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Abstract 

 

Evolutionary epidemiological models have played an active part in analyzing various 

contagious diseases and intervention policies in the biological sciences. The design in this 

effort is the addition of compartments for treatment and vaccination, so the system is 

designated as susceptible, vaccinated, infected, treated, and recovered (SVITR) epidemic 

dynamic. The contact of a susceptible individual with a vaccinated or an infected individual 

makes the individual either immunized or infected. Inventively, the assumption that infected 

individuals enter the treatment and recover state at different rates after a time interval is also 

deliberated through the presence of behavioral aspects. The rate of change from susceptible 

to vaccinated and infected to treatment is studied in a comprehensive evolutionary game 

theory with a cyclic epidemic model. To show stable conditions, we theoretically investigate 

the cyclic SVITR epidemic model framework for disease-free and endemic equilibrium. 

Then, the embedded vaccination and treatment strategies are present using extensive 

evolutionary game theory aspects among the individuals in society through a ridiculous 

phase diagram. Extensive numerical simulation suggests that effective vaccination and 

treatment may implicitly reduce the community risk of infection when reliable and cheap. 

The results exhibited the dilemma and benefitted situation, in which the interplay between 

vaccination and treatment evolution and coexistence are investigated by the indicators of 

social efficiency deficit and socially benefited individuals. 
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Chapter - 1 

Introduction 

1.1 Introduction 

In recent years, the spread of the virus has created attention among people [1,2], which 

affects people's lives, such as the covid-19 pandemic [3], monkeypox [4], seasonal 

influenza [5], and others. Apart from country initiatives, its impact on individual or group 

initiatives is also noticeable [6]. Infectious diseases could be driven towards eradication if 

adequate and timely steps (e.g., vaccination, treatment, self-defense measure, and 

refinement campaign) are taken in the course of the epidemic [7]. However, many of these 

diseases eventually become endemic in our society due scarcity of adequate policies and 

timely interventions to mitigate the spread of the viruses [8]. Consequently, there is a need 

for proactive and retroactive steps toward controlling the spread of infectious diseases, 

particularly those for which both vaccines and treatment are available. Here, the theoretical 

studies of vaccination and treatment strategies have considered different effectiveness, 

associated costs, payoff structures, and time scales.  

 

                                                                                 (Collected from Google) 

                Figure 1.1: The covid-19 pandemic, an infectious disease caused by severe  

                       Acute  respiratory syndrome coronavirus 2 (SARS-coV-2) virus [3] 
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Based on the theory of Kermark and Mckendrick [9], the dynamics of infectious diseases 

can usually be described mathematically based on compartmental models such as SIR 

(susceptible–infected–recovered) or SIRS models, with each term referring to a 

“compartment” in which an individual can reside. Recently, Covid-19 inclined the attention 

of mathematicians, and they have tried to inflict an approximate solution by bearing 

different models [10]. To understand the mechanism of infectious disease transmission, 

several authors have studied various kinds of epidemic models by considering other 

compartment models such as SI [11], SIS [12], SIR [13-19], SIRS [20], SEIR [21, 22], 

SVEIR [23], and many more. Mathematical modeling has been successfully used in 

constructing control strategies with suitable interventions for various diseases, such as 

vaccination, treatment, and quarantine [24-30]. Variations of standard, SIR, SIRS, and 

SEIR epidemiological models are considered to determine the sensitivity of these models 

to different parameter values that may not be fully known when the models are used to 

investigate emerging diseases [31]. Previous works above explored that vaccination, 

quarantine, and treatment would retrench contagious disease in a simple dynamic aspect on 

local time scales. The current study aims to develop a theoretical epidemic model 

embedding both vaccination and treatment as a cyclic model. 

 
 

   Figure 1.2: Classes of flowchart including Susceptible, Infections, Expose  

    and Recovered compartment to SIR-type cyclic epidemic models [13 -22] 

 

An extensive evolutionary game theory study studied the influence of people's vaccination 

decisions on imposed control policies, reducing the epidemic's spreading severity [32-35]. 

Prior research has shown that a game-based approach to epidemiological vaccination may 
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accurately forecast infection risk in vaccinated and unvaccinated people [36-37]. The 

vaccine properties, people's judgment, social networks, and neighbors' choices influence 

how people make apposite decisions to control the disease. As a result, it is crucial to 

examine how different elements affect both vaccine and treatment acceptance [38-42]. 

Here, use the SVITR-type epidemic model to thoroughly analyze the combined impact of 

these two types of protective measures: proactive and retroactive. In this situation, the 

vaccine's efficiency and treatment duration serves as a control parameter. Individuals' 

ability to update their methods by emulating those who appear to have adopted more 

effective techniques must be integrated into the model [43]. To characterize this process 

formally, it need to build a model that incorporates mathematical epidemiological with 

game-theoretic dynamics. For example, Bauch et al. [44] made and tested a model that 

blends epidemiological dynamics with replicator dynamics from evolutionary game theory 

to describe individuals' copying behavior during disease outbreaks. However, people's 

attitudes toward vaccination and treatment reflect their inherent recognition to choose 

between vaccine acceptance and risk of infection. This approach incorporates two types of 

game aspects (proactive and retroactive) on a local time scale [45] to illuminate the 

framework of cyclic disease dynamics embedded with vaccination and treatment provision. 

           

 

                                                                                                                       (Collected from Google) 

Figure 1.3: Coronavirus COVID-19 vaccine [7] 

This work introduces a new indicator, “socially benefited individual,” termed SBI for 

vaccination and treatment provisions. This approach benefits individuals from society who 
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get advantages from participating in the vaccine program or treatment. Besides, explore the 

idea of a dual dilemma by considering the “social efficiency deficit” (SED) [46, 47] that 

presents the roles of vaccination (before infection) and treatment (after infection) games. 

Both evolutionary games occur on a local time scale (single season) that is affected by 

various factors concerning vaccine efficacy, vaccine cost, treatment cost, and treated time 

(facilities). Here, impose a pre-emptive intervention policy that controls disease before the 

infection spreads at an early stage that depends on the individual’s choice. On the other 

hand, the treatment strategy can be considered a “let-down” intervention in which people 

will recover faster. Utilizing our new idea assisted by the evolutionary game theory 

approach on epidemiology for vaccination and treatment game model, explore the impact 

of the dual-dilemma and social benefit situations by presenting line graphs and phase 

diagrams. Such a social benefit approach and dual-dilemma situation in the same 

framework, perhaps quite omnipresent in the real world, has not been studied in related 

earlier works.  

 

 1.2 Some definition of Model Compartments 

Susceptible (S) 

The term "susceptible" generally means being vulnerable or open to influence, harm, or 

disease. It can be used to describe individuals, organisms, or systems that are more likely 

to be affected by external factors. For example, a person may be described as susceptible 

to a particular disease if they have a weaker immune system or if they have not been 

vaccinated against it. 

 

Vaccinated (V) 

"Vaccinated" refers to the process of receiving a vaccine, which is a preparation of 

weakened or dead pathogens that are introduced into the body to stimulate the immune 

system and develop immunity against specific diseases. Vaccines have been developed for 

a wide range of diseases, including measles, polio, hepatitis B, and COVID-19. Vaccination 

is considered one of the most important public health interventions of the modern era and 

has contributed to the eradication of smallpox, the control of many other diseases, and the 

prevention of millions of deaths globally. 
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Infected (I) 

Infection can occur through various routes, including inhalation, ingestion, contact with 

contaminated surfaces, or bites from infected animals. The severity and duration of the 

infection depend on various factors, such as the virulence of the pathogen, the susceptibility 

of the host, and the effectiveness of the host's immune response. The term "infected" refers 

to the invasion and multiplication of pathogenic microorganisms, such as bacteria, viruses, 

fungi, or parasites, within a host organism. This invasion and multiplication of pathogens 

can lead to disease or illness in the host. 

 

Treatment (T) 

Treatment can take various forms, depending on the type and severity of the condition, and 

may involve medications, surgery, lifestyle changes, physical therapy, or other 

interventions. The choice of treatment depends on various factors, such as the patient's age, 

medical history, and preferences, as well as the availability and effectiveness of different 

treatment options. 

 

Recovered (R) 

The duration of recovery can vary depending on the type of disease, the severity of the 

infection, and the overall health of the individual. Some illnesses may resolve quickly, 

while others may require a longer period of convalescence. In the context of COVID-19, 

an individual is typically considered "recovered" if they have tested positive for the virus, 

but have completed a period of isolation and are no longer showing symptoms. Some health 

organizations also require additional negative test results before considering someone fully 

recovered. 

 

Final epidemic size (FES) 

The final epidemic size is a key metric used in infectious disease modeling to estimate the 

total number of individuals who will become infected during an epidemic. In the context 

of the SVITR model, the final epidemic size can be calculated by integrating the differential 

equations until the epidemic has run its course and all individuals have either recovered or 

died. 
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Vaccination coverage (VC) 

Vaccination coverage refers to the proportion of a population that has received a particular 

vaccine, typically expressed as a percentage. It is a measure of the extent to which a 

population has been vaccinated against a particular disease and is an important indicator of 

the level of protection against that disease within the population. The final epidemic size in 

the SVITR model is influenced by several factors, including the vaccination coverage. 

Vaccination coverage refers to the proportion of the population that has received a vaccine 

against the disease. In the SVITR model, vaccination coverage is represented by the V 

compartment, which includes individuals who are vaccinated and therefore protected from 

infection. Increasing the vaccination coverage can reduce the final epidemic size by 

reducing the number of susceptible individuals who can become infected. This is because 

the vaccinated individuals are less likely to become infected and therefore less likely to 

transmit the disease to others. The effect of vaccination on reducing the final epidemic size 

is dependent on the vaccine efficacy, the coverage rate, and the timing of the vaccine 

deployment. If the vaccination coverage is high enough, the final epidemic size may be 

small enough that the disease is effectively eliminated from the population. This is known 

as herd immunity, where the proportion of immune individuals in the population is high 

enough to provide indirect protection to susceptible individuals.  On the other hand, if the 

vaccination coverage is low, the final epidemic size may be larger, leading to more 

infections and potentially more severe consequences such as hospitalization and death. 

 

Average social payoff (ASP) 

The average social payoff is a metric used in game theory to quantify the expected benefit 

or cost of a particular strategy or action. The Average Social Payoff (ASP) is a measure of 

the net benefit to society of a particular intervention or program. It takes into account both 

the costs and benefits of the intervention and is typically expressed as a monetary value. 

The ASP is calculated by subtracting the total social costs of the intervention from the total 

social benefits and dividing the result by the total number of individuals affected by the 

intervention. This provides an estimate of the average net benefit per individual. The ASP 

provides a useful tool for evaluating the efficiency of interventions and can help inform 

policy decisions by providing information on the net benefits of different programs and 

policies. In the context of the SVITR model, the average social payoff can be used to 
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evaluate the effectiveness of different disease control strategies and their impact on the 

overall population. 

 

Fraction of treated individuals (FTR) 

The fraction of treated individuals stands for Fraction of Treated Individuals. It is a measure 

of the proportion of individuals within a population who have received a particular 

treatment or intervention. The FTR is often used in the context of healthcare interventions, 

where it is used to evaluate the uptake and effectiveness of different treatment options. For 

example, if a particular treatment is recommended for a certain medical condition and the 

FTR is low, it may suggest that there is a need for better education and awareness about the 

benefits of the treatment. The FTR can also be used to evaluate the impact of policies in 

other areas, such as education or social welfare. It is an important tool for policymakers, as 

it provides information on the proportion of individuals who are benefiting from a particular 

intervention or policy. The FTR is an important indicator of the level of access to treatment 

within a population and is used to monitor progress in efforts to improve health outcomes. 

High FTRs are generally associated with better health outcomes and are an important goal 

of public health programs and policies. 

 

Socially Benefitted Individuals (SBI) 

Socially Benefitted Individuals refers to the number of individuals who receive a net benefit 

from a particular intervention or policy. The term "net benefit" refers to the overall positive 

impact that the intervention has on the individual's well-being, taking into account both the 

costs and benefits of the intervention. The SBI is an important measure of the effectiveness 

of interventions, as it indicates the number of individuals who have experienced a positive 

change as a result of the intervention. It is typically calculated by subtracting the number 

of individuals who experienced a negative impact from the number of individuals who 

experienced a positive impact. The SBI can often be used to evaluate the impact of policies 

in other areas, such as education or social welfare. It is an important tool for policymakers, 

as it provides information on the number of individuals who are likely to benefit from a 

particular intervention or policy. 
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The Social Efficient Deficit (SED) 

The Social efficiency Deficit is a measure of the difference between the optimal level of an 

intervention or policy and the actual level that is implemented. It is calculated by comparing 

the social welfare that would be achieved if the intervention were implemented at the 

optimal level, to the social welfare that is achieved at the actual level of implementation. 

The SED is an important measure of the efficiency of interventions and policies. It provides 

information on the potential gains that could be achieved if the intervention were 

implemented more effectively. The SED can also help policymakers identify areas where 

improvements can be made to increase the overall effectiveness of interventions. The SED 

is often used in the context of healthcare interventions, where it is used to evaluate the 

effectiveness of different treatment options. For example, if a particular treatment is 

implemented at a lower level than optimal, the SED will be positive, indicating that there 

is potential to improve the social welfare that is achieved through the intervention. 

