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ABSTRACT 

In modern material science, engineers are constantly attracting and striving to 

develop nanohybrid Aluminum based Metal Matrix Composite (AMMC) materials due to 

their outstanding tribological, microstructural and mechanical qualities like lightweight, 

ductile, highly conductive, superior malleability, high strength and high specific modulus. 

Moreover, the demand for Aluminum based Metal Matrix Composite is increasing day by 

day because of their massive applications in various automobile, military, aviation, 

aerospace, structural, transportation, marine and other manufacturing industries due to 

their high stiffness, high strength-to-volume portion, deterioration resistance, and 

exceptional wear resistance. Nano particles like CNTs, Silicon Carbide and Alumina have 

created a great impact to produce advanced engineering composites. The mechanical and 

thermal property upgrades accomplished by expansion of CNT in Aluminum metal lattice 

frameworks. The addition of Carbon Nanotubes potentially helps in further improving the 

tensile strength of the metal matrix composite. So, Metal matrix composite with nano 

tubing provide enhanced mechanical features compared to traditional reinforcement. 

In this research work, mechanical properties and machinability of carbon 

nanotube reinforced aluminum metal matrix composite has been compared with traditional 

aluminum metal matrix. Moreover, turning operation of carbon nanotube reinforced 

aluminum metal matrix composite was performed under both dry and MQL cooling 

condition. Cutting speed, feed rate and depth of cut have been considered as input cutting 

parameters whereas resultant outputs are cutting temperature, surface roughness, cutting 

force and tool wear. It is found that application of MQL resulted in maximum 16.62%, 

31.28%, and 27.58% lesser cutting temperature, surface roughness, and cutting force by 

than machining without any fluid. Using response surface methodology, optimum cutting 

condition has been found while machining fabricated composite under MQL condition, the 

optimum cutting parameters which yielded the desired surface roughness Ra = 1.03µm, is 

follows: 1 mm of t, 168 m/min of Vc and 0.103 mm/rev of feed rate. Finally, A predictive 

model of surface roughness was developed using artificial neural network (ANN) which 

has been validated against the experimentally found results. For ANN developed model, 

regression value is found to be 0.98 for carbon nanotube reinforced aluminum metal 

matrix composite under MQL condition which is very close to 1, thus justifying the 

efficacy of the developed model. 
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Chapter-1 
 

 

Introduction 

1.1 Introduction 

A Composite material is a material made from two or more constituent materials 

with significantly different physical properties, when combined, produce a material with 

characteristics different from individual one. Many natural and artificial materials are of 

this nature, such as: reinforced rubber, carbon, filled polymers, mortar and concrete, 

alloys, porous and cracked media, aligned and chopped fiber composites, polycrystalline 

aggregates (metals), etc. This type of composite is used extensively throughout our daily 

lives. Common everyday uses of fiber reinforced metal composites include: Aircraft, Boats 

and marine, Sporting equipment, Automotive components, Wind turbine blades, 

Aerospace and space industry (landing gears and aircraft brakes) Catalysts, Sensors. 

[Hashin Z. 2009]. Metal matrix composite materials (MMC) represent a good solution for 

environmental problems caused by the emissions of vehicles and reduce their overall 

weight by increasing specific mechanical properties of structural materials. In the last 

years, aluminum is one of the most studied structural materials to produce MMC due to its 

large use in different industrial sectors like: aeronautical, nautical and automotive in which 

the low weight of vehicles is very important [Alam and Kumar 2016]. Aluminum is a 

very useful structural metal employed in different industrial sectors, in particular it is used 

in large quantities in automotive, aeronautic and nautical industries. The main reasons of 

its wide use are: a very good oxidation resistance, excellent ductility, low melting 

temperature and low density. However, the demand for aluminum and its alloys having 

some much higher technological properties is increasing massively [Bavasso et al. 2016]. 

Different type of reinforcements can be used to produce Al-composites that can be 

different in chemical composition, structure and size. Nanotechnology is a rapidly 

expanding field which is developing in different sector, due to the high reactivity of 

materials in nanoscale, for example a number of studies on nanotechnology applications in 

environmental pollution have originated. [Verdone and Palma, 2017]. In particular, 
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carbon is one of the mostly used reinforcement, that now a day, is available in different 

structure and size, like microfibers (CMFs), nanoplatelets (CNPs) and nanotubes (CNTs) 

[Bartolucci et al. 2011]. Aluminum Metal Matrix Composite (AMMCs) with nano tubing 

have some outstanding tribological, microstructural and mechanical qualities like 

lightweight, ductile, highly conductive, superior malleability, high strength and high 

specific modulus. Moreover, the demand of Aluminum based Metal Matrix Composite is 

increasing day by day because of their superior and applications in various automobile, 

military, aviation, aerospace, structural, transportation, marine and other manufacturing 

industries [Maurya R et al. 2016]. 

In recent years, CNTs have created a great impact to produce advanced 

engineering composites, with the development of CNTs reinforced polymer, ceramic and 

metal composites. CNT possesses outstanding mechanical qualities, better young modulus, 

higher strength and low thermal expansion, which have resulted in increased attention in 

CNT-matrix composite research and metal matrix composites possesses higher specific 

strength, higher wear resistances, low density compared to currently available alloys [R. 

Raja et al. 2021]. Metal matrix composite with carbon nano tubing should also provide 

enhanced features such as higher specific strength, exceptional strength, increased 

hardness in combination, low weight, exceptional strength, and rigidity, and an increased 

hardness in combination with or replacing traditional reinforcement. compared to currently 

available alloys [Chen M et al. 2018]. Carbon nanotube-based alumina nanocomposites 

had better hardness due to the CNTs' load-bearing capacity and increased fracture 

toughness. Due to strong Van der Waals forces between the atoms, CNT nano particles 

tend to clump together, making it harder to dampen and overcome the matrix's surface 

tension [Zhou M et al. 2017]. Compared to 2024Al base material fabricated young’s 

modulus of the composite, tensile strength, were improved massively if a small amount of 

CNTs were added to the matrix also microstructure characteristics can be changed too 

[Cha et al. 2005]. The injection of 2.0 wt.% CNTs to the 2024 aluminum alloy resulted in 

significant grain refinement. The wear rate of independently reinforced n-Al2O3 

composites was lower than that reinforced CNTs, although the coefficient was larger. 

Also, the MWCNTs (Multi walled Carbon Nanotube) largely improve matrix strength and 

hardness, hence achieving improved resistance to plastic deformation and reducing the 

plowing impact of the matrix reinforcement [Kurita et al. 2011]. Carbon Nanotubes 

(CNT) have novel attributes that make them an appropriate strengthening operator in 
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Aluminum (Al) Metal Matrix framework. Strengthening with CNT prompts increment in 

quality without significant increment in weight. The mechanical and thermal property 

upgrades accomplished by expansion of CNT in Aluminum metal lattice frameworks. 

When Silicon Carbide and Alumina is added it helps in furthering the thermal conductivity 

and melting point properties of Aluminum in addition to improving its hardness. The 

addition of Carbon Nanotubes potentially helps in further improving the tensile strength of 

the metal matrix composite. 

There are different types of CNTs and they can be classified in single walled 

carbon nanotubes (SWCNT), double walled carbon nanotube (DWCNT) and multi walled 

carbon nanotube (MWCNT). The SWCNT consist of a single plane of graphene wrapper 

to create a cylindrical structure with a diameter of 1-2 nm. The DWCNT and the MWCNT 

consist of two or more SWCNT to form a coaxial cylindrical structure can be produced via 

several techniques like electrolysis, laser ablation, chemical vapor deposition arc discharge 

and son chemicals [Marini et al. 2017]. Carbon nanotube (CNT) has been considered as 

an excellent nano particle which have maximum thermal conductivity (3000 W/m-K) than 

any other nano particles used so far [Sadri et al. 2014]. CNTs based metal matrix 

composite has a broad range of current and future applications. Young’s modulus of the 

composite, tensile strength and wear resistance were improved massively if a small amount 

of CNTs added to the matrix also microstructure characteristic. Nanohybrid materials are 

typically selected for engineering applications since they have a correct organization of 

mechanical qualities. Metal Matrix Nano Composites (MMNCs) are obtaining large 

applications in aerospace, marine, defense, and automobile markets due to their high 

stiffness, high strength-to-volume portion, deterioration resistance, and exceptional wear 

resistance. The advantages of Carbon nano tube reinforced aluminum metal matrix 

composite include (i) Higher specific strength than traditional composite (ii) higher wear 

resistances and rigidity, (iii) Low density and low weight (iv) Low thermal expansion and 

(v) Increased hardness and better young modulus. Some potential applications of carbon 

nano tube reinforced aluminum metal matrix composite are shown in Table 1.1 
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Table 1.1  Potential applications of Carbon nano tube reinforced aluminum metal matrix 

composite. [S.R. et. al 2010] 

Areas Advantages 

Automobile industry: gears, brake pads, 

piston rings and cylinder liners.  

Higher specific strength, higher wear 

resistances and rigidity. 

Electronic packaging industry: Solders and 

heat sinks for thermal management. 

Low thermal expansion. 

Sports industry: badminton and tennis 

rackets and light weight bicycles. 

Low density, low weight, exceptional strength. 

Aerospace and space industry: landing 

gears, aircraft brakes, structural radiators 

and high gain antenna boom. 

Better young modulus, higher strength 

MEMS and sensors battery and energy 

storage: hydrogen storage materials, 

micro-beams and micro-gears, anodes and 

anode coatings. 

Increased hardness and resistance. 

Other Applications: Military, Structural 

Marine, turbine blades, etc. 

Light weight with excellent strength 

Stir casting and powder metallurgy has been the most common and preferred 

CNT-AMC production method mainly due to agglomeration and floating because of 

density issues. However, liquid state production is cheaper for bulk production and 

intricate parts compared to others. In order to achieve optimal performance for the 

composite, an exceptional and homogenous matrix of interfacial bonding plus good 

reinforcement are very crucial. The mixture has to be electromagnetically stirred and later 

ultrasonically vibrated [Xiang et al. 2017]. Basically, the production of CNT-AMC can be 

grouped into five categories: 

• Solid state (powder metallurgy)  

• Liquid state (stir casting) 

• Thermal spray 

• Electro-chemical deposition  

• other novel techniques 

Metal cutting is a process of material removal in which the loss of materials is 

caused by effecting a relative motion between tool and work piece. It involves complex 

thermo-mechanical phenomena, such as high strain rate at the primary shear zone frictional 

contact interaction between the chip and tool at the secondary shear zone and elevated 

temperature in the chip induced by mechanical energy dissipation. Cutting performance 

can be improved enormously by controlling the chip tool interfacial temperature rise and 

frictional effects using a coolant/lubricant [Kramar and Kopac 2009]. 
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In this research work, carbon nanotube reinforced aluminum metal matrix 

composite has been developed by stir casting process where different weight percentages 

of CNTs, Silicon carbide and aluminum oxide dispersed in pure aluminum bar. The most 

difficulties in the preparation of this type of composite are represented by the low 

wettability between metallic matrix and fillers and the possibility of the oxidation of metal 

during melting with consequent decreasing of mechanical proprieties. Then, different 

mechanical properties such as tensile strength, impact strength, flexural strength, and 

hardness of the fabricated composite has been carried out with a view to studying the 

effects on the mechanical performance of the composite. Moreover, different machining 

performances of carbon nanotube reinforced aluminium metal matrix composite were 

investigated asmachining play’s important role in producing product from different types 

of material ranging from soft to hard. Though, the characteristics that make composite 

material parts perform so effectively also make the materials more difficult to machine. 

Manufactured products qualities are determined by their surface quality. The high friction 

between tool and work piece leads to high temperatures, tool wear, and poor surface 

quality. Turning operation has been performed at different speeds, feed, and depth of cut. 

Then different output parameters such as cutting temperature, cutting force, tool wear and 

surface roughness recorded with the help of thermocouple, dynamometer, scanning 

electron microscope, and surface roughness tester respectively. Machining parameters 

optimized using the RSM model where the statistical significance of each cutting 

parameter and their interaction also studied in turning offabricated composite material. 

Finally, A standard multilayer feed-forward back propagation hierarchical neural network 

method was applied for the prediction of surface roughness. So, the whole thesis can be 

divided into four basic parts. In the first part, fabrication of carbon nano tube reinforced 

aluminum metal matrix composite for this research work has been presented. In the second 

part, mechanical properties of carbon nano tube reinforced aluminum metal matrix 

composite tested. In the third part, experimental investigation of the machining of 

composite material conducted under dry and MQL machining environments. In the final 

part, for predicting surface roughness an artificial neural network model will be developed 

and machining parameter will be optimized using response surface methodology (RSM). 
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1.2 Literature Review 

Composite materials have been developed by several sectors over the past few 

decades in response to rising demand for materials that may enhance the overall 

performance of marine, aircraft, and automobile components. Aluminum is one of the most 

studied structural materials for making Metal Matrix Composites (MMC) because it is 

used so often in above mentioned industries. However, their usage is restricted in 

particular applications because to their low hardness and subsequently low wear resistance. 

Particulate reinforcements in aluminum metal matrix composites (Al-MMCs) are regarded 

as the most promising approach to improving these drawbacks. A review of the literature 

connected with the work is presented in this section. The topics covered also highlight the 

latest developments in the areas related to the present work. The advantages of 

nanoparticles-based aluminum metal matrix composite in mechanical properties and 

optimization of machining parameters using different tools are presented. A brief review of 

some of the interesting and important contributions in the closely related areas is presented 

in this section.  

1.2.1 Research on Aluminum based Metal Matrix Composite 

A great number of researchers have analyzed the various properties and 

applications of aluminum-based composites using a variety of reinforcing materials. 

Dwivedi et al. [2014] discovered the hardness, tensile strength and fatigue failure of 

Al356-SiC composites. It was found that varying the SiC ceramic particle size increases 

the hardness, tensile strength, toughness, and fatigue life. The tribological behavior of 

aluminum nanocomposites was evaluated by Suresh et al. It was discovered that the wear 

characteristics of AA7075, such as wear rate and friction coefficient, decrease with the 

addition of Al2O3 and SiC powder [Suresh S et al. 2019]. In their study, Gayathri et al. 

[2021] created an aluminum metal matrix composite using stir casting method and 

uses waste alumina catalyst and nano Al2o3 as dual reinforcement. The composites 

underwent thorough microstructural analysis using a scanning electron microscope in 

order to test their hardness and tensile strength. It was discovered that the composites have 

better mechanical characteristics than pure aluminum. Shakil et. el. in their study 

aluminum-based, hybrid metal matrix composite was developed by stir casting method.  

As reinforcement materials, the amount of Al2O3 is always 1 wt.%, and the amount of SiC 

can be 0, 2, 4, 6, or 8 wt.%. Samples have been studied for their microstructure, 
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mechanical properties, and how they wear. The results show that adding Al2O3 and SiC 

reinforcements to the aluminum Al-6103 grade matrix made the material harder and more 

resistant to wear. The hardest AMCs are those with 8 wt.% SiC and 1 wt.% Al2O3 

[Hossain S et al. 2019].  

Among different types of reinforcements, one widely utilized reinforcement in 

particular is carbon, which is now accessible in a variety of sizes and structures, including 

nanoplatelets, nanotubes, and microfibers (CNTs) [Bartolucci SF et al. 2011]. Since their 

discovery, CNTs have drawn a lot of attention from scientists, and their exceptional 

mechanical, electrical, and thermal properties are the main drivers of this interest.  

Manjunath in his research work created a hybrid Aluminum/Gr-CNT material with two 

nanoscale reinforcements (Graphene and CNT). Hybrid composites with varying weight 

percentages of graphene (1, 2, 3, and 5 Wt.%) and a fixed CNT content of 2 wt.% were 

made via stir casting [Naik H R M et al. 2021]. Deng et al. [2007] have worked on a cold 

isostatic press followed by a hot extrusion process, created a 2024Al matrix composite 

reinforced with 1.0 wt.% carbon nanotube (CNT). The composite's elongation does not 

change, but its tensile strength and Young's modulus are significantly improved. The 

exceptional mechanical qualities of CNTs and their bridging and pulling-out functions in 

the Al matrix composite are too responsible for the increase. Reddy and Anand [2019] by 

altering the CNT reinforcement weight percentage (0.4%, 0.7%, and 1.1%) of size 30 nm 

in Al 5056 matrix, nanocomposite materials are created using the stir method. With an 

increase in the weight percentage of reinforcement, it is discovered that the properties of 

Nano composites are significantly impacted. Gowda et al. [2017] have studied the wear 

characteristics of aluminum/B4C/CNT hybrid composites under different load conditions. 

The result shows that the reinforcement of aluminum by B4C and CNT, keeping B4C 

constant and increasing the percentage of CNT from 0 to 2% leads to significant 

improvement wear. The manufacture, microstructure, and tribological behavior of carbon 

nanotube reinforced aluminum composites against pure aluminum have been tested and 

showed that the CNT reinforced composites displayed lower wear rate and friction 

coefficient compared to the pure aluminum under mild wear conditions [Manikandan et 

al. 2016]. Uniaxial tensile tests were performed by Laha et al. [2009] with plasma spray 

formed (PSF) Al–Si alloy reinforced with multiwalled carbon nanotubes (MWCNTs). The 

elastic modulus of the composite increases by 78% as a result of the addition of CNTs. The 

tensile strength of the CNT reinforced composite slightly increased, while the strain to 
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failure decreased by 46%. Due to its high strength-to-weight ratio, aluminum/carbon 

nanotube composite is a strong candidate material for aerospace applications. The 

dispersion of carbon nanotubes (CNTs) in molten metal is challenging due to their low 

density. Mansoor in his work investigated induction melting, a fairly distinct approach to 

facilitate the dispersion of CNTs in molten aluminum. A simultaneous increase in yield 

strength, tensile strength, ductility and hardness was observed [Mansoor et al. 2016]. 

Pham et el. [2018] prepared SiCp/CNT/Al6061 hybrid composites by spark plasma 

sintering. Mechanical properties and wear resistance of the hybrid composites were 

enhanced. The enhancement dues to the synergistic strengthening effect of hybrid 

reinforcements. A comparative study on the surface properties of Al−SiC−multi walled 

carbon nanotubes (CNT) and Al−SiC−graphene nanoplatelets (GNP) hybrid composites 

fabricated via friction stir processing (FSP) was observed and found that microstructural 

characterization reveals a more homogeneous dispersion of GNPs in the Al matrix as 

compared to CNTs [Sharma et al. 2019]. Shetty et al. [2021] carried out LM-12 

aluminum alloy reinforced with different weight percentage of SiO2 and carbon nano 

tubes hybrid metal matrix composite development using stir casting method with sand 

mold technique. Further, heat treatment was carried out. it has been observed that 

expansion of particulates essentially enhances tensile strength and hardness. Saheb and 

Mohammad [2016] in their work synthesized Al2O3-SiC-CNTs hybrid nanocomposites by 

ball milling, sonication, and spark plasma sintering (SPS) at 1500 °C for 10 min. The 

influence of SiC nanoparticles and CNTs on the microstructure, densification, hardness, 

and fracture toughness of the composites was investigated.  

In a critical review Thirugnanasambantham et al. [2021] concluded that CNT as 

support for Al lattice will enhance the thermal and mechanical properties such as elastic 

modulus, hardness, creeps and damping capabilities of the material. Al-CNT regarded as 

the next generation structural material for many functional engineering design 

applications. Their critical review investigation introduced here would be influential for 

fabricating a novel high-quality Al–CNT composites. Bakshi et al. [2010]. have focused on 

the critical issues of CNT-reinforced MMCs that include processing techniques, nanotube 

dispersion, interface, strengthening mechanisms and mechanical properties. Composites of 

carbon nanotubes (CNTs) dispersed in aluminum were fabricated by Marini et al. The 

most difficulties in the preparation of this type of composite are represented by the low 

wettability between metallic matrix and fillers and the possibility of the oxidation of metal 
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during melting with consequent decreasing of mechanical proprieties. Young’s modulus 

was evaluated at different temperature and correlated with the different CNTs percentage 

[Marini et al. 2017]. The effect of the CNT radius and content on the mechanical 

properties of CNT-Al composites was observed by Myung Eun Suk in his novel work 

using a series of molecular dynamics simulations, particularly focusing on MMCs with a 

high CNT content and large CNT diameter. As the CNT content increased, the strength 

and stiffness increased; however, the fracture strain was not affected [Myung Eun Suk 

2021]. Herzallah et al. [2020] have examined how the size and quantity of CNT and SiC 

particles affect the mechanical characteristics of Al matrix composites. They discovered 

that adding more SiC and CNT results in a decrease in the relative density and an increase 

in the hardness and compressive strength of Al-SiC and Al-CNT composites.  Moreover, 

multi-walled carbon nanotubes (0.166, 3.33%) and 5% SiC was used for the reinforcement 

to fabricate aluminum alloy 5083 by stir casting process and tensile strength was 

discovered to have increased by 18% [Jannet et al. 2020]. 

1.2.2 Mechanical Behavior of Aluminum Metal Matrix Composite 

In today’s modern world the need for more efficient material is very significant 

for the development of new products. For these composites play a major role as it has 

strong load carrying material embedded in weaker material. Reinforcement provides 

strength and rigidity to help and support the structural load. Researchers have observed 

various results in production of Al-CNT composites, some have obtained significant 

increase of strength [Mokdat et al. 2016], other ones have observed irrelevant increase or 

decrease of some properties of composite [Simões et al. 2015]. Many of these different 

results depends on the quality of fillers dispersion, composite fabrication process and 

interfacial interaction between matrix and fillers. Filler’s dispersion is another one crucial 

problem in preparation of Al-CNT composites, due to the tendencies of CNT to form 

agglomeration due to the Van der Waals interaction. In this work, the MMC were obtained 

by the aid of an induction furnace with centrifugal casting and atmosphere control system 

to avoid the metal oxidation. It was demonstrated that the induction melting allows to 

obtain a good dispersion of fillers in the melting matrix [Mansoor and Shahid, 2016]. 

