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Abstract

Image super-resolution is a classic low-level vision and image processing task that

aims to generate a high-resolution image from its low-resolution counterpart. As

of now, most of the existing methods in image super-resolution use different neural

network-based learning algorithms that are usually optimized in the spatial domain.

While working in the spatial domain is a perfectly sound approach and produces

images with a high peak signal-to-noise (PSNR) ratio, it often leads to producing

images with poor frequency domain characteristics, i.e., they lack the natural high-

frequency details, resulting in super-resolved images with blurry regions. In this

work, we propose a novel wavelet-based residual convolutional neural network ar-

chitecture, referred to as WaveSRResNet, that learns the image features both in the

spatial and wavelet domains. The WaveSRResNet is also optimized by minimizing

the loss function in the said both domains in the MAE sense to further harness the

power of the discrete wavelet transform. Specifically, we design the WaveSRResNet

with the development of a novel wavelet residual block (WaveRB), which is capable

of performing the forward and the inverse transform inside the CNN based network.

This helps the model to be regularized in the wavelet domain as well, and produce

super-resolution images with better high-frequency details.

Extensive experiments are carried out in order to show the effectiveness of the

proposed wavelet residual block in the CNN network for its performance in the image

super-resolution algorithm. The results demonstrate that the proposed WaveSRRes-

Net outperforms recent image super-resolution methods in terms of both quantita-

tive and perceptual metrics. On average, the WaveSRResNet achieved 4.8% higher

PSNR (↑) and 8% higher SSIM (↑) objective scores than the most successful meth-

ods for the 8× image super-resolution, which is the most challenging scenario. It

also attained 9% lower perceptual score, LPIPS (↓) on average for the 4× up-scaling
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factor. Visual outputs also indicate that the proposed WaveSRResNet is able to re-

construct high-quality, edge-preserving images at high-resolution. The outcomes of

this research clearly show the effectiveness of the proposed method for the problem

of image super-resolution.
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Chapter 1

Introduction

1.1 Introduction

Image super-resolution is the process of increasing the resolution or size of a low-

resolution image to a higher resolution or size, while preserving or enhancing its vi-

sual quality. In other words, super-resolution (SR) aims to generate a high-resolution

(HR) image from a low-resolution (LR) image by estimating the missing details and

information. The reconstructed image at the higher resolution is then called a super-

resolution (SR) image. Image SR is crucial in image processing and computer vision

Figure 1.1: Image super-resolution model.

because it has many important real-world applications, such as those in medical

imaging, surveillance, forensics, image generation, digital photography, security, re-

mote sensing for satellite images, and computer graphics. In such scenarios, the

captured image may have a limited resolution due to various factors like sensor

limitations, noise, or transmission loss. Super-resolution techniques can be used to

reconstruct the image with higher resolution and more details, which can be bene-

ficial in various tasks such as object detection, recognition, and tracking. However,

1



CHAPTER 1. INTRODUCTION

the current algorithms of image super-resolution are far from perfect. Occasion-

ally, they produce high-resolution images whose contents are blurry, the edges are

over-sharpened or over-smoothed, and contain inconsistent details or textures. We

address these issues and propose an elegant solution to them in this thesis. This

chapter first dives into the scope of the problem of image super-resolution by out-

lining the present state, related works, and its challenges. Followed by the approach

used and the research contributions.

1.2 Present state of the problem

There are various methods for image super-resolution, including interpolation-based

methods, regularization-based methods, learning-based methods, and hybrid meth-

ods. Interpolation-based methods involve simple techniques like nearest-neighbor

interpolation or bi-linear interpolation. Regularization-based methods use optimiza-

tion techniques to impose constraints on the image reconstruction process. Learning-

based methods, such as deep learning, use a neural network to learn the mapping

between low-resolution and high-resolution images from a large dataset of paired

images. However, because of the generational leap in hardware and software for

learning-based algorithms in the past decade, this method has now become the most

popular way to reconstruct SR images. And these methods mainly differ in their

neural network architectures and in the loss functions that optimize these networks.

1.2.1 Related works

Image super-resolution can be categorized into different categories based on the

underlying techniques, algorithms, and methods used for the task. A non-exhaustive

classification of methods for image super-resolution can be listed as follows:

• Interpolation-based (IB) methods: These methods use interpolation tech-

niques such as bicubic interpolation [4], Lanczos interpolation [5], or nearest-

neighbor interpolation [6] to estimate the missing information in a low-resolution

image. These are some of the most prominent interpolation-based SR models

that are built upon the sampling theory. As they are deterministic mod-

2



CHAPTER 1. INTRODUCTION

els, they cannot produce or generate new information, which produces high-

resolution images with jagged artifacts.

• Regularization-based (RB) methods: These methods use optimization

techniques to impose constraints on the image reconstruction process, such as

smoothness or sparsity constraints. Examples of regularization-based methods

include Total Variation (TV) [7, 8] and Wavelet Transform (WT) [9, 10, 11].

The total variation is one of the most prime regularization-based methods that

try to minimize the total variation of the image, based on the assumption that

images with excessive and spurious detail have high total variation, where total

variation is simply the integral of the absolute image gradient.

The wavelet transform has extremely good feature extraction quality and is a

very useful tool for image processing. An in-depth discussion about wavelets

can be found in the second chapter of this thesis. In image super-resolution,

the wavelet transform is primarily used as a pre-processing tool, and very few

models actually take full advantage of the wavelet transform. In [12, 13, 14, 15]

works, the DWT is used only for the input images but not for the subsequent

activations inside the neural networks. Very recent work in this category is

[16], which deals with the high-frequency and the low-frequency components

separately using the stationary wavelet transform (SWT) [17]. SWT is a vari-

ant of DWT, where the downsampling and upsampling operations are omitted

to reduce the noise injected by the said operations. Although SWT is a redun-

dant WT scheme, it overcomes the translation-variance property of the DWT

significantly.

• Learning-based (LB) methods: These methods use machine learning and

deep learning techniques to learn the mapping between low-resolution and

high-resolution images from a large dataset of paired images. Compared to the

traditional image super-resolution models, the learning-based methods demon-

strate far better performance. LB methods try to learn the task of reconstruct-

ing super-resolution images from the data. The breakthrough LB model for

ISR is [18] which used IB technique with LB techniques. It was an end-to-end

CNN model capable of reconstructing HR images better than any other IB

3



CHAPTER 1. INTRODUCTION

method. However, it was a shallow network, so [19] proposed a very deep

super-resolution network employing residual connections that outperformed

[18]. In the residual networks regime, SRResNet [20] was the revolutionary

algorithm that inspired many different algorithms, including the model pro-

posed in this thesis. It used a residual block module in a cascading fashion

to learn the LR to HR mapping. In [21], the authors tweaked the SRResNet

model by getting rid of the batch-normalization layer to make the model more

memory efficient and facilitate training. Later, in [22], the authors proposed

a very deep residual network utilizing a method called channel attention. The

authors in [23] propose a new technique in the domain of ISR, using a mod-

ule called the second-order channel attention. Another particularly interesting

approach in ISR is the use of generative modelings, such as GAN [24]. [20]

and [25] are two of the most prominent GAN-based ISR model which can gen-

erate realistic-looking HR images. A relatively new work, [26], incorporated

the transformer architecture for the problem of image super-resolution and

achieved marvelous results. However, the common issue with all of the exist-

ing LB methods is that they tend to over-smooth the generated SR images

[20, 27]

• Hybrid methods: These methods combine different techniques from the

above categories to improve the performance of super-resolution. For exam-

ple, some methods combine interpolation-based or regularization-based meth-

ods with deep learning techniques to achieve faster, better, and more accurate

super-resolution. [12, 13, 14, 15, 16, 17] are some of the popular hybrid meth-

ods.

The following Table 1.1 gives an overview of some of the most recent and success-

ful image super-resolution methods. In this table it is observed that the methods

can be broadly categorized into two groups, namely pixel-loss-based methods and

perceptual loss-based methods.
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CHAPTER 1. INTRODUCTION

1.2.2 Challenges

Despite significant advances in image super-resolution in recent years, several chal-

lenges remain that must be addressed in order to improve the performance of existing

techniques. The image SR is a challenging problem because of its ill-posed nature

[31]. An ill-posed problem is a mathematical problem that does not have a unique

solution and the mapping from input to output is non-unique or ill-conditioned. So

for image SR, there can be many HR images corresponding to a single LR image.

The aim of image SR is then to find an HR image with the highest perceptual

quality, from the corresponding LR image.

Image SR becomes even more challenging because higher values of the most com-

mon image quality assessment (IQA) metrics such as mean squared error (MSE),

peak signal-to-noie ratio (PSNR), structural similarity index measure (SSIM), multi

scale structural similarity index measure (MS-SSIM), michelson contrast (CM ), en-

tropy, measure of enhancement (EME) do not necessarily always correlate with

higher perceptual image quality[20]. That is why image SR is still considered an

open research problem because there are still rooms for improvement in terms of

generating realistic images at higher resolutions.

1.3 Motivation

We tackle the problem of reconstructing super-resolution images from the perspec-

tive of hybrid methods– a learning method, blended with a regularization-based

technique. The reason for choosing a hybrid approach is very straightforward be-

cause from the related works in this field we see that approaches which combine

multiple techniques tend to perform better. Moreover, in the hybrid method we

have the flexibility to try different combinations of the said approaches.