 

1.3 Deterministic epidemic models  

Start with simplest case of SIS [56] and SIR [57] disease model. The SIS model has 

two compartments: susceptible (S) and infected (I), whereas the SIR model has additional 

recovered (R) compartment. The model is inscribed in the form of simple ODEs. The SIS 

and SIR model (figure 1.4) can be written as, 

Susceptible-infected- susceptible (SIS) model: 

�̇�(𝑡)  =  −𝛽𝑆(𝑡)𝐼(𝑡)  +  𝛾𝐼(𝑡), 

𝐼(̇𝑡)  =  𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡).                                                                                                                          

Susceptible-infected- recovered (SIR) model: 

            �̇�(𝑡) =  −𝛽𝑆(𝑡)𝐼(𝑡), 

   �̇� (𝑡) =  𝛽𝑆(𝑡)𝐼(𝑡)–  𝛾𝐼(𝑡), 

   �̇�(t) =   γI(t).             

               

                      (A)                                                                                 (B)            

           Figure 1.4: Schematic diagram of (A) the SIS epidemic model and (B) the SIR epidemic model. 
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Here, 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) denote the size of susceptible, infected and recovered at      time t, 

compartments and the disease transmission rate is defined as 𝛽, while the rate of recovery 

is assumed as 𝛾. As constraint, it presumed 𝑆(𝑡) +  𝐼(𝑡) = 1 for SIS model and 𝑆(𝑡) +

 𝐼(𝑡) +  𝑅(𝑡) = 1 for SIR model. Hence, the single differential equation for 𝐼(𝑡) (Both SIS 

and SIR) is 𝐼(̇𝑡)  =  𝛽𝑆(𝑡)𝐼(𝑡)  −  𝛾𝐼(𝑡), which can be easily solved by separation of 

variables method. This equation may have only   two equilibria at steady stat, namely, the 

disease-free equilibrium (DFE), 𝐼𝐷𝐹𝐸  =  0 and the endemic equilibrium, 𝐼𝐸 = (1 −

𝛾/𝛽  ).  If the basic reproduction number (ratio) is defined as  𝑅0 = 
𝛽

𝛾
 then the endemic 

steady state exists if 𝑅0 =  𝛽/𝛾 >  1. Thus, if 𝑅0< 1, the disease-free equilibrium is stable, 

while for 𝑅0> 1, the disease-free equilibrium is unstable, and the endemic equilibrium is 

stable.  

To be more specific, the system tends to a DFE state as time goes to infinity; however, this 

DFE depends on the boundary conditions. Therefore, it can deduce the final epidemic size, 

𝑅(∞), for the limit of 𝑡 →  ∞. According to the SIR model with boundary conditions 

𝑆(0)  ≈  1, 𝑅(0)  =  0, 𝐼(0)  ≈  0 and 𝑆(∞)  =  1 −  𝑅(∞), then have, 𝑅(∞) =  1 −

 𝑒𝑥𝑝 [−𝑅0𝑅(∞)].𝐻𝑒𝑟𝑒, 𝑅(∞) is the portion of population who were once infected with the 

diseases called final epidemic size (FES). This implicit equation can be solved to arbitrary 

accuracy by iteration method, for instant, using Newton-Raphson method. 

 

1.4 Game theory  

Game theory is the study of the mathematical model of rational decision-making, where 

several players must make choices to maximize their own payoffs [61]. It has been applied 

in many disciplines such as social science, political science, economics, business, logic, 

system science, information science, computer science, and biology. John von Neumann 

first introduced the modern game theory in 1928 [62]. In 1944, John Nash [63] presented 

his dissertation about noncooperative games, to state equilibrium point (steady state) called 

Nash equilibrium. In the 1960s and 1970s, game theory was broadly applied to solve the 

problems caused by wars and economics [64, 65]. Game theory has also been used to 

biology, called evolutionary game theory, first introduced by John Maynard Smith and G.R. 

Price in 1973 [66].  
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1.5 Classical game theory 

Classical game theory encompasses two different types of games: cooperative games with 

the central concept of Pareto optimum and non-cooperative games with the idea of Nash 

equilibrium [62]. Such a game, players always make consistent decisions in the face of 

certain and uncertain alternatives to maximize their payoffs. Under certain circumstances, 

players may face the dominant or dominated strategies (players choose either the dominant 

strategy or avoid the dominant strategy)

 

1.6 Vaccination Game  

Pre-emptive voluntary vaccination benefits public health enormously. Vaccination, which 

is driven by people's attitude and decision, is one of the best public health provisions for 

preventing epidemics of infectious diseases [67-72]. The aspect of the human decision-

making process may be the result of a trade-off between protection and risks. People in a 

society choose the best strategy to maximize their payoffs, based on others' (neighbors) 

strategies. When a large fraction of individuals is vaccinated and have immunity against 

the disease, some people who have not vaccinated benefit from indirect protection. Thus, 

it might seem that an individual's decision is affected by others' perceived vaccination 

behavior that can lead to the vaccination level, and this level is suboptimal for the whole 

society. The expected disease prevalence and vaccine coverage can be estimated and 

analyzed by coupling the epidemic compartment model and game theory. 
 

1.7 Herd immunity  

   Herd immunity is the indirect protection from infectious disease provided by vaccinated 

individuals, which derives from mass vaccination or previous infection [73, 74]. When a 

large fraction of individuals in a population is vaccinated and has immunity against the 

disease, the remaining population who is not vaccinated benefits from the indirect 

protection. As the fraction of the vaccinated individuals reaching to the herd immunity 

threshold, there is less possibility to spread disease since there are not many suspected 

susceptible individuals, the chain of infection is congested, and the transmission of disease 

is prevented. The herd immunity threshold ℎ𝑐 is obtained from the simple SIR compartment 



 

11 
 

model for well mixed and infinite population [75]. The expression in terms of the basic 

reproduction number 𝑅0 is, ℎ𝑐 = 1 − 1/𝑅0. 

 

1.8 Free rider  

The term “free-rider” is a type of market failure that occurs a problem because while not 

paying for the good, they may continue to take advantage of the good. For example, people 

using a bus without paying the fare are called a free rider. The free-rider problem arises 

when too many people take the free-riding advantage. The view of free riding in vaccination 

[76] means that, when mass people perceived vaccination to avoid infection, an alternative 

strategy can appear not vaccinating, thus avoiding any risk of vaccine side effects and 

spending cost for vaccination. The unvaccinated population tries to keep themselves under 

the coverage of free riding to provide herd immunity. 

 

1.9 Social efficient deficit (SED) on vaccination game  

The situation of social dilemma is of great interest in evolutionary game theory because of 

its importance in explaining the evolution of cooperation in biological systems. The 

dilemma strength parameters [77–79] have been used to numerically characterize the social 

dilemma existing in a game. However, these parameters can only be defined in pairwise 

games and some specific multiplayer games having a simple payoff structure but are not 

able to apprehend more complicated games; for example, vaccination game. To reveal the 

existence of social dilemma associated with vaccination game systems, “social efficiency 

deficit” has been introduced to quantify the payoff difference between social optimum (the 

desired state of affairs) and Nash equilibrium (The content of SED is based on the article 

[80]). Thus, the SED indicates that the payoff can be improved from that at the NE. 

Mathematically, the SED is given by 

𝑆𝐸𝐷 = (social optimum payoff) − (payoff at Nash equilibrium) 

Here, SED = 0 implies no social dilemma, while any social dilemma causes a positive 

SED. According to the abovementioned conceptual definition, SED is given by, 

 𝑆𝐸𝐷 = 𝐴𝑆𝑃𝑠𝑜𝑐𝑖𝑎𝑙
𝑜𝑝𝑡 − 𝐴𝑆𝑃𝑁𝐸 . 
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 1.10 Motivation 

The key to developing the SVITR cyclic epidemic model lies in addressing the 

complexities and nuances associated with disease spread, vaccination, and treatment 

dynamics in a population. Conventional epidemic models, such as the classic SIR 

(Susceptible-Infectious-Recovered) model, provide valuable insights into disease 

dynamics but often overlook the role of vaccination and treatment strategies. The use of 

evolutionary game theory in the SVITR model provides a novel approach to studying the 

behavioral aspects of vaccination and treatment decisions among individuals in a society. 

Game theory allows researchers to analyze how individual choices influence the overall 

dynamics of disease control. It considers factors such as the effectiveness of vaccination 

and treatment, associated costs, and individual payoffs, making it a powerful tool for 

policy analysis and decision-making. The cyclic nature of the SVITR model further 

enhances its utility. Diseases often exhibit cyclical patterns, with outbreaks and periods of 

low activity. The model's ability to simulate these cyclical dynamics allows researchers to 

explore disease-free and endemic equilibria, providing insights into the stability and 

persistence of infections over time. Overall, the motivation behind the SVITR cyclic 

epidemic model is to provide a more comprehensive and realistic representation of disease 

spread, vaccination, and treatment dynamics. By incorporating evolutionary game theory 

and considering cyclical patterns, the model offers valuable insights into designing 

effective vaccination and treatment strategies, quantifying social benefits and dilemmas, 

and guiding public health interventions to control and prevent contagious diseases. 

 

1.11 Objective 

This research will enable us to develop an SVITRS (susceptible-vaccinated-infected-

treatment-recovered susceptible) epidemic model for the disease spread and the embedded 

vaccine and treatment behavioral dynamics by using extensive evolutionary game theory 

among the individuals in societies. Evolutionary epidemiological models have played an 

active part in analyzing various contagious diseases and intervention policies in the 

biological sciences. The specific objectives of this research are as follows: 
 

 To design the compartments for treatment and vaccination, so the system is 

modeled as susceptible, vaccinated, infected, treated, recovered and susceptible 

(SVITRS) epidemic dynamic. 
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 To study the rate of change from susceptible to vaccinated and infected to 

treatment in a comprehensive 2 evolutionary game theory with a cyclic epidemic 

model. 

 To investigate the cyclic SVITRS epidemic model framework for disease-free and 

endemic equilibrium to show stable conditions. To present the embedded 

vaccination and treatment strategies using extensive evolutionary game theory 

aspects among the individuals in society through a ridiculous phase diagram. 
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Chapter - 2 

Mathematical Preliminary 
 

 

2.1 Introduction 

The basic SIR epidemic model is a mathematical framework used to study the spread of 

infectious diseases. It consists of three compartments: susceptible (S), infected (I), and 

recovered (R). The dynamics of the model are described by a system of ordinary differential 

equations. The reproduction number, denoted as 𝑅0, is a key parameter in the model that 

represents the average number of secondary infections caused by a single infected 

individual in a completely susceptible population. If  𝑅0 > 1, the disease can spread in the 

population, while if it is less than 1, the disease will die out. The stability of equilibrium 

points in the SIR [13-19], model can be analyzed using various mathematical techniques, 

such as Lyapunov functions and LaSalle's invariance principle. A Lyapunov function is a 

scalar function that measures the distance of the system's state from the equilibrium point 

and can be used to determine stability properties. LaSalle's invariance principle states that 

the trajectories of the system will converge to the largest invariant set contained in the 

region where the Lyapunov function is decreasing. Local asymptotic stability for equilibria 

can be established using the linearization of the model around the equilibrium point. The 

next-generation method is a powerful approach to calculate the reproduction number in 

more complex epidemic models. It involves identifying the "next-generation matrix" that 

captures the interactions between different compartments in the model and calculating its 

dominant eigenvalue, which corresponds to the reproduction number. To apply the next-

generation method, one needs to specify the model equations, identify the infectious 

compartments, and derive the expressions for the transmission rates. Global asymptotic 

stability for equilibria is a desirable property in epidemiological models, indicating that the 

disease will eventually be eliminated from the population. Establishing global stability 

requires additional mathematical techniques, such as Lyapunov functions or comparison 

theorems. In summary, the SIR model and its analysis techniques, including the 



 

15 
 

reproduction number and stability analysis, provide valuable insights into the dynamics and 

control of infectious diseases [31]. 

 

2.2 Mathematical Explanation 

This chapter introduces some of the important mathematical theories and methodologies 

that are very relevant to the thesis. 

 

2.2.1 Basic SIR epidemic model and its Reproduction number 

The basic reproduction number  𝑅0, is defined as the expected number of secondary cases 

produced by a single (typical) infection in a completely susceptible population. It can use 

the fact that 𝑅0 is a dimensionless number to help us in calculating it 

𝑅0 ∝ (
𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

𝑐𝑜𝑛𝑡𝑎𝑐𝑡
).(

𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑡𝑖𝑚𝑒
) . (

𝑡𝑖𝑚𝑒

𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛
)  

More specifically: 

𝑅0   =  𝜏 ·  𝑐  ·  𝑑                                             

Where τ is the transmissibility (i.e., probability of infection given contact between a 

susceptible and infected individual), 𝑐 is the average rate of contact between susceptible 

and infected individuals, and 𝑑 is the duration of infectiousness.  

