k

File
Descriptor

fs.file-max 8192 32768 2097192

Ulimit
Hard limit 4096 100000 400000
Soft limit 1024 4096 100000

Table 7.45: System network tuning parameters

Parameters
Default
values

Intermediate
tuned
values

Final tuned
values

net.core.wmem default 212992 131072 262144

net.core.wmem max 212992 1048576 4194304

net.core.rmem default 212992 131072 262144

net.core.rmem max 212992 1048576 4194304

to leveraging tasks to OS. After running 1st round of load test, we observe that some parameters of

Swift, Varnish, and machine’s network system must be tuned for better performance. We find out

several bottlenecks related to these software through continuous load testing.

Next, we present necessary components and proper parameter values related to system and network

tuning from analysis of data metrics through rigorous load testing. We benchmark system behavior

through changing default values gradually identifying system metrics. Here, we only present best

tuning values due to lack of space.

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 199

Table 7.46: Success and miss rates (%) of requests

Test case id
Before Tuning After Tuning

Success Miss Success Miss

TC13 57% 43% 100% 0%

TC15 99% 1% 100% 0%

TC19 51% 49% 99% 1%

TC21 99% 1% 100% 0%

TC23 99% 1% 100% 0%

Swift Tuning: We locate three bottlenecks related to Swift tuning. When maximum load is given

to the backend Swift proxy server, the memory cache (memcached) fails to handle large amount of

requests, and after sometime, unsuccessful responses are generated. So, we change the memcache.conf

file and increase the size of memory, cache and maximum number of allowed connection, and executed

the load tests again. We also find out some parameters related to memcache, file descriptor, and ulimit

that have great impact on load tests by changing them repeatedly. Table 7.44 presents the default

and tuned values for Swift.

Varnish Tuning: We tune the necessary parameters of Varnish cache i.e. Thread pool minimum,

Thread pool maximum, Thread queue limit, Workspace thread, Workspace session, Pipe timeout,

Lru interval and Listen depth, keeping other values default. Table 7.43 presents default and tuned

values for Varnish cache.

Network system tuning: Kernel buffer parameters i.e. net.core.wmem default,

net.core.rmem default, net.core.rmem max and net.core.wmem max show the default and max-

imum write (receiving) and read (sending) buffer size allocated to any type of connection. The

default values are low since the allocated space is taken from the RAM. Increasing this improves

the performance for systems running servers. Table 7.45 presents the defaults and tuned values for

network system.

After 1st round of load test, we observe that for TC0, TC1, TC2, TC3, TC6, TC7, TC8, TC9, TC10,

TC11, TC12, TC14, TC18, TC20, and TC22 success response is 100%. Five test cases have highest

miss rate due to HTTPS requests and lack of tuning. Hence, we tune the system and perform load

test multiple times. After tuning, success rates for all test cases improved to 99%. We present the

success and miss rates for TC13, TC15, TC19, TC21, and TC23 in Table 7.46.

Table 7.47 shows the %improvement of response time after final tuning. In these test cases, miss rate

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 200

Table 7.47: Percentage of average response time improvement for all clients

Test case id
Response time (s)

Improvement
Before
tuning

After
tuning

TC0 0.10 0.02 79%

TC1 0.14 0.41 -66%

TC2 0.07 0.03 57%

TC3 0.93 1.13 -18%

TC6 0.10 0.02 81%

TC7 1.20 0.47 60%

TC8 0.08 0.02 69%

TC9 0.71 0.42 41%

TC10 0.08 0.02 69%

TC11 0.78 0.82 -5%

TC12 0.27 0.24 10%

TC13 0.27 1.83 -85%

TC14 0.27 0.25 6%

TC15 1.56 2.14 -27%

TC18 0.27 0.24 10%

TC19 2.50 1.66 34%

TC20 0.28 0.25 10%

TC21 1.79 1.18 34%

TC22 0.28 0.25 12%

TC23 1.59 1.67 -5%

Figure 7.9: Average memory and CPU usage of cache and backend server for 20 test cases

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 201

Table 7.48: Improvement of cache server response times over backend server

Backend
Test case

id

Cache
Test case

id

Improvement
(%)

TC0 TC2 29%

TC1 TC3 -85%

TC6
TC8 23%
TC10 18%

TC7
TC9 40%
TC11 34%

TC12 TC14 0%

TC13 TC15 -83%

TC18
TC20 -4%
TC22 -4%

TC19
TC21 29%
TC23 36%

Table 7.49: Comparison of HTTP request response times over HTTPS request response times

HTTP
Test case

id

HTTPS
Test case

id

Improvement
on HTTP (%)

TC0 TC12 91%

TC1 TC13 77%

TC2 TC14 87%

TC3 TC15 47%

TC6 TC18 91%

TC7 TC19 71%

TC8 TC20 90%

TC9 TC21 64%

TC10 TC22 90%

TC11 TC23 50%

is high hence total response time is bit higher before tuning. Furthermore, after tuning the system,

miss rate is decreased hence lower the response time. Figure 7.9 presents average memory and CPU

usage of cache and backend server. These usage are remain almost same after the tuning.

7.4.3 Experimental Findings

In this section, we present the findings of tuning the system, cache and backend, and comparing

request times of HTTP and HTTPS by analyzing the results.

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 202

Analyze test results: We analyze test cases for comparing the average response time from all the

clients for Varnish cache and Swift backend server. This behavior remains same after tuning the

servers as response time ratio from cache and backend servers varies depending on the test cases.

Note that, each client machine requests for downloading same URL once when testing without load

criterion, hence clients hit total 10 requests concurrently. Besides, each client machines requests for

downloading same or different URL for 400 times when testing with load criterion, hence clients hit

total 4000 requests concurrently.

Furthermore, we present comparison of cache and backend server response time in Table 7.48. In

every machine, TC2’s response time is 29% faster than TC0’s. The condition holds upto 6-7 threads

per machine. TC1’s response time is 85% faster than TC3’s. The response time for cache is 5 to 6

times higher than backends. TC6’s response time is 23% and 18% slower than TC8’s and TC10’s.

TC7’s response time is 40% and 34% slower than TC9’s and TC11’s. TC12’s response time is almost

the same to TC14’s. TC13’s response time is 83% faster than TC15’s as the server takes some extra

time to translate a HTTPS request to HTTP request. TC18’s response time is 4% faster than TC20’s

and TC22’s as cache hit and miss in without load condition. TC19’s response time is 29% and 36%

slower than TC21’s and TC23’s.

In addition, we present comparison of HTTP and HTTPS requests response time in Table 7.49. Here,

HTTP type test cases are up to 90% faster than HTTPS protocol type as more times needed for

resolving SSL/TLS keys. Besides, TC0, TC1, TC2, TC3, TC6, TC7, TC8, TC9, TC10, and TC11

are 91%, 77%, 87%, 47%, 91%, 71%, 90%, 64%, 90%, 50% faster than TC12, TC13, TC14, TC15,

TC18, TC19, TC20, TC21, TC22, and TC23 respectively. In summary, we conclude that for each

test case scenario in every machine, response time for cache is lower than the backend except for the

same URL requests. Varnish restricts concurrent request at a time for same URL’s.

7.5 Conclusion and Future Work

The main goal of this literature is to find out the sustainability of the system at different test load

volumes and tuning the software and network system by analyzing test responses for OpenStack Swift

and Varnish. We set benchmarks according to the continuous test results. To improve the architecture

and understanding the systems behavior, we generate several statistics by taking several snapshots.

CHAPTER 7. SVLOAD: AN AUTOMATED CASE-DRIVEN LOAD TESTING IN CLOUD
SYSTEMS 203

Besides, snapshots are taken using SS, hTop, Jmeter graph, and Zabbix to monitor network status,

CPU and memory usage, response time, throughput, etc. respectively. There is a plenty of room

to extend the study. Our future plan is to perform load tests to large files such as video contents.

We have to explore in future that how the system will behave for extensive PUT and POST requests

as for these requests proxy server has extra overhead related to processing and I/O operations. Our

future plan also aims to use more clients and expand the cache and backend servers and make an

automated graphical User Interface (GUI) for smoothly and easily operating the load tests.

Chapter 8

Conclusion and Future Work

Existing studies on cloud storage ecosystem for multimedia services are yet to provide an efficient

and secured solution. To address this gap, in this study, we propose a novel cloud storage ecosystem

for efficient and secured multimedia services. Besides, we design several frameworks and perform

experimental evaluation of our proposed method. To conclude our study, in this Chapter, we delineate

the sketches and future works of our study.

8.1 Conclusion

We discuss the challenge of efficient retrieval of cloud-related images, particularly in bandwidth-

constrained situations in Chapter 3. It identifies a gap in the literature regarding the storage and

retrieval of progressive images and proposes an orchestration methodology to address this issue. The

proposed methodology includes a new image scanning and lossy compression technique, which is

tested in a real setup across two different continents. The evaluation results demonstrate a significant

improvement in the performance.

Afterward, Chapter 4 highlights the challenge of managing and securing large-scale data in cloud-

based media file sharing services, particularly when it comes to storing and archiving CCTV footage.

We propose a new methodology using OpenStack Swift to not only store media but also perform

tasks such as sorting, resizing, and security measures. We implement this methodology in a real

testbed and conduct experiments to evaluate its effectiveness, demonstrating substantial performance

204

CHAPTER 8. CONCLUSION AND FUTURE WORK 205

improvements.

Then, in Chapter 5, we propose a solution to the challenge of efficient searching in OpenStack Swift

using machine learning features and Elasticsearch. We also introduce a secondary objective of creating

a user-centered content-based image searching system that allows users to manipulate the YOLOv4

and YOLOv8 algorithms based on their preferences. We test the viability and responsiveness of our

model, finding room for improvement, and suggest three future goals to make the system more robust

and easy to use.

Next, Chapter 6 focuses on three areas related to multimedia data management in the cloud that affect

storage sustainability: retrieval of video streaming data, middleware placement based on responsibility,

and detection and deletion of orphan garbage data. We propose a new middleware for downloading

time interval playable video segments and a mechanism for removing orphan garbage data from cloud

storage, which we evaluate through rigorous experimentation in a real setup.

Moreover, performing load testing, identifying system bottlenecks and tuning them accordingly are

not focused much in the literature for cloud systems. Therefore, we perform our study on these

aspects (in Chapter 7). Here, we investigate several load testing considering diversified real scenarios

and tuning system parameters based on findings of load testing. Our tuning results in substantial

improvement in most cases.

8.2 Complexity Analysis

We demonstrate time and storage complexity of different cloud storage systems and data structures.

We consider Consistent Hash (CH), Content Addressable Storage (with Multi-Layer Index), Com-

pressed Snapshot, OpenStack Swift (CH with a File-Path DB), and our proposed ecosystem. Table

8.1 presents a quantitative comparison of time and storage complexity for different object storage sys-

tems using several data structures. Here N is the total number of files in the filesystem, n represents

the number of files stored in a certain directory, m is the number of direct children under a certain

directory, P is the resizing and transcoding time, M is the time for object and document detection,

and F denotes the size of the object.

CHAPTER 8. CONCLUSION AND FUTURE WORK 206

Table 8.1: A qualitative comparison of time and storage complexity for different object storage
systems using several data structures. Here, N is the total number of files in the filesystem, n

represents the number of files stored in a certain directory, m is the number of direct children under
a certain directory, P is the resizing and transcoding time, M is the time for object and document

detection, and F denotes the size of the object.

Time
complexity

Consistent
Hash
(CH)

Content
Address-

able
Storage

Compressed
Snapshot

OpenStack
Swift

Our
proposed
Ecosystem

File Access O(1) O(1) O(N) O(1) O(1)

MKDIR O(1) O(N) O(1) O(1) O(1)

RMDIR,
MOVE

O(n) O(N) O(N) O(n) O(n)

LIST O(N) O(m) O(N) O(mlogN) O(mlogN)

COPY O(N) O(N) O(N) O(n+logN) O(n + logN)

Store/PUT - - - O(n+logN)
O(n +

logN)+O(P)

Retrive/GET - - -
O(R) +

O(mlogN)
O(1)

Search - - - - O(1) + O(M)

Deletion
daemon

- - - -
O(mlogN) +
O(n + logN)

Storage
complexity

Consistent
Hash
(CH)

Content
Address-

able
Storage

Compressed
Snapshot

OpenStack
Swift

Our
proposed
Ecosystem

Store/PUT - - - 3O(F) 12O(F)

Retrive/GET - - - - -

Search - - - - -

Deletion
daemon

- - - - -

CHAPTER 8. CONCLUSION AND FUTURE WORK 207

8.3 Future Work

There is a plenty of room to extend the study -

• At first, our future plan includes to explore the next-generation JPEG images for further image

storage quality improvement. Moreover, our plan is to create a architecture for adaptable choice

of bit pixels according to bandwidth.

• Alongside, we plan to explore different techniques for adapting real-time changes in network

bandwidth. We plan to do so through sensing the change and then realizing impact of the

change in the image retrieval and storing processes.

• Next, our plans for the future involve extensions to the study, including implementing cus-

tomized encryption-decryption algorithms, in-cloud segmentation of video files, and integrating

machine learning techniques for real-time behavior detection. We plan to do so to leverage

new encryption-decryption algorithms in the process of enhancing system-level performances

for retrieval and storing of multimedia contents.

• Besides, our future goals include integrating the system more compactly using a desktop-based

application, adding an authentication token system to keep documents safe, and using the system

to store live video feeds to test its viability as a video surveillance application.

• Furthermore, our future work includes exploring SSYNC for account, container, and object

servers using multiple replicas, recursive deletion daemon algorithms using different hash rings,

and experimenting with different server setups through large scale simulations.

• Additionally, we plan to explore in future that how the system will behave for extensive PUT

and POST requests, as the proxy server has extra overhead related to processing and I/O

operations of such requests. Our future plan also aims to use more clients and expand the cache

and backend servers.

List of Publications

The research conducted as part of this thesis has resulted in the following publications.

Journal Publications

1. J. Noor, M. N. Shanto, J. J. Mondal, M. G. Hossain, S. Chellappan, and A. B. M. A. A.

Islam. ”Orchestrating Image Retrieval and Storage over A Cloud System”, IEEE Transactions

on Cloud Computing. 2022 Mar 28. [1]

2. J. Noor, R. Ratul and A. B. M. A. A. Islam. ”Secure Processing-aware Media Storage and

Archival (SPMSA)”, IEEE Transactions on Dependable and Secure Computing. [Under review].

3. J. Noor, M. R. Uday, R. Ratul, J. J. Mondal, M. S. Islam, and A. B. M. A. A. Islam. ”Sher-

lock in OSS: A Novel Approach of Content-Based Searching in Object Storage System”, IEEE

Transactions of Parallel and Distributed Computing. [Under review] [247]

4. J. Noor and A. B. M. A. A. Islam. ”RemOrphan: Object Storage Sustainability through

Removing Offline-Processed Orphan Garbage Data”, IEEE Access. [Under review]

5. J. Noor, S. I. Salim, and A. B. M. A. A. Islam, ”Strategizing secured image storing and effi-

cient image retrieval through a new cloud framework”, Journal of Networks and Compututer

Applications, vol. 192, 2021. [12]

6. A. Quaium, N. A. Al-Nabhan, M. Rahaman, S. I. Salim, T. R. Toha, J. Noor, M. Hossain, I. Ja-

han,and A. B. M. A. A. Islam. ”Towards associating negative experiences and recommendations

reported by Hajj pilgrims in a mass-scale survey.” Heliyon (2023). [248]

7. S. I. Selim, N. A. Rahman, J. Noor, and A. B. M. A. A. Islam, ”Human-Survey Interaction (HSI):

A Study on Integrity of Human Data Collectors in a Mass-Scale Hajj Pilgrimage Survey”, IEEE

208

CHAPTER 8. CONCLUSION AND FUTURE WORK 209

Access, 2021. [249]

8. T. R. Toha, A. S. M. Rizvi, J. Noor, M. A. Adnan and A. B. M. A. Al Islam, ”Towards

Greening MapReduce Clusters Considering Both Computation Energy and Cooling Energy”, in

IEEE Transactions on Parallel and Distributed Systems, vol. 32, 1 April 2021. [250]

Conference Publications

1. J. Noor, H. I. Akbar, R. A. Sujon, and A. B. M. A. A. Islam, ”Secure Processing-aware Media

Storage (SPMS)”, 36th IEEE – International Performance Computing and Communications

Conference (IPCCC 2017), San Diego, California. [11]

2. J. Noor, M.G. Hossain, M. A. Alam, S. Chellappan, and A. B. M. A. A. Islam, ”svLoad:

An Automated Test-Driven Architecture for Load Testing in Cloud Systems”, IEEE Global

Communications Conference (IEEE GLOBECOM 2018), Abu Dhabi, UAE. [251]

3. S. Nasrin, T. I. M. F. Sahryer, A. B. M. A. Al Islam and J. Noor, ”Feature and Performance

Based Comparative Study on Serverless Frameworks,” 2021 24th International Conference on

Computer and Information Technology (ICCIT), 2021, pp. 1-6

4. M.Y. Ali, S. Ahmed, M.I. Hossain, A.B.M. Alim Al Islam, J. Noor. ”Electronic Health Record’s

Security and Access Control Using Blockchain and IPFS”. Proceedings of Seventh International

Congress on Information and Communication Technology. Springer, Singapore, Lecture Notes

in Networks and Systems, vol 447. 2022. [252]

5. J. J. Mondal, M. F. Islam, S. Zabeen, A. B. M. A. Al Islam, and J. Noor. ”Note: Plant Leaf

Disease Network (PLeaD-Net): Identifying Plant Leaf Diseases through Leveraging Limited-

Resource Deep Convolutional Neural Network”. In ACM SIGCAS/SIGCHI Conference on

Computing and Sustainable Societies (COMPASS ’22). Association for Computing Machin-

ery, New York, NY, USA, 2022, pp. 668–673. [253]

6. S. M. S. Islam, R. A. Auntor, M. Islam, M. Y. H. Anik, A. B. M. A. A. Islam, and J. Noor. ”Note:

Towards Devising an Efficient VQA in the Bengali Language”. In ACM SIGCAS/SIGCHI Con-

ference on Computing and Sustainable Societies (COMPASS ’22). Association for Computing

Machinery, New York, NY, USA, 2022, pp. 632–637. [254]

7. A. Zishan and J. Noor, ”Low-Cost, Low-Power, and Low-Compute Based ECG Monitoring

CHAPTER 8. CONCLUSION AND FUTURE WORK 210

Systems: Comparative Analysis and Beyond”, International Conference on Innovation and In-

telligence for Informatics, Computing, and Technologies (3ICT), Nov 2022. [255]

8. T. Akhtar, A. B. M. A. Al Islam and J. Noor, ”Speaker Identification through Gender Detec-

tion”, International Conference on Innovation and Intelligence for Informatics, Computing, and

Technologies (3ICT), Nov 2022. [256]

9. M. Mubtasim, A. B. M. A. Al Islam and J. Noor, ”Classification of Respiratory Diseases and

COVID-19 from Respiratory and Cough Sounds”, International Conference on Innovation and

Intelligence for Informatics, Computing, and Technologies (3ICT), Nov 2022. [257]

10. S. Nova, A. B. M. A. Al Islam and J. Noor, ”IoT Based Parking System: Prospects, Challenges,

and Beyond” , 3ICT, Nov 2022. [258]

11. M. S. Mustafa, J. Lisa, J. Noor, ”Design and Implementation of Wireless IoT Device for Women’s

Safety”, 9th NSysS 2022, Dec 2022. [259]

12. F. F. Khan, N. M. Hossain, M. N. H. Shanto, S. B. Anwar, J. Noor, ”Mitigating DDoS Attacks

Using a Resource Sharing Network”, 9th NSysS 2022, Dec 2022. [260]

13. S. Misbah, J. Noor, ”Use of Machine Learning and IoT for Monitoring and Tracking of Live-

stock”, 2022 25th International Conference on Computer and Information Technology (ICCIT),

Dec 2022. [261]

14. I. Miah, J. Noor, ”Advanced Waterway Transport System Based on Internet of Things (IoT): A

Novel Approach”, 2022 25th International Conference on Computer and Information Technology

(ICCIT), Dec 2022. [262]

15. T. M. Monsaif, O. F. Alif, S. D. Amarth T. A. Sadman, and J. Noor, 2022, December. A Novel

Approach to Reduce Air Pollution Through Machine Learning Based PM2. 5 Prediction. In

2022 4th International Conference on Sustainable Technologies for Industry 4.0 (STI) (pp. 1-8).

IEEE. [263]

Appendices

211

Appendix A

Request Analysis of Several HTTP

Requests

A.1 Account Authentication

In these step, account authentication is done using the tempauth middleware [3]. After a successful

authentication request, an authorized key is created. Response headers include the X-Storage-Token

and X-Auth-Token key. It is stored in Memcache so that future storage requests can authenticate

that token. We present sample console outputs of response headers for authentication request below.

root@ubuntu:/opt/swift# curl -v -H ‘X-Auth-User: myaccount:me’ -H ‘X-Auth-Key:

secretpassword’ http://192.168.122.100:8080/auth/v1.0/

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> GET /auth/v1.0/ HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> X-Auth-User: myaccount:me

> X-Auth-Key: secretpassword

212

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 213

>

< HTTP/1.1 200 OK

< X-Storage-Url: http://192.168.122.100:8080/v1/AUTH myaccount

< X-Auth-Token: AUTH tk9285653bb2c94cf683779e2879070b94

< Content-Type: text/html; charset=UTF-8

< X-Storage-Token: AUTH tk9285653bb2c94cf683779e2879070b94

< Content-Length: 0

< X-Trans-Id: tx175906c4ed1a471e940ad-0056c0537e

< Date: Sun, 14 Feb 2016 10:14:22 GMT

<

* Connection #0 to host 192.168.122.100 left intact

A.2 Account Verification

After a successful authentication request, we get an authorization token. Then, we need to verify

whether the stored token is valid or not for using in verification request. We present sample console

outputs of response headers for verification request below.

root@ubuntu:/opt/swift# curl -v -H ‘X-Storage-Token:

AUTH tk9285653bb2c94cf683779e2879070b94’ http://127.0.0.1:8080/v1/AUTH myaccount/

* Hostname was NOT found in DNS cache

* Trying 127.0.0.1...

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)

> GET /v1/AUTH myaccount/ HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 127.0.0.1:8080

> Accept: */*

> X-Storage-Token: AUTH tk9285653bb2c94cf683779e2879070b94

>

> HTTP/1.1 204 No Content

> Content-Type: text/plain; charset=utf-8

> X-Account-Object-Count: 0

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 214

> X-Timestamp: 1455444974.49098

> X-Account-Bytes-Used: 0

> X-Account-Container-Count: 0

> X-Put-Timestamp: 1455444974.49098

> Content-Length: 0

> X-Trans-Id: txaf6e294e093544b7ad7d6-0056c053ee

> Date: Sun, 14 Feb 2016 10:16:14 GMT

>

* Connection #0 to host 127.0.0.1 left intact

A.3 Account Creation

We present sample console outputs of response headers for the request of creating an account below.

root@ubuntu:/opt/swift# curl -v -H ‘X-Storage-Token:

AUTH tk9285653bb2c94cf683779e2879070b94’ -X GET http://192.168.122.100:8080

/v1/AUTH myaccount

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> GET /v1/AUTH myaccount HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94

>

< HTTP/1.1 204 No Content

< Content-Type: text/plain; charset=utf-8

< X-Account-Object-Count: 0

< X-Timestamp: 1455445046.63422

< X-Account-Bytes-Used: 0

< X-Account-Container-Count: 0

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 215

< X-Put-Timestamp: 1455445046.63422

< Content-Length: 0

< X-Trans-Id: tx828d6c25af0443b695faf-0056c05436

< Date: Sun, 14 Feb 2016 10:17:26 GMT

<

* Connection #0 to host 192.168.122.100 left intact

A.4 Container Creation for Objects

After creating an account, we need to create a container. As our proposed architecture stores both

object-type data and image-type data, we need to create two containers. We present sample console

outputs of response headers for creating object type of container request below.

root@ubuntu:/opt/swift# curl -v -H ‘X-Storage-Token:

AUTH tk9285653bb2c94cf683779e2879070b94’ -X PUT http://192.168.122.100:8080

/v1/AUTH myaccount/object container

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> PUT /v1/AUTH myaccount/image container HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94

>

> HTTP/1.1 201 Created

> Content-Length: 0

> Content-Type: text/html; charset=UTF-8

> X-Trans-Id: tx5e44fe64839c499e801df-0056c05498

> Date: Sun, 14 Feb 2016 10:19:04 GMT

>

* Connection #0 to host 192.168.122.100 left intact

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 216

A.5 Container Creation for Images

We present sample console outputs of response headers for creating container for storing images below.

root@ubuntu:/opt/swift# curl -v -H ‘X-Storage-Token:

AUTH tk9285653bb2c94cf683779e2879070b94’ -X PUT http://192.168.122.100:8080

/v1/AUTH myaccount/image container

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> PUT /v1/AUTH myaccount/image container HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94

>

> HTTP/1.1 201 Created

> Content-Length: 0

> Content-Type: text/html; charset=UTF-8

> X-Trans-Id: tx5e44fe64839c499e801df-0056c05498

> Date: Sun, 14 Feb 2016 10:19:04 GMT

>

* Connection #0 to host 192.168.122.100 left intact

A.6 Container Listing of a Created Account

We present sample console outputs of response headers for container listing of a created account

request below.

root@ubuntu:/opt/swift# curl -v -H ‘X-Storage-Token:

AUTH tk9285653bb2c94cf683779e2879070b94’ http://127.0.0.1:8080/v1

/AUTH myaccount/

* Hostname was NOT found in DNS cache

* Trying 127.0.0.1...

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 217

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)

> GET /v1/AUTH myaccount/ HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 127.0.0.1:8080

> Accept: */*

> X-Storage-Token: AUTH tk9285653bb2c94cf683779e2879070b94

>

< HTTP/1.1 200 OK

< Content-Length: 70

< X-Account-Object-Count: 51

< X-Account-Storage-Policy-Policy-0-Bytes-Used: 110786405

< X-Account-Storage-Policy-Policy-0-Container-Count: 6

< X-Timestamp: 1431587660.93524

< X-Account-Storage-Policy-Policy-0-Object-Count: 51

< X-Account-Bytes-Used: 110786405

< X-Account-Container-Count: 6

< Content-Type: text/plain; charset=utf-8

< Accept-Ranges: bytes

< X-Trans-Id: tx7452cd2daa9b4364b221d-0056c05528

< Date: Sun, 14 Feb 2016 10:21:28 GMT

<

image container

jnoor

mycontainer

newcontainer

object container

A.7 Object Upload

We present console outputs of response headers for uploading an object request below.

root@ubuntu:/opt/swift# curl -v -H ‘Content-Type: text/plain’ -H ‘X-Storage-

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 218

Token:AUTH tk9285653bb2c94cf683779e2879070b94’ -X PUT -T MANIFEST.in

http://192.168.122.100:8080/v1/AUTH myaccount/object container/MANIFEST.in

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> PUT /v1/AUTH myaccount/object container/MANIFEST.in HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> Content-Type: text/plain

> X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94

> Content-Length: 313

> Expect: 100-continue

>

< HTTP/1.1 100 Continue

* We are completely uploaded and fine

< HTTP/1.1 201 Created

< Last-Modified: Sun, 14 Feb 2016 10:24:21 GMT

< Content-Length: 0

< Etag: 50378f00bd9d746f54ba45aabe8da742

< Content-Type: text/html; charset=UTF-8

< X-Trans-Id: tx4ac107cdded744298c2ba-0056c055d4

< Date: Sun, 14 Feb 2016 10:24:20 GMT

<

* Connection #0 to host 192.168.122.100 left intact

A.8 Object List of First Container

We present console outputs of response headers for object listing of a container request below.

root@ubuntu:/opt/swift# curl -v -H ‘X-Storage-Token:

AUTH tk9285653bb2c94cf683779e2879070b94’ -X GET http://192.168.122.100:8080

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 219

/v1/AUTH myaccount/object container

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> GET /v1/AUTH myaccount/object container HTTP/1.1

>¿ User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94

>

< HTTP/1.1 200 OK

< Content-Length: 12

< X-Container-Object-Count: 1

< Accept-Ranges: bytes

< X-Storage-Policy: Policy-0

< X-Container-Bytes-Used: 313

< X-Timestamp: 1455445169.66486

< Content-Type: text/plain; charset=utf-8

< X-Trans-Id: tx3d9f5b532b7645349fdb9-0056c05614

< Date: Sun, 14 Feb 2016 10:25:24 GMT

< MANIFEST.in

* Connection #0 to host 192.168.122.100 left intact

A.9 Object Download

We present sample console outputs of response headers for downloading an object request below.

[root@Centos7SwiftAllInOne199 home]# curl -v -o down MANIFEST.in

-H ‘X-Auth-Token: AUTH tk9285653bb2c94cf683779e2879070b94’

http://192.168.122.100:8080/v1/AUTH myaccount/object container/MANIFEST.in

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 220

% Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spend

Left Speed

0 0 0 0 0 0 0 0 –:–:– –:–:– –:–:–

0* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> GET /v1/AUTH myaccount/object container/MANIFEST.in HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> X-Auth-Token: AUTH tk9285653bb2c94cf683779e2879070b94

>

< HTTP/1.1 200 OK

> Content-Length: 313

> Accept-Ranges: bytes

> Last-Modified: Sun, 14 Feb 2016 10:24:21 GMT

> Etag: 50378f00bd9d746f54ba45aabe8da742

> X-Timestamp: 1455445460.62950

> Content-Type: text/plain

> X-Trans-Id: txcef13b758df7492595735-0056c056ab

> Date: Sun, 14 Feb 2016 10:27:55 GMT

>

[data not shown]

100 313 100 313 0 0 11820 0 –:–:– –:–:– –:–:– 12520

* Connection #0 to host 192.168.122.100 left intact

root@ubuntu:/opt/swift# ls

AUTHORS CONTRIBUTING.md MANIFEST.in babel.cfg build down MANIFEST.in ex-

amples requirements.txt setup.py swift.egg-info test-requirements.txt CHANGELOG LICENSE

README.md bin doc etc pbr-0.10.8-py2.7.egg setup.cfg swift test tox.ini

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 221

A.10 Image Upload

We present console outputs of response headers for uploading an image request below.

root@ubuntu:/home/jannatun# curl -v -H ‘Content-Type: text/plain’

-H ‘X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94’

-H ’X IBUCK ENABLE:1’ -X PUT -T test-image.jpg

http://192.168.122.100:8080/v1/AUTH myaccount/image container/test-image.jpg

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> PUT /v1/AUTH myaccount/image container/test-image.jpg HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> Content-Type: text/plain

> X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94

> X IBUCK ENABLE:1

> Content-Length: 24898

> Expect: 100-continue

>

< HTTP/1.1 100 Continue

* We are completely uploaded and fine

< HTTP/1.1 201 Created

< Content-Type: text/html; charset=UTF-8

< Content-Length: 0

< X-Trans-Id: tx0e9e8d17f2b341cfba986-0056c05c12

< Date: Sun, 14 Feb 2016 10:51:00 GMT

< * Connection #0 to host 192.168.122.100 left intact

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 222

A.11 Image List for Second Container

We present sample console outputs of response headers for image listing of a container request below.

root@ubuntu:/home/jannatun# curl -v -H ‘X-Storage-Token:

AUTH tk9285653bb2c94cf683779e2879070b94’ -X GET http://192.168.122.100:8080

/v1/AUTH myaccount/image container

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> GET /v1/AUTH myaccount/image container HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94

>

< HTTP/1.1 200 OK

< Content-Length: 178

< X-Container-Object-Count: 8

< Accept-Ranges: bytes

< X-Storage-Policy: Policy-0

< X-Container-Bytes-Used: 82790

< X-Timestamp: 1455445144.80031

< Content-Type: text/plain; charset=utf-8

< X-Trans-Id: txa3c26f65b3154af8a94a2-0056c05c45

< Date: Sun, 14 Feb 2016 10:51:49 GMT

<

300test-image.jpg

600test-image.jpg

p300test-image.jpg

p600test-image.jpg

test-image.jpg

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 223

ptest-image.jpg

pthumbtest-image.jpg

thumbtest-image.jpg

* Connection #0 to host 192.168.122.100 left intact

A.12 Another Image Upload

We present sample console outputs of response headers for uploading an image request below.

root@ubuntu:/home/jannatun# curl -v -H ‘Content-Type: text/plain’ -H ‘X-Storage-

Token:AUTH tk9285653bb2c94cf683779e2879070b94’ -H ’X IBUCK ENABLE:1’

-X PUT -T pray.jpg http://192.168.122.100:8080/v1

/AUTH myaccount/image container/pray.jpg

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> PUT /v1/AUTH myaccount/image container/pray.jpg HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> Content-Type: text/plain

> X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94

> X IBUCK ENABLE:1

> Content-Length: 18603

> Expect: 100-continue

>

< HTTP/1.1 100 Continue

* We are completely uploaded and fine

< HTTP/1.1 201 Created

< Content-Type: text/html; charset=UTF-8

< Content-Length: 0

< X-Trans-Id: txfddba8cc6b9d4398ad234-0056c05ca5

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 224

< Date: Sun, 14 Feb 2016 10:53:27 GMT

<

* Connection #0 to host 192.168.122.100 left intact

A.13 Image List for Second Container

We present sample console outputs of response headers for image listing of a container request below.

root@ubuntu:/home/jannatun# curl -v -H ‘X-Storage-Token:

AUTH tk9285653bb2c94cf683779e2879070b94’ -X GET http://192.168.122.100:8080

/v1/AUTH myaccount/image container

* Hostname was NOT found in DNS cache

* Trying 192.168.122.100...

* Connected to 192.168.122.100 (192.168.122.100) port 8080 (#0)

> GET /v1/AUTH myaccount/image container HTTP/1.1

> User-Agent: curl/7.35.0

> Host: 192.168.122.100:8080

> Accept: */*

> X-Storage-Token:AUTH tk9285653bb2c94cf683779e2879070b94

>

< HTTP/1.1 200 OK

< Content-Length: 276

< X-Container-Object-Count: 16

< Accept-Ranges: bytes

< X-Storage-Policy: Policy-0

< X-Container-Bytes-Used: 187367

< X-Timestamp: 1455445144.80031

< Content-Type: text/plain; charset=utf-8

< X-Trans-Id: tx5e9dac6ea8f44bc6b377f-0056c05cd8

< Date: Sun, 14 Feb 2016 10:54:16 GMT

<

300test-image.jpg

APPENDIX A. REQUEST ANALYSIS OF SEVERAL HTTP REQUESTS 225

300pray.jpg

600test-image.jpg

600pray.jpg

p300test-image.jpg

p300pray.jpg

p600test-image.jpg

p600pray.jpg

test-image.jpg

ptest-image.jpg

ppray.jpg

pray.jpg

pthumbtest-image.jpg

pthumbpray.jpg

thumbtest-image.jpg

thumbpray.jpg

* Connection #0 to host 192.168.122.100 left intact

Appendix B

Documents for Keyword Extraction

B.1 Document A

This document has been collected from the SemEval2017 Dataset [199]. The document is as followed:

“Deep learning (also known as deep structured learning) is part of a broader family of machine learning

methods based on artificial neural networks with representation learning. Learning can be supervised,

semi-supervised or unsupervised. Deep learning architectures such as deep neural networks, deep belief

networks, recurrent neural networks and convolutional neural networks have been applied to fields

including computer vision, machine vision, speech recognition, natural language processing, audio

recognition, social network filtering, machine translation, bioinformatics, drug design, medical image

analysis, material inspection and board game programs, where they have produced results comparable

to and in some cases surpassing human expert performance. Artificial neural networks (ANNs) were

inspired by information processing and distributed communication nodes in biological systems. ANNs

have various differences from biological brains. Specifically, neural networks tend to be static and sym

bolic, while the biological brain of most living organisms is dynamic (plastic) and analog. The adjective

”deep” in deep learning comes from the use of multiple layers in the network. Early work showed that

a linear perceptron cannot be a universal classifier, and then that a network with a nonpolynomial

activation function with one hidden layer of unbounded width can on the other hand so be. Deep

learning is a modern variation which is concerned with an unbounded number of layers of bounded

size, which per mits practical application and optimized implementation, while retaining theoretical

226

APPENDIX B. DOCUMENTS FOR KEYWORD EXTRACTION 227

universality under mild conditions. In deep learning the layers are also permitted to be heterogeneous

and to deviate widely from biologically informed connectionist model s, for the sake of efficiency,

trainability and understandability, whence the “structured” part.”

B.2 Document B

This document has been collected from Aarts et al. [264] The document is as followed:

“Complex Langevin (CL) dynamics [1,2] provides an approach to circumvent the sign problem in

numerical simulations of lattice field theories with a complex Boltzmann weight, since it does not rely

on importance sampling. In recent years a number of stimulating results has been obtained in the

context of nonzero chemical potential, in both lower and four-dimensional field theories with a severe

sign problem in the thermodynamic limit [3–8] (for two recent reviews, see e.g. Refs. [9,10]). However,

as has been known since shortly after its inception, correct results are not guaranteed [11–16]. This calls

for an improved understanding, relying on the combination of analytical and numerical insight. In the

recent past, the important role played by the properties of the real and positive probability distribution

in the complexified configuration space, which is effectively sampled during the Langevin process, has

been clarified [17,18]. An important conclusion was that this distribution should be sufficiently localised

in order for CL to yield valid results. Importantly, this insight has recently also led to promising results

in nonabelian gauge theories, with the implementation of SL(N,C) gauge cooling [8,10].”

Bibliography

[1] J. Noor, M. N. H. Shanto, J. J. Mondal, M. G. Hossain, S. Chellappan, and A. A. Al Islam,

“Orchestrating image retrieval and storage over a cloud system,” IEEE Transactions on Cloud

Computing, 2022.

[2] P. Savvaidis, “From desktop gis to web-based cloud gis: The globalization of

geospatial data management.” [Online]. Available: https://www.researchgate.net/

The-architecture-of-Cloud-Computing-Image-from_fig3_237009975. Accessed: Mar. 28,

2023.

[3] J. Arnold, OpenStack Swift: Using, administering, and developing for swift object storage. ”

O’Reilly Media, Inc.”, 2014.

[4] “Openstack foundation, ‘welcome to swift’s documentation!.” http://docs.openstack.org/

developer/swift/. Accessed: Mar. 28, 2023.

[5] J. Danjou, “Openstack swift eventual consistency analysis & bottlenecks.” [Online]. Available:

https://julien.danjou.info/openstack-swift-consistency-analysis/. Accessed: Mar.

28, 2023.

[6] K. Chen, C. Wu, Y. Chang, and C. Lei, “A crowdsourceable qoe evaluation frame-

work for multimedia content.” [Online]. Available: https://www.slideshare.net/mmnet/

a-crowdsourceable-qoe-evaluation-framework-for-multimedia-content. Accessed:

Mar. 28, 2023.

[7] L. Miller, “What is image quality assessment?.” [Online]. Available: https://slideplayer.

com/slide/7688464/. Accessed: Mar. 28, 2023.

228

https://www.researchgate.net/The-architecture-of-Cloud-Computing-Image-from_fig3_237009975
https://www.researchgate.net/The-architecture-of-Cloud-Computing-Image-from_fig3_237009975
http://docs.openstack.org/developer/swift/
http://docs.openstack.org/developer/swift/
https://julien.danjou.info/openstack-swift-consistency-analysis/
https://www.slideshare.net/mmnet/a-crowdsourceable-qoe-evaluation-framework-for-multimedia-content
https://www.slideshare.net/mmnet/a-crowdsourceable-qoe-evaluation-framework-for-multimedia-content
https://slideplayer.com/slide/7688464/
https://slideplayer.com/slide/7688464/

BIBLIOGRAPHY 229

[8] “Httparchive.” [Online]. Available: http://httparchive.org/. Accessed: Mar. 28, 2023.

[9] “Unraveling the JPEG.” https://parametric.press/issue-01/unraveling-the-jpeg/. Ac-

cessed: Mar. 28, 2023.

[10] R. Coyne, “Visualising 2d discrete cosine transforms.” [Online]. Available: https:

//richardcoyne.com/2020/08/22/visualising-2d-discrete-cosine-transforms/. Ac-

cessed: Mar. 1, 2023.

[11] J. Noor, H. I. Akbar, R. A. Sujon, and A. A. Al Islam, “Secure processing-aware media stor-

age (spms),” in 2017 IEEE 36th International Performance Computing and Communications

Conference (IPCCC), pp. 1–8, IEEE, 2017.

[12] J. Noor, S. I. Salim, and A. A. Al Islam, “Strategizing secured image storing and efficient image

retrieval through a new cloud framework,” Journal of Network and Computer Applications,

vol. 192, p. 103167, 2021.

[13] L. Tan and J. Jiang, “Chapter 13 - image processing basics,” in Digital Signal Processing (Third

Edition) (L. Tan and J. Jiang, eds.), pp. 649–726, Academic Press, third edition ed., 2019.

[14] Libjpeg-turbo, “libjpeg-turbo default scan script.” [Online]. Available: https://github.com/

libjpeg-turbo/libjpeg-turbo/blob/master/wizard.txt. Accessed: Jun. 04, 2023.

[15] D.Vatolin, A.Moskvin, O.Petrov, and N.Trunichkin, “Msu video quality measurement tools, [on-

line]. available:.” https://www.compression.ru/video/quality_measure/. Accessed: Mar.

28, 2023.

[16] “Cctv vs. ip cameras: Which is best suited for your business?.” https://www.taylored.com/

blog/cctv-vs-ip-cameras-which-is-best-suited-for-your-business/. Accessed: Mar.

28, 2023.

[17] S. Idrees, S. Nazir, S. Tahir, and M. S. Khan, “Cloud ecosystem-prevalent threats and counter-

measures,” in Handbook of Research on Cybersecurity Issues and Challenges for Business and

FinTech Applications, pp. 146–173, IGI Global, 2023.

[18] A. Mali, A. Ororbia, D. Kifer, and L. Giles, “Neural jpeg: End-to-end image compression

leveraging a standard jpeg encoder-decoder,” arXiv preprint arXiv:2201.11795, 2022.

http://httparchive.org/
https://parametric.press/issue-01/unraveling-the-jpeg/
https://richardcoyne.com/2020/08/22/visualising-2d-discrete-cosine-transforms/
https://richardcoyne.com/2020/08/22/visualising-2d-discrete-cosine-transforms/
https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/wizard.txt
https://github.com/libjpeg-turbo/libjpeg-turbo/blob/master/wizard.txt
https://www.compression.ru/video/quality_measure/
 https://www.taylored.com/blog/cctv-vs-ip-cameras-which-is-best-suited-for-your-business/
 https://www.taylored.com/blog/cctv-vs-ip-cameras-which-is-best-suited-for-your-business/

BIBLIOGRAPHY 230

[19] P. Mullan, C. Riess, and F. Freiling, “Forensic source identification using jpeg image headers:

The case of smartphones,” Digital Investigation, vol. 28, pp. S68–S76, 2019.

[20] A. P. Byju, B. Demir, and L. Bruzzone, “A progressive content-based image retrieval in jpeg 2000

compressed remote sensing archives,” IEEE Transactions on Geoscience and Remote Sensing,

pp. 1–13, Feb. 2020.

[21] C. Harrison, A. K. Dey, and S. Hudson, “Evaluation of progressive image loading schemes,”

in SIGCHI Conference on Human Factors in Computing Systems (CHI’10), (Atlanta, Georgia,

USA), pp. 1549–1552, Apr. 10-15, 2010.

[22] W.-B. Kim and I.-Y. Lee, “Secure and efficient storage of video data in a cctv environment.,”

TIIS, vol. 13, no. 6, pp. 3238–3257, 2019.

[23] J. Kim, N. Park, G. Kim, and S. Jin, “Cctv video processing metadata security scheme us-

ing character order preserving-transformation in the emerging multimedia,” Electronics, vol. 8,

no. 4, p. 412, 2019.

[24] R. Ashraf, M. Ahmed, U. Ahmad, M. A. Habib, S. Jabbar, and K. Naseer, “Mdcbir-mf: multi-

media data for content-based image retrieval by using multiple features,” Multimedia tools and

applications, vol. 79, no. 13, pp. 8553–8579, 2020.

[25] K. T. Ahmed, S. Ummesafi, and A. Iqbal, “Content based image retrieval using image features

information fusion,” Information Fusion, vol. 51, pp. 76–99, 2019.

[26] S. Deniziak and T. Michno, “New content based image retrieval database structure using query

by approximate shapes,” in 2017 Federated Conference on Computer Science and Information

Systems (FedCSIS), pp. 613–621, IEEE, 2017.

[27] A. Nazir, R. Ashraf, T. Hamdani, and N. Ali, “Content based image retrieval system by us-

ing hsv color histogram, discrete wavelet transform and edge histogram descriptor,” in 2018

international conference on computing, mathematics and engineering technologies (iCoMET),

pp. 1–6, IEEE, 2018.

[28] L. Goddard and D. Seeman, “Negotiating sustainability: Building digital humanities projects

that last,” in Doing More Digital Humanities, pp. 38–57, Routledge, 2019.

BIBLIOGRAPHY 231

[29] C. J. Corbett, “How sustainable is big data?,” Production and Operations Management, vol. 27,

no. 9, pp. 1685–1695, 2018.

[30] N. Al-Nabhan, S. Alenazi, S. Alquwaifili, S. Alzamzami, L. Altwayan, N. Alaloula, R. Alowaini,

and A. A. Al Islam, “An intelligent iot approach for analyzing and managing crowds,” IEEE

Access, vol. 9, pp. 104874–104886, 2021.

[31] M. Yamin, “Managing crowds with technology: cases of hajj and kumbh mela,” International

journal of information technology, vol. 11, no. 2, pp. 229–237, 2019.

[32] B. Hou, S. Yang, F. A. Kuipers, L. Jiao, and X. Fu, “Eavs: Edge-assisted adaptive video stream-

ing with fine-grained serverless pipelines,” in INFOCOM 2023-IEEE International Conference

on Computer Communications, IEEE, 2023.

[33] D. Kobayashi, K. Nakamura, M. Kitahara, T. Osawa, Y. Omori, T. Onishi, and H. Iwasaki, “A

low-latency 4k hevc multi-channel encoding system with content-aware bitrate control for live

streaming,” IEICE TRANSACTIONS on Information and Systems, vol. 106, no. 1, pp. 46–57,

2023.

[34] G. Zhou, Z. Luo, M. Hu, and D. Wu, “Presr: Neural-enhanced adaptive streaming of vbr-

encoded videos with selective prefetching,” IEEE Transactions on Broadcasting, 2022.

[35] A. Barakabitze and A. Hines, “Multimedia streaming services over the internet,” 2023.

[36] T. Louati, H. Abbes, C. Cérin, and M. Jemni, “Gc-cr: a decentralized garbage collector com-

ponent for checkpointing in clouds,” in 2017 29th International Symposium on Computer Ar-

chitecture and High Performance Computing (SBAC-PAD), pp. 97–104, IEEE, 2017.

[37] S. J. Ramson and D. J. Moni, “Wireless sensor networks based smart bin,” Computers &

Electrical Engineering, vol. 64, pp. 337–353, 2017.

[38] J. Joshi, J. Reddy, P. Reddy, A. Agarwal, R. Agarwal, A. Bagga, and A. Bhargava, “Cloud

computing based smart garbage monitoring system,” in 2016 3rd International Conference on

Electronic Design (ICED), pp. 70–75, IEEE, 2016.

[39] K. M. Ramokapane, A. Rashid, and J. M. Such, “Assured deletion in the cloud: requirements,

challenges and future directions,” in Proceedings of the 2016 ACM on Cloud Computing Security

BIBLIOGRAPHY 232

Workshop, pp. 97–108, 2016.

[40] K. Veeraraghavan, J. Meza, D. Chou, W. Kim, S. Margulis, S. Michelson, R. Nishtala, D. Oben-

shain, D. Perelman, and Y. J. Song, “Kraken: Leveraging live traffic tests to identify and resolve

resource utilization bottlenecks in large scale web services,” in 12th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI ’16), Nov. 2-4, 2016.

[41] M. D. Syer, W. Shang, Z. M. Jiang, and A. E. Hassan, “Continuous validation of performance

test workloads.,” Automated Software Engineering, vol. 24, pp. 189–231, Mar. 2017.

[42] R. Bhatia and A. Ganpati, “In depth analysis of web performance testing tools,” IRACST

– Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

vol. 6, Sep.-Oct. 2016.

[43] Sourceforge, “Libjpeg.” [Online]. Available: http://libjpeg.sourceforge.net/. Accessed:

Apr. 20, 2023.

[44] S. Gole, “Why you need cloud storage in your life.” [Online]. Available: https://cyberchimps.

com/need-cloud-storage-life/. Accessed: Mar. 28, 2023.

[45] H. J. Kim, D. H. Lee, J. M. Lee, K. H. Lee, W. Lyu, and S. G. Choi, “The qoe evaluation

method through the qos-qoe correlation model,” in 2008 Fourth International Conference on

Networked Computing and Advanced Information Management, vol. 2, pp. 719–725, IEEE, 2008.

[46] Y. Wang, W. Zhou, and P. Zhang, “Implementation and Demonstration of QoE Measurement

Platform,” Springer International Publishing, Part of the series Springer Briefs in Electrical

and Computer Engineering, pp. 45–57, Aug. 2016.

[47] F. Kuipers, R. Kooij, D. D. Vleeschauwer, and K. Brunnström, “Techniques for measuring qual-

ity of experience,” in International Conference on Wired/Wireless Internet Communications,

pp. 216–227, Springer, 2010.

[48] P. ITU-T RECOMMENDATION, “Subjective video quality assessment methods for multimedia

applications,” Networks, 1999.

[49] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of psnr in image/video quality assessment,”

Electronics letters, vol. 44, no. 13, pp. 800–801, 2008.

http://libjpeg.sourceforge.net/
https://cyberchimps.com/need-cloud-storage-life/
https://cyberchimps.com/need-cloud-storage-life/

BIBLIOGRAPHY 233

[50] Z. Wang and Q. Li, “Video quality assessment using a statistical model of human visual speed

perception,” JOSA A, vol. 24, no. 12, pp. B61–B69, 2007.

[51] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new look at signal fidelity

measures,” IEEE signal processing magazine, vol. 26, no. 1, pp. 98–117, 2009.

[52] M. H. Pinson and S. Wolf, “A new standardized method for objectively measuring video quality,”

IEEE Transactions on broadcasting, vol. 50, no. 3, pp. 312–322, 2004.

[53] J. Noor and A. A. Al Islam, “ibuck: Reliable and secured image processing middleware for open-

stack swift,” in 2017 International Conference on Networking, Systems and Security (NSysS),

pp. 144–149, IEEE, 2017.

[54] “Understanding the most popular image file types and formats.” [Online]. Available: https:

//www.embedded-vision.com/sites/default/files/apress/computervisionmetrics/

chapter2/9781430259299_Ch02.pdfAccessed: May 15, 2023.

[55] “JPEG - JPEG privacy & security abstract and executive summary.” https://jpeg.org/

items/20150910_privacy_security_summary.html. Accessed: Mar. 28, 2023.

[56] J. Miano, Compressed Image File Formats. Addison Wesley Longman, Inc. ISBN 0-201-60443-4,

1999.

[57] “Internet speeds by country 2021.” https://worldpopulationreview.com/

country-rankings/internet-speeds-by-country. Accessed: Mar. 28, 2023.

[58] “How COVID-19 is affecting internet performance.” https://www.fastly.com/blog/

how-covid-19-is-affecting-internet-performance. Accessed: Mar. 28, 2023.

[59] J. Noor, S. I. Salim, and A. B. M. A. A. Islam, “Strategizing secured image storing and efficient

image retrieval through a new cloud framework,” J. Netw. Comput. Appl., vol. 192, no. 103167,

p. 103167, 2021.

[60] F. Lin, H. Ngo, and C. Dow, “A cloud-based face video retrieval system with deep learning,”

The Journal of Supercomputing, Jan. 2020.

https://www.embedded-vision.com/sites/default/files/apress/computervisionmetrics/chapter2/9781430259299_Ch02.pdf
https://www.embedded-vision.com/sites/default/files/apress/computervisionmetrics/chapter2/9781430259299_Ch02.pdf
https://www.embedded-vision.com/sites/default/files/apress/computervisionmetrics/chapter2/9781430259299_Ch02.pdf
https://jpeg.org/items/20150910_privacy_security_summary.html
https://jpeg.org/items/20150910_privacy_security_summary.html
https://worldpopulationreview.com/country-rankings/internet-speeds-by-country
https://worldpopulationreview.com/country-rankings/internet-speeds-by-country
https://www.fastly.com/blog/how-covid-19-is-affecting-internet-performance
https://www.fastly.com/blog/how-covid-19-is-affecting-internet-performance

BIBLIOGRAPHY 234

[61] H.-H. Hsu, T. K. Shih, L. H. Lin, R.-C. Chang, and H.-F. Li, “Adaptive image transmission by

strategic decomposition,” in 18th International Conference on Advanced Information Network-

ing and Applications, 2004. AINA 2004., vol. 1, pp. 525–530, IEEE, 2004.

[62] C.-C. Chang, H.-C. Hsia, and T.-S. Chen, “A progressive image transmission scheme based on

block truncation coding,” in International Conference Human Society@ Internet, pp. 383–397,

Springer, 2001.

[63] S. Amdahl, “Methods for managing progressive image delivery and devices thereof,” Jan. 15

2019. US Patent App. 14/955,693.

[64] S. Stefanov, “Book of speed.” [Online]. Available: http://www.bookofspeed.com/chapter5.

html. Accessed: Mar. 28, 2023.

[65] S. Nazir, O. A. Alzubi, M. Kaleem, and H. Hamdoun, “Image subset communication for resource-

constrained applications in wireless sensor networks,” Turkish Journal of Electrical Engineering

and Computer Sciences, 09 2020.

[66] A. Mammeri, A. Khoumsi, D. Ziou, and B. Hadjou, “Energy-efficient transmission scheme of

jpeg images over visual sensor networks,” in 2008 33rd IEEE Conference on Local Computer

Networks (LCN), pp. 639–647, 2008.

[67] R. Steinmetz and K. Nahrstedt, Multimedia: Computing Communications & Applications. Pren-

tice Hall PTR, 1995.

[68] M. Hasan, K. M. Nur, and H. B. Shakur, “An improved jpeg image compression technique based

on selective quantization,” International Journal of Computer Applications (IJCA), 2012.

[69] J. A.-A. Mazen Abuzaher, “Jpeg based compression algorithm,” International Journal of En-

gineering and Applied Sciences (IJEAS), 2017.

[70] A. A. Hussain, G. K. AL-Khafaji, and M. M. Siddeq, “Developed jpeg algorithm applied in

image compression,” International Scientific Conference of Al-Ayen University (ISCAU), 2020.

[71] G. Seelmann, “Improved redundancy reduction for jpeg files,” in Picture Coding Symposium,

2007.

http://www.bookofspeed.com/chapter5.html
http://www.bookofspeed.com/chapter5.html

BIBLIOGRAPHY 235

[72] E. Yan, K. Zhang, X. Wang, K. Strauss, and L. Ceze, “Customizing progressive jpeg for efficient

image storage,” in Proceedings of the 9th USENIX Conference on Hot Topics in Storage and

File Systems, (USA), USENIX Association, 2017.

[73] G. K. Wallace, “The jpeg still picture compression standard,” IEEE Transactions on Consumer

Electronics, 1991.

[74] S. Kunwar, “Image compression algorithm and jpeg standard,” International Journal of Scien-

tific and Research Publications, 2017.

[75] K. R. Spring, T. J. Fellers, and M. W. Davidson, “Human vision and color perception.”

[Online]. Available: https://www.olympus-lifescience.com/en/microscope-resource/

primer/lightandcolor/humanvisionintro/. Accessed: Feb. 17, 2023.

[76] S. Rafatirad and A. Majumder, “Sensitivity to color variations.” [Online]. Available: https://

www.ics.uci.edu/~majumder/vispercep/paper08/spatialvision.pdf. Accessed: Feb. 17,

2023.

[77] Y. Khalid, “Understanding and decoding a jpeg image using python.” [Online]. Avail-

able: https://yasoob.me/posts/understanding-and-writing-jpeg-decoder-in-python/.

Accessed: Feb. 17, 2023.

[78] M. S. AL-Ani and F. H. Awad, “The jpeg image compression algorithm,” International Journal

of Advances in Engineering & Technology, 2013.

[79] V. Sharma, “Qutub complex monuments’ images dataset.” [Online]. Available: https:

//www.kaggle.com/varunsharmaml/qutub-complex-monuments-images-dataset. Accessed:

Feb. 16, 2023.

[80] M. Oltean, “Fruits 360.” [Online]. Available: https://www.kaggle.com/moltean/fruits. Ac-

cessed: Feb. 16, 2023.

[81] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,

“Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European

Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755,

Springer, 2014.

https://www.olympus-lifescience.com/en/microscope-resource/primer/lightandcolor/humanvisionintro/
https://www.olympus-lifescience.com/en/microscope-resource/primer/lightandcolor/humanvisionintro/
https://www.ics.uci.edu/~majumder/vispercep/paper08/spatialvision.pdf
https://www.ics.uci.edu/~majumder/vispercep/paper08/spatialvision.pdf
https://yasoob.me/posts/understanding-and-writing-jpeg-decoder-in-python/
https://www.kaggle.com/varunsharmaml/qutub-complex-monuments-images-dataset
https://www.kaggle.com/varunsharmaml/qutub-complex-monuments-images-dataset
https://www.kaggle.com/moltean/fruits

BIBLIOGRAPHY 236

[82] “Structural similarity index — skimage v0.19.0.dev0 docs.” https://scikit-image.org/docs/

dev/auto_examples/transform/plot_ssim.html. Accessed: Mar. 28, 2023.

[83] “Chrome DevTools.” https://developer.chrome.com/docs/devtools/. Accessed: Mar. 28,

2023.

[84] M. Abu-Zaher and J. Al-Azzeh, “Jpeg based compression algorithm,” International Journal of

Engineering and Applied Sciences, vol. 4, p. 257481, 2017.

[85] A. Louie and A. M. K. Cheng, “Work-in-progress: Designing a server-side progressive JPEG en-

coder for real-time applications,” in 2020 IEEE Real-Time Systems Symposium (RTSS), IEEE,

2020.

[86] Y. Iqbal and O.-J. Kwon, “Improved JPEG coding by filtering 8 × 8 DCT blocks,” J. Imaging,

vol. 7, no. 7, p. 117, 2021.

[87] A. Mali, A. Ororbia, D. Kifer, and L. Giles, “Neural JPEG: End-to-end image compression

leveraging a standard JPEG encoder-decoder,” IEEE Signal Processing Society SigPort, 2022.

[88] J. Lee, S. Jeon, K. P. Choi, Y. Park, and C. Kim, “DPICT: deep progressive image compression

using trit-planes,” CoRR, vol. abs/2112.06334, 2021.

[89] C. Cai, L. Chen, X. Zhang, G. Lu, and Z. Gao, “A novel deep progressive image compression

framework,” in 2019 Picture Coding Symposium (PCS), IEEE, 2019.

[90] Y. Lu, Y. Zhu, Y. Yang, A. Said, and T. S. Cohen, “Progressive neural image compression with

nested quantization and latent ordering,” in 2021 IEEE International Conference on Image

Processing (ICIP), IEEE, 2021.

[91] N. Abdollahi, K. Shahtalebi, and M. F. Sabahi, “High compression rate, based on the RLS

adaptive algorithm in progressive image transmission,” Signal Image Video Process., vol. 15,

no. 4, pp. 835–842, 2021.

[92] R. Tyleček and R. Šára, “Spatial pattern templates for recognition of objects with regular struc-

ture,” in Pattern Recognition (J. Weickert, M. Hein, and B. Schiele, eds.), (Berlin, Heidelberg),

pp. 364–374, Springer Berlin Heidelberg, 2013.

https://scikit-image.org/docs/dev/auto_examples/transform/plot_ssim.html
https://scikit-image.org/docs/dev/auto_examples/transform/plot_ssim.html
https://developer.chrome.com/docs/devtools/

BIBLIOGRAPHY 237

[93] F. Korč and W. Förstner, “etrims image database for interpreting images of man-made scenes,”

Dept. of Photogrammetry, University of Bonn, 05 2009.

[94] M. J. Huiskes and M. S. Lew, “The mir flickr retrieval evaluation,” in Proceedings of the 1st

ACM International Conference on Multimedia Information Retrieval, MIR ’08, (New York, NY,

USA), p. 39–43, Association for Computing Machinery, 2008.

[95] J. Ascenso and P. Akayzi, “JPEG AI image coding common test conditions,” in Proceedings of

the ISO/IEC JTC1/SC29/WG1 N84035, 84th Meeting, 2019.

[96] R. W. Franzen, “Kodak lossless true color image suite.” http://r0k.us/graphics/kodak. Ac-

cessed: Mar. 28, 2023.

[97] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single image Super-Resolution:

Dataset and study,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), IEEE, 2017.

[98] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhancement with task-oriented

flow,” Int. J. Comput. Vis., vol. 127, no. 8, pp. 1106–1125, 2019.

[99] “BigEarth - accurate and scalable processing of big data in earth observation.” https:

//bigearth.eu/datasets.html. Accessed: Mar. 28, 2023.

[100] M. Rabbani, “Jpeg2000: Image compression fundamentals, standards and practice,” Journal of

Electronic Imaging, vol. 11, no. 2, 2002.

[101] F. Bellard, “BPG image format.” http://bellard.org/bpg/. Accessed: Mar. 28, 2023.

[102] J. Balle, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image compression

with a scale hyperprior,” in International Conference on Learning Representations, 2018.

[103] Google, “WebP: Compression techniques.” http://developers.google.com/speed/webp/

docs/compression. Accessed: Mar. 28, 2023.

[104] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and M. Covell, “Full

resolution image compression with recurrent neural networks,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.

http://r0k.us/graphics/kodak
https://bigearth.eu/datasets.html
https://bigearth.eu/datasets.html
http://bellard.org/bpg/
http://developers.google.com/speed/webp/docs/compression
http://developers.google.com/speed/webp/docs/compression

BIBLIOGRAPHY 238

[105] “Cloudwards, ‘5 best cloud storage for video 2017’.” https://www.cloudwards.net/

best-cloud-storage-for-video/. Accessed: Mar. 28, 2023.

[106] “Dropbox file size limits and how to upload large files.” https://help.dropbox.com/

installs-integrations/sync-uploads/upload-limitations/. Accessed: Mar. 28, 2023.

[107] “Sync. [online]. available:.” https://www.sync.com/. Accessed: Mar. 28, 2023.

[108] “Sugarsync. [online]. available:.” https://www.sugarsync.com/. Accessed: Mar. 28, 2023.

[109] “Livedrive. [online]. available:.” https://www2.livedrive.com/. Accessed: Mar. 28, 2023.

[110] “Google drive. [online]. available:.” https://google.com/products/drive/. Accessed: Mar.

28, 2022.

[111] “Imemories, ‘the easiest way to digitize home movies and photos,’ [online]. available:.” http:

//www.imemories.com/. Accessed: Mar. 28, 2022.

[112] “Cloudinary, ’video transcoding’ [online]. available:.” http://cloudinary.com/features/

video_transcoding. Accessed: Mar. 28, 2022.

[113] J. Kim, D. Lee, and N. Park, “Cctv-rfid enabled multifactor authentication model for secure

differential level video access control,” Multimedia Tools and Applications, vol. 79, no. 31,

pp. 23461–23481, 2020.

[114] M. U. Yaseen, M. S. Zafar, A. Anjum, and R. Hill, “High performance video processing in

cloud data centres,” in 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE),

pp. 152–161, IEEE, 2016.

[115] A. Alam, M. N. Khan, J. Khan, and Y.-K. Lee, “Intellibvr-intelligent large-scale video retrieval

for objects and events utilizing distributed deep-learning and semantic approaches,” in 2020

IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 28–35,

IEEE, 2020.

[116] “Wpengine, ‘what is https and ssl/tls?,’ [online]. available:.” https://wpengine.com/support/

how-does-all-this-work-https/. Accessed: Mar. 28, 2023.

[117] S. Turner, “Transport layer security,” IEEE Internet Computing, vol. 18, no. 6, pp. 60–63, 2014.

https://www.cloudwards.net/best-cloud-storage-for-video/
https://www.cloudwards.net/best-cloud-storage-for-video/
https://help.dropbox.com/installs-integrations/sync-uploads/upload-limitations/
https://help.dropbox.com/installs-integrations/sync-uploads/upload-limitations/
https://www.sync.com/
https://www.sugarsync.com/
https://www2.livedrive.com/
https://google.com/products/drive/
http://www.imemories.com/
http://www.imemories.com/
http://cloudinary.com/features/video_transcoding
http://cloudinary.com/features/video_transcoding
https://wpengine.com/support/how-does-all-this-work-https/
https://wpengine.com/support/how-does-all-this-work-https/

BIBLIOGRAPHY 239

[118] “Video surveillance storage: How much is enough?.” https://www.seagate.com/

tech-insights/how-much-video-surveillance-storage-is-enough-master-ti/. Ac-

cessed: Mar. 28, 2023.

[119] M. A. Akbar and T. N. Azhar, “Concept of cost efficient smart cctv network for cities in

developing country,” in 2018 International Conference on ICT for Smart Society (ICISS), pp. 1–

4, 2018.

[120] D. A. Rodŕıguez-Silva, L. Adkinson-Orellana, F. J. Gonz’lez-Castaño, I. Armiño-Franco, and

D. Gonz’lez-Mart́ınez, “Video surveillance based on cloud storage,” in 2012 IEEE Fifth Inter-

national Conference on Cloud Computing, pp. 991–992, 2012.

[121] “Nest cam iq indoor — the sharper home security camera.” https://nest.com/cameras/

nest-cam-iq-indoor/overview. Accessed: Mar. 28, 2023.

[122] P. Mockapetris and K. J. Dunlap, “Development of the domain name system,” in Symposium

proceedings on Communications architectures and protocols, pp. 123–133, 1988.

[123] “Openstack swift architecture.” https://www.swiftstack.com/docs/introduction/

openstack_swift.html/. Accessed: Mar. 28, 2023.

[124] D. Vatolin, A. Moskvin, O. Petrov, and N. Trunichkin, “ringid [online]. available:.” https:

//www.ringid.com/. Accessed: Mar. 28, 2022.

[125] M. Montagnuolo, A. Messina, E. K. Kolodner, D. Chen, E. Rom, K. Meth, and P. Ta-Shma,

“Supporting media workflows on an advanced cloud object store platform,” in Proceedings of

the 31st Annual ACM Symposium on Applied Computing, pp. 384–389, 2016.

[126] Y. Wang, W.-T. Chen, H. Wu, A. Kokaram, and J. Schaeffer, “A cloud-based large-scale dis-

tributed video analysis system,” in 2016 IEEE International Conference on Image Processing

(ICIP), pp. 1499–1503, IEEE, 2016.

[127] S. Rahul et al., “Cloud computing: Advantages and security challenges,” International Journal

of Information and Computation Technology, ISSN 0974-2239, vol. 3, no. 8, pp. 771–778, 2013.

[128] M. Darwich, Y. Ismail, T. Darwich, and M. A. Bayoumi, “Cost-efficient storage for on-demand

video streaming on cloud,” CoRR, vol. abs/2007.03410, 2020.

https://www.seagate.com/tech-insights/how-much-video-surveillance-storage-is-enough-master-ti/
https://www.seagate.com/tech-insights/how-much-video-surveillance-storage-is-enough-master-ti/
https://nest.com/cameras/nest-cam-iq-indoor/overview
https://nest.com/cameras/nest-cam-iq-indoor/overview
https://www.swiftstack.com/docs/intro duction/openstack_swift.html/
https://www.swiftstack.com/docs/intro duction/openstack_swift.html/
https://www.ringid.com/
https://www.ringid.com/

BIBLIOGRAPHY 240

[129] E. Baik, A. Pande, Z. Zheng, and P. Mohapatra, “Vsync: Cloud based video streaming service

for mobile devices,” in IEEE INFOCOM 2016-The 35th Annual IEEE International Conference

on Computer Communications, pp. 1–9, IEEE, 2016.

[130] Z. Liu, Q. Wang, J. Huang, Y. Wu, Y. Wang, X. Jia, and H. Chen, “Cloud-based video-on-

demand services for smart tv,” in 2017 Seventh International Conference on Information Science

and Technology (ICIST), pp. 81–84, IEEE, 2017.

[131] K. I. Choi, J. H. Lee, and B. C. Lee, “Cloud based video storage system with privacy protec-

tion,” in 2015 17th International Conference on Advanced Communication Technology (ICACT),

pp. 460–463, IEEE, 2015.

[132] S. Saon, H. Hashim, M. A. Ahmadon, S. Yamaguchi, et al., “Cloud-based people counter,”

Bulletin of Electrical Engineering and Informatics, vol. 9, no. 1, pp. 284–291, 2020.

[133] A. Sipser, Video ingress system for surveillance video querying. PhD thesis, Massachusetts

Institute of Technology, 2020.

[134] N. Park and N. Kang, “Mutual authentication scheme in secure internet of things technology

for comfortable lifestyle,” Sensors, vol. 16, no. 1, p. 20, 2016.

[135] M. Ali, A. Anjum, O. Rana, A. R. Zamani, D. Balouek-Thomert, and M. Parashar, “Res:

Real-time video stream analytics using edge enhanced clouds,” IEEE Transactions on Cloud

Computing, 2020.

[136] H. Wang, S. Mehrotra, M. Martini, D. Wu, and Q. Zhang, “Guest editorial: Cloud-based video

processing and content sharing,” IEEE Transactions on Multimedia, vol. 18, no. 5, pp. 805–806,

2016.

[137] N. Narang, “Technical series : Handy ffmpeg commands for all video process-

ing needs, [online]. available:.” http://www.mediaentertainmentinfo.com/2015/06/

5-technical-series-handy-ffmpeg-commands-to-get-your-video-processing-done.

html/. Accessed: Mar. 28, 2023.

[138] P. Rad, M. Muppidi, S. S. Agaian, and M. Jamshidi, “Secure image processing inside cloud file

sharing environment using lightweight containers,” in 2015 IEEE International Conference on

Imaging Systems and Techniques (IST), pp. 1–6, 2015.

http://www.mediaentertainmentinfo.com/2015/06/5-technical-series-handy-ffmpeg-commands-to-get-your-video-processing-done.html/
http://www.mediaentertainmentinfo.com/2015/06/5-technical-series-handy-ffmpeg-commands-to-get-your-video-processing-done.html/
http://www.mediaentertainmentinfo.com/2015/06/5-technical-series-handy-ffmpeg-commands-to-get-your-video-processing-done.html/

BIBLIOGRAPHY 241

[139] “‘python cryptography toolkit (pycrypto),’ [online]. available:.” https://pypi.python.org/

pypi/pycrypto/. Accessed: Mar. 28, 2023.

[140] “Understanding camera specifications.” https://clearview-communications.com/

wp-content/uploads/2017/10/Understanding-the-CCTV-specifications.pdf/. Accessed:

Mar. 28, 2023.

[141] “Openstack swift architecture - data storage is changing.” https://www.swiftstack.com/

docs/introduction/openstack{_}swift.html. Accessed: Mar. 28, 2023.

[142] E. Blasch, Z. Wang, H. Ling, K. Palaniappan, G. Chen, D. Shen, A. Aved, and G. Seetharaman,

“Video-based activity analysis using the l1 tracker on virat data,” in 2013 IEEE Applied Imagery

Pattern Recognition Workshop (AIPR), pp. 1–8, IEEE, 2013.

[143] S. Jaswal and M. Malhotra, “A detailed analysis of trust models in cloud environment,” in Pro-

ceedings of the Second International Conference on Data Science, E-Learning and Information

Systems, pp. 1–5, 2019.

[144] F. Duarte, “Amount of data created daily (2023).” https://explodingtopics.com/blog/

data-generated-per-day. Accessed: Mar. 28, 2023.

[145] M. Imran and H. Hlavacs, “Searching in cloud object storage by using a metadata model,” in

2013 Ninth International Conference on Semantics, Knowledge and Grids, pp. 121–128, IEEE,

2013.

[146] O’Reilly, “What’s wrong with object storage?.” https://www.networkcomputing.com/

data-centers/whats-wrong-object-storage. Accessed: Mar. 28, 2023.

[147] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time

object detection,” in Proceedings of the IEEE conference on computer vision and pattern recog-

nition, pp. 779–788, 2016.

[148] G. Jocher, A. Chaurasia, and J. Qiu, “Yolo by ultralytics..” https://github.com/

ultralytics/ultralytics. Accessed: Mar. 28, 2023.

[149] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional

transformers for language understanding,” 2018.

https://pypi.python.org/pypi/pycrypto/
https://pypi.python.org/pypi/pycrypto/
https://clearview-communications.com/wp-content/uploads/2017/10/Understanding-the-CCTV-specifications.pdf/
https://clearview-communications.com/wp-content/uploads/2017/10/Understanding-the-CCTV-specifications.pdf/
https://www.swiftstack.com/docs/introduction/openstack{_}swift.html
https://www.swiftstack.com/docs/introduction/openstack{_}swift.html
https://explodingtopics.com/blog/data-generated-per-day
https://explodingtopics.com/blog/data-generated-per-day
https://www.networkcomputing.com/data-centers/whats-wrong-object-storage
https://www.networkcomputing.com/data-centers/whats-wrong-object-storage
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

BIBLIOGRAPHY 242

[150] C. Gormley and Z. Tong, Elasticsearch: the definitive guide: a distributed real-time search and

analytics engine. ” O’Reilly Media, Inc.”, 2015.

[151] A. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. Miller, “High-performance metadata in-

dexing and search in petascale data storage systems,” in Journal of Physics: Conference Series,

vol. 125, p. 012069, IOP Publishing, 2008.

[152] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Manohar, S. Patil, and

L. Pearlman, “A metadata catalog service for data intensive applications,” in SC’03: Proceedings

of the 2003 ACM/IEEE conference on Supercomputing, pp. 33–33, IEEE, 2003.

[153] M. Rostanski, K. Grochla, and A. Seman, “Evaluation of highly available and fault-tolerant

middleware clustered architectures using rabbitmq,” in 2014 federated conference on computer

science and information systems, pp. 879–884, IEEE, 2014.

[154] H. Ren, Z. Zheng, Y. Wu, H. Lu, Y. Yang, Y. Shan, and S.-K. Yeung, “ACNet: Approaching-

and-centralizing network for zero-shot sketch-based image retrieval,” IEEE Transactions on

Circuits and Systems for Video Technology, pp. 1–1, 2023.

[155] K. Kakizaki, K. Fukuchi, and J. Sakuma, “Certified defense for content based image retrieval,”

in 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 4550–

4559, 2023.

[156] Y. Wang, L. Chen, G. Wu, K. Yu, and T. Lu, “Efficient and secure content-based image retrieval

with deep neural networks in the mobile cloud computing,” Computers & Security, vol. 128,

p. 103163, 2023.

[157] J. Choe, H. J. Hwang, J. B. Seo, S. M. Lee, J. Yun, M.-J. Kim, J. Jeong, Y. Lee, K. Jin, R. Park,

J. Kim, H. Jeon, N. Kim, J. Yi, D. Yu, and B. Kim, “Content-based image retrieval by using

deep learning for interstitial lung disease diagnosis with chest CT,” Radiology, vol. 302, no. 1,

pp. 187–197, 2022.

[158] M. M. Monowar, M. A. Hamid, A. Q. Ohi, M. O. Alassafi, and M. F. Mridha, “AutoRet: A

self-supervised spatial recurrent network for content-based image retrieval,” Sensors (Basel),

vol. 22, no. 6, p. 2188, 2022.

BIBLIOGRAPHY 243

[159] N. Keisham and A. Neelima, “Efficient content-based image retrieval using deep search and

rescue algorithm,” Soft Comput., vol. 26, no. 4, pp. 1597–1616, 2022.

[160] H. Ahmadvand, F. Foroutan, and M. Fathy, “Dv-dvfs: merging data variety and dvfs technique

to manage the energy consumption of big data processing,” Journal of Big Data, vol. 8, pp. 1–16,

2021.

[161] S. Xue, C. Wen, X. Zhang, and Z. Wang, “Optimization scheme of massive meteorological data

storage based on openstack swift,” in 2020 12th International Conference on Communication

Software and Networks (ICCSN), pp. 302–306, 2020.

[162] S. Lima, A. Rocha, and L. Roque, “An overview of openstack architecture: a message queuing

services node,” Cluster Computing, vol. 22, no. 3, pp. 7087–7098, 2019.

[163] Evans, “Object storage essential capabilities #3 – search-

ing, indexing and metadata.” https://www.architecting.it/blog/

object-storage-critical-capabilities-3-searching-indexing-and-metadata/. Ac-

cessed: Mar. 28, 2023.

[164] S. Gugnani, X. Lu, and D. K. Panda, “Swift-x: Accelerating openstack swift with rdma for

building an efficient hpc cloud,” in 2017 17th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGRID), pp. 238–247, IEEE, 2017.

[165] Yigal, “Openstack monitoring with elasticsearch, logstash, and kibana.” https://logz.io/

blog/openstack-monitoring/. Accessed: Mar. 28, 2023.

[166] P. Biswas, F. Patwa, and R. Sandhu, “Content level access control for openstack swift storage,”

in Proceedings of the 5th ACM Conference on Data and Application Security and Privacy,

pp. 123–126, 2015.

[167] H. Wang, Y. Cai, Y. Zhang, H. Pan, W. Lv, and H. Han, “Deep learning for image retrieval:

What works and what doesn’t,” in 2015 IEEE International Conference on Data Mining Work-

shop (ICDMW), pp. 1576–1583, IEEE, 2015.

[168] A. Raghuveer, M. Jindal, M. F. Mokbel, B. Debnath, and D. Du, “Towards efficient search

on unstructured data: an intelligent-storage approach,” in Proceedings of the sixteenth ACM

conference on Conference on information and knowledge management, pp. 951–954, 2007.

https://www.architecting.it/blog/object-storage-critical-capabilities-3-searching-indexing-and-metadata/
https://www.architecting.it/blog/object-storage-critical-capabilities-3-searching-indexing-and-metadata/
https://logz.io/blog/openstack-monitoring/
https://logz.io/blog/openstack-monitoring/

BIBLIOGRAPHY 244

[169] S. A. Brandt, E. L. Miller, D. D. Long, and L. Xue, “Efficient metadata management in large

distributed storage systems,” in 20th IEEE/11th NASA Goddard Conference on Mass Storage

Systems and Technologies, 2003.(MSST 2003). Proceedings., pp. 290–298, IEEE, 2003.

[170] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[171] “Search documents and images stored in object storage using opensearch, oci vi-

sion, text recognition.” https://docs.oracle.com/en/solutions/oci-opensearch-vision/

index.html. Accessed: Mar. 28, 2023.

[172] S. Anjanadevi, D. Vijayakumar, and D. K. Srinivasagan, “An efficient dynamic indexing and

metadata model for storage in cloud environment,” Networking and Communication Engineer-

ing, vol. 6, no. 3, pp. 124–129, 2014.

[173] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” Advances in neural information processing systems, vol. 25, pp. 1097–1105,

2012.

[174] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recog-

nition,” arXiv preprint arXiv:1409.1556, 2014.

[175] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification,” in Proceedings of the IEEE international conference

on computer vision, pp. 1026–1034, 2015.

[176] K. Schall, K. U. Barthel, N. Hezel, and K. Jung, “Gpr1200: A benchmark for general-purpose

content-based image retrieval,” in MultiMedia Modeling: 28th International Conference, MMM

2022, Phu Quoc, Vietnam, June 6–10, 2022, Proceedings, Part I, pp. 205–216, Springer, 2022.

[177] H. Ahmadvand, M. Goudarzi, and F. Foroutan, “Gapprox: using gallup approach for approxi-

mation in big data processing,” Journal of Big Data, vol. 6, pp. 1–24, 2019.

[178] H. Ahmadvand and F. Foroutan, “Dv-arpa: data variety aware resource provisioning for big

data processing in accumulative applications,” arXiv preprint arXiv:2008.04674, 2020.

https://docs.oracle.com/en/solutions/oci-opensearch-vision/index.html
https://docs.oracle.com/en/solutions/oci-opensearch-vision/index.html

BIBLIOGRAPHY 245

[179] H. Ahmadvand and M. Goudarzi, “Sair: significance-aware approach to improve qor of big data

processing in case of budget constraint,” The Journal of Supercomputing, vol. 75, pp. 5760–5781,

2019.

[180] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-shelf: an

astounding baseline for recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition workshops, pp. 806–813, 2014.

[181] M. Koskela and J. Laaksonen, “Convolutional network features for scene recognition,” in Pro-

ceedings of the 22nd ACM international conference on Multimedia, pp. 1169–1172, 2014.

[182] N. Nikzad-Khasmakhi, M.-R. Feizi-Derakhshi, M. Asgari-Chenaghlu, M.-A. Balafar, A.-R. Feizi-

Derakhshi, T. Rahkar-Farshi, M. Ramezani, Z. Jahanbakhsh-Nagadeh, E. Zafarani-Moattar, and

M. Ranjbar-Khadivi, “Phraseformer: Multimodal key-phrase extraction using transformer and

graph embedding,” arXiv preprint arXiv:2106.04939, 2021.

[183] A. Xiong, D. Liu, H. Tian, Z. Liu, P. Yu, and M. Kadoch, “News keyword extraction algorithm

based on semantic clustering and word graph model,” Tsinghua Sci. Technol., vol. 26, no. 6,

pp. 886–893, 2021.

[184] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of

object detection,” arXiv preprint arXiv:2004.10934, 2020.

[185] H. Ma, Y. Liu, Y. Ren, and J. Yu, “Detection of collapsed buildings in post-earthquake remote

sensing images based on the improved yolov3,” Remote Sensing, vol. 12, no. 1, p. 44, 2020.

[186] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh, “CSPNet: A

new backbone that can enhance learning capability of CNN,” in 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2020.

[187] A. Neubeck and L. Van Gool, “Efficient Non-Maximum suppression,” in 18th International

Conference on Pattern Recognition (ICPR’06), IEEE, 2006.

[188] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and W. Zuo, “Enhancing geometric factors

in model learning and inference for object detection and instance segmentation,” IEEE Trans.

Cybern., vol. 52, no. 8, pp. 8574–8586, 2022.

BIBLIOGRAPHY 246

[189] “What is yolov8? the ultimate guide..” https://blog.roboflow.com/whats-new-in-yolov8/.

Accessed: Mar. 28, 2022.

[190] “Yolov8 whaosoft143’s blog - csdn blog.” https://blog.csdn.net/qq_29788741/article/

details/128626422. Accessed: Mar. 28, 2023.

[191] “A comprehensive review of yolo: From yolov1 to yolov8 and beyond.” https://arxiv.org/

pdf/2304.00501.pdf. Accessed: Mar. 28, 2022.

[192] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” 2017.

[193] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations of

words and phrases and their compositionality,” 2013.

[194] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,

K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo,

H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,

O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s neural machine translation system:

Bridging the gap between human and machine translation,” 2016.

[195] “Elasticsearch architecture: 7 key components.” https://cloud.netapp.com/blog/

cvo-blg-elasticsearch-architecture-7-key-components. Accessed: Mar. 28, 2023.

[196] A. Iyengar et al., “Enhanced storage clients,” US Appl, no. 14/985,509, 2015.

[197] E. Bacis, S. De Capitani di Vimercati, S. Foresti, D. Guttadoro, S. Paraboschi, M. Rosa,

P. Samarati, and A. Saullo, “Managing data sharing in openstack swift with over-encryption,” in

Proceedings of the 2016 ACM on Workshop on Information Sharing and Collaborative Security,

pp. 39–48, 2016.

[198] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,

“Microsoft coco: Common objects in context,” in European conference on computer vision,

pp. 740–755, Springer, 2014.

[199] I. Augenstein, M. Das, S. Riedel, L. Vikraman, and A. Mccallum, “Semeval 2017 task 10:

Scienceie-extracting keyphrases and relations from scientific publications,” pp. 546–555, 2017.

https://blog.roboflow.com/whats-new-in-yolov8/
https://blog.csdn.net/qq_29788741/article/details/128626422
https://blog.csdn.net/qq_29788741/article/details/128626422
https://arxiv.org/pdf/2304.00501.pdf
https://arxiv.org/pdf/2304.00501.pdf
https://cloud.netapp.com/blog/cvo-blg-elasticsearch-architecture-7-key-components
https://cloud.netapp.com/blog/cvo-blg-elasticsearch-architecture-7-key-components

BIBLIOGRAPHY 247

[200] Y. Mistry, D. Ingole, and M. Ingole, “Content based image retrieval using hybrid features and

various distance metric,” Journal of Electrical Systems and Information Technology, vol. 5,

no. 3, pp. 874–888, 2018.

[201] P. Liu, J.-M. Guo, K. Chamnongthai, and H. Prasetyo, “Fusion of color histogram and lbp-

based features for texture image retrieval and classification,” Information Sciences, vol. 390,

pp. 95–111, 2017.

[202] J. Aguilar-Armijo, C. Timmerer, and H. Hellwagner, “Space: Segment prefetching and caching

at the edge for adaptive video streaming,” IEEE Access, vol. 11, pp. 21783–21798, 2023.

[203] L. Pu, J. Shi, X. Yuan, X. Chen, L. Jiao, T. Zhang, and J. Xu, “Ems: Erasure-coded multi-

source streaming for uhd videos within cloud native 5g networks,” IEEE Transactions on Mobile

Computing, 2023.

[204] A. Rahman, E. Hassanain, and M. S. Hossain, “Towards a secure mobile edge computing frame-

work for hajj,” IEEE Access, vol. 5, pp. 11768–11781, 2017.

[205] A. Ahmad, M. A. Rahman, F. U. Rehman, A. Lbath, I. Afyouni, A. Khelil, S. O. Hussain,

B. Sadiq, and M. R. Wahiddin, “A framework for crowd-sourced data collection and context-

aware services in hajj and umrah,” in 2014 IEEE/ACS 11th International Conference on Com-

puter Systems and Applications (AICCSA), pp. 405–412, 2014.

[206] M. Chen, “Amvsc: A framework of adaptive mobile video streaming in the cloud,” in Globecom

- Communications Software, Services and Multimedia Symposium, 2012.

[207] X. Wang, M. Chen, T. T. Kwon, L. Yang, and V. C. Leung, “Ames-cloud: A framework

of adaptive mobile video streaming and efficient social video sharing in the clouds,” IEEE

Transactions on Multimedia, vol. 15, no. 4, pp. 811–820, 2013.

[208] E. M. Chiheb Ben Ameur and B. Cousin, “Evaluation of gateway-based shaping methods for

http adaptive streaming,” in Workshop on Quality of Experience-based Management for Future

Internet Applications and Services (QoE-FI), IEEE ICC, 2015.

[209] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia, “A survey on quality

of experience of http adaptive streaming,” IEEE Communications Surveys & Tutorials, vol. 17,

no. 1, pp. 469–492, 2014.

BIBLIOGRAPHY 248

[210] C. W. Yichao Jin, Yonggang Wen and, “Optimal transcoding and caching for adaptive stream-

ing in media cloud: An analytical approach,” in DOI 10.1109/TCSVT.2015.2402892, IEEE

Transactions on Circuits and Systems for Video Technology, 2015.

[211] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al., “Finding a needle in haystack:

Facebook’s photo storage.,” in OSDI, vol. 10, pp. 1–8, 2010.

[212] L. Xu, T. Guo, W. Dou, W. Wang, and J. Wei, “An experimental evaluation of garbage collectors

on big data applications,” in The 45th International Conference on Very Large Data Bases

(VLDB’19), 2019.

[213] R. Bruno and P. Ferreira, “A study on garbage collection algorithms for big data environments,”

ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–35, 2018.

[214] M. Jahanshahi, K. Mostafavi, M. Kordafshari, M. Gholipour, and A. T. Haghighat, “Two new

approaches for orphan detection,” in 19th International Conference on Advanced Information

Networking and Applications (AINA’05) Volume 1 (AINA papers), vol. 2, pp. 461–464, IEEE,

2005.

[215] A. Sabbaghi, “A new approach to detect and eliminate orphan processes,” Journal of Mechanical

Engineering and Vibration, vol. 4, no. 3, pp. 13–19, 2013.

[216] “Ffmpeg.” [Online]. Available: https://www.ffmpeg.org/. Accessed: Mar. 28, 2023.

[217] “Setuptools.” [Online]. Available: https://pypi.org/project/setuptools/. Accessed: Mar.

28, 2023.

[218] A. Seema, L. Schwoebel, T. Shah, J. Morgan, and M. Reisslein, “Wvsnp-dash: Name-based

segmented video streaming,” IEEE Transactions on Broadcasting, vol. 61, no. 3, pp. 346–355,

2015.

[219] Z. Liu and Y. Wei, “Hop-by-hop adaptive video streaming in content centric network,” in 2016

IEEE International Conference on Communications (ICC), pp. 1–7, IEEE, 2016.

[220] E. Althaus, P. Berenbrink, A. Brinkmann, and R. Steiner, “On the optimality of the greedy

garbage collection strategy for ssds,” in 2022 IEEE 42nd International Conference on Distributed

Computing Systems (ICDCS), pp. 78–88, IEEE, 2022.

https://www.ffmpeg.org/
https://pypi.org/project/setuptools/

BIBLIOGRAPHY 249

[221] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz, “Taurus: A holistic language runtime

system for coordinating distributed managed-language applications,” Acm SIGPLAN Notices,

vol. 51, no. 4, pp. 457–471, 2016.

[222] L. Lu, X. Shi, Y. Zhou, X. Zhang, H. Jin, C. Pei, L. He, and Y. Geng, “Lifetime-based memory

management for distributed data processing systems,” arXiv preprint arXiv:1602.01959, 2016.

[223] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen, “Numagic: A garbage collector

for big data on big numa machines,” ACM SIGARCH Computer Architecture News, vol. 43,

no. 1, pp. 661–673, 2015.

[224] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ramalingam, M. Costa,

D. G. Murray, S. Hand, and M. Isard, “Broom: Sweeping out garbage collection from big data

systems,” in 15th Workshop on Hot Topics in Operating Systems (HotOS {XV}), 2015.

[225] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu, “Facade: A compiler and runtime for

(almost) object-bounded big data applications,” ACM SIGARCH Computer Architecture News,

vol. 43, no. 1, pp. 675–690, 2015.

[226] “Paste deployment.” [Online]. Available: http://pastedeploy.readthedocs.io/en/latest/

#paste-filter-factory. Accessed: Mar. 28, 2023.

[227] E. Z. T. T. Chekam and Z. Li, “On the synchronization bottleneck of openstack swift-like cloud

storage systems,” in The 35th Annual IEEE International Conference on Computer Communi-

cations, IEEE INFOCOM, April 10-14 2016.

[228] M. Kweun, G. Kim, B. Oh, S. Jung, T. Um, and W.-Y. Lee, “Pokémem: Taming wild memory

consumers in apache spark,” in 2022 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pp. 59–69, IEEE, 2022.

[229] I. K. Kim, S. Zeng, C. Young, J. Hwang, and M. Humphrey, “icsi: A cloud garbage vm collector

for addressing inactive vms with machine learning,” in 2017 IEEE International Conference on

Cloud Engineering (IC2E), pp. 17–28, IEEE, 2017.

[230] R. Bruno, L. P. Oliveira, and P. Ferreira, “Ng2c: pretenuring garbage collection with dynamic

generations for hotspot big data applications,” in Proceedings of the 2017 ACM SIGPLAN

International Symposium on Memory Management, pp. 2–13, 2017.

http://pastedeploy.readthedocs.io/en/latest/#paste-filter-factory
http://pastedeploy.readthedocs.io/en/latest/#paste-filter-factory

BIBLIOGRAPHY 250

[231] N. Cohen and E. Petrank, “Data structure aware garbage collector,” in Proceedings of the 2015

International Symposium on Memory Management, pp. 28–40, 2015.

[232] G. Tene, B. Iyengar, and M. Wolf, “C4: The continuously concurrent compacting collector,” in

Proceedings of the international symposium on Memory management, pp. 79–88, 2011.

[233] D. Detlefs, C. Flood, S. Heller, and T. Printezis, “Garbage-first garbage collection,” in Proceed-

ings of the 4th international symposium on Memory management, pp. 37–48, 2004.

[234] “Varnish cache..” [Online]. Available: http://dx.doi.org/10.1090/

S0894-0347-96-00192-0. Accessed: Mar. 28, 2023.

[235] R. Khan and M. Amjad, “Performance testing (load) of web applications based on test case

management.,” Perspectives in Science, vol. 8, pp. 355–357, Sep. 2016.

[236] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker, “Software performance testing based on

workload characterization,” in WOSP ’02, (Rome, Italy), Jul. 24-26, 2002.

[237] “Apache jmeter.” [Online]. Available: http://jmeter.apache.org/. Accessed: Jun. 04, 2023.

[238] “Ansible.” [Online]. Available: https://www.ansible.com/. Accessed: Jun. 04, 2023.

[239] N. Khanghahi and R. Ravanmehr, “Cloud computing performance evaluation: Issues and chal-

lenges,” International Journal on Cloud Computing: Services and Architecture (IJCCSA), vol. 3,

Oct. 2013.

[240] E. J. Weyuker and F. I. Vokolos, “Experience with performance testing of software systems:

Issues, an approach, and case study,” IEEE Transactions on Software Engineering, vol. 26, Dec.

2000.

[241] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman, M. J.

Harrold, P. McMinn, J. J. L. A. Bertolino, and H. Zhu, “An orchestrated survey on automated

software test case generations.,” The Journal of Systems and Software, 2013.

[242] M. Woodside, G. Franks, and D. C. Petriu, “The future of software performance engineering,”

Future of Software Engineering(FOSE’07), 0-7695-2829-5/07, IEEE.

[243] Compuware, “Applied performance management survey,” Sep.-Oct. 2006.

http://dx.doi.org/10.1090/S0894-0347-96-00192-0
http://dx.doi.org/10.1090/S0894-0347-96-00192-0
http://jmeter.apache.org/
https://www.ansible.com/

BIBLIOGRAPHY 251

[244] C. U. Smith, Performance Engineering of Software Systems. Addison Wesley, 1990.

[245] C. Smith, Software Performance Engineering. Encyclopedia of Software Engineering, Wiley,

2002.

[246] “Curl.1 the man page.” [Online]. Available: https://curl.haxx.se/docs/manpage.html. Ac-

cessed: Jun. 04, 2023.

[247] J. Noor, M. R. A. Uday, R. H. Ratul, J. J. Mondal, M. Sakif, S. Islam, and A. Islam, “Sherlock

in oss: A novel approach of content-based searching in object storage system,” arXiv preprint

arXiv:2303.02105, 2023.

[248] A. Quaium, N. A. Al-Nabhan, M. Rahaman, S. I. Salim, T. R. Toha, J. Noor, M. Hossain,

N. Islam, A. Mostak, M. S. Islam, et al., “Towards associating negative experiences and recom-

mendations reported by hajj pilgrims in a mass-scale survey,” Heliyon, 2023.

[249] S. I. Salim, N. A. Al-Nabhan, M. Rahaman, N. Islam, T. R. Toha, J. Noor, A. Quaium,

A. Mostak, M. Hossain, M. M. Mushfiq, et al., “Human-survey interaction (hsi): A study

on integrity of human data collectors in a mass-scale hajj pilgrimage survey,” IEEE Access,

vol. 9, pp. 112528–112551, 2021.

[250] T. R. Toha, A. Rizvi, J. Noor, M. A. Adnan, and A. A. Al Islam, “Towards greening mapre-

duce clusters considering both computation energy and cooling energy,” IEEE Transactions on

Parallel and Distributed Systems, vol. 32, no. 4, pp. 931–942, 2020.

[251] J. Noor, M. G. Hossain, M. A. Alam, A. Uddin, S. Chellappan, and A. A. Al Islam, “Svload:

An automated test-driven architecture for load testing in cloud systems,” in 2018 IEEE Global

Communications Conference (GLOBECOM), pp. 1–7, IEEE, 2018.

[252] M. Y. Ali, S. Ahmed, M. I. Hossain, A. Alim Al Islam, and J. Noor, “Electronic health record’s

security and access control using blockchain and ipfs,” in Proceedings of Seventh International

Congress on Information and Communication Technology: ICICT 2022, London, Volume 1,

pp. 493–505, Springer, 2022.

[253] J. J. Mondal, M. F. Islam, S. Zabeen, A. A. A. Islam, and J. Noor, “Note: Plant leaf dis-

ease network (plead-net): Identifying plant leaf diseases through leveraging limited-resource

https://curl.haxx.se/docs/manpage.html

BIBLIOGRAPHY 252

deep convolutional neural network,” in ACM SIGCAS/SIGCHI Conference on Computing and

Sustainable Societies (COMPASS), pp. 668–673, 2022.

[254] S. S. Islam, R. A. Auntor, M. Islam, M. Y. H. Anik, A. A. A. Islam, and J. Noor, “Note: Towards

devising an efficient vqa in the bengali language,” in ACM SIGCAS/SIGCHI Conference on

Computing and Sustainable Societies (COMPASS), pp. 632–637, 2022.

[255] M. A. O. Zishan, H. Shihab, S. S. Islam, M. A. Riya, G. M. Rahman, and J. Noor, “Low-cost,

low-power, and low-compute based ecg monitoring systems: Comparative analysis and beyond,”

in 2022 International Conference on Innovation and Intelligence for Informatics, Computing,

and Technologies (3ICT), pp. 401–407, IEEE, 2022.

[256] M. M. T. Nur, S. S. Dola, A. K. Banik, T. Akhter, N. Hossain, A. A. Al Islam, and J. Noor,

“Speaker identification through gender detection,” in 2022 International Conference on Innova-

tion and Intelligence for Informatics, Computing, and Technologies (3ICT), pp. 181–188, IEEE,

2022.

[257] M. M. Ahasan, M. Fahim, H. Mazumder, N. E. Fatema, S. M. Rahman, A. A. Al Islam, and

J. Noor, “Classification of respiratory diseases and covid-19 from respiratory and cough sounds,”

in 2022 International Conference on Innovation and Intelligence for Informatics, Computing,

and Technologies (3ICT), pp. 707–714, IEEE, 2022.

[258] S. H. Nova, S. M. Quader, S. D. Talukdar, M. R. Sadab, M. S. Sayeed, A. A. Al Islam, and

J. Noor, “Iot based parking system: Prospects, challenges, and beyond,” in 2022 Interna-

tional Conference on Innovation and Intelligence for Informatics, Computing, and Technologies

(3ICT), pp. 393–400, IEEE, 2022.

[259] M. S. Mustafa, J. F. K. Lisa, and J. N. Mukta, “Design and implementation of wireless iot

device for women’s safety,” in Proceedings of the 9th International Conference on Networking,

Systems and Security, pp. 41–52, 2022.

[260] F. F. Khan, N. M. Hossain, M. N. H. Shanto, S. B. Anwar, and J. Noor, “Mitigating ddos

attacks using a resource sharing network,” in Proceedings of the 9th International Conference

on Networking, Systems and Security, pp. 1–11, 2022.

BIBLIOGRAPHY 253

[261] R. F. Aunindita, M. S. Misbah, S. B. Joy, M. A. Rahman, S. I. Mahabub, and J. N. Mukta, “Use

of machine learning and iot for monitoring and tracking of livestock,” in 2022 25th International

Conference on Computer and Information Technology (ICCIT), pp. 815–820, IEEE, 2022.

[262] M. I. Miah, J. C. Gope, A. D. Nath, A. J. Nain, F. N. Mitu, and J. Noor, “Advanced waterway

transport system based on internet of things (iot): A novel approach,” in 2022 25th International

Conference on Computer and Information Technology (ICCIT), pp. 1–6, IEEE, 2022.

[263] T. M. Monsaif, O. F. Alif, S. D. Amarth, T. A. Sadman, and J. Noor, “A novel approach to re-

duce air pollution through machine learning based pm2. 5 prediction,” in 2022 4th International

Conference on Sustainable Technologies for Industry 4.0 (STI), pp. 1–8, IEEE, 2022.

[264] G. Aarts, P. Giudice, and E. Seiler, “Localised distributions and criteria for correctness in

complex langevin dynamics,” Annals of Physics, vol. 337, pp. 238–260, Oct 2013.

	51252060a9c428feec54a0e8e6c0130b4ac7ecd41c676e1c83b9ae4140f052c0.pdf
	Candidate's Declaration
	Board of Examiners

	d81585eb0b5d4cf6ed2bddd861578fb1765b4e9d65f58df2e6e8ea537b0e4e12.pdf
	3065127215e2c255bdddd6443c4c9096dd828456c579d3330589bc157031bd52.pdf
	51252060a9c428feec54a0e8e6c0130b4ac7ecd41c676e1c83b9ae4140f052c0.pdf
	Acknowledgement
	Abstract
	Introduction
	Reserach Focus I: Image Loading and Retrieval from Cloud at Low-BW Context
	Research Focus II: Device-sensitive Multimedia Uploading, Retrieval, Searching, and Archival
	Research Focus III: Storage Sustainability through Middleware Placement and Orphan Garbage Data Deletion
	Research Focus IV: System-level Load Testing of Cloud Storage Ecosystem
	Our Key Research Questions and Motivation Behind the Study
	Our Contributions in this Study
	Outline of this Study

	Background
	Overview of OpenStack Swift
	Proxy Servers
	Storage Servers
	Data Model in Swift
	Swift Architecture
	Rings
	Swift Consistency Process

	Quality of Experience (QoE)
	MOS
	PSNR
	SSIM
	VQM

	Part I: Image Loading and Retrieval from Cloud at Low-BW Context
	Orchestrating Image Retrieval and Storage over A Cloud System
	Introduction
	Related Work
	Background
	System Design and Implementation
	Faster Image Retrieval
	Lossy PJPEG Architecture

	Performance Evaluation
	Experimental Testbed Setup
	Experimental Results
	Faster Image Retrieval
	Lossy PJPEG Architecture
	System Resource Usage

	Experimental Findings
	Faster Image Retrieval
	Lossy PJPEG Architecture

	Comparison of Our Approach with Other Studies

	Conclusion and Future Work

	Part II: Device-sensitive Multimedia Uploading, Retrieval, Searching, and Archival
	Secure Processing-aware Media Storage and Archival System (SPMSA)
	Introduction
	Existing Studies on Media Storage and Archival Systems
	Motivations and Challenges
	Implications of Our Study
	Our Contributions

	Background
	OpenStack Swift
	QoE Measurements

	Related Work
	Literature on Media Storage Clouds
	Literature on Video Surveillance System

	Our Proposed Methodology
	Image Processing
	Video Transcoding
	Media Security
	Surveillance System
	Local Storage
	FFmpeg Media Converter
	User Interface
	Object Expiration

	Storage Server
	Archive Server

	Experimental Evaluation and Comparative Analysis
	Experimental Settings
	Testbed for SPMS Server
	Testbed for Surveillance System
	Experimental Data

	Experimental Results
	Experimental Findings

	Discussion
	Scalability of the Framework
	Reproducibility of the Framework

	Conclusion

	A Novel Approach of Content-Based Searching in Object Storage System
	Introduction
	Related Work
	Metadata Searching
	Query Searching
	Content-based Image Retrieval System
	Keyword Extraction from Document

	Background
	Architectural Overview of Swift
	YOLOv4
	YOLOv8
	BERT
	ElasticSearch Overview

	System Design and Implementation
	Developing Client-side
	Developing Keyword Extraction
	Developing Object Detection
	Developing the Storage System
	ElasticSearch Cluster

	Performance Evaluation
	Experimental Setup
	Dataset
	Experimental Results
	Image Dataset Test
	Detection Time Test
	Upload Time Test
	Total Time for Proposed Model
	Uploading and Detection Time Comparison
	Result Evaluation for Document

	Search Analysis
	Completion Suggester
	Search Based on Image Content
	Search Based on Metadata
	Search Timing Results

	Discussion and Comparative Analysis
	Different Swift Models
	Different CBIR Engines

	Conclusion and Future Work

	Part III: Storage Sustainability through Middleware Placement and Orphan Garbage Data Deletion
	Object Storage Sustainability through Removing Offline-Processed Orphan Garbage Data
	Introduction
	Related Work
	Background
	SPMS (Secure Processing-aware Media Storage)
	Middleware in Object Storage System
	Orphan Garbage Data

	System Design and Implementation
	Video Segmenter Middleware
	`RemOrphan': Orphan Data Deletion

	Performance Evaluation
	Experimental Testbed Setup
	Experimental Results
	Overhead Analysis

	Discussion and Comparative Analysis
	Conclusion and Future Work

	Part IV: System-level Load Testing of Cloud Storage Ecosystem
	svLoad: An Automated Case-Driven Load Testing in Cloud Systems
	Introduction
	Literature Survey
	Proposed Methodology
	Load Test Planning
	Creating Test Scenarios
	Creating and Disseminating Scripts

	Experimental Evaluation
	Experimental Settings
	Experimental Results
	Experimental Findings

	Conclusion and Future Work

	Conclusion and Future Work
	Conclusion
	Complexity Analysis
	Future Work

	List of Publications
	Appendices
	Request Analysis of Several HTTP Requests
	Account Authentication
	Account Verification
	Account Creation
	Container Creation for Objects
	Container Creation for Images
	Container Listing of a Created Account
	Object Upload
	Object List of First Container
	Object Download
	Image Upload
	Image List for Second Container
	Another Image Upload
	Image List for Second Container

	Documents for Keyword Extraction
	Document A
	Document B

	References

