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ABSTRACT 

The primary objective of this study is to explore the capabilities of Deep Neural 

Network (DNN) models in predicting the load settlement behavior of pile foundations. 

As the safety and stability of a structure heavily rely on the performance of the piles, it 

is crucial to monitor their load settlement behavior. Conventionally, static load tests are 

conducted at construction sites to achieve this. However, static load tests come with 

various complexities, such as being expensive, time-consuming, and sometimes leading 

to destructive outcomes. The study aims to address these challenges by seeking a more 

efficient, accurate, and reliable technique to capture the complete response of pile load-

settlement behavior. By utilizing DNN models, the research aims to provide an 

alternative approach that can potentially streamline the prediction process, ultimately 

enhancing the understanding and management of the pile foundation behavior in 

construction projects. 

In order to predict the load settlement behavior of pile foundations, this study employed 

the development of various Deep Neural Network (DNN) models, including MLP, 

LSTM, Bi-LSTM, 1D CNN, and TabNet. A dataset of approximately 712 load-

settlement data points was gathered from 42 full-scale load test data sets, encompassing 

relevant information about pile characteristics and soil profiles. The selected input 

parameters for model development included pile geometry, stiffness, applied load, 

settlement, loading-unloading cycles, and the SPT (Standard Penetration Test) profile 

of the specific location. To facilitate model training and evaluation, the dataset was 

initially divided into training and testing sets. Several techniques, such as batch 

normalization, dropout, and principal component analysis (PCA), were applied to 

eliminate unnecessary dimensions, reduce the impact of noise, and handle outliers 

effectively within the dataset. By employing these techniques, the DNN models were 

better equipped to process and interpret the input data accurately, aiming to improve 

the accuracy and reliability of load settlement behavior predictions for pile foundations. 

Besides DNN models, the finite element method (FEM) has been used to carry out the 

simulation of static pile load tests. This method has the advantage over traditional 

analysis techniques as more realistic test conditions can be taken into account and 

displacements and stresses within the soil body and pile are coupled, thus representing 

more realistic pile-soil interaction behavior with more realistic assumptions. The 

commercial finite element program Plaxis-3D was used for this simulation purpose. 

The layered soil profile was modeled using the hardening soil model, while the pile was 

modeled as an embedded beam element using the elastic model. The selection of soil 

models and corresponding parameters was ensured by comparing the results with the 

laboratory test results and SPT correlations. 

However, the obtained prediction results from both models were compared with field 

test results, and eventually performances were assessed using statistical performance 

indicators like MSE, RMSE, MAE, and correlation coefficients. The findings 

demonstrated quite satisfactory performances of the DNN models and FEM to forecast 

both of the two loading-unloading cycles that are commonly generated during field 

static load tests. It is also evident that Plaxis-3D shows higher accuracy except when 

the TabNet model is employed with PCA. TabNet with PCA was concluded to be the 

optimized model (R2=0.92) for prediction of load settlement response. Hence, it can be 

recommended that using the learned simple model input parameters, it is possible to 

predict the load-settlement behavior within a satisfactory range by applying the 

proposed DNN models. This will ultimately reduce time and costs by the optimization 

of test plans. 
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CHAPTER 1 

INTRODUCTION 

1.1  General 

Foundation plays the most vital role in transferring loads to the ground. It ensures the 

safety and stability of every construction. Depending on the soil condition and its 

challenges, deep foundations are used to transfer the loads to the deeper and more 

compatible soil layers. Hence, as a deep foundation, it is required to assess the 

performances of pile foundation. To ensure the optimized design of a pile foundation, 

the load-settlement behavior, measurement of capacity and the verification of static 

calculations or the calibration of other tests at identical soil conditions can all be 

accomplished through the application of static load testing.  

Load-settlement behavior of pile foundations, in accordance with ASTM D1143-81, is 

preferably developed and described on the basis of results from static load tests (SLT). 

Throughout the course of these tests, increasing loads are applied at particular time 

intervals in a progressive manner; the settlement is measured after each stage. The load 

settlement curve that was obtained is then analyzed in greater detail. In this method, the 

load should be increased until the pile reaches the maximum load, which leads to the 

identification of the pile's ultimate capacity. The limit state is defined as the situation 

in which the increment in settlements is unrestrained without the need to increase the 

load applied. From that the settlement behavior and probable ultimate capacity of the 

pile is being reported. But it requires huge time and is less efficient in many cases due 

to its operational costs. Also, in some cases it is a destructive test. 

As a result, numerous studies have been carried out to illustrate the load-settlement 

behavior without performing field load tests. Numerical analysis has been shown to be 

highly beneficial in predicting the behavior of piles under different loading 

conditions (Sellountou and Roberts, 2007; Wehnert and Vermeer, 2004). By comparing 

the measured deformation of the pile to the predicted deformation from the numerical 

analysis, research has shown that numerical analysis can be used to validate the results 

of a static load test (El-Mossallamy, 2020; Unsever et al., 2014; Reul, 2004; Kimura 

and Zhang, 2000 Franke et al., 1994) and even for providing additional information 

about the pile's behavior that is not available from a static load test (Ahmed and 
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Neelima, 2009; Johnson et al., 2006; Karthigeyan et al.,2007).  Also, many recent 

research uses Artificial Intelligence (AI) to forecast pile-load settlement behavior 

(Unsever et al., 2015; Momeni et al., 2014; Nejad et al., 2009; Shahin et al., 2002). 

However, the use of neural networks in predicting the pile capacity started in the 1990’s 

(Goh, 1995; Boscardin and Cording, 1989;), when used in a form of a model to predict 

an estimate of the friction capacity of driven piles in clay soils. Explicit understanding 

of the settlement components is required in this case. Traditional pile load-

settlement assessment methods use pile geometry, material qualities, applied load, and 

soil properties. To increase prediction accuracy, the updated Deep Neural Network 

(DNN) models were also introduced (Alzo’Ubi and Ibrahim, 2021; Schmüdderich et 

al., 2020; Mohanty et al., 2018). However, the best model to accurately simulate 

behavior remains unclear. Latest DNN model like TabNet and principal component 

analysis techniques were missing in the previous literatures. On the other hand, the 

previous research works on FEM of pile load test lacks the details on proper soil model 

selection and layered soil profile consideration. Hence, this study aims to develop 

preferable methods in terms of efficiency and higher accuracy in predicting the load-

settlement behavior considered variations in soil type, layered profile, loading-

unloading cases and developed models. 

1.2  Background 

Pile load test is an essential part of pile foundation design. It provides the most precise 

assessment of ultimate load capacity obtained by carrying out full-scale in-situ load 

tests and displaying the actual load settlement response of pile (Kee, 1978). A variety 

of test methods are to be found in the industry. Static load test is the most basic and 

widely used test through which actual bearing capacity of the pile as installed in the 

field can be verified (Coduto, 2014; Fellenius, 1980). Therefore, most design codes 

require Static Load Test (SLT) to be performed at construction sites, illustrating the 

discrepancy in settlement. Nevertheless, while essential, the aforementioned approach 

comes with its own difficulties in that it is expensive, tedious and time-consuming, 

presents complications for the construction process and is not environmentally friendly 

(Nejad et al., 2009). Hence, searching for an efficient, accurate and reliable technique 

to capture the full response of pile load settlement curve is inevitable. In this research, 

initially, the finite element method (FEM) will be used to carry out the simulation of 
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static pile load test. This method has the advantage over traditional analysis techniques 

as more realistic test conditions can be taken into account. Furthermore, displacements 

and stresses are coupled within the soil body and pile (Momeni et al., 2014; Unsever et 

al., 2015). The commercial finite element programs PLAXIS 3D will be used for this 

simulation purpose. In addition to this numerical approach, this study aims at further 

extension by establishing an evolutionary Deep Neural Network (DNN) model using 

input parameters that can easily be determined without the need for expensive and time-

consuming in-situ testing. This study will be devoted to filling the gaps and to 

differentiating from the previous studies (Alzo’Ubi and Ibrahim, 2021; Schmüdderich 

et al., 2020; Jebur et al., 2018; Mohanty et al., 2018; Krasiński and Wiszniewski, 2017; 

Unsever et al., 2015) in terms of incorporating both the numerical simulation and 

implementation of the DNN model with a view to figuring out the most reliable and 

optimized model for prediction of load settlement response under varying load and soil 

conditions. 

1.3  Objectives of the Study 

The present study aims to achieve the following objectives:  

(i) To conduct numerical simulation of static pile load test using the finite element 

method. 

(ii) Perform sensitivity analysis to identify model parameters and construct Deep 

Neural Network (DNN) models using experimental datasets for predicting pile 

settlement. 

(iii)  To determine model performances and accuracies comparing with field test data. 

1.4  Organization of the Thesis 

To exemplify the process for reaching the aforementioned aims while coping with the 

study's scope, the overall thesis has been assembled with a total of six chapters. The 

order of these six chapters will be as follows: 

Chapter One concisely portrays an overview of the context of entire research work 

including introduction, objective of the research, background of the study and 

organization of the thesis. 

Chapter Two documented the literature reviews. Reviewing available relevant 

literatures on static load test, finite element modeling, DNN models such as MLP, 
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LSTM, Ni-LSTM, TabNet and their applications in the field of geotechnical 

engineering. It also incorporates programs used for those applications; finally 

concluded the literature gaps and necessity of detailed study. 

Soil sample collection, interpretation of test reports and data handling have been 

outlined in Chapter Three. It also contains detail of the methodology used for data 

collection, site information, data handling, and data sorting, as well as the field 

investigation and lab tests that were carried out in order to achieve the research work's 

objectives. 

Chapter Four contains the brief discussion on the FEM model development using 

compatible soil models, required parametric considerations for different soil layers, 

calculation steps and settlement analysis results. Details of the selected project for 

numerical modeling and project geometry has also been illustrated here.  

Chapter Five contains the brief description on architecture of the Deep Neural Network 

(DNN) models used in this study. It also outlines the procedure of DNN model 

development and validation results comparing with filed load test results.  

Finally, Chapter Six outlines the major conclusions drawn from this study and also 

based on the comparison of both the DNN and numerical models. In addition to that, 

some recommendations have also been provided focusing on the limitations of this 

research.   
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CHAPTER 2  

LITERATURE REVIEW 

2.1  Introduction 

Subsurface conditions, site location and topography including the structural and 

geometric aspects of the structure to be supported, all play a role in determining the 

necessity of pile foundation and its uses (Yamashita et al., 2011; Vesic, 1977). The 

maximum load on a pile is the maximum load at which the soil or the pile could fail. 

Where pile points embedded in deep sand, rock or even clayey soil, the pile failure 

condition may control design, but in most cases, the soil failure determines the ultimate 

load (Yamashita, 2012). The soil usually fails in the same way: by direct-shear failure 

along the shaft, followed or preceded by punching shear under the point. Several 

empirical ultimate load criteria must be utilized because the ultimate load is frequently 

not clearly specified. The majority of the time, these have been determined by taking 

into account total settlements of the pile under a test load (Yamashita, 2012). Hence, it 

can be concluded that static load test is popular and almost an obvious requirement to 

simulate the load-settlement behavior (Farquhar, 1990). 

