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Abstract 

 

With the Internet’s social digital content proliferation, sentiment analysis (SA) has gained a wide 

research interest in natural language processing (NLP). A little significant research has been done 

in the Bangla language domain because of having intricate grammatical structures in the text. This 

paper focuses on SA in the context of the Bangla language. Firstly, a specific domain-based cat- 

egorical weighted lexicon data dictionary (LDD) is developed to analyze Bangla text sentiments. 

This LDD is developed by applying the concepts of normalization, tokenization, and stemming to 

two Bangla datasets available in the GitHub repository. Secondly, a novel rule-based algorithm 

termed as Bangla Text Sentiment Score (BTSC) is developed to detect sentence polarity. This al- 

gorithm considers parts of speech tagger words and special characters to generate a word score 

and extract polarity from a sentence and a blog. The BTSC algorithm, with the help of LDD is 

applied to extract sentiments by generating scores of the two Bangla datasets. Thirdly, two feature 

matrices are developed by applying the term frequency-inverse document frequency (tf-idf) to the 

two datasets and the corresponding BTSC scores. Next, supervised machine learning classifiers 

are applied to the feature matrices. In the deep learning part, these polarities are then fed into the 

hybrid neural network and the preprocessed text as training samples. The preprocessed texts are 

formatted as a vectorization of words of unique numbers of pre-trained word embedding models. 

Word2Vec matrix with the top highest probability word is applied on the embedding layer as a 

weighted matrix to fit the DL models. This paper also presents a remarkably detailed analysis of 

selective DL models with fine-tuning. The fine-tuning includes the use of drop out, optimizer reg- 

ularization, learning rate, multiple layers, filters, attention mechanism, capsule layers, transformer 
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xviii 

 

with progressive training along with validation and testing accuracy, precision, recall and F1-score. 

Experimental results indicate that the proposed new long short-term memory (LSTM) models are 

highly accurate in performing SA tasks. Experimental results corroborate our theoretical claim and 

show the efficiency of our proposed approach in both machine learning and deep learning approach. 

Results show that for the case of BiGram feature, support vector machine (SVM) achieves the best 

classification accuracy of 82.21%. For our proposed hierarchical attention-based LSTM (HAN- 

LSTM), Dynamic routing based capsule neural network with Bi-LSTM (D-CAPSNET-Bi-LSTM) 

and bidirectional encoder representations from Transformers (BERT) with LSTM (BERT-LSTM) 

model we achieved accuracy values of 78.52%, 80.82% and 84.18% respectively. 



 

 

 

 

 

 

 

 

Chapter 1 

Introduction 

 

1.1 Overview 

 
With the augmentation of modern web technologies, a large scale of data is being stored across dif- 

ferent platforms on the Internet. In the age of globalization of the Internet, these data are being used 

as a repository of resources. These resources are constantly mined as individual or organizational 

data for discovering knowledge and information. By gathering information from all these plat- 

forms, new patterns can be discovered in the data by emphasizing public opinion. Public opinion 

refers to what people are thinking, their views on current affairs, and what they think about the flow 

of contemporary events, or an ongoing situation. Public sentiment can be analyzed by collecting 

public opinion in text or speech. Nowadays, the public expresses their views or opinions through 

the eruption of various web-based social platforms and microblogging sites. In recent years, social 

media systems have provided a prominent platform for opinion mining. It allows them to com- 

municate efficiently and cooperate in exchanging information. However, Social media systems on 

the web have provided excellent platforms for facilitating and enabling audience participation, 

engagement, and community, due to our new participatory culture. 

With the phenomenal growth of Internet social media services, such as microblogging and social 

networking, offered by platforms such as Twitter, Facebook, etc., interactions among people are 
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increasing rapidly. People share their different aspects of daily life on these microblogging sites. 

They also seek needful information on these sites, which varies from person to person. Therefore, 

finding information on these users text is an interesting idea that helps predict their behaviors in real- 

life scenarios. Information extraction is an assignment of discovering structured information from 

unstructured or semi-structured content that means retrieval of information. Information extraction 

tasks might include named entities recognition, relation within the text, summarization, question 

answering, etc. It is often performed as a preliminary processing step for text mining applications. 

 
 

1.2 Natural language processing 

 
Natural language processing (NLP) is a section of artificial intelligence (AI) that deals with train- 

ing a considerable corpus of data in a computer to perceive, process, and generate language for it. 

efficientlyThe machine can explore, presume, and invent meaningful information from human lan- 

guage intelligently and efficiently in the NLP mechanism. Technologies based on NLP are rapidly 

increasing. By taking 

Figure 1.1: Natural Language Processing (NLP) System 

 

advantage of NLP, developers can incorporate and structure knowledge to carry out tasks such as 

automatic summarization, translation, named entity recognition, relationship extraction, sentiment 
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analysis (SA), speech recognition, Google search engines, voice assistants and topic segmentation, 

etc., demonstration in Figure 1.1. NLP is distinguished as a difficult task in computer science. Hu- 

man language usually refers to the one who utters the word. The language uttered by human beings 

is not always correct or rarely precise. Understanding human language means for a machine that 

understanding not just words but concepts and how they relate to meaning. Although language is 

one of the easiest things for people to learn, its ambiguity makes it difficult for computers to master 

NLP. If the machine can train with complex things like language, it is possible to do everything 

with it. The most complex work in the world is contract analysis conducted by multinational com- 

panies’ legal and financial institutions. While NLP is helping companies out there, people need to 

find new jobs. However, this automation opens up new job opportunities for people that one did 

not think. However, people who will not lose jobs will be re-skilling across the se sectors. 

 
 

1.3 Sentiment Analysis 

 
Sentiment analysis (SA), also called opinion mining [1], is a field of study that predicts polarity in 

public opinion or textual data from microblogging sites [2] on a well-publicized topic by extracting 

people’s attitudes, emotions, etc. However, SA is becoming a relevant subject for NLP in machine 

learning (ML), researchers are gradually finding interest in this topic because of the large scale of 

opinionated data on the Internet. Nowadays, people on social media sites, newspapers, blogs, etc., 

express their opinions on specific products or items, posts, comments, forum discussions, emotions 

towards an individual or organizations, etc. There may arise many obstructive in detecting binary or 

ternary class sentiment such as subjectivity or opinion-based identification, if a phrase or text does 

not have any core opinion word. So, the lexicon-based [3] data dictionary approach is jointed with 

their semantic tendency with polarity and word strength. To determine these data with sentiment 

as a polarity i.e., positive, negative or neutral class describe in Figure 1.2, the ML framework has 

acquired more interest because of building model in many linguistic domains with versatile feature 

extraction, alternating input easily, predicting with probabilistic theory and computing valuable 
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feature matrix representations. Various types feature have been observed for this type of work such 

as bag of words (BoW) model, lexical analysis and semantic feature [4]. This matrix feature is 

language dependent. Bangla, an ancient Indo-European language, spoken by over 250 million 

people [5]. So, extracting sentiment in the Bangla language will be significant for NLP researchers 

to make substantive progress in ML. 

Figure 1.2: Overview of Sentiment Analysis System 

 

 

 
1.3.1 Levels of SA 

 
SA is accomplished at various levels of entities such as document, sentence, and aspect-based. 

These levels have been discussed in this sub-section. 

 
1.3.1.1 Document level 

 
This level of SA denotes the sentiment of a complete paragraph or a document. The SA model 

adopts that document holds opinionated unstructured text about the single entity. It does not justify 

documents by balancing the multiple entities. The problem of document level SA is determining 

the positive or negative polarity as a binary classification problem. However, it can manage multi- 

classification problems as regression type problems such as five type movie review classification 

problems. 
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1.3.1.2 Sentence level 

 
This level of SA has a target to extract the sentiment from a single sentence entity. Two types of 

classification are handled here, one is subjectivity classification and another is polarity classifica- 

tion. These can be used for deriving the sentiment from a single sentence. Subjectivity classifica- 

tion concentrates on discovering whether a sentence is subjective or objective. On the contrary, the 

polarity classification denotes whether a given subjective sentence is positive or negative. 

 
1.3.1.3 Aspect-based SA(ABSA) 

 
In this level of SA, the sentiments are determined by two aspects: feature-based and object-based 

entities. It means a single entity is a current per document. The ABSA method aims to detect 

polarity and aspect pairs from a given sentence. Four types of ABSA can be classified: aspect term, 

aspect polarity, aspect category and aspect category polarity. 

 
1.3.2 Lexicon Based Approach 

 
The lexicon-based approach is used for detecting sentiment lexicon or core opinionated data to 

analyze the sentiments from a review. This approach is conducted by building a dictionary or 

corpus to classify the sentiment words. Due to the shortage of labeled data, a single classifier can 

be designed to classify reviews from different domains. However, a classifier designed to classify 

data from one domain may not work efficiently on another domain. This is due to domain-specific 

words which are different for every domain. 

 
1.3.3 SA on Machine Learning: 

 
SA categorizes the text whether the knowledge about the product is satisfactory or not before cus- 

tomer decide to purchase it. Social networking sites distribute their data conveniently and freely 

on the web. This availability of information tempts young researchers into their immersive interest 

in SA. Based on this analysis, marketers and companies understand their product or service so that 
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it can be tailored to the needs of the user. There are two types of SA methods in ML approach: 

unsupervised and supervised. Supervised learning is worked on the labeled dataset. This labeled 

dataset is given to the model during the training process and produces a satisfactory output. Unsu- 

pervised learning does not work on category-based datasets, and a clustering technique follows this 

procedure. A fractional part of robust data is trained to classify the sentiment from unstructured 

text. ML models such as Unigrams and Bigrams models are applied in classification algorithms 

such as Naive Bayes, maximum entropy, or support vector machines. ML techniques have been 

developed in terms of SA and lenient automatic data evaluation. 

 
1.3.4 SA on Deep Learning: 

 
Social media has a wealth of information in the user-generated text that cannot be processed or clas- 

sified in real-time extraction even by humans. In the modern web, particularly an outstretched of 

big data mining from social networks, a massive label of opinionated corpus continuously emerges 

with the evocation of data classification and scalability. In that case, NLP has required purifying out 

the noisy word and discovering pertinent insights from this flourishing data. In recent year, many 

NLP researchers have developed to find out the properties of the text, including emotion, polarity 

or subjectivity detection and document or context classification. SA has fulfilled this demand for 

researchers to predict a positive, negative or neutral context. SA or opinion extraction is narrated 

as collecting information from public content to generate people’s attitudes, expressions, and views 

of customer products, news, topics, or forum discussion (i.e., political, cricket, economic, environ- 

mental, etc.) [1]. For example, real-time traffic monitoring systems such as location-based traffic 

jams, road accidents, and best route policy such as feedback on every situation can be analyzed by 

people’s opinions from social media sites. Again, the level of national military defense or law 

enforcement organization(i.e., police cyber-crime unit [6]) paid observation and attention to the 

public opinions on what are doing or saying activities on the electronic media net. The orientation 

and proactivity of a particular text are argued based upon the polarity and context extracted from 

the text classification. Classification in Bangla sentences is a complex task, as modern hardware 
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is enhancing portable and powerful, Deep Learning (DL) is promising in significant performances 

for NLP operation including SA [7]. DL is a subset of multiple layers of neurons that perceive 

from a nonlinear neural network with matrix representations and convert the output at one level 

into an intense and abstract peak. A few ML techniques are driven out on the Bangla text to predict 

opinions. However, SA can be categorized into two approaches: the corpus-based approach and 

the other is a dictionary-based approach. However, in this research, we combine rule-based with 

lexicon dictionary approach and DL models to predict the text sentiment from Bangla text. We will 

implement a rule-based algorithm termed BTSC for automatically generating scores from the text 

with the help of categorical weighted LDD. Then we aggregate our BTSC polarity with our input 

text corpus and build different DL models found in the literature. We conduct multiple experiments 

on those DL baseline model’s to show each model classification performance. 

 
 

1.4 Objectives and Possible Outcome 

 
The main objectives of this research are to analyse the sentiment from Bangla text in ML approach 

and DL by an unique rule-based algorithm and build a Lexicon Data Dictionary (LDD). To detect 

polarity from raw text, we have divided our whole work into five parts. To meet the goal, the fol- 

lowing objectives have been identified: 

(a) To construct a specific domain-based categorical weighted LDD for analyzing sentiment clas- 

sification from the Bangla dataset. 

(b) To develop a novel and effective rule-based algorithm for detecting sentence polarity classifi- 

cation by extracting scores from a chunk of Bangla text. 

(c) To investigate the feature matrix with target dataset on ML classifier algorithm. 

(d) To investigate the proposed of our hybrid DL classification algorithm in pretrained word em- 

bedding (Word2Vec) model. 

(e) To evaluate our approach and compare the circumference of our work with some existing re- 

search paper in both ML and DL algorithm. 
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The possible outcome will be as follows: 

(i) An LDD, and a rule-based BTSC algorithm will be developed for Bangla language. 

(ii) The effectiveness of ML classifiers and deep neural network will be evaluated in predicting 

sentiments in Bangla text. 

 

1.5 Outline of the Thesis: 

 
This thesis consists of five major sections by which the effect of BTSC algorithm efficiency in 

both ML and DL is explored. The first part inaugurates the basic concepts of NLP systems and SA 

techniques. The second part of the thesis will show the previous research works related to NLP, 

SA in ML classification algorithms, and DL-based architectures. The third part is responsible for 

exploring the theoretical approach to effect of the BTSC rule-based algorithm with the help of de- 

veloping LDD, ML, and DL-based data preprocessing techniques. The fourth part will elaborate 

the experimental procedure in supervised ML and DL neural networks for SA approaches and val- 

idate those performances. This part also signifies the efficiency of the BTSC algorithm. The final 

part will deal with the experimental result discussion and compare it with other research on the 

accuracy, precision, and recall. 

 

The descriptions of the chapters are the followings which are given below. 

 

 
Chapter 2 will show the review of previous research work related to ML and DL-based SA. Ex- 

isting methods discussed in previous research work will also be presented here by highlighting the 

limitations of those studies. 

 

Chapter 3 demonstrates system methodology by developing the proposed rule-based algorithm 

BTSC, which identifies the text polarity with the help of building a LDD. ML and DL approaches 

are introduced to conduct our SA. 
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In Chapter 4, the demonstration of the ML classification system and construction of deep neural 

networks are focused. Support vector machine (SVM), Random Forest (RF), Naive Base Classi- 

fier, Logistic Regression, KNN, etc., are used to classify our documents. Convolutional, Recurrent, 

Long Short Term, Gated Recurrent Unit, Attention, Transformer, Capsule based high configuration- 

based hybrid model are introduced to conduct our SA experiment. 

 

Chapter 5 is for practical demonstration of our proposed SA on the BTSC algorithm in both ML 

and DL procedures. It will explain the confusion matrix of classifying text in the Unigram and 

Bigram ML model. It will describe the efficacy of the neural network approach in training and 

testing accuracy, precision, recall, and time estimated graphs with the number of epochs. 

 

Finally, Chapter 7 will present the concluding remarks and future research direction of the thesis. 



 

 

 

 

 

 

 

 

Chapter 2 

 
Literature Reviews 

 

 

 

 

2.1 Overview: 

 
This section exhibits a summary of existing ML and DL-based SA studies. We conclude this section 

by identifying existing research gaps and providing a study rationale for this chapter. 

 

2.2 Related Works: 

 
SA has become an exciting topic among researchers in expanding social media and microblogging 

sites. Immense research has been done on SA on many linguistic corpora. Researchers working on 

SA are tempting different approaches to dig up methods that deliver the best result. 

 
2.2.1 ML Based Related Works: 

 
SA is done in many linguistic domains like English, French, Chinese, Arabic, etc. However, the 

depth of its progress in the Bengali language is insignificant due to some technical and empirical 

constraints [8]. Our work is highly inspired by this research [9]. To the best of our knowledge, SA 

in Bengali using an extended dictionary has not been done in any research. Experiment results 

using Lexicon based Data dictionaries in Arabic language have been obtained so far [10]. In [11] 
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authors described SentiWordNet(SW) as a curse of dimensionality. They used a sentimental lexicon 

dictionary based on word2vec to perform SA. Besides, in the Bangla text, authors [12] preprocessed 

data to carry through a SA by taking tf-idf vectorizer and classified the data with a support vector 

machine (SVM) algorithm. However, they did not measure the polarity by calculating the score of 

a text; hence it is required to detect the polarity of each sentence by a specific rule-based [13] 

algorithm. In [14], the authors proposed a semi-supervised bootstrapping approach in SVM and 

maximum entropy(MaxEnt) classifier to perform a SA using SW by translating Bengali words  to 

English. Their rule-based bootstrapping approach only counted positive; and negative word 

polarity by SW, which only worked for a low-limited length text. In [15], the authors proposed 

using XML-based POS tagger and SW to identify the sentiment from Bangla text by adopting 

valency analysis. They used SW and WordNet(WN), designed for only the English language. So, 

a lexicon weighted word dictionary for Bangla is necessary to identify the text’s word score or 

polarity. Besides, in [16], authors extracted positive, negative(bi-polar) polarity from Facebook text 

by tokenizing adjective words using POS tagger, doing valence shifting negative words at the right 

side of a sentence, and replacing it with antonym words using SW. SW has a weakness in giving 

proper polarity in Bangle text. In [17], the authors discussed an automated system for emotion 

detection by mapping each text to an emotion class, their accuracy was 90%. However, it was more 

time-consuming to label the data, and their phrase patterns were formed for only three subcategories 

of sentiment not used in complex sentences. In [18], the authors designed a framework for SA  by 

counting only positive and negative words from their feature word list dictionary. In[19], the 

authors constructed an extended sentiment dictionary and a rule-based classifier was employed  to 

classify the field of the text polarity by attaining the score of a sentence. In [20], the authors 

described a lexicon-based dictionary model by checking the occurrences of a sentimental feature 

word in tagging each sentence. 
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2.2.2 DL Based Related Works: 

 
In this section, we sketch out the available methods with a taxonomy that explore the influences on 

the several DL architectures and discuss how those methods enhance operating in SA. In the inter- 

disciplinary domain of NLP, sentiment classification was portrayed in [21], describing a connection 

between subjectivity detection and polarity classification. In [22], the authors showed a probabilis- 

tic neural model for learning a consecutive representation of words and a probabilistic function to 

the word sequences simultaneously. A simple one-layer-based convolutional neural network 

(CNN) approach was given in [22] to conduct a sensitivity analysis of the text. An artificial neural 

network (ANN) does not work on a large scale of inputs. However, CNN or Hybrid based CNN, 

i.e., Dynamic CNN (DCNN) [23], Very Deep CNN (VDCNN) [24], variable-size convolutional 

filters, i.e., (MVCNN) [25] model can do much better. DCNN uses a dynamic K-max polling and 

a global pooling operation over the text sequence. In contrast, VDCNN and MVCNN use different 

dimensions of word embeddings on multiple filter sizes, respectively, in character and text levels. 

A recurrent Neural Network (RNN) is efficient in doing words or sentences as an unseen input on 

the network by propagating weight matrices over the time steps [26]. As RNN has a problem of 

vanishing gradient descent, gradient explosion and lack of backpropagation, those are mitigated in 

a modified version of RNN such as termed as Long Short Term Memory Network (LSTM) [27], 

Bi-Directional LSTM [28], Asymmetric Convolutional Bidirectional LSTM (AC-BLSTM) [29], 

Recurrent Convolutional Neural Network (RCNN) [30], Gated Recurrent Unit (GRU) [31]. Hi- 

erarchical Attention Network (HAN) based mechanism [32] on Bi-GRU [33] and LSTM [34] are 

also applied for document text classification because it works between the hidden (encoder and 

decoder) layer to give a weighted sum of all features fed as an input. The Google researchers pub- 

lished a recent NLP task, Transfer Neural Network BERT [35], which learns contextual relations 

from words or text and is also applied for SA [36]. 

 

A more significant portion of SA based on DL is conducted on many high resource language do- 

mains (i.e., English, Chinese); however, a few studies on Bangla language is on the primary stage. 
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In [37] the authors performed SA on 4000 positive and negative movie reviews, which was man- 

ually translated into Bangla and obtained accuracy on LSTM at 82.42%. Another LSTM-based 

approach was conducted on 9337 reviews for classifying polarity positive and negative sentiments, 

and they achieved an accuracy of 78% [38]. In [39], the authors extracted six types of emotions 

from different types of Bangla Youtube video comments using a CNN and LSTM-based approach. 

They showed 65.97% and 54.24% accuracy on three and five labels sentiment. Another CNN- 

based single-channel approach [40] was implemented on different domains from the Bangla dataset. 

However, it can not maintain proper tuning in layers. An RNN type of network Bi-LSTM approach 

was applied on a manual hand label dataset of 10000 comments from Facebook, and they obtained 

an accuracy of 85.67%; however, it has many notable drawbacks in data preprocessing [41]. In 

[42], the authors obtained an accuracy of 75.5% on the word2vec model by tuning the word co- 

occurrence score in word vector similarity. In [43], the authors experimented on Bangla Romanized 

dataset and tested on a deep recurrent model LSTM and achieved accuracy of 55% for three cate- 

gories. In [44], the authors examined aspect-based SA data with 95% accuracy. However, global 

common words rephrased the common and proper noun of Bangla words. This was a hindrance to 

extracting sentiment in a lexicon-based dictionary approach. In a recent research, the authors 

[45] implemented an attention-based CNN model, and the authors [46] combined CNN with the 

LSTM model to analyze sentiment from Bangla text. However, in a lexicon-based approach, a 

word may have different meanings in different domains; so, a lexicon sentiment dictionary is a 

needed resource for conducting SA. However, it classifies the core word as annotated polarity with 

sentence or phrase sentiment strength. In [47, 48] the authors built a sentiment detection mecha- 

nism from tweets using a sentiment lexicon and a rule-based linguistic approach [49]. To the best 

of our knowledge, SA using categorical weighted LDD and rule-based algorithm BTSC in Bangla 

text with comprehensive DL approaches is not used yet. 