To find which hybrid method will work best, we need to answer two questions:

which learning-based approach and which regularization-based approach are best

suited for the problem of image super-resolution. We try to find the answers to

these two questions in the following paragraphs.
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CHAPTER 1. INTRODUCTION

1.3.1 Why learning-based method?

A learning-based algorithm is a type of algorithm that can learn from data to improve

its performance on a specific task, which is image super-resolution in our case.

The basic idea behind a learning-based image super-resolution method is to train

it on a data set of paired images, such that it can learn to reconstruct high-resolution

images with high perceptual quality when presented with new, low-resolution images.

The training process typically involves adjusting the algorithm’s internal parameters

or weights to minimize a specific objective function or error metric (also called

the loss function). The following are some of the most desirable properties of the

learning-based methods suitable for this image super-resolution problem:

• should be easy to optimize using gradient-based optimization techniques

• should be easily differentiable for the back-propagation algorithm

• the architecture should facilitate a non-convex loss function optimization

• should be able to utilize hardware accelerators to make simultaneous parallel

computations

Convolutional neural networks (CNN) are currently the most popular learning-

based method, not only in image super-resolution but also in other computer vi-

sion and natural language processing tasks, mostly because of the advancements in

hardware accelerators that help optimize them extremely efficiently. Because this

hardware can perform multiple, simultaneous computations in parallel, they take

advantage of very simple algorithms, such as gradient descent [32, 33, 34] or back-

propagation [35, 36] to optimize very deep neural networks. As an example, one

of the largest language models currently available, the GPT-3, has 175 billion pa-

rameters and reportedly took several weeks to train on a large cluster of hardware

accelerators (GPUs) [37]. This would have been impossible without the accelerators.

Residual networks[38], on the the other hand, is an extremely popular deep

neural network architecture with skip-connections. These skip-connections make

the extremely non-convex loss landscape to a strongly convex one, that speeds up

the learning process[39]. That is why–
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CHAPTER 1. INTRODUCTION

we choose a residual convolutional neural network architecture as our

core learning-based algorithm.

1.3.2 Why regularization method?

While super-resolution methods can improve the resolution of an image, they may

not necessarily improve its perceptual quality. SR images may sometimes contain

artifacts and blurring which can make them look unnatural while reporting a high

IQA value. The most common phenomenon is the unwanted blurring in the recon-

structed SR images [20, 27, 40] meaning they fail to generate fine image details at

higher resolutions. In signal processing terms, this translates to the reconstructed

SR images failing to match the fidelity of the high-frequency characteristics of the

ground truth HR images. This often leads to SR images that are overly smooth,

even though they might have a high PSNR or SSIM value. However, these overly

smoothed SR images should come as no surprise, because most learning-based meth-

ods use the L2 or L1 pixel loss to optimize their networks. Even after achieving

a high quantitative metric such as PSNR or SSIM, they fail to match the fidelity

required at the high-resolution level. The key to producing SR images with high per-

ceptual image quality basically then lies in faithfully generating the high-frequency

components during up-scaling.

To address this issue, we need a good regularization-based technique with great

high-frequency feature extraction capabilities to bolster the existing residual convo-

lutional neural network. To this end, the following are some of the most desirable

properties of the regularization-based methods suitable for our problem:

• should have a multi-resolution property, meaning it can decompose the image

into different frequency bands at different levels of detail

• should have good space-frequency localization capabilities, meaning it should

be able to accurately represent high-frequency and low-frequency components

of an image in both space and frequency domains

• it should have great compression capabilities, meaning it should be able to

represent the image information with lesser number of transform coefficients

to handle the memory restrictions of the CNN
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CHAPTER 1. INTRODUCTION

• it should be able to reconstruct images perfectly with an inverse process, while

being computationally efficient, as we will need to move back and forth to the

frequency domain in each CNN layer

• it should avoid redundancy

There are many multi-resolution analysis tools such as the Curvelet Transform

[41, 42] and the Dual-tree Complex Wavelet Transform[43] (DTCWT), and the

Discrete Wavelet Transfrom[3, 44] (DWT)– all of which could be a good candidate

here. Although these tools satisfy the multi-resolution analysis property, because

of the computational efficiency and great compactness capability, we choose the

Discrete Wavelet Transform (DWT) as our regularization method.

The Wavelet Transform is basically a multi-resolution signal analysis tool that

decomposes an image using wavelets while preserving both spatial and frequency

information. The discrete wavelet transform (DWT) is a special case of the WT

where the wavelets are discretely sampled [11]. In a 1-level 2D-DWT, the higher

Figure 1.2: 2D forward and inverse discrete wavelet transform [1].

scale image approximation coefficients are decomposed into the lower scale image

“approximation” coefficients and three sets of “detail” coefficients– horizontal, ver-
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CHAPTER 1. INTRODUCTION

tical, and diagonal. The approximation and detail coefficients of the lower scale can

be used to perfectly reconstruct the original approximation coefficients at the higher

scale using a 1-level 2D-IDWT[1]. Which brings us to the following insight for the

choice regularization method–

if we can properly learn high-frequency components during the reconstruc-

tion of the SR images, we can essentially use them to produce HR images

from their LR counterparts just by applying the inverse transform.

The existing wavelet-based learning approaches[12, 13, 14, 15, 17] try to predict

HR image 2D-DWT coefficients by feeding the networks the LR image 2D-DWT

coefficients; which can be basically interpreted as a mere preprocessing tool. But, we

think that applying the 2D-DWT to only the input images but not to the subsequent

image feature maps inside the CNN is hindering these models from truly harnessing

the power of the DWT.

1.4 Objective

The objective is to find a fast, efficient, and robust image super-resolution framework

that can produce sharp, crisp, natural-looking high-resolution images with greater

perceptual quality from their low-resolution counterparts. We want to design a

convolutional neural network (CNN) architecture combining the discrete wavelet

transform and residual connectivity. To the best of our knowledge, there is no

current SR model that uses the DWT of the image activation features inside the

network. Instead, the transform is only used as a pre-processing or post-processing

tool.

First, a novel wavelet residual block (WaveRB) is to be designed, which helps

the model learn image features in the DWT domain. Second, using these WaveRBs,

a novel residual CNN architecture is to be designed. The CNN will be optimized

using suitable loss functions both in the pixel domain and the transformed domain

that helps it generate SR images from the natural image manifold.

10



CHAPTER 1. INTRODUCTION

1.5 Contributions

We propose a CNN-based method that is wavelet friendly, meaning that the proposed

architecture will help generate HR images with better wavelet “detail” coefficients,

resulting in better high-frequency texture details. In this regard, we choose the

DWT as our preferred regularization because of its computational efficiency and high

compaction capacity. Leveraging the DWT and the inverse DWT (IDWT) of the

image features for each activation of the successive layers inside the learning model

not only helps it learn the proper frequency characteristics at each convolutional

block but also makes the model more robust to generalize to other datasets apart

from the training set.

Our specific contributions are hence threefold:

1. We propose a novel CNN architecture, referred to as the Wavelet Super-

Resolution Residual Network (WaveSRResNet), with the development of a

novel Wavelet Residual Blocks (WaveRB), for the problem of image super-

resolution.

2. We introduce a novel wavelet transform-based loss function for the problem

of image super-resolution to guide the network to produce images with better

frequency characteristics.

3. We experiment with the proposed WaveSRResNet on five standard benchmark

datasets, for 2×, 4×, and 8× single image super-resolution (SISR) using

commonly used performance metrics like PSNR, SSIM [45], and the learned

perceptual image patch similarity (LPIPS) [46]. The results show that our

proposed model outperforms existing [20, 23, 22, 21, 26] methods for SISR.

1.6 Thesis layout

The rest of the thesis contains the following chapters:

• Chapter 2 CNN and DWT: A Brief Review

• Chapter 3 Wavelet Super-Resolution Residual Network

• Chapter 4 Experiments and Results
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• Chapter 5 Conclusion

In Chapter 2, we briefly give the overview of the necessary theoretical concepts (CNN

and DWT) needed to develop the ideas in this thesis. In Chapter 3, we introduce

our methodology and proposed algorithm. In Chapter 4, we present the results of

the experiments with our proposed algorithm and in Chapter 5, we conclude this

thesis by mentioning the challenges faced along with the possible future extensions.
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Chapter 2

CNN and DWT: A Brief Review

2.1 Introduction

In the last Chapter, we ended up choosing the hybrid approach for its flexibil-

ity and superior performance. Since our hybrid method consists of CNN as the

learning-based component and DWT as the regularization component, we devote

this chapter to give a brief introduction to them. Specifically in the CNN overview,

we discuss convolution, pixel-shuffling, and activation functions and in the DWT

overview we discuss scaling functions, wavelet functions, and wavelet transform in

two dimensions. Additionally, we also introduce common loss functions and opti-

mization techniques for image super-resolution.

2.2 CNN overview

A convolutional neural network (CNN) is a type of artificial neural network (ANN)

that is used extensively in computer vision and image processing. The main building

block of a CNN is a mathematical operation called convolution, which replaces the

usual matrix multiplication of ANNs.

