

BANGLA TEXT SENTIMENT ANALYSIS BASED ON EXTENDED LEXICON

DICTIONARY USING SUPERVISED MACHINE LEARNING AND DEEP LEARNING

ALGORITHMS

by

Nitish Ranjan Bhowmik

1017312022

MASTER OF SCIENCE

IN

INFORMATION AND COMMUNICATION TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Dhaka, Bangladesh

February, 2022

ii

iii

iv

DEDICATION

I dedicate my dissertation work to the God and my family. A special feeling of gratitude to my

loving parents, Monika Bhowmik and Jagadish Chandra Bhowmik whose words of encouragement

and push for tenacity ring in my ears. Especially, I am thankful to my wife Anuradha; nobody has

been more supportive than you throughout this particularly challenging journey.

Table of Contents

List of Tables .. viii

List of Figures ... xi

List of Abbreviation ... xiv

Acknowledgments .. xvi

Abstract .. xvii

1 Introduction ..1

1.1 Overview ...1

1.2 Natural language processing ...2

1.3 Sentiment Analysis ...3

1.3.1 Levels of SA ...4

1.3.1.1 Document level ..4

1.3.1.2 Sentence level ..5

1.3.1.3 Aspect-based SA(ABSA) ..5

1.3.2 Lexicon Based Approach ...5

1.3.3 SA on Machine Learning: ..5

1.3.4 SA on Deep Learning: ..6

1.4 Objectives and Possible Outcome ...7

1.5 Outline of the Thesis: ..8

2 Literature Reviews ...10

2.1 Overview:..10

2.2 Related Works: ... 10

2.2.1 ML Based Related Works: .. 10

2.2.2 DL Based Related Works: ... 12

2.3 Conclusion ..14

3 Methodology ...15

3.1 Overview ...15

3.2 Lexicon Data Dictionary(LDD) ..16

3.3 Construction of Extended LDD: ...17

3.3.1 Creation of Sentimental Dictionary List: ...17

v

3.3.2 Creation of Adjective, Adverb Quantifier & Conjunction Word Dictionary

Weighted List ...18

3.4 Generalized Dataset Preprocessing ...19

3.4.1 Tokenization & Normalization ...19

3.4.2 Stemming ...20

3.4.3 Parts of Speech (POS) Tagger ... 20

3.5 Objectives & Methodology on DL ..20

3.5.1 DL Based Data Preprocessing: ...21

3.5.1.1 Neural Network Based Data Preprocessing:21

3.5.1.2 Data Preprocessing on Attention Based Mechanism:22

3.5.1.3 Data Preprocessing on Transformer Neural Network (BERT) Based

Mechanism:..23

3.5.2 Word Embedding: ..24

3.6 BTSC Algorithm ...26

3.6.1 Discussion of Algorithmic Pseudocode ..26

3.6.2 Score Calculation ...27

3.6.3 Simulation of BTSC Algorithm ...29

3.6.3.1 Illustration of Example on BTSC Algorithm30

3.7 Data Augmentation ...31

3.7.1 Dataset Creation ...32

3.7.2 Creation of Augmented Dataset Algorithm ..34

3.7.2.1 Description of Augmented Dataset Algorithm34

3.8 Conclusion ..35

4 Experiments ..36

4.1 Overview ...36

4.2 Experiment on BTSC Algorithm ..36

4.2.1 Metrices Evaluation ...38

4.3 Experiment on ML Approach ...40

4.3.1 Term Frequency - Inverse document Frequency (TF-IDF)40

4.3.2 Construction of TF-IDF Matrix..41

4.3.2.1 TF-IDF Matrix Calculation from Restaurant Dataset42

4.3.2.2 Formation of Term Frequency and Inverse Document Frequency 43

4.4 Experiment on DL approach ...44

4.4.1 Learning Curve: ...45

4.4.2 Convolutional Neural Network (CNN): ...46

4.4.3 Dynamic Convolutional Neural Network (DCNN):...47

4.4.4 Multichannel Variable-Size Convolution Neural Network (MVCNN):49

4.4.5 Very Deep Convolutional Neural Network (VDCNN):50

4.4.6 Recurrent Neural Network (RNN): ..52

4.4.7 Long Short Term Neural Network(LSTM) ..54

4.4.8 Bidirectional Long Short Term Neural Network (Bi-LSTM):56

4.4.9 Asymmetric Convolutional Bidirectional LSTM (AC_Bi-LSTM):57

4.4.10 Recurrent Convolutional Neural Network (RCNN): ..58

4.4.11 Gated Recurrent Unit (GRU): ..60

4.4.12 Bi-directional Gated Recurrent Unit (Bi-GRU): ..62

4.4.13 Attention Based Neural Network: ..63

4.4.14 Hierarchical Attention Based Neural Network: ..63

4.4.15 Capsule Neural Network (CapsNet): ..66

4.4.16 Bidirectional Encoder Representation From Transformer (BERT): 69

4.4.17 BERT-LSTM Architecture for Sentiment Classification:69

4.4.18 Experiment on Augmented Dataset in BERT-LSTM Architecture for Sen-

timent Classification: ...71

4.5 Conclusion ..73

5 Results and Discussion ...74

5.1 Overview ...74

5.2 Experimental Results ..74

5.2.1 Experimental Result of ML on UiGram Model ...75

5.2.1.1 Support Vector Machine Classification on Tf-IDF Model76

5.2.1.2 Confusion Matrix on UniGram Model ...76

5.2.2 Performance on Different ML Classifier Approach on UniGram Model77

5.2.3 Experiment on BiGram Model and Comparison Between UniGram Model

Approach on SVM ...78

5.2.3.1 Comparison Between Existing ML Model and Proposed Approach

. . . . 78

5.2.4 Result Discussion on ML Approach ..80

5.3 Experimental Result on Deep Neural Newroks ..80

5.3.1 Deep Neural Network Model Training and Fitting: ...81

5.3.2 Results and Analysis: ...81

5.3.3 CNN Based Model: ..83

5.3.4 RNN Based Model: ..85

5.3.5 GRU Based Model: ..86

5.3.6 Attention and Capsule Based Model: ...86

5.3.7 Transformer Based Model ..87

5.3.8 Result Analysis for Augmented Dataset in Transformer Based Model87

5.3.9 Comparison Between Existing DL model with our Proposed Hybrid Neural

Network Approach ...88

5.3.9.1 Comparison of ML vs DL Approach in Terms of Accuracy88

5.3.10 Result Discussion of Our Proposed Hybrid DL Approach89

5.3.11 Complexity Factors of DL Model: ...90

5.4 Conclusion ..90

6 Conclusion ..92

6.1 Journal Publications: ...94

Appendix A Appendix Section ..95

Bibliography ... 111

List of Tables

3.1 Statistical polarity of cricket and restaurant datasets with individual and total com-

ments ...17

3.2 Sentimental word list cricket and restaurant datasets with individual and total17

3.3 Weighted list of adjective, adverb word dictionary ...18

3.4 Weighted list of conjunction word dictionary ...18

3.5 Demonstration of neural network based data preprocessing ...22

3.6 Demonstration on Attention Based Neural Network Data Preprocessing23

3.7 Classification of tokens in transformer neural network ..24

3.8 Demonstration of transformer learning neural network based data preprocessing24

3.9 Score calculation of Ex: 01 ...28

3.10 Score calculation of Ex: 02 ...28

3.11 Score calculation of Ex: 03 ...28

3.12 Score calculation of Ex: 04 ...28

3.13 Score calculation of Ex: 05 ...29

3.14 Statistical polarity of data augmentation in cricket and restaurant datasets with in-

dividual and total comments ...32

3.15 DA process in contextualized word embedding (Bangla-Bert) with BTSC polarity . 33

4.1 Polarity detection by BTSC on restaurant data ...37

viii

ix

4.2 Polarity Detection by BTSC on Cricket Data ...37

4.3 Neutral data detection problem ...37

4.4 C(x, y) notation for indicating the parameters of CM ..39

4.5 TF-IDF matrix format ...41

4.6 Sample data from restaurant dataset ...42

4.7 Sample stop word list from restaurant dataset ..42

4.8 Representation of word by document matrix ..43

4.9 Dataset preprocessing for TF-IDF matrix construction ..43

4.10 Calculation of terms in each document ...44

4.11 Calculation of term frequency [X], inverse document frequency [Y] and TF-IDF

[X*Y] value ..44

5.1 Weighted average of precision, recall, f1-score & accuracy in unigram model for

both dataset. ..75

5.2 Hyperparameter dependency on each model ..84

5.3 Accuracy, precision, recall, f1-score measures of the model of bangla dataset cricket

reviews. ...85

5.4 Accuracy, precision, recall, f1-score measures of the model of augmented dataset

cricket and restaturant reviews. ...88

5.5 Comparison of major sentiment classifiers in both ML and DL regarding accuracy. 89

A.1 Word frequency and inverse document frequency list in restaurant dataset96

A.2 Calculation of term frequency matrix ...97

A.3 Word by document matrix in restaurant dataset ..98

A.4 Representation of TF-IDF feature matrix for restaurant dataset99

A.5 Sample data from cricket dataset ..99

x

A.6 Word frequency and inverse document frequency list in cricket dataset100

A.7 Term frequency matrix in cricket dataset ..101

A.8 Word by document table matrix in cricket dataset ..102

A.9 TF-IDF feature matrix for cricket dataset ...103

List of Figures

1.1 Natural Language Processing (NLP) System ..2

1.2 Overview of Sentiment Analysis System ..4

3.1 Visualization of proposed system architecture in ML approach16

3.2 Visualization of DL Based Proposed System Architecture ...21

3.3 Word2Vec (Skip-Gram) Architecture Diagram ...25

3.4 Visualization of DL Based Proposed System Architecture ...31

4.1 Visualization performance of BTSC algorithm in restaurant and cricket dataset40

4.2 Convolutional neural network (CNN) architecture for sentiment classification47

4.3 (a) LC of CNN model training accuracy (TA) and validation accuracy (VA) and

(b) LC of CNN model training loss (TL), validation loss (VL)47

4.4 Dynamic convolutional neural network (DCNN) architecture for sentiment classi-

fication ..48

4.5 (a) LC of DCNN model training accuracy (TA) and validation accuracy (VA) and

(b) LC of DCNN model training loss (TL), validation loss (VL)49

4.6 Multichannel variable-size convolutional neural network (MVCNN) architecture

for sentiment classification ...50

4.7 (a) LC of MVCNN model training accuracy (TA) and validation accuracy (VA)

and (b) LC of MVCNN model training loss (TL), validation loss (VL)50

4.8 Very deep convolutional neural network (VDCNN) architecture for sentiment clas-

sification..51

xi

xii

4.9 (a) LC of VDCNN model training accuracy (TA) and validation accuracy (VA) and

(b) LC of VDCNN model training loss (TL), validation loss (VL)52

4.10 RNN block diagram [26] ..52

4.11 Recurrent neural network (RNN) architecture for sentiment classification....................53

4.12 (a) LC of RNN model training accuracy (TA) and validation accuracy (VA) and

(b) LC of RNN model training loss (TL), validation loss (VL)53

4.13 LSTM block diagram [27] ..54

4.14 Long term short term neural network (LSTM) architecture for sentiment classification 55

4.15 (a) LC of LSTM model training accuracy (TA) and validation accuracy (VA) and

(b) LC of LSTM model training loss (TL), validation loss (VL)55

4.16 Bidirectional long term short term neural network (Bi-LSTM) architecture for sen-

timent classification ..56

4.17 (a) LC of Bi-LSTM model training accuracy (TA) and validation accuracy (VA)

and (b) LC of Bi-LSTM model training loss (TL), validation loss (VL).......................57

4.18 Asymmetric convolutional bidirectional LSTM (AC_Bi-LSTM) neural network

architecture for sentiment classification ...58

4.19 (a) LC of AC_Bi-LSTM model training accuracy (TA) and validation accuracy

(VA) and (b) LC of AC_Bi-LSTM model training loss (TL), validation loss (VL) . 58

4.20 Recurrent convolutional neural network (RCNN) architecture for sentiment clas-

sification..59

4.21 (a) LC of RCCNN model training accuracy (TA) and validation accuracy (VA) and

(b) LC of RCCNN model training loss (TL), validation loss (VL)59

4.22 GRU block diagram [31] ..60

4.23 Gated recurrent unit (GRU) neural network architecture for sentiment classification 61

4.24 (a) LC of GRU model training accuracy (TA), validation accuracy (VA) and (b)

LC of GRU model training loss (TL), validation loss (VL) ...61

4.25 Bi-Directional gated recurrent unit (Bi-GRU) neural network architecture for sen-

timent classification ..62

xiii

4.26 (a) LC of Bi-GRU model training accuracy (TA), validation accuracy (VA) and (b)

LC of Bi-GRU model training loss (TL), validation loss (VL)......................................63

4.27 Hierarchical attention based neural network (HAN) architecture for sentiment clas-

sification..64

4.28 (a) LC of HAN-LSTM model training accuracy (TA), validation accuracy (VA)

and (b) LC of HAN-LSTM model training loss (TL), validation loss (VL)66

4.29 Dynamic Routing Based Capsule Neural Network (D-CapsNet-Bi-LSTM) archi-

tecture for sentiment classification ...67

4.30 (a) LC of D-CapsNet-Bi-LSTM model training accuracy (TA), validation accu-

racy (VA) and (b) LC of D-CapsNet-Bi-LSTM model training loss (TL), valida-

tion loss (VL) ..68

4.31 Bidirectional encoder representation from transformer with LSTM neural network

(BERT-LSTM) architecture for sentiment classification ...70

4.32 (a) LC of BERT-LSTM model training accuracy (TA), validation accuracy (VA)

and (b) LC of BERT-LSTM model training loss (TL), validation loss (VL)71

4.33 (a) DA of LC of BERT-LSTM model training accuracy (TA), validation accuracy

(VA) and (b) DA of LC of BERT-LSTM model training loss (TL), validation loss

(VL) ..72

4.34 (a) DA of LC of BERT-LSTM model training precision (TP), validation precision

(VP) and (b) DA of LC of BERT-LSTM model training recall (TR), validation

recall (VR) ..72

4.35 DA of LC of BERT-LSTM model training f1-score (Tf), validation f1-score (Tf) . 73

5.1 BTSC algorithm polarity prediction on both dataset ..77

5.2 Visualization performance of different classifier in restaurant and cricket dataset78

5.3 Visualization performance of UniGram & BiGram model on SVM classifier79

5.4 Comparing accuracy between the existing and proposed systems79

5.6 LC of each model training accuracy (TA), validation accuracy (VA) vs. Epoch and

LC of each model training loss (TL), validation loss (VL) vs. epoch83

List of Abbreviations

NLP: Natural Language Processing

LDD: Lexicon Data Dictionary

DD: Data Dictionary

BTSC: Bangla Text Sentiment Score

TF-IDF: term frequency-inverse document frequency

Word2Vec: Word To Vector

DL: Deep Learning

ML: Machine Learning

SA: Sentiment Analysis

POS: Parts of Speech

JJ: Adjective Quantifier

RB: Adverb Quantifier

CC: Conjunction Parts of Speech

VB: Verb Parts of Speech

DA: Data Augmentation

DNN: Deep Neural Network

CM: Confusion Matrix

TPR: True Positive Rate

TNR: True Negative Rate

FPR: False Positive Rate

xiv

xv

TP: True Positive

FN: False Positive

TN: True Negative

FP: False Positive

SVM: Support Vector Machine

lr: Learning Rate

CNN: Convolutional Neural Network

DCNN: Dynamic Convolutional Neural Network

LC: Learning Curve

TA: Training Accuracy

TL: Training Loss

VA: Validation Accuracy

VL: Validation Loss

MVCNN: Multichannel Variable-Size Convolution Neural Network

VDCNN: Very Deep Convolutional Neural Network

RNN: Recurrent Neural Network

LSTM: Long Short Term Neural Network

Bi-LSTM: Bidirectional Long Short Term Neural Network

AC_Bi-LSTM: Asymmetric Convolutional Bidirectional LSTM

RCNN: Recurrent Convolutional Neural Network

GRU: Gated Recurrent Unit

Bi-GRU: Bi-directional Gated Recurrent Unit

HAN: Hierarchical Attention Based Neural Network

CapsNet: Capsule Neural Network

D-CapsNet-Bi-LSTM: Dynamic Routing Based Capsule Neural Network

HAN-LSTM: Hierarchical Attention-based LSTM

BERT: Bidirectional Encoder Representation from Transformer

Acknowledgments

First and foremost, I express my sincere gratitude to the Almighty for bestowing His blessings upon

me and enabling me to complete this work successfully.

I would like to express sincere gratitude to my esteemed supervisor Dr. Md. Rubaiyat Hossain

Mondal, Professor, Institute of Information and Communication Technology (IICT), Bangladesh

University of Engineering and Technology (BUET), Dhaka, for his valuable guidance throughout

the time. Without his encouragement and trust in me, I would not be able to pursue my M.S.c de-

gree. My heartiest indebted to Dr. Mohammad Arifuzzaman, Associate Professor, Department of

Electronics and Communications Engineering (ECE), East West University (EWU), Dhaka, who

was patient with me and motivated and guided me toward a quantitative methodology in shaping

my experiment. His immense knowledge and plentiful experience have encouraged me in all the

time of my academic research and daily life. I am thankful to Dr. Md. Saiful Islam, Professor,

Institute of Information and Communication Technology (IICT), Bangladesh University of Engi-

neering and Technology (BUET), Dhaka, for his treasured support which was influential. I would

like to thank my other committee members for their continuous support and feedback.

Finally, I would like to dedicate my gratitude to my parents, wife, child, sister and to my col-

leagues. It would not have been feasible for me to finish my work without their great support and

understanding over the past several years. Thank you.

xvi

Abstract

With the Internet’s social digital content proliferation, sentiment analysis (SA) has gained a wide

research interest in natural language processing (NLP). A little significant research has been done

in the Bangla language domain because of having intricate grammatical structures in the text. This

paper focuses on SA in the context of the Bangla language. Firstly, a specific domain-based cat-

egorical weighted lexicon data dictionary (LDD) is developed to analyze Bangla text sentiments.

This LDD is developed by applying the concepts of normalization, tokenization, and stemming to

two Bangla datasets available in the GitHub repository. Secondly, a novel rule-based algorithm

termed as Bangla Text Sentiment Score (BTSC) is developed to detect sentence polarity. This al-

gorithm considers parts of speech tagger words and special characters to generate a word score

and extract polarity from a sentence and a blog. The BTSC algorithm, with the help of LDD is

applied to extract sentiments by generating scores of the two Bangla datasets. Thirdly, two feature

matrices are developed by applying the term frequency-inverse document frequency (tf-idf) to the

two datasets and the corresponding BTSC scores. Next, supervised machine learning classifiers

are applied to the feature matrices. In the deep learning part, these polarities are then fed into the

hybrid neural network and the preprocessed text as training samples. The preprocessed texts are

formatted as a vectorization of words of unique numbers of pre-trained word embedding models.

Word2Vec matrix with the top highest probability word is applied on the embedding layer as a

weighted matrix to fit the DL models. This paper also presents a remarkably detailed analysis of

selective DL models with fine-tuning. The fine-tuning includes the use of drop out, optimizer reg-

ularization, learning rate, multiple layers, filters, attention mechanism, capsule layers, transformer

xvii

xviii

with progressive training along with validation and testing accuracy, precision, recall and F1-score.

Experimental results indicate that the proposed new long short-term memory (LSTM) models are

highly accurate in performing SA tasks. Experimental results corroborate our theoretical claim and

show the efficiency of our proposed approach in both machine learning and deep learning approach.

Results show that for the case of BiGram feature, support vector machine (SVM) achieves the best

classification accuracy of 82.21%. For our proposed hierarchical attention-based LSTM (HAN-

LSTM), Dynamic routing based capsule neural network with Bi-LSTM (D-CAPSNET-Bi-LSTM)

and bidirectional encoder representations from Transformers (BERT) with LSTM (BERT-LSTM)

model we achieved accuracy values of 78.52%, 80.82% and 84.18% respectively.

Chapter 1

Introduction

1.1 Overview

With the augmentation of modern web technologies, a large scale of data is being stored across dif-

ferent platforms on the Internet. In the age of globalization of the Internet, these data are being used

as a repository of resources. These resources are constantly mined as individual or organizational

data for discovering knowledge and information. By gathering information from all these plat-

forms, new patterns can be discovered in the data by emphasizing public opinion. Public opinion

refers to what people are thinking, their views on current affairs, and what they think about the flow

of contemporary events, or an ongoing situation. Public sentiment can be analyzed by collecting

public opinion in text or speech. Nowadays, the public expresses their views or opinions through

the eruption of various web-based social platforms and microblogging sites. In recent years, social

media systems have provided a prominent platform for opinion mining. It allows them to com-

municate efficiently and cooperate in exchanging information. However, Social media systems on

the web have provided excellent platforms for facilitating and enabling audience participation,

engagement, and community, due to our new participatory culture.

With the phenomenal growth of Internet social media services, such as microblogging and social

networking, offered by platforms such as Twitter, Facebook, etc., interactions among people are

1

2

increasing rapidly. People share their different aspects of daily life on these microblogging sites.

They also seek needful information on these sites, which varies from person to person. Therefore,

finding information on these users text is an interesting idea that helps predict their behaviors in real-

life scenarios. Information extraction is an assignment of discovering structured information from

unstructured or semi-structured content that means retrieval of information. Information extraction

tasks might include named entities recognition, relation within the text, summarization, question

answering, etc. It is often performed as a preliminary processing step for text mining applications.

1.2 Natural language processing

Natural language processing (NLP) is a section of artificial intelligence (AI) that deals with train-

ing a considerable corpus of data in a computer to perceive, process, and generate language for it.

efficientlyThe machine can explore, presume, and invent meaningful information from human lan-

guage intelligently and efficiently in the NLP mechanism. Technologies based on NLP are rapidly

increasing. By taking

Figure 1.1: Natural Language Processing (NLP) System

advantage of NLP, developers can incorporate and structure knowledge to carry out tasks such as

automatic summarization, translation, named entity recognition, relationship extraction, sentiment

3

analysis (SA), speech recognition, Google search engines, voice assistants and topic segmentation,

etc., demonstration in Figure 1.1. NLP is distinguished as a difficult task in computer science. Hu-

man language usually refers to the one who utters the word. The language uttered by human beings

is not always correct or rarely precise. Understanding human language means for a machine that

understanding not just words but concepts and how they relate to meaning. Although language is

one of the easiest things for people to learn, its ambiguity makes it difficult for computers to master

NLP. If the machine can train with complex things like language, it is possible to do everything

with it. The most complex work in the world is contract analysis conducted by multinational com-

panies’ legal and financial institutions. While NLP is helping companies out there, people need to

find new jobs. However, this automation opens up new job opportunities for people that one did

not think. However, people who will not lose jobs will be re-skilling across the se sectors.

1.3 Sentiment Analysis

Sentiment analysis (SA), also called opinion mining [1], is a field of study that predicts polarity in

public opinion or textual data from microblogging sites [2] on a well-publicized topic by extracting

people’s attitudes, emotions, etc. However, SA is becoming a relevant subject for NLP in machine

learning (ML), researchers are gradually finding interest in this topic because of the large scale of

opinionated data on the Internet. Nowadays, people on social media sites, newspapers, blogs, etc.,

express their opinions on specific products or items, posts, comments, forum discussions, emotions

towards an individual or organizations, etc. There may arise many obstructive in detecting binary or

ternary class sentiment such as subjectivity or opinion-based identification, if a phrase or text does

not have any core opinion word. So, the lexicon-based [3] data dictionary approach is jointed with

their semantic tendency with polarity and word strength. To determine these data with sentiment

as a polarity i.e., positive, negative or neutral class describe in Figure 1.2, the ML framework has

acquired more interest because of building model in many linguistic domains with versatile feature

extraction, alternating input easily, predicting with probabilistic theory and computing valuable

4

feature matrix representations. Various types feature have been observed for this type of work such

as bag of words (BoW) model, lexical analysis and semantic feature [4]. This matrix feature is

language dependent. Bangla, an ancient Indo-European language, spoken by over 250 million

people [5]. So, extracting sentiment in the Bangla language will be significant for NLP researchers

to make substantive progress in ML.

Figure 1.2: Overview of Sentiment Analysis System

1.3.1 Levels of SA

SA is accomplished at various levels of entities such as document, sentence, and aspect-based.

These levels have been discussed in this sub-section.

1.3.1.1 Document level

This level of SA denotes the sentiment of a complete paragraph or a document. The SA model

adopts that document holds opinionated unstructured text about the single entity. It does not justify

documents by balancing the multiple entities. The problem of document level SA is determining

the positive or negative polarity as a binary classification problem. However, it can manage multi-

classification problems as regression type problems such as five type movie review classification

problems.

5

1.3.1.2 Sentence level

This level of SA has a target to extract the sentiment from a single sentence entity. Two types of

classification are handled here, one is subjectivity classification and another is polarity classifica-

tion. These can be used for deriving the sentiment from a single sentence. Subjectivity classifica-

tion concentrates on discovering whether a sentence is subjective or objective. On the contrary, the

polarity classification denotes whether a given subjective sentence is positive or negative.