14 
 

 

2.3 Conclusion 

 
Sentiment analysis using ML and DL-based approaches has drawn the attention of a large num- 

ber of researchers. In this chapter, a series of state-of-the-art literature’s has been reviewed. We 

have discussed the main issues and techniques related to the SA based on existing ML and DL 

research works. The findings of experimental works are also mentioned in Bangla domain. Vari- 

ous sentiment analysis methods with their performance parameters have been explored. Some new 

SA based on SW, WN, or manually annotated dataset techniques that show better results in ML 

and DL models, are also addressed in this study. However, we highlighted the pros and cons of 

each approach and dataset. From the discussion of impairments-related works it is clear that there 

is no work done on LDD in the Bangla dataset that can explain the effect of rule-based SA and 

experimentally in the ML and DL approaches. 



 

 

 

 

 

 

 

 

Chapter 3 

Methodology 

 

3.1 Overview 

 
The methodology of our SA in machine learning and deep learning approaches is to analyze the 

sentiment from Bangla text with a unique rule-based algorithm and build an LDD. We have divided 

our work into two parts, one is ML, and the other is DL. First, we will describe the ancillary mech- 

anism for working in ML. Among the three levels of SA, we worked on the sentence level polarity 

classification by using the extended Bangla sentiment dictionary. These sentimental dictionary 

words are implied as opinion words, which is an impetus for identifying polarity from a text by im- 

plementing a set of rule-based automatic classifier algorithms [50]. In this thesis, an effective and 

unique rule-based algorithm, Bangla Text Sentiment Score (BTSC) is developed to detect sentence 

polarity that provides better sentiment extraction by giving a score from a chunk of Bangla text. 

We build an automated system that can extract opinions from Bangla dataset reviews with the help 

of an extended Bangla sentimental dictionary with weighted value. That automated system will be 

classified by a supervised ML algorithm [51] with the help of N-gram (Unigram, Bigram) models 

because this model performs better in text classification [52]. The overall SA structure in the ML 

process is described in Figure 3.1. 

 

 

 
15 



16 
 

 

 

 
 

Figure 3.1: Visualization of proposed system architecture in ML approach 

 

3.2 Lexicon Data Dictionary(LDD) 

 
To communicate in a language and express thoughts and views in a society, a person needs vo- 

cabulary. If one says something outside of vocabulary, they may not understand it. When they 

speak in Bengali, we usually do not express our views on words outside the Bangla dictionary. It 

means that our vocabulary is almost specific in every language. People gradually grow up learning 

this vocabulary from their childhood. When we grow up, we do not understand the meaning of the 

word. However, we use a lexicon or dictionary as a reference to use those words in the future. The 

computer language is numbers. However, the way we speak or write, we have to change the 

numbers before putting them on the computer. Since machines are good at modeling numbers, our 

work is only reduced if we teach the machine the idea of converting this language into mechanical 

language, that is, numbers. To learn a language for a machine, even if it is the smallest unit letter 

of a language, the interpretation comes from where the words are in a sentence. In that case, we 

need to develop a lexicon data dictionary (LDD) to detect the sentence scores from the text. 
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3.3 Construction of Extended LDD: 

 
An extended lexicon dictionary means the alphabetical list of words or phrases. I manually created 

a sentimental dictionary word list as a Bengali sentence containing many words. These words are 

applied for calculating the score from a sentence or phrase. We have collected data from [53], 

where there are two datasets based on two domains: cricket and restaurant. The construction of the 

Bangla dataset is described in [54] extensively. 

 
3.3.1 Creation of Sentimental Dictionary List: 

 
Table 3.1: Statistical polarity of cricket and restaurant datasets with individual and total comments 

 

Dataset 
Polarity 

Total 
Positive Negative Neutral 

Restaurant 1216 478 365 2059 

Cricket 620 2108 251 2979 

 
 

Table 3.2: Sentimental word list cricket and restaurant datasets with individual and total 
 

Data 
Sentimental Dictionary 

Total Words 
Active Contradict 

Restaurant 1056 970 2026 

Cricket 1115 2190 3035 

 

Table 3.1 shows the statistical polarity for both datasets. For performing SA, we have used those 

datasets to build up our extended sentimental dictionary, such as, য োগ্যতো [Competence], ‘অয োগ্যতো’ 

[Inefficiency], ‘পরিযেবো’ [Service,] ‘বোধো’ [Hindrance] and so on.   In sentimental dictionary, a 

word can be intersecting in both datasets, like ‘কল্পনোপ্রসূত’ [Imaginary] word is an active 

word list in restaurant dataset; however, a contradict word list in cricket dataset. While 

SentiWord et works on the global domain data however to do SA in different domain data, 

a sentimental weighted dictionary has to be created. The number of sentimental word list 

is composed of active (weight = +1) and contradict word (weight = -1), which is extracted by 

manually, represented in Table 3.2. Besides a negative word (weight = -1) list like, ‘নো’, ‘যনই’, 
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‘নোই’, ‘নয়’ [not] vocabulary has been created so that negative words can be counted during 

score calculation from the text. 

 
3.3.2 Creation of Adjective, Adverb Quantifier & Conjunction Word Dic- 

tionary Weighted List 

Since a major difference in English and Bangla grammar, we need to create our own weighted 

dictionary word list of adjective 'নোম রবযেেণ' [55] and adverb quantifier which is showed in 

Table 3.3. In Bangla grammar ‘রবযেেযণি অরতেোয়ন’ [Exaggeration of adjectives] and degree of 

adverb ‘রিয়ো রবযেেণ’ [56] is a segment of Adjective POS tagger. We partitioned the whole 

word set into 3 types: high, medium, low. 

Table 3.3: Weighted list of adjective, adverb word dictionary 
 

Types Example Weight Total Word 

High ‘সবচোইযত’ [Most of all], ‘সববোরধক’ [great- 
est], ‘ যেষ্ট’ [enough], ‘অরতেয়’ [too 
much] … } 

3 18 

Medium ‘অরধক’ [more than], ‘যবেী’ [more], ‘অযনক’ 
[lots of] … } 

2 15 

Low ‘অরতেয়’ [at least], ‘সোমোনয’ [a little] ‘প্রোয়’ 
[nearly] … } 

0.5 20 

 

Table 3.4: Weighted list of conjunction word dictionary 
 

Categories Example Weight Total Word 

Coordinating 

Conjunction 

{‘রকন্তু[but], ‘আদযপ’ [in fact], ‘এবং’ [and], 
‘অেবো’ [or], ‘বিং’ [or] … } 

2 25 

Subordinating 

conjunctions 

{‘অরধকন্তু [Furthermore], ‘রবযেেত’ [in 
particularly], ‘এমনরক’ [even], ‘এসযেও’ 
[despite of] … } 

1.5 12 

 
Although these words do not affect determining the polarity of a sentence, however, sitting 

before a few words in a sentence can impact the score of the whole sentence. These words 

can quantify the sentence score. For example, ‘বযটসমযোনযদি মযধয সোরকব সবচোইযত ভোয ো’ [Shakib is 

the best among the batsmen] in that sentence ‘সবচোইযত’ [most of all] word quantify the word 
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‘ভোয ো’ [good] which produce the word [best] in the translated English sentence. A Bangla 

sentence can have a conjunction POS, which is used to joint words, phrases and clauses. These 

types of words sit in the middle, beginning, or at the end of a sentence, and connect one or 

more sentences together. This further increases the score of two sentences without effecting 

on polarity. As there are four main types of conjunction and many sub parts conjunctions 

in Bangla grammar, for simplification of our work we generalize them into two categories 

named as coordinating conjunctions [‘সমুচ্চয়ী’] and subordinating or progressive conjunctions 

[‘অনুগ্োমী’]. However, in our research work, we simplify those words and assign appropriate 

weight values. It can be noted that the weight values of adjectives and adverbs in Table 3.3, 

and that of conjunctions in Table 3.4 are assigned carefully to make it particularly suitable 

for the Bangla language context. For this assignment, the GitHub Bangla dataset available in 

[53] is taken into consideration. Because of the difference in language structure, the weight 

values of Table 3.3 and Table 3.4 for Bangla are different from the values mentioned for the 

Chinese language in [9]. 

 
3.4 Generalized Dataset Preprocessing 

 

Our SA is a document sentiment classification based on supervised ML. After collecting corpus 

data, we need to preprocess the data for creating training and testing data. Because data 

preprocessing is an important part in the LP domain. We use BLTK [57] version 1.2 in open 

source python PyPI package OSI approved, MIT License to preprocess our data. Dataset pre- 

annotation or preprocessing step is described below. This step will be applied to removing 

ambiguity and redundancy from the whole dataset. 

 
3.4.1 Tokenization & Normalization 

Splitting the sentence into a word list is called a tokenization process. Each token is called 

a word. For example: "আচোযিি সংয োজন খুব ভোয ো রি ।" [The addition of the pickle was very 
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good], after tokenize this sentence it will create a list, as like [ ‘আচোযিি [pickle], ‘সংয োজন’ 

[addition], ‘খুব’ [very], ‘ভোয ো’ [good], ‘রি ’ [was] ]. While doing tokenization process we have 

also finished normalizing the data. Normalizing means removing characters [',', '.' '!', '@', 

'#', '%'], etc. these and stop words [58] from the sentence. The characters nad stop word 

will no impact on creating training, test data and ML model construction. 

 
3.4.2 Stemming 

Stemming means originating the root word from the given word list after doing the to- 

kenization process. During the stemming process, we remove ‘ি’, ‘এি’, ‘গুর , ‘গুয ো’, ‘টোি’,  ‘রট’, 

etc. these unnecessary words from the sentence. For example: ‘স্বোধীনতোি [Indepen- dent], 

‘বোং োযদযেি’ [Bangladesh], ‘দুব বতোগুর ি’ [Weaknesses] words convert the root word into 

respectively ‘স্বোধীনতো’, ‘বোং োযদে’, ‘দুব বতো’ by stemming process. 

 
3.4.3 Parts of Speech (POS) Tagger 

Detecting the word pos tagger in a sentence have a great significance calculating the score. 

Our Bangla text sentiment algorithm requires pos tagger to find out word weighted value 

from LDD. For example, ‘এরট খুব যবরে রচেোকেবক এবং খুব সুস্বোদু নয়।‘ [It’s not too impressive and 

not too tasty]. After generating in python pos tagger, we will get a list of word with POS 

[এরট’_TP, খুব_RB, যবরে_JJ, রচেোকেবক_NN, এবং_CC, খুব_RB, সুস্বোদু _VB, নয়_NA}. Here, যবরে_JJ] word 

quantify the word [রচেোকেবক_NN], therefore it will amplify the score of the text and [এবং_CC] 

word connects two sentences which will be tracked by our BTSC algorithm. 

 

3.5 Objectives & Methodology on DL 
 

Figure 3.2 shows the pictorial representation of our full approach. We will implement LDD 

and BTSC algorithms. Although we will not deep dive into the core details like mathematical 

description and construction of the neural network architecture, we will try to summarize 
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our approach to the details construction of the neural network model that we have used in 

our experiment. 

Figure 3.2: Visualization of DL Based Proposed System Architecture 

 

 
 

3.5.1 DL Based Data Preprocessing: 

According to our previous ML approach, we preprocess our data by removing stop words, 

unnecessary characters, performing tokenization, stemming and POS tagging operation. We 

have collected data from GitHub repository [53] and used cricket dataset for conducting our 

experiment. However, to represent the text into a neural network, we used a tensor- based 

matrix representation of the corpus (review) with its polarity. Compared to other text 

representation mechanisms, this sparse, dense matrix takes less memory for fitting in a neural 

network. We employ the Tensorflow neural network libraries simultaneously with Keras [59] 

for preprocessing our data. We use Keras tools such as tokenizer, text_to_sequences [60] 

and pad_sequences [61]. 

 
3.5.1.1 Neural Network Based Data Preprocessing: 

 

In this work, we tokenize the words of our training data to keep a maximum number of 

words, text_to_sequences method to map the tokenized words in our vocabulary in a numeric 

representation. Then we find the maximum length (maxlen) of the text over encoded 
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sequences. Finally, the resulting encoded sequences need to be the same length (maxlen 

value) following the pad_sequences approach. Extra 0’s will be padded if the sequence is 

longer than the encoded sequence. Finally, the output of tensor data shape is [iconpusLength, 

jmaxlen], where indexes i and j denote, respectively, row and column. For example, Table 3.5 

shows the full demonstration of data preprocessing for neural network training. 

Table 3.5: Demonstration of neural network based data preprocessing 
 

Method Data Comment 

Text জয় বোং ো কোপ!তোও আবোি স্বোধীনতোি মোস মোযচব। 
 োি মোেো যেযক এমন চমৎকোি আইরিয়ো এযসযি 
তোযক সযো ুট। 

Raw Text 

Tokenizer ['জয়','বোং ো', 'কোপ', 'স্বোধীনতোি', 'মোস', 
'মোযচবি', 'মোেো', 'চমৎকোি', 'আইরিয়ো', 'সযো ুট'] 

Sentences are tokenized 

Stemming ['জয়', 'বোং ো', 'কোপ', 'স্বোধীনতো', 'মোস', 'মোচব', 
'মোেো', 'চমৎকোি', ' আইরিয়ো ', 'সযো ুট'] 

Stemming word 

text_to_sequences [16, 170, 504, 81, 105, 450, 188, 64, 206, 

4161, 788] 

Encoded each word as a nu- 

meric number representation 

pad_sequences 

(maxlen = 40) 

[16, 170, 504, 81, 105, 450, 188, 64, 206, 

4161, 788, 0, 0, 0, 0, 0, 0, 0, 0, …………] 

padding the sequence as 40 

length followed by extra 0’s 

 

 

3.5.1.2 Data Preprocessing on Attention Based Mechanism: 

 

The difference in our attention-based neural network data preprocessing [59] is dividing 

each sentence letting as a sequence followed by sentence piece tokenization method. This 

sequence is encoded as a numerical vector representation. We find the maximum length 

(maxSentLen) of each raw text sentence piece tokenization [60] for specifying out tensor data 

array length for training purposes. We count the maximum sequence length (maxSeqLen) 

in every sequence for padding over data. We padded over the sequence into extra 0’s if the 

sequence is longer rather than the encoded sequence [61]. Finally, the output of tensor data 

shape is three dimensional [iconpusLength, jmaxSentLen, kmaxSeqLen], where indexes i, j and k denote, 

respectively, row, column and height. Here Table 3.6 shows the whole process for attention-

based mechanism data preprocessing in training on neural network approach. 
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Table 3.6: Demonstration on Attention Based Neural Network Data Preprocessing 
 

Method Data Comments 

Text জয় বোং ো কোপ!তোও আবোি স্বোধীনতোি মোস 
মোযচব।  োি মোেো যেযক এমন চমৎকোি 
আইরিয়ো এযসযি তোযক সযো ুট। 

Raw Text 

 

Sentence Piece Tokenizer 

[['জয় বোং ো কোপ!'],  

3 Sentence are tokenized ['তোও আবোি স্বোধীনতোি মোস মোযচব।'], 
[' োি মোেো যেযক এমন চমৎকোি আরইিয়ো 
এযসযি তোয  সযো ুট।']] 

 

Tokenization + Stemming 

[['জয়', 'বোং ো', 'কোপ'] 
Tokenize, Stemming word in 
every sentence ['স্বোধীনতো', 'মোস', 'মোচব'], 

['মোেো', 'চমৎকোি', 'আইরিয়ো', 'সযো ুট']] 
 

text_to_sequences 

[[16, 170, 504], 
Encoded each sentence as a 
numeric number representation [81, 105, 450], 

[188, 64, 206, 788]] 

pad_sequences 

(maxSeqLen= 25 

maxSentenceLen = 3) 

[[16, 170, 504, 0, 0, 0, 0, 0, . . . ], 
padding each sequence as 25 

length followed by extra 0’s 
[81, 105, 450,0 ,0 ,0 ,0 , 0, . . .], 

[188, 64, 206, 788, 0, 0, 0, 0, 0, . . .]] 

 
3.5.1.3 Data Preprocessing on Transformer Neural Network (BERT) Based Mechanism: 

 

There are some special tokens in the pre-trained language model for preprocessing in Trans- 

former neural network BERT. In our experiment, we used the Bangla bert base form hugging- 

face library [62, 63], a PyTorch version to preprocess our text for learning in a transformer 

encoder network. The special tokens are shown in Table 3.7. [CLS] tokens are at the begin- 

ning of the sentence, [SEP] tokens are at the end of the sentences and [PAD] tokens are to 

pad and truncate the sentence in the maximum length of sentence in the corpus. First, we 

tokenize the sentence text using the transformer package BertTokenizer [64]. We use the 

encode_plus [65] function to generate token_ids, then convert_ids_to_token and attention 

mask. The attention_mask is used to identify which tokens are used (represented as 1) or not 

(represented as 0’s). Finally, the input matrix is encoded as ['input_ids', 'attention_mask']. 

The whole demonstration is shown in Table 3.8. 
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Table 3.7: Classification of tokens in transformer neural network 
 

Token Name Identification Id representation 

Ending Sen- 

tence marker 

[SEP] 102 

Classification 

Token 

[CLS] 101 

Padding 

Token 

[PAD] 0 

Table 3.8: Demonstration of transformer learning neural network based data preprocessing 
 

Method Data Comment 

Text জয় বোং ো কোপ!তোও আবোি স্বোধীনতোি মোস মোযচব। 
 োি মোেো যেযক এমন চমৎকোি আইরিয়ো এযসযি 
তোযক সযো ুট। 

Raw Text 

Preprocessed Text + 

Stemming 

জয় বোং ো কোপ স্বোধীনতো মোস মোচব মোেো চমৎকোি 
আইরিয়ো সযো ুট 

Preprocessed text along with 

stemming 

tokens ['জ', '## ', 'বোং ো', 'কোপ', 'সব',  '##◌োধীন', 
'##তো', 'মোস', 'মোি', '##চ', 'মোেো', 'চমৎকোি', 
'আরইি', '## ো', 'স', '## ো', '## ট'] 

Sentence are tokenized 

token_ids tensor([101,   7360,   9294,   2492, 2991, 

2132,  24484,  3274,  2416,  6723,  7464, 

3755,  6162,  9709,  7724,  3091,  7724, 

40654, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0]) 

Encoded each word as a nu- 

meric number representation 

convert_ids_to_tokens [’[CLS]’, 'জ', '## ', 'বোং ো', 'কোপ', 'সব', 
'##◌োধীন', '##তো', 'মোস', 'মোি', '##চ', 'মোেো', 
'চমৎকোি', 'আরইি', '## ো', 'স', '## ো', 
'## ট', '[SEP]', '[PAD]', '[PAD]', '[PAD]', 
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', 
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]'] 

Covert ids into token 

encoding [’atten- 

tion_mask’] 

tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0]) 

padding the sequence as 40 

length followed by extra 0’s 

 
3.5.2 Word Embedding: 

In a neural network, word embedding is a measurement of language modelling and fea- ture 

learning which maps the textual word into low dimensionality dense vectors. As a word 

embedding system, Word2Vec [66] research by Google is computationally efficient and 

practicable in a deep neural network model, which captures the semantic relations between 
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words by calculating the co-occurrence of words in a given corpus. It contains two models: 

a continuous bag of word (CBoW) [41] and Skip-Gram (SG) [67]. The procedure of CBoW 

model is to portend the current or target word from the neighbouring co-occurrence word, 

whereas the SG model portends the entire context word from the target word shown in 

Figure 3.3. The basic difference between these two models is that, in each target-context 

pair, a newly annotation is considered in the SG model, whereas the entire context as one 

annotation is considered in CBoW model. As our training data is relatively small, we work 

on SG algorithm to represent words in n-dimensional vector space. In our neural network 

model, we build three dimensional(D) vector space [128D, 200D, 300D] with a window size 

of 5 (window=5) which means the distance between the current and predicted word in a 

sentence, and the minimum length is 1 (min_count=1) for our neural network models. 
 

Figure 3.3: Word2Vec (Skip-Gram) Architecture Diagram 
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3.6 BTSC Algorithm 

 
3.6.1 Discussion of Algorithmic Pseudocode 

This section discusses the proposed novel BTSC algorithm which has a total of 30 steps. This 

BTSC algorithm is unique to Bangla and any other language. Out of the 30 steps, the unique 

steps are from steps 11 to 26 that manages the POS conjunction, adjective, adverb, 

punctuation and question marks. This Algorithm 1 termed as BTSC which is used for 

generating score from the sentence. The inputs, notations, output and pseudocode are 

described in below: 

I nputs & Notations : 

DD: Dataset Dictionary 

LDD: Lexicon Dataset Dictionary[Active (Score = +1) & Contradict word (Score = -1)]. 

