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Abstract 

A non-linear mathematical model is being proposed to study the depletion of dissolved 

oxygen caused by the excessive discharge of organic pollutant in water body. The 

interactions among concentration of nutrients, density of algae, density of detritus, density 

of zooplankton and concentration of dissolved oxygen are considered in this model. The 

model consists of five coupled non-linear differential equations. To validate the model, the 

boundedness of the state variables using the theory of differential inequality and positivity 

of each state variables have been done in this research. The equilibrium points of the 

proposed model have been demonstrated. The stability of the equilibrium points has been 

checked by computing the eigen-value and applying Routh’s Hurwitz criterion. Finally, the 

characteristics of the state variables with respect to different values of different parameters 

such as cumulative rate of discharge of nutrients, natural depletion rate of zooplankton, 

growth rate of algae due to nutrients, natural depletion rate of algae, and depletion rate of 

dissolved oxygen due to detritus have been discussed both graphically and analytically. It 

is speculated that detritus uses dissolved oxygen to supplement the total concentration of 

nutrients in the water body. It has been demonstrated graphically that the density of algae 

is strongly influenced by the cumulative rate of nutrient discharge from water or wastes 

itself. Algae engage in self-purification by eating both organic and inorganic contaminants 

while also making substances that are advantageous to their surroundings. Alarmingly 

excess detritus reduces the concentration of dissolved oxygen. It has been demonstrated 

numerically that the density of zooplankton rises when the rate of algal depletion and the 

rate of nutrients delivery from diverse sources both increase. In this study, it has also been 

discussed how the concentration of dissolved oxygen decreases as a consequence of the 

cumulative rate of nutrient discharge, the rate of algae growth due to nutrients, the rate of 

dissolved oxygen depletion due to detritus, and the rate of zooplankton growth due to algae. 

In conclusion, the study highlights the intricate interactions between the state variables and 

emphasizes the delicate balance found within an aquatic ecosystem. The results highlight 

how crucial it is to comprehend these processes in order to manage and maintain the health 

of our aquatic ecosystems. 
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CHAPTER ONE: INTRODUCTION 

1.1 An Overview of the Study 

In recent years, water pollution has become an alarming issue. The behavior of 

contaminants in the aquatic environment depends on many factors: chemical, physical, 

hydrodynamic and biological. Pollution is a pressure that influence the state of aquatic 

ecosystems. 

A combination of high temperatures, stagnant water and organic pollutants overload can 

result in different results. Our lake and river water are the living place of different 

species. It is an ecosystem of innumerable micro-organism and fish population, 

phytoplankton and zooplankton. Day by day the amount of detritus is depleting the 

healthy environment of the ecosystem. The organic pollutant in the water plays a key role 

in it. These so-called increase in organic pollutants can lead to a depletion of oxygen in 

the water, release of toxins and taste and odor problems. Without treatment, the algae and 

bacteria will grow more every year, resulting in an unbalanced ecosystem. That is why, it 

is important to control the discharge of organic pollutants for a healthy ecosystem. 

 

 

 

 

 

 

 

 

Figure 1.1: A flow diagram of the process in the depletion of DO 

A mix of sewage, storm runoff and other that has, in some way, come in contact with us 

is known as waste water. Wastewater is nonetheless a promising habitat for many a 

microbe. That’s part of what makes waste water dangerous both for us and the 

environment. Diseases out of bacteria, viruses and parasites can thrive in wastewater, 
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which may also be filled with pollutants like metals or the ingredients of our own 

pharmaceuticals. The waste water come in contact with different ecosystems, the 

combined decay of organic matter and excess of nutrients can create a chain of events that 

depletes oxygen from the water and affects the balance of life previously maintained 

there. The bits of organic matter are contaminants but to microbes, it’s a veritable buffet. 

Bacteria, coming from the water or the waste itself, shape this self-purification, 

consuming organic and inorganic matter while producing compounds that benefit their 

neighbors. 

1.2 Definition of Algal Bloom 

Before introducing algal bloom, we have to introduce algae first. Algae are a diverse 

group of aquatic organisms that have the ability to conduct photosynthesis [23]. Certain 

algae are familiar to most people; for instance, seaweeds (such as kelp or phytoplankton), 

pond scum or the algal blooms in lakes. In other words, algae are a primitive group of 

autotrophic plants, i.e., chlorophyll-bearing plants, which originated in sea water more 

than three billion years ago. In Bangladesh, a large number of algal species occur in 

freshwater, brackish water and marine habitats. Aquatic algae over 300 species and 

varieties of freshwater algae have been described from Bangladesh [26]. 

Now that we have a clear idea about algae, we are going to introduce algal bloom. Algal 

bloom is a rapid growth of microscopic algae or cyanobacteria in water, often resulting in 

a colored scum on the surface. In other words, algal bloom or algae bloom is a rapid 

increase or accumulation in the population of algae in freshwater or marine water 

systems, and is recognized by the discoloration in the water from their pigments. 

Cyanobacteria were mistaken for algae in the past, so cyanobacterial blooms are 

sometimes also called algal blooms [21]. Blooms which can injure animals or the ecology 

are called "harmful algal blooms" (HAB), and can lead to fish die-offs, cities cutting off 

water to residents, or states having to close fisheries. Also, a bloom can block out the 

sunlight from other organisms, and deplete oxygen levels in the water. Also, some algae 

secrete poisons into the water. 

For example [21], we can see some real evidences: 

i. In 2005, the Canadian HAB was discovered to have come further south than it has 

in years prior by a ship called The Oceanus, closing shellfish beds in Maine and 

https://en.wikipedia.org/wiki/Algae
https://en.wikipedia.org/wiki/Cyanobacteria
https://en.wikipedia.org/wiki/Harmful_algal_blooms
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Massachusetts and alerting authorities as far south as Montauk (Long Island, NY) 

to check their beds. Experts who discovered the reproductive cysts in the seabed 

warn of a possible spread to Long Island in the future, halting the area's fishing 

and shellfish industry and threatening the tourist trade, which constitutes a 

significant portion of the island's economy [25]. 

ii. In 2008, large blooms of the algae Cochlodinium polykrikoid were found along 

the Chesapeake Bay and nearby tributaries such as the James River, causing 

millions of dollars in damage and numerous beach closures [12]. 

iii. In 2009, Brittany, France experienced recurring algal blooms caused by the high 

amount of fertilizer discharging in the sea due to intensive pig farming, causing 

lethal gas emissions that have led to one case of human unconsciousness and three 

animal deaths [30].  

iv. In 2013, an algal bloom was caused in Qingdao, China, by sea lettuce [27].  

 

 

 

 

Figure 1.2: Algal bloom 

1.3 Why is Algal Bloom Harmful? 

Nitrogen and phosphorus are nutrients that are natural parts of aquatic ecosystems. 

Nitrogen is also the most abundant element in the air we breathe. Nitrogen and 

phosphorus support the growth of algae and aquatic plants, which provide food and 

habitat for fish, shellfish and smaller organisms that live in water [28]. 

But when too much nitrogen and phosphorus enter the environment - usually from a wide 

range of human activities - the water becomes polluted. Algal bloom has impacted many 

streams, rivers, lakes, bays and coastal waters for the past several decades, resulting in 

serious environmental and human health issues, and impacting the economy. 

 

Source: Google 

https://en.wikipedia.org/wiki/Montauk,_New_York
https://en.wikipedia.org/wiki/Long_Island
https://en.wikipedia.org/wiki/Brittany
https://en.wikipedia.org/wiki/Intensive_pig_farming
https://en.wikipedia.org/wiki/Qingdao
https://en.wikipedia.org/wiki/China
https://en.wikipedia.org/wiki/Sea_lettuce
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Figure 1.3: Harmful algal bloom (HAB) 

Too much nitrogen and phosphorus in the water causes algae to grow faster than 

ecosystems can handle. Significant increases in algae harm water quality, food resources 

and habitats, and decrease the oxygen that fish and other aquatic life need to survive. 

Large growths of algae are called algal blooms and they can severely reduce or eliminate 

oxygen in the water, leading to illnesses in fish and the death of large numbers of fish. 

Some algal blooms are harmful to humans because they produce elevated toxins and 

bacterial growth that can make people sick if they come into contact with polluted water, 

consume tainted fish or shellfish, or drink contaminated water. 

1.4 Where This Occurs? 

Algal bloom affects the water around the country. The impacts of algal bloom are found 

in all types of water bodies. Pollutants often enter upstream waters like creeks and 

streams and then flow into larger water bodies like lakes, rivers and bays. Excess nitrogen 

and phosphorus can also travel thousands of miles to coastal areas where the effects of the 

pollution are felt in the form of massive dead zones, such as those in the Gulf of 

Mexico and Chesapeake Bay [28]. More than 100,000 miles of rivers and streams, close 

to 2.5 million acres of lakes, reservoirs and ponds, and more than 800 square miles of 

bays and estuaries in the United States have poor water quality because of nitrogen and 

phosphorus pollution [30]. 

Additionally, nutrients can soak into ground water, which provides drinking water to 

millions of Americans. And urban areas across the country have hazy skies and air quality 

problems related to airborne nitrogen pollution. 

 

 

Source: Google 

https://www.epa.gov/ms-htf
https://www.epa.gov/ms-htf
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1.5 Causes of Algal Bloom 

Excessive nitrogen and phosphorus that washes into water bodies are often the direct 

result of human activities. The primary sources of algal bloom are: 

i. Agriculture: Animal manure, excess fertilizer applied to crops and fields, and soil 

erosion make agriculture one of the largest sources of nitrogen and phosphorus 

pollution in the country. 

ii. Storm Water: When precipitation falls on our cities and towns, it runs across 

hard surfaces - like rooftops, sidewalks and roads - and carries pollutants, 

including nitrogen and phosphorus, into local waterways. 

iii. Wastewater: Our sewer and septic systems are responsible for treating large 

quantities of waste, and these systems do not always operate properly or remove 

enough nitrogen and phosphorus before discharging into waterways. 

iv. Fossil Fuels: Electric power generation, industry, transportation and agriculture 

have increased the amount of nitrogen in the air through use of fossil fuels. 

v. High temperatures: The global world is facing the destruction of the ozone 

layer caused by global warming. This is one of the main reasons of algal bloom 

and thriving at a fast rate. Conducive temperature is needed for certain bacteria to 

survive both in and out of water. The exceedingly high temperatures experienced 

due to global warming have led to rapid decomposition of the nutrients such as 

nitrates and ammonia, which are easier forms for bacteria to use up and grow in 

quantity [22]. 

vi. Slow moving water: Algal blooms need large masses of water which are almost 

still to thrive. There is less disturbance in their propagation in such waters and this 

explain their limited growth in rivers and streams with fast flow rate [22]. 

vii. Presence of dead organic matter: Generally, there are many kinds of bacteria 

present in the atmosphere as well as in water. They are all in search of suitable 

media for growth and nutrition. Therefore, like other bacteria, the algae bacterium 

is facilitated by the presence of dead organisms in water. Together with the 

nutrients present in water, the dead organic matter ends up propagating the growth 

of algae in water leading to algae bloom [22]. 

 

https://www.epa.gov/nutrientpollution/sources-and-solutions-agriculture
https://www.epa.gov/nutrientpollution/sources-and-solutions-stormwater
https://www.epa.gov/nutrientpollution/sources-and-solutions-wastewater
https://www.epa.gov/nutrientpollution/sources-and-solutions-fossil-fuels
https://www.conserve-energy-future.com/ozone-layer-and-causes-of-ozone-depletion.php
https://www.conserve-energy-future.com/ozone-layer-and-causes-of-ozone-depletion.php
https://www.conserve-energy-future.com/top-10-unbelievable-reasons-that-prove-global-warming-might-be-hoax.php
https://www.conserve-energy-future.com/what-is-global-warming-and-climate-change.php


6 | P a g e  
 

 

 

 

 

 

Figure 1.4: Causes of algal bloom 

1.6 Algal Bloom in Bangladesh 

Algal bloom builds up in our nation's lakes, ponds, and streams. National Lakes 

Assessment, 2010 found that almost 40 percent of the 700 rivers, lakes had been impacted 

by nitrogen and phosphorus pollution [18]. The report also showed that poor lake 

conditions related to nitrogen or phosphorus pollution doubled the likelihood of poor 

ecosystem health. 

When river or stream currents are slow, or when waters are stagnant, nutrients, sediment, 

and particles accumulate, increasing the chances of harmful pollution and algal growth. In 

Stream Assessment 2006, 30 percent of streams across the country had high levels of 

nitrogen or phosphorus [19]. Lakes and rivers are common sources for drinking water 

supplies. Both algae and high nitrate levels cause problems in sources of drinking water. 

Nationwide, violations of the nitrate limit in drinking water doubled over a 10-year 

period. 

 

 

 

 

 

Figure 1.5: Algal bloom in Bangladesh 

                    Source: Google 

      Source: Google 
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Nitrogen and phosphorus are nutrients that are natural parts of aquatic ecosystems. 

Nitrogen is also the most abundant element in the air we breathe. Nitrogen and 

phosphorus support the growth of algae and aquatic plants, which provide food and 

habitat for fish, shellfish and smaller organisms that live in water. 

But when too much nitrogen and phosphorus enter the environment - usually from a wide 

range of human activities - the air and water can become polluted. Nutrient pollution has 

impacted many streams, rivers, lakes, bays and coastal waters for the past several 

decades, resulting in serious environmental and human health issues, and impacting the 

economy. 

Too much nitrogen and phosphorus in the water causes algae to grow faster than 

ecosystems can handle. Significant increases in algae harm water quality, food resources 

and habitats, and decrease the oxygen that fish and other aquatic life need to survive. 

Large growths of algae are called algal blooms and they can severely reduce or eliminate 

oxygen in the water, leading to illnesses in fish and the death of large numbers of fish. 

Some algal blooms are harmful to humans because they produce elevated toxins and 

bacterial growth that can make people sick if they come into contact with polluted water, 

consume tainted fish or shellfish, or drink contaminated water. 

1.7 Effects of Algal Bloom 

Harmful algal blooms cause major environmental damage as well as serious health 

problems in people and animals. 

i. Endangerment to human health/life: Algal blooms produce toxins which reduce 

the suitability of water for human consumption. Their large presence on water and 

their well propagating sequences leads to quick contamination of water thus 

posing a health hazard to humans. Strong irritation, itching and even skin diseases 

are as well be experienced when such contaminated water comes into contact with 

the human skin. 

ii. Death of aquatic life: For any living organism to survive, they need oxygen for 

respiration. Fishes and other aquatic life depend on the oxygen dissolved in water. 

Similarly, for the algae bacterium to survive, it needs oxygen for survival. 

However, plant life high mode of propagation and dense growth in a very short 

period of time increases competition for oxygen leading to an imbalance in 

https://www.conserve-energy-future.com/critical-and-grievous-diseases-caused-by-water-pollution.php
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the aquatic ecosystem and suffocation of aquatic animals like fish. More death of 

aquatic animals means more food for the algae leading to faster propagation and 

in the long-run, deterioration of aquatic life. 

iii. Dead zones: The presence of extensive algal blooms can result in the massive 

deaths of aquatic life. As a result, the area around the algal blooms will be a dead 

zone with dead animal and plant life alike. The resulting foul smell may affect the 

rest of the aquatic life, sending them further away from the area. 

iv. Strain on economy: The presence of algal bloom makes transport on water ways 

cumbersome leading to more expensive means of transport such as air. Countries 

that have realized the growth of algal blooms too late have to seek alternative 

transport routes to engage in trade, resulting in economic losses. Also, since the 

growth of algal blooms leads to death of aquatic life, there can be widespread 

losses to fishermen who depend on fishing as an income generating activity. 