Furthermore, to prevent the agglomeration problem, the nanotubes were functionalized by 

superficial treatment in order to decrease the interaction forces. Metal matrix composites 

are widely used for outstanding mechanical properties. Novel hybrid composite, like 

MWCNT coated SiC as the reinforcement in A356 enlighten that the accumulation of the 
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precise amount (1.5%) of carbon nanotubes significantly improved the tensile strength 

(229 MPa), hardness (305 MPa), impact strength (4J) and elongation percentage (6.1%) by 

the semi-solid stir casting process. In addition, the combination of 10% of SiC and 1.5% of 

MWCNT with the A356 have increased tensile strength by 189.25%, hardness by 

133.83%, elongation by 186.54% and impact strength by 200% as compared with base 

alloy  [Sangeetha et al. 2021].  

To determine the effect of a variety of embedded optical fibres on the properties 

of carbon/epoxide composite systems a programme of mechanical testing has been carried 

out. Both the polyimide and acrylate coated fibres with diameters of approximately 100µm 

had little adverse effect on the mechanical properties of any of the composites, except in 

longitudinal compression were up to 26% reduction in strength was seen in some systems 

[Roberts and Davison 2021]. Imran and Khan [2021] have focused on mechanical 

properties, tribological properties and corrosion behaviour of Al-7075 metal matrix 

composites (AMMCs) by the addition of desirable reinforcements. These particulate 

reinforcements Sic, Al2O3, Gr, TiO2, bagasse ash etcetera is incorporated in the stir casting 

method. Corrosion resistance and superior wear, low coefficient of thermal expansion as 

compared to conventional base alloys revealed the significant improvement in mechanical 

properties. The mechanical investigation and fabrication of Al alloy, alumina and boron 

carbide metal matrix composites are dealt with whereas reinforcements, aluminium which 

is the matrix metal having properties like light weight, high strength and ease of 

machinability, alumina which as better wear resistance, high strength, hardness and boron 

carbide which has excellent hardness and fracture toughness are added. Mixing the 

required quantities of additives into stirred molten aluminium, the fabrication is done by 

stir casting. The samples are prepared and tested to find the various mechanical properties 

after solidification. By using Scanning Electron Microscope (SEM) the internal structure 

of the composite is observed [Vijaya Ramnath et al. 2021]. By hot extrusion of elemental 

Al powder blended with different amounts of metallic glass reinforcements Al-based metal 

matrix composites were synthesized through powder metallurgy methods. By controlled 

milling of melt-spun Al85Y8Ni5CO2 glassy ribbons the glass reinforcement was produced. 

At temperatures within the supercooled liquid region the composite powders were 

consolidated into highly dense bulk specimens. By the addition of the glass reinforcements 

the mechanical properties of pure Al are improved. For the samples with 30 and 50 vol.% 

of glassy phase the maximum stress increases from 155 MPa for pure Al to 255 and 295 
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MPa, respectively. Composites exposition appreciative ductility with a strain at maximum 

stress ranging between 7% and 10%. Glass-reinforced composites can be modelled by 

using the iso-stress Reuss model [Scudino S. et al. 2021].  

Mechanical properties, fabrication techniques and surface texture of aluminium 

matrix composites (AMCs) reinforced by silicon carbide (SiC). varying SiC content in 

AMCs is (0,5,10,20 Wt.%) were fabricated by stir casting process. Hardness, Tensile 

strength, Toughness and Microstructure of composites were analysed as mechanical 

properties. Reinforcement of silicon carbide into Al matrix increased tensile strength and 

hardness, maximum tensile strength shows at 20 Wt.% SiC reinforced in AMCs, which 

increase the porosity into the composites and also decrease the ductility [Shukla et al. 

2021]. The composites Al6061-SiC & Al6061-SiC/Graphite hybrid were prepared using 

stir casting method in which amount of reinforcement is varied from 5-15% in steps of 

5Wt.%. Uniform distribution of the particles in composites with clustering at few places 

were revealed by the microphotographs of the composites. The tensile strength of the 

composites was enhanced because of the contribution of dispersed graphite and SiC in 

Al6061 alloy. Without any voids samples indicated uniform distribution of the 

reinforcement particles in the matrix [Krishna et al. 2021]. By varying the treatment 

parameters (temperature & duration), heat treatment has potential to produce a desired 

combination of properties in aluminium graphitic composites. It is possible to optimize the 

properties of metal matrix composites by choosing the balance of the reinforcing phases, 

together with some technology parameters of the manufacturing process. The composites 

were made by Vortex casting and based on a commercial aluminium alloy, with either 

single-phase or two-phase (hybrid) reinforcing particles which are graphite and silicon 

carbide, concentrations up to 10 vol.%.  

By powder metallurgy Al based metal matrix composites consisting of pure Al 

reinforced with different amounts of mechanically alloyed Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 

glassy powder were produced. In order to take advantage of the viscous flow behaviour of 

the glassy powder the samples were consolidated into highly dense bulk specimens at 

temperatures within the supercooled liquid region. While retaining appreciable plastic 

deformation with a fracture strain between 70% and 40%, compression tests show that the 

addition of the glass reinforcement increases the strength of pure Al from 155 to 250 MPa. 

Such composites containing a high-volume fraction of glassy particles were accurately 

modelled using a shear lag model [Scudino S. et al. 2021]. Boopathi [2021] have crated 
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compositions of aluminium-Sic-fly ash were added up to the ultimate level and stir casting 

method was used for the fabrication of aluminium metal matrix composites. X-ray 

diffraction studies and optical microscopy was used for the micro structural studies. The 

density of the composites, elongation of the hybrid metal matrix composites in comparison 

with unreinforced aluminium was decreased and the hardness, tensile strength was 

increased in the presence of Sic and fly ash [SiC (5%) + fly ash (10%) and fly ash (10%) + 

SiC (10%)] with aluminium. Instead of aluminium-SiC and aluminium-fly ash composites, 

aluminium in the presence of SiC (10%)-fly ash (10%) was the hardest. The mechanical 

properties of pure Al were remarkably improved by the β-Al3Mg2. While retaining 

appreciable plastic deformation ranging between 45% and 15%, the composites with 20 

and 40vol.% reinforcement display yield and compressive strengths exceeding that of pure 

Al by a factor of 2-3. For affecting the properties of the composites modelling of the 

mechanical properties reveals that the matrix ligament size plays a dominant role. The 

specific strength of the composites was increased by the addition of low-density β-Al3Mg2 

particles [Scudino S. et al. 2021]. By uniaxial hot-pressing Al-based composites 

reinforced with Mg-based metallic glass particles were synthesized. Within the 

supercooled liquid region of the metallic glass reinforcement the composite powders were 

consolidated into highly dense bulk specimens. Incorporating the matrix-strengthening 

mechanism the relationship between the mechanical properties and the structure was 

investigated and described by a modified shear lag model [Wang et al. 2021]. By the stir 

casting method Al alloy matrix composites reinforced with hybrid can be successfully 

synthesized. The important process parameters are for synthesizing of hybrid composite by 

stir casting process, stirrer design and position, melting and pouring temperature, particle 

incorporation rate, reinforcement particle size and amount, stirring speed and time, 

particle-preheating temperature, mould type and size. The hardness, toughness, strength, 

corrosive and wear resistance of the composite will be increasing with the hybrid 

reinforcement instead of single reinforcement [Krishnan et al. 2021]. 

Four different combinations of composites (AlSi7Mg + alumina; scrap aluminium 

alloy + alumina; AlSi7Mg + spent alumina catalyst; scrap Al alloy + spent alumina 

catalyst) were produced for the purpose of comparison through the stir-squeeze casting 

process. Four composites the reinforcement formed a mixture in the eutectic silicon phase 

of the matrix alloy was influenced by the alumina particles size and content ratio. Among 

the four composites the scrap aluminium alloy + alumina exhibited the lowest porosity 
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(7.3%) and abrasive wear loss (0.11 mg for the finest abrasive), highest hardness (58.5 

BHN) and second highest ultimate tensile strength (125 MPa) and ultimate compressive 

strength (312 MPa). When using alumina as reinforcement superior mechanical properties 

were obtained and better mechanical properties can mainly be attributed to the morphology 

of the reinforcement and silicon eutectic phase mixture [Tjong 2021]. Kumar et al. [2021] 

have processed for nanocomposites include aluminium and magnesium can be classified 

into ex-situ and in-situ synthesis routes. Ex-situ nanocomposites reinforced with very low 

loading levels of nanoparticles exhibit creep resistance and higher yield strength than their 

micro composite counterparts filled with much higher particulate content. Using 

appropriate processing techniques better dispersion of ceramic nanoparticles in metal 

matrix can be achieved. By adding ceramic nanoparticles mechanical strength and ductility 

can be obtained readily in aluminium or magnesium. For the nanocomposites reinforced 

with in-situ nanoparticles similar beneficial enhancements in mechanical properties are 

observed. Density and hardness of the AA5052/ZrB2 composites increases with increase in 

the amount of reinforcement. With increase in the volume fraction of ZrB2 particles up to 9 

vol.% ultimate tensile strength and 0.2% yield strength improved continuously but beyond 

this composition strength reduced. An improvement in ductility was observed with 

dispersion of ZrB2 particles in base alloy [Kumar et al. 2021]. Optimum amount of 

reinforcement and casting temperature were determined by evaluating the density and 

mechanical properties of the A356Al/ZrO2 composites. Reinforcing the Al matrix alloy with 

ZrO2 particles, improved the hardness and ultimate tensile strength of the alloy to the 

maximum values of 70 BHN and 232 MPa. The highest mechanical properties were 

obtained by the specimen including 15% of ZrO2 produced at 750oC [Abdizadeh and 

Baghchesara 2021]. 

Lo S. et al. [2021] evaluated the mechanical properties of a Zn-Al alloy reinforced 

with alumina fibres tensile, compression and impact properties were determined at 25, 100 

and 150°C. Although fibre reinforcement did result in some improvement of tensile and 

compression properties at elevated temperatures, the composites had poor toughness and 

ductility. Impairing the performance of the reinforced materials, the presence of a brittle 

SiO2 layer at the fibre interfaces resulted in fibre decohesion under tensile loading. For the 

composite materials some improvement in wear resistance was noted but in fatigue 

resistance fibre reinforcement did not yield significant improvement. With different weight 

percentages of B4C and 3 Wt.% of coconut shell fly ash (CSFA) the samples of Al7075 



14  

hybrid aluminium matrix composites (HAMC) were fabricated. The homogeneously 

distributed B4C and CSFA particles added as reinforcement to improve the hardness, 

tensile strength and impact strength of the composites. By reinforcements of 12 Wt.% B4C 

and 3 Wt.% CSFA in Al7075 alloy hardness of the composites increased 33%. By the 

addition of 9 Wt.% B4C and 3 Wt.% CSFA in Al7075 alloy the tensile strength of the 

composites increased 66%. While increasing B4C and CSFA reinforcements in the matrix 

elongation of the composites decreased. With 9 Wt.% B4C and 3Wt.% CSFA addition in 

Al alloy the impact energy of the composites increased up to 2.3J. By a proprietary process 

metal matrix composites have been made by the addition of 10 µm diameter TiC particles 

to molten Al. Homogeneous and extensive grain refinement were observed by the resultant 

reinforcement distribution in commercial purity Al and 2XXX alloy matrices. Per volume 

percent of reinforcement added, the elastic modulus increases which are greater for Al-TiC 

composites. By the nucleation of solid Al on the Tic particle surfaces which were 

attributed to efficient load transfer in this system due to strong interfacial bonding 

[Karantzalis et al. 2021]. A model which was successful in predicting the experimentally 

observed strength and fracture toughness values of the Al2O24-SiC MMCs was proposed to 

suggest that the strength of the Al2O24-SiC metal matrix composite could be estimated 

from the load transfer model approach that takes into consideration the extent of 

clustering. It is suggested that the strength of particulate-reinforced MMCs maybe 

calculated from the relation: σy = σmVm + σr (Vr−Vc) − σrVc, where σ and V represent the 

yield strength and volume fraction, respectively and the subscripts m, r and c represent the 

matrix, reinforcement and clusters respectively [Hong et al 2021].  

Harichandran and Selvakumar [2021] fabricated the micro and nanocomposites 

containing different weight % of B4C particles using stir and ultrasonic cavitation assisted 

casting process and characterized by SEM and an X-ray diffractometer. The properties of 

the samples containing up to 6% nano B4C reinforced composites were better than the 

micro B4C reinforced composites according to the tensile test results. The ductility and 

impact energy of the nanocomposites were better than the micro B4C particle reinforced 

composites. When the B4C content was increased up to 8% of addition the wear resistance 

of the nanocomposite significantly increased, which was more pronounced. The in situ 

formed ZrB2 particles enhanced the mechanical properties of AA6061 alloy and refined the 

microstructure. From 0 to 10 in steps of 2.5 the weight percentage of ZrB2 was varied. 
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With the increase in ZrB2 content improvement of hardness, ultimate tensile strength and 

wear resistance of AA6061 alloy was observed [Dinaharan et al. 2021]. 

1.2.3 Machining of AMMC under Minimum Quantity Lubrications 

Minimum Quantity Lubrication (MQL) is a technique where the lubrication cost 

is minimized, for which total manufacturing cost or operational cost is reduced. It is a type 

of micro lubrication that allows for near-dry machining. This has been noticed through 

various studies on drilling, turning, and grinding operations. The lubricant reduces the 

friction between the cutting tool and the wok piece reducing the amount of heat generated 

in the process. Different type of material and composite can be machined through by 

MQL. Metals can be used as alloy components, but carbon, a nonmetal yet essential 

component of steel, can also be used for MQL condition. The aluminum alloy composite 

as a work piece which machined by lathe machine. The composite aluminum alloy made 

by following some specific step. Generally dry, flooded, MQL condition are applied for 

machining operation. In most of the case better surface roughness has been obtain in MQL 

condition. A combination of compressed air and a little amount of oil is referred to as 

minimum quantity lubrication or MQL [Bashir et al. 2018]. It replaces a significant 

amount of water and mineral oil-based cutting fluid with a small amount of water-based 

environmentally friendly lubricant. The performance of machining processes is affected by 

cutting fluid functions such as lubrication, cooling, and chip reddening. By this MQL 

method the lubricant is sprayed directly into the cutting zone, that’s why it provides high 

cutting performance without requiring a large amount of fluid flow. It’s improved the tool 

life and surface finish. In the case of MQL the lubricant has to be environmentally friendly 

[Sharmin et al. 2020]. The soil and water resources are harmed as a result of improper 

cutting fluid treatment, notwithstanding the significant benefits of utilizing the MQL 

approach. Cost reduction, energy efficient, waste reduction, management health and safety 

resource efficiency and green environment are the main sustainability objectives for MQL 

technique. The result shows that high range of effectiveness of sustainability is achieved 

by MQL nano fluid rather than other conventional/classical MQL method. For 

sustainability assessment there have no other condition without MQL technique. For MQL 

technique the cutting tool temperature is reduce there for the here reduce the tool wear 

[Khan et al. 2009].   

Laghari et al. [2018]demonstrated modeling and optimization of tool wear and 

surface roughness in turning of Al/SiCp using response surface methodology. The 
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experimental work is consisting of turning Al/SiCp (45%SiCp) weight with uncoated 

Carbide tools. The results reveal that the machining criteria like tool life and surface 

roughness are dominantly influenced by various process parameters. The optimal 

combination of machining parameters obtained, the maximum tool life is 10.511 (min) 

speed of 6.283 m/min, feed of 0.01 mm/rev, and 0.2 mm of depth and minimum surface 

roughness is 0.044 lm cutting speed 18.85 m/min, feed rate mm/rev 0.015 and depth of cut 

1.5 mm and 45% of silicon carbide. The experimental values of turning Al/ SiCp 45 wt.% 

were compared with the obtained projected values and found the minimum error. 

Machining Characteristics on Surface Roughness of a Hybrid Aluminum Metal Matrix 

Composite (Al6061-SiC-Al2O3) indicates that the increase of cutting speed reduces the 

surface roughness and vice versa. The minimum surface roughness is achieved at a cutting 

speed of 60 m/min, feed rate of 0.20 mm/rev and a depth of cut of 0.50 mm 

[Sasimurugan, T., & Palanikumar, K. 2011]. In order to obtain reduced average surface 

roughness, it is recommended to use medium cutting speed, minimum feed rate and lower 

depth of cut [Mia et al. 2017]. 

Bansal & Upadhyay [2016] presented the effect of machining parameters on tool 

wear, surface roughness and metal removal rate of Alumina Reinforced Aluminum 

Composite has been observed in turning operation. Hardness and tensile strength increase 

with the reinforcement ratio. Tool wear increases with the process variables whether it is 

coated or uncoated tool, however tool wear is less in coated tool as compared to uncoated 

due to the coating. Surface Roughness increase with the process variables except the 

speed, speed made adverse effect on surface roughness. MRR increases with the process 

parameters except the concentration of reinforced particles due the presence of hard 

ceramic particles. The machinability of 2024 aluminium alloy reinforced with Al2O3 

particles using varying size and weight fraction of particles up to 30 wt.% by a vortex 

method was carried out at different cutting conditions. The optimum surface roughness 

was obtained at a speed of 160 mmin-1 while the maximum surface roughness value was 

found in the machining of the 10% Al2O3 composites with particle size of 16 mm. The 

surface roughness also increased with the increasing weight percentage of the particles 

[Sahin et al. 2002]. Kumar et al. [2014]  made an effort to find out the effect of machining 

parameters on cutting force and surface roughness and also investigated the feasibility and 

dry turning characteristics of in situ Al–4.5%Cu/TiC metal matrix composites using 

uncoated ceramic inserts. When the wt.% of TiC reinforcement was increased, the tensile 
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strength and hardness of Al–4.5%Cu/TiC MMCs improved better with reduced ductility. 

The formation of BUE was more prominent when the lower cutting speed was provided 

which is 40 m/min and continued to decrease with increasing cutting speed. Executing less 

than 10% of TiC reinforcements, mostly helical and C-types chips were produced at 

relatively higher cutting speed but in case of 10% of TiC reinforcements, discontinuous 

and short length chips were produced during the machining.  

Cutting speed and depth of cut are the major cutting parameters affecting wear 

rate in carbide X500 and PCD inserts. Surface roughness Ra was not affected by the 

cutting parameters used when using PCD insert. Promising tool wear rates also were 

recorded under low levels of cutting speed and high levels of feed rate when using carbide 

insert X500 [Kamalizadeh et al. 2019]. Higher TiB2 reinforcement ratio produces higher 

tool wear, surface roughness and minimizes the cutting forces. & Machinability of in situ 

MMC is different from traditional MMC, because of the presence of fine and uniformly 

distributed reinforcement, which reduces flank wear. When machining the in situ MMCs 

with high-speed causes rapid tool wear due to generation of high temperature in the 

machining interface. At high cutting speed machining will minimize chip tool contact 

length and build-up edge formation, which reduce the cutting force and surface roughness. 

The rate of flank wear, cutting force, and surface roughness are high when machining with 

a higher depth of cut. An increase in feed rate increases the flank wear, cutting force and 

surface roughness [Anandakrishnan & Mahamani 2011]. Siva et al. [2013] developed 

aluminum metal-matrix composite (AMC) is using a novel in-situ ceramic composite, 

converted from waste colliery shale (CS) material by heat treating in a plasma reactor 

under neutral atmosphere. The developed AMC has shown improved mechanical 

properties as compared to Al-Al2O3 and Al-Al2O3-SiC composites. The present study 

encompasses the machinability of the developed AMC as well as the other two 

composites. Plasma treated colliery shale has enabled development of in-situ ceramic 

composite comprising Al2O3-SiC-C. The AMC made with in-situ ceramic composite has 

shown better machinability in comparison to other AMCs made with Al2O3 and Al2O3-SiC 

for the same volume percentage. The graphite particles present on CS have helped in 

enhancing machinability. Minimum surface roughness is observed for Al-CS composite 

for all test conditions in comparison to other AMCs made with and Al2O3-SiC. The extent 

of tool wear is less for Al-CS composite in comparison to other AMCs made with Al2O3 

and Al2O3-SiC [Siva et al. 2013]. The porosities of the fabrication of Al-4wt% Mg–
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graphite and/or silicon carbide (SiC) particulate composites bars were found to expand 

with the increase of graphite and/or SiC content because of the vortex found because of the 

stirring action, which enhances the dissolution of gases and causes more bubbles to be 

formed inside the melt. In the case of SiC addition it was found that the Rockwell hardness 

was increased with an increase in the SiC content due to its high hardness. The surface 

roughness (Ra) of the cast composite bars was improved with the increase of the volume 

percentage of the graphite particles. This is due to the structure and lubricating action of 

the graphite particles. The addition of SiC particles causes the Ra of the composites to 

increase [Hassan et al. 2007]. 

Razavykia et al. [2015] has done an experimental investigation to find out the 

evaluation of cutting force and surface roughness in the dry turning of Al–Mg2Si in-situ 

metal matrix composite inoculated with bismuth using design of experiment approach. The 

multilevel factorial design was used to examine the effect of cutting speed and feed rate 

which were set as 0.1–0.2 mm/rev and 70–210 m/min respectively and Bi addition on 

cutting force and surface roughness of Al–20%Mg2Si in-situ composite. The result shows 

that the recommended optimum cutting conditions in machining of Al–20%Mg2Si 

composite is found to be: cutting speed at 210 m/min and feed rate at 0.1 mm/rev in the 

presence of Bi. Predictive models for cutting force and surface roughness are statistically 

significant as p-value is less than 0.05 at 95% confidence level. An abrasive water jet 

turning of the newly developed hybrid MMC of A359/B4C/Al2O3 produced by 

electromagnetic stir casting method and its main focus is to discuss the effect of process 

parameters of abrasive water jet machining on outcomes such as surface roughness and 

metal removal rate. Abrasive water jet turning processes can be successfully applied for 

the turning of hybrid MMC workpiece. The surface roughness is found in the range of 

6.0545 μm to 8.3825 μm, which is quite higher. This is due to the plough nature of AWJ 

process with full of furrows and cutting traces which leads to the significantly higher 

surface roughness. Another reason of higher surface roughness is the dislodgment of 

reinforcement particles which are not able to cut during turning operation. The minimum 

and maximum MRR found in AWJ turning process is 434.72 mm3/min and 565.02 

mm3/min, respectively. So, MRR varies from 434.72 mm3/min to 565.02 mm3/min 

[Srivastava et al. 2019]. In situ Al–Cu/TiB2 MMCs are successfully synthesized using stir 

casting furnace. It is identified that tangential forces are decreasing due to the increase in 

temperature while increasing the cutting speed for MMCs and base alloy. In all cases, the 
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surface roughness for MMCs was found to be less than the base alloy, except at low 

cutting speed due to the formation of BUE. Minimal BUE formation is observed at high 

speed for both MMCs and base alloy. It is observed that chip breakability improved due to 

the presence of reinforcement. The segmented chips are formed at higher feed. Both 

MMCs and base alloy exhibited almost similar chip shapes in all conditions considered in 

this investigation [Senthil et al. 2013]. Lin et al. [2019] made an effort to find out effect of 

tool nose radius and tool wear on residual stresses distribution while turning in situ 

TiB2/7050 Al metal matrix composites. In order to have a deeper understanding of the 

residuals stress distribution during machining metal matrix composites, this paper 

investigates the effect of tool nose radius and tool wear on the residual stress distribution 

during turning TiB2/7050 Al composites. Due to the existence of TiB2 particles, the 

residual stress on the machined surface is always compressive. With the increase of tool 

nose radius, the surface residual compressive stress has a trend to decrease and the residual 

stress penetration layer becomes deeper. The tool wear has more significant effect on the 

residual stress distribution than the tool nose radius. The rate of flow of liquid on 

developed composite AA6061-ZrO2 is the most influential factor which affected surface 

roughness and tool wear as their contributions were 43.58% and 39.1% respectively. The 

most optimal machining parameters and sequence to obtain minimum tool wear was 

cutting speed: 30 m/min, feed rate: 0.15 mm/rev, depth of cut: 0.5 mm, rate of flow of oil: 

50 mL/h, and % reinforcement of ZrO2: 5. This work also contributes to the development 

of a low-weight, high-strength composite material with the help of AA 6061 and ZrO2 

[James & Annamalai 2018]. 