There are many desirable properties of CNNs that make them so popular for

visual tasks:

• CNNs are shift-invariant, meaning it can detect the same pattern anywhere

on the input image
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CHAPTER 2. CNN AND DWT: A BRIEF REVIEW

• They provide local connectivity, as well as share parameters. So the number

of trainable parameters is significantly reduced

• They are able to detect local features as well as global features because the

receptive field increases as we stack multiple convolution layers

• With the GPU implementation of the CNNs, they are now more powerful than

ever, as the parallel computation capabilities of GPUs enable to train of deeper

CNN networks

2.2.1 Convolution layer

Mathematically, the 2-D convolution between an input fin(x, y) ∈ RM×N and a

kernel/weight/filter w(x, y) ∈ RP×Q is defined as:

fout(x, y) = fin⋆w(x, y) =

P−1
2∑

s=−P−1
2

Q−1
2∑

t=−Q−1
2

fin(s, t)w(x− s, y − t) (2.1)

where we assume that P and Q are odd integers and s, t are dummy variables for

convolution, so that we have the output fout(x, y) ∈ R(M+P−1)×(N+Q−1).

In general, the input the convolution have multiple channels, for example an

RGB image has 3 channels, one for each reg, green, and blue colors. So extending

the 2-D convolution operation over Cin channels, where fin(x, y, z) ∈ RM×N×Cin

and a kernel/weight/filter w(x, y, z) ∈ RP×Q×Cin , we have:

fout(x, y) = fin⋆w(x, y) =

Cin−1∑
k=0

P−1
2∑

s=−P−1
2

Q−1
2∑

t=−Q−1
2

fin(s, t, k)w(x−s, y− t, k)

(2.2)

where the output of the convolution over volume is still a 2-D function. For a

convolution operation with Cout number filters, where {wi}Cout−1
i=0 , we stack the

outputs for each convolution along the third dimension, so that the output becomes

fout(x, y, z) ∈ R(M+P−1)×(N+Q−1)×Cout as follows:

(2.3)

fout(x, y, i) = fin⋆wi(x, y, i)

=

Cin−1∑
k=0

P−1
2∑

s=−P−1
2

Q−1
2∑

t=−Q−1
2

fin(s, t, k)wi(x− s, y − t, k)
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CHAPTER 2. CNN AND DWT: A BRIEF REVIEW

for i = {0, 1, 2, ..., Cout − 1}.

With these tools, we are now ready to define a typical convolution layer of a

CNN model:

• Input: fin ∈ RM×N×Cin

• Number of filters in the layer: Cout

• Filters: wi ∈ RP×Q×Cin , for i = {0, 1, 2, ..., Cout − 1}

• Bias: bi ∈ R, for i = {0, 1, 2, ..., Cout − 1}

• Stride: r ∈ N

• Padding: p ∈ N

• Output: fout ∈ R⌊M−P+2p
r

+1⌋×⌊N−Q+2p
r

+1⌋×Cout

where stride is the step size for the convolution (which is generally 1), and padding

is the number of additional pixels added to each four side of the image for a better

control of the shape of the output.

fout ≡ Conv(fin) = Conv(fin; wi, bi, r, p) = fin⋆wi + bi (2.4)

For i = {0, 1, 2, ..., Cout − 1}. Here, the (learnable/trainable) parameters are

{wi, bi}Cout−1
i=0 , which we learn via an optimization algorithm, and the hyperpa-

rameters are {Cout, r, p}, which we do not learn but use to control the learning

process of the parameters.

2.2.2 PixelShuffle layer

The pixel shuffling layer [2] rearranges the input volume to increase the spatial

dimension (height, width) at the expense of the depth dimension. So for an upscaling

factor of s ∈ N, the PixelShuffle layer is just the transformation:

PixelShuffles( . ) : RM×N×(Cin×s2) → R(M×s)×(N×s)×Cin (2.5)
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Figure 2.1: PixelShuffle layer with s = 2 [2]

2.2.3 Activation function

In artificial neural networks, each output from a layer has to pass through a certain

function (usually a non-linear function), which are called the activation functions,

and the output coming from the activation functions are hence called “activation

map” or just “activation” for short. Some common activation functions are discussed

in the following discussion.

Parametric Rectified Linear Unit (PReLU)

The element-wise parametric rectified linear unit is defined as [47]:

PReLU(u) = max(0, u) + α ∗min(u) (2.6)

or

PReLU(u) =

u if u ≥ 0

αu otherwise

(2.7)

where α is a learnable parameter.

Hyperbolic Tangent (Tanh)

The element-wise hyperbolic tangent is defined as:

Tanh(u) ≡ tanh(u) =
eu − e−u

eu + e−u
(2.8)

2.3 DWT overview

The discrete wavelet transform (DWT) is a popular multi-resolution signal analysis

tool that is concerned with the representation and analysis of those signals (in our

case, images) at multiple resolutions [44]. At the heart of a wavelet transform are two

main components: a scaling function and a wavelet function. The scaling function
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creates a series of approximations of a signal or an image that differ by a factor of 2 in

resolution, while the wavelet function encodes the differences or errors between two

adjacent level approximations. The discrete wavelet transform represents a function

or an image as a linear combination of the wavelets and the scaling functions. The

Daubechies [3] and the Haar [48] are some of the common bases for the DWT. The

following discussions are excerpts from the [1], which shows the development of the

DWT.

2.3.1 Scaling function

If φ(x) is a real, square-integrable function (called the father scaling function), we

consider the set of basis functions composed of all integer translations and binary

scalings of the father scaling functions {φj,k(x)|j, k ∈ Z} where

φj,k(x) = 2j/2φ(2jx− k) (2.9)

Here, the integer k determines the position of φj,k(x) along the x-aixs, and the

integer j determines its shape (both width and amplitude). If the function space

spanned by bases {φj,k(x)} for j = j0 is denoted as Vj0 , then increasing j0

increases the spanned functions in Vj0 , or in other words, functions with smaller

variations and finer details can also be represented by the bases in addition to Vj0 .

To be a valid scaling function for the discrete wavelet transforms, it has to obey

the following four fundamental requirements of multi-resolution analysis (MRA)

[44]:

1. it is orthogonal to its integer translates

2. function space spanned by it at low scales are contained within those spanned

at higher scales

3. the only function representable at every scale is f(x) = 0

4. as j → ∞, all measurable, real, square-integrable functions can be repre-

sented by their linear combinations

Under these conditions, φ(x) can be represented as a linear combination of the
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double-resolution copies of itself (also called the refinement of the dilation equation):

φ(x) =
∑
k∈Z

hφ(k)
√
2φ(2x− k) (2.10)

where the {hφ(k)|k = 0, 1, 2, ...} are the expansion coefficients or sometimes

called the scaling function coefficients. If the scaling functions are orthonormal,

then the coefficients can be calculated by the following inner product:

hφ(x) = ⟨φ(x),
√
2φ(2x− k)⟩ (2.11)

2.3.2 Wavelet function

For any father scaling function that meets the MRA requirements from the previous

section, there exists a mother wavelet function ψ(x), whose integer translations and

binary scalings {ψj,k(x)|j, k ∈ Z} span the differences between any two immediate

scaling spaces spanned by the scaling functions, where

ψj,k(x) = 2j/2ψ(2jx− k) (2.12)

If Wj0 is the function space spanned by the wavelet functions at scale j = j0,

i.e. {ψj0,k|k ∈ Z}, then

Vj0+1 = Vj0 ⊕Wj0 (2.13)

Figure 2.2: Scaling function subspaces.

where ⊕ is the union of function spaces. In Vj0 + 1, the orthogonal component

of Vj0 is Wj0 , and the scaling functions that are the basis of Vj0 are orthogonal to

the wavelet functions that are the basis of Wj0 .
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Since the wavelet function spaces at a certain scale reside inside the higher scaling

function space, the wavelet function ψ(x), like the scaling function, can be written

as a weighted sum of shifted, double-resolution scaling functions as:

ψ(x) =
∑
k∈Z

hψ(k)
√
2φ(2x− k) (2.14)

where the {hψ(k)|k = 0, , 1, 2, ...} are the wavelet coefficients, sometimes called

the wavelet function coefficients. It can be shown that the relationship between the

scaling and the wavelet coefficients is given by the following equation:

hψ(k) = (−1)khφ(1− k) (2.15)

2.3.3 Wavelet transform in two dimensions

The 1-D wavelet transforms can easily be extended to 2-D functions like images. In

2-D, a 2-D scaling function φ(x, y), and three 2-D wavelets, ψH(x, y), ψV (x, y),

and ψD(x, y), are required. Each is the product of two 1-D functions, hence the

resulting 2-D functions are separable.

φ(x, y) = φ(x)φ(y)

ψH(x, y) = ψ(x)φ(y)

ψV (x, y) = φ(x)ψ(y)

ψD(x, y) = ψ(x)ψ(y)

(2.16)

The three “directionally sensitive” wavelets measure functional variations (image

intensity variation in our case) along different directions: ψH measures variations

along columns, ψV , captures the variations along rows, and ψD corresponds to

variations along diagonals.