Yet, despite being necessary, the aforementioned method has its own drawbacks, 

including the fact that it is expensive, laborious, and time-consuming, complicates the 

construction process, and is not ecologically friendly. This chapter has been enhanced 

with available researches on the FEM and DNN evolution over time (Alkhafaji and 

Imani, 2022). In addition, useful critique will be offered in regards to Bangladesh's 

implementation of FEM and DNN. By doing so, the overview will once again 

legitimize the importance of this study. 

2.2  Pile Load Test Methods 

According to their purposes, load tests on foundation pile can be divided into design 

load tests and proof load tests (Al-Homoud et al., 2004; Fellenius, 1980). The design 

load test is usually kept to failure or at least to a maximum load not less than three times 

the intended service load. It is a destructive test, and has to be carried out on a purposely 

installed test pile, which doesn't belong to the foundation. The aim of a design load test 

is to determine, at the design stage, the bearing capacity of the pile and its load 
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settlement relationship. Also, it has been tried to show that, if the pile shaft is properly 

instrumented, it allows the determination of fraction of the bearing capacity taken by 

the base and the shaft of the pile (Viggiani et al., 2014). Load tests that are conducted 

 

mostly has been depicted in Table 2.1. Proof load tests, on the contrary are carried out 

on piles selected among the piles of the foundation, after they have been all installed. 

This test cannot be destructive, and hence the maximum test load is usually limited to 

2 times the intended service load. The total test load shall be applied in increments 

amounting to 25, 50, 75, 100, 125, 150, 175, and 200 percent of the anticipated working 

load (ASTM D1143-81). Proof load test is aimed at verifying the correct installation of 

piles and also load settlement behavior and determination of bearing capacity may also 

be obtained. The piles to be proof tested are selected only after all piles have been 

installed in order to prevent a particular carful installation of the intended test pile and 

to obtain an equal care for all the piles. Usually, a SPT is carried out in the vicinity of 

Table 2.1: Pile load test methods 

Name of the Test Type 
Standard/ 

Methods 
Output 

Static Load Test 

(SLT) 

a) Quick test 

b) Maintained load 

test 

c) Constant rate 

penetration test 

ASTM 

D1143 

Pile deflections and load-

settlement 

Pile Driving 

Analyze (PDA 

Test) 

Dynamic Test, 

Quick test 

ASTM 

D4945 
Pile capacity and integrity 

Statnamic Load 

Test 
Quick test 

ASTM 

D7383 

Detailed load-deflection 

behavior in complex soil 

conditions 

Osterberg Load 

Test (O-Cell Test) 
Quick test 

ASTM 

D4719 

Capacity of high-capacity 

foundation systems 

Bi-Directional 

Load Test 

(BDMT) 

Quick test 
ASTM 

D8169 

Estimation of both axial and 

lateral pile capacities and 

behavior 

High Strain 

Dynamic Load 

Test (Pile Integrity 

Test - PIT) 

Dynamic test, 

Quick test 

ASTM 

D4945 

Pile integrity and detection 

of potential defects 
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the test pile, in order to know the exact sub surface profile at the test site. This can be 

helpful to obtain soil parameters as inputs for the finite element analysis (Albusoda et 

al., 2020; Elsherbiny and El Naggar, 2013). 

2.2.1 Static Load Test 

Static load tests relied upon an accurate measure of a pile’s ultimate resistance. Ultimate 

resistance is the maximum resistance mobilized by the positive shaft resistance and toe 

bearing in the soil. Static load testing involves loading the pile statically by placing 

increments of load and recording settlements as the load is applied following ASTM 

D1143 (Fakharian et al., 2014; Fellenius et al., 2004; Rajagopal et al., 2012). As the 

pile resistance may set up (resistance increased with time) or relax (resistance decrease 

with time), static load tests are often performed after some wait period so that 

equilibrium conditions are re-established. Two principal types of test may be used for 

compression loading on piles - the constant rate of penetration (CRP) test and the 

maintained load test. Maintained load test will be used in this study.  

In the maintained load test, the load is increased in stages to 1.5 times or twice the 

working load with time settlement curve recorded at each stage of loading and 

unloading. The general procedure is to apply static loads in increments of 25% of the 

anticipated design load (Fakharian et al., 2014). In the Machine Learning technique, the 

load test arrangements as specified in ASTM D1143 shall be followed. According to 

ASTM D1143 each load increment is maintained until the rate of settlement is not 

greater than 0.25 mm/hr or 2 hours is elapsed, whichever occurs first. All the load tests 

were conducted with the application of load equal to two times the allowable load. The 

loads were applied in eight equal increments. Two strain dial gauges were placed each 

on either side of the pile to measure the vertical settlement of the collar firmly attached 

to the pile top concerning the reference beams. The reference beams were finely 

supported in the ground at enough distance away from both the pile and supports of the 

loading platform. Aller applying the load on pile head through hydraulic jack, the 

settlements of the pile were recorded at 30 sec, 1, 2, 5, 10, 15, 30, 60 and 90 minutes 

intervals on strain gauges rested on reference beams and attached with the pile head. 

Each load increment was maintained until the rate of the settlement was not greater than 

0.25 mm/hr. or until 2 (two) hours had e1apsed, whichever occurred first. After that the 

next load increment is applied. This procedure is followed for all increments of load. 
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After the completion of loading if the test pile has not failed the total test load is 

removed any time after twelve hours if the butt settlement over one hour period is not 

greater than 0.25 mm otherwise the total test load is kept on the pile for 24 hours. After 

the required holding time, the test load is removed in decrement of 25% of the total test 

load with 1 hour between decrement. If failure occurs, jacking the pile is continued until 

the settlement equals 15% of the pile diameter or diagonal dimension. In general, static 

load applying equipment are set up first. The load test set up of this study were similar 

to that pictured in Figure 2.1. 

It was determined how much movement there was at the top of the pile by employing 

four displacement transducers that were positioned on a reference beam. Two telltales 

were set up along the perimeter of the pile and came to an end close to the foot of the 

H-Pile. The measurements of the backup pile head as well as the measurements of the 

movements of the reaction pile were taken utilizing survey methods. Figure 2.1 depicts 

the setup that were utilized in order to measure the movement of the top of the pile. The 

top of pile movement was measured using four displacement transducers mounted on a 

reference beam. 

2.2.2 Plastic and Elastic Deformation of Pile 

Elastic and plastic soil deformation associated with pile deformation are reasons behind 

the movement of pile head. This ultimately results in the settlement of the structure. 

The conclusions to be drawn on deformation from load tests is the plastic deformation, 

not the overall downward movement of the pile head under the test load. The load-

settlement curve of the plastic deformation is the most significant and this is the one 

from which the working load and factor of safety should be determined (Smith, 1960). 

The plastic deformation curve can be obtained by repeatedly increasing a decreasing 

the applied load while conducting a static pile load test. Here, loads are incrementally 

and detrimentally applied following the "ASTM guideline” D1143-81 for individual 

piles under vertical axial load. 
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2.3  Methods for Pile Capacity Determination 

The bearing capacity of pile can also get determined from the load-settlement behavior 

of the pile. Researchers and codes suggested various methods for determining the 

limiting load capacity of a pile, among which some are listed below.   

(i) Davisson Offset Method: Davisson (1972) proposed a very useful method of 

computing the ultimate load capacity of a pile. This method is probably the best 

known and widely used all over the world. This has also been recommended by 

BNBC 2020 for determining the capacity of pile. It is also known as offset method 

as it defines the failure load. The elastic shortening of the pile, considered as point 

bearing, free standing column, is computed and plotted on the load-settlement 

curve, with the elastic shortening line passing through the origin. An offset line is 

drawn parallel to the elastic line. The offset is usually 0.15 inch plus a quake factor, 

which is a function of pile tip diameter. For normal size piles, this factor is usually 

taken as 0.1D inch, where D is the diameter of pile in foot. The intersection of 

offset line with gross load-settlement curve determines the arbitrary ultimate 

failure load. Davisson method is too restrictive for drilled piles, unless the 

resistance is primarily friction. This method is recommended for driven precast 

piles. The methodology is based on the assumption at a specific small toe 

movement of the tested pile. This method is popularly used all over the world 

because it provides the lowest estimate of axial compression capacity from the 

actual load-settlement curve without any requirement of extrapolation. However, 

Davisson's method requires the pile to be loaded near failure to be applicable. 

(ii) Chin-Kondner Extrapolation: Chin (1970) proposed an application to piles on the 

general work by kondner (1963) based on the assumption that the relationship 

between load and settlement is hyperbolic. Chin-Kondner Extrapolation is another 

widely used method for estimating the ultimate bearing capacity of a pile based on 

the results of a static pile load test. The method involves plotting the load-

settlement curve obtained from the load test and extrapolating the curve to estimate 

the ultimate capacity of the pile. Each settlement is divided with its corresponding 

load and the resulting values are plotted against the settlement. Each settlement is 

divided with its corresponding load and the resulting values are plotted against the 

settlement. 
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(iii) Decourt Method: Decourt (1999) proposed a method similar to Chin-Konder 

where each load is divided with its corresponding movement and the resulting 

values are plotted against the applied load. The Decourt extrapolation limit is equal 

to the ratio between the y-intercept and the slope of the line which is also the value 

of load at intersection. 

(iv) Mazurkiewicz’s Method: This method is based on the assumption that the load-

settlement curve is approximately parabolic. The load-settlement curve is a series 

of equal pile head settlement lines drawn on an abscissa. 45-degree line is drawn 

to intersect the next vertical line running through the next load point and the 

ultimate failure load is defined by the intersection of the straight line with the load 

axis. 

(v) British Standard Institution Criterion: Terzaghi (1942) reported that the ultimate 

load capacity of a pile may be considered as that load which causes a settlement 

equal to 10% of the pile diameter. However, this criterion is limited to a case where 

no definite failure point or trend is indicated by the load-settlement curves. This 

criterion has been incorporated in BS 8004 “Code of Practice for Foundations” 

which recommends that the ultimate load capacity of pile should be that which 

causes the pile to settle a depth of 10% of pile width or diameter. The allowable 

load capacity of pile should be 50% of the final load, which causes the pile to settle 

a depth of 10% of pile width or diameter (BS 8004). It was also recommended to 

be used for load capacity determination by BNBC 2020. 

(vi) Indian Standard Criteria: BNBC 2020 recommended this standard for capacity 

determination of pile foundation from static load test results. According to IS: 2911 

Part-4, ultimate load capacity of pile is smaller of the following criterion (a) and 

(b). On the other hand, Allowable load capacity of pile is smaller of the criterion 

(c) and (d). 

(a) Load corresponding to a settlement equal to 10% of the pile diameter in the 

case of normal uniform diameter pile or 7.5% of base diameter in case of 

underreamed or large diameter cast in-situ pile. 

(b) Load corresponding to a settlement of 12 mm. 