Kannan et al. [2020] presented a study on surface roughness, tool wear and 

cutting force in turning of hybrid (Al7075 + SiC + Gr) metal matrix composites. This 

paper presents a detailed study on optimization of turning parameters of Al7075/SiC/ Gr 

metal matrix composites that are used for structural applications widely. For achieving 

minimum Ra, speed of 40 m/min and a moderate feed rate of 0.100 mm/rev and high depth 

of cut of 0.3 mm and material composition of 3%SiC + 7%Gr are found to be the optimal 

condition for the turning of the Al7075/SiC/Gr hybrid composite specimens. Ra, VB and F 

values were drastically reduced by 16%, 22% and 32% respectively due to the addition of 

7wt% Gr with Al7075. The confirmation test revealed the improvement in surface finish as 

16.02% while the tool wear and cutting force are reduced by 22% and 32.30% 

respectively. The wear rate of extruded Al-Al2O3 Composites increased rapidly with 
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increasing the cutting parameters: cutting speed, feed and depth of cut, however cutting 

speed is shown to be more effective. Sudden breakage of tool inserts occurred when the 

experiment started at high cutting speed [Fathy et al. 2012]. Coated tools can increase the 

tool life with more than 3.3 times of uncoated tools, at cutting speed of 80 m/min. Wear 

rate of cutting tool increased as weight fraction of reinforcement particles was increased. 

Wear rate of cutting tool has also increased by increasing extrusion ratio from 4.4 to 9.5. 

However, the effect of weight fraction is more pronounced than extrusion ratio. Surface 

roughness of reinforcement composites has much lower values compared to matrix 

commercial purity alloy alone. Surface roughness of composites has slightly decreased as 

weight fractions of reinforcement particle are increased. 

The effect of Al2O3, TiN and Ti (C, N) based CVD coatings on tool wear in 

machining metal matrix composites containing 10 wt.% SiC particles produced by liquid 

metallurgy was investigated at different cutting conditions. The results showed that the 

tool life decreased considerably with increasing particle size and cutting speed in 

machining the particle reinforced composite. The wear performance of TiN-coated tool 

was considerably lower than that of Al2O3-coated tool in machining the composites with 

various particle sizes. Cutting speed was also found to be more effective in machining the 

composite. Moreover, it was observed that mild abrasive was the main responsible 

mechanism for wear of the tool. Cast composites consisting of 10 wt.% SiCp with various 

sizes produced successfully by liquid metallurgy method. For cutting tools, tool A showed 

better performance than that of tool B. It was found that tool wear decreased considerably 

with increasing the particle sizes. It is shown that the tool life decreased with increasing 

cutting speeds in all cutting conditions. A lower cutting speed can be used for the 

machining of coarse particle- reinforced composites while a higher cutting speed can be 

allowed for the machining of fine particle- reinforced composites. It is observed that the 

major wear form of the tool was the abrasion on the flank face of the tool [Sahin & Sur 

2004]. Tool wear increases with cutting speed (450 m/min) when machining AlSi/AlN 

metal matrix composite using uncoated carbide cutting tool. While at high cutting speed, 

the surface finish improves. It was found that the cutting speed of 750m/min was optimum 

condition for obtaining smooth finish and longer tool life. For the medium cutting speed 

(450m/min) is clearly showed that highest flank wear. The flank wear will occur in the 

beginning of cutting and increase during machining.  We found the surface roughness is 

good for the high cutting speed (750m/min). The cutting tool was design for high-speed 
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machining. Over all this insert is suitable for machining Al/AlN MMC for good surface  

finish in high speed machining as suggested manufacture [Said et al. 2014]. An 

experimental exploration on chip formation, surface roughness and cutting force 

measurement throughout the CNC milling operation of Al–4.5%Cu/TiC MMCs produced 

by the in-situ practice and compared the results with those for Al–4.5%Cu/SiC MMCs 

produced by ex situ technique and with Al–4.5Cu master alloy. Cutting force increases 

with the increase in the percentage of TiC and SiC particles in the composites. It was 

found that in machining Al–4.5Cu–SiC composites, cutting forces are comparatively 

higher as compared to those for Al–4.5Cu–TiC composites. Whereas in the case of Al–

4.5Cu master alloy cutting forces developed are maximum. In machining Al–Cu–TiC 

composites no built-up edge formations was found, whereas in the case of Al–Cu–SiC 

light built-up edge and in machining of Al–Cu alloy built up edge formations was noted. 

Surface roughness of Al–Cu alloy was found to be maximum and in the case of both the 

metal matrix composites surface roughness increases as the quantity of TiC and SiC 

particles increases in the composites. In the case of Al–Cu–TiC composites surface 

roughness was found less as compare to Al–Cu–SiC composites [Das et al. 2016].  

Machining characteristics of a silicon carbide particle reinforced magnesium 

metal matrix composite (SiCp/Mg MMC) has been studied. Abrasive wear of the flank 

face was observed to be the dominant tool-wear mechanism for all conditions within this 

study. It was observed that a greater depth of cut reduced the amount of tool wear for a 

given volume of material removed. Surface roughness values were within the range of 0.2–

3.0μm. The chips formed from facing magnesium metal matrix composite with SiC 

particle reinforcement (3–4 μm) were saw tooth, continuous or semi-continuous chips. The 

primary wear mechanism on the tool was abrasion wear of the tool flank. The SiC 

reinforcement particles did not fracture during the machining conditions within this study. 

Achieved average surface roughness values were in good agreement with theoretical 

surface roughness [Pedersen & Ramulu 2006].An experimental study on tool wear 

behavior in micro milling of nano Mg/Ti metal matrix composites has been studied. This 

study exhibits an investigation on tool wear in micro milling of magnesium based MMCs 

reinforced with 1.98 Vol.% of nano-sized titanium particles using 0.5mm diameter two-

flute tungsten carbide micro endmills. The tool wear was characterized both quantitatively 

and qualitatively by observing tool wear patterns and analyzing the effect of cutting 

parameters on flank wear, reduction in tool diameter, cutting forces, surface roughness, 
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and burr formation. The results indicated that the main wear mechanisms were identified 

as flank wear and edge chipping due to abrasive wear and chip adhesion in uncoated micro 

endmills. It was also observed that the largest tool wear was occurred at smallest feed per 

tooth (0.75μm/tooth) and smallest wear was occurred at largest feed per tooth (3μm/tooth).  

At 3 μm/tooth feed per tooth and depth of cut of 100 μm, built-up edge (BUE) was found 

at the cutting edge in particular at the cutting speed of 125.6m/min. And a smaller tool 

wear along with the highest surface roughness was observed when compared to that at 

62.8m/min and 31.4m/min [Yu, W., Ramanathan, R. and Nath 2017] 

Jamil et al. [2020] made an effort to have less energy consumption, tool wear, 

surface roughness in the face milling of hard-to-cut titanium alloy (Ti-6Al-4V) using 

hybrid alumina and multi-walled carbon nanotube (Al203-MWCNT) which is nano 

additive based minimum quantity lubricant (MQL). The milling operations are executed on 

CNC milling machine with a micro grains coated carbide milling tool that has a multi-

layer coating of TiN+TiAlN. Different methodologies including Taguchi, multi objective 

optimization, RSM, ANOVA, Sensor topography, KEYENCE digital microscope 

integrated VHX software, SEM, EDX are applied to find out different machining 

parameters and performance measures. Hybrid nano fluid is found to be one of the most 

effective strategies to have the better wettability, conductivity and lubrication capability of 

MQL. As per acquisition outcome: better surface quality, higher material removal rate 

(MRR) is achieved with maintaining desired productivity. Though Inconel 718 has the 

drawback of low MRR and high tool wear, it has excellent oxidation and corrosion 

properties so they chose 718 as a workpiece material and vegetable oils as biodegradable 

lubricants to grind Ni-Cr alloy under nano fluid technique to understand and analyze 

several results such as: surface quality, heat transfer rate, wetting property, G ration, MRR 

and lubrication phenomenon. The surface grinding operation is performed on CNC surface 

grinder machine with the grinding wheel that is made of Al2O3 and six-point diamond 

dresser is also used. SEM, EDS methods are applied. After having all the results, the 

outputs are compared to pure oil and flood cooling techniques. Different parameters are 

found to be more effective and enhancing under biodegradable oil-based nano fluid MQL 

strategy that ensures the environment friendly machining and it makes the process greener 

as well [Virdi et al. 2020].  

Abbas et al. [2019] carried out an experimental investigation on surface roughness and 

power consumption characteristics under Al2O3 assisted MQL nano hybrid strategy. In the 
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experiment, AISI 1045 steel is selected as workpiece material and uncoated tungsten 

carbide (WC) as cutting tool to perform turning operation on a CNC turning center 

machine. Several methods including surface roughness tester named Tesa Rough Surf 90 

G, optical microscope (Olympus BX51M), classical desirability approach, regression 

modeling, sustainability assessment model is implemented to check out for dry, flood and 

Al2O3 nano fluid condition to analyze the result of surface quality and power consumption 

including cost of machining, management of waste and environmental impact [Mia and 

Dhar 2019]. 

Borade and Kadam [2016] presented a comparison of vegetable oil based MQL 

and Al2O3 nano fluid based MQL behavior on surface roughness and temperature. EN 353 

steel (Case hardening material) is chosen as workpiece material with cutting tool inserts of 

cubic boron nitride (CBN CNMG 7075) material to perform turning operation on high-

speed precision CNC lath (HASS-MAKE). Surf Tester, Infrared thermometer, Taguchi's 

L9 array method with OVAT, ANOVA methodologies are executed in this experiment. 

Surface roughness and temperature are the significant reduction achieved under Al203 

based MQL nano fluid rather than vegetable oil based MQL. An experimental 

investigation to determine the characteristics and outcomes of several nano cutting fluids 

as for example: Al203, molybdenum disulfide (MoS2) and graphite under MQL technique 

and differentiated these three fluid types [Zaman et al. 2019]. CNC lath machine is used 

to execute turning operation of Inconel-800 (Ni-based alloy) with CBN cutting tool. The 

TelC made lathe tool dynamometer associated with XKM 2000 software, standard 

Mitutoyo's make toolmaker's microscope, Mitutoyo make SJ301 surface roughness tester, 

SEM, Box-Behnken RSM, CDA, ANOVA approaches are applied. They found that when 

it comes to high cutting speed values issue then MoS2 and graphite based nano fluids 

provide better enhancement but when it comes to good lubrication, cooling properties and 

machining characteristics, graphite based nano fluid shows the better performance because 

of its tribological property. Interestingly, in terms of Inconel 800, better machining 

characteristics are achieved when small amount of graphite is added in vegetable oil 

[Gupta et al. 2019]. Another experimental investigation on sustainability assessment 

demonstrated to observe the performance of nano-additive MQL with machining quality 

characteristics. CNC lath machine is used for turning Ti-6Al-4V with the use of standard 

carbide turning inserts and tool holders (CNMG 120416 MR ISO) under the vegetable oil 

based MQL nano fluid coolant. Surface quality, tool wear, power consumption is 
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considered. Analysis methods including RSM, ANOVA are used in a wise way. Cost 

reduction, energy efficient, waste reduction, management health and safety resource 

efficiency and green environment are the main sustainability objectives. The result shows 

that high range of effectiveness of sustainability is achieved by MQL nano fluid rather 

than other conventional/classical MQL method [Kishawy et al 2019]. 

Patole and Kulkarni [2018] have developed a predicted model on surface 

roughness and cutting force in terms of turning of AISI 4340 workpiece which is 

performed on CNC lath machine with cutting insert of tungsten carbide (WC) coated 

CCMT 090308 using response surface methodology. The cutting fluid is composed of 

ethylene glycol and multi-walled carbon nano tube (MWCNT) nano particles since 

MWCNT has better cutting performance. Analysis methods including RSM, MINITAB 

software, ANOVA are applied for different purposes. As per outcome, appropriate cooling 

phenomenon and better surface finish result are the acquirements through the response 

surface methodology. An effort for performing drilling hole operation of AISI 304 

Stainless steel (Cr-Ni SS) on CNC drilling machine using simplified MQL with RQL 

(point sprayer and compressor) technique. The drill bit used in this experiment is tungsten 

carbide (WC) which is cryogenically treated. Several methodologies for instance: SEM, 

XRD, Linear intercept method using SEM image, micro Vickers hardness testing machine, 

Taylor Hobson Sardonic, SRM are applied in such a wise way [Naveena et al. 2017]. An 

optimization approach for sustainable drilling operation of Al 6061-T6 plate with HSS 

uncoated drill bit which is performed on CNC vertical machining center. Two techniques 

of lubricant are used here including MQL with nano fluid (MoS2+canola biodegradable 

oil) and MQL with RHVT in NOGA MINI setup. Analysis methods including Mitutoyo 

SJ301 roughness tester, Dynamometer, electric power measurement device, SIEMEN 802 

D CNC controller, RSM, ANOVA, multi objective optimization, desirability approach, 

PSO, BFO, TLBO, MATLAB are executed for different purposes [Singh et al. 2018]. 

Using CNC surface grinding machine they compare three cooling methods conventional 

flood cooling, dry grinding, and MQL grinding, and proved that, under specific conditions, 

MQL can compete with or outperform conventional flood cooling delivery. A general-

purpose alumina wheel is used to grind common steels EN8, M2, and EN31A. Lubricant 

L50 MQL system is used to deliver pure synthetic oil Castrol Care cut ES1 for MQL 

grinding. Through their research, they claim that MQL workpiece accuracy is comparable 

to and can build upon WET efficiency [Barczak et al. 2010]. CBN type and three 
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conventional wheel models are evaluated in presence of fluid, air-jet, and 11 different 

forms of coolant lubricants and dry conditions. Due to the plastic deformation in the 

contact region, it has been found that surface finish and consistency are considerably finer 

with the application of the MQL technique for grinding of hardened steel 100Cr6 

[Tawakoli et al. 2011]. 

Sharma et al. [2016] have worked on AISI 1040 steel as a workpiece, lathe as a 

machine tool, Uncoated cemented carbide inserts as a cutting tool under different 

machining environments like wet, dry, conventional cutting fluid mist, and 1% Al2O3 

nanofluid mist using MQL system. Using different lubrication environments in turning, the 

use of nano-cutting fluid reduced cutting force, tool wear, the average surface roughness of 

machined part is recorded compared to dry, conventional mist, and wet machining. With 

increasing nanoparticle concentrations, thermal conductivity, viscosity, and density of 

nanofluids increase, while real heat decreases. The process efficiency of MQL grinding 

using oil-based nano lubricants and the accuracy of their friction reduction results. The 

nano lubricants which are made with multicomponent organic-inorganic nano additive 

composed of MoS2 nanoparticles, triglycerides and phospholipids, and Paraffin oil and 

soybean oil were used as the base fluids. Here basic capacity, grinding friction coefficient, 

and G-ratio are used as measurands to determine process efficiency under different 

conditions. On average, soy-based and paraffin-based nano lubricants demonstrated better 

process performance in near-dry grinding of EN24 steel and cast iron, respectively, based 

on the investigation coefficient of grinding and specific energy [Kalita et al. 2012]. An 

aluminum oxide (Al2O3) grinding wheel and tempered and annealed ABNT 4340 steels are 

used for investigation, MQL technique led to lower roughness values, highest residual 

stress value, and no negative effect on the surface integrity [Roberto et al. 2007]. 

         Sharmin et al. [2020] designed a modified nozzle to increase the effectiveness of 

MQL in grinding operations. The nozzle has multiple holes and acted as the mixer of air 

and fluid that’s why proper divergence and convergence sections are designed properly. 

AISI 201 Alloy Steel is used as workpiece material and MQL with vegetable oil as cutting 

fluid. The modified nozzle ensures that the cutting fluid is delivered to the entire tool-work 

contact area, while the standard nozzle only delivers the fluid to a small area. That’s why 

grinding temperature is reduced. Face milling of Ti-6Al-4V alloy (100mm x 100mm x 

50mm) with dry, wet, MQL with and without nano platelets, cryogenic cooling and the 

combination of MQL and cryogenic cooling are done in Mori Seiki (NVD 4000). 
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Dynamometer and amplifier Multichannel manufactured by Kistler Instrument Corp., 

xGnP are used as analysis methods. The cutting tool is Uncoated insert (R245 12T3M-

KM(H13A) with a face mill cutter [Park et al. 2017]. 

         Rahmati et al. [2014] used Machine Mitsuki Seiki Vertical Type 3A for investigating 

the optimum molybdenum disulfide (MoS2) nano lubrication parameters in CNC slot 

milling of aluminum AL6061-T6 (40mm x 40mm x 100mm). Ordinary lubricant oil, Nano 

lubricant, ECOCUT HSG 905S neat cutting oil are used in the methods which are Taguchi 

optimization, standard orthogonal array, single to noise (S/N) response analysis, Pareto 

ANOVA. Lastly, End mill cutter (Tungsten Carbide AE302100) is used as cutting tool. 

Hybrid cryogenic MQL, Conventional flooding, MQL, Cryogenic are used as lubricant for 

improving tool life in machining of Ti-6Al-4V alloy (50mm x 50mm x 150mm). ANOVA 

(Analysis of Variance) method is used in Bridge VMC 610xp milling centre and for the 

end milling operation, the cutting tool is Solid carbide end mill [Shokrani et al. 2019].  

Technique for order preference by similarly to ideal solution model (TOPSIS), Pareto 

based hybrid multi objective optimization using Vegetable oils, pure castor oil mists for 

end milling operation is performed and used Gene expression programming (GEP), Non 

dominated sorting genetic algorithm- II (NSGA- II) programming languages. Uncoated 

carbide tool is used for Inconel 690 (90mm x 30mm x 20mm) by the machine called 

MTAB CNC milling machine (3 axes). Radial basis functions, support vector regression, 

Kriging, multivariate adaptive regression methods have been used [Sen et al. 2019]. They 

used CNC assisted three axis milling machine where the lubricants are Al2O3 and palm oil 

mixed nano fluids. Milling operation (eco benign milling) is done on Inconel 690 by the 

cutting tool which is uncoated carbide tool. In this operation Fuzzy interference system 

(FIS) and Multi performance characteristics index (MPCI) are the methods and have been 

compared with Conventional Lubrication Technology. 

Muaz and Choudhury [2019] implemented Multi objective genetic algorithm (MOGA) and 

Taguchi analysis, Taguchi- Gray relational analysis (TGRA) of MQL assisted flat end 

milling process for finishing of AISI 4340 steel is performed. EMCO Concept mill 250 

machining centre is used and the cutting tool is Milling cutter having 90° approach angle 

where the lubricants are Pure emulsion, Boric acid dissolved in the emulsion, Graphite 

suspended in the emulsion, Hybrid solid liquid minimum quantity lubrication. Scanning 

Electron Microscopy (SEM) (0.02:0.5) and Energy dispersive X-ray spectroscopy (EDS 

analysis) methods applied using Water PEG solution, 0.02 wt.% Go lubricant, 0.50 wt.% 
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SiO2 lubricant, 0.02/0.50 wt.% Go/SiO2 lubricant as cutting fluid. End milling operation is 

performed on AISI-304 stainless steel (210mm x 105mm x 110mm) by using the cutting 

tool TAP400R C32-35-200L, Juhai tools, China (Diameter- 35 mm, three teeth) and the 

machine is VDF-850 vertical milling center China [Lv et al. 2018].  

1.2.4   Modeling of Surface Roughness  

Surface roughness, cutting force, temperature and tool wear use as important 

factors to consider the performance of machining process and it also reflects the quality of 

the product. It is considered that the product quality increases with a decrease in surface 

roughness, cutting force, temperature and tool wear. Controlled parameters such as cutting 

condition and non-controlled parameters such as work-piece non-homogeneity, tool wear, 

machine motion errors, chip formation and other random disturbances; all have effects on 

surface roughness. On the other hand, cutting force, temperature and tool wear increases 

with the increase of the material strength, shear strength to be specific. Increase in the 

cutting force during machining is always detrimental as it decreases the tool life and 

increases the surface roughness. That is why many researchers have been studied to 

identify the required machining parameters for optimum surface roughness.  

A comparison between the ANN (Artificial Neural Network) and RBF (radial 

basic function) approach has been presented for investigate the capability of the ANN to 

predict the effect of the hot deformation parameters on the strength of Al-base metal 

matrix composites [Mia and Dhar 2016]. In the first investigation they worked their RBF 

model then, using the ANN's trained model, predict the behavior of the Al-base metal 

matrix composite deformed under the same conditions as the RBF technique. They found 

out a nonlinear variation on the second training and errors still outside the 10% range. 