If we have separable 2-D scaling and wavelet functions, an extension of the 1-D

DWT to 2-D DWT is straightforward. First, we define the scaled and translated

basis functions:

φj,s,t(x, y) = 2j/2φ(2jx− s, 2jy − t)

ψij,s,t(x, y) = 2j/2ψi(2jx− s, 2jy − t), i = {H,V,D}
(2.17)

Here, the i is just a superscript shorthand to specify the directionality of the

wavelets. The discrete wavelet transform of a 2-D image f(x, y) ∈ RM×N is
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then:

Tφ(j0, s, t) = ⟨f(x, y), φj0,s,t(x, y)⟩ =
1

√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)φj0,s,t(x, y)

(2.18)

T iψ(j, s, t) = ⟨f(x, y), ψij,s,t(x, y)⟩ =
1

√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)ψij,s,t(x, y)

(2.19)

Here, Tφ(j0, s, t) are the approximate coefficients at an arbitrary scale j0, and

T iψ(j, s, t), i = {H,V,D} are the horizontal, vertical, and diagonal detail coeffi-

cients for j ≥ j0, for a 2-D function f(x, y). We usually set j0 = 0,N = M = 2J

so that j = 0, 1, 2, ..., J − 1, and s = t = 0, 1, 2, ..., 2j − 1. For convenience,

let us define the DWT ( . ) operator as:

(2.20)

DWT (f) ≡ DWTφ,ψ(f)

= {⟨f, φj0,s,t⟩, ⟨f, ψHj,s,t⟩, ⟨f, ψ
V
j,s,t⟩, ⟨f, ψ

D
j,s,t⟩}

= {Tφ, THψ , T
V
ψ , T

D
ψ }

Now, given these coefficients, Tφ and T iψ, the original f(x, y) is obtained by the

inverse discrete wavelet transform as:

f(x, y) = 1√
MN

∑
s

∑
t Tφ(j0, s, t)φj0,s,t(x, y)+

1√
MN

∑∞
j=j0

∑
s

∑
t T

H
ψ (j, s, t)ψHj,s,t(x, y)+

1√
MN

∑∞
j=j0

∑
s

∑
t T

V
ψ (j, s, t)ψVj,s,t(x, y)+

1√
MN

∑∞
j=j0

∑
s

∑
t T

D
ψ (j, s, t)ψDj,s,t(x, y)

(2.21)

or more compactly:

(2.22)

f(x, y) =
1

√
MN

∑
s

∑
t

Tφ(j0, s, t)φj0,s,t(x, y)

+
1

√
MN

∑
i =H,V,D

∞∑
j =j0

∑
s

∑
t

T iψ(j, s, t)ψ
i
j,s,t(x, y)

For convenience, let us also define the IDWT ( . ) operator as:

(2.23)

IDWTφ,ψ({Tφ, THψ , T
V
ψ , T

D
ψ })

≡
1

√
MN

∑
s

∑
t

Tφ(j0, s, t)φj0,s,t(x, y)

+
1

√
MN

∑
i=H,V,D

∞∑
j=j0

∑
s

∑
t

T iψ(j, s, t)ψ
i
j,s,t(x, y)
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Similar to the 1-D case, the 2-D discrete wavelet transform (DWT) and the in-

verse discrete wavelet transform (IDWT) can be implemented using digital filters,

downsamplers, and upsamplers. If the 2-D scaling and wavelet functions are sepa-

rable, we can just take the 1-D FWT of the rows of f(x, y), followed by the 1-D

FWT of the resulting columns, and mirror the operation for the synthesis filter

banks, using the 1-D IFWT operation.

Figure 2.3: 2D forward and inverse fast wavelet transform.

2.4 Loss function

In deep learning, a loss function is a measure of how well the neural network model

is performing on the given set of samples, on average. It gives an idea of whether

the predicted output of the model matches the actual output. Specifically, it is

a mathematical function that takes in the predicted output of the network and

the actual output as two arguments and outputs a scalar value that represents the

difference between the two.

The goal of a learning-based model is to minimize this loss function during

the training (or learning) process. This is accomplished by adjusting the model’s

(learnable/trainable) parameters, such as weights and biases, in order to decrease

the loss across all samples in the available dataset. Depending on the type of problem

the neural network is trying to solve, the loss function may vary. In the following

discussion, we will cover the two most common regression loss functions, namely the

L1 and the L2 losses, also known as the “Mean Absolute Error (MAE)” and the

“Mean Squared Error (MSE)”, respectively. Before discussing in detail, we define–
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Y = {I(i)HR}mi=1 as the actual outputs and Ŷ = {Î(i)HR}mi=1 as the predicted outputs

of the model, both corresponding to the inputs X = {I(i)LR}mi=1.

2.4.1 Mean Absolute Error Loss

The mean absolute error is defined as:

MAE(Ŷ , Y ) =
1

m

m∑
i=1

|Î(i)HR − I
(i)
HR| (2.24)

In mathematics, a p-norm of a d-dimensional vector a = [a(1)a(2)...a(d)]T , a ∈

Rd, ℓp-norm, is defined as:

||a||p:=
(

d∑
i=1

|a(i)|p
)1/p

(2.25)

If Ŷ = [Î
(1)
HR Î

(2)
HR ... Î

(m)
HR ]

T and Y = [I
(1)
HR I

(2)
HR ... I

(m)
HR ]

T , the MAE is then

the scaled ℓ1-norm of the vector Ŷ − Y :

MAE(Ŷ , Y ) =
1

m
||Ŷ − Y ||1 (2.26)

If the data samples are independent and identically distributed and m → ∞,

then from the law of large numbers[49], we write LMAE or L1 expression in terms

of the expectation value and MAE as:

(2.27)

L1(Ŷ , Y ) ≡ lim
m→∞

MAE(Ŷ , Y )

= lim
m→∞

1

m
||Ŷ − Y ||1

= EX,Y ||Ŷ − Y ||1

2.4.2 Mean Squared Error Loss

The mean squared error is defined as:

MSE(Ŷ , Y ) =
1

m

m∑
i=1

(Î
(i)
HR − I

(i)
HR)

2 (2.28)

Using a similar argument as MAE, the MSE is just the scaled ℓ2-norm of the

vector Ŷ − Y :

MSE(Ŷ , Y ) =
1

m
||Ŷ − Y ||22 (2.29)
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And from the law of large numbers, we write LMSE or L2 expression in terms

of the expectation value and MSE as:

(2.30)

L2(Ŷ , Y ) ≡ lim
m→∞

MSE(Ŷ , Y )

= lim
m→∞

1

m
||Ŷ − Y ||22

= EX,Y ||Ŷ − Y ||22

2.5 Optimization method

The goal of optimizing a neural network is to find the parameters θ for the network

that significantly reduces the loss functionL evaluated on the entire training dataset.

We can optimize a neural network using only a single example (called stochastic),

or the whole training set (called batch). Most deep learning optimization algorithms

fall somewhere in between, using more than one sample but less than the whole

training set, which is now commonly referred to as the minibatch method. They also

require computing the gradient of the loss function, L(Ŷ , Y ; θ,X) with respect

to the parameters, θ. If the samples of the entire training set, {I(i)LR}ni=1 are i.i.d.,

by sampling a minibatch of size m, it can be shown that computing the gradient of

the loss with respect to the parameters for that sampled minibatch, is an unbiased

estimator of the exact gradient of the data. We define

g ≡
1

m
∇θL(Ŷ [j], Y [j]; θ,X [j]) (2.31)

where L is the loss calculated for the j’th minibatch: {X [j], Y [j]}.

We will now discuss two of the most common minibatch, gradient-based, deep

learning optimization algorithms: SGD and Adam.

2.5.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is one of the foundational optimization algorithms

used in training machine learning models, particularly in the context of neural net-

works and deep learning. The SGD is a variant of the traditional gradient descent

algorithm and is specifically designed to handle large datasets efficiently.

In traditional gradient descent, the algorithm computes the gradients of the loss

function with respect to all training examples in the dataset and then takes a step
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towards the minimum of the loss surface. This process requires calculating the

average gradient over the entire dataset, which can be computationally expensive

for large datasets. Stochastic Gradient Descent takes a different approach. Instead

of computing the average gradient over the entire dataset, it randomly selects a

single data point (or a small batch of data points) at each iteration and calculates

the gradient only with respect to that specific data point or batch. This stochastic

nature introduces randomness into the optimization process but allows the algorithm

to update the model parameters more frequently and efficiently.

Algorithm 1 The stochastic gradient descent (SGD) optimization

Require: Learning rate ϵk

Require: Initial parameter θ

while stopping criterion not met do

Sample a mini-batch j of m examples from the training set X [j] = {I(i)LR}mi=1

with corresponding targets Y [j] = {I(i)HR}mi=1

Compute gradient estimate ĝ ← 1
m
∇θL(Ŷ [j], Y [j]; θ,X [j])

Apply update: θ ← θ − ϵkĝ

end while

An important parameter for the SGD algorithm is the learning rate. Practically,

we gradually decrease the learning rate as the learning progresses, so we denote the

learning rate at iteration k as ϵk.