1.3.1.3 Aspect-based SA(ABSA)

In this level of SA, the sentiments are determined by two aspects: feature-based and object-based

entities. It means a single entity is a current per document. The ABSA method aims to detect

polarity and aspect pairs from a given sentence. Four types of ABSA can be classified: aspect term,

aspect polarity, aspect category and aspect category polarity.

1.3.2 Lexicon Based Approach

The lexicon-based approach is used for detecting sentiment lexicon or core opinionated data to

analyze the sentiments from a review. This approach is conducted by building a dictionary or

corpus to classify the sentiment words. Due to the shortage of labeled data, a single classifier can

be designed to classify reviews from different domains. However, a classifier designed to classify

data from one domain may not work efficiently on another domain. This is due to domain-specific

words which are different for every domain.

1.3.3 SA on Machine Learning:

SA categorizes the text whether the knowledge about the product is satisfactory or not before cus-

tomer decide to purchase it. Social networking sites distribute their data conveniently and freely

on the web. This availability of information tempts young researchers into their immersive interest

in SA. Based on this analysis, marketers and companies understand their product or service so that

6

it can be tailored to the needs of the user. There are two types of SA methods in ML approach:

unsupervised and supervised. Supervised learning is worked on the labeled dataset. This labeled

dataset is given to the model during the training process and produces a satisfactory output. Unsu-

pervised learning does not work on category-based datasets, and a clustering technique follows this

procedure. A fractional part of robust data is trained to classify the sentiment from unstructured

text. ML models such as Unigrams and Bigrams models are applied in classification algorithms

such as Naive Bayes, maximum entropy, or support vector machines. ML techniques have been

developed in terms of SA and lenient automatic data evaluation.

1.3.4 SA on Deep Learning:

Social media has a wealth of information in the user-generated text that cannot be processed or clas-

sified in real-time extraction even by humans. In the modern web, particularly an outstretched of

big data mining from social networks, a massive label of opinionated corpus continuously emerges

with the evocation of data classification and scalability. In that case, NLP has required purifying out

the noisy word and discovering pertinent insights from this flourishing data. In recent year, many

NLP researchers have developed to find out the properties of the text, including emotion, polarity

or subjectivity detection and document or context classification. SA has fulfilled this demand for

researchers to predict a positive, negative or neutral context. SA or opinion extraction is narrated

as collecting information from public content to generate people’s attitudes, expressions, and views

of customer products, news, topics, or forum discussion (i.e., political, cricket, economic, environ-

mental, etc.) [1]. For example, real-time traffic monitoring systems such as location-based traffic

jams, road accidents, and best route policy such as feedback on every situation can be analyzed by

people’s opinions from social media sites. Again, the level of national military defense or law

enforcement organization(i.e., police cyber-crime unit [6]) paid observation and attention to the

public opinions on what are doing or saying activities on the electronic media net. The orientation

and proactivity of a particular text are argued based upon the polarity and context extracted from

the text classification. Classification in Bangla sentences is a complex task, as modern hardware

7

is enhancing portable and powerful, Deep Learning (DL) is promising in significant performances

for NLP operation including SA [7]. DL is a subset of multiple layers of neurons that perceive

from a nonlinear neural network with matrix representations and convert the output at one level

into an intense and abstract peak. A few ML techniques are driven out on the Bangla text to predict

opinions. However, SA can be categorized into two approaches: the corpus-based approach and

the other is a dictionary-based approach. However, in this research, we combine rule-based with

lexicon dictionary approach and DL models to predict the text sentiment from Bangla text. We will

implement a rule-based algorithm termed BTSC for automatically generating scores from the text

with the help of categorical weighted LDD. Then we aggregate our BTSC polarity with our input

text corpus and build different DL models found in the literature. We conduct multiple experiments

on those DL baseline model’s to show each model classification performance.

1.4 Objectives and Possible Outcome

The main objectives of this research are to analyse the sentiment from Bangla text in ML approach

and DL by an unique rule-based algorithm and build a Lexicon Data Dictionary (LDD). To detect

polarity from raw text, we have divided our whole work into five parts. To meet the goal, the fol-

lowing objectives have been identified:

(a) To construct a specific domain-based categorical weighted LDD for analyzing sentiment clas-

sification from the Bangla dataset.

(b) To develop a novel and effective rule-based algorithm for detecting sentence polarity classifi-

cation by extracting scores from a chunk of Bangla text.

(c) To investigate the feature matrix with target dataset on ML classifier algorithm.

(d) To investigate the proposed of our hybrid DL classification algorithm in pretrained word em-

bedding (Word2Vec) model.

(e) To evaluate our approach and compare the circumference of our work with some existing re-

search paper in both ML and DL algorithm.

8

The possible outcome will be as follows:

(i) An LDD, and a rule-based BTSC algorithm will be developed for Bangla language.

(ii) The effectiveness of ML classifiers and deep neural network will be evaluated in predicting

sentiments in Bangla text.

1.5 Outline of the Thesis:

This thesis consists of five major sections by which the effect of BTSC algorithm efficiency in

both ML and DL is explored. The first part inaugurates the basic concepts of NLP systems and SA

techniques. The second part of the thesis will show the previous research works related to NLP,

SA in ML classification algorithms, and DL-based architectures. The third part is responsible for

exploring the theoretical approach to effect of the BTSC rule-based algorithm with the help of de-

veloping LDD, ML, and DL-based data preprocessing techniques. The fourth part will elaborate

the experimental procedure in supervised ML and DL neural networks for SA approaches and val-

idate those performances. This part also signifies the efficiency of the BTSC algorithm. The final

part will deal with the experimental result discussion and compare it with other research on the

accuracy, precision, and recall.

The descriptions of the chapters are the followings which are given below.

Chapter 2 will show the review of previous research work related to ML and DL-based SA. Ex-

isting methods discussed in previous research work will also be presented here by highlighting the

limitations of those studies.

Chapter 3 demonstrates system methodology by developing the proposed rule-based algorithm

BTSC, which identifies the text polarity with the help of building a LDD. ML and DL approaches

are introduced to conduct our SA.

9

In Chapter 4, the demonstration of the ML classification system and construction of deep neural

networks are focused. Support vector machine (SVM), Random Forest (RF), Naive Base Classi-

fier, Logistic Regression, KNN, etc., are used to classify our documents. Convolutional, Recurrent,

Long Short Term, Gated Recurrent Unit, Attention, Transformer, Capsule based high configuration-

based hybrid model are introduced to conduct our SA experiment.

Chapter 5 is for practical demonstration of our proposed SA on the BTSC algorithm in both ML

and DL procedures. It will explain the confusion matrix of classifying text in the Unigram and

Bigram ML model. It will describe the efficacy of the neural network approach in training and

testing accuracy, precision, recall, and time estimated graphs with the number of epochs.

Finally, Chapter 7 will present the concluding remarks and future research direction of the thesis.

Chapter 2

Literature Reviews

2.1 Overview:

This section exhibits a summary of existing ML and DL-based SA studies. We conclude this section

by identifying existing research gaps and providing a study rationale for this chapter.

2.2 Related Works:

SA has become an exciting topic among researchers in expanding social media and microblogging

sites. Immense research has been done on SA on many linguistic corpora. Researchers working on

SA are tempting different approaches to dig up methods that deliver the best result.

2.2.1 ML Based Related Works:

SA is done in many linguistic domains like English, French, Chinese, Arabic, etc. However, the

depth of its progress in the Bengali language is insignificant due to some technical and empirical

constraints [8]. Our work is highly inspired by this research [9]. To the best of our knowledge, SA

in Bengali using an extended dictionary has not been done in any research. Experiment results

using Lexicon based Data dictionaries in Arabic language have been obtained so far [10]. In [11]

10

11

authors described SentiWordNet(SW) as a curse of dimensionality. They used a sentimental lexicon

dictionary based on word2vec to perform SA. Besides, in the Bangla text, authors [12] preprocessed

data to carry through a SA by taking tf-idf vectorizer and classified the data with a support vector

machine (SVM) algorithm. However, they did not measure the polarity by calculating the score of

a text; hence it is required to detect the polarity of each sentence by a specific rule-based [13]

algorithm. In [14], the authors proposed a semi-supervised bootstrapping approach in SVM and

maximum entropy(MaxEnt) classifier to perform a SA using SW by translating Bengali words to

English. Their rule-based bootstrapping approach only counted positive; and negative word

polarity by SW, which only worked for a low-limited length text. In [15], the authors proposed

using XML-based POS tagger and SW to identify the sentiment from Bangla text by adopting

valency analysis. They used SW and WordNet(WN), designed for only the English language. So,

a lexicon weighted word dictionary for Bangla is necessary to identify the text’s word score or

polarity. Besides, in [16], authors extracted positive, negative(bi-polar) polarity from Facebook text

by tokenizing adjective words using POS tagger, doing valence shifting negative words at the right

side of a sentence, and replacing it with antonym words using SW. SW has a weakness in giving

proper polarity in Bangle text. In [17], the authors discussed an automated system for emotion

detection by mapping each text to an emotion class, their accuracy was 90%. However, it was more

time-consuming to label the data, and their phrase patterns were formed for only three subcategories

of sentiment not used in complex sentences. In [18], the authors designed a framework for SA by

counting only positive and negative words from their feature word list dictionary. In[19], the

authors constructed an extended sentiment dictionary and a rule-based classifier was employed to

classify the field of the text polarity by attaining the score of a sentence. In [20], the authors

described a lexicon-based dictionary model by checking the occurrences of a sentimental feature

word in tagging each sentence.

12

2.2.2 DL Based Related Works:

In this section, we sketch out the available methods with a taxonomy that explore the influences on

the several DL architectures and discuss how those methods enhance operating in SA. In the inter-

disciplinary domain of NLP, sentiment classification was portrayed in [21], describing a connection

between subjectivity detection and polarity classification. In [22], the authors showed a probabilis-

tic neural model for learning a consecutive representation of words and a probabilistic function to

the word sequences simultaneously. A simple one-layer-based convolutional neural network

(CNN) approach was given in [22] to conduct a sensitivity analysis of the text. An artificial neural

network (ANN) does not work on a large scale of inputs. However, CNN or Hybrid based CNN,

i.e., Dynamic CNN (DCNN) [23], Very Deep CNN (VDCNN) [24], variable-size convolutional

filters, i.e., (MVCNN) [25] model can do much better. DCNN uses a dynamic K-max polling and

a global pooling operation over the text sequence. In contrast, VDCNN and MVCNN use different

dimensions of word embeddings on multiple filter sizes, respectively, in character and text levels.

A recurrent Neural Network (RNN) is efficient in doing words or sentences as an unseen input on

the network by propagating weight matrices over the time steps [26]. As RNN has a problem of

vanishing gradient descent, gradient explosion and lack of backpropagation, those are mitigated in

a modified version of RNN such as termed as Long Short Term Memory Network (LSTM) [27],

Bi-Directional LSTM [28], Asymmetric Convolutional Bidirectional LSTM (AC-BLSTM) [29],

Recurrent Convolutional Neural Network (RCNN) [30], Gated Recurrent Unit (GRU) [31]. Hi-

erarchical Attention Network (HAN) based mechanism [32] on Bi-GRU [33] and LSTM [34] are

also applied for document text classification because it works between the hidden (encoder and

decoder) layer to give a weighted sum of all features fed as an input. The Google researchers pub-

lished a recent NLP task, Transfer Neural Network BERT [35], which learns contextual relations

from words or text and is also applied for SA [36].

A more significant portion of SA based on DL is conducted on many high resource language do-

mains (i.e., English, Chinese); however, a few studies on Bangla language is on the primary stage.

13

In [37] the authors performed SA on 4000 positive and negative movie reviews, which was man-

ually translated into Bangla and obtained accuracy on LSTM at 82.42%. Another LSTM-based

approach was conducted on 9337 reviews for classifying polarity positive and negative sentiments,

and they achieved an accuracy of 78% [38]. In [39], the authors extracted six types of emotions

from different types of Bangla Youtube video comments using a CNN and LSTM-based approach.

They showed 65.97% and 54.24% accuracy on three and five labels sentiment. Another CNN-

based single-channel approach [40] was implemented on different domains from the Bangla dataset.

However, it can not maintain proper tuning in layers. An RNN type of network Bi-LSTM approach

was applied on a manual hand label dataset of 10000 comments from Facebook, and they obtained

an accuracy of 85.67%; however, it has many notable drawbacks in data preprocessing [41]. In

[42], the authors obtained an accuracy of 75.5% on the word2vec model by tuning the word co-

occurrence score in word vector similarity. In [43], the authors experimented on Bangla Romanized

dataset and tested on a deep recurrent model LSTM and achieved accuracy of 55% for three cate-

gories. In [44], the authors examined aspect-based SA data with 95% accuracy. However, global

common words rephrased the common and proper noun of Bangla words. This was a hindrance to

extracting sentiment in a lexicon-based dictionary approach. In a recent research, the authors

[45] implemented an attention-based CNN model, and the authors [46] combined CNN with the

LSTM model to analyze sentiment from Bangla text. However, in a lexicon-based approach, a

word may have different meanings in different domains; so, a lexicon sentiment dictionary is a

needed resource for conducting SA. However, it classifies the core word as annotated polarity with

sentence or phrase sentiment strength. In [47, 48] the authors built a sentiment detection mecha-

nism from tweets using a sentiment lexicon and a rule-based linguistic approach [49]. To the best

of our knowledge, SA using categorical weighted LDD and rule-based algorithm BTSC in Bangla

text with comprehensive DL approaches is not used yet.

14

2.3 Conclusion

Sentiment analysis using ML and DL-based approaches has drawn the attention of a large num-

ber of researchers. In this chapter, a series of state-of-the-art literature’s has been reviewed. We

have discussed the main issues and techniques related to the SA based on existing ML and DL

research works. The findings of experimental works are also mentioned in Bangla domain. Vari-

ous sentiment analysis methods with their performance parameters have been explored. Some new

SA based on SW, WN, or manually annotated dataset techniques that show better results in ML

and DL models, are also addressed in this study. However, we highlighted the pros and cons of

each approach and dataset. From the discussion of impairments-related works it is clear that there

is no work done on LDD in the Bangla dataset that can explain the effect of rule-based SA and

experimentally in the ML and DL approaches.

Chapter 3

Methodology

3.1 Overview

The methodology of our SA in machine learning and deep learning approaches is to analyze the

sentiment from Bangla text with a unique rule-based algorithm and build an LDD. We have divided

our work into two parts, one is ML, and the other is DL. First, we will describe the ancillary mech-

anism for working in ML. Among the three levels of SA, we worked on the sentence level polarity

classification by using the extended Bangla sentiment dictionary. These sentimental dictionary

words are implied as opinion words, which is an impetus for identifying polarity from a text by im-

plementing a set of rule-based automatic classifier algorithms [50]. In this thesis, an effective and

unique rule-based algorithm, Bangla Text Sentiment Score (BTSC) is developed to detect sentence

polarity that provides better sentiment extraction by giving a score from a chunk of Bangla text.

We build an automated system that can extract opinions from Bangla dataset reviews with the help

of an extended Bangla sentimental dictionary with weighted value. That automated system will be

classified by a supervised ML algorithm [51] with the help of N-gram (Unigram, Bigram) models

because this model performs better in text classification [52]. The overall SA structure in the ML

process is described in Figure 3.1.

15

16

Figure 3.1: Visualization of proposed system architecture in ML approach

3.2 Lexicon Data Dictionary(LDD)

To communicate in a language and express thoughts and views in a society, a person needs vo-

cabulary. If one says something outside of vocabulary, they may not understand it. When they

speak in Bengali, we usually do not express our views on words outside the Bangla dictionary. It

means that our vocabulary is almost specific in every language. People gradually grow up learning

this vocabulary from their childhood. When we grow up, we do not understand the meaning of the

word. However, we use a lexicon or dictionary as a reference to use those words in the future. The

computer language is numbers. However, the way we speak or write, we have to change the

numbers before putting them on the computer. Since machines are good at modeling numbers, our

work is only reduced if we teach the machine the idea of converting this language into mechanical

language, that is, numbers. To learn a language for a machine, even if it is the smallest unit letter

of a language, the interpretation comes from where the words are in a sentence. In that case, we

need to develop a lexicon data dictionary (LDD) to detect the sentence scores from the text.

17

3.3 Construction of Extended LDD:

An extended lexicon dictionary means the alphabetical list of words or phrases. I manually created

a sentimental dictionary word list as a Bengali sentence containing many words. These words are

applied for calculating the score from a sentence or phrase. We have collected data from [53],

where there are two datasets based on two domains: cricket and restaurant. The construction of the

Bangla dataset is described in [54] extensively.

3.3.1 Creation of Sentimental Dictionary List:

Table 3.1: Statistical polarity of cricket and restaurant datasets with individual and total comments

Dataset
Polarity

Total
Positive Negative Neutral

Restaurant 1216 478 365 2059

Cricket 620 2108 251 2979

Table 3.2: Sentimental word list cricket and restaurant datasets with individual and total

Data
Sentimental Dictionary

Total Words
Active Contradict

Restaurant 1056 970 2026

Cricket 1115 2190 3035

Table 3.1 shows the statistical polarity for both datasets. For performing SA, we have used those

datasets to build up our extended sentimental dictionary, such as, য োগ্যতো [Competence], ‘অয োগ্যতো’

[Inefficiency], ‘পরিযেবো’ [Service,] ‘বোধো’ [Hindrance] and so on. In sentimental dictionary, a

word can be intersecting in both datasets, like ‘কল্পনোপ্রসূত’ [Imaginary] word is an active

word list in restaurant dataset; however, a contradict word list in cricket dataset. While

SentiWord et works on the global domain data however to do SA in different domain data,

a sentimental weighted dictionary has to be created. The number of sentimental word list

is composed of active (weight = +1) and contradict word (weight = -1), which is extracted by

manually, represented in Table 3.2. Besides a negative word (weight = -1) list like, ‘নো’, ‘যনই’,

18

‘নোই’, ‘নয়’ [not] vocabulary has been created so that negative words can be counted during

score calculation from the text.

3.3.2 Creation of Adjective, Adverb Quantifier & Conjunction Word Dic-

tionary Weighted List

Since a major difference in English and Bangla grammar, we need to create our own weighted

dictionary word list of adjective 'নোম রবযেেণ' [55] and adverb quantifier which is showed in

Table 3.3. In Bangla grammar ‘রবযেেযণি অরতেোয়ন’ [Exaggeration of adjectives] and degree of

adverb ‘রিয়ো রবযেেণ’ [56] is a segment of Adjective POS tagger. We partitioned the whole

word set into 3 types: high, medium, low.

Table 3.3: Weighted list of adjective, adverb word dictionary

Types Example Weight Total Word

High ‘সবচোইযত’ [Most of all], ‘সববোরধক’ [great-
est], ‘ যেষ্ট’ [enough], ‘অরতেয়’ [too
much] … }

3 18

Medium ‘অরধক’ [more than], ‘যবেী’ [more], ‘অযনক’
[lots of] … }

2 15

Low ‘অরতেয়’ [at least], ‘সোমোনয’ [a little] ‘প্রোয়’
[nearly] … }

0.5 20

Table 3.4: Weighted list of conjunction word dictionary

Categories Example Weight Total Word

Coordinating

Conjunction

{‘রকন্তু[but], ‘আদযপ’ [in fact], ‘এবং’ [and],
‘অেবো’ [or], ‘বিং’ [or] … }

2 25

Subordinating

conjunctions

{‘অরধকন্তু [Furthermore], ‘রবযেেত’ [in
particularly], ‘এমনরক’ [even], ‘এসযেও’
[despite of] … }

1.5 12

Although these words do not affect determining the polarity of a sentence, however, sitting

before a few words in a sentence can impact the score of the whole sentence. These words

can quantify the sentence score. For example, ‘বযটসমযোনযদি মযধয সোরকব সবচোইযত ভোয ো’ [Shakib is

the best among the batsmen] in that sentence ‘সবচোইযত’ [most of all] word quantify the word

19

‘ভোয ো’ [good] which produce the word [best] in the translated English sentence. A Bangla

sentence can have a conjunction POS, which is used to joint words, phrases and clauses. These

types of words sit in the middle, beginning, or at the end of a sentence, and connect one or

more sentences together. This further increases the score of two sentences without effecting

on polarity. As there are four main types of conjunction and many sub parts conjunctions

in Bangla grammar, for simplification of our work we generalize them into two categories

named as coordinating conjunctions [‘সমুচ্চয়ী’] and subordinating or progressive conjunctions

[‘অনুগ্োমী’]. However, in our research work, we simplify those words and assign appropriate

weight values. It can be noted that the weight values of adjectives and adverbs in Table 3.3,

and that of conjunctions in Table 3.4 are assigned carefully to make it particularly suitable

for the Bangla language context. For this assignment, the GitHub Bangla dataset available in

[53] is taken into consideration. Because of the difference in language structure, the weight

values of Table 3.3 and Table 3.4 for Bangla are different from the values mentioned for the

Chinese language in [9].

3.4 Generalized Dataset Preprocessing

Our SA is a document sentiment classification based on supervised ML. After collecting corpus

data, we need to preprocess the data for creating training and testing data. Because data

preprocessing is an important part in the LP domain. We use BLTK [57] version 1.2 in open

source python PyPI package OSI approved, MIT License to preprocess our data. Dataset pre-

annotation or preprocessing step is described below. This step will be applied to removing

ambiguity and redundancy from the whole dataset.

3.4.1 Tokenization & Normalization

Splitting the sentence into a word list is called a tokenization process. Each token is called

a word. For example: "আচোযিি সংয োজন খুব ভোয ো রি ।" [The addition of the pickle was very

20

good], after tokenize this sentence it will create a list, as like [‘আচোযিি [pickle], ‘সংয োজন’

[addition], ‘খুব’ [very], ‘ভোয ো’ [good], ‘রি ’ [was]]. While doing tokenization process we have

also finished normalizing the data. Normalizing means removing characters [',', '.' '!', '@',

'#', '%'], etc. these and stop words [58] from the sentence. The characters nad stop word

will no impact on creating training, test data and ML model construction.

3.4.2 Stemming

Stemming means originating the root word from the given word list after doing the to-

kenization process. During the stemming process, we remove ‘ি’, ‘এি’, ‘গুর , ‘গুয ো’, ‘টোি’, ‘রট’,

etc. these unnecessary words from the sentence. For example: ‘স্বোধীনতোি [Indepen- dent],

‘বোং োযদযেি’ [Bangladesh], ‘দুব বতোগুর ি’ [Weaknesses] words convert the root word into

respectively ‘স্বোধীনতো’, ‘বোং োযদে’, ‘দুব বতো’ by stemming process.

3.4.3 Parts of Speech (POS) Tagger

Detecting the word pos tagger in a sentence have a great significance calculating the score.

Our Bangla text sentiment algorithm requires pos tagger to find out word weighted value

from LDD. For example, ‘এরট খুব যবরে রচেোকেবক এবং খুব সুস্বোদু নয়।‘ [It’s not too impressive and

not too tasty]. After generating in python pos tagger, we will get a list of word with POS

[এরট’_TP, খুব_RB, যবরে_JJ, রচেোকেবক_NN, এবং_CC, খুব_RB, সুস্বোদু _VB, নয়_NA}. Here, যবরে_JJ] word

quantify the word [রচেোকেবক_NN], therefore it will amplify the score of the text and [এবং_CC]

word connects two sentences which will be tracked by our BTSC algorithm.

3.5 Objectives & Methodology on DL

Figure 3.2 shows the pictorial representation of our full approach. We will implement LDD

and BTSC algorithms. Although we will not deep dive into the core details like mathematical

description and construction of the neural network architecture, we will try to summarize

21

our approach to the details construction of the neural network model that we have used in

our experiment.

Figure 3.2: Visualization of DL Based Proposed System Architecture

3.5.1 DL Based Data Preprocessing:

According to our previous ML approach, we preprocess our data by removing stop words,

unnecessary characters, performing tokenization, stemming and POS tagging operation. We

have collected data from GitHub repository [53] and used cricket dataset for conducting our

experiment. However, to represent the text into a neural network, we used a tensor- based

matrix representation of the corpus (review) with its polarity. Compared to other text

representation mechanisms, this sparse, dense matrix takes less memory for fitting in a neural

network. We employ the Tensorflow neural network libraries simultaneously with Keras [59]

for preprocessing our data. We use Keras tools such as tokenizer, text_to_sequences [60]

and pad_sequences [61].

3.5.1.1 Neural Network Based Data Preprocessing:

In this work, we tokenize the words of our training data to keep a maximum number of

words, text_to_sequences method to map the tokenized words in our vocabulary in a numeric

representation. Then we find the maximum length (maxlen) of the text over encoded

22

sequences. Finally, the resulting encoded sequences need to be the same length (maxlen

value) following the pad_sequences approach. Extra 0’s will be padded if the sequence is

longer than the encoded sequence. Finally, the output of tensor data shape is [iconpusLength,

jmaxlen], where indexes i and j denote, respectively, row and column. For example, Table 3.5

shows the full demonstration of data preprocessing for neural network training.