JJ /RB: Adjective or Adverb Word Quantifier Dictionary(3 types in dataset)[HIGH=3, MID=2, 

LOW=0.5] 

CC: Conjunction Type Pos Tagger, CD: Co-ordinating & CS: Sub-ordinating Conjunction 

Word 

POS: Parts of Speech, PR: Pronoun, V B: Verb, NN : oun, RB: Adverb Type POS Tagger 

Word 

PU : Punctuation (!) Character, QM : Question Mark (?) Character 

TP : Transitional Preposition Word, k: count of negative word (initial, k=0), SC[Word]: 

Score of a Word 

Output : 
 

SCS: Score(SC) calculation form a Sentence (per sentence by sentence) 

1. If SCS is > 0, Sentence polarity is Positive. 

2. If SCS is = 0, Sentence polarity is eutral. 

3. If SCS is < 0, Sentence polarity is egative. 
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Algorithm 1 Bangla Text Sentiment Score Calculation (BTSC) 

1: for each Sentence[i] in Dataset do 

2: for each Tokenize(word[j]) in Sentence do 

3: Remove(TP , PR) 

4: Scanning List of Word[j] from LDD 

5: if word[j] is Active word in LDD then 

6: SC[Word[j]] = +1 

7: else if word[j] is Contradict word in LDD then 

8: SC[Word[j]] = -1 

9: else if word[j] is a negative word in LDD then 

10: k = k+1 

11: else if word[j] is a CC type of POS tagger then 

12:  if CD type word[j] occurs in a sentence then 

13:   SC[Word[j]] = +2 

14: if CS type word[j] at the beginning of a sentence then 

15: SC[Word[j]] = +1.5 

16: else if word[j] is a JJ/RB POS tagger then 

17: SC[Word[j]] = explore in JJ/RB type of POS tagger in DD to get word[j] score 

18: else if PU occurs at the Sentence[i] then 

19: if word[j-1] of PU is a Contradict word in LDD then 

20: SC[Word[j]] = -2 

21: else if word[j-1] of PU is a VB type of POS tagger then 

22: SC[Word[j]] = -1 

23: else if QM towards the end Sentence[i] and word[j-1] of QM is a VM type POS then 

24: SCS[Sentence[i]] = -1 

25: break 

26: else 

27: SCS[Sentence[i]] = (-1)k * [ SC[Word[j]] * SC[Word[j+1]] ... * SC[Word[jn]]] 

28: end for 

29: SCS = SCS[Sentence[i]] + SCS[Sentence[i+1]] + ... + SCS[Sentence[in]] 

30: end for 

 

3.6.2 Score Calculation 

To demonstrate our Algorithm 1 : BTSC, we have considered five examples from the cricket 

and restaurant datasets. We consider five tables for simulating our example scores, besides 

showing each word score, English translations, POS tagger and total final score. These tables 

are formatted below according to algorithm 1. 
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Ex 01: " জয় বোং ো কোপ স্বোধীনতো মোস মোচব মোেো চমৎকোি আইরিয়ো সযো ুট "[ Not  only is cooking 

great, the service has always been attentive and good.] 

Table 3.9: Score calculation of Ex: 01 
 

List of Word িোন্নো যসিো যসবো মযনোয োগ্ী এবং ভো  Final Score 

English Translation cook great service attentive and good 
(+2) 

Word Score Value (+1) (+1) (+1) (+1) (+2) (+1) 

 
Ex 02: "বাাংলাদেদের বযাট াং টবপর্যয়।। ভাল লক্ষণ নয়।।" [Bangladesh's batting disaster. Not a 

good sign.] 

Table 3.10: Score calculation of Ex: 02 
 

List of Word বোং োযদে বযোরটং রবপ য়ব ভো   ক্ষণ নয় Final Score 

English Translation bangladesh batting disaster good sign not 
(-2) 

Word Score Value (+1) (+1) (-1) (+1) (+1) (-1) 

 
Ex 03: "সময় বাাংলাদেদের ভাদযয ড্র ররদেদে, টনশ্চয়ই হার োড়া উপায় টেদলানা!!"[Time has left a draw 

for the fate of Bangladesh, of course there wasn’t a way without a defeat!!] 

Table 3.11: Score calculation of Ex: 03 
 

List of Word বোং োযদে ভোগ্য ড্র রনশ্চয়ই হোি উপোয় রিয োনো Final Score 

POS Tagger NN NN NN CC NN VB VB  

(-3) English Translation bangladesh fate draw of course defeat way was not 

Word Score Value (+1) (+1) (-1) (+1.5) (-1) (+1) (-2) 

 

Ex 04: "েুব সীটমত আসন  আদে এবাং টিক সমদয় োেয পাওয়ার জনয র্দেষ্ট অদপক্ষা করদত হদব।"[There 

are very limited seats and you have to wait long enough to get food on right time.] 

Table 3.12: Score calculation of Ex: 04 
 

List of Word খুব সীরমত আসন এবং রিক খোদয পোওয়ো  যেষ্ট অযপক্ষো Final Score 

POS Tagger RB NN NN CC VB NN VB JJ VB  

(-18) English Translation very limit seat and right food get enough Wait 

Word Score Value (+3) (-1) (+1) (+2) (+1) (+1) (+1) (+3) (+1) 
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Ex 05: "র দে মােরাটির টক রোষ া টেল? রস রতা র ে রেদলই না । এোদনও তাদক র দন আনদত হদব?" 

[What was Mashrafe's fault in the test? He doesn't even play Tests. Should he be dragged 

here too?] 

Table 3.13: Score calculation of Ex: 05 
 

List Of Word র দে মোেিোরি যদোে রি  যখ ো নো যটযন আনো হযব Final Score 

POS Tagger NN NN NN VB NN NA VB VB VB  

(-3) English Translation test Mashrafe’s fault was play not dragged Should 

Word Score Value (+1) (+1) (-1) (+1) (+1) (-1) (-1) (+1) 

 

 

 

3.6.3 Simulation of BTSC Algorithm 

The input for our Algorithm 1 is a list of sentences considered in the dataset. Line 1 in the 

algorithm considers each text or sentence which score will be calculated. At lines 2 and 3, 

tokenizing sentences along with stemming, removing transitional preposition (TP) word, 

parts of speech (POS) tagging processes are performed. Here TP word i.e., ‘শুধুমোত্র’ [only], ‘নো 

হয়’ [or else], ‘নো যতো’ [not at all], ‘তো নয়’ [not that], ‘যসইজনয’ [that’s why], 'তবুও যকন' [yet why] 

have not any significance in Bangla sentence for calculating score. At line 4, we scan every 

preprocessed word in each sentence from the LDD. With the help of LDD, we have found 

the weight score values of each active and contradict words at lines 5 to 8. As ‘নো’, ‘যনই’, 

’নোই’ [not] are negative dictionary words in the LDD, the k counter is automatically 

incremented at line 9 to 10. At lines 11 to 17, the POS conjunction, adjective and adverb are 

managed. The rules for punctuation and question mark characters are set at lines 18 to 24. 

The sentiment of a single sentence is calculated by multiplying each word score at line 27, 

and the total polarity of a whole paragraph score is calculated at line no 29 by adding each 

sentence score. 
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3.6.3.1 Illustration of Example on BTSC Algorithm 

 

A number of examples are shown to demonstrate the BTSC algorithm. In the first example 

shown in Table 3.9, ‘মযনোয োগ্ী’ [attentive], ‘যসবো’ [service] are active words and ‘রবপ বয়’[disaster], 

‘হোি’ [defeat] are negative words in LDD, these word scores are calculated at lines 6 and 8, 

respectively. In this case,  there is one sentence and the score value is the multiplica-  tion 

of individual scores resulting in (+2). Now, example 2 is demonstrated in Table 3.10 from 

the cricket dataset. Here are two sentence, first (i = 1) sentence [‘বোং োযদযেি বযোরটং 

রবপ বয়’[Bangladesh's batting disaster]] score is (-1) and the second (i = 2) sentence [‘ভোয ো  ক্ষণ 

নয়’ [Not a good sign]] score is (-1) and final total score of this phrase is (-1)+(-1)=(-2) which 

is calculated at line 29. In the third example as shown in Table 3.11, one word ‘রনশ্চয়ই’ [of 

course], is a CC (CS type word) POS tagger and this score value is obtained from lines 14 to 

15. There is a contradict word i.e., ‘রিয োনো [was not] before the punctuation(!) character, the 

score of this word is calculated at line 21 to 22. In this case there is only one sentence and 

the score is (-3). 

In example 4, shows in Table 3.12, there is one sentence, ‘এবং’ [and] is a CC (CD type 

word). This is calculated at lines 11 to 13. There is ‘ যেষ্ট‘ [enough] as adjective (JJ) and ‘খুব‘ 

[very] as adverb (RB) quantifier POS tagger word. The score of the words is calculated from 

line 16 to 17. The final score is calculated as (-18) after multiplying the individual scores. 

In example 5, shows in Table 3.13, there are three sentences. A question mark (QM) 

occurs at the end of the first (i=1) [‘যটযে মোেিোরিি রক যদোেটো রি ?’ [What was Mashrafe's fault 

in the test?]], and there is a ‘রি ‘ [was] VB type POS tagger before a QM. So, this sentence 

has a negative meaning due to the presence of a QM after VB POS tagger. The score of the 

first sentence is (-1). The score of the second sentence is (-1) executed at lines 5 to 

10. In the third (i=3) sentence [‘এখোযনও তোযক যটযন আনযত হযব?’ (Should he be dragged here 

too?)] sentences there is a ‘হযব’ [Should] VB type POS tagger before a QM, So, this sentence 

has negative meaning due to the presence of a QM after VB POS tagger. The score of this 

sentence is (-1).  The score of the first sentence and the third sentences are (-1)  executed 
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as lines 23 to 24. Finally, the total calculated score of the three sentences are summed as (-

1)+(-1)+(-1)=(-3). 

 
3.7 Data Augmentation 

 

Data augmentation(DA) refers to a technique used to expand the quantity of data by ma- 

nipulating or adding slightly changes to existing data.   To influence in training of the   

DNN model, DA is a practical use case for preventing noisy data or overfitting. DA can 

explore the advancements of supervised learning without labeled data. Without learning 

from domain-based labeled data, DA enables the interface of label-based data transformation 

means self-supervised learning. 
 

 
Figure 3.4: Visualization of DL Based Proposed System Architecture 

 
In classification of text or images DA technique is used for rising the performance of DL 

models. In our experiment, we have used lexicon data dictionary (LDD) from our previous 

work. We have done prerequisite preprocessing part in building LDD from dataset. It includes 

noise reduction, substitute words in lexicon, words shuffling mainly used for short text which 

is mostly related to data sampling analysis. BTSC is used for detecting score from large text 

that is why we do not need any hybrid data augmentation method for generalization our 

text. By doing word shifting in sentence increases the data in training samples. We have 
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used a categorical aspect-based dataset (cricket) that means a comment has a positive on x 

category and negative on y category or neutral on z category with specific polarity but 

BTSC algorithm detects polarity only extracts sentiments according to our global extended 

lexicon dictionary not to use in categorical sentimental dictionary. The process of DA is 

depicted on Figure 3.4. As there is not enough data [53] to produce high-quality classifiers, 

we apply NLP a data augmentation technique to solve this issue. We apply contextualized 

word embedding techniques [68] to extend our dataset. We modify the data by inserting 

and substituting a word by Bangla-bert base [62] contextualized word embedding process. 

Table no 3.15 shows the DA process. 

 
3.7.1 Dataset Creation 

After applying data augmentation technique, we have created a merged dataset. The total 

merged dataset is of 15,114 samples. The total construction of the merged dataset is shown 

in in Table 3.14. 

Table 3.14: Statistical polarity of data augmentation in cricket and restaurant datasets with individ- 

ual and total comments 
 

No Dataset Total Dataset 

Cricket Main Data Raw Text 2059 

Augmented Data 
Insert Method 

4118 
Substitute Method 

Restaurant Main Data Raw Text 2979 

Augmented Data 
Insert Method 

5958 
Substitute Method 

Augmented Dataset (summation) 15114 

 

For example, in Table 3.15, main data-3 raw text “বোং োযদযেি পযি ভোিযতি সোযপোটব ই করি?।” 

[Support India after Bangladesh?], when applying insert method “স্বোধীনতোি” [independent] 

word is inserted in the raw text. Then this text will be as “বোং োযদযেি স্বোধীনতোি পযি করি 

ভোিযতি সোযপোটব?।“ [Support India after the independence of Bangladesh?]. Again, applying 

substitute method in the main data-3 raw text, “ভোিযতি” [India] word is substituted by 
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“জনগ্ণ” [people] “কতটো” [much] words and finally this will be emerged as “বোং োযদযেি জনগ্ণ 

কতটো সোযপোটব ই করি? রবরবরস।“ [How much do the people of Bangladesh support? BBC]. There is 

a polarity difference in augmented data. In Table 3.15, the insert method augmented text 

polarity is positive, and the substitute-based augmented text polarity is negative. 

Table 3.15: DA process in contextualized word embedding (Bangla-Bert) with BTSC polarity 
 

No Dataset Comments BTSC 

Polarity 

Main Data-1 Raw Text 
পরিরমত েোই খোদয -  রদও একরট নিম টুকিো - সোমোনয ঘুিো রিিো, 
রকন্তু যসবো ভো । Positive 

 
 

Augmented 
Data 

Insert 
Method 

পরিরমত শুকযনো েোই প্রকোি খোদয -  রদও একরট যিোট নিম টুকিো - 
য মন সোমোনয ঘুিো সোযে রিিো, রকন্তু বোরিযত যসবো রনয  ভো  হযব। 

 

Positive 

Substitute 
Method 

কম পরিমোযণ খোদয আযি -  রদও কম েক্ত টুকিো - ঘুিো রিিো যেযক 
রকন্তু ভো । 

 

Negative 

Main Data-2 Raw Text জয় বোং ো কোপ! তোও আবোি স্বোধীনতোি মোস মোযচব।  োি মোেো যেযক 
এমন চমৎকোি আইরিয়ো এযসযি তোযক সযো ুট। 

Positive 

 
 

Augmented 
Data 

Insert 
Method 

জয় হয ো বোং ো িুটব  কোপ! তোও তোি আবোি স্বোধীনতোি মোস মোযচব 
আযি ।  োি মযত মোেো যেযক এমন বহু চমৎকোি আইরিয়ো আি 
এযসযি তোযক এক সযো ুট । 

 

Positive 

Substitute 
Method 

আমোি বোং ো নববেব! শুরু আবোি যসযেম্বি মোস যেযক ।  োি মোেো 
যেযক যকোযনো চমৎকোি আইরিয়ো এযসযি যসই ব ুক । 

 

Positive 

Main Data-3 Raw Text বোং োযদযেি পযি ভোিযতি সোযপোটব ই করি?। Positive 

 

Augmented 
Data 

Insert 
Method বোং োযদযেি স্বোধীনতোি পযি করি ভোিযতি সোযপোটব?। Positive 

Substitute 
Method বোং োযদযেি জনগ্ণ কতটো সোযপোটব ই করি? রবরবরস। Negative 

 
After creating this augmented dataset, we merged the cricket and restaurant datasets 

and applied the BTSC algorithm to detect sentiment. Then we check the grammatical spell 

using by spell checker method. 
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3.7.2 Creation of Augmented Dataset Algorithm 

 Inputs & Notations : 

(i) P re_trained_model_path = “sagorsarker/bangla-bert-base” 

(ii) ContextualWordEmbsAug: Contextualized Word Embedding Function Augmented Dataset 

(iii)INSERT = ContextualWordEmbsAug(Pre_trained_model_path, action="insert") 

(iv)SUBSTITUTE = ContextualWordEmbsAug(Pre_trained_model_path, action="substitute") 

(v)SpellWordFrequencyList = Load Words of Frequency to Check the spell of a Word 

Output : 

AugmentedDatasetList: Cricket and Restaurant Merged Augmented Dataset 
 
 

Algorithm 2 Augmented Dataset Algorithm 
 

1: for each corpus[i] in Dataset do 

2: augmented_text = INSERT .augment(corpus[i]) 

3: augmented_text = SUBSTITUTE.augment(corpus[i]) 

4: augmentedDataList.append(augmented_text) 

5: end for 

6: SPELL = SpellChecker() 
7: for each Sentence[i] in augmentedDataList do 

8: SpellWordFrequencyList = SPELL.word_frequency.load_words() 

9:   for each Word[j] in SpellWordFrequencyList do 10:

 check_spell = SPELL.correction(Word[j]) 

11: if check_spell is True then: 

12: Sentence[i] = append the spell-checked Word[j] in i th Sentence 

13: else if check_spell is False then: 

14: Sentence[i] = no changes in Word[j] 

15: end for 

16: augmentedDataList = Sentence[i] 

17: end for 

 

 

 

3.7.2.1 Description of Augmented Dataset Algorithm 

 

The algorithmic process of DA is described below. In the inputs section, at line number  

(i), pretrained model path is set. In lines (ii), the Contextualized Word Embedding function 
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for augmented dataset is declared. In lines (iii) and (iv), the insert and substitute actions 

are called through contextualized word embedding function. In lines (v), the spell-checking 

word frequency is loaded to check the spell of a word. In lines 1 to 5, we iterate through 

every text of both datasets (restaurant and cricket) to produce augmented text by insert 

and substitute method and, finally, merge it into an augmented list. Then we check our 

grammatical font errors in lines no 6 to 17. For example, ‘স্বোধীনতোি’ [independent], ‘সোযপোটব’ 

[support], ‘সযো ুট’ [salute] fonts are misspelled as ‘সবোধীনতোি’ [independent], ‘সোপিট’ [support] 

‘স ো ট’ [salute] during augmenting text. In line no 11, we load every possible combination 

of j-th word vectors, then it is corrected and spelled in line no 13. The corrected spelling 

word is appended in the i-th sentence if the word is suitable for the misspelled word, and 

checking activities are performed in lines 11 to 14. 

 
3.8 Conclusion 

 

In this section, we discuss the methodology of ML and DL-based approaches by following  a 

proper dataset preprocessing mechanism. We describe building a LDD by appointing a 

specific weight on each POS category. We develop our BTSC as a rule-based algorithm for 

extracting our polarity from text and simulate our algorithm using some examples. We 

merged our cricket and restaurant dataset by applying augmentation technique and develop 

a augmented dataset algorithm. We will experiment with our newly developed rule-based 

algorithm in the next chapter. 



 

 
 
 
 
 

Chapter 4 

Experiments 

 

4.1 Overview 
 

This section describes the classical ML and DL approaches explored for SA from Bangla text, 

and the model overview and experimental setup in each case. We discuss the experiments 

based on the word embedding pretrained model. In ML approach, we trained a number of 

text classification algorithms so that we could compare them and draw further inferences. In 

DL approach, many layers, neural networks, frameworks and approaches have been proposed 

for SA from text. We applied our proposed BTSC algorithm polarity in training data in ML, 

and DL approaches. The rest of this section discusses the details of the steps used for 

construction, discusses the features used followed by in-depth view of the aspect model. 

 
4.2 Experiment on BTSC Algorithm 

 

After applying the BTSC algorithm on both datasets, we construct a confusion matrix (CM) 

based on positive, negative and neutral polarity labels shown on Table 4.1 and 4.2. From 

Table 4.1, a total of 1067 and 398 comments is identified out of 1216 positive and negative 

comments in restaurant dataset. Similarly, from Table 4.2, 547 and 1905 comments are 

identified out of 620 positive and negative comments in the cricket dataset. From these both 

36 
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Table 4.1: Polarity detection by BTSC on restaurant data 
 

True\Predicted 
Predicted Label 

Total 
+1 -1 0 

 

True Label 

+1 1067 140 9 1216 

-1 74 398 6 478 

0 242 63 60 365 

Total 1383 601 75 2059 

Table 4.2: Polarity Detection by BTSC on Cricket Data 
 

True\Predicted 
Predicted Label 

Total 
+1 -1 0 

 

True Label 

+1 547 67 6 620 

-1 186 1905 17 2108 

0 61 39 151 251 

Total 794 2011 174 2979 

 

CM, it can be inferred that the BTSC rule-based algorithm has been able to detect sentiment 

fairly accurately except the neutral sentiments. Because the total dataset comments polarity 

are voted based on category based. The maximum neutral data is manually generated above 

the aspect based category. It means a comment has a positive on x category and negative 

on y category or neutral on z category. 

Table 4.3: Neutral data detection problem 
 

No. Comments Category Polarity BTSC 

Algorithm 

Polarity 

 

1 
 "পটরটমত োই োেয – র্টেও একট  নরম  ুকরা - সামানয ঘুরা টিরা, টকন্তু রসবা ভাল"। 
Moderate Thai food - although a soft piece - turns slightly, however the service 
is good. 

Food Positive  

Positive Service Negative 

Ambience Neutral 

2  "রবাটলাং টপচ তদব আমাদের বযা সমযানদের আউ গুদলাই আত্মহতযা োড়া আর টকেুই 
নয়।"Bowling pitch, but the batsmen outs are nothing but suicide. 

Batting Negative 
Negative 

Bowling Neutral 

 
Consider that example from Table 4.3: row 1 is taken from restaurant dataset that has 

three categories on three polarities, and row 2 is taken from cricket dataset that has two 

categories on two polarities. However, the BTSC algorithm only extracts sentiments according 

to a global extended lexicon dictionary not used in a categorical sentimental dictionary. For 

this reason, the calculation of neutral sentiments will be challenging to check. 
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4.2.1 Metrices Evaluation 

From Table 4.1 and 4.2, we calculate some parameter measurements named as true positive 

rate (TPR), true negative rate (TNR) and false positive rate (FPR). In order to keep 

consistency with the relevant literature of natural language processing [69, 70], we have 

used true positive rate (TPR), which is also known as recall or sensitivity indicated as 

equation (4.1) below. It is measured by the ratio of the true positive (TP ) of a particular 

label to the sum of its true positive (TP ) and false negative (FN ). TNR is also known  as 

specificity, which is measured as the ratio of true negative (TN ) of a particular label to the 

sum of the true negative (TN ) and false positive (FP ), shows in equation (4.2). FPR is 

known as type II error which is calculated by the ratio of the false positive (FP ) of a 

particular label to the sum of the false positive (FP ) and true negative (TN ), shows in 

equation (4.3). 