Then the last phase the error was 5% range and that was acceptable. In this experiment 

they used three time filter the ANN result while for the RBF approach was done in one 

shot. They show that for objective more accuracy ANN perform better. In this experiment 

it was discovered that the filtrated ANN outperforms RBF in predicting the hot 

deformation behavior of Al–12 vol. % Al2O3 [Jalham 2003]. R. Kumar & Chauhan [2015] 

have done an experimental investigation in Al hybrid composite under different machining 

parameters for better roughness testing. Here RSM and ANN are used to evaluate 

experimental results and anticipate system behavior under any circumstance within the 

operational range. For the ANN the network was trained using the implemented feed-
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forward Bach prop, with the goal of lowering the Mean square error (MSE) between the 

predicted and experimental outputs to an acceptable threshold, thereby minimizing the 

performance of the MSE function. After 102 iterations, a successful training is completed 

with an MSE error of 0.0022678 and 6 validating tests. RSM and ANN are multivariate 

regression modeling methods that can address both linear and nonlinear problems. In this 

experiment the RSM and ANN models were constructed out of the experimental data and 

correlated fairly well. The results indicate that the ANN prediction has a greater deviation 

than the RSM prediction. Other hand RSM is powerful in identifying the insignificant 

main factors and interaction factors or insignificant cubic terms in the model. Surface 

roughness has been considerably influenced by the interplay between feed rate and cutting 

speed. In this experiment compare to RSM the ANN model creates more error. To confirm 

the data acquired during testing and to anticipate the behavior of the system under any 

circumstance within the operational range, response surface methodology (RSM) and 

artificial neural networking (ANN) are used. The research shows that feed rate has a 

greater impact on both materials and approach angle than speed and approach angle [R 

Kumar and Chauhan 2015]. A multiple-layer feed-forward ANN model for the 

tribological behavior of short alumina fiber reinforced zinc–aluminum (Zn-Al) composites 

was formed. With the help of the ANN training sets, specific wear rate and friction 

coefficient were tasted [Mia and Dhar 2019]. Two artificial neural networks are presented 

as the foundation for building a model that predicts the tribological characteristics of 

alumina fiber reinforced zinc–aluminum alloy matrix composites based on load, fiber 

volume percentage, and fiber orientation in this research. In this experiment, back 

propagation (BP) was used to train an algorithm for multilayer perceptions that minimized 

the error for a particular training pattern. The input variables in the ANN model in this 

work were applied load, fiber volume percentage, and fiber orientation, while the output or 

dependent values were frictional coefficient and specific wear rate. The modeling findings 

validate the ANN's practicality and its strong connection with the experimental data. In 

this experiment it was well trained that result ANN was excellent analytical tool.  Here 

degrees of accuracy of the prediction were good and considerable time costs were 

comparatively low. They graphically and experimentally decide that a well-trained neural 

network can extract more meaningful information from limited experimental databases, 

resulting in significant cost and time savings [Genel et al. 2003]. 
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Hayajneh et al. [2009] used ANN for predicted wear loss quantities of aluminum- 

copper-silicon carbide (Al-Cu-SiC) composite. In computer programming, the sigmoid 

function is the most popular activation function for ANN. Depending on the value of the 

input, it mixes nearly linear, curvilinear, and nearly constant behavior. It accepts any real-

valued input and provides an output that is bounded between real and imaginary values, 

often known as a squashing function. Back propagation neural networks represent a 

supervised learning approach in this experiment, needing a large number of full records, 

including the goal variables. The mass loss amounts of several Al–Cu–based composite 

materials reinforced with SiC have been predicted using a neural network. Here the 

findings of the experiments reveal that copper and/or silicon carbide increase the wear 

resistance of Al–4 wt% Mg alloys. Before being used in the training and testing of ANN, 

the experimental values of mass loss of the worn specimens were first coded. In the fields 

of composite material characterization and tribology, ANN might be an effective 

prediction approach [Mia et al. 2017]. 

Recycled PVC composites varying different weight percentages were predicted 

and optimized using ANN modeling. The composite elements, which represent the input 

factors to the ANN, were: virgin PVC in powder form with a K-value, stearate-acid coated 

CaCO3, and virgin PVC in powder form with a K-value. For that the tensile strength and 

ductility which were received from the UTM were picked as the outputs of the network in 

addition to the density of the extrudate which was chosen as the third output. In this 

experiment the network is divided into three layers: an input layer with six input nodes, an 

output layer with three output nodes, and a hidden layer with three output nodes. In this 

work, 15 architectures, 4 activation functions, and 5 training procedures were used to 

execute a huge number of tests in order to find the optimum ANN model/s parameters. The 

first step was to conduct single and multi-factorial analysis. The PVC composite 

characteristics were then optimized using one of the finest ANN models available. Multi 

factorial analysis, ANOVA, three factors were also playing important role in this process. 

Artificial neural networks were used to model the link between the composition of PVC 

composites and their mechanical characteristics.  The model employed in this experiment 

was able to determine the best weight proportion of materials to accomplish any desired 

attribute. Here the results also demonstrate that ANN modeling may be used to determine 

the best weight percentages of different PVC composite ingredients to obtain a desired 

composite quality[Altarazi et al. 2018]. The surface roughness of Al–SiC (20 p) was 
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investigated by rotating the composite bars with a coarse grade polycrystalline diamond 

(PCD) insert under various cutting circumstances. Experimental data ware tasted with 

analysis of ANOVA and ANN. Metal matrix composites (MMC) materials have a higher 

specific strength and stiffness than traditional structural materials, and are widely 

employed in autos, recreational equipment, and aerospace applications. Here The alloy 

A356/SiC/20p aluminum with 7.5 % silicon, 2.44 % magnesium, and 20 % volume silicon 

carbide (SiC) particles was put to the test. A medium-duty lathe was used to process the 

work material at five different cutting speeds. They used a back propagation network 

algorithm and create a flow chart than could be help for reached the final step. The ANN 

model was evaluated using the training data, and graphs with anticipated and tested values 

were displayed. Here the ANN model was effectively used to MMC composite machining 

parameters and suitable tool, which was used to predict the surface roughness in 

machining process. Surface roughness data was gathered on a lathe using a PCD coarse 

grade cutting insert under varied cutting conditions for various combinations of cutting 

speed, feed rate, and depth of cut. ANOVA and ANN were used here and the ANN 

technique provides a systematic and effective tool for optimization [Muthukrishnan & 

Davim 2009]. A 'Feed Forward Back Propagation' artificial neural network model was 

created for the study and prediction of surface roughness, the link between cutting and 

process factors in Al, Cu, TiC Metal Matrix Composites in this paper. The experiment was 

carried out in a dry environment with a CNC lathe machine and 3D profilometer has been 

used to measure surface roughness parameters. They collect data and the trained Artificial 

Neural Network was simulated to anticipate the output response based on the input process 

variables data. Their data shows that all the predicted forecast values were almost equal to 

the experimental value.  A back propagation type neural network was employed for this 

purpose. The cutting circumstances and surface roughness parameters had a non-linear 

relationship. In this experiment they got good result from ANN modeling [Das et al. 

2015].  Regression analysis (RA) and artificial neural network (ANN) used in this research 

for predicting the surface roughness with a hard turning of AISI 52100 steel. Taguchi 

orthogonal array, ANOVA also used here. Correlation and confirmation experiments were 

done to investigate the effect of cutting parameters on surface roughness and to check the 

correctness of the created regressive model. Based on MSE and AEP values for the data 

sets analyzed in this study, the optimal ANN design was established. The performance of 

the constructed network was evaluated using the correlation coefficient (R-value) for both 

training and testing data in an ANN model for surface roughness prediction. The RA and 
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ANN model projected findings show a high agreement between expected values and 

experimental results. Compared to RA and ANN RA generate maximum error that was 

almost double compare to ANN. The employment of RA and ANN models as an efficient 

and alternative strategy for experimental investigations could save time and money by 

reducing the number of experimental runs. Moreover, the correlation coefficient between 

ANN model predictions and experimental data was more than that of the RA model, 

indicating that ANN model predictions were quite accurate [Maheshwera Reddy Paturi 

et al. 2018]. Using ANN, RSM methods the relationship between the hardness and wear 

behaviour, process parameters of friction stir processing were evaluated. The process 

parameters had significant effect hardness and wear behaviour of Al 6061/Al2O3-TiB2, 

experimentally. As alternative methods to compute the hardness and weight loss for given 

process parameters the developed ANN, RSM models could be employed. The estimated 

values for the hardness and wear behaviour of the processed zone had an error less than 

0.60%, which indicated reliability [Vahid M et al. 2021]. For modelling the process 

output characteristics that influence by weight fraction, speed, feed rate, cutting depth, face 

centred central composite experimental design coupled with RSM was used. Experimental 

result imply that surface roughness criteria were found to increase with increase of feed, 

roughness decreases at higher cutting speed during machining. RSM showed an accuracy 

of 95% with the help of Minitab software, good agreement between experimental and 

predicted values of surface roughness and cutting force was observed [Ghosal and Patil 

2021]. 

The RSM was utilized for modelling and optimizing the impact on surface 

roughness for input parameters of Al metal composites. For formative the greatest 

conditions for a basic surface roughness response surface curve lines were made. With 

reducing the feed and lifting the cutting speed and depth of cut the surface roughness was 

begin to decrease [Venkatesan et al. 2021]. Using RSM the optimization of roller 

burnishing parameters of silicon carbide particles-reinforced Al composites of metal 

matrix base was carried out. By changing speed of the burnishing tool and number of 

passes experiments were conducted in dry condition. In order to evaluate its influence on 

output responses such as roughness and hardness of the surface, the input parameters were 

changed at different levels. Using RSM the optimization was carried out [Shankar et al. 

2021]. RSM is an effective tool for prediction of wear behaviour under combined sliding 

and rolling action. The wear of MMC is much lower than hardened, tempered AISI 4340 
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steel and rolling speed had the most maximum influence in wear of both materials under 

investigation [Mandal et al. 2021]. 

Cutting force model was developed and optimized through RSM and compared 

for two different percentages of components SiCp/Al 45% and SiCp/Al 50%. The plots 

show that during increment with depth of cut in proportion with feed rate are able to cause 

increments in cutting forces. Because of higher cutting speed increases, higher cutting 

speed shows a positive response in both the weight percentage of SiCp by reducing the 

cutting force. With increasing SiCp weight percentages a very fractional increasing trend of 

cutting force was observed. Error percentages found in an acceptable range with minimal 

error percentages [Laghari et al. 2021]. The second order model of cutting force had been 

established by RSM to analyse the effect of actual processing conditions on the generation 

of cutting force for the turning process of SiCp/Al composite with different cutting 

parameters, such as feed rate, depth of cut, cutting speed. Predicted parameters by the 

RSM were in close agreement with experimental results with minimal error percentage. 

Higher cutting speed shows a positive response by reducing the cutting force. For the 

model of SiCp/Al components had been compared to the cutting force of SiCp/Al 45 Wt.% 

between predicted and experimental results [Sap E. et al. 2021]. 

To optimize the machining parameters including depth of cut, feed and speed in 

accordance to Box-Behnken design in Minitab 17, the contour plots the surface plot and 

response optimizer had to made to study the influence of machining parameters and their 

interactions. RSM was used to optimize the machining parameters, found more than 95% 

confidence level [Laghari et al. 2021]. To optimize the process parameters in casting, 

welding and machinability studies of composite materials RSM is used. To design the 

experiments and minimizes the number of experiments for specific number of factors and 

its levels RSM is used, conduct experiments as per the design and responses are recorded. 

To identify the factors which influence the response analysis of variance is used 

[Kamruzzaman et al. 2017]. For obtaining a specific objective function response and 

process parameters are optimised where regression equations are developed [Chelladurai 

et al. 2021]. To analyse the cutting variables RSM with central composite rotatable design 

matrix was employed. For predicting the output responses second order regression models 

were developed. For the specified range of input parameters using overall desirability 

index the optimal parameters for multiple responses were arrived [ Nataraj et al. 2021]. 

RSM and other models were used for modelling and multi objective optimization of 
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Al6351/Egg Shell Reinforced Composite. The properties of the composite optimized were 

toughness and hardness whose values vary in response to changes in production process 

variables namely- stirring speed, preheat temperature and stirring time. To develop an 

RSM model for modelling the variations in the mechanical properties of the fibreboard in 

response to variations in process parameters an experimental design using Box-Behnken 

Design was used. Results of the study showed that RSM effectively modelled the 

properties of the composite [Nwobi-Okoye and Uzochukwu 2021]. An attempt had been 

made through the RSM in machining of 10%-micron Al2O3 LM25 Al MMC manufactured 

through stir casting method. On the basis of three performance characteristics of tool wear 

(VB), surface roughness (Ra) and cutting force (Fz) with the combined effects of three 

machining parameters including cutting speed, feed rate and depth of cut were 

investigated. To study the effect of process parameters as well as their interactions the 

contour plots were generated. Using desirability-based approach RSM process parameters 

were optimized [N. et al. 2021]. Using RSM with central composite design (CCD) 

experimental work was carried out Al matrix composite (A413-9% B4C) with zinc coated 

copper wire. A systematic approach for modelling and analysis of machining 

characteristics of Micro-Wire Electric Discharge Machining (Micro-WEDM) process was 

presented using RSM. The effect of various input parameters, such as voltage, capacitance 

and feed rate on machining, performance of MRR, kerf width and surface roughness were 

investigated. The optimized values of MMR, KW and SR parameters were found to be 

0.259943 mm3/min, 87 µm and 0.97 µm, respectively [Taylor and Francis 2021]. 

Through the response surface methodology in machining of homogenized 20% SiCp LM25 

Al MMC manufactured through stir cast route to model the machinability evaluation. The 

contour plots were generated to study the effect of process parameters including cutting 

speed (s), feed rate (f), depth of cut (d) and machining time (t) which were optimized using 

response surface methodology on the basis of two performance characteristics of flank 

wear (VBmax) and surface roughness [Taylor and Francis 2021]. 

In order to obtain the best surface finish and material removal rate (MRR) the 

input parameters of nano powder mixed electric discharge machining (NPMEDM) were 

optimized using central composite rotatable design (CCRD) based on response surface 

methodology (RSM). The surface finish had been improved by 46.06% and MRR had been 

increased by 38.22% [Gopalakannan et al. 2021]. Modelling of the machining process 

(EDM, WEDM, USM, high speed machining), finite element modelling, simulation and 
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optimization of soft computing methods in MMCs were focused on this review. The study 

would emphasize on ANN, RSM, fuzzy logic, Taguchi method as soft computing 

optimization methods [Srivastava et al. 2021]. As the influencing parameters cutting 

speed, depth of cut and weight percentage of SiCp were selected. Through stir casting route 

the application of response surface methodology and face centred composite design for 

modelling, optimization and an analysis of the influences of dominant cutting parameters 

on tangential cutting force, axial cutting force and radial cutting force of Al MMCs were 

produced. Using the developed model’s mathematical models were developed and tested 

for adequacy using analysis of variance and other adequacy measures. In the turning of Al 

MMCs the predicted values and measured values were fairly close, which indicate the 

developed models could be effectively used [Seeman et al. 2021]. To develop 

mathematical model for specific wear rate and coefficient of friction RSM was employed 

because capability of the RSM was good in prediction of results and results were very 

closer to the measured value. Considering five machining parameters (gap voltage, pulse-

off-time, discharge current, flushing pressure, pulse-on-time) based on Box-Behnken’s 

design of experiments (BBDOEs), the methodology for predictive modelling and multi-

response optimization of machining accuracy and surface quality to enhance the hole 

quality on Al-SiC based MMC, employing response surface methodology (RSM) and 

desirability function approach (DFA).In order to estimate the machining characteristics 

such as MRR, EWR and SR a mathematical model had been formulated by applying RSM 

[Li, J and Laghari 2021]. 

An application of RSM and Particle swarm optimization (PSO) technique for 

optimizing the process parameters such as feed rate, spindle speed and depth of cut on the 

cutting force, surface roughness and power consumption of milling and provides a 

comparison study among desirability and PSO techniques was illustrated. To study the 

relationship between the input and output responses the process parameters were analysed 

using RSM central composite face-centred design. Using the desirability approach and the 

PSO technique optimized process parameters were acquired through multi-response 

optimization, results obtained from PSO were closer to the desirability function approach 

which achieved significant improvement [Malghan et al. 2021]. Experiments were 

conducted in the better composition material to identify the optimized turning parameters 

such as spindle speed, feed rate and depth of cut with bio lubricants as cutting fluid using 

RSM method. As the optimized input machining parameters spindle speed of 275 rpm, a 
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feed rate of 0.2 mmrev-1 and depth of cut of 0.75 mm were identified. The study made by 

RSM derived the regression equation for the turning parameters. For mathematical 

modelling and optimization of process parameters such as peak current, pulse on time and 

duty cycle were used by RSM. Between input process parameters and responses such as 

Material Removal Rate (MRR), Electrode Wear Rate (EWR) and Surface Roughness (SR) 

mathematical model was developed. The effects of peak current, wire tension, spark gap 

set voltage, pulse on time and pulse off time were investigated experimentally on MRR 

and Ra. For investigation of process variable affecting MRR and Ra RSM was employed.  

The confirmatory results had shown a significant improvement in MRR and Ra due to 

process optimization, predicted optimal values of MRR and Ra are 1.7509 g/h and 0.50 

µm respectively [Shahadev et al. 2021]. 

Benardos and Vosniakos [2002] developed the neural network modeling approach 

for the prediction of surface roughness in CNC face milling. Gaitonde et al. [2011] added 

time and cutting tools as inputs with cutting speed and feed; and acquired 20.57% 

prediction accuracy in surface roughness. Apart from turning, ANN has been adopted in 

boring operation to anticipate the surface roughness and by doing so, a 4.52% error rate 

was found [Rao et al. 2014], while in milling Zain et al. [2010] found satisfactory results 

with ANN and made an attempt to improve prediction of surface roughness and cutting 

force by using Artificial Neural Networks (ANN) technique. The effects of the process 

inputs, namely cutting speed, depth of cut, feed rate, and tool nose radius on the output 

responses are evaluated using response surface methodology (RSM). Manna A. and 

Bhattacharyya B. [2004] used Taguchi method to optimize the cutting parameters for the 

effective turning of Al/SiC-MMC using a fixed rhombic tooling system. Lo also used 

adaptive neuro-fuzzy inference system (ANFIS) to predict the surface roughness in end 

milling process. The independent parameters for the cutting were spindle speed, feed rate, 

and depth of cut. The ANFIS model was done using triangular and trapezoidal 

membership functions. The average error of prediction of surface roughness for triangular 

membership function was found around 4%. Chen and Savage [2001] used fuzzy net-based 

model to predict surface roughness under different tool and work piece combination for 

end milling process. The input parameters included cutting speed, feed, depth of cut, 

vibration, tool diameter, tool material, and work piece material for the fuzzy system. While 

validating the model it was found that the predicted error was within 10%. Kumunan et al. 

have performed series of end milling operations with varying cutting speed, feed, depth of 
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cut and vibration. Their work proposed two different hybrid intelligent techniques namely 

ANFIS and radial basis function neural network- fuzzy logic (RBFNN-FL) for predicting 

surface roughness during end milling. An experimental data set was obtained with speed, 

feed, depth of cut and vibration as input parameters and surface roughness as response 

variable. The input-output data set was used for training and validation of the proposed 

techniques. After being validated, those techniques were forwarded in order to predict 

surface roughness. Both the hybrid techniques were found superior over their respective 

individual intelligent techniques when computational speed and accuracy were in concern 

predicting surface roughness. In hard turning, Sharma et al. [2008] formed ANN model of 

surface roughness in terms of speed, feed, depth of cut and approaching angle and found 

76.4% accuracy. Karayel [2009] derived surface roughness, by ANN, close to actual 

values. Azouzi and Guillot [1997] examined the feasibility of neural network-based sensor 

fusion technique to estimate the surface roughness and dimensional deviations during 

machining. This study concludes that depth of cut, feed rate, radial and z-axis cutting 

forces are the required information that should be fed into neural network models to 

predict the surface roughness successfully. 

The response surface methodology (RSM) allows testing the statistical 

significance of the model, model terms, and lack of fit and provides 3D plots showing the 

process inputs effects on the studied responses. Sahin and Motorcu [2005] developed a 

surface roughness model based on cutting speed, feed rate and depth of cut for turning of 

mild steel with coated carbide tools using response surface methodology (RSM). 

According to them, feed rate was the least influencing factor on surface roughness. Elbah 

et al. [2013] employed RSM to study the effects of cutting speed, feed rate, and depth of 

cut on surface roughness criteria during hard turning of AISI 4140 steel (60 HRC) using 

wiper and conventional ceramic inserts. The Ra regression model of conventional insert 

was very acceptable with a correlation coefficient of 98.12%. However, the Regression 

model of wiper insert presented only 87.92% of correlation. Aouici et al. [2012] concluded 

that RSM is useful for investigating the cutting parameters influence on surface roughness 

and force components when turning hardened AISI H11 steel using cubic boron nitride 

tool. Nevertheless, the correlation coefficients of the regression models were between 

82.14 and 91.43%. Subramanian et al. [2014] worked with Al7075-T6 material to develop 

a surface roughness model during end milling using RSM where the cutting tool was of 

high-speed steel (HSS). The variables used in the experiment were cutting tool geometry 
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and cutting condition. The cutting speeds were 75 m/min., 95 m/min., 115 m/min., 135 

m/min. and 155m/min., the feeds were 0.02 mm/tooth, 0.03 mm/tooth, 0.04 mm/tooth, 

0.05 mm/tooth and 0.06 mm/tooth and the used depth of cuts were 1.5 mm, 2 mm, 2.5 mm, 

3 mm and 3.5 mm. According to their findings, Surface roughness increased with 

increasing cutting feed rate and the surface roughness increased with the decrease in 

cutting speed. The least increase in surface roughness was found at low nose radius, while 

a decrease in surface roughness was noticed at high nose radius. The surface roughness 

increased at low radial rake angle and surface roughness decreased at high radial rake 

angle. The optimal cutting parameters for the minimal surface roughness are γ = 12ᵒ, R = 

0.8 mm, Vc = 115 m/min, fz = 0.04 mm/tooth and ap = 2 mm. It was also possible to 

predict the roughness of the work material according to the developed second order surface 

model. 