Table 3.5: Demonstration of neural network based data preprocessing

Method Data Comment

Text জয় বোং ো কোপ!তোও আবোি স্বোধীনতোি মোস মোযচব।
 োি মোেো যেযক এমন চমৎকোি আইরিয়ো এযসযি
তোযক সযো ুট।

Raw Text

Tokenizer ['জয়','বোং ো', 'কোপ', 'স্বোধীনতোি', 'মোস',
'মোযচবি', 'মোেো', 'চমৎকোি', 'আইরিয়ো', 'সযো ুট']

Sentences are tokenized

Stemming ['জয়', 'বোং ো', 'কোপ', 'স্বোধীনতো', 'মোস', 'মোচব',
'মোেো', 'চমৎকোি', ' আইরিয়ো ', 'সযো ুট']

Stemming word

text_to_sequences [16, 170, 504, 81, 105, 450, 188, 64, 206,

4161, 788]

Encoded each word as a nu-

meric number representation

pad_sequences

(maxlen = 40)

[16, 170, 504, 81, 105, 450, 188, 64, 206,

4161, 788, 0, 0, 0, 0, 0, 0, 0, 0, …………]

padding the sequence as 40

length followed by extra 0’s

3.5.1.2 Data Preprocessing on Attention Based Mechanism:

The difference in our attention-based neural network data preprocessing [59] is dividing

each sentence letting as a sequence followed by sentence piece tokenization method. This

sequence is encoded as a numerical vector representation. We find the maximum length

(maxSentLen) of each raw text sentence piece tokenization [60] for specifying out tensor data

array length for training purposes. We count the maximum sequence length (maxSeqLen)

in every sequence for padding over data. We padded over the sequence into extra 0’s if the

sequence is longer rather than the encoded sequence [61]. Finally, the output of tensor data

shape is three dimensional [iconpusLength, jmaxSentLen, kmaxSeqLen], where indexes i, j and k denote,

respectively, row, column and height. Here Table 3.6 shows the whole process for attention-

based mechanism data preprocessing in training on neural network approach.

23

Table 3.6: Demonstration on Attention Based Neural Network Data Preprocessing

Method Data Comments

Text জয় বোং ো কোপ!তোও আবোি স্বোধীনতোি মোস
মোযচব। োি মোেো যেযক এমন চমৎকোি
আইরিয়ো এযসযি তোযক সযো ুট।

Raw Text

Sentence Piece Tokenizer

[['জয় বোং ো কোপ!'],

3 Sentence are tokenized ['তোও আবোি স্বোধীনতোি মোস মোযচব।'],
[' োি মোেো যেযক এমন চমৎকোি আরইিয়ো
এযসযি তোয সযো ুট।']]

Tokenization + Stemming

[['জয়', 'বোং ো', 'কোপ']
Tokenize, Stemming word in
every sentence ['স্বোধীনতো', 'মোস', 'মোচব'],

['মোেো', 'চমৎকোি', 'আইরিয়ো', 'সযো ুট']]

text_to_sequences

[[16, 170, 504],
Encoded each sentence as a
numeric number representation [81, 105, 450],

[188, 64, 206, 788]]

pad_sequences

(maxSeqLen= 25

maxSentenceLen = 3)

[[16, 170, 504, 0, 0, 0, 0, 0, . . .],
padding each sequence as 25

length followed by extra 0’s
[81, 105, 450,0 ,0 ,0 ,0 , 0, . . .],

[188, 64, 206, 788, 0, 0, 0, 0, 0, . . .]]

3.5.1.3 Data Preprocessing on Transformer Neural Network (BERT) Based Mechanism:

There are some special tokens in the pre-trained language model for preprocessing in Trans-

former neural network BERT. In our experiment, we used the Bangla bert base form hugging-

face library [62, 63], a PyTorch version to preprocess our text for learning in a transformer

encoder network. The special tokens are shown in Table 3.7. [CLS] tokens are at the begin-

ning of the sentence, [SEP] tokens are at the end of the sentences and [PAD] tokens are to

pad and truncate the sentence in the maximum length of sentence in the corpus. First, we

tokenize the sentence text using the transformer package BertTokenizer [64]. We use the

encode_plus [65] function to generate token_ids, then convert_ids_to_token and attention

mask. The attention_mask is used to identify which tokens are used (represented as 1) or not

(represented as 0’s). Finally, the input matrix is encoded as ['input_ids', 'attention_mask'].

The whole demonstration is shown in Table 3.8.

24

Table 3.7: Classification of tokens in transformer neural network

Token Name Identification Id representation

Ending Sen-

tence marker

[SEP] 102

Classification

Token

[CLS] 101

Padding

Token

[PAD] 0

Table 3.8: Demonstration of transformer learning neural network based data preprocessing

Method Data Comment

Text জয় বোং ো কোপ!তোও আবোি স্বোধীনতোি মোস মোযচব।
 োি মোেো যেযক এমন চমৎকোি আইরিয়ো এযসযি
তোযক সযো ুট।

Raw Text

Preprocessed Text +

Stemming

জয় বোং ো কোপ স্বোধীনতো মোস মোচব মোেো চমৎকোি
আইরিয়ো সযো ুট

Preprocessed text along with

stemming

tokens ['জ', '## ', 'বোং ো', 'কোপ', 'সব', '##◌োধীন',
'##তো', 'মোস', 'মোি', '##চ', 'মোেো', 'চমৎকোি',
'আরইি', '## ো', 'স', '## ো', '## ট']

Sentence are tokenized

token_ids tensor([101, 7360, 9294, 2492, 2991,

2132, 24484, 3274, 2416, 6723, 7464,

3755, 6162, 9709, 7724, 3091, 7724,

40654, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0])

Encoded each word as a nu-

meric number representation

convert_ids_to_tokens [’[CLS]’, 'জ', '## ', 'বোং ো', 'কোপ', 'সব',
'##◌োধীন', '##তো', 'মোস', 'মোি', '##চ', 'মোেো',
'চমৎকোি', 'আরইি', '## ো', 'স', '## ো',
'## ট', '[SEP]', '[PAD]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]',
'[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']

Covert ids into token

encoding [’atten-

tion_mask’]

tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0])

padding the sequence as 40

length followed by extra 0’s

3.5.2 Word Embedding:

In a neural network, word embedding is a measurement of language modelling and fea- ture

learning which maps the textual word into low dimensionality dense vectors. As a word

embedding system, Word2Vec [66] research by Google is computationally efficient and

practicable in a deep neural network model, which captures the semantic relations between

25

words by calculating the co-occurrence of words in a given corpus. It contains two models:

a continuous bag of word (CBoW) [41] and Skip-Gram (SG) [67]. The procedure of CBoW

model is to portend the current or target word from the neighbouring co-occurrence word,

whereas the SG model portends the entire context word from the target word shown in

Figure 3.3. The basic difference between these two models is that, in each target-context

pair, a newly annotation is considered in the SG model, whereas the entire context as one

annotation is considered in CBoW model. As our training data is relatively small, we work

on SG algorithm to represent words in n-dimensional vector space. In our neural network

model, we build three dimensional(D) vector space [128D, 200D, 300D] with a window size

of 5 (window=5) which means the distance between the current and predicted word in a

sentence, and the minimum length is 1 (min_count=1) for our neural network models.

Figure 3.3: Word2Vec (Skip-Gram) Architecture Diagram

26

3.6 BTSC Algorithm

3.6.1 Discussion of Algorithmic Pseudocode

This section discusses the proposed novel BTSC algorithm which has a total of 30 steps. This

BTSC algorithm is unique to Bangla and any other language. Out of the 30 steps, the unique

steps are from steps 11 to 26 that manages the POS conjunction, adjective, adverb,

punctuation and question marks. This Algorithm 1 termed as BTSC which is used for

generating score from the sentence. The inputs, notations, output and pseudocode are

described in below:

I nputs & Notations :

DD: Dataset Dictionary

LDD: Lexicon Dataset Dictionary[Active (Score = +1) & Contradict word (Score = -1)].

JJ /RB: Adjective or Adverb Word Quantifier Dictionary(3 types in dataset)[HIGH=3, MID=2,

LOW=0.5]

CC: Conjunction Type Pos Tagger, CD: Co-ordinating & CS: Sub-ordinating Conjunction

Word

POS: Parts of Speech, PR: Pronoun, V B: Verb, NN : oun, RB: Adverb Type POS Tagger

Word

PU : Punctuation (!) Character, QM : Question Mark (?) Character

TP : Transitional Preposition Word, k: count of negative word (initial, k=0), SC[Word]:

Score of a Word

Output :

SCS: Score(SC) calculation form a Sentence (per sentence by sentence)

1. If SCS is > 0, Sentence polarity is Positive.

2. If SCS is = 0, Sentence polarity is eutral.

3. If SCS is < 0, Sentence polarity is egative.

27

Algorithm 1 Bangla Text Sentiment Score Calculation (BTSC)

1: for each Sentence[i] in Dataset do

2: for each Tokenize(word[j]) in Sentence do

3: Remove(TP , PR)

4: Scanning List of Word[j] from LDD

5: if word[j] is Active word in LDD then

6: SC[Word[j]] = +1

7: else if word[j] is Contradict word in LDD then

8: SC[Word[j]] = -1

9: else if word[j] is a negative word in LDD then

10: k = k+1

11: else if word[j] is a CC type of POS tagger then

12: if CD type word[j] occurs in a sentence then

13: SC[Word[j]] = +2

14: if CS type word[j] at the beginning of a sentence then

15: SC[Word[j]] = +1.5

16: else if word[j] is a JJ/RB POS tagger then

17: SC[Word[j]] = explore in JJ/RB type of POS tagger in DD to get word[j] score

18: else if PU occurs at the Sentence[i] then

19: if word[j-1] of PU is a Contradict word in LDD then

20: SC[Word[j]] = -2

21: else if word[j-1] of PU is a VB type of POS tagger then

22: SC[Word[j]] = -1

23: else if QM towards the end Sentence[i] and word[j-1] of QM is a VM type POS then

24: SCS[Sentence[i]] = -1

25: break

26: else

27: SCS[Sentence[i]] = (-1)k * [SC[Word[j]] * SC[Word[j+1]] ... * SC[Word[jn]]]

28: end for

29: SCS = SCS[Sentence[i]] + SCS[Sentence[i+1]] + ... + SCS[Sentence[in]]

30: end for

3.6.2 Score Calculation

To demonstrate our Algorithm 1 : BTSC, we have considered five examples from the cricket

and restaurant datasets. We consider five tables for simulating our example scores, besides

showing each word score, English translations, POS tagger and total final score. These tables

are formatted below according to algorithm 1.

28

Ex 01: " জয় বোং ো কোপ স্বোধীনতো মোস মোচব মোেো চমৎকোি আইরিয়ো সযো ুট "[Not only is cooking

great, the service has always been attentive and good.]

Table 3.9: Score calculation of Ex: 01

List of Word িোন্নো যসিো যসবো মযনোয োগ্ী এবং ভো Final Score

English Translation cook great service attentive and good
(+2)

Word Score Value (+1) (+1) (+1) (+1) (+2) (+1)

Ex 02: "বাাংলাদেদের বযাট াং টবপর্যয়।। ভাল লক্ষণ নয়।।" [Bangladesh's batting disaster. Not a

good sign.]

Table 3.10: Score calculation of Ex: 02

List of Word বোং োযদে বযোরটং রবপ য়ব ভো ক্ষণ নয় Final Score

English Translation bangladesh batting disaster good sign not
(-2)

Word Score Value (+1) (+1) (-1) (+1) (+1) (-1)

Ex 03: "সময় বাাংলাদেদের ভাদযয ড্র ররদেদে, টনশ্চয়ই হার োড়া উপায় টেদলানা!!"[Time has left a draw

for the fate of Bangladesh, of course there wasn’t a way without a defeat!!]

Table 3.11: Score calculation of Ex: 03

List of Word বোং োযদে ভোগ্য ড্র রনশ্চয়ই হোি উপোয় রিয োনো Final Score

POS Tagger NN NN NN CC NN VB VB

(-3) English Translation bangladesh fate draw of course defeat way was not

Word Score Value (+1) (+1) (-1) (+1.5) (-1) (+1) (-2)

Ex 04: "েুব সীটমত আসন আদে এবাং টিক সমদয় োেয পাওয়ার জনয র্দেষ্ট অদপক্ষা করদত হদব।"[There

are very limited seats and you have to wait long enough to get food on right time.]

Table 3.12: Score calculation of Ex: 04

List of Word খুব সীরমত আসন এবং রিক খোদয পোওয়ো যেষ্ট অযপক্ষো Final Score

POS Tagger RB NN NN CC VB NN VB JJ VB

(-18) English Translation very limit seat and right food get enough Wait

Word Score Value (+3) (-1) (+1) (+2) (+1) (+1) (+1) (+3) (+1)

29

Ex 05: "র দে মােরাটির টক রোষ া টেল? রস রতা র ে রেদলই না । এোদনও তাদক র দন আনদত হদব?"

[What was Mashrafe's fault in the test? He doesn't even play Tests. Should he be dragged

here too?]

Table 3.13: Score calculation of Ex: 05

List Of Word র দে মোেিোরি যদোে রি যখ ো নো যটযন আনো হযব Final Score

POS Tagger NN NN NN VB NN NA VB VB VB

(-3) English Translation test Mashrafe’s fault was play not dragged Should

Word Score Value (+1) (+1) (-1) (+1) (+1) (-1) (-1) (+1)

3.6.3 Simulation of BTSC Algorithm

The input for our Algorithm 1 is a list of sentences considered in the dataset. Line 1 in the

algorithm considers each text or sentence which score will be calculated. At lines 2 and 3,

tokenizing sentences along with stemming, removing transitional preposition (TP) word,

parts of speech (POS) tagging processes are performed. Here TP word i.e., ‘শুধুমোত্র’ [only], ‘নো

হয়’ [or else], ‘নো যতো’ [not at all], ‘তো নয়’ [not that], ‘যসইজনয’ [that’s why], 'তবুও যকন' [yet why]

have not any significance in Bangla sentence for calculating score. At line 4, we scan every

preprocessed word in each sentence from the LDD. With the help of LDD, we have found

the weight score values of each active and contradict words at lines 5 to 8. As ‘নো’, ‘যনই’,

’নোই’ [not] are negative dictionary words in the LDD, the k counter is automatically

incremented at line 9 to 10. At lines 11 to 17, the POS conjunction, adjective and adverb are

managed. The rules for punctuation and question mark characters are set at lines 18 to 24.

The sentiment of a single sentence is calculated by multiplying each word score at line 27,

and the total polarity of a whole paragraph score is calculated at line no 29 by adding each

sentence score.

30

3.6.3.1 Illustration of Example on BTSC Algorithm

A number of examples are shown to demonstrate the BTSC algorithm. In the first example

shown in Table 3.9, ‘মযনোয োগ্ী’ [attentive], ‘যসবো’ [service] are active words and ‘রবপ বয়’[disaster],

‘হোি’ [defeat] are negative words in LDD, these word scores are calculated at lines 6 and 8,

respectively. In this case, there is one sentence and the score value is the multiplica- tion

of individual scores resulting in (+2). Now, example 2 is demonstrated in Table 3.10 from

the cricket dataset. Here are two sentence, first (i = 1) sentence [‘বোং োযদযেি বযোরটং

রবপ বয়’[Bangladesh's batting disaster]] score is (-1) and the second (i = 2) sentence [‘ভোয ো ক্ষণ

নয়’ [Not a good sign]] score is (-1) and final total score of this phrase is (-1)+(-1)=(-2) which

is calculated at line 29. In the third example as shown in Table 3.11, one word ‘রনশ্চয়ই’ [of

course], is a CC (CS type word) POS tagger and this score value is obtained from lines 14 to

15. There is a contradict word i.e., ‘রিয োনো [was not] before the punctuation(!) character, the

score of this word is calculated at line 21 to 22. In this case there is only one sentence and

the score is (-3).

In example 4, shows in Table 3.12, there is one sentence, ‘এবং’ [and] is a CC (CD type

word). This is calculated at lines 11 to 13. There is ‘ যেষ্ট‘ [enough] as adjective (JJ) and ‘খুব‘

[very] as adverb (RB) quantifier POS tagger word. The score of the words is calculated from

line 16 to 17. The final score is calculated as (-18) after multiplying the individual scores.

In example 5, shows in Table 3.13, there are three sentences. A question mark (QM)

occurs at the end of the first (i=1) [‘যটযে মোেিোরিি রক যদোেটো রি ?’ [What was Mashrafe's fault

in the test?]], and there is a ‘রি ‘ [was] VB type POS tagger before a QM. So, this sentence

has a negative meaning due to the presence of a QM after VB POS tagger. The score of the

first sentence is (-1). The score of the second sentence is (-1) executed at lines 5 to

10. In the third (i=3) sentence [‘এখোযনও তোযক যটযন আনযত হযব?’ (Should he be dragged here

too?)] sentences there is a ‘হযব’ [Should] VB type POS tagger before a QM, So, this sentence

has negative meaning due to the presence of a QM after VB POS tagger. The score of this

sentence is (-1). The score of the first sentence and the third sentences are (-1) executed

31

as lines 23 to 24. Finally, the total calculated score of the three sentences are summed as (-

1)+(-1)+(-1)=(-3).

3.7 Data Augmentation

Data augmentation(DA) refers to a technique used to expand the quantity of data by ma-

nipulating or adding slightly changes to existing data. To influence in training of the

DNN model, DA is a practical use case for preventing noisy data or overfitting. DA can

explore the advancements of supervised learning without labeled data. Without learning

from domain-based labeled data, DA enables the interface of label-based data transformation

means self-supervised learning.

Figure 3.4: Visualization of DL Based Proposed System Architecture

In classification of text or images DA technique is used for rising the performance of DL

models. In our experiment, we have used lexicon data dictionary (LDD) from our previous

work. We have done prerequisite preprocessing part in building LDD from dataset. It includes

noise reduction, substitute words in lexicon, words shuffling mainly used for short text which

is mostly related to data sampling analysis. BTSC is used for detecting score from large text

that is why we do not need any hybrid data augmentation method for generalization our

text. By doing word shifting in sentence increases the data in training samples. We have

32

used a categorical aspect-based dataset (cricket) that means a comment has a positive on x

category and negative on y category or neutral on z category with specific polarity but

BTSC algorithm detects polarity only extracts sentiments according to our global extended

lexicon dictionary not to use in categorical sentimental dictionary. The process of DA is

depicted on Figure 3.4. As there is not enough data [53] to produce high-quality classifiers,

we apply NLP a data augmentation technique to solve this issue. We apply contextualized

word embedding techniques [68] to extend our dataset. We modify the data by inserting

and substituting a word by Bangla-bert base [62] contextualized word embedding process.

Table no 3.15 shows the DA process.

3.7.1 Dataset Creation

After applying data augmentation technique, we have created a merged dataset. The total

merged dataset is of 15,114 samples. The total construction of the merged dataset is shown

in in Table 3.14.

Table 3.14: Statistical polarity of data augmentation in cricket and restaurant datasets with individ-

ual and total comments

No Dataset Total Dataset

Cricket Main Data Raw Text 2059

Augmented Data
Insert Method

4118
Substitute Method

Restaurant Main Data Raw Text 2979

Augmented Data
Insert Method

5958
Substitute Method

Augmented Dataset (summation) 15114

For example, in Table 3.15, main data-3 raw text “বোং োযদযেি পযি ভোিযতি সোযপোটব ই করি?।”

[Support India after Bangladesh?], when applying insert method “স্বোধীনতোি” [independent]

word is inserted in the raw text. Then this text will be as “বোং োযদযেি স্বোধীনতোি পযি করি

ভোিযতি সোযপোটব?।“ [Support India after the independence of Bangladesh?]. Again, applying

substitute method in the main data-3 raw text, “ভোিযতি” [India] word is substituted by

33

“জনগ্ণ” [people] “কতটো” [much] words and finally this will be emerged as “বোং োযদযেি জনগ্ণ

কতটো সোযপোটব ই করি? রবরবরস।“ [How much do the people of Bangladesh support? BBC]. There is

a polarity difference in augmented data. In Table 3.15, the insert method augmented text

polarity is positive, and the substitute-based augmented text polarity is negative.

Table 3.15: DA process in contextualized word embedding (Bangla-Bert) with BTSC polarity

No Dataset Comments BTSC

Polarity

Main Data-1 Raw Text
পরিরমত েোই খোদয - রদও একরট নিম টুকিো - সোমোনয ঘুিো রিিো,
রকন্তু যসবো ভো । Positive

Augmented
Data

Insert
Method

পরিরমত শুকযনো েোই প্রকোি খোদয - রদও একরট যিোট নিম টুকিো -
য মন সোমোনয ঘুিো সোযে রিিো, রকন্তু বোরিযত যসবো রনয ভো হযব।

Positive

Substitute
Method

কম পরিমোযণ খোদয আযি - রদও কম েক্ত টুকিো - ঘুিো রিিো যেযক
রকন্তু ভো ।

Negative

Main Data-2 Raw Text জয় বোং ো কোপ! তোও আবোি স্বোধীনতোি মোস মোযচব। োি মোেো যেযক
এমন চমৎকোি আইরিয়ো এযসযি তোযক সযো ুট।

Positive

Augmented
Data

Insert
Method

জয় হয ো বোং ো িুটব কোপ! তোও তোি আবোি স্বোধীনতোি মোস মোযচব
আযি । োি মযত মোেো যেযক এমন বহু চমৎকোি আইরিয়ো আি
এযসযি তোযক এক সযো ুট ।

Positive

Substitute
Method

আমোি বোং ো নববেব! শুরু আবোি যসযেম্বি মোস যেযক । োি মোেো
যেযক যকোযনো চমৎকোি আইরিয়ো এযসযি যসই ব ুক ।

Positive

Main Data-3 Raw Text বোং োযদযেি পযি ভোিযতি সোযপোটব ই করি?। Positive

Augmented
Data

Insert
Method বোং োযদযেি স্বোধীনতোি পযি করি ভোিযতি সোযপোটব?। Positive

Substitute
Method বোং োযদযেি জনগ্ণ কতটো সোযপোটব ই করি? রবরবরস। Negative

After creating this augmented dataset, we merged the cricket and restaurant datasets

and applied the BTSC algorithm to detect sentiment. Then we check the grammatical spell

using by spell checker method.

34

−

3.7.2 Creation of Augmented Dataset Algorithm

 Inputs & Notations :

(i) P re_trained_model_path = “sagorsarker/bangla-bert-base”

(ii) ContextualWordEmbsAug: Contextualized Word Embedding Function Augmented Dataset

(iii)INSERT = ContextualWordEmbsAug(Pre_trained_model_path, action="insert")

(iv)SUBSTITUTE = ContextualWordEmbsAug(Pre_trained_model_path, action="substitute")

(v)SpellWordFrequencyList = Load Words of Frequency to Check the spell of a Word

Output :

AugmentedDatasetList: Cricket and Restaurant Merged Augmented Dataset

Algorithm 2 Augmented Dataset Algorithm

1: for each corpus[i] in Dataset do

2: augmented_text = INSERT .augment(corpus[i])

3: augmented_text = SUBSTITUTE.augment(corpus[i])

4: augmentedDataList.append(augmented_text)

5: end for

6: SPELL = SpellChecker()
7: for each Sentence[i] in augmentedDataList do

8: SpellWordFrequencyList = SPELL.word_frequency.load_words()

9: for each Word[j] in SpellWordFrequencyList do 10:

 check_spell = SPELL.correction(Word[j])

11: if check_spell is True then:

12: Sentence[i] = append the spell-checked Word[j] in i th Sentence

13: else if check_spell is False then:

14: Sentence[i] = no changes in Word[j]

15: end for

16: augmentedDataList = Sentence[i]

17: end for

3.7.2.1 Description of Augmented Dataset Algorithm

The algorithmic process of DA is described below. In the inputs section, at line number

(i), pretrained model path is set. In lines (ii), the Contextualized Word Embedding function

35

for augmented dataset is declared. In lines (iii) and (iv), the insert and substitute actions

are called through contextualized word embedding function. In lines (v), the spell-checking

word frequency is loaded to check the spell of a word. In lines 1 to 5, we iterate through

every text of both datasets (restaurant and cricket) to produce augmented text by insert

and substitute method and, finally, merge it into an augmented list. Then we check our

grammatical font errors in lines no 6 to 17. For example, ‘স্বোধীনতোি’ [independent], ‘সোযপোটব’

[support], ‘সযো ুট’ [salute] fonts are misspelled as ‘সবোধীনতোি’ [independent], ‘সোপিট’ [support]

‘স ো ট’ [salute] during augmenting text. In line no 11, we load every possible combination

of j-th word vectors, then it is corrected and spelled in line no 13. The corrected spelling

word is appended in the i-th sentence if the word is suitable for the misspelled word, and

checking activities are performed in lines 11 to 14.

3.8 Conclusion

In this section, we discuss the methodology of ML and DL-based approaches by following a

proper dataset preprocessing mechanism. We describe building a LDD by appointing a

specific weight on each POS category. We develop our BTSC as a rule-based algorithm for

extracting our polarity from text and simulate our algorithm using some examples. We

merged our cricket and restaurant dataset by applying augmentation technique and develop

a augmented dataset algorithm. We will experiment with our newly developed rule-based

algorithm in the next chapter.

Chapter 4

Experiments

4.1 Overview

This section describes the classical ML and DL approaches explored for SA from Bangla text,

and the model overview and experimental setup in each case. We discuss the experiments

based on the word embedding pretrained model. In ML approach, we trained a number of

text classification algorithms so that we could compare them and draw further inferences. In

DL approach, many layers, neural networks, frameworks and approaches have been proposed

for SA from text. We applied our proposed BTSC algorithm polarity in training data in ML,

and DL approaches. The rest of this section discusses the details of the steps used for

construction, discusses the features used followed by in-depth view of the aspect model.

4.2 Experiment on BTSC Algorithm

After applying the BTSC algorithm on both datasets, we construct a confusion matrix (CM)

based on positive, negative and neutral polarity labels shown on Table 4.1 and 4.2. From

Table 4.1, a total of 1067 and 398 comments is identified out of 1216 positive and negative

comments in restaurant dataset. Similarly, from Table 4.2, 547 and 1905 comments are

identified out of 620 positive and negative comments in the cricket dataset. From these both

36

37

Table 4.1: Polarity detection by BTSC on restaurant data

True\Predicted
Predicted Label

Total
+1 -1 0

True Label

+1 1067 140 9 1216

-1 74 398 6 478

0 242 63 60 365

Total 1383 601 75 2059

Table 4.2: Polarity Detection by BTSC on Cricket Data

True\Predicted
Predicted Label

Total
+1 -1 0

True Label

+1 547 67 6 620

-1 186 1905 17 2108

0 61 39 151 251

Total 794 2011 174 2979

CM, it can be inferred that the BTSC rule-based algorithm has been able to detect sentiment

fairly accurately except the neutral sentiments. Because the total dataset comments polarity

are voted based on category based. The maximum neutral data is manually generated above

the aspect based category. It means a comment has a positive on x category and negative

on y category or neutral on z category.

Table 4.3: Neutral data detection problem

No. Comments Category Polarity BTSC

Algorithm

Polarity

1
 "পটরটমত োই োেয – র্টেও একট নরম ুকরা - সামানয ঘুরা টিরা, টকন্তু রসবা ভাল"।
Moderate Thai food - although a soft piece - turns slightly, however the service
is good.

Food Positive

Positive Service Negative

Ambience Neutral

2 "রবাটলাং টপচ তদব আমাদের বযা সমযানদের আউ গুদলাই আত্মহতযা োড়া আর টকেুই
নয়।"Bowling pitch, but the batsmen outs are nothing but suicide.

Batting Negative
Negative

Bowling Neutral

Consider that example from Table 4.3: row 1 is taken from restaurant dataset that has

three categories on three polarities, and row 2 is taken from cricket dataset that has two

categories on two polarities. However, the BTSC algorithm only extracts sentiments according

to a global extended lexicon dictionary not used in a categorical sentimental dictionary. For

this reason, the calculation of neutral sentiments will be challenging to check.

38

4.2.1 Metrices Evaluation

From Table 4.1 and 4.2, we calculate some parameter measurements named as true positive

rate (TPR), true negative rate (TNR) and false positive rate (FPR). In order to keep

consistency with the relevant literature of natural language processing [69, 70], we have

used true positive rate (TPR), which is also known as recall or sensitivity indicated as

equation (4.1) below. It is measured by the ratio of the true positive (TP) of a particular

label to the sum of its true positive (TP) and false negative (FN). TNR is also known as

specificity, which is measured as the ratio of true negative (TN) of a particular label to the

sum of the true negative (TN) and false positive (FP), shows in equation (4.2). FPR is

known as type II error which is calculated by the ratio of the false positive (FP) of a

particular label to the sum of the false positive (FP) and true negative (TN), shows in

equation (4.3).

TPR(label) =

TNR(label) =

FPR(label) =

TP

TP + FN

TN

TN + FP

FP

FP + TN

(4.1)

(4.2)

(4.3)

These formulas are extracted by the concept of TP , TN , FP , FN . Basically, TP is

a correctly predicted class, TN is a correctly predicted non-class, FP is an incorrectly

predicted class and FN is an incorrectly predicted non-class. Before calculating equation

(4.1), (4.2), and (4.3), we need to consider Table 4.4 for stepping out these formulas. Here,

C(x, y) notation for each box is introduced to measure the parameters for CM. In C(x, y),

x is a predicted label or class and y is a true label or class. Calculation of TPR , TNR and

FPR for negative label (-1) is shown below at equation (4.4), (4.5) and (4.6).

39

Table 4.4: C(x, y) notation for indicating the parameters of CM

True\Predicted
Predicted Label

+1 -1 0

True Label

+1 C(1,1) C(-1,1) C(0,1)

-1 C(1,-1) C(-1,-1) C(0,-1)

0 C(1,0) C(-1,0) C(0,0)

Here Considering for negative labels,

TP = C(−1, −1),

TN = C(1, 1) + C(0, 1) + C(1, 0) + C(0, 0),

FP = C(−1, 1) + C(−1, 0),

FN = C(1, −1) + C(0, −1).

Finally we get TPR, TNR and FPR from equation number (4.4), (4.5) and (4.6), respectively.

TPR(−1) =
C(−1, −1)

C(−1, −1) + C(1, −1) + C(0, −1)

(4.4)

TPR(−1) =
C(1, 1) + C(0, 1) + C(1, 0) + C(0, 0)

C(1, 1) + C(0, 1) + C(1, 0) + C(0, 0) + C(−1, 1) + C(−1, 0)
(4.5)

TPR(−1) =
C(−1, 1) + C(−1, 0)

C(−1, 1) + C(−1, 0) + C(1, 1) + C(0, 1) + C(1, 0) + C(0, 0)

(4.6)

Similarly, other labels will be calculated in this way. A full summary of the calculation

is shown in Figure 4.1. In these measurements, TPR is above average at 85%, which signifies

our dictionary and BTSC algorithm efficacy. At most, 90% TPR at a negative label is obtained

in the restaurant dataset, and 87% TPR at a positive label is obtained in the cricket dataset.

As the high rate of TPR has a low rate of TNR, both will be preferable in better

performance. TNR and TPR are better on positive and negative labels however not

40

Figure 4.1: Visualization performance of BTSC algorithm in restaurant and cricket dataset

in neutral datasets because of the categorical identification polarity. In neutral comments,

60% and 16% TPR are carried in the cricket and restaurant dataset, respectively.

4.3 Experiment on ML Approach

To evaluate our experiment, we used supervised ML classification algorithm to classify our

data. At least 20% of thew dataset have been randomly chosen for testing dataset and rest

of the data is trained for classifying the polarity. The evaluation of our result is measured

through a CM including the classifier metrices called accuracy, precision, recall and f1-Score

with the help of using Spyder, python IDE environment. Among the classifier, SVM with

linear kernel trick (c=1) is the best for giving proper result in new observations because

SVM has found better accuracy in finding text classification.

4.3.1 Term Frequency - Inverse document Frequency (TF-IDF)

A standard feature matrix called term frequency - inverse document frequency (TF-IDF)

vectorizer is used to calculate the feature matrix. It maps text or word into a significant

representation number. Tf-Idf is an algorithm that inspects every core word in a document

41

and find out the most necessary keywords from the document. It is developed for the

documented analysis and retrieval of information from text.

Lets, define some notations, given a corpus D, a term ti and a document dj ∈ D, we denote

the number of occurrences of ti in dj by tf ij. This is referred as the term frequency.

 ti
tf ij = (

dj
)

(4.7)

The inverse document frequency for a term ti, denote as idf i, is defined on Equation 4.8

idf i = log[(

 |D|
) + 1] (4.8)

|d : ti ∈ d|

where |D| is the number of documents in corpus, and |d : ti ∈ d| is the number of documents

in which the term appears [71].

4.3.2 Construction of TF-IDF Matrix

The construction of TF-IDF matrix is followed by Table 4.5. In row wise, the number of

documents containing words are placed. The number of documents in which word appears

are placed in the column wise. This is one kind of sparse matrix which contains zeros in

several indexes.

Table 4.5: TF-IDF matrix format

Document/Word Word-1 Word-2 Word-3 . . . Word-30

DOC-1 D1/W1 D1/W2 D1/W3 . . . D1/W30

DOC-2 D2/W1 D2/W2 D2/W3 . . . D2/W30

DOC-3 D3/W1 D3/W2 D3/W3 . . . D3/W30

DOC-4 D4/W1 D4/W2 D4/W3 . . . D4/W30

.

.

.

DOC-10 D10/W1 D10/W2 D10/W3 . . . D10/W30

42

4.3.2.1 TF-IDF Matrix Calculation from Restaurant Dataset

Data shown in Table 4.6 is from restaurant dataset for calculating tf-idf matrix. At first, we

need to preprocess our text according to text preprocessing section followed by tokenization,

stemming and stop word removal procedures. Here Table 4.5 shows the demonstration of

DOC-10 and DOC-5 texts preprocessing mechanisms. Then we calculate word or term

frequency (TF) according to equation (4.7) and calculate word inverse document frequency

(IDF) according to equation (4.8).

Table 4.6: Sample data from restaurant dataset

DOC No. SENTENCE

DOC-1 এরট খুব যবরে রচেোকেবক এবং খুব সুস্বোদু অনুভূরত নয়।
DOC-2 োইযহোক, খোদয গুয ো খুব ভো ।
DOC-3 চমৎকোি ভো ওয়োইন তোর কো ।
DOC-4 মরুভূরম পরিযেবো খুব আনন্দদোয়ক, চমৎকোি বোয়ুমণ্ড রি ।
DOC-5 রদও অিবোি এবং খোদয যপযত অযপক্ষো রি ,পরিযেবো ধীযিধীযি রভি নো বোযি ।
DOC-6 অরবশ্বোসয স্থোন এত েীত এবং পরিযেবো য প্রম্পট এবং রবনয়ী।
DOC-7 আপরন একরট সমূ্পণব অরভজ্ঞতো অনুভূরত রদযয় যমনু যেযক খোবোি অিবোি যদন।
DOC-8 অযনক অিবোি তোই দ্রুত খোবোি খোও,।
DOC-9 পরিযেবো অরবশ্বোসয এবং যেট ভোিতীয় খোদয ।
DOC-10 আনন্দদোয়ক নো হয ও - আনন্দময় খোবোি এবং স্থোন একরট িরিন িি আনন্দময়

পরিযবে - মরুভূরম বোয়ুমণ্ড ।

Table 4.7: Sample stop word list from restaurant dataset

Here in Table 4.10, the word “আনন্দময়” occurs two times in the 10-th document (DOC-10),

and the word “পরিযেবো” occurs one time in the 5-th document (DOC-5) represented as (a). At

table 4.10, DOC-10 has a length of word 14, and DOC-5 has a length of 12 represented as (b).At

Table 4.10, the number of documents length (d) is ten as there are ten documents (DOC-1

to DOC-10) in the Table 4.6. Here, the word “আনন্দময়” occurs in every document (DOC-1 to

DOC-10) only 1 time and word “পরিযেবো” occurs in every document (DOC-1 to DOC-10) 4

times represented as (c).

এরট, োইযহোক, গুয ো, রি , নো, োযত, এবং, রদও, এত, রদযয়, য , একরট,
আপরন, সমূ্পণব, যেযক, যদন, তোই, অযনক, হয ও, হয়

Stop Word List

43

4.3.2.2 Formation of Term Frequency and Inverse Document Frequency

The term frequency (TF) will be calculated as X, and inverse document frequency (IDF) will

be calculated as Y, shown at Table 4.11. Then we calculate the term frequency matrix (TF)

represented by word by document matrix, shows as Table 4.8 which is stated as the

frequency of i-th document word divides the length of that i-th document tokens.

Table 4.8: Representation of word by document matrix

Word/ Document DOC-1 DOC-2 DOC-3 . . . DOC-10

Word-1 W1/D1 W1/D2 W1/D3 . . . W1/D10

Word-2 W2/D1 W2/D2 W2/D3 . . . W2/D10

Word-3 W3/D1 W3/D2 W3/D3 . . . W3/D10

Word-4 W4/D1 W4/D2 W4/D3 . . . W4/D10

.

.

.

Word-30 W30/D1 W30/D2 W30/D3 . . . W30/D10

Table 4.9: Dataset preprocessing for TF-IDF matrix construction

Document No. Process Output

DOC-10

EX: 01

Tokenization and

Normalization

['আনন্দদোয়ক', 'নো', 'হয ও', 'আনন্দময়', 'খোবোি',
'এবং', 'একরট', 'িরিন', 'িযিি', 'আনন্দময়',

'পরিযবযে', 'মরুভূরমি', 'বোয়ুমণ্ড ']

Stemming
['আনন্দদোয়ক', 'নো', 'হয ও', 'আনন্দময়', 'খোবোি',

'এবং', 'একরট', 'িরিন', 'িি', 'আনন্দময়',
'পরিযবে', 'মরুভূরম', 'বোয়ুমণ্ড ']

Stop Word

Removal
['আনন্দদোয়ক', 'আনন্দময়', 'খোবোি', 'িরিন', 'িি',

'আনন্দময়', 'পরিযবে', 'মরুভূরম', 'বোয়ুমণ্ড ']

DOC-5

EX: 02

Tokenization and

Normalization

[' রদও', 'অিবোি', 'এবং', 'খোদয', 'যপযত', 'অযপক্ষো',
'রি ', 'পরিযেবোয়', 'ধীযিধীযি', 'রভি', 'নো', 'বোযি']

Stemming [' রদও', 'অিবোি', 'এবং', 'খোদয', 'যপত', 'অযপক্ষো',
'রি ', 'পরিযেবো', 'ধীযিধীযি', 'রভি', 'নো', 'বোি']

Stop Word

Removal
['অিবোি', 'খোদয', 'যপত', 'পরিযেবো', 'ধীযিধীযি',

'রভি', 'বোি']

The full representation of TF-IDF matrix calculation is shown in the appendix section. The

calculation of word frequency and word inverse document frequency is shown at Table A.1(a)

and A.1(b) respectively. The TF matrix transposes the IDF matrix from Table A.2. Table A.3

is produced by the transpose of Tf matrix from Table A.2. Finally, X and Y are multiplied

44

Table 4.10: Calculation of terms in each document

Document

Word

No. of

occurrences

of a word in a

doc (a)

No. of

words in

that doc

(b)

No. of

Documents

containing

word (c)

No. of

Documents

(d)

DOC-10 আনন্দময় 2 14 1 10

DOC-5 পরিযেবো 1 12 4 10

DOC-5 খোদয 1 12 3 10

Table 4.11: Calculation of term frequency [X], inverse document frequency [Y] and TF-IDF [X*Y]

value

Document Word
TF Value

(a/b) = [X]

IDF Value

log((c/d)+1) = [Y]

TF-IDF value

[X*Y]

DOC-10 আনন্দময় 0.14285 2.39789 0.342538

DOC-5 পরিযেবো 0.08333 1.2527 0.104387

DOC-5 খোদয 0.08333 1.46633 0.122189

to produce our term frequency – inverse document frequency matrix (TF-IDF) shown in

Table A.4. Similarly, a sample form cricket dataset Table A.5, the overall construction of b

word frequency and inverse document frequency matrix shows at Table A.6, term frequency

matrix shows at table A.7 inverse frequency matrix at Table A.8 and TF-IDF feature matrix

shows at Table A.9.

4.4 Experiment on DL approach

Our main aim of rule-based DL sentiment extraction experiments is to analyze the effec-

tiveness of the well-known DL models. We used Tensorflow == 2.4.1, Keras == 2.4.3 and

Transformer == 3.0 for developing our DL model. The cricket dataset [53] with a total of

2978 entries was divided into three parts, namely training, validation and testing, distributed

as follows: 80% (2412 entries) for model training and 20% (566 entries) distributed for val-

idation (268 entries) and testing (298 entries). The model is not trained on the validation

dataset. The validation dataset accuracy determines how well the model will perform on

test data. The definition of training, test, validation set from [72] are defined below:

45

(i) Training set: A set of examples used for learning, that is to fit the parameters of the

classifier.

(ii) Validation set: A set of examples used to tune the hyper-parameters of a classifier.

(iii) Test set: A set of examples used only to assess the performance of a fully-specified

classifier.

To summarize, the training set is used to train the model while validation samples help to

tune the hyper-parameters (i.e., learning rate, batch size, filter size, kernel size, activation

function, dropout rate, number of hidden units etc.) of the model. However, training data

is a subset of the primary dataset used to fit the model. The validation set determines the

model performance and finds the optimal network layer size. Finally, the trained model is

evaluated with the test set.

We trained a model on different hyperparameter settings such as embedding dimension,

dropout rate, kernel, filter and batch size, learning rate (lr), epoch number etc. We iterate

our model on this hyperparameter until we find its optimum value for training, avoiding

overfitting on the dataset. In our experiment, we set the epoch number to 50 and batch size

to 256. Except for the transformer learning training mechanism, we use a batch size of 16.

4.4.1 Learning Curve:

A learning curve (LC) plots model learning performances over the epoch rate or time. LC

performances on the train and validation datasets are applied to determine an underfit,

overfit or well-fit model [73]. It can be used whether the train or validation datasets are

not relatively representative of the problem domain [74]. LC plot the training and validation

accuracy and loss of training and validation data over time. Our experiment showed each

model's learning performance by plotting LC. For a better understanding of our experiment,

we have showed each model training accuracy (TA) vs. validation accuracy (VA) with respect

to epoch and training loss (TL) vs. validation loss (VL) with respect to epoch during training

46

the model, similar approach are shown in [75, 76, 77, 78, 79]. The X-axis indicates the epoch

number, while the Y-axis indicates the training, validation accuracy, and training, validation

loss. TA and VA determine whether the model was overfitting or not and TL and VL

determine whether the model was overfitting or underfitting. The VA and VL for dataset how

well the model will perform for the unseen future data.

4.4.2 Convolutional Neural Network (CNN):

CNN is a type of feed-forward neural network in the field of computer vision that consists

of convolutional, pooling and fully connected layers. For text classification, raw text must

be represented as a vector in the input layer, represented at Table 3.5. After a series of

convolutional stacked with multiple filters and pooling operations, the model has an activa-

tion function in the neural network. Our experiment uses a simple CNN for classifying text

because it can extract the features from global information with the help of a convolutional

layer. We add an embedding layer with vocabulary size, maximum text input length, and

embedding size and weight of embedded matrix with 128d. Then we apply a learning

sequence to our vocabulary by using a convolutional 1D layer with 300 filters, kernel(k) size

of 5(k=5) value and Relu activation unit. The convolution layer can shift the window over

the sentence and the weighted matrix and let the C learn the weights for applying in the

neighboring words in tensor input data. For effectively operating in the learning rate, we

use a spatial dropout one dimensional (SpatialDropout1D) parameter of 0.5, which drops the

1D feature from the embedding layer. To eliminate the overfitting problem, we use a Dropout

regularization technique with 0.5. As our C model is sequential, we add a batch normalization

layer for learning efficiently from previous output layers. Finally, we add a dense layer with

the Sigmoid activation function because we perform a trinary-based classification. Figure 4.2

shows the entire demonstration process of our sentiment classification in CN N .

After constructing our CNN model, we compile it with our 128D word embedding matrix

47

Figure 4.2: Convolutional neural network (CNN) architecture for sentiment classification

(a) TA, VA on CNN (b) TL, VL on CNN

Figure 4.3: (a) LC of CNN model training accuracy (TA) and validation accuracy (VA) and (b)

LC of CNN model training loss (TL), validation loss (VL)

by setting the parameter loss function as categorical cross entropy (categorical_crossentropy)

and optimizer as adam at a learning rate of 0.01. After compiling the model, we fit the model

with our training and validation data having a batch size of 256 with 50 epochs; we achieved

87.58% training accuracy (TA), 73.49% testing accuracy, 78.56% testing precision and 79.66%

and testing recall value. Figure 4.3 shows the training, validation accuracy (VA), validation

loss (VL) vs epoch during training the model.

4.4.3 Dynamic Convolutional Neural Network (DCNN):

DCNN uses convolutional layer with dynamic k-max pooling layers to extract a sentence

feature map. K-max pooling layer is used to identify the short and long contextual relations in

48

the word embedding text. The altitude of convolutional size and corpus text size determine

the k value dynamically that is why it is called the dynamic k-max pooling layer in the

network. In our experiment, we have used five k-max (k=5) pooling layers two times followed

by zeropadding 1D with 49 filter size and convolutional 1D with (64*50) size. A flatten fully-

connected layer is added with a hidden layer. Dropout layer is used before the independent

weights with 50 neurons having ReLU activation layer. Finally, each neuron from the fully

connected dense layer is fed as output to the sigmoid layer with three neurons. Here in Figure

4.4 shows the whole demonstration process of our sentiment classification in DC .

Figure 4.4: Dynamic convolutional neural network (DCNN) architecture for sentiment classifica-

tion

After constructing our DCNN model, we compile it with our 128D word embedding

matrix by setting the parameter loss function as categorical_crossentropy and optimizer as

adam at a learning rate of 0.0001. After compiling the model, we fit the model with our

training and validation data having a batch size of 256 with 50 epochs; we achieved 87.58%

training accuracy and 73.49% testing accuracy with 78.56% testing precision and 79.66%

testing recall

49

value. Figure 4.5 shows the training, validation accuracy, loss vs epoch during training the

model. At point 30, epoch validation accuracy increases with respect to epoch, which means

that the training procedure should be stopped on 30 epoch point.

(a) TA, VA on DCNN (b) TL, VL on DCNN

Figure 4.5: (a) LC of DCNN model training accuracy (TA) and validation accuracy (VA) and (b)

LC of DCNN model training loss (TL), validation loss (VL)

4.4.4 Multichannel Variable-Size Convolution Neural Network (MVCNN):

MVCNN is similar to CNN and DCNN, except it has variable size filter mechanisms with

different sizes of word embedding layers. In our experiment, we used two embedding

matrices dimensions (D) i.e., 128D and 200D. The two embedding layers are iterated over 3,

4, 5 filter sizes followed by zeropadding1D (2, 3, 4), convolutional layer with 100 filter and

k-max pooling layer with 10. The output of this layer is iterated again according to the first

layer mechanism. Finally, these three layer (layer_1 and layer_2, layer_3) are concatenated

and flatten output is followed as same as before DCNN and CNN , process demonstration in

Figure 4.6

In the MVCNN model, we compile it with a two-dimensional word embedding ma- trix:

128D and 200D and set the parameter loss function as binary corssentropy (bi-

nary_crossentropy), use a adam optimizer at a learning rate of 0.001. After compiling the

model, we fit the model with our training and validation data having a batch size of 256 with

50

Figure 4.6: Multichannel variable-size convolutional neural network (MVCNN) architecture for

sentiment classification

50 epochs. We achieved 96.42% training accuracy and 76.51% testing accuracy with 78.56%

testing precision and 79.66% testing recall value. Figure 4.7 shows the training, validation

accuracy, loss vs epoch during training the model.

(a) TA, VA on MVCNN (b) TL, VL on MVCNN

Figure 4.7: (a) LC of MVCNN model training accuracy (TA) and validation accuracy (VA) and

(b) LC of MVCNN model training loss (TL), validation loss (VL)

4.4.5 Very Deep Convolutional Neural Network (VDCNN):

Difference from DCNN: We have used a three-dimensional word embedding layer [128D,

200D, 300D] with ZeroPadding1D three filer sizes (filter_size -1, filter_size -1) are added on

51

three convolution1D layer with iteration of 3, 4, 5 sizes and GlobalMaxPool1D with k-max

pooling layer of 4. After three iterations, we get three layers (Layer_1, Layer_3, Layer_3)

that are concatenated and flatten the merged layer with l2(0.01) regularization, dropout of

0.5 and finally, attach three dense neurons of fully connected output with sigmoid activation.

The full architecture is shown in Figure 4.8 GlobalMaxPool1D minimizes the shape of the

vector-matrix with the help of pool length.

Figure 4.8: Very deep convolutional neural network (VDCNN) architecture for sentiment classifi-

cation

In the VDCNN model, we compile it with a three-dimensional word embedding matrix:

128D, 200D, and 300D and set the parameter loss function as binary cross entropy (bi-

nary_crossentropy), use as adam as a optimizer at a learning rate of 0.01. After compiling

the model, we fit the model with our training and validation data having a batch size of

256 with 50 epochs. We achieved 96.16% training accuracy and 77.85% testing accuracy, with

80.16% testing precision and 79.56% testing recall value. Figure 4.9 shows the training,

validation accuracy and loss vs epoch during training the model where validation accuracy

slightly differs from the training accuracy. However, this model achieved higher accuracy

52

than CNN, DCNN and MVCNN models

(a) TA, VA on VDCNN (b) TL, VL on VDCNN

Figure 4.9: (a) LC of VDCNN model training accuracy (TA) and validation accuracy (VA) and (b)

LC of VDCNN model training loss (TL), validation loss (VL)

4.4.6 Recurrent Neural Network (RNN):

RNN is a feed-forward neural network for sequence modelling and data in which the output

depends on the previous state. It maintains new state information during iteration over the

sequence of elements and feedback to the previous layer to capture the correlation between

current and previous time steps. A single hidden layer (h) is shown in Figure 4.10

Figure 4.10: RNN block diagram [26]

In our experiment, we use a simple R with 32 layers of unit shown in Figure 4.11

53

Here at timestamp t, x is the input layer, where the previous xt-1 is fetched from the hidden

layer ht-1 and feedback to the current xt input at the current hidden layer (ht). A spatial

dropout (SpatialDropout) parameter of 0.4 is plugged on the previous R layer; after the

RNN layer, we add a batch normalization (BatchNormalization) layer having dropout of 0.4

and global max pool 1D (GlobalMaxPool1D) as a sequentially and finally a three connected

layer with sigmoid activation function (σ) is put through into the Dense layer.

Figure 4.11: Recurrent neural network (RNN) architecture for sentiment classification

(a) TA, VA on RNN (b) TL, VL on RNN

Figure 4.12: (a) LC of RNN model training accuracy (TA) and validation accuracy (VA) and (b)

LC of RNN model training loss (TL), validation loss (VL)

We compile the R model with our 128D word embedding matrix with binary_crossentropy

loss and adam optimizer at a learning rate of 0.01. After compiling the model, we fit the

54

model with our training and validation data, having a batch size of 256 with 50 epochs. We

achieved 76.57% training accuracy and 73.82% testing accuracy. Figure 4.12 shows the models

training and validation accuracy loss.

4.4.7 Long Short Term Neural Network(LSTM)

LSTM is designed to reduce the vanishing gradient descent problem and remember the data

as a long-term period in a left to the right context. Unlike RNN, LSTM also has a recurrent

structure of interacting layer called Input gate (x), Forget gate (ft) and output gate. At the

timestamp t, input gate (xt) with tanh layer generates a vector of all possible values which

is triggered by sigmoid activation function (σ) and produces a new cell state (ct). Input gate

(xt) decides how much information needs to be updated or ignored. The forget gate (ft)

decides what part of the information needs to be removed from the previous cell state (ct-1)

of the previous hidden layer (ht-1). The output gate concatenates the input with sigmoid

layer and decides what part of the current cell state through a tanh function and multiplies

it, full block architecture shows in Figure 4.13.

Figure 4.13: LSTM block diagram [27]

In Figure 4.14, our LSTM model consists of 32 unit hidden layer and Unlike R , at

55

timestamp t, the previous input layer (xt-1) is fetched along with previous cell sate (ct-1)

from the hidden layer (ht-1) and feed back to the current input (xt) at the current hidden

layer (ht) and produce a new cell state (ct). After LSTM layer, we add a batch normalization

layer and the rest of this architecture is followed by our RNN layer above shows in Figure

4.11

Figure 4.14: Long term short term neural network (LSTM) architecture for sentiment classification

(a) TA, VA on LSTM (b) TL, VL on LSTM

Figure 4.15: (a) LC of LSTM model training accuracy (TA) and validation accuracy (VA) and (b)

LC of LSTM model training loss (TL), validation loss (VL)

We compile the LSTM model with our 128D word embedding matrix with binary cross

entropy loss and adam optimizer at a learning rate of 0.01. After compiling the model, we

56

fit the model with our training and validation data, with a batch size of 256 with 50 epochs.

We achieved 76.57% training accuracy and 73.82% testing accuracy. Figure 4.15 shows the

training and validation accuracy loss during fit the model.

4.4.8 Bidirectional Long Short Term Neural Network (Bi-LSTM):

Bi-LSTM follows LSTM architecture, except it works on inputs in two ways: left to right

(capturing forward context) and right to left (capturing backward context). It detects the

feature from both past and future contexts in sequential modelling.

Figure 4.16: Bidirectional long term short term neural network (Bi-LSTM) architecture for senti-

ment classification

In Figure 4.16, same as our previous LSTM network, we use LSTM of 32 units in a

bidirectional way having a dropout of 0.2 and recurrent_dropout of 0.1. In the Bi-LSTM

network, there are two states to resolve both contextual relations: left to right (Forward)

and right to left (Backward). At timestamp t, each hidden layer (ht) output (Ot) is produced

along with memory cell sate (ct) and forwards to a convolutional1d layer of 64 filters,

kernel_size of 4. The rest of the network is followed by the previous LSTM network.

We compile our Bi-LSTM model with our 128D word embedding matrix with binary cross

entropy loss and adam optimizer at a learning rate of 0.001. We achieved 84.33% training

57

(a) TA, VA on Bi-LSTM (b) TL, VL on Bi-LSTM

Figure 4.17: (a) LC of Bi-LSTM model training accuracy (TA) and validation accuracy (VA) and

(b) LC of Bi-LSTM model training loss (TL), validation loss (VL)

accuracy and 78.14% testing accuracy during training and validating the model having a

batch size of 256 with 50 epochs. Figure 4.17 shows the training and validation accuracy

loss during fit the model.

4.4.9 Asymmetric Convolutional Bidirectional LSTM (AC_Bi-LSTM):

AC_Bi-LSTM layer is a hybrid model combination of CNN and LSTM approaches. In our

sentiment classification, we applied that hybrid model. In our experiment, at Figure 4.18,

we uses a 128D word embedding layer, which iterated over with convolution1D layer with

100 filter size, kernel_size of 2 with ReLU activation layer along with another convolution1D

layer of 100 filters and 30,40,50,60 sizes of the kernel with ReLU activation layer. This is

called asymmetric because there are different kernel sizes on the same filter and activation

layer unit. Then these two different layers of convolutional1d are merged, and the input

(xt, xt+1, xt+2 . . . , xt+n) is passed to the LSTM layer of 32 units and the rest is followed by

the previous LSTM network.

We compile our AC_Bi-LSTM model with our 128D word embedding matrix with bi-

nary_crossentropy loss and adam optimizer at a learning rate of 0.001. We achieved 95.71%

training accuracy and 75.50% testing accuracy during training and validating the model,

58

Figure 4.18: Asymmetric convolutional bidirectional LSTM (AC_Bi-LSTM) neural network ar-

chitecture for sentiment classification

having a batch size of 256 with 50 epochs. Figure 4.19 shows the training and validation

accuracy loss during fit the model.

(a) TA, VA on AC_Bi-LSTM (b) TL, VL on AC_Bi-LSTM

Figure 4.19: (a) LC of AC_Bi-LSTM model training accuracy (TA) and validation accuracy (VA)

and (b) LC of AC_Bi-LSTM model training loss (TL), validation loss (VL)

4.4.10 Recurrent Convolutional Neural Network (RCNN):

Another hybrid model we used for sentiment classification is composed of four blocks with

32 units of LSTM layer with multiple recurrent convolutional units (conv1D). We add four

conv1D having with filer size of 100, kernel size of 2 and activated with tanh layer. Each

conv1D layers is connected with each LSTM layer and this layer blocks are sequentially

59

connected with another block layer, shows in Figure 4.20. A flatten with 50 neurons, relu

activation layer is forwarded from LSTM block. Then, it is finally attached with three dense

neurons of fully connected output with sigmoid (σ) activation function.

Figure 4.20: Recurrent convolutional neural network (RCNN) architecture for sentiment classifi-

cation

In the RCC model, we compile it with 128D dimensional word embedding matrix and set

the parameter loss function as binary_crossentropy and optimizer as adam at a learning rate

of 0.001. After compiling the model, we fit the model with our training and validation data,

with a batch size of 256 with 50 epochs. We achieved 70.69% training accuracy and 73.83%

testing accuracy, 77.80% testing precision and 77.80% testing recall value. Figure 4.21 shows

the training, validation accuracy, loss vs epoch during training the model.

(a) TA, VA on RCCNN (b) TL, VL on RCCNN

Figure 4.21: (a) LC of RCCNN model training accuracy (TA) and validation accuracy (VA) and

(b) LC of RCCNN model training loss (TL), validation loss (VL)

60

4.4.11 Gated Recurrent Unit (GRU):

GRU is similar architecture of LSTM model, where it consists of only two gates: update (zt)

and reset (rt) gate. It has a memory of only one state, termed as hidden state (ht) that

considers a separate cell ct, ct-1 like LSTM model. From a series of sequential input, update

gate (zt) helps to learn long term dependencies and to determine what amount of

information from previous hidden state (ht-1) needs to bee forward. Whereas reset gate (rt)

is supervised to learn short term dependencies and to generate how much information needs

to forget. In Figure 4.22, Update gate, at time step t, t-1 respectively, current input (xt) and

the previous hidden layer (ht-1) information is multiplied by their own weights. These are

added together and triggered by sigmoid activation function (σ). Similarly, reset gate (rt)

works by multiplication of xt and ht-1. Finally, an element wise product (Hadamard Product,

(H*P)) is performed on what information needs to collect from the current memory and

previous state.

Figure 4.22: GRU block diagram [31]

In Figure 4.23, same from our LSTM network we use GRU layer of 32 units. After GRU

memory we add a convolutional1D layer with 65 filter size, kernel size of 5 and a golort

uniform (golort_uniform) regularization of kernel initializer. Then sequentially add a

61

GlobalAveragePooling1D and GlobalMaxPooling1D layer. Finally these are concatenated with

three neurons of dense sigmoid layer activation function.

Figure 4.23: Gated recurrent unit (GRU) neural network architecture for sentiment classification

(a) TA, VA on GRU (b) TL, VL on GRU

Figure 4.24: (a) LC of GRU model training accuracy (TA), validation accuracy (VA) and (b) LC

of GRU model training loss (TL), validation loss (VL)

We compile our GRU model with our 128D word embedding matrix with binary cross entropy

loss and adam optimizer at a learning rate 1e-3. We achieved 84.41% training accuracy and

75.84% testing accuracy during training and validating the model, having a batch size of 256

with 50 epochs. Figure 4.24 shows the training and validation accuracy, loss during fitting

the model.

62

4.4.12 Bi-directional Gated Recurrent Unit (Bi-GRU):

Similar neural network form Bi-LSTM and updated version form GRU, Bi-GRU works on both

forward and backward layers without having to use a cell memory unit, as shown in Figure

4.25. Similar architecture form LSTM model, Bi-GRU works on resolving vanishing gradient

descent problem. However, GRU capture and remember longer range of correlation and

train faster more efficiently than LSTM [80]. Same as LSTM network we use a GRU of 32

units in a bidirectional way, having a dropout of 0.2 and recurrent dropout of 0.1. As similar

form Bi-LSTM, Bi-GRU networks have two states to resolve both contextual relations in left

to right (forward) and right to left (backward) window except maintaining no cell state

mechanisms. At time stamp t, each hidden layer (ht) output (ot) is produced and forwarded

to a convolutional1d layer of 64 filters of kernel size of 4 and the rest of the network is

followed by the previous GRU network.

Figure 4.25: Bi-Directional gated recurrent unit (Bi-GRU) neural network architecture for senti-

ment classification

We compile our Bi-GRU model with our 128D word embedding matrix with binary crossen-

tropy loss and adam optimizer at a learning rate of 1e-3. We achieved 83.07% training

accuracy and 75.17% testing accuracy during training and validating the model, with a batch

size of 256 with 50 epochs. Figure 4.26 shows the training and validation accuracy loss

63

(a) TA, VA on Bi-GRU (b) TL, VL on Bi-GRU

Figure 4.26: (a) LC of Bi-GRU model training accuracy (TA), validation accuracy (VA) and (b)

LC of Bi-GRU model training loss (TL), validation loss (VL)

during fitting of the model.

4.4.13 Attention Based Neural Network:

Attention mechanism has been designed to increase the RNN model's ability to produce better

representations of a corpus and capture long-term dependencies at a low computational cost.

This mechanism is applied to deploy the model to focus on the important part of a text rather

than encoding the full sentence length. The main objective of the attention mechanism is

to identify each hidden state's significance and provide a weighted sum of all the features

matrix fed as input. Our experiment uses a hierarchical attention neural network (HAN) to

conduct our SA in Bangla text.

4.4.14 Hierarchical Attention Based Neural Network:

The previous model in this methodology works on only sentence-level encoding; however,

HA works on two-level encoder networks, i.e., word and sentence encoders. It formulates

the text as a hierarchical structure on word and sentence level attention to capturing

compositional features hierarchical dependencies from a sequence of input and contributes

to the polarity of the text. Several sentence spits a document, and each sentence word are

64

Figure 4.27: Hierarchical attention based neural network (HAN) architecture for sentiment classi-

fication

tokenized to transform into a vector, and then these vectors are used as an input matrix in

the neural network. Authors [28] proposed a hierarchical attention-based structure for word

and sentence encoders. The word encoder propagates the information from the hidden

layers on the word level attention and forwards it to the sentence encoder. Then this

information is processed by the sentence encoder hidden layers, and the output probabilities

are predicted at the final layer through the sentence attention layer. Here, the sentence

structure is formulated by the word attention layer by adding appropriate weights with the

help of individual linear hidden layers. The sentence attention layer summarized the

alignment of the sentence by extracting the relevant context of each sentence that classifies

65

the document. The preprocessing of our text encoding sequence is followed by Table 3.6 A

bidirectional RNN model can achieve the context. We use a Bi-LSTM in our HAN mechanism,

shown in Figure 4.27.

In Figure 4.27, we demonstrated our HAN mechanism on a bidirectional LSTM network.

From input matrix, each word token (i) from each sentence (j) is placed on the word

embedding layer noted as (Wij) on 128-dimensional (128D) matrix layer. Then it generates a

vectorized token (i) for each sentence (j) noted as (Xij) which is projected on Bi-LSTM with

128 units as a word encoder layer. At time step t, the input Xt-1
ij from previous hidden state

(ht-1) with previous current memory cell (Ct-1) is sequentially forwarded to current hidden

state (ht) with output (Ot) to the HAN word level attention layer. Similarly backward channel

resolves the contextual relation between current hidden layer (ht) having current memory

cell (Ct) to the previous hidden layer (ht-1). The word level attention layer projects the

output from Bi-LSTM word encoding layer. The annotation of word matrix (Aw
ij) denote as a

continuous vector space that makes the base for attention mechanism. This one hidden layer

operates as a multilayer perception to do the model learn through a randomly initialized

weights (Wm) by adding with biases (α) and puts it through a tanh activation functions to

create a more improved annotation as a context vector of word (uw). Then this context

word vector (uw) is normalized by a softmax function by adding normalize weights (β). Then

finally the normalized context vector with weights (β) is concatenated with the previously

calculated context annotation matrix (Aw
ij) which produces the sentence vector (si).

After getting the sentence vector (si), a similar mechanism is followed for the sentence-

based attention layer except without using an embedding layer. The context annotation

sentence vector (As
ij) which is projected from another Bi-LSTM with 128-dimensional (128D)

units noted as a sentence encoding layer and forwards it for calculating an improved context

annotated document vector (vi). Finally, these are concatenated with three dense sigmoid

layer activation function neurons.

We compile our HAN-LSTM model and 128D word embedding matrix, binary_crossentropy

66

(a) TA, VA on HAN-LSTM (b) TL, VL on HAN-LSTM

Figure 4.28: (a) LC of HAN-LSTM model training accuracy (TA), validation accuracy (VA) and

(b) LC of HAN-LSTM model training loss (TL), validation loss (VL)

loss, and adam optimizer at a learning rate of 0.00001. We achieved 98.84% training accuracy

and 78.52% testing accuracy during training and validating the model, with a batch size of

256 with 50 epochs. Figure 4.28 shows the training and validation accuracy loss during fitting

the model.

4.4.15 Capsule Neural Network (CapsNet):

A capsule neural network is a group of neural networks that solve the local feature problem

of C pooling or max-pooling operations by providing vector output capsules, especially

in dynamic routing algorithms. The computational complexity, i.e., reducing the matrix

dimension, intercepts the various features snd is captured by the pooling operation while

losing data based on spatial relationships, however, without changing each feature. Again,

CNN does not capture the hierarchical relationship between the local and global features.

With the help of dynamic routing, it establishes the connection on spatial relationships

between entities by mapping nonlinear vectors. This mapping transmits the capsule from

lower level to upper level by iterating many routing loops based on a weight coupling

coefficient. The weights coupling coefficient determines the leaning representation of which

lower-level capsule will be forwarded to the upper-level capsule layer. It also detects the

67

similarity between vectors, predicting the lower and upper-level layer capsule. Our sentiment

classification uses dynamic routing for capsule neural network that decides how much text

or information is altered from each word to the encoding text sequences. The preprocessing

of our text encoding sequence is followed by Table 3.5.

Figure 4.29: Dynamic Routing Based Capsule Neural Network (D-CapsNet-Bi-LSTM) architec-

ture for sentiment classification

LSTM forwards its output into each primary layer capsule denote as Capsulei. In our

experiment, we used a number of 16 capsules in our neural network. This is a lower level

capsule (LC) that identifies more features from text and transforms the scalar output (receives

form Bi-LSTM layer) into a vector output (u1, u2, u3, … ui) to be the input of the next capsule

layer. This vector has two core elements: length and direction. Using this length, the lower

level capsule identifies the corresponding feature text probabilities. The direction parameter

of the vectors determines the next path of the higher level capsule to confirm. Then the

spatial relationship between higher and lower features on capsule is constructed by the

affine transformation (ûj|i) that is the multiplication of corresponding weight matrices (wij)

with these vectors (u1, u2, u3, … ui). We use the number of three iterations in our capsule

network for calculating this linear or affine transformation. The affine transformation (ûj|i)

value represents the predicted position of feature matrices of each sentence word which is

the higher-level features. Here, ûj|i indicates as a prediction vectors that what ith features

68

should predict the correct position for the jth sentence. That means if all 16 capsules detect

the same features as the lower-level capsule, it will be that target feature value for that

specific sentence. The affine transformation output value (ûj|i) is multiplied (dot product)

in a weighted sum by a coupling coefficient value noted as (c(i,j)). This output value (ûj|i) is

formed as next (higher) capsule level (sj), that determines the number of routing iteration

process. The dot product differentiates the lower-level capsule i and higher level capsule j,

although i capsule sees its output in the j capsule. In our D-Capsnet-Bi-LSTM network, we

set the number of routing iterations is 3. This coupling coefficient is calculated by a routing

softmax function where the exponential coefficient exp(zij) indicates some prior probabilities

in which ith capsule layer will be coupled to jth capsule layer. Then the next level capsule

(sj) is forwarded to the squash(.), a nonlinear activation function that is used to scalar (with

additional and also unit scaling) the output vector (vj). By using this activation function, the

output vector (vj) direction will not fluctuate if this vector length has more than 1. Then

this higher level capsule vector (vj) is activated by the LeakyRelu function and finally densed

by three neuron output classification. The full process is demonstrated in Figure no. 4.30

(a) TA, VA on D-CapsNet-Bi-LSTM (b) TL, VL on D-CapsNet-Bi-LSTM

Figure 4.30: (a) LC of D-CapsNet-Bi-LSTM model training accuracy (TA), validation accuracy

(VA) and (b) LC of D-CapsNet-Bi-LSTM model training loss (TL), validation loss (VL)

We compile our D-Caps et-Bi-LSTM model on 128D word embedding matrix, with binary

crossentropy loss function and adam optimizer at a learning rate of 0.0001. We achieved

82.97% training accuracy and 80.82% testing accuracy during training and validating the

69

model, with a batch size of 256 with 50 epochs. Figure 4.30 shows the model's training and

validation accuracy loss during fitting the model.

4.4.16 Bidirectional Encoder Representation From Transformer (BERT):

Transformer belongs to an encoder-decoder architecture model having attention mechanisms

[81] that are used for transfer learning in the field of machine translation as well as in LP

task and also leverages with long term dependencies finer than as a replacement of other

conventional sequential models, i.e., R , LSTM, GRU, etc. In transfer learning, a model is

trained on massive unlabeled content corpora utilizing self-supervised learning, and this

pre-trained model is negligibly balanced during fine-tuning on a particular LP task [82]. It

is also more potential in training the model by removing the sequential dependencies of

the past tokens. BERT was recently developed by Google [35], an encoder based transformer

architecture for language modelling that is used for dynamic embedding in LP tasks, which

considers both current and previous tokens on both left and right in a bidirectional way.

As a contextual model, Bert generates a representation of each word based on every other

sentence. However, in static embedding, i.e., Word2Vec model generates a single word

embedding representation for each word in the vocabulary.

4.4.17 BERT-LSTM Architecture for Sentiment Classification:

In our sentiment classification, we use a BERT-BASE model with a number of 12 transformer

blocks, 768 hidden layers and 12 attention heads to generate contextualized embeddings.

The input layer of BERT is a vector of sequence tokens along with special tokens shown in

Table 3.7. LSTM reads text input sequentially, whereas BERT takes the entire tokenization

of words at once. In our experiment, we build a sentiment classifier using huggingface

library to fine-tune with the pre-trained BERT model [7] on the upper layer of LSTM, shown

in Figure 4.31. We install the transformer version as 3.0 and load the BERT classifier and

tokenizer for input processing.

70

Figure 4.31: Bidirectional encoder representation from transformer with LSTM neural network

(BERT-LSTM) architecture for sentiment classification

The input sequences are a raw sentences which is splitted by the BERT tokenizer and that

tokens converted into token id and with attention mask showed in Table 3.8. BERT uses a

self-attention mechanism over the input sequences, showed in Figure 4.31 which predefines

the transformer for keeping pace with the relevant words from the inputs. In attention block

of BERT transformer, it generates each attention head (ATHi) as a multi-headed self-attention

from the input sequences (x1, x2, x3, . . . , xi). This sequence (xi) is multiplied with three

weight matrixes (Wi
Q, Wi

K, Wi
V) in scalar dot matrix way to generate three vectors termed

respectively as query (Qi), keys (Ki) and values (Vi). These weight matrices (Wi
Q, Wi

K, Wi
V)

are produced during the training process on BERT. The main mechanism for self-attention

layer is to calculate each word score from input sequences and this score indicates how a

word concentrates on other words to place in the correct position. For example a word (x1)

score value (V1) is calculated by the product of query (Q1) with keys (K1, K2, K3, . . . , Ki)

matrices. Then the score value (Vi) is divided by the dimension of key vector then pass to

the softmax function and finally summed up the all values (V1, V2, V3, . . . , Vi) to produce

another matrices (Zi). In ADD and Normalize layer step[83] which is then multiply

71

with the additional weight matrices (Wadd) to produce attention head (ATHi) which captures

all the information from all attention heads, then it is forwarded in the feed-forward layer.

Similarly, other encoder will follow this mechanism [84] for processing pooled output from

BERT. Finally, the last hidden layer from BERT is encoded in LSTM layer with 32 units and

predicts the three features pooled output.

(a) TA, VA on BERT-LSTM (b) TL, VL on BERT-LSTM

Figure 4.32: (a) LC of BERT-LSTM model training accuracy (TA), validation accuracy (VA) and

(b) LC of BERT-LSTM model training loss (TL), validation loss (VL)

The challenge in the BERT-LSTM training process is that the memory was not released

after training was done. In that case, we use a 16 size batch size because of prohibiting to

crash the GPU. Because when the process is finished, Tensorflow releases the GPU memory.

We compile our BERT-LSTM model with bert embedding layer, cross-entropy loss and adam

optimizer at a learning rate 1e-5. We achieved 98.68% training accuracy and 84.18% testing

accuracy during training and validating the model, having a batch size of 16 with 50 epochs.

Figure 4.32 shows the training and validation accuracy loss during fitting the model.

4.4.18 Experiment on Augmented Dataset in BERT-LSTM Architecture for

Sentiment Classification:

We preprocess the texts and then we divide the augmented dataset as 80% for training, 10%

for validation and 10% for testing dataset. We compile our BERT-LSTM model with

72

bert embedding layer, cross-entropy loss and adam optimizer at a learning rate 2e-5. We

achieved 84.35% training accuracy and 81.11% testing accuracy during training and validating

the model, having a batch size of 32 with 50 epochs.

(a) TA, VA on BERT-LSTM (b) TL, VL on BERT-LSTM

Figure 4.33: (a) DA of LC of BERT-LSTM model training accuracy (TA), validation accuracy

(VA) and (b) DA of LC of BERT-LSTM model training loss (TL), validation loss (VL)

Figure 4.33 shows the training and validation accuracy and loss during fitting the model.

The validation loss curve is both decreased and stabilized during the training loss curve.

This LC curve indicates that our DA method in BERT-LSTM model is optimally fitted and in

this case, this model can able to predict accurately on the dataset.

(a) TP, VP on BERT-LSTM (b) TR, VR on BERT-LSTM

Figure 4.34: (a) DA of LC of BERT-LSTM model training precision (TP), validation precision

(VP) and (b) DA of LC of BERT-LSTM model training recall (TR), validation recall (VR)

73

In LC of Figure 4.34, precision the validation precision is scattered and provides some

noisy movements in an augmented neutral dataset. The recall LC indicates that the validation

dataset may detect accuracy on the testing dataset.

Figure 4.35: DA of LC of BERT-LSTM model training f1-score (Tf), validation f1-score (Tf)

We achieved 83.47% testing f1-score during training the model, Figure 4.35 shows this sum-

mary of LC in f1-score curve.

4.5 Conclusion

This chapter presents a summary of our experiment on BTSC algorithm and shows the

effectiveness along with the given dataset polarity. We evaluated our BTSC algorithm per-

formance matrices in both cricket and restaurant datasets. We construct the Tf-Idf matrix

on both datasets and build two models named UniGram and BiGram. Then we describe our

hybrid neural network model to experiment on BTSC generated target data and to show

each model experimental graph at epoch rate 50. In the next section, we will show our

model performances.

Chapter 5

Results and Discussion

5.1 Overview

This chapter of this section demonstrates our experimental results with a brief discussion

on ML and DL methodology. In ML technique, we have shown our accuracy on the BTSC

algorithm in both UniGram and BiGram models with a notable text classification algorithm.

In DL process, we have trained the dataset in different types of hybrid neural networks,

and finally, the performance of the proposed architecture was evaluated on the test dataset.

We have shown model evaluation matrices on graphical representation and delivered our

model performance limitations. In addition, we provided a comparative analysis between ML

and DL methods. We have concluded our task by giving a brief overview of the evaluation

metrices and with a list of hyperparameters.

5.2 Experimental Results

The experiments are deployed on two corpora: cricket and restaurant of the original corpus

polarity, aiming to detect the score by the BSTC algorithm. The training and test splits could

bind all examples from all classes involved to keep data from being centralized. We observe

a confusion matrix in the SVM classification algorithm in ML. It is used in extensively and

74

75

widely reported as the best classifier in the literature for SA. We intend to experiment on

other classifiers like Logistic Regression (LR), K-Nearest Neighbors (KNN), Random Forest

(RF) algorithm. In DL, we have experimented on a hybrid neural network on cricket datasets

in terms of variation using fine-tuning such as dropout, optimizer regularization, learning

rate, adding multi-layer, etc. In the first degree of SA, we aimed to determine the accuracy

of the ML and DL approach experiment.

5.2.1 Experimental Result of ML on UiGram Model

We used a supervised ML classification algorithm to evaluate our experiment to classify our

data. The evaluation of our result is measured through a confusion matrix including classifier

metrics called accuracy, precision, recall, and f1-score with the help of using Spyder, python

IDE environment. Among the classifiers, SVM with linear kernel trick (c=1) is the best for

giving good results in new observations because SVM has found better accuracy in finding

text classification.

At least 20% of the dataset has been randomly chosen for the testing dataset, and the

rest of the data is trained to classify the polarity. A standard feature matrix called Term

Frequency - Inverse Document Frequency (Tf-Idf) vectorizer calculates the feature matrix. It

maps text or words into a significant representation number.

Table 5.1: Weighted average of precision, recall, f1-score & accuracy in unigram model for both

dataset.

Dataset Polarity Precision Recall F1-score Accuracy Support Feature

Matrix

No. of

Feature

Word

Restaurant

-1 0.76 0.47 0.58

77.91%

123
UniGram 3454

0 0.44 0.33 0.37 12

+1 0.72 0.90 0.80 259
BiGram 6673

Weighted Avg. 0.78 0.77 0.76 Total 412

Cricket

-1 0.80 0.94 0.86

78.69%

389
UniGram 3751

0 0.56 0.21 0.30 41

+1 0.74 0.56 0.63 166
BiGram 12854

Weighted Avg. 0.80 0.78 0.74 Total 596

76

Since we have used the BTSC algorithm to calculate our sentence score, Table 5.1 shows

algorithm results in classifying polarity with expected accuracy. Around 78% accuracy in

both cricket and restaurant datasets is achieved on the UniGram model. In a multi-class

confusion matrix, we use a weighted average to define our metrics because macro and micro

averages can not give accurate results on the same number of instances. As weighted average

precision in restaurant are 78% and 80% in cricket datasets, our extended Bangla sentiment

dictionary construction is quietly proved in both score and polarity determination.

5.2.1.1 Support Vector Machine Classification on Tf-Idf Model

SVM algorithm is performed on destining boundaries through hyperplanes to discrete a class

from the others. The primary purpose of the SVM algorithm is to construct hyperplanes

among corpus samples so that the classification between classes expands as much possible.

Around 78% accuracy in both cricket and restaurant datasets is achieved on the UniGram

model. Having a multi-class confusion matrix, we use a weighted average to define our

metrics because macro and micro averages can not give accurate results on the same number

of instances. As weighted average precision in restaurant is 78% and 80% in cricket, our

extended Bangla sentiment dictionary construction is quietly proved in both score and

polarity determination.

5.2.1.2 Confusion Matrix on UniGram Model

Having a higher value of precision and recall vindicates a good model. Precision is a

measurement of accuracy with respect to the prediction of a specific label or class. It is

measured by the ratio of true positive (TP) of a particular label or class in the sum of true

positive (TP) and false positive (FP), indicated in equation (5.1). F1-score is a combined

formula of precision and recall shown in equation (5.2). Here in Figure 5.1a and 5.1b show

the percentage of classifying polarity during SVM classification. At Figure 5.1a, at most

62.86% positive, 14.08% negative and 0.97% neutral comments are identified as TP during

77

−

(a) Polarity Prediction on Restaurant Data (b) Polarity Prediction on Cricket Data

Figure 5.1: BTSC algorithm polarity prediction on both dataset

SVM classification. Here FP is much lower than the TP . Total 4.37% positive and 3.7%

negative comments incorrectly identified those classes with lower FP than TP . At most

61.58% negative, 15.60% positive and 1.51% neutral comments are identified as TP , shows

on Figure 5.1b. Total 4.37% positive and 3.7% negative comments have incorrectly identified

those classes with much lower FP than TP .

Precision(label) =
TP

TP + FP
(5.1)

F 1 score(label) =
2 ∗ Precision ∗ Recall

Precision + Recall
(5.2)

5.2.2 Performance on Different ML Classifier Approach on UniGram Model

Besides, other classifiers like logistic regression (LR), k-nearest neighbors (KNN), random

forest (RF) algorithms are applied on our UniGram model. Among these classifiers, SVM

shows better accuracy.

Figure 5.2a and 5.2b shows the performance of different classifiers. At Figure 5.2a, we

have achieved best accuracy 77.91% and precision 78.61% at restaurant dataset. At Figure

78

(a) Performance of different classifier in Restau- (b) Performance of different classifier in Cricket
rant Data Data

Figure 5.2: Visualization performance of different classifier in restaurant and cricket dataset

5.2b, 78.69% accuracy and 80% precisions are achieved in cricket dataset in SVM classification.

Both datasets have shown much better accuracy and precision rather than other classification.

5.2.3 Experiment on BiGram Model and Comparison Between UniGram

Model Approach on SVM

After finding quite improvement in the UniGram approach in the Tf-Idf model, we created

another BiGram model in Tf-Idf word vectorization. In this model, we performed a Linear

SVM classification algorithm; finally, accuracy is attained in both datasets 80.58% and 82.21%

respectively, which is greater than the UniGram approach and also having precision 80.92

and 81.64 in both datasets. Figure 5.3 shows the performance and summary of the SA of the

UniGram and Bigram models. This analysis shows that cricket data has higher accuracy than

the restaurant dataset because the cricket dataset has trained more data than the restaurant

data.

5.2.3.1 Comparison Between Existing ML Model and Proposed Approach

Figure 5.4 shows a comparative summary of our results with previous studies, although the

comparison is not fair because of the use of varying datasets. The dataset used in this study

79

Figure 5.3: Visualization performance of UniGram & BiGram model on SVM classifier

is unique compared to other research works. The study in [14] achieved 69% accuracy when

trained on 1000 tweets in UniGram with negation features. The study set only one rule to

specify the sentiment from the text by counting only positive and negative words from

tweets. The limitation of [14] is the use of only one rule, which cannot properly detect the

real sentiment from the text.

Figure 5.4: Comparing accuracy between the existing and proposed systems

In [16], a precision value of 77%, a recall/TPR value of 68% and a F1-score of 72% were

achieved. The authors in [16] manually normalized the Bangla text with the help of valence

shifting words by detecting one adjective in a sentence. However, the study did not consider

80

complex and compound sentences. The study in [18] trained only 850 and tested 200 texts

in RF classification, achieving 85% accuracy for positive and negative data; however, the

volume of the training dataset is small. The study determined sentiments by only assigning

feature words to positive and negative tags without considering the POS tagger. In a recent

research [85], 80.48% accuracy was attained during the 6-fold cross-validation approach in

multinomial Naive Bayes classification. The authors used polarity from the given dataset as

a target output without generating any text sentiment. This means the study did not apply

any semantic connections between text and polarity.

5.2.4 Result Discussion on ML Approach

However, our UniGram and BiGram features have higher accuracy with precision, recall or

TPR, and f1-score than previous works. Moreover, our Unigram and Bigram feature matrices

have included stemming, normalization, and POS tagger processes. The dataset used in our

study is much larger than the other studies shown in Figure 5.4. Still, our results are

comparable with others and thus acceptable.

5.3 Experimental Result on Deep Neural Networks

The overview of our proposed hybrid deep neural network architecture is followed by a set

of inputs of reviews represented by a feature representation model Word2Vec, having multi-

layer perception, different learning rate regularization, dropout parameter, block of neural

code with multiple dependencies, etc. In this work, we have used TensorFlow at the backend

mechanism developed by Google, which is actively maintained, robust and flexible enough

to be competent in developing neural network models.

81

5.3.1 Deep Neural Network Model Training and Fitting:

After the construction of DL models from chapter 4, section 4.3, we compile each model

with our word embedding matrix [128D, 200D, 300D] as per the requirement by setting the

parameter loss function as categorical cross entropy and the optimizer as adam at a learning

rate on different points shown at Table 5.2. Table 5.2 shows the summarization of our

different parameters on each model. After compiling the model, we fits the model with our

training and validation data, with a batch size of 256 with 50 epochs except using a batch

size of 16 with 50 epochs in the BERT-LSTM model.

We have validated our testing datasets, and for a better understanding of every ex-

periment, at Figure 5.6, we have shown each model training accuracy (TA) vs. validation

accuracy (VA) with respect to epoch and training loss (TL) vs. validation loss (VL) with

respect to epoch during training the model. The X-axis indicates the epoch number, while

the Y-axis indicates the training, validation accuracy, and training validation loss. TA and

VA determine whether the model was overfitting or not and TL and VL determine whether

the model was overfitting or underfitting. The VA and VL for dataset how well the model

will perform for the unseen future data.

5.3.2 Results and Analysis:

We have conducted fourteen experiments to offer a reasonable comparison between recent DL

algorithms and traditional methods. Table 5.3 shows the experimental results of each model,

which is obtained by setting the optimal values for each parameter in the model through

trial and error. As for the sentiment classification, different models have outperformed on

different learning rate(lr) parameters to achieve outstanding results. From these results, the

researcher can identify which is perfect for their sentiment classification task in the Bangla

low-resourced dataset.

82

(i.a) TA, VA on CNN (i.b) TL, VL on CNN (i.c) TA, VA on DCNN (i.d) TL, VL on DCNN

(ii.a) TA, VA on MVCNN (ii.b) TL, VL on MVCNN (ii.c) TA, VA on VDCNN (ii.d) TL, VL on VDCNN

(iii.a) TA, VA on RNN (iii.b) TL, VL on RNN (iii.c) TA, VA on RCNN (iii.d) TL, VL on RCNN

(iv.a) TA, VA on LSTM (iv.b) TL, VL on LSTM (iv.c) TA, VA on Bi-LSTM(iv.d) TL, VL on Bi-LSTM

(v.a) TA, VA on AC_Bi-(v.b) TL, VL on AC_Bi- (v.c) TA, VA on GRU (v.d) TL, VL on GRU

LSTM LSTM

(vi.a) TA, VA on Bi-GRU (vi.b) TL, VL on Bi-GRU (vi.c) TA, VA on HAN-(vi.d) TL, VL on HAN-

LSTM LSTM

83

7

(vii.a) TA, VA on D-(vii.b) TL, VL on D-(vii.c) TA, VA on BERT-(vii.d) TL, VL on BERT-

CapsNet-Bi-LSTM CapsNet-Bi-LSTM LSTM LSTM

Figure 5.6: LC of each model training accuracy (TA), validation accuracy (VA) vs. Epoch and LC

of each model training loss (TL), validation loss (VL) vs. epoch

5.3.3 CNN Based Model:

Through the comparison between our convolutional neural network types models (CNN,

DCNN, MVCNN and VDCNN), it is noticed that VDC achieves the highest 77.85% accuracy,

80.16% precision, 79.56% recall, and 79.86% F1-score. VDCNN and MVCNN are more complex

models than CNN and DCNN because of using three-dimensional (D) [128D, 200D, 300D] word

embedding layers. CNN achieves 74.50% accuracy, which is better than the 73.49% accuracy

of the CNN model.

It is shown in Figure 5.6 (i.a) that at about 20 epochs, the C model achieves the highest

testing accuracy. In contrast, as shown in Figure 5.6 (i.c), DC decreases testing accuracy

from point 25 epochs. It is shown in Figure 5.6 (ii.a) and (ii.c) that MVC and VDC

models a have huge deflection between training and testing accuracy because of having a

high dependency on using a multichannel layer with different iteration filters [filter kernel

size = 3, 4, 5]. MVC uses a two-dimensional [128D, 200D] word embedding layer, and

VDC uses a three-dimensional [128D, 200D, 300D]. We keep the dropout rate at 0.5 on

each layers; however, changing kernel size when a variable size of zero padding1D is added

to perform over spatial dimension to the output.

When we add several nodes in the layer in our model, the capacity increases, which means

accuracy, precision, and recall increase. Our training data is small, so our model is pretty

84

Table 5.2: Hyperparameter dependency on each model

Model

Name

Learning

Rate (lr)

Word Embedding

Dimension

Layer Dropout

CNN (lr = 0.01) 128D Conv1D(filter = 300, Kernel_size = 5, Relu), GlobalMaxpool1D SpatialDropout1D = 0.5,

Dropout = 0.5

DCNN (lr = 0.0001) 128D
ZeroPadding1D(49,49) Conv1D(64, Kernel_size = 50), SpatialDropout1D =

0.3, Dropout = 0.5 ZeroPadding1D(24,24) Conv1D(64, Kernel_size = 25),

Kmaxpooling(k-=5)

MVCNN

(lr = 0.001)

(128D, 200D)

iteration
with filter
size 3, 4, 5

ZeroPadding1D(2,2) Conv1D(100, Kernel_size = 2),
Dropout = 0.5,

l2(0.0.1)
ZeroPadding1D(3,3), Conv1D(100, Kernel_size = 3),

ZeroPadding1D(4,4) Conv1D(100, Kernel_size = 4),

Kmaxpooling(k=10)

VDCNN

(lr = 0.01)

(128D, 200D, 300D)

iteration with filter
size 3, 4, 5

ZeroPadding1D(2,2) Conv1D(100, Kernel_size = 2),

GlobalMaxpool1D(k=3),
Dropout = 0.5

ZeroPadding1D(3,3) Conv1D(100, Kernel_size = 3),

GlobalMaxpool1D(k=4),

ZeroPadding1D(4,4) Conv1D(100, Kernel_size =

5), GlobalMaxpool1D(k=3),

Kmaxpooling(k-=10)

Dropout = 0.5, l2(0.0.1)

RNN (lr = 0.01) 128D GlobalMaxpool1D SpatialDropout1D = 0.4,

Dropout = 0.4

RCNN (lr = 0.001) 128D Conv1D(100, Ker-

nel_size = 2)

4 Block Bi-LSTM(unit = 32, re-

current_dropout = 0.1)

Dropout = 0.3

LSTM (lr = 0.01) 128D 1 Block LSTM(unit = 32) SpatialDropout1D = 0.3,

Dropout = 0.4

Bi-LSTM (lr = 0.001) 128D

1 Block of Bi-LSTM(unit = 32, dropout = 0.2,

recurrent_dropout = 0.1) SpatialDropout1D = 0.3,

Dropout = 0.3

AC_Bi

-LSTM

(lr = 0.001)

128D

Conv1D(100,

Kernel_size = 2)

Conv1D(100, Kernel_size = 30),
Dropout = 0.3

Conv1D(100, Kernel_size = 40),

Conv1D(100, Kernel_size = 50),

Conv1D(100, Kernel_size = 60),

LSTM(unit = 32)

GRU (lr = 1e-3) 128D
1 Block GRU
(unit=32)

Conv1D(64, Kernel_size = 5) SpatialDropout1D =

0.3, Dropout = 0.3 GlobalAverageMaxpooling1D,

GlobalMaxpool1D

Bi-GRU (lr = 1e-3) 128D
Conv1D(64, Kernel_size

= 4)

1 Block Bi-GRU (unit=32,

dropout = 0.2,

recurrent_dropout = 0.1)

SpatialDropout1D =

0.3, Dropout = 0.3

GlobalAverage Max-

pooling1D, GlobalMax-

pool1D

HAN
-LSTM

(lr = 1e-4)

128D

1 block of Bi-LSTM (units = 128),

sentence attention layer

Dropout = 0.3
1 block of Bi-LSTM (units = 128),

word attention layer

D-CAPSNET
-Bi-LSTM

(lr = 0.0001)

128D

1 Block of Bi-LSTM(unit = 256, dropout = 0.25,

recurrent_dropout = 0.25) SpatialDropout1D =

0.3, Dropout = 0.3 Capsule Layer (Low Level, Higher Level Capsule)

BERT-

LSTM

(lr = 1e-5) Pretrained BERT 12 Block Bert Encoder 1 block of Bi-LSTM (units = 32) None

small; however, increasing model layers can drive a more precise model. The model should

be larger if more training data are given in the model. In our experiment, multilayer

perception of CNN is applied in the DCNN, VDCNN, and MVCNN model as there is no bound

to use a specific number of layers, so this stacked layer is susceptible to generalizing our

85

model better. Adding continuous layers of convolution and pooling operation in C might

lose spatial information on classifying data.

Table 5.3: Accuracy, precision, recall, f1-score measures of the model of bangla dataset cricket

reviews.

MODEL NAME Train

Accuracy

Test

Accuracy

Train

Precision

Test Pre-

cision

Train

Recall

Test

Recall

Train

F1-score

Test F1-

score

CNN 0.8758 0.7349 0.8936 0.7856 0.8947 0.7966 0.8422 0.7123

DCNN 0.8765 0.7450 0.8945 0.7565 0.8661 0.6849 0.8801 0.7188

MVCNN 0.9642 0.7651 0.9668 0.7627 0.9633 0.7300 0.9650 0.7458

VDCNN 0.9616 0.7785 0.9625 0.8016 0.9615 0.7956 0.9620 0.7986

RNN 0.7658 0.7383 0.8040 0.7888 0.7126 0.6695 0.7554 0.7242

RCNN 0.7069 0.7383 0.7094 0.7780 0.7094 0.7780 0.7094 0.7780

LSTM 0.7281 0.7416 0.7406 0.7853 0.7103 0.7267 0.7251 0.7548

Bi-LSTM 0.8433 0.7814 0.8697 0.7795 0.8197 0.7352 0.8439 0.7703

AC_Bi-LSTM 0.9571 0.7550 0.9581 0.7395 0.9558 0.7380 0.9570 0.7387

GRU 0.8441 0.7584 0.8286 0.7029 0.8476 0.7183 0.8379 0.7104

Bi-GRU 0.8307 0.7517 0.7133 0.7127 0.9101 0.7321 0.8064 0.7416

HAN-LSTM 0.9884 0.7852 0.9908 0.7343 0.9872 0.8012 0.9890 0.7659

D-CAPSNET-Bi-LSTM 0.8297 0.8082 0.7629 0.8100 0.7332 0.7305 0.7477 0.7544

BERT-LSTM 0.9568 0.8418 0.8584 0.8645 0.8672 0.7849 0.8979 0.8227

5.3.4 RNN Based Model:

Sequential models such as R and RC have similar test accuracy of 73.83%; however,

RNN achieved 78.88% precision, greater than RC . Besides preserving LSTM and Bi-LSTM,

the Bi-LSTM model performs well on cricket datasets with an optimal accuracy of 78.14%.

However, the LSTM model performs well with a testing precision of 78.53% that is greater

than the Bi-LSTM model.

At arbitrary time intervals, the three gates of RNN remember the propagation of information

into the cell. It is shown in Figure 5.6 (iii.a) that RNN TA and VA curves are overlapped

because of facing difficulties in capturing long-term dependencies and co-relation between

words. However, in Figure 5.6 (iv.a) and (iv.c), LSTM and Bi-LSTM models capture long span

word relations in text. As RCNN and AC_Bi-LSTM models have Conv1d layer [kernel size =

2] however AC_Bi-LSTM has a channeling Conv1D layer [kernel_size = 30, 40, 50, 60] for that

86

reason, there is a huge gap in TA, VA in Figure 5.6 (v.a) and has the highest testing recall

of 95.58% and testing F1-score of 95.70%.

5.3.5 GRU Based Model:

As GRU intends in the last hidden state to represent the sentences which means modeling

the the whole sentence causes neglecting main key parts of words, this might result in an

incorrect prediction. From Table 5.3, while the learning rate is so high in GRU and Bi-GRU

models, training and testing accuracy, precision is not getting higher than LSTM, Bi-LSTM

model. At most 75.84% accuracy is achieved on the LSTM model with an average of 71%

precision, recall, and f1-score value. As GRU limits the stream of data just like the LSTM

units, however, except for utilizing a memory unit, the LSTM model performs well on this

dataset. For this reason, we have applied the LSTM model as a hybrid layer on attention,

capsule, and BERT-based model.

In Figure 5.6 (v.c) and (vi.a), both GRU-based models have similar curves regarding testing

accuracy of 75.84% and 75.17%. The Bi-GRU model intersects at epoch points 5 and 35, which

means it has a bi-directional dependency to co-relate words in a text.

5.3.6 Attention and Capsule Based Model:

All models are relatively smooth with respect to learning rate (lr), and also variation in

hidden size, hyperparameters (i.e., filters, kernel size, dropout) causes oscillation in curves.

From Figure no. 6 of (vi.c), (vi.d), (vii.a), and (vii.b), the training and testing accuracy are

increasing with respect to epoch while training and testing loss are decreasing with

exponentially that shows an ideal state of the model. At most, 78.52% and 80.12% of testing

accuracy and recalls are produced in the HAN-LSTM model, and 80.82% and 81.00% testing

accuracy, precisions are produced in D-CAPSET-Bi-LSTM.

The attention level in words and sentences has increased model accuracy regarding other

87

CNN, RNN type models. The calculation of attention vectors co-related to word and sentence

level determines the less content for constructing the document representation. The main

advantage of the capsule modules is to resolve the max pooling level conversion for feature

extractions, which means the improvement of CNN and RNN type models. Because losing

the information in polling layers might cause less accuracy. Again, augmenting the

compositional capsule network with a k-clustering mechanism will improve the classification

accuracy of our HA -LSTM model.

5.3.7 Transformer Based Model

The results of the BERT-LSTM model have a high learning rate (lr = 1e-5), producing maximum

accuracy of 84.18% precision of 86.45% compared to other models. Adding an LSTM layer

on the pre-trained BERT model amplifies the core advancement in classification accuracy

over embedding models. That means BERT is more able to represent semantic and syntactic

features. This language model representation has substantially improved over other models

at a state-of-the-art result compared to the Word2Vec model.

5.3.8 Result Analysis for Augmented Dataset in Transformer Based Model

From practical engineering perceptions, text data enhancement can significantly expand the

amount of data and improve the effectiveness of the deep learning model. When compared, it

can be seen that the accuracy of the BERT-LSTM model is slightly lower for the augmented

dataset than the stand-alone datasets. For future work, we will generate new samples by

importing new augmented methods for text classification and apply hybrid DL models. Some

of those hybrid models can be attention-based and dynamic routing based. We hope that

researchers can develop a more acceptable model performance by introducing these

strategies. The results of augmented dataset in BERT-LSTM model is depicted at Table no.

5.4

88

Table 5.4: Accuracy, precision, recall, f1-score measures of the model of augmented dataset cricket

and restaurant reviews.

MODEL NAME Train

Accu-

racy

Test

Accu-

racy

Train

Preci-

sion

Test

Preci-

sion

Train

Recall

Test

Recall

Train

F1-

score

Test

F1-

score

BERT-LSTM (lr = 2e-5) 0.8435 0.8111 0.8935 0.8911 0.7967 0.786 0.8419 0.8347

5.3.9 Comparison Between Existing DL model with our Proposed Hybrid

Neural Network Approach

At last, we compare our work with other existing approaches in both DL and ML ap-

proaches. Table 5.5 compares our work with respect to accuracy measurements. In [38],

authors achieved 55% accuracy with three category sentiment on the above nine thousand

social comments and in [37], authors showed 82.42% accuracy in four thousand movie reviews

dataset in two category sentiment in LSTM network where our LSTM model achieves 74.16%

accuracy. Similarly, in [39, 86], LSTM network has achieved 65.97% and 46.80% accuracy,

respectively, in [45] attention-based LSTM (A-LSTM) achieved 65.97% accuracy. However, our

hierarchical attention-based LSTM (HAN-LSTM) and combined C -LSTM [46] achieved 75.01%

accuracy. AC_Bi-LSTM and D-CAPS ET-Bi-LSTM hybrid models achieve greater ac- curacy

than those research. Since there are drawbacks in preprocessing data on pronoun type word

replacing, however, they still manage to achieve 85.67% accuracy in the Bi-LSTM model on

ten thousand comments. Our Bi-LSTM gained much satisfactory results of 78.14% accuracy

on the cricket ABSA dataset. Our CNN type model with multi-channel, i.e., DCNN, VDCNN,

MVCNN model achieves higher accuracy than [45, 39] type CNN model.

5.3.9.1 Comparison of ML vs DL Approach in Terms of Accuracy

Our supervised ML-based approach on SA with rule-based achieved satisfactory accuracy on

the SVM classifier with 82.21% accuracy; however, the long-term dependencies between

words are not considered on the bi-gram approach. The traditional ML-based bag of words

(BOW) approach does not capture semantic relation between words where hidden layers in

89

Table 5.5: Comparison of major sentiment classifiers in both ML and DL regarding accuracy.

Research Work Context Dataset Methods Accuracy Our Approach Accuracy

Our ML Approach Cricket ABSA Dataset 2979 Bi-Gram,

SVM

82.21% Our Proposed ML Approach

[37] Movie Reviews 4000 LSTM 82.42% for

2 category

74.16% for 3 category

[38]
Social media,
news, product

reviews

9337 RNN (LSTM)
78% for 2

category,
74.16% for 3 category

55% for 3

category

[41] Facebook 10000 Bi-LSTM 85.67% 78.14% for 3 category

[45] Cricket ABSA Dataset 2979
A-LSTM 66.06%

78.52% HAN-LSTM Model
A-CNN 72.06%

[46] Web Site 1000 CNN-LSTM 75.01% 75.50% AC_Bi-LSTM Model

[39]

Social Media

8910

LSTM 65.97%
74.16% LSTM,
77.85% VDCNN,
80.82% D-CAPSNET-Bi-LSTM,
84.18% BERT-LSTM

CNN 60.89%

NB 60.79%

SVM 59.18%

[87] Microblogging sites 3000 Word2Vec

with

Hellinger

PCA

70.00%

[86] Social Media 1000 LSTM 46.80%

neural network boosts the model with the help of contextual relationship between words

are retained by the word embedding. ML classifiers, i.e., SVM, Naive Base, etc., do not

perform well on unstructured noisy datasets. For example, target categories overlap. Both

approaches require a lot of large labeled corpus for training to deliberate best prediction;

however, the semantic understanding between the sequences of data is preserved in the DL

approach. Although the DL-based model requires more initial tuning parameters and each

model provides different results, one does not require considering feature engineering.

5.3.10 Result Discussion of Our Proposed Hybrid DL Approach

From the experimental results, our DL mechanism of SA has the highest accuracy, precision,

and recall against the ML approach. It is noticed that DL has an expressive improvement

while containing high unbalancing between positive-negative classes. The core advantage in

DL is that it learns high-level features from data in an exponential perspective through

multi hidden layers with hyper-tuned parameters and provides better results than others.

90

5.3.11 Complexity Factors of DL Model:

DL model complexity implies investigating neural network generalization capability and

limitation on the training process. Since our hybrid DL models are hyper-parameterized,

however, it has very little effect on model complexity [88]. Model complexity indicates how

the neural network model express its behavior on distribution function or activation

function [89], prevents overfitting by adding L1, L2 regularization to the loss function [90]

and the amplification coefficient (wij) which is defined by the multilayer perception of hidden

neurons. By selecting an activation function, i.e., ReLU, Sigmoid, tanh in-network hidden

layers, an active module for learning and computing complex tasks takes the piecewise

nonlinear transformation to the input. Pooling functions such GlobalAverage Maxpooling1D,

GlobalMaxpool1D with a variety of filter sizes on feature maps are needed to reduce fixed

size vectors. However, the DL model's size impacts model complexity, i.e., number of filters,

kernel size, hidden neurons, dropout rate, depth and width efficiency of model, training,

and testing time. This is partially noted in Table 5.2. In our work, we have limited our

experiment in detecting the accuracy of SA in Bangla text with the help of LDD and BTSC.

In the future, we will conduct the complexity of our DL algorithm on a broad scale.

5.4 Conclusion

This section is structured around the details of experiments and discusses the results in both

ML and DL methodologies. The central hindrance aspect of conducting SA is related to the

fact that opinions are intended too subjective. The proposed chapter leads to overcoming

this task by providing a method of ML and DL-based blocks of a SA system. We examined

the BiGram model as a multi-word feature vector and the unigram features. Our initial

experiments noticed that the aggregation of only multi-word features like Unigram and

BiGram dependency features slightly performs well using our proposed rule-based BTSC

algorithm due to the dataset sparseness. Word2Vec is a learning representation generated

91

from an unstructured test that enables the model to capture more dependencies from the

target context on the DL approach. BERT-LSTM, D-CAPSNET-Bi-LSTM, and HAN-LSTM models

have shown state-of-the-art performance on our SA task.

Chapter 6

Conclusion

With the rapidly growing of Internet users, SA depends on the dataset of particular content.

A lexicon-based extended data dictionary is developed based on a specific domain, restaurant,

and cricket. Manual construction of positive and negative dictionaries with weighted values

is complex while mining data from the Bangla dataset. However, precise observation of these

data will give more accurate results in classifying polarity. In this thesis, the BTSC algorithm

detects the three types of polarity from the sentences using the Bangla extended dictionary

approach. Since a document belongs to more than one category, any rule-based algorithm is

required to detect text category and classification for categorical specific domain-based data.

We achieved the highest 82.21% accuracy in cricket on the BiGram feature matrix. In the

confusion matrix, identifying neutral data has performed less than the other two polarities.

Every dataset has its variabilities. If we use, i.e., fifty (50) thousand datasets in our ML

process, our result will predict more accuracy than the obtained accuracy with the current

dataset. For this, we need to construct a huge volume of the sentimental dictionary. In the

future, we will apply more datasets to our method. Approximately five thousand data is used

as a sentimental dictionary in our approach. Moreover, there is still a scope to redefine the

weights of the dictionary. To make this approach even more significant, we introduce a

categorical-based data dictionary that will play a pioneering role in further research.

92

93

This research investigated the most noteworthy work on SA on cricket reviews as a low-

resourced Bangla dataset using various DL architectures. This empirical study is an initial

dive into the lexicon dictionary-based approach on neural network mechanisms. We measure

the performance of our work based on accuracy, precision, recall, and f1 score. Firstly, we

developed a lexicon-based approach and used the BTSC algorithm to detect polarity from

preprocessed text from our previous work. Then we implemented the popular DL models,

i.e., CNN, DCNN, MVCNN, VDCNN, RNN, RCNN, LSTM, Bi-LSTM, AC-Bi-LSTM, GRU, Bi-GRU,

HAN-LSTM, D-CAPSNET-Bi-LSTM, BERT-LSTM with setting as customized and tuned with

hyperparameters on individual models. We found that LSTM had better results than CNN

and RNN type models. Then we used attention, capsule, Bert based mechanism by adding

LSTM layer, and the result showed significant improvement, which is indeed effective in the

sentiment classification effect. This hybrid model, HAN-LSTM and D-CAPSNET-Bi-LSTM, and

semantic learning representations (word2vec) have an excellent performance in accuracy,

precision, recall, and f1-score. Finally, Transformer based as a pretrained BERT with LSTM

as a hybrid model were used for this classification task, and it surpasses other results having

satisfactory accuracy and precision.

However, researchers do not publish their datasets; this LDD dataset will be published for

research since it can be further enriched. Our Bangla cricket review dataset is relatively

small concerning the benchmark dataset. The lack of enough large training corpus in the

Bangla domain is the drawback of our SA task. We have identified trinary polarity in cricket

reviews since this dataset is not properly balanced, so using balanced data for each polarity

in the training process might enhance the accuracy of prediction results. Because increasing

the amount of training data can assist in promoting the accuracy of prediction results. We

could not use a well-pretrained model due to lack of hardware resources, so in the future, we

developed a large corpus and trained it with various parameters or layers with a tuned model.

94

Although we gained many satisfactory results, it still has scope for further improvement in

our approach. In the future, we will conduct our research using other transformer models,

i.e., ALBERT, ELECTRA, RoBERT, and multilayer and hybrid capsule as well as attention-based

models.

6.1 Journal Publications:

Publication resulting from this thesis:

• Bhowmik, Nitish Ranjan, Mohammad Arifuzzaman, M. Rubaiyat Hossain Mondal, and

M. S. Islam. "Bangla text sentiment analysis using supervised machine learning with

extended lexicon dictionary." Natural Language Processing Research 1, no. 3-4 (2021):

34-45. [DOI https://doi.org/10.2991/nlpr.d.210316.001]

• Bhowmik, Nitish Ranjan, Mohammad Arifuzzaman, and M. Rubaiyat Hossain Mondal.

"Sentiment analysis on Bangla text using extended lexicon dictionary and deep learn-

ing algorithms." Array 13 (2022): 100123. [DOI https://doi.org/10.1016/j.array.

2021.100123]

https://doi.org/10.2991/nlpr.d.210316.001
https://doi.org/10.1016/j.array.2021.100123
https://doi.org/10.1016/j.array.2021.100123
https://doi.org/10.1016/j.array.2021.100123

Appendix A

Appendix Section

95

96

Table A.1: Word frequency and inverse document frequency list in restaurant dataset

(a) Word frequency (b) WORD IDF

Word Frequency

পরিযেবো 4

খোদয 3

অিবোি 3

খোবোি 3

অনুভূরত 2

চমৎকোি 2

মরুভূরম 2

আনন্দদোয়ক 2

বোয়ুমণ্ড 2

অরবশ্বোসয 2

স্থোন 2

আনন্দময় 2

রচেোকেবক 1

সুস্বোদু 1

ওয়োইন 1

তোর কো 1

ধীযিধীযি 1

রভি 1

বোযি 1

েীত 1

প্রম্পট 1

রবনয়ী 1

অরভজ্ঞতো 1

যমনু 1

খোও 1

যেট 1

ভোিতীয় 1

িরিন 1

িি 1

পরিযবে 1

Word Inverse Document Frequency

পরিযেবো 1.252762968

খোদয 1.466337069

অিবোি 1.466337069

খোবোি 1.466337069

অনুভূরত 1.791759469

চমৎকোি 1.791759469

মরুভূরম 1.791759469

আনন্দদোয়ক 1.791759469

বোয়ুমণ্ড 1.791759469

অরবশ্বোসয 1.791759469

স্থোন 1.791759469

আনন্দময় 2.397895273

রচেোকেবক 2.397895273

সুস্বোদু 2.397895273

ওয়োইন 2.397895273

তোর কো 2.397895273

ধীযিধীযি 2.397895273

রভি 2.397895273

বোযি 2.397895273

েীত 2.397895273

প্রম্পট 2.397895273

রবনয়ী 2.397895273

অরভজ্ঞতো 2.397895273

যমনু 2.397895273

খোও 2.397895273

যেট 2.397895273

ভোিতীয় 2.397895273

িরিন 2.397895273

িি 2.397895273

পরিযবে 2.397895273

97

Table A.2: Calculation of term frequency matrix

 DOC-1 DOC-2 DOC-3 DOC-4 DOC-5 DOC-6 DOC-7 DOC-8 DOC-9 DOC-10

পরিযেবো 0 0 0 0.142857 0.083333 0.1 0 0 0.166667 0

খোদয 0 0.2 0 0 0.083333 0 0 0 0.166667 0

অিবোি 0 0 0 0 0.083333 0 0.090909 0.166667 0 0

খোবোি 0 0 0 0 0 0 0.090909 0.166667 0 0.071429

অনুভূরত 0.111111 0 0 0 0 0 0.090909 0 0 0

চমৎকোি 0 0 0.25 0.142857 0 0 0 0 0 0

মরুভূরম 0 0 0 0.142857 0 0 0 0 0 0.071429

আনন্দদোয়ক 0 0 0 0.142857 0 0 0 0 0 0.071429

বোয়ুমণ্ড 0 0 0 0.142857 0 0 0 0 0 0.071429

অরবশ্বোসয 0 0 0 0 0 0.1 0 0 0.166667 0

স্থোন 0 0 0 0 0 0.1 0 0 0 0.071429

আনন্দময় 0 0 0 0 0 0 0 0 0 0.142857

রচেোকেবক 0.111111 0 0 0 0 0 0 0 0 0

সুস্বোদু 0.111111 0 0 0 0 0 0 0 0 0

ওয়োইন 0 0 0.25 0 0 0 0 0 0 0

তোর কো 0 0 0.25 0 0 0 0 0 0 0

ধীযিধীযি 0 0 0 0 0.083333 0 0 0 0 0

রভি 0 0 0 0 0.083333 0 0 0 0 0

বোযি 0 0 0 0 0.083333 0 0 0 0 0

েীত 0 0 0 0 0 0.1 0 0 0 0

প্রম্পট 0 0 0 0 0 0.1 0 0 0 0

রবনয়ী 0 0 0 0 0 0.1 0 0 0 0

অরভজ্ঞতো 0 0 0 0 0 0 0.090909 0 0 0

যমনু 0 0 0 0 0 0 0.090909 0 0 0

খোও 0 0 0 0 0 0 0 0.166667 0 0

যেট 0 0 0 0 0 0 0 0 0.166667 0

ভোিতীয় 0 0 0 0 0 0 0 0 0.166667 0

িরিন 0 0 0 0 0 0 0 0 0 0.071429

িি 0 0 0 0 0 0 0 0 0 0.071429

পরিযবে 0 0 0 0 0 0 0 0 0 0.071429

98

Table A.3: Word by document matrix in restaurant dataset

Word\DOC DOC-1 DOC-2 DOC-3 DOC-4 DOC-5 DOC-6 DOC-7 DOC-8 DOC-9 DOC-10

পরিযেবো 0 0 0 0.178966 0.104397 0.125276 0 0 0.208794 0

খোদয 0 0.293267 0 0 0.122195 0 0 0 0.24439 0

অিবোি 0 0 0 0 0.122195 0 0.133303 0.2443895 0 0

খোবোি 0 0 0 0 0 0 0.133303 0.2443895 0 0.104738

অনুভূরত 0.199084 0 0 0 0 0 0.162887 0 0 0

চমৎকোি 0 0 0.44794 0.255966 0 0 0 0 0 0

মরুভূরম 0 0 0 0.255966 0 0 0 0 0 0.127983

আনন্দদোয়ক 0 0 0 0.255966 0 0 0 0 0 0.127983

বোয়ুমণ্ড 0 0 0 0.255966 0 0 0 0 0 0.127983

অরবশ্বোসয 0 0 0 0 0 0.179176 0 0 0.298627 0

স্থোন 0 0 0 0 0 0.179176 0 0 0 0.127983

আনন্দময় 0 0 0 0 0 0 0 0 0 0.342556

রচেোকেবক 0.266433 0 0 0 0 0 0 0 0 0

সুস্বোদু 0.266433 0 0 0 0 0 0 0 0 0

ওয়োইন 0 0 0.599474 0 0 0 0 0 0 0

তোর কো 0 0 0.599474 0 0 0 0 0 0 0

ধীযিধীযি 0 0 0 0 0.199825 0 0 0 0 0

রভি 0 0 0 0 0.199825 0 0 0 0 0

বোযি 0 0 0 0 0.199825 0 0 0 0 0

েীত 0 0 0 0 0 0.23979 0 0 0 0

প্রম্পট 0 0 0 0 0 0.23979 0 0 0 0

রবনয়ী 0 0 0 0 0 0.23979 0 0 0 0

অরভজ্ঞতো 0 0 0 0 0 0 0.21799 0 0 0

যমনু 0 0 0 0 0 0 0.21799 0 0 0

খোও 0 0 0 0 0 0 0 0.3996492 0 0

যেট 0 0 0 0 0 0 0 0 0.399649 0

ভোিতীয় 0 0 0 0 0 0 0 0 0.399649 0

িরিন 0 0 0 0 0 0 0 0 0 0.171278

িি 0 0 0 0 0 0 0 0 0 0.171278

পরিযবে 0 0 0 0 0 0 0 0 0 0.171278

99

Table A.4: Representation of TF-IDF feature matrix for restaurant dataset

DOC\Word পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো পরিযেবো
0 1 2 3 4 5 6 7 8 9

DOC-1 0 0 0 0 0.199084 0 0 0 0 0

DOC-2 0 0.293267 0 0 0 0 0 0 0 0

DOC-3

DOC-4

0 0 0 0 0 0.44794 0 0 0 0

0.178966 0 0 0 0 0.255966 0.255966 0.2559656 0.255966 0

DOC-5 0.104397 0.122195 0.122195 0 0 0 0 0 0 0

DOC-6 0.125276 0 0 0 0 0 0 0 0 0.179176

DOC-7 0 0 0.133303 0.133303 0.162887 0 0 0 0 0

DOC-8 0 0 0.24439 0.24439 0 0 0 0 0 0

DOC-9 0.208794 0.24439 0 0 0 0 0 0 0 0.298627

DOC-10 0 0 0 0.104738 0 0 0.127983 0.1279828 0.127983 0

 স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন স্থোন
10 11 12 13 14 15 16 17 18 19

0 0 0.266433 0.266433 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.599474 0.599474 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.199825 0.1998246 0.199825 0

0.179176 0 0 0 0 0 0 0 0 0.23979

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.127983 0.342556 0 0 0 0 0 0 0 0

প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট প্রম্পট
20 21 22 23 24 25 26 27 28 29

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.23979 0.23979 0 0 0 0 0 0 0 0

0 0 0.21799 0.21799 0 0 0 0 0 0

0 0 0 0 0.399649 0 0 0 0 0

0 0 0 0 0 0.399649 0.399649 0 0 0

0 0 0 0 0 0 0 0.1712782 0.171278 0.171278

Table A.5: Sample data from cricket dataset

DOC No. Sentence

DOC-1 বোং োযদে রজতযব ইনেোআল্লোহ। শুভ কোমনো িইয ো টোইগ্োি জনয।
DOC-2 জয় বোং ো, হোিয ও বোং োযদে, রজতয ও বোং োযদে। শুভ কোমনো।
DOC-3 সোরকব িোিো বোং োযদে রিন রনভবি যবোর ং োইন খুব সোধোিণ মোযনি পোিিিমযোন্স।
DOC-4 অরধনোয়ক রিয়োদ আযিো পরিপক্ব আি দোরয়ত্বেী হযবন, বোযজ অরধনোয়ক
DOC-5 বোং োযদে রজতোি কেো, এই িোন শ্রী ংকো পোিো সম্ভোবনো খুব কম।
DOC-6 বোং োযদে দ পোিিিমযোন্স এি যকোযনো দোম যনই ।
DOC-7 তোরমম, সোরকব ও মুেরিক উপি সব সময় রনভবি হযয় যখ য এই িকম বোযজ অবস্থো

হযতই েোকযব।
DOC-8 রিযকট টীম রনযয় এই ধিযনি নোটক েহণয োগ্য নয়! ।
DOC-9 রিন সোমযন নয়, সোরকব সোমযন ধিোেোয়ী টীম র্শ্বী ংকো।

DOC-10 মোেিোরি তুরম যতোমোি যসিো প্রমোণ কযি দোও। টোইগ্োি ইজ টোইগ্োি।

100

Table A.6: Word frequency and inverse document frequency list in cricket dataset

Word Frequency Inverse Document Frequency

WORD Frequency WORD Inverse Document Frequency

বোং োযদে 6 বোং োযদে 1.098612289

রজত 3 রজত 1.466337069

টোইগ্োি 3 টোইগ্োি 1.791759469

সোরকব 3 সোরকব 1.466337069

শুভ 2 শুভ 1.791759469

কোমনো 2 কোমনো 1.791759469

রিন 2 রিন 1.791759469

রনভবি 2 রনভবি 1.791759469

পোিিিমযোন্স 2 পোিিিমযোন্স 1.791759469

অরধনোয়ক 2 অরধনোয়ক 2.397895273

বোযজ 2 বোযজ 1.791759469

টীম 2 টীম 1.791759469

ইনেোআল্লোহ 1 ইনেোআল্লোহ 2.397895273

জয় 1 জয় 2.397895273

বোং ো 1 বোং ো 2.397895273

হোি 1 হোি 2.397895273

যবোর ং 1 যবোর ং 2.397895273

সোধোিণ 1 সোধোিণ 2.397895273

রিয়োদ 1 রিয়োদ 2.397895273

পরিপক্ব 1 পরিপক্ব 2.397895273

দোরয়ত্বেী 1 দোরয়ত্বেী 2.397895273

িোন 1 িোন 2.397895273

শ্রী ংকো 1 শ্রী ংকো 2.397895273

পোিো 1 পোিো 2.397895273

সম্ভোবনো 1 সম্ভোবনো 2.397895273

দ 1 দ 2.397895273

দোম 1 দোম 2.397895273

তোরমম 1 তোরমম 2.397895273

মুরেিক 1 মুরেিক 2.397895273

যখ 1 যখ 2.397895273

অবস্থো 1 অবস্থো 2.397895273

েোকব 1 েোকব 2.397895273

রিযকট 1 রিযকট 2.397895273

নোটক 1 নোটক 2.397895273

েহণয োগ্য 1 েহণয োগ্য 2.397895273

ধিোেোয়ী 1 ধিোেোয়ী 2.397895273

র্শ্বী ংকো 1 র্শ্বী ংকো 2.397895273

মোেিোরি 1 মোেিোরি 2.397895273

যসিো 1 যসিো 2.397895273

প্রমোণ 1 প্রমোণ 2.397895273

101

Table A.7: Term frequency matrix in cricket dataset

Word\DOC DOC-1 DOC-2 DOC-3 DOC-4 DOC-5 DOC-6 DOC-7 DOC-8 DOC-9 DOC-10

বোং োযদে 0.125 0.25 0.090909 0 0.1 0.142857 0 0 0 0

রজত 0.125 0.125 0 0 0.1 0 0 0 0 0

টোইগ্োি 0.125 0 0 0 0 0 0 0 0 0.2

সোরকব 0 0 0.090909 0 0 0 0.0625 0 0.125 0

শুভ 0.125 0.125 0 0 0 0 0 0 0 0

কোমনো 0.125 0.125 0 0 0 0 0 0 0 0

রিন 0 0 0.090909 0 0 0 0 0 0.125 0

রনভবি 0 0 0.090909 0 0 0 0.0625 0 0 0

পোিিিমযোন্স 0 0 0.090909 0 0 0.142857 0 0 0 0

অরধনোয়ক 0 0 0 0.222222 0 0 0 0 0 0

বোযজ 0 0 0 0.111111 0 0 0.0625 0 0 0

টীম 0 0 0 0 0 0 0 0.125 0.125 0

ইনেোআল্লোহ 0.125 0 0 0 0 0 0 0 0 0

জয় 0 0.125 0 0 0 0 0 0 0 0

বোং ো 0 0.125 0 0 0 0 0 0 0 0

হোি 0 0.125 0 0 0 0 0 0 0 0

যবোর ং 0 0 0.090909 0 0 0 0 0 0 0

সোধোিণ 0 0 0.090909 0 0 0 0 0 0 0

রিয়োদ 0 0 0 0.111111 0 0 0 0 0 0

পরিপক্ব 0 0 0 0.111111 0 0 0 0 0 0

দোরয়ত্বেী 0 0 0 0.111111 0 0 0 0 0 0

িোন 0 0 0 0 0.1 0 0 0 0 0

শ্রী ংকো 0 0 0 0 0.1 0 0 0 0 0

পোিো 0 0 0 0 0.1 0 0 0 0 0

সম্ভোবনো 0 0 0 0 0.1 0 0 0 0 0

দ 0 0 0 0 0 0.142857 0 0 0 0

দোম 0 0 0 0 0 0.142857 0 0 0 0

তোরমম 0 0 0 0 0 0 0.0625 0 0 0

মুরেিক 0 0 0 0 0 0 0.0625 0 0 0

যখ 0 0 0 0 0 0 0.0625 0 0 0

অবস্থো 0 0 0 0 0 0 0.0625 0 0 0

েোকব 0 0 0 0 0 0 0.0625 0 0 0

রিযকট 0 0 0 0 0 0 0 0.125 0 0

নোটক 0 0 0 0 0 0 0 0.125 0 0

েহণয োগ্য 0 0 0 0 0 0 0 0.125 0 0

ধিোেোয়ী 0 0 0 0 0 0 0 0 0.125 0

র্শ্বী ংকো 0 0 0 0 0 0 0 0 0.125 0

মোেিোরি 0 0 0 0 0 0 0 0 0 0.1

যসিো 0 0 0 0 0 0 0 0 0 0.1

প্রমোণ 0 0 0 0 0 0 0 0 0 0.1

কি 0 0 0 0 0 0 0 0 0 0.1

102

Table A.8: Word by document table matrix in cricket dataset

Word\DOC DOC-1 DOC-2 DOC-3 DOC-4 DOC-5 DOC-6 DOC-7 DOC-8 DOC-9 DOC-10

বোং োযদে 0.137327 0.274653 0.099874 0 0.109861 0.156945 0 0 0 0

রজত 0.183292 0.183292 0 0 0.146634 0 0 0 0 0

টোইগ্োি 0.22397 0 0 0 0 0 0 0 0 0.358352

সোরকব 0 0 0.133303 0 0 0 0.091646 0 0.183292 0

শুভ 0.22397 0.22397 0 0 0 0 0 0 0 0

কোমনো 0.22397 0.22397 0 0 0 0 0 0 0 0

রিন 0 0 0.162887 0 0 0 0 0 0.22397 0

রনভবি 0 0 0.162887 0 0 0 0.111985 0 0 0

পোিিিমযোন্স 0 0 0.162887 0 0 0.255966 0 0 0 0

অরধনোয়ক 0 0 0 0.532866 0 0 0 0 0 0

বোযজ 0 0 0 0.199084 0 0 0.111985 0 0 0

টীম 0 0 0 0 0 0 0 0.22397 0.22397 0

ইনেোআল্লোহ 0.299737 0 0 0 0 0 0 0 0 0

জয় 0 0.299737 0 0 0 0 0 0 0 0

বোং ো 0 0.299737 0 0 0 0 0 0 0 0

হোি 0 0.299737 0 0 0 0 0 0 0 0

যবোর ং 0 0 0.21799 0 0 0 0 0 0 0

সোধোিণ 0 0 0.21799 0 0 0 0 0 0 0

রিয়োদ 0 0 0 0.266433 0 0 0 0 0 0

পরিপক্ব 0 0 0 0.266433 0 0 0 0 0 0

দোরয়ত্বেী 0 0 0 0.266433 0 0 0 0 0 0

িোন 0 0 0 0 0.23979 0 0 0 0 0

শ্রী ংকো 0 0 0 0 0.23979 0 0 0 0 0

পোিো 0 0 0 0 0.23979 0 0 0 0 0

সম্ভোবনো 0 0 0 0 0.23979 0 0 0 0 0

দ 0 0 0 0 0 0.342556 0 0 0 0

দোম 0 0 0 0 0 0.342556 0 0 0 0

তোরমম 0 0 0 0 0 0 0.149868 0 0 0

মুরেিক 0 0 0 0 0 0 0.149868 0 0 0

যখ 0 0 0 0 0 0 0.149868 0 0 0

অবস্থো 0 0 0 0 0 0 0.149868 0 0 0

েোকব 0 0 0 0 0 0 0.149868 0 0 0

রিযকট 0 0 0 0 0 0 0 0.299737 0 0

নোটক 0 0 0 0 0 0 0 0.299737 0 0

েহণয োগ্য 0 0 0 0 0 0 0 0.299737 0 0

ধিোেোয়ী 0 0 0 0 0 0 0 0 0.299737 0

র্শ্বী ংকো 0 0 0 0 0 0 0 0 0.299737 0

মোেিোরি 0 0 0 0 0 0 0 0 0 0.23979

যসিো 0 0 0 0 0 0 0 0 0 0.23979

প্রমোণ 0 0 0 0 0 0 0 0 0 0.23979

কি 0 0 0 0 0 0 0 0 0 0.23979

103

Table A.9: TF-IDF feature matrix for cricket dataset

DOC\Word
বোং োযদে রজত টোইগ্োি সোরকব শুভ কোমনো রিন রনভবি পোিিিমযোন্স অরধনোয়ক

0 1 2 3 4 5 6 7 8 9

DOC-1 0.137327 0.183292 0.22397 0 0.22397 0.22397 0 0 0 0

DOC-2 0.274653 0.183292 0 0 0.22397 0.22397 0 0 0 0

DOC-3 0.099874 0 0 0.133303 0 0 0.162887 0.162887 0.162887 0

DOC-4 0 0 0 0 0 0 0 0 0 0.532866

DOC-5 0.109861 0.146634 0 0 0 0 0 0 0 0

DOC-6 0.156945 0 0 0 0 0 0 0 0.255966 0

DOC-7 0 0 0 0.091646 0 0 0 0.111985 0 0

DOC-8 0 0 0 0 0 0 0 0 0 0

DOC-9 0 0 0 0.183292 0 0 0.22397 0 0 0

DOC-10 0 0 0.358352 0 0 0 0 0 0 0

 বোযজ টীম ইনেোআল্লোহ জয় বোং ো হোি যবোর ং সোধোিণ রিয়োদ পরিপক্ব
10 11 12 13 14 15 16 17 18 19

0 0 0.299737 0 0 0 0 0 0 0

0 0 0 0.299737 0.299737 0.299737 0 0 0 0

0 0 0 0 0 0 0.21799 0.21799 0 0

0.199084 0 0 0 0 0 0 0 0.266433 0.266433

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.111985 0 0 0 0 0 0 0 0 0

0 0.22397 0 0 0 0 0 0 0 0

0 0.22397 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

দোরয়ত্বেী িোন শ্রী ংকো পোিো সম্ভোবনো দ দোম তোরমম মুরেিক যখ
20 21 22 23 24 25 26 27 28 29

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.266433 0 0 0 0 0 0 0 0 0

0 0.23979 0.23979 0.23979 0.23979 0 0 0 0 0

0 0 0 0 0 0.342556 0.342556 0 0 0

0 0 0 0 0 0 0 0.149868 0.149868 0.149868

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

অবস্থো েোকব রিযকট নোটক েহণয োগ্য ধিোেোয়ী র্শ্বী ংকো মোেিোরি যসিো প্রমোণ
30 31 32 33 34 35 36 37 38 39

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.149868 0.149868 0 0 0 0 0 0 0 0

0 0 0.299737 0.299737 0.299737 0 0 0 0 0

0 0 0 0 0 0.299737 0.299737 0 0 0

0 0 0 0 0 0 0 0.23979 0.23979 0.23979

Bibliography

[1] Liu B. Sentiment analysis and opinion mining. Morgan & Claypool Publishers, 2012.

[2] Alexander Pak and Patrick Paroubek. “Twitter as a corpus for sentiment analysis and opinion

mining”. In: Proceedings of the Seventh International Conference on Language Resources

and Evaluation (LREC’10). 2010.

[3] Maite Taboada et al. “Lexicon-based methods for sentiment analysis”. In: Computational

linguistics 37.2 (2011), pp. 267–307.

[4] Xiaoyong Liu and W Bruce Croft. “Statistical language modeling for information retrieval”.

In: Annual Review of Information Science and Technology 39.1 (2005), pp. 1–31.

[5] Wikipedia. Bengali language. https://en.wikipedia.org/wiki/Bengali_language.

accessed on 17.04.2020.

[6] Richard Rosenfeld and Robert Fornango. “The impact of economic conditions on robbery

and property crime: The role of consumer sentiment”. In: Criminology 45.4 (2007), pp. 735–

769.

[7] Ronan Collobert et al. “Natural language processing (almost) from scratch”. In: Journal of

machine learning research 12.ARTICLE (2011), pp. 2493–2537.

[8] Mohammad A Karim. Technical challenges and design issues in bangla language process-

ing. IGI Global, 2013.

[9] Guixian Xu et al. “Chinese text sentiment analysis based on extended sentiment dictionary”.

In: IEEE Access 7 (2019), pp. 43749–43762.

[10] Nawaf A Abdulla et al. “Arabic sentiment analysis: Lexicon-based and corpus-based”. In:

2013 IEEE Jordan conference on applied electrical engineering and computing technologies

(AEECT). IEEE. 2013, pp. 1–6.

[11] Eissa M Alshari et al. “Effective method for sentiment lexical dictionary enrichment based on

Word2Vec for sentiment analysis”. In: 2018 Fourth International Conference on Information

Retrieval and Knowledge Management (CAMP). IEEE. 2018, pp. 1–5.

104

https://en.wikipedia.org/wiki/Bengali_language

105

[12] Shamsul Arafin Mahtab, Nazmul Islam, and Md Mahfuzur Rahaman. “Sentiment analysis

on bangladesh cricket with support vector machine”. In: 2018 International Conference on

Bangla Speech and Language Processing (ICBSLP). IEEE. 2018, pp. 1–4.

[13] Clayton J Hutto and Eric Gilbert. “Vader: A parsimonious rule-based model for sentiment

analysis of social media text”. In: Eighth international AAAI conference on weblogs and

social media. 2014.

[14] Shaika Chowdhury and Wasifa Chowdhury. “Performing sentiment analysis in Bangla mi-

croblog posts”. In: 2014 International Conference on Informatics, Electronics & Vision

(ICIEV). IEEE. 2014, pp. 1–6.

[15] KM Azharul Hasan, Mosiur Rahman, et al. “Sentiment detection from bangla text using

contextual valency analysis”. In: 2014 17th International Conference on Computer and In-

formation Technology (ICCIT). IEEE. 2014, pp. 292–295.

[16] Md Saiful Islam et al. “Supervised approach of sentimentality extraction from bengali face-

book status”. In: 2016 19th International Conference on Computer and Information Tech-

nology (ICCIT). IEEE. 2016, pp. 383–387.

[17] Rashedul Amin Tuhin et al. “An Automated System of Sentiment Analysis from Bangla

Text using Supervised Learning Techniques”. In: 2019 IEEE 4th International Conference

on Computer and Communication Systems (ICCCS). IEEE. 2019, pp. 360–364.

[18] Nusrath Tabassum and Muhammad Ibrahim Khan. “Design an Empirical Framework for

Sentiment Analysis from Bangla Text using Machine Learning”. In: 2019 International Con-

ference on Electrical, Computer and Communication Engineering (ECCE). IEEE. 2019, pp.

1–5.

[19] Shunxiang Zhang et al. “Sentiment analysis of Chinese micro-blog text based on extended

sentiment dictionary”. In: Future Generation Computer Systems 81 (2018), pp. 395–403.

[20] Sanjida Akter and Muhammad Tareq Aziz. “Sentiment analysis on facebook group using

lexicon based approach”. In: 2016 3rd International Conference on Electrical Engineering

and Information Communication Technology (ICEEICT). IEEE. 2016, pp. 1–4.

[21] Bo Pang and Lillian Lee. “A sentimental education: Sentiment analysis using subjectivity

summarization based on minimum cuts”. In: arXiv preprint cs/0409058 (2004).

[22] Yoshua Bengio et al. “A neural probabilistic language model”. In: The journal of machine

learning research 3 (2003), pp. 1137–1155.

[23] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A convolutional neural network

for modelling sentences”. In: arXiv preprint arXiv:1404.2188 (2014).

106

[24] Alexis Conneau et al. “Very deep convolutional networks for text classification”. In: arXiv

preprint arXiv:1606.01781 (2016).

[25] Wenpeng Yin and Hinrich Schütze. “Multichannel variable-size convolution for sentence

classification”. In: arXiv preprint arXiv:1603.04513 (2016).

[26] Tomáš Mikolov et al. “Recurrent neural network based language model”. In: Eleventh annual

conference of the international speech communication association. 2010.

[27] Lizhong Xiao, Guangzhong Wang, and Yang Zuo. “Research on patent text classification

based on word2vec and LSTM”. In: 2018 11th International Symposium on Computational

Intelligence and Design (ISCID). Vol. 1. IEEE. 2018, pp. 71–74.

[28] Peng Zhou et al. “Text classification improved by integrating bidirectional LSTM with two-

dimensional max pooling”. In: arXiv preprint arXiv:1611.06639 (2016).

[29] Depeng Liang and Yongdong Zhang. “AC-BLSTM: asymmetric convolutional bidirectional

LSTM networks for text classification”. In: arXiv preprint arXiv:1611.01884 (2016).

[30] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. “Recurrent neural network for text classifi-

cation with multi-task learning”. In: arXiv preprint arXiv:1605.05101 (2016).

[31] Rajib Rana. “Gated recurrent unit (GRU) for emotion classification from noisy speech”. In:

arXiv preprint arXiv:1612.07778 (2016).

[32] Zichao Yang et al. “Hierarchical attention networks for document classification”. In: Pro-

ceedings of the 2016 conference of the North American chapter of the association for com-

putational linguistics: human language technologies. 2016, pp. 1480–1489.

[33] Zhengxi Tian et al. “Attention aware bidirectional gated recurrent unit based framework for

sentiment analysis”. In: International Conference on Knowledge Science, Engineering and

Management. Springer. 2018, pp. 67–78.

[34] Yuxiao Chen et al. “Twitter sentiment analysis via bi-sense emoji embedding and attention-

based LSTM”. In: Proceedings of the 26th ACM international conference on Multimedia.

2018, pp. 117–125.

[35] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language un-

derstanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[36] Zhengjie Gao et al. “Target-dependent sentiment classification with BERT”. In: IEEE Access

7 (2019), pp. 154290–154299.

107

[37] Rumman Rashid Chowdhury et al. “Analyzing sentiment of movie reviews in bangla by ap-

plying machine learning techniques”. In: 2019 International Conference on Bangla Speech

and Language Processing (ICBSLP). IEEE. 2019, pp. 1–6.

[38] Asif Hassan et al. “Sentiment analysis on bangla and romanized bangla text using deep re-

current models”. In: 2016 International Workshop on Computational Intelligence (IWCI).

IEEE. 2016, pp. 51–56.

[39] Nafis Irtiza Tripto and Mohammed Eunus Ali. “Detecting multilabel sentiment and emotions

from bangla youtube comments”. In: 2018 International Conference on Bangla Speech and

Language Processing (ICBSLP). IEEE. 2018, pp. 1–6.

[40] Md Habibul Alam, Md-Mizanur Rahoman, and Md Abul Kalam Azad. “Sentiment analy-

sis for Bangla sentences using convolutional neural network”. In: 2017 20th International

Conference of Computer and Information Technology (ICCIT). IEEE. 2017, pp. 1–6.

[41] Abdullah Aziz Sharfuddin, Md Nafis Tihami, and Md Saiful Islam. “A deep recurrent neural

network with bilstm model for sentiment classification”. In: 2018 International Conference

on Bangla Speech and Language Processing (ICBSLP). IEEE. 2018, pp. 1–4.

[42] Md Al-Amin, Md Saiful Islam, and Shapan Das Uzzal. “Sentiment analysis of Bengali com-

ments with Word2Vec and sentiment information of words”. In: 2017 international confer-

ence on electrical, computer and communication engineering (ECCE). IEEE. 2017, pp. 186–

190.

[43] Asif Hassan et al. “Sentiment analysis on bangla and romanized bangla text (BRBT) using

deep recurrent models”. In: arXiv preprint arXiv:1610.00369 (2016).

[44] Md Ferdous Wahid, Md Jahid Hasan, and Md Shahin Alom. “Cricket sentiment analysis from

bangla text using recurrent neural network with long short term memory model”. In: 2019 In-

ternational Conference on Bangla Speech and Language Processing (ICBSLP). IEEE. 2019,

pp. 1–4.

[45] Sadia Sharmin and Danial Chakma. “Attention-based convolutional neural network for Bangla

sentiment analysis”. In: AI & SOCIETY 36.1 (2021), pp. 381–396.

[46] Naimul Hossain et al. “Sentiment Analysis of Restaurant Reviews using Combined CNN-

LSTM”. In: 2020 11th International Conference on Computing, Communication and Net-

working Technologies (ICCCNT). IEEE. 2020, pp. 1–5.

[47] Duyu Tang et al. “Building large-scale twitter-specific sentiment lexicon: A representation

learning approach”. In: Proceedings of coling 2014, the 25th international conference on

computational linguistics: Technical papers. 2014, pp. 172–182.

108

[48] Maite Taboada et al. “Lexicon-Based Methods for Sentiment Analysis”. In: Computational

Linguistics 37 (June 2011), pp. 267–307. DOI: 10.1162/COLI_a_00049.

[49] Hilke Reckman et al. “teragram: Rule-based detection of sentiment phrases using sas sen-

timent analysis”. In: Second Joint Conference on Lexical and Computational Semantics (*

SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evalua-

tion (SemEval 2013). 2013, pp. 513–519.

[50] Supaporn Buddeewong and Worapoj Kreesuradej. “A new association rule-based text classi-

fier algorithm”. In: 17th IEEE International Conference on Tools with Artificial Intelligence

(ICTAI’05). IEEE. 2005, 2–pp.

[51] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. “Thumbs up?: sentiment classifica-

tion using machine learning techniques”. In: Proceedings of the ACL-02 conference on Em-

pirical methods in natural language processing-Volume 10. Association for Computational

Linguistics. 2002, pp. 79–86.

[52] Kushal Dave, Steve Lawrence, and David M Pennock. “Mining the peanut gallery: Opin-

ion extraction and semantic classification of product reviews”. In: Proceedings of the 12th

international conference on World Wide Web. 2003, pp. 519–528.

[53] AtikRahman. Bangla ABSA Datasets for Sentiment Analysis. https : / / github . com /

AtikRahman/Bangla_ABSA_Datasets. accessed on 05.19.2020.

[54] Md Rahman, Emon Kumar Dey, et al. “Datasets for aspect-based sentiment analysis in

bangla and its baseline evaluation”. In: Data 3.2 (2018), p. 15.

[55] Grammar Hub. Adjective, নোম র◌যবেেণ. http : / / www . grammarbd . com / en - grammar

/ adjective. accessed on 17.04.2020.

[56] Grammar Hub. Adverb, র◌কয়বো র◌যবেেণ. http://www.grammarbd.com/en-

grammar/adverb. accessed on 17.04.2020.

[57] Saimon Hossain. BLTK, The Bengali Natural Language Processing Toolkit. https://pypi.

org/project/bltk/. accessed on 28.03.2020.

[58] Ranks NL. Bengali Stopwords - Ranks NL. https : / / www . ranks . nl / stopwords /

bengali. accessed on 08.01.2020.

[59] TensorFlow API Developer. Keras Preprocessing Library, Module:tf.keras.preprocessing.

https:// www. tensorflow. org/ api_ docs/ python/ tf/ keras/ preprocessing/.

accessed on 07.31.2021.

https://doi.org/10.1162/COLI_a_00049
https://github.com/AtikRahman/Bangla_ABSA_Datasets
https://github.com/AtikRahman/Bangla_ABSA_Datasets
https://github.com/AtikRahman/Bangla_ABSA_Datasets
http://www.grammarbd.com/en-grammar/adjective
http://www.grammarbd.com/en-grammar/adjective
http://www.grammarbd.com/en-grammar/adjective
http://www.grammarbd.com/en-grammar/adverb
http://www.grammarbd.com/en-grammar/adverb
https://pypi.org/project/bltk/
https://pypi.org/project/bltk/
https://pypi.org/project/bltk/
https://www.ranks.nl/stopwords/bengali
https://www.ranks.nl/stopwords/bengali
https://www.ranks.nl/stopwords/bengali
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/

109

[60] TensorFlow API Developer. Keras Preprocessing Library, Module:tf.keras.preprocessing.text.Tokenizer.
https:// www. tensorflow. org/ api_ docs/ python/ tf/ keras/ preprocessing/

text/Tokenizer. accessed on 07.31.2021.

[61] TensorFlow API Developer. Keras Preprocessing Library, Module:tf.keras.preprocessing.sequence.pad_se
https:// www. tensorflow. org/ api_ docs/ python/ tf/ keras/ preprocessing/

sequence/pad_sequences. accessed on 07.31.2021.

[62] Sagor Sarker. BanglaBERT: Bengali Mask Language Model for Bengali Language Under-

standing. https://github.com/sagorbrur/bangla-bert. accessed on 07.31.2021.

[63] Thomas Wolf et al. “Huggingface’s transformers: State-of-the-art natural language process-

ing”. In: arXiv preprint arXiv:1910.03771 (2019).

[64] Huggingface Library Developer. BertTokenizer. https://huggingface.co/transformers/

model_doc/bert.html#berttokenizer. accessed on 07.31.2021.

[65] Huggingface Library Developer. Bert PreTrained Tokenizer Base encode_plus function. https:

//huggingface.co/transformers/internal/tokenization_utils.html#transformers.

tokenization_utils_base.PreTrainedTokenizerBase.encode_plus. accessed on

07.31.2021.

[66] Tomas Mikolov et al. “Efficient estimation of word representations in vector space”. In:

arXiv preprint arXiv:1301.3781 (2013).

[67] Tomas Mikolov et al. “Distributed representations of words and phrases and their composi-

tionality”. In: Advances in neural information processing systems. 2013, pp. 3111–3119.

[68] Edward Ma. NLP Augmentation. https://github.com/makcedward/nlpaug. 2019.

[69] Terry Traylor, Jeremy Straub, Nicholas Snell, et al. “Classifying fake news articles using

natural language processing to identify in-article attribution as a supervised learning estima-

tor”. In: 2019 IEEE 13th International Conference on Semantic Computing (ICSC). IEEE.

2019, pp. 445–449.

[70] A Gural Vural et al. “A framework for sentiment analysis in turkish: Application to polarity

detection of movie reviews in turkish”. In: Computer and Information Sciences III. Springer,

2013, pp. 437–445.

[71] Eric Nguyen. “Chapter 4 - Text Mining and Network Analysis of Digital Libraries in R”.

In: Data Mining Applications with R. Ed. by Yanchang Zhao and Yonghua Cen. Boston:

Academic Press, 2014, pp. 95–115. ISBN: 978-0-12-411511-8. DOI: https://doi.org/

10.1016/B978-0-12-411511-8.00004-9. URL: https://www.sciencedirect.com/

science/article/pii/B9780124115118000049.

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/pad_sequences
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/pad_sequences
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/pad_sequences
https://github.com/sagorbrur/bangla-bert
https://huggingface.co/transformers/model_doc/bert.html#%23berttokenizer
https://huggingface.co/transformers/model_doc/bert.html#%23berttokenizer
https://huggingface.co/transformers/model_doc/bert.html#%23berttokenizer
https://huggingface.co/transformers/internal/tokenization_utils.html#%23transformers.tokenization_utils_base.PreTrainedTokenizerBase.encode_plus
https://huggingface.co/transformers/internal/tokenization_utils.html#%23transformers.tokenization_utils_base.PreTrainedTokenizerBase.encode_plus
https://huggingface.co/transformers/internal/tokenization_utils.html#%23transformers.tokenization_utils_base.PreTrainedTokenizerBase.encode_plus
https://www.sciencedirect.com/science/article/pii/B9780124115118000049
https://www.sciencedirect.com/science/article/pii/B9780124115118000049
https://www.sciencedirect.com/science/article/pii/B9780124115118000049

110

[72] Brian D Ripley. Pattern recognition and neural networks. Cambridge university press, 2007.

[73] Michel Jose Anzanello and Flavio Sanson Fogliatto. “Learning curve models and applica-

tions: Literature review and research directions”. In: International Journal of Industrial Er-

gonomics 41.5 (2011), pp. 573–583.

[74] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep learning (adaptive computa-

tion and machine learning series)”. In: Cambridge Massachusetts (2017), pp. 321–359.

[75] Maryem Rhanoui et al. “A CNN-BiLSTM model for document-level sentiment analysis”.

In: Machine Learning and Knowledge Extraction 1.3 (2019), pp. 832–847.

[76] Ochilbek Rakhmanov. “On validity of sentiment analysis scores and development of classi-

fication model for student-lecturer comments using weight-based approach and deep learn-

ing”. In: Proceedings of the 21st Annual Conference on Information Technology Education.

2020, pp. 174–179.

[77] Eftekhar Hossain et al. “Sentilstm: a deep learning approach for sentiment analysis of restau-

rant reviews”. In: International Conference on Hybrid Intelligent Systems. Springer. 2020,

pp. 193–203.

[78] Ahmed Alsayat. “Improving Sentiment Analysis for Social Media Applications Using an

Ensemble Deep Learning Language Model”. In: Arabian Journal for Science and Engineer-

ing 47.2 (2022), pp. 2499–2511.

[79] Jie Wang, Bingxin Xu, and Yujie Zu. “Deep learning for aspect-based sentiment analysis”. In:

2021 International Conference on Machine Learning and Intelligent Systems Engineering

(MLISE). IEEE. 2021, pp. 267–271.

[80] Junyoung Chung et al. “Empirical evaluation of gated recurrent neural networks on sequence

modeling”. In: arXiv preprint arXiv:1412.3555 (2014).

[81] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information pro-

cessing systems. 2017, pp. 5998–6008.

[82] Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-text trans-

former”. In: arXiv preprint arXiv:1910.10683 (2019).

[83] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normalization”. In: arXiv

preprint arXiv:1607.06450 (2016).

[84] Jakob Uszkoreit. “Transformer: A novel neural network architecture for language under-

standing”. In: Google AI Blog 31 (2017).

111

[85] Omar Sharif, Mohammed Moshiul Hoque, and Eftekhar Hossain. “Sentiment Analysis of

Bengali Texts on Online Restaurant Reviews Using Multinomial Naive Bayes”. In: 2019 1st

International Conference on Advances in Science, Engineering and Robotics Technology

(ICASERT). IEEE. 2019, pp. 1–6.

[86] Kamal Sarkar. “Sentiment Polarity Detection in Bengali Tweets Using LSTM Recurrent

Neural Networks”. In: 2019 Second International Conference on Advanced Computational

and Communication Paradigms (ICACCP) (2019), pp. 1–6.

[87] Md Saiful Islam, Md Al-Amin, and Shapan Das Uzzal. “Word embedding with hellinger pca

to detect the sentiment of bengali text”. In: 2016 19th International Conference on Computer

and Information Technology (ICCIT). IEEE. 2016, pp. 363–366.

[88] Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. “On the complexity of linear pre-

diction: Risk bounds, margin bounds, and regularization”. In: (2008).

[89] Yoshua Bengio and Olivier Delalleau. “On the expressive power of deep architectures”. In:

International conference on algorithmic learning theory. Springer. 2011, pp. 18–36.

[90] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