(c) Two thirds of the final load at which the total settlement attains a value of 12 

mm. 
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(d) Half of the final load at which total settlement equal to 10% of the pile 

diameter in the case of normal uniform diameter pile or 7.5% of base diameter 

in case of under-reamed pile. 

(vi) Butler-Hoy Criterion: This is also a BNBC 2020 recommended guideline. Butler 

and Hoy (1977) states that the intersection of tangent at initial straight portion of 

the load-settlement curve and the tangent at a slope point of 1.27 mm/ton 

determines the arbitrary ultimate failure load. 

(vii) Brinch-Hansen 90% Criterion: The Brinch Hansen (1963) proposed a definition 

for ultimate load capacity as that load for which the settlement is twice the 

settlement under 90 percent of the full test load. The ultimate load may be taken to 

calculate the allowable load using a factor of safety of 2.0 to 2.5, where failure 

occurs. This has also been recommended by BNBC 2020 to be used for 

determination of pile capacity. 

2.4  Limitations of Load Tests 

The static load test using ASTM D1143-81 can also be limited in terms of time and 

money consumption. These limitations include: 

(i) Time consumption: The test can be time-consuming to set up and perform, 

especially if the pile is located in a remote or hard-to-reach location. In addition, 

the test can take several hours to complete, during which time the pile must be 

loaded and the deformation measured.  

(ii) Cost: The cost of the test can be high due to the need for specialized equipment, 

such as load frames, load cells, and measuring devices, as well as the need for 

trained personnel to perform the test. A study (Rybak and Król, 2018) found that 

the cost of performing a static load test on a pile can be several times higher than 

the cost of performing a dynamic load test using a hammer. Also, it was showed 

that the time and cost associated with performing a static load test can be 

significantly reduced by using innovative testing methods, such as using wireless 

sensors and data acquisition systems (Middendrop et al., 2022). Moreover, a study 

(Sellountou and Roberts, 2007) found that the cost and time consumption of 

performing a static load test can be reduced by using a rapid load test method, 

which involves applying the load to the pile quickly and measuring the 

deformation in real-time. 
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Hence, several research was conducted till now to supplement the static-load test of pile 

foundation which aims to demonstrate the accurate load-settlement behavior.   There 

are several literature studies that suggest that numerical analysis can be used to 

supplement the results of a static pile load test. A study by (Sellountou and Roberts, 

2007; Wehnert and Vermeer, 2004) found that numerical analysis can be used to predict 

the behavior of piles under different loading conditions, such as those that occur during 

earthquakes, and to provide additional information about the pile's behavior that is not 

available from a static load test. Study showed that numerical analysis can be used to 

validate the results of a static load test by comparing the measured deformation of the 

pile to the predicted deformation from the numerical analysis (El-Mossallamy, 2020; 

ÜNSEVER et al., 2014; Reul, 2004; Kimura and Zhang, 2000; Franke et al., 1994). It 

was also found that numerical analysis can be used to determine the load-displacement 

behavior of piles under different loading conditions, such as those that occur during 

earthquakes (Mazzoni et al., 2006), and to provide additional information about the 

pile's behavior that is not available from a static load test (Ahmed and Neelima, 2009; 

Johnson et al., 2006). These studies suggest that numerical analysis can be a useful 

supplement to a static pile load test, providing additional information about the pile's 

behavior and helping to validate the test results. 

2.5  Deep Neural Networks (DNNs) 

The total method can be reduced even further by beginning with the training data, then 

proceeding to apply machine learning, and finally generating a model (Figure 2.6). 

After the model has been created, one can obtain output by providing this model with 

some value for the corresponding input. 

 

 

 

 

 

Recently, deep learning techniques have been developed as a paradigm change for the 

automatic extraction of useful feature representation from data using deep neural 

Figure 2.2: Process of machine learning (Ahmed, 2021) 
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networks. These techniques have been established as deep learning methodologies. 

Learning strategies for Machine Learning (ML) can be further segmented into three 

primary categories: supervised learning, unsupervised learning, and reinforcement 

learning. Each of these categories has its own unique set of characteristics. The first 

category, known as the supervised learning process, bears some resemblance to the way 

in which humans acquire knowledge. In this scenario, the train machine receives proper 

input consistently in addition to accurate output. On the other hand, in the case of 

unsupervised learning, there is no mention of an output. In addition to that, there is 

another category known as reinforcement learning, which describes situations in which 

grades and certain outputs are given with inputs. Relating to the fact that the algorithm 

will need to be able to recognize the characters in order to complete the research, which 

eliminates any possibility of unsupervised or reinforcement learning being used. The 

procedure that each ML technique use to learn from the training data and produce a 

model is where the techniques differ from one another. As a result, Neural Networks 

(NN) are frequently utilized as the model for Machine Learning, which will be covered 

in further detail below. 

The back-propagational training technique for feed-forward Artificial Neural Network 

(ANN) was established in 1986, despite the fact that the concept of neural networks 

was first described in 1943. Since then, research on applications of neural networks has 

advanced significantly (Das, 2013), They now have a higher rate of application success 

in the areas of business model prediction, speech recognition, biomedical engineering, 

control issues, as well as many other engineering disciplines, including geotechnical 

engineering (Javadi and Rezania, 2009; Das, 2013).  

A number of deep learning-based approaches have been successfully applied in the field 

of geotechnical engineering (Das, 2013; Javadi and Rezania, 2009). They have 

variations in their architecture and mostly contemplates the structure of human brain, 

Deep Neural Network models (DNN) have ability to model the non-linear relationship 

between a set of input and the corresponding outputs.  In the literature, there are 

numerous DNN model types, such as convolutional neural network (CNN), recurrent 

neural network (RNN), tabular neural network (TabNet), etc. The current success of 

DNN models is attributable to the availability of large datasets for training DNN 

models, the rapid development of DNN algorithms, and the accessibility of powerful 
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computers for modeling and training complex neural networks to achieve accelerated 

performance and results (Goodfellow et al., 2016). The model architectures are being 

discussed in the following sub-sections: 

2.5.1 Multilayer Perception (MLP) 

It is composed of multiple layers of connected "neurons," also known as "Nodes." An 

input layer, one or more hidden layers, and an output layer are the three separate layers 

that make up this network of neurons. The raw data that we intend to analyze is received 

by the input layer, and each subsequent layer processes this data using a set of learnt 

weights and biases. On the basis of the input data that has been processed, the output 

layer then generates the anticipated output. It means MLP can estimate values for non-

linear correlations at a greater extent (Fath et al., 2020; Esfe et al., 2015). The theory is 

that by processing the data via several layers, the MLP can learn to identify intricate 

patterns and connections in the data that a single-layer network might find challenging 

to spot (Montazer et al., 2018). To reduce the difference between the expected output 

and the actual output, MLPs work by varying the weights of the connections between 

the neurons in the network. This procedure, referred to as network training. After the 

network has been trained, predictions can be made using fresh input data. In order to 

accomplish this, the input data is propagated across the network using a technique 

called forward propagation, and the output layer then generates the anticipated result 

(Gouda et al., 2022; Jiang et al., 2022). 

 

 

The advantages of MLPs include their ability to be trained on a variety of data types, 

including both structured and unstructured data, and their versatility in application, 

including classification, regression, and dimensionality reduction. Additionally, MLPs 

Figure 2.3: A layered structure of nodes for MLP (Jiang et al., 2022) 
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have the advantage of being relatively simple to train when compared to some other 

kinds of neural networks. This is because to how easy and straightforward the learning 

process is with an MLP. 

Given that the number of weights and biases in the network increases exponentially 

with the number of layers and neurons, MLP is not particularly well-suited to handling 

exceedingly large or complicated datasets. Additionally, time series data frequently 

contains long-term dependencies, which MLPs may find challenging to master. 

2.5.2 Convolutional Neural Network (CNN) 

Input, convolutional, pooling, fully connected, and output layers comprise 

convolutional neural networks’ basic network structures, often cascading architectures 

(Hannun et al., 2019). The input layer is in charge of feeding the matrix to be processed 

into the network; the convolutional and pooling layers are interconnected in pairs and 

are in charge of feature mining and extraction; the amount of connectivity between 

these layers can be adjusted depending on the model’s complexity (Ihsanto et al., 2020). 

The output and fully connected layers carry out the final categorization. 

The convolutional layer is the core component of the CNN, which is in charge of the 

recursive convolution of the input matrix to extract the associated features. CNNs are 

designed to automatically learn and extract features from images through a process 

known as convolution. A small portion of the preceding layer is used as input by the 

convolutional layer, which then chooses a convolutional kernel to be placed there and 

multiplies it by the value of the corresponding neuron in the convolutional layer to 

produce the convolutional result (Acharya et al., 2017). The convolutional layer has to 

have the stride hyper-parameter configured for improved training outcomes. The first 

convolutional layer, with a kernel size of 6, several 12, and a stride of 1, is used in this 

paper. The second and third convolutional layers (kernel size is 2, the number is 12, 

and the stride is 1). During training, the network learns the filters that produce the most 

useful features for the given task by adjusting the weights of the filters using back 

propagation. The loss function used during training is typically cross-entropy, which 

measures the difference between the predicted and actual class probabilities. 

The pooling layer, the down sampling layer, samples the convolutional layer’s output 

data by down sampling the features while maintaining the depth dimension. This  
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increases the generalizability of the model and curbs the overfitting phenomenon while 

using fewer parameters and computations in the network. Maximum pooling and 

average pooling are the two most popular pooling operations (Acharya et al., 2017; 

Kiranyaz et al., 2015). Average pooling indicates that the average value within the local 

window data is selected for calculation, and maximum pooling indicates that the 

maximum value of the data within the local window is selected.  

2.5.3 Recurrent Neural Network (RNN) 

A recurrent neural network is a neural network that is specialized for processing a 

sequence of data with the time step index. Another way to think about RNNs is that 

they have a “memory” which captures information about what has been calculated so 

far. In the traditional neural network ANN, nodes in different layers (input layer, hidden 

layer, and output layer) are connected to each other, and the nodes between each layer 

are independent (Mousavi and Afghah, 2019). However, in RNN, it is identical that 

adjacent nodes in one hidden layer are connected to each other. 

Figure 2.4: Sample pictorial process of CNN (Ihsanto et al., 2020) 
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A notation of an RNN may be seen on the left side of the preceding picture, and an 

RNN that has been unrolled (or unfolded) into a full network can be seen on the right 

side of the same diagram. When we talk about unrolling, what we really mean is writing 

down the network for the entire sequence. For instance, if the sequence that we are 

interested in is a three-word sentence, the neural network would be unrolled into a three-

layer structure, with one layer devoted to each word in the sentence. (Übeyli, 2009; Zhu 

et al., 1998). 

Due to the unique structure, RNN is characterized by a superior ability in time series 

prediction and can theoretically handle arbitrary long sequences (Kumar et al., 2021; 

Zhu et al., 1998). However, its shortage lies in processing long distance information. 