Barman and Sahoo [2009] experimentally studied the fractal dimension of 

aluminum, brass and mild steel in CNC turning and applied both ANN and RSM models to 

predict the dimension. They concluded that ANN models work better than response 

surface models to predict accurately. Kumar and Chauhan [2015] showed that ANN 

revealed higher error than RSM in surface roughness measurement. Sahoo et al. [2015] 

revealed the supremacy of ANN over RSM. Furthermore, ANN revealed higher accuracy 

than Taguchi based surface roughness prediction and also concluded the same result by 

stating that ANN model gives more accurate Ra prediction values than any other 

conventional model [Karabulut 2015].  ANN is also better than linear regression analysis 

and utilizes only a few training and testing data set to make an accurate prediction of 

surface roughness [Al-Ahmari 2007]. 

1.3 Summary of the Review 

A review of the study presents that in the modern material science researchers are 

seeking to fabricate new composite materials to increase tribological, microstructural and 

mechanical qualities. The conventional materials are not so effective for many applications 

due to some low properties.  

CNTs reinforced aluminum metal matrix composite have excellent mechanical 

properties like high stiffness, high strength-to-volume portion, deterioration resistance, and 

exceptional wear resistance which creates the increasing demand of nano particle 

reinforced aluminum-based Metal Matrix Composite because of their massive applications 
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in various automobile, military, aviation, aerospace, structural, transportation, marine and 

other manufacturing industries. Advanced engineering composites have been produced in 

large part thanks to the impact of nanoparticles such CNTs, Silicon Carbide, and Alumina. 

Therefore, compared to standard reinforcement, metal matrix composite with nano tubing 

offers improved mechanical properties.  

However, very few investigations have been conducted into the development of 

advanced nanoparticle-based aluminum metal matrix composite. Review of experimental 

studies clearly demonstrated the effects of advanced reinforcing nanoparticle and its size, 

shapes and different composition to develop improved metal matrix composite. Necessity 

of more researches arise to ascertain the effects of these factors. Till now a substantial 

number of researches fabricated Al metal matrix reinforcing either with CNT or CNT-SIC 

or CNT- Alumina or SIC-Alumina but an investigation combining all those three 

reinforcing materials is rare. Problems of nanoparticle agglomeration and settling all need 

to be investigated thoroughly in the applications. Nevertheless, the high cost of 

nanoparticles may seem prohibitive and hence minimum requirement of inclusion is 

estimated.  

1.4 Objectives of the Present Work 

The objectives of the present work are: 

i. Develop a composite material by reinforcing carbon nanotubes with 

aluminum metal matrix composite 

ii. Evaluate different mechanical properties such as tensile strength, impact 

strength, flexural strength, and hardness of the fabricated composite 

iii. Investigate different output parameters such as surface roughness, tool 

wear, cutting force, and temperature of carbon nanotube reinforced 

aluminum metal matrix composite to optimize different machining 

parameters using Response Surface Methodology (RSM). 

iv. Develop a prediction model for surface roughness using Artificial Neural 

Network (ANN) while turning CNT reinforced aluminum metal matrix. 
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1.5 Scope of the Thesis 

The requirement for more effective composite materials is crucial for the creation 

of new products in the contemporary world. Hence, it has constantly been the drive to 

develop new metal matrix composite for different outstanding mechanical properties and 

widespread applications. Among such composites, application of aluminum metal matrix 

composite with nano tubing is prominent. Nanotubes like CNTs have emerged as a 

promising solution to produce effective composite materials. The review of the literature 

motivates to fabricate nanohybrid aluminum metal matrix composite materials instead of 

conventional composite materials. The present research work has been taken up to prepare 

carbon nanotube base aluminum metal matrix composite with best composition, evaluate 

different mechanical properties and investigate the major machinability characteristics in 

machining (turning) fabricated composite by coated carbide cutting tool under different 

machining conditions as well as to predict surface roughness in machining when 

machining under different environmental condition. 

Chapter 1 presents the brief description of composite materials, different matrix 

materials that can be used in metal matrix composite. Furthermore, it also highlights the 

evolution of CNTs reinforced aluminum-based metal matrix composite and its varieties of 

application. Moreover, presents the main goals and objectives of machining operation, 

works that have been previously done on MMC keeping their mechanical properties on 

thoughts, complications associated with machining of carbon nanotube reinforced 

aluminum metal matrix composite material, the techniques that are used to model surface 

roughness of a machined surface. It presents specific objectives of this thesis work and 

also outlines the methods which have been followed to draw effective results that 

commensurate with the goals of the thesis. 

Chapter 2 presents the development of the carbon nanotube reinforced aluminum 

metal matrix composite material where three different reinforcing materials i.e., CNT, 

silicon carbide and alumina have been used to reinforce the matrix material. Pure 

aluminum ingot has been used as the matrix material in this research work. Moreover, it 

presents different mechanical properties i.e., tensile strength, flexural strength, impact test 

and hardness has been carried out of the fabricated composite 

Chapter 3 deals with the experimental investigation and findings that have been 

achieved by carrying out turning operation on the developed composite material under 
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both dry and MQL condition. The composition of sample work piece and complete 

experimental set up with experimental conditions are briefly describe in this chapter. 

Finally, the experimental results in terms of temperature, surface roughness, cutting forces 

and tool wear are represented by different graphs. Effects of minimum quantity 

lubrications in conventional cutting fluids, relative to dry conditions on temperature, 

surface roughness, cutting forces and tool wear in turning CNT reinforced aluminum alloy 

by uncoated carbide cutting tool under different cutting conditions are also discussed.   

Chapter 4 explains the theory, structure and also prediction technique of neural 

network (ANN) and response surface method (RSM) and presents the modeling of surface 

roughness using Artificial Neural Network and Response surface Methodology. In 

addition, the chapter also demonstrate the modeling of surface roughness using RSM and 

ANN of the developed composite under MQL condition. The chapter deals with 

desirability function analysis to find out optimum machining conditions and concludes 

with the efficacy of the developed ANN model for predicting surface roughness. The 

chapter concludes with compare the accuracy of ANN and RSM models for predicting 

surface roughness in terms of coefficient of determination (R2), absolute percentage error 

(APE) and model predictive error (MPE).  

Chapter 5 contains the detailed discussions on the experimental results, possible 

interpretations on the results obtained and artificial neural network model for predicting 

surface roughness. The reduction of temperature, cutting force and surface roughness due 

to the usage of MQL are also presented in tabulated form. This chapter also contains the 

discussion regarding the modeling of surface roughness of carbon nanotube reinforced 

aluminum metal matrix composite. Finally, a summary of contributions, recommendations 

for the future work and references are provided at the end. 
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Chapter-2 
 

 

 

Materials and Methods  

2.1 Development of Carbon nano tube Reinforced AMMC 

Nano hybrid Aluminum Metal Matrix Composite (AMMC) material possesses 

outstanding tribological, microstructural, and mechanical properties, such as light weight, 

ductility, high conductivity, superior malleability, high strength, and high specific 

modulus. Now a days engineers has been constantly trying to develop new composition of 

AMMC materials. 

After researching the literature, I have found that adding CNTs, Al2O3 and SiC 

reinforcements to the aluminum matrix increases the hardness and strength of the 

aluminum matrix material which ultimately increases all the mechanical properties as well. 

Naik H R M et al. [2021] during their fabrication of hybrid aluminum-cnt material used a 

fixed CNT content of 2 Wt.%. Reddy and Anand [2019] during their production of 

nanocomposite materials varied the amount of CNT content (0.4%, 0.7%, and 1.1%) 

respectively in Al 5056 matrix. Novel hybrid composite, like MWCNT coated SiC as the 

reinforcement in A356 enlighten that the accumulation of the precise amount (1.5%) of 

carbon nanotubes significantly improved the tensile strength (229 MPa), hardness (305 

MPa), impact strength (4J) and elongation percentage (6.1%) by the semi-solid stir casting 

process. In addition, the combination of 10% of SiC and 1.5% of MWCNT with the A356 

have increased tensile strength by 189.25%, hardness by 133.83%, elongation by 186.54% 

and impact strength by 200% as compared with base alloy  [Sangeetha et al. 2021]. 

Mechanical properties, fabrication techniques and surface texture of aluminium matrix 

composites (AMCs) reinforced by silicon carbide (SiC). varying SiC content in AMCs is 

(0,5,10,20 Wt.%) were fabricated by stir casting process [Shukla et al. 2021]. Moreover, 

multi-walled carbon nanotubes were varied from 0.166 to 3.33% and 8-12% SiC was used 

for the reinforcement to fabricate aluminum alloy 5083 by stir casting process and tensile 

strength was discovered to have increased by 18% [Jannet et al. 2020]. Imran and Khan 

[2021] have focused on mechanical properties, tribological properties of Al-7075 metal 
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matrix composites (AMMCs) by the addition of desirable reinforcements like Sic, Al2O3, 

Gr, TiO2, bagasse ash etcetera is incorporated in the stir casting method. The mechanical 

investigation and fabrication of Al alloy, alumina and boron carbide metal matrix 

composites ended up finding its properties like light weight, high strength and ease of 

machinability; alumina which as better wear resistance, high strength, hardness and boron 

carbide which has excellent hardness and fracture toughness are added. Bansal & 

Upadhyay [2016] presented the effect of machining parameters on tool wear, surface 

roughness and metal removal rate of Alumina Reinforced Aluminum Composite has been 

observed in turning operation. Hardness and tensile strength increase with the 

reinforcement ratio. Surface Roughness increase with the process variables except the 

speed, speed made adverse effect on surface roughness. MRR increases with the process 

parameters. The machinability of 2024 aluminum alloy reinforced with Al2O3 particles 

using varying size and weight fraction of particles up to 30 wt.% by a vortex method was 

carried out at different cutting conditions. The optimum surface roughness was obtained at 

a speed of 160 mmin-1 while the maximum surface roughness value was found in the 

machining of the 15% Al2O3 composites with particle size of 16 mm. The surface 

roughness also increased with the increasing weight percentage of the particles. Till now 

all of the researchers fabricated Al metal matrix reinforcing either with CNT or CNT-SIC 

or CNT- Alumina or SIC-Alumina but a few works have been found combining all those 

three reinforcing materials.  

In this work aluminum-based nano hybrid metal matrix composite is developed 

by stir casting method. Ingot Aluminum and Al2O3 content is fixed as 73.5wt% and 15wt% 

with CNTs content is varied from (0.5, 1, and 1.5) wt.% and Silicon Carbide content is 

varied from (11, 10.5, and 10) wt.% as reinforcement materials. For the efficient 

production of aluminum composites, it is vital to choose the right material for the matrix 

and reinforcing. The commercially available Aluminum ingots were chosen for matrix 

which is shown in Fig. 2.1. 

 
Fig. 2.1 Photographic view of Aluminium ingot. 
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Usually, aluminum takes the major proportion in ingot aluminum. The chemical 

composition and some properties of the experimented ingot Aluminum is listed in Table 

2.1 and Table 2.2 respectively. 

Table 2.1 Chemical composition (wt.%) of ingot Aluminum. 

Aluminium Mg Si Mn Fe Cu Zn Ti 

99.6% 0.02 0.08 0.0005 0.289 0.0002 0.00014 0.01 

 

Table 2.2 Properties of ingot Aluminum. 

Appearance Density Hardness Tensile Strength Thermal 

Conductivity 

Melting 

Point 

Silvery 

white 

2.7g/cc 26 HRE 67 MPa 234.2 W/M-

K 646.1- 

675.2 °C 

 

 

Carbon nanotube, Al2O3 and silicon carbide nano-particles were chosen as 

secondary phase reinforcement materials. Carbon nanotube particles appear as fine black 

powder. On the other hand, Aluminum oxide is a white odorless crystalline powder 

whereas pure silicon carbides appear as colorless and transparent crystals. The mixture of 

Al2O3, SiC and MWCNT particles with three different volume percent of MWCNTs 

(wt.0.5 %, wt.1.0 % and wt.1.5%) and fixed volume percent of Al2O3 (wt.15%) and SiC 

(wt.11%, wt.10.5% and wt.10%) were dispersed in ingot aluminum to fabricate the 

composite materials. A photographic view and SEM image of carbon nanotube are 

depicted in Fig. 2.2. (a-b) respectively. The photographic views of Al2O3 and Silicon 

Carbide are provided in the following Fig. 2.2. (c) and Fig. 2.2(d) respectively.  

 

 

 



44  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.2  (a-b) Photographic view and SEM image of Carbon nanotube (c) 

Photographic view of Aluminium Oxide (d) Photographic view of Silicon 

carbide. 

Nano particles like CNTs have created a great impact to produce advanced 

engineering composites. Different properties of carbon nanotubes are shown in  the Table 

2.3.  

Table 2.3: Properties of CNT. 

Aspec

t ratio 

Specific 

surface 

area SSA 

Purity Average 

Outer 

Diameter 

Average 

Inner 

Diameter 

Number 

of walls 

Length 

      

~1000 

350 m2/g wt.% 

>97% 

20 nm 

 

5nm 

 

5-15 50 

Microm

eter 

Aluminum oxide is amphoteric in nature, and is widely used to make better 

composite materials as a reinforcing material in various chemical, industrial and 

commercial spheres. Necessary information regarding the properties of Aluminum Oxide 

is depicted in the Table 2.4.  
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Table 2.4: Properties of Aluminium oxide. 

Density 

g/cc 

Thermal 

Conductivity 

(W/m K) 

Diameter Purity Young’s 

modulus 

(GPa) 

Thermal 

Expansion 

(10-6/K) 

3.97 30 <50nm 99% 413 10.8 

Silicon Carbide, with the chemical symbol SiC, is a solid industrial mineral 

crystalline. It is used as a semiconductor and a ceramic, commonly referred to as 

carborundum. Silicon carbide exists naturally in an extremely rare mineral called 

moissanite. Some properties of silicon carbide are illustrated in Table 2.5 

Table 2.5: Different properties of silicon carbide. 

Appearance Density Solubility Molecular mass Thermal 

Conductivity 

Super black 

fine powder 

3.2 

gm/cm3 

Insoluble in 

water 

40.11 g/mol 60-120 

W/m. 

K@25°C. 

Many techniques are available in industries for manufacturing of aluminum metal 

matrix composites such as Solid state (powder metallurgy), Liquid state (stir casting), 

Thermal spray, Electro-chemical deposition and other novel techniques. Since, stir casting 

technique is one of the simplest and easiest methods for manufacturing; it has been used to 

fabricate the composite specimen for testing purpose. Stir casting is suitable due to its 

simple procedure that are relatively less expensive than other manufacturing process. Two 

primary difficulties yet with reliable answers are homogeneous dispersion and interfacial 

bonding of the CNT reinforced metal matrix. Therefore, it is expected that given 

appropriate processing conditions, CNTs may be dispersed while maintaining their 

efficient multiwalled structure, and the aluminum matrix's characteristics would be 

enhanced. Critical issues like processing techniques, nanotube dispersion, interface 

strengthening mechanism and properties of mechanical should be focused. [Hashim et. al 

2019]. It is expected that this composite will be beneficial for lightweight material 

development especially in marine engineering, automobile, military, aviation, aerospace, 

structural, transportation and other manufacturing industries. 

In order to manufacture particle reinforced AMMCs, stir casting is a cost-effective 

and simple procedure that can be applied. The basic concept of this method is that the 

https://en.wikipedia.org/wiki/Solubility
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reinforcement materials are introduced directly to the molten metal and the particles are 

consistently dispersed by stirring. Before the reinforcing material is added, the matrix 

material is heated above its melting temperature.  In order to get the greatest possible 

characteristics, the reinforcement material must be evenly distributed in the matrix 

material. A variety of parameters must be taken into account while fabricating AMMCs 

using the stir casting technique, including achieving a homogenous dispersion of 

reinforcement material, porosity, and good bonding between reinforcement and matrix 

material. At first some wooden patterns for mechanical testing have been made. Alongside, 

for machining purpose another cylindrical shaped plastic made pattern has installed. In the 

Fig. 2.3 stated below, it is shown the patterns prepared for mold cavity in which the molten 

metals will be poured.   

  
(a) (b) 

 
(c) 

Fig. 2.3  (a) Patterns used to create mould cavity for tensile test (b-c) Pattern used to 

create mould cavity for making cylindrical shape workpiece. 

 

After making the pattern, using that very pattern mold has been prepared. In the 

Fig. 2.4 below it is shown the prepared mold using the pattern. 
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(a)                                                                                                      (b) 

Fig. 2.4 

 

(a) Mould Preparation by sand casting process for tensile test, (b) Mould 

Preparation by sand casting process for machining performance. 

Titanium carbide mechanical Stirrer and graphite crucible with an electric melting 

furnace was used for this fabrication process. To fit in the graphite crucible, the aluminium 

alloy, which was in the form of an ingot, was chopped into small pieces. The crucible was 

preheated at 5000C for 30 minutes to remove moisture and prepare for the job. At 800 

degrees Celsius, aluminium ingots were melted in the crucible. For better composition and 

to remove the moisture from reinforcement particles CNT, Al2O3 and SiC preheated to a 

temperature of about 620°C, were added to the molten metal and stirred continuously. 5 

minutes were spent stirring melted aluminium. Initial stirring of molten aluminium was 

done together with the addition of reinforcement components once the reinforcement was 

pre-heated. The entire melt was again stirred for 5 minutes at 450 rpm. To guarantee 

adequate mixing of the reinforcements with the molten aluminium matrix, the furnace 

temperature was raised to 9500C. To ensure proper mixing, the last stirring took place at 

11000C for 10 minutes. Experimental setup used in stir casting process is shown in Fig. 

2.5. 

  
 

(a) (b) 

Fig. 2.5 (a-b) Preparation of stir casting process using mechanical stir. 

Cavity 



48  

2.2     Analysis of Mechanical Properties of Composite Material 

After fabrication of the hybrid composite samples, specimens were cut out 

precisely from fabricated materials per ASTM standards and have been subjected to 

various mechanical tests. For every type of test, a minimum of three samples were tested to 

get an average value. Finally, different mechanical properties of prepared samples have 

been investigated.  

Tensile testing is a destructive method used to find out a material's tensile strength 

and how effortlessly it can be elongated. It measures how much force it requires to break a 

composite or plastic sample and how much the sample has to stretch or lengthen to break. 

A total of four specimens were tested having three from each sample for their tensile 

strength. The composite specimens were cut following the ASTM A370 standard for this 

test. The tests were conducted using a Universal Testing Machine. The machine was set up 

with a 10 KN sensor attached to the computer-controlled grip shaft. After setting up the 

samples were left to break till, they reached their ultimate tensile strength. Four specimens 

of same dimension were prepared for tensile testing purpose as shown in Fig. 2.6. Length, 

width and thickness of the specimen were 50, 10 and 15 mm respectively.  

 
Fig. 2.6 Specimen of carbon nanotube reinforced AMMC for Tensile test. 

The entire test was recorded through the sensors under a computerized system and 

the test results were taken from the computer attached to the universal testing machine. 

The tensile strength of the composite has shown Fig. 2.7. When SiC, Al2O3, CNT reinforce 

added to the ingot aluminium at 11%, 15%, 0.5 % respectively the composite strength 

significantly increased than the pure aluminium. The use of SiC, Al2O3 and CNTs 

reinforcement, which has a high strength and stiffness, improved the matrix's local 

deformation and increased the composites' tensile strength. After increasing the CNT 
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weight percentage to 0.5%. 1%and 1.5% respectively the tensile strength linearly 

increased. 

 
Fig. 2.7 Tensile strength for various weight percentage. 

The flexural test method measures how materials behave when they are loaded 

like a simple beam. For every step of load, the maximum stress and maximum strain are 

calculated. Following ASTM E290 standards four specimens were cut as samples shown in 

Fig. 2.8 and then tested to determine their flexural strength. The specimens were set up on 

the UTM as shown in Fig. 2.9 and pressure was applied on the center point of each of the 

samples. 

 
Fig. 2.8 Specimen for Flexural test. 
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Fig. 2.9 Specimen setup for Flexural test under UTM. 

For flexural testing, specimens of different composition were made having 

dimension of ASTM standard. Flexural strength for pure aluminum was found to be at 

162.5 N/mm2. Maintaining same proportion of Aluminum Oxide, the inclusion of 0.5%, 

1%, 1.5% CNT and varying with silicon carbide potentially increases the flexural strength 

of the material up to 232.9 N/mm2, 243.3 N/mm2, 237.7 N/mm2 respectively which is 

shown in Fig. 2.10. 

 
Fig. 2.10 Flexural strength for various weight percentage 

Impact test is meant to find out how a sample of a known material will react when 

a sudden stress is put on it. At ambient temperature, impact strength is determined by 

letting a pendulum to hit test pieces of AMMCs and measuring the energy absorbed in the 

break using the benzoid testing machine The test shows if the material is hard or easy to 

break. The specimens for this test were cutout with ASTM E23 standard and the test was 

conducted on a Benzoid Impact Tester which is shown in Fig. 2.12. The specimen was set 

up on the holder and a load was released on it for it to crack at its notch. The amount of 

force required for creating the crack was recorded. Fig. 2.11 shows the specimens used to 
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test the impact strength. And nest figure depicts the experimental setup of Benzoid Impact 

Tester. 

  
 

Fig. 2.11 Specimens for Impact test.     Fig. 2.12 Experimental setup for Impact test. 

Fig. 2.13 depicts the composite's influence. Ingot Aluminium, SiC, Al2O3, and 

CNT reinforcement were added to aluminium at 73.25 wt.%, 11wt.%, 15wt.%, and 

0.5wt.%, respectively, increasing the composite strength compared to pure aluminium. 

Impact energy rose linearly as CNT weight percentage was increased to 1% and 1.5%, 

respectively. 

 
Fig. 2.13 Impact energy for different composition. 

Finally, hardness test has been done to find out how hard the fabricated material 

is. The hardness of a material is the resistance of it while being permanently dented. There 

are many ways to measure hardness, and each test can come up with different hardness 

values for the same material. The hardness test was conducted for all sample specimens 

and the results were noted to take an average value at the end. The test was conducted by 

placing the sample on a solid hard surface and then using a Rockwell hardness tester. Fig. 

2.14 shows an experimental setup of Rockwell Hardness Tester. 