TPR(label) = 

TNR(label) = 

FPR(label) = 

TP 
 

 

TP + FN 

TN 

TN + FP 

FP 
 

 

FP + TN 

(4.1) 

 

(4.2) 

 

(4.3) 

These formulas are extracted by the concept of TP , TN , FP , FN . Basically, TP is 

a correctly predicted class, TN is a correctly predicted non-class, FP is an incorrectly 

predicted class and FN is an incorrectly predicted non-class. Before calculating equation 

(4.1), (4.2), and (4.3), we need to consider Table 4.4 for stepping out these formulas. Here, 

C(x, y) notation for each box is introduced to measure the parameters for CM. In C(x, y), 

x is a predicted label or class and y is a true label or class. Calculation of TPR , TNR and 

FPR for negative label (-1) is shown below at equation (4.4), (4.5) and (4.6). 
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Table 4.4: C(x, y) notation for indicating the parameters of CM 
 

True\Predicted 
Predicted Label 

+1 -1 0 

 

True Label 

+1 C(1,1) C(-1,1) C(0,1) 

-1 C(1,-1) C(-1,-1) C(0,-1) 

0 C(1,0) C(-1,0) C(0,0) 

 

Here Considering for negative labels, 

 
TP = C(−1, −1), 

 
TN = C(1, 1) + C(0, 1) + C(1, 0) + C(0, 0), 

FP = C(−1, 1) + C(−1, 0), 

FN = C(1, −1) + C(0, −1). 

 

Finally we get TPR, TNR and FPR from equation number (4.4), (4.5) and (4.6), respectively. 
 
 

TPR(−1) = 
C(−1, −1) 

 
 

C(−1, −1) + C(1, −1) + C(0, −1) 

 

(4.4) 

 

 

TPR(−1) = 
C(1, 1) + C(0, 1) + C(1, 0) + C(0, 0) 

 
 

C(1, 1) + C(0, 1) + C(1, 0) + C(0, 0) + C(−1, 1) + C(−1, 0) 
(4.5) 

 

 

 

TPR(−1) = 
C(−1, 1) + C(−1, 0) 

 
 

C(−1, 1) + C(−1, 0) + C(1, 1) + C(0, 1) + C(1, 0) + C(0, 0) 

 

(4.6) 

 

Similarly, other labels will be calculated in this way. A full summary of the calculation 

is shown in Figure 4.1. In these measurements, TPR is above average at 85%, which signifies 

our dictionary and BTSC algorithm efficacy. At most, 90% TPR at a negative label is obtained 

in the restaurant dataset, and 87% TPR at a positive label is obtained in the cricket dataset. 

As the high rate of TPR has a low rate of TNR, both will be preferable in better 

performance. TNR and TPR are better on positive and negative labels however not 
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Figure 4.1: Visualization performance of BTSC algorithm in restaurant and cricket dataset 

 

in neutral datasets because of the categorical identification polarity. In neutral comments, 

60% and 16% TPR are carried in the cricket and restaurant dataset, respectively. 

 
4.3 Experiment on ML Approach 

 

To evaluate our experiment, we used supervised ML classification algorithm to classify our 

data. At least 20% of thew dataset have been randomly chosen for testing dataset and rest 

of the data is trained for classifying the polarity. The evaluation of our result is measured 

through a CM including the classifier metrices called accuracy, precision, recall and f1-Score 

with the help of using Spyder, python IDE environment. Among the classifier, SVM with 

linear kernel trick (c=1) is the best for giving proper result in new observations because 

SVM has found better accuracy in finding text classification. 

 
4.3.1 Term Frequency - Inverse document Frequency (TF-IDF) 

A standard feature matrix called term frequency - inverse document frequency (TF-IDF) 

vectorizer is used to calculate the feature matrix. It maps text or word into a significant 

representation number. Tf-Idf is an algorithm that inspects every core word in a document 



41 
 

 

and find out the most necessary keywords from the document. It is developed for the 

documented analysis and retrieval of information from text. 

 
Lets, define some notations, given a corpus D, a term ti and a document dj ∈ D, we denote 

the number of occurrences of ti in dj by tf ij. This is referred as the term frequency. 
 

 ti 
tf ij = ( 

dj 
) 

 

(4.7) 

 

The inverse document frequency for a term ti, denote as idf i, is defined on Equation 4.8 

 
idf i = log[(

  |D| 
) + 1] (4.8) 

|d : ti ∈ d| 

where |D| is the number of documents in corpus, and |d : ti ∈ d| is the number of documents 

in which the term appears [71]. 

 
4.3.2 Construction of TF-IDF Matrix 

The construction of TF-IDF matrix is followed by Table 4.5. In row wise, the number of 

documents containing words are placed. The number of documents in which word appears 

are placed in the column wise. This is one kind of sparse matrix which contains zeros in 

several indexes. 

Table 4.5: TF-IDF matrix format 
 

Document/Word Word-1 Word-2 Word-3 . . . Word-30 

DOC-1 D1/W1 D1/W2 D1/W3 . . . D1/W30 

DOC-2 D2/W1 D2/W2 D2/W3 . . . D2/W30 

DOC-3 D3/W1 D3/W2 D3/W3 . . . D3/W30 

DOC-4 D4/W1 D4/W2 D4/W3 . . . D4/W30 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

DOC-10 D10/W1 D10/W2 D10/W3 . . . D10/W30 
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4.3.2.1 TF-IDF Matrix Calculation from Restaurant Dataset 

 

Data shown in Table 4.6 is from restaurant dataset for calculating tf-idf matrix. At first, we 

need to preprocess our text according to text preprocessing section followed by tokenization, 

stemming and stop word removal procedures.  Here Table 4.5 shows the demonstration   of 

DOC-10 and DOC-5 texts preprocessing mechanisms. Then we calculate word or term 

frequency (TF) according to equation (4.7) and calculate word inverse document frequency 

(IDF) according to equation (4.8). 

Table 4.6: Sample data from restaurant dataset 
 

DOC No. SENTENCE 

DOC-1 এরট খুব যবরে রচেোকেবক এবং খুব সুস্বোদু অনুভূরত নয়। 
DOC-2  োইযহোক, খোদয গুয ো খুব ভো । 
DOC-3 চমৎকোি ভো  ওয়োইন তোর কো । 
DOC-4 মরুভূরম পরিযেবো খুব আনন্দদোয়ক, চমৎকোি বোয়ুমণ্ড  রি । 
DOC-5  রদও অিবোি এবং খোদয যপযত অযপক্ষো রি ,পরিযেবো ধীযিধীযি রভি নো বোযি  । 
DOC-6 অরবশ্বোসয স্থোন এত েীত  এবং পরিযেবো য  প্রম্পট এবং রবনয়ী। 
DOC-7 আপরন একরট সমূ্পণব অরভজ্ঞতো অনুভূরত রদযয় যমনু যেযক খোবোি অিবোি যদন। 
DOC-8 অযনক অিবোি তোই দ্রুত খোবোি খোও,। 
DOC-9 পরিযেবো অরবশ্বোসয এবং যেট ভোিতীয় খোদয  । 
DOC-10 আনন্দদোয়ক নো হয ও - আনন্দময় খোবোি এবং স্থোন একরট িরিন িি আনন্দময় 

পরিযবে - মরুভূরম বোয়ুমণ্ড । 
 
 

Table 4.7: Sample stop word list from restaurant dataset 
 

 

Here in Table 4.10, the word “আনন্দময়” occurs two times in the 10-th document (DOC-10), 

and the word “পরিযেবো” occurs one time in the 5-th document (DOC-5) represented as (a). At 

table 4.10, DOC-10 has a length of word 14, and DOC-5 has a length of 12 represented as (b).At 

Table 4.10, the number of documents length (d) is ten as there are ten documents (DOC-1 

to DOC-10) in the Table 4.6. Here, the word “আনন্দময়” occurs in every document (DOC-1 to 

DOC-10) only 1 time and word “পরিযেবো” occurs in every document (DOC-1 to DOC-10) 4 

times represented as (c). 

এরট,  োইযহোক, গুয ো, রি , নো,  োযত, এবং,  রদও, এত, রদযয়, য , একরট, 
আপরন, সমূ্পণব, যেযক, যদন, তোই, অযনক, হয ও, হয় 

Stop Word List 
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4.3.2.2 Formation of Term Frequency and Inverse Document Frequency 

 

The term frequency (TF) will be calculated as X, and inverse document frequency (IDF) will 

be calculated as Y, shown at Table 4.11. Then we calculate the term frequency matrix (TF) 

represented by word by document matrix, shows as Table 4.8 which is stated as the 

frequency of i-th document word divides the length of that i-th document tokens. 

Table 4.8: Representation of word by document matrix 
 

Word/ Document DOC-1 DOC-2 DOC-3 . . . DOC-10 

Word-1 W1/D1 W1/D2 W1/D3 . . . W1/D10 

Word-2 W2/D1 W2/D2 W2/D3 . . . W2/D10 

Word-3 W3/D1 W3/D2 W3/D3 . . . W3/D10 

Word-4 W4/D1 W4/D2 W4/D3 . . . W4/D10 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

Word-30 W30/D1 W30/D2 W30/D3 . . . W30/D10 

 

Table 4.9: Dataset preprocessing for TF-IDF matrix construction 
 

Document No. Process Output 

 
 

DOC-10 

 
 

EX: 01 

Tokenization and 

Normalization 

['আনন্দদোয়ক', 'নো', 'হয ও', 'আনন্দময়', 'খোবোি', 
'এবং', 'একরট', 'িরিন', 'িযিি', 'আনন্দময়', 

'পরিযবযে', 'মরুভূরমি', 'বোয়ুমণ্ড '] 
 

Stemming 
['আনন্দদোয়ক', 'নো', 'হয ও', 'আনন্দময়', 'খোবোি', 

'এবং', 'একরট', 'িরিন', 'িি', 'আনন্দময়', 
'পরিযবে', 'মরুভূরম', 'বোয়ুমণ্ড '] 

Stop Word 

Removal 
['আনন্দদোয়ক', 'আনন্দময়', 'খোবোি', 'িরিন', 'িি', 

'আনন্দময়', 'পরিযবে', 'মরুভূরম', 'বোয়ুমণ্ড '] 
 
 

DOC-5 

 
 

EX: 02 

Tokenization and 

Normalization 

[' রদও', 'অিবোি', 'এবং', 'খোদয', 'যপযত', 'অযপক্ষো', 
'রি ', 'পরিযেবোয়', 'ধীযিধীযি', 'রভি', 'নো', 'বোযি'] 

Stemming [' রদও', 'অিবোি', 'এবং', 'খোদয', 'যপত', 'অযপক্ষো', 
'রি ', 'পরিযেবো', 'ধীযিধীযি', 'রভি', 'নো', 'বোি'] 

Stop Word 

Removal 
['অিবোি', 'খোদয', 'যপত', 'পরিযেবো', 'ধীযিধীযি', 

'রভি', 'বোি'] 

 
The full representation of TF-IDF matrix calculation is shown in the appendix section. The 

calculation of word frequency and word inverse document frequency is shown at Table A.1(a) 

and A.1(b) respectively. The TF matrix transposes the IDF matrix from Table A.2. Table A.3 

is produced by the transpose of Tf matrix from Table A.2. Finally, X and Y are multiplied 
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Table 4.10: Calculation of terms in each document 
 

 
Document 

 
Word 

No. of 

occurrences 

of a word in a 

doc (a) 

No. of 

words in 

that doc 

(b) 

No. of 

Documents 

containing 

word (c) 

No. of 

Documents 

(d) 

DOC-10 আনন্দময় 2 14 1 10 

DOC-5 পরিযেবো 1 12 4 10 

DOC-5 খোদয 1 12 3 10 

Table 4.11: Calculation of term frequency [X], inverse document frequency [Y] and TF-IDF [X*Y] 

value 
 

Document Word 
TF Value 

(a/b) = [X] 

IDF Value 

log((c/d)+1) = [Y] 

TF-IDF value 

[X*Y] 

DOC-10 আনন্দময় 0.14285 2.39789 0.342538 

DOC-5 পরিযেবো 0.08333 1.2527 0.104387 

DOC-5 খোদয 0.08333 1.46633 0.122189 

 

to produce our term frequency – inverse document frequency matrix (TF-IDF) shown in 

Table A.4. Similarly, a sample form cricket dataset Table A.5, the overall construction of b 

word frequency and inverse document frequency matrix shows at Table A.6, term frequency 

matrix shows at table A.7 inverse frequency matrix at Table A.8 and TF-IDF feature matrix 

shows at Table A.9. 

 
4.4 Experiment on DL approach 

 

Our main aim of rule-based DL sentiment extraction experiments is to analyze the effec- 

tiveness of the well-known DL models. We used Tensorflow == 2.4.1, Keras == 2.4.3 and 

Transformer == 3.0 for developing our DL model. The cricket dataset [53] with a total of 

2978 entries was divided into three parts, namely training, validation and testing, distributed 

as follows: 80% (2412 entries) for model training and 20% (566 entries) distributed for val- 

idation (268 entries) and testing (298 entries). The model is not trained on the validation 

dataset. The validation dataset accuracy determines how well the model will perform on 

test data. The definition of training, test, validation set from [72] are defined below: 
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(i) Training set: A set of examples used for learning, that is to fit the parameters of the 

classifier. 

(ii) Validation set: A set of examples used to tune the hyper-parameters of a classifier. 

(iii) Test set: A set of examples used only to assess the performance of a fully-specified 

classifier. 

To summarize, the training set is used to train the model while validation samples help to 

tune the hyper-parameters (i.e., learning rate, batch size, filter size, kernel size, activation 

function, dropout rate, number of hidden units etc.) of the model. However, training data 

is a subset of the primary dataset used to fit the model. The validation set determines the 

model performance and finds the optimal network layer size. Finally, the trained model is 

evaluated with the test set. 

We trained a model on different hyperparameter settings such as embedding dimension, 

dropout rate, kernel, filter and batch size, learning rate (lr), epoch number etc. We iterate 

our model on this hyperparameter until we find its optimum value for training, avoiding 

overfitting on the dataset. In our experiment, we set the epoch number to 50 and batch size 

to 256. Except for the transformer learning training mechanism, we use a batch size of 16. 

 
4.4.1 Learning Curve: 

A learning curve (LC) plots model learning performances over the epoch rate or time. LC 

performances on the train and validation datasets are applied to determine an underfit, 

overfit or well-fit model [73]. It can be used whether the train or validation datasets are 

not relatively representative of the problem domain [74]. LC plot the training and validation 

accuracy and loss of training and validation data over time. Our experiment showed each 

model's learning performance by plotting LC. For a better understanding of our experiment, 

we have showed each model training accuracy (TA) vs. validation accuracy (VA) with respect 

to epoch and training loss (TL) vs. validation loss (VL) with respect to epoch during training 
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the model, similar approach are shown in [75, 76, 77, 78, 79]. The X-axis indicates the epoch 

number, while the Y-axis indicates the training, validation accuracy, and training, validation 

loss. TA and VA determine whether the model was overfitting or not and TL and VL 

determine whether the model was overfitting or underfitting. The VA and VL for dataset how 

well the model will perform for the unseen future data. 

 
4.4.2 Convolutional Neural Network (CNN): 

CNN is a type of feed-forward neural network in the field of computer vision that consists 

of convolutional, pooling and fully connected layers. For text classification, raw text must 

be represented as a vector in the input layer, represented at Table 3.5. After a series of 

convolutional stacked with multiple filters and pooling operations, the model has an activa- 

tion function in the neural network. Our experiment uses a simple CNN for classifying text 

because it can extract the features from global information with the help of a convolutional 

layer. We add an embedding layer with vocabulary size, maximum text input length, and 

embedding size and weight of embedded matrix with 128d. Then we apply a learning 

sequence to our vocabulary by using a convolutional 1D layer with 300 filters, kernel(k) size 

of 5(k=5) value and Relu activation unit. The convolution layer can shift the window over 

the sentence and the weighted matrix and let the C learn the weights for applying in the 

neighboring words in tensor input data. For effectively operating in the learning rate, we 

use a spatial dropout one dimensional (SpatialDropout1D) parameter of 0.5, which drops the 

1D feature from the embedding layer. To eliminate the overfitting problem, we use a Dropout 

regularization technique with 0.5. As our C model is sequential, we add a batch normalization 

layer for learning efficiently from previous output layers. Finally, we add a dense layer with 

the Sigmoid activation function because we perform a trinary-based classification. Figure 4.2 

shows the entire demonstration process of our sentiment classification in CN N . 

After constructing our CNN model, we compile it with our 128D word embedding matrix 
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Figure 4.2: Convolutional neural network (CNN) architecture for sentiment classification 

 

(a) TA, VA on CNN (b) TL, VL on CNN 

Figure 4.3: (a) LC of CNN model training accuracy (TA) and validation accuracy (VA) and (b) 

LC of CNN model training loss (TL), validation loss (VL) 

 

by setting the parameter loss function as categorical cross entropy (categorical_crossentropy) 

and optimizer as adam at a learning rate of 0.01. After compiling the model, we fit the model 

with our training and validation data having a batch size of 256 with 50 epochs; we achieved 

87.58% training accuracy (TA), 73.49% testing accuracy, 78.56% testing precision and 79.66% 

and testing recall value. Figure 4.3 shows the training, validation accuracy (VA), validation 

loss (VL) vs epoch during training the model. 

 
4.4.3 Dynamic Convolutional Neural Network (DCNN): 

DCNN uses convolutional layer with dynamic k-max pooling layers to extract a sentence 

feature map. K-max pooling layer is used to identify the short and long contextual relations in 
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the word embedding text. The altitude of convolutional size and corpus text size determine 

the k value dynamically that is why it is called the dynamic k-max pooling layer in the 

network. In our experiment, we have used five k-max (k=5) pooling layers two times followed 

by zeropadding 1D with 49 filter size and convolutional 1D with (64*50) size. A flatten fully-

connected layer is added with a hidden layer. Dropout layer is used before the independent 

weights with 50 neurons having ReLU activation layer. Finally, each neuron from the fully 

connected dense layer is fed as output to the sigmoid layer with three neurons. Here in Figure 

4.4 shows the whole demonstration process of our sentiment classification in DC . 

Figure 4.4: Dynamic convolutional neural network (DCNN) architecture for sentiment classifica- 

tion 

 

After constructing our DCNN  model, we compile it with our 128D word embedding 

matrix by setting the parameter loss function as categorical_crossentropy and optimizer as 

adam at a learning rate of 0.0001. After compiling the model, we fit the model with our 

training and validation data having a batch size of 256 with 50 epochs; we achieved 87.58% 

training accuracy and 73.49% testing accuracy with 78.56% testing precision and 79.66% 

testing recall 
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value. Figure 4.5 shows the training, validation accuracy, loss vs epoch during training the 

model. At point 30, epoch validation accuracy increases with respect to epoch, which means 

that the training procedure should be stopped on 30 epoch point. 
 

(a) TA, VA on DCNN (b) TL, VL on DCNN 

Figure 4.5: (a) LC of DCNN model training accuracy (TA) and validation accuracy (VA) and (b) 

LC of DCNN model training loss (TL), validation loss (VL) 

 

 

 
4.4.4 Multichannel Variable-Size Convolution Neural Network (MVCNN): 

MVCNN is similar to CNN and DCNN, except it has variable size filter mechanisms with  

different sizes of word embedding layers. In our experiment, we used two embedding 

matrices dimensions (D) i.e., 128D and 200D. The two embedding layers are iterated over 3, 

4, 5 filter sizes followed by zeropadding1D (2, 3, 4), convolutional layer with 100 filter and 

k-max pooling layer with 10. The output of this layer is iterated again according to the first 

layer mechanism. Finally, these three layer (layer_1 and layer_2, layer_3) are concatenated 

and flatten output is followed as same as before DCNN and CNN , process demonstration in 

Figure 4.6 

In the MVCNN model, we compile it with a two-dimensional word embedding ma-   trix: 

128D and 200D and set the parameter loss function as binary corssentropy (bi- 

nary_crossentropy), use a adam optimizer at a learning rate of 0.001. After compiling the 

model, we fit the model with our training and validation data having a batch size of 256 with 



50 
 

 

 
 

Figure 4.6: Multichannel variable-size convolutional neural network (MVCNN) architecture for 

sentiment classification 

 

50 epochs. We achieved 96.42% training accuracy and 76.51% testing accuracy with 78.56% 

testing precision and 79.66% testing recall value. Figure 4.7 shows the training, validation 

accuracy, loss vs epoch during training the model. 
 