Moreover, the concept and process of treatment of the algal bloom is a costly 

affair and often requires millions of tax payers’ money. 

v. Strain on industries: Some industries, for example food processing companies, 

only require clean water from water bodies to drive their production. This means 

that the presence of algal blooms will cause additional water treatment costs to get 

clean water leading to increased overhead costs. 

vi. Losses in the tourism industry: With the dense growth of algal blooms on 

natural recreational water surfaces, the tourism industry suffers greatly as the 

resulting foul smell and dead zones means there are no fishes to watch, no 

available ways to navigate the water, and no swimming or boating activities. 

vii. High water utility bill for domestic consumers: With algal blooms 

contamination or not, people still need water for consumption. The municipality 

will have to invest in water treatment processes that eliminate the toxins caused by 

algal blooms. In some cases, extensive growth of algal blooms may lead 

to scarcity of fresh drinking water if the town or community depends on the 

contaminated source as the only one for distributing consumption water. All these 

increase the costs of treatment and the demand for water, which eventually 

dramatically raises water utility bill for domestic consumers. 

 

https://www.conserve-energy-future.com/structure-components-examples-ecosystem.php
https://www.conserve-energy-future.com/causes-effects-solutions-of-groundwater-depletion.php
https://www.conserve-energy-future.com/causes-effects-solutions-of-groundwater-depletion.php
https://www.conserve-energy-future.com/causes-effects-solutions-of-water-scarcity.php
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Figure 1.6: Effects of algal bloom 

1.8 Definition of Zooplankton  

Zooplankton are the smallest animals in our oceans, ponds, lakes. “Zoo" comes from the 

Greek word for ‘animal’. They are heterotrophic (other-feeding), meaning they cannot 

produce their own food and must consume instead other plants or animals as food. In 

particular, this means they eat phytoplankton. Zooplankton is made up of small water 

invertebrates feeding on phytoplankton. Even though “plankton” means passively floating 

or drifting, some representatives of zooplankton may be strong swimmers. The yearly 

plankton cycle consists of various phytoplankton species blooming in response to a 

particular sequence of changes in temperature, salinity, photoperiod and light intensity, 

nutrient availability, and a consequent bloom of zooplankton populations. Phytoplankton 

and zooplankton populations are therefore intimately linked in a continuous cycle of 

bloom and decline that has evolved and persisted throughout millions of years of 

evolution. 

In lakes and ponds, the most common groups of zooplankton include Cladocera and 

Copepods (which are both micro-crustaceans), rotifers and protozoans. Most lakes 

will have 40 or more species of zooplankton common to them. 

Zooplankton occupy the center of the open-water food web of most lakes. They eat 

bacteria and algae that form the base of the food web and, in turn, are heavily 

preyed upon by fish, insects and other zooplankton. Many zooplankton have clear 

shells to avoid being seen by visual feeders, such as fish. 

1.9 Eating Habits 

In keeping with their taxonomic diversity, zooplankton use a variety of feeding 

strategies, and they may eat bacteria, algae, other zooplankton and can even be  

parasites. Some zooplankton, like many Cladocera, are indiscriminate grazers, 

Source: Google 

https://en.wikipedia.org/wiki/Heterotrophic
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using their feeding appendages like rakes to filter particles from the water. Other  

zooplankton, such as many Copepods, are more selective and pick out individual  

particles or zooplankton prey based on their size, shape and taste. Zooplankton feed 

on microscopic plants known as phytoplankton. Zooplankton are generally larger than 

phytoplankton, mostly still microscopic but some can be seen with the naked eye. Some 

start small and stay small. Others are microscopic larvae that will someday turn into 

bigger animals like crabs, octopi and jellyfish. Many protozoans (single-

celled protists that prey on other microscopic life) are zooplankton.  

Zooplankton is a categorization spanning a range of organism sizes including 

small protozoans and large metazoans. It includes holoplanktonic organisms whose 

complete life cycle lies within the plankton, as well as meroplanktonic organisms that 

spend part of their lives in the plankton before graduating to either the nekton or 

a sessile, benthic existence. Although zooplankton are primarily transported by ambient 

water currents, many have locomotion, used to avoid predators (as in diel vertical 

migration) or to increase prey encounter rate. 

Because zooplankton eat algae, it has been proposed that it may be possible to  

control algal blooms by increasing zooplankton grazing. This method is called 

“biomanipulation” and is usually done by reducing predation on zooplankton by  

planktivorous fish either by directly removing these fish or adding a fish predator 

such as pike. 

 

Figure 1.7: Zooplankton 

https://en.wikipedia.org/wiki/Protozoan
https://en.wikipedia.org/wiki/Zooplankton#Marine_protists
https://en.wikipedia.org/wiki/Organism
https://en.wikipedia.org/wiki/Protozoa
https://en.wikipedia.org/wiki/Metazoa
https://en.wikipedia.org/wiki/Holoplankton
https://en.wikipedia.org/wiki/Biological_life_cycle
https://en.wikipedia.org/wiki/Meroplankton
https://en.wikipedia.org/wiki/Nekton
https://en.wikipedia.org/wiki/Sessility_(zoology)
https://en.wikipedia.org/wiki/Benthos
https://en.wikipedia.org/wiki/Animal_locomotion
https://en.wikipedia.org/wiki/Diel_vertical_migration
https://en.wikipedia.org/wiki/Diel_vertical_migration
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1.10 Why Zooplankton is Important? 

As a result of their central position in lake food webs, zooplankton can strongly 

affect water quality, algal densities, fish production, and nutrient and contaminant 

cycling. Zooplankton are commonly included in biomonitoring programs because 

their densities and species composition can be sensitive to changes in 

environmental conditions. In recent years, many species of zooplankton have been 

accidentally introduced to Canadian lakes and rivers from Europe and elsewhere, 

including the spiny water flea (Bythotrephes) and the larval stages of zebra mussels. 

Occasionally, some species of zooplankton, such as Mysis, have been deliberately 

introduced to lakes to enhance fish production. 

1.11 Effect on Human Life 

i. Zooplankton absorb carbon dioxide which slow down climate change 

ii. Precious oil made from plankton. Single celled creature like diatoms and 

dinoflagellates die and sink to the sea floor where they crushed and transformed 

over millions of years into oil and natural gas. 

1.12 Definition of Eutrophication 

Eutrophication (from Greek eutrophos, "well-nourished") is when a body of water 

becomes overly enriched with minerals and nutrients which induce excessive growth of 

plants and algae. This process may result in oxygen depletion of the water body and also 

becoming anoxic in the end. This whole process is known as Eutrophication [29].  

 

 

 

 

 

 

Figure 1.8: Eutrophication 

Source: Wikipedia 
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1.13 Causes of Eutrophication 

Eutrophication is most often the result of human activity. Farms, golf courses, lawns and 

other fields tend to be heavily fertilized by people. These fertilizers are the perfect type of 

nutrients to feed hungry algae and plankton, and when it rains, these fertilizers run off 

into lakes, streams, rivers and oceans. Concentrated animal feeding operations (CAFOs) 

are also a major source of polluting nutrients. Eutrophication can also come from natural 

events. If a stream, river or lake floods, it may wash away any excess nutrients off the 

land and into the water. However, eutrophication is less likely to occur in areas that are 

not surrounded by fertilized lands [22]. 

1.14 Effects of Eutrophication 

Eutrophication is most often the result of human activity. Farms, golf courses, lawns and 

other fields tend to be heavily fertilized by people. These fertilizers are the perfect type of 

nutrients to feed hungry algae and plankton, and when it rains, these fertilizers run off 

into lakes, streams, rivers and oceans. Concentrated animal feeding operations (CAFOs) 

are also a major source of polluting nutrients [29]. 

Eutrophication can also come from natural events. If a stream, river or lake floods, it may 

wash away any excess nutrients off the land and into the water. However, eutrophication 

is less likely to occur in areas that are not surrounded by fertilized lands. 

1.15 Literature Review of the Model 

It has been studied by several researchers about the effects of discharge of organic 

pollutants in water bodies, such as a lake, ponds. Nijboer and Verdonschot [9] carried out 

review work on the processes involved with the effects of eutrophication on stream and 

river ecosystems. The differences in local stream characteristics and effects on the biota 

were included. They discussed the relationships between nutrient input, nutrient uptake 

versus transport, and their effects on the biotic community combined in stream 

eutrophication models. Stream eutrophication models included the relationships between 

regional stream characteristics and the expected extent of the eutrophication effects (the 

sensitivity of a stream for eutrophication). The sensitivity of a stream to eutrophication 

depended on the regional stream characteristics. That type of model contained four main 

aspects: nutrient input, nutrient uptake versus transport, in-stream eutrophication 
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processes, and local stream characteristics. They also reviewed to extract the major 

variables related to the enlarged input of nutrients in streams and their effects on the 

stream ecosystem, to build a predictive community-based eutrophication model.  

Shukla et al. [13] proposed a nonlinear mathematical model for algal bloom in a lake 

caused by the excessive flow of nutrients from domestic drainage and water runoff from 

agricultural fields. They considered interactions of cumulative concentration of nutrients, 

density of algal population, density of detritus, and concentration of dissolved oxygen in 

the lake. If the supply of nutrients iAn the water body increased, the cumulative density 

of the algal population would increase, and algal bloom would occur causing 

eutrophication. They also showed that due to a decrease in the concentration of dissolved 

oxygen (as the net production of oxygen, floating algae does not affect the concentration 

of dissolved oxygen caused by photosynthesis), the density of detritus increases and also 

threatens the survival of the fish population. They used MAPPLE 7.0 for solving the 

mathematical model. From the numerical solution, they found that when the cumulative 

rate of input of nutrients, and the density of detritus were increased, the algal population 

also increased.                   

Khare et al. [6] presented a model analyzing the effect of depleting dissolved oxygen on 

interacting planktonic populations. The mathematical model is formulated with four state 

variables such as nutrient concentration, density of algae, density of the zooplankton 

population, and concentration of dissolved oxygen. They observed that all the feasible 

equilibria had been locally stable under certain conditions from the stability analysis of 

the system of equations. Here also applied Lyapunov’s direct method for nonlinear 

stability analysis. It had been shown in the numerical simulation part, while the 

cumulative rate of input of nutrients increased, the concentration of dissolved oxygen was 

unchanged. 

Destania et al. [2] modified a nonlinear mathematical model for plankton ecosystems. 

They analyzed the stability of plankton ecosystems affected by oxygen deficit. They used 

Lyapunov’s direct method to test the stability of the system of equations. Four 

equilibrium points were obtained from a system of equations. They observed from the 

numerical simulations, that ecosystem would reach a stable condition. 

Misra et al. [8] proposed a nonlinear mathematical model for the depletion of dissolved 

oxygen caused by interactions of organic pollutants with bacteria using dissolved oxygen 



14 | P a g e  
 

in a water body and the subsequent growth of bacteria, which depends explicitly on the 

concentration of dissolved oxygen. Three dependent variables, namely, the cumulative 

concentration of organic pollutants, the density of bacteria, and the concentration of 

dissolved oxygen was assumed for the system. The model analyzed that if the coefficient 

of interaction depended upon dissolved oxygen explicitly, the decrease in its 

concentration would be more than the case when the interaction did not depend on 

dissolved oxygen and consequently the depletion of organic pollutants was also more in 

such a case. 

Tiwari et al. [14] proposed a five-dimensional nonlinear mathematical model by 

considering the interactions among organic pollutants, inorganic pollutants, bacteria, 

dissolved oxygen, and fish population in the system. They studied the effects of pollutants 

from various sources on fish survival in water bodies. Numerical simulations and 

analytical solutions were also performed. From the result, they suggested that to maintain 

water quality and to save fish life, the global community has to limit the release of 

organic and inorganic pollutants into the aquatic system. 

Babitha et al. [1] have focused on mathematical modeling research papers to analyze the 

survival of aquatic species in the presence of pollutants. They have also discussed the 

stability analysis of all models which were referred to in the paper. Further, they have 

justified the numerical solutions to water pollution and its effects on the survival of 

aquatic species. 

Kalra and Tangri [5] have presented a model to study the effects of toxicants and acidity 

on oxygen-dependent aquatic populations. From the stability analysis, they have observed 

that the dissolved oxygen and aquatic population exhibit a decrease with the rise in 

toxicity and acidity of water. They have also discussed the sensitivity analysis of the 

model and determined the equilibrium points. Numerical simulations are performed by 

using MATLAB. 

Omar [11] developed a feed-forward neural network (FFNN) model with a back-

propagation learning algorithm to predict the dissolved oxygen from water temperature 

and 5 days-biological oxygen demand in the Tigris River, Baghdad-Iraq. The FFNN 

model demonstrated the capability of ANN in predicting the values of dissolved oxygen 

in river water courses. He used several statistical measures to evaluate the performance of 

trained artificial neural networks such as- R, MSE, MAE, and NS. He confirmed that with 
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adequate accuracy from only a small data set utilizing feed-forward backpropagation, 

dissolved oxygen in the Tigris River could be forecasted. He thought that the acquired 

results could be utilized by water quality controllers to be applied in water treatment and 

water management plans. 

Henderson et al. [4] have presented a mathematical model for algal bloom due to the 

dramatic growth of confined animal feeding operations. The dramatic growth of Confined 

Animal Feeding Operations (CAFOs) has produced voluminous quantities of untreated 

waste. The bifurcation process has discussed in this model. 

1.16 Objectives of the Study 

i. To formulate a model including concentration of nutrients, density of algae, 

density of zooplankton, density of detritus, and concentration of dissolved oxygen 

as variables 

ii. To find out the points of equilibrium of the proposed model 

iii. To analyze the stability of the points of equilibrium 

iv. To find out the characteristics of the concentration of dissolved oxygen and the 

density of algae with respect to different parameters 

1.17 Possible Outcomes 

i. The model will be able to demonstrate the depletion of dissolved oxygen in a 

eutrophic lake 

ii. The study could be helpful to indicate the effects of different parameters of real 

data 

iii. The outcome could be implemented for further research to control the depletion of 

dissolved oxygen and algal bloom to aid in agricultural aspects 

1.18 Significance of the Study 

i. This study may be useful to the people all around the world to aware of the effects 

of the inappropriate discharge of different organic pollutant. 

ii. The study may help the farmers to aware about the bad effects of this threat in 

aquatic ecosystem. 



16 | P a g e  
 

iii. This study introduces several aspects of this complex phenomenon by knowing 

the reasons of their occurrence, the expanding behavior of algae, zooplankton and 

at the same time the effect on the dissolved oxygen. 

iv. It shows the toxic sides in an aquatic environment which reflects the phenomenon 

that has been occurring beyond our imagination. 

 

1.19 Process of the Study 

i. Study the consequential background of mathematical model. Analyze the 

equilibrium points of the system of differential equations. 

ii. Use numerical methods to show the behavior of the characteristics of the state 

variables. 

iii. Executes computer Matlab programs to show the behavior of the state variables. 

 

1.20 Organization 

In this study, the introduction of the mathematical model, its significance, explanation of 

special terminologies, and literature review of the model are discussed in chapter one. In 

chapter two, the mathematical preliminaries are discussed elaborately. The analytical 

analysis of the model including the positivity analysis, equilibrium analysis, stability 

analysis, and characteristics of the state variables are discussed in chapter three. The 

numerical analysis and results discussion are included in chapter four. Lastly, chapter five 

contains the conclusion and future scopes of the study. 