52  

 

Fig. 2.14 Experimental setup for testing hardness with Rockwell hardness tester. 

The Rockwell hardness test method, as defined in ASTM E-18, is the most 

commonly used hardness test method. The hardness values were tested at three different 

sites throughout the sample, with average values of 26, 39.3, 37.1, and 36.9 HRA for 

samples 1, 2, 3, and 4 shown in the Fig. 2.15. Moreover, The Lee rebound hardness test is 

a non-destructive method used to determine the hardness of materials. In this test, a spring-

loaded hammer with a hardened steel tip is allowed to fall from a fixed height onto the 

surface of the material being tested. The height of the rebound of the hammer is measured 

by a dial gauge or an electronic sensor and is used to calculate the hardness of the material. 

During the experiment, six times data were recorded for each composite composition and 

subjected to the Lee rebound hardness test using a hardness tester and the results were 

recorded in HL (Lee hardness) units is shown in Fig. 2.15. 

  
Fig. 2.15  

 

Hardness of AMMC for various weight percentage in Rockwell Hardness 

and Lee Rebound scale. 
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Fig. 2.16 Different Mechanical Properties Analysis for all composition.  

After analyzing all the data from mechanical testing, the final result indicates in 

Fig. 2.16 that incorporation of Al2O3, SiC and CNTs reinforcements in pure aluminum 

improved overall mechanical properties rather than the pure aluminum. Finally, it has been 

reported that the overall mechanical properties like tensile strength, flexural strength, 

impact energy and hardness increased massively. In terms of tensile strength and impact 

energy 73.5 wt.% ingot aluminum, 10 wt.% SiC, 15 wt.% of Al2O3 and 1.5 wt.% of CNTs 

reinforced AMMC composition resulted the better result than other composition.   
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Fig. 2.17 Pie chart of mechanical performance evaluation for all composition. 

 

In Fig 2.17 depicted that the 73.5 wt.% ingot aluminum, 10 wt.% SiC, 15 wt.% of 

Al2O3 and 1.5 wt.% of CNTs reinforced AMMC shows better overall mechanical 

properties rather than other composition of materials. This study essentially focuses on 

establishing AMMC as its applications on aerospace and automotive industries because of 

its admirable properties especially tensile strength and impact energy and compared with 

the other composition of materials. The tensile strength and impact energy of aluminum 

metal matrix composites can have a significant impact on their performance in aircraft and 

automotive industry. Here are some key points to consider: 

    Tensile Strength: Tensile strength is the maximum stress that a material can 

withstand before it fractures. In the case of aircraft, high tensile strength is important 

because it enables the material to withstand the forces and stresses that are exerted on it 

during flight. Aluminum metal matrix composites have higher tensile strength than 

conventional aluminum alloys, making them more suitable for use in critical aircraft 

components such as wing spars, landing gear, and engine components. 

    Impact Energy: Impact energy is the amount of energy that a material can 

absorb before it fractures. In aircraft, impact energy is important because it determines the 

ability of a material to withstand sudden shocks and impacts, such as those that might 

occur during a hard landing or a bird strike. Aluminum metal matrix composites have 

higher impact energy than conventional aluminum alloys, making them more resistant to 

damage from impacts and more suitable for use in aircraft components that are exposed to 

high stress and impact loads. 
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Overall, the higher tensile strength and impact energy of aluminum metal matrix 

composites make them an attractive material for use in aircraft. These materials offer 

improved performance and durability, which can help to increase the safety and reliability 

of aircraft components, and reduce maintenance and repair costs. So, considering the all 

factors as the impact of tensile strength and impact test in aircraft and automotive industry 

is very crucial, the 73.5 wt.% ingot aluminum, 10 wt.% SiC, 15 wt.% of Al2O3 and 1.5 

wt.% of CNTs reinforced AMMC has been selected for machining performances.      

Finally, a cylindrical bar of composite material was developed by stir casting process using 

the raw materials i.e., Ingot Aluminum as a matrix, CNT, Silicon carbide and Alumina 

together in a cylindrical mold for selected composition. The developed work material is 

shown in Fig. 2.18. 

 
Fig. 2.18 Developed work materials of CNT reinforced aluminum metal matrix 

composite. 
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Chapter-3 
 

 

 

Experimental Investigation 

 

3.1 Experimental Procedure and Conditions 

Composite materials are widely used in diverse applications, and extensive 

research has been performed to understand the mechanical behavior of such material and 

develop design procedures for taking maximum advantage of their properties. However, 

being non-homogenous, anisotropic and reinforced with advanced nanoparticle, these 

materials are difficult to machine. Significant damage to the work piece may be introduced 

and high wear rates of the tools are experienced. Traditional machining methods such as 

drilling, turning, sawing, routing and grinding can be applied to composite materials using 

appropriate tool design and operating conditions. Generally, nano particle reinforced metal 

matrix composites are used on a large scale at the production of structure because they 

have good behavior to mechanical stresses and a high mechanical resistance to weight 

ratio. From the point of view of the advantages offered by these materials are high 

toughness, relatively high temperature resistance, and good mechanical resistance, high 

resistance to corrosion and wear. 

In this study, uncoated carbide inserts (SNMG 120404) were used to conduct 

extensive experimental research on turning carbon nanotube reinforced aluminum metal 

matrix composite. Investigations have included detailed examinations of the various 

machining input parameters and their respective responses that result from turning 

operations. Generation of high cutting temperature during machining is one of the most 

significant and primary level responses during turning, which not only affects tool life but 

also degrades the quality of the result. Temperature behavior is proportional to the higher 

values of cutting process parameters, as well as the increased strength and hardenability of 

the work piece materials. Cutting force is another primary level machining reaction that is 

directly proportional to the required quantity of cutting power.  
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Surface roughness and tool wear are secondary level reactions that depend mostly 

on the response parameters in terms of temperature and force. Cutting fluids in MQL 

conditions are commonly used to enhance the performance of machining. However, due to 

its inefficiency in providing the desired cooling and lubrication, as well as the associated 

health risks, corrosion, and contamination of the natural environment, a water-soluble 

cutting fluid under minimum quantity lubrication has been implemented in order to 

achieve better experimental results. 

In this study, a shaft of carbon nanotube reinforced aluminum metal matrix 

composite which is fabricated considering the best mechanical properties with length of 

300 mm length and diameter of 100 mm, was used as the workpiece material to perform 

turning operation. The cylindrical shaft of composite material was developed by casting 

the raw materials i.e., Ingot Aluminum as a matrix, CNT (1.5 wt.%), Silicon carbide (10 

wt.%) and Alumina (15 wt.%) together in a cylindrical mold. The developed work material 

after turning 1mm in depth is shown in Fig. 3.1. 

 

Fig. 3.1 Final product after turning 1mm depth. 

The concept of minimum quantity lubrication (MQL) presents itself as a potential 

solution for hard turn machining in attaining slow tool wear while retaining reasonable 

cutting forces/power, if the MQL parameters can be set strategically. It has the advantages 

of a strong stream that can reach the cutting area, strong chip removal, and in some 

circumstances sufficient pressure for deburring. Not only did the MQL approach reduce 

temperature, but it also lowered cutting fluid usage.  

The primary objective of the present study is to investigate and assess the effect 

of MQL on the machinability properties of carbon nanotube reinforced aluminum metal 

matrix composite over dry conditions, particularly in terms of surface roughness, cutting 

temperature, cutting force and tool wear which influence productivity, product quality, and 
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overall economy. 

The machining was performed on a lathe with a main spindle power of 7.5 kW. 

Fig.3.2 depicts a photographic perspective of the experimental setup to machine the 

fabricated composite. The nozzle is positioned at a distance of 20.0 mm from the tool tip in 

order to minimize its interference with the flowing chips and to reach very close to the 

chip-tool contact zone without avoiding bulk cooling of the tool and the workpiece, which 

may result in adverse metallurgical changes. After multiple testing, the position of the 

nozzle tip in relation to the cutting insert has been determined. The ultimate configuration 

created and utilized is depicted in Fig.3.3. The MQL is guided along the auxiliary cutting 

edge at a 20º angle in order to reach the major flank and partially under the running chips 

through the parallel in-built groove. 

 

Fig. 3.2 Photographic view of experimental set-up on MQL condition. 
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Fig. 3.3 Photographic view of MQL set-up. 

 

Uncoated carbide insert was employed as the cutting tool (ISO specification: 

SNMG 120404). In addition to 6° side cutting-edge and end cutting-edge angles, the tool 

holder also positioned at a negative 6° side and back rake angles, respectively. The 

recommended cutting velocity (Vc), feed rate (So) and depth of cut (t) ranges were chosen 

based on industry standards and tool manufacturer recommendations. Table 3.1 provides a 

brief summary of the machining test conditions that were used. 
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Table 3.1: Experimental conditions. 

Machine tool : Lathe (China), 7.5 kW 

Work material : Carbon nanotube reinforced aluminum metal matrix 

composite 

Size : Length = 300 mm, Diameter = 100 mm 

Cutting tool : Uncoated Carbide SNMG 120404 

Geometry : -6°, -6°,6°,6°,15°,75°,0.8 (mm) 

Tool holder : PSBNR 2525 M12 (ISO specification), Widia 

   

Process Parameters 

Cutting Velocity, 

(Vc) 

: 79,110,168 m/min 

Feed rate, (So) : 0.103, 0.137, 0.164 mm/rev 

Depth of cut, (t) : 1, 1.25, 1.5 mm 

Environment : Dry and Minimum Quantity Lubricant (MQL) condition 

 

In both dry and water-soluble cutting fluid with MQL settings, the cutting 

temperature, surface roughness, cutting force and tool wear have been measured during 

short run machining for all the cutting parameter combinations. Under all machining 

circumstances, the average cutting temperature was determined using a straightforward yet 

dependable tool-work thermocouple approach with the appropriate calibration. The 

average value of the major flank wear (VB), which affects cutting forces and temperature 

and may cause vibration as machining progresses, is typically used to evaluate the life of 

tools, which finally fail through systematic progressive wear. Surface smoothness and 

dimensional accuracy of the machined items are impacted by the type and degree of 

auxiliary flank wear (VS). The temperature and the way that the tool-work interfaces 

interact, which depend on the machining conditions for specific tool-work pairings, both 

significantly affect the growth of tool wear. 
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3.1.1     Cutting Temperature 

 Machining process becomes productive with the increase of input cutting 

parameters value, which eventually generate a significant amount of heat, in addition to a 

high temperature in the cutting zone. If the cutting temperature is not correctly regulated, 

the cutting tools will suffer from severe flank wear and notch wear, they will lose the 

sharpness of the cutting edge due to either wear or blunting caused by welded built-up 

edge, and the quality of the product will suffer as a result. All of these heat sources, when 

operating under typical cutting conditions, produce the highest temperature at the chip-tool 

interface. This temperature has a significant impact on the chip formation mode, as well as 

cutting forces, tool life, and product quality. Machining at high production levels needs to 

further increase the number of process parameters in order to keep up with the increasing 

demand and maintain cost competitiveness. As process parameters and the hardness and 

strength of the work material increase, so does the temperature of the cutting process. 

Therefore, efforts are made to lower this dangerously high temperature throughout the 

cutting process. The present study utilized a straightforward but dependable tool-work 

thermocouple technique with the appropriate level of calibration in order to determine the 

average cutting temperature for all of the machining situations that were carried out. 

Photographic view of experimental set-up for measuring cutting temperature is shown in 

Fig. 3.4. 

 
 

Fig. 3.4 Photographic view of experimental set-up for measuring cutting temperature.  
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Fig. 3.5 illustrate the evaluated role of water-soluble cutting fluid under MQL and dry 

condition on the average chip-tool interface temperature during the turning of fabricated 

composite at various input parameters combinations for depth of cut 1mm, 1.25mm, 

1.5mm respectively. 
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(c) 

Fig 3.5 (a-c) Variation of average chip-tool interface temperature with cutting speed 

(Vc) at different feed rate (So) in turning of carbon nanotube reinforced 

aluminum MMC by SNMG insert under dry and MQL conditions. 
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3.1.2     Surface roughness 

The performance and service life of any machined part are largely determined by 

the quality of that product. The quality of a product is generally evaluated for a given 

material based on its dimensional and form accuracy as well as its surface integrity in 

terms of surface roughness, oxidation, corrosion, residual stresses, and surface and 

subsurface microcracks. Only surface roughness and dimensional deviation on diameter 

have been examined in this work to determine the proportionate influence that MQL plays 

on those two primary features. Surface roughness is an important index of machinability 

that is strongly influenced by the machining environment for any particular tool-work 

combination and speed-feed conditions. After machining of 100 mm for each experimental 

run with the sharp cutting edge of the tool, surface roughness was assessed by surface 

roughness tester and graphical representations at various cutting parameter combinations 

under dry and MQL conditions are shown in Fig. 3.6 and Fig. 3.7 respectively.  

 
 

Fig. 3.6 Photographic view of experimental set-up for measuring surface roughness. 
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(a) (b) 

 
(c) 

Fig 3.7  (a-c) Variation of surface roughness with cutting speed, Vc at different feed 

rate, So in turning of carbon nanotube reinforced aluminum metal matrix 

composite by SNMG insert under dry and MQL conditions. 
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3.1.3     Cutting Force 

Cutting forces for the single point cutting tools being used for the turning 

operation are characterized by having only one magnitude during machining. But that 

force is resolved into three components for ease of analysis and exploration resolved into 

three components namely; tangential force or main cutting force, Pz, axial force or feed 

force, Px and transverse force, Py. Each of those interrelated forces has got specific 

significance. In the present work, the magnitude of Pz has been monitored by 

dynamometer for all the combinations of steel specimens, tool configurations, cutting 

velocities, feeds and environments undertaken. In the current study, the dynamometer 

(Kistler) was used to measure the magnitude of Pz for all possible combinations of the 

fabricated specimen, tool configuration, cutting speeds, feed rates, depth of cut, and 

working conditions. Photographic view of experimental set-up for measuring cutting force 

by dynamometer is shown in Fig. 3.8. 

 
Fig. 3.8 Photographic view of experimental set-up for measuring cutting force by 

dynamometer. 

Fig. 3.9 demonstrate visually, respectively, the impact of MQL and dry cutting 

condition on Pz that was noticed when turning fabricated composite materials by the 

uncoated carbide insert at various input parameters level. Such a significant decrease in 

cutting force, Pz, is logically attributed mostly to the cutting tools' ability to maintain their 

sharpness and to the beneficial change in chip-tool interaction that leads to decreased 
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friction and built-up edge creation. For the other depth of cut and equipment used, 

outcomes that were more or less comparable were indicated in Fig. 3.9. 
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(c) 

Fig 3.9 (a-c) Variation of cutting force with cutting speed, Vc at different feed rate, So 

in turning of carbon nanotube reinforced aluminum MMC by SNMG insert 

under dry and MQL conditions. 
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3.1.4     Tool Wear 

Depending on the tool-work materials and machining condition, the cutting tools 

in conventional machining, especially in continuous chip creation operations like turning, 

typically fail by gradual wear caused by abrasion, adhesion, diffusion, chemical erosion, 

galvanic action, etc. Due to what is referred to as break-in wear brought on by attrition and 

micro-chipping at the sharp cutting edges, tool wear initially begins to occur at a relatively 

faster rate. In addition, cutting tools may fail prematurely, randomly, and catastrophically 

due to mechanical failure and plastic deformation under adverse machining conditions 

caused by intense pressure and temperature and/or dynamic loading at the tool tips, 

especially if the tool material lacks strength, hot-hardness, and fracture toughness. 

However, in the present experiments involving tools, work material, and machining 

circumstances, the predominant mode of tool failure was progressive wear. Photographic 

view of experimental setup for measuring cutting tool wear for fabricated composite is 

shown in Fig. 3.10. Fig. 3.11 depict the increase of average auxiliary flank wear, VS, with 

machining time of fabricated composite under both dry and MQL conditions. 

 
Fig. 3.10 Photographic view of experimental setup for measuring cutting tool wear for 

fabricated composite. 
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Fig. 3.11 Growth of tool wear with machining time at high cutting speed, (Vc) feed rate, 

(So) and depth of cut in turning of carbon nanotube reinforced Aluminum MMC 

composite by SNMG insert under dry and MQL conditions. 

Under a Scanning Electron Microscope in Figure 3.12 (Philips XL 30, Belgium), 

the actual effects of different environments on the wear of the carbide inserts of the present 

two configurations were identified by observing the pattern and extent of wear that 

developed on the different surfaces of the tool tips after being used for machining 

hardened carbon steel for an extended period. 

 

Fig. 3.12 SEM setup for measuring cutting tool wear for developed composite material 

under both Dry and MQL condition.  
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(a) (b) 

Fig. 3.13 (a-b) SEM views of the worn out SNMG insert [Time 30 min] after machining 

fabricated materials under dry conditions. 

 

   

(a) (b) 

Fig. 3.14 (a-b) SEM views of the worn out SNMG insert [Time 30 min] SNMG after 

machining fabricated materials under MQL conditions. 

 

Fig. 3.13 and Fig. 3.14 are scanning electron microscopy (SEM) images of worn-

out inserts (SNMG) after machining CNT reinforced aluminum metal matrix composite at 

Vc = 168 m/min, So = 0.164 mm/rev, and t = 1.5 mm for 30 minutes under dry and MQL 

conditions. 
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Chapter-4 
 

 

Mathematical Modeling by ANN and RSM 

Surface roughness modeling has developed into a viable and affordable method in 

order to characterize the machining environment and the cutting settings that would work 

best for the material being processed. With the aid of a well-established model of 

machining responses for a particular material and process, manufacturers may set cutting 

parameters reasonably accurately, resulting in the optimization of cutting conditions. 

Numerous techniques, such as the Taguchi method, the adaptive neuro fuzzy inference 

system (ANFIS), the genetic algorithm (GA), the radial basis neural network (RBN), etc., 

have been used to conduct extensive research on the modeling of surface roughness for a 

variety of materials and processes. Numerous techniques, including the Taguchi method, 

the adaptive neuro fuzzy inference system (ANFIS), the genetic algorithm (GA), the radial 

basis neural network (RBN), etc., have been utilized in extensive research on the modeling 

of surface roughness for a wide range of materials and processes. The theory of ANN and 

RSM must also be thoroughly grasped in order to comprehend the model. The section 

1.2.4 includes a review of the relevant literature. Before creating ANN and RSM models to 

estimate surface roughness, it is necessary to take into account the process performance 

influencing elements. First, the machining parameters are the cutting speed (Vc), feed rate 

(So) and depth of cut (t) are considered as input parameters. Because these criteria were 

predetermined, they are regarded as controllable factors. These variables served as input 

variables for the suggested ANN and RSM model. 

The parameters for output are surface roughness. The tool geometry, which 

comprises the nose radius, rake angle, cutting edge angle, and clearance angle, can also be 

a key factor when selecting a tool for a particular machining process. This machining 

investigation was conducted using a specific tool-work combination, indicating that the 

tool geometry was consistent. Consequently, it has not been taken into account in the 

predicted models for surface roughness. If the used material is manufactured under 



71  

adequate quality control, the parameters indicating the qualities of the work piece can be 

regarded as controllable. Due to the fact that the experiment was conducted for a specific 

combination of tool and work, the chemical and physical properties of machined materials 

can be regarded constant. Therefore, it was not considered in the predictive models given 

for surface roughness. If the clamping procedure is carried out correctly, auxiliary 

equipment such as a clamping system can be said to be under control. Significant vibration 

generated by inappropriate clamping may compromise the workpiece's structural integrity 

and damage the machining process. The proposed models do not account for clamping 

because it was assumed that it would be performed properly throughout the machining 

process. Vibrations may occur between the workpiece and the machine tool, as well as 

between the machine tool and the cutting tool. These variables have a substantial effect on 

the performance of the process. The suggested neural network and response surface model 

excludes undesired vibration for convenience. 

4.1 Modeling by Artificial Neural Network 

An artificial neural network (ANN) is a computational model in view of the 

structure and elements of organic neural systems. As the "neural" some portion of their 

name recommends, they are mind-motivated frameworks, which are proposed to imitate 

the way that we people learn. Moreover, ANNs are regarded as modeling techniques for 

artificial intelligence. Neural systems comprise of input and output layers, and in addition 

(much of the time) a hidden layer comprising of units that change the input to something 

that the output layer can utilize. They are great tools for discovering designs that are very 

intricate or numerous for a human software engineer to concentrate and instruct the 

machine to perceive. They have a highly interconnected structure comparable to that of 

brain cells in human neural networks and consist of a large number of simple processing 

elements known as neurons, which are grouped in different network levels.  Data that 

courses through the system influence the structure of the ANN in light of the fact that a 

neural system change - or learns, it could be said in view of that input and output. ANNs 

are viewed as nonlinear statistical information demonstrating tools where the complex 

relationships between inputs and outputs are displayed or designs are found.  Every 

network has an input layer, an output layer, and one or more hidden layers. In a supervised 

or unsupervised learning process, ANN is able to learn from the sample set, also known as 

the training set. This is a well-known advantage of ANN. Once the architecture of a 
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network is specified, the weights are determined through a process of learning so as to 

provide the desired results. 

 ANNs have three layers that are interconnected. The primary layer comprises of 

input neurons. Those neurons send data to the second layer, which in turn sends the output 

neurons to the third layer. Learning ability and the use of different learning algorithms are 

the key features of artificial neural network. Best learning algorithm and an optimum 

number of neurons need to be determined to get a minimal deviation between experimental 

values and output values. Gradient descent backpropagation (GD), quasi-Newton 

backpropagation (BFG), Levenberg-Marquardt backpropagation (LM), scaled conjugate 

gradient backpropagation (SCG), Resilient backpropagation (RP), Conjugate gradient 

backpropagation with Polak-Ribiére updates (CGP), Bayesian regulation backpropagation 

(BR) are different types of learning algorithms used in network training process. 