The simple SIR model assumes that the population is closed, meaning there is no migration, 

births, or deaths during the course of the epidemic. It also assumes that individuals only 

transition between the three compartments and that recovered individuals acquire lifelong 

immunity. The dynamics of the SIR model are described by a set of ordinary differential 

equations (ODEs) that govern the flow of individuals between the compartments. The 

equations are as follows: 

�̇� (𝑡)  =  −𝛽𝑆(𝑡)𝐼(𝑡)                                

𝐼̇( 𝑡)  =  𝛽𝑆(𝑡)𝐼(𝑡)  −  𝛾𝐼(𝑡)                             

�̇�(𝑡)  =  𝛾𝐼(𝑡)                                                        

Where 𝛽 =  𝜏 ·  𝑐 and is known as the effective contact rate, 𝛾 is the recovery rate. By 

assumption all rates are constant. This means that the expected duration of infection is 

simply the inverse of the removal rate:  𝑑 =   𝛾−1.An epidemic occurs if the number of 

infected individuals increases, i.e. 𝐼̇ >  0 

𝛽𝑆(𝑡)𝐼(𝑡) −  𝛾𝐼(𝑡) > 0  

𝛽𝑆(𝑡) 

𝛾
 >  1               
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At the outset of an epidemic, nearly everyone (except the index case) is susceptible. So we 

can say that 𝑆 ≈  1. Substituting 𝑆 =  1, we arrive at the following inequality 

                      
𝛽 

𝛾
= 𝑅0  >  1  

Since 𝛽 =  𝜏 𝑐¯ and   𝑑 =  𝛾−1, it can be seen that the expression for 𝑅0 given in first 

equation. This little bit of mathematical trickery explains why we have that cumbersome 

phrase “in a completely susceptible population” tacked onto our definition for   𝑅0.   

 

2.2.2 Stability of equilibrium point 
 

The stability of an equilibrium point in a dynamic system can be analyzed mathematically 

using different methods. Consider a system described by differential equations: 

 �̇� =  𝑓(𝑥) 

Where x represents the vector of state variables and 𝑓(𝑥) represents the vector-valued 

function that describes the dynamics of the system. 

To determine the stability of the equilibrium point,  analyze the eigenvalues of the Jacobian 

matrix J. The Jacobian matrix represents the partial derivatives of a vector-valued function 

with respect to its variables. The eigenvalues λ of J provide information about the behavior 

of the system near the equilibrium point. The stability conditions are as follows: 

 If all eigenvalues have negative real parts  (𝑅₀ (𝜆)  <  0) , the equilibrium point is 

stable. The system converges to the equilibrium point as time progresses. 

 If at least one eigenvalue has a positive real part (𝑅₀ (𝜆)  >  0), the equilibrium 

point is unstable. The system diverges from the equilibrium point. 

 If there are eigenvalues with zero real parts (𝑅₀ (𝜆)  =  0), further analysis is 

required. Higher-order terms of the Taylor expansion need to be considered to 

determine stability. Methods like center manifold analysis or normal form theory 

can be employed in such cases. 

It is clear from this context that stability analysis can become more complex for nonlinear 

systems, and other techniques like Lyapunov stability analysis or bifurcation analysis may 

be necessary to assess stability in those cases. By mathematically analyzing the stability of 

equilibrium points, it can understand dynamic systems' long-term behavior and 

predictability, which are crucial in various fields such as physics, engineering, biology, and 

economics. 
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2.3 Lyapunov functions and LaSalle’s invariance 

Principle 

Lyapunov functions and LaSalle's invariance principle are mathematical tools used in the 

stability analysis of dynamical systems. They help determine the behavior and stability 

properties of equilibrium points or invariant sets. 

 

2.3.1 Lyapunov Functions 

A Lyapunov function is a scalar function that measures the stability properties of a 

dynamical system. It is typically used to determine the stability, or asymptotic stability, of 

an equilibrium point. Let's consider a system described by �̇� =  𝑓(𝑥), where 𝑥 is the vector 

of state variables and 𝑓(𝑥) represents the system dynamics. 

A Lyapunov function 𝑉(𝑥) is a scalar function defined in the system's state space. It has 

the following properties: 

 𝑉(𝑥) is positive definite: 𝑉(𝑥)  >  0 for all 𝑥 ≠ 0, and V(𝑥) = 0 only at the 

equilibrium point(s). 

 𝑉(𝑥) is radially unbounded: 𝑉(𝑥)  →  ∞  as  ||𝑥||  →  ∞, where ||𝑥||  represents 

the norm of the state vector. 

 𝑉(𝑥) has a negative definite derivative: �̇�(𝑥) <  0 for all 𝑥 ≠ 0.  

If a Lyapunov function satisfying these properties can be found, it implies that the 

equilibrium point is stable or asymptotically stable. Specifically: 

The equilibrium point is globally asymptotically stable if  �̇�(𝑥) <  0  for all x ≠ 0. 

If  �̇�(𝑥)  <  0 ≤  0 for all x ≠ 0, the equilibrium point is globally stable but not necessarily 

asymptotically stable. 

 

2.3.2 LaSalle's Invariance Principle 

LaSalle's invariance principle is a result that provides information about the behavior of   

trajectories within a region of attraction around an equilibrium point. It states that if a 

Lyapunov function V(x) exists for the system such that its derivative �̇�(𝑥) is non-positive 

within a compact set D containing the equilibrium point, then the trajectories of the system 

starting in D will eventually converge to the largest invariant set contained in D where 

�̇�(𝑥)  =  0. 
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In simpler terms, LaSalle's invariance principle helps to identify the set of points where the 

trajectories of a system converge and remain, even if they do not converge to a specific 

equilibrium point. It provides a more general notion of stability and is particularly useful 

when dealing with systems that have multiple equilibrium points or limit cycles.  

By utilizing Lyapunov functions and LaSalle's invariance principle, stability properties of 

dynamical systems can be analyzed, and conclusions can be drawn about the behavior of 

the system near equilibrium points or within certain invariant sets. These tools are 

fundamental in various fields of study, including control theory, robotics, and dynamical 

systems analysis. 

 

  2.4 Method for local asymptotic stability for equilibria 

2.4.1 Next generation method 

A next-generation method is a mathematical approach used in epidemiology to estimate the 

basic reproduction number (R₀) in infectious disease models. R₀ represents the average 

number of secondary infections caused by a single infectious individual in a completely 

susceptible population. The next-generation method allows for the calculation of R₀ by 

analyzing the transmission dynamics of the disease. It involves identifying the key factors 

that contribute to disease transmission and quantifying their impact on the spread of the 

infection. The next-generation matrix (also known as the next-generation operator) is a 

different concept used in mathematical models to describe the transmission dynamics of 

infectious diseases. It is commonly used in the context of compartmental models such as 

the SIR model. 

 

Example of generation matrix 

Consider a simplified example where are two compartments: Susceptible (S) and Infected 

(I). In this case, the next-generation matrix represents the average number of new infections 

caused by individuals in the Infected (I) compartment to individuals in the Susceptible (S) 

compartment. 

Suppose the following next-generation matrix: 
 

 𝐹 = |
𝑓11 𝑓12

𝑓21 𝑓22
| 

In this matrix, the element 𝑓𝑖𝑗 represents the average number of new infections in the 

Susceptible (S) compartment caused by each infected individual in the Infected (I) 

compartment. The next-generation matrix is used in combination with the population vector 



 

19 
 

and other parameters of the disease model to calculate the basic reproduction number (R₀). 

R₀ is the dominant eigenvalue of the next-generation matrix and provides insight into the 

potential for disease transmission. 

 

  2.4.2 Basic steps involved in applying the next generation       

method 

Define the compartmental model 

Construct a compartmental model that represents the different population groups involved 

in disease transmission. Common models include the SIR (Susceptible-Infected-

Recovered) or SEIR (Susceptible-Exposed-Infected-Recovered) models. 

 

Identify the transmission pathways 

Determine the pathways through which the infection spreads in the population. This 

involves identifying the interactions between different compartments and the associated 

transmission rates. 

 

Calculate the next-generation matrix 

Construct a square matrix, often denoted as F, which represents the expected number of 

secondary infections caused by an infected individual in each compartment. The elements 

of matrix F quantify the transmission rates between compartments. 

 

Compute the eigenvalue 

Find the largest eigenvalue (spectral radius) of the next-generation matrix F. This can be 

done numerically or analytically. By estimating 𝑅₀, one can assess the potential for disease 

spread. If 𝑅₀ >  1, it suggests that the disease is likely to cause an epidemic, as each 

infected individual, on average, infects more than one susceptible individual. If  𝑅₀ <  1, 

the disease is expected to die out over time. The next-generation method provides a 

quantitative measure of disease transmissibility and is useful for understanding the impact 

of various interventions on controlling or mitigating the spread of infectious diseases. It's 

worth noting that the next-generation method assumes a well-mixed population and certain 

simplifications in disease dynamics. It may not capture all the complexities of real-world 

scenarios and may require adaptations or refinements for specific diseases or contexts. 
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2.5 Global asymptotic stability for equilibria 

Global asymptotic stability of equilibria refers to a property of a dynamical system in which 

all trajectories starting from any initial condition in the system's state space converge to an 

equilibrium point as time goes to infinity. To determine the global asymptotic stability of 

equilibria, various mathematical methods, and criteria can be applied. Some common 

approaches include Lyapunov's direct method, LaSalle's invariance principle, and the use 

of Lyapunov functions. 

 

2.6 Reproduction number 

The reproduction number (𝑅₀), also known as the basic reproduction number, is a 

fundamental concept in epidemiology that measures the average number of new infections 

generated by each infected individual in a population where everyone is susceptible. 

Mathematically, the reproduction number can be defined as the product of the contact rate 

(denoted by   𝛽) and the average duration of infectiousness (denoted by I), divided by the 

recovery rate (denoted by  𝛾). This can be expressed as: 

 𝑅₀ =   ((𝛽 ∗  𝐼) )/( 𝛾) 

Here's a breakdown of the components: 

 Contact rate (β): This represents the average rate at which an infected individual 

comes into contact with susceptible individuals and can transmit the disease. It 

depends on factors such as population density, social interactions, and the nature 

of the disease. 

 Average duration of infectiousness (I): It refers to the average period during which 

an infected individual remains infectious and capable of transmitting the disease 

to others. The duration may vary depending on the specific disease. 

 Recovery rate (γ): It represents the rate at which infected individuals recover from 

the disease or are removed from the infectious population through other means 

(such as hospitalization or death). 

If 𝑅₀ is less than 1 (𝑅₀ <  1), it indicates that each infected individual, on average, infects 

fewer than one susceptible individual, leading to a decline in the number of cases over time. 

In this case, the disease is likely to die out in the long run. On the other hand, if R₀ is greater 

than 1 (𝑅₀ >  1), it suggests that each infected individual, on average, infects more than 

one susceptible individual, leading to sustained transmission and the potential for an 

epidemic outbreak. 
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Chapter - 3 

Susceptible- Vaccinated- infected- treated 

and recovered (SVITR) Model 
 

 

3.1 Introduction  

The SVITR epidemic model is an extension of the classical SIR model that incorporates 

behavioral dynamics and social interactions into the disease transmission process. The 

model structure includes five compartments: susceptible (S), vaccinated (V), infected (I), 

treated (T), and recovered (R). The formulation of the SVITR model involves a system of 

ordinary differential equations that describe the flow of individuals between these 

compartments, accounting for the effects of vaccination, treatment, and behavioral changes. 

The model ensures the positivity and boundedness of the solutions, meaning that the 

population sizes in each compartment remain non-negative and finite. The average social 

payoff in the SVITR model quantifies the net benefits or costs experienced by individuals 

due to their behaviors, vaccination, and treatment decisions. The social efficiency deficit 

(SED) measures the discrepancy between the optimal state of the system and the actual 

state resulting from individual decisions [46, 47]. Social benefitted individuals (SBI) 

represent the individuals who gain positive benefits from their actions in terms of reduced 

infection risk or improved health outcomes. The mathematical analysis of the SVITR model 

involves deriving the basic reproduction number ( 𝑅0) and the effective reproduction 

number (𝑅𝑒).  𝑅0 represent the average number of secondary infections caused by a single 

infected individual in a completely susceptible population, while 𝑅𝑒 accounts for the effects 

of behavioral changes, vaccination, and treatment on disease transmission. The existence 

of an endemic equilibrium in the model signifies a stable persistent state where the disease 

remains prevalent in the population. The model also examines the existence of a uniformly 

stable solution, which ensures that the population eventually converges to a disease-free 

state. Additionally, a modified version of the model with the second derivative considers 

the strength number, which captures the effectiveness of treatment in reducing disease 

transmission. 
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3.2 Model Structure    

This section presents the dynamic model for disease spreading and the embedded vaccine 

and treatment behavioral dynamics among the individuals in society. Assume the SVITRS 

cyclic epidemic model, in which the total population is divided into five epidemiological 

compartments: susceptible(S), vaccinated (𝑉), infected(I), treatment(𝑇), and recovered 

(R) individuals. Our model is governed by the following assumptions: All parameters are 

nonnegative, the total population size is constant, vaccination is introduced to the 

susceptible individuals, susceptible individuals are recruited by birth or immigration, the 

treated individuals cannot transmit disease to the susceptible population, and by losing 

temporary immunity the recovered individuals become susceptible again. The 

compartments and parameters of the model are described in (figure 1). 
 

3.2.1 Formulation of the SVITR model 

Mathematical models are important tools to gain a big understanding of the ongoing trends 

for COVID-19. They are also useful for obtaining a basic reproduction number, 

determining sensitivities to change in parameter values, estimating key parameters from 

the data that contribute to identifying trends, making general forecasts, and estimating 

uncertainties [60]. Epidemiological models play a fundamental role in the study of the 

dynamics of COVID-19. With regard to the studies carried out so far, a few mathematical 

modeling studies have been done about transmission of the pandemic. 