 



CHAPTER TWO: MATHEMATICAL 

PRELIMINARIES 

2.1 Mathematical Modeling 

Modeling is a process of application of fundamental knowledge or experience to simulate 

or describe the performance of a real system to achieve certain goals. It is also a process of 

producing a model; a model is a representation of the construction and working of some 

system of interest. A model is similar to but simpler than the system it represents. One 

purpose of a model is to enable the analyst to predict the effect of changes to the system. 

On one hand, a model should be a close approximation to the real system and incorporate 

most of its salient features. On the other hand, it should not be so complex that it is 

impossible to understand and experiment with it. 

Mathematical modeling, in essence, involves the transformation of the system under study 

from its natural environment to mathematical environment in terms of abstract symbols and 

equations. Mathematical modeling (or mechanistic modeling) is based on the deductive or 

theoretical approach. Here, fundamental theories and principles governing the system along 

with simplifying assumptions are used to derive mathematical relationships between the 

variables known to be significant. The resulting model can be calibrated using historical 

data from the real system and can be validated using additional data. Predictions can then 

be made with predefined confidence. In contrast to empirical models, mathematical models 

reflect how changes in system performance are related to changes in inputs. The emergence 

of mathematical techniques to model real systems has alleviated many of the limitations of 

physical and empirical modeling. 

Nowadays, Environmental modeling has become a center topic in Modeling. It deals with 

different topics of our environment. For example- Atmosphere, surface water, 

Groundwater, Subsurface, ocean etc. Our environment is changing every year which leads 

to different problems all around the world. At this point of view, Environmental modeling 

is the only logical way to get a proper solution regarding those topics. 
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2.1.1 Historical background  

 “Modeling” is a word that came from ‘modellus’ which is a Latin word [24]. It describes 

a typical human way of coping with the reality. Although abstract representations of real-

world objects have been in use since the stone age, a fact backed up by cavemen paintings, 

the real breakthrough of modeling came with the cultures of the Ancient Near East and with 

the Ancient Greek. The first recognizable models were numbers; counting and “writing” 

numbers (e.g., as marks on bones) is documented since about 30.000 BC [18]. Astronomy 

and Architecture were the next areas where models played a role, already about 4.000 BC. 

It is well known that by 2.000 BC at least three cultures (Babylon, Egypt, India) had a 

decent knowledge of mathematics and used mathematical models to improve their every-

day life. Most mathematics was used in an algorithmic way, designed for solving specific 

problems. 

2.1.2 Classifications of mathematical model 

Models in mathematics often have a set of interconnected relations and several independent 

variables. Operators, such as those found in algebra, functions, differential operators, etc., 

are useful for describing relationships. In a system, variables are stand-ins for the 

measurable quantities of interest. Variables are optional for operators’ operations. Several 

types of models include [16]: 

i. Linear vs. Nonlinear: If all the operators in a mathematical model exhibit linearity, 

the resulting mathematical model is defined as linear. A model is considered to be 

nonlinear otherwise. The definition of linearity and nonlinearity depends on 

context, and linear models may have nonlinear expressions. For example, in a linear 

statistical model, a relationship is assumed to be linear in the parameters but may 

be nonlinear in the predictor variables. Similarly, a differential equation is 

considered linear if written with linear differential operators, but it can still have 

nonlinear expressions. In a mathematical programming model, if the objective 

functions and constraints are represented entirely by linear equations, then the 

model is considered linear. If one or more objective functions or constraints are 

represented with a nonlinear equation, then the model is known as a nonlinear 

model.  
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Nonlinearity, even in fairly simple systems, is often associated with chaos and 

irreversibility. Although there are exceptions, nonlinear systems and models are 

more difficult to study than linear ones. A common approach to nonlinear problems 

is linearization, but this can be problematic if one tries to study aspects such as 

irreversibility, which is strongly tied to nonlinearity. 

ii. Static vs. Dynamic: A dynamic model accounts for time-dependent changes in the 

system’s state, while a static (Or steady-state) model calculates the system in 

equilibrium and thus is time-invariant.  

Dynamic models are typically represented by differential equations. 

iii. Explicit vs. Implicit: If all of the input parameters of the overall model are known, 

and the output parameters can be calculated by a finite series of computations 

(known as linear programming, not to be confused with linearity as described 

above), the model is said to be explicit. Nevertheless, the output parameters are 

sometimes known, and the corresponding inputs must be solved by an iterative 

procedure, such as Newton’s method (if the model is linear) or Broyden’s method 

(if nonlinear). For example, a jet engine’s physical properties, such as turbine and 

nozzle throat areas, can be explicitly calculated given a thermodynamic design 

cycle (air and fuel flow rates, pressures, and temperatures) at a specific flight 

condition and power setting. However, the engine’s operating cycles at other flight 

conditions and power settings cannot be explicitly calculated from the constant 

physical properties. 

iv. Discrete vs. Continuous: A discrete model treats objects as discrete, such as the 

particles in a molecular model or the states in a statistical model. In contrast, a 

continuous model represents the objects continuously, such as the velocity field of 

fluid in pipe flows, temperatures and stresses in a solid, and the electric field that 

applies continuously over the entire model due to a point charge. 

v. Deterministic vs. probabilistic (stochastic): A deterministic model is one in 

which every set of variable states is uniquely determined by parameters in the model 

and by sets of previous states of these variables. Therefore, deterministic models 

perform similarly for a given set of initial conditions. Conversely, in a stochastic 

model, randomness is present, and variable states are not described by unique values 

but by probability distributions. 

vi. Deductive, Inductive, or Floating: A deductive model is a logical structure based 

on a theory. An inductive model arises from empirical findings and generalization 
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from them. The floating model rests on neither theory nor observation but is merely 

the invocation of expected structure. Applying mathematics in social sciences 

outside economics has been criticized for unfounded models. The application of 

catastrophe theory in science has been characterized as a floating model. 

 

2.1.3 Formulation of a mathematical model 

When we speak about dynamical systems, we often refer to an abstract mathematical model 

instead of the empirical phenomena whose dynamics we seek to characterize. We begin by 

identifying the physical characteristics that we feel are responsible for the phenomenon’s 

observed behavior. Then, we may build an equation or system that reflects the relationship 

between our assumed variables.  

A fundamental goal of modeling is to provide light on real-world phenomena’ underlying 

mechanisms, whether biological, chemical, physical, or economic. Achieving findings 

consistent with real-world phenomena is a required but not sufficient quality of a good 

model, and as we will see, there are other criteria by which an appropriate model must be 

maintained. 

The first stage in formulating a model is to outline the primary determinants of the real-

world scenario being replicated [16]. A solid strategy for formulating a testable model is to 

conceptualize the issue such that all essential variables are accounted for insofar as they 

represent the mechanics of the observed occurrence. Early drawings of a model may be 

created using a flowchart diagram or pseudocode that explains state variables and the nature 

of their relationships. 

Gilpin and Ayala [16] propose the following criteria by which a good model should uphold: 

i. Simplicity: By Occam’s razor, simple models are favorable over-complicated 

models “Because their empirical content is greater and better testable” [16]. 

Incorporating the minimum possible number of parameters to account for the 

observed results is always favorable. As Albert Einstein famously stated, 

“Everything should be made as simple as possible, but not simpler.” 

ii. Reality: All of the model’s parameters should be biologically relevant and represent 

the mechanics of the questioned biological system. Thus, the modeler should have 

a solid understanding of the modeled phenomena. Mechanistic models explain a 
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phenomenon from “first principles” or the bottom up. They recognize that a 

biological phenomenon is the sum of numerous separate but interrelated processes, 

and therefore they strive to characterize the phenomenon in terms of its main 

mechanisms (in ecology, often at the level of the individual). On the other hand, 

models that describe a phenomenon are phenomenological. The top-down empirical 

determination of a phenomenological model’s structure from a population’s 

features precludes its ability to predict behaviors independent of the original data. 

Hence, the parameters utilized in phenomenological models are aggregate 

summations of several lower-level processes; (Schoener) refers to them as “mega 

parameters” [16]. 

Schoener [16] describes the mechanistic method in ecological modeling, 

recommending it above the phenomenological approach by proposing a 

“mechanistic ecologists’ paradise.” However, mechanistic and phenomenological 

modeling techniques have benefits and downsides in certain situations. Virtually all 

of the models we have chosen to examine in this paper is phenomenological because 

they give a relatively easy mathematical form and analytical flexibility. 

iii. Generality: Utilizing dimensionless variables enables magnitudes to take on a 

universal meaning, hence facilitating scaling. Thus, the generic model may become 

more detailed for certain instances to account for individual circumstances. 

iv. Accuracy: The model should deviate as little as possible from the observed data. 

Thus, a model with little predictive or explanatory value should be revised. Before 

beginning the step-by-step procedures used to formulate and analyze continuous 

population models, we will examine population dynamics modeling from a 

historical perspective, providing insights into the key figures associated with the 

field of population ecology as well as the methods they developed to understand 

population systems mathematically. In addition, we will use this occasion to 

introduce new vocabulary and ideas. 

2.2 Process of Mathematical Modeling 

Process of mathematical modeling is a series of steps taken to convert an idea first into a 

conceptual model and then into quantitative model. A conceptual model represents our 

ideas about how the system works. The main stages in modeling problems in the real world 

are illustrated in the figure (2.1).  
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Figure 2.1: Process of mathematical modeling 

i. Variables: These represent unknown or changing parts of the model, e.g., whether 

to take a decision or not (decision variable), how much of a given product is being 

produced, the thickness of a beam in the design of a ceiling, an unknown function 

in a partial differential equation, an unknown operator in some equation in infinite 

dimensional spaces as they are used in the formulation of quantum field theory, etc.  

ii. Relations: Different parts of the model are not independent of each other, but 

connected by relations usually written down as equations or inequalities. E.g., the 

amount of a product manufactured has influence on the number of trucks needed to 

transport it, and the size of the trucks has an influence on the maximal dimensions 

of individual pieces of the product.  

iii. Data: All numbers needed for specifying instances of the model. e.g., the maximal 

forces on a building, the prices of the products, and the costs of the resources. 

2.3 Advantage of Mathematical Modeling 

i. They can be analyzed in a precise way by means of mathematical theory 

and algorithms. 

ii. They can simplify a more complex situation. 

iii. They can help us improve our understanding of the real world as certain 

variables can readily be changed. 

iv. They enable predictions to be made 
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v. They are quick and easy to produce  

2.4 Environmental Models  

Mathematical models in the environmental field can be traced to back to the 1900s, the 

pioneering work of Streeter and Phelps on dissolved oxygen being the most cited [20]. 

Today, driven mainly by regulatory forces, environmental studies have to be 

multidisciplinary, dealing with a wide range of pollutants undergoing complex biotic and 

abiotic processes in the soil, surface water, groundwater, and atmospheric compartments of 

the ecosphere. In addition, environmental studies also encompass equally diverse 

engineered reactors and processes that interact with the natural environment through 

pathways. Consequently, modeling large scale environmental systems is often a complex 

and challenging task.  

The economic activity of society brings negative changes in aquatic systems for example: 

changing the chemical composition of water and disrupting aquatic systems. Most human 

activities are carried out using water from rivers, which is lately steadily declining. Water 

must meet quality standards in order to be used. The term "water quality" is defined in 

several ways:  

Depending on the intended use of the water is a set of chemicals, physical and biological 

characteristics, concerning its capacity for a particular case application.  

From the point of view of environmentalists - the state of an aquatic system referred to the 

physicochemical conditions of this system, which could support a healthy community to 

the aquatic biota in balance in local conditions. 

2.5 Ordinary Differential Equations  

In Mathematics, an ordinary differential equation [17] is an equation containing a function 

of one independent variable and its derivatives. The function generally represents physical 

quantities, the derivatives represent their rates of change and the equation defines a 

relationship between them. 

Example: (i)   
2

2 2

2

d y
x y

dx
= +  
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               (ii) 
2

2
7 12 0

d y dy
y

dxdx
+ + =

 

2.6 Linear Differential Equations  

A differential equation is said to be linear if every dependent variable and every derivative 

involved occurs in the first degree only [17], no products of dependent variables and 

derivatives. A linear first order differential equation is in the form. 

( )' ''

0 1 2( ) ( ) ( ) ( ) 0n

na x y a x y a x y a x y b x+ + + + + =  

Example: (i) '' ' 0y ay by+ + =  

   (ii) xdy
x e

dx
= +

 

2.7 Non-Linear Differential Equations  

A differential equation involving the product of the dependent variable or its derivatives or 

the transcendental function of the dependent variable is called non-linear differential 

equation [17]. 

Example: (i) 
2

2

2
0

d y dy
a by

dx dx
+ + =  

(ii) 2dy
cy dx

dx
= +  

2.8 Functions   

i. Bounded function: A function that is not bounded is said to be unbounded. 

Sometimes, if f(x) ≤ A for all x in X, then the function is said to be bounded above 

by A. On the other hand, if f(x) ≥ B for all x in X, then the function is said to be 

bounded below by B. Bounded function is a function whose values are bounded to 

a limit. For example, f(x) = 1 means the function is neither bigger nor smaller than 

1. 
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ii. Closed function: Closed function is a function such that image of every closed set 

is closed. It is relatively easy to see that, for any, every -discrete subset of real line 

is closed.  

Figure 2.3: Closed function 

iii. Continuous Function: A function f is continuous at x a=  provided that ( )f a  

and ( )lim
x a

f x
→

 exists a ( ) ( )lim
x a

f x f a
→

= .  

Let us begin by constructing functions that are not continuous. Let us sketch a graph 

of a function that is not continuous at 2x =    

 

 

 

 

Figure 2.4: An illustration of a continuous and discontinuous function 

Figure 2.2: Bounded function 
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iv. Differentiable function: A differentiable function of one real variable is a function 

whose derivative exists at each point in its domain. As a result, the graph of a 

differentiable function must have a (non-vertical) tangent line at each point in its 

domain, be relatively smooth, and cannot contain any breaks, bends, or cusps. 

 

 

 

 

 

Figure 2.5: Differentiable function 

More generally, if 0x  is a point in the domain of a function f , then   is said to 

be differentiable at if 0x  the derivative ( )0'f x  exists. This means that the graph 

of f has a non-vertical tangent line at the point ( )( )0 0,x f x . The function f  may 

also be called locally linear at 0x , as it can be well approximated by a linear 

function near this point. 

v. Continuously differentiable function: A function f is said to be continuously 

differentiable if the derivative ( )'f x  exists and is itself a continuous function. 

Although the derivative of a differentiable function never has a jump discontinuity, 

it is possible for the derivative to have an essential discontinuity. Or,   the space of

continuously differentiable functionis denoted as C1 and corresponds to the k= 1

case of a Ck function 

 

 

 

 

 

 

 

 

 

Figure 2.6: Continuously differentiable function 
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When we say f∈C1, we mean that f is continuously differentiable. Isn't the 

continuity a redundant word? I mean, we have a theorem that says if f is 

differentiable then it is continuous.  

So, these are all equivalent: 

• f∈C1 

• f is continuously differentiable 

• f′ exists  

 

2.9 Bifurcation 

A Bifurcation of a dynamical system is a qualitative change in its dynamics produced by 

varying parameters. 

Consider an autonomous system of ODEs 

( , ), ,n px f x x =    

where f  is smooth. A bifurcation occurs at parameter 
0 = if there are parameter 

values 
1 arbitrarily close to

0 with dynamics topologically inequivalent from those at 

0 . 