The learning ability will be weakened owing to the gradient vanishing or exploding 

problem, which makes it difficult to capture long-term time dependences (Pascanu et 

al., 2013). To remedy this problem of conventional RNN, long short-term memory 

network (LSTM) was proposed (Gers et al., 2000; Hochreiter and Schmidhuber, 1997), 

which is an upgrade of original standard RNN. The thorough formation of an LSTM 

unit can be assessed in Fig. 2.10. A LSTM unit includes three gate controllers, known 

as the input, forget, and output gates individually. Every information going through this 

unit has to be decided whether to be remembered or forgotten, then assigned to 

corresponding gate. To avoiding the gradient vanishing problem, the LSTM network 

implements temporal memory through switching those gates (Yuan et al., 2019). 

Figure 2.5: Sample RNN architecture (Zhu et al., 1998) 
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Hence, LSTM is one type of Recurrent Neural Network that deals mostly with 

sequential data. In LSTM to retain memory cell state is used. The cell state is similar to 

production chain, the parameter flows straight forward, but some linear processes, such 

as addition and multiplication, will interact. The state of the cell depends on the 

interactions, and if there are no interactions, it will flow along without changes. LSTM 

will add or remove information to the cell state through gates which are structures that 

allow optional information to cross. Gates are implemented using sigmoid functions 

which produces two decisions either 0 or 1 assuming that 0 will block information flow 

and 1 will allow it. Three of these gates are available in LSTM, which determines the 

final cell state. 

On the other hand, Bidirectional recurrent neural networks (RNN) are really just putting 

two independent RNNs together, known as Bi-LSTM (Huang et al., 2022; Ye et al., 

2019). This structure allows the networks to have both backward and forward 

information about the sequence at every time step. Using bidirectional will run your 

inputs in two ways, one from past to future and one from future to past and what differs 

this approach from unidirectional is that in the LSTM that runs backward you preserve 

information from the future and using the two hidden states combined you are able in 

any point in time to preserve information from both past and future (Tourille et al., 

2017). Bi-LSTM has also a successful history of its application in the field of 

geotechnical engineering (Liu et al., 2021; Shen et al., 2021; Zhang et al., 2021).  
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Figure 2.6: Sample LSTM architecture (Yuan et al., 2019) 
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2.5.4 TabNet 

TabNet is a deep learning algorithm for tabular data, introduced by Google AI in 2020. 

It is designed to improve the performance and interpretability of machine learning 

models on structured data such as spreadsheets and databases. Despite being the most 

prevalent data type in the realm of AI (Chui et al., 2018), deep learning for tabular data 

is largely underdeveloped and most applications still rely mostly on variations of 

ensemble decision trees (DTs). It is because DT-based approaches have certain 

advantages:  

(i) They are representationally efficient for decision manifolds with roughly 

hyperplane boundaries, which are common in tabular data. 

(ii) They are highly interpretable in their basic form (for example, by tracking decision 

nodes), and there are well-liked post-hoc explain ability methods for their 

ensemble form, for example (Lundberg et al., 2018). 

(iii) They are highly interpretable in their basic Second, because previously-proposed 

DNN architectures, such as stacked convolutional layers or multi-layer perceptrons 

(MLPs), are not well-suited for tabular data, the absence of suitable inductive bias 

frequently prevents them from finding the best solutions for tabular decision 

manifolds (L. Xu et al., 2019; Shavitt and Segal, 2018; Goodfellow et al., 2016).  

TabNet uses a combination of attention mechanisms, sparse regularization, and other 

techniques to achieve a high level of accuracy while also providing interpretable models 

that can be easily understood by domain experts (L. Xu et al., 2019). It is a deep tabular 

Figure 2.7: Bi-LSTM Architecture (Tourille et al., 2017) 
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data learning architecture that uses sequential attention to choose which features to 

reason from at each decision step. The TabNet encoder is composed of a feature 

transformer, an attentive transformer and feature masking. A split block divides the 

processed representation to be used by the attentive transformer of the subsequent step 

as well as for the overall output. For each step, the feature selection mask provides 

interpretable information about the model’s functionality, and the masks can be 

aggregated to obtain global feature important attribution. The TabNet decoder is 

composed of a feature transformer block at each step. Though, TabNet is the latest 

addition in DNN models but it has achieved great success in images (Arik and Pfister, 

2021), text (Nishida et al., 2017), rainfall forecast (Yan et al., 2021) etc. However, there 

has been no significant application of TabNet in the field of geotechnical engineering 

yet. In general, for tabular data sets, ensemble tree models are still mainly used. In many 

data-mining competitions. These rely on the following: 

(i) The tree model has a decision manifold, which approximates the boundary of the 

hyper plane. The boundary of the hyper plane can effectively divide the data so 

that the tree model has an efficient representation of tabular data. 

(ii) Good interpretability. 

(iii)  Fast training speed. 

Secondly, the previously proposed DNN structure is not suitable for tabular data. 

Traditional DNN based on convolutional layers or multi-layer perceptron (MLP) often 

have too many parameters for tabular data and lack proper inductive bias, which makes 

them unable to find the decision manifold for tabular data. The main disadvantage of 

the decision tree and its variant model is the dependency of feature engineering. A very 

important reason why deep learning methods can achieve great success in images, 

natural language, and audio is that deep learning can encode raw data into meaningful 

representations (Yan et al., 2021). End-to-end training based on the back propagation 

algorithm can effectively encode tabular data, thereby reducing or even eliminating the 

need for feature engineering (Arik and Pfister, 2021). 
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Figure 2.12 shows that the TabNet encoder architecture is mainly composed of a feature 

transformer, an attentive transformer, and feature masking at each decision step. The 

tabular data includes category data and numeric data. TabNet uses original numerical 

data and uses trainable embedding to map categorical features to numerical features. 

Each decision step inputs the same B×D feature matrix; B is the batch size, and D is 

the dimension of the feature. TabNet’s encoding is based on the processing of multiple 

decision steps. The characteristics of each decision step are determined by the output 

of the previous decision step through the Attentive transformer. This outputs the 

processed feature representation and integrates it into the overall decision-making. 

2.6  Past Researches 

Finite element method has been employed extensively for the analysis of geotechnical 

issues (Brinkgreve and Engin, 2013; Potts et al., 2001; Schweiger et al., 2001). This is 

most likely a result of the numerous intricate problems unique to geotechnical 

engineering that have been overcome by the introduction of finite element modeling. 

This may help to explain why they are popular now a days in the field of geotechnical 

engineering (Brinkgreve and Engin, 2013). 

Figure 2.8: Sample TabNet architecture (Arik and Pfister, 2021) 
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2.6.1 Current Status of Pile Load Test Research in Bangladesh 

Very few research has been conducted in Bangladesh to analyze the load-settlement 

behavior of pile foundation. Sadeque (1989) studied pile load tests on the bored pile at 

three different sites of Dhaka city and compared them with the existing theoretical 

results. The variables considered are critical depth, loosening effect of soil, and 

groundwater level. But due to a lack of sufficient data, the study could not draw any 

correlation between theoretical results and the actual results from the pile load tests.  

Morshed (1991) developed a simple analytical method based on 1D finite element 

technique with empirical method to predict the non-linear pile resistance in embedded 

sand. It eventually developed the analytical methods based on laboratory test results, to 

predict the load-deformation behavior of piles and to use them as an alternative method 

of analysis. Little parametric study was performed and there were no verification 

comparing with filed data. 

However, there are quite a handsome amount of research on capacity prediction from 

Static Load Test. PWD (Public Works Department, Bangladesh) has conducted 

multiple projects in Bangladesh to estimate the ultimate load capacity of large diameter 

cast-in-situ piles and small and large precast piles. Several initiatives have also been 

executed on a small-scale prestressed pile. Test and service piles were subjected to load 

evaluations. The majority of tests were conducted under the supervision of BUET 

(Bangladesh University of Engineering and Technology) consultants on a full-time 

basis. Several researchers have published the outcomes of pile load experiments. 

Ansary et al. (1999) summarized the pile load test performed by BUET in different sites 

of Bangladesh as consultants of PWD between 1996 to 1999 and presented a summary 

of their pile load test data collection. 

Yasin et. al. (2009) established correlation between the ultimate load capacity 

prediction from both the Static Pile Load Test and SPT-N value. Cast-in-situ bored pile 

and driven pile load capacities in the same soil were compared in the same study. 

Khan (1997) investigated small prestressed piles. Pile load tests were compared to static 

and dynamic pile capacities. The lambda-method can accurately predict pile capacities 

driven through and resting on Dhaka Clay. The alpha-method predicts Dhaka Clay skin 
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friction only. Lamda and alpha techniques can predict pile capacities driven through 

Dhaka clay but resting on medium dense sand. 

Rahaman (2008) proposed a design method of such piles in more efficient and effective 

way with the help of proper field investigations and laboratory test results. Also, 

extrapolated load-settlement curves from were used to determine the ultimate carrying 

capacities of piles of different diameter by methods proposed by Mazurkiewicz, Van 

Weele and Davisson and concluded to have good agreement with those determined by 

theoretical method. 

Rahman (2016) established an analytical method to separate skin frictional resistance 

and end bearing components for a given load on a pile based on static load-settlement 

data and direct shear test data. 

Halder (2016) also studied the capacity of two test piles using soil investigation data 

applying BNBC-2015 (draft) and AASHTO 2002 method. The relationship among 

capacity of static load test and predicted capacities (using BNBC-2020, SPT, 

AASHTO-2002, driving equations) were compared and correlation values were 

obtained (Halder, 2016). Also, the SPT method was justified as an effective approach 

to be used for pile capacity estimation (Islam, 2018). 

2.6.2 Relevant Researches on FEM 

Finite element method has been employed extensively for the analysis of geotechnical 

issues (Potts et al., 2001). This is most likely a result of the numerous complex problems 

unique to geotechnical engineering that have been overcome by the introduction of 

finite element modeling and also due to their high accuracy. Specifically, the successful 

application of FEM in the field of geotechnical engineering is for slope stability analysis 

(Zheng et al., 2005; Griffiths and Fenton, 2004), tunnel engineering (Kabir et al., 2017; 

Franzius and Potts, 2005), foundation engineering (Jimenez and Sitar, 2009; Nour et 

al., 2002) and so on. This may help to explain why they are popular now a days in the 

field of geotechnical engineering. 

The bearing capacity of a single pile is most usually determined by pile load test or by 

empirical methods.  Several scholars continue to study the complicated issue of pile 

behavior in soil, particularly in the case of its settlement due to vertical loads. 

Its installation is more disruptive to the surrounding soil than drilling for piles, and it 
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has a substantial impact on changes in soil parameters and, as a result, on the 

behavior and capacity of the pile under load. Because of this, it is occasionally 

impossible to estimate the pile-bearing capacity with an accuracy of more than 30% 

(Krasinńskin, 2014). With the current rapid development of numerical analysis, the use 

of finite element method is attracting engineer’s attention towards using this method as 

one option (Elsherbiny and El Naggar, 2013; Naveen et al., 2011; Said et al., 2009; 

Reul, 2004). Different constitutive models are used to simulate the soil pile interaction 

following the development of more and more comprehensive constitutive models to 

describe the complex behavior of geomaterial under different loading conditions (Y. 

