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Abstract

Dispersion in optical fiber communication causes signal degradation as light pulses
spread out over distance. Dispersion compensation techniques, such as dispersion-
compensating fibers, fiber Bragg gratings, and chirped fiber gratings, counteract this
effect. Photonic Crystal Fibers (PCFs) offer a promising solution for dispersion com-
pensation by counterbalancing the positive dispersion of standard fibers. PCFs have
emerged to be a dynamic and adaptable solution for various applications such as en-
compassing spectroscopy, bio-sensing, metrology, and long-haul optical communica-
tion systems, owing to their remarkable dispersion-compensating characteristics. In this
study, a novel and highly efficient Negative Dispersion-Compensating Photonic Crystal
Fiber (NDC-PCF) is designed, and machine learning approaches, specifically Random
Forest and Artificial Neural Network (ANN) models, are proposed for predicting output
properties, including effective refractive index, dispersion, confinement loss, effective
area, and V-parameter.

The machine learning models are trained and tested on input parameters within a wave-
length range of 1.18–1.75 µm, pitch from 0.75–0.9 µm, core diameter, and air holes
in the cladding region. Settling on a pitch value of 0.8415 µm achieving of a minimal
dispersion of -1582.21 ps/(nm-km), critical for efficient optical fiber communication.
Compared to conventional numerical simulations such as COMSOL Multiphysics and
ANN, the proposed Random Forest model demonstrates significantly reduced computa-
tional resources and time requirements, with training in milliseconds and testing in less
than one millisecond. The model achieves an impressive average accuracy of around
98%. On the other hand, the best ANN model is obtained by fine-tuning hyperparam-
eters, such as the count of hidden layers, nodes, and training iterations, and attains
an average accuracy of approximately 99.99% for all parameters, with training taking
several seconds and prediction in milliseconds.

With its negative characteristics, the proposed NDC-PCF exhibits great potential for
real-world applications in high-speed optical communication networks. The utilisation
of machine learning approaches offers an efficient alternative to conventional numerical
simulations for predicting the optical properties of NDC-PCFs, enabling faster design
optimisation and cost reductions.

xiv
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Chapter 1

Introduction

Within this opening chapter, the focus of the thesis study is presented on predicting the
optical properties of Negative Dispersion-Compensating Photonic Crystal Fiber(PCF)
using different Machine Learning approaches and analyzing the behavior of PCFs. The
reason for researching this area of study is explained by summarising the current sce-
nario of research in this field through a review of recent literature, followed by outlining
the specific objectives of this study. The structure of the thesis is also outlined at the
end of this chapter.

The development of optical communication systems has increased demand for high-
performance fiber-optic components, including PCF with specific dispersion proper-
ties. PCFs are a unique form of optical fiber with desirable advantages making them
an attractive alternative to traditional optical fibers. Negative dispersion-compensating
photonic crystal fibers (NDC-PCFs) have gained particular interest due to their ability
to mitigate dispersion in optical fiber transmission systems. However, the design and
optimization of NDC-PCFs are complex, requiring a comprehensive understanding of
the correlation between the fiber architecture and its optical features. The first part of
the thesis will cover the theory of dispersion compensation and the design of DC-PCFs.
This includes a review of existing DC-PCFs and their dispersion compensation prop-
erties. It involves experimental characterization of DC-PCFs, including measurements
of their dispersion properties and their performance in optical communication systems.
Communication systems and challenges must be overcome to realize their potential
fully. The latter portion of this thesis emphasizes the application of machine learning
methodologies for predicting the optical characteristics of NDC-PCFs. The aim is to
create a model capable of accurately predicting the dispersion attributes of NDC-PCFs
based on their structural parameters. The model will be trained using a large dataset of
NDC-PCFs and will be validated using experimental data. The results of this thesis can
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potentially impact the design and optimization of NDC-PCFs significantly. By provid-
ing a speedy and precise means of predicting the optical features of NDC-PCFs, this
research will enable the rapid optimization of fiber structures for specific applications,
leading to improved performance and reduced costs. This thesis represents a significant
advancement in the field of NDC-PCFs and application of machine learning in PCF.

1.1 Problem Statement

Photonic crystal fibers (PCFs) have captured substantial prominence in optical com-
munication due to their unique properties, such as high nonlinearity, dispersion engi-
neering, and polarization control. PCFs can potentially improve the performance of
optical communication systems by providing additional degrees of freedom for design-
ing the fiber structure and modifying its optical properties. Such fibers are suitable
for numerous purposes in communication, such as dispersion compensation, broadband
light sources, and high-power fiber lasers. Therefore, studying PCFs in the context of
optical communication is vital for developing new technologies and improving exist-
ing systems. These PCF characteristics demonstrate exceptional potential and enhance
applications within the fiber-optic communication system [1].

Recently, micro-structured PCFs have caught the attention of scientists, researchers, and
technology experts. This is due to their exceptional optical properties, which cannot be
achieved using traditional optical fibers. PCF gives additional flexibility in designing
the guiding characteristics such as effective index, confinement loss, propagation con-
stant, V-parameter, dispersion, and effective mode area can be adjusted by tailoring the
size, number, and arrangement of the circular air cavities [2]. Additionally, background
material regulates these unique dimensions. In general, efficient modeling, analysis, and
simulation of PCF structures rely on numerical processes, including the finite difference
method [3] and the full Vector finite element method (FEM) [4]. One of the fundamental
constraints on optical communication systems is chromatic dispersion. The bandwidth
and broadening of light pulses during their journey through the optical channel are sig-
nificantly impacted by dispersion. A method should be in place to reduce the positive
dispersion impact in a communications system. Several strategies have been used to
provide dispersion compensation, such as higher-order mode dispersion compensating
multi-mode fibers [5] [6] chirped fiber Bragg gratings [7]. Another method employs
dispersion mitigating fibers with a high negative dispersion [8]. A novel approach to
dispersion compensation offered with substantial negative dispersion can be obtained
by tailoring the geometric structure. This designing and analyzing process demands
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substantial computing resources, power, and time. The quantity of input design factors
is to be adjusted for optimization to determine how many iterative studies are necessary.
The optimization design also requires several simulations, human interaction, computer
resources, and time. However, predicting the optical properties is more appropriate per
the requirements of specific applications like dispersion compensation.

1.2 Objectives of the Thesis

This research focuses on designing a PCF structure with negative dispersion to predict
several properties. The primary objectives of this work will be:

• To design novel PCF architecture to obtain high negative dispersion over a wide
range of wavelengths to compensate for dispersion in medium or long-haul WDM
systems.

• To analyze and determine the photonic crystal fiber’s various optical properties
(such as dispersion, confinement loss, birefringence, effective mode index, and
effective area) for creating a dataset.

• To apply several machine learning approaches for faster optical properties pre-
diction and find the appropriate model by optimization.

The model’s precision is validated through the use of a full-vector finite element method
(FV-FEM) incorporating Perfectly Matched Layers (PMLs) to enable accurate simula-
tion of Photonic Crystal Fibers (PCFs).

1.3 Thesis Outline

The subsequent sections of the thesis are arranged in the following manner:
Chapter 1 presents a brief of the research, its motivation, and objectives while empha-
sizing the significance and purpose of the thesis.
Chapter 2 explores dispersion-compensating photonic crystal fibers and their impact on
mitigating challenges in long-haul optical communication systems. Furthermore, the
review investigates the rising prominence of machine learning and artificial neural net-
works in this field.
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Chapter 3 presents an extensive analysis of PCF with a thorough discussion and ma-
chine learning algorithms, including artificial neural networks in the prediction of opti-
cal properties of PCF.
Chapter 4 discusses the geometric model of the proposed PCF, employs the Finite El-
ement Method (FEM) to determine fiber’s optical properties, and utilizes various ma-
chine learning algorithms to predict these characteristics.
Chapter 5 focuses on the results of our research, presenting graphical depictions of the
numerical findings obtained, analyzing the propagation properties of PCF, and the im-
plementation of machine learning techniques in this particular setting.
Chapter 6 offers a concise overview of our research and outlines potential avenues for
future investigation in the field.
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Chapter 2

Literature Review

Before delving into the preceding discussion, providing a literature review on previous
relevant research is beneficial. Photonic Crystal Fibers (PCFs) possess unique guiding
characteristics closely tied to their cross-sectional air holes’ geometric features and are
effectively utilized in various applications. Dispersion significantly affects the band-
width and broadening of optical pulses as they propagate through the channel.

One of the significant areas of application for PCFs is communication. The speed of
communication largely depends on waveguides or communication channels. The de-
mand for data is continuously increasing to meet consumer needs. In long-distance
speedy optical communication, dispersion in the optical link is a significant challenge
that reduces the data transfer rate and leads to pulse widening. It is significant to point
out that an optimal optical fiber for the single-mode operation has positive dispersion
within the range of about 10-20 ps/nm/km [9] [10]. A method should be in place to
reduce the positive dispersion impact on the communications system. Introducing a
significant negative dispersion can help compensate for the positive dispersion while
lowering insertion loss and operating costs.

PCFs possess unique optical characteristics, including customized dispersion, constant
single mode, strong nonlinearity, significant effective mode area, notable birefringence,
confinement loss, etc. The physical structure of the PCFs significantly influences the op-
tical characteristics mentioned earlier. Additionally, the material surrounding the PCFs
also affects these unique properties. Numerous PCF designs can be designed, including
rectangular [11] [12], pentagonal [13], hexagonal [14], octagonal [15], decagonal [13]
elliptical [16], circular [17], spiral [18], quasi [15], kagome [14], honeycomb [19],
steering [17], bow-tie [20], D-shape [21], sunflower type [22], and more. The PCFs
comprise diverse crystal materials such as tellurite [23], fluoride [24], chalcogenide
glasses [18], zabla [25], topas [21], zenox, BK7, and numerous others. PCFs have ver-
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satile applications, including but not limited to optical communication [21] [22], bio-
sensing [16], WDM multiplexer and de-multiplexer [26], filter [27], lasser & fiber am-
plifier [28], optical switching [29],supercontinuum generation [30], spectroscopy [31],
optical coherence tomography [32], high-power technology , etc. A novel approach to
dispersion compensation offered with substantial negative dispersion can be obtained
by tailoring the geometric structure. Numerous researchers have developed different
PCF structures to achieve more excellent negative dispersion. Liu et al. introduce a
new dual slot with a rib-like shape demonstrating almost zero dispersion across a broad
spectrum of wavelengths. The dispersion of the dual-slot silicon PCF is primarily gov-
erned by PCF dispersion due to the adjustment of the mode effective area, and the
nonlinear coefficient and effective mode area are thoroughly investigated. By manipu-
lating various waveguide parameters, the fiber achieved a nonlinear coefficient of 1460
m/W, and chromatic dispersion at the same time around ±205 ps/nm/km could benefit
broadband optical signal systems [33]. Tee and colleagues developed a new photonic
crystal fiber (PCF) that achieves a flattened negative dispersion across communication’s
E, S, C, and U wavelength bands. The structure has a flattened negative dispersion of
-457.4 ps/(nm-km) [34]. A new PCF-in-PCF design is analyzed numerically, providing
a high average and negative dispersion range of -449 ps/nm/km to -462 ps/nm/km for
the E+S+C+L+U communication waveband from 1360 nm to 1690 nm [35]. A PCF
with an octagonal structure acts as a low-loss dispersion compensator for higher-order
modes that can be utilized in lumped or multi-span dispersion compensation. The mod-
ule loss between connectors is 3.16 dB, which can compensate for -886 ps/nm/km of
dispersion, equivalent to compensating for 200 km of NZDSF [34].

PCF with five circular air channels in a ring-shaped hexagonal pattern was reported
with a dispersion coefficient around -1200 to -2304 ps/(nm-km) across the 1350 nm to
1600 nm [36]. Another PCF structure was proposed in a rectangular shape with var-
ious air hole sizes with a dispersion coefficient that falls within the range of -591.3
to -2454.4 ps/nm/km across 1.55 µm [12]. Habib et al. [37] noted an octagonal PCF
that exhibited negative dispersion of -850 ps/(nm-km) in the L band while maintaining
a relative dispersion slope closely matching single-mode fiber (SMF) at 1550 nm of
0.0036 nm-1. Additionally, the PCF achieved a birefringence around 2.53× 10-2 at f
1550 nm. The author of the same paper also presented a hexagonal structure in another
publication [36]. This structure exhibited a negative -1455 ps/nm/km negative disper-
sion at a similar wavelength. The proposed models by Saha et al. (2018) consist of
five air hole rings arranged in circular and elliptical patterns, which exhibit birefrin-
gence of 0.0275 and dispersion of -540.67 ps/nm/km at the 1.55 µm [38]. Biswas et
al. introduced a new structure for a square photonic crystal fiber which offers both an
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ultra-high negative dispersion around -2357.54 ps/nm/km at a 1550 nm. [36] Hasan and
colleagues reported a hybrid PCF with a modified structure with a dispersion of -555.93
ps/nm/km, the nonlinearity of 40.1 W-1 km-1, and birefringence of 0.0379 at wavelength
1550 nm [39]. In a later publication, Hasan et al. proposed a single mode fiber structure
having a flattened profile of -578.50 ps/nm/km [40]. In another study by M. S. Habib
and colleagues (2013), an octagonal-shaped PCF was proposed, exhibiting a negative
dispersion of -588.00 ps/(nm-km) [41].

So in optical communication, it is crucial to have PCF exhibiting extremely high nega-
tive dispersion to prevent pulse boarding and spread, allowing for more efficient long-
distance communication. While some PCF models with negative dispersion have been
reported, there is still a need to improve these models to achieve ultra-high negative dis-
persion. Meeting this demand for ultra-high negative dispersion is crucial for achieving
optimal dispersion profiles in optical communication. Prediction of the optical prop-
erties is more appropriate per the requirements of specific applications like dispersion
compensation.

Precise simulation and enhancement of photonic crystal structures typically depend on
numerical methods, such as the finite difference method [3], finite element method
(FEM) [4], block-iterative frequency-domain method [42], and plane wave expansion
method [43] [44]. Nevertheless, these approaches necessitate substantial computational
resources when handling complex photonic crystal structures; multiple simulations are
necessary to achieve an optimized design. The quantity of input design attributes need-
ing optimization also affects these iterative analyses. In recent years, Machine learning
strategies have attracted widespread attention and been applied in different fields, in-
cluding computer vision, automation, image processing, natural language processing,
different classification or regression problems, and more. In photonics, researchers
have also begun to explore the potential applications of these techniques. They have
used machine learning in a variety of areas, such as multi-mode fibers [45], plasmon-
ics [46], meta-materials [47], bio-sensing [48], meta-surface design [49] [25], network-
ing [50], and optical communications [51]. Kiarashinejad et al. [52] developed a deep
learning approach employing the dimensionality reduction approach to comprehending
electromagnetic wave-matter interactions in nanostructures. Another study used a geo-
metric deep learning approach to analyze nanophotonics structures [53]. Additionally,
in 2018, Dispersion relations [54] were calculated, and Q-factors [55] were optimized
in photonic crystals using extreme learning and deep learning techniques.

The first study applying deep learning methods for determining the optical properties
of a PCF has been done on only solid cores using Artificial Neural Network (ANN) pa-
rameters, including wavelength (0.5-1.8 µm), pitch (0.8-2.0 µm), diameter to pitch ratio
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(0.6-0.9), and several rings (4-5) for a silica solid-core PCF [56]. The evaluation metric
of the proposed model is expressed by Mean-Sqaure Error (MSE) and varies around
0.00065 for different optical parameters. The same writer proposed another study ap-
plying Machine Learning Regression Techniques to Nanophotonic Waveguide Studies.
An absolute percentage error of under 5% was achieved when predicting outputs for
slot, strip, and directional waveguide coupler [56].

Another related work combines solid, hollow, and multi-core PCF to calculate the opti-
cal characteristics using ANN, achieving the minor MSE 0.001 [57]. The computational
time was also compared with the simulation time. Training the model takes time in the
second range, and for testing, ms amount of time is required [56]. Das et al. proposed a
study on applying algorithms like Linear regression, decision trees, and random forest
trees in predicting the optical properties of PCF [58]. The maximum R squared value is
0.995 with minimum MSE 2.78×10-10.