A sufficient condition to guarantee the convergence of SGD is that

∞∑
k=1

ϵk =∞ (2.32)

and
∞∑
k=1

ϵ2k <∞ (2.33)

It is worth mentioning that the gradient estimator introduces a source of noise

by randomly sampling a minibatch, hence the gradient does not vanish when we

reach at the minimum.
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2.5.2 Adam

In optimizing neural networks, the learning rate is probably one of the most difficult

hyperparameters because it significantly impacts the network’s performance. Re-

cently, researchers have introduced optimization algorithms that adapt the learning

rate of the model parameters. The name “ADAM”, is derived from “adaptive mo-

ments”. It combines the concepts of two other optimization algorithms, AdaGrad

[50] and RMSprop [50], to achieve efficient and adaptive learning rates for each pa-

rameter during the training process. Adam not only incorporates both first and

second-order moments of the gradient but also corrects the bias in their estimates,

to efficiently update the parameters [51]. This approach helps to converge faster

and handle sparse gradients more effectively, making it well-suited for a wide range

of deep learning tasks.

Algorithm 2 The Adam optimization

Require: Step size ϵ.

Require: Exponential decay rates for moment estimates, ρ1 and ρ1 in [0, 1).

Require: Small constant δ used for numerical stabilization.

Require: Initial parameter θ

Initialize 1st and 2nd moment variables µ1 = 0, µ2 = 0

Initialize time step t = 0

while e stopping criterion not met do

Sample a mini-batch j ofm examples from the training setX [j] = {I(i)LR}mi=1

with corresponding targets Y [j] = {I(i)HR}mi=1.

Compute gradient estimate g ← 1
m
∇θL(Ŷ [j], Y [j]; θ,X [j])

Update biased first moment estimate µ1 ← ρ1µ1 + (1− ρ1)g

Update biased second moment estimate µ2 ← ρ2µ2 + (1− ρ2)g ⊙ g

Correct bias in first moment: µ̂1 ← µ1

1−ρt1

Correct bias in second moment: µ̂2 ← µ2

1−ρt2

Compute update: ∆θ = −ϵ µ̂1√
µ̂2+δ

Apply update: θ ← θ + ∆θ

end while
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2.6 Summary

In this chapter, we discussed the preliminary concepts of CNN, the Discrete Wavelet

Transform, loss functions, and optimization methods for learning-based architec-

tures. In the next chapter, we introduce Wavelet Super-Resolution Residual Net-

work and define its various components.
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Chapter 3

Wavelet Super-Resolution

Residual Network

3.1 Introduction

Using the preliminaries from the previous Chapter, first, we formulate the problem

of image super-resolution and then develop the architecture of the proposed WaveS-

RResNet. Specifically, We discuss each component of the network in depth with

mathematical reasoning. Finally, we conclude this chapter with the formulation of a

compound loss function comprising of the regular pixel loss, SSIM loss, and the dis-

crete wavelet transform loss that can optimize our proposed image super-resolution

network.

3.2 Problem formulation

We aim to find the optimum super-resolution model G, denoted from here on as G∗,

which can successfully reconstruct high-resolution images from their low-resolution

counterpart, given that the generated high-resolution images are of greater percep-

tual quality:

ÎHR = G∗(ILR) (3.1)

Where G∗ is computed by solving the following optimization problem:

G∗ = argmin
θ

L(Ŷ , T ; θ,X) (3.2)
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With this formulation, we start with the model architecture in the following section.

3.3 Architecture

Our WaveSRResNet model architecture is adopted from a very popular structure

for CNN-based super-resolution models, [20], as depicted in the figure 3.1. The key

idea is to infuse the “wavelet-based” regularization method to the existing “learning-

based” image super-resolution models, which is implemented in the wavelet residual

blocks (WaveRB). The wavelet residual blocks are able to decompose the incoming

feature map to its DWT components and are also able to synthesize the outgoing

feature maps. These wavelet residual blocks not only facilitate the regularization

process but also makes the images sharper and edge-preserving.

Using wavelet residual blocks (WaveRB), residual blocks (RB), and upsampling

blocks (UB); we design the WaveSRResNet following a post-upsampling framework,

as described in [52]. First, a low-resolution input RGB image (of shape M×N×3)

to the model is passed through a 2D convolution layer (using 64 number of 3 × 3

filters), followed by a PReLU layer. The feature maps coming from the last layer

is then passed through two distinct learning-paths, namely the wavelet residual

block path (WaveRBPath, consisting of 16 number of cascading WaveRB) and the

residual block path (RBPath, consisting of 16 number of cascading RB). The key

idea is that, by doing so, we let the model learn the image feature maps both in the

transform domain (in the WaveRBPath) and the spatial domain (in the RBPath).

(3.3)WaveRBPathBw ≡WaveRBBw

◦ ...◦WaveRB3 ◦WaveRB2 ◦WaveRB1( . )

RBPathBR ≡ RBBR ◦ ... ◦RB3 ◦RB2 ◦RB1( . ) (3.4)

A global skip connection is also used, following the literature [20]. The output from

these three paths is added together and passed onto the UBs. As each UB increases

the spatial height and width by a factor of 2; the total number of cascading UBs in

the model is dependent on the up-scaling factor, s. Consequently, for the 2×, 4×,

and 8× super-resolution models, namely G2, G4, and G8; one, two, and three UBs

are connected in series, respectively. For any up-scaling factor s (where s = 2k, for
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k ∈ N), the upsampling block module (UBModule) is then:

UBModules ≡ UBlog2 s ◦UBlog2 s−1 ◦UBlog2 s−2... ◦UB3 ◦UB2 ◦UB1( . )

(3.5)

The output of which is finally passed through a final 2D convolution layer (with

three 3× 3 filters) and a hyperbolic tangent layer [53], to finally produce a super-

resolution (SR) image (of shape sM × sN × 3). In general, a WaveSRResNet

Figure 3.1: Wavelet super-resolution residual network (WaveSRResNet) architec-

ture.

with upscaling factor s (where s = 2k, for k ∈ N), with Bw and BR number of

WaveRBs and RBs in the wavelet residual path and the residual paths respectively

can be written as (figure 3.1):

(3.6)
Gs ≡ Tanh ◦ Conv ◦ UBModules

◦ (Conv ◦WaveRBPathBW + Conv ◦RBPathBR + 1)

◦ PReLU ◦ Conv( . )

In the following subsections, we describe the DWT layer, wavelet residual block,

residual block, and upsampling block in detail.

3.3.1 DWT layer

We define a 1-level 2D discrete wavelet forward transform operation using the

Daubechies-2 (db2) [3] scaling (db2φ) and wavelet (db2ψ) function as:

DWT ≡ DWTdb2φ,db2ψ( . ) (3.7)

and similarly, a 1-level 2D discrete wavelet inverse transform operation using the

db2 scaling and wavelet function as:

IDWT ≡ IDWTdb2φ,db2ψ( . ) (3.8)
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In this thesis, only the db2 wavelet was used, because of the shorter filter size

(4). The only shorter possible wavelet and scaling function is the Haar [48] (2),

which is not suitable for natural images. The time complexity of a convolutional

layer is O(P ·M ·C2
in) [54], so to keep the model lightweight and fast the shortest

length Daubechies wavelet and scaling functions, the Daubechies-2 (db2) were used.

The 1-D (db2) scaling (db2φ) and wavelet (db2ψ) function is shown in figure 3.2.

Figure 3.2: The db2 scaling and wavelet functions [3].

The DWT layer splits each channel of the input feature map to its approximate,

vertical, horizontal, and diagonal coefficients and stacks them as: {Tφ, THψ , T Vψ , TDψ }

(figure 3.3).

3.3.2 Wavelet residual block

Deep CNN networks are the foundation of computer vision and image processing

tasks. CNNs are great for visual tasks because the convolutional layers inside extract

features gradually. The shallow networks learn the simple shapes such as lines and

edges, while the deeper networks learn more complicated image features existing in

an object [55].

The forward and inverse DWT layers are capable of decreasing and increas-

ing the resolution of an input image by a factor of 2. We propose a novel Wa-

veRB which basically aids a mini super-resolution action at every convolutional

step. Since the deeper the convolutional layers, the more the features learned are

complicated. Hence, the WaveRB is used in parallel with the residual path in suc-

cessive layers. This helps the model become more robust and generate better-quality

super-resolution images.
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Figure 3.3: DWT layer applied on the ‘red’ channel of the “0149.png” image from

the DIV2K dataset. The input image to the DWT layer is of shape (1752, 2040).

Each WaveRB is capable of decomposing the input features to the block into the

2D DWT domain using the db2 wavelet and scaling functions, as shown in figure

3.4. The decomposed 2D-DWT coefficients then first pass through a 2D convolution

layer, with 64 filters of shape 3×3 and parametric rectified linear unit (PReLU) [47]

non-linearity. The output then passes through another identical set of 2D convolu-

tion and PReLU layers. The final transformed 2D-DWT coefficients coming from

the previous PReLU layer are then converted back to the spatial domain again, by

performing a 2D-IDWT using the db2 wavelets. The initial features input to the

WaveRB is finally added to the 2D-IDWT output, using a local skip-connection,

before leaving the block.

Assuming, the input to the WaveRB is Fin, mathematically, the output from
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Figure 3.4: Proposed wavelet residual block (WaveRB).