Here, use two control measures, namely, vaccination and treatment, to control more 

optimally the spread of infection from a community because sometimes only one control 

variable may be challenging to eradicate the disease successfully. A susceptible individual 

becomes infected at a disease transmission 𝛽 and alternatively can participate vaccine 

program at a dynamic rate 𝑥. A vaccinated may be infected at the rate (1 − 𝜂)𝛽, even after 

participating in the vaccine program, where 𝜂 denotes vaccine effectiveness (0 ≤  𝜂 ≤ 1). 

After infection, two different cases can happen to an infected person. Either individual will 

get treatment at rate, 𝜏 or they will recover naturally at rate 𝛾. A treated individual recovers 

after treatment at a rate 𝛿. Finally, an individual who has recovered after infection is 

immune; they can get susceptible again at a waning immunity rate 𝜔. 
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Figure 3.1: SVITR Model Structure 

 

The dynamical equation of SVITRS is given by, 

�̇� = −𝛽𝑆𝐼 − 𝑥𝑆 + 𝜔𝑅,                                                                                                   (1) 

�̇� = 𝑥𝑆 − (1 − 𝜂)𝛽𝑉𝐼,                                                                                                   (2)                                                                               

𝐼̇ = 𝛽𝑆𝐼 + (1 − 𝜂)𝛽𝑉𝐼 − 𝛾𝐼 − 𝜏𝐼,                                                                                            (3)                                                                                                   

�̇� = 𝜏𝐼 − 𝛿𝑇,                                                                                                                                  (4)                                                                                                                                      

�̇� = 𝛿𝑇 + 𝛾𝐼 − 𝜔𝑅.                                                                                                                      (5) 

Here, 𝑆(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) + 𝑇(𝑡) + 𝑅(𝑡) = 1. To solve the above sets of differential 

equations (1-5) against time numerically, we consider explicit finite difference method with 

the initial values as, 𝑆(0) ≈ 1.0, 𝑉(0) ≈ 0.0, 𝐼(0) ≈ 0.0, 𝑇(0) = 0.0, and 𝑅(0) = 0.0.  

 

3.2.2 Validation of model 

An epidemic of influenza occurred in a boarding school in the north of England. The 

boarding school housed a total of 763 boys, who were at risk during the epidemic. On 

January 22, three boys were sick. The table below gives the number of boys ill on the nth 

day after January 22 (𝑛 =  1).  
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Table 3.1: Daily number influenza infected boys 

  

 

 

 

 

 

 

 

[Data taken from “Influenza in a Boarding School,” British Medical Journal, 4 March 1978] 

 

Since these are outbreak data, using an epidemic model without demography as discussed 

in Chap. 2, the SIR model without demography is appropriate for this case. 

The best-fitted solution with Mathematica and the data are plotted in Figure 3.2. 

Mathematica can also provide 95% confidence intervals. A 95% confidence interval (CI) 

is an interval calculated from many observations, in principle different from data set to data 

set, that 95% of the time will include the parameter of interest if the experiment is repeated. 

The CI for the above fitting are [0.4257, 0.5037] for 𝛼 and [0.0022099, 0.00254] for 𝛽. 

 

 

 

Figure 3.2:  Validation of an SIR model with English boarding school data 

 

Day No. infected Day No. infected 

3 25 9 192 

4 75 10 126 

5 227 11 71 

6 296 12 28 

7 258 13 11 

8 236 14 7 
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3.2.3 Behavioral Dynamics  

Individuals can take vaccination and treatment based on their interests and their strategy by 

observing how many people are infected at a given time in a single season. In the behavioral 

dynamics, each participant can choose proactive intervention whether to participate vaccine 

program or not, depending on the vaccine cost and associated factors. Further, if infected 

individuals want to take treatment facilities termed retroactive provision, they compare 

their strategies to recover time, treatment cost, and disease incidence. Thus, if the individual 

becomes vaccinated and treated at a vaccination rate (x) and a treatment rate (τ), the 

equation that describes the human behavioral dynamics are, 

 �̇� = 𝑚𝑥(1 − 𝑥)[−𝐶𝑉𝑉 + 𝐶𝑖𝐼],                                                                                                     (6)                                                                                                                                 

�̇� = 𝑚𝜏(1 − 𝜏) [−𝐶𝑇𝑇 + 𝐶𝑖𝐼 + (
1

𝛾
−

1

𝛿
)].                                                                        (7)                                                                                                                                                                                   

Here, 𝐶𝑣 is the relative cost of vaccination and 𝐶𝜏 𝑖𝑠 𝑡ℎ𝑒 relative cost of treatment as 

compared with the disease cost, 𝐶𝑖 (= 1). The term in equation (6), [−𝐶𝑇𝑉 + 𝐶𝑖𝐼], is the 

payoff difference (gain) between cooperation and defection and its sign (positive or 

negative) decides whether to vaccinate or not. Similarly, in equation (7), the term 

[−𝐶𝑇𝑇 + 𝐶𝑖𝐼 + (
1

𝛾
−

1

𝛿
)] is the payoff gain for treatment strategies potentially indicates 

how much more beneficial instead taking treatment (treated) is than not taking treatment 

(untreated) is in terms of disease duration. With increase of 𝛿 as compared with 𝛾, the 

treatment provides a patience an immediate recovery from illness.  Thus, (
1

𝛾
−

1

𝛿
) implies 

‘willingness’ amid infected people to take the treatment than doing nothing. 

 

3.2.4 Model’s positivity and boundedness of the solutions 

Here, some of the actual results related to the theoretical analysis of the model will be 

present [48–53]. The primary goal is to get an asymptotic understanding of how the virus 

will propagate, ensuring that the model's explanations are accurate by requiring positivity 

and boundedness. The asymptotic local stability study by finding the model's disease-free 

equilibrium will be verified and also calculate the reproduction number and the existence 

of a uniformly stable situation for the exactness of the solution.  

Mainly focus on the proposed model’s positivity and boundedness, which certifies the 

exactness of the model’s solutions in this part. Thus, for infected class 𝐼(𝑡), it  may write, 

𝐼(𝑡) ≥ 𝐼0𝑒−(𝛾+𝜏)𝑡, ∀𝑡 ≥ 0. 

Similarly, the treatment class 𝑇(𝑡) is expressed as follows, 
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𝑇(𝑡) ≥ 𝑅0𝑒−𝛿𝑡, ∀𝑡 ≥ 0. 

Furthermore, the recovered class 𝑅(𝑡) is,  

𝑅(𝑡) ≥ 𝑅0𝑒−𝜔𝑡, ∀𝑡 ≥ 0. 

Hence, the norm of the domain 𝐷𝜑 where 𝜑 ∈ 𝐷𝜑 [53], put out in the following way 

‖𝜑‖∞ = sup
𝑡𝜖𝐷𝜑

|𝜑(𝑡)| 

Analogously, utilizing the overhead norm, the vaccinated and susceptible classes are 

likewise represented as follows, 

�̇� = 𝑥𝑆 − (1 − 𝜂)𝛽𝑉𝐼, ∀𝑡 ≥ 0 

     ≥ −{(1 − 𝜂)𝛽𝐼}𝑉, ∀𝑡 ≥ 0 

     ≥ −{(1 − 𝜂)𝛽|𝐼|}𝑉, ∀𝑡 ≥ 0 

     ≥ {−(1 − 𝜂)𝛽sup
𝑡𝜖𝐷𝐼

|𝐼|}𝑉, ∀𝑡 ≥ 0 

      ≥ −{(1 − 𝜂)𝛽‖𝐼‖∞}𝑉, ∀𝑡 ≥ 0 

Therefore, 𝑉(𝑡) ≥ 𝑉0𝑒−{(1−𝜂)𝛽‖𝐼‖∞}𝑡, ∀𝑡 ≥ 0.   �̇�=−𝛽𝑆𝐼 − 𝑥𝑆 + 𝜔𝑅                                                                                                                                     

In the same way, 𝑆(𝑡) ≥ 𝑆0𝑒−(𝛽‖𝐼‖∞+𝑥)𝑡, ∀𝑡 ≥ 0. 

Finally, it concluded that the suggested model and its solution are both positive and 

bounded. 

 

3.3 Average Social Payoff    

To establish the average social payoff (ASP) at the end of the epidemic season, consider 

the combined effect of vaccination and treatment in the same con-text. The ASP for the 

evolutionary game theory aspect at Nash equilibrium is given by,   

     𝐴𝑆𝑃𝑁𝐸 = −𝐶𝑉𝑉(∞) − 𝐶𝑇 ∫ 𝑇(𝜃)
∞

0
𝑑𝜃 − 𝑅(∞).                                                                   (8)                                                                                         

Where, 𝐴𝑆𝑃𝑁𝐸 indicates the payoff at Nash equilibrium (NE), estimated when both games 

(vaccination and treatment) have arrived at a steady state on the local time scales. 

 

3.4 Social Efficiency Deficit (SED) 

Social efficiency deficit (SED) defines as the difference between the result of the 

evolutionary train (which can be evaluated by the Nash equilibrium NE) and the optimum 

solution (without EGT). The payoff at the NE is obtained by taking an evolutionary game 

presence, whereas the optimal social gain is remark-able in a model of any complicacy. 

Therefore, one can evaluate the SED in any context and forecast the phenomenon of social 
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dilemma; if the SED is positive, the gap exists; if it is zero, the evolutionary train matches 

the optimum (SED=0 implies no social dilemma). The SED is given by, 

 𝑆𝐸𝐷 = 𝐴𝑆𝑃𝑆𝑂 − 𝐴𝑆𝑃𝑁𝐸 .                                                                                                              (9)        

where, 𝐴𝑆𝑃𝑆𝑂 and 𝐴𝑆𝑃𝑁𝐸 define the payoff at the optimal social situation and Nash 

equilibrium, respectively. Here, the explicitly reveals the underlying social dilemmas in 

the vaccination and treatment game by introduce SED. The social dilemma exists under 

certain combinations of the model parameter, such as vaccine efficacy, treatment duration 

and their associated cost. Now, consider the combined impact of vaccination and treatment 

in the same context.  

In according to the abovementioned conceptual definition, SED in the current model for 

both vaccination and treatment games are given by,    

 𝑆𝐸𝐷𝑉 = 𝐴𝑆𝑃𝑥𝑘

𝑋𝑠𝑜𝑐𝑖𝑎𝑙
𝑜𝑝𝑡.

− 𝐴𝑆𝑃𝑥𝑘,𝜏𝑘
𝑁𝐸 ,                                                                                   (10.1)                       

 𝑆𝐸𝐷𝑇 = 𝐴𝑆𝑃 𝜏𝑘

𝑇𝑠𝑜𝑐𝑖𝑎𝑙
𝑜𝑝𝑡.

− 𝐴𝑆𝑃𝑥𝑘,𝜏𝑘
𝑁𝐸 .                                                                                    (10.2) 

The ASP is the quantity of payoff. The superscript ‘Opt’ and subscript ‘social’ together 

indicate the social optimal. In which, 𝐴𝑆𝑃𝑥𝑘,𝜏𝑘
𝑁𝐸  indicates the average social payoff at the 

NE, estimated when both games, vaccination and treatment have occurred together on the 

local time scales. To understand the 𝐴𝑆𝑃𝑥𝑘

𝑋𝑠𝑜𝑐𝑖𝑎𝑙
𝑜𝑝𝑡.

 and  𝐴𝑆𝑃 𝜏𝑘

𝑇𝑠𝑜𝑐𝑖𝑎𝑙
𝑜𝑝𝑡.

 The terms 𝑋𝑠𝑜𝑐𝑖𝑎𝑙
𝑜𝑝𝑡.

 and 

𝑃𝑠𝑜𝑐𝑖𝑎𝑙
𝑜𝑝𝑡.

 reflect the statement that the maximum ASP is obtained for varying x ranging from 

0 to 1 (for fixed 𝜏𝑘) and varying 𝜏 from 0 to 1(for fixed 𝑥𝑘), respectively. 

 

3.5 Social Benefitted Individuals (SBI) 

To introduce the concept of socially benefitted individuals (SBI) on an epidemic model 

embedding with EGT, consider the fraction of individuals who benefit from either 

vaccination or treatment. For SBI, we first calculate the final epidemic size (FES) in the 

absence of vaccination and treatment, FESNV and FESNT, respectively, at equilibrium. 

Next, vaccination and treatment game strategy are calculated at NE in the presence of 

either vaccination or treatment strategies, defined by FESV and FEST. Finally,  formulate 

the SBI as follows,   

  𝑆𝐵𝐼𝑉(∞) = FES𝑁𝑉(∞) − FES𝑉(∞),                                                                                                                (11.1) 

  𝑆𝐵𝐼𝑇(∞) = FES𝑁𝑇(∞) − FES𝑇(∞).                                                                           (11.2) 
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To solve the proposed epidemic model that belongs to the sets of differential equations by 

Consider the explicit finite difference method for a single season numerically. Here, 

presume the initial values as, 𝑆(0) ≈ 1.0, 𝑉(0) = 0.0, 𝐼(0) ≈ 0.0, 𝑇(0) = 0.0, and 

𝑅(0) = 0.0. Throughout the time step is to consider ∆𝑡 = 1, meaning both strategy and 

epidemic dynamics update daily (per day).  

 

3.6 Mathematical Analysis 

3.6.1 Disease-free equilibrium (DFE) point and its stability  

The disease-free equilibrium, symbolized by ℰ0, is the point at which there is no infection 

in the population at equilibrium stage and all infected classes will have a zero value. To 

calculate the DFE of the proposed model, put 𝐼 = 0 in the system (1-5). Then  get the DFE 

of the current model is ℰ0 = (𝑆0, 𝑉0, 𝐼0, 𝑇0, 𝑅0) = (𝑆∗, 𝑉∗, 0,0,0); 𝑆∗ + 𝑉∗ = 𝑁(= 1). 

 

3.6.2 Derivation of the basic reproduction (𝑹𝟎) and effective 

reproduction number (𝑹𝒆) 

Calculate the basic reproduction number, 𝑅0 to show stable equilibrium conditions to 

analyze the preliminary theoretical investigation. Consider the next-generation matrix [45] 

technique to evaluate the basic reproduction number, as follows: 
 

 𝐹 = [
𝛽𝑠∗ + 𝛽(1 − 𝜂)𝑉∗ 0

0 0
], 

 𝑉 = [
𝛾 + 𝜏 0
−𝜏 𝛿

], 

 𝐹𝑉−1 =
1

𝛿(𝛾+𝜏)
[
𝛿[𝛽𝑠∗ + 𝛽(1 − 𝜂)𝑣∗] 0

0 0
]. 

As basic reproduction number is the most considerable eigenvalue of 𝐹𝑉−1 thus, 

𝑅0 = 
𝛽𝑠∗ + 𝛽(1 − 𝜂)𝑣∗

𝛾 + 𝜏
. 

Furthermore, the time-dependent reproduction number is known as the effective 

reproduction number 𝑅𝑒 is, 

 𝑅𝑒(𝑡) =  
𝛽

𝛾+𝜏
𝑆(𝑡) +

(1−𝜂)𝛽

𝛾+𝜏
𝑉(𝑡). 
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Theorem 1. If 𝑅0 < 1, then the disease-free equilibrium 𝐸0 is locally asymptotically 

stable. If 𝑅0 > 1, the disease-free equilibrium is unstable. 

Proof: Let us compute the proposed model’s Jacobian matrix is as 

𝐽 =

[
 
 
 
 
−𝛽𝐼 − 𝑥 0 −𝛽𝑆 0 𝜔

𝑥 −(1 − 𝜂)𝛽𝐼 −(1 − 𝜂)𝛽𝑉 0 0
𝛽𝐼 (1 − 𝜂)𝛽𝐼 𝛽𝑆 + (1 − 𝜂)𝛽𝑉 − 𝛾 − 𝜏 0 0
0 0 𝜏 −𝛿 0
0 0 𝛾 𝛿 −𝜔]

 
 
 
 

 

Substituting the value of the DFE point 𝐸0, then obtain 

𝐽(𝐸0) =  

[
 
 
 
 
−𝑥 0 −𝛽𝑠∗ 0 𝜔
𝑥 0 −(1 − 𝜂)𝛽𝑣∗ 0 0
0 0 𝛽𝑠∗ + 𝛽(1 − 𝜂)𝑣∗ − 𝛾 − 𝜏 0 0
0 0 𝜏 −𝛿 0
0 0 𝛾 𝛿 −𝜔]

 
 
 
 

 

The characteristics equation |𝐽(𝐸0) − 𝜆𝐼| = 0 has five roots, which are  

𝜆1 = −𝜔, 𝜆2 = −𝛿, 𝜆3 = −𝑥 , 𝜆4 = −𝜆 − 𝜏 + 𝛽𝑠∗ + 𝛽(1 − 𝜂)𝑣∗   𝜆5 = 0. 

As all eigenvalues are negative or equal to zero, therefore, conferring to Routh-Hurwitz 

criteria [56], it  can easily accomplish that the model is locally asymptotically stable at the 

disease-free equilibrium point 𝐸0 whenever 𝑅0 < 1 and unstable whenever 𝑅0 > 1. 

 

3.6.3   Existence of endemic equilibrium 

In this part, an investigation of endemic equilibrium points denoted by ℰ∗ =

(𝑆∗, 𝑉∗, 𝐼∗, 𝑇∗, 𝑅∗) is whether exists or not. For the endemic equilibrium point, we consider 

the equations as follows, 

0 = −𝛽𝑆𝐼 − 𝑥𝑆 + 𝜔𝑅,                                                                                                          

0 = 𝑥𝑆 − (1 − 𝜂)𝛽𝑉𝐼,                                                                                                                    

0 = 𝛽𝑆𝐼 + (1 − 𝜂)𝛽𝑉𝐼 − (𝛾 + 𝜏)𝐼,                                                                                                                   

0 = 𝜏𝐼 − 𝛿𝑇,                                                                                                                                                   

0 = 𝛿𝑇 + 𝛾𝐼 − 𝜔𝑅.                                    

After some simplification,   

 𝑆∗ =
𝛾+𝜏

𝛽𝐼∗+𝑥
𝐼∗,                                          

 𝑉∗ =
𝑥(𝛾+𝜏)

𝛽(𝛽𝐼∗+𝑥)(1−𝜂)
, 

 𝑇∗ =
𝜏

𝛿
𝐼∗ 

 𝑅∗ =
𝛾+𝜏

𝜔
𝐼∗.                                                      
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Theorem 2. Let the Lyapunov function 𝐿𝑓 for the endemic equilibrium point ℰ∗ is 

{𝑆, 𝑉, 𝐼, 𝑇, 𝑅}, 𝐿𝑓 < 0. Have to prove  ℰ∗ is globally asymptotically stable for 𝑅0 >1. 

Proof: Let us suppose that the Lyapunov function is, 

𝐿𝑓(𝑆, 𝑉, 𝐼, 𝑇, 𝑅) = (𝑆 − 𝑆∗ − 𝑆∗𝑙𝑜𝑔
𝑆∗

𝑆
) + (𝑉 − 𝑉∗ − 𝑉∗𝑙𝑜𝑔

𝑉∗

𝑉
) + (𝐼 − 𝐼∗ − 𝐼∗𝑙𝑜𝑔

𝐼∗

𝐼
) 

+(𝑇 − 𝑇∗ − 𝑇∗𝑙𝑜𝑔
𝑇∗

𝑇
) + (𝑅 − 𝑅∗ − 𝑅∗𝑙𝑜𝑔

𝑅∗

𝑅
)                                                              (12) 

After applying the first derivative, on both sides of the equation (12) for 𝑡, obtain 

𝐿�̇� = (
𝑆 − 𝑆∗

𝑆
) �̇� + (

𝑉 − 𝑉∗

𝑉
) �̇� + (

𝐼 − 𝐼∗

𝐼
) 𝐼̇ + (

𝑇 − 𝑇∗

𝑇
) �̇� + (

𝑅 − 𝑅∗

𝑅
) �̇�                   (13) 

Substituting the values of �̇�, �̇�, 𝐼,̇ �̇�, �̇� from the equation (1-5) in equation (13), find that, 

𝐿�̇� = (
𝑆 − 𝑆∗

𝑆
) {−𝛽𝑆𝐼 − 𝑥𝑆 + 𝜔𝑅} + (

𝑉 − 𝑉∗

𝑉
) (𝑥𝑆 − (1 − 𝜂)𝛽𝑉𝐼)    

+(
𝐼 − 𝐼∗

𝐼
) (𝛽𝑆𝐼 + (1 − 𝜂)𝛽𝑉𝐼 − (𝛾 + 𝜏)𝐼) + (

𝑇 − 𝑇∗

𝑇
) (𝜏𝐼 − 𝛿𝑇)

+ (
𝑅 − 𝑅∗

𝑅
) (𝛿𝑇 + 𝛾𝐼 − 𝜔𝑅)                                                                       (14) 

Substitute 𝑆 = 𝑆 − 𝑆∗, 𝑉 = 𝑉 − 𝑉∗, 𝐼 = 𝐼 − 𝐼∗, 𝑇 = 𝑇 − 𝑇∗, 𝑅 = 𝑅 − 𝑅∗ in equation (14),  

𝐿�̇� = 𝐿�̇� = (
𝑆 − 𝑆∗

𝑆
) {−𝛽(𝑆 − 𝑆∗)(𝐼 − 𝐼∗) − 𝑥(𝑆 − 𝑆∗) + 𝜔(𝑅 − 𝑅∗)}

+ (
𝑉 − 𝑉∗

𝑉
) {𝑥(𝑆 − 𝑆∗) − (1 − 𝜂)𝛽(𝑉 − 𝑉∗)(𝐼 − 𝐼∗)}

+ (
𝐼 − 𝐼∗

𝐼
) {𝛽(𝑆 − 𝑆∗)(𝐼 − 𝐼∗) + (1 − 𝜂)𝛽(𝑉 − 𝑉∗)(𝐼 − 𝐼∗)

− (𝛾 + 𝜏)(𝐼 − 𝐼∗)} + (
𝑇 − 𝑇∗

𝑇
) {𝜏(𝐼 − 𝐼∗) − 𝛿(𝑇 − 𝑇∗)}

+ (
𝑅 − 𝑅∗

𝑅
) {𝛿(𝑇 − 𝑇∗) + 𝛾(𝐼 − 𝐼∗) − 𝜔(𝑅 − 𝑅∗)}.                               (15) 

Equation (15) can be written as 

𝐿�̇� = ψ1 − ψ2                                                                                                                               (16) 

where,  

𝜓1 = 𝜔
𝑆 − 𝑆∗

𝑆
𝑅 + 𝛽

(𝑆 − 𝑆∗)2

𝑆
𝐼∗ + 𝑥

𝑉 − 𝑉∗

𝑉
𝑆 + (1 − 𝜂)𝛽

(𝑉 − 𝑉∗)2

𝑉
𝐼∗

+ 𝛽
(𝐼 − 𝐼∗)2

𝐼
𝑆 + (1 − 𝜂)𝛽

(𝐼 − 𝐼∗)2

𝐼
𝑉 + 𝜏

𝑇 − 𝑇∗

𝑇
𝐼 + 𝛿

𝑅 − 𝑅∗

𝑅
𝑇

+ 𝛾
𝑅 − 𝑅∗

𝑅
𝐼, 

and 
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𝜓2 = 𝛽
(𝑆 − 𝑆∗)2

𝑆
𝐼 + 𝑥

(𝑆 − 𝑆∗)2

𝑆
+ 𝜔

𝑆 − 𝑆∗

𝑆
𝑅∗ + 𝑥

𝑉 − 𝑉∗

𝑉
𝑆∗ + (1 − 𝜂)𝛽

(𝑉 − 𝑉∗)2

𝑉
𝐼

+ 𝛽
(𝐼 − 𝐼∗)2

𝐼
𝑆∗ + (1 − 𝜂)𝛽

(𝐼 − 𝐼∗)2

𝐼
𝑉∗ + (𝛾 + 𝜏)

(𝐼 − 𝐼∗)2

𝐼

+ 𝜏
𝑇 − 𝑇∗

𝑇
𝐼∗ + 𝛿

(𝑇 − 𝑇∗)2

𝑇
+ 𝛿

𝑅 − 𝑅∗

𝑅
𝑇∗ + 𝛾

𝑅 − 𝑅∗

𝑅
𝐼∗

+ 𝜔
(𝑅 − 𝑅∗)2

𝑅
. 

It is evident that 𝐿�̇� < 0 when 𝜓1 < 𝜓2. 

Therefore, for 𝑆 = 𝑆∗, 𝑉 = 𝑉∗, 𝐼 = 𝐼∗, 𝑇 = 𝑇∗, 𝑅 = 𝑅∗  

From equation (16),⇒ 0 = 𝜓1 − 𝜓2, Implies⇒ 𝐿�̇� = 0.                                                 (17) 

In that case, according to Lasalle’s invariance principle, the endemic equilibrium point ℰ∗ 

is globally asymptotically stable in Γ when 𝜓1 < 𝜓2 for compact invariant set,  

{(𝑆∗, 𝑉∗, 𝐼∗, 𝑅∗) ∈ Γ: 𝐿�̇� = 0}.                                                                                                    (18) 

 

3.6.4 Existence of a uniformly stable solution 

To establish the exactness of a uniformly stable solution, assume that 

�̇� = −𝛽𝑆𝐼 − 𝑥𝑆 + 𝜔𝑅 = 𝑓1(𝑆, 𝑉, 𝐼, 𝑇, 𝑅),                                                                                                                    

 �̇� = 𝑥𝑆 − (1 − 𝜂)𝛽𝑉𝐼 = 𝑓2(𝑆, 𝑉, 𝐼, 𝑇, 𝑅),                                                                                                                    

 𝐼̇ = 𝛽𝑆𝐼 + (1 − 𝜂)𝛽𝑉𝐼 − (𝛾 + 𝜏)𝐼 = 𝑓3(𝑆, 𝑉, 𝐼, 𝑇, 𝑅),                                                                                                                    

 �̇� = 𝜏𝐼 − 𝛿𝑇 = 𝑓4(𝑆, 𝑉, 𝐼, 𝑇, 𝑅),                                                                                                                                                   

 �̇� = 𝛿𝑇 + 𝛾𝐼 − 𝜔𝑅 = 𝑓5(𝑆, 𝑉, 𝐼, 𝑇, 𝑅).                                                                                                                                        

 For the total population 𝑁(𝑡)(= 1), it  may write Π = {(𝑆(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) +

𝑇(𝑡) 𝑅(𝑡)) ∈ 𝑅15: |𝜁(𝑖)| ≤ 𝑁(𝑡) 𝑎𝑛𝑑 𝑡 ∈ [0, 𝑇(𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑)].    

Thus, over 𝛱, then  

𝜕𝑓1
𝜕𝑆

= −𝛽𝐼 − 𝑥𝑆 ⇒ |
𝜕𝑓1
𝜕𝑆

| ≤ 𝑎11;
𝜕𝑓1
𝜕𝑉

= 0 = 𝑓1(𝑉) = 𝑎12;         

𝜕𝑓1
𝜕𝐼

= −𝛽𝑆 ⇒ |
𝜕𝑓1
𝜕𝐼

| ≤ 𝑎13;
𝜕𝑓1
𝜕𝑇

= 0 = 𝑓1(𝑇) = 𝑎14;
𝜕𝑓1
𝜕𝑅

= 𝜔 ⇒ |
𝜕𝑓1
𝜕𝑅

| ≤ 𝑎15;         

𝜕𝑓2
𝜕𝑆

= −𝑥 ⇒ |
𝜕𝑓2
𝜕𝑆

| ≤ 𝑎21;
𝜕𝑓2
𝜕𝑉

= −(1 − 𝜂)𝛽𝐼 ⇒ |
𝜕𝑓2
𝜕𝑉

| ≤ 𝑎22;         

𝜕𝑓2
𝜕𝐼

= −(1 − 𝜂)𝛽𝑉 ⇒ |
𝜕𝑓2
𝜕𝐼

| ≤ 𝑎23;
𝜕𝑓2
𝜕𝑇

= 0 = 𝑓2(𝑇) = 𝑎24;
𝜕𝑓2
𝜕𝑅

= 0 = 𝑓2(𝑅) = 𝑎25;   

𝜕𝑓3
𝜕𝑆

= 𝛽𝐼 ⇒ |
𝜕𝑓3
𝜕𝑆

| ≤ 𝑎31;
𝜕𝑓3
𝜕𝑉

= (1 − 𝜂)𝛽𝐼 ⇒ |
𝜕𝑓3
𝜕𝑉

| ≤ 𝑎32;         
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𝜕𝑓3

𝜕𝐼
= 𝛽𝑆 + (1 − 𝜂)𝛽𝑉 − (𝛾 + 𝜏) ⇒ |

𝜕𝑓3

𝜕𝐼
| ≤ 𝑎33;

𝜕𝑓3

𝜕𝑇
= 0 = 𝑓3(𝑇) = 𝑎34; 

𝜕𝑓3

𝜕𝑅
= 0 = 𝑓3(𝑅) = 𝑎35; 

𝜕𝑓4
𝜕𝑆

= 0 = 𝑓4(𝑆) = 𝑎41;
𝜕𝑓4
𝜕𝑉

= 0 = 𝑓4(𝑉) = 𝑎42;
𝜕𝑓4
𝜕𝐼

= 𝜏 ⇒ |
𝜕𝑓4
𝜕𝐼

| ≤ 𝑎43;         

𝜕𝑓4
𝜕𝑇

= −𝛿 ⇒ |
𝜕𝑓4
𝜕𝑇

| ≤ 𝑎44;
𝜕𝑓4
𝜕𝑅

= 0 = 𝑓4(𝑅) = 𝑎45;         

𝜕𝑓5

𝜕𝑆
= 0 = 𝑓5(𝑆) = 𝑎51;

𝜕𝑓5

𝜕𝑉
= 0 = 𝑓5(𝑉) = 𝑎52;

𝜕𝑓5

𝜕𝐼
= 𝛾 ⇒ |

𝜕𝑓5

𝜕𝐼
| ≤ 𝑎53;         

𝜕𝑓5

𝜕𝑇
= 𝛿 ⇒ |

𝜕𝑓5

𝜕𝑇
| ≤ 𝑎54;

𝜕𝑓5

𝜕𝑅
= −𝜔 ⇒ |

𝜕𝑓5

𝜕𝑅
| ≤ 𝑎55;         

Here, the constants 𝑎𝑖𝑗(𝑖 ≥ 1 and 𝑗 ≤ 5) all are positive. Therefore, the suggested model’s 

five functions, namely 𝑓1, 𝑓2, ⋯ , 𝑓5 all are satisfied well-known Lipchitz condition [54-57].  

 

3.6.5 Strength number 

Use the suitable strength numbers approach to find out the waving tendency in the proposed 

epidemic dynamics [53].To determine the recommended model’s strength number under 

the assumption of a limited population, 𝑁, analyze the partial first derivative of the infected 

class using next-generation matrix techniques as follows: 

𝛽𝑆𝐼 =
𝛽𝑆𝐼

𝑁
, (1 − 𝜂)𝛽𝑉𝐼 = (1 − 𝜂)𝛽

𝑉𝐼

𝑁
. 

Therefore, 

𝜕2

𝜕𝐼2
[𝛽

𝑆𝐼

𝑁
+ (1 − 𝜂)𝛽

𝑉𝐼

𝑁
− (𝛾 + 𝜏)

𝐼

𝑁
] = 𝛽𝑆

𝜕

𝜕𝐼
(
𝑁 − �̇�𝐼

𝑁2
) + (1 − 𝜂)𝛽𝑉

𝜕

𝜕𝐼
(
𝑁 − �̇�𝐼

𝑁2
) 

                                                               = −𝛽
𝑆

𝑁2
− (1 − 𝜂)𝛽

𝑉

𝑁2
.     

Then, 

𝐹 = [−
𝛽

𝑁2
−

(1 − 𝜂)𝛽

𝑁2
0

0 0

], 

 

and 

𝐹𝑉−1 =
1

𝛿(𝛾 + 𝜏)
[𝛿 [−

𝛽

𝑁2
−

(1 − 𝜂)𝛽

𝑁2 ] 0

0 0

]. 

Therefore, as previous, from the spectral radius of 𝜌(𝐹𝑉−1) for defining the epidemic 

wave, the desired strength number is denoted by 𝑅𝑆𝑁 ,  

𝑅𝑆𝑁 = −
𝛽 + (1 − 𝜂)𝛽

𝑁2(𝛾 + 𝜏)
                                                                                                            (19) 
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When 𝑅𝑆𝑁 ≤ 0, the disease can only produce one wave, and the infection class would 

quickly drop below or equal to the equilibrium of disease-free conditions. However, when 

𝑅𝑆𝑁 ≥ 0, multi-waving scenarios, are revealed. Here, all parameters of the suggested model 

are well-defined and positive. More precisely,  𝛽, 𝛾, 𝜏 ≥ 0, and  0 ≤ 𝜂 ≤ 1, which shows 

that the proposed model’s strength number 𝑅𝑆𝑁 ≤ 0 represents only one wave. 

 

3.6.6 Geometrical interpretation of Strength Number 

The second-order derivative usually depicts the concavity or curvature of any graph. In 

epidemic models, a concept like this from fundamental calculus is routinely applied to 

observe the situation of several layers or waves of epidemic disease cases. To illustrate the 

second-order time derivative study of our suggested model, then exemplify it below as 

follows: 
�̈� = −𝛽�̇�𝐼 − 𝛽𝑆𝐼̇ − 𝑥�̇� + 𝜔𝑅,̇  

�̈� = 𝑥�̇� − (1 − 𝜂)𝛽�̇�𝐼 − (1 − 𝜂)𝛽𝑉𝐼,̇ 

𝐼̈ = 𝛽�̇�𝐼 + 𝛽𝑆𝐼̇ + (1 − 𝜂)𝛽�̇�𝐼 + (1 − 𝜂)𝛽𝑉𝐼̇ − (𝛾 + 𝜏)𝐼,̇ 

�̈� = 𝜏𝐼̇ − 𝛿�̇�, 

 �̈� = 𝛿�̇� + 𝛾𝐼̇ − 𝜔�̇�.                                                                                                                    (20)                                                                                              

 Putting the value of the first derivative �̇�, �̇�, 𝐼̇, �̇�, �̇� from equation (1-5) in equation (20), 

and getting, 

 𝐼̈ = 𝛽(−𝛽𝑆𝐼 − 𝑥𝑆 + 𝜔𝑅)𝐼 + (1 − 𝜂)𝛽{𝑥𝑆 − (1 − 𝜂)𝛽𝑉𝐼} + { 𝛽𝑆 + (1 − 𝜂)𝛽𝑉 − (𝛾 +

 𝜏)}{𝛽𝑆𝐼 + (1 − 𝜂)𝛽𝑉𝐼 − (𝛾 + 𝜏)𝐼}, 

 �̈� = 𝜏{(𝛽𝑆𝐼 + (1 − 𝜂)𝛽𝑉𝐼 − (𝛾 + 𝜏)𝐼)} − 𝛿(𝜏𝐼 − 𝛿𝑇).                                             (21) 

By using the disease-free equilibrium point, we can demonstrate the concavity of the 

system of nonlinear ODEs (18). The inflection point occurs when the time derivative of the 

second order equals zero. Concave up arises if it is more significant than zero and concaves 

down if it is less meaningful than zero. Using the system (21) and the disease-free 

equilibrium point ℰ0, it may conclude that ℰ0 cannot be concave up or down,  

𝐼̈ = 0, 

�̈� = 0.                                                                                                                                             (22) 

Equation (22) shows that for all second-order time derivatives utilized in the computation 

of concavity, it only have the case for the inflection or stationary points. In conclusion, the 

model (22) only provides the infection or the fixed points for the second-order model (21) 

at the disease-free equilibrium points ℰ0 instead of the concave up and concave down. 
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Chapter – 4 

Results and Discussion 

4.1 Introduction 
 

The result and discussion of the SVITR epidemic model highlight the interplay between 

vaccination and treatment strategies in controlling the spread of infectious diseases. The 

model investigates the dynamics of a game where individuals make decisions regarding 

their vaccination and treatment choices based on the perceived costs and benefits. The 

analysis reveals that the effectiveness of vaccination and treatment depends on various 

factors, including the coverage rate, efficacy, and accessibility of interventions. The 

interplay between vaccination and treatment can have significant implications for disease 

control [45]. For instance, if the vaccination strategy is highly effective and accessible, it 

may reduce the number of infections and consequently lower the demand for treatment. On 

the other hand, if treatment is more effective or cost-effective compared to vaccination, 

individuals may opt for treatment rather than vaccination, potentially leading to a higher 

disease burden in the population [32-35]. The model also explores the interplay between 

vaccination and treatment costs. Higher vaccination costs can discourage individuals from 

getting vaccinated, resulting in lower coverage rates and compromised disease control. 

Similarly, higher treatment costs can deter individuals from seeking treatment, leading to 

delayed or inadequate care and potentially exacerbating the spread of the disease [8]. These 

findings emphasize the importance of considering the cost-effectiveness and accessibility 

of vaccination and treatment strategies in public health decision-making [38-42]. Overall, 

the study provides valuable insights into the complex interactions between vaccination, 

treatment, and cost factors, shedding light on the optimal allocation of resources and 

interventions for effective disease control and prevention. 
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4.2 Interplay between vaccination and treatment game 
 

In this section, numerically explore the SVITR model; the results are presented for the line 

graphs and 2D phase diagrams in the aspect of the evolutionary game theory and cyclic 

epidemic model. The convene impact of proactive vaccination and the retroactive treatment 

policy based on human behavior depends on the vaccination cost, treatment cost, and 

corresponding factors. It extensively analyzed the vaccination and treatment cost, 

vaccination effectiveness (η), and recovery rate, considering the other sensible parameters. 

At first pursued the line graphs of infected individuals without the game and with game 

cases for varying control parameters. In the second case, present the two-dimensional phase 

diagram of final epidemic size (FES), vaccination coverage (VC), the fraction of treated 

people (FTR), and average social payoff (ASP) as a measure of policy burden to society 

while varying two parameters. Also introduce the SED (social efficiency deficit), the 

expresses the radical social dilemmas in the vaccination and treatment games. 

 First, briefly analyze the current model and its solution theoretically for the only epidemic 

model without using evolutionary game theory (EGT) (see Appendix). The model and its 

solution are positive and bounded for the finite population N(t) [58]. Here explored the 

existence of a uniformly stable solution for the model using the well-known Lipchitwz 

stability theorem. This model examined by reproduction number (basic and effective), local 

and global stability, and strength number to analyze stability conditions and wave 

properties. Finally, the Lyapunov function backed by second derivatives were also studied, 

providing information regarding the tendency toward curvature. 
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                     Figure 4.1: Vaccinated game and without treatment game. 

 

Figure 4.1 shows the interplay between vaccination cost and vaccine efficiency when the 

treatment strategy is inactive. In each panel, the fraction of infected individuals will be 

minimal when vaccine effectiveness is higher indicating that higher reliability of vaccine 

attracts individuals to participate in vaccine programs in reducing disease. So, the primary 

benefit of vaccine efficiency is to reduce infection rates. However, vaccine efficiency 

depends on other factors, such as vaccination cost. While vaccination cost increases, at the 

same time, the ability to buy vaccines is decreased, and consequently, the infection rate 

increases. If a vaccine is cheap, the population responds in a couple of manners whereby 

everyone vaccinates or not. To compare panel (i) and panel (ii) for vaccine cost 𝐶𝑉 = 0.1 

and 𝐶𝑉 = 0.9, if the vaccination cost is low, then the infection is reduced.  
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                              Figure 4.2: Treatment game and without vaccinated game. 

 

To examine the treatment effect on the epidemic (without vaccination), represent figure 

4.2. Here, the impact of the natural and treated recovery rates is considered to show the 

human behavior on treatment services or hospital facilities against a particular disease. 

When the treated recovery rate (𝛿) is less than the natural recovery rate (𝛾) (panel (ii)), 

the treatment strategy is not working. As a result, infections spread because of a lack of 

proper treatment. Besides, on treatment cost for 𝛿 > 𝛾, whenever treatment cost increases 

in such a periodic time, individuals lose their hope to take treatment (panel (i) and (ii)). 

The most expensive treatment costs are avoided irrespective of recovery rate, and 

eventually, the fraction of infections during the epidemic season is maximized. Thus, it’s 

clear that if the recovery rate is higher and treatment costs are lower, the number of 

infected individuals will be lower. 
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Figure 4.3: Vaccinated and Treatment game. 

 

In figure 4.3, both vaccination and treatment strategies are considered to show the 

combined impact of intervention policies on the epidemic. Here, the infected individuals 

depend on vaccine efficiency, vaccination, and treatment costs. When the vaccination and 

treatment are cheap, individuals can take more vaccines and get treatment, but the 

infection rate among the individuals remains down. The reduced tendency of infected 

individuals controls remarkably when the vaccine reliability is increased (higher 

effectiveness). The most expensive rate of vaccines is rejected even though they are very 

productive. Curiously, cheaper vaccines may achieve less coverage with increased 

efficiency, but this is because they are better at controlling outbreaks. As opposed, 

treatment increases vaccination coverage when the vaccine is rightly priced and 

sufficiently efficacious. 
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Figure 4.4: Phase diagram of the final epidemic size (FES) 

 

The phase diagram of the final epidemic size (FES) is present by varying two parameters: 

the x-axis contains treatment cost (𝐶𝑇) and the y-axis is vaccination cost (𝐶𝑉). In this figure, 

the first, second, and third rows display the results of varying the vaccine efficiency, 𝜂 =

0.1,  𝜂 = 0.5, and 𝜂 = 0.9. Also, the first, second and third columns show the results of 

varying the treatment duration rate:  𝛿 = 0.05, 𝛿 = 0.1, and  𝛿 = 0.5. Other parameters 

are, 𝛽 = 0.8333, 𝛾 = 0.333, and 𝜔 = 0.01.   
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Figure 4.5: Phase diagram of the vaccination coverage (VC) 

 

The phase diagram of the vaccination coverage (VC) is present by varying two parameters: 

the x-axis contains treatment cost (𝐶𝑇) and the y-axis is vaccination cost (𝐶𝑉). In this figure, 

the first, second, and third rows display the results of varying the vaccine efficiency, 𝜂 =

0.1, 𝜂 = 0.5, and 𝜂 = 0.9. Also, the first, second and third columns show the results of 

varying the treatment duration rate: 𝛿 = 0.05, 𝛿 = 0.1, and  𝛿 = 0.5. Other parameters are, 

𝛽 = 0.8333, 𝛾 = 0.333, and 𝜔 = 0.01.   
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Figure 4.6: Phase diagram of the fraction of treated individuals (FTR) 

 

The phase diagram of the fraction of treated individuals (FTR) is present by varying two 

parameters: the x-axis contains treatment cost (𝐶𝑇) and the y-axis is vaccination cost (𝐶𝑉). 

In this figure, the first, second, and third rows display the results of varying the vaccine 

efficiency, 𝜂 = 0.1, 𝜂 = 0.5, and  𝜂 = 0.9. Also, the first, second and third columns show 

the results of varying the treatment duration rate: 𝛿 = 0.05,  𝛿 = 0.1, and  𝛿 = 0.5. Other 

parameters are, 𝛽 = 0.8333, 𝛾 = 0.333, and 𝜔 = 0.01. 
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Figure 4.7: Phase diagram of the average social payoff (ASP) 

 

The phase diagram of the average social payoff (ASP) is present by varying two 

parameters: the x-axis contains treatment cost (𝐶𝑇) and the y-axis is vaccination cost (𝐶𝑉). 

In this figure, the first, second, and third rows display the results of varying the vaccine 

efficiency, 𝜂 = 0.1,  𝜂 = 0.5, and  𝜂 = 0.9. Also, the first, second and third columns show 

the results of varying the treatment duration rate: 𝛿 = 0.05,  𝛿 = 0.1, and  𝛿 = 0.5. Other 

parameters are, 𝛽 = 0.8333, 𝛾 = 0.333, and 𝜔 = 0.01. 
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 4.3 Interplay between vaccination and treatment costs 

Here, numerically explore the SVITR model; the results are presented for 2D phase 

diagrams in the aspect of the evolutionary game theory and cyclic epidemic model. The 

convene impact of proactive vaccination and the retroactive treatment policy based on 

human behavior depends on the vaccination cost, treatment cost, and corresponding factors. 

Also, extensively analyzed the vaccination and treatment cost, vaccination effectiveness 

(𝜂), and recovery rate, considering the other sensible parameters. Aside from the line graph 

along the time step, now draw another set of results as a phase diagram in figures 4.4, 4.5, 

4.6, and 4.7 at the equilibrium point, expressed by the parameters of treatment cost (𝐶T) 

and vaccination cost (𝐶V) that describes the underlying social dilemmas in the vaccination 

and treatment game. Figures 4.4, 4.5, 4.6, and 4.7 display the final epidemic size (FES), 

vaccination coverage (VC), treated individuals (TR), and average social payoff (ASP). 

Throughout, the first, second, and third columns show the results of varying the vaccine 

efficiency, 𝜂 = 0.1, 𝜂 = 0.5, and 𝜂 = 0.9 in panels (i), (ii), and (iii), respectively. On the 

other hand, the first, second, and third rows display the result of varying the treated recovery 

rate, 𝛿 = 0.05, 𝛿 = 0.1, and 𝛿 = 0.5 depicted in panels (a), (b) and (c), respectively. The 

final epidemic size in the SVITR model is influenced by several factors, including the 

vaccination coverage. Vaccination coverage refers to the proportion of the population that 

has received a vaccine against the disease. In the SVITR model, vaccination coverage is 

represented by the V compartment, which includes individuals who are vaccinated and 

therefore protected from infection. Increasing the vaccination coverage can reduce the final 

epidemic size by reducing the number of susceptible individuals who can become infected. 

This is because the vaccinated individuals are less likely to become infected and therefore 

less likely to transmit the disease to others. The effect of vaccination on reducing the final 

epidemic size is dependent on the vaccine efficacy, the coverage rate, and the timing of the 

vaccine deployment. If the vaccination coverage is high enough, the final epidemic size 

may be small enough that the disease is effectively eliminated from the population. This is 

known as herd immunity, where the proportion of immune individuals in the population is 

high enough to provide indirect protection to susceptible individuals.   
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On the other hand, if the vaccination coverage is low, the final epidemic size may be larger, 

leading to more infections and potentially more severe consequences such as 

hospitalization and death. Therefore, increasing vaccination coverage is an important 

strategy for controlling and preventing the spread of infectious diseases. the higher final 

epidemic size (FES) was observed for the lower treated recovery rate (𝛿 = 0.05) and less 

vaccine efficacy (𝜂 = 0.1). Only reduced FES is obtained for high vaccine efficacy (𝜂 =

0.9); people are taking a vaccine for low vaccine cost and reduced infection. Decreasing 

the vaccination cost at higher vaccine efficacy with treated period remains constant; it 

occurs less infection, which means individuals encourage to take vaccination and infection 

level become less. Thus, if the treatment is not favorable for individuals (𝛿 < 𝛾), people 

only participate vaccine program (figure 4.5(c-i)) and avoid taking treatment (figure 4.6(c-

i)). Next, for the higher medical (treatment) facilities that accelerate recovery (delta greater 

than gamma) duration, lower treatment and vaccination cost reduce the infection level, 

remarkably (panel (ii ) and (iii)). Lower treatment costs with higher vaccine costs, 

individuals take treatment and are less infected (Figures 4.4, 4.5, and 4.6). On the other 

hand, with higher treatment costs for lower vaccine costs and higher vaccine reliability, 

individuals take vaccines and avoid infection. In panels (c-ii) and (c-iii), for maximum 

vaccine efficiency, most individuals take the vaccine to avoid infection when the low 

vaccination cost, but higher treatment cost arises. Therefore, VC (vaccination coverage) 

depends on the increase or decrease of vaccine efficiency and treatment duration. However, 

increasing the vaccination cost and reducing the treatment cost attracted the individual to 

the treatment, which enhanced the FTR when the treatment duration was high. In addition, 

the higher vaccine efficiency and treatment recovery rate attract individuals to the treatment 

strategy. In the SVITR model, the fraction of treated individuals is represented by the 

infected compartment, which includes individuals who are currently infected and receiving 

treatment. The treatment can reduce the infectiousness and duration of the disease, which 

can help to reduce the spread of the disease and the final epidemic size. 

The fraction of treated individuals can be increased by improving access to healthcare and 

treatments for the disease. This can include providing adequate medical supplies and 

facilities, training healthcare workers, and developing effective treatments such as antiviral 

drugs. Increasing the fraction of treated individuals can reduce the final epidemic size by 

reducing the infectiousness of infected individuals and shortening the duration of the 

infectious period. This can help to slow down the transmission of the disease, leading to 
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fewer new infections and ultimately a smaller epidemic. In contrast, a lower vaccine 

efficiency and recovery speed hamper the treatment-seeking behavior (lower FTR). 

Now, by comparing Figures 4.5 and 4.6, the results show some interesting phenomena 

when the treatment duration is greater than the natural recovery rate and the vaccine 

efficacy of higher. Although it’s expected that lower treatment cost attracts people to 

treatment in hospitals or clinics, our results show a distinct tendency when both vaccine 

and treatment are considered. If vaccine reliability is higher, irrespective of lower treatment 

cost or highly facilitated treatment, people are prone to take vaccines rather than be treated 

or infected. Finally, figure 4.7 represents the phase diagram of average social payoff (ASP) 

while varying the vaccination and the treatment cost with vaccine efficiency and treatment 

duration. In the SVITR model, the average social payoff can be defined as the net benefit 

or cost of the disease to society, taking into account the economic and social impacts of the 

epidemic. The average social payoff is influenced by several factors, including the final 

epidemic size, the duration and severity of the epidemic, and the costs of treatment and 

prevention measures. If the final epidemic size is small, the average social payoff is likely 

to be positive, as the costs of the epidemic, such as healthcare costs, lost productivity, and 

social disruption, are reduced. On the other hand, if the final epidemic size is large, the 

average social payoff is likely to be negative, as the costs of the epidemic are increased. 

The duration and severity of the epidemic also play a role in determining the average social 

payoff. A long and severe epidemic can lead to more significant economic and social 

impacts, increasing the negative social payoff. The costs of treatment and prevention 

measures, such as vaccines and public health interventions, can also impact the average 

social payoff. While these measures can be costly, they may ultimately result in a positive 

social payoff by reducing the final epidemic size and associated costs. It observed that 

lower vaccine and treatment cost brings higher ASP, meaning society reaches its optimal 

position when vaccine efficacy is higher, and 𝛿 > 𝛾.  
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Figure 4.8: Phase diagram of the socially benefitted individuals from vaccination (SBIV) 

 

The phase diagram of the socially benefitted individuals from vaccination (SBIV) is present 

by varying two parameters: the x-axis contains treatment cost (𝐶𝑇) and the y-axis is 

vaccination cost (𝐶𝑉). In this figure, the first, second, and third rows display the results of 

varying the vaccine efficiency,   𝜂 = 0.1,  𝜂 = 0.5, and  𝜂 = 0.9. Also, the first, second 

and third columns show the results of varying the treatment duration rate:  𝛿 = 0.05,  𝛿 =

0.1, and  𝛿 = 0.5. Other parameters are, 𝛽 = 0.8333, 𝛾 = 0.333, and 𝜔 = 0.01. 
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Figure 4.9: Phase diagram of the socially benefitted individuals from treatment (SBIT) 

 

The phase diagram of the socially benefitted individuals from treatment (SBIT) is present by 

varying two parameters: the x-axis contains treatment cost (𝐶𝑇) and the y-axis is vaccination 

cost (𝐶𝑉). In this figure, the first, second, and third rows display the results of varying the 

vaccine efficiency, 𝜂 = 0.1,  𝜂 = 0.5, and   𝜂 = 0.9. Also, the first, second and third 

columns show the results of varying the treatment duration rate:  𝛿 = 0.05,  𝛿 = 0.1, and  

𝛿 = 0.5. Other parameters are, 𝛽 = 0.8333, 𝛾 = 0.333, and 𝜔 = 0.01. 
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 To realize how different parameter settings affect the benefitted individuals from 

intervention games: vaccination, or treatment, interpreted socially benefitted individuals 

(vaccination) and (treatment) in figures 4.8 and 4.9, respectively. Here, adopt a new 

indicator termed socially benefitted individuals (SBI), referring to equations (11.1) and 

(11.2) as the fraction of the population gap between FES of control strategies and without 

controls at equilibrium. In the SVITR model, vaccination can lead to social benefits by 

reducing the number of individuals who become infected with the disease. Socially 

benefiting individuals from vaccination can be defined as those who are protected from 

infection as a result of vaccination. The number of socially benefiting individuals from 

vaccination depends on several factors, including vaccine efficacy, vaccination coverage, 

and the timing of vaccination deployment. If the vaccine efficacy is high and the 

vaccination coverage is sufficient, a large proportion of the population can be protected 

from infection, resulting in a significant number of socially benefiting individuals. 

The socially benefiting individuals from vaccination may include not only those who 

receive the vaccine directly but also those who are indirectly protected through herd 

immunity. When a high proportion of the population is vaccinated, the disease has a 

reduced ability to spread, and even individuals who are not vaccinated may be protected 

from infection. The socially benefiting individuals from vaccination can include 

individuals who may be particularly vulnerable to the disease, such as the elderly, young 

children, and individuals with weakened immune systems. By protecting these vulnerable 

individuals, vaccination can help reduce the burden of the disease on society, including 

healthcare costs and lost productivity. Overall, vaccination can lead to significant social 

benefits by reducing the number of individuals who become infected with the disease and 

protecting vulnerable populations. Maximizing vaccination coverage and vaccine efficacy 

is crucial for maximizing the number of socially benefiting individuals from vaccination. 

In Figure 4.8, it can observe that individuals participating in vaccine programs can get more 

advantages from vaccination when efficacy is higher and vaccine cost is minimal. 

However, irrespective of the lower cost of vaccination, if the treatment cost is low, people 

benefit less (panels b-iii and c-iii). 

In the SVITR model, treatment can lead to social benefits by reducing the severity and 

duration of the disease in infected individuals, thereby reducing the overall burden of the 

disease on society. Socially benefiting individuals from treatment can be defined as those 

who receive treatment and experience a reduction in the severity and duration of the 

disease. The number of socially benefiting individuals from treatment depends on several 
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factors, including the efficacy of the treatment, its availability, and the timing of its 

deployment. If the treatment is effective and widely available, a large proportion of infected 

individuals can benefit from it, resulting in a significant number of socially benefiting 

individuals. The socially benefiting individuals from treatment may include individuals 

who may be particularly vulnerable to the disease, such as the elderly, young children, and 

individuals with weakened immune systems. By reducing the severity and duration of the 

disease in these vulnerable individuals, treatment can help reduce the burden of the disease 

on society, including healthcare costs and lost productivity. Treatment can also lead to 

social benefits by reducing the risk of transmission of the disease to other individuals. By 

reducing the infectiousness of infected individuals, treatment can help to slow down the 

transmission of the disease and ultimately reduce the number of new infections, leading to 

a smaller epidemic size and associated social benefits. Overall, treatment can lead to 

significant social benefits by reducing the severity and duration of the disease in infected 

individuals, protecting vulnerable populations, and reducing the risk of transmission of the 

disease. Maximizing the availability and efficacy of treatments is crucial for maximizing 

the number of socially benefiting individuals from treatment. 

In figure 4.9, it can see that there are no treated benefited people for treatment (𝑆𝐵𝐼𝑇) when 

𝛿 < 𝛾; treatment duration (treatment to recover) is higher than natural recovery (see panel 

(i)). These phenomena indicate that if the medical/clinic/drug facilities need to be better 

equipped and work effectively to recover from disease faster, people are not getting social 

benefits from treatment. However, for 𝛿 > 𝛾, individuals benefit from treatment when 

treatment costs are lower. Interestingly, increases in vaccine efficacy somehow increase the 

fraction of aided people. But for higher vaccine efficacy (𝜂 = 0.9), the treated benefitted 

people will decrease when vaccine cost is cheaper (lower vaccine prices). 
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Figure 4.10: Phase diagram of the social efficient deficit (𝑆𝐸𝐷𝑉) 

 

The phase diagram of the social efficient deficit (𝑆𝐸𝐷𝑉) is present by varying two 

parameters: the x-axis contains treatment cost (𝐶𝑇) and the y-axis is vaccination cost (𝐶𝑉). 

In this figure, the first, second, and third rows display the results of varying the vaccine 

efficiency,  𝜂 = 0.1,  𝜂 = 0.5, and  𝜂 = 0.9. Also, the first, second and third columns show 

the results of varying the treatment duration rate:  𝛿 = 0.05,  𝛿 = 0.1, and  𝛿 = 0.5. Other 

parameters are, 𝛽 = 0.8333, 𝛾 = 0.333, and 𝜔 = 0.01. 
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Figure 4.11: phase diagram of the social efficient deficit (𝑆𝐸𝐷𝑇) 

 

The phase diagram of the social efficient deficit (𝑆𝐸𝐷𝑇) is present by varying two 

parameters: the x-axis contains treatment cost (𝐶𝑇) and the y-axis is vaccination cost (𝐶𝑉). 

In this figure, the first, second, and third rows display the results of varying the vaccine 

efficiency, 𝜂 = 0.1,  𝜂 = 0.5, and  𝜂 = 0.9. Also, the first, second and third columns show 

the results of varying the treatment duration rate:  𝛿 = 0.05,  𝛿 = 0.1, and  𝛿 = 0.5. Other 

parameters are, 𝛽 = 0.8333, 𝛾 = 0.333, and 𝜔 = 0.01 
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In figure 4.10 and figure 4.11, explore the idea of social efficiency deficit (SED) that 

explicitly reveals the underlying social dilemmas in the vaccination and treatment game. 

An individual's decision on taking provision (vaccine or treatment) that infers cooperation 

(C) or not accepting provision indicates defection (D) on the relative cost of vaccine and 

treatment. By exploring SED for vaccination and treatment, generate the 2D heat map for 

𝑆𝐸𝐷𝑉 (figure 4.10) and 𝑆𝐸𝐷𝑇 (figure 4.11) to visualize how SED varies as a function of 𝐶𝑉 

and  𝐶𝑇. The region-colored black presented having no SED (no dilemma) in which society 

reached its stable situation, and the payoff at NE cannot be improved anymore. 

The Social Efficient Deficit (𝑆𝐸𝐷𝑉) is a measure of the inefficiency of vaccination 

programs that takes into account both the costs of vaccination and the health benefits it 

provides to society. It is calculated by comparing the social costs of vaccination (including 

the cost of the vaccine, the cost of administering the vaccine, and any associated costs such 

as transportation and storage) to the social benefits of vaccination (including the reduction 

in disease transmission, the reduction in healthcare costs, and the improvement in overall 

health outcomes).The 𝑆𝐸𝐷𝑉  provides a measure of the net benefits of vaccination programs 

and can be used to evaluate the efficiency of different vaccination strategies. If the 𝑆𝐸𝐷𝑉is 

positive, it indicates that the social benefits of vaccination exceed the social costs, and the 

vaccination program is considered socially efficient. On the other hand, if the 𝑆𝐸𝐷𝑉is 

negative, it indicates that the social costs of vaccination exceed the social benefits, and the 

vaccination program is considered socially inefficient. The 𝑆𝐸𝐷𝑉  is an important tool for 

policymakers and public health officials when making decisions about the allocation of 

resources for vaccination programs. It can help identify the most efficient vaccination 

strategies, taking into account both the costs and benefits of vaccination. Additionally, it 

can help to ensure that public health resources are used in the most effective way possible 

to maximize the benefits to society. In (figure 4.10), with a lower level of vaccination cost, 

𝑆𝐸𝐷𝑉 = 0, SED reaches its minimum point, meaning when vaccination cost is low, people 

will participate in the vaccine program (ALLC). Afterwards, it shows a monotonic increase 

when vaccine efficacy increases; the situation with a more effective vaccine might inspire 

some people to participate in vaccine program. Interestingly, we could also see the effect 

of treatment cost to arise dilemma situation. When  𝜂 ≤ 0.5, comparatively lower reliability 

of vaccines, people somehow think about treatment provision. But, when the treatment cost 

is higher 𝑆𝐸𝐷𝑉 is also arises, because people are trope in a dilemma situation.  According 

to the findings, it can be concluded that we can minimize 𝑆𝐸𝐷𝑉 by either lower the vaccine 
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cost or improving the vaccine efficacy. Overall, the  𝑆𝐸𝐷𝑉   provides a useful framework 

for evaluating the efficiency of vaccination programs and can help to guide decision-

making in public health policy. 

The Social Efficient Deficit (𝑆𝐸𝐷𝑇) is a measure of the inefficiency of treatment 

interventions that takes into account both the costs of treatment and the health benefits it 

provides to society. It is calculated by comparing the social costs of treatment (including 

the cost of medication, hospitalization, and other associated costs such as transportation 

and lost productivity) to the social benefits of treatment (including the reduction in disease 

transmission, the reduction in healthcare costs, and the improvement in overall health 

outcomes). Similar to the 𝑆𝐸𝐷𝑉   for vaccination programs, the 𝑆𝐸𝐷𝑇   provides a measure 

of the net benefits of treatment interventions and can be used to evaluate the efficiency of 

different treatment strategies. If the 𝑆𝐸𝐷𝑇is positive, it indicates that the social benefits of 

treatment exceed the social costs, and the treatment program is considered socially 

efficient. On the other hand, if the 𝑆𝐸𝐷𝑇is negative, it indicates that the social costs of 

treatment exceed the social benefits, and the treatment program is considered socially 

inefficient. The 𝑆𝐸𝐷𝑇  is an important tool for policymakers and public health officials 

when making decisions about the allocation of resources for treatment interventions. It can 

help to identify the most efficient treatment strategies, taking into account both the costs 

and benefits of treatment. Additionally, it can help to ensure that public health resources 

are used in the most effective way possible to maximize the benefits to society. Overall, 

the 𝑆𝐸𝐷𝑇 provides a useful framework for evaluating the efficiency of treatment 

interventions and can help to guide decision-making in public health policy. In figure 4.11, 

panel (a-i) and (b-i) present completely no dilemma situation for 𝑆𝐸𝐷 = 0. In the aspect of 

evolutionary game theory, this no-dilemma situation is arises for 𝛿 < 𝛾. However, when 

vaccine effectiveness is high (panel c-i), few dilemmas observed that arises for middle cost 

of 𝐶𝑉 values. For comparatively higher and lower 𝐶𝑉, no dilemma situation is detected. We 

can conclude that when cost is lower people are participating vaccine program without any 

hesitation (ALLC) and for higher 𝐶𝑉, people are fully avoiding vaccination (ALLD).  

Meanwhile, when  𝛿 > 𝛾, dilemma situation arises for higher costly treatment; when 𝐶𝑇 >

0, we observed 𝑆𝐸𝐷𝑇 > 0. Because of the higher cost of treatment, people will think about 

whether to participate in treatment or not, which creates a dilemma. On the other hand, for 

lower treatment costs people are fully cooperative about treatment and willingly go for 

treatment (ALLC) which displays no dilemma situation at all. 
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 Chapter - 5 

Conclusion 

5.1 Conclusion 

In this thesis work, SVITR epidemic model, integrated with evolutionary game theory, 

offers a comprehensive understanding of the complex dynamics between disease spread, 

vaccination, and treatment. This work indicates that ex-post treatment, in certain 

circumstances, can improve the final epidemic size, depending on factors such as the 

reliability of vaccination and its cost. These insights provide valuable recommendations for 

implementing appropriate and careful treatment strategies. By analyzing the interplay of 

various factors and strategies, this research contributes to the field of epidemiology and 

provides insights to inform effective public health interventions and decision-making 

processes. This research developed an SVITR epidemic model for the disease spread and 

the embedded vaccine and treatment behavioral dynamics by using extensive evolutionary 

game theory among the individuals in society. The most important contribution is that our 

new model gives an extensive framework that explains vaccination and treatment strategies 

considering different effectiveness, associated cost, and payoff structure on local time 

scales. This model gives a clear context to quantify the social benefit and dilemmas entailed 

by vaccination and treatment games. Increasing the effectiveness of vaccination and 

lowering the vaccination cost increased the vaccination coverage, but that's how it reduced 

the final epidemic size. Lowering the treatment duration and improving treatment costs had 

a similar effect. Again, improving the vaccine efficacy and reducing treatment duration 

increased the treatment provision and average social payoff. Lowering vaccine efficacy and 

recovery rate, on the other hand, hampered treatment-seeking behavior. Besides amplifying 

the voluntary vaccination game, our model introduced a new game expression with two 

directions: vaccination as a proactive measure and treatment as a retroactive measure. Thus, 

by applying proactive vaccination and retroactive treatment, it can investigate and 

understand the individuals' decisions regarding over-vaccination and perform proper 

strategies that reduce the divergency of infection and ensure the careful state of both 
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antiviral treatment and vaccination. As well successfully introduced the concept of SBI to 

explore the idea of benefitted individuals when they are inclined to a specific strategy. 

Besides, the SED results also show the social dilemma situation for each strategy 

(vaccination or treatment). Finally, the results of this model suggest that the ex-post 

treatment sometimes improves the final epidemic size that depends on other aspects, such 

as the reliability of vaccination and its cost, which recommend appropriate and careful 

treatment. 

 

5.2 Future Work 

The current research highlights the use of evolutionary game theory to analyze the 

behavioral dynamics related to vaccination and treatment. This approach should deeper into 

this aspect by considering different strategies, preferences, and interactions among 

individuals. Incorporating realistic human behavior will enable a more comprehensive 

understanding of disease spread and intervention policies. Building upon the insights 

gained from the SVITRS model, future work should aim to provide policy 

recommendations for disease control and prevention. These recommendations should 

consider the model's findings, incorporate societal and ethical considerations, and address 

the practical challenges of implementing intervention   strategies. Meanwhile, this research 

area will involve refining and validating the SVITRS epidemic model, incorporating real-

world data, analyzing behavioral dynamics using game theory, evaluating intervention 

strategies, conducting sensitivity analysis, validating the model, providing policy 

recommendations, and exploring its application to other diseases. This iterative process will 

lead to a more comprehensive understanding of disease dynamics and support evidence-

based decision-making for disease control and prevention. 
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