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Abstract

Succinylation of lysine residue is a special type of post-translational modification
(PTM). It has a crucial role in balancing the processes of cells. Abnormal
succinylation can be the cause of cancers, metabolism diseases, inflammation and
nervous system diseases. Detecting succinylation sites is of great importance to
explore the function of proteins. However, the experimental methods to detect
succinylation sites are costly, time and labor consuming. This thus calls for
computational models with high efficacy and attention has been given in the
literature for developing such models, albeit with only moderate success in the
context of different evaluation metrics. In particular, the existing works failed
to balance the two metrics, sensitivity and specificity, leaving a large room for
improvements in this context. One important aspect in this context is the biochemical
and physicochemical properties of amino acids, which appear to be useful as features
for such computational predictors. However, some of the existing computational
models did not use the biochemical and physicochemical properties of amino acids,
while some others used them without considering the inter-dependency among the
properties.

In this thesis, we revisit the computational prediction of succinylated lysine
residue (SLR) and use a broad spectrum of weaponry to tackle this problem. We
first focus on the biochemical and physicochemical properties of amino acids and
formulate an optimization problem to find combination that is more suitable for the
problem at hand considering their inter-dependencies and other factors. In particular,
we propose a variant of genetic algorithm, called IBCGA, to search for suitable
combinations thereof for efficient prediction of SLRs. In this context, we leverage
the power of Random Forest (RF) and Balanced RF (a variant of RF to handle
imbalanced data).

We then propose three deep learning architectures, CNN+Bi-LSTM (CBL),
Bi-LSTM+CNN (BLC) and their combination (CBL BLC) thereby leveraging the
potential of deep neural network architectures for SLR prediction. We also employ
different ensembling techniques to improve upon the performance of our models,
which includes heterogeneous ensembling of traditional ML models with deep
learning architectures as well. Finally, we apply differential evolution to tune the
threshold of ensemble classifiers thereby providing the biologists and practitioners
with a knob to balance the sensitivity and specificity.

The combinations of biochemical and physicochemical properties derived
through our optimization process achieve better results than the results achieved by
the combination of all the properties. In this context, one of the best performing
combinations consists of only two properties. As for our deep learning architectures,

xii



we find that CBL BLC is outperforming the other two. Ensembling of different
models successfully improves the results. For example, ensembling of multiple
CBL BLC models improves the sensitivity of CBL BLC from 0.73 to 0.744,
specificity from 0.684 to 0.691, accuracy from 0.707 to 0.718 and Matthews
correlation coefficient from 0.415 to 0.436. Ensembling of the traditional ML
models (BP-E) achieves a very competitive sensitivity score (even in comparison
with the deep learning models). For instance, BP-E achieves a sensitivity of 0.745
on the first dataset while the best achieved sensitivity is 0.772. The sensitivity
achieved by BP-E on the second dataset is 0.721 while the best achieved sensitivity
is 0.724. Notably, tuning the threshold of the ensemble classifiers further improves
the results. For example, tuning the threshold of the ensemble of all deep learning and
traditional ML models improves the sensitivity from 0.772 to 0.795. Consequently,
the specificity decreases from 0.681 to 0.666. Upon comparing our work with other
existing works on two datasets, we find that our model is far better with respect
to sensitivity. Our tuned models achieve the best sensitivity of 0.805 and 0.811
on the two datasets compared to the second best of 0.725 and 0.7874, respectively.
However, the specificity is comparatively low compared to the existing works. We
show that by altering the threshold of our proposed ensemble classifier, we are able
to control the sensitivity and specificity thereby achieving better results from the
state-of-the-arts with respect to both sensitivity and specificity.

For reproducibility and extensibility of our work, we make the source code
publicly available at https://github.com/Dariwala/Succinylation-with-biophysico-
and-deep-learning.
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Chapter 1

Introduction

Proteins are an integral part of any organism. They conduct numerous complicated tasks of the
body, for example, stimuli response, transportation of molecules, and forming the structure of
cells. Proper function of the body’s tissues can not be imagined without the existence of proteins.

Amino acids are the monomers that constitute proteins. Twenty types of amino acids are the
most common in proteins. A polypeptide is a long chain of amino acids. A protein is made up
of one or more polypeptides. Short polypeptides contain 20-30 amino acids. Amino acids are
coupled together through peptide bond. Formation of a polypeptide through the long chain of
amino acids is shown in Figure 1.1.

Figure 1.1: Chain of amino acids bonded together to form polypeptide.

A protein is formed from a gene in two steps. During this process, information flows from DNA
→ RNA→ protein. This phenomenon is known as the central dogma of molecular biology.

The first step in this process is called transcription, during which the DNA is transcribed, into
RNA. In eukaryotes, the RNA has to go through some processing steps to become a mature
messenger RNA (mRNA).

The second step in the process is translation, during which the mRNA is decoded to form a
sequence of amino acids (i.e., protein). The steps of the formation of protein from DNA are

1
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shown in Figure 1.2.

Figure 1.2: DNA is converted to RNA through transcription. RNA is converted to protein through
translation.

An important process related to protein synthesis is the Post-translational modification (PTM).
PTMs refer to the enzymatic alteration of proteins. They can expand the chemical range of
the 20 standard amino acids by changing an already existing functional group or establishing a
new one such as phosphate. PTMs play a crucial role in numerous biological processes through
influencing the formation and dynamics of proteins [3, 4].

Phosphorylation is one of the most popular PTMs for synchronizing the activity of enzymes and
is the most common post-translational modification [5]. It refers to the addition of a phosphoryl
group (PO−

3 ) to serine. Protein phosphorylation is specifically significant because of their roles;
for example, this alteration excites (or depresses) almost 50% of the enzymes of Saccharomyces
cerevisiae, hence balancing their function [6–8].

Notably, the aberrant phosphorylation of proteins has been found to result in major diseases like
diabetes, cancer and rheumatoid arthritis [9]. Mutations in kinases and phosphatases result in
disorders. Several naturally occurring toxins and pathogens employ their effects by changing the
phosphorylation states of intracellular proteins [9].

Acetylation, another common PTM, introduces an acetyl (−C(O)CH3) functional group into
amino acid residue. Acetylation is crucial because of several of its important reactions in the body,
including but not limited to Protein formation and Drug biotransformation. Dysregulation of
acetylation or deacetylation leads to diverse disorders as epithelial cancers, leukemia, Rubinstein-
Taybi syndrome and fragile X syndrome [10].

Lysine succinylation (addition of OCCH2CH2CO or HOOCCH2CH2CO to the lysine
residue) is an important PTM in regulating the cellular processes [11]. It can cause alteration
of charge in the surroundings and stimulate structural and functional adjustments to substrate
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proteins [12]. Succinylation alters charge of lysine residue from +1 to -1 (at physiological pH)
and introduces a comparatively larger structural component (100 Da), bigger than acetylation
(42 Da). Hence, Succinylation is expected to result in substantial changes in protein function
and structure. Succinylation is involved in numerous key energy catabolism routes, including
tricarboxylic acid cycle, amino acid decay and fatty acid metabolic process, pentose phosphate
route, glycolysis, TCA cycle, and pyruvate metabolic process [13–17]. Hence, detecting and
investigating the succinylated lysine residues is crucial to realize the function of proteins.

Moreover, succinylation may result in phthisis, inflammation [18]. The aberration of
succinylations has also been found to cause diseases like metabolism diseases [14, 19], nervous
system diseases [20], and cancers [21]. Therefore, it is crucial to identify succinylated sites in
the field of physiology too.

Several experimental techniques exist for detecting PTM sites. Although these experimental
techniques (e.g., mass spectrometry, liquid chromatography) can detect PTMs pretty accurately,
they are usually costly, time and labor-consuming. This thus calls for in silico computational
techniques to provide predictions of SLRs with high efficacy.

Several (traditional) machine learning based predictors (e.g., iSuc-PseAAC [22], iSuc-PseOpt
[23], pSuc-Lys [24], SuccineSite [11], SuccineSite2.0 [2], GPSuc [25] and PSuccE [26])
have been proposed in the literature, albeit with unsatisfactory (and/or conflicting) results
considering different metrics. An important research gap in this context relates to the biochemical
and physicochemical (referred to as biophysico henceforth for brevity) properties of amino
acids. Some common biophysico properties of amino acids are solubility, amphoteric property,
isomerism etc. These properties can be used to numerically represent the amino acids, hence
can be used as features in machine learning algorithms. The existing works did not take into
consideration the relationship among different biophysico properties while choosing a subset of
properties to be used for classification. More details about these properties and the associated
research gap will be discussed in Section 4.1.

Very recently, the power of deep learning has been leveraged in DeepSucc [1], DeepSuccinylSite
[27]. Although DeepSucc claims a very good specificity (percentage of negative samples correctly
classified) and a reasonable sensitivity (percentage of positive samples correctly classified), the
codebase shared by the authors contain errors and discrepancies. DeepSuccinylSite offers a
reasonable sensitivity albeit at the cost of low specificity. Therefore, the quest for incorporating
biophysico properties with a computational model to build a better predictor is still on.

1.1 Objective of this thesis

The overarching aim of the thesis is to develop a computational predictive model for the detection
of succinylated lysine residue (SLR in short), i.e., to predict whether a lysine residue in a protein
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sequence represents a succinylation site or not.

The objectives of this thesis are as follows-

• To formulate an optimization problem of finding a suitable subset of biophysico properties
from the AAIndex [28] for better prediction of the task at hand.

• To assess the statistical significance of each of the features to be used for the prediction of
SLR.

• To leverage the power of deep learning to extract unknown features from the surrounding
amino acids of the concerned amino acid.

• To build a robust predictor by incorporating the derived biophysico features as well as
temporal relationships of the surrounding amino acids through applying both traditional
and deep learning approaches.

• To make all the codes open-source for further research.

1.2 Our contributions

This thesis addresses some notable lackings in the field of SLR prediction and thus makes the
following contributions.

Suitable combinations of biophysico properties We formulate an optimization algorithm to
search for suitable combinations of biophysico properties for efficient prediction of SLR.

Sensitivity-Specificity tradeoff We provide the researchers with a knob to control the
sensitivity and specificity of our proposed model thereby obtaining contextual results.

Open Source flexible software framework We developed an open source software framework
for prediction of SLR using our proposed approaches. Its components can potentially be
modified, replaced or further refined by bioinformatics researchers and practitioners.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, we discuss the basic terms related
to our study. Chapter 3 discusses the state-of-the-works related to the detection of succinylated
sites. In Chapter 4, we present the methodology for selection of suitable subset of biophysico
properties. Application of deep-learning and incorporating biophysico properties therewith is
discussed in Chapter 5. Finally, Chapter 6 concludes the thesis.



Chapter 2

Background

Previous chapter has illustrated the importance of the thesis by discussing the challenges of using
experimental methods for detection of succinylation and mentioning briefly the limitations of the
previous works. In this chapter, we describe in detail the concepts and leveraged techniques used
in this thesis.

Since a large volume of background information hae been presented in this chapter, we present
a roadmap of what is coming next. We start with a detailed discussion of the metaheuristic
algorithms used in this thesis. We use genetic algorithm to search for suitable combinations of
biophysico properties for efficient prediction of SLRs. We adopt differential evolution algorithm
to find the optimal thresholds for improving performance of our proposed models. Subsequently,
we discuss an experimental design technique named “Orthogonal Experiment Design”. This
technique uses the concept of Orthogonal array to create a representative set of experiments
from the set of all possible experiments. We leverage the idea of Orthogonal array to perform
Orthogonal Array Crossover as the crossover operation of the genetic algorithm. Next, we
discuss the statistical measures taken to analyze the collected features. We discuss about the
correlation coefficient in general and specifically the Spearman correlation coefficient, which we
use to assess the statistical significance of the biophysico properties being used for succinylation
site prediction. We also discuss a technique called “Permutation feature importance” to inspect
the importance of each feature being selected for prediction. The next section elaborately
describes the concepts related to machine learning used in this thesis. Finally, we mention
the performance metrics that have been used to evaluate our models and perform comparative
analysis with existing succinylation site predictors.

2.1 Meta-heuristics

Metaheuristics refers to context-independent and high-level algorithmic framework that provides
a number of methods to construct heuristic algorithms [29]. Optimization methods formulated in

5
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accordance with the techniques provided in a metaheuristic framework, are generally heuristic.
While the exact methods are guaranteed to find the optimal solution in a finite (although possibly
very long) amount of time, metaheuristics can provide close to optimal solution within an
affortable period of time. Hence, they won’t break down in case of combinatorial explosion.

Specifically in case of complex or large problem instances, metaheuristics can balance between
the goodness of the solution and cost of computation. In addition to that, metaheuristics offer
more flexibility than exact methods do in two important ways. First, since these algorithms are
designed as problem-independent, they can adapt to meet the requirement of many practical
problems in order to obtain solutions of expected quality with an affordable computational
cost. Second, different problems have different constraints and formulations. As metaheuristic
algorithms are designed from a high level perspective, they can be applied on various optimization
problems which vary in their formulation and constraints.

Key examples of metaheuristic algorithms include evolutionary algorithms, simulated annealing,
tabu search, large neighborhood search and many more.

2.1.1 Genetic algorithm

Genetic algorithm is similar to the system of natural selection where the individuals that are
strongest are selected for producing the population of the next generation.

There are five stages of the genetic algorithm.

Initialization of population A population refers to a set of individuals. In the first step, a
random set of individuals is generated for the next steps.

Evaluation of fitness Each individual is assigned a fitness value by which it can be understood
how good a solution that individual is in the context of the problem.

Selection In this phase, individuals are selected for reproduction based on the their fitness
scores.

Crossover Crossover is an operation done on a pair of individuals (i.e., parents) to generate
children of next generation. Through this operation, genes of the current generation are
passed down to the next generation.

Mutation Mutation refers to slight change in some of the genes of some selected individuals of
the new generation.

The genetic algorithm is described in Algorithm 1. The three most important steps in
the genetic algorithm is the SelectWithReplacement, Crossover and Mutate methods.
SeletWithReplacement selects an individual from the population based on some criteria.
Crossover does mating of of two parents to produce two children. Mutate does some mutation
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on the children with a small probability. Different variants of genetic algorithm have emerged by
adopting different techniques for these three methods. Below we discuss one of the most popular
algorithms for selection operation.

Algorithm 1 Genetic algorithm
1: popsize← desired population size
2: P ← {}
3: for popsize times do
4: P ← P ∪ {new random individual}
5: end for
6: Best← null
7: while Best is the ideal solution or time is over do
8: for each individual Pi ϵ P do
9: CalculateFitness(Pi)

10: if Best = null or Fitness(Pi) > Fitness(Best) then
11: Best← Pi

12: end if
13: end for
14: Q← {}
15: for popsize/2 times do
16: Parent Pa ← SelectWithReplacement(P )
17: Parent Pb ← SelectWithReplacement(P )
18: Children Ca, Cb ← Crossover(Pa, Pb)
19: Q← Q ∪ {Mutate(Ca),Mutate(Cb)}
20: end for
21: P ← Q
22: end while
23: return Best

1

Tournament Selection Algorithm

Tournament Selection [30] is an algorithm for selecting individuals from the current population
for reproduction (e.g., two individuals are needed to perform crossover operation). The K-way
tournament selection algorithm will initially select k individuals and perform a tournament
among them and the winner of the tournament is selected. This process is repeated until desired
number of individuals are selected. The steps of the tournament selection algorithm are as
follows:

1. Randomly choose k individuals from the population and run a tournament with them.

2. Choose the winner of this tournament.

3. Repeat steps 1 and 2 until the desired number of individuals are selected.
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2.1.2 Differential evolution

Differential evolution (DE) [31, 32] is an algorithm that tries to iteratively optimize the solutions
with regard to the problem at hand.

DE does not utilize the gradient of the optimization problem. Hence, the problem does not
need to be differentiable for applying DE. This is not the case with many other metaheuristic
algorithms that use the information of gradients of the problem to optimize the solution.

DE searches for the solution of the optimization problem by keeping a set of individuals
and generating new generation of children by combining current individuals according to its
own techniques. Next, it keeps the candidate solutions that are the fittest with respect to the
optimization problem at hand. In this way, the optimization problem is considered as a black box
that simply provides a measure of fitness given an individual solution and the gradient is hence
not required.

The steps of DE are described in Algorithm 2.

2.2 Orthogonal experiment design

Orthogonal experimental design (OED) with orthogonal array (OA) is an effective way of
investigating the effect of a number of factors [33]. The factors work as parameters, which affect
the response variables. The factors can take different values known as levels of the factors. A
complete factorial experiment tries each combination of levels of each of the factors which
is often infeasible [34], while a fractional factorial experiment tries to select a subgroup of
combinations. Orthogonal experimental design leverages fractional factorial experiments to
effectively search for the best combination of levels of factor for the purpose of optimization of
the response variable. An illustrative example of OED using an objective function is as follows:

maximize y(x1, x2, x3) = 5x1 − 2x2 + x3

where x1 ϵ {−1, 1}, x2 ϵ {1, 2} and x3 ϵ {3, 4}.
This optimization problem can be thought as a problem of three factors, all of which have two
levels. Let, x1, x2, x3 be factors F1, F2, and F3, respectively. Let, level 1 (2) denote the smaller
(larger) value of each parameter. The response variable, y is the objective function. The strategy
of complete factorial experiment is to evaluate all of the 23 = 8 combinations of levels. Hence,
we would obtain the best combination (x1, x2, x3) = (1, 1, 4) with y = 7. The results of the
discussed experiment are shown in Table 2.1.

While a complete factorial experiment inspects all possible combinations, a fractional factorial
experiment intelligently chooses a subset of combinations of levels, such as the 2nd, 4th, 5th, and
7th combinations. The best among the four combinations is (x1, x2, x3) = (1, 1, 3) with y = 6.
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Algorithm 2 Differential Evolution
1: α← mutation rate
2: popsize← desired population size
3: P ← {}
4: Q← {}
5: for popsize times do
6: P ← P ∪ {new random individual}
7: end for
8: Best← null
9: while Best is the ideal solution or time is over do

10: for each individual Pi ϵ P do
11: CalculateFitness(Pi)
12: if Q ̸= {} and Fitness(Qi) > Fitness(Pi) then
13: Pi ← Qi

14: end if
15: if Best = null or Fitness(Pi) > Fitness(Best) then
16: Best← Pi

17: end if
18: end for
19: Q← P
20: for each individual Qi ϵ Q do
21:

−→a ← a copy of individual other than Qi, chosen at random with
replacement from Q

22:
−→
b ← a copy of individual other than Qi or

−→a , chosen at random
with replacement from Q

23:
−→c ← a copy of individual other than Qi or

−→a or
−→
b , chosen at

random with replacement from Q

24:
−→
d ← −→a + α(

−→
b −−→c )

25: Pi ← one child from Crossover(d,Copy(Qi))
26: end for
27: end while
28: return Best

1

Table 2.1: An example of complete factorial experiment

Combination Factors Parameters Response
No. F1 F2 F3 x1 x2 x3 variable
1 1 1 1 -1 1 3 -4
2 1 1 2 -1 1 4 -3
3 1 2 1 -1 2 3 -6
4 1 2 2 -1 2 4 -5
5 2 1 1 1 1 3 6
6 2 1 2 1 1 4 7
7 2 2 1 1 2 3 4
8 2 2 2 1 2 4 5
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Using OA, the best combination (x1, x2, x3) = (1, 1, 4) can be obtained by judiciously selecting
a subset of the combinations. The procedure of constructing OA is described below.

Let, N be the number of factors, each of which has two levels. Thus, a complete factorial
experiment will include trying out 2N combinations. To construct an OA with N factors, let,
n = 2⌈log2(N+1)⌉. Now, build a two level OA, Ln(2

n−1), with n rows and n− 1 columns. Only
the first N columns of this table will be used. The levels of the factors are denoted by 1 and 2
in each column. Each column has the same number of 1s and 2s. Each of the four pairs (1, 1),
(1, 2), (2, 1) and (2, 2) will appear same number of times in each possible pair of the n − 1

columns. For example, an L4(2
3) is as follows.

1 1 1
1 2 2
2 1 2
2 2 1

The algorithm used to generate OAs is described in Algorithm 3 (taken from [35]).

Algorithm 3 Creating Orthogonal Array OA
Require: N ≥ 1
1: n← 2⌈log2 N+1⌉

2: for i from 1 to N do
3: for j from 1 to N do
4: level← 0
5: k ← 0
6: mask ← n

2

7: while k ≥ 0 do
8: if k%2 ̸= 0 & bitwise AND(i− 1,mask) ̸= 0 then
9: level← (level + 1)%2

10: end if
11: k ← ⌊k

2
⌋

12: mask ← mask
2

13: end while
14: OA[i][j]← level + 1
15: end for
16: end for

1

2.2.1 Factor analysis with orthogonal array

Factor analysis refers to the computation of the impact of each factor on the function to be
optimized, sort the factors according to their effectiveness, and find the better of the two levels
of each factor. An example of orthogonal experiment using an orthogonal array LK(2

K−1) with
K rows and K − 1 columns is shown in Table 2.2. In this example, K = 4 has been used, there
are three factors, all of which have two levels (1 or 2). 1 corresponds to the exclusion and 2
corresponds to the incorporation of the factor in the proposed feature selection. Let fp denote the
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value of the objective function for combination p. Let, the contribution of factor j with level k
be denoted as Sjk where j = 1, 2, 3, . . . , K − 1 and k = 1, 2 as:

Sjk =
∑

fp · Fp (2.1)

where Fp = 1 when factor j of combination p has level k; else, Fp = 0. If the optimization
problem is a maximization problem, the level 1 of factor j will be better than level 2 when
Sj1 > Sj2. After the best level for each factor is determined, we can create a combination by
incorporating all the best levels.

Table 2.2: A sample orthogonal experiment

t Factors ft Rank
1 2 3

1 1 1 1 35.3% 6/8
2 1 2 2 32.1% 8/8
3 2 1 2 60.5% 2/8
4 2 2 1 57.8% 3/8
Sj1 67.4 95.8 93.1
Sj2 118.3 89.9 92.6

MED 50.9 5.9 0.5
Rank 1 2 3

Better level 2 1 1 63.2% 1/8

The Rank column in Table 2.2 shows the position of the combination p among all (23 = 8)
combinations. In this example, the created best combination gets the best value for the objective
function which may not be the case in practical life.

2.3 Statistical measures

2.3.1 Correlation coefficient

Correlation coefficient is used to measure the relationship between two variables. The coefficient
can be any value between−1.0 and 1.0. A value of−1.0 means the two variables have completely
opposite relationship (e.g., increase in one variable will result in decrease in another variable).
On the other hand, a value of 1.0 refers to a perfect relationship between the two variables. A
value of 0.0 means there is no relationship between the two variables.

Pearson Correlation Coefficient

Pearson correlation coefficient (ρ) is used to compute the linear relationship between two sets of
data. It is defined as the ratio of the covariance of two variables and the product of their standard
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deviations; hence it can be regarded as a normalized measurement of the covariance, so that the
result always ranges between −1.0 and 1.0.

Let, two random variables (X, Y ), the equation for ρ is:

ρX,Y =
cov(X, Y )

σXσY

(2.2)

where

• cov is the covariance.

• σX and σY are the standard deviations of X and Y , respectively.

Spearman Correlation Coefficient

The Spearman correlation coefficient is defined as the Pearson correlation coefficient between
the rank of the two variables. For n values of each of the two variables X and Y , the n scores
Xi and Yi are transformed into ranks R(Xi), R(Yi). Next, rs is computed as

rs = ρR(X),R(Y ) =
cov(R(X), R(Y ))

σR(X)σR(Y )

(2.3)

where

• ρ denotes the typical Pearson correlation coefficient, but applied to the ranks of the two
variables.

• cov(R(X), R(Y )) is the covariance of the ranks of the two variables.

• σR(X) and σR(Y ) are the standard deviations of the ranks of the two variables.

If all n rank values are distinct integers, rs can be calculated using the following formula.

rs = 1− 6
∑

d2i
n(n2 − 1)

(2.4)

where

• di = R(Xi)−R(Yi) is the difference between the two ranks of each observation.

• n is the total number of observations.



2.4. MACHINE LEARNING 13

2.3.2 Permutation feature importance

The permutation feature importance for each feature is calculated by randomly shuffling the
values of that feature and measuring the decrease in accuracy due to the shuffling. The higher
value of decrease in accuracy means that feature is more important for the prediction task at
hand.

One thing to note that, if a feature has a low feature importance score with respect to a predictor
does not necessarily mean that the feature is irrelevant. It may be possible that if the classifier is
improved, the importance of that feature will be increased. Hence, it is important to first evaluate
the model on a held-out test set. Only if the model’s performance is satisfactory, we should run
permutation feature importance algorithm to understand the contribution of each of the features
on the model’s performance being satisfactory.

It was introduced by [36] for random forests. Based on this idea, [37] came up with a model-
independent version of the algorithm and named it model reliance.

The algorithm for permutation feature importance is stated below.

Input: Trained model f̂ , feature matrix X , target vector y, error measure L(y, f̂).

1. Estimate the original model error eorig = L(y, f̂(X))

2. For each feature j ϵ {1, 2, . . . , p} do

• Generate feature matrix Xperm by permuting feature j in the data X . This breaks the
association between feature j and true outcome y.

• Estimate error eperm = L(y, f̂(Xperm)) based on the predictions of the permuted
data.

• Calculate permutation feature importance as quotient FIj = eperm
eorig

or difference
FIj = eperm − eorig

3. Sort features by descending order of FI .

2.4 Machine learning

2.4.1 Random forest

Random forest is composed of a number of single decision trees and operates as an ensemble.
Each decision tree in the random forest gives a prediction and the class with the most votes from
the decision trees becomes the model’s final prediction.
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Figure 2.1: Visualization of a Random Forest Model Making a Prediction. Figure borrowed from
medium.com.

2.4.2 Recurrent neural network (RNN)

Recurrent neural networks (RNNs) are a kind of neural networks that are capable of using
previous outputs as inputs while having hidden states. Structure of an RNN is shown in Figure 2.2.

Figure 2.2: Structure of a typical RNN. Figure borrowed from stanford.edu.

Long-Short Term Memory (LSTM)

LSTMs are a special kind of RNN introduced by [38]. They are specially designed to remember
important information which may be far away from the point where it is needed.

https://miro.medium.com/max/658/1*VHDtVaDPNepRglIAv72BFg.jpeg
https://stanford.edu/~shervine/teaching/cs-230/illustrations/architecture-rnn-ltr.png
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2.4.3 Convolutional neural network (CNN)

2 dimensional convolution neural network (2D CNN) is mostly popular because of its success in
image classification. But there are two other classes of Convolution Neural Networks used in
the real world, that are 1 dimensional (1D CNN) and 3-dimensional CNNs (3D CNN). We talk
about 1D and 2D CNNs below.

2D CNN

It is usually applied on image data. It is called 2D CNN because the kernel slides along 2
dimensions on the data as shown in Figure 2.3.

Figure 2.3: Kernel sliding over the image. Figure borrowed from medium.com.

The benefit of using CNN is that it can extract the local features from the data using its kernel,
which other networks can’t. For instance, CNN can detect edges of an image, distribution of
colours etc which makes these networks very effective in image classification and other similar
tasks which contain spatial properties.

https://miro.medium.com/max/875/1*MD3v02UY8-3iqsxPWto8vQ.png
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1D CNN

In 1D CNN, kernel slides in one dimension. Hence, 1D CNN is effective for sequential data like
time-series data, audio and text data. Operation of 1D CNN layer on sequential data is depicted
in Figure 2.4.

Figure 2.4: Each output timestep is obtained from a temporal patch in the input sequence. Figure
borrowed from learnremote.medium.com.

2.4.4 Loss function

The objective function is used to evaluate candidate solutions in the context of optimization
algorithms. In general, we want to minimize error in case of neural networks. In this case, the
objective function is referred to as the loss function.

The three most popular loss functions for binary classifications are:

https://learnremote.medium.com/sentiment-analysis-using-1d-convolutional-neural-networks-part-1-f8b6316489a2
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Binary Cross-Entropy Loss Let, there are N samples in a dataset and yi denote the label (0 or
1) of the ith sample. Then, binary cross-entropy loss of these N samples is calculated as
follows:

Loss = − 1

N

N∑
i=1

(yi log pi + (1− yi) log (1− pi)), (2.5)

where, pi is the predicted probability of the ith sample to belong to class 1.

Hinge Loss For computation of hinge loss, the outputs must be in the set {−1, 1}. If the
expected output is denoted by t ( = ±1) and the output of the classifier is y, the hinge
loss of the prediction y is computed by the formula:

l(y) = max(0, 1− t · y) (2.6)

Squared Hinge Loss When the hinge loss does not achieve expected result on a binary
classification problem, it is often found that a squared hinge loss may be suitable to
use. For computation of squared hinge loss, the outputs must be in the set {−1, 1}. If the
expected output is denoted by t ( = ±1) and the output of the classifier is y, the squared
hinge loss of the prediction y is computed by the formula:

l(y) = max(0, 1− t · y)2 (2.7)

2.4.5 Data leakage

Data leakage occurs when any information from outside the training dataset is used for the
training of the model. With this additional information, the model may achieve a performance
which would have otherwise been impossible to achieve. This is a common phenomenon in the
machine learning era which everyone should be careful about to construct a credible model.

2.5 Performance evaluation

Some popular metrics for binary classification problems are Specificity (SP), Sensitivity (SN),
Accuracy (ACC), Matthews Correlation Coefficient (MCC). The equations to determine these
metrics are as follows.

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FP
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MCC =
(TP × TN)− (FP × FN)√

(TP + FN)× (TN + FP )× (TP + FP )× (TN + FN)

Here, TP , TN , FP , and FN corresponds to True Positive, True Negative, False Positive, and
False Negative, respectively.

2.5.1 Sensitivity-specificity tradeoff

SN is the fraction of positive samples correctly classified whereas SP is the fraction of positive
samples correctly classified. If a model blindly predicts each of the samples as positive (negative),
the SN (SP) will be 1 and SP (SN) will be 0. Therefore, it is important to compute both of these
metrics while evaluating a binary classifier. Whether higher SN is more important than higher
SP or the opposite is context-dependent. For example, for spam detection of mails, it is more
important to detect spams even if it causes some non-spams being detected as spams.

In our thesis, we are concerned with predicting lysine residues as succinylated or non-
succinylated. Although predicting both succinylated residues as succinylated and non-
succinylated residues as non-succinylated are important, the main users of our tool (i.e., the
biologists) won’t want to miss out on the succinylated residues even if that results in a relatively
higher number of false positives. However, a very high SN with high false positive rate is also
not desired because that will make the biologists do laboratory experiments for higher number of
lysine residues. We will refer to this phenomenon as the “Sensitivity-Specificity Tradeoff”.

2.5.2 Receiver operating characteristic (ROC) curve

ROC curve is a graph depicting the performance of a classification model at various thresholds.
This curve plots two parameters:

• True Positive Rate (TPR)

• True Positive Rate (FPR)

TPR is a synonym for SN. FPR is defined as follows.

FPR =
FP

FP + TN

ROC curve plots TPR vs. FPR at different thresholds. Decreasing the value of threshold makes
the model to classify more samples as positive, hence increasing both False Positives and True
Positives. Figure 2.5 shows a typical ROC curve.
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Figure 2.5: A sample ROC curve.

2.5.3 Area under the ROC curve (AUC)

AUC measures the area under the ROC curve that spans from (0, 0) to (1, 1). AUC provides an
accumulated measurement of performance across all possible thresholds. One way of interpreting
AUC is as the probability that the model ranks a random positive example more highly than a
random negative example. For instance, provided the examples in Figure 2.6, which are arranged
from left to right in ascending order of logistic regression predictions: AUC represents the

Figure 2.6: Predictions sorted in ascending order of logistic regression score. Figure borrowed
from developers.google.com.

probability that a random positive (green) sample is positioned to the right of a random negative
(red) sample. AUC ranges from 0 to 1. A model with AUC of 0.0 misclassifies all the samples
while an AUC of 1.0 means the model is 100% correct.

https://developers.google.com/machine-learning/crash-course/images/AUCPredictionsRanked.svg
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2.6 Conclusion

In this chapter, we have elaborately discussed the concepts and techniques used in our thesis. In
the next chapter, we will go through the existing works related to SLR prediction and point out
the gaps of those works in order to understand the rooms for improvements.



Chapter 3

Literature review

Previous chapter has laid the foundation of this thesis by presenting the background materials
required to understand the underlying concepts and leveraged techniques. In this chapter, we
critically review the literature with a goal to present the state-of-the-art for the task at hand, i.e., in
silico succinylation site prediction. Since 2015, many prediction tools for detecting succinylation
sites have been developed. These tools can be broadly categorized into two categories, namely,
Traditional ML based tools and Deep learning based tools. Below we elaborate on these works
from the literature by presenting them in thse two groups.

3.1 Traditional ML based tools

To the best of our knowledge, the first succinylation site predictor, named iSuc-PseAAC, was
presented in [22]. This predictor used Support Vector Machine (SVM) to compute score of sites
using the position specificity and count of amino acids in the peptide chain. As this was the first
predictor, they could not do any comparative analysis with any existing predictor. They could
only report cross-validation score on CPLM dataset [39] and the reported sensitivity was only
around 50%. That means almost half of the succinylated lysine residues were being misclassified
by this predictor.

Around the same time, another group independently developed another predictor named
SuccFind [40]. It used sequence-derived features like amino acid composition (AAC) and
composition of k-spaced amino acid pairs (CKSAAP). They run SVM with default parameters
on the biophysico properties to evaluate each property’s ability to distinguish succinylated lysine
residues from non-succinylated ones. They found isoelectric point to be the best performing
property and selected this property as another sequence-based feature. In addition to that, they
extracted short peptides around the lysine residues and searched for similar peptides in the whole
dataset and extracted features from those similar peptides which they termed as the evolutionary-

based features. They used a two-step feature selection strategy via SVM to filter out the important

21
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features for better prediction of succinylation. Due to lack of existing works, they could not
do comparative analysis too. However, they only reported the AUC values of cross-validation
experiments. But, AUC can not alone depict the true performance of a succinylation predictor.
Detecting succinylated sites is important even at the cost of a few more false positives. Another
predictor, SucPred [41] also exploits sequence based features like SuccFind. It used four types
of sequence-based features, including auto-correlation functions (ACF), the encoding based
on grouped weight (EBGW), the normalized van der waals volume (VDWV) and the position
weight amino acids composition (WAAC), to transform each succinylated residue into a feature
vector. The semi-supervised machine learning algorithm (using only positive samples) with
SVM was used to build the succinylation site predictor. They reported very good cross-validation
performance. But, they only reported sensitivity score in the independent test set and excluded
specificity score. Without specificity, sensitivity is of little value because a model can easily
predict all the samples as positive to achieve a sensitivity of 1 at the cost of a specificity of 0.

One year later, iSuc-PseOpt [23] was proposed which adopted pseudo amino-acid composition
(PseAAC) [42, 43] to encode the peptides surrounding the lysine residues. They made a mistake
while preprocessing the dataset to make it a balanced dataset. For each of the negative samples,
they computed its three nearest neighbours. If at least one of these three nearest neighbours is
positive, they discarded that negative sample. However, later on while evaluating their proposed
predictor, they mentioned that it was sufficient to conduct a jackknife [44] or K-fold cross
validation test because the gathered performance thereof will be the result of testing the predictor
on numerous indepentdent test datasets. Although we mentioned that during the preprocessing
step, they used the complete dataset which nullifies the possibility of any part of the dataset
to be independent test dataset. iSuc-PseOpt did a comparative analysis with iSuc-PseAAC
and showed significant improvement. However, the data leakage in the preprocessing stage of
building iSuc-PseOpt invalidates the credibility of the reported performance. Within a very short
period, the same authors came up with another predictor, pSuc-Lys [24], which was free from the
limitations discussed about the former work. In the preprocessing stage, rather than discarding
some negative samples, they chose random subsets of negative samples with equal cardinality
of the positive samples’ set and trained a Random Forest (RF) for each combination of positive
and negative samples’ sets. Finally, they trained an ensemble classifier combining the individual
random forests. They reported significantly better performance than iSuc-PseAAC and SucPred.

In 2017 and 2018, Dehzangi et al. proposed four succinylation predictors as follows.

SucStruct [45] It used several secondary-structure based features to build a decision tree based
classifier.

PSSM-Suc [46] It adopted position-specific scoring matrix (PSSM) calculated by PSI-BLAST
[47] as the only features and trained a pruned decision tree.

Success [48] It combined the features used by SucStruct and PSSM-Suc to build an SVM based
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classifier.

SSEvol-Suc [49] It integrated PSSM with probability of secondary structure of amino acids to
build an Adaboost classifier.

All four of the above-mentioned classifiers made the same mistake done by the authors of [23].
During the preprocessing of the dataset, they discarded negative samples based on k-nearest
neighbour (KNN) algorithm where they had to use the information of positive samples. Later
during evaluation, these positive samples can not act as the test set. This error abolishes the
results reported by all these four predictors.

On the other hand, Hasan et al. proposed three predictors in three consecutive years at around
the same period (2016, 2017 and 2018) as follows.

SuccinSite [11] It used several sequence based features like CKSAAP, one-hot encoding and
350 most informative biophysico properties from AAindex [28]. Minimum redundancy
maximum relevance (MRMR) approach was used to select the most useful features from
each of these categories and built an RF based classifier.

SuccinSite2.0 [2] The difference between Succinsite2.0 and SuccinSite is that in SuccinSite2.0,
the authors computed CKSAAP from the PSSM matrix of the amino acid sequence rather
than directly from the amino acid sequence and SuccinSite2.0 did not use the biophysico
properties. And for handling high dimensional feature space, SuccinSite2.0 used the
information gain (IG) optimization of features rather than the MRMR approach.

GPSuc [25] GPSuc took twelve high quality biophysico properties from AAindex in addition
to AAC, one-hot encoding, PSSM encoding and pCKSAAP (CKSAAP from PSSM)
encoding. Wilcoxon rank-sum test was conducted to filter the most important features. A
logistic regression model was trained to combine the scores from different RF classifiers.

Although the three above-mentioned works are unique in the sense that they applied several
feature selection strategies to reduce the dimesionality of the feature space. However, the train
dataset is not the same as the ones used by the previous works. So, the comparison made in these
works with other existing works is not valid.

Psucce [26] used one-hot encoding and AAC in addition to top ten biophysico properties.
Information gain was used as the feature selection strategy. Several SVM classifiers were
ensembled to create the final Psucce predictor. Inspector [50] incorporated several sequence based
features like bi-profile bayes (BPB), double BPB, position-specific di amino-acid propensity
(PSDAAP) etc. and achieved an improved sensitivity with respect to SuccinSite2.0, Psucce and
GPSuc. A very recently developed tool, predML-Site [51] used several sequence-based features
including autocorrelation function (ACF), several biophysico properties, pseudo amino acid
composition (PseAAC) and used the SVM algorithm for training.
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We compile all the traditional-ML based succinylation predictors and their brief descriptions in
Table 3.1.

Table 3.1: List of traditional ML based succinylation predictors.
Predictor Authors Main technique Dataset Features Performance

iSuc-PseAAC [22] Yan Xu et al. SVM CPLM [39] Position Specific Amino Acid
Propensity (PSAAP) [52, 53]

Reported cross-
validation performance
with SN around 50%.

SuccFind [40] Hao-Dong Xu et al. Information gain to fil-
ter out important fea-
tures and SVM for clas-
sification

UniProtKB / Swiss-Prot
and CPLM databases

Composition of k-spaced amino
acid pairs (CKSAAP), Amino
acid composition (AAC), Isoelec-
tric point from AAindex [28] and
local sequence clusters

Reported AUC values
with 4-, 6-, 8-, 10-fold
cross-validation.

SucPred [41] Xiaowei Zhao et al. Semi-supervised using
SVM with only positive
samples

CPLM Four sequence based features:
Auto-correlation functions (ACF),
the encoding based on grouped
weight (EBGW), the normalized
van der waals volume (VDWV)
and the position weight amino
acids composition (WAAC)

Reported only sensitiv-
ity of around 0.9 with-
out mentioning anything
about specificity and per-
formed comparison with
other works only with
respect to sensitivity

iSuc-PseOpt [23] Jianhua Jia et al. k-nearest neighbor
(KNN) for making the
dataset balanced and
Random Forest for
training the classifier

CPLM Pseudo amino-acid composition
(PseAAC)

Performed comparative
analysis with iSuc-
PseAAC and showed
around 70% sensitivity
with the cross-validation
experiments

pSuc-Lys [24] Jianhua Jia et al. Ensemble of Random
Forests trained on dif-
ferent sets of negative
samples’ set combined
with the set of positive
samples

CPLM PseAAC Performed comparative
analysis with iSuc-
PseAAC and SucPred
and reported sensitivity
around 77%.

SucStruct [45] Yosvany López et
al.

Decision Tree CPLM and CPLA 1.0
[54]

Accessible surface area (ASA),
backbone torsion angles, proba-
bility of amino acid contribution
to local structure conformations
(helix, strand and coil)

Conducted 10-fold cross
validation and reported
a sensitivity of 80%.
Performed comparative
analysis iSuc-PseOpt and
SuccinSite.

PSSM-Suc [46] Abdollah Dehzangi
et al.

KNN to handle the im-
balance of dataset and
Pruned Decision Tree as
the classifier

CPLM and CPLA 1.0 PSSM with bigram Reported a sensitivity of
around 82%

Success [48] Yosvany López et
al.

KNN to handle the im-
balance of dataset and
SVM as the classifier

CPLM and CPLA 1.0 PSSM, ASA, secondary structure
and backbone torsion angles

Reported a sensitivity of
around 86%

SuccinSite [11] Md. Mehedi Hasan
et al.

MRMR for feature se-
lection and random for-
est as the classifier

UniProtKB / Swiss-Prot
and NCBI protein se-
quence

CKSAAP, one-hot and 350 most
informative biophysico properties
from AAindex

Reported a sensitivity of
37% on the independent
dataset

SuccinSite2.0 [2] Md Mehedi hasan et
al.

Information gain for fea-
ture selection and ran-
dom forest as the clas-
sifier

UniProtKB / Swiss-Prot
and NCBI protein se-
quence

CKSAAP with PSSM, one-hot
encoding

Reported a sensitivity of
46% on the independent
dataset

GPSuc [25] Md. Mehedi Hasan
and Hiroyuki Kurata

Wilcoxon rank-sum test
for feature selection and
logistic regression on
several random forest
classifiers to predict suc-
cinylation

UniProtKB / Swiss-Prot
and NCBI protein se-
quence

AAC, one-hot encoding, 12
high quality biophysico properties
from AAindex, PSSM, CKSAAP
with PSSM

Reported a sensitivity of
50% on the independent
dataset

Psucce [26] Qiao Ning et al. Information gain to se-
lect important features
and ensembling several
SVM classifiers for pre-
diction of succinylation

UniProtKB / Swiss-Prot
and NCBI protein se-
quence

AAC, one-hot encoding and top
ten properties from AAindex

Psucce shows a sensi-
tivity of 37% with a
threshold of 0.9 which is
significantly better than
other contemporary pre-
dictors

Inspector [50] Yan Zhua et al. ENN undersampling
and ADASYN
oversampling for
balancing the dataset
and RF for classification

UniProtKB / Swiss-Prot
and NCBI protein se-
quence

Bi-profile Bayes (BPB), Double
BPB (DBPB), Position-specific
di-amino acid propensity
(PSDAAP), PseAAC, Position-
weight amino acid (PWAA)
composition, Enhanced grouped
amino acid composition
(EGAAC), CKSAAP

Reported a sensitivity of
69% on the independent
dataset

predML-Site [51] Sabit Ahmed et al. SVM UniProtKB / Swiss-Prot
and NCBI protein se-
quence

ACF, several biophysico proper-
ties, PseAAC

Reported a sensitivity of
10% on the independent
dataset
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3.2 Deep learning based tools

A novel deep-learning based predictor named MUscADEL [55] was developed using recurrent
neural network (RNN) for predicting eight types of post-translational modifications including
succinylation. It did a comparative analysis with only two existing works, namely, iSuc-PseAAC
and SuccinSite2.0 using an independent testing dataset. But, nothing has been clearly mentioned
about the independent dataset. For doing comparison with other works, all the works should
be trained on the same training dataset and then should be tested on an independent test set.
However, the authors only used the independent test set to gather the performances of other
works from the published webservers which is not the correct way of comparison. Moreover, the
training and testing datasets have not been made public. The codebase of the implementation of
MUscADEL has not been shared either which made it impossible to compare this work with any
other work.

Later on, HybridSucc [56] was developed by integrating traditional ML algorithms like Penalized
Logistic Regression (PLR), SVM, Random Forest with Deep Neural Networks (DNNs). It
achieved significantly better AUC values compared to several existing predictors, namely,
MUscADEL, SuccinSite, SuccFind, iSuc-PseAAC, iSuc-PseOpt etc. Informatively, the online
servers provided by the existing works were used to compute the performances of these
works, which may raise an eyebrow because HybridSucc compared its 10-fold cross validation
performance with the performance of the existing works on the test dataset although the other
predictors were not trained on the same training dataset.

One of the pioneering works in this field, DeepSuccinylSite [27], experimented with both one
hot vectors and embedding vectors and fed them into a convolutional neural network comprising
of a 2D convolution layer, maxpooling layer and a densely connected neural network. This
tool reported significantly better performance compared to previously mentioned predictors.
However, the authors in [27] undersampled the test set before evaluating its performance whereas
other existing works did not do that. This might have put DeepSuccinylSite in an advantegeous
situation.

In 2021, LSTMCNNsucc [57] was proposed which was developed using a deep learning
framework consisting of a combination of CNN and LSTM layers. There are numerous
hyperparameters in a deep learning model (e.g., embedding dimension, number of filters in
convolution, dropout rate, learning rate in optimizer etc.) which need to be tuned with the help
of a validation dataset. However, the authors did not mention the use of any validation dataset
which puts a question mark on its achieved results. If the test dataset has been used for tuning the
hyperparameters, the proposed model is practically useless because of data leakage (details of
data leakage is discussed in Section 2.4.5). The authors did a comprehensive comparative analysis
with some of the previous works. LSTMCNNsucc achieved a higher Matthews Correlation
Coefficient (MCC) compared to DeepSuccinylSite. However, the sensitivity is very low compared
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to the sensitivity achieved by DeepSuccinylSite. So, the model is performing poorly on the actual
context (i.e., succinylation site prediction) at the cost of efficiently detecting non-succinylated
sites.

Finally, during the write-up stage of this thesis, the publication of a new predictor, called
DeepSucc [1] came to our knowledge. The authors of [1] extracted CKSAAP, ACF, BLOSUM62,
AAindex and one-hot features and experimented with a number of architectures, namely, LSTM,
CNN and various combination thereof (e.g., LSTM+CNN and CNN+LSTM). One interesting
technique used by the authors to improve upon the performance of their individual architectures
is that the outputs of different models were combined through a weighted ensembling approach
with the weights learned through a densely connected neural network. While the reported
performance is significantly better than all other previous predictors, upon careful scrutiny we
found that the codebase shared by the authors contained multiple discrepancies. This has led us
to look at the results with a pinch of salt. A more elaborate discussion on this will be presented
in a forthcoming section (Section 5.3.5).
We compile all the deep learning based succinylation predictors and their brief descriptions in
Table 3.2.

Table 3.2: List of deep learning based succinylation predictors.
Predictor Authors Technique Dataset Features Performance

MUscADEL [55] Zhen Chen et al. RNN PhosphoSite-Plus [58] No hand crafted features used Although MUscADEL
reported better
performance than
iSuc-PseAAC and
SuccinSite2.0, the other
predictors were trained
on a different dataset,
hence the comparison is
not credible

HybridSucc [56] Wanshan Ning et al. Integrated traditional
ML like penalized
Logistic Regression
(PLR), SVM, Random
Forest with Deep
Neural Networks
(DNNs)

PLMD 3.0 [59], Phos-
phoSitePlus and dbPTM
[60]

PseAAC, CKSAAP, Position-
specific amino acids (OBC),
AAindex, ACF, Position-
weighted similarity of amino
acids (GPS), PSSM, ASA,
Secondary structure, and
continuous angle information of
the local conformation of protein
(BTA)

Performed comparative
analysis from seven ex-
isting predictors, how-
ever the online servers
were used although the
existing works a different
training set to train their
models

DeepSuccinylSite [27] Niraj Thapa et al. CNN UniProtKB / Swiss-Prot
and NCBI protein se-
quence

One hot encoding Undersampled test
dataset and performed
comparative analysis
with several previous
works, however the
previous did not
undersample the test
dataset. Hence, the
comparison is void

LSTMCNNsucc [57] Guohua Huang et al. LSTM and CNN PLMD No hand crafted features Achieved an MCC of
25% on the independent
dataset and had a better
SP compared to Deep-
SuccinylSite at the cost
of very low SN

DeepSucc [1] Die Zhang and
Shunfang Wang

Different combinations
of CNN and LSTM,
DNN for combining re-
sults of different archi-
tectures

UniProtKB / Swiss-Prot
and NCBI protein se-
quence

CKSAAP, ACF, one-hot, BLO-
SUM62, 31 top biophysico prop-
erties from AAindex

Achieved a high
specificity and moderate
sensitivity on the test
dataset. Hence, the
MCC is higher than all
previous predictors
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3.3 Existing works and biophysico properties

As one of the main objectives of our thesis is to find suitable combinations of biophysico
properties for better prediction of succinylation, we would like to highlight the existing works
that have adopted the biophysico properties as features to predict succinylated sites.

SuccFind [40] Only one biophysico property, namely isoelectric point was used. Information
gain was used to find this property.

SuccinSite [11] 350 most informative biophysico properties from AAindex were adopted.
MRMR approach was used to select these top 350 properties.

GPSuc [25] 12 high quality biophysico properties from AAindex were elected. Wilcoxon
rank-sum test was used for feature selection.

Psucce [26] Selected the top 10 biophysico properties by ranking them with respect to their
abilities to distinguish between succinylated and non-succinylated lyesine residues.

HybridSucc [56] No mention of how many properties were used or how they used them.

DeepSucc [1] 31 top biophysico properties from AAindex

3.4 Conclusion

In this chapter, we critically reviewed the existing works and discussed about the research gaps
in the context of SLR prediction. In the next chapter, we will illustrate how we select better
combination of biophysico properties, assess the statistical significane of the selected properties
and show the performance on succinylation site prediction with the selected combination of
properties.



Chapter 4

Selection of biophysico properties

In the previous chapter, we have critically reviewed the existing literature on succinylation site
prediction in general and we have also discussed the state of the art with respect to the use
of biophysico properties in this context. In this chapter, we concentrate on the selection of
suitable combination of biophysico properties with a goal to efficiently predict succinylated sites.
Additionally, we assess the statistical significance of the features being used for prediction.

The 3D structures and biological functions of proteins are determined by the combination of
the 20 different amino acids as specified by the genetic code [28]. Numerous experimental and
theoretical research have been performed to characterize biophysico properties of individual
amino acids. Each derived property is represented by a set of 20 numerical values that is
called the amino acid index. AAindex database [28] is a flat file database which currently
(Last checked: Sunday 22nd May, 2022) contains 566 amino acid indices representing various
biophysico properties of amino acids.

4.1 Introduction

The collection of amino acid indices is a significant resource for empirical analyses correlating
sequence information with structural and functional properties of proteins [61]. The amino acid
indices have been successfully adopted to predict numerous functional and structural properties
of proteins. For instance, Han et al. in [62] used amino acid indices to predict short and long
disordered regions in proteins, Liu et al. in [63] converted protein sequences in numeric vectors
through amino acid indices for efficient detection of protein remote homology. The amino
acid indices have been used for the prediction of several PTM sites (e.g. malonylation [64],
S-sulfenylation [65]).

As has already been discussed in Chapter 3, several works have used these biophysico properties
for predicting succinylation sites. Recall that, Hasan et al. in [11] chose 350 most informative
amino acid indices via the minimum redundancy maximum relevance (mRMR) feature selection

28
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approach. To add to that, the same authors in [25] used 12 high-quality amino acid indices
to generate the feature vectors from amino acid sequences. Furthermore, Ning et al. in [26]
ranked the amino acid indices according to their abilities to distinguish succinylated residues
from non-succinylated residues and took the top ten amino acid indices. Very recently, Zhang et

al. in [1] selected 31 amino acid indices mentioning that these are the most common amino acid
indices. However, none of these works have taken the inter-dependency among the biophysico
properties into consideration.

There are total 2566 − 1 (-1 for excluding the combination with no properties) possible
combinations of biophysico properties. Exhaustive search for the best combination among
these for efficient prediction of succinylation is a computationally infeasible task. Hence,
adopting metaheuristics based algorithms for finding sub-optimal combinations is a suitable
choice in this regard.

4.2 Methods

In this section, we discuss the methodologies adopted in order to search for suitable combinations
of biophysico properties. First, we discuss about the datasets that we will use for evaluating
our chosen combinations and compare with the existing works. Then, we talk about how the
lysine residues will be represented considering its neighboring amino acids. This representation
will turn out to be one of the crucial factors that will shape our computational predictor. The
following section will discuss how we will reduce our search space by discarding the biophysico
properties that are not relevant to the prediction of SLRs. We then discuss about a special
crossover algorithm called Orthogonal array crossover which we will use as the crossover
operation of the genetic algorithm (see Section 2.1.1 to know more about genetic algorithm).
Finally, we describe the IBCGA algorithm, a variant of genetic algorithm which leverages the
orthogonal array crossover to efficiently search for the suitable combinations of biophysico
properties.

4.2.1 Datasets

Succinylated proteins are collected from the Protein Lysine Modification Database (PLMD) [59].
There are in total 6377 succinylated proteins in this dataset. To remove proteins having above
threshold sequence similarity, we apply CD-Hit with cutoff set to 40%. Removing homology, we
obtain 3560 proteins. The experimentally verified lysine residues are considered as the positive
sites, and all other lysine residues in the same proteins are considered as the negative sites.

We randomly divide the proteins into training and test set in the ratio 4:1 resulting in 2848
proteins in the training set and 712 proteins in the test set. There are 6812 succinylated lysine
residues in the training set. But, the number of non-succinylated lysine residues is more than
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9 times higher. We randomly discard negative samples in order to make the training dataset
balanced. Thus, in the processed training dataset, we have 6812 non-succinylated lysine residues
from 2848 proteins. We separate out 300 proteins from the training set as the validation set for
tuning several hyper-parameters. So, the final training set contains 2548 proteins. The detailed
description of the training, validation and test datasets are given in Table 4.1. We will refer to
this dataset as D1 in subsequent sections.

Table 4.1: PLMD dataset, referred to as D1 dataset henceforth

Type Positive Negative
Samples Samples

Training 5816 5826
Validation 696 686

Test 1479 16457

In addition to the above-mentioned dataset, there is another dataset with training and independent
test set compiled by [11]. We use this dataset for comparing our model with other existing works.
This dataset has been compiled as follows. At first, 10,000 succinylated proteins are collected
from nine species. Then, redundancy is removed by applying CD-HIT with cutoff set to 30%.
The training dataset contains 2,198 proteins with 4,750 succinylated and 9,500 non-succinylated
lysine residues. We randomly separate out 3000 samples from the training set for tuning several
hyper-parameters, of which 960 are succinylated and 2040 are non-succinylated lysine residues.
The test dataset has 124 proteins with 254 succinylated and 2,977 non-succinylated lysine
residues. The detailed description of the training, validation and testing samples for this dataset
is given in Table 4.2. We will refer to this dataset as D2 in subsequent sections.

Table 4.2: Dataset compiled by [2]

Type Positive Negative
Samples Samples

Training 3790 7460
Validation 960 2040

Test 254 2977

4.2.2 Representation of samples

We refer to the succinylated residues as positive samples and all other lysine residues in the
same proteins as negative samples. Each of the lysine residue can be represented by a number
amino acids on both its upstream and downstream. For example, if we consider 16 amino acids
both on the downstream and upstream of the lysine residue, we will be considering 33 amino
acids altogether. We will call this parameter as the context window. If there are less number of
amino acids on any side of the concerned lysine residue, mirror effect is used to keep the context

window fixed for each sample. The detailed procedure is depicted in Figure 4.1.
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Figure 4.1: Creating positive and negative samples with the neighboring amino acids of the lysine
residue. (a) The lysine residue has enough neighbors both on its downstream and upstream. (b)
The lysine residue lacks neighbors on its downstream. So, mirror effect is used to bring amino
acids from its upstream. (c) The lysine residue lacks neighbors on its upstream. So, mirror effect
is used to bring amino acids from its downstream.

4.2.3 Reducing the search space

Many of the 566 biophysico properties may not be relevant for the prediction of succinylated
sites. Therefore, for each of the 566 properties, a random forest classifier is trained on the
training set by replacing each amino acid with its value for the corresponding property. The
classifier is then evaluated on the validation set with respect to Matthews Correlation Coefficient
(MCC). The 95% percentile of the 566 MCC values is computed and only those features are
considered for which the MCC values are greater than the 95% percentile. So, we are remained
with 566× 0.95 ≈ 29 features. In what follows, we only focus on these 29 features.

4.2.4 Orthogonal array crossover

We use orthogonal array crossover as the crossover operation in the inheritable bi-objective
genetic algorithm (discussed in the following section) inspired by the concept of orthogonal
array (details about orthogonal array is discussed in Section 2.2). Let’s introduce some notations
for ease of explanation of the algorithm.

• If S = {si | 1 ≤ i ≤ n}, then S[p : q] = {si | p ≤ i ≤ q}.

• ζ(S) denote the number of 1’s in S.
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• If two samples S1, S2 are constructed according to the procedure mentioned in Section
4.2.2, the cut point C = {ci | 1 ≤ i ≤ n} of S1, S2 is defined such that for each element ci
of C,

– S1[ci−1 : ci] ̸= S2[ci−1 : ci]

– ζ(S1[ci−1 : ci]) = ζ(S2[ci−1 : ci]) (if i = 1, then ci−1 = 1)

And, no other set with cardinality greater than the cardinality of C has the same properties.

During crossover of two samples S1 and S2, we first calculate their cut point C. We consider
each element ci of C as a factor with two levels 1 and 2. 1 means we will consider S1[ci−1 : ci]

to create the child, 2 means we will consider S2[ci−1 : ci] to create the child. We then create
orthogonal array and perform orthogonal experiment and find out the best level combination.
The best level combination gives us one child. The second child is created by toggling the value
of the worst factor.

4.2.5 Inheritable bi-objective genetic algorithm

Inheritable bi-objective genetic algorithm (IBCGA) [66] consists of an intelligent genetic
algorithm [35] with an inheritable mechanism. The algorithm adopts a divide and conquer
strategy with orthogonal array crossover to solve optimization problems with large number of
parameters [34].

In the context of IBCGA, each solution will be called a chromosome containing genes. Each
of the biophysico properties works as a binary gene constructing the chromosome. A value
of 1 (0) for any binary gene means it is being considered (not considered) for the prediction
of succinylation. The feature space is constructed by taking the biophysico properties having
value 1 and concatenating the values of these properties for all of the amino acids in the context

window. The centered lysine residue is excluded in this step because it is the same across all the
samples. The detailed steps to calculate the fitness of an individual is demonstrated in Figure 4.2.

At each iteration, the IBCGA algorithm maintains a number of solutions each having r genes
with value 1, where rstart ≤ r ≤ rend. Here, r is the number of 1’s in each chromosome. The
steps of the algorithm with the given values of rstart and rend are as follows [35].

Step 1. Generate Npop random individuals (chromosomes) each having r genes with value
1.

Step 2. Compute the performance of the individuals using the procedure described in
Fig. 4.2.
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Figure 4.2: Evaluation of fitness value for an individual from the chromosome. An individual
consists of a number of amino acids, the amino acids from the upstream and downstream of the
lysine residue. The lysine residue itself is ignored because it is the same across all the samples.
The biophysico features corresponding to the binary genes having value 1 are considered for each
of these amino acids. These features are concatenated and random forest classifier is run on the
feature space. The Matthews Correlation Coefficient (MCC) on the validation set is considered
the fitness function as we are interested in improving both sensitivity and specificity.



4.3. RESULTS AND DISCUSSIONS 34

Step 3. Select Pc ×Npop individuals from the current population by the 2-way tournament
selection algorithm (for more details about tournament selection, please refer back to
Section 2.1.1) in pairs and perform orthogonal array crossover (see Section 4.2.4) on each
of these pairs. Here, Pc is the crossover probability.

Step 4. Two genes’ values are swapped as part of mutation for Pm × Npop individuals.
This mutation is not applied on the best individual for any specific r in order to preserve
the best fitness value.

Step 5. Repeat Steps 2 to 4 Niter times. In the (Niter + 1)th time, go to Step 6.

Step 6. Randomly change one binary gene’s value from 0 to 1 for each of the Npop

individuals in order to increase the value of r by 1. If r ≤ rend go to Step 2. Else, terminate
the algorithm.

4.3 Results and discussions

4.3.1 Performance of individual biophysico properties

We set context window = 33 because the current state-of-the-art [27] found this value to be
“optimal”. We run random forest on the training set of both D1 and D2 (see Section 4.2.1). For
D1, we use the RandomForestClassifier class of sklearn library (version 1.0.2). As D2 is an
imbalanced dataset, we use BalancedRandomForestClassifier class of imblearn library (version
0.8.0) for D2. We set min samples leaf = 5, a value greater than 1 will reduce the depth of each
single tree and will degrade the performance of that tree. But for the same reason, the random
forest should generalize better. We also set max features = “log2”. Forcing separate trees to use
different sets of features will enable the random forest to learn different interactions among the
features. The performance of top performing 29 features with respect to MCC (to know about
the 29 features, refer to Section 4.2.3) is given in Table 4.3 and 4.4.

4.3.2 Performance of combination of biophysico properties

The 29 features derived from Section 4.3.1 is the universal set of properties for the IBCGA
algorithm (see Section 4.2.5). We set rstart = 1, rend = 20, Npop = 50, Niter = 5. We take
the values of both Pm and Pc from the set {0.5, 0.6, 0.7, 0.8, 0.9} resulting in 25 different
combination of Pm and Pc. The best MCC values obtained from each value of r for both D1 and
D2 is shown in Figure 4.3.

We observe that using all the top 29 biophysico features is giving us comparatively poorer
performance if compared with the performances of r = 2 to 20. This proves the necessity of
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Table 4.3: Performance of top 29 (with respect to MCC) single biophysico properties on the
validation set of D1 with context window set to 33. The 0-based Index column denotes the serial
number of the property according to the AAindex database.

Index Sensitivity Specificity Accuracy MCC
33 0.6939655172 0.6239067055 0.6591895803 0.3186993207
35 0.6968390805 0.6311953353 0.6642547033 0.3287872541
67 0.683908046 0.639941691 0.6620839363 0.3241890713
69 0.7227011494 0.6020408163 0.6628075253 0.3272185533
93 0.7227011494 0.610787172 0.6671490593 0.335680593
95 0.7112068966 0.6034985423 0.6577424023 0.3166180621
112 0.658045977 0.6545189504 0.6562952243 0.3125619816
126 0.6968390805 0.6370262391 0.6671490593 0.3345048766
127 0.7183908046 0.6311953353 0.6751085384 0.3509926907
128 0.6738505747 0.639941691 0.6570188133 0.3139896168
129 0.7112068966 0.6413994169 0.6765557164 0.3535237888
130 0.7112068966 0.6326530612 0.6722141823 0.3449857207
145 0.7255747126 0.6005830904 0.6635311143 0.3288266938
150 0.6997126437 0.6311953353 0.6657018813 0.3317344258
152 0.724137931 0.6137026239 0.6693198263 0.3400048032
197 0.6709770115 0.6428571429 0.6570188133 0.3139709632
208 0.6767241379 0.6355685131 0.6562952243 0.3125792033
212 0.7183908046 0.6326530612 0.6758321274 0.3524105256
319 0.7212643678 0.6137026239 0.6678726483 0.3370027546
320 0.7126436782 0.6297376093 0.6714905933 0.3436271954
333 0.742816092 0.6020408163 0.6729377713 0.3484425706
355 0.6939655172 0.6355685131 0.6649782923 0.3301357925
447 0.6781609195 0.638483965 0.6584659913 0.3169158141
487 0.7284482759 0.5903790087 0.6599131693 0.3220073811
517 0.6982758621 0.6151603499 0.6570188133 0.3145767902
518 0.7083333333 0.6472303207 0.6780028944 0.3562773624
521 0.7054597701 0.6180758017 0.6620839363 0.3248373089
522 0.7011494253 0.6224489796 0.6620839363 0.3246578336
525 0.691091954 0.6326530612 0.6620839363 0.324336206
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Table 4.4: Performance of top 29 (with respect to MCC) single biophysico properties on the
validation set of D2 with context window set to 33. The 0-based Index column denotes the serial
number of the property according to the AAindex database.

Index Sensitivity Specificity Accuracy MCC
34 0.6945273632 0.637593985 0.6566666667 0.3139519386
35 0.7004975124 0.6325814536 0.6553333333 0.3146978789
67 0.6855721393 0.6516290727 0.663 0.3192676272
69 0.6915422886 0.6380952381 0.656 0.3116490054
76 0.6786069652 0.6551378446 0.663 0.3162386269
87 0.7084577114 0.6250626566 0.653 0.3149488696
92 0.7064676617 0.6546365915 0.672 0.3416508939
93 0.7054726368 0.6471177945 0.6666666667 0.333399895
94 0.7054726368 0.6636591479 0.6776666667 0.3495737979
95 0.6895522388 0.6380952381 0.6553333333 0.3097907568
117 0.7184079602 0.634085213 0.6623333333 0.3329173315
126 0.6885572139 0.6395989975 0.656 0.3103199199
127 0.6875621891 0.6370927318 0.654 0.3069612945
128 0.6915422886 0.6360902256 0.6546666667 0.3097086758
130 0.6925373134 0.645112782 0.661 0.3193900337
145 0.7064676617 0.6541353383 0.6716666667 0.3411613366
152 0.6845771144 0.6471177945 0.6596666667 0.313928429
197 0.6825870647 0.6546365915 0.664 0.3194438135
212 0.6905472637 0.6446115288 0.66 0.3170471141
319 0.7014925373 0.6401002506 0.6606666667 0.3228827749
320 0.6736318408 0.6521303258 0.6593333333 0.3086568048
333 0.7154228856 0.6285714286 0.6576666667 0.3248395923
355 0.6955223881 0.6511278195 0.666 0.3280358609
391 0.7154228856 0.6421052632 0.6666666667 0.3378369344
400 0.7074626866 0.6380952381 0.6613333333 0.3265259822
489 0.7154228856 0.6270676692 0.6566666667 0.3234029544
518 0.6895522388 0.637593985 0.655 0.3093051686
521 0.6845771144 0.6466165414 0.6593333333 0.3134389713
525 0.6835820896 0.6441102757 0.6573333333 0.3100672087
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Figure 4.3: The IBCGA algorithm was run for 25 different pairs of values for Pc and Pm. The
best MCC value obtained among the 25 values for each value of r is recorded. These are the
histogram plots of the best MCC values against each value of r from 2 to 20 for D1 and D2.
r = 29 means we are using all the 29 biophysico properties.
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Figure 4.4: We rank the 29 biophysico properties in descending order with respect to the achieved
MCC value on the validation dataset of D1 and D2. These are the ROC curves along with AUC
values on the validation set of D1 and D2 for the top 5 among the 29 properties.

searching for suitable combinations rather than using all the better performing features as has
been done by several works in the literature [1, 11, 25, 26]. Hence, we obtain 19 models trained
by Random Forest (Concept of Random Forests are discussed in 2.4.1) for r = 2 to r = 20.

Notably, we have been able to produce very competitive result with only 2 properties (i.e., r = 2)
for D1. These two properties are Average accessible surface area [67] (126th biophysico
property according to the AAindex database. See Table 4.3) and Net charge [68] (145th
biophysico property according to the AAindex database. See Table 4.3). If we look at their
individual performances in Table 4.3, we will see that none of the individual performance metrics
are in the higher side. But, together they are performing better than most other combinations of
two properties. This again proves that the inter-dependency of the properties should be taken
into consideration for any prediction task.

The ROC curves along with the AUC values are computed on the validation dataset of D1 and D2
and plotted in Figure 4.4. To avoid congestion, we choose the top five properties according to the
MCC on the validation set. We observe that the performance of each combination is somewhat
similar.

4.3.3 Correlation among the biophysico properties

If two features are correlated, one feature can be predicted from the other. Hence, it is desired
that the features being used for a machine learning task will have low correlation among them.
For r = 2 properties on D1 (those mentioned in Section 4.3.2), there are 32× 2 = 64 features
(2 values for each amino acid because r = 2, context window = 33 means there are 32 amino
acids excluding the lysine residue in the center). We compute the pairwise Spearman Correlation
Coefficient (see Section 2.3.1) with the training dataset of D1 and draw a heatmap in Figure 4.5.
For avoiding congestion, we have drawn the triangular matrix rather than the square matrix as
the correlation coefficient is symmetric.



4.3. RESULTS AND DISCUSSIONS 39

Figure 4.5: Heatmap of pairwise Spearman correlation coefficients of 64 features (2 features
per amino acid) for the best combination with r = 2 properties found by the IBCGA algorithm
for D1 (see Section 4.3.2). Here 1 denotes the value of the first property for the leftmost amino
acid, . . . , 32 denotes the value of the first property for the rightmost amino acid, 33 denotes the
value of the second property for the leftmost amino acid, . . . , 64 denotes the value of the second
property for the rightmost amino acid.

We observe that all correlation values are < 0.2. This indicates that the features have insignificant
correlation among them. We observe a mid-level correlation between the pair (1,33). This is
intuitive because 1 and 33 both represent the leftmost amino acid in the context window; recall
that in these experiments, our context window size is 32 (excluding the lysine residue). For the
same reason, we are noticing a comparatively higher correlation between pairs (2,34), (3,35),
. . . , (32,64).

4.3.4 Importance of the biophysico properties in a combination

We use permutation feature importance (see Section 2.3.2) to compute the importance of each
feature. We use the permutation importance class of sklearn library with n repeats = 10.
Hence, we get 10 importance values for each of the feature. The distribution of these values
along with the standard deviation is plotted in Figure 4.6 for the 64 features for D1 with r = 2

mentioned in Section 4.3.2.

We notice that the importance of the features which correspond to amino acids nearer to the
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Figure 4.6: Distribution of importance values for D1 for each of the 64 features along with the
standard deviation (vertical black bar).

lysine residue are comparatively higher than the features which correspond to amino acids that
are far away. As a result, we observe a somewhat normal distribution of feature importance
values for features 1 to 32 (which correspond to 1st property) and for features 33 to 64 (which
correspond to 2nd property).

However, the amino acids that are far from the lysine residue can not be completely ignored. We
can occassionally see some important features corresponding to amino acids that are farther from
the lysine residue. For instance, 2nd feature (14 amino acids away from the lysine residue) shows
a relatively higher importance compared to its downstream 9 amino acids which are nearer to the
lysine residue.

4.4 Conclusion

The biophysico properties have been proven useful for predicting different protein functions
and structural properties. Several works have used these properties for predicting succinylation
sites but the inter-dependency among the properties has not been considered. We propose a
variant of genetic algorithm for finding suitable combination of biophysico properties for efficient
prediction of succinylation sites. We show that the combinations found by our algorithm achieve
better performance than the combination with all the good properties.

In the following chapter, we will explore different deep learning architectures for succinylated
site prediction. We will try to combine the random forest classifiers trained on the suitable
biophysico combinations with the deep learning architectures to improve the performance of our
proposed model. Finally, we will perform an extensive comparative analysis with the existing
works.



Chapter 5

Succinylation prediction

In the previous chapter, we have presented the methodology for selecting suitable combinations
of biophysico properties for efficient prediction of succinylation sites. We have also illustrated
the obtained results with the selected combinations and performed statistical tests. In this
chapter, we describe the undertaken experiments with different deep learning architectures.
Moreover, ensembling different deep learning models in combination with the models obtained
using combination of biophysico properties will be discussed. We also present a differential
evolution based algorithm (this algorithm is elaborately discussed in Section 2.1.2) for finding
an appropriate threshold to optimize the ensemble classifiers.

5.1 Introduction

In Section 3.2, we have discussed the existing works that leveraged state-of-the-art techniques
of deep learning to come up with efficient succinylation site predictors. Although the claimed
performance seems satisfactory in most of these works, careful scrutiny reveals that proper
procedure has not been followed by most of them particularly in connection with their
comparative analysis with other existing works. More specifically, a few works have data
leakage problem (details about this problem has been discussed in Section 2.4.5) and in some,
there is no use of validation set for tuning hyperparameters. Hence, a sound methodology to
develop model for succinylation site prediction with high efficacy is direly needed. Another
crucial issue in this regard is the so called sensitivity-specificity (SN-SP) trade-off as discussed
in Section 2.5.1. DeepSuccinylSite [27] showed a competitive SN at the cost of a relatively low
SP. Later on, LSTMCNNsucc [57] achieved a better MCC by improving the SP significantly,
however the SN was very low compared to other existing works. Very recently, DeepSucc [1]
outperformed all the previous works by achieving a very high MCC with a moderately high
SP, but the SN was comparatively lower. Therefore, it is of paramount importance to develop a
model where the SN and SP can be controlled by the bioinformaticians.

41
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Before going into the methodical details, an important discussion is in order. All deep-learning
models require initialization of weights of different layers which in turn require generation of
random numbers. Hence, it is evident that the results will vary for different runs even with the
same architecture and same dataset. One way to avoid this is to set a seed so that each time the
sequence of generation of random numbers remains the same. Another way is to run the code n

times and gather a population of performances. We adopt the second method and create several
models from the same architecture.

5.2 Methods

5.2.1 One-hot encoding

The samples are first pre-processed according to the procedure mentioned in Section 4.2.2.
Then, each amino acid is mapped to a unique value ranging from 0 to 19 (as there are 20
possible amino acids). After that, each integer value is converted into a 20 dimensional vector
with all zeros except a 1 at that integer valued index. For example, if the lysine residue ‘K’
is mapped to the integer 11, the final 20 dimensional vector from the lysine residue will be
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}. Hence, if we use context window = 33, the
dimension of input to the deep learning model will be 33× 20.

5.2.2 Deep learning architecures

We initially experiment with two different architectures, where we leverage the power of CNN
and Bi-LSTM architectures. Our two basic settings are Bi-LSTM+CNN (will be referred to
as BLC henceforth for brevity) and CNN+Bi-LSTM (will be referred to as CBL henceforth
for brevity). As the name indicates, the main difference between BLC and CBL models lies in
the order the two constituent deep neural network architectures have been connected to each
other. We then use the combination of these two architectures to build a better predictor (will be
referred to as CBL BLC henceforth for brevity). The reason for choosing CNN and Bi-LSTM as
our fundamental models is not arbitrary. As protein sequence is a sequential data, both 1D-CNN
and LSTM can extract features from the protein sequence. However, CNN’s main function is to
extract local features whereas LSTM can capture the long-range dependency in the sequence.
LSTM and CNNs have been successfully used in conjunction in different fields. For example,
Xia et al. used the combination of LSTM and CNN in [69] for human activity recognition.
Wang et al. used a regional CNN-LSTM model in [70] for sentiment analysis. Zhang et al.

experimented with CNN-LSTM, LSTM-CNN architectures in [1] for building succinylation site
predictor. This motivates us to use these two celebrated models in combination.

We use the Keras version 2.6.0 to implement the architectures. The architecture of CBL is shown
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Figure 5.1: The one-hot encoded protein sequences are first fed into 1D convolution layer. The
local features extracted from the CNN layer are then fed into the Bidirectional LSTM layer. The
output of the bidirectional LSTM layer is fed into a fully connected dense layer with 1 neuron
which will output the probability of the centered lysine residue of the input protein sequence to
be succinylated.

in Figure 5.1. The None in each cell represents the batch size. The input layer takes as input
the one-hot encoded protein sequences. 1D-CNN layer has been used with kernel size = 5,
strides = 1 and filters = 8. Hence, 33 × 20 dimensional vector is converted into a 29-
dimensional vector (33− 5 + 1 = 29) for each of the filters resulting in a 29× 8 dimensional
vector. Then, the bidirectional LSTM layer is applied with units = 20 resulting in a 40-
dimensional (20 for forward direction, 20 for backward direction) vector. Finally, a 1 neuron
dense layer with sigmoid activation function is applied which outputs a value between 0 and 1
representing the probability of the lysine residue to be succinylated.

The architecture of BLC is shown in Figure 5.2. After the input layer, we use the bidirectional
LSTM layer with return sequences set to True so that each LSTM cell outputs the hidden states
for each timestep. Therefore, the bidirectional LSTM layer outputs a 33 × 40 (there are 33
amino acids in a sample each of which represents a timestep for every LSTM unit) dimensional
vector. Similar to the CBL, 1D-CNN layer outputs a 29× 8 dimensional vector. As we will be
feeding this vector into the feed forward network, we flatten the vector and feed it into the fully
connected layer with 1 neuron as is done in CBL.

The architecture of CBL BLC is shown in Figure 5.3. There are two branches in this architecture.
One branch is similar to CBL except for the fully connected layer, another branch is similar to
BLC except for the fully connected layer. The outputs of the two branches are concatenated and
fed into a fully connected network with two layers. The final layer has 1 neuron similar to the
final layer of CBL and BLC.
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Figure 5.2: The one-hot encoded protein sequences are first fed into bidirectional LSTM layer.
1D-CNN layer follows this layer. The output of the CNN layer goes through a flatten layer.
Finally, a fully connected dense layer outputs the probability in the same way as CBL.

5.2.3 Loss function

We need to choose a loss function (details about loss functions are discussed in Section 2.4.4)
that is appropriate for binary classification as predicting succinylation is a binary classification
problem. After experimenting with the three loss functions, namely binary cross-entropy, hinge
loss and squared hinge loss, we choose binary cross-entropy as this gives better results than the
other two.

During training the deep learning architectures with D2 dataset, we use weighted binary cross-

entropy because the number of negative samples is twice the number of positive samples. So, we
penalize the model two times more for predicting a 1 as 0 than predicting a 0 as 1. The formula
for weighted binary cross-entropy is as follows:

Loss = − 1

N

N∑
i=1

(w1yi log pi + w0(1− yi) log (1− pi)), (5.1)

where, (w0, w1) = (1, 2).
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Figure 5.3: The CBL BLC architecture uses two branches. One branch is similar to the
architecture of CBL and another branch is similar to the architecture of BLC.
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5.2.4 Optimizer

After the loss is calculated for a set of samples through a loss function, the weights of the neural
network need to be updated so as to minimize that loss. There exist several optimizers in the
literature. We adopt Adam optimizer [71] because it combines the advantages of AdaGrad [72]
to deal with sparse gradients, and the ability of RMSProp (another unpublished but popular
optimizer) to deal with non-stationary objectives. We try to find the appropriate learning rate
using the technique mentioned in [73]. However, the results degraded following this procedure.
Hence, we use the default learning rate of 0.001.

5.2.5 Checkpoint

We run our model with batch size set to 128 and for 80 epochs. We monitor the loss on the
validation dataset after each epoch and save a checkpoint of the model if the calculated loss is
smaller than the smallest loss found so far. After the training is complete, we use the model that
has had the smallest validation loss across the 80 epochs.

5.2.6 Ensembling of different models

We train each of the three architectures for 5 times. This results in 5 different versions for each
architecture. We calculate the average probability of a sample’s belonging to class 1 according
to the following equation:

Probability =
1

N

N∑
i=1

pi, (5.2)

where, pi is the predicted probability from the ith classifier. If this probability is less than a
pre-defined threshold, the ensemble classifier classifies the sample as 0, otherwise the sample
is classified as 1. We initially set the threshold value to 0.5 to evaluate the performance of the
ensemble classifiers.

5.2.7 Tuning the threshold for ensemble classifiers

As has been discussed in Section 5.2.6, we have a parameter called threshold which is initially
set to 0. However, if we decrease (increase) the threshold value, the SN (SP) will increase
compromising the SP (SN). Hence, this parameter can be tuned to produce ‘better’ results under
different circumstances where it may be more desirable to achieve a better SP or SN for that
matter.

We use differential evolution algorithm (this algorithm is elaborately discussed in Section 2.1.2)
to find an optimal value for the threshold to improve the performance. Each individual in this
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algorithm refers to a threshold value. The fitness of an individual is the MCC value obtained by
the ensemble classifier on the validation dataset.

5.3 Results and discussions

5.3.1 Performance of deep learning architectures

We train the architectures CBL, BLC and CBL BLC with both the training datasets of D1 & D2.
In case of D2, we use weighted binary cross-entropy loss (see Subsection 5.2.3). We perform
the training of each of the architectures five times and report the average performance on the
validation dataset in Table 5.1.

Table 5.1: Performance of CBL, BLC and CBL BLC on the validation dataset of D1 and D2.
Five independent runs are conducted for each architecture and dataset combination, and the
average performance values are reported. The SN of CBL is the best for both datasets. For the
other three metrics, CBL BLC is the winner for both datasets.

Method D1 D2
SN SP ACC MCC SN SP ACC MCC

CBL 0.752 0.62 0.686 0.375 0.703 0.736 0.725 0.421
BLC 0.698 0.679 0.688 0.377 0.6985 0.78 0.753 0.466

CBL BLC 0.73 0.684 0.707 0.415 0.685 0.8 0.76 0.475

We observe that the CBL BLC is the winner with respect to SP, ACC & MCC for both datasets.
CBL achieved the highest SN for both datasets at the cost of the lowest SP.

5.3.2 Performance of ensemble classifiers

As has been already mentioned in Section 5.2.6, we have run each of the model for 5 times. We
can ensemble these 5 models as we expect that even if some of the 5 models misclassify a sample,
majority will correctly classify the sample. We have obtained 19 models from the combination
of biophysico properties (see Section 4.3.2). We will refer to the collection of these models as
BP. We denote the ensemble classifier of any architecture by appending an ‘-E’. Hence, CBL-E
will represent the ensemble classifier of CBL and so on. If we ensemble classifiers from different
architectures, we will denote the ensemble classifier as the addition of different architectures
appended by an ‘-E’. For example, the ensemble of CBL and BLC classifiers will be denoted as
(CBL+BLC)-E. The ensemble of all the deep learning and traditional ML based models will be
denoted as DeepBiophysico. The performance of the ensemble classifiers are shown in Table 5.2.

CBL BLC-E dominates CBL-E and BLC-E both for datasets D1 and D2 except with respect
to SN. In case of (CBL+BLC)-E, (BLC+CBL BLC)-E and (CBL+BLC+CBL BLC)-E, the
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Table 5.2: Performance of different ensemble classifiers on the validation dataset of D1 and D2.
DeepBiophysico achieves best SN, ACC and MCC in D1 and (CBL+BLC)-E achieves best SN
in D2. (BLC+CBL BLC)-E achieves best SP in D1. CBL BLC-E achieves best SP, ACC, MCC
in D2.

Architecture D1 D2
SN SP ACC MCC SN SP ACC MCC

CBL-E 0.764 0.624 0.695 0.392 0.702 0.744 0.73 0.429
BLC-E 0.717 0.685 0.701 0.402 0.712 0.791 0.765 0.49

CBL BLC-E 0.744 0.691 0.718 0.436 0.6985 0.81 0.772 0.498
BP-E 0.745 0.64 0.695 0.391 0.721 0.66 0.681 0.361

(CBL+BLC)-E 0.759 0.657 0.708 0.418 0.724 0.775 0.758 0.483
(BLC+CBL BLC)-E 0.7299 0.692 0.711 0.423 0.707 0.8 0.769 0.496

(CBL+BLC+CBL BLC)-E 0.748 0.678 0.713 0.428 0.717 0.787 0.764 0.49
DeepBiophysico 0.772 0.681 0.726 0.454 0.723 0.766 0.752 0.472

performances are not improving much from the individual ensemble classifiers (i.e., CBL-E,
BLC-E and CBL BLC-E).

If we observe the performance of BP-E both on D1 & D2, we note that the SN (0.745 on
validation set of D1, 0.705 on validation set of D2) is competitive if compared to the SNs of
CBL-E, BLC-E and CBL BLC-E. However, BP-E is lagging way behind with respect to SP
which makes the other metrics (ACC and MCC) poor too. However, we achieve the highest
SN, ACC and MCC on the dataset D1 with DeepBiophysico which shows the usefulness of
the suitable combinations of biophysico properties. However, DeepBiophysico is not the best
with respect to any metric on the dataset D2 although the achieved SN is the second best and
very close to the best one. Still, the comparable results of BP-E on dataset D2 shows the
effectiveness of the chosen combinations. We choose the DeepBiophysico for dataset D1 and
(CBL+BLC+CBL BLC)-E for dataset D2 to be the best models. We also take DeepBiophysico
for dataset D2 because it is the second best and the ensemble of more number of classifiers,
hence the probability for an unseen sample to be misclassified is low. We try to tune the threshold

parameter in the next subsection to improve the performance of these models.

5.3.3 Tuning threshold parameter

We use the differential evolution class from the scipy.optimize (scipy version 1.2.0) package to
optimize the MCC value. We keep the lower bound of the threshold as 0.4 and upper bound
as 0.6. The tol (tolerance) parameter is set to 1e-7. Other parameters are kept as the default
ones. The algorithm is run 10 times and the threshold value that gives the best MCC value is
recorded. The performance of the tuned models are reported in Table 5.3. For D1, as we choose
DeepBiophysico, we observe that the SN increased from 0.772 to 0.795 with the tuned value. As
a result, the SP decreased from 0.681 to 0.666. ACC increased from 0.726 to 0.731 and MCC
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increased from 0.454 to 0.465. For D2, as we choose (CBL+BLC+CBL BLC)-E, we observe
that the SN increased from 0.717 to 0.835 with the tuned value. As a result, the SP decreased
from 0.787 to 0.699. ACC decreased from 0.764 to 0.745 and MCC increased from 0.49 to
0.505.

Table 5.3: Performance of tuned ensemble classifiers. For dataset D1, we use the model
DeepBiophysico and for dataset D2, we use the model (CBL+BLC+CBL BLC)-E. For each
model, the obtained threshold is also shown which produces best MCC across the 10 runs.

Dataset Threshold SN SP ACC MCC
D1 0.491 0.795 0.666 0.731 0.465
D2 0.402 0.835 0.699 0.745 0.505

5.3.4 Comparison with existing works

The two datasets D1 and D2 that we have used throughout the thesis, have been used by most
of the existing works. Hence, we can directly utilize the reported result for a work during
comparison if the comparison is being conducted on the same dataset. In the case when we have
to compute the result of a predictor on a different dataset, we re-implement the predictor and train
with the same training data that is being used to train our model. The training and testing dataset
of D1 has been directly used by LSTMCNNsucc [57]. Although DeepSuccinylSite [27] used
solely the training and testing dataset of D2, we re-implemented this predictor to re-calculate
the performance of DeepSuccinylSite because there was an issue with their reported results (see
Section 3.2). Hence, we are able to calculate its performance on D1 too. The results of these
predictors along with the performance of both DeepBiophysico and tuned DeepBiophysico on
the test dataset of D1 are shown in Table 5.4.

Table 5.4: Performance of some existing works on the testing dataset of D1 along with the
performance of DeepBiophysico (with threshold=0.5 and tuned threshold)

Method SN SP ACC MCC Remarks
LSTMCNNSucc 0.592 0.796 0.779 0.251 Low SN
DeepSuccinylSite 0.725 0.593 0.604 0.176 Low SP
DeepBiophysico 0.751 0.677 0.683 0.246 High SN

Tuned DeepBiophysico 0.769 0.624 0.639 0.24 Highest SN,low SP

We observe that both of our methods are performing better than DeepSuccinylSite. However,
LSTMCNNSucc has a significantly better SP at the cost of a very poor SN. As the negative
samples are the majority class in the test dataset, the ACC is higher for LSTMCNNSucc too.
But, this method is performing poorly on the actual task which is to predict the positive sites as
positive.

The tools Succinsite, SuccinSite2.0, GpSuc, Psucce, Inspector, DeepSuccinylSite and DeepSucc
used the training and testing dataset of D2. The results of these predictors along with the
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performance of (CBL+BLC+CBL BLC)-E and DeepBiophysico (with different thresholds) on
the test dataset of D2 are shown in Table 5.5.

Table 5.5: Performance of several existing works on the testing dataset of D2 along with the
performance of (CBL+BLC+CBL BLC)-E and DeepBiophysico (with threshold=0.5 and tuned
threshold)

Method Threshold SN SP ACC MCC Remarks
Succinsite - 0.371 0.882 0.842 0.199 Low SN

Succinsite2.0 - 0.457 0.884 0.85 0.263 Low SN
GPsuc - 0.499 0.883 0.853 0.296 Low SN
Psucce - 0.375 0.886 0.845 0.204 Low SN

Inspector - 0.693 0.717 0.715 0.238
Average SN
Average SP

predML-Site - 0.094 0.918 0.854 0.013
Extremely
Low SN

DeepSuccinylSite - 0.7874 0.687 0.695 0.268
Good SN

Average SP
DeepSucc - 0.705 0.823 0.814 0.3437 Unreliable

(CBL+BLC+CBL BLC)-E 0.5 0.697 0.753 0.748 0.269
Average SN

Good SP
Tuned

0.402 0.811 0.653 0.665 0.257
High SN

(CBL+BLC+CBL BLC)-E Low SP

DeepBiophysico 0.5 0.748 0.73 0.731 0.278
Good SN
Good SP

Tuned
0.481 0.776 0.702 0.708 0.272

High SN
DeepBiophysico Average SP

We observe that the performance of (CBL+BLC+CBL BLC)-E is very sensitive to the threshold
value. (CBL+BLC+CBL BLC)-E with a threshold of 0.5 achieves a moderate SN and SP and
as a result, has a higher MCC value than the MCC value of all other methods except the MCC
achieved by DeepSucc and GPSuc. Tuned (CBL+BLC+CBL BLC)-E achieves the highest SN
among the existing works at the cost of a low SP. DeepBiophysico achieves a very good SN
and SP both with default and tuned threshold values, as a result it achieves a better MCC value.
However, the performance of DeepSucc is better in all cases due to a very high SP at the cost of a
moderate SN. We will present a more detaild discussion on this method in the following section.

5.3.5 A discussion on DeepSucc [1]

during the write-up stage of this thesis, the publication of a new predictor, called DeepSucc [1]
came to our knowledge. We have thoroughly investigated the codebase shared by the paper and
found some issues which are discussed below.

• They performed cross-validation to compare among different architectures. But in their
code, we find that after each fold of cross-validation was performed, the authors mistakenly
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did not re-initialize the variables which has resulted in a data leakage. Hence, the claimed
results are completely unreliable. And our repeated communications with the authors did
not get any response.

• The code which was used for performing testing on the dataset D2 is completely absent in
the repository. Although there is a folder named “Test” inside the repository, all the codes
correspond to the cross-validation codes.

• We re-implemented their architectures but the produced results were far worse than the
claimed ones.

For the above-mentioned reasons, the DeepSucc’s results seem unreliable at best. Therefore,
although we have reported the results of DeepSucc (as reported in their paper), we actually
exclude those from our comparative analysis and discussion.

5.4 Conclusion

In this chapter, we discussed about the application of several deep learning architectures and
found that the deep learning models have been capable of dominating the traditional ML based
models that are built upon hand crafted features. We ensembled the deep learning models
with traiditional ML based classifiers to produce better results than the result of a single deep
learning model. Additionally, we tuned the threshold of the ensemble classifier to control the
sensitivity and specificity of the model and showed that we could achieve better results than the
state-of-the-art by changing the value of the threshold. In the next chapter, we will discuss the
further research scopes from where we left off.



Chapter 6

Conclusion

Lysine succinylation (Ksucc) is involved in diverse biological processes including cell cycle,
growth & signal transduction pathways. It is significant because it is one of the largest (100
Da) PTMs. It also changes the net charge of the lysine residue from positive to negative.
Aberrant succinylations have also been shown to cause diseases including metabolism disease,
nervous system diseases and cancers. Therefore, it is crucial to identify succinylated sites to
understand several functions of proteins and develop relevant drugs as remedy of diseases caused
by succinylation.

Several experimental techniques (e.g., mass spectrometry, liquid chromatography) exist to detect
PTM sites but all these techniques are costly, lengthy and cumbersome. Hence, computational
models to efficiently detect succinylated sites will significantly reduce the labor of the biologists.

6.1 Our contributions

Please recall that, the aim of our thesis is to construct computational model to predict whether a
lysine residue is succinylated or not. The objectives of our thesis are to search for suitable
combinations of biophysico properties for efficient prediction of succinylation, assess the
statistical significance of the features being used for prediction, leverage the power of deep
learning to build strong predictors and incorporate deep learning with models trained on
biophysico properties to construct stronger predictors.

In Chapter 4, we used the IBCGA algorithm and gathered 19 subsets of combinations from 29
biophysico properties that are capable of efficiently detecting succinylated sites. The MCC value
achieved by each of these combinations ranges from 0.38 to 0.4 for D1 and 0.355 to 0.38 for
D2 while the MCC value achieved by taking all the 29 properties is 0.37 for D1 and 0.35 for
D2. It showed the importance of searching for suitable combinations of biophysico properties
rather than using all of the top performing properties. We computed the pairwise Spearman
correlation coefficient of the features for one of the 19 combinations on D1 and found that the
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correlation ranges from -0.1 to 0.2 which means that the features have very low correlation
among themselves.

In Chapter 5, we experimented with CNN+Bi-LSTM (CBL) and Bi-LSTM+CNN (BLC)
architectures. We also combined these two architectures and found that the combination achieves
better SP, ACC and MCC for both D1 and D2 datasets compared to CBL and BLC architectures.
Additionally, we performed ensembling of different classifiers and found that ensemble classifiers
in general perform better than the single classifiers. For example, CBL achieved an SN of 0.752,
SP of 0.62, ACC of 0.686 and MCC of 0.375, whereas ensemble of CBL classifier achieves an SN
of 0.764, SP of 0.624, ACC of 0.695 and MCC of 0.392. Notably, the ensemble of the 19 models
(these 19 models are collectively referred to as BP) trained on 19 combinations of biophysico
properties (BP-E) achieved a competitive SN of 0.745 and SP of 0.64 on the validation dataset of
D1. Although, the achieved SN (0.721) by BP-E is reasonable on the validation dataset of D2,
the SP is relatively lower compared to the deep learning models. Predictably, the ensemble of all
the deep learning models along with BP models achieved the best performance on the validation
dataset of D1. However, only the ensemble of deep learning models achieved better performance
than the ensemble of all the models on the validation dataset of D2 although the ensemble of all
the models is not far behind. Moreover, we applied DE algorithm to tune the threshold of the
ensemble classifiers. We were able to increase the MCC value from 0.454 to 0.465 for the best
model on the validation dataset of D1 and from 0.49 to 0.505 for the best model on the validation
dataset of D2.

Finally, we performed comparative analysis with existing works with the test dataset of D1 and
D2. We observed that our model with and without tuned threshold achieves the best SN on the
test dataset of both D1 and D2 compared to all other existing works, however, at the cost of a
comparatively lower SP. But the novelty is that we provide a tunable parameter called threshold
which the users can play with to control the sensitivity and specificity of the predictor.

We observed that the traditional ML based models trained with the chosen combinations of
biophysico properties achieved a competitive SN even in comparison with the deep learning
models. Ensembling of different deep learning models along with the traiditional ML models
further improved the result. We also showed that the results of the state-of-the-art could be
surpassed by varying the threshold value of the ensemble classifiers.

6.2 Further research

We now discuss several ways of extending the research works presented in this thesis as follows.

• We only used the biophysico properties as the biological features along with deep learning
models. But, there exist numerous other biological features in the literature, including
but not limited to, Position Specific Amino Acid Propensity, Amino acid composition,
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Auto-correlation functions, PSSM, Accessible Surface Area etc. These features can
be incorporated with the proposed combinations of biophysico properties to see if that
improves the performance.

• We did not apply self attention techniques in deep learning models although this is being
widely used on sequential data. Attention can be included in the proposed deep learning
models to inspect whether that improves the performance.

• We have only experimented with context window = 33. However, several other values
have been used in the literature. Other values should be explored with our proposed
methodology to see if any other value of context window produces improved performance.
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