Wu et al., 2013; Ti et al., 2009; Hejazi et al., 2008). In many of the previous studies 

pile load-settlement behavior was assessed for a uniform soil type. For clayey soil the 

pile-load settlement behavior assessed (Chung and Yang, 2017) using finite element 

method which concluded with a recommendation for further analysis in a stratified soil 

condition. In other literatures, study on non-cohesive soil was also conducted (Unsever 

et al., 2015; Krasinńskin, 2014). Elasto-perfectly plastic model with Mohr- Coulomb 

failure criterion, usually named as Mohr Coulomb model, is widely used in finite 

element analysis of geotechnical engineering, due to its simplicity (Naveen et al., 2011; 

Said et al., 2009). The failure envelope, being dependent on the major and minor 

principal stresses is defined by cohesion, c and internal frictional angle, φ. In the MC 

model a constant stiffness is used (Baziar et al., 2009; Li et al., 2009). Whereas in an 

advanced model for replicating the behavior of many soil types, including both soft and 

stiff soils, is the Hardening Soil model (Obrzud, 2010; Schanz et al., 2019; Ti et al., 

2009). Numerical analyses for simulation of soil-pile interaction can be done in two 

ways: The first is a continuum-based method like boundary element method or finite 

element method (FEM), in which continuity of the soil domain is inherent in 

formulations; while the second method is a load transfer method which models the soil 

through a set of independent springs attached to the piles. In the first method, the use 

of Mindlin’s solution was used in a linear boundary element formulation (Lee, 1993; 

Randolph and Wroth, 1978; Poulos, 1968). Subsequently, linear solutions were 

developed for piles and pile groups (Banerjee and Davies, 1978) in non-homogenous 

soils. FEM approaches were attempted by Desai (Randolph and Wroth, 1978; Desai et 

al., 1974), Besides them, Pressley and Poulos (Pressley and Poulos, 1986) used an 

elastic perfectly plastic soil model in an axisymmetric FEM to approximately analyze 

pile groups. Three-dimensional analysis of vertically loaded pile groups was studied by 
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Ottaviani (Ottaviani, 1975). Also, Muqtadir and Desai et al. (1986) analyzed three-

dimensional pile groups under vertical loads. After that, significant improvement in the 

study was ensured for a single pile by using the commercial finite element programs 

with better predictions and simulation results (Naveen et al., 2014). However, when 

soil is subjected to initial deviatoric stress, its stiffness decreases and irreversible plastic 

strains appear at the same time. The observed relationship between the axial strain and 

the deviatoric stress in the exceptional case of a drained triaxial test can be well 

approximated by a hyperbola. The well-known hyperbolic model (Duncan & Duncan, 

1955) utilizes the relationship was also then first proposed for pile-load test. But the 

Hardening Soil model vastly outperforms the hyperbolic and other available models 

(Cardoso Bernardes et al., 2022; Gowthaman and Nasvi, 2017) which has been 

considered in this study to assess the load-settlement behavior of pile foundation.  

This research proposes the authors' new numerical model for assessing pile behavior. 

A Finite Element Method (FEM) model can simulate soil changes caused by pile 

installation. Real-world static pile load testing validated the concept. The numerical 

simulations with and without pile placement were compared to in situ pile load tests. 

Krasinski et al. (2014) used a similar approach to numerically model the screw pile 

installation process; however, field tests showed that the soil parameters need proper 

investigation. Here, in this study, the in-depth investigations required for developing 

the HS model were clarified, including its validation with soil model calibration. 

Moreover, this research incorporates the infield installation impacts that correspond to 

its layered soil profile. The computational stability of the current study was further 

ensured in numerical simulation using the Plaxis-3D finite element program by 

introducing time intervals between loading increments or decrements during field 

testing. 

2.6.3 Relevant DNN Researches 

Machine Learning/Deep Learning algorithms are a burgeoning entity that has been 

effectively used for practically every problem in geotechnical engineering over the last 

decade. Applications of DNNs in geotechnical engineering include the prediction of 

liquefaction (Hanna et al., 2007, Javadi et al., 2006, Kim and Kim, 2006; Baziar and 

Ghorbani, 2005; Eldin Ali and Najjar, 1998; Agrawal et al., 1997), the estimation of 

several soil properties such as shear strength and stress history (Kurup and Dudani, 



 

27 

 

2002, Lee et al., 2003, Penumadu and Chameau, 1997) and soil settlement predictions 

(Chen et al., 2006; Shahin and Jaksa, 2005; Shahin et al., 2004; Shahin et al., 2003) 

The discipline of geotechnical engineering has made use of a wide variety of Artificial 

Intelligence (AI) techniques, such as Deep Neural Networks (DNN).  That is why, it 

has been demonstrated that DNN is a useful modeling technique in geotechnical 

engineering. Yet, it has been noted that ANN is a useful modeling technique in 

geotechnical engineering, as such a model may be trained on input-output data without 

complex inputs or outputs. (Shahin et al., 2002). The primary goal of DNNs is for a 

computer program to learn patterns in data in order to infer the target values from the 

feature values. This makes DNN use appealing since it allows us to avoid the need for 

certain assumptions that are inherent to conventional methods of prediction. Both 

Ghaboussi (1992) and Ghaboussi et al. (1991) provide support for this idea in their 

respective published works. Some potential applications of neural networks in 

geotechnical engineering were identified through research on the constitutive modeling 

of material behavior with neural networks, including the modeling of soil behavior, the 

evaluation of liquefaction potential, the seismic ground response, and the response of 

geotechnical structures (Chan et al., 1995). The ability of a feed-forward 

backpropagation artificial neural network (ANN) to find complex non-linear 

relationships among different parameters has attracted a lot of attention in recent years, 

and this has been a driving factor in its adoption for use in solving geotechnical 

problems, as reported earlier (Momeni et al., 2015). Prediction of pile capacity 

(Mohanty et al., 2018), foundation settlement, soil qualities and behavior, and 

liquefaction (Hanna et al., 2007) are only few of the areas where DNNs have been put 

to use in geotechnical engineering, as stated by (Hazewinkel, 2022; Sarkar et al., 2015; 

Shahin et al., 2002).  

However, the use of neural networks in predicting the pile capacity started in the 1990’s 

(Goh, 1995; Boscardin and Cording, 1989), when used in a form of a model to predict 

an estimate of the friction capacity of driven piles in clay soils. The results were 

promising when compared to the actual data and some empirical methods. Lee et al. 

(Lee and Lee, 1996) tried to predict the driven pile capacity by using an artificial neural 

network model. The error between the predicted and the actual pile test was around 

20%. However, they did not attempt to predict the entire static load test. In fact, 

developed three artificial neural network models to forecast driven piles capacity 
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(Kiefa, 1998). He compared the results with four empirical formulas, and found that the 

model that was devoted to forecast the total pile capacity was more accurate than others 

with 0.95 coefficients of determination. Furthermore, Goh et al. (1995) presented a new 

neural network model to predict pile capacity in sandy soils. The model’s pile capacity 

was satisfactory when compared to other empirical formulas. Shahin et al. (2016) 

discussed different applications of artificial neural network in Geotechnical 

Engineering and mentioned different applications including predicting the pile 

capacity. Artificial neural network also used to estimate the pile capacity from 

databases of 80 cases collected from the literature and corresponding to different sites 

distributed all over the world (Benali and Nechnech, 2011). They reported that the 

networks are feasible for these kinds of problems but they did not attempt to predict the 

entire static load test. Moreover, artificial neural networks were used for predicting the 

axial capacity of a driven pile (Maizir and Kassim, 2013). Artificial neural network 

(ANN) and random forest (RF) algorithms were utilized to predict the ultimate axial 

bearing capacity of driven piles (Pham et al., 2020). Optimized machine learning 

methods had also shown great potential to estimate bearing capacity of piles using 

swarm optimisation algorithm (Kardani et al., 2020). In another study, the pile setup 

was predicted using a deep neural network model considering SPT value (Nejad et al., 

2009) where concluded with RMSE= 14.2, R= 0.72. The predicted values were 

compared with those produced by some empirical formulas. It showed that the model 

produced satisfactory results. But all those studies were very specific in regards of soil 

condition which represents uniformity (either cohesive or cohesionless). Also, pile 

settlement was predicted as a function of load, pile geometry, and CPT test data. 

Accordingly, the load, pile characteristics, and CPT test parameters will be presented 

in the input layer and the determined settlement in the output layer with an RMSE of 

0.44, MAPE =0.234 (Ofrikhter and Ponomarev, 2021). Prediction of pile settlement 

using artificial neural networks based on standard penetration test data. DNN model is 

developed for predicting pile behavior based on the results of average cone penetration 

test (CPT) results for different layers (Nejad and Jaksa, 2017) RMSE 3.68, R= 0.94. 

RNN model has the ability to reliably predict the load–settlement response of axially 

loaded steel driven piles (Shahin, 2014). As we can see in the above-mentioned studies, 

no serious attempt was made to predict the entire static load test; in this research we 

demonstrate that static load test can be reasonably predicted by deep neural networks 

with enough training data.  
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Moreover, while predicting the load settlement behavior, interrelated high-dimensional 

data are one of the challenges that still has to be solved. The usage of these raw data 

could increase computing costs and cause the deep learning model to overfit. The 

quality of the raw data collected is typically also impacted by measurement sensor 

failure and ambient noise. To increase prediction accuracy, the noise from the working 

time data needs to be efficiently removed. This noise's elimination is still difficult. 

Additionally, there are still a relatively small number of studies in existence that use 

the DNN approach to predict the load-settlement behavior of pile foundations. 

Incorporating PCA to minimize the input datasets dimensionality by reserving principal 

components, this study offers the best fitted DNN model to forecast the behavior of pile 

foundations. Additionally, it launches the model with noise-filtered data by eliminating 

any minor components that are impacted by the noise. 

2.7  Research Gaps 

Handsome number of studies are available on cast-in-situ bored pile and driven pile 

load capacity predictions in the perspective of Bangladesh. Most of the cases, 

extrapolated load-settlement curves were used to determine the ultimate bearing 

capacities of piles of different diameter by established method or BNBC 2020 or even 

any other established methods to predict the capacity of pile. Also, analytical methods 

were developed to separate skin frictional resistance and end bearing components for a 

given load on a pile based on static load-settlement data and direct shear test data. 

Correlations are even available between the ultimate load capacity prediction from both 

the Static Pile Load Test and SPT-N value. However, very limited studies are available 

to predict the load-settlement behavior of pile which can capture the insights of an entire 

static load test. A summary of the available research has been detailed in Table 2.2. 

This may help to trim of the project cost and time by reducing the number of static load 

test from the ongoing projects in Bangladesh. 