Validation set is an independent data set that may be applied to trained neural networks if 

we are experimenting with neural network topologies. The one with the best performance 

is ultimately selected. After validation, a separate dataset known as the test set is utilized to 

establish the neural network's performance level, which indicates our level of confidence 

when employing the neural network. It must be noted that a neural network cannot learn 

anything that is absent from the training set. Therefore, the size of the training set must be 

sufficient for the neural network to memorize the features/trends contained in the training 

set. Alternatively, if the training set contains too many trivial features, the neural network 

may waste its resources (weights) fitting the noise. Successful implementations of neural 

networks require a sensible selection and/or representation of the data  

Two types of neural networks exist: feed-forward and recurrent. In feed-forward 

neural networks, signals can only flow from input to output, i.e. an output signal from one 

layer is always an input signal for the following layer, but never the other way around. The 

input signals of the first layer are the input signals of the entire network, and the output 

signals of the network are the output signals of the neurons in the last layer. However, 

recurrent networks feature feedback loops that permit signals to travel forward and/or 

backward. Feed-forward neural networks have a simple structure and a straightforward 

mathematical description. The present thesis uses a multi-layer feed-forward ANN 

paradigm with a single node in the output layer and three neurons in the input layer for 

each output response (surface roughness). The network was created progressively by 

adding nodes and hidden layers until a suitable design was achieved. There may be few or 
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many hidden layers in a network, and their function is to improve network performance. 

As the number of input neurons increases, so too does the network's requirement for these 

layers. There is no specific formula to determine the optimal number of hidden layers and 

neurons. For relatively basic systems, such as the one at hand, the trial-and-error method is 

often employed to determine the optimal solution to a problem. In Fig. 4.1, a feed-forward 

neural network is depicted. It consists of an input layer with three input neurons (cutting 

speed, feed rate and depth of cut), a hidden layer with n neurons, and an output layer with 

one output neuron (surface roughness). 

Cutting Speed

Feed Rate

Input 
Layer

Hidden 
Layer

  Hidden 
Neuron

Output 
Layer

Depth of 

Cut

Surface 

Roughness

1

2

3

n

 

Fig. 4.1 Proposed feed forward neural network. 

The log-sigmoid transfer function (LOGSIG), which takes an input and transfers 

it to the range 0 to 1, is one of the most prominent transfer functions. In the context of 

neural networks, the hyperbolic tangent transfer function (TANSIG), which delivers an 

output in the range of -1 to 1, is another popular transfer function. It is important to note 

that the "tansig" should be selected due to its symmetry [Basheer et al., 2008]. Due to the 

symmetry of this study, the transfer function of the hidden layer was a hyperbolic tangent 

sigmoid (tansig), whereas the function of the output layer was a linear function (purelin). 

Fig. 4.2 illustrates the transfer functions graphically (a-c). 
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Fig. 4.2 (a-c) Transfer functions. 

This approach of machine learning employs two learning strategies with ease. 

One of these two supervised learning algorithms analyzes the training data and creates an 

inferred function that can be used to map new samples. The training data consists of a 

collection of examples for training. Each example in this technique is a pair consisting of 

an input object and the desired output value. Using supervised learning, the surface 

roughness for a certain cutting condition has been predicted in this thesis. A neural 

network was trained in this study using a feed-forward back propagation technique.  

In the work, a feed-forward back propagation algorithm was used to teach the 

neural network how to work. There are two stages of data flow on the network. First, the 

information from the input layer is sent to the output layer, where it is used to make an 

output. Then, the error signals caused by the difference between what the network thought 

would happen and what really happened are sent back from the output layer to the previous 

layers so that they can adjust their weights. Weights will keep getting changed until the 

goal for network errors is reached. As a training function, Bayesian Regularization 

(trainbr) has been used to train the neural network of the MATLAB R2018a toolbox to 

predict the surface roughness. When there isn't a lot of training data, it can give more 

accurate results than the Levenberg–Marquardt algorithm.  

The number of neurons in the hidden layer is set to five on purpose, and hidden 

neurons are added to the hidden layer one at a time. The process of adding hidden neurons 

keeps going until the network's performance doesn't improve much more. Mean squared 

error (MSE), which compares the actual values for each output node with what was 

expected, was used to figure out how well the network worked after it was trained. The 

feedback from this processing is called the "average error" or "performance." When the 

(a) Linear (b) Logsig (c) Tansig 
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average error goes below or above the right target, the neural network stops training and is 

ready for verification. 

In this study surface roughness was measured for each depth of cut of 1 mm, 1.25 

mm, and 1.5 mm. Three different cutting speeds of 79 m/min, 110 m/min, and 168 m/min, 

and three feeds of 0.103 mm/rev, 0.137 mm/rev, and 0.164 mm/rev were used to train the 

neural network. Table 4.1 shows the values for surface roughness under all cutting 

conditions that were used to predict data. For modeling purposes, values of surface 

roughness were taken from turning in MQL condition on fabricated composite materials. 

After the training, the weights are set and the model is put to the test to make sure it is 

correct. Therefore, in work, the network is evaluated to verify whether it agrees with the 

results of experiments. 
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Table 4.1 Actual values of surface roughness for outputs while machining carbon 

nanotube-based aluminum metal matrix Composite. 

Sl No. Depth of 

cut 

t, (mm) 

Feed rate 

S0, (mm/rev) 

Cutting velocity 

Vc, (m/min) 

Surface 

Roughness (Ra) 

µm 

1 1 0.103 79 1.3 

2 110 1.23 

3 168 1.01 

4 0.137 79 1.41 

5 110 1.31 

6 168 1.18 

7 0.164 79 1.53 

8 110 1.42 

9 168 1.33 

10 1.25 0.103 79 1.65 

11 110 1.46 

12 168 1.4 

13 0.137 79 1.71 

14 110 1.53 

15 168 1.49 

16 0.164 79 1.83 

17 110 1.67 

18 168 1.59 

19 1.5 0.103 79 1.89 

20 110 1.81 

21 168 1.78 

22 0.137 79 1.96 

23 110 1.93 

24 168 1.88 

25 0.164 79 2.1 

26 110 1.98 

27 168 1.95 
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While analyzing data for carbon nanotube reinforced aluminum metal matrix 

composite, optimal network is found at 3-7-1 for MQL cutting condition. Table 4.2 

presents the summary of the optimal network architecture. 

 

Table 4.2 Summary of the ANN model for 3-7-1 ANN architecture for surface 

roughness prediction of CNT reinforced aluminum metal matrix 

composite. 
 

Type of neural network : Multi-layer feed-forward 

 

Input neurons 

: Cutting speed, Vc(m/min.) 

: Feed rate, So (mm/rev.) 

: Depth of cut, t (mm) 

Output neuron : Average surface roughness (Ra) 

Number of Hidden layers : 1 

Hidden neurons : 7 

Training Function : TRAINLM 

Adaptive Learning Function : LEARNGD 

Transfer function 
: Tangent sigmoid (Hidden layer) 

: Linear transfer function (Output layer) 

Sample pattern vector : 19 (for training) and 8 (for testing) 

Among 27 datasets, 19 datasets are taken for training purposes and 8 datasets are 

taken for testing. To obtain the output closest to the experimental data fabricated 

composite, the number of neurons in hidden layers is taken as 7 for MQL condition. So, 

the networks are 3-7-1 for ANN architecture. The proposed ANN structure depicts that it 

has 3 neurons (depth of cut, cutting speed and feed rate) in the input layer, seven neurons 

in the hidden layer and one neuron (surface roughness) in the output layer. In order to train 

and test the network and obtain a respectable predicted roughness with the least average 

MAPE, the number of neurons in the hidden layer was determined by trial and error using 

a range of values from 5 to 40. By the end, we had settled on a network of 7 hidden 

neurons to represent surface roughness. Surface roughness in the proposed network has 

corresponding representations of 3-7-1. 

 
Fig. 4.3 ANN optimum network. 
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The value of R2 for surface roughness is found to grow until hidden neuron 

number 7. After that, mainly the number of test cases begins to drop. The R2 values 

achieved during training and testing are highest with a network structure that includes a 

single hidden layer and seven hidden neurons. Therefore, for this study, the network 

represented in Fig. 4.3 (containing 7 hidden neurons) was chosen as the best for predicting 

surface roughness.  

The following Fig. 4.4 presents the regression plots for various phases. According 

to ANN, the value of the Coefficient of correlation (R2) must be near to 1. In this 

experiment, the R2 values of training, validation, testing and all cases range from 0.98 -

0.99 which are close to the 1 that indicates the best predicted output values based on 

experimental inputs and outputs. 

 
Fig. 4.4 Linear Regression Plot for surface roughness while machining carbon nanotube 

reinforced aluminum metal matrix composite in MQL Condition. 

 

After the prediction of the values of surface roughness the desired result and error 

percentages in comparison to the actual value are depicted in the following table 4.3 
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Table 4.3 ANN predicted values of surface roughness for outputs while machining 

carbon nanotube-based aluminum metal matrix composite. 

Sl 

No. 

Depth 

of cut 

t, (mm) 

Feed rate 

S0, (mm/rev) 

Cutting 

velocity 

Vc, (m/min) 

Surface 

Roughness 

(Ra) µm  

Prediction 

result for 

ANN 

ERROR 

% 

1 1 0.103 79 1.3 1.30 0.02 

2 110 1.23 1.15 6.89 

3 168 1.01 1.09 8.33 

4 0.137 79 1.41 1.41 0.28 

5 110 1.31 1.30 0.42 

6 168 1.18 1.17 0.80 

7 0.164 79 1.53 1.53 0.29 

8 110 1.42 1.43 0.40 

9 168 1.33 1.33 0.04 

10 1.25 0.103 79 1.65 1.78 7.85 

11 110 1.46 1.46 0.25 

12 168 1.4 1.40 0.02 

13 0.137 79 1.71 1.71 0.11 

14 110 1.53 1.53 0.08 

15 168 1.49 1.36 8.78 

16 0.164 79 1.83 1.83 0.03 

17 110 1.67 1.68 0.73 

18 168 1.59 1.60 0.87 

19 1.5 0.103 79 1.89 1.89 0.05 

20 110 1.81 1.81 0.13 

21 168 1.78 1.78 0.01 

22 0.137 79 1.96 1.98 1.08 

23 110 1.93 1.92 0.72 

24 168 1.88 1.88 0.04 

25 0.164 79 2.1 2.05 2.43 

26 110 1.98 2.00 1.21 

27 168 1.95 1.95 0.03 
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Coefficient of determination (R2) and mean square percentage error (MSE) were 

calculated for each network during training and testing to determine which architecture 

was more effective. Predictive ability of the BR-trained 3-7-1 model is shown in Fig. 4.5 

(a), where the aforementioned metrics are expressed as correlation coefficients (R-value). 

The average surface roughness prediction is shown on the y-axis and the targets are shown 

on the x-axis in Fig. 4.5 (a) (measured Ra). Mean sum of squared error (MSE) was used to 

estimate how well each output node performed relative to its training average, taking into 

account both the actual and predicted values.  

Fig. 4.5 (a) shows the expected surface roughness parameter along the y-axis and 

the targets along the x-axis. In this graph, the continuous line signifies a good match, while 

the dashed line indicates that the measured and predicted values are the same. If the R-

value is 1, it indicates a perfect correlation, and if it's 0, it implies there's no relationship 

between the observed and expected values. If the value of R is near to 1, the relationship 

and fit are satisfactory. The R-value for the network, when subjected to 19 sets of training 

data on surface roughness, was 0.98291. 

 

 

(a) Regression line (b) Validation 

Fig. 4.5 (a-b) Performance measure of 3-7-1 network. 

 

In this study, the surface roughness of the machined item are the dependent 

variables of interest, and the ultimate purpose of the model is to produce precise and 

dependable predictions for these factors. Therefore, it is necessary to assess the accuracy 

with which a model describes the phenomena being modeled before using that model. 
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Validating models in this way achieves this goal. The ANN models that have been 

constructed have also been verified by comparing them to experimental data. Model 

validity is demonstrated by the figures (4.5b) contrasting experimental and ANN-predicted 

values. 

4.2 Modeling by Response Surface Methodology 

Response Surface Methodology (RSM) is a collection of mathematical and 

experimental techniques that requires sufficient number of experimental data to analyze 

the problems and to develop mathematical models for several input variables and output 

performance characteristics. This statistical technique is used to optimize a response 

(output variable) which is influenced by several independent variables (input variables) in 

which changes are made in the input variables in order to identify the reasons for changes 

in the output response. Khuri and Mukhopadhyay mentioned in their research that, RSM 

model can be utilized to state the degree of correlation between one or more response and 

some selected control variables. Main purpose is to determine through goodness of fit; 

statistical significance of the factors connected with a particular response and to determine 

the optimum settings within the higher or lower level of control variables to minimize or 

maximize the response of interest [2010]. The output response is proposed using the fitted 

second-order polynomial regression model which is called quadratic model. In response 

surface method a dependent variable Y called the response variable and several 

independent variables X1, X2, . . ., Xk called independent. Response surface method (RSM) 

is a combination of experimental, regression analysis and statistical inferences. The 

optimization and prediction capabilities of RSM are highly appreciated. Bhuiyan, T. and 

Ahmed, I [2014] proposed a prediction model by using the Taguchi method and the 

Response Surface Method (RSM). The RSM is a practical, economical and relatively easy 

to use and was employed by many researchers for modeling machining processes 

[Hasegawa et al. 1976]. Both linear and quadratic types of models can be generated by 

using RSM. Equation 1 shows the first order model and Equation 2 shows the second order 

model. 

𝑌 = 𝛽𝑜 + ∑ 𝛽𝑖𝑋𝑖
𝑘
𝑖=1 + 𝜀  …………………. (1)                                                                          

𝑌 =  𝛽𝑜 +  ∑ 𝛽𝑖𝑋𝑖 + ∑ 𝛽𝑖𝑖𝑋𝑖
 2 + ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗 +  𝜀𝑘

𝑖𝑗
𝑘
𝑖=1

𝑘
𝑖=1 …………..…… (2) 

As shown in Equation 2, the regression coefficients for the linear, quadratic, and 

interaction terms are denoted by o, ii, and ij, and the estimated response (Y) is based on the 
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quadratic model with interactions. The input variables for cutting speed (Vc), depth of cut 

(t), feed rate (So), and hardness are all revealed by Xi. A is a random experimental error. 

Normal probability graphs are presented in Fig. 4.6 to examine the accuracy of the models. 

It shows that the model is compatible with the data used. The normal probability plot of 

residuals provides a graphical representation of the model's effectiveness. For this to be a 

pass, the residuals must behave according to a normal law. The residuals of the model 

approximating straight lines indicate that normalization is achieved. 

 
Fig. 4.6 Normal probability plot for Surface roughness. 

Here, surface roughness parameters used in the simulation were obtained 

exclusively through turning in MQL condition of fabricated composite. The Design Expert 

12.0 RSM model is then updated with the experimental values of surface roughness for the 

associated control variables. Table 4.4 illustrates the surface roughness regression 

coefficient results. 

                       Table 4.4   Regression coefficients of RSM regression models.  

Models R-square (%) R-square (adjusted) 

(%) 

R-square 

(predicted) 

(%) 

Ra 97.89 97.37 97.04 

Being applied to the cutting process, RSM yields regression models that establish 

causality between process factors and outputs. Using a central composite design, a full 

quadratic equation for surface roughness (Eq. 3) is established. 

Surface roughness = 1.2921-0.00541 *Cutting Speed+7.22131*Feed rate-1.27911*Depth 

of cut+0.002584 *Cutting Speed * Depth of cut- 2.78689*Feed rate * Depth of cut +1.04 

*Depth of cut² ………………… (3)  
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Analysis of variance is used to determine how several independent variables 

affect the surface roughness (ANOVA). Table 4.5 displays the analysis of variance for 

regression models of roughness. Values for the sum of squares, the F-value, and the 

probability-level test (P-value) are listed in order in the ANOVA table. When a factor has 

a P-value below 0.05, researchers are 95% confident in their finding. The greater the F-

value, the greater the proportional importance of that factor. 

Table 4.5    Analysis of Variance for Average surface roughness. 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-value p-value Remarks 

Model 1.26 6 0.21 192.23 < 0.0001 significant 

A-Cutting 

Speed 
0.0941 1 0.0941 86.11 < 0.0001 significant 

B-Feed 

rate 
0.13 1 0.13 118.94 < 0.0001 significant 

C-Depth of 

cut 
1 1 1 919.65 < 0.0001 significant 

AC 0.0066 1 0.0066 6.05 0.0287 significant 

BC 0.0036 1 0.0036 3.31 0.0921 significant 

C² 0.0211 1 0.0211 19.33 0.0007 significant 

Residual 0.0142 13 0.0011    

Lack of Fit 0.0125 8 0.0016 4.45 0.0585 
not 

significant 

Pure Error 0.0018 5 0.0004    

Cor Total 1.27 19     

The surface roughness ANOVA data are shown in Tables 4.5. Results of 

quadratic regression and artificial neural network modeling of technological parameters 

are summarized in Table 4.5. R2 measures how well two sets of data fit together by giving 

weight to the set that is closer to the line of best fit. R2 values shift from zero to one. A 

linear relationship between experimental values and network projected values accounts for 

95% confidence level has been shown.  
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Fig. 4.7 illustrates 3D response surface plots of average surface roughness under 

MQL cutting condition in terms of cutting speed, feed rate and depth of cut 

  

(a) (b) 

 

(c) 

Fig 4.7  Surface plot of (a) Cutting Speed vs Feed Rate (b) Cutting Speed vs Depth of 

Cut (c) Feed Rate vs Depth of Cut. 

4.2.1. Desirability Function Analysis for carbon nanotube reinforced 

MM composite 

Numerical optimization by desirability function is conducted by employing 

response surface equations of the machining responses. According to Myers and 

Montogomery [Myers et al. 2016], Desirability function is an objective function (D), the 

value (di) of which ranges from 0 (least) to 1 (most). The function has the capability to 

search for a point in the specified design space within the constrained levels of factor 



85  

settings and considering weight and importance which not only suffice all the goal 

addressed as shown in table 5.14 but it also searches for the highest desirable value 

possible, di = 1. During this optimization process, aim is to achieve optimum levels of 

factor settings, which yield the lowest quantity of average surface roughness.  

The optimum solutions for the fabricated composite materials under MQL 

condition are stated in Table 5.14. According to the best result (desirability = 0.977), the 

optimum cutting parameters which yielded the Ra = 1.1 µm, are follows: 1 mm of t, 168 

m/min of Vc and 0.103 mm/rev of feed rate. For a clear Evaluation, desirability value of 

each individual factor and responses associated are shown in table 4.6. 

Table 4.6 Desirability optimizations solutions for fabricated composite under MQL 

condition. 

 

Number Cutting 

Speed 

Feed 

Rate 

Depth of 

cut 

Surface 

roughness 

Desirability 
 

1 168 0.103 1 1.035 0.977 Selected 

2 167.685 0.103 1 1.036 0.976 
 

3 168 0.103 1 1.036 0.976 
 

4 167.371 0.103 1 1.037 0.975 
 

5 168 0.103 1.002 1.037 0.975 
 

 

4.3      Comparison between ANN and RSM Model 

Table 4.7 displays R2 coefficients for both ANN and RSM models; however, the 

ANN models have higher values. Compared to the RSM model values, it is evident that the 

ANN model has better predictive ability. 

Table 4.7    Comparison between ANN and RSM in respect of correlation 

coefficient. 

Models Correlation Coefficient R2 

RSM ANN training set ANN 

validation set 

Ra 97.89 98.29 99.30 

 

The performance was evaluated by both absolute percentage error (APE) as shown in Eq. 

(4) and model predictive error (MPE) as shown in Eq. (5)  

𝐴𝑃𝐸 = (
|𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝐴𝑐𝑡𝑢𝑎𝑙
) ×  100  …………… (4) 

𝑀𝑃𝐸 =
1

𝑁
∑ (

|𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝐴𝑐𝑡𝑢𝑎𝑙
)𝑁

𝑛=1 × 100 …………… (5)                                                                     
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The results of RSM and ANN predictions of surface roughness are presented in Tables 4.8. 

Calculating the corresponding absolute percentage errors (APE). Finally, the model 

predictive errors (MPE) are calculated and presented in the model. In RSM and ANN 

modeling of surface roughness, the predicted error of the model was 2.36% and 1.46%, 

respectively.  

Table 4.8 Performance comparison between ANN and RSM models. 

Predicted Surface Roughness (µm) 

Experimental 

 

RSM ANN RSM-APE 

(%) 

ANN-APE (%) 

1.3 1.32 1.30 1.53 0 

1.23 1.15 1.15 6.50 6.50 

1.01 1.11 1.09 9.90 7.92 

1.41 1.42 1.41 0.70 0 

1.31 1.3 1.30 0.76 0.76 

1.18 1.16 1.17 1.69 0.84 

1.53 1.54 1.53 0.65 0 

1.42 1.38 1.43 2.81 0.70 

1.33 1.34 1.33 0.75 0 

1.65 1.81 1.78 9.69 7.8 

1.46 1.45 1.46 0.68 0 

1.4 1.41 1.40 0.71 0 

1.71 1.71 1.71 0 0 

1.53 1.55 1.53 1.30 0 

1.49 1.35 1.36 9.39 8.72 

1.83 1.81 1.83 1.09 0 

1.67 1.69 1.68 1.19 0.59 

1.59 1.65 1.60 3.77 0.62 

1.89 1.88 1.89 0.52 0 

1.81 1.83 1.81 1.10 0 

1.78 1.79 1.78 0.56 0 

1.96 1.99 1.98 1.53 1.02 

1.93 1.91 1.92 1.03 0.51 

1.88 1.89 1.88 0.53 0 

2.1 2.03 2.05 3.33 2.38 

1.98 2.01 2.00 1.5 1.01 

1.95 1.96 1.95 0.53 0 

MAPE   2.36 1.46 
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Chapter-5 
 

 

 

Discussion on Results 
 

5.1     Surface Roughness 

Surface integrity and dimensional precision, which regulate the product's 

performance and service life, are commonly used to evaluate the value of any machined 

product of a specific material. In the present study, only dimensional accuracy and surface 

finish were evaluated for evaluating the quality of dry and MQL-machined products. 

Surface finish is a significant indicator of machinability or grindability due to the fact that 

the quality of any machined product of a particular material is typically determined by the 

product's dimensional accuracy and surface integrity, which determine its performance and 

service life. Generally, if a good surface finish is required, it is obtained through finishing 

procedures such as grinding, however it is frequently left to subsequent machining. 