For Example, the number of stability of equilibria or periodic orbits of f may change with 

perturbations of   from 
0 . One goal of bifurcation theory is to produce parameter space 

maps or bifurcation diagrams that divide the  parameter space into regions of 

topologically equivalent systems. Bifurcations occur at points that do not lie in the interior 

of one of these regions. 

2.10 Critical Point 

Let ( , )
dx

P x y
dy

=  , ( , )
dx

P x y
dy

=  be the autonomous system. 

Here, a point 0 0( , )x y  at which both 0 0( , ) 0P x y = and 
0 0( , ) 0Q x y = is called a critical 

point of the autonomous system. 

There are 4 types of critical point: 
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i. Centre 

ii. Saddle point 

iii. Spiral Point 

iv. Node 

 

2.10.1 Saddle Point 

If ( , )
dx

P x y
dy

=  and ( , )
dx

P x y
dy

=  be the autonomous system. Here, a point 0 0( , )x y  at 

which both 0 0( , ) 0P x y = and 
0 0( , ) 0,Q x y =  the critical point of the autonomous system is 

called saddle point (figure 2.9). Such a point may be characterized as follows: 

1. It is approached and entered by two half line paths as t →+ , these two paths 

forming the geometric curve AB 

2. It is approached and entered by two half line paths as t →+ , these two paths 

forming the geometric curve CB 

3. Between the four half-line paths described in (1) and (2) there are four domains 1R

,
2R , 3R and

4R , each containing an infinite family of semi-hyperbolic-like paths 

which do not approach O as t →+ or as t →− , but which become asymptotic 

to one or another of the four half-line paths as t →+ and as t →−  

 

 

 

 

 

 

 

 

Figure 2.7: Saddle Point 
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2.11 Jacobian Matrix 

If f  be the function of independent variable t  then the Jacobian matrix is defined to be 

matrix of partial derivatives. 

2 3

2 2 2 2

3

1 1 1

3 3 3

1

1

1 2 3

1

1 2 3

2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n

n

m m m m

n

f

n

f f f f
t t t t

t t t t

f f f f
t t t t

t t t t

J f f f f
t t t t

t t t t

f f f f
t t t t

t t t t

    
 
   

 
    
 
    

 =    
 
    

 
 
    

     

 

2.12 Eigenvalues and Eigenvectors  

If A is a square matrix, then a non-zero vector V in Rn is called a eigenvector of A , if V is 

a scalar multiplied by A, and V is a scalar multiplier with  which two are equal, such that 

AV V= , then the number is called eigenvalue. 

2.13 Characteristic Matrix and Characteristic Polynomial 

Let, A be a square matrix, then we can write AV V= which is equivalently ( ) 0I A V − = . 

The matrix I A −  where I  represents identity matrix is called the characteristic matrix of 

A. The determinant of the characteristic matrix I A −  is a polynomial in and which is 

called the characteristic polynomial of A . 

2.14 Runge-Kutta Method  

This method was derived by Runge about the year 1894 and extended by Kutta a few years 

later. It is one of the most widely used methods and it is particularly suitable in case when 

the computation of higher derivatives is complicated. Here the increments of the functions 

are calculated once for all by means of a definite set of formulas [15]. We consider the 

differential equation ( ),y f x y =  with the initial condition ( )0 0y x y= . Let h   be the 

interval between equidistant values of x . Then the first increment y of y is computed 

from the following formulae: 
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( )1 0 0,k hf x y=  

1
2 0 0,

2 2

kh
k hf x y

 
= + + 

 
 

2
3 0 0,

2 2

kh
k hf x y

 
= + + 

 
 

( )4 0 0 3h,k hf x y k= + +  

( )1 2 3 4

1
2 2

6
y k k k k = + + +  

If we take interval in the given order, then 1 0x x h= +  and 1 0y y y= +  . The increment in 

y  for the second interval is computed by means of the formulae: 

( )1 1 1,k hf x y=   

1
2 1 1,

2 2

kh
k hf x y

 
= + + 

 
 

2
3 1 1,

2 2

kh
k hf x y

 
= + + 

 
 

( )4 1 1 3h,k hf x y k= + +  

( )1 2 3 4

1
2 2

6
y k k k k = + + +  

Similarly, we calculate the next intervals. It is noted that calculations for the first increment 

of x   are exactly the same as for the increment. The change in the formulae for the different 

intervals is only in the values x   and y  to be substituted. Hence, we obtain y for the thn  

interval we substitute 1 1,n nx y− −  in the expression for  1 2,k k  etc. 
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2.15 Autonomous and Non-autonomous System 

Let us consider a system of differential equation  

( ),
dx

P x y
dt

=  

( , )
dy

Q x y
dt

=  

where, ( , )P x y  and ( , )Q x y have continuous first partial derivatives for all ( , )x y ,then the 

above system is called autonomous system if it does not depend explicitly on the 

independent variable .t Since the variable t  denotes time, the system also called a time 

invariant system. When the above system depends on time t .then it is known as a non-

autonomous system. 

2.16 Equilibrium Point  

A point * nx   is an equilibrium point (or stationary point or singular point or critical 

point or fixed point) of the differential equation, ( ),
dx

f t x
dt

=  If there exist a finite 𝑡∗ time 

such that ( )* *, 0   f t x t t=   [16]. 

In the special case of an autonomous system in which f is a function of x  only then, it is 

called an equilibrium point of the system ( ) *   
dx

f x t t
dt

=   . 

2.17 Stability of the Dynamical System  

An equilibrium point *x  of  ( ),
dx

f t x
dt

=  is stable if   0   and any 0t R+
 there is 

0( , )t   such that ( ) *

0  0, ,  U t t x t t −   
 

whenever *

0( , )x t  −   where 

( )0 , ,U t t  a solution of ( ),
dx

f t x
dt

=  with the initial condition ( )0x t = [16]. 
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2.18 Criteria of Negativity of the Real Parts of All Roots of a 

Characteristic Equation 

In the preceding section, the problem of the stability of a trivial solution of a systems of 

differential equations was reduced to investigate the signs of the real parts of the roots of 

the characteristic equation. 

If the characteristic equation has a high degree, then its solution is complicated, for this 

reason, very important are methods permit establishing whether all its roots have a negative 

real part or not. 

2.19 Routh’s Hurwitz Criterion  

Theorem: A necessary and sufficient condition for the negativity of the reals of all the 

roots of the polynomial 
1

1 1

n n

n nz a z a z a−

−+ + + +  with real coefficients is the possibility 

of all the principal diagonals of the minors of the Hurwitz matrix, 

 

1

3 2 1

5 4 3 2

7 6 5 4

1 0 0 0

1 0

0 0 0 0 n

a

a a a

a a a a

a a a a

a

 
 
 
 
 
 
 
 
  

 . 

The principal diagonal of the Hurwitz matrix exhibits the coefficients of the polynomial 

under consideration in the order of their numbers of form 1a   to na   the column alternately 

consist of coefficients with odd only indices, including the coefficient 0 1a = . Hence the 

matrix element 2ik i kb a −= . All missing coefficients are replaced by zeros. 

Principal diagonal minor of the Hurwitz matrices is given below: 
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 

1

1 3 2 1

1

1 1 2 2 3 2 1 5 4 3

3 2

5 4 3

1 0 0

1 0
0

, , ,

0 0 0

n

n

a

a a a a
a

a a a a a a a
a a

a a a

a

 
 

         =  =  =  =           
  

 

Observed that since 1n n na− =  , the last of the Hurwitz conditions 

1 20, 0, , 0,n       may be replaced by the demand that 0na  . 

Let us apply the Hurwitz theorem to polynomials of second, third and fourth degree. 

a) 
2

1 2z a z a+ +                                                      

 

 

                                     

                                                                                 

     

 

Figure 2.8: Routh’s Hurwitz Criterion 

The Hurwitz conditions reduce to 
1 20, 0a a  . In figure 2.10 (a), these inequalities define 

the first quadrant in the space of the conditions 1a  to 2a . Figure (b) depicts the region of 

asymptotic stability of a trivial solution of some system of differential equations that 

satisfies the conditions provided that 
2

1 2z a z a+ +  is its characteristic polynomial. 

b) 
3 2

1 2 3z a z a z a+ + +  

The Hurwitz conditions reduce to 1 1 2 3 30, 0, 0a a a a a −   . 

The region defined by this inequality in the coefficient space is depicted in figure (b). 

  

  

  

Region of 

stability 

  

  

  

(a) (b) 
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c) 
4 3 2

1 2 3 4z a z a z a z a+ + + +  

The Hurwitz conditions reduce to   

( ) 2

1 1 2 3 1 2 3 3 1 4 40, 0, 0, a 0a a a a a a a a a a −  − −    

The Hurwitz conditions are very convenient and readily verifiable for the polynomials we 

have just considered. But the Hurwitz conditions rapidly become complicated as the degree 

of the polynomial increases and it is often more convenient to apply other criteria for the 

negativity of the real parts of the roots of a polynomial. 

2.20 Asymptotical Stability 

The equilibrium point *x  of the system ( ),
dx

f t x
dt

=  is asymptotically stable [16] if, for 

every 0 0t   there is a ( )0 0t  such that ( ) *

0
0

lim , ,
t

U t t x
→

= whenever *

0( ).x t −   

2.21 Numerical Analysis with Applications 

Mathematicians seek accurate approximations of problems whose precise solution is either 

unattainable or impractical. In addition to the approximate solution, a realistic constraint 

for the related error with the approximate solution is required. Constructing a mathematical 

model for a given issue, often consisting of mathematical equations with constraint 

conditions, is the responsibility of experts in the subject’s domain.  

Numerical analysis is a branch of mathematics and computer science concerned with 

developing, analyzing, and implementing techniques for getting numerical solutions to 

problems involving continuous variables. Similar issues emerge in the scientific sciences, 

social sciences, engineering, medicine, and the business sector. Since the middle of the 20th 

century, the rising power and accessibility of digital computers have resulted in a rise in 

the usage of realistic mathematical models in research and engineering. More sophisticated 

numerical analysis is required to solve these more intricate models of the world. The formal 

academic field of numerical analysis goes from highly theoretical mathematics research to 

computer science problems. Throughout the 1980s and 1990s, the new field of scientific 

computing or computational science evolved in response to the increased availability of 
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computers. Using numerical analysis, symbolic mathematical calculations, computer 

graphics, and other computer science disciplines, the field simplifies the creation, solution, 

and interpretation of complex mathematical models of the actual world.  

Naturally, numerical analysis has applications in all branches of engineering and the 

physical sciences, but in the twenty-first century, the biological sciences and even the arts 

have incorporated parts of scientific calculations. Ordinary differential equations are found 

in celestial mechanics (planets, stars, and galaxies); numerical linear algebra is crucial for 

data processing; stochastic differential equations and Markov chains are necessary for 

modeling live cells in medicine and biology. 

Numerical analysis is concerned with devising methods for approximating the solution to 

the model and analyzing the results for stability, speed of implementation, and 

appropriateness. In other words, Numerical Analysis is the study of algorithms that use 

numerical approximation (as opposed to general symbolic manipulations) for the problems 

of mathematical analysis (as distinguished from discrete mathematics) [15]. 

2.22 Common Perspectives in Numerical Analysis 

Numerical analysis is concerned with all aspects of the numerical solution of a problem, 

from the theoretical development and understanding of numerical methods to their practical 

implementation as reliable and efficient computer programs.  

Most numerical analysts specialize in small subfields but share some common concerns, 

perspectives, and mathematical analysis methods. These include the following: 

i. When presented with a problem that cannot be solved directly, they try to replace it 

with a “nearby problem” that can be solved more easily. Examples are the use of 

interpolation in developing numerical integration methods and root-finding 

methods. 

ii. There is the widespread use of the language and results of linear algebra, real 

analysis, and functional analysis (with its simplifying notation of norms, vector 

spaces, and operators). 

iii. There is a fundamental concern with error, size, and analytic form. When 

approximating a problem, it is prudent to understand the nature of the error in the 

computed solution. Moreover, understanding the form of the error allows the 
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creation of extrapolation processes to improve the convergence behavior of the 

numerical method.  

iv. Numerical analysts are concerned with stability, a concept referring to the 

sensitivity of the solution of a problem to small changes in the data or the parameters 

of the problem. 

v. Numerical analysts are very interested in the effects of using finite precision 

computer arithmetic. This is especially important in numerical linear algebra, as 

large problems contain many rounding errors. 

vi. Numerical analysts are generally interested in measuring an algorithm’s efficiency 

(or “cost”). 

 

2.23 Numerical Techniques for Solving ODE & PDEs 

Some numerical techniques to solve ODE and PDEs are listed below [15]: 

i. Finite Difference Method: In this method, functions are represented by their 

values at certain grid points, and derivatives are approximated through differences 

in these values. 

ii. Method of Lines: The method of lines (MOL, NMOL, NUMOL) solves partial 

differential equations (PDEs) with discretized dimensions in all but one dimension. 

MOL permits using techniques and software designed for the numerical integration 

of ordinary differential equations (ODEs) and algebraic differential equations 

(DAEs). Over the years, several integration procedures have been written in various 

programming languages, and some have been released as open-source resources. 

iii. Finite Element Method: The finite element method (FEM) in mathematics is a 

numerical methodology for finding approximate solutions to boundary value issues 

for partial differential equations. It employs variational techniques (the calculus of 

variations) to generate a stable solution by minimizing an error function. 

iv. Finite Volume Method: In order to express and evaluate partial differential 

equations, the finite-volume technique uses algebraic equations [25]. Several CFD 

software programs use this technique. 

v. Spectral Method: In applied mathematics and scientific computing, spectral 

methods are used to solve specific differential equations numerically, often 

incorporating the Fast Fourier Transform. The concept is to describe the solution of 

the differential equation as a sum of certain “basic functions” (such as a Fourier 
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series, which is a sum of sinusoids) and then to pick the coefficients in the sum such 

that the differential equation is satisfied and feasible. 

vi. Meshfree Methods: Meshfree techniques do not need a mesh linking the 

simulation domain’s data points. Meshfree approaches provide the modeling of 

certain otherwise challenging situations at the expense of more computational time 

and programming effort. 

vii. Domain Decomposition Methods: Domain decomposition approaches resolve a 

boundary value issue by decomposing it into smaller boundary value problems on 

subdomains and coordinating the solution amongst nearby subdomains. 

viii. Multigrid Methods: In numerical analysis, multigrid (MG) techniques are a set of 

algorithms for solving differential equations utilizing a hierarchy of discretizations. 

MG techniques may be used as both solvers and preconditioners. 

 

2.24 Generation and Propagation of Errors 

The study of errors is a crucial component of numerical analysis. Many methods exist for 

introducing an error to address an issue [15]. 

i. Round-off: Since it is difficult to precisely represent all real numbers on a 

system with limited memory, rounding mistakes occur (which is what all 

practical digital computers are). 

ii. Truncation and Discretization error: When an iterative approach is stopped, 

a mathematical procedure is approximated, and the estimated answer varies 

from the actual solution, truncation errors are committed. Likewise, 

discretization results in a discretization error since the solution of the discrete 

issue does not coincide with the solution of the continuous problem.  

What does it imply to indicate that approximating a mathematical technique 

result in the truncation error? We know that perfect integration of a function 

entails finding the sum of an unlimited number of trapezoids. Nevertheless, only 

finite trapezoids may be added numerically, thus the approximation of the 

mathematical approach. Similarly, the differential element approaches zero to 

differentiate a function, but we can only choose a finite value for the differential 

element numerically. 
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2.25 Numerical Stability and Well-posed Problems 

Numerical stability is an important notion in numerical analysis. An algorithm is considered 

numerically stable if a mistake, regardless of its source, does not amplify significantly 

throughout the computation. This is the case if the issue is well-conditioned, which means 

the solution changes little if the problem data are altered slightly. In contrast, minor data 

inaccuracy will snowball into a significant error if a task is ill-conditioned. The original 

problem and the technique used to solve it may be well-conditioned or ill-conditioned; any 

combination is conceivable. A well-conditioned problem-solving method may thus be 

numerically stable or numerically unstable. 

The general objective of numerical analysis is constructing and developing methods that 

provide approximate but correct solutions to difficult problems, such as those listed below 

[15]. 

i. Advanced numerical algorithms are required for numerical weather forecasting to 

be practicable. 

ii. Compounding a spacecraft’s trajectory needs an exact numerical solution to a set of 

ordinary differential equations. 

iii. Automobile manufacturers may enhance the crashworthiness of their automobiles 

via the use of computer simulations of automobile collisions. These simulations rely 

mostly on numerically solving partial differential equations. 

iv. Hedge funds (private investment funds) aim to determine the value of stocks and 

derivatives more precisely than other market players by using methods from all 

domains of numerical analysis. 

v. Airlines utilize complex optimization algorithms to determine ticket pricing, 

aircraft and crew allocations, and fuel requirements. In the past, these algorithms 

were created within operations research. 

vi. Insurance firms do actuarial analysis using numerical programs. 
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2.26 Software 

Since the late 20th century, most algorithms have been implemented in diverse 

programming languages. The Netlib repository provides several Fortran and C numerical 

problem-solving software routines. The IMSL and NAG libraries are commercial packages 

implementing several numerical algorithms; the GNU Scientific Library is a free 

alternative. Popular numerical computing software includes MATLAB, TK Solver, S-

PLUS, LabVIEW, and IDL, as well as free and open-source equivalents include FreeMat, 

Scilab, GNU Octave (similar to Matlab), IT++ (a C++ library), R (similar to S-PLUS), and 

certain forms of Python. Although vector and matrix operations are typically quick, the 

performance of scalar loops may vary by more than an order of magnitude. Several 

computer algebra systems, including Mathematica, benefit from the availability of arbitrary 

precision arithmetic, which may provide more precise answers. Additionally, any 

spreadsheet application may tackle elementary numerical analytic issues. 



CHAPTER THREE: MATHEMATICAL 

FORMULATION OF THE MODEL 

3.1 Introduction 

Modern agriculture depends on chemical fertilizers, pesticides etc. Some amount of these 

fertilizers, pesticides reach to the nearest lake through water runoff. These chemicals 

contain a large amount of nutrients. Some amount of nutrients come from domestic 

drainage. Due to the presence of these nutrients in the lake, algae grow faster and causes 

algal bloom by eutrophication. When these algae die out, a large amount of oxygen is 

utilized to decompose the dead algae or detritus. In this way, the depletion of dissolved 

oxygen in water bodies occurs. As these are part of a food chain involving zooplankton and 

other biological populations in a water body, the level of dissolved oxygen decreases further 

due to various interactive biochemical and biodegradation process. It may be noted that the 

input of the dissolved oxygen in the water body is mainly due to atmospheric diffusion 

through the water surface and to a certain extent due to its production by photosynthesis. If 

the depletion rate is increasing at a high rate, then the water becomes anoxic. Then the 

zooplanktons, fish population in the water die out for the lack of oxygen. By this process, 

water is polluted severely and becomes uncongenial and harmful for human and animal 

health.  

In Bangladesh, this situation is very dangerous. Water is being polluted by means of 

domestic usage, industrial wastes. The rivers are getting polluted severely, that is why fish 

population is decreasing. It is harmful for economy as well as human health.  

There prevails a number of research that show the harmful effect and outcomes of this water 

pollution, in presence of algae and macrophytes. But here in this research, algae and 

zooplankton have been used at the same time. 

However, a mathematical model will be constructed to analyze the effect on depletion of 

dissolved oxygen with the variables named cumulative concentration of nutrients, density 

of algae, zooplankton, density of detritus, and concentration of dissolved oxygen. 

Equilibrium points, stability of the equilibrium points, and characteristics of the state 

variables with respect to parameters and numerical results have been explained with proper 

calculation. 
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3.2 Formulation of Mathematical Model 
 

We consider here a lake which is being affected due to the overgrowth of algae caused by 

discharge of nutrients from domestic drainage as well as from water runoff, etc. and also 

from nutrients that has been formed due to detritus. The bilinear interactions of variables 

such as the cumulative concentration of nutrients, density of algae, density of zooplankton, 

density of detritus, and concentration of dissolved oxygen are considered. Through 

different sources nutrients assemble. Due to domestic drainage as well as run off from 

agriculture fields various nutrients are supplied into the water body. We assume that the 

algae population is wholly dependent on nutrients produced from nutrients and is being 

used as a food by its predator zooplankton population. It is assumed further that the level 

of dissolved oxygen in the water body increases by diffusion with a constant rate as well as 

by photosynthesis. We are going to consider cumulative concentration of nutrients, density 

of algae, density of zooplankton, density of detritus and concentration of dissolved oxygen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flow diagram of the model 

 

Let us consider T  be the cumulative concentration of various nutrients, B  be the density 

of algae, Z  be the density of zooplankton, S  be the density of detritus and C  be the 

concentration of dissolved oxygen (DO). We assume that the cumulative rate of discharge 

of nutrients into the aquatic system from outside into water bodies is q , due to natural 
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factors which is depleted with rate 0T  . It is further assumed that the cumulative growth 

rate of nutrients due to detritus is 0 S   and the cumulative rate of depletion of organic 

pollutant T due to algae  

                                             
0 0 1

dT
q S

dt
T TB   = + − −                                            (3.1) 

Thus, the growth rate of algae is proportional to ( )TB  as it is assumed to be wholly 

depended on the nutrients. The natural depletion rate of algae is assumed to be proportional 

to its density B . The depletion rate of algae by zooplankton is proportional to ( )BZ  which 

has been considered as a constant rate 
2 . 

                                             
1 21 1TB

dB

d
B

t
BZ   −= −                                              (3.2)  

The growth rate of zooplankton is proportional to ( )BZ  as it is assumed to be wholly 

depended on the algae. The natural depletion rate of zooplankton is assumed to be 

proportional to its density Z . 

                                                
2 2 2

t
Z Z

dZ

d
B  = −                                                    (3.3) 

Since, the natural depletion of algae is converted into detritus, it is assumed to be 

proportional to 1B  and natural depletion of zooplankton is converted into detritus as well. 

Here, natural depletion rate of detritus is assumed to be proportional to S .  

                                             
1 2 21B

dS
S

dt
Z    += −                                             (3.4) 

We consider that the rate of growth of dissolved oxygen by various sources cq  is assumed 

to be constant and its natural depletion rate is proportional to its concentration C . It is 

further assumed that the rate of growth of dissolved oxygen by algae is proportional to B  

and the depletion of dissolved oxygen caused by decomposing the detritus is proportional 

to its concentration S . 

                                               3 1c

dC
q C SB

dt
  = − + −                                         (3.5) 
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3.3 Basic Assumptions of the Model 

Following assumptions are considered from the model: 

i. The density of algae increases if too much nutrients and oxygen is present in the 

water bodies. 

ii. Algal population increases absorbing the nutrients present in water bodies. That is 

why the inter-connection of algae and nutrients are considered. 

iii. Growth rate of nutrients is proportional to the density of detritus which comes from 

outside like water runoff enriched with organic substance and the detritus produced 

from the death of algae. 

iv. Growth rate of detritus proportional to the density of the dead algae and outer 

sources. 

v. The value of all parameters which are used in the model are positive. 

With the above assumptions, the following model is proposed in formulation of a nonlinear 

ordinary differential equation system as follows: 

( )0 0 1 , , , ,T TB
dT

q S f T B Z S C
dt

   = + − − =   (3.6) 

( )1 1 1 2 , , , ,
d

TB B B
B

g T B Z SZ C
dt

   −= − =   (3.7) 

( )2 2 2 , , , ,BZ Z
dZ

k T B Z S C
dt

  = − =   (3.8) 

( )21 21 , , , ,B Z
dS

S h T B Z S C
dt

    = + − =   (3.9) 

( )3 1 , , , ,c

dC
q C B S p T B Z S C

dt
  = − + − =   (3.10) 

with non-negative initial conditions: 

  

( )0 0T  , ( )B 0 0 , ( )Z 0 0 , ( )0 0S  and ( )0 0C   

Here, the positive coefficients ; 0,1,2i i =  are the natural depletion rate coefficients. 

1 1 12 2, ,, , ,       are proportionality constants which are positive. The positive   is the 

proportional constant for the decrease rate of dissolved oxygen due to algae and 

0 1 2, and   are positive proportionality constant. 
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3.4 Model Validation and Mathematical Analysis 

We have tested the boundedness of state variables, equilibrium points, analyzed stability at 

the equilibrium points. Besides, we have done the analysis of the characteristics of state 

variables with respect to various parameters i.e., sensitivity analysis and analyzed the 

numerical results of the system (3.6) - (3.10). 

3.4.1 Boundedness of state variables 
 

Let, P T B Z S C= + + + +  

Differentiating both side with respect to t   

0 0 1 1 1 1

2 1 1 3 1

2 2 2

2 2 c

dP dT dB dZ dS dC
T TB Tq S B Z Z

Z S q

B B B
dt dt dt dt dt dt

B Z SC B

       

        

 = + − − −= + + + + − +

− − −−

+

+ −+ +

 

( ) ( )2 2 20 0 1 1 1 1

2 1 1 3 12 2 c

q S Z

Z S

T TB B B

B Z Sq C B

       





      





= + − − − −

−

− −

++ − − −−+
 

0 0 2 1 1 3cT
dP

q S Z q C
dt

B        + − − −++  

0 1 1 2 3 0c

dP
q q Z CT SB

dt
        − + ++ − −  

0 1 1 2 3 0c

dP
P T Bq q Z C S T B Z S C

dt
             +  − + − − + + + + + ++  

( ) ( ) ( ) ( ) ( )1 3 020 1 0c

dP
P q q Z S C S Q

dt
T B               + + ++  − + − + − ++ + =  

Applying the theory of differential inequality 

0

tQ
P C e 



−  +  

For t →we have 0
Q

P


   

Therefore, all the solutions of the system are bounded. 
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3.4.2 Positivity analysis 

Now we will prove all the variables in the system model equations are positive. If 

( ) ( ) ( ) ( )0 0,  B 0 0,  Z(0) 0,S 0 0,   0 0T C      then the solutions of the model are 

positive. 

3.4.2.1 Positivity analysis for the concentration of nutrients 

The first differential equation of the model describes the change of nutrient which is given 

below: 

0 0 1

dT
q S

dt
T TB   = + − −  

Taking only linear parts of the above equation, we get 

0

dT
T

dt
 −  

0 0
dT

T
dt

 +   

We now find the integrating factor of the above inequality, 

 
0

0. .
dt t

I F e e
 = =  

Multiplying by the integrating factor 0te
  , we get 

0 0

0 0
t tdT

e e T
dt

  +   

                                               0( ) 0
td

Te
dt


     

Integrating both sides with respect to t , we get 

        0

1

t
Te l


 ;  1 is an integrating factorl  

                                                  0

1

t
T l e

−
      

For the initial condition ( ) 00T T=  , we obtain the following condition  

                                                      0 1T l                                                                       

From these two we get, 

( ) ( ) 00
t

T t T e
−

  

0t   and 0 R   

0 0
t

e
−

  

( ) 0T t   
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The concentration of nutrients is always non negative for all time 0t                                  

3.4.2.2 Positivity analysis of the density of algae 

The second differential equation of the model describes the change of algae which is given 

below: 

 
1 21 1TB

dB

d
B

t
BZ   −= −   

Taking only linear parts of the above equation, we get 

 
1

dB
B

dt
 −   

 
1 0

dB
B

dt
 +      

We now find the integrating factor of the above inequality, 

  
1

1. .
dt t

I F e e
 = =   

Multiplying by the integrating factor 1te  , we get 

 1 1

1 0t tdB
e e B

dt

  +    

 1( ) 0td
Be

dt

      

Integrating both sides with respect to t, we get 

 1

2

tBe l
   

 1

2

tB l e −
     

For the initial condition ( ) 00B B=  , we obtain the following condition 

 0 2B l     

From these two we get, 

 ( ) ( ) 10
tB t B e −

   

 0t   and 1 R    

 1 0te −    

 ( ) 0B t    

The density of algae is always non negative for all time 0t  .                    
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3.4.2.3 Positivity analysis of the density of zooplankton  

The fourth differential equation of the model describes the density of detritus which is given 

below: 

 
2 2 2

t
Z Z

dZ

d
B  = −   

Taking only linear parts of the above equation, we get 

 
2

dZ
Z

dt
 −   

 
2 0

dZ
Z

dt
 +      

We now find the integrating factor of the above inequality, 

  
2

2. .
dt t

I F e e
 = =   

Multiplying by the integrating factor  te  , we get 

 2 2

2 0t tdZ
e e Z

dt

  +    

 2( ) 0td
Ze

dt

     

Integrating both sides with respect to t, we get 

 2

3

tZe l
    

 2

3

tZ l e −
    

For the initial condition ( ) 00Z Z=  , we obtain the following condition 

 0 3Z l    

From these two we get, 

 ( ) ( ) 20
tZ t Z e −

   

 0t   and 2 R    

 2 0te −    

 ( ) 0Z t    

The density of zooplankton is always non negative for all time 0t  .                                           
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3.4.2.4 Positivity analysis of the density of detritus 

The fourth differential equation of the model describes the density of detritus which is given 

below: 

 
1 2 21B

dS
S

dt
Z    += −   

Taking only linear parts of the above equation, we get 

 
dS

S
dt

 −   

 0
dS

S
dt

 +      

We now find the integrating factor of the above inequality, 

  . .
dt tI F e e

 = =   

Multiplying by the integrating factor  te  , we get 

 0t tdS
e e S

dt

  +    

 ( ) 0td
Se

dt

     

Integrating both sides with respect to t, we get 

 4

tSe l    

 4

tS l e −     

For the initial condition ( ) 00S S=  , we obtain the following condition 

 0 4S l    

From these two we get, 

 ( ) ( )0 tS t S e −   

 0t   and R    

 0te −    

 ( ) 0S t    

The density of detritus is always non negative for all time 0t  .                                              
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3.4.2.5 Positivity analysis of the concentration of the dissolved oxygen 

The fifth differential equation of the model describes the change of algae which is given 

below: 

 
3 1c

dC
q C SB

dt
  = − + −   

Taking only linear parts of the above equation, we get 

 
3

dC

dt
C −

 

 
3 0

dC

dt
C +     

We now find the integrating factor of the above inequality, 

  
3

3. .
dt t

I F e e
 = =   

Multiplying by the integrating factor  3te
  , we get 

 3 3

3 0
t tdC

e e C
dt

  +    

 3( ) 0
tdC

Ce
dt


     

Integrating both sides with respect to t, we get 

 3

5

t
Ce l


   

 3

5

t
C l e

−
     

For the initial condition ( ) 00C C=  , we obtain the following condition 

 0 5C l    

From these two we get, 

 ( ) ( ) 30
t

C t C e
−

   

 0t   and 3 R    

 3 0
t

e
−
   

 ( ) 0C t     

The concentration of dissolved oxygen is always non negative for all time 0t   
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3.4.3 Equilibrium analysis of the model 

The mathematical model is governed by the differential equations (3.1) - (3.5). 

Now, for equilibrium point of the model, 

( )* * * * *

* * *

, , , ,

*

0 0 1 0
T B Z S C

q
dT

T T B
dt

S   
 

= 
 

+ − − =   (3.11) 

( )* * * * *

* * * * *

1 2

, , ,

1 1

,

0
T B Z S C

dB
T B B

dt
B Z   

 
= 

 
− − =   (3.12) 

( )* * * * *

2 2

,

* * *

, ,

2

,

0
T B Z S C

dZ
B

dt
Z Z 

 
=  −


=


  (3.13) 

( )* * * * *

*

1

* *

2 2

,

1

, , ,

0
T B Z S C

dS
B Z

dt
S    

 
= + = 


−


  (3.14) 

( )* * * * *

* *

, , , ,

*

3 1 0
T B Z

c

S C

dC
Sq B

d
C

t
  −

 
= − =

 
−   (3.15) 

From equation (3.13), we have, 
* *

2 2 2 0BZ Z  − =  

( )* *
2 2 2 0Z B   − =  

 * 0Z =  Or, *
2 2 2 0B  − =  

                                            2

2 2

B


 

 =                                                   (3.16) 

 Putting * 0Z =  in equation (3.12), we have, 
* * *

1 1 1 0 0T B B  − − =  

( )* *
1 1 1 0B T   − =  

So, * 0B =  Or, *
1 1 1 0T  − =  

                                           * 1

1 1

T


 
 =                                                   (3.17) 

 Putting the values of * 0Z =  and * 0B = in equation (3.14), we have,  
* 0S =  

Putting the values of * * * 0B Z S= = =  in equation (3.15), we have,  
*

3 0cq C− =  

*

3

cq
C


 =  
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Putting 0B S= = in equation (3.11), 
*

0T q =  

*

0

q
T


 =  

 The 1st equilibrium point is ( )* * * * *

1

0 3

, , , , ,0,0,0, cqq
E T B Z S C

 

 
=  
 

. 

For second equilibrium: 

Again Applying 0Z = and 1

1 1

T


 

 =  in equation (3.12) we get  

( )1 1 1

1 1 1 0 1 1 1

q
B

  

      

 − −
=

−
 

Now applying 0Z = , T  B  in equation (3.11) then, 

0 0 1 0q S T T B     + − − =  

*
0 0 1S T T B q      = + −  

0 1

0

T T B q
S

 

 

  
 + −

 =  

Applying * 0Z = , T  B  and S  in (3.15) 

*
3 1 0cq C B S   − − − =  

*
3 1cC q B S   = − −  

1

3

cq B S
C





 
 − −

 =  

The 2nd equilibrium point is  

( )
( )

* * *

0 1 1 1 0 11

1 1 1 1 0 1 1 0* * * * *

2 * *

1

3

, ,0, ,
1

, , , ,

c

q T T B q

E T B Z S C
q B S

     

        







 − + −
 

− =
 − −
 
 
 

 

 

The second equilibrium point is ( )2 ,B ,0,SE T C      

Where, 

                                   1

1 1

T


 

 =                                                   (3.18) 
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( )1 1 0 1

1 1 1 0 1 1 1

q
B

   

      

 −
=

−
                                 (3.19) 

                                      0 1

0

T T B q
S

 

 

  
 + −
=                                  (3.20) 

                                    1

3

cq B S
C

 



 
 − −
=                                       (3.21) 

For third equilibrium point, 

We have, 

2

2 2

B


 

 =  

From (3.14), we get 

* *
1 1 2 2 0B Z S     + − =  

* *
1 1 2 2S B Z     = +  

*
* 1 1 2 2B Z

S
   



 +
 =  

Again from (3.12) 

*
1 1 1 2 0TB B B Z     − − =  

* *
1 1 1 2T B B B Z      = +  

* 1 2

1 1

B B Z
T

B

 

 

 



+
 =  

Now putting values of *T and *S  in equation (3.11) 

( )* * *
1 1 2 2 1 2 1 2

0 0 1

1 1 1 1

0
B Z B B Z B B Z

q B
B B

       
   

    

    


 

+    + +
+ − − =   

   
 

*
* *0 1 0 2 1 2

0 1 1 0 2 2

1 1 1 1 1 1

0
B B Z

q B Z Z
     

     
     

 
 + + − − − − =  

*
* *0 2 0 12 1

0 2 2 0 1 1

1 1 1 1 1 1

B Z B
Z Z q B

    
     

     

 
 − − = + − −  

0 1 1
0 1 1

1 1 1

0 2 2
0 2 2

1 1 1

B
q B

Z
B

  
  

  

  
  

  








+ − −

 =

− −
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Putting Z  and B  in equation (3.10) 

*
1 1 2 2 0B Z S     + − =  

1 1 2 2B Z
S

   



 
 +

 =  

Putting B , Z , S  in (3.11) 

*
3 1 0cq C B S   − − − =  

* 1

3

cq B S
C





  − −
 =  

Putting S , B  in equation (3.12) 

   0 1 0T T B q S      − = +  

0

0 1

q S
T

B

 

 






+
 =

−
 

The 3rd equilibrium point is, ( )3 ,B ,Z ,S ,E T C      

Where, 

2

2 2

B


 

 =   (3.22) 

0 1 1
0 1 1

1 1 1

0 2 2
0 2 2

1 1 1

B
q B

Z
B

  
  

  

  
  

  








+ − −

=

− −

  (3.23) 

1 1 2 2B Z
S

   




 +
=   (3.24) 

1

3

cq B S
C

 



 
 − −
=   (3.25) 

0

0 1

q S
T

B

 

 






+
=

−
  (3.26) 

Therefore, we can write, 

The 1st equilibrium point is, ( )* * * * *

1

0 3

, , , , ,0,0,0, cqq
E T B Z S C

 

 
=  
 
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The 2nd equilibrium point is  

( )
( ) * * * * *

1 1 0 1* * * * * 0 1 11
2

1 1 1 1 1 0 1 1 1 0 3

, , , , , ,0, , c
q T T B q q B S

E T B Z S C
      

   



       

− + − − −
=  

− 
 

And the 3rd equilibrium point is 

 ( )

* * *

0 0 1 1 1 1 1 0 2 1 1 12

* *

0 1 2 2 0 2 1 1 1 0 2 1 2

* ** *
* * * * * 21 1 2 2

3

3

, , ,

, , , , , c

q S B q B

B B

q B SB Z
E T B Z S C

            

            

   

 

 + + − −
 

− − − 
 − −+

=  
 
 
 
 
 

 

Case-I: ( )* * * * *

1

0 3

, , , , ,0,0,0, cqq
E T B Z S C

 

 
=  
 

 always exists. 

This equilibrium of model explains that if the density of algae and density of zooplankton 

are not participating in the system then the equilibrium level of nutrients will reach to the 

value 
0

q


and the equilibrium concentration of dissolved oxygen will reach to the value 

3

cq



. Here we also note that since detritus is formed due to death of algae and zooplankton, both 

are not participating in the system. hence the equilibrium density of detritus will be zero.  

 

Case-II: 

( )
( )

* * * * *
* * * * * 1 1 0 1 0 1 11

2

1 1 1 1 0 1 1 0 3

, , , , , ,0, ,
1

cq T T B q q B S
E T B Z S C

      

         

 − + − − −
=   − 

always exists, provided the following conditions are satisfied: 

1 1 0 1 0q   −   , 

* *

1 0cq B S− −   

The second equilibria 
2E  of model is obtained when algae participating in the system 

whereas zooplankton population is not participating in this equilibrium point. In this case 

the equilibrium level of concentration of organic pollutant, density of algae, density of 

detritus and concentration of dissolved oxygen will reach to the values * * * *, ,T B S and C

respectively. These values are explicitly given by equations (3.18), (3.19), (3.20) and (3.21) 

respectively. 
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Case-III:

( )

* * *

0 0 1 1 1 1 1 0 2 1 1 12

* *

0 1 2 2 0 2 1 1 1 0 2 2

* ** *
* * * * * 21 1 2 2

3

3

, , ,

, , , , , c

q S B q B

B B

q B SB Z
E T B Z S C

            

           

   







 + + − −
 

+ − − 
 − −+

=  
 
 
 
 
 

 

always exists, provided the following conditions are satisfied: 

1 1 0 1 0q   −   , 

* *

0 1 1 1 1 1 0 2 1 1 1 0B q B          + − −   

* *

1 0cq B S− −   

The third equilibria 
3E  of model is obtained when both algae and zooplankton are 

participating in the system. In this case the equilibrium level of concentration of organic 

pollutant, density of algae, density of detritus and concentration of dissolved oxygen will 

reach to the values * * * * *, , ,T B Z S and C respectively. These values are explicitly given by 

equations (3.22) - (3.26) respectively. 

3.4.4 Stability analysis of the model 

 

We can check the stability of different equilibrium points of the model and by computing 

the eigen-value or applying Routh’s Hurwitz criterion. Now the Jacobian matrix of the 

model (3.1) - (3.5) is, 

 
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )* * * * *

* * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * *

, , , ,

, , , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , , , ,

, , , , , ,

T B Z S C

T B Z S C

T BT B Z S C

f T B Z S C f T B Z S C f T B Z S C f T B Z S C f T B Z S C

g T B Z S C g T B Z S C g T B Z S C g T B Z S C g T B Z S C

J k T B Z S C k T B= ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

, , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , ,

Z S C

T B Z S C

T B Z S

Z S C k T B Z S C k T B Z S C k T B Z S C

h T B Z S C h T B Z S C h T B Z S C h T B Z S C h T B Z S C

p T B Z S C p T B Z S C p T B Z S C p T B Z S C ( )* * * * *, , , ,Cp T B Z S C

 
 
 
 
 
 
 
 
 
 

   

 
( )* * * * *

* *

0 1 1 0

* * *

1 1 1 1 1 2

* *

2 2 2 2 2, , , ,

1 1 2 2

1 3

0 0

0 0

0 0 0

0 0

0 0

T B Z S C

B T

B T B

J Z B

    

     

    

    

 

 − − −
 

− − 
  = −
 

− − 
 − − − 

         (3.27) 

At equilibrium point 1

0 3

,0,0,0, cqq
E

 

 
 
 

, 
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1

0 3

1
0 0

0

1 1
1

0
( ,0,0,0, )

1 1 2 2

1 3

0 0

0 0 0 0

0 0 0 0 0

0 0

0 0

cqq
E

q

q

J
 


  



 




    

 

 
− − 
 
 

− 
=  
 
 

− − 
 − − − 

  

Now the characteristics equation of Jacobian matrix is, 0J I− =   

1
0 0

0

1 1
1

0

1 1 2 2

1 3

0 0
0 0 0 0

0 0 0 0
0 0 0 0

00 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0

q

q

J I


  

 

  


 



     

 

 
− − 

  
  
 − 
  − = − = 
  
    − −   

 − − − 

  

1
0 0

0

1 1
1

0

1 1 2 2

1 3

0 0

0 0 0 0
0

0 0 0 0

0 0

0 0

q

q


   



 
 





     

  

 
− − − 
 
 

− − 
 = 

 −
 

− − − 
 − − − − 

  

( )

1 1
1

0

1
0

2 20

1 1 2 2

1 3

1 3

1 1
1

0

0

1 1 2 2

3

0 0 0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

0 0
0

0 0 0

0 0 0 0

0 0

0 0

q

q

q

 
 




 
   

     
  

  

 
 



 

   





 

 
− −   

      − − − − −  − − −   − − −    − − −  − − − − 

 
− − 

 
 −+ =
 

− 
 − − − 

  

( ) ( )( )1 1
0 1 3 2

0

( ) 0
q 

         


 −
 + + + + + + = 

 
  

( )0 0  + =   or, 1 1

1

0

0
q 

 


 
− + + = 
 

 or, ( ) 0 + =  or, ( )3 0 + =  or, 
2 0n + =   
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0  = −  , = − ,
3 = − , 2



−
= and 

( )0 1 1 1

0

q   




− −
=   

Hence, the eigenvalues, 
( )0 1 1 12

0 3

0

, , , ,
q   

   
 

− −−
= − − −   

It is known that if the eigenvalues of the characteristic equation at an equilibrium point of 

any system are negative then the system is considered as asymptotically stable at that point.  

The eigenvalues for equilibrium point 1

0 3

,0,0,0, cqq
E

 

 
 
 

 are, 

( )0 1 1 12
0 3

0

, , , ,
q   

   
 

− −−
= − − −  

Here, the system will be asymptotically stable if and only if 
0 1 1 1q    .   

Now, at equilibrium point ( )* * * * *

3 , , , ,E T B Z S C , the Jacobian becomes  

 
( )* * * * *

* *

0 1 1 0

* * *

1 1 1 1 1 2

* *

2 2 2 2 2, , , ,

1 1 2 2

1 3

0 0

0 0

0 0 0

0 0

0 0

T B Z S C

B T

B T B

J Z B

    

     

    

    

 

 − − −
 

− − 
  = −
 

− − 
 − − − 

  

   

Now the characteristics equation of Jacobian matrix is, 0J I− =   

* *

0 1 1 0

* * *

1 1 1 1 1 2

* *

2 2 2 2 2

1 1 2 2

1 3

0 0 0 00 0

0 0 0 00 0

00 0 0 00 0 0

0 0 0 00 0

0 0 0 00 0

B T

B T B

J I Z B

    

     

     

    

 

 − − −  
   

− −   
   − = − =−
   

− −   
  − − −   

  

* *

0 1 1 0

* * *

1 1 1 1 1 2

* *

2 2 2 2 2

1 1 2 2

1 3

0 0

0 0

00 0 0

0 0

0 0

B T

B T B

Z B

     

      

     

     

  

 − − − −
 

− − − 
  =− −
 

− − − 
 − − − − 

 

 

* *

1 1 1 2

* *

* 2 2 2 2 2

0 1

1 1 2 2

1 3

* * * * *

1 1 2 1 1 1 1 1 2

* * *

* 2 2 2 2 2 2 2 2

1 0

2 2

1 3

0 0

0 0

0

0

0 0 0

0 0 0 0 0

0 0

0 0

T B

Z B
B

B B B T B

B Z B
T

    

     
  

     

  

         

         
  

   

 





 − − −
 

− −  − − − +
 − − −
  − − − − 

 − − − −
 

− − − −  +
 − − −
  − − − 

1 1 2 2

3

0
0 0

0 0

   

 

 
 
  =
 −
  − − − 
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( ) ( )

( )( )( )( )( )

( )( )( )

* *

2 2 2 2 2

* * *

0 1 1 1 1 2 2 2 1 1

1 3 1 3

* * * *

1 1 1 2 2 2 2 2 2 3

* *

0 1 1 2 2 3 2 2

0 0 0 0

0 0

0

0

B Z

B T B

T B B B

B Z

     

               

     

              

     



   

     − −
     

 − − − − − − − − + − −     
     − − − − − − −     

+ − − − − + + +

+ + =

( ) ( )( )( )( ) ( )( )( ) 

( )( )( )( )( )

( )( )( )

* * * * *

0 1 1 1 1 2 2 2 3 2 2 2 3

* * * *

1 1 1 2 2 2 2 2 2 3

* *

0 1 1 2 2 3 2 2 0

B T B B Z

T B B B

B Z

                     

              

         

  − − − − − − − + + + + +
 

+ − − − − + + +

+ + =

( )( )( )( )( ) ( )( )( )( ) 
( )( )( )( )

( )( )( )

* * * * * *

0 1 1 1 1 2 2 2 3 2 0 1 2 2 3

* * *

1 1 1 2 2 2 3

* *

0 1 1 2 2 3 2 2 0

B T B B B Z

T B B

B Z

                        

          

         

 − − − − − − − − − − − + − − − + +

+ − − + + +

+ + =

( )

( )

5 4

1 2 3 4 5

3

6 7 1 2 1 3 1 4 2 3 1 5 2 4 2 5 3 4 3 5 4 5

1 6 3 7 4 6 4 7 5 6 5 7 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 2 3 4 2

1 4 5 2 3 5 2 4 5 3 4 5

8 1 4 6 1

A A A A A

A A A A A A A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A A A

 





 − + + + + +

+ + + + + + + + + + +

+ + + + + + + + + + + 
− 

+ + + + 

+ +
+

( )

5 6 3 4 7 3 5 7 4 5 6 4 5 7

1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5

5 8 1 4 5 6 1 2 3 4 1 2 3 4 5 0

A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A


+ + + + 

 
+ + + + + 

− + + + =

 

Therefore, 

5 4 3 2

1 2 3 4 5 0a a a a a    + + + + + =   

Where,   

( )1 1 2 3 4 5a A A A A A= − + + + +  

( )2 6 7 1 2 1 3 1 4 2 3 1 5 2 4 2 5 3 4 3 5 4 5a A A A A A A A A A A A A A A A A A A A A A A= + + + + + + + + + + +   

1 6 3 7 4 6 4 7 5 6 5 7 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 2 3 4

3

1 4 5 2 3 5 2 4 5 3 4 5

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
a

A A A A A A A A A A A A

+ + + + + + + + + + + 
= − 

+ + + + 

8 1 4 6 1 5 6 3 4 7 3 5 7 4 5 6 4 5 7

4

1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5

A A A A A A A A A A A A A A A A A A A
a

A A A A A A A A A A A A A A A A A A A A

+ + + + + + 
=  

+ + + + + 
  

( )5 5 8 1 4 5 6 1 2 3 4 1 2 3 4 5a A A A A A A A A A A A A A A A= − + + +   

And 

 *

1 0 1A B = − −  
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*

2 1 1 1A T  = −  

*

3 2 2 2A B  = −  

4A = −  

5 3A = −  

* *

6 2 2 2A B Z  =  

* *

7 1 1 1A T B  =  

* *

8 0 1 1 2 2A B Z    =  

According to the Routh’s Hurwitz criterion, the necessary conditions are found with the 

help of table array- 

1 2 3
1

1

a a a
b

a

−
=  

( ) ( )1 2 3 3 1 4 5 1

1

1 2 3

a a a a a a a a
c

a a a

− − −
=

−
 

( )( ) ( ) ( )

( ) ( )

2

1 2 3 1 4 5 3 1 1 4 5 5 1 2 3

1 2

1 3 1 2 3 1 1 4 5

a a a a a a a a a a a a a a a
d

a a a a a a a a a

− − − − − −
=

− − −
 

1 5e a=  

 

It is stable when 
1 0b  , 

1 0,c   1 0d  and 
1 0e    

The equilibrium point ( )* * * * *

3 , , , ,E T B Z S C   will be asymptotically stable if and only if 

1 2 3 0a a a−   , ( ) ( )1 2 3 3 1 4 5 1 0a a a a a a a a− − −   , 

( )( ) ( ) ( )
2

1 2 3 1 4 5 3 1 1 4 5 5 1 2 3 0a a a a a a a a a a a a a a a− − − − − −   and 5 0a   . 

Theorem: The equilibrium ( 1, 2)iE i = is unstable whenever 1iE + exists. The equilibrium 

point 1E  is locally stable if 
2 *

0

* 2 2 2 2

0 1 1 1 1 2 2 2

1 2
min ,

2

T

B



       

 
  

+  
.  

Proof: Linearizing system by using the transformations 

*

1T T T= + , *

1B B B= + , *

1Z Z Z= + , *

1S S S= + and *

1C C C= +  

And the positive definite function 

( )2 2 2 2 2

1 1 1 2 1 3 1 4 1

1

2
V T m B m Z m S m C= + + + +  
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Where 
1m , 2m ,

3m and 4m  are some positive constants to be chosen appropriately. 

We obtain, along the solution as follows 

 
( ) ( )

( ) ( ) ( ) ( )

* *
* 2 2 2 2 2

0 1 1 1 1 3 1 4 3 1 1 1

1 1 2

1 1 3 1 1 1 1 3 2 2 1 1 4 1 4

0

1 1

dV T T
B T B Z m S m C T S

dt

B S m Z S m B C m S C m

   
  

   





= − + − − − − +

+− −

+

+ +

 

Where 
*

1 *

1

T
m

B
=  and 

*

2 *

1 2

T
m

Z 
= . Here we note that 

dV

dt
will be the negative definite if 

the following conditions are satisfied 

2

0
3 *

0 1

m
B

 

 


+
   

*

3 2 2

1 2 12

T
m



  
    

*

3 2 2

2 1 2 2

T
m



   
    

*

3
4 2

1

T
m




    

3
4 3 2

12
m m

 


    

We can choose a positive 
3m  and 4m  hence if the following condition is satisfied: 

                               
2 *

0

* 2 2 2 2

0 1 1 1 1 2 2 2

1 2
min ,

2

T

B



       

 
  

+  
                                (Proved) 

 

3.4.5 Characteristics of state variables 

 

i. Characteristics of the concentration of dissolved oxygen ( )*C  and the density 

of algae ( )*B  with respect to q ( cumulative rate of discharge of nutrients)  

Substituting the values of 
*T  , 

*Z and 
*S  in the model, we have, 

 ( )
*

* * * * 1 1 1
3, , c

B
j C B q q C B

  
 


= − − −   
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 ( )
**

* * *0 1 1 2 1 11 1 2 2
1

0 2 1 1 2 0 2 1 1 2

, ,
Bq B

k C B q B
        


         

= + −
− −

  

 

*

** * *

* * * ** *

* *

j j

B q

k k j k j k

B qdC B q q B

j k j kj jdq

C B B CC B

k k

C B

 

 

     
 − 

     
 = =

    
 − 

    

 

 

  

Here, 

1 1 1

*

j

B

  





= − −


,

3*

j

C



= −


,

*
0

k

C


=


, 0

j

q


=


,

*

1 1 2 2

0 2 1 1 2

Bk

q

   

    


=

 −
, 

( )

( )

( )

( )

* *

0 2 2 1 2 1 2 1 2 1 2 1 2 0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12 2*

0 2 2 1 2 0 2 2 1 2

q qB Bk

B

                             


         

− − − −
= + −

 − −
 

 

Now,  
*

1 1 1 1 1 2 2

* *

0 2 1 1 2

Bj k j k

B q q B

      


     

      
 −  = − −   

    −  
  

( )

( )

( )

( )

*

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2

3* * * * *

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

q qB

j k j k

C B B C B

            

    


                


    

 − −
+ 

−    
 −  = −  

    − − 
−

 
− 

 

( )

( )

( )

( )

*

1 1 1 1 1 2 2

*
0 2 1 1 2

*

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2

3 *

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

B

dc

dq q qB

B

      


     

            

    


                


    

  
− −   

−   =
 − −

+ 
− 

−  
− − 

−
 − 

  

 

 

For 1 1 1    , 

*

0
dc

dq
  
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Here the change is negative because oxygen is depleted through different ways that has 

been discussed before. If we use algae, oxygen would rise a little because algae produce 

oxygen but we didn’t assume algae here. 

Therefore, when the rate of discharge of nutrients from outside ( )q  increases, the 

concentration of dissolved oxygen also decreases.  

 

Again, 

 

*

** * *

* * * ** *

* *

j j

q C

k k j k j k

q CdB C q q C

j k j kj jdq

C B B CC B

k k

C B

 

 

     
 − 

     
= =

    
 − 

    

 

 

  

*

1 1 2 2
3* *

0 2 1 1 2

Bj k j k

C q q C

   


    

   
 −  = −

    −
 

( )

( )

( )

( )

*

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2

3* * * * *

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

q qB

j k j k

C B B C B

            

    


                


    

 − −
+ 

−    
 −  = −  

    − − 
−

 
− 

 

( )

( )

( )

( )

*

1 1 2 2
3*

0 2 1 1 2

*

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2

3 *

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

B

dB

dq q qB

B

   


    

            

    


                


    

−
−

 =
 − −

+ 
− 

−  
− − 

−
 − 

 

( )

( )

( )

( )

*

1 1 2 2

*

0 2 1 1 2

*

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2

*

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

B

dB

dq q qB

B

   

    

            

    

                


    

−
 =

 − −
+ 

− 
 

− − 
−

 − 

 

*

0
dB

dq
   

Here, the change is positive which shows a proportional relation. 
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Therefore, the rate of discharge of nutrients from outside ( )q  increases, the density of algae 

also increases. But after a certain period of time, it starts to decreasing because zooplankton 

consumes algae. 

 

Now, using equation (3.13) we get, 

* * *

2 2 2 2 2

* * 0B Z
dZ dB dZ

dq dq dq
    + − =  

( )

( )

( )

( )

( )

*

1 1 2 2

0 2 1 1 2

*

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2

*

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

*

2 2

*

2

B

q q

Z

d

B

B

B

d

q

   

    

            

    

                


    

  

−

 − −
+ 

− 
 

− − 
−

 − 

−
=  

*

0
dZ

dq
  

The change is positive here. 

Therefore, when the rate of discharge of nutrients from outside ( )q  increases, there will be 

an increasing behavior in zooplankton.  

Again, using equation (3.14), we get, 

* * *

1 1 2 2B Z S    + =  

( )

( )

( )

( )

( )

( )

*

1 1 2 2

0 2 1 1 2
1 1 *

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2

*

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

*

1 1 2 2

0 2 1 1 2
2 2

0 2 2 1 2 1 2 1 2 1 2 1

*

2 2 2

B

q qB

B

B

q

B

   

    
 

            

    

                


    

   

    
 

           

  

−


 − −
+ 

− 
 

− − 
−

 − 

−
+

− −

−
( )

( )

( )

*

*

2

2

0 2 2 1 2

*

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

dS

dqB

B




    

                


    

=
 

+ 
− 

 
− − 

−
 − 
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( )

( )

( )

( )

( )

( )

* *
* 1 1 1 1 2 2 2 2 1 1 2 2

2 2 2*

0 2 1 1 2 0 2 1 1 2

*

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2*

2 2 2 *

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

B B
B

dS

dq q qB

B
B

           
  

         

            

    
   

                


    

− +
− −

 =
 − −

+ 
− 

−  
− − 

−
 − 

 

*

0
dS

dq
   

Therefore, when the rate of discharge of nutrients from outside ( )q  increases, detritus 

amount increases. 

From equation (3.11), 

* * * *

0 0 1q S T T B   + = +  

* * * *
* *

0 0 1 1

dS dT dB dT
T B

dq dq dq dq
     = + +  

( )

( )

( )

( )

( )

( )

* * * *

0 1 1 1 1 2 2 0 2 2 1 1 2 2 1 1 1 2 2

**
0 2 1 1 2 0 2 1 1 22 2 2 0 2 1 1 2

*

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2*

0 1 *

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

0 2 2 1 2

B B T B

BdT

dq q qB

B
B

                  


                

            

    
  

                

    

+ +
− −− −

 =
− −

+
−

+
− −

−
12



 
 
 
 
 

−
 
 

 

*

0
dT

dq
 

 

Here, the change is positive which shows a proportional relation. 

Therefore, when the rate of discharge of organic pollutant from outside ( )q  increases, it is 

obvious that density of organic pollutant will also increases.  

 

ii. Characteristics of the concentration of dissolved oxygen ( )*C , the density of 

algae ( )*B  with respect to   (depletion rate of dissolved oxygen due to algae) 

Substituting the values of 
*T  , 

*Z and 
*S  in the model (3.1) – (3.5) we have 

( )
*

* * * * 1 1 1
3, , c

B
j C B q C B

  
  


= − − −  
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 ( )
**

* * *0 1 1 2 1 11 1 2 2
1

0 2 1 1 2 0 2 1 1 2

, ,
Bq B

k C B B
        

 
         

= + −
− −

   

 

*

** * *

* * * ** *

* *

j j

B

k k j k j k

BdC B B

j k j kj jd

C B B CC B

k k

C B



  



 

 

     
 − 

     
 = =

    
 − 

    

 

 

  

Here, 

1 1 1

*

j

B

  





= − −


,

3*

j

C



= −


,

*
0

k

C


=


,

*j
B




= −


, 0

k




=


, 

( )

( )

( )

( )

* *

0 2 2 1 2 1 2 1 2 1 2 1 2 0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12 2*

0 2 2 1 2 0 2 2 1 2

q qB Bk

B

                             


         

− − − −
= + −

 − −
 

 

Now,  

( )

( )

( )

( )

*

0 2 2 1 2 1 2 1 2 1 2 1 2

2

0 2 2 1 2*

* * *

0 2 2 1 2 0 1 1 2 1 1 0 1 1 2 1 1

12

0 2 2 1 2

q qB

j k j k
B

B B B

            

    

                  


    

 − −
+ 

−    
 −  =  

    − − 
−

 
− 
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*
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2
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12

0 2 2 1 2

q qB

j k j k

C B B C B

            

    


                


    

 − −
+ 

−    
 −  = −  
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−

 
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The change in dissolved oxygen decreases again. 

Therefore, when the depletion rate of dissolved oxygen due to algae ( ) increases, the 

concentration of dissolved oxygen also decreases. 
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There is no change of the density of algae. 
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Therefore, when the Depletion rate of dissolved oxygen due to algae 
 
increases or 

decreases, there will be no change in the density of algae. 

Now we get from equation (3.13), 
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There is no change of zooplankton. 

Therefore, when the depletion rate of dissolved oxygen due to algae ( )  increases, there 

would be no change in zooplankton. 

Again, from equation (3.13), we get, 
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There is no change of detritus. 

Therefore, when the depletion rate of dissolved oxygen due to algae ( )  increases, there 

would be no change in detritus. 

From equation (3.11), 

*

0 0

*

1

* *S Bq T T   ++ =  

* * * *
* *

0 0 1 1

dS dT dB dT
T B

d d d d
    

   
 = + +  

*

0
dT

d
 =  

There is no change of organic pollutant. 

Therefore, when the depletion rate of dissolved oxygen due to algae ( ) increases, there 

would be no change in organic pollutant. 

 



CHAPTER FOUR: NUMERICAL ANALYSIS 

4.1 Numerical Results and Discussions 
 

We have numerically solved the model and discussed the stability of the model for different 

values of parameters. A logical set of parameter values is used from table 4.1 which is 

related to the work of Misra [7] related to our work. The initial value of cumulative 

concentration of nutrients (T) is 1 mg/litre, the density of algae (B) is  80 million/litre which 

is considered as 1 unit, the density of detritus (S) is 1 mg/litre, the density of zooplankton 

(Z) is 1 mg/litre and the concentration of dissolved oxygen (C) is 15 mg/litre are considered 

according to the work of Misra [7]. Matlab (R2021a) has been used to find the result of the 

model by Runge-Kutta method. The following table contains the values of the parameters. 

Table 4.1: Parameter values and their descriptions 

 

Descriptions of the parameter Notations Values 

Cumulative rate of discharge of nutrients q   0.5 mgl-1day-1 

Natural Depletion rate of nutrients 
0   0.005 day-1 

Natural depletion rate of algae 
1   0.025 day-1 

Natural Depletion rate of Zooplankton 
2   0.02 day-1 

Natural Depletion rate of dissolved oxygen 
3  0.01 day-1 

Depletion rate of nutrients due to algae 
1   0.025mg -1day-1 

Depletion rate of Algae due to Zooplankton 
2  0.025 mg-1day-1 

Growth rate of nutrients due to detritus 
0   0.02 

Growth rate of detritus due to algae 
1   0.9 

Growth rate of detritus due to Zooplankton 
2  0.9 

Depletion rate of detritus due to decomposing    0.04 day-1 

Depletion rate of dissolved oxygen due to detritus 
1   0.06 day-1 
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Growth rate of algae due to nutrients 
1   0.9 

Growth rate of Zooplankton due to Algae 
2  0.9 

Depletion rate of dissolved oxygen due to algae    0.02 day-1 

Increasing rate of dissolved oxygen by various 

sources 
cq   0.2 mg l-1day-1 

 

While calculating the numerical result we considered the time period t  from 0 to 60 days. 

Because we find the changes from the increasing the concentration of any individuals till 

the time of their depletion. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Behavior of the concentration of nutrients with time  

for cumulative rate of discharge of nutrients, q 

The fluctuations depicted in figure 4.1 are driven by a multitude of factors intrinsic to our 

ecosystem model. Of all the components in this model, algae emerge as particularly 

significant due to the crucial role they play within the ecosystem dynamics. 

Algae possess the unique ability to metabolize nutrients, a process which effectively 

reduces the concentration of these pollutants in the water. This contributes to the downward 

trend we see on the graph, a phenomenon observable when employing specific values for 

our calculations: 𝑞 = 0.3, 𝑞 = 0.5 and 𝑞 = 0.6. 

As the rate of organic pollutant discharge into the water body rises, we initially witness an 

increase in the overall pollutant concentration. This escalation in pollutant levels, as 
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indicated by the figure, persists for approximately 20 days. However, beyond this period, 

the concentration starts to decline, a trend triggered by the action of algae. 

When sufficient oxygen is present in the water, the growth rate of algae amplifies. These 

rapidly growing algae colonies then consume greater volumes of nutrients. In the case 

where the pollutant discharge rate is at q=0.3, the pollutant concentration ascends to a peak 

of 6 mg/L. Post this peak, the concentration commences its descent, marking the onset of 

the pollution reduction phase. 

Similarly, at a higher discharge rate of q=0.6, the pollutant concentration soars to an even 

higher level of 9 mg/L. Following this surge, the graph eventually starts to display a 

declining trend, once again attributable to the increase in algae. This underlines the 

significant role of algae in regulating pollutant levels. As the algae population escalates 

over time, it progressively consumes more pollutants, thereby catalyzing the decline in their 

overall concentration. 

 

 

 

 

 

 

 

 

 

Figure 4.2: Behavior of the density of algae with time for  

cumulative rate of discharge of nutrients, q 

 

The rise and fall pattern of nutrients observed in figure 4.1 is closely tied to the density of 

algae in the ecosystem. We have already examined how increasing amounts of algae 

contribute to a decrease in nutrients. However, the growth in algae also leads to changes in 

the population of zooplankton, another crucial component of the ecosystem. 

Zooplankton play a significant role in maintaining the health of the ecosystem. They 

contribute to the purification of water by consuming nutrients, thereby slightly enhancing 
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the water's clarity. In our study, we considered the values 𝑞 = 0.3, 𝑞 = 0.5 and 𝑞 = 0.8 and 

figure 4.2 illustrates an initial rise in the graph (as observed). 

As the cumulative rate of discharge of nutrients into the water body grows, so does the 

population of algae, but only up to a certain point. Following this phase of growth, the algae 

population begins to recede. According to the data presented in Figure 4.4, the duration of 

this growth phase lasts for 42 days for q=0.3, 32 days for q=0.5, and 25 days for q=0.8. 

Post these periods, the algae population declines, an event driven by the presence of 

zooplankton. 

With a pollutant discharge rate of q=0.3, we witness a threefold increase in the algae 

population. As the value of q changes, the algae population also increases gradually. 

However, after a specific time interval, the graph begins to display this cyclical pattern of 

increase and decrease. This dynamic shift suggests a complex interplay between the 

discharge of nutrients, the population of algae, and the population of zooplankton within 

the ecosystem. 

 

 

 

 

 

 

 

 

 

Figure 4.3: Increasing behavior of zooplankton with time for  

cumulative rate of discharge of nutrients, q 

Figures 4.1 and 4.2, as discussed earlier, illustrate the fluctuations in nutrients and algae. 

However, while these changes are occurring, there's also an increase in the population of 

zooplankton. The behavior of zooplankton is shown in figure 4.3 and this particular pattern 

emerges because zooplankton consume algae. 
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For our calculations, we considered the values 𝑞 = 0.3, 𝑞 = 0.5  and 𝑞 = 0.6. These values, 

when analyzed, cause an increase in the population of zooplankton. As the cumulative rate 

of discharge of nutrients into the water body escalates, so does the population of 

zooplankton. This relationship suggests that zooplankton growth is somehow linked to the 

discharge of nutrients. 

The growth rate of zooplankton, however, shows two distinct phases. For the initial 30 

days, the growth of zooplankton is relatively slow, suggesting a period of modest 

population increase. However, after the 30-day mark, we notice a significant acceleration 

in zooplankton growth. Despite this overall increase, there may be minor reductions in 

zooplankton density due to various influencing factors not explicitly accounted for in this 

model. 

 

 

 

 

 

 

 

 

Figure 4.4: Behavior of the density of detritus with time for 

cumulative rate of discharge of nutrients, q 

Detritus refers to dead organic material, including dead algae, zooplankton, and solid waste 

from nutrients. This encompasses all the dead biological material as well as waste products 

depicted in figures 4.1, 4.2, and 4.3. 

The density of detritus escalates rapidly due to the accumulation of deceased plant matter 

and micro-organisms. This trend is largely driven by the consumption of algae by 

zooplankton, which in turn results in a larger quantity of dead organic matter. 

Figure 4.4 provides a visual representation of these changes. The calculations made using 

the values 𝑞 = 0.3, 𝑞 = 0.5, and 𝑞 = 0.8 are reflected in this figure. As the cumulative rate 
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of discharge of nutrients into the water body intensifies, there's a corresponding increase in 

the amount of detritus. 

The growth rate of detritus follows a similar trend to that observed in zooplankton. For the 

first 20 days, the increase in detritus is relatively modest. However, post the 20-day mark, 

the accumulation of detritus begins to accelerate significantly. This increase is directly 

related to the escalating discharge of nutrients and the subsequent increase in zooplankton 

and algae deaths, contributing to a larger volume of detritus in the ecosystem. 

 

 

 

 

 

 

 

 

Figure 4.5: Behavior of the density of detritus with time for  

depletion rate of zooplankton, α2  

Figure 4.5 explains the behavior the density of detritus for different values of 
2. When 

the zooplankton die, they start to decompose and accumulates as detritus. If the depletion 

rate of zooplankton increases, the density of detritus will increase with time as well. As we 

took the values 2 0.01 = , 2 0.02 = and 2 0.03 = , an increment is seen in the graph. In 

the above figure, we can see that the density of detritus started to increase after a certain 

period of time, and the increment is proportional to the value of 
2.  
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Figure 4.6: Behavior of the density of detritus with time for  

growth rate of algae due to nutrients, θ1 

The above figure describes the behavior of the density of detritus with respect to time for 

different values of the growth rate of algae due to nutrients 1 . We took the values of 1 as 

0.7, 0.9, and 1.1 respectively.  

It is clearly visible that the density of detritus increases rapidly after a certain of time. If the 

algae grow faster, its population will increase rapidly. With the increasing population it is 

certain that the depletion rate of algae will also increase proportionally, which contributes 

directly to increase the density of algae.  

That is why, with the increasing values of 1 , the density of algae increases rapidly. 

 

 

 

 

 

 

 

Figure 4.7: Behavior of the concentration of dissolved oxygen with  

time for cumulative rate of discharge of nutrients, q 
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In our numerical computation, we chose a time period ranging from 0 to 60 days. We 

focused on this span because it allowed us to observe the changes arising from increases in 

individual concentrations until the point of depletion. Figure 4.7 presents the fluctuations 

in the concentration of dissolved oxygen under various cumulative discharge rates of 

nutrients, mapped against time (t). We used a time interval of 60 days to evaluate the graph's 

behavior. 

In our analysis, we used the values 𝑞 = 0.3, 𝑞 = 0.5 and 𝑞 = 0.8. The graphical 

representation showed a decrease when these values were plotted. Over time, the level of 

dissolved oxygen showed a consistent decline. This decline was relatively subtle at first, 

but once the cumulative discharge rate of nutrients increased, the oxygen level decreased 

slightly. 

However, a striking change was noted after the 20-day mark, where the decrease in the 

concentration of dissolved oxygen (DO) accelerated rapidly. This indicates that the 

increasing discharge rate of nutrients significantly impacts the level of dissolved oxygen, 

highlighting a rapid depletion of DO after 20 days of increased pollutant discharge. 

 

 

 

 

 

 

Figure 4.8: Behavior of the concentration of dissolved oxygen with  

time for the depletion rate of algae, α1 

Figure 4.8 provides a detailed analysis of the changes in the concentration of dissolved 

oxygen over time, mapped against different rates of algae depletion. The rates in question, 

represented by the values of  𝛼1 are 0.025, 0.050, and 0.075 respectively. 

A key finding is that the concentration of dissolved oxygen exhibits a decreasing trend with 

the increase in these 1 values. This can be explained by the fact that higher rates of algae 
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depletion result in an increased amount of detritus, and consequently, nutrients. This 

increase promotes an algal bloom. Thus, the underlying reason for the decline in the 

concentration of dissolved oxygen is the corresponding increase in the 𝛼1 values, which 

enhance the nutrients leading to the algal bloom. 

 

 

 

 

 

 

 

 

 

Figure 4.9: Behavior of the concentration of dissolved oxygen with  

time for depletion rate of dissolved oxygen due to detritus, 𝛿1 

Figure 4.9 presents a comprehensive analysis of how the concentration of dissolved oxygen 

fluctuates over time based on different rates of oxygen depletion due to detritus, represented 

by the parameter 𝛿1.  The values for 𝛿1 being investigated are 0.04, 0.06, and 0.08 

respectively. An important aspect to note here is that a surge in the quantity of detritus 

necessitates a correspondingly larger amount of oxygen for decomposition. This process 

can lead a lake to become anoxic. Therefore, the more detritus present, the more oxygen 

will be consumed for its breakdown. 

As a result, it is observed that with the escalation of 𝛿1 values, the concentration of 

dissolved oxygen experiences a significant decline. This behavior is due to the higher 

consumption of oxygen required for the decomposition of increasing detritus levels. 
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Figure 4.10: Behavior of the concentration of dissolved oxygen  

with time for growth rate of algae due to nutrients, θ1 

Figure 4.10 illustrates the fluctuation in the concentration of dissolved oxygen over time, 

corresponding to varying values of the growth rate of algae due to nutrients, denoted by 𝜃1. 

The specific 𝜃1  values under examination are 0.7, 0.9, and 1.1. It is observed that as the 

value of 𝜃1, indicative of the algae growth rate driven by nutrients, increases, it results in 

an algal bloom. This bloom subsequently causes a rapid decline in the concentration of 

dissolved oxygen due to the ensuing rise in detritus. This increase in detritus necessitates 

more oxygen for decomposition. 

In conclusion, the reduction in the concentration of dissolved oxygen is directly attributed 

to the increased growth rate of algae due to nutrients. This is primarily because the higher 

volume of detritus, created by the algal bloom, consumes more oxygen for decomposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Behavior of the concentration of dissolved oxygen with  

time for growth rate of zooplankton due to algae, θ2 
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Figure 4.11 presents an in-depth analysis of how the concentration of dissolved oxygen 

varies over time, with respect to the growth rate of zooplankton due to algae, represented 

by the parameter 𝜃2. The values of 𝜃2 considered for this study are 0.5, 0.9, and 1.5 

respectively. Algae have a crucial role in promoting the population of zooplankton, mainly 

because zooplankton primarily feed on algae, resulting in an increased population. As the 

zooplankton population expands, so does their consumption of oxygen for survival. 

Concurrently, a larger zooplankton population also results in a higher number of deceased 

zooplankton. The decomposition process for these large quantities of deceased zooplankton 

consumes significant amounts of dissolved oxygen, leading to a drop in its overall 

concentration. 

Hence, it is evident that the concentration of dissolved oxygen decreases in response to an 

increase in the growth rate of zooplankton, attributed to algae. This is mainly due to the 

increased oxygen demand for the decomposition of a larger number of deceased 

zooplankton. 



CHAPTER FIVE: CONCLUSION AND  

FUTURE STUDIES 

5.1 Conclusion 

The study analyzed a nonlinear mathematical model considering the concentration of 

nutrients, density of algae, density of zooplankton, density of zooplankton, and 

concentration of dissolved oxygen as state variables. The positivity and boundedness of the 

state variables have been analyzed to validate the model. The equilibrium points of the 

model and stability of the points have been discussed elaborately as well. Finally, the 

behavior of the state variables with respect to different values of different parameters have 

been demonstrated analytically and graphically. 

In conclusion, the study applying numerical methods to solve the model demonstrated the 

findings listed below: 

• The study demonstrated significant insights into the interplay of various 

components within an aquatic ecosystem, including algae, zooplankton, organic 

pollutants, and dissolved oxygen.  

• An increase in the discharge of organic pollutants into a water body over time leads 

to a decline in dissolved oxygen levels, due to the pollutants' effect on the 

ecosystem.  

• Algae in the ecosystem help reduce the concentration of these pollutants, and thus 

are essential to preserving the health of the ecosystem. Notably, a pattern of initial 

growth and then decline in the algae population over time was observed. This 

pattern was driven by the increase in organic pollutants and the subsequent rise in 

zooplankton, which consume the algae. 

• The study also emphasized the role of zooplankton, showing that their population 

grows over time as a direct response to the increase in algae, their primary food 

source. This growth, in turn, results in a significant increase in detritus, or dead 

organic matter. 

• A strong correlation between the rates of algae and zooplankton depletion and the 

overall concentration of dissolved oxygen was noted. A higher rate of algae and 

zooplankton depletion resulted in more detritus, requiring more oxygen for 

decomposition, and thus decreasing the dissolved oxygen levels in the water body. 
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In summary, our study underscores the delicate balance within an aquatic ecosystem, 

highlighting the intertwined relationships between organic pollutants, algae, zooplankton, 

detritus, and dissolved oxygen. Our findings stress the importance of understanding these 

dynamics in order to effectively manage and preserve the health of our aquatic ecosystems. 

5.2 Future Studies 

Our mathematical analysis has been limited to the variables cumulative concentration of 

nutrients, density of algae, density of zooplankton, density of detritus, and concentration of 

dissolved oxygen. Bacteria is an also a vital component of the ecosystem. Bacteria 

decomposes dead algae and zooplankton, which requires a significant amount of dissolved 

oxygen. This causes a depletion in the concentration of dissolved oxygen in aquatic 

ecosystem.  

For further research purposes the followings can be implemented: 

• The density of bacteria can be considered as a state variable to better analyze the 

depletion of dissolved oxygen.  

• A control model can be proposed implementing some treatment measures to solve 

the issues caused by algal bloom and to prevent this depletion of dissolved oxygen.  
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