From the available literatures, it was clear that different constitutive models are used to 

simulate the soil pile interaction following the development of more and more 

comprehensive constitutive models to describe the complex behavior of geomaterial 

under different loading conditions.
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Table 2.2: Summary of previous studies on Load-Settlement behavior of pile foundation 

Authors 

 Soil Type 

(Pile Tip/ 

Toe) 

Layered 

Soil Profile 

Soil Parameter 

Pile Configuration 

Applied 

Load  

Methods Adopted to Capture Load-Settlement 

Behavior 
Performance 

Comparison 

Sensitivity 

Analysis 

L  D  EA 
Pile 

Type  
N c φ Analytical Empirical Numerical AI 

Vesic 

(1977) 
Sand  ×  ×  × √ √ √  √   × √ 

 × 

  
√  × 

 × 

 
 × √ 

Desai 

(1974) 
Sand  ×   × √ √ √ √ √  × √  ×  × √  × √  × 

Lee (1993) Sand √ × × × √ √ √  × √ Logarithmic  ×  ×  ×  ×  × 

Guo and 

Randolph 

(1999) 

Clay √ × × × √ √  × Group Pile  √ Logarithmic  ×  ×  ×  ×  × 

Kiefa 

(1998) 
Sand   × × × × √ √  × Driven Pile √ ×   ×  × GRNN √  × 

Pooya nejad 

et.al (2009) 
 × √ √  ×  × √  ×  ×  × √  ×  ×  × 

ANN-

BPNN 
√ √ 

Ismail and 

Jeng (2011)   ×  ×  √   ×  × √ √ √ 
 × 
  

√  ×  ×  × HON √  × 

Shahin et.al 

(2013)  
  ×  ×  × ×    × √ √ √ Steel √  ×  ×  × RNN  × √ 

Ismail et 

al. (2013) 
 ×   × √  ×  × √ √  ×  × √  ×  ×  × 

PSO-

BPNN 
√  × 
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Table 2.2: Summary of previous studies on Load-Settlement behavior of pile foundation 

Authors 

Soil Type 

(Pile Tip/ 

Toe) 

Layered 

Soil 

Profile 

Soil Parameter 

Pile Configuration 

Applied 

Load  

Methods Adopted to Capture Load-Settlement Behavior 
Performance 

Comparison 

Sensitivity 

Analysis 
L  D  EA 

Pile 

Type

  N c φ 
Analytical Empirical Numerical AI 

Jian-lin et al. 

(2014) 

Deep 

Clay 
 × × × 

 

× 

  

 × × ×  × √  ×  × Plaxis-3D  × √  × 

Gowthaman 

et. al (2016) 
Soft soil  × × × ×  × 

 

× 

  

 

× 

  

× √ × × Plaxis-2D × √ × 

Jebur et. Al. 

(2018) 
Sand × × × √ √ √ √ × √  × × × √ × √ 

Schmüdderic

h et al. (2020) 
  × √ √ √ √ √ √ × × √ × 

× 

  
√  × √ √ 

Armaghani et 

al. (2020) 
Gravel  × × × × × × × × √ × × × PSO-BPNN √ √ 

Ofrikhter et. 

Al. (2021) 
× 

× 

 
× × × √ × × × √ × × × × × × 

Zhang (2021) × √ × × × × × × × √ × × √ × × × 
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In many of the previous studies pile load-settlement behavior was assessed for a 

uniform soil type using finite element method which concluded with a recommendation 

for further analysis in a stratified soil condition. In other literatures, study on non-

cohesive soil was also conducted elastic-perfectly plastic model with Mohr- Coulomb 

failure criterion, usually named as Mohr Coulomb model, is widely used in finite 

element analysis of geotechnical engineering for its simplicity and uniform stiffness 

consideration. Question remains regarding the proper selection of soil model which is 

adequate to simulate the behavior with higher accuracy. However, when soil is 

subjected to initial deviatoric stress, its stiffness decreases and irreversible plastic 

strains appear at the same time. The observed relationship between the axial strain and 

the deviatoric stress in the exceptional case of a drained triaxial test can be well 

approximated by a hyperbola. Though hyperbolic model utilizes the relationship was 

previously proposed for pile-load test modeling. But the Hardening Soil model vastly 

outperforms the hyperbolic and other available models. It was found that there is barely 

any research available with proper guideline for representing soil behavior based on 

plasticity theory. Focusing on these limitations, in this research FEM model was 

developed using Plaxis-3D incorporating the sophisticated Hardening Soil Model (HS) 

that was developed within the context of the traditional theory of plasticity with a 

complete guideline of parameter determination and model calibration. 

Though many recent studies are available on pile-load settlement behavior prediction 

using AI techniques, clear concepts are required regarding the factors affecting the 

settlement. Most traditional pile settlement assessment methods include the following 

fundamental parameters: pile geometry, pile material properties, applied load and soil 

properties. There are some additional factors, such as the loading/ unloading phase 

consideration, layered soil profile, load test method and the depth to the water table. 

The depth of water table is not included in this study, as it is believed that its effect is 

already accounted for in the measured SPT blow count. However, the effect of these 

missing consideration from previous literatures were considered in this study and in 

this research, we demonstrate that static load test can be reasonably predicted by deep 

neural networks with enough training data.  

Moreover, while prediction with AI techniques, the load settlement behavior, 

interrelated high-dimensional data are one of the challenges that still has to be solved. 

The usage of these raw data could increase computing costs and cause the deep learning 
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model to overfit. The quality of the raw data collected is typically also impacted by 

measurement sensor failure and ambient noise. To increase prediction accuracy, the 

noise from the working time data needs to be efficiently removed. This noise's 

elimination is still difficult. Additionally, there are still a relatively small number of 

studies in existence that use the DNN approach to predict the load-settlement behavior 

of pile foundations. Incorporating PCA to minimize the input datasets dimensionality 

by reserving principal components, this study offers the best fitted DNN model to 

forecast the behavior of pile foundations. Additionally, it launches the model with 

noise-filtered data by eliminating any minor components that are impacted by the noise. 

  



 

34 

 

 

CHAPTER 3  

SUB-SOIL INVESTIGATION AND DATA COLLECTION 

3.1  Introduction 

For the development of a finite model according to the objectives of the research and 

availing the scope of the study, collection of soil sample was done from the bore log 

adjacent to HSIA expansion project. In this particular section, the procedure of sample 

collection and both the in-situ and lab tests will be discussed. In addition to that, 

preparation of the collected data sets required to create Deep Neural Network (DNN) 

model will be discussed. 

3.2  Sub-soil Investigation 

Sub-soil investigation or geotechnical investigation is very crucial to understand the 

condition of any construction site. It includes soil sample collection and its techniques, 

conducting study on soil composition, soil properties and other parameters. In the 

following sub-sections, the field tests and soil sample collection techniques have been 

presented in detail: 

3.2.1 Site Information 

A pile load test also determines a pile foundation's strength and integrity. The test 

measures a pile's load-bearing capacity by applying a controlled load. The collected 

pile load test report of the selected project presents the information, test data and results 

of static pile load test conducted on bored pile having ID: BH40-TP-07 for terminal-3 

building area of proposed Airport Expansion Project of Hazrat Shahjalal International 

Airport (HSIA), Dhaka. On behalf of Aviation Dhaka Consortium (ADC), Sinohydro 

Corporation Limited installed the pile and pile load testing work conducted by Geo-

Drill BD. Static axial compressive pile load test started on 16th September 2020 and 

finished on 17th September 2020. The effective strength characteristics of the granular 

soils for Test Pile location were determined using corrected SPT N-value data from test 

borings and published correlations. Bore log data and soil samples were later collected 

including undisturbed samples for testing of the upper silty clay soil layers from 

different depth. 
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3.2.3  Field Tests 

The most popular field tests are the standard penetration test (SPT). The following 

discusses the conducted field tests and the details on undisturbed soil sample collection. 

3.2.4 Standard Penetration Test (SPT) 

The most common type of field test, the standard penetration test (SPT), has been 

performed at the selected location. Up to a depth of around 50 m from the existing 

ground level, samples were taken and the SPT N-value was recorded at every 1.5 m 

depth interval (EGL). ASTM D 1586 outlines the testing procedure (ASTM,1989). 

The general soil profile of this area is filling sand overlying silty clay layer. The depth 

of soft clay varies from 3 to 6 m from existing ground level (EGL). The silty clay layer 

exists from 12 to 23.5 m from EGL. Also, there is a presence of stiff clay after 25 m. 

The SPT N-value of soft clay from 7 to 13. For medium stiff clay it is 15 to 20 and for 

very stiff 22 to 29. SPT report is attached in the Appendix. SPT was conducted to 

identify the soil stratification, recording SPT-N value, ground water table recording and 

both disturbed and undisturbed soil sample collection. 

The 115-millimeter diameter pipe (split spoon) used in the Standard Penetration Test is 

driven at a drop of 750 millimeters with a 63.5-kilogram hammer. The undisturbed 

sample was obtained in this case using a large dia sampler. The ASTM D1586 standard 

specifies the test. In the following Table 3.1, a short SPT N-value test procedure is 

presented. 

Table 3.1: Recommended SPT procedure (ASTM D1586) 

Equipment Short procedure 

Borehole size 65 mm < Diameter < 115 mm 

Borehole support Casing for 3m length and drilling mud 

Drilling 

a) Wash boring 

b) Side discharge rotary boring 

c) Side or upward discharge bit clean bottom 

of borehole 

Drill rods 
A or AW for depths of less than 15 m N or NW for 

greater depths 

Sampler 
Standard 0.0. 51 mm +/- 1 mm,1.D. 35 mm +/- 1 mm 

and length> 457 mm 
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Equipment Short procedure 

Penetration resistance 
Record number of blows for each 150 mm;  

N = number of blows from 150 to 450 mm penetration 

Blow count rate 30 to 40 blows per minute 

3.2.5 Sample Collection for Laboratory Testing 

During SPT, both disturbed and undisturbed samples were collected in order to conduct 

the laboratory tests referred in Table 3.2. They were performed to determine the overall 

characteristics of the soil. According to the Unified Soil Classification System, the soil 

has been categorized (USCS).  

Table 3.2: List of laboratory tests 

Type of test Sample Type 
No of 

Tests 
Test Method 

Liquid Limit and 

Plastic Limit  
Disturbed Sample 5 ASTM D 4318 

Shrinkage Limit Disturbed Sample 5 ASTM D 427 

Specific Gravity  Disturbed Sample 5 ASTM D 854 

Hydrometer Disturbed Sample 5 ASTM D 422 

Triaxial  Undisturbed Sample 1 ASTM D7181-20 

 

As the site of Silty Clay for conducting triaxial test was selected nearby HSIA 

expansion project, the northern part of Dhaka city. Soil sample was collected at 

different depths from Existing Ground Level (EGL) at selected site mentioned in Table 

3.3.  

Table 3.3: Undisturbed sample collected at different depth 

Undisturbed Sample (UD) Depth of Collection (m) Sample Recovery (mm) 

UD-1 2-3 650 

UD-2 3.5-4.5 600 

UD-3 5-6 600 

UD-4 9-10 60 
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Metal tubes for taking undisturbed samples used were 75 mm in diameter or 750 mm 

long. They were driven by using a hammer. On ejection and trimming, the samples are 

suitable sizes for triaxial testing. The larger sample tubes are fitted with detachable 

cutting shoes and are generally driven using mechanized equipment. Considerable care 

was required to maintain the verticality of the tube when driving it. 