(a) TA, VA on MVCNN (b) TL, VL on MVCNN 

Figure 4.7: (a) LC of MVCNN model training accuracy (TA) and validation accuracy (VA) and 

(b) LC of MVCNN model training loss (TL), validation loss (VL) 

 

 
 

4.4.5 Very  Deep Convolutional Neural Network  (VDCNN): 

Difference from DCNN: We have used a three-dimensional word embedding layer [128D, 

200D, 300D] with ZeroPadding1D three filer sizes (filter_size -1, filter_size -1) are added on 
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three convolution1D layer with iteration of 3, 4, 5 sizes and GlobalMaxPool1D with k-max 

pooling layer of 4. After three iterations, we get three layers (Layer_1, Layer_3, Layer_3) 

that are concatenated and flatten the merged layer with l2(0.01) regularization, dropout of 

0.5 and finally, attach three dense neurons of fully connected output with sigmoid activation. 

The full architecture is shown in Figure 4.8 GlobalMaxPool1D minimizes the shape of the 

vector-matrix with the help of pool length. 
 

Figure 4.8: Very deep convolutional neural network (VDCNN) architecture for sentiment classifi- 

cation 

 
In the VDCNN model, we compile it with a three-dimensional word embedding matrix: 

128D, 200D, and 300D and set the parameter loss function as binary cross entropy (bi- 

nary_crossentropy), use as adam as a optimizer at a learning rate of 0.01. After compiling 

the model, we fit the model with our training and validation data having a batch size of 

256 with 50 epochs. We achieved 96.16% training accuracy and 77.85% testing accuracy, with 

80.16% testing precision and 79.56% testing recall value. Figure 4.9 shows the training, 

validation accuracy and loss vs epoch during training the model where validation accuracy 

slightly differs from the training accuracy. However, this model achieved higher accuracy 
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than CNN, DCNN and MVCNN models 
 

(a) TA, VA on VDCNN (b) TL, VL on VDCNN 

Figure 4.9: (a) LC of VDCNN model training accuracy (TA) and validation accuracy (VA) and (b) 

LC of VDCNN model training loss (TL), validation loss (VL) 

 

 

 
4.4.6 Recurrent Neural Network (RNN): 

RNN is a feed-forward neural network for sequence modelling and data in which the output 

depends on the previous state. It maintains new state information during iteration over the 

sequence of elements and feedback to the previous layer to capture the correlation between 

current and previous time steps. A single hidden layer (h) is shown in Figure 4.10 
 

Figure 4.10: RNN block diagram [26] 

 
In our experiment, we use a  simple R with 32 layers of unit shown in Figure 4.11 
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Here at timestamp t, x is the input layer, where the previous xt-1 is fetched from the hidden 

layer ht-1 and feedback to the current xt input at the current hidden layer (ht). A spatial 

dropout (SpatialDropout) parameter of 0.4 is plugged on the previous R    layer; after the 

RNN layer, we add a batch normalization (BatchNormalization) layer having dropout of 0.4 

and global max pool 1D (GlobalMaxPool1D) as a sequentially and finally a three connected 

layer with sigmoid activation function (σ) is put through into the Dense layer. 
 

Figure 4.11: Recurrent neural network (RNN) architecture for sentiment classification 
 

 
 

(a) TA, VA on RNN (b) TL, VL on RNN 

Figure 4.12: (a) LC of RNN model training accuracy (TA) and validation accuracy (VA) and (b) 

LC of RNN model training loss (TL), validation loss (VL) 

 
We compile the R model with our 128D word embedding matrix with binary_crossentropy 

loss and adam optimizer at a learning rate of 0.01. After compiling the model, we fit the 
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model with our training and validation data, having a batch size of 256 with 50 epochs. We 

achieved 76.57% training accuracy and 73.82% testing accuracy. Figure 4.12 shows the models 

training and validation accuracy loss. 

 
4.4.7 Long Short Term Neural Network(LSTM) 

LSTM is designed to reduce the vanishing gradient descent problem and remember the data 

as a long-term period in a left to the right context. Unlike RNN, LSTM also has a recurrent 

structure of interacting layer called Input gate (x), Forget gate (ft) and output gate. At the 

timestamp t, input gate (xt) with tanh layer generates a vector of all possible values which 

is triggered by sigmoid activation function (σ) and produces a new cell state (ct). Input gate 

(xt) decides how much information needs to be updated or ignored. The forget gate (ft) 

decides what part of the information needs to be removed from the previous cell state (ct-1) 

of the previous hidden layer (ht-1). The output gate concatenates the input with sigmoid 

layer and decides what part of the current cell state through a tanh function and multiplies 

it, full block architecture shows in Figure 4.13. 

Figure 4.13: LSTM block diagram [27] 

 
In Figure 4.14, our LSTM model consists of 32 unit hidden layer and Unlike R , at 
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timestamp t, the previous input layer (xt-1) is fetched along with previous cell sate (ct-1) 

from the hidden layer (ht-1) and feed back to the current input (xt) at the current hidden 

layer (ht) and produce a new cell state (ct). After LSTM layer, we add a batch normalization 

layer and the rest of this architecture is followed by our RNN layer above shows in Figure 

4.11 

Figure 4.14: Long term short term neural network (LSTM) architecture for sentiment classification 
 

 
 

(a) TA, VA on LSTM (b) TL, VL on LSTM 

Figure 4.15: (a) LC of LSTM model training accuracy (TA) and validation accuracy (VA) and (b) 

LC of LSTM model training loss (TL), validation loss (VL) 

 

We compile the LSTM model with our 128D word embedding matrix with binary cross 

entropy loss and adam optimizer at a learning rate of 0.01. After compiling the model, we 
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fit the model with our training and validation data, with a batch size of 256 with 50 epochs. 

We achieved 76.57% training accuracy and 73.82% testing accuracy. Figure 4.15 shows the 

training and validation accuracy loss during fit the model. 

 
4.4.8 Bidirectional Long Short Term Neural Network (Bi-LSTM): 

Bi-LSTM follows LSTM architecture, except it works on inputs in two ways: left to right 

(capturing forward context) and right to left (capturing backward context). It detects the 

feature from both past and future contexts in sequential modelling. 

Figure 4.16: Bidirectional long term short term neural network (Bi-LSTM) architecture for senti- 

ment classification 

 

In Figure 4.16, same as our previous LSTM network, we use LSTM of 32 units in a 

bidirectional way having a dropout of 0.2 and recurrent_dropout of 0.1. In the Bi-LSTM 

network, there are two states to resolve both contextual relations: left to right (Forward) 

and right to left (Backward). At timestamp t, each hidden layer (ht) output (Ot) is produced 

along with memory cell sate (ct) and forwards to a convolutional1d layer of 64 filters, 

kernel_size of 4. The rest of the network is followed by the previous LSTM network. 

We compile our Bi-LSTM model with our 128D word embedding matrix with binary cross 

entropy loss and adam optimizer at a learning rate of 0.001. We achieved 84.33% training 
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(a) TA, VA on Bi-LSTM (b) TL, VL on Bi-LSTM 

Figure 4.17: (a) LC of Bi-LSTM model training accuracy (TA) and validation accuracy (VA) and 

(b) LC of Bi-LSTM model training loss (TL), validation loss (VL) 

 

accuracy and 78.14% testing accuracy during training and validating the model having a 

batch size of 256 with 50 epochs. Figure 4.17 shows the training and validation accuracy 

loss during fit the model. 

 
4.4.9 Asymmetric Convolutional Bidirectional LSTM (AC_Bi-LSTM): 

AC_Bi-LSTM layer is a hybrid model combination of CNN and LSTM approaches. In our 

sentiment classification, we applied that hybrid model. In our experiment, at Figure 4.18, 

we uses a 128D word embedding layer, which iterated over with convolution1D layer with 

100 filter size, kernel_size of 2 with ReLU activation layer along with another convolution1D 

layer of 100 filters and 30,40,50,60 sizes of the kernel with ReLU activation layer. This is 

called asymmetric because there are different kernel sizes on the same filter and activation 

layer unit. Then these two different layers of convolutional1d are merged, and the input 

(xt, xt+1, xt+2 . . . , xt+n) is passed to the LSTM layer of 32 units and the rest is followed by 

the previous LSTM network. 

We compile our AC_Bi-LSTM model with our 128D word embedding matrix with bi- 

nary_crossentropy loss and adam optimizer at a learning rate of 0.001. We achieved 95.71% 

training accuracy and 75.50% testing accuracy during training and validating the model, 
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Figure 4.18: Asymmetric convolutional bidirectional LSTM (AC_Bi-LSTM) neural network ar- 

chitecture for sentiment classification 

 

having a batch size of 256 with 50 epochs. Figure 4.19 shows the training and validation 

accuracy loss during fit the model. 
 

(a) TA, VA on AC_Bi-LSTM (b) TL, VL on AC_Bi-LSTM 

Figure 4.19: (a) LC of AC_Bi-LSTM model training accuracy (TA) and validation accuracy (VA) 

and (b) LC of AC_Bi-LSTM model training loss (TL), validation loss (VL) 

 

 
 

4.4.10 Recurrent Convolutional Neural Network (RCNN): 

Another hybrid model we used for sentiment classification is composed of four blocks with 

32 units of LSTM layer with multiple recurrent convolutional units (conv1D). We add four 

conv1D having with filer size of 100, kernel size of 2 and activated with tanh layer. Each 

conv1D layers is connected with each LSTM layer and this layer blocks are sequentially 
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connected with another block layer, shows in Figure 4.20. A flatten with 50 neurons, relu 

activation layer is forwarded from LSTM block. Then, it is finally attached with three dense 

neurons of fully connected output with sigmoid (σ) activation function. 
 

Figure 4.20: Recurrent convolutional neural network (RCNN) architecture for sentiment classifi- 

cation 

 
In the RCC model, we compile it with 128D dimensional word embedding matrix and set 

the parameter loss function as binary_crossentropy and optimizer as adam at a learning rate 

of 0.001. After compiling the model, we fit the model with our training and validation data, 

with a batch size of 256 with 50 epochs. We achieved 70.69% training accuracy and 73.83% 

testing accuracy, 77.80% testing precision and 77.80% testing recall value. Figure 4.21 shows 

the training, validation accuracy, loss vs epoch during training the model. 
 

(a) TA, VA on RCCNN (b) TL, VL on RCCNN 

Figure 4.21: (a) LC of RCCNN model training accuracy (TA) and validation accuracy (VA) and 

(b) LC of RCCNN model training loss (TL), validation loss (VL) 
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4.4.11 Gated Recurrent Unit (GRU): 

GRU is similar architecture of LSTM model, where it consists of only two gates: update  (zt) 

and reset (rt) gate. It has a memory of only one state, termed as hidden state (ht)  that 

considers a separate cell ct, ct-1 like LSTM model. From a series of sequential input, update 

gate (zt) helps to learn long term dependencies and to determine what amount of 

information from previous hidden state (ht-1) needs to bee forward. Whereas reset gate (rt) 

is supervised to learn short term dependencies and to generate how much information needs 

to forget. In Figure 4.22, Update gate, at time step t, t-1 respectively, current input (xt) and 

the previous hidden layer (ht-1) information is multiplied by their own weights. These are 

added together and triggered by sigmoid activation function (σ). Similarly, reset gate (rt) 

works by multiplication of xt and ht-1. Finally, an element wise product (Hadamard Product, 

(H*P)) is performed on what information needs to collect from the current memory and 

previous state. 
 

Figure 4.22: GRU block diagram [31] 

 
In Figure 4.23, same from our LSTM network we use GRU layer of 32 units.  After  GRU 

memory we add a convolutional1D layer with 65 filter size, kernel size of 5 and a golort 

uniform (golort_uniform) regularization of kernel initializer. Then sequentially add a 
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GlobalAveragePooling1D and GlobalMaxPooling1D layer. Finally these are concatenated with 

three neurons of dense sigmoid layer activation function. 
 

Figure 4.23: Gated recurrent unit (GRU) neural network architecture for sentiment classification 
 

 
 

(a) TA, VA on GRU (b) TL, VL on GRU 

Figure 4.24: (a) LC of GRU model training accuracy (TA), validation accuracy (VA) and (b) LC 

of GRU model training loss (TL), validation loss (VL) 

 
We compile our GRU model with our 128D word embedding matrix with binary cross entropy 

loss and adam optimizer at a learning rate 1e-3. We achieved 84.41% training accuracy and 

75.84% testing accuracy during training and validating the model, having a batch size of 256 

with 50 epochs. Figure 4.24 shows the training and validation accuracy, loss during fitting 

the model. 
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4.4.12 Bi-directional Gated Recurrent Unit (Bi-GRU): 

Similar neural network form Bi-LSTM and updated version form GRU, Bi-GRU works on both 

forward and backward layers without having to use a cell memory unit, as shown in Figure 

4.25. Similar architecture form LSTM model, Bi-GRU works on resolving vanishing gradient 

descent problem. However, GRU capture and remember longer range of correlation and 

train faster more efficiently than LSTM [80]. Same as LSTM network we use a GRU of 32 

units in a bidirectional way, having a dropout of 0.2 and recurrent dropout of 0.1. As similar 

form Bi-LSTM, Bi-GRU networks have two states to resolve both contextual relations in left 

to right (forward) and right to left (backward) window except maintaining no cell state 

mechanisms. At time stamp t, each hidden layer (ht) output (ot) is produced and forwarded 

to a convolutional1d layer of 64 filters of kernel size of 4 and the rest of the network is 

followed by the previous GRU network. 
 

Figure 4.25: Bi-Directional gated recurrent unit (Bi-GRU) neural network architecture for senti- 

ment classification 

 
We compile our Bi-GRU model with our 128D word embedding matrix with binary crossen- 

tropy loss and adam optimizer at a learning rate of 1e-3. We achieved 83.07% training 

accuracy and 75.17% testing accuracy during training and validating the model, with a batch 

size of 256 with 50 epochs. Figure 4.26 shows the training and validation accuracy loss 
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(a) TA, VA on Bi-GRU (b) TL, VL on Bi-GRU 

Figure 4.26: (a) LC of Bi-GRU model training accuracy (TA), validation accuracy (VA) and (b) 

LC of Bi-GRU model training loss (TL), validation loss (VL) 

 

during fitting of the model. 

 
4.4.13 Attention Based Neural Network: 

Attention mechanism has been designed to increase the RNN model's ability to produce better 

representations of a corpus and capture long-term dependencies at a low computational cost. 

This mechanism is applied to deploy the model to focus on the important part of a text rather 

than encoding the full sentence length. The main objective of the attention mechanism is 

to identify each hidden state's significance and provide a weighted sum of all the features 

matrix fed as input. Our experiment uses a hierarchical attention neural network (HAN) to 

conduct our SA in Bangla text. 

 
4.4.14 Hierarchical Attention Based Neural Network: 

The previous model in this methodology works on only sentence-level encoding; however, 

HA  works on two-level encoder networks, i.e., word and sentence encoders. It formulates 

the text as a hierarchical structure on word and sentence level attention to capturing 

compositional features hierarchical dependencies from a sequence of input and contributes 

to the polarity of the text. Several sentence spits a document, and each sentence word are 
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Figure 4.27: Hierarchical attention based neural network (HAN) architecture for sentiment classi- 

fication 

 

tokenized to transform into a vector, and then these vectors are used as an input matrix in 

the neural network. Authors [28] proposed a hierarchical attention-based structure for word 

and sentence encoders. The word encoder propagates the information from the hidden 

layers on the word level attention and forwards it to the sentence encoder. Then this 

information is processed by the sentence encoder hidden layers, and the output probabilities 

are predicted at the final layer through the sentence attention layer. Here, the sentence 

structure is formulated by the word attention layer by adding appropriate weights with the 

help of individual linear hidden layers. The sentence attention layer summarized the 

alignment of the sentence by extracting the relevant context of each sentence that classifies 
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the document. The preprocessing of our text encoding sequence is followed by Table 3.6 A 

bidirectional RNN model can achieve the context. We use a Bi-LSTM in our HAN mechanism, 

shown in Figure 4.27. 

In Figure 4.27, we demonstrated our HAN mechanism on a bidirectional LSTM network. 

From input matrix, each word token (i) from each sentence (j) is placed on the word 

embedding layer noted as (Wij) on 128-dimensional (128D) matrix layer. Then it generates a 

vectorized token (i) for each sentence (j) noted as (Xij) which is projected on Bi-LSTM with 

128 units as a word encoder layer. At time step t, the input Xt-1
ij from previous hidden state 

(ht-1) with previous current memory cell (Ct-1) is sequentially forwarded to current hidden 

state (ht) with output (Ot) to the HAN word level attention layer. Similarly backward channel 

resolves the contextual relation between current hidden layer (ht) having current memory 

cell (Ct) to the previous hidden layer (ht-1). The word level attention layer projects the 

output from Bi-LSTM word encoding layer. The annotation of word matrix (Aw
ij) denote as a 

continuous vector space that makes the base for attention mechanism. This one hidden layer 

operates as a multilayer perception to do the model learn through a randomly initialized 

weights (Wm) by adding with biases (α) and puts it through a tanh activation functions  to 

create a more improved annotation as a context vector of word (uw). Then this context 

word vector (uw) is normalized by a softmax function by adding normalize weights (β). Then 

finally the normalized context vector with weights (β) is concatenated with the previously 

calculated context annotation matrix (Aw
ij) which produces the sentence vector (si). 

After getting the sentence vector (si), a similar mechanism is followed for the sentence- 

based attention layer except without using an embedding layer. The context annotation 

sentence vector (As
ij) which is projected from another Bi-LSTM with 128-dimensional (128D) 

units noted as a sentence encoding layer and forwards it for calculating an improved context 

annotated document vector (vi). Finally, these are concatenated with three dense sigmoid 

layer activation function neurons. 

We compile our HAN-LSTM model and 128D word embedding matrix, binary_crossentropy 
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(a) TA, VA on HAN-LSTM (b) TL, VL on HAN-LSTM 

Figure 4.28: (a) LC of HAN-LSTM model training accuracy (TA), validation accuracy (VA) and 

(b) LC of HAN-LSTM model training loss (TL), validation loss (VL) 

 

loss, and adam optimizer at a learning rate of 0.00001. We achieved 98.84% training accuracy 

and 78.52% testing accuracy during training and validating the model, with a batch size of 

256 with 50 epochs. Figure 4.28 shows the training and validation accuracy loss during fitting 

the model. 

 
4.4.15 Capsule Neural Network (CapsNet): 

A capsule neural network is a group of neural networks that solve the local feature problem 

of C    pooling or max-pooling operations by providing vector output capsules, especially 

in dynamic routing algorithms. The computational complexity, i.e., reducing the matrix 

dimension, intercepts the various features snd is captured by the pooling operation while 

losing data based on spatial relationships, however, without changing each feature. Again, 

CNN does not capture the hierarchical relationship between the local and global features. 

With the help of dynamic routing, it establishes the connection on spatial relationships 

between entities by mapping nonlinear vectors. This mapping transmits the capsule from 

lower level to upper level by iterating many routing loops based on a weight coupling 

coefficient. The weights coupling coefficient determines the leaning representation of which 

lower-level capsule will be forwarded to the upper-level capsule layer. It also detects the 



67 
 

 

similarity between vectors, predicting the lower and upper-level layer capsule. Our sentiment 

classification uses dynamic routing for capsule neural network that decides how much text 

or information is altered from each word to the encoding text sequences. The preprocessing 

of our text encoding sequence is followed by Table 3.5. 
 

Figure 4.29: Dynamic Routing Based Capsule Neural Network (D-CapsNet-Bi-LSTM) architec- 

ture for sentiment classification 

 

LSTM forwards its output into each primary layer capsule denote as Capsulei. In our 

experiment, we used a number of 16 capsules in our neural network. This is a lower level 

capsule (LC) that identifies more features from text and transforms the scalar output (receives 

form Bi-LSTM layer) into a vector output (u1, u2, u3, … ui) to be the input of the next capsule 

layer. This vector has two core elements: length and direction. Using this length, the lower 

level capsule identifies the corresponding feature text probabilities. The direction parameter 

of the vectors determines the next path of the higher level capsule to confirm. Then the 

spatial relationship between higher and lower features on capsule is constructed by the 

affine transformation (ûj|i) that is the multiplication of corresponding weight matrices (wij) 

with these vectors (u1, u2, u3, … ui). We use the number of three iterations in our capsule 

network for calculating this linear or affine transformation. The affine transformation (ûj|i) 

value represents the predicted position of feature matrices of each sentence word which is 

the higher-level features.  Here, ûj|i indicates as a prediction vectors that what ith  features 
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should predict the correct position for the jth sentence. That means if all 16 capsules detect 

the same features as the lower-level capsule, it will be that target feature value for that 

specific sentence.  The affine transformation output value (ûj|i) is multiplied (dot product) 

in a weighted sum by a coupling coefficient value noted as (c(i,j)). This output value (ûj|i) is 

formed as next (higher) capsule level (sj), that determines the number of routing iteration 

process. The dot product differentiates the lower-level capsule i and higher level capsule j, 

although i capsule sees its output in the j capsule. In our D-Capsnet-Bi-LSTM network, we 

set the number of routing iterations is 3. This coupling coefficient is calculated by a routing 

softmax function where the exponential coefficient exp(zij) indicates some prior probabilities 

in which ith capsule layer will be coupled to jth capsule layer. Then the next level capsule 

(sj) is forwarded to the squash(.), a nonlinear activation function that is used to scalar (with 

additional and also unit scaling) the output vector (vj). By using this activation function, the 

output vector (vj) direction will not fluctuate if this vector length has more than 1. Then 

this higher level capsule vector (vj) is activated by the LeakyRelu function and finally densed 

by three neuron output classification. The full process is demonstrated in Figure no. 4.30 
 

(a) TA, VA on D-CapsNet-Bi-LSTM (b) TL, VL on D-CapsNet-Bi-LSTM 

Figure 4.30: (a) LC of D-CapsNet-Bi-LSTM model training accuracy (TA), validation accuracy 

(VA) and (b) LC of D-CapsNet-Bi-LSTM model training loss (TL), validation loss (VL) 

 

We compile our D-Caps et-Bi-LSTM model on 128D word embedding matrix, with binary 

crossentropy loss function and adam optimizer at a learning rate of 0.0001. We achieved 

82.97% training accuracy and 80.82% testing accuracy during training and validating the 
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model, with a batch size of 256 with 50 epochs. Figure 4.30 shows the model's training and 

validation accuracy loss during fitting the model. 