WaveRB, Fout, can be written as:

Fout = IDWT (PReLU(Conv(PReLU(Conv(DWT (Fin)))))) + Fin

(3.9)

So, the WaveRB operator can be defined as follows:

WaveRB ≡ (IDWT ◦PReLU ◦Conv ◦PReLU ◦Conv ◦DWT +1)( . )

(3.10)

3.3.3 Residual block

Each residual block has two sets of convoltion layer, followed by a PReLU non-

linearity. It also has a residual connection from the input to the output, which

is being added to the output from the last PReLU layer (Figure 3.5). Every 2D

convolution layer in the RB has 64 filters of shape 3× 3.

Figure 3.5: Residual block (RB).

Assuming, the input to the RB is Fin, mathematically, the output from RB,

Fout, can be written as:

Fout = PReLU(Conv(PReLU(Conv(Fin)))) + Fin (3.11)
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So, the RB operator can be written as follows:

RB ≡ (PReLU ◦ Conv ◦ PReLU ◦ Conv + 1)( . ) (3.12)

3.3.4 Upsampling block

Following the work of [2], which first proposed this technique for image super-

resolution, we use a pixel-shuffling layer after a 2D convolution layer with 64, 3× 3

filters to up-sample feature maps inside the network by a factor of 2. Since the up-

sampling block only increases the spatial resolution by 2×, for 4× super-resolution

2 such blocks should be cascaded and for the 8× super-resolution, it should be

cascaded 3 times.

Figure 3.6: Upsampling block (UB).

Assuming, the input to the RB is Fin, mathematically, the output from UB,

Fout, can be written as:

Fout = PixelShuffle2(Conv(Fin)) (3.13)

So, the UB operator can be denoted as follows:

UB ≡ PixelShuffle2 ◦ Conv( . ) (3.14)

3.4 Ablation study

An ablation study was carried out for the proposed novel architectural components

of the WaveSRResNet. First, the effectiveness of the addition of wavelet residual

path along with the pixel-domain residual path is investigated. Second, different

loss functions are also included in the investigation such as loss of pixels and DWT

coefficients, and SSIM-loss to find their impact on the network’s performance. Third,
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a visualization of what the WaveSRResNet learns at different stages is also provided

for the interpretation of the model.

For 4× image super-resolution, a WaveSRResNet is trained for 100 epochs with

1000 steps per epoch on the DIV2K dataset from scratch, and evaluated on the

Set5 dataset. The objective metrics PSNR and SSIM, and the perceptual metric

LPIPS are monitored during the study. The results obtained in this study are

presented in Table 3.1. Similar results are obtained for 2× and 8× image super-

resolution but are not shown for the sake of brevity.

Table 3.1: Ablation study of the proposed architecture for the 4× image super-

resolution

Network components Loss function components Performance

Residual path Wavelet residual path Pixel DWT SSIM PSNR (↑) SSIM (↑) LPIPS (↓)

Yes No Yes No No 31.65 0.8822 0.0496

Yes Yes Yes No No 31.10 0.8881 0.0464

Yes Yes Yes Yes No 31.97 0.8891 0.0489

Yes No Yes Yes Yes 31.99 0.8912 0.0436

Yes Yes Yes Yes Yes 32.38 0.8916 0.0454

From the table, it is evident that the inclusion of the wavelet residual path

generally yields better results. Also, by computing the loss function in the pixel-

and the wavelet-domain, together with the SSIM-loss gives the best results in terms

of PSNR and SSIM, and the second best result in terms of LPIPS. It is also suggested

by the study that the proposed wavelet residual path helps the model achieve better

performance with this combination of loss function components. Using this key

insight, we develop a customized loss function Ltotal that is detailed in the following

section.

A separate investigation was also carried out to visualize the activation maps in-

side the WaveSRResNet for a low-resolution patch. In Figure 3.7 we present the out-

put activation maps number 29, 30, 37, and 38 of the PReLU layer, WaveRB1,

and RB1. It is clear from figure that, additional image features such as the differ-

ent edges are learned inside the WaveRB alongside the regular RB. These additional

high-frequency edge information are crucial for reconstructing sharper and better

super-resolution images.
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3.5 WaveSRResNet loss function

To optimize the WaveSRResNet, we use a weighted combination of the L1 recon-

struction loss both in the spatial and the wavelet transform domain. Here, the L1

pixel loss in the spatial domain is responsible for guiding the model towards color

accuracy and general shapes, whereas the L1 wavelet loss in the DWT domain is re-

sponsible for guiding the model to be edge and structure preserving. Hence, for the

mapping Gs : ILR → IHR, where the output of the model, Gs, is ÎHR = Gs(ILR),

we then optimize the following loss term:

Ltotal = EILR,IHR[λ1 × ||ÎHR − IHR||1+λ2 × ||DWT (ÎHR)−DWT (IHR)||1
+λ3 × SSIM(ÎHR, IHR)]

∴ Ltotal = EILR,IHR[λ1 × Lpixel + λ2 × LDWT + λ3 × LSSIM ]

(3.15)

Now let us dissect each term in more depth–

• Lpixel: This term constrains the predicted ÎHR to be as close to the original

IHR as possible, in the spatial domain (pixel space). Since the loss is calculated

in the spatial domain where each pixel corresponds to the intensity of the

corresponding color channels, this term is mainly responsible for guiding the

model to color accuracy.

• LDWT : This term constrains the predicted ÎHR to be as close to the original

IHR as possible, in the discrete wavelet transform domain (transform space).

This term helps the model learn and reconstruct edges and small small details

at higher resolution.

• LSSIM : This term constrains the predicted ÎHR to be structurally similar to

IHR, in the spatial domain.

• λ1, λ2, & λ3: Here, theses values are chosen to give the Lpixel and LDWT

similar weight, and be comparable to LSSIM together. The benefit of setting

50% weight to LSSIM is that the reconstructed images would be more coher-

ent in terms of image structure. Specifically, they need to obey the following
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relations:

λ1 = λ2

|λ1 + λ2|≤ |λ3|

0 ≤ |λ1, λ2, λ3|≤ 1

(3.16)

3.6 Summary

In this chapter, first, we explored the architecture of our proposed model in depth,

including each of its components such as the Wavelet Residual Block and the Up-

sampling Block. Then we finally wrapped up the chapter by discussing the proposed

loss function that can best optimize our proposed Wavelet Super-Resolution Resid-

ual Network. In the next chapter, we present the results of experiment with the

model on standard datasets and compare the performance with recent image super-

resolution models.

37



Chapter 4

Experiments and Results

4.1 Introduction

This Chapter gives a brief description of the data used for training, validation,

and testing. Three performance metrics that are suitable to measure the ability

of the model quantitatively are introduced. An ablation study was performed on

the architecture of the model to find the effectiveness of each block and each loss

function components. After that, the implementation and training details for the

WaveSRResNet are presented. Finally, the chapter is concluded by presenting the

findings of the experiments for 2×, 4×, and 8× WaveSRResNet.

4.2 Dataset

In this section, the different datasets that are used for developing and evaluating the

WaveSRResNet for the task of image super-resolution are briefly described. Table

4.1 provides a short description of each dataset, the number of samples, the average

image resolution, and the contents of the images in them.

For training and validation, the DIV2K dataset [56] was used, which contains

24-bit 800 training and 100 validation 2K-RGB images. The DIV2K data set is

used extensively for image resotration tasks including the image super-resolution

problem because of its higher resolution and variety of subjects ranging from dif-

ferent household objects to humans playing sports. The WaveSRResNet model was

trained for 2×, 4×, and 8× upsampling factors usign the DIV2K dataset. The LR
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Table 4.1: Description of the datasets used

Dataset Images Avg. Resolution Contents

DIV2K 1000 1972, 1437 environment, flora, fauna, handmade object, people, scenery, etc.

Set5 5 313, 336 baby, bird, butterfly, head, woman

Set14 14 492, 446 humans, animals, insects, flowers, vegetables, comic, slides, etc.

BSDS100 100 435, 367 animal, building, food, landscape, people, plant, etc.

Urban100 100 984, 797 architecture, city, structure, urban, etc.

Manga109 109 826, 1169 manga volume

images were generated by applying the bicubic degradation model to the original HR

images [22]. The WaveSRResNet was evaluated on common benchmarking datasets

including Set5 [57], Set14 [58], Urban100 [59], BSD100 [60, 61, 62], and Manga109

[63]; as listed in Table 4.1

4.3 Experimental design

All the models were implemented using the TensorFlow [64] deep-learning library in

Python 3 programming language. The WaveTF [65] wavelet transform library for

TensorFlow was used to implement DWT and IDWT layers inside the network. The

ILR images input to the model are scaled to the range [0, 1] from [0, 255], while

the generated ISR images are scaled back to [0, 255] from [−1, 1] (because of the

Tanh activation function).

We used a batch-size of 16 for training the WaveSRResNet. For each batch,

we randomly crop 128× 128 patch size sub-images and iterate through the whole

training set (DIV2K) to complete one training iteration (epoch). During training,

the Adam [51] optimizer was used with default decay rates, ρ1 = 0.9, ρ2 =

0.999 and stabilization constant, δ = 10−7. The initial learning rate was set at

ϵ = 10−4, which decayed by 10% after every 10, 000 training steps. 1000 steps

were completed to complete an epoch.

A computer system with a 12th Gen Intel(R) Core(TM) i5-12400 2.50 GHz

processor, 40 GB RAM, and a 12 GB GDDR5X NVIDIA Titan Xp was used for

training the WaveSRResNet. The training time for the 2×, 4×, and 8× super-

resolution model in that system were 9, 3.5, and 2 minutes per epoch, respectively.

A separate model for each up-sacling factor was trained using the following hy-
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perparameters:

• Up-scaling factor s ∈ {2, 4, 8}

• Mini-batch size, m : 16

• A low-resolution RGB input sub-image patch, ILR ∈ R128×128×3

• A high-resolution RGB ground-truth sub-image, IHR ∈ R(s×128)×(s×128)×3

• A reconstructed super-resolution RGB sub-image, ÎHR ∈ R(s×128)×(s×128)×3

• j’th input mini-batch, X [j] = {I(i)LR}
m

i=1 ∈ R16×128×128×3

• j’th ground-truth mini-batch, Y [j] = {I(i)HR}
m

i=1 ∈ R16×(s×128)×(s×128)×3

• j’th reconstructed mini-batch, Ŷ [j] = {I(i)SR}
m

i=1 ∈ R16×(s×128)×(s×128)×3

• Scaling basis function in the DWT layer, φ : db2

• Wavelet basis function in the DWT layer: ψ : db2

• Kernel size in the first and the last convolution layer, (P ×Q) ∈ R9×9

• Kernel size in all other convolution layers, (P ×Q) ∈ R3×3

• Convolution padding: same padding

• Number of filters in every convolution layer except the last: 64

• Number of filters in the last convolution layer: 3

• Number of wavelet residual blocks, (WaveRB’s) BW : 16

• Number of residual blocks, (RB’s) BR : 16

• Number of up-sampling blocks, (UB’s) : 1/2/3

• Weight of Lpixel, λ1 : 0.5

• Weight of LDWT , λ2 : 0.5

• Weight of LSSIM , λ3 : 1.0

Here, all tensors are represented in the channels last format (where applicable),

i.e. (Height ×Width × number of channels). This is the default tensor

representation for TensorFlow.
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4.4 Performance metrics

Performance metrics for image super-resolution can be categorized into several groups

based on the aspect of image quality they measure. We are interested in how well

the learning-based algorithm performs on data that it has never seen before in terms

of it’s objective and subjective qualities. In that note the following two categories

of performance metrics for image enhancement:

4.4.1 Objective metrics

• PSNR: Peak signal-to-noise ratio (PSNR) is a performance metric used to

express the ratio between the maximum possible power of a signal and the

power of an error signal that affects the fidelity of its representation.

The PSNR (in units of dB) is defined as:

PSNR(Ŷ , Y ) = 10 log10

(
max(Y )2

MSE(Ŷ , Y )

)
(4.1)

• SSIM: The structural similarity index measure (SSIM) is a method for eval-

uating the perceived quality of digital images and videos [45]. SSIM is used

for measuring the similarity between two images.

The SSIM index is calculated on various windows of an image. The measure

between two windows Ŷ and Y of a common size is:

SSIM(Ŷ , Y ) =
(2µŶ µY + δ1)(2σŶ Y + δ2)

(µ2
Ŷ
+ µ2

Y + δ1)(σ
2
Ŷ
+ σ2

Y + δ2)
(4.2)

where

– µŶ the pixel sample mean of Ŷ

– µY the pixel sample mean of Y

– σ2
Ŷ

the variance of Ŷ

– σ2
Y the variance of Y

– σ2
Ŷ Y

the covariance of Ŷ and Y

– δ1 = (κ1L)
2, δ2 = (κ2L)

2 two variables to stabilize the division with

weak denominator
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– L the dynamic range of the pixel-values (typically this is 2#bits per pixel−1)

– κ1 = 0.01 and κ2 = 0.03 by default

4.4.2 Perceptual metrics

• LPIPS: The Learned Perceptual Image Patch Similarity (LPIPS) is used to

judge the perceptual similarity between two images [46]. LPIPS is based on a

deep neural network that learns representations of image patches and computes

a similarity score based on the differences between these representations. It

aims to capture human perception by considering higher-level visual features

such as textures, shapes, and objects.

Perceptual metrics like LPIPS are often used in image enhancement tasks to

evaluate the quality of the enhanced images from a human perception stand-

point. This measure has been shown to match human perception well. A low

LPIPS score means that image patches are perceptually similar. By consider-

ing perceptual factors, these metrics provide a more comprehensive evaluation

of image quality beyond traditional objective metrics like PSNR or SSIM.

4.5 Methods for comparison

The methods for comparison can be broadly divided into two categories for the pur-

poses of this thesis– first category is where only L1 or L2 loss is utilized to optimize

the super-resolution model. The second category is where the methods use gan-

based [24] optimization techniques and perceptual loss functions [27]. The quality

of the images produced from these two different categories of methods are usually

compared via different performance metrics. Methods from the former category are

mostly evaluated using objective metrics such as PSNR or SSIM, whereas methods

from the latter one are usually evaluated using variosu perceptual metrics such as

the LPIPS, for quantitative performance measure.
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4.5.1 L1/L2 loss-based methods

The performance of the WaveSRResNet is compared with the following methods

using the PSNR and SSIM performance metrics.

• EDSR (2017): The authors of the paper titled “Enhanced Deep Residual

Networks for Single Image Super-Resolution” [21] improved on the [20] by

removing unnecessary batchnormalization module and stabilizing the training

procedure. The EDSR model is a CNN based architecture employing residual

blocks, optimizing an L1 loss in the spatial domain.

• RCAN (2018): In their paper “Image Super-Resolution Using Very Deep

Residual Channel Attention Networks” [22] the authors proposed a novel resid-

ual in residual (RIR) block which allows low-frequency components of the LR

image to be bypassed using different skip-connections. This paper also uses

channel attention technique to reduce channel information redundancies. The

RCAN model is also a CNN based architecture with channel attention, which

is also optimized on an L1 loss in the spatial domain.

• MWCNN (2018): The “Multi-level Wavelet-CNN for Image Restoration”

paper [14] proposes a wavelet-based U-net [28] inspired model that resembles

the wavelet packet transform (WPT) architecture. Their novel contribution is

adding DWT layers in the encoder block and corresponding IDWT layers in

the decoder block. Basically, the downsampling and upsampling operations of

the pooling and unpooling layers are achieved via the DWT and IDWT layers.

The model is optimized using an L2 loss in the spatial domain.

• SAN (2019): In “Second-Order Attention Network for Single Image Super-

Resolution” [23] the authors present a second-order channel attention module

to further strengthen the feature correlation learning. The SAN model is

optimized using an L1 loss on the spatial domain.

• SwinIR (2021): The “SwinIR: Image Restoration Using Swin Transformer”

[26] paper proposes a transformer architecture for image restoration, by us-

ing novel residual swin transformer blocks. The SwinIR model is trained by

optimizing L1 loss in the spatial domain.
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4.5.2 GAN-based methods

SRGAN (“Super-Resolution Generative Adversarial Network”, 2017) [20], ESR-

GAN (“Enhanced Super-Resolution Generative Adversarial Networks”, 2018) [25],

NatSR (“Natural and Realistic Single Image Super-Resolution”, 2019) [29], SFT-

GAN (“Spatial Feature Transform Generative Adversarial Network”, 2018) [66],

and SPSR (“Structure-Preserving Super Resolution”, 2021) [30] are some of the

most prominent GAN-based image super-resolution models that are optimized by

optimizing some sort of perceptual loss function, against which we compare the

LPIPS values of our proposed WaveSRResNet.

4.6 Results

The results are presented in three different approaches- one using objective metrics,

next subjective evaluation using visual outputs, and finally using perceptual metrics.

4.6.1 Objective evaluation

Tables 4.2, 4.3, & 4.4 show the comparison of proposed WaveSRResNet with recent

methods: EDSR [21], RCAN [22], MWCNN [14] , SAN [23], and SwinIR [26], in

terms of PSNR (↑) and SSIM (↑) on the Y channel (i.e., luminance) of in the

transformed YCbCr color space. The best results are shown in red, while the second

best results are shown in blue.

In 2 out of 5 benchmarking datasets, our proposed method performs better for

the 2× image super-resolution. For the 4× and 8× up-scaling factors, the proposed

WaveSRResNet performs better on 3 out of 5 benchmarking datasets, and on 5 out

of 5 benchmarking datasets, respectively. WaveSRResNet achieved, on average,

4.8% higher PSNR (↑) and 8% higher SSIM (↑) objective scores than the most

successful and recent methods for the 8× image super-resolution (Table 4.4), the

most challenging scenario. Our WaveSRResNet outperforms the most competitive

method SwinIR [26] on all datasets for the 8× image super-resolution.
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Table 4.2: Results of comparing methods in terms of PSNR and SSIM for the 2×

image super-resolution.

Set5 Set14 BSD100 Urban100 Manga109
Method (2×) Year

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR 2017 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773

RCAN 2018 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

MWCNN 2018 37.91 0.9600 33.70 0.9182 32.23 0.8999 32.30 0.9296 - -

SAN 2019 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792

SwinIR 2021 38.35 0.9620 34.14 0.9227 32.44 0.9030 33.40 0.9393 39.60 0.9792

WaveSRResNet 2023 37.28 0.9468 33.29 0.9071 34.53 0.9472 33.84 0.9293 38.16 0.9681

Table 4.3: Results of comparing methods in terms of PSNR and SSIM for the 4×

image super-resolution.