Another broad study applied ANN and SVM as machine learning models to predict
optical properties. The Mean absolute percentage errors using ANN and SVM were
recorded at 0.032% and 0.014%, respectively [59]. Vyas et al. suggested a revised
photonic crystal fiber (PCF) measuring a negative dispersion of approximately -3126
ps/nm/km at the 1.55 µm [60]. Accurate computation of design parameters contributes
to enhancing the desired outcome. The paper uses an extreme learning machine to
predict the negative dispersion coefficient of the modified PCF.

In recent years, there has been significant research on photonic crystal fibers (PCFs) and
their unique optical properties, including customized dispersion, single-mode behavior,
strong nonlinearity, and notable birefringence. Various PCF designs and materials have
been proposed and analyzed to achieve specific optical properties, such as negative
dispersion for compensation in optical communication systems. Despite the develop-
ment of PCFs with negative dispersion, there remains a need to improve these models to
achieve ultra-high negative dispersion for optimal dispersion profiles in optical commu-
nication. Traditional numerical methods for simulating and optimizing photonic crys-
tal structures, such as the finite difference method, finite element method, and plane
wave expansion method, require substantial computational resources and multiple it-
erations, particularly when handling complex structures. Machine learning techniques
have recently emerged as an alternative approach for analyzing and predicting the op-
tical properties of PCFs, offering advantages in terms of computational efficiency and
accuracy.

Although some studies have applied machine learning techniques like artificial neural
networks (ANNs) and support vector machines (SVMs) to predict the optical properties
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of solid-core, hollow, and multi-core PCFs, there is still room for further exploration
of machine learning-based techniques for predicting the optical properties of negative
dispersion-compensating PCFs. Developing accurate and efficient machine learning
models for predicting ultra-high negative dispersion in PCFs could contribute to the
advancement of long-distance optical communication systems and other applications
requiring dispersion compensation.

2.1 Chapter Summary

Photonic crystal fibers (PCFs) exhibit unique optical properties, with negative dis-
persion being essential for compensation in optical communication systems. Despite
progress in PCF designs, achieving ultra-high negative dispersion remains a challenge.
Traditional numerical methods for simulating and optimizing PCFs require substan-
tial computational resources and multiple iterations. Machine learning techniques have
recently emerged as an alternative, offering computational efficiency and accuracy in
predicting optical properties. Further exploration of machine learning-based techniques
for predicting negative dispersion-compensating PCFs can contribute to advancements
in long-distance optical communication systems.
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Chapter 3

Basics of PCF and Machine Learning

The chapter offers a theoretical exploration of the essential principles underlying PCF
and Machine Learning Algorithms. In addition, different optical characteristics of PCF,
including effective index, confinement loss, propagation constant, V-parameter, disper-
sion, and effective mode, are also briefly explained. The basic machine learning tech-
niques (Linear regression, K-Nearest Neighbors, Decision tree, Random forest tree) and
Artificial Neural Networks (ANN) are described briefly.

3.1 Basic Principle of PCF

Photonic Crystal Fiber (PCF) is a specific variety of optical fibers with unique prop-
erties, making them an appealing choice to traditional optical fibers. The fundamental
concept of PCFs relies on establishing a cyclical modification in the refractive index
within the fiber core concerning cladding. The photonic crystal structure significantly
controls light propagation within the fiber, leading to unique properties not found in
traditional optical fibers.

An extraordinary property of PCF is their proficiency in guiding light by total internal
reflection, which occurs when the light is guided in the core section as a result of the
refractive index variation compared to cladding. The photonic crystal structure can pro-
duce various modes of propagation, leading to the properties of the guided light, such
as its dispersion, nonlinearity, and confinement. Another essential property of PCFs is
their capacity to regulate the dispersion of light. Dispersion represents an occurrence
in optical fibers where varying wavelengths of light propagate at distinct velocities,
spreading an optical pulse over time. In traditional optical fibers, the dispersion is
mainly due to material dispersion due to the variation of refractive indices among core
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and cladding materials. In PCFs, the structure of photonic crystals can be customized.
To introduce negative dispersion, which counteracts the positive dispersion in tradi-
tional optical fibers. This leads to a reduction in pulse widening and enables high data
rate transmission over longer distances. PCFs also have a range of other distinct char-
acteristics that make them attractive for various applications. For example, PCFs can
have very low nonlinearities, which makes them suitable for high-speed optical com-
munication systems. PCFs can also have a high degree of confinement, which reduces
sensitivity to bending and torsion, making them ideal for use in harsh environments.

3.1.1 Origin

The origin of Photonic Crystal Fibers (PCFs) can be traced back to the mid-1980s when
researchers first started to explore the idea of creating periodic variations in the refrac-
tive mode index of optical fibers. The concept of photonic crystals, characterized by
periodic refractive index alternation in the refractive index, had already been estab-
lished in solid-state physics. Researchers began considering the possibility of creating
photonic crystal structures in optical fibers. One of the earliest proposed appeals for
PCFs was to create optical fibers with low loss and high dispersion, which would suit
high-speed optical communication systems. In 1986, Yablonovitch proposed the con-
cept of photonic bandgap fibers, which would have a photonic crystal structure that
could confine light within the fiber. This concept formed the basis of much of the early
research on PCFs [61]. Over the following years, researchers continued to explore the
potential of PCFs and developed new techniques for fabricating PCFs with more com-
plex structures. One of the critical breakthroughs in the field came in the late 1990s
when researchers at the University of Southampton demonstrated that PCFs could be
used to create fibers with negative dispersion, which could be used to mitigate the pos-
itive dispersion in traditional optical fibers. Since then, PCFs have become an active
research domain, continually expanding and transforming. Today, PCFs are used in
various applications, including speedy optical communication systems, medical imag-
ing, and sensing. The development of PCFs has profoundly impacted optics and paved
the way for new and exciting technologies previously impossible with traditional optical
fibers.

3.1.2 Structure

The configuration of a PCF entails a core enveloped by a cladding exhibiting a reduced
refractive index marked in Figure 3.1. The core and cladding comprise a specific ar-
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Figure 3.1: Structure of basic PCF

rangement of air holes or ”defects” along the fiber axis, forming a photonic crystal. The
air cavities are usually oriented in a regular lattice pattern and are surrounded by the
core material. The air medium’s size, shape, and arrangement determine the properties
of the PCF. A PCF’s core comprises a recurring pattern of air holes extending along
the fiber’s length and surrounded by a glass cladding. The periodicity of the air cavities
creates a photonic crystal structure that modulates the fiber’s refractive index and allows
the fiber to control the flow of light in new and innovative ways. The structure of a PCF
is typically described in terms of the air hole size, orientation, and distance of one hole
from another. The air holes (circular or elliptical), size, and pitch of the air holes can
be tailored to create fibers with specific optical properties. For example, PCFs can be
designed to have a high or low nonlinearity, to exhibit negative or zero dispersion, or to
have a high or low confinement loss.

3.1.3 Modes of Operation

Based on the confinement approach, there are two distinct modes of PCF operation, the
index-guiding principle and the photonic bandgap principle.
The Index Guiding Principle is a fundamental concept that explains how light is con-
fined and guided within a Photonic Crystal Fiber (PCF). The index guiding principle
states that A PCF’s core can hold the light of a PCF if the core’s average refractive
index is greater than the cladding’s. The refractive index of a material determines the
speed at which light propagates along that material. In traditional optical fibers, the
fiber’s core has a greater refractive index than the cladding, which causes light to be
restricted within the core. However, in PCFs, the regular distribution of air holes in-
fluences the fiber’s refractive index. It creates a photonic crystal structure that confines
light in a new and innovative way. The index guiding principle is critical to the func-
tioning of PCFs because it allows the fibers to confine light in a way that is different
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from traditional optical fibers. This allows PCFs to exhibit various optical characteris-
tics like negative or zero dispersion, high confinement loss, and high nonlinearity.
The Photonic Bandgap Principle is a fundamental concept that explains how light is
guided and confined within a PCF [62]. A photonic bandgap signifies a frequency
spectrum where light is unable to transmit through a substance. The photonic bandgap
configuration in a PCF enables light to be restricted within the core by preventing it
from propagating. The air holes’ size, shape, and periodicity can be controlled to cre-
ate a photonic bandgap structure that matches the wavelength of the light transmitted
through the fiber. This enables the PCF to confine light in a way that is different from
traditional optical fibers, which use total internal reflection to preserve light contain-
ment. The photonic bandgap principle is critical to the functioning of PCFs because it
allows the fibers to confine light differently from typical optical fibers. These proper-
ties make PCFs desirable for numerous applications, ranging from high-speed optical
communication systems to medical imaging and sensing technologies.

3.1.4 Guiding Light through Photonic Crystals

Guiding light in photonic crystal fiber refers to the confinement and propagation of light
within a structure. Photonic crystal fibers are optical fibers with a photonic bandgap
structure, which confines light within the fiber and prevents it from propagating. The
arrangement of photonic crystal fiber is formed by incorporating air holes in the fiber’s
cladding, generating a cyclic configuration of materials with varying refractive indices
[61] [62]. This periodic arrangement creates a photonic band-gap structure that con-
fines light within the fiber’s core and prevents it from propagating out of the structure.
By adjusting the dimensions, shape, and periodicity of the air holes, as well as the re-
fractive indices of the materials, the characteristics of photonic crystal fibers can be
manipulated. This allows photonic crystal fibers to exhibit various optical properties,
including negative or flat dispersion, high confinement loss, and nonlinearity.

3.1.5 Solid Core Photonic Crystal Fiber

A Solid Core Photonic Crystal Fiber (SC-PCF) is a distinct type ofPCF featuring a solid
core encased by a photonic bandgap architecture. The fiber’s core comprises a material
with a high refractive index with respect to cladding index material. The cladding con-
tains a regular pattern of air holes, forming a photonic bandgap structure that traps light
within the solid core. SC-PCFs differ from traditional optical fibers because they have a
photonic bandgap structure allowing high-light confinement within the core. This high
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Figure 3.2: Illustration of (a) solid-core PCF, (b) hollow-core PCF, and (c) typical
single-mode fiber.

confinement results in a large effective area, which can be helpful in various applica-
tions, including nonlinear optics, high-power fiber lasers, and fiber sensors.

3.1.6 Hollow Core Photonic Crystal Fiber

Hollow core photonic crystal fiber (HC-PCF) is a specific kind of photonic crystal con-
figuration fiber with a hollow core surrounded by a photonic bandgap structure. The
fiber’s hollow core is made of air. HC-PCFs differ from traditional optical fibers be-
cause they have a photonic bandgap structure allowing high-light confinement within
the hollow core.

Figure 3.2 displays a model of the core of micro-structured PCFs, in which L indicates
the length of the fiber, d indicates the diameter of the core, and h indicates the pitch of
the air hole. Including Figure 3.2 simplifies the representation and avoids unnecessary
complexity [63].

3.1.7 Design Parameters

The parameters of a PCF refer to the various design and manufacturing aspects that
determine its optical properties and performance. These parameters can be adjusted
during the design and fabrication to achieve desired performance characteristics, in-
cluding high confinement, low loss, effective mode area, effective refractive index, or
specific dispersion properties.
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3.1.7.1 Core Diameter

The core diameter determines the size of the region in which light is confined and
guided and is a significant factor affecting the fiber’s optical performance. A smaller
core diameter leads to higher confinement and nonlinearity, as more light is confined
within a smaller region. However, a smaller core diameter also makes the fiber more
sensitive to bends and other mechanical perturbations, which can cause increased loss
and reduced performance. On the other hand, a larger core diameter provides excellent
mechanical stability and lower loss but reduces the fiber’s nonlinearity and confinement.

Therefore, the choice of core diameter is a trade-off between different performance
characteristics and must be optimized for a specific application. Smaller core diameters
are generally favored for high-nonlinearity applications, while larger ones are favored
for low-loss, high-stability applications.

3.1.7.2 Hole Size and Spacing

The air hole diameter and spacing between them in a PCF cladding region are the most
critical design parameters determining the fiber’s optical properties and performance.
The air cavities in the cladding region form a periodic array, or photonic crystal, that
acts as a bandgap structure that restricts the propagation of specific wavelengths of
light. The air holes’ diameter and spacing determine the bandgap’s size and shape and,
thus, the fiber’s dispersion and confinement properties. A smaller hole diameter leads
to a narrower bandgap, which can result in a higher level of confinement. However, a
smaller hole diameter makes the fiber more susceptible to fabrication errors, resulting
in increased loss and reduced performance. On the other hand, a larger hole diameter
provides greater tolerance to fabrication errors and increased mechanical stability but
also leads to a broader bandgap and reduced confinement. The spacing between the
air holes is another critical factor that affects the fiber’s optical properties. A smaller
spacing leads to a narrower bandgap and increased confinement but also increases the
complexity of the fiber’s fabrication. The choice of hole diameter and spacing is a
trade-off between different performance characteristics and must be optimized for a
specific application. In general, smaller hole diameters and spacing are favored for
high-confinement applications, while larger hole diameters and spacing are favored for
low-loss, high-stability applications.
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3.1.7.3 Refractive Index Contrast

The refractive index contrast of a Photonic Crystal Fiber (PCF) refers to the difference
between the refractive indices of the core and cladding regions of the fiber. This differ-
ence is one of the key parameters determining the fiber’s guiding properties and plays
a critical role in the confinement and transmission of light within the fiber. A high re-
fractive contrast results in a robust guiding mechanism, enabling the light to be directed
within the core even if the core’s diameter is minimal. This results in a high level of
confinement and low loss for the guided mode. On the other hand, a low refractive
index contrast leads to weaker guiding and larger core diameter, which can result in
reduced confinement and increased loss for the guided mode. Refractive index con-
trast is a trade-off between performance characteristics and must be optimized for a
specific application. High refractive index contrast is generally favored for low-loss,
high-confinement applications, while low refractive index contrast is favored for low-
complexity, low-cost applications. It is significant to highlight that the refractive index
contrast of PCFs can be adjusted through various materials and fabrication techniques,
including using glass or polymer materials with different refractive indices and core-
cladding designs with different structural asymmetry. These techniques allow tailoring
the fiber’s optical properties to meet specific application requirements.

3.1.7.4 Air Fraction

The air fraction of a Photonic Crystal Fiber (PCF) refers to the fraction of the cladding
region occupied by air holes. It is a crucial parameter determining the fiber’s optical
properties and performance. It is directly associated with the variation in refractive
index between the fiber’s center and cladding. An elevated air fraction causes a reduced
refractive index contrast between the core and the cladding, resulting in less practical
guidance and higher loss for the transmitted mode. Nevertheless, a higher air fraction
simplifies the fiber’s production process and lowers costs.

Besides, a low air fraction results in a high refractive index contrast and strong guiding,
which leads to high confinement and low loss for the guided mode. However, a low air
fraction makes fiber more difficult and expensive. And its susceptibility to fabrication
errors and mechanical perturbations. The choice of air fraction is a trade-off between
different performance characteristics and must be optimized for a specific application.
High air fraction is generally favored for low-complexity, low-cost applications, while
low air fraction is favored for high-confinement, low-loss applications. It is significant
to point out that the air fraction can be modified by varying the dimension, spacing, and
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orientation of the hollow cavities in the cladding region and using different materials
and fabrication techniques to create the core and cladding regions. These techniques
allow tailoring the fiber’s optical properties to meet specific application requirements.

3.1.7.5 Fiber Geometry and Structural Asymmetry

Fiber geometry refers to the structure and scale of the fiber’s core and cladding sections.
It comprises factors like the diameter of the core, the size and spacing of the holes
within the cladding section, and the positioning of the air holes within the cladding
region. These parameters determine the fiber’s dispersion and confinement properties
and play a critical role in guiding light within the fiber. The structural asymmetry of
the fiber refers to the distinctions in structure between the core and cladding regions,
like the variations in dimensions and organization of the air holes within the cladding
area. This dissimilarity in refractive index values between the core and cladding sec-
tions thus affects the fiber’s guiding properties and optical performance. The choice of
fiber geometry and structural asymmetry is a trade-off between different performance
characteristics and must be optimized for a specific application. For example, small
core diameters and high structural asymmetry are favored for high-confinement, low-
loss applications. Low-complexity, low-cost applications favor a large core diameter
and low structural asymmetry. The fiber geometry and structural asymmetry can be
adjusted using different materials and fabrication techniques, such as glass or polymer
materials and core-cladding designs. These techniques allow tailoring the fiber’s optical
properties to meet specific application requirements.

3.1.7.6 Material Composition

The material composition of a Photonic Crystal Fiber (PCF) refers to the material used
to create the core and cladding regions of the fiber. This parameter is critical in the
fiber’s optical properties and performance, as different materials have different refrac-
tive indices and other optical properties. In particular, silica glass is often selected for
PCF fabrication because of its impressive transparency, reduced loss, and exceptional
mechanical stability, which makes it well-adapted for high-performance scenarios. Be-
sides, polymer materials offer low cost, ease of processing, and a wide range of refrac-
tive index values, making them well-suited for low-complexity, low-cost applications.
The material composition can be adjusted using different fabrication techniques, such
as different glass or polymer materials and various doping or index-modifying tech-
niques. These techniques allow tailoring the fiber’s optical properties to meet specific
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application requirements.

3.1.8 Application of PCF

Due to their distinctive optical properties, photonic crystal fibers have a wide variety
of applications. Some of the critical applications of PCFs include nonlinear optics, the
high confinement of light within the core of PCFs, combined with their large effective
area, makes them ideal for nonlinear optical tasks, including supercontinuum generation
and frequency transformation.

1. Nonlinear item optics: The high confinement of light within the core of PCFs,
combined with their large effective area, makes them ideal for nonlinear optical
applications and frequency conversion.

2. High-power fiber lasers: The high nonlinearity of PCFs allows for generating
high-power fiber lasers with improved beam quality and stability.

3. Fiber sensors: PCFs have high sensitivity to changes in the surrounding environ-
ment, making them useful for sensing applications, pressure sensing, and strain
sensing.

4. Telecommunication: PCFs are used in telecommunication systems for long-haul
and metropolitan area networks. They offer high bandwidth and low dispersion,
making them ideal for high-speed data transmission.

5. Bio-medical applications: PCFs can be used in biomedical applications such as
in vitro diagnostics, endoscopy, and optical coherence tomography due to their
ability to guide light through biological tissues without damaging them.

6. Optical spectroscopy: The high confinement of light in the core of PCFs allows
for improved optical spectroscopy, suitable for gas sensing and environmental
monitoring applications.

3.2 Photonic Crystal Fiber Optical Attributes

Photonic Crystal Fibers (PCFs) are optical fibers that have a microstructured cladding
region with a periodic orientation of air holes. The unique structure of PCFs gives them
distinct optical properties than standard optical fibers, allowing for diverse applications.
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3.2.1 Refractive Index

The effective refractive index signifies the overall refractive index of the light that is
transmitted within the fiber. It is a complex number, with both real and imaginary com-
ponents, and is decided by the structure of the fiber and frequency of light. The effective
refractive index is a crucial property of PCFs, as it determines the guided modes’ disper-
sion, confinement, and loss properties. The real component of the effective refractive
index determines the speed of light in the fiber and the magnitude of the confinement.
In contrast, the imaginary part determines the loss of the guided mode. The calcula-
tion of the refractive index for the fused silica material in the proposed configuration is
represented by Sellmeier’s equation 3.1 in ref [12],

n2(λ) = 1 +
X1λ
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+

X2λ
2

λ2 − Y 2
+

X3λ
2

λ2 − Y 3
(3.1)

Here ‘n’ indicates the refractive index, a function of operating wavelength ‘λ’. At the
Standard temperature, the Sellmeier coefficients of fused silica can be quantified as
X1=0.6961663, X2=0.4079426, X3= 0.8974794 and Y1=0.0046914826 µm2,
Y2=0.0135120631 µm2 and Y3=97.9340025 µm2.

The fiber geometry and structural asymmetry, the material composition, and the wave-
length of the light influence the effective refractive index. The fiber geometry and
structural asymmetry determine the variation in refractive index between the core and
the surrounding cladding regions. In contrast, the material composition determines the
overall refractive index of the fiber. The wavelength of the light determines the effective
refractive index through the dispersion properties of the fiber.

3.2.2 Confinement Loss

The confinement property of a Photonic Crystal Fiber (PCF) refers to the fiber’s ability
to restrict light within its core. The core is encircled by a regularly spaced arrangement
of air holes in PCFs, creating a photonic bandgap that restricts light propagation. By
controlling the air holes’ size, shape, and spacing, the photonic bandgap can guide light
in the fiber’s core, even for wavelengths that would otherwise propagate in the cladding.

The degree of light confinement in a PCF’s core is related to the difference in refractive
indices between the core and cladding materials. A high refractive index contrast leads
to strong confinement and a minor mode field diameter. In contrast, a low refractive
index contrast leads to weaker confinement and a larger mode field diameter. Some
light may have escaped from the PCF core into the cladding region. Confinement loss
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(Lc) decides how much light escapes from the core area. It can be derived using the
imaginary portion of the fundamental refractive index and denoted by [12],.

Lc(
dB

m
) = 8.686× k0Im[neff] (3.2)

Where, Im[neff] represents the imaginary portion of the refractive index, and k0 illus-
trates free space wave numbers. In addition, the confinement property of a PCF is also
affected by the fiber geometry and the wavelength of light being guided. As an example,
a PCF with a smaller core diameter and a higher number of air holes will exhibit su-
perior confinement properties compared to one with a larger core diameter and a lower
number of air holes.

3.2.3 Chromatic Dispersion

The dispersion property of a Photonic Crystal Fiber (PCF) refers to the wavelength-
dependent alternation of the propagation speed of light within the fiber. In general, the
dispersion of light in a PCF is caused by the differences in the effective refractive index
for different wavelengths of light.

Dispersion values may range from positive to negative based on the fiber design and the
wavelength of light. Positive dispersion occurs when longer wavelengths travel slower
than shorter wavelengths, while negative dispersion occurs when longer wavelengths
travel faster than shorter wavelengths. Positive dispersion is often called normal dis-
persion, while negative dispersion is called anomalous dispersion. In a conventional
optical fiber, light pulses travel along the channel, and dispersion mechanisms within
the fiber lead to their broadening. The scenario is demonstrated in Figure 3.3, where
one may observe that as each pulse expands, it overlaps with neighboring pulses, mak-
ing them indistinguishable when reaching the receiver input The fiber geometry and the
refractive index profile in PCFs can control the dispersion property. In contrast, a PCF
with a larger core diameter and a lower refractive index contrast will have a lower dis-
persion property. Dispersion is the time-domain expansion or widening of transmitting
pulses through an optical fiber. Changes easily influence pitch (∧), diameter, and shape
of different holes within the cladding region. So, chromatic dispersion (D) is quantified
by [12]

D(λ) = −λ

c

d2Re(neff)

dλ2 (3.3)

Here, λ represents the wavelength, c defines the maximum speed of light, Re(neff) ex-
presses the actual portion of the refractive index calculated from (1). In addition to the
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Figure 3.3: (a) Light input of fiber (b) Light output at a distance L1 (c) Light output at
a distance L2 >L1

dispersion property, the dispersion slope, the degree to which dispersion varies with
frequency, is also an essential parameter in PCFs. The dispersion slope can be either
positive or negative, determining the amount of chromatic dispersion or the spreading
of light pulses in the fiber.

3.2.4 Non-linearity

The nonlinear property of a Photonic Crystal Fiber (PCF) refers to how the fiber’s re-
fractive index changes in response to changes in optical intensity. Nonlinear effects are
essential in PCFs because they can cause significant distortions of optical signals and
limit the fiber’s performance in specific applications.

The most common type of nonlinear effect in PCFs is self-phase modulation (SPM),
which occurs when changes in the optical intensity cause variations in the phase of the
optical wave. SPM can lead to spectral broadening and distortion of optical signals,
mainly when the optical intensity is high. The calculation of the coefficient of non-
linearity, which is linked to the rate of dispersion and can enhance data capacity and
transmission capabilities, is performed using equation (4) in reference [12]

γc =
2π

λ

n2

Aeff
(3.4)
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Another significant nonlinear effect in PCFs is four-wave mixing (FWM), which hap-
pens when two optical pulses combine to generate new waves with different frequen-
cies. FWM can cause significant crosstalk between optical signals and limit the fiber’s
performance in speedy optical communication systems. The nonlinear characteristic of
a PCF is directly related to the effective nonlinear coefficient, representing the inten-
sity of the nonlinear impact. The fiber’s material composition, geometry, and refractive
index profile affect the effective nonlinear coefficient. Here are some key nonlinear
effects to consider:

Kerr Effect: The Kerr effect is a fundamental nonlinear optical phenomenon observed
in various optical materials, including PCFs. It refers to the change in refractive index
of a material in response to the intensity of light passing through it. In PCFs, the Kerr
effect can lead to self-phase modulation (SPM) and cross-phase modulation (XPM),
which can impact signal propagation and nonlinear interactions.

Self-Phase Modulation (SPM): SPM is a nonlinear effect caused by the intensity-
dependent refractive index change in the fiber. It results in spectral broadening of optical
pulses as they propagate through the PCF. This broadening can introduce distortions and
affect the overall transmission characteristics of the fiber.

Cross-Phase Modulation (XPM): XPM occurs when two or more optical signals with
different wavelengths interact in a nonlinear medium, such as PCF. The intensity of one
signal can induce a phase shift in the other signal, leading to wavelength-dependent
phase modulation. XPM can cause crosstalk and nonlinear interference effects in PCF-
based optical communication systems.

Four-Wave Mixing (FWM): FWM is a nonlinear process that occurs when multiple
optical signals interact in a nonlinear medium. It involves the mixing of different fre-
quencies, resulting in the generation of new frequencies. FWM can cause spectral dis-
tortion, signal degradation, and interference in PCF-based systems.

Raman Scattering: Raman scattering is a nonlinear process where light interacts with
molecular vibrations in the fiber material. It leads to energy transfer between the inter-
acting photons, resulting in wavelength conversion and amplification. Raman scattering
can impact signal propagation and may require compensation techniques in PCF-based
systems.
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3.2.5 Effective Mode Area

The Effective Mode Area (EMA) property of a Photonic Crystal Fiber (PCF) refers to
the area of the cross-section of the optical mode that effectively guides light in the fiber.
The EMA is an essential parameter in PCFs because it determines the fiber’s nonlinear-
ity and ability to transmit high-power optical signals. A larger EMA generally results in
a lower nonlinearity and a higher tolerance to optical power. In comparison, a smaller
EMA results in a higher nonlinearity and a lower tolerance to optical power. The EMA
has a direct relationship with the core diameter squared and an inverse relationship with
the refractive index contrast.

In PCFs, the EMA can be controlled by the fiber geometry and the refractive index
profile. For example, a PCF with a larger core diameter and a lower refractive index
contrast will have a larger EMA. In comparison, a PCF with a lower core size and
a higher refractive index contrast will have a smaller EMA. The effective area is the
core portion that actively transmits the optical wave straight within the material. The
effective mode area is determined using equation (3.5) from reference [12].

Aeff =
(
∫∞
∞ |E2| dxdy)2∫∞
∞ |E|4 dxdy)

(3.5)

In addition to the EMA, confinement loss, which is the loss of light caused by the
finite size of the core, is also a significant parameter in PCFs. The confinement loss is
proportional to the difference between the refractive index of the core and the cladding.
It determines the optical power that can be transmitted through the fiber.

3.2.6 V-Parameter

The V-parameter, also known as the normalized frequency, is a parameter used to de-
scribe the guiding properties of a Photonic Crystal Fiber (PCF). The V-parameter is
related to the waveguide dispersion and the effective refractive index of the fiber. The
V-parameter can be calculated as the normalized frequency of the waveguide, and it is
given by the equation (3.6) in [12]:

veff =
2π∧
λ

√
n2

co − n2
cl (3.6)

Where a is the core radius of the fiber, and λ represents the wavelength of the light
being guided.
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The V-parameter is an essential parameter in PCFs because it determines the waveguide
dispersion, which is dependent on the group velocity of light on its frequency. A larger
V-parameter generally results in a more significant waveguide dispersion, and a smaller
V-parameter results in a smaller waveguide dispersion. The fiber geometry and the
refractive index profile can control the V-parameter. For example, a PCF with a larger
core radius and a lower refractive index contrast will have a larger V-parameter. A PCF
with a smaller core radius and a higher refractive index contrast will have a smaller
V-parameter.

3.3 Full Vector Finite Element Method

The Full Vector Finite Element Method (FVFEM) is a computational technique for
modeling and analyzing the behavior of optical fibers, including PCF. It is a power-
ful tool for simulating PCFs’ complex optical and geometrical properties, including
traversal in the fiber, the interplay between light and the photonic crystal structure, and
the effect of fabrication imperfections. FVFEM utilizes the finite element method as
its foundation. This numerical technique divides the geometry of the fiber into small
elements and solves the equations governing the system using these elements. In the
FVFEM, the optical field is represented by a vector rather than a scalar, which allows
for the simulation of both the magnitude and direction of the field. This provides a more
complete and accurate representation of the optical field, which is particularly important
in PCFs due to their complex geometries and optical properties.

The FVFEM can simulate various optical phenomena in PCFs, including dispersion,
confinement, and nonlinearities. It can also analyze the effects of fabrication imper-
fections on the fiber’s optical attributes, such as hole size, shape variations, and PCF
fabrication for specific applications. The optical mode analysis is carried out on a cross-
section, with the wave propagating in the z-direction and presenting a particular form.

H(x, y, z, t) = H(x, y)ej(ωt−βz) (3.7)

In this case, β is the propagation constant, and ω represents the angular frequency. An
eigenvalue equation for the magnetic field, H , is obtained from the Helmholtz equation.

∇× (n2∇×H)− k2
0H = 0 (3.8)

Which is solved for the eigenvalue λ=-jβ. The magnetic field is set to zero as a boundary
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condition on the cladding’s exterior. Given that the field amplitude decays quickly with
respect to the cladding radius, this boundary condition is appropriate.

3.3.1 Boundary and Interface Conditions

Boundary and interface conditions are essential for modeling photonic crystal fibers
(PCFs). They determine how light travels through the fiber and interact with the pho-
tonic crystal structure.

Boundary conditions refer to the conditions that are imposed on the optical field at its
surface. In PCFs, the boundary conditions determine how light enters and exits the fiber
and interacts with the air holes and the cladding material. Common boundary condi-
tions include the perfectly matched layer (PML) and the Dirichlet boundary conditions,
which specify the behavior of the optical field at the fiber’s surface. Interface conditions
refer to the conditions that are imposed at the interface between two different materials
in the fiber. In PCFs, the interface conditions determine how light passes from one ma-
terial to another and how it is affected by the refractive index contrast at the interface.
Common interface conditions include the Fresnel reflection and transmission condi-
tions, which describe the behavior of light when it encounters the boundary between
two materials having distinct refractive indices. The choice of boundary and interface
conditions is important for the accuracy of the simulation results. For example, the
PML boundary condition is a common choice for PCF simulations because it provides
a stable and accurate representation of the optical field at the fiber surface. Similarly,
the Fresnel reflection and transmission conditions are commonly used at the junction of
the air holes and the cladding material, as they offer a more precise representation of
the optical field.

3.3.1.1 Perfect Matched Layer

The Perfect Matched Layer (PML) is a commonly used boundary condition in modeling
photonic crystal fibers (PCFs). The PML is a mathematical layer that is added to the
boundary of the simulation domain to absorb outgoing waves and prevent reflections.
The PML was initially introduced by J. P. Berenger in 1994 [64].

The PML boundary condition is an artificial layer that absorbs outgoing waves and pre-
vents reflections. It works by modifying the wave equation at the boundary to absorb
outgoing waves and not reflect them into the simulation domain. This allows for more
accurate simulations and reduces the effects of reflections on the results. Undoubt-
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Figure 3.4: Surrounding PML region of the waveguide architecture

edly, the most effective PML formulation currently is the Convolutional-PML (CPML).
CPML forms the PML using an anisotropic, dispersive substance. Implementing CPML
is relatively simple, as it does not necessitate splitting the fields. The PML region can
be regarded as a flawless absorber with a specific level of conductivity. However, the
optimized conductivity is derived from particular equation sets. In our research, we
utilized the cylindrical PML provided in commercial software.

After thorough analysis, wave equations can be formulated within the PML region.

n×H = jwn2sE (3.9)

n× E = −jwµH (3.10)

s = 1− j
σe

wn2ϵ0
= 1− j

σm

wµ0
(3.11)

Where,
E: Electric Field
H: Magnetic Field
σe and σm: The ideal thickness ’e’ for the PML layer is proportional to the operating
wavelength’s multiples. To prevent numerical reflection, the conductivity within the
PML region is gradually increased to its maximum value instead of an abrupt change,
as illustrated in figure 3.5.