3.3  Laboratory Test Results 

In order to conduct the FEM analysis several laboratory tests were conducted. Also, 

triaxial test was conducted for undisturbed soil samples. In this section the test results 

have been detailed. 

3.3.1 Atterberg Limit Test 

The objective of these tests was to determine the boundaries of different states that is 

liquid limit and plastic limit and thereby use them for soil classification. It is defined as 

the water content at which the soil has such small shear strength that it flows to close a 

groove of standard width when jarred in a specified manner. Plastic limit (PL) is the 

minimum moisture content at which the soil can be deformed plastically. It can be taken 

as the smallest water content at which the soil began to crumble when rolled into a 

thread of 3 mm in diameter. The shrinkage limit test was carried out according to ASTM 

D 427. To identify the engineering properties of soil, the criteria are described in Table 

3.4. 

Table 3.4: Correlations between plasticity of soil and strength (Atkins, 1997) 

Plasticity Index (%) Description 
Dry Strength 

0-3 Non plastic Very low 

4-6 Slightly Plastic Low 

7-12 Moderately plastic Low to Medium 

16-35 Plastic Medium to High 

Over 35 High Plastic High 

 

Initially soil samples were sorted varying on type and SPT value. Also, oven dried to 

get the initial/field moisture content at the very beginning of the test. From the Atterberg 

limit test it was observed from the test data that the full profile up to 35 m depth, 

majority of soil have more than 80% of material passing through #200 sieve (0.075 mm 

opening). The results of the Atterberg limit tests re represented in Table 3.5. From 
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Figure 3.1, it is clear that the soil up to 12 m depth is predominantly fine-grained soil 

falling mainly in the Unified Soil Classification System as CL and ML, which are 

grouped as low plastic clay and low plastic silt. 

Table 3.5: Plasticity values for cohesive soil at different depth 

 

 

3.3.2 Specific Gravity and Grain Size Analysis 

In general, the specific gravity Gs of a material represents the ratio of the mass of a 

given volume of that material at a temperature to the mass of an equal volume of 

distilled water at the same temperature. Calculating soil properties like the degree of 

saturation and void ratio requires knowledge of specific gravity.  ASTM D854 were 

Depth (m) 
Liquid Limit 

(%) 

Plastic Limit 

(%) 

Plasticity 

Index (%) 

Specific Gravity 

(Gs) 

1.5-1.95 48 24 25 2.65 

6-6.5 44 23 21 2.77 

7.5-7.95 44 30 14 2.71 

9-9.45 46 26 20 2.65 

33-33.45 39 24 15 2.71 

Figure 3.1: Position of the soil samples from the study area in the plasticity chart 
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used to measure the specific gravity of soil particles. Hydrometer test and grain size 

analysis results are represented in Figure 3.2. 

 

In this investigation, a significant parameter was obtained by the specific gravity test, 

and the outcome was used to perform hydrometer test. Figure 3.2 represents the overall 

findings and observations. From the range of D50 it was clearly evident that silt and clay 

percentages were predominant in the soil samples of that particular layers 

3.3.2 Triaxial Test 

The tri-axial test is indeed a crucial test for obtaining highly accurate soil strength 

parameters that are essential for finite element modeling. During the Consolidated 

Drained (CD) triaxial test, the specimen is first consolidated under a confining pressure 

until the excess pore water pressure is dissipated. The axial stress is then applied to 

cause shear failure in the specimen, while the confining pressure is maintained. The 

axial strain is measured during the application of the deviator stress. The test is called 

"consolidated drained" because the specimen is consolidated before the application of 

the deviator stress, and the pore pressure is allowed to dissipate during the test. The CD 

test allows for the measurement of both cohesion and angle of internal friction, which 

are important soil strength parameters that are required for finite element modeling. In 

this study, the CD triaxial tests were carried out in accordance with the requirements of 

Figure 3.2: Results of grain size analysis of collected samples 
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test procedure ASTM D 4767 and instrumental setup presented in Figure 3.3, which is 

a standard test method for determining the strength and stress-strain relationships of a 

soil specimen. The tests were conducted on a silty clay type of undisturbed soil sample 

that was collected from a depth of 9-9.5 meters at the selected site of the HSIA 

expansion project. The results of the CD triaxial tests provided important data for the 

finite element modeling of the soil behavior at the project site. The test method covered 

the determination of strength and stress-strain relationships represented in Figure 3.4 of 

a cylindrical undisturbed and saturated cohesive soil specimen. There were two phases, 

consolidation and shear. Specimens were isotopically consolidated and sheared in 

compression without drainage at a constant rate of axial deformation. However, 100 

kPa and 200 kPa effective confining stress were applied for the soil specimens. The test 

was continued till failure or 11% axial strain of the specimen whichever occurred first. 

For this research consolidated drained test results in Figure 3.5 were used to determine 

the strength parameters. The strength properties from triaxial test results are 

demonstrated in Table 3.6. 

    Table 3.6. Strength properties of silty clay layer 

Soil Parameters Sample Condition Value 

Angle of Internal friction, 

φ° 
Reconstituted Sample 23 

Cohesion, c (kN/m2) Reconstituted Sample 18 

Unit Weight, γ (kN/ m3) Reconstituted Sample 16.5 

 

 

Figure 3.3: Triaxial test setup  
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3.4  Data Collection 

This research also studies the applicability of machine learning to predict settlement 

behavior of pile due to static loading. As such, a data set is required that contains 

vibratory pile driving data. As mentioned earlier, the settlement pile is affected by 
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Figure 3.5: Failure envelops for triaxial consolidated drained test for silty clay 
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parameters relating to three major categories of different factors: pile related factors, 

soil related factors and loading rate. Therefore, in this research the variations in soil 

profile based on the SPT-N value was considered apart from the variations of pile’s 

diameter, pile length, effective area, modulus of elasticity of pile material, loading rate 

and even loading/unloading cases and cycles were considered as input features for the 

machine learning model to predict. The approach to predict the settlement of pile with 

respect to the variations in load applied and other considered parameters. This portion 

presents the data sets used for this research and gives a detailed explanation of the data 

handling process. 

3.4.1 Data Sets for DNN Model 

The First Dhaka Elevated Expressway (FDEE) Project, the Hazrat Shahjalal 

International Airport (HSIA) Expansion Project, and the Padma Bridge Rail Link 

Project pile construction data were collected for the proposed investigation. Around 

712 load-test data points captured from the 42 load test data sets of nominated projects 

and their basic soil profile additionally DNN model was developed to predict the load-

settlement behavior of pile foundation. According to the methodology, data sets were 

sorted and prepared for DNN model developments. For this particular study, only RCC 

piles were selected of specific types. The obtained load test data sets and their relevant 

soil profiles from several places within the Dhaka region were used further for training, 

testing and validation purposes. Appendix-B shows the lithology, or soil structure, of 

the various locations. It should be noted that the differences within a soil layer (for 

example, coarse or fine-grained sand) are not depicted, making this an overview of the 

soil structure. This also includes the equivalent soil profile and Static Load Test data 

sets that are attached in the Appendix-B and Appendix-C and offer a written record of 

the samples. This makes it possible to characterize soil strata in greater detail. 
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CHAPTER 4  

FEM ANALYSIS AND MODEL DEVELOPMENT 

4.1  Introduction 

In order to analyze pile foundation and determine the ultimate load capacity, one of 

the key concerns is the load-settlement behavior and of the pile for which static load 

test is conducted. More complex analytical techniques have been created to forecast the 

settlement and load distribution inside a single pile since the invention of computers. In 

this chapter, the detailed discussion will be made on soil model selection, calibration 

and detailed modeling steps of a pile subjected to static load. Here, the simulation of 

load settlement behavior of bored pile will be demonstrated considering the on-field 

conditions using Plaxis 3D V21. Detail modeling steps are mentioned in Figure 4.1. 

When it comes to geotechnical engineering, the finite element analysis of deformation, 

stability and water flow, Plaxis is the computer program of choice. Because of the input 

techniques, the improved output capabilities can provide computational results in finer 

detail. In this chapter, detailed calculation procedure and input parameter selection will 

be demonstrated. 

The two parts of Plaxis 3D V21 are the input program and the output program. The 

input program is used to define the model and set the properties of the analysis. At the 

start of the input program, the user is asked for project properties. In this part, the 

boundaries of the model in the two horizontal directions (x and y) and the unit system 

used in the analyses are set. 
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4.2  Project Information 

The ongoing Hazrat Shahjalal International Airport (HSIA) Expansion Project was 

considered as the corresponding project location of which the static pile load test was 

simulated. Based on the report which presents the information, test data and results of 

static pile load test conducted on pilot bored pile having ID: BH40-TP-07 for terminal-

3 building area of proposed Airport Expansion Project of Hazrat Shahjalal International 

Airport Dhaka. On behalf of Aviation Dhaka Consortium (ADC), Sinohydro 

Corporation Limited installed the pile and pile load testing work conducted by Geo-

Drill BD. Static axial compressive pile load test started on 16th September 2020 and 

finished on 17th September 2020. Cyclic Load method with standard loading procedure 

was followed under the compliance of the contract documents and load applied by 

hydraulic ram against kentledge. 

The pile in this case history was a reinforced concrete bored cast-in-situ pile, with a 

diameter of 1.2 m and a length of 44 m. It was installed adopting Hydraulic rotary 

Figure 4.1: Flow diagram for FEM model 
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method under polymer slurry. The load vs settlement curve of the pile is shown in 

Figure 4.3. The reference on loading test data and borehole log sheets are attached in 

Appendices A and B, respectively. The soil around the pile at the test site was 

dominantly of silty clay with other clay and sand layers found at different depths. 

Percentages of the soft clay, silty clay, silty sand, fine sand were presented in Figure 

4.2 as the equivalent soil stratigraphy of that particular borehole. A fine sand layer was 

present around at 30 m below the surface.  
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4.3 Constitutive Models 

Constitutive models established correlations between stress and strain that detailed how 

materials responded to various load circumstances. Different degrees of precision are 

used to model the mechanical behavior of soils. Mohr-Coulomb model, Hardening Soil 

(HS) model, HS small model, and Soft Soil model are the four widely adopted 

constitutive models for numerical modeling using Plaxis 2D and Plaxis 3D. The choice 

of soil models is influenced by the soil profile (clay or sand), working conditions (taking 

into account pore pressure and loading conditions), and desired results (capacity, 

settlement, and stiffness). 

An advanced model for replicating the behavior of many soil types, including both soft 

and stiff soils, is the Hardening Soil model in this instance for settlement analysis 

(Schanz et al., 2019; Wu et al., 2018). When soil is subjected to initial deviatoric stress, 

its stiffness decreases and irreversible plastic strains appear at the same time. The 

observed relationship between the axial strain and the deviatoric stress in the 

exceptional case of a drained triaxial test can be well approximated by a hyperbola. The 

well-known hyperbolic model (Likitlersuang et al., 2013) utilizes a relationship 

previously proposed by (Kondner, 1963). But the Hardening Soil model vastly 
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outperforms the hyperbolic and other available models (Wu et al., 2018) for the 

following reasons:  

(i) Substituting the theory of plasticity for the theory of elasticity. 