Set5 Set14 BSD100 Urban100 Manga109
Method (4×) Year

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR 2017 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

RCAN 2018 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

MWCNN 2018 32.12 0.8941 28.41 0.7816 27.62 0.7355 26.27 0.7890 - -

SAN 2019 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169

SwinIR 2021 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164 31.67 0.9226

WaveSRResNet 2023 32.64 0.9016 29.25 0.8148 30.06 0.8742 28.33 0.8362 32.01 0.9043

Table 4.4: Results of comparing methods in terms of PSNR and SSIM for the 8×

image super-resolution.

Set5 Set14 BSD100 Urban100 Manga109
Method (8×) Year

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR 2017 26.96 0.7762 24.91 0.6420 24.81 0.5985 22.51 0.6221 24.69 0.7841

RCAN 2018 27.31 0.7878 25.23 0.6511 24.98 0.6058 23.00 0.6452 25.24 0.8029

SAN 2019 27.22 0.7829 25.14 0.6476 24.88 0.6011 22.70 0.6314 24.85 0.7906

SwinIR 2021 27.37 0.7877 25.26 0.6523 24.99 0.6063 23.03 0.6457 25.26 0.8005

WaveSRResNet 2023 27.40 0.7898 25.43 0.7043 27.27 0.7839 25.17 0.7226 26.50 0.7797
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4.6.2 Subjective evaluation

Figures 4.1, 4.2, and 4.3 show the subjective comparison of the output of the pro-

posed WaveSRResNet with two methods: EDSR [21] and SwinIR [26]. Difference

images for zoomed-in sections are also shown for a better comparison. The difference

images is bright for regions where the model performs poorly, and dark for regions

where the model performs well, as measured by the ground-truth HR images.

Subjective comparisons of WaveSRResNet to the most conventional method

EDSR and the most competitive method SwinIR reveal the superiority of our pro-

posed method for the extremely challenging large up-scaling factors (Figures 4.2,

4.3), while demonstrating comparable performance for small up-scaling factors (Fig-

ure 4.1). In Figure 4.2 we can clearly see the edges of the person are not being recon-

structed well by EDSR and SwinIR, while our WaveSRResNet is able to reconstruct

them well. Lastly, in Figure 4.3, we can clearly see edge artifacts being created

between and inside the windows by EDSR and SwinIR, while our WaveSRResNet

does a good job of mitigating it.

4.6.3 Perceptual evaluation

Table 4.5 shows the comparison of proposed WaveSRResNet with recent methods:

SRGAN [20], ESRGAN [25], NatSR [29], SFTGAN [66], and SPSR [30] in terms

of the LPIPS (↓) metric. The best results are shown in red, while the second best

results are shown in blue.

It shows that, the proposed WaveSRResNet achieved 9% lower LPIPS (↓) on

average, for the 4× up-scaling factor. All of the methods compared for perceptual

evaluation are optimized on a particular form of perceptual metric. It is therefore

evident that by adding the DWT path and optimizing in the DWT domain helps

the model achieve greater perceptual results.

4.7 Summary

This chapter began with a short description of all the datasets used in this thesis,

followed by the experimental design of this research. Hardware and software require-

ments, training settings, as well as the hyperparameter selection were discussed.
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Table 4.5: Results of comparing with GAN-based methods in terms of LPIPS for

the 4× image super-resolution.

DIV2K val Set5 Set14 BSD100 Urban100
Method Year

LPIPS (↓) LPIPS (↓) LPIPS (↓) LPIPS (↓) LPIPS (↓)

SRGAN 2017 0.1263 0.0882 0.1663 0.1777 0.1551

ESRGAN 2018 0.1154 0.0748 0.1329 0.1615 0.1229

NatSR 2019 0.1523 0.0939 0.1758 0.2115 0.1500

SFTGAN 2018 0.1449 0.0890 0.1481 0.1769 0.1433

SPSR 2021 0.1099 0.0644 0.1318 0.1613 0.1184

WaveSRResNet 2023 0.0999 0.0432 0.1045 0.1556 0.1255

After introducing 3 performance metrics (PSNR, SSIM, LPIPS) from 2 categories

(objective, perceptual) and the existing methods for comparison, we present our

results from 3 evaluation perspectives– objective, subjective, and perceptual. The

results show that our proposed WaveSRResNet performs significantly better than

all the recent methods in the most challenging scenario (i.e. 8× super-resolution)

across the three evaluation criteria.

Since the 2× image super-resolution is fairly simpler in setting than the other

larger up-scaling factors such as 4× or 8×, during training the model is high likely

to be over-fitted. This may be the reason that the WaveSRResNet does not perform

well for the 2× image super-resolution. However, for higher up-scaling factors since

we have very limited data to work with, over-fitting can be easily avoided, and hence,

the model performs significantly better.
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Figure 4.1: Results of visual comparison for the 2× super-resolution on the

“Monarch.png” image from the ‘Set14’ dataset. The difference image is shown for

the zoomed-in sections.
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Figure 4.2: Results of visual comparison for the 4× super-resolution on the

“HaruichibanNoFukukorox4.png” image from the ‘Manga109’ dataset. The differ-

ence image is shown for the zoomed-in sections.

49



CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.3: Results of visual comparison for the 8× super-resolution on the

“img025.png” image from the ‘Urban100’ dataset. The difference image is shown

for the zoomed-in sections.
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Conclusion

5.1 Concluding remarks

Image super-resolution is a classic image processing task which has applications in

various domains such as security, computer graphics, remote-sensing, image genera-

tion, etc. With the improvement of hardware for learning based methods, nowadays,

almost all the competitive methods in image super-resolution are CNN based, usu-

ally optimized on objective or perceptual loss functions. One of the main challenges

in this area is not being able reconstruct sharper and clearer super-resolved images.

We attribute this issue to not being able to reconstruct the high-frequency com-

ponents properly. To mitigate this issue, this thesis proposes a novel DWT based

regularization method that helps the model being edge preserving to produce sharper

images. To facillitate the regularization, a novel wavelet residual block is proposed

which performs forward and inverse DWT inside the CNN. The model was designed

in such a way that the convolutional neural network with residual connection can be

trained in an end-to-end fashion. The effectiveness of the said WaveRB block and

the proposed regularization loss function term was designed after a proper ablation

study.

To validate the premise, various experiments have been carried out. Image super-

resolution methods can be broadly categorized into the type of loss functions that

they optimize. One category of methods optimize using common objective functions

such as the PSNR or SSIM, while the others use different forms of perceptual metrics.

We compare the results of our proposed model with both kinds of methods.
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Specifically, we compare the PSNR and SSIM values of the proposed WaveSR-

ResNet with the following methods in the first category, namely EDSR [21], RCAN

[22], SAN [23], and SwinIR [26] for 2×, 4×, and 8× image super-resolution. For the

2× up-scaling factor, our proposed method performs better in 2 out of 5 benchmark-

ing datasets. For the 4× and 8× up-scaling factors, the proposed WaveSRResNet

performs better in 3 out of 5, and 5 out of 5 benchmarking datasets, respectively.

For the 8× image-super resolution, our WaveSRResNet beats the most competitive

method SwinIR [26] across all datasets. Subjective comparison of WaveSRResNet

with the most traditional method EDSR and the most competitive method SwinIR

clearly indicate the superiority of our proposed method for the extremely challenging

large up-scaling factors, and comparable performance for small up-scaling factors.

The perceptual performance of our model is also compared against 5 methods from

the second category: SRGAN [20], ESRGAN [25], NatSR [29], SFTGAN [66], and

SPSR [30]. WaveSRResNet performs better than these methods on 4 out of 5 bench-

marking datasets.

The critical part of this research was to integrate the DWT layers inside the CNN

models in such a way that the resulting learning-based model can be optimized and

trained in an end-to-end fashion. Most of the DWT-based super-resolution networks

[15] use the DWT as a mere pre-processing tool, which does not allow the said mod-

els to be trained end-to-end. This crucial step was overcome by incorporating the

WaveTF [65] DWT library with the existing TensorFlow [64] deep learning frame-

work. Thus, by using the forward and inverse DWT layers inside the convolutional

neural networks, along with a DWT based regularization loss function, can facili-

tate the reconstruction of super-resolution images, and improves the quality of the

reconstructed super-resolution images on both objective, subjective (visual quality)

and perceptual metrics.

5.2 Future works

The results and findings of this thesis can be taken forward in two directions. Firstly,

we can investigate the impact of other multi-resolution wavelet-based transforms

such as the complex wavelet transform for the problem of image super-resolution.
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This is a natural progression of the work because while the discrete wavelet transform

takes into direction 3 directions, namely horizontal, vertical, and diagonal, other

directional transformation should be able to improve the performance even further.

The challenge in that lies in being able to design the model in such a way that it

can be trained end-to-end.

Secondly, this proposed super-resolution network architecture can be applied for

video super-resolution, which is also an important task for computer vision. For

this application, the temporal relationship between the frames also needs to be

addressed. In this case, the model also needs to be lightweight.
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