Despite the fact that it is finished by grinding, the surface roughness must be as low as 

achievable during the preceding machining in order to assist and expedite the grinding 

process and minimize initial surface defects to the greatest extent possible. The primary 

sources of surface roughness development in continuous machining processes, such as 

turning, particularly for ductile metals are: 

• Feed marks of cutting tools 

• Chatter marks on the workpiece due to vibrations caused during the 

manufacturing operation 

• Irregularities on the surface due to rupture of workpiece material during metal 

cutting operation 

• Surface variations caused due to deformation of workpiece under the action of 

cutting forces 

• Irregularities in the machine tool itself such as lack of straightness of guide 

ways 
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From analysis of variance and graphical representation of surface roughness it can 

be concluded that the surface roughness is significantly affected by depth of cut than 

cutting speed and feed rate. Surface roughness is the measure of the small-scale deviations 

of a surface from its ideal shape. In machining CNT reinforced aluminum metal matrix 

composite, the surface roughness is significantly affected by the depth of cut, rather than 

the cutting speed and feed rate. This is because of the following reasons:    

• Composite Structure: The CNT reinforced aluminum metal matrix composite 

has a heterogeneous structure, with the CNTs distributed throughout the 

matrix. The CNTs are more resistant to cutting forces than the aluminum 

matrix. As a result, a deeper cut will cause more damage to the CNTs, leading 

to a rougher surface finish. 

• Material properties: CNT reinforced aluminum metal matrix composites are a 

relatively new material and have unique properties compared to traditional 

metal alloys. The addition of CNTs can increase the hardness and strength of 

the composite, making it more difficult to machine. A deeper cut can cause 

more deformation and damage to the material, which can result in a rougher 

surface finish. 

• Chip formation: During machining, chips are formed as the cutting tool 

removes material from the workpiece. A deeper cut results in larger chips, 

which can become trapped between the cutting tool and the workpiece, 

leading to vibrations and chatter. These vibrations can cause irregularities in 

the surface finish, resulting in increased surface roughness. 

• Tool wear: In machining, the cutting tool wears out over time due to the heat 

generated by the cutting process. A deeper cut puts more stress on the tool, 

causing it to wear out more quickly. As the tool wears, it becomes less 

effective at producing a smooth surface finish, which can lead to increased 

surface roughness. 

• Material Removal Mechanism: The material removal mechanism in 

machining CNT reinforced aluminum metal matrix composite involves the 

shearing and ploughing of the material. The depth of cut is the primary factor 

that determines the extent of material removal. A deeper cut will result in 

more material being removed, leading to a rougher surface finish. 
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• Tool Chatter: Tool chatter is a vibration that occurs during machining, which 

can cause irregularities in the surface finish. A deeper cut can increase the 

amplitude of the tool chatter, leading to a rougher surface finish. 

Overall, while cutting speed and feed rate can also affect surface roughness, the 

depth of cut has a more significant impact in machining CNT reinforced aluminum metal 

matrix composites due to the unique properties of the material and the challenges 

associated with chip formation and tool wear. Machining these composites requires careful 

consideration of these factors to achieve the desired surface finish. In conclusion, the depth 

of cut has a significant impact on the surface roughness in machining CNT reinforced 

aluminum metal matrix composite. It is important to optimize the cutting parameters, 

including the depth of cut, to achieve the desired surface finish while minimizing tool wear 

and vibration. 

It has been demonstrated that the application of cutting fluid during turning 

improves the surface integrity of the work materials. Due to the enhanced thermal 

conductivity and lubricating capabilities, a decrease in surface roughness is noticed when 

employing it. Additionally, owing to the fact of its greater thermal conductivity, 

conventional fluid removes a greater amount of heat from the cutting zone. As a result, it is 

able to keep temperatures at a more consistent level, and the tool can keep its edge for a 

greater amount of time. Additionally, lubrication in MQL setup reduces frictional force 

and the temperature increase caused by frictional force. Reduced tool wear, lower 

operating temperature, good fluidity, low viscosity, and high stability in MQL conditions 

result in enhanced lubrication at the chip-tool interface, which minimizes surface 

roughness when utilizing conventional fluid. Depending on the work material and cutting 

circumstances, this improvement in surface finish could be attributable to the prevention or 

decrease of built-up edge development. This is because the increased thermal conductivity 

and higher heat transfer capability of fluid in MQL helps to minimize the chip-tool contact 

temperature. The surface roughness of the CNT reinforced aluminum metal matrix 

composite after 100 mm of machining for each experimental run with sharp SNMG inserts 

at different Vc-So combinations under dry and MQL conditions are depicted in Figures 

3.7. Surface roughness decreases gradually as cutting velocity increases for both dry and 

MQL cutting conditions, as is evident from the graphs. Table 5.1 shows the percentage 

reduction in surface roughness achieved by dry and conventional fluid conditions for 

different cutting speeds, feed rates, and depths of cut. 
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Table 5.1 Reduction in surface roughness due to using Dry and MQL in turning CNT 

reinforced aluminum metal matrix composite. 

Sl. 

NO. 

t, 

mm 

S0, 

mm/rev 

Vc, m/min Environment Percentage 

Reduction in 

Surface Roughness Dry nMQL 

1 1 0.103 79 
1.81 

1.3 
28.18 

2 110 
1.57 

1.23 
21.66 

3 168 
1.39 

1.01 
27.34 

4 0.137 79 
2.01 

1.41 
29.85 

5 110 
1.51 

1.31 
13.25 

6 168 
1.41 

1.18 
16.31 

7 0.164 79 
2.13 

1.53 
28.17 

8 110 
1.56 

1.42 
8.97 

9 168 
1.51 

1.33 
11.92 

10 1.25 0.103 79 
2.29 

1.65 
27.95 

11 110 
1.98 

1.46 
26.26 

12 168 
1.74 

1.4 
19.54 

13 0.137 79 
2.41 

1.71 
29.05 

14 110 
2.11 

1.53 
27.49 

15 168 
2.01 

1.49 
25.87 

16 0.164 79 
2.56 

1.83 
28.52 

17 110 
2.43 

1.67 
31.28 

18 168 
2.29 

1.59 
30.57 

19 1.5 0.103 79 
2.71 

1.89 
30.26 

20 110 
2.51 

1.81 
27.89 

21 168 
2.31 

1.78 
22.94 

22 0.137 79 
2.79 

1.96 
29.75 

23 110 
2.55 

1.93 
24.31 

24 168 
2.49 

1.88 
24.50 

25 0.164 79 
2.91 

2.1 
27.84 

26 110 
2.78 

1.98 
28.78 

27 168 
2.56 

1.95 
23.83 
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5.2     Cutting Temperature 

In the machining process, heat generation at the chip-tool interface is of 

paramount importance. The machining temperature in the cutting zone must be brought 

down to an optimal level. Shearing of the work material, friction between the moving 

chips and the rake face of the tool, and friction between the auxiliary flank and the finished 

surface are the primary sources of heat creation during machining. In turning of various 

hardened composite material, the magnitude of the cutting temperature increases with the 

increase of material removal rate, i.e. with the increase of cutting velocity, feed, and depth 

of cut; as a result, high production machining is restricted by the increasing temperature. 

This issue intensifies as the strength and hardness of the work materials increases. From 

Figures 3.5, it is evident that the application of cutting fluid in turning operations 

facilitates the machining operations by significantly reducing the average chip tool 

interface temperature. The percentage of reduction in average chip tool interface 

temperature reached by dry and conventional fluid in MQL cooling conditions for varying 

cutting velocity, feed rate and depth of has been derived from the preceding data and is 

presented in Table 5.2. 

It has been observed the temperature at chip-tool interface is higher at the higher 

cutting parameters level both dry and MQL conditions. Cutting fluid in MQL condition 

achieved better result rather that dry condition. Moreover, the high thermal conductivity 

and higher heat transfer capability of the cutting fluid dissipates heat from the cutting zone 

immediately which helps to reduce the cutting temperature during machining.  This 

reduction in temperature is very much appreciable in retaining tool life and product 

quality. 

 

 

 

 

 

 



92  

Table 5.2 Reduction in cutting temperature due to using dry and conventional fluid in 

turning of CNT reinforced aluminum metal matrix composite. 

Sl. 

NO. 

t, 

mm 

S0, 

mm/rev 

Vc, m/min Environment % Reduction in 

Cutting 

Temperature 

Dry nMQL 

1 1 0.103 79 247 229 7.29 

2 110 279 251 10.04 

3 168 331 276 16.62 

4 0.137 79 268 236 11.94 

5 110 284 257 9.51 

6 168 334 283 15.27 

7 0.164 79 271 246 9.23 

8 110 296 262 11.49 

9 168 345 290 15.94 

10 1.25 0.103 79 250 239 4.40 

11 110 279 256 8.24 

12 168 329 288 12.46 

13 0.137 79 266 248 6.77 

14 110 286 260 9.09 

15 168 339 300 11.50 

16 0.164 79 270 257 4.81 

17 110 290 264 8.97 

18 168 346 307 11.27 

19 1.5 0.103 79 267 248 7.12 

20 110 286 257 10.14 

21 168 313 312 0.32 

22 0.137 79 272 253 6.99 

23 110 298 275 7.72 

24 168 351 321 8.55 

25 0.164 79 276 263 4.71 

26 110 313 281 10.22 

27 168 376 330 12.23 
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5.3     Cutting Force  

The magnitude of the cutting force is a major indication of machinability that 

influences productivity, product quality, and overall machining economy, as stated in 

earlier chapters. With an increase in chip load and shear strength of the work material, the 

cutting forces increase approximately proportionally. In addition to chip load and work 

material strength, other parameters also determine the magnitude of the cutting forces. 

However, the cutting forces should always be kept as small as possible without sacrificing 

the rate of material removal or the quality of the finished product. 

 Fig.3.9 illustrate how and to what extent the cutting force has lowered under 

various experimental conditions. As cutting velocity increased, cutting force decreased. 

Again, it is important that in any machining process, as the cutting speed increases, the 

shearing of the material becomes much faster. During the experiment, the greater the 

cutting speed, the easier the shear, and the lower the cutting force. In contrast, the increase 

in feed rate resulted in a rise in cutting force, despite the use of cutting fluid, due to an 

increase in energy input. Also, the value of the cutting force increased as the depth of cut 

increased. As the depth of cut increases, the cutting tool penetrates deeper and removes a 

larger quantity of material, resulting in an increase in cutting force. The percentage of 

reduction in cutting force reached by dry and conventional fluid in MQL cooling 

conditions for varying cutting velocity, feed rate and depth of has been derived from the 

preceding data and is presented in Table 5.3. From Table 5.3 it is clearly evident that the 

significant reduction of cutting forces in fabricated composite turning with the application 

of conventional cutting fluid than dry turning. This may be due the higher surface area of 

the nano materials which eventually results in the MQL lubrication between the of cutting 

tool and workpiece interaction.  
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Table 5.3 Reduction in cutting force due to using dry and conventional fluid in turning 

of CNT reinforced aluminum metal matrix composite. 

Sl. 

NO. 

t, 

mm 

S0, 

mm/rev 

Vc, 

mm/min 

Environment Percentage 

Reduction in 

Cutting force Dry nMQL 

1 0.5 0.103 71 
126 107 15.07937 

2 115.5 
119 102 14.28571 

3 160 
114 95 16.66667 

4 0.137 71 
173 129 25.43353 

5 115.5 
167 121 27.54491 

6 160 
152 113 25.65789 

7 0.164 71 
218 169 22.47706 

8 115.5 
202 151 25.24752 

9 160 
194 142 26.80412 

10 1 0.103 71 
132 121 8.333333 

11 115.5 
126 111 11.90476 

12 160 
119 105 11.76471 

13 0.137 71 
191 146 23.56021 

14 115.5 
178 137 23.03371 

15 160 
174 126 27.58621 

16 0.164 71 
231 188 18.61472 

17 108.5 
218 180 17.43119 

18 160 
215 173 19.53488 

19 1.5 0.103 71 
165 139 15.75758 

20 115.5 
154 128 16.88312 

21 160 
148 121 18.24324 

22 0.137 71 
225 177 21.33333 

23 115.5 
208 168 19.23077 

24 160 
203 157 22.6601 

25 0.164 71 
276 225 18.47826 

26 115.5 
266 219 17.66917 

27 160 
260 211 18.84615 
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5.4     Tool Wear 

In general, the wear of cutting tools is quantified by the magnitudes VB, VS, VM, 

VSM, VN, etc. The average principal flank wear, VB, is regarded as the most important 

parameter, at least in terms of research. Earlier research conducted by the researchers 

demonstrates that the machining in dry conditions does not aid in reducing tool wear when 

machining composite materials with coated or uncoated carbide inserts, but can in some 

instances exacerbate wear. The relationship between an increase in cutting force and 

temperature and the development of major flank wear (VB) is proportional. Therefore, of 

all of the tool wears, the primary flank wear is the one that causes the most concern. The 

actual machining time after which the average value of its major flank wear reaches a 

limiting value, such as 300 m, is used to determine the life of carbide tools, which typically 

fail due to wear. As a result, every effort should be taken to slow the rate of growth of 

flank wear while maintaining material removal rate (MRR).  

The cutting insert has been extracted at regular intervals in order to examine the 

pattern and extent of wear on the primary and secondary flanks under both dry and MQL 

conditions. Figure 3.11 presents the gradual increase of VB, which is the most important 

parameter for figuring out when a tool has reached the end of its useful life. This was seen 

when turning CNT reinforced aluminum metal matrix composite with uncoated carbide 

(SNMG) insert at a cutting speed of 168 m/min, a feed rate of 0.164 mm/rev, and a depth 

of cut of 1.5 mm, both in dry and nano cutting fluid in MQL conditions. The primary flank 

wear (VB) decreases dramatically under MQL conditions, as depicted in Fig. 3.11. 

Pressurized jet of cutting fluid in MQL conditions has easily been dragged into the plastic 

contact by its high energy jet, cools the interface. It not only cools the interface but also 

reduces frictional heat generation by lubricating the friction zones. Fig. 3.13 and 3.14 

presents the Scan Electron Microscopic (SEM) condition of carbide tool after machining 

with dry and cutting fluid in MQL conditions for 30 minutes. From the SEM images it is 

clearly evident that no significant amount of tool wear and tool breakage found in MQL 

applications which increases the tool life in hard turning operations. This increased tool 

life is achieved by lubricating in MQL conditions which reduce in coefficient of friction 

between the workpiece and cutting tool. 
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5.5     Prediction of Surface Roughness  

Artificial neural networks (ANNs) and Response surface methodologies (RSM) 

are the largely used predictive modeling techniques based on statistical approach. ANN is 

currently being used in many fields of engineering for modeling complex relationships 

which are difficult to describe with physical models. On the other hand, the response 

surface methodology (RSM) allows testing the statistical significance of the model, model 

terms, and lack of fit and provides equations to describe a phenomenon. The importance of 

predicting surface finish in any machining process help the engineers for proper planning, 

control of machining parameters and optimization of the cutting conditions to minimize 

production cost, time and manufacturing products of desired quality. The mentioned 

advantages eventually lead to higher productivity which is the main goal of any production 

or service-based organization. 

In this thesis, ANN and RSM model to predict surface roughness has been 

constructed for CNT reinforced aluminum metal matrix composite machined under using 

MQL condition. During the ANN modeling of surface roughness of the machined part, the 

input layer was chosen to contain three neurons specifically cutting speed, feed rate and 

depth of cut while the output neuron was surface roughness of the composite materials. In 

the process of the procedure, a hidden layer was chosen to exist between the input and 

output layers. The hidden layer could contain different number of neurons and selecting 

the number of hidden neurons in the hidden layer was the main task to find the optimal 

neural network structure. Between the input and the output layer, one hidden layer was 

chosen in the process. The number of hidden neurons in the hidden layer was the most 

important factor in determining the ideal neural network architecture. The number of 

hidden neurons was determined through trial and error. The transfer functions utilized in 

the hidden layer and output layer were the tansig and purelin functions, respectively. As 

indicated previously, the networks were trained with the number of values surface 

roughness combinations and tested according model combinations. 3-7-1 network structure 

with BR trained is recommended for predicting surface roughness based on a higher 

coefficient of determination (R2) and lower model predictive error (MPE). As illustrated in 

Figures 4.4, the network architectures were trained and tested, and their validation was 

also performed. This validation was performed to verify the accuracy of the ANN model 

that was constructed. Using the experimental values of surface roughness, and the ANN-
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predicted values, the graphs depicted in the figures 4.5 are generated. They compared the 

experimental and anticipated values of surface roughness generated by ANN. It is evident 

from the figures that ANN can accurately anticipate the experimental values of roughness. 

In the present study, a statistical analysis using response surface methodology 

(RSM) was performed with the objective of analyzing the influence of cutting speed, feed 

rate and depth of cut on the obtained outputs, which out for a 5% significance level, i.e., 

for a 95% confidence level. From the statistical analysis of the experimental data, a full 

quadratic equation for surface roughness has been developed. This equation can be used to 

make predictions about the response for given levels of each input factor. According to fig. 

4.6, the normality is satisfied because the models residuals approximately draw straight 

lines. For RSM quadratic model, the cutting speed, feed rate and depth of cut, all are 

statistically significant as P-value less than 0.05. The square terms of cutting speed, depth 

of cut and feed rate are significant in surface roughness model. The F-value analysis 

reveals depth of cut as the most important factor followed by the feed rate and cutting 

speed for surface roughness models.  

The question is: which approximation model is more trustable offering better 

accuracy in fitting experimental data and giving a better optimal solution confirmed by 

experiment? At this stage, comparison criteria are needed to quantify the difference 

between values produced by both models and the actual values. In order to test the 

accuracy of both the ANN and RSM models. The performances of constructed ANN and 

RSM models were measured in terms of better coefficient of determination (R2), absolute 

percentage error (APE) and model predictive error (MPE) for surface roughness. Table 

4.8shows that compare the experimental data versus the predicted RSM and ANN values 

for Ra. It is observed that the deviations of the predicted and experimental data are smaller 

for ANN model compared with RSM model. Certainly, the obtained R2 for the surface 

roughness RSM model is to 0.97 and its value for ANN model is to 0.98. This can clarify 

the capability of ANN model, as shown in table 4.7, which illustrates, the lower residuals 

in Ra for ANN model compared with RSM model. In addition, MPE values for the surface 

roughness RSM model and for the surface roughness ANN model are 2.46% and 1.36 % 

respectively. So, ANN model presents a good Absolute percentage error (APE) and model 

predictive error (MPE) compared with RSM model. Based on the lower MPE, the ANN 

model is suitable; yet, the quadratic model revealed fairly reasonable accuracy. The 

superiority of the ANN model over RSM model gets justified because ANN forms a 
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complex relation between the input and output corresponding to the necessity of the 

minimum prediction error, which is not attainable by the RSM as this can only form the 

quadratic relation between the input and the output. Also, any relation out of quadratic is 

non-comprehensive to RSM while ANN develops a logical relation there. 
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Chapter-6 

 

Conclusions and Recommendations 
 

6.1 Conclusions 

From the experimental investigation, machining of carbon nanotube reinforced 

aluminum metal matrix composite and modeling of surface roughness, the following 

conclusions can be listed as follows: 

i. Firstly, in this research CNT reinforced Aluminum metal matrix composite 

materials have been fabricated where pure aluminum ingots were the matrix 

material and CNT, SIC and Alumina was reinforcing material. Here Ingot 

Aluminum and Alumina was constant composition whereas the percentage 

of CNT varied within .5 wt.%, 1wt.% and 1.5 wt.% with silicon carbide 

respectively. 

ii. Among all these compositions, it was observed that CNT with 1.5%   

volume shows the best mechanical properties like tensile strength and 

impact energy. That is why for the further investigation of machining 

performance, 1.5% volume CNT reinforced aluminum metal matrix 

composite has been selected.  

iii. In depth, analysis of the machinability of CNT reinforced aluminum metal 

matrix composite has been performed under both dry and MQL cutting 

condition. 

iv. Cutting temperature, surface roughness, cutting force and tool wear are 

found to improve substantially in MQL cutting condition over dry 

conditions for the developed composite. 

v. All the process parameters are found to possess significant effect on each 

response as determined through ANOVA analysis. 
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vi. While machining CNT reinforced aluminum metal matrix composite under 

MQL cutting condition, the optimum cutting parameters which yielded the 

output response (surface roughness); Ra =1.03 µm is follows: 1 mm of t, 

168 m/min of Vc and 0.103 mm/rev. 

vii. Two predictive ANN model and RSM model have been developed for 

prediction of surface roughness as a function of cutting parameters. These 

models have been proved to be successful in terms of agreement with 

experimental results. ANN model provides an optimum network 3-7-1. 

RSM model provides a quadratic equation for predicting surface roughness. 

From analysis of variance and graphical representation of surface roughness 

it can be concluded that the surface roughness is significantly affected by 

depth of cut than cutting speed and feed rate. 

viii. The analysis of the regression coefficients and model predictive error 

recommended the acceptance of the neural network-based prediction model 

over response surface model owing to the better capability of ANN model 

to build an appropriate relation between the input and output.  

ix. The approaches used in the present work proved their efficiency in 

investigating and modeling the machining output parameter as surface 

roughness. Therefore, the results of this research could be very helpful for 

scientific researchers as well as for mechanical manufacturing companies. 

x. For ANN developed model, regression value is found to be 0.98 for CNT 

reinforced aluminum metal matrix composite which is very close to 1, thus 

justifying the efficacy of the developed model. 

6.2 Recommendations 

i. Very few investigations have been done into the development of advanced 

nano particle reinforced aluminum metal matrix composite for machining 

applications. More experiments need to be done to identify the optimum 

composition for developing CNT reinforced aluminum metal matrix 

composite. Also, the effects of several important factors such as particle 
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size and shapes, clustering of particles, temperature during casting, and the 

homogenous dispersion of nano particle should be studied adequately. 

ii. Experimental work in different nano particle reinforced aluminum metal 

matrix composite can be carried out with different weight percentage and 

manufacturing process.  

iii. Apart from dry and MQL cooling condition, machining can be performed 

out under compressed air or cryogenic cooling environment. 

iv. Very few researchers have explored the application of nanofluids specially 

to machining. More operations (Milling and Drilling) can be performed 

using nanofluid as cutting fluid to identify the advantages of nanofluids. 

v.  In the present work, a model has been developed based on artificial neural 

network. ANFIS, GA, Taguchi etc. may also be used to predict various 

output responses. Also, a competitive comparison can be presented with 

these modeling techniques. 
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