 
4.4.16 Bidirectional Encoder Representation From Transformer (BERT): 

Transformer belongs to an encoder-decoder architecture model having attention mechanisms 

[81] that are used for transfer learning in the field of machine translation as well as in LP 

task and also leverages with long term dependencies finer than as a replacement of other 

conventional sequential models, i.e., R  , LSTM, GRU, etc.  In transfer learning, a model   is 

trained on massive unlabeled content corpora utilizing self-supervised learning, and this 

pre-trained model is negligibly balanced during fine-tuning on a particular  LP task [82].  It 

is also more potential in training the model by removing the sequential dependencies of 

the past tokens. BERT was recently developed by Google [35], an encoder based transformer 

architecture for language modelling that is used for dynamic embedding in LP tasks, which 

considers both current and previous tokens on both left and right in a bidirectional way. 

As a contextual model, Bert generates a representation of each word based on every other 

sentence. However, in static embedding, i.e., Word2Vec model generates a single word 

embedding representation for each word in the vocabulary. 

 
4.4.17 BERT-LSTM Architecture for Sentiment Classification: 

In our sentiment classification, we use a BERT-BASE model with a number of 12 transformer 

blocks, 768 hidden layers and 12 attention heads to generate contextualized embeddings. 

The input layer of BERT is a vector of sequence tokens along with special tokens shown in 

Table 3.7. LSTM reads text input sequentially, whereas BERT takes the entire tokenization 

of words at once. In our experiment, we build a sentiment classifier using huggingface 

library to fine-tune with the pre-trained BERT model [7] on the upper layer of LSTM, shown 

in Figure 4.31. We install the transformer version as 3.0 and load the BERT classifier and 

tokenizer for input processing. 
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Figure 4.31: Bidirectional encoder representation from transformer with LSTM neural network 

(BERT-LSTM) architecture for sentiment classification 

 

The input sequences are a raw sentences which is splitted by the BERT tokenizer and that 

tokens converted into token id and with attention mask showed in Table 3.8. BERT uses a 

self-attention mechanism over the input sequences, showed in Figure 4.31 which predefines 

the transformer for keeping pace with the relevant words from the inputs. In attention block 

of BERT transformer, it generates each attention head (ATHi) as a multi-headed self-attention 

from the input sequences (x1, x2, x3, . . . , xi). This sequence (xi) is multiplied with three 

weight matrixes (Wi
Q, Wi

K, Wi
V) in scalar dot matrix way to generate three vectors termed 

respectively as query (Qi), keys (Ki) and values (Vi). These weight matrices (Wi
Q, Wi

K, Wi
V) 

are produced during the training process on BERT. The main mechanism for self-attention 

layer is to calculate each word score from input sequences and this score indicates how a 

word concentrates on other words to place in the correct position. For example a word (x1) 

score value (V1) is calculated by the product of query (Q1) with keys (K1, K2, K3, . .  .  ,  Ki) 

matrices. Then the score value (Vi) is divided by the dimension of key vector then pass to 

the softmax function and finally summed up the all values (V1, V2, V3, . . . , Vi) to produce 

another matrices (Zi). In ADD and Normalize layer step[83] which is then multiply 
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with the additional weight matrices (Wadd) to produce attention head (ATHi) which captures 

all the information from all attention heads, then it is forwarded in the feed-forward layer. 

Similarly, other encoder will follow this mechanism [84] for processing pooled output from 

BERT. Finally, the last hidden layer from BERT is encoded in LSTM layer with 32 units and 

predicts the three features pooled output. 
 

(a) TA, VA on BERT-LSTM (b) TL, VL on BERT-LSTM 

Figure 4.32: (a) LC of BERT-LSTM model training accuracy (TA), validation accuracy (VA) and 

(b) LC of BERT-LSTM model training loss (TL), validation loss (VL) 

 
The challenge in the BERT-LSTM training process is that the memory was not released 

after training was done. In that case, we use a 16 size batch size because of prohibiting to 

crash the GPU. Because when the process is finished, Tensorflow releases the GPU memory. 

We compile our BERT-LSTM model with bert embedding layer, cross-entropy loss and adam 

optimizer at a learning rate 1e-5. We achieved 98.68% training accuracy and 84.18% testing 

accuracy during training and validating the model, having a batch size of 16 with 50 epochs. 

Figure 4.32 shows the training and validation accuracy loss during fitting the model. 

 
4.4.18 Experiment on Augmented Dataset in BERT-LSTM Architecture for 

Sentiment Classification: 

We preprocess the texts and then we divide the augmented dataset as 80% for training, 10% 

for validation and 10% for testing dataset. We compile our BERT-LSTM model with 
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bert embedding layer, cross-entropy loss and adam optimizer at a learning rate 2e-5. We 

achieved 84.35% training accuracy and 81.11% testing accuracy during training and validating 

the model, having a batch size of 32 with 50 epochs. 
 

(a) TA, VA on BERT-LSTM (b) TL, VL on BERT-LSTM 

Figure 4.33: (a) DA of LC of BERT-LSTM model training accuracy (TA), validation accuracy 

(VA) and (b) DA of LC of BERT-LSTM model training loss (TL), validation loss (VL) 

 
Figure 4.33 shows the training and validation accuracy and loss during fitting the model. 

The validation loss curve is both decreased and stabilized during the training loss curve. 

This LC curve indicates that our DA method in BERT-LSTM model is optimally fitted and in 

this case, this model can able to predict accurately on the dataset. 
 

(a) TP, VP on BERT-LSTM (b) TR, VR on BERT-LSTM 

Figure 4.34: (a) DA of LC of BERT-LSTM model training precision (TP), validation precision 

(VP) and (b) DA of LC of BERT-LSTM model training recall (TR), validation recall (VR) 
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In LC of Figure 4.34, precision the validation precision is scattered and provides some 

noisy movements in an augmented neutral dataset. The recall LC indicates that the validation 

dataset may detect accuracy on the testing dataset. 
 

Figure 4.35: DA of LC of BERT-LSTM model training f1-score (Tf), validation f1-score (Tf) 

 
We achieved 83.47% testing f1-score during training the model, Figure 4.35 shows this sum- 

mary of LC in f1-score curve. 

 
4.5 Conclusion 

 

This chapter presents a summary of our experiment on BTSC algorithm and shows the 

effectiveness along with the given dataset polarity. We evaluated our BTSC algorithm per- 

formance matrices in both cricket and restaurant datasets. We construct the Tf-Idf matrix 

on both datasets and build two models named UniGram and BiGram. Then we describe our 

hybrid neural network model to experiment on BTSC generated target data and to show 

each model experimental graph at epoch rate 50. In the next section, we will show our 

model performances. 



 

 
 
 
 
 

Chapter 5 

Results and Discussion 

 

5.1 Overview 
 

This chapter of this section demonstrates our experimental results with a brief discussion 

on ML and DL methodology. In ML technique, we have shown our accuracy on the BTSC 

algorithm in both UniGram and BiGram models with a notable text classification algorithm. 

In DL process, we have trained the dataset in different types of hybrid neural networks, 

and finally, the performance of the proposed architecture was evaluated on the test dataset. 

We have shown model evaluation matrices on graphical representation and delivered our 

model performance limitations. In addition, we provided a comparative analysis between ML 

and DL methods. We have concluded our task by giving a brief overview of the evaluation 

metrices and with a list of hyperparameters. 

 
5.2 Experimental Results 

 

The experiments are deployed on two corpora: cricket and restaurant of the original corpus 

polarity, aiming to detect the score by the BSTC algorithm. The training and test splits could 

bind all examples from all classes involved to keep data from being centralized. We observe 

a confusion matrix in the SVM classification algorithm in ML. It is used in extensively and 
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widely reported as the best classifier in the literature for SA. We intend to experiment on 

other classifiers like Logistic Regression (LR), K-Nearest Neighbors (KNN), Random Forest 

(RF) algorithm. In DL, we have experimented on a hybrid neural network on cricket datasets 

in terms of variation using fine-tuning such as dropout, optimizer regularization, learning 

rate, adding multi-layer, etc. In the first degree of SA, we aimed to determine the accuracy 

of the ML and DL approach experiment. 

 
5.2.1 Experimental Result of ML on UiGram Model 

We used a supervised ML classification algorithm to evaluate our experiment to classify our 

data. The evaluation of our result is measured through a confusion matrix including classifier 

metrics called accuracy, precision, recall, and f1-score with the help of using Spyder, python 

IDE environment. Among the classifiers, SVM with linear kernel trick (c=1) is the best for 

giving good results in new observations because SVM has found better accuracy in finding 

text classification. 

At least 20% of the dataset has been randomly chosen for the testing dataset, and the 

rest of the data is trained to classify the polarity. A standard feature matrix called Term 

Frequency - Inverse Document Frequency (Tf-Idf) vectorizer calculates the feature matrix. It 

maps text or words into a significant representation number. 

Table 5.1: Weighted average of precision, recall, f1-score & accuracy in unigram model for both 

dataset. 
 

Dataset Polarity Precision Recall F1-score Accuracy Support Feature 

Matrix 

No. of 

Feature 

Word 

 
Restaurant 

-1 0.76 0.47 0.58  

77.91% 

123 
UniGram 3454 

0 0.44 0.33 0.37 12 

+1 0.72 0.90 0.80 259 
BiGram 6673 

Weighted Avg. 0.78 0.77 0.76 Total 412 

 
Cricket 

-1 0.80 0.94 0.86  

78.69% 

389 
UniGram 3751 

0 0.56 0.21 0.30 41 

+1 0.74 0.56 0.63 166 
BiGram 12854 

Weighted Avg. 0.80 0.78 0.74 Total 596 
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Since we have used the BTSC algorithm to calculate our sentence score, Table 5.1 shows 

algorithm results in classifying polarity with expected accuracy. Around 78% accuracy in 

both cricket and restaurant datasets is achieved on the UniGram model. In a multi-class 

confusion matrix, we use a weighted average to define our metrics because macro and micro 

averages can not give accurate results on the same number of instances. As weighted average 

precision in restaurant are 78% and 80% in cricket datasets, our extended Bangla sentiment 

dictionary construction is quietly proved in both score and polarity determination. 

 
5.2.1.1 Support Vector Machine Classification on Tf-Idf Model 

 

SVM algorithm is performed on destining boundaries through hyperplanes to discrete a class 

from the others. The primary purpose of the SVM algorithm is to construct hyperplanes 

among corpus samples so that the classification between classes expands as much possible. 

Around 78% accuracy in both cricket and restaurant datasets is achieved on the UniGram 

model. Having a multi-class confusion matrix, we use a weighted average to define our 

metrics because macro and micro averages can not give accurate results on the same number 

of instances. As weighted average precision in restaurant is 78% and 80% in cricket, our 

extended Bangla sentiment dictionary construction is quietly proved in both score and 

polarity determination. 

 
5.2.1.2 Confusion Matrix on UniGram Model 

 

Having a higher value of precision and recall vindicates a good model. Precision is a 

measurement of accuracy with respect to the prediction of a specific label or class. It is 

measured by the ratio of true positive (TP ) of a particular label or class in the sum of true 

positive (TP ) and false positive (FP ), indicated in equation (5.1). F1-score is a combined 

formula of precision and recall shown in equation (5.2). Here in Figure 5.1a and 5.1b show 

the percentage of classifying polarity during SVM classification. At Figure 5.1a, at most 

62.86% positive, 14.08% negative and 0.97% neutral comments are identified as TP during 
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(a) Polarity Prediction on Restaurant Data (b) Polarity Prediction on Cricket Data 

Figure 5.1: BTSC algorithm polarity prediction on both dataset 

 

SVM classification. Here FP is much lower than the TP . Total 4.37% positive and 3.7% 

negative comments incorrectly identified those classes with lower FP than TP . At most 

61.58% negative, 15.60% positive and 1.51% neutral comments are identified as TP , shows 

on Figure 5.1b. Total 4.37% positive and 3.7% negative comments have incorrectly identified 

those classes with much lower FP than TP . 

 

Precision(label) = 
TP 

TP + FP 
(5.1) 

 

 

F 1 score(label) = 
2 ∗ Precision ∗ Recall 

Precision + Recall 
(5.2) 

 

5.2.2 Performance on Different ML Classifier Approach on UniGram Model 

Besides, other classifiers like logistic regression (LR), k-nearest neighbors (KNN), random 

forest (RF) algorithms are applied on our UniGram model. Among these classifiers, SVM 

shows better accuracy. 

Figure 5.2a and 5.2b shows the performance of different classifiers. At Figure 5.2a, we 

have achieved best accuracy 77.91% and precision 78.61% at restaurant dataset. At Figure 
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(a) Performance of different classifier in Restau- (b) Performance of different classifier in Cricket 
rant Data Data 

 

Figure 5.2: Visualization performance of different classifier in restaurant and cricket dataset 

 

5.2b, 78.69% accuracy and 80% precisions are achieved in cricket dataset in SVM classification. 

Both datasets have shown much better accuracy and precision rather than other classification. 

 
5.2.3 Experiment on BiGram Model and Comparison Between UniGram 

Model Approach on SVM 

After finding quite improvement in the UniGram approach in the Tf-Idf model, we created 

another BiGram model in Tf-Idf word vectorization. In this model, we performed a Linear 

SVM classification algorithm; finally, accuracy is attained in both datasets 80.58% and 82.21% 

respectively, which is greater than the UniGram approach and also having precision 80.92 

and 81.64 in both datasets. Figure 5.3 shows the performance and summary of the SA of the 

UniGram and Bigram models. This analysis shows that cricket data has higher accuracy than 

the restaurant dataset because the cricket dataset has trained more data than the restaurant 

data. 

 
5.2.3.1 Comparison Between Existing ML Model and Proposed Approach 

 

Figure 5.4 shows a comparative summary of our results with previous studies, although the 

comparison is not fair because of the use of varying datasets. The dataset used in this study 
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Figure 5.3: Visualization performance of UniGram & BiGram model on SVM classifier 

 

is unique compared to other research works. The study in [14] achieved 69% accuracy when 

trained on 1000 tweets in UniGram with negation features.  The study set only one rule  to 

specify the sentiment from the text by counting only positive and negative words from 

tweets. The limitation of [14] is the use of only one rule, which cannot properly detect the 

real sentiment from the text. 
 

Figure 5.4: Comparing accuracy between the existing and proposed systems 

 

In [16], a precision value of 77%, a recall/TPR value of 68% and a F1-score of 72% were 

achieved. The authors in [16] manually normalized the Bangla text with the help of valence 

shifting words by detecting one adjective in a sentence. However, the study did not consider 
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complex and compound sentences. The study in [18] trained only 850 and tested 200 texts 

in RF classification, achieving 85% accuracy for positive and negative data; however, the 

volume of the training dataset is small. The study determined sentiments by only assigning 

feature words to positive and negative tags without considering the POS tagger. In a recent 

research [85], 80.48% accuracy was attained during the 6-fold cross-validation approach in 

multinomial Naive Bayes classification. The authors used polarity from the given dataset as 

a target output without generating any text sentiment. This means the study did not apply 

any semantic connections between text and polarity. 

 
5.2.4 Result Discussion on ML Approach 

However, our UniGram and BiGram features have higher accuracy with precision, recall or 

TPR, and f1-score than previous works. Moreover, our Unigram and Bigram feature matrices 

have included stemming, normalization, and POS tagger processes. The dataset used in  our 

study is much larger than the other studies shown in Figure 5.4. Still, our results are 

comparable with others and thus acceptable. 

 
5.3 Experimental Result on Deep Neural Networks 

 

The overview of our proposed hybrid deep neural network architecture is followed by a set 

of inputs of reviews represented by a feature representation model Word2Vec, having multi-

layer perception, different learning rate regularization, dropout parameter, block of neural 

code with multiple dependencies, etc. In this work, we have used TensorFlow at the backend 

mechanism developed by Google, which is actively maintained, robust and flexible enough 

to be competent in developing neural network models. 
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5.3.1 Deep Neural Network Model Training and Fitting: 

After the construction of DL models from chapter 4, section 4.3, we compile each model 

with our word embedding matrix [128D, 200D, 300D] as per the requirement by setting the 

parameter loss function as categorical cross entropy and the optimizer as adam at a learning 

rate on different points shown at Table 5.2. Table 5.2 shows the summarization of our 

different parameters on each model. After compiling the model, we fits the model with our 

training and validation data, with a batch size of 256 with 50 epochs except using a batch 

size of 16 with 50 epochs in the BERT-LSTM model. 

We have validated our testing datasets, and for a better understanding of every ex- 

periment, at Figure 5.6, we have shown each model training accuracy (TA) vs. validation 

accuracy (VA) with respect to epoch and training loss (TL) vs. validation loss (VL) with 

respect to epoch during training the model. The X-axis indicates the epoch number, while 

the Y-axis indicates the training, validation accuracy, and training validation loss. TA and 

VA determine whether the model was overfitting or not and TL and VL determine whether 

the model was overfitting or underfitting. The VA and VL for dataset how well the model 

will perform for the unseen future data. 

 
5.3.2 Results and Analysis: 

We have conducted fourteen experiments to offer a reasonable comparison between recent DL 

algorithms and traditional methods. Table 5.3 shows the experimental results of each model, 

which is obtained by setting the optimal values for each parameter in the model through 

trial and error. As for the sentiment classification, different models have outperformed on 

different learning rate(lr) parameters to achieve outstanding results. From these results, the 

researcher can identify which is perfect for their sentiment classification task in the Bangla 

low-resourced dataset. 
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(i.a) TA, VA on CNN (i.b) TL, VL on CNN (i.c) TA, VA on DCNN (i.d) TL, VL on DCNN 

(ii.a) TA, VA on MVCNN (ii.b) TL, VL on MVCNN (ii.c) TA, VA on VDCNN (ii.d) TL, VL on VDCNN 

    

(iii.a) TA, VA on RNN (iii.b) TL, VL on RNN (iii.c) TA, VA on RCNN    (iii.d) TL, VL on RCNN 

(iv.a) TA, VA on LSTM (iv.b) TL, VL on LSTM (iv.c) TA, VA on Bi-LSTM(iv.d) TL, VL on Bi-LSTM 
 

  
  

(v.a) TA, VA on AC_Bi-(v.b) TL, VL on AC_Bi- (v.c) TA, VA on GRU (v.d) TL, VL on GRU 

LSTM LSTM 

(vi.a) TA, VA on Bi-GRU (vi.b) TL, VL on Bi-GRU (vi.c) TA, VA on HAN-(vi.d) TL, VL on HAN- 

LSTM LSTM 
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(vii.a) TA, VA on D-(vii.b) TL, VL on D-(vii.c) TA, VA on BERT-(vii.d) TL, VL on BERT- 

CapsNet-Bi-LSTM CapsNet-Bi-LSTM LSTM LSTM 

 

Figure 5.6: LC of each model training accuracy (TA), validation accuracy (VA) vs. Epoch and LC 

of each model training loss (TL), validation loss (VL) vs. epoch 

 
5.3.3 CNN Based Model: 

Through the comparison between our convolutional neural network types models (CNN,   

DCNN, MVCNN  and VDCNN), it is noticed that VDC  achieves the highest 77.85% accuracy, 

80.16% precision, 79.56% recall, and 79.86% F1-score. VDCNN and MVCNN are more complex 

models than CNN and DCNN because of using three-dimensional (D) [128D, 200D, 300D] word 

embedding layers. CNN achieves 74.50% accuracy, which is better than the 73.49% accuracy 

of the CNN model. 

 
It is shown in Figure 5.6 (i.a) that at about 20 epochs, the C model achieves the highest 

testing accuracy.  In contrast, as shown in Figure 5.6 (i.c), DC  decreases testing accuracy 

from point 25 epochs. It is shown in Figure 5.6 (ii.a) and (ii.c) that MVC and VDC 

models a have huge deflection between training and testing accuracy because of having a 

high dependency on using a multichannel layer with different iteration filters [filter kernel 

size = 3, 4,  5].  MVC uses a two-dimensional [128D, 200D] word embedding layer, and 

VDC uses a three-dimensional [128D, 200D, 300D]. We keep the dropout rate at 0.5 on 

each layers; however, changing kernel size when a variable size of zero padding1D is added 

to perform over spatial dimension to the output. 

 
When we add several nodes in the layer in our model, the capacity increases, which means 

accuracy, precision, and recall increase. Our training data is small, so our model is pretty 
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Table 5.2: Hyperparameter dependency on each model 
 

Model 

Name 

Learning 

Rate (lr) 

Word Embedding 

Dimension 

Layer Dropout 

CNN (lr = 0.01) 128D Conv1D(filter = 300, Kernel_size = 5, Relu), GlobalMaxpool1D SpatialDropout1D = 0.5, 

Dropout = 0.5 

DCNN (lr = 0.0001) 128D 
ZeroPadding1D(49,49) Conv1D(64, Kernel_size = 50), SpatialDropout1D = 

0.3, Dropout = 0.5 ZeroPadding1D(24,24) Conv1D(64, Kernel_size = 25), 

Kmaxpooling(k-=5) 

 
MVCNN 

 
(lr = 0.001) 

(128D, 200D) 

iteration 
with filter 
size 3, 4, 5 

ZeroPadding1D(2,2) Conv1D(100, Kernel_size = 2), 
Dropout = 0.5, 

l2(0.0.1) 
ZeroPadding1D(3,3), Conv1D(100, Kernel_size = 3), 

ZeroPadding1D(4,4) Conv1D(100, Kernel_size = 4), 

Kmaxpooling(k=10) 

 
VDCNN 

 
(lr = 0.01) 

(128D, 200D, 300D) 

iteration with filter 
size 3, 4, 5 

ZeroPadding1D(2,2) Conv1D(100, Kernel_size = 2), 

GlobalMaxpool1D(k=3), 
Dropout = 0.5 

ZeroPadding1D(3,3) Conv1D(100, Kernel_size = 3), 

GlobalMaxpool1D(k=4), 

ZeroPadding1D(4,4) Conv1D(100, Kernel_size = 

5), GlobalMaxpool1D(k=3), 

Kmaxpooling(k-=10) 

Dropout = 0.5, l2(0.0.1) 

RNN (lr = 0.01) 128D GlobalMaxpool1D SpatialDropout1D = 0.4, 

Dropout = 0.4 

RCNN (lr = 0.001) 128D Conv1D(100, Ker- 

nel_size = 2) 

4 Block Bi-LSTM(unit = 32, re- 

current_dropout = 0.1) 

Dropout = 0.3 

LSTM (lr = 0.01) 128D 1 Block LSTM(unit = 32) SpatialDropout1D = 0.3, 

Dropout = 0.4 

Bi-LSTM (lr = 0.001) 128D 

1 Block of Bi-LSTM(unit = 32, dropout = 0.2, 

recurrent_dropout = 0.1) SpatialDropout1D = 0.3, 

Dropout = 0.3 

 

AC_Bi 

-LSTM 

 
(lr = 0.001) 

 
128D 

 

Conv1D(100, 

Kernel_size = 2) 

Conv1D(100, Kernel_size = 30),  
Dropout = 0.3 

Conv1D(100, Kernel_size = 40), 

Conv1D(100, Kernel_size = 50), 

Conv1D(100, Kernel_size = 60), 

LSTM(unit = 32) 

GRU (lr = 1e-3) 128D 
1 Block GRU 
(unit=32) 

Conv1D(64, Kernel_size = 5) SpatialDropout1D = 

0.3, Dropout = 0.3 GlobalAverageMaxpooling1D, 

GlobalMaxpool1D 

Bi-GRU (lr = 1e-3) 128D 
Conv1D(64, Kernel_size 

= 4) 

1 Block Bi-GRU (unit=32, 

dropout = 0.2, 

recurrent_dropout = 0.1) 

SpatialDropout1D = 

0.3, Dropout = 0.3 

GlobalAverage Max- 

pooling1D, GlobalMax- 

pool1D 

 

HAN 
-LSTM 

 
(lr = 1e-4) 

 
128D 

1 block of Bi-LSTM (units = 128), 

sentence attention layer 
 

Dropout = 0.3 
1 block of Bi-LSTM (units = 128), 

word attention layer 

 

D-CAPSNET 
-Bi-LSTM 

 
(lr = 0.0001) 

 
128D 

1 Block of Bi-LSTM(unit = 256, dropout = 0.25, 

recurrent_dropout = 0.25) SpatialDropout1D = 

0.3, Dropout = 0.3 Capsule Layer (Low Level, Higher Level Capsule) 

BERT- 

LSTM 

(lr = 1e-5) Pretrained BERT 12 Block Bert Encoder 1 block of Bi-LSTM (units = 32) None 

 

small; however, increasing model layers can drive a more precise model. The model should 

be larger if more training data are given in the model. In our experiment, multilayer 

perception of CNN is applied in the DCNN, VDCNN, and MVCNN model as there is no bound 

to use a specific number of layers, so this stacked layer is susceptible to generalizing our 
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model better. Adding continuous layers of convolution and pooling operation in C might 

lose spatial information on classifying data. 

Table 5.3: Accuracy, precision, recall, f1-score measures of the model of bangla dataset cricket 

reviews. 
 

MODEL NAME Train 

Accuracy 

Test 

Accuracy 

Train 

Precision 

Test Pre- 

cision 

Train 

Recall 

Test 

Recall 

Train 

F1-score 

Test F1- 

score 

CNN 0.8758 0.7349 0.8936 0.7856 0.8947 0.7966 0.8422 0.7123 

DCNN 0.8765 0.7450 0.8945 0.7565 0.8661 0.6849 0.8801 0.7188 

MVCNN 0.9642 0.7651 0.9668 0.7627 0.9633 0.7300 0.9650 0.7458 

VDCNN 0.9616 0.7785 0.9625 0.8016 0.9615 0.7956 0.9620 0.7986 

RNN 0.7658 0.7383 0.8040 0.7888 0.7126 0.6695 0.7554 0.7242 

RCNN 0.7069 0.7383 0.7094 0.7780 0.7094 0.7780 0.7094 0.7780 

LSTM 0.7281 0.7416 0.7406 0.7853 0.7103 0.7267 0.7251 0.7548 

Bi-LSTM 0.8433 0.7814 0.8697 0.7795 0.8197 0.7352 0.8439 0.7703 

AC_Bi-LSTM 0.9571 0.7550 0.9581 0.7395 0.9558 0.7380 0.9570 0.7387 

GRU 0.8441 0.7584 0.8286 0.7029 0.8476 0.7183 0.8379 0.7104 

Bi-GRU 0.8307 0.7517 0.7133 0.7127 0.9101 0.7321 0.8064 0.7416 

HAN-LSTM 0.9884 0.7852 0.9908 0.7343 0.9872 0.8012 0.9890 0.7659 

D-CAPSNET-Bi-LSTM 0.8297 0.8082 0.7629 0.8100 0.7332 0.7305 0.7477 0.7544 

BERT-LSTM 0.9568 0.8418 0.8584 0.8645 0.8672 0.7849 0.8979 0.8227 

 

 

 

5.3.4 RNN Based Model: 

Sequential models such as R    and RC    have similar test accuracy of 73.83%; however,  

RNN achieved 78.88% precision, greater than RC  . Besides preserving LSTM and Bi-LSTM, 

the Bi-LSTM model performs well on cricket datasets with an optimal accuracy of 78.14%. 

However, the LSTM model performs well with a testing precision of 78.53% that is greater 

than the Bi-LSTM model. 

 
At arbitrary time intervals, the three gates of RNN remember the propagation of information 

into the cell. It is shown in Figure 5.6 (iii.a) that RNN TA and VA curves are overlapped 

because of facing difficulties in capturing long-term dependencies and co-relation between 

words. However, in Figure 5.6 (iv.a) and (iv.c), LSTM and Bi-LSTM models capture long span 

word relations in text. As RCNN and AC_Bi-LSTM models have Conv1d layer [kernel size =  

2] however AC_Bi-LSTM has a channeling Conv1D layer [kernel_size = 30, 40, 50, 60] for that 
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reason, there is a huge gap in TA, VA in Figure 5.6 (v.a) and has the highest testing recall 

of 95.58% and testing F1-score of 95.70%. 

 
5.3.5 GRU Based Model: 

As GRU intends in the last hidden state to represent the sentences which means modeling 

the the whole sentence causes neglecting main key parts of words, this might result in an 

incorrect prediction. From Table 5.3, while the learning rate is so high in GRU and Bi-GRU 

models, training and testing accuracy, precision is not getting higher than LSTM, Bi-LSTM 

model. At most 75.84% accuracy is achieved on the LSTM model with an average of 71% 

precision, recall, and f1-score value. As GRU limits the stream of data just like the LSTM 

units, however, except for utilizing a memory unit, the LSTM model performs well on this 

dataset. For this reason, we have applied the LSTM model as a hybrid layer on attention, 

capsule, and BERT-based model. 

 
In Figure 5.6 (v.c) and (vi.a), both GRU-based models have similar curves regarding testing 

accuracy of 75.84% and 75.17%. The Bi-GRU model intersects at epoch points 5 and 35, which 

means it has a bi-directional dependency to co-relate words in a text. 

 
5.3.6 Attention and Capsule Based Model: 

All models are relatively smooth with respect to learning rate (lr), and also variation in 

hidden size, hyperparameters (i.e., filters, kernel size, dropout) causes oscillation in curves. 

From Figure no. 6 of (vi.c), (vi.d), (vii.a),  and (vii.b),  the training and testing accuracy are 

increasing with respect to epoch while training and testing loss are decreasing with 

exponentially that shows an ideal state of the model. At most, 78.52% and 80.12% of testing 

accuracy and recalls are produced in the HAN-LSTM model, and 80.82% and 81.00% testing 

accuracy, precisions are produced in D-CAPSET-Bi-LSTM. 

The attention level in words and sentences has increased model accuracy regarding other 
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CNN, RNN type models. The calculation of attention vectors co-related to word and sentence 

level determines the less content for constructing the document representation. The main 

advantage of the capsule modules is to resolve the max pooling level conversion for feature 

extractions, which means the improvement of CNN and RNN type models. Because losing 

the information in polling layers might cause less accuracy. Again, augmenting the 

compositional capsule network with a k-clustering mechanism will improve the classification 

accuracy of our HA -LSTM model. 

 
5.3.7 Transformer Based Model 

The results of the BERT-LSTM model have a high learning rate (lr = 1e-5), producing maximum 

accuracy of 84.18% precision of 86.45% compared to other models. Adding an LSTM layer 

on the pre-trained BERT model amplifies the core advancement in classification accuracy 

over embedding models. That means BERT is more able to represent semantic and syntactic 

features. This language model representation has substantially improved over other models 

at a state-of-the-art result compared to the Word2Vec model. 

 
5.3.8 Result Analysis for Augmented Dataset in Transformer Based Model 

From practical engineering perceptions, text data enhancement can significantly expand the 

amount of data and improve the effectiveness of the deep learning model. When compared, it 

can be seen that the accuracy of the BERT-LSTM model is slightly lower for the augmented 

dataset than the stand-alone datasets.  For future work, we will generate new samples by 

importing new augmented methods for text classification and apply hybrid DL models. Some 

of those hybrid models can be attention-based and dynamic routing based. We hope that 

researchers can develop a more acceptable model performance by introducing these 

strategies. The results of augmented dataset in BERT-LSTM model is depicted at Table no. 

5.4 
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Table 5.4: Accuracy, precision, recall, f1-score measures of the model of augmented dataset cricket 

and restaurant reviews. 
 

MODEL NAME Train 

Accu- 

racy 

Test 

Accu- 

racy 

Train 

Preci- 

sion 

Test 

Preci- 

sion 

Train 

Recall 

Test 

Recall 

Train 

F1- 

score 

Test 

F1- 

score 

BERT-LSTM (lr = 2e-5) 0.8435 0.8111 0.8935 0.8911 0.7967 0.786 0.8419 0.8347 

 
5.3.9 Comparison Between Existing DL model with our Proposed Hybrid 

Neural Network Approach 

At last, we compare our work with other existing approaches in both DL and ML ap- 

proaches. Table 5.5 compares our work with respect to accuracy measurements. In [38], 

authors achieved 55% accuracy with three category sentiment on the above nine thousand 

social comments and in [37], authors showed 82.42% accuracy in four thousand movie reviews 

dataset in two category sentiment in LSTM network where our LSTM model achieves 74.16% 

accuracy. Similarly, in [39, 86], LSTM network has achieved 65.97% and 46.80% accuracy, 

respectively, in [45] attention-based LSTM (A-LSTM) achieved 65.97% accuracy. However, our 

hierarchical attention-based LSTM (HAN-LSTM) and combined C -LSTM [46] achieved 75.01% 

accuracy. AC_Bi-LSTM and D-CAPS ET-Bi-LSTM hybrid models achieve greater ac- curacy 

than those research. Since there are drawbacks in preprocessing data on pronoun type word 

replacing, however, they still manage to achieve 85.67% accuracy in the Bi-LSTM model on 

ten thousand comments. Our Bi-LSTM gained much satisfactory results of 78.14% accuracy 

on the cricket ABSA dataset. Our CNN type model with multi-channel, i.e., DCNN,  VDCNN, 

MVCNN model achieves higher accuracy than [45, 39] type CNN model. 

 
5.3.9.1 Comparison of ML vs DL Approach in Terms of Accuracy 

 

Our supervised ML-based approach on SA with rule-based achieved satisfactory accuracy on 

the SVM classifier with 82.21% accuracy; however, the long-term dependencies between 

words are not considered on the bi-gram approach. The traditional ML-based bag of words 

(BOW) approach does not capture semantic relation between words where hidden layers in 
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Table 5.5: Comparison of major sentiment classifiers in both ML and DL regarding accuracy. 
 

Research Work Context Dataset Methods Accuracy Our Approach Accuracy 

Our ML Approach Cricket ABSA Dataset 2979 Bi-Gram, 

SVM 

82.21% Our Proposed ML Approach 

[37] Movie Reviews 4000 LSTM 82.42% for 

2 category 

74.16% for 3 category 

[38] 
Social media, 
news, product 

reviews 

9337 RNN (LSTM) 
78% for 2 

category, 
74.16% for 3 category 

55% for 3 

category 

[41] Facebook 10000 Bi-LSTM 85.67% 78.14% for 3 category 

[45] Cricket ABSA Dataset 2979 
A-LSTM 66.06% 

78.52% HAN-LSTM Model 
A-CNN 72.06% 

[46] Web Site 1000 CNN-LSTM 75.01% 75.50% AC_Bi-LSTM Model 

 
[39] 

 
Social Media 

 
8910 

LSTM 65.97%  
74.16% LSTM, 
77.85% VDCNN, 
80.82% D-CAPSNET-Bi-LSTM, 
84.18% BERT-LSTM 

CNN 60.89% 

NB 60.79% 

SVM 59.18% 

[87] Microblogging sites 3000 Word2Vec 

with 

Hellinger 

PCA 

70.00% 

[86] Social Media 1000 LSTM 46.80% 

 

neural network boosts the model with the help of contextual relationship between words 

are retained by the word embedding. ML classifiers, i.e., SVM, Naive Base, etc., do not 

perform well on unstructured noisy datasets. For example, target categories overlap. Both 

approaches require a lot of large labeled corpus for training to deliberate best prediction; 

however, the semantic understanding between the sequences of data is preserved in the DL 

approach. Although the DL-based model requires more initial tuning parameters and each 

model provides different results, one does not require considering feature engineering. 

 
5.3.10 Result Discussion of Our Proposed Hybrid DL Approach 

From the experimental results, our DL mechanism of SA has the highest accuracy, precision, 

and recall against the ML approach. It is noticed that DL has an expressive improvement 

while containing high unbalancing between positive-negative classes. The core advantage in 

DL is that it learns high-level features from data in an exponential perspective through 

multi hidden layers with hyper-tuned parameters and provides better results than others. 
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5.3.11 Complexity Factors of DL Model: 

DL model complexity implies investigating neural network generalization capability and 

limitation on the training process. Since our hybrid DL models are hyper-parameterized, 

however, it has very little effect on model complexity [88]. Model complexity indicates how 

the neural network model express its behavior on distribution function or activation 

function [89], prevents overfitting by adding L1, L2 regularization to the loss function [90] 

and the amplification coefficient (wij) which is defined by the multilayer perception of hidden 

neurons. By selecting an activation function, i.e., ReLU, Sigmoid, tanh in-network hidden 

layers, an active module for learning and computing complex tasks takes the piecewise 

nonlinear transformation to the input. Pooling functions such GlobalAverage Maxpooling1D, 

GlobalMaxpool1D with a variety of filter sizes on feature maps are needed to reduce fixed 

size vectors. However, the DL model's size impacts model complexity, i.e., number of filters, 

kernel size, hidden neurons, dropout rate, depth and width efficiency of model, training, 

and testing time. This is partially noted in Table 5.2. In our work, we have limited our 

experiment in detecting the accuracy of SA in Bangla text with the help of LDD and BTSC. 

In the future, we will conduct the complexity of our DL algorithm on a broad scale. 

 
5.4 Conclusion 

 

This section is structured around the details of experiments and discusses the results in both 

ML and DL methodologies. The central hindrance aspect of conducting SA is related to the 

fact that opinions are intended too subjective. The proposed chapter leads to overcoming 

this task by providing a method of ML and DL-based blocks of a SA system. We examined 

the BiGram model as a multi-word feature vector and the unigram features. Our initial 

experiments noticed that the aggregation of only multi-word features like Unigram and 

BiGram dependency features slightly performs well using our proposed rule-based BTSC 

algorithm due to the dataset sparseness. Word2Vec is a learning representation generated 
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from an unstructured test that enables the model to capture more dependencies from the 

target context on the DL approach. BERT-LSTM, D-CAPSNET-Bi-LSTM, and HAN-LSTM models 

have shown state-of-the-art performance on our SA task. 



 

 
 
 
 
 

Chapter 6 

Conclusion 

With the rapidly growing of Internet users, SA depends on the dataset of particular content. 

A lexicon-based extended data dictionary is developed based on a specific domain, restaurant, 

and cricket. Manual construction of positive and negative dictionaries with weighted values 

is complex while mining data from the Bangla dataset. However, precise observation of these 

data will give more accurate results in classifying polarity. In this thesis, the BTSC algorithm 

detects the three types of polarity from the sentences using the Bangla extended dictionary 

approach. Since a document belongs to more than one category, any rule-based algorithm is 

required to detect text category and classification for categorical specific domain-based data. 

We achieved the highest 82.21% accuracy in cricket on the BiGram feature matrix. In the 

confusion matrix, identifying neutral data has performed less than the other two polarities. 

Every dataset has its variabilities. If we use, i.e., fifty (50) thousand datasets in our ML 

process, our result will predict more accuracy than the obtained accuracy with the current 

dataset. For this, we need to construct a huge volume of the sentimental dictionary. In  the 

future, we will apply more datasets to our method. Approximately five thousand data is used 

as a sentimental dictionary in our approach. Moreover, there is still a scope to redefine the 

weights of the dictionary. To make this approach even more significant, we introduce a 

categorical-based data dictionary that will play a pioneering role in further research. 
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This research investigated the most noteworthy work on SA on cricket reviews as a low- 

resourced Bangla dataset using various DL architectures. This empirical study is an initial 

dive into the lexicon dictionary-based approach on neural network mechanisms. We measure 

the performance of our work based on accuracy, precision, recall, and f1 score. Firstly, we 

developed a lexicon-based approach and used the BTSC algorithm to detect polarity from 

preprocessed text from our previous work. Then we implemented the popular DL models, 

i.e., CNN, DCNN, MVCNN, VDCNN, RNN, RCNN, LSTM, Bi-LSTM, AC-Bi-LSTM, GRU, Bi-GRU, 

HAN-LSTM, D-CAPSNET-Bi-LSTM, BERT-LSTM with setting as customized and tuned with 

hyperparameters on individual models. We found that LSTM had better results than CNN 

and RNN type models. Then we used attention, capsule, Bert based mechanism by adding 

LSTM layer, and the result showed significant improvement, which is indeed effective in the 

sentiment classification effect. This hybrid model, HAN-LSTM and D-CAPSNET-Bi-LSTM, and 

semantic learning representations (word2vec) have an excellent performance in accuracy, 

precision, recall, and f1-score. Finally, Transformer based as a pretrained BERT with LSTM 

as a hybrid model were used for this classification task, and it surpasses other results having 

satisfactory accuracy and precision. 

 
However, researchers do not publish their datasets; this LDD dataset will be published for 

research since it can be further enriched. Our Bangla cricket review dataset is relatively 

small concerning the benchmark dataset. The lack of enough large training corpus in the 

Bangla domain is the drawback of our SA task. We have identified trinary polarity in cricket 

reviews since this dataset is not properly balanced, so using balanced data for each polarity 

in the training process might enhance the accuracy of prediction results. Because increasing 

the amount of training data can assist in promoting the accuracy of prediction results. We 

could not use a well-pretrained model due to lack of hardware resources, so in the future, we 

developed a large corpus and trained it with various parameters or layers with a tuned model. 
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Although we gained many satisfactory results, it still has scope for further improvement in 

our approach. In the future, we will conduct our research using other transformer models, 

i.e., ALBERT, ELECTRA, RoBERT, and multilayer and hybrid capsule as well as attention-based 

models. 
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Table A.1: Word frequency and inverse document frequency list in restaurant dataset 
 

(a) Word frequency (b) WORD IDF 

Word Frequency 

পরিযেবো 4 

খোদয 3 

অিবোি 3 

খোবোি 3 

অনুভূরত 2 

চমৎকোি 2 

মরুভূরম 2 

আনন্দদোয়ক 2 

বোয়ুমণ্ড  2 

অরবশ্বোসয 2 

স্থোন 2 

আনন্দময় 2 

রচেোকেবক 1 

সুস্বোদু 1 

ওয়োইন 1 

তোর কো  1 

ধীযিধীযি 1 

রভি 1 

বোযি 1 

েীত  1 

প্রম্পট 1 

রবনয়ী 1 

অরভজ্ঞতো 1 

যমনু 1 

খোও 1 

যেট 1 

ভোিতীয় 1 

িরিন 1 

িি 1 

পরিযবে 1 

 

Word Inverse Document Frequency 

পরিযেবো 1.252762968 

খোদয 1.466337069 

অিবোি 1.466337069 

খোবোি 1.466337069 

অনুভূরত 1.791759469 

চমৎকোি 1.791759469 

মরুভূরম 1.791759469 

আনন্দদোয়ক 1.791759469 

বোয়ুমণ্ড  1.791759469 

অরবশ্বোসয 1.791759469 

স্থোন 1.791759469 

আনন্দময় 2.397895273 

রচেোকেবক 2.397895273 

সুস্বোদু 2.397895273 

ওয়োইন 2.397895273 

তোর কো  2.397895273 

ধীযিধীযি 2.397895273 

রভি 2.397895273 

বোযি 2.397895273 

েীত  2.397895273 

প্রম্পট 2.397895273 

রবনয়ী 2.397895273 

অরভজ্ঞতো 2.397895273 

যমনু 2.397895273 

খোও 2.397895273 

যেট 2.397895273 

ভোিতীয় 2.397895273 

িরিন 2.397895273 

িি 2.397895273 

পরিযবে 2.397895273 
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Table A.2: Calculation of term frequency matrix 
 

 DOC-1 DOC-2 DOC-3 DOC-4 DOC-5 DOC-6 DOC-7 DOC-8 DOC-9 DOC-10 

পরিযেবো 0 0 0 0.142857 0.083333 0.1 0 0 0.166667 0 

খোদয 0 0.2 0 0 0.083333 0 0 0 0.166667 0 

অিবোি 0 0 0 0 0.083333 0 0.090909 0.166667 0 0 

খোবোি 0 0 0 0 0 0 0.090909 0.166667 0 0.071429 

অনুভূরত 0.111111 0 0 0 0 0 0.090909 0 0 0 

চমৎকোি 0 0 0.25 0.142857 0 0 0 0 0 0 

মরুভূরম 0 0 0 0.142857 0 0 0 0 0 0.071429 

আনন্দদোয়ক 0 0 0 0.142857 0 0 0 0 0 0.071429 

বোয়ুমণ্ড  0 0 0 0.142857 0 0 0 0 0 0.071429 

অরবশ্বোসয 0 0 0 0 0 0.1 0 0 0.166667 0 

স্থোন 0 0 0 0 0 0.1 0 0 0 0.071429 

আনন্দময় 0 0 0 0 0 0 0 0 0 0.142857 

রচেোকেবক 0.111111 0 0 0 0 0 0 0 0 0 

সুস্বোদু 0.111111 0 0 0 0 0 0 0 0 0 

ওয়োইন 0 0 0.25 0 0 0 0 0 0 0 

তোর কো  0 0 0.25 0 0 0 0 0 0 0 

ধীযিধীযি 0 0 0 0 0.083333 0 0 0 0 0 

রভি 0 0 0 0 0.083333 0 0 0 0 0 

বোযি 0 0 0 0 0.083333 0 0 0 0 0 

েীত  0 0 0 0 0 0.1 0 0 0 0 

প্রম্পট 0 0 0 0 0 0.1 0 0 0 0 

রবনয়ী 0 0 0 0 0 0.1 0 0 0 0 

অরভজ্ঞতো 0 0 0 0 0 0 0.090909 0 0 0 

যমনু 0 0 0 0 0 0 0.090909 0 0 0 

খোও 0 0 0 0 0 0 0 0.166667 0 0 

যেট 0 0 0 0 0 0 0 0 0.166667 0 

ভোিতীয় 0 0 0 0 0 0 0 0 0.166667 0 

িরিন 0 0 0 0 0 0 0 0 0 0.071429 

িি 0 0 0 0 0 0 0 0 0 0.071429 

পরিযবে 0 0 0 0 0 0 0 0 0 0.071429 
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Table A.3: Word by document matrix in restaurant dataset 
 

Word\DOC DOC-1 DOC-2 DOC-3 DOC-4 DOC-5 DOC-6 DOC-7 DOC-8 DOC-9 DOC-10 

পরিযেবো 0 0 0 0.178966 0.104397 0.125276 0 0 0.208794 0 

খোদয 0 0.293267 0 0 0.122195 0 0 0 0.24439 0 

অিবোি 0 0 0 0 0.122195 0 0.133303 0.2443895 0 0 

খোবোি 0 0 0 0 0 0 0.133303 0.2443895 0 0.104738 

অনুভূরত 0.199084 0 0 0 0 0 0.162887 0 0 0 

চমৎকোি 0 0 0.44794 0.255966 0 0 0 0 0 0 

মরুভূরম 0 0 0 0.255966 0 0 0 0 0 0.127983 

আনন্দদোয়ক 0 0 0 0.255966 0 0 0 0 0 0.127983 

বোয়ুমণ্ড  0 0 0 0.255966 0 0 0 0 0 0.127983 

অরবশ্বোসয 0 0 0 0 0 0.179176 0 0 0.298627 0 

স্থোন 0 0 0 0 0 0.179176 0 0 0 0.127983 

আনন্দময় 0 0 0 0 0 0 0 0 0 0.342556 

রচেোকেবক 0.266433 0 0 0 0 0 0 0 0 0 

সুস্বোদু 0.266433 0 0 0 0 0 0 0 0 0 

ওয়োইন 0 0 0.599474 0 0 0 0 0 0 0 

তোর কো  0 0 0.599474 0 0 0 0 0 0 0 

ধীযিধীযি 0 0 0 0 0.199825 0 0 0 0 0 

রভি 0 0 0 0 0.199825 0 0 0 0 0 

বোযি 0 0 0 0 0.199825 0 0 0 0 0 

েীত  0 0 0 0 0 0.23979 0 0 0 0 

প্রম্পট 0 0 0 0 0 0.23979 0 0 0 0 

রবনয়ী 0 0 0 0 0 0.23979 0 0 0 0 

অরভজ্ঞতো 0 0 0 0 0 0 0.21799 0 0 0 

যমনু 0 0 0 0 0 0 0.21799 0 0 0 

খোও 0 0 0 0 0 0 0 0.3996492 0 0 

যেট 0 0 0 0 0 0 0 0 0.399649 0 

ভোিতীয় 0 0 0 0 0 0 0 0 0.399649 0 

িরিন 0 0 0 0 0 0 0 0 0 0.171278 

িি 0 0 0 0 0 0 0 0 0 0.171278 

পরিযবে 0 0 0 0 0 0 0 0 0 0.171278 
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Table A.4: Representation of TF-IDF feature matrix for restaurant dataset 
 

DOC\Word পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো 
0 1 2 3 4 5 6 7 8 9 

DOC-1 0 0 0 0 0.199084 0 0 0 0 0 

DOC-2 0 0.293267 0 0 0 0 0 0 0 0 

DOC-3 

DOC-4 

0 0 0 0 0 0.44794 0 0 0 0 

0.178966 0 0 0 0 0.255966 0.255966 0.2559656 0.255966 0 

DOC-5 0.104397 0.122195 0.122195 0 0 0 0 0 0 0 

DOC-6 0.125276 0 0 0 0 0 0 0 0 0.179176 

DOC-7 0 0 0.133303 0.133303 0.162887 0 0 0 0 0 

DOC-8 0 0 0.24439 0.24439 0 0 0 0 0 0 

DOC-9 0.208794 0.24439 0 0 0 0 0 0 0 0.298627 

DOC-10 0 0 0 0.104738 0 0 0.127983 0.1279828 0.127983 0 

 স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন 
10 11 12 13 14 15 16 17 18 19 

0 0 0.266433 0.266433 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0.599474 0.599474 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0.199825 0.1998246 0.199825 0 

0.179176 0 0 0 0 0 0 0 0 0.23979 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0.127983 0.342556 0 0 0 0 0 0 0 0 

প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট 
20 21 22 23 24 25 26 27 28 29 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0.23979 0.23979 0 0 0 0 0 0 0 0 

0 0 0.21799 0.21799 0 0 0 0 0 0 

0 0 0 0 0.399649 0 0 0 0 0 

0 0 0 0 0 0.399649 0.399649 0 0 0 

0 0 0 0 0 0 0 0.1712782 0.171278 0.171278 

 

Table A.5: Sample data from cricket dataset 
 

DOC No. Sentence 

DOC-1 বোং োযদে রজতযব ইনেোআল্লোহ। শুভ কোমনো িইয ো টোইগ্োি জনয।  
DOC-2 জয় বোং ো, হোিয ও বোং োযদে, রজতয ও বোং োযদে। শুভ কোমনো।  
DOC-3 সোরকব িোিো বোং োযদে রিন রনভবি যবোর ং  োইন খুব সোধোিণ মোযনি পোিিিমযোন্স।  
DOC-4 অরধনোয়ক রিয়োদ আযিো পরিপক্ব আি দোরয়ত্বেী  হযবন, বোযজ অরধনোয়ক 
DOC-5 বোং োযদে রজতোি কেো, এই িোন শ্রী ংকো পোিো সম্ভোবনো খুব কম। 
DOC-6 বোং োযদে দ  পোিিিমযোন্স এি যকোযনো দোম যনই । 
DOC-7 তোরমম, সোরকব ও মুেরিক উপি সব সময় রনভবি হযয় যখ য  এই িকম বোযজ অবস্থো 

হযতই েোকযব। 
DOC-8 রিযকট টীম রনযয় এই ধিযনি নোটক েহণয োগ্য নয়! । 
DOC-9 রিন সোমযন নয়, সোরকব সোমযন ধিোেোয়ী টীম র্শ্বী ংকো। 

DOC-10 মোেিোরি তুরম যতোমোি যসিো প্রমোণ কযি দোও। টোইগ্োি ইজ টোইগ্োি। 
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Table A.6: Word frequency and inverse document frequency list in cricket dataset 
 

Word Frequency Inverse Document Frequency 

WORD Frequency WORD Inverse Document Frequency 

বোং োযদে 6 বোং োযদে 1.098612289 

রজত 3 রজত 1.466337069 

টোইগ্োি 3 টোইগ্োি 1.791759469 

সোরকব 3 সোরকব 1.466337069 

শুভ 2 শুভ 1.791759469 

কোমনো 2 কোমনো 1.791759469 

রিন 2 রিন 1.791759469 

রনভবি 2 রনভবি 1.791759469 

পোিিিমযোন্স 2 পোিিিমযোন্স 1.791759469 

অরধনোয়ক 2 অরধনোয়ক 2.397895273 

বোযজ 2 বোযজ 1.791759469 

টীম 2 টীম 1.791759469 

ইনেোআল্লোহ 1 ইনেোআল্লোহ 2.397895273 

জয় 1 জয় 2.397895273 

বোং ো 1 বোং ো 2.397895273 

হোি  1 হোি  2.397895273 

যবোর ং 1 যবোর ং 2.397895273 

সোধোিণ 1 সোধোিণ 2.397895273 

রিয়োদ 1 রিয়োদ 2.397895273 

পরিপক্ব 1 পরিপক্ব 2.397895273 

দোরয়ত্বেী  1 দোরয়ত্বেী  2.397895273 

িোন 1 িোন 2.397895273 

শ্রী ংকো 1 শ্রী ংকো 2.397895273 

পোিো 1 পোিো 2.397895273 

সম্ভোবনো 1 সম্ভোবনো 2.397895273 

দ  1 দ  2.397895273 

দোম 1 দোম 2.397895273 

তোরমম 1 তোরমম 2.397895273 

মুরেিক 1 মুরেিক 2.397895273 

যখ   1 যখ   2.397895273 

অবস্থো 1 অবস্থো 2.397895273 

েোকব 1 েোকব 2.397895273 

রিযকট 1 রিযকট 2.397895273 

নোটক 1 নোটক 2.397895273 

েহণয োগ্য 1 েহণয োগ্য 2.397895273 

ধিোেোয়ী 1 ধিোেোয়ী 2.397895273 

র্শ্বী ংকো 1 র্শ্বী ংকো 2.397895273 

মোেিোরি 1 মোেিোরি 2.397895273 

যসিো 1 যসিো 2.397895273 

প্রমোণ 1 প্রমোণ 2.397895273 
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Table A.7: Term frequency matrix in cricket dataset 
 

Word\DOC DOC-1 DOC-2 DOC-3 DOC-4 DOC-5 DOC-6 DOC-7 DOC-8 DOC-9 DOC-10 

বোং োযদে 0.125 0.25 0.090909 0 0.1 0.142857 0 0 0 0 

রজত 0.125 0.125 0 0 0.1 0 0 0 0 0 

টোইগ্োি 0.125 0 0 0 0 0 0 0 0 0.2 

সোরকব 0 0 0.090909 0 0 0 0.0625 0 0.125 0 

শুভ 0.125 0.125 0 0 0 0 0 0 0 0 

কোমনো 0.125 0.125 0 0 0 0 0 0 0 0 

রিন 0 0 0.090909 0 0 0 0 0 0.125 0 

রনভবি 0 0 0.090909 0 0 0 0.0625 0 0 0 

পোিিিমযোন্স 0 0 0.090909 0 0 0.142857 0 0 0 0 

অরধনোয়ক 0 0 0 0.222222 0 0 0 0 0 0 

বোযজ 0 0 0 0.111111 0 0 0.0625 0 0 0 

টীম 0 0 0 0 0 0 0 0.125 0.125 0 

ইনেোআল্লোহ 0.125 0 0 0 0 0 0 0 0 0 

জয় 0 0.125 0 0 0 0 0 0 0 0 

বোং ো 0 0.125 0 0 0 0 0 0 0 0 

হোি  0 0.125 0 0 0 0 0 0 0 0 

যবোর ং 0 0 0.090909 0 0 0 0 0 0 0 

সোধোিণ 0 0 0.090909 0 0 0 0 0 0 0 

রিয়োদ 0 0 0 0.111111 0 0 0 0 0 0 

পরিপক্ব 0 0 0 0.111111 0 0 0 0 0 0 

দোরয়ত্বেী  0 0 0 0.111111 0 0 0 0 0 0 

িোন 0 0 0 0 0.1 0 0 0 0 0 

শ্রী ংকো 0 0 0 0 0.1 0 0 0 0 0 

পোিো 0 0 0 0 0.1 0 0 0 0 0 

সম্ভোবনো 0 0 0 0 0.1 0 0 0 0 0 

দ  0 0 0 0 0 0.142857 0 0 0 0 

দোম 0 0 0 0 0 0.142857 0 0 0 0 

তোরমম 0 0 0 0 0 0 0.0625 0 0 0 

মুরেিক 0 0 0 0 0 0 0.0625 0 0 0 

যখ   0 0 0 0 0 0 0.0625 0 0 0 

অবস্থো 0 0 0 0 0 0 0.0625 0 0 0 

েোকব 0 0 0 0 0 0 0.0625 0 0 0 

রিযকট 0 0 0 0 0 0 0 0.125 0 0 

নোটক 0 0 0 0 0 0 0 0.125 0 0 

েহণয োগ্য 0 0 0 0 0 0 0 0.125 0 0 

ধিোেোয়ী 0 0 0 0 0 0 0 0 0.125 0 

র্শ্বী ংকো 0 0 0 0 0 0 0 0 0.125 0 

মোেিোরি 0 0 0 0 0 0 0 0 0 0.1 

যসিো 0 0 0 0 0 0 0 0 0 0.1 

প্রমোণ 0 0 0 0 0 0 0 0 0 0.1 

কি 0 0 0 0 0 0 0 0 0 0.1 
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Table A.8: Word by document table matrix in cricket dataset 
 

Word\DOC DOC-1 DOC-2 DOC-3 DOC-4 DOC-5 DOC-6 DOC-7 DOC-8 DOC-9 DOC-10 

বোং োযদে 0.137327 0.274653 0.099874 0 0.109861 0.156945 0 0 0 0 

রজত 0.183292 0.183292 0 0 0.146634 0 0 0 0 0 

টোইগ্োি 0.22397 0 0 0 0 0 0 0 0 0.358352 

সোরকব 0 0 0.133303 0 0 0 0.091646 0 0.183292 0 

শুভ 0.22397 0.22397 0 0 0 0 0 0 0 0 

কোমনো 0.22397 0.22397 0 0 0 0 0 0 0 0 

রিন 0 0 0.162887 0 0 0 0 0 0.22397 0 

রনভবি 0 0 0.162887 0 0 0 0.111985 0 0 0 

পোিিিমযোন্স 0 0 0.162887 0 0 0.255966 0 0 0 0 

অরধনোয়ক 0 0 0 0.532866 0 0 0 0 0 0 

বোযজ 0 0 0 0.199084 0 0 0.111985 0 0 0 

টীম 0 0 0 0 0 0 0 0.22397 0.22397 0 

ইনেোআল্লোহ 0.299737 0 0 0 0 0 0 0 0 0 

জয় 0 0.299737 0 0 0 0 0 0 0 0 

বোং ো 0 0.299737 0 0 0 0 0 0 0 0 

হোি  0 0.299737 0 0 0 0 0 0 0 0 

যবোর ং 0 0 0.21799 0 0 0 0 0 0 0 

সোধোিণ 0 0 0.21799 0 0 0 0 0 0 0 

রিয়োদ 0 0 0 0.266433 0 0 0 0 0 0 

পরিপক্ব 0 0 0 0.266433 0 0 0 0 0 0 

দোরয়ত্বেী  0 0 0 0.266433 0 0 0 0 0 0 

িোন 0 0 0 0 0.23979 0 0 0 0 0 

শ্রী ংকো 0 0 0 0 0.23979 0 0 0 0 0 

পোিো 0 0 0 0 0.23979 0 0 0 0 0 

সম্ভোবনো 0 0 0 0 0.23979 0 0 0 0 0 

দ  0 0 0 0 0 0.342556 0 0 0 0 

দোম 0 0 0 0 0 0.342556 0 0 0 0 

তোরমম 0 0 0 0 0 0 0.149868 0 0 0 

মুরেিক 0 0 0 0 0 0 0.149868 0 0 0 

যখ   0 0 0 0 0 0 0.149868 0 0 0 

অবস্থো 0 0 0 0 0 0 0.149868 0 0 0 

েোকব 0 0 0 0 0 0 0.149868 0 0 0 

রিযকট 0 0 0 0 0 0 0 0.299737 0 0 

নোটক 0 0 0 0 0 0 0 0.299737 0 0 

েহণয োগ্য 0 0 0 0 0 0 0 0.299737 0 0 

ধিোেোয়ী 0 0 0 0 0 0 0 0 0.299737 0 

র্শ্বী ংকো 0 0 0 0 0 0 0 0 0.299737 0 

মোেিোরি 0 0 0 0 0 0 0 0 0 0.23979 

যসিো 0 0 0 0 0 0 0 0 0 0.23979 

প্রমোণ 0 0 0 0 0 0 0 0 0 0.23979 

কি 0 0 0 0 0 0 0 0 0 0.23979 
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Table A.9: TF-IDF feature matrix for cricket dataset 
 

DOC\Word 
বোং োযদে রজত টোইগ্োি সোরকব শুভ কোমনো রিন রনভবি পোিিিমযোন্স অরধনোয়ক 

0 1 2 3 4 5 6 7 8 9 

DOC-1 0.137327 0.183292 0.22397 0 0.22397 0.22397 0 0 0 0 

DOC-2 0.274653 0.183292 0 0 0.22397 0.22397 0 0 0 0 

DOC-3 0.099874 0 0 0.133303 0 0 0.162887 0.162887 0.162887 0 

DOC-4 0 0 0 0 0 0 0 0 0 0.532866 

DOC-5 0.109861 0.146634 0 0 0 0 0 0 0 0 

DOC-6 0.156945 0 0 0 0 0 0 0 0.255966 0 

DOC-7 0 0 0 0.091646 0 0 0 0.111985 0 0 

DOC-8 0 0 0 0 0 0 0 0 0 0 

DOC-9 0 0 0 0.183292 0 0 0.22397 0 0 0 

DOC-10 0 0 0.358352 0 0 0 0 0 0 0 

 বোযজ টীম ইনেোআল্লোহ জয় বোং ো হোি  যবোর ং সোধোিণ রিয়োদ পরিপক্ব 
10 11 12 13 14 15 16 17 18 19 

0 0 0.299737 0 0 0 0 0 0 0 

0 0 0 0.299737 0.299737 0.299737 0 0 0 0 

0 0 0 0 0 0 0.21799 0.21799 0 0 

0.199084 0 0 0 0 0 0 0 0.266433 0.266433 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0.111985 0 0 0 0 0 0 0 0 0 

0 0.22397 0 0 0 0 0 0 0 0 

0 0.22397 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

দোরয়ত্বেী  িোন শ্রী ংকো পোিো সম্ভোবনো দ  দোম তোরমম মুরেিক যখ   
20 21 22 23 24 25 26 27 28 29 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0.266433 0 0 0 0 0 0 0 0 0 

0 0.23979 0.23979 0.23979 0.23979 0 0 0 0 0 

0 0 0 0 0 0.342556 0.342556 0 0 0 

0 0 0 0 0 0 0 0.149868 0.149868 0.149868 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

অবস্থো েোকব রিযকট নোটক েহণয োগ্য ধিোেোয়ী র্শ্বী ংকো মোেিোরি যসিো প্রমোণ 
30 31 32 33 34 35 36 37 38 39 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0.149868 0.149868 0 0 0 0 0 0 0 0 

0 0 0.299737 0.299737 0.299737 0 0 0 0 0 

0 0 0 0 0 0.299737 0.299737 0 0 0 

0 0 0 0 0 0 0 0.23979 0.23979 0.23979 
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