To achieve a perfectly matched condition that ensures no Reflection occurs at the junc-
tion, the following can be stated:
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Figure 3.5: Grading of PML conductivity.

σe

ϵ0n2 =
σm

µ0
(3.12)

Here, the Reflection coefficient can be represented by

R = exp
[
− 2

σmax

ϵ0cn

∫ d

0

(ρ
d

)
dρ

]
(3.13)

Based on this, the maximum conductivity is determined as follows:

ρmax =
m+ 1

2

ϵ0cn

d
ln

(
1

R

)
(3.14)

Here,m represents the polynomial order for grading conductivity. The equations convey
that the lowest reflection occurs when the conductivity is at its maximum. Nonetheless,
due to numerical error factors, there is a preferred reflection amount for precisely cal-
culating the propagation constant. An enduring complex effective index value can be
achieved by altering the PML’s thickness and position relative to the PCF’s center.

3.4 Machine Learning Algorithm

Machine learning is a subset of artificial intelligence that enables computers to learn and
adapt from data without explicit programming. Its significance lies in its ability to ana-
lyze vast amounts of data, identify patterns, and make predictions, leading to improved
decision-making and automation. Machine learning has revolutionized various fields,
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including computer vision, natural language processing, and healthcare, by providing
innovative solutions and enhancing existing technologies. It also enables the develop-
ment of personalized services and products, ultimately improving user experiences. As
computational power and data availability increase, machine learning will continue to
play a vital role in advancing scientific research and driving technological innovation.

3.4.1 Linear Regression

Linear regression is a supervised machine learning algorithm for regression problems.
This approach depicts the link between a dependent variable (the target variable) and
one or several independent variables (the input variables). The purpose of linear regres-
sion is to discover the ideal linear link between the dependent and independent variables
so that we can estimate the value of the dependent variable based on a series of values
for the independent variables [65]. Consider the below image of Figure 3.6.

Figure 3.6: Linear regression

We assume the association between the dependent and independent variables is linear
in linear regression. Mathematically, linear regression can be represented as [66].

y = a0 + a1x+ ϵ (3.15)
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Figure 3.7: K-Nearest Neighbor(KNN).

Here, y represents the dependent (target) variable, while x is the independent (predic-
tor) variable. The term a0 denotes the line’s intercept, providing an additional degree
of freedom, and a1 is the linear regression coefficient, which serves as the scale factor
for each input data point. ϵ represents random error. Several methods for solving linear
regression include the ordinary least squares (OLS) method, gradient descent, and the
standard equation method [67]. The choice of method depends on the size and complex-
ity of the data, as well as the computational resources available. Linear regression is a
simple and widely used algorithm well-suited for many regression problems. However,
it has some limitations, including the assumption of a linear relationship between the
dependent and independent variables, which may not be accurate in some cases. More
complex models, such as polynomial or non-linear regression, may be more appropri-
ate. Section text.

3.4.2 K-Nearest Neighbors (KNN)

The K-Nearest Neighbors (KNN) algorithm is a method in machine learning used to
classify data and regression problems [68]. It is based on the closeness of data points
in the feature space and using them to make predictions. The KNN algorithm records
all existing instances and determines the classification of new instances based on the
majority decision of its closest neighbors. The algorithm is simple, effective, and has
relatively low computational costs [68]. In a KNN algorithm, the K value is a hyperpa-
rameter determined before the algorithm is run. When K is assigned a value of 1, the
algorithm is referred to as the nearest neighbor algorithm. If K is set to a higher value,
the algorithm becomes more robust to noise in the data. The KNN algorithm makes
predictions based on the majority class of its nearest neighbors [67]. This algorithm
can handle both binary and multi-class classification issues.
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Figure 3.8: Decision Tree Classification.

3.4.3 Decision Tree

A Decision Tree is a popular machine-learning algorithm for our desired regression
problems [67]. A tree-based algorithm divides the input feature space into smaller re-
gions based on certain conditions. Each node in the tree represents a test on an attribute,
and the branches represent the possible outcomes of that test. The final leaves of the
tree represent the prediction of the target variable. The prediction is based on most of
the target values of the nearest data points in the region represented by that leaf [69].

The Decision Tree algorithm recursively builds the tree, starting from the root and then
splitting the data into subsets based on the test at each node. The attribute that results
in the best split is chosen for each node until a stopping criterion is met, for example,
The peak tree depth or a minimum quantity of samples present in a zone. The Decision
Tree algorithm can be predicted by starting from the root and then traversing down the
tree based on the test conditions at each node until a leaf is reached. The prediction for
the new data point is then given by the target value associated with the leaf.

3.4.4 Random Forest

Random Forest is an ensemble learning method for regression in machine learning. It
is a type of decision tree algorithm that creates a forest of decision trees and combines
the prediction of each tree to arrive at the final prediction [67].

In a Random Forest, multiple decision trees are created from random data set samples.
The samples are selected with replacement, known as bootstrapping, and the features
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are also selected randomly at each split in the decision tree. This means that each
decision tree in the forest has a different combination of data points and features, leading
to diversity in the trees and improved prediction accuracy.

Figure 3.9: Random Forest Tree Classification.

Finally, the trees’ predictions in the forest are combined using majority voting or taking
the average, depending on whether the problem is a classification or regression task.
Random Forest is a robust algorithm that can handle missing values and outliers in the
data and is less prone to overfitting than a single decision tree. It is widely used for
classification, regression, feature selection, and outlier detection tasks.

3.4.5 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is based on the human brain’s structure and function
designed to mimic its complex interconnected neurons to process and learn from in-
put data. It is a complex network of artificial neurons (also known as artificial nodes)
connected to form an extensive, interconnected system. ANNs can be used to perform
a variety of tasks, including pattern recognition, decision-making, and data classifica-
tion [70].

An artificial neuron is a simple processing unit that takes input from one or more
sources, performs a computation on that input, and produces a single output. These
outputs are then used as inputs to other neurons in the network, allowing the informa-
tion to be processed and analyzed in multiple stages. The inputs to an ANN are typically
numerical values representing an object’s or data point’s characteristics. Each neuron
in the network is connected to one or more input neurons, and the strength of these
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Figure 3.10: General Artificial Neural network representation

connections is determined by the weights assigned to them [71]. The weight of each
connection is adjusted during the learning process so that the network can learn to make
accurate predictions.

The most critical component of an ANN is its activation function. The activation func-
tion converts the inputs and weights into a single output value [72].

Typical activation functions comprise the sigmoid function, the hyperbolic tangent func-
tion, and the rectified linear unit (ReLU) function, which is defined as follows: [73] [74]
[75]

Sigmoid : σ(z) =
1

1 + e−z
(3.16)

HyperbolicTangent(Tanh) : σ(z) =
ez − e−z

ez + e−z
(3.17)

RectifiedLinearUnit(ReLU) : σ(z) = max(0, z) (3.18)

Once the input values have been transformed into outputs by the activation function,
they are used as inputs to other neurons in the network.

This process continues until the final output layer is reached, at which point the network
has produced a prediction for the input data. The learning procedure within an ANN
involves fine-tuning the connection weights among the neurons present in the network.
This is typically carried out using optimization techniques like gradient descent, which
adapt the weights depending on the difference between the network’s predicted out-
comes and the actual target values.

Several types of ANNs include feedforward networks, recurrent networks, and con-
volutional neural networks. Feedforward networks are the simplest type of ANN, in
which the data flows through the network in a single direction from input to output.
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On the other hand, Recurrent networks allow information to flow in loops, allowing
the network to retain information from previous time steps. One of the critical ben-
efits of ANNs is their ability to learn from large amounts of data. This makes them
well-suited for various applications, including image recognition [76], natural language
processing [77], and financial forecasting [78]. They can also be used for non-linear
regression, which involves fitting a curve to data that does not follow a straight line.
Another advantage of ANNs is their ability to learn and make predictions despite mul-
tiple inputs and outputs. This makes them well-suited for complex tasks such as speech
recognition, where the output is a sequence of words, and the inputs are audio signals.

3.5 Chapter Summary

In this background chapter, we have explored the optical properties of photonic crys-
tal fibers (PCFs) and the application of machine learning algorithms in their analysis.
We discussed the unique characteristics of PCFs, such as customized dispersion, strong
nonlinearity, and significant effective mode area, and their importance in various appli-
cations, including optical communication and dispersion compensation. Furthermore,
we delved into the role of machine learning algorithms. Emphasizing the growing sig-
nificance of machine learning techniques in fields like photonics, we highlighted their
application in studying and predicting the optical properties of PCFs with greater ac-
curacy and efficiency, overcoming the limitations of traditional numerical methods that
require substantial computational resources. By summarizing this background chapter,
we have showcased the interplay between the optical properties of PCFs and the po-
tential of machine learning algorithms to enhance their analysis. This foundation sets
the stage for our main research question and methodology, which aims to predict the
optical properties of negative dispersion-compensating PCFs using machine learning
techniques.
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Chapter 4

Proposed System

This chapter focuses on designing and modeling Photonic Crystal Fiber (PCF) struc-
tures and their effectiveness in mitigating dispersion in the context of optical commu-
nication systems. The goal is to create and analyze PCF lattice structures to deter-
mine their efficiency in compensating for dispersion. The design process uses the latest
COMSOL Multiphysics software, version 5.0. The software provides a comprehensive
platform for analyzing various optical and mechanical properties of the PCF structures.
The outcome of this study will contribute to the advancement of optical communication
systems and provide insights into the design of efficient PCF structures for dispersion
compensation.

4.1 Modeling flow chart using COMSOL Multiphysics

Modeling Photonic Crystal Fiber (PCF) structures using COMSOL Multiphysics soft-
ware typically involves several steps.

• The geometry of the PCF, including the core and cladding regions, the arrange-
ment of holes, and the size and spacing of the holes, is defined.

• The appropriate materials for the core and cladding regions are chosen.

• The simulation parameters, such as the type of analysis (e.g., eigenvalue, time-
domain), wavelength range, boundary conditions, and mesh density, are set up.

• The necessary boundary conditions, such as the effective index of the core and
cladding regions and the refractive index of the surrounding material, are applied
to the simulation.
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Selection of Modelling Space Dimention

Adding the physics interfaces

Adding the required study

insert the parameters in detaild

Define the component constraints and geometry of the structure
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Figure 4.1: Flowchart for COMSOL MultiPhysics Modeling Process
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• The eigenmodes of the PCF are solved using the finite element method.

• The dispersion characteristics of the PCF, such as the effective index, mode area,
and confinement loss, are extracted.

• The results are analyzed to assess the performance of the PCF design, and any
necessary changes to the geometry or material properties are made.

• The simulation and analysis process is repeated until the desired performance
criteria are met.

• The final design is saved, and the relevant results are exported for further analysis
and optimization. These are the general steps in designing a Photonic Crystal
Fiber using COMSOL. The exact details and complexity of each step will depend
on the specific requirements of the PCF design and the user’s experience. The
modeling steps are depicted in Figure 4.1 as a flow chart.

4.2 New Model Creation

One has the option of either choosing a model from the Model Wizard or creating one
from scratch using a Blank Model.

4.2.1 Model Wizard-Assisted New Model Creation

The steps involved in selecting the space dimension, physics, and study process within
Model Wizard are:

step-1: Choose from the available spatial dimensions, including 3D, 2D Axisymmetric,
2D, 1D Axisymmetric, 1D, or 0D, as shown in the figure 4.2.

Figure 4.2: Choosing a Space Dimension.

Step-2: Choose one or multiple physics from the categorized Physics block as section
in the figure 4.3.
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Figure 4.3: Options in physics selection.

Step-3: Choose a Study from the Study section, then click ”Done.” This will display a
blank model on the desktop.

Figure 4.4: Options in study selection.
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4.2.2 Utilizing Blank Model for Crafting a Novel Model

It’s possible to skip the Model Wizard steps and directly create a blank model by can
choose a model from the Model Wizard or create.

Figure 4.5: Constructing a novel model from the basic framework.

4.3 Attributes, Variables, and Extent

4.3.1 Global Definition

The Global Definition section allows the user to specify their parameters by defining
the name, expression, and value of the parameters.

4.3.2 Geometry Unit

The user can choose the geometrical structure in the geometry section by right-clicking
on the mouse. The size and shape of the object can also be defined easily in this section.
The directory of a user file path for the windows operating system is: C:\ProgramData
\Microsoft\Windows\Start Menu\Programs\COMSOL Multiphysics 5.0
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Figure 4.6: Select the Geometry.

4.3.3 Materials Selection and Considerations

Choose a material from the materials library, which can be found in the component or
node block, as depicted in figure 4.7.
Choose the ”Add Materials” block. Materials can be added in a two-step process:
Step-1: Select the Home tab from the ribbon and click ”add material.”

Figure 4.7: Material selection.
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Step-2: In the Model Builder, right-click on ”Comp. 1¿Materials” and choose ”Add
Material.”

4.3.4 Selecting Boundaries and Addressing Geometric Factors in
Design

One can choose a boundary from the ”electromagnetic waves frequency domain.” If a
boundary is not chosen, its color will usually be ’gray’. If a boundary is chosen, it
will appear ’blue’. To select the boundary condition, choose the electromagnetic waves
frequency domain first, then right-click and select the ’boundary’. This is illustrated in
figure 4.7.

4.3.4.1 Executing mesh condition

The mesh selection specifies the element size and sequence type, as demonstrated in
Figure 4.8.

Figure 4.8: Mesh analysis.

4.3.4.2 Executing the study condition

The final step involves specifying the conditions for analysis, such as the mode fre-
quency and number, displayed in figure 4.9.
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Figure 4.9: Perform the study.

4.3.5 Design Specifications for PCF Lattice Structure

The table shows the values of different parameters used in Comsol MultiPhysics soft-
ware.

Table 4.1: Parameters and values in Comsol MultiPhysics

Parameter Value
Pressure 1 atm
Boundary thickness 0.01 m
Temperature 293.15 K
Boundary condition Transition Boundary Condition
Material-1 Silica Glass
Material-2 Air

4.3.5.1 Label: Material properties

4.3.5.2 Label: Frequency domain analysis of electromagnetic waves

The effective mode index (EMI) measures how the waveguide’s propagation constant
compares to the free space propagation constant. In other words, it quantifies how much
the waveguide affects the speed of light compared to free space. The effective index can
vary depending on the specific excited mode in the waveguide, and multiple effective
indices can exist for a single waveguide system. The wave equation for effective mode



CHAPTER 4. PROPOSED SYSTEM 42

Table 4.2: Properties of airs used in the model

Table 4.3: Properties of silica used in the model

analysis is the Helmholtz equation. It is a partial differential equation describing elec-
tromagnetic or acoustic wave propagation in a homogeneous, isotropic medium. The
equation is given by:

∇2ϕ(r, t) + k0
2ϕ(r, t) = 0 (4.1)

where ϕ(r,t) is the wave field, k0 is the wavenumber, and ∇2 is the Laplacian operator.
This equation can be solved in the frequency domain to find the effective mode indices
of the waveguide. The effective mode indices can then be used to calculate the disper-
sion properties of the waveguide, such as group velocity and chromatic dispersion.

4.3.5.3 Label: Mesh and Mode Analysis

In mesh analysis, the PCF structure is divided into a grid of small cells, and numeri-
cal methods like the finite difference method (FDM), finite element method (FEM), or
the beam propagation method (BPM) are used to solve the electromagnetic equations
that govern the traveling of light through the PCF. Mode analysis of photonic crystal
fiber (PCF) includes the study of the modes of electromagnetic wave propagation in the
fiber structure. PCFs have a unique cross-sectional geometry with air holes arranged
periodically, resulting in a photonic bandgap prohibiting the propagation of specific
frequencies.
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Physics controlled Mesh.
Element size: Finer
Mode Analysis Frequency: variable GHz
Mode search method: Manual
Desired Number of Modes: 10

4.3.5.4 Label: Eigenvalue Solver

In the context of photonic crystal fibers (PCFs), eigenvalue solvers are used to calcu-
late the propagation constants and modes of light inside the fiber. Several numerical
techniques are employed by these solvers to solve Maxwell’s equations governing the
electromagnetic field inside the PCF. The eigenvalue solvers can handle complex PCF
structures, including non-uniform and anisotropic fibers, and provide accurate and effi-
cient solutions for the propagation constants and modes of the fiber.

Relative solver: 1×e-6

Eigenvalue Transformation: Effective mode index
Desired number Eigenvalues: 6

4.3.5.5 Mode analysis solver

Mode analysis solver is a numerical method used to determine the mode charateristics
of photonic crystal fibers (PCFs). It involves solving Maxwell’s equations in a periodic
structure of the PCF using numerical techniques. Mode analysis solver is a numeri-
cal method to model photonic crystal fibers (PCF) characteristics. It involves solving
Maxwell’s equations in a periodic structure of the PCF using numerical techniques.

4.4 Design of Proposed PCF Model

Electromagnetic mode analysis studies the behavior of electromagnetic waves in a pho-
tonic crystal fiber (PCF) structure. It involves calculating the waveguide’s effective
mode index (EMI) and determining the wave equation that describes the propagation
of the waves in the PCF. This analysis requires a fine mesh to capture the electromag-
netic field distribution in the structure accurately. The analysis can be performed using
a high-performance solver capable of solving large sparse linear equations. The results
of this analysis can provide valuable information about the transmission and confine-
ment properties of PCF structures and can be used to optimize their design for specific
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applications.

Structure

Figure 4.10 illustrates the proposed PCF structure. This innovative proposed design is
characterized by air holes (depicted in white) that are strategically embedded within a
silica material (shown in maroon). The figure also includes a sky-blue-colored region,
which represents the Perfectly Matched Layer (PML) of the PCF. The design high-
lights a cladding region that comprises six rectangular air cavities and one hexagonal
air cavity. These air chambers, which are all circular, play a critical role in the PCF’s
overall design and performance. The primary design considerations for this PCF are
the diameters and pitches of the air holes, as they significantly impact the fiber’s optical
properties. The proposed structure was modeled using a widely available simulation
tool COMSOL Multiphysics 5.0.

Figure 4.10: Cross-sectional perspective of proposed PCF for dispersion mitigation.
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Design Parameters

In the context of Photonic Crystal Fiber (PCF) design, the term ”pitch” (denoted by
∧ ) refers to the distance between two air cavities situated within the same layer or
ring of the fiber. This parameter plays a vital role in determining the optical properties
and performance of the PCF. The proposed design has two types of air cavities with
distinct pitches: rectangular and hexagonal. For the rectangular air holes in the cladding
region, the pitch is ∧= 0.8415 µm. On the other hand, the hexagonal air cavities have a
smaller pitch of ∧= 0.225 µm. These differences in pitch values contribute to the unique
configuration of the fiber, resulting in specific optical characteristics. In addition to
pitch, the diameter of the air holes is another crucial design aspect. The rectangular air
holes have a diameter of d = 0.8 µm, while six are slightly smaller, with a diameter of d1

= 0.6 µm. The hexagonal air holes possess a diameter of d2= 0.225 µm. Furthermore,
the PCF features a core diameter of d0 = 0.12 µm, a critical parameter for controlling
the fiber’s guiding properties. The pitch and diameter values of the air cavities in the
proposed PCF design are essential parameters that directly impact the fiber’s optical
performance. Optimizing these values allows the PCF to meet specific requirements in
various optical communication applications.

Perfectly matched layer (PML) To minimize nonphysical scattering, the PCF structure
incorporates an asymmetric circular PML with a thickness that is 6% less than the outer
layer. The inner and outer radii of the PML are 6.2 µm and 6.6 µm, respectively. The
PML enhances the PCF’s performance by reducing scattering effects.

Background Material The background material for the proposed PCF structure was
selected as silica due to its exceptional optical transmittance. Using silica ensures that
the PCF can efficiently transmit light over a broad wavelength spectrum, making it
suitable for various applications in optical communication systems.

4.4.1 Mesh Analysis

The finite element method (FEM) and adaptive meshing techniques are employed in
this study to solve Maxwell’s equations and control errors in the analysis of the pro-
posed Photonic Crystal Fiber (PCF) structure. By focusing on a frequency range from
1340 to 1700 nm, the study aims to determine the effective refractive index of the PCF
for various wavelengths within this range. The FEM analysis is carried out for each
triangle-shaped section of the mesh, allowing more accurate calculations of the fiber’s
optical properties.
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Figure 4.11: Mesh analysis of proposed structure

Scattering boundary conditions are applied to the cladding region of the PCF to prevent
leaky mode reflections from entering the fiber’s core, ensuring more accurate results in
the simulation. The finalized geometry of the PCF consists of 195 domains, 784 bound-
aries, and 784 vertices. The full mesh comprises 53,866 triangular domain elements and
5,696 boundary elements. The mesh’s characteristics include a total element area ratio
of 4.72 ×10-4, a minimum element quality of 0.6603, an average element quality of
0.9407, and a mesh area of 1.367×1010 m2. These mesh properties ensure the accuracy
and precision of the FEM analysis.

The proposed PCF structure offers significant improvements over previous designs re-
garding optical properties. The cladding region of the fiber is made of solid silica ma-
terials with a higher refractive index (RI) than the core. This design choice enhances
the guiding properties of the fiber and results in better overall performance. The finite
element method and adaptive meshing techniques effectively analyze the proposed PCF
structure, enabling a more accurate understanding of its optical properties. The result-
ing design offers substantial improvements over previous PCF designs and demonstrates
the potential for enhanced performance in various optical communication applications.

4.4.2 Electric Field Distribution

The electric field distribution, E, is obtained by solving an eigenvalue problem derived
from Maxwell’s equations. It is well-established that light is primarily confined within
the central core region in the optimal ray-passing model, meaning that the highest mag-
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Figure 4.12: Electric field distribution of proposed structure

netic field density is present in the core for a specific model. The effective mode index
is altered for a given wavelength to achieve the best possible outcome, identifying the
configuration that allows the most light to pass through the central region. This process
determines the desired value of the compelling mode index for any given wavelength.
COMSOL Multiphysics software offers a numerical approach for simulating the elec-
tric field using the finite element method (FEM) [4]. Through FEM calculations, the
electric field intensity and distribution can be visualized, considering the practical di-
mensions and material properties of the electro-spinning setup.

Figures 4.13 and 4.14 illustrates the fundamental mode distribution along the X and Y
axes at an operating wavelength of 1.5µ m. These visual representations indicate that
the X-polarized and Y-polarized mode fields are effectively confined within the fiber’s
core. This effective confinement is primarily attributed to the higher core index than the
cladding region.
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Figure 4.13: Fundamental field distribution in X-axis

Figure 4.14: Fundamental field distribution in Y-axis

The proposed PCF design exhibits a strong dependence of dispersion on several factors,
including the pitch, size, and location of the air channels within the fiber structure.
By carefully adjusting these parameters, the optical properties and performance of the
PCF can be optimized for various applications in optical communication systems. This
highlights the importance of understanding the interplay between these factors when
designing PCFs to ensure optimal performance and desired characteristics.

Figure 4.15 displays the three-dimensional electric field distribution, also known as
power intensity profiles, for the PCF at a wavelength of 1.55 µm. The analysis reveals
that the peak intensity value is located at the core’s center, suggesting that the electric
field is effectively confined within the core region of the PCF. This observation indicates
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that the PCFs are designed to ensure strong electric field confinement to the core, which
is crucial for efficient optical communication systems. The plot also provides insights
into the power flow for the proposed PCF.

(a) 3-D electric field distribution (b) Contour plot

Figure 4.15: Mode profile of proposed PCF

4.5 Utilizing Machine Learning to Model PCF

The proposed research requires quantitative information, which calls for creating a
dataset. Several simulation steps were taken to generate this dataset, and specific pre-
processing steps, such as handling noisy or inconsistent data and assessing the correla-
tion between different variables. These steps ensure the dataset is clean, reliable, and
suitable for further analysis or application of various techniques, such as machine learn-
ing algorithms, to extract valuable insights and make accurate predictions. Proper data
preprocessing is crucial for the success of any data-driven research or modeling, as it
directly impacts the results’ quality.

4.5.1 Dataset Generation

The designed Photonic Crystal Fiber (PCF) undergoes simulation to generate a finite
and accurate dataset. The effectiveness of machine learning models is highly dependent
on the data’s quality, type, and correlation. This dataset consists of 454 rows and 11
column values, which are used for further processing. For predicting output properties
such as effective mode index (neff, dispersion (D), V-parameters (Veff), effective mode
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area (aeff, and confinement loss, input design parameters like pitch, wavelength, size of
core air holes, and diameters of holes (in both circular and hexagonal patterns) within
the silica region are adjusted. The machine learning models can optimize the PCF
design based on the provided dataset. The input design parameters are modified in the
following manner:

Table 4.4: Input parameters of machine learning model

Parameter Range Step
Pitch 0.75-0.88 µm 0.01

Diameter of core 0.067-0.15 µm Random
Diameter of octagonal pattern air hole 0.3-0.39 µm Random
Diameter of closely attached air hole 0.68-0.96 µm Random

Diameter of rectangular pattern air hole 0.63-0.88 µm Random
Wavelength 1.18-1.75 µm 0.03

4.5.2 Pre-processing of Dataset

The relationship between two quantitative attributes can be visualized using a correla-
tion matrix heatmap, as depicted in Figure 4.16. Examining the correlation matrix helps
identify six significant, unique input features that correlate more with the PCF output
optical features. These features include input design parameters like pitch, wavelength,
size of core air holes, and diameters of holes (in both circular and hexagonal patterns).
Figure 4.16 demonstrates that attributes with a strong relationship yield a high corre-
lation value, while those with a weak relationship exhibit a low correlation value. The
process involves randomizing the dataset and standardizing its features. The dataset
contains features with different value ranges, which can be problematic for neural net-
work modeling. To address this issue, we applied MinMax normalization, which scales
the data to fit within a [0,1] range. This enhances the model’s precision and shortens
training time [33]. Furthermore, categorical attributes, such as PCF types with text
values, are converted to integers using label encoding. Randomizing the dataset: It is
shuffled or randomized to avoid any biases. This ensures the data points are in random
order and not arranged to favor any particular set of values. This is important because
biases in the data could lead to a machine-learning model that doesn’t generalize well
to new, unseen data. Eliminating the mean: This step involves calculating the mean
(average) value for each feature in the dataset and subtracting the mean from each data
point. This process is also known as ”centering” the data. This gives the features a
mean of zero, which helps ensure that the features are on a comparable scale and that
no single feature dominates the learning process. Scaling to unit variance: After cen-
tering the data, the next step is to scale the features to have a standard deviation (or
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variance) of 1. This is achieved by dividing each data point by the standard deviation
of the corresponding feature. This step is known as ”normalizing” or ”standardizing”
the data. Scaling the features to unit variance ensures that all features have the same
importance in the learning process and that the model is not biased toward features with
larger magnitudes.

Figure 4.16: Analyzing the relationships between attributes using a heatmap of the
correlation matrix.

By following these preprocessing steps, the dataset will have more uniform and compa-
rable features, which is essential for many machine learning algorithms to work effec-
tively. This helps to improve the performance and generalization of the resulting model.
In this scenario, the data is divided into three distinct sets: training, validation, and test
sets. These sets are used to build, fine-tune, and evaluate the model’s performance. The
data is distributed in proportions of 80%, 10%, and 10%, respectively, meaning 80%
is used for training, while the remaining 20% is evenly split between validation and
testing.
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4.5.2.1 Scatterplot Matrix of Features and Target Variables

This scatterplot 4.17 and 4.18 matrix displays the pairwise relationships between the
feature variable and the five target variables. Each scatterplot depicts the relationship
between one feature variable and one target variable, allowing us to visually inspect the
dependence of the target variables on the features. From all of the figure, it is clear that
all output feature has a linear relation with the diameter of core, air holes of cladding
region and pitch. But all of them follow a polynomial relationship with respect to the
wavelength. The optical output properties greatly depend on the air hole size of the
closely attached rectangle formation. The impact of input features is also analyzed
from this where pitch has lower impact with respect to the air hole size or core size.

We can assess the data’s correlations, trends, and potential outliers by examining the
scatterplots. The plots can help us identify whether linear, quadratic, or more complex
relationships exist between the features and targets. Furthermore, the scatterplot matrix
can help us determine if there are any interactions between the features or the targets,
which could have implications for our modeling efforts.

4.5.3 Modelling of Machine Learning Algorithm

Using Regression Model
Firstly, the database trains four different regression models on the provided training data
and saves them as files for later use. Four different regression models, Linear regression
(LR), K-nearest neighbor (KNN), Decision Tree (DT), and Random Forest Tree (RT),
are used to evaluate the optical properties of the proposed PCF. Various machine learn-
ing algorithms, including Linear Regression (LR), K-Nearest Neighbor (KNN), Deci-
sion Tree, and Random Forest Tree, have been utilized to predict optical properties. In
the case of linear regression, the fit-intercept option is set to ’True’ during construction.
The KNN algorithm is designed with five neighbors and uses the Minkowski Distance
Metric. A uniform weight is also applied to ensure equal weighting for all points within
each neighborhood. The decision tree algorithm chooses the optimal splitting strategy
at each node. The squared-error criterion is employed to evaluate the quality of each
split. As for the Random Forest Tree, it is built using 100 trees and adopts a criterion
similar to that of the Decision Tree.

The entire process is illustrated in figure 4.19. For each of the four models, the following
steps are executed:

Instantiate the model: A new instance of the model is created by calling its class con-
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(a) Scatterplot Matrix of neff vs features (b) Scatterplot Matrix of aeff vs features

Figure 4.17: Scatterplot matrix of features and target (effective mode index & effective
area) for visualizing the structured relationship.
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(a) Scatterplot Matrix of D vs features (b) Scatterplot Matrix of αc vs features

Figure 4.18: Scatterplot matrix of features and target (dispersion & confinement loss)
for visualizing the structured relationship.
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structor (e.g., LinearRegression(), KNeighborsRegressor(), DecisionTreeRegressor(),
or RandomForestRegressor().
Train the model: The model is trained on the provided training data (X train, y train)
using the fit() method.
Save the model: The trained model is saved to a file on disk using the pickle.dump()
function. The file path is created by concatenating the path variable with the model’s
corresponding filename (e.g., ’lr.pkl’, ’knn.pkl’, ’dt.pkl’, or ’rf.pkl’).

Figure 4.19: The flow diagram of an application of regression model

We load four trained regression models from disk and evaluate their performance on a
test set using the R2 score metric. Load the models: The previously saved models (Lin-
ear Regression, K-Nearest Neighbors, Decision Tree, and Random Forest) are loaded
using the pickle.load() function. The model instances are stored in separate variables
(lr model, knn model, dt model, rf model).

Create a list of models and model names: The loaded models are placed in a model list,
and their corresponding names are placed in a separate list called model names.

Print the performance on the test set: The R2 score for each model’s predictions on the
test set (X test) is printed. The R2 score is a commonly used metric for evaluating the
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Figure 4.20: Pseudocode of the steps of the given algorithm

performance of regression models, with values ranging from 0 to 1. Higher R2 scores
indicate better model performance.

Loop through the models: The enumerate() function is used to loop through the models
in the model list and their corresponding names in the model names. For each model:

Make predictions: The model’s predict() method is called on the test set (X test) to
generate predictions (y pred).

Calculate the R2 score: The R2 score is computed with the help of the r2 score function
from sci-kit-learn by comparing the actual target values (y test) and the predicted values
(y pred).

Print the R2 score: The R2 score for each model is printed with its corresponding
name from the model names list. Figure4.20 explain the steps taken using regression
algorithm, which is described briefly.

Using Artificial Neural Network
In supervised machine learning, algorithms are trained using a labeled dataset, where
each input example has a corresponding output or target value. The goal is to learn the
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underlying relationship between inputs and outputs so that the model can make accu-
rate predictions on new, unseen data. Artificial Neural Networks (ANNs) are machine
learning models that have proven highly effective in various supervised learning tasks,
including regression and classification problems. They are particularly well-suited for
handling complex, non-linear patterns and features in the data, which is one of the
reasons they are considered one of the best techniques for supervised learning. The
architecture of a neural network consists of interconnected layers of nodes or neurons.
Each neuron in a layer receives input from the previous layer, processes it, and passes
the result to the next layer. The first layer, the input layer, takes in the raw data, while
the last layer, called the output layer, produces the final prediction. Between the in-
put and output layers, one or more hidden layers can help the network learn intricate
relationships within the data.

In the context of this study, the goal is to predict the optical properties of Photonic
Crystal Fibers (PCFs) using a regression model. PCFs are optical fibers with unique
light-guiding properties, making them valuable in various applications, such as telecom-
munications and sensing. The neural network is trained on a dataset containing various
input features related to the PCF’s structure, such as its components’ size, shape, and
arrangement. The output or target variable is the optical properties of the PCF. Dur-
ing the training process, the network learns the relationship between the input features
and the target variable. Once trained, the ANN can then be used to predict the optical
properties of new, untested PCFs based on their input features.

Network Structure
An Artificial Neural Network (ANN) comprises interconnected nodes, often called neu-
rons. The ANN serves as a framework for processing complex data inputs and learn-
ing from specific input data without relying on pre-programmed, task-specific rules. A
widely used type of ANN is the Multilayer Perceptron (MLP). An MLP comprises three
or more layers, as depicted in Fig. 4.21, which includes an input layer, two hidden lay-
ers, and an output layer. These layers function as fully connected layers, meaning that
each node in one layer connects to every node in the subsequent layer. Each node pos-
sesses an assigned variable weight as input, which are linearly combined (or summed)
and passed through an activation function to produce the output for that specific node.

Netowrk Algorithm

The algorithm begins with the collection of simulation or experimental data, which
serves as the foundation for the machine learning model by providing a sample of the
real-world relationships between input features and target outputs. The training proce-
dure is illustrated in Fig. 4.22. Pitch(∧), Diameter of core(d0, Diameter of octagonal
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Figure 4.21: Structure of Proposed Artificial Neural Network

pattern air hole (d1, Diameter of closely attached air hole (d) and Diameter of rectangu-
lar pattern air hole (d2) are the physical input parameters. Before feeding the data into
the model, it undergoes preprocessing, including normalization and shuffling. Normal-
ization scales the features to a uniform range, typically between 0 and 1, or to a standard
distribution with mean 0 and variance 1, ensuring that no single feature dominates the
learning process. Shuffling randomizes the order of the data points, reducing potential
biases and ensuring the model generalizes well to unseen data.

Once preprocessed, the data is split into three subsets: training(80%), validation(10%),
and testing(10%) datasets. The training set is used to teach the model, while the val-
idation set helps fine-tune the model’s hyperparameters and evaluate its performance
during training. The testing dataset assesses the final model’s performance on unseen
data, estimating how well it will perform in real-world applications.
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Figure 4.22: The flow chart of ANN implementation

An Artificial Neural Network (ANN) model is then trained using the Multi-Layer Per-
ceptron (MLP) Regressor. The ANN architecture consists of multiple input, hidden,
and output layers. The model is trained on the training dataset, and its performance is
evaluated using the validation dataset. This feedback loop helps optimize the hyperpa-
rameters, such as the learning rate and the number of hidden layers, to achieve the best
possible performance.

Finally, after the ANN model is trained and its hyperparameters are optimized, its per-
formance is evaluated on the testing dataset. For prediction of output properties like ef-
fective mode index (neff), dispersion (D), V-parameters (Veff), effective mode area (Aeff)
and confinement loss, the input design parameters such as pitch, wavelength, number
of air holes, and diameter of holes (circular and hexagonal pattern) in the silica region
will be tailored. This step is crucial for assessing how well the model has generalized
to unseen data and estimating its real-world performance. The evaluation metrics, such
as R-squared error, quantify the model’s accuracy and effectiveness in predicting the
target outputs.

Activation Functions:
ANN bridges inputs and outputs by utilizing a collection of nonlinear functions esti-
mated by applying nonlinear activation functions. Sigmoid, Tanh (hyperbolic tangent),
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and ReLU (rectified linear unit) are some of the frequently employed activation func-
tions [79]. ReLU is often preferred, enabling models to train significantly faster than
the Tanh function.

Optimization Solver:
Optimizing weight values during machine learning training is an essential step, and
various solvers can be employed to achieve this. Three notable solvers include Limited-
memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS), Stochastic Gradient Descent (SGD),
and Adaptive Moment Estimation (Adam) [80]. Each solver has advantages and draw-
backs, but the Adam optimizer is often preferred for various reasons. The Adam op-
timizer works well on relatively large datasets, which makes it suitable for handling
complex problems that involve a substantial amount of data. It combines the best as-
pects of the momentum-based SGD and the adaptive learning rate methods, offering
an efficient and robust optimization approach. This results in faster convergence of the
learning process, improved accuracy, and overall better performance.

Hidden Layers and Nodes:
When designing an Artificial Neural Network (ANN), one of the crucial aspects to con-
sider is the architecture of the network, which includes the number of layers and the
number of nodes (or neurons) in each layer. Determining the optimal structure for an
ANN is challenging, as there is no definitive rule or formula to pre-determine the ideal
configuration for a given problem. This particular neural network architecture com-
prises one input layer, two hidden layers, and one output layer. The two hidden layers
consist of 500 and 100 neurons, respectively. The choice of the number of layers and
nodes in each layer is often based on experimentation and prior experience with similar
problems. This process typically involves trial and error, where various architectures
are tested, and their performances are compared to find the most suitable one for the
problem.

Epochs:
An epoch is a single pass through the entire dataset during training, which consists of
multiple iterations depending on the batch size. In this specific case, 5000 epochs are
specified for the training process. The appropriate number of epochs is essential to
avoid overfitting or underfitting the model. Ideally, the number of epochs should be
chosen when the R Squared score converges to an acceptable limit, indicating that the
model has learned the underlying patterns in the data.
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4.6 Chapter Summary

In the proposed methodology, we utilize machine learning techniques to predict the
optical properties of negative dispersion-compensating photonic crystal fibers (PCFs)
effectively and efficiently. By integrating a suitable machine learning algorithm with a
comprehensive dataset of PCF designs and their corresponding optical properties, we
aim to create a predictive model capable of accurately estimating the performance of
novel PCF structures. This approach streamlines the design and optimization process
for PCFs, enabling the development of tailored dispersion-compensating fibers with
improved performance in optical communication systems.
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Chapter 5

Results and Discussions

COMSOL Multiphysics 5.0 is employed to design the proposed PCFs using the finite
element method to determine the electric field distribution and fundamental mode prop-
erties. The effective refractive index (neff) is obtained using Perfectly Matched Layer
(PML) boundary conditions. The modal refractive indices are then utilized to compute
the (aeff), Dispersion (D), confinement loss (αc), and V-parameter (veff) through numer-
ical calculations. Secondly, Machine learning algorithms such as linear regression(LR),
k-nearest neighbor (KNN), Decision tree(DT), and random forest tree(RFT) are used
to predict the optical properties of the proposed method regardless of the numerical
solution. Another study has been done to expect the same properties using the Artifi-
cial neural network(ANN). The hyperparameters (Number of hidden layers, number of
neurons in each layer, and epoch in training) have been optimized to get better rest for
predicting properties more accurately than previous. The machine learning models, in-
cluding the ANN model, are designed using the python language, the Keras library, and
part of the TensorFlow framework. The code is a Python script that uses the matplotlib
library to generate different types of plots.

5.1 Analysing PCF Characteristics

This section analyzes Photonic Crystal Fiber (PCF) characteristics by adjusting their
geometrical structure. Modifying parameters such as air hole size, pitch, and core di-
ameter can enhance PCF performance in various applications, including optical com-
munication systems. The study aims to understand the impact of these structural ad-
justments on properties like effective refractive index, dispersion, confinement loss,
and more. This research can contribute to developing more efficient and versatile PCFs,
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Figure 5.1: Fluctuation of the effective refractive index for varying operating wave-
lengths for alternation of ∧ from optimum(∧=0.8415 µm) to ± (1 to 2%)

providing valuable insights for designing next-generation optical devices.

5.1.1 Comparative Analysis of Effective Refractive Index

Figure 5.1 displays the relationship between the wavelength and the effective refractive
index for a Photonic Crystal Fiber (PCF). The effective refractive index is a complex
value composed of real and imaginary parts. Still, in this case, the plot focuses on the
fundamental part of the refractive index as it varies concerning the wavelength. Figure
5.1 demonstrates this relationship for different pitch values, which are varied from ±1%
and ±2% from the optimum value of ∧ = 0.8415 µm. From the figure, it can be observed
that the effective refractive index varies linearly with the wavelength for each pitch
value. This linear behavior can be attributed to high-frequency electromagnetic waves
being well confined within the core of the PCF. In contrast, low-frequency waves tend to
spread out into the cladding region. PCFThe pitch value directly influences the amount
of air present in the cladding region. A higher pitch indicates reduced air in the cladding,
increasing the effective refractive index. This trend can be observed in the plot, where
the effective refractive index increases with an increasing pitch value. By visualizing
these relationships, the code enables users to gain valuable insights into the behavior of
the effective refractive index and its dependence on the wavelength and pitch of a PCF.
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Figure 5.2: Fluctuation of the effective area for varying operating wavelengths for al-
ternation of ∧ from optimum(∧=0.8415 µm) to ± (1 to 2%)

5.1.2 Comparative Analysis of Effective Area

Figure 5.2 displays the relationship between the wavelength and the effective area (Aeff)
for a Photonic Crystal Fiber (PCF). The effective area is an essential parameter in optical
fiber design, as it significantly impacts the fiber’s performance in terms of nonlinearity
and signal confinement. The plot in Figure 5.2 demonstrates this relationship for dif-
ferent pitch values, which are varied from ±1% and ±2% from the optimum value of ∧
= 0.8415 µm. From the plot, it can be observed that the effective area exhibits distinct
trends concerning the wavelength for each pitch value. These trends can be attributed
to the varying geometric structure of the PCF, as the pitch value affects the arrangement
and size of the air holes in the cladding region.

5.1.3 Comparative Analysis of Confinement Loss

Figure 5.3 presents a graphical representation of the confinement loss in a Photonic
Crystal Fiber (PCF) plotted on a logarithmic scale as a function of wavelength. Con-
finement loss is an essential parameter in fiber optics, as it determines how effectively
light is confined within the fiber’s core, directly impacting signal transmission effi-
ciency. The figure also represents the confinement loss in the logarithm scale concern-
ing wavelength. Confinement loss is related to wavelength and increases as wavelength
increases. The logarithm value of confinement loss decreases with the increased pitch
value. The figure highlights the relationship between confinement loss and wavelength,
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Figure 5.3: Fluctuation of the confinement loss for varying operating wavelengths for
alternation of ∧ from optimum(∧=0.8415 µm) to ± (1 to 2%).

showing that the confinement loss also increases as the wavelength increases. This
implies that the light is less effectively confined within the fiber’s core for longer wave-
lengths, leading to increased signal power loss. Additionally, the figure illustrates the
impact of pitch values on confinement loss. Pitch refers to the spacing between the
air holes in the cladding region of a PCF. The logarithm value of confinement loss de-
creases when the pitch value increases. This trend suggests that increasing the pitch
value improves the confinement of light within the fiber, resulting in a lower confine-
ment loss.

5.1.4 Comparative Analysis of Dispersion

Figure 5.4 demonstrates the relationship between the wavelength (λ) and dispersion in
a Photonic Crystal Fiber (PCF) with varying pitch values. Specifically, it illustrates
how the dispersion changes as the wavelength and pitch values are adjusted. If the pitch
values become more minor concerning the other value, it shows the highest dispersion
at a specific wavelength. And then, the value of dispersion rises again. With the con-
sideration of the minimum and steady value of negative dispersion in the optical fiber
communication window, pitch ∧=0.8415 µm is chosen to obtain minimum dispersion
-1582.21 ps/(nm-km)
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Figure 5.4: Fluctuation of the dispersion for varying operating wavelengths for alterna-
tion of ∧ from ±(1 to 2%).

5.1.5 Effect of core size on Dispersion

Figure 5.5 exhibits the dispersion as a function of wavelength with different core air hole
diameters. The core size of a photonic crystal fiber (PCF) has a significant impact on its
dispersion properties. As the core size increases, the effective mode area also increases,
leading to a decrease in the fiber’s confinement of light. This results in a lower modal
overlap with the core material and, consequently, a reduction in the material dispersion.
As the core with a bigger diameter than optimum d0=0.12 µm has the solid capacity for
confine light, the dispersion is lesser for it. The maximum dispersion obtained in this
observation is -1604.2 ps/(nm-km). The inversely proportional relationship between the
diameter of the core and dispersion is demonstrated in Figure 5.5.
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Figure 5.5: Fluctuation of the dispersion for varying operating wavelengths for core
diameter d0=0.11 µm, 0.12 µm and 0.13 µm.

5.1.6 Impact of Cladding Air Hole Dimensions on Dispersion

The dimensions of the cladding air holes in a photonic crystal fiber (PCF) have a signif-
icant impact on its dispersion properties. Altering the size, shape, and arrangement of
air holes in the cladding can lead to changes in both the waveguide dispersion and the
effective refractive index of the fiber. As the size of the air holes increases, the refractive
index contrast between the core and the cladding becomes more pronounced, resulting
in a stronger confinement of light within the core. This can lead to an increase in the
waveguide dispersion, which can either enhance or counteract the material dispersion
depending on the specific PCF design. Figure 5.6 shows the variation of dispersion
along with wavelength where all other parameters are constant. The air holes with opti-
mum diameter d=0.8 µm are closely shielded in the core region, so the light is bounded
into the core. With a more central air hole, the dispersion becomes more negative. The
maximum negative dispersion -2065.2 ps/(nm-km) is obtained at λ=1550 nm.

Whenever the diameter of air holes situated after one square ring increases, the disper-
sion also increases concerning the wavelength. This is shown in Figure 5.7. In this case,
the air holes aren’t near the core. The light confinement strength in the core doesn’t lin-
early depend on it. The maximum dispersion with optimum d1=0.6 µm is -1582.21
ps/(nm-km) but with d1=0.57 µm, it is -1626.8 ps/(nm-km).
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Figure 5.6: Fluctuation of the dispersion for varying operating wavelengths for alterna-
tion of d1 in range of ±5% from optimum (d1=0.6 µm).

Figure 5.7: Variation of Dispersion with different operating wavelength for alternation
of d in the range of ±5% optimum (d=0.8 µm).

5.2 Prediction of PCF Optical Properties using Machine
learning

Predicting the optical properties of photonic crystal fibers (PCFs) using machine learn-
ing involves creating a model that can learn from a dataset of known PCF properties and
use this knowledge to predict the properties of new, unseen PCFs. This study uses four
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machine learning algorithms (Linear regression, K-nearest neighbor, Decision Trees,
and Random forest tree).

5.2.1 Prediction of Effective Refractive Index

Figure 5.8 shows the scatter plot of predicted vs. effective refractive index (neff). The
solid black line (y = x) indicates the ideal linear model response. The blue, orange,
green, and red circles refer to the data points of linear regression, KNN, Decision Tree,
and Random Forest Tree, respectively. The r-square value is considered an evaluation
metric. The blue data points of linear regression are comparatively far from the solid
line, which indicates the lower r-square value of 0.96. The data points of KNN are
more scattered in the region of neff between 1.28 and 1.30. Hench has the lowest r-
square value at 0.95. Most of the Decision Tree and Random Forest Tree data points
touch the solid black line. This gives about a 99% r-square value.

Figure 5.8: The scatter plot of predicted neff (y-axis) Vs actual neff (x-axis) comparing
against perfect linear relationship (y=x).

This trained linear regression model was then used to predict the effective refractive
index (neff) values at unknown PCF parameters, ∧ = 0.875 µm, d/∧ = 0.0.8536, d1/∧ =
0.7885,d2/∧ =0.3 and d0/∧ = 0.0914 as shown in Figure 5.9 neff data corresponding to
these parameters was never recorded or provided during the training of the model. The
solid line with circle markers shows the actual values of neff . In contrast, different line
styles and markers represent the predicted values from four different regression models
(linear regression, k-nearest neighbors, decision tree, and random forest). A dashed-
dotted line with hexagon markers represents the linear regression model predictions, a
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Figure 5.9: Evaluating the correspondence between the simulated neff and the predicted
neff across multiple algorithms with an unexplored configuration.

solid line with pentagon markers shows the k-nearest neighbors model predictions, a
dotted line with star markers displays the decision tree model predictions, and a dashed
line with square markers depicts the random forest model predictions. It can be ob-
served that all regression models exhibit varying degrees of agreement with the actual
values, demonstrating their ability to predict the effective refractive index at different
wavelengths. This comparison allows users to assess the performance of each model in
estimating neff for a PCF, providing valuable insights into the effectiveness of different
machine-learning approaches for this particular application.KNN gives more significant
fluctuation compared to another model because of lower accuracy.

5.2.2 Prediction of Effective Mode Area

Figure 5.10 represents how well the tested data points of effective mode area (Aeff) are
fitted compared to the ideal model. The data points around 5um2 are not close to the
ideal model for every model. Because there are very few data points in the 3.5 to 5
µm2, the algorithm couldn’t learn well with these fewer data. However, the data points
of the Decision Tree and Random Forest Tree are much closer than the other machine
learning models, and hence the r-square value is 96% and 97%, respectively. The linear
regression model gives the lowest r-square value of 0.65.
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Figure 5.10: The scatter plot of predicted aeff (y-axis) Vs actual aeff (x-axis) comparing
against perfect linear relationship (y=x).

The performance of each machine learning model is quantified using the R-squared (R2)
score, which is displayed in the legend alongside the layer count. The plot uses different
markers to represent the predicted values from each model, with circles indicating the
predictions.

Figure 5.11: Evaluating the correspondence between the simulated aeff and the predicted
aeff across multiple algorithms with an unexplored configuration.

Figure 5.11 is a line plot that compares the performance of four different machine learn-
ing models in predicting the effective mode area (Aeff) as a function of wavelength (λ).
The models used are linear regression (LR), k-nearest neighbors (knn), decision tree
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(DT), and random forest (rt). The actual Aeff values are also plotted for reference. In
this plot, the x-axis represents the wavelength (λ) in micrometers (µm), while the y-axis
shows the effective mode area (Aeff) in square meters (m2). Each model is represented
by a distinct line style and marker specified in the code. The actual Aeff values are plot-
ted using solid lines with circle markers. The figure allows for a visual comparison of
the accuracy and performance of the different machine learning models in predicting
the Aeff as a function of wavelength. The closer a model’s line is to the actual Aeff line,
the better its performance. The legend maps the line styles, markers, and corresponding
models.

5.2.3 Prediction of Dispersion

The relationship between the predicted and actual dispersion data points of different
regression models is shown in Figure 5.12. The dispersion (D) has no linear relationship
with all the input parameters. Hence, it has a vast r-square error. KNN gives the r-square
value of 0.83, much greater than the linear regression. Besides, the Decision Tree and
Random Forest Tree give the highest r-square values of 0.95 and 0.97, respectively.

Figure 5.12: The scatter plot of predicted dispersion (D) (y-axis) Vs. Solid dispersion
(D) (x-axis) comparing against perfect linear relationship (y=x).

Figure 5.13 presents a comparison between four distinct machine learning algorithms in
terms of their ability to predict chromatic dispersion (D) as a function of wavelength (λ).
The algorithms being compared are linear regression (LR), k-nearest neighbors (knn),
decision tree (DT), and random forest (rt). The actual chromatic dispersion values are
plotted to serve as a benchmark. In this graphical representation, the x-axis corresponds
to the wavelength (λ) measured in micrometers (µm). At the same time, the y-axis dis-
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Figure 5.13: Evaluating the correspondence between the simulated dispersion (D) and
the predicted dispersion (D) across multiple algorithms with a new configuration.

plays the chromatic dispersion (D) in units of picoseconds per kilometer-nanometer
(ps/km.nm). Each algorithm is denoted by a unique line style and marker combination
as defined in the code. A solid line with circular markers represents the actual D values.
By examining the proximity of each algorithm’s line to the line representing the actual
D values, one can visually assess the predictive accuracy and performance of the differ-
ent machine learning models in estimating chromatic dispersion based on wavelength.
Including a legend makes it easy to identify the line styles, markers, and corresponding
models.

5.2.4 Prediction of Confinement Loss

Confinement loss of the proposed PCF has an almost linear relationship with all input
parameters. Hence, the linear regression gives about 96% of the r-square value, shown
in Figure 5.14. The KNN couldn’t find an exact local approximation in the negative
region of confinement loss; it has a smaller r-square value than linear regression. The
data points of the Decision Tree are closer to a solid line that gives an r-square value of
0.98. The r-square value for Random Forest Tree is about 99%.
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Figure 5.15: Evaluating the correspondence between the simulated and predicted con-
finement loss across multiple algorithms with a new configuration.

Figure 5.14: The scatter plot of predicted confinement loss (y-axis) Vs. Actual confine-
ment loss (x-axis) compared against perfect linear relationship (y=x).

Figure 5.15 visually demonstrates the performance of each machine learning model in
predicting confinement loss at various wavelengths. By comparing the data lines, it is
possible to assess the accuracy and fitting of each model to the actual confinement loss
values. The accuracy described in figure 5.14 is maintained hereafter.

5.2.5 Prediction of V-Parameter

Figure 5.16 shows the predicted vs. actual V-parameter data points. The Veff has an
almost linear relationship but is not precisely linear with input features such as wave-
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length. The Decision Tree and Random Forest Tree give a 99% r-square value, much
more than LR (96%) and KNN (95%).

Figure 5.16: The scatter plot of predicted veff Vs actual veff comparing against perfect
linear relationship (y=x).

Figure 5.17 compares four different machine learning algorithms in terms of their ability
to predict the V-parameter as a function of wavelength (λ).

Figure 5.17: Evaluating the correspondence between the simulated and predicted veff

across multiple algorithms with an unexplored configuration.

From the above graphs, the Random Forest Tree performed well with every output
parameter and gave an average 98% r-square value. The main reason is that most of
the data have a nonlinear trend. Besides, the Decision Tree also performs well, but not
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like Random Forest Tree, as Random Forest Tree averages many Decision Trees. And
linear regression performs worst as few data have a linear relation with input features.

5.3 Prediction of PCF Optical Properties using Artifi-
cial Neural Network

Predicting the optical properties of photonic crystal fibers (PCFs) using artificial neural
networks (ANNs) is a promising approach due to the complexity of the PCF structures
and the difficulty in solving them analytically. ANNs are machine learning algorithms
that can learn complex patterns in data and make predictions based on those patterns.
To obtain a better model with higher accuracy, the hyperparameters are tuned to fetch
the optimum value.

5.3.1 Layer Tuning of ANN

This study constructs four different neural network models with different numbers of
layers and neurons. The first model is a single-layer neural network with 500 neurons.
The second model is a two-layer neural network with 500 and 100 neurons, respec-
tively. The third model is a three-layer neural network with 500, 200, and 100 neurons,
respectively. The fourth model is a five-layer neural network with 500, 100, 50, 50,
and neurons, respectively. Then R-squared error for each of the four models on the test
set was calculated. Then trained models are used to make predictions based on the test
data. The r2 score function from sci-kit-learn is used to compute the R-squared error
between the predicted and actual values.

5.3.1.1 Prediction of Effective Refractive Index

Figure 5.18 visualizes the performance of Artificial Neural Networks (ANN) with dif-
ferent numbers of hidden layers (1, 2, 3, and 5 layers) in predicting the target variable
neff (effective refractive index). Inset shows the R-squared value obtained with layers.
The figure is a scatter plot with the actual neff values on the x-axis and the predicted neff

values on the y-axis. A diagonal line (in black) represents a perfect prediction where
the actual and predicted values are equal. Four sets of scatter points correspond to a
different ANN model with varying numbers of hidden layers (1, 2, 3, and 5 layers). The
points are represented by circles with different colors and labeled with each model’s R-
squared (R2) error value. The closer the scatter points are to the diagonal line, the better
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Figure 5.18: The scatter plot comparing predicted neff (y-axis) and actual neff (x-axis)
for different hidden layers in the ANN against perfect linear relationship (y=x).

the model’s performance. For neff parameters of PCF, it can be stated from the figure
that the neural network with two hidden layers performs better, giving an R-squared
(R2) error value around 0.99899, which is quite significant. All the networks with a
specific number of hidden layers perform well, such as architecture with layer 1 giving
0.9971, layer 3 giving 0.99833, and layer 5 with 0.99758 R-squared (R2) error value.

5.3.1.2 Prediction of Effective Mode Area

Figure 5.19 illustrate a scatter plot to assess the performance of four different Artifi-
cial Neural Network (ANN) models with varying numbers of hidden layers (1, 2, 3,
and 5 layers) in predicting the effective area (Aeff) in square meters (m2). The figure
shows that a network with two hidden layers gives a maximum r-squared error of around
0.99975. The inset shows the r-squared error for different numbers of layers.

5.3.1.3 Prediction of Dispersion

Figure 5.20 shows a scatter plot to compare the performance of four Artificial Neural
Network (ANN) models, each with a different number of hidden layers (1, 2, 3, and
5 layers), in predicting dispersion (D) values measured in picoseconds per kilometer-
nanometer (ps/km.nm). The neural network’s performance with two hidden layers is
more accurate than others. It gives around 0.99929 r squared value, whereas another
network with a different layer gives less than 0.999.
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Figure 5.19: The scatter plot comparing predicted aeff (y-axis) and actual aeff (x-axis)
for different hidden layers in the ANN against perfect linear relationship (y=x).

Figure 5.20: The scatter plot comparing predicted dispersion (D) (y-axis) and actual
dispersion (D) (x-axis) for different hidden layers in the ANN against perfect linear
relationship (y=x).

5.3.1.4 Prediction of Confinement Loss

The performance for predicting confinement loss also varies with the number of hidden
layers of the neural network. This is clearly illustrated in figure 5.21. But in predicting
confinement loss, a neural network with one hidden layer gives more r-square error
(0.99891) than all other networks as this optical property of PCF varies smoothly; hence
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Figure 5.21: The scatter plot comparing predicted confinement loss(αc) (y-axis) and
actual confinement loss(αc) (x-axis) for different hidden layers in the ANN against per-
fect linear relationship (y=x).

a simple neural network performance is better than a network with multiple layers.

5.3.1.5 Prediction of V-parameter

Figure 5.22 evaluates the predictive capabilities of four distinct ANN models, each hav-
ing 1, 2, 3, or 5 hidden layers, in estimating the V-parameter of PCF. The figure shows
that the neural network with two hidden layers gives a better result, around 0.99975.
Another network also gives a close result but is not up to the mark.

In table 5.1, we present a comparison of neural network models with different numbers
of layers for various performance metrics. The metrics considered are neff (effective
refractive index), aeff (effective mode area), Dispersion, Conf-Loss (confinement loss),
and veff (v-parameter). Each row represents a neural network model with 1, 2, 3, or 5
layers, and the columns display the corresponding values for each performance metric.
To comprehensively understand each model’s performance, we calculated the average
accuracy for all metrics in the last column. The table illustrates that the 2-layer model
achieves the highest average accuracy across the considered metrics, followed by the
3-layer, 1-layer, and 5-layer models. This information can be valuable for choosing the
most appropriate model for the given problem to balance computational efficiency and
accuracy.
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Figure 5.22: The scatter plot comparing predicted veff (y-axis) and actual veff (x-axis)
for different hidden layers in the ANN against perfect linear relationship (y=x).

Table 5.1: Average accuracy in predicting properties with different hidden layers in
ANN architecture.

No. of Layers neff aeff Dispersion Conf-Loss veff Avg. Accuracy

1-layer 0.99713 0.99881 0.99895 0.99891 0.99818 0.99840
2-layer 0.99899 0.99975 0.99929 0.99843 0.99975 0.99924
3-layer 0.99833 0.99956 0.99843 0.99768 0.99955 0.99871
5-layer 0.99758 0.99722 0.99649 0.99371 0.99726 0.99645

5.3.2 Neuron Tuning of ANN

Figure 5.23 illustrates the relationship between the number of neurons in a two-layer
neural network model and its R2 score for predicting five parameters: X Neff, Aeff,
dispersion, conf-loss, and Veff. The x-axis represents the number of neurons in the
models, while the y-axis shows the corresponding R2 scores. The models have been
trained with different neuron counts, specifically 10, 20, 30, 40, 50, 100, 150, 200, 300,
400, and 500 neurons in the first layer. The plot displays five distinct lines with markers,
one for each parameter, and their R2 scores at various neuron counts. Overall, the
performance of the models generally improves as the number of neurons increases, with
some variations. The figure effectively demonstrates the impact of neuron count on the
predictive accuracy of the two-layer neural network models across the five parameters.

The graph shows that the network architecture with 300 neurons gives the same r-
squared error for all PCF-optical parameters. As the number of neurons increases, the
r-squared error of some variables is reduced and increases for other properties. So it is
wise to choose 300 neurons for our best ANN model.
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Figure 5.23: R-squared error for different neuron numbers for all optical properties of
PCF.

Table 5.2: Average Accuracy of Different Neuron Counts

Neurons neff Aeff Dispersion Conf-Loss Veff Avg. Accuracy

10 0.9921 0.943 0.9321 0.9755 0.9921 0.96696
20 0.9987 0.9949 0.9884 0.9971 0.9987 0.99556
30 0.9993 0.9984 0.9957 0.9986 0.9993 0.99826
40 0.9992 0.9982 0.9969 0.9987 0.9992 0.99824
50 0.9992 0.9981 0.9966 0.9984 0.9992 0.99830

100 0.9988 0.999 0.9975 0.9985 0.9988 0.99852
150 0.9993 0.9991 0.9986 0.9992 0.9993 0.99910
200 0.9997 0.9992 0.9985 0.9991 0.9997 0.99924
300 0.9999 0.9999 0.9995 0.9999 0.9999 0.99982
400 0.9996 0.9994 0.9986 0.9994 0.9997 0.99934
500 0.9991 0.9989 0.9982 0.9994 0.9991 0.99894

In this Table 5.2, we present the results of an experiment investigating the impact of
varying the number of neurons in a neural network on the prediction accuracy of dif-
ferent parameters: nneff, aeff, Dispersion, Conf-Loss, and veff. The table has six rows,
each corresponding to a different number of neurons: 10, 20, 30, 40, 50, and 300. Each
row is assigned a unique color for easy identification. The table shows the prediction
accuracy obtained for each parameter using a neural network with a specified num-
ber of neurons. An extra column on the right calculates the average accuracy across
all parameters for each neuron count. Upon analyzing the table, it is evident that the
neural network with 300 neurons provides the best average accuracy across all parame-
ters. This suggests that increasing the number of neurons up to 300 improves prediction
performance. However, further increases in neuron count may not yield significant im-
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Figure 5.24: The scatter plot comparing predicted neff (y-axis) and actual neff (x-axis)
for different epochs in the ANN against perfect linear relationship (y=x).

provements and could result in overfitting or increased computational complexity.

5.3.3 Epoch Tunning of ANN

Epoch tuning of artificial neural networks (ANN) involves selecting the optimal number
of epochs, or training iterations, to use when training the model. The number of epochs
is an important hyperparameter that can affect the accuracy and performance of the
ANN.

5.3.3.1 Prediction of Effective Refractive Index

Figure 5.24 shows a scatter plot that compares the performance of neural network mod-
els trained with different numbers of epochs in predicting the effective refractive index
(neff) values. The x-axis represents the actual neff values, while the y-axis shows the
predicted neff values. The models have been trained for 100, 200, 300, 400, 500, 1000,
2000, and 5000 epochs, represented as individual scatter plots with distinct markers in
the figure. The R2 scores are shown in parentheses next to each corresponding label
for the models. An error arises for every epoch whenever the effective refractive index
is around 1.20. This is because of lesser data points in this area. After learning the
behavior of data points, it performs well at the higher refractive index and close to the
y=x line.
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Figure 5.25: The scatter plot comparing predicted aeff (y-axis) and actual aeff (x-axis)
for different epochs in the ANN against perfect linear relationship (y=x).

5.3.3.2 Prediction of Effective Mode Area

Figure 5.25 is a scatter plot illustrating the predictive performance of neural network
models with varying numbers of training epochs for dispersion values. On the x-axis,
the actual dispersion values are displayed, while the y-axis represents the predicted
dispersion values. The R2 score of models increases concerning the epochs. AS epochs
increase in a sequence from 100, 200, 300, 400, 500, 1000, 2000, to 5000, the R2
score increases from 0.99755 to 0.99936. The R2 scores for each model are displayed
in brackets next to their respective labels. There have been fewer data in the range of
4-5×10-12 m2, the model learns less and gives more significant fluctuation from actual
line (y=x).

5.3.3.3 Prediction of Dispersion

Figure5.26 effectively demonstrates the impact of varying training epochs on the neural
network models’ capability to predict confocal loss values accurately. As the num-
ber of training epochs increases, the prediction accuracy improves linearly. The model
learns effectively, given that the data covers the entire range of dispersion values. Con-
sequently, increasing the number of epochs enhances the model’s performance. The
highest R2 score, approximately 0.99891, is observed at 5000 epochs, while the lowest
R2 score, around 0.99526, occurs at 100 epochs, corroborating our earlier observation.
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Figure 5.26: The scatter plot comparing predicted dispersion (D) (y-axis) and actual
dispersion (D) (x-axis) for different epochs in the ANN against perfect linear relation-
ship (y=x).

5.3.3.4 Prediction of Confinement Loss

Figure 5.27 demonstrate the effectiveness of epochs in predicting the optical properties
of PCF. As the data points of the dataset widely cover the entire range of confinement
evenly, the effect of epochs can be seen figure. The accuracy of the model increases
with the number of epochs. The highest R2 score is observed with 5000 epochs. So
decreasing the number of epochs also decreases the R2 score.

5.3.3.5 Prediction of V-parameter

Figure 5.28 displays a scatter plot comparing the predicted and actual V-parameter val-
ues. The solid black line represents the proper response. There are fewer data points
in the range of 1.20 and the upper range from 1.32-1.34, causing the model’s perfor-
mance to decline in these areas. Due to a large amount of data in the middle range, the
highest R2 score of 0.99968 is achieved at epoch 400. However, increasing the number
of epochs leads to overfitting, decreasing the R2 score with another epic. Considering
the various epochs examined, it can be generally concluded that the performance of the
neural network model improves as the number of epochs increases. The distribution of
data points within the dataset also influences the R2 score. To balance overfitting and
underfitting, 5000 epochs have been chosen for constructing the optimal ANN model.

This Table 5.3 presents a comparative analysis of different neural network performance
metrics across various epochs. The metrics included are neff, aeff, Dispersion, Conf-
Loss, and veff. Each table row represents a specific epoch (100, 200, 300, 400, 500,
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Figure 5.27: The scatter plot comparing predicted confinement loss(αc) (y-axis) and
actual confinement loss(αc) (x-axis) for different epochs in the ANN against perfect
linear relationship (y=x).

Figure 5.28: The scatter plot comparing predicted veff (y-axis) and actual veff (x-axis)
for different epochs in the ANN against perfect linear relationship (y=x).
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Table 5.3: Table of Metrics for Different Epochs

neff aeff Dispersion Conf-Loss veff Avg. Accuracy

Epoch 100 0.99882 0.99755 0.99526 0.99832 0.99843 0.99768
Epoch 200 0.99925 0.9984 0.99669 0.9982 0.9995 0.99841
Epoch 300 0.9994 0.99878 0.99693 0.99926 0.99956 0.99879
Epoch 400 0.99971 0.99699 0.99712 0.99918 0.99968 0.99854
Epoch 500 0.99877 0.99859 0.99812 0.99935 0.99908 0.99878
Epoch 1000 0.99956 0.99923 0.99792 0.99936 0.99956 0.99913
Epoch 2000 0.99756 0.9923 0.99792 0.99936 0.99956 0.99734
Epoch 5000 0.99876 0.99936 0.99891 0.9993 0.99891 0.99905

1000, 2000, and 5000), while each column presents the values for the respective per-
formance metrics at that epoch. An additional column, ”Avg. Accuracy,” has been
included to provide the average accuracy of all five metrics for each epoch. The table
provides a comprehensive overview of the neural network’s performance at different
stages of training, allowing us to easily compare and evaluate the evolution of these
metrics as the training progresses. This information can help understand how the net-
work’s performance changes over time and identify the optimal number of epochs for a
specific problem.

5.3.4 Best Artificial Neural Network Model performance

The previous section of this chapter recommends tuning the hyperparameters of the
ANN. Various parameters’ influence on predicting optical properties’ accuracy has been
examined. The number of hidden layers varied from 2 to 5, with the highest R2 score
obtained using two hidden layers. The neuron count for the first layer was optimized
to 300 to achieve a balanced performance concerning all variables. The number of
epochs was analyzed to obtain the highest R2 score. While more epochs result in higher
accuracy, overfitting may occur; thus, 5000 epochs were considered a balanced choice.
The optimal artificial neural network for this specific task was constructed based on
these considerations for predicting optical properties. The network was then tested
using a dataset that had not been previously provided.

5.3.4.1 Prediction of Effective Refractive Index

Figure 5.29 compares the actual values of the effective refractive index (neff with the
values predicted by the best neural network model. The plot has the wavelength (λ)
on the x-axis and the effective refractive index (neff) on the y-axis. The actual values
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Figure 5.29: Evaluating the correspondence between the simulated neff and the predicted
neff using best ANN model with an unexplored configuration.

are represented by solid markers connected by a solid line, while the best model’s pre-
dictions are represented by hexagonal markers connected by a dashed line. The best
model’s R-square score, which measures how well the model’s predictions fit the actual
data, is 0.9980. This high score indicates that the model has accurately predicted the
effective refractive index across the wavelength range. The plot visually supports this
high accuracy, as the predicted values are close to the actual values across the entire
wavelength range.

5.3.4.2 Prediction of Effective Mode Area

Figure 5.30 visually compares the actual effective mode area (Aeff) values with the pre-
dictions made by the best-performing neural network model for a range of wavelengths
(λ). The x-axis represents the wavelength (in micrometers), while the y-axis represents
the effective mode area (in square meters). The prediction accuracy for wavelengths
ranges 1.6-1.7 µm is lower because the data points in this range are more scattered and
exhibit weaker correlations. This graph depicts the data points as solid markers con-
nected by a continuous line. On the other hand, the predictions from the best model are
shown as hexagonal markers connected by a dashed line. The high R² score of 0.99796
signifies that the model’s predictions align closely with the actual data, evident from the
visual similarity between the two lines in the plot.
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Figure 5.30: Evaluating the correspondence between the simulated aeff and the predicted
aeff using best ANN model with an unexplored configuration.

5.3.4.3 Prediction of Dispersion

Figure 5.31 compares the actual chromatic dispersion (D) values to the predictions made
by the best-performing neural network model across a range of wavelengths (λ). The
x-axis represents the wavelength in micrometers (µm), while the y-axis represents the
chromatic dispersion in picoseconds per kilometer-nanometer(ps/km.nm). The disper-
sion dataset has a cluster of data around -1600 ps/(km·nm). The ANN model’s accuracy
decreases when predicting dispersion values higher than -1000 ps/(km·nm) in the neg-
ative range. While the ANN model can accurately follow the actual values when the
dispersion decreases, it struggles to achieve the same accuracy when the values increase
from the negative maximum. The R-square score of 0.9965 indicates that the model’s
predictions agree with the actual data, as seen from the visual similarity of the two lines
in the graph.

5.3.4.4 Prediction of Confinement loss

Figure 5.32 displays a comparison between the actual values and the best model’s pre-
dictions concerning the relationship between wavelength (λ) and the logarithm of con-
finement loss (αc) in dB/cm. The x-axis denotes the wavelength in micrometers (µm),
spanning from 1.18 to 1.75 µm, while the y-axis represents the logarithm of confine-
ment loss in dB/cm. The ’Best Model’ curve, characterized by hexagonal markers and
a dashed-dot line, illustrates the predictions made by the best model, boasting an ac-
curacy of 0.9989. The model’s training is suboptimal for wavelengths greater than 1.5
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Figure 5.31: Evaluating the correspondence between the simulated dispersion (D)and
the predicted dispersion (D) using the best ANN model with an unexplored configura-
tion.

µm. This can be attributed to the irregular distribution of confinement data in the -2 to
-6 dB/cm range.

5.3.4.5 Prediction of V-parameter

Figure 5.33 presents a comparison between the actual values and the best model’s pre-
dictions for the relationship between wavelength (λ) and effective refractive index (veff).
The x-axis represents the wavelength in micrometers (µm), ranging from 1.18 to 1.75
µm, while the y-axis displays the effective refractive index (veff).

A solid line with circular markers depicts the actual values, while a dashed-dot line with
hexagonal markers represents the best model’s predictions. The best model is associated
with an accuracy of 0.9980. The plot demonstrates that the model’s predictions closely
follow the values across the entire wavelength range.
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Figure 5.32: Evaluating the correspondence between the simulated confinement loss
(αc) and the predicted confinement loss (αc) using best ANN model with an unexplored
configuration.

Figure 5.33: Evaluating the correspondence between the simulated veff and the predicted
veff using best ANN model with an unexplored configuration.

5.3.5 Coputational Time

Computation time is one of our evaluation metrics. The computing device has an Intel
Core i5 12th generation processor with 8 GB of RAM and a 500 MB SSD. No graphics
unit is used. Simulating a single optical property in COMSOL Multiphysics takes an
average of 21 seconds in a normal mesh. The time taken increases dramatically as the
mesh size increases. In a previous study, the training time of the ANN model was 20
seconds, and the testing time was five milliseconds[12]. Another study found that the
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time taken for training and testing the ANN model is about 19 seconds and five mil-
liseconds, respectively[13]. But using all of the proposed machine learning algorithms
at a time, the training and testing are reduced to about 282 milliseconds and 30 millisec-
onds, respectively. An individual machine learning model’s training and testing time is
much less than the ANN as it requires fewer parameters and simpler operations. Thus,
it saves us precious time by simulating with fewer computing resources. The proposed
ANN model takes greater time than computation time is one of our evaluation metrics.
The computing device has an Intel Core i5 12th generation processor () with 8 GB of
RAM and a 500 MB SSD. No graphics unit is used. Simulating a single optical prop-
erty in COMSOL Multiphysics takes an average of 21 seconds in a normal mesh. The
time taken increases dramatically as the mesh size increases. In a previous study, the
training time of the ANN model was 20 seconds, and the testing time was five millisec-
onds[12]. Another study found that the time taken for training and testing the ANN
model is about 19 seconds and five milliseconds, respectively[13]. But using all of the
proposed machine learning algorithms at a time, the training and testing are reduced
to about 282 milliseconds and 30 milliseconds, respectively. An individual machine
learning model’s training and testing time is much less than the ANN as it requires
fewer parameters and simpler operations. Thus, it saves us precious time by simulating
with fewer computing resources. The ANN model takes around 15 seconds in training
and five milliseconds in the testing phase.

Table 5.4: Comparison of computational time among simulations, previous method and
proposed method

Simulation Details Time Taken
COMSOL Multiphysics (Normal Mesh) 21 Seconds
COMSOL Multipysics (Finer Mesh) 1 minute 27 seconds
COMSOL Multipysics (Extreme Fine Mesh) 2 minutes 33 seconds
Models Details Training Time Testing Time
ANN model with 3 layers and 150 nodes[12] [56] 20 seconds 5 milli-seconds
ANN model with 2 layers and 130 nodes [57] 19 seconds 5 milli-seconds
Proposed all ML models at a time 282 milli-seconds < 1 milli-seconds
Proposed ANN model with 2 layers and 300 nodes 15 seconds 5 milli-seconds

Table 5.4 compares computational time among simulations in a conventional way, the
previously proposed ANN model, and proposed Machine Learning (ML) models and
the ANN model.
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5.4 Chapter Summary

In the results section, we presented the outcomes of our investigation on the optical
properties prediction of negative dispersion-compensating photonic crystal fiber using
machine learning. We demonstrated the effectiveness of our chosen machine learn-
ing algorithm in accurately predicting the dispersion properties of PCFs with varying
cladding air hole dimensions and core sizes. By comparing the predicted values with
those obtained through traditional simulation methods, we highlighted the significant
reduction in computation time and resource utilization achieved through our machine
learning approach. Moreover, our analysis revealed the impact of different cladding air
hole dimensions and core sizes on the negative dispersion and other optical properties of
the PCFs. This understanding allowed us to identify optimal design parameters that re-
sult in enhanced performance for various applications, such as dispersion compensation
and supercontinuum generation in optical communication systems. Overall, our results
confirmed the potential of machine learning algorithms in the efficient prediction and
optimization of optical properties in negative dispersion-compensating photonic crystal
fibers, providing valuable insights for the design and development of advanced optical
communication systems.
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Chapter 6

Conclusions

6.1 Conclusions

In this research, we have introduced an innovative photonic crystal fiber (PCF) design
featuring one core hole and 152 cladding holes to attain a high negative dispersion
value for dispersion compensation. Employing the full vector analysis method with
Perfectly Matched Layer (PML) and examining the relative change of dispersion con-
cerning the diameter of various cladding holes, we have conducted a thorough analysis.
Our numerical results reveal that the proposed PCF achieves a minimum dispersion of
approximately -1582.21 ps/(nm-km) within the 1.34 to 1.7 µm wavelength optical com-
munication window, with a 0.8415 µm pitch in a linear manner. Increasing the size of
air holes leads to higher dispersion up to -2065.2 ps/(nm-km), although it is not con-
sistent across the entire wavelength window. The fabrication process is simplified due
to the presence of circular air channels throughout the PCF. Owing to the high negative
dispersion and low confinement loss, the proposed PCF is suitable for real-time optical
communication systems.

Furthermore, we have implemented machine learning approaches to predict the optical
properties of negative dispersion-compensating PCF. The computational time required
for the proposed approaches is significantly less than conventional numerical simula-
tions and previous ANN prediction models. Basic machine learning models demon-
strate negligible training time in milliseconds, and testing time is comparable to real-
time simulations with less than a one-millisecond delay. While the accuracy of predict-
ing unknown parameters with given input features is sufficient, it is not as strong as the
ANN model. The proposed ANN model, on the other hand, takes approximately 15
seconds for training and 5 milliseconds for testing. It offers the best average accuracy
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at the cost of slightly higher computational time compared to basic models (Linear re-
gression, KNN, Decision Tree, Random Forest). Depending on the application area,
a trade-off between computational time and accuracy can be made. These machine
learning techniques hold the potential for real-time scenarios with minimal computing
resources and adequate accuracy in optical fiber communication. our soul contrbutions
are:

(i) We have developed a novel photonic crystal fiber (PCF) design with one core hole
and 152 cladding holes, achieving a high negative dispersion value for dispersion
compensation, making it suitable for real-time optical communication systems.

(ii) Our thorough analysis using the full vector analysis method with PML has al-
lowed us to understand the impact of cladding hole diameters on dispersion, re-
sulting in a minimum dispersion of approximately -1582.21 ps/(nm-km) within
the 1.34 to 1.7 µm wavelength optical communication window.

(iii) We have successfully implemented machine learning approaches, including an
ANN model, to predict the optical properties of negative dispersion-compensating
photonic crystal fibers, providing a balance between computational time and ac-
curacy, holding the potential for real-time scenarios with minimal computing re-
sources in optical fiber communication.

6.2 Future Works

The future scope of this research encompasses several promising avenues for explo-
ration and expansion. Some potential directions for future work include tuning machine
learning parameters and extending the approach to solid-core or mixed PCF types with
different air-hole orientations. Additionally, the methods developed in this study can be
applied to biosensor or other applicable PCF structures to predict their optical charac-
teristics. Further research can also aim to predict a wider range of optical properties,
develop better designs with highly negative dispersion, and investigate the characteris-
tics of other photonic devices, such as waveguides. By pursuing these avenues, future
research can contribute to the development of more efficient and versatile optical com-
munication systems and photonic devices.
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[46] J. Baxter, A. Calà Lesina, J.-M. Guay, A. Weck, P. Berini, and L. Ramunno, “Plas-
monic colours predicted by deep learning,” Scientific reports, vol. 9, no. 1, p. 8074,
2019.

[47] W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral
metamaterials,” ACS nano, vol. 12, no. 6, pp. 6326–6334, 2018.

[48] A. Tittl, A. John-Herpin, A. Leitis, E. R. Arvelo, and H. Altug, “Metasurface-
based molecular biosensing aided by artificial intelligence,” Angewandte Chemie

International Edition, vol. 58, no. 42, pp. 14 810–14 822, 2019.

[49] C. C. Nadell, B. Huang, J. M. Malof, and W. J. Padilla, “Deep learning for ac-
celerated all-dielectric metasurface design,” Optics Express, vol. 27, no. 20, pp.
27 523–27 535, 2019.

[50] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and M. Tor-
natore, “An overview on application of machine learning techniques in optical
networks,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1383–
1408, 2018.



REFERENCES 100

[51] B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery,
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