(ii) Taking into account the dilatancy of the soil and adding a yield cap.  

(iii) The model has a few fundamental features, including: 

(a) Stress dependent stiffness according to a power law: Input parameter m 

(b) Plastic straining due to primary deviatoric loading: Input parameter E50
ref 

(c) Plastic straining due to primary compression: Input parameter Eoed
ref  

(d) Elastic unloading / reloading: Input parameters Eur
ref, υur 

(e) Failure according to the Mohr-Coulomb failure criterion: Parameters 

cohesion c, angle of friction φ and shearing angle ψ 

4.4  Parameters for Numerical Modeling 

An overview of the soil behavior of this site is essential for further calibration. In this 

section, an interpretation of soil stiffness properties is provided base on the soil report. 

Also, the mechanical properties of soil layer are summarized in Table 4.2. As we have 

selected the Hardening soil model, being an advanced constitutive model, it needs to be 

calibrated. When considering the undrained calculations, there are two types of 

undrained behavior in Plaxis-3D, which are Undrained (A) and Undrained (B). Finite 

element analysis employing the Hardening Soil model in Plaxis has been proven to 

successfully simulate five field-scale experiments of soil-geosynthetic composites (Wu 

et al., 2018). The Turner-Fairbank Highway Research Center of the Federal Highway 

Administration provided a stable environment for the tests (J. T. Wu et al., 2013). This 

technical remark uses the angular gravelly soil utilized in the studies as an illustration. 

Figure 4.4 shows the stress-strain and volume change relationships used to determine 

the model parameters for the Hardening Soil model. These relationships were obtained 

through consolidated drained triaxial tests. These Hardening soil model parameters are 

discussed shortly in the following Table 4.1. 
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Table 4.1:  Soil model parameters and laboratory tests needed for determination of 

parameters for the Hardening Soil model (modified after Plaxis 2002) 

Parameters Description and test needed to determine the parameter 

Secant stiffness, E50
ref 

Secant stiffness to describe plastic straining due to 

primary deviatoric loading at a selected reference 

pressure Test needed to determine the parameter: 

Drained triaxial compression tests 

Oedometer stiffness, Eoed
ref  

Oedometer stiffness to describe plastic straining due to 

primary compression at a selected reference pressure 

needed to determine the parameter: Primary loading in 

oedometer tests (default value suggested by Plaxis:  

Eoed
ref ≈ E50

ref ) 

Unloading

/reloading  stiffness, Eur
ref 

Unloading/reloading Stiffness describes elastic 

unloading/reloading behavior at a selected reference 

pressure Test needed to determine the parameter: 

Unloading/reloading in triaxial compression tests 

(default value suggested by Plaxis: Eur
ref ≈ 3E50

ref) 

Elastic Poisson’s ratio, υur 

Poisson’s ratio is a property that describes the volume 

change of a material in a direction perpendicular to the 

application of a load. Test needed to determine the 

parameter: Unloading/reloading in triaxial compression 

tests (default: υur= 0.2) 

Cohesion, c 
Test needed to determine the parameter: Drained triaxial 

compression tests loaded to failure 

Angle of friction, φ 
Test needed to determine the parameter: Drained triaxial 

compression tests loaded to failure 

Shearing angle, ψ 
Test needed to determine the parameter: Drained triaxial 

compression tests with measurement of volume change. 

Power of a power law, 

m 

Power of a power law used to describe the level of stress 

dependency of soil stiffness Test needed to determine the 

parameter: Typical range: 0.5 ≤ m ≤ 1; default value 

suggested by Plaxis: m = 0.5 (m = 1 for logarithmic stress 

dependency (as in soft clay); m = 0.5 in sands and silts) 

Reference pressure, 

Pref 

No test is required to determine this parameter. Default 

value of Pref is considered 100 kPa. 

Failure ratio, Rf Default value of Rf is considered 0.9 
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4.4.1 Soil Stiffness Parameters  

To simulate the plastic behavior of soil, the plastic soil stiffness parameters 

E50
ref and Eur

ref were used. Generally, soil loading conditions are appropriate for the 

secant modulus at 50% strength and that is why abbreviated as E50
ref. Hence, in Figure 

4.4, the slope at 50% strength was referred to be E50
ref. 

 

4.4.2 Shear Strength Parameters  

Shear strength parameters, namely, angle of internal friction (φ) and cohesion (c) are 

generally determined from drained triaxial tests. Also, another common practice is from 

the direct shear test result that are taken from samples obtained from shallow depth. But 

for deeper layers, where laboratory test results are not available, correlation method 

provided by Bowles (1996) were used. Shioi and Fukui (1982) Japanese standard, has 

been used to determining angle of internal friction. For dominant silty clay layer of our 

selected site, we have conducted drained triaxial test and determined the strength 

parameters demonstrated from Figure 4.4. For other soil layers, respective soil 
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investigation reports collected from the project office, other guidelines (Uddin, 2015; 

Islam et al., 2013) and correlations were used to determine the required soil parameters 

mentioned in Table 4.2. 

Table 4.2: Input parameters for FEM model development 

               Soil  

              Type     

 

Parameters  

Unit Soft Clay Silty Clay Silty Sand Fine Sand 

Dry Unit 

Weight, ɣd 

 

kN/ m3 
15.5 16.5 17 17 

Moist Unit 

Weight, ɣsat  

 

kN/ m3 
16 17 18 18 

Triaxial 

Stiffness, E50
ref 

 

kN/m2 
8000 11000 15000 30000 

Oedometer 

Stiffness, Eoed
ref  

kN/m2 8000 11000 15000 30000 

Un/reloading 

Stiffness, Eur
ref 

 

kN/m2 
24000 33000 45000 90000 

Frictional 

angle, φ° 
- 5 23 30 33 

Cohesion, c kN/m2 18 18 1 1 

Sources - 
Islam et al., 

2013 
This study 

Islam et al., 

2013 

Islam et al., 

2013 

 

4.4.3 Structural Parameters of Pile 

From the discussions made above, it can be understood that a major portion of the 

significance of this study depends on the structural parameter that was use while 

developing the Plaxis-3D model. In this case, the pile foundation was modeled as 

embedded beam elements with v = 0.2 and E = 29.73 GPa. For the RCC pile, respective 

diameter was considered to be 1.2 m based on the pile details report from field data 

collection from the consultant office of HSIA project. Table 4.3 provides a summary of 

the beam element properties that were used. 
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Table 4.3: Structural Parameters 

Parameters of piles Unit Value 

Pile Diameter, D m 1.2 

Pile Length, L m 44 

Modulus of Elasticity, E  kN/m2 29.73 x 106 

Poisson’s Ratio, ν  kN/m3 0.20 

Unit Weight, γ  kN/m3 25 

 

4.5  Calibration of Constitutive Model 

As per ASTM D 4767, the CD triaxial compression test was used to measure the shear 

strength parameters. The undisturbed sample was also used to prepare the cylindrical 

specimens. For silty clay, however, effective confining stresses of 100 kPa and 200 kPa 

were used. The test was carried out until the specimen failed or experienced an axial 

strain of 11%, which ever came first. An overview of the parameters determined from 

the Tri-axial test is shown in Table 4.4. Using Plaxis 3D software, the values were 

plugged into the HS model and stress–strain curves from the CD triaxial compression 

tests were obtained. This was performed using the ‘Soil Test’ feature in Plaxis-3D.  

Table 4.4: Soil parameters for Hardening Soil Model calibration 

Soil Parameters Unit Value 

Dry Unit Weight, γd kN/ m3 16.5  

Void ratio, e - 0.586 

Triaxial Stiffness, E50
ref kN/ m2 11000  

Oedometer Stiffness, Eoed
ref  kN/ m2 11000  

Un/reloading Stiffness, Eur
ref kN/ m2 33000  

Frictional angle, φ° - 23 

Cohesion, c kN/ m2 18 

Figure 4.5 shows the comparison of the numerical and experimental results of the CD 

triaxial compression test for 200 kPa confining pressure. The comparison demonstrates 
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that the HS model can simulate the stress and strain behavior of the collected 

undisturbed silty clay soil sample with a marginal fluctuation from the conducted 

triaxial test result.  

 

4.6  FEM Model Development 

Numerical analysis was used to study the load-settlement behavior and failure load for 

large diameter bored pile under vertical loads is applied at the pile head using the 

commercial software (Plaxis 3D-V21). The detailed procedure is mentioned in the 

following sections. 

4.6.1 Model Geometry and Boundary 

In PLAXIS 3D Foundation, the generation of a 3D finite element model begins with 

the creation of model geometry. A geometry model is a composition of bore holes and 

work planes. The work planes are used to define geometry lines and structures contour 

lines along the elevation level. The bore holes are used to define the local soil 

stratigraphy, ground surface level and pore pressure distribution. The boundary surfaces 

and their influence on the result are important factors to consider in every Plaxis model. 
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If the space between the expected event and the boundaries during a phase is large, the 

boundary influence will become small. The disadvantage with a large model is the 

greater number of elements required, which will lead to longer calculation times. A 

suitable compromise must be found for effective modeling, where the calculation time 

is held as short as possible without significant influences from the model boundaries.  

 

 

To analyze the problem of pile, the full geometric model was selected, which results in 

a three-dimensional finite element model with three degrees of freedom at each node 

(i.e. x- direction, y- direction and z-direction). 

The model dimensions considered for the pile load test simulation was 30 m along both 

X & Y direction and 55 m along Z-direction, as shown in Figure 4.6. The circular 1.2 

m diameter and 44 m long pile was installed right at the mid of the geometry with as 

embedded beam element. An embedded beam is a structural object (such as a pile, rock 

bolt or grout body) composed of beam elements that can be placed in arbitrary direction 

in the sub-soil and that interacts with the sub-soil by means of special interface 

elements. The interaction may involve a skin resistance as well as a tip resistance. The 

skin friction and the tip resistance are determined by the relative displacement between 

the soil and the pile. Although an embedded beam does not occupy volume, a particular 

volume around the pile (elastic zone) is assumed in which plastic soil behavior is 

excluded. The size of this zone is based on the (equivalent) pile diameter according to 

Figure 4.6: Geometry of FE model 
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the corresponding embedded beam material data set. This makes the pile behave almost 

like a volume pile. However, installation effects of piles are not taken into account and 

the pile-soil interaction is modelled at the center rather than at the circumference. 

The behavior of the elements can be prescribed with the boundary conditions. It can be 

manually adjusted for every surface with five different settings, free, normally fixed, 

horizontally fixed, vertically fixed or fully fixed. The free setting gives the surface the 

ability to move freely in all cartesian directions, while the fixed alternative means that 

they are locked in all directions. The normally fixed alternative locks the elements at 

the boundary from moving in the normal direction. The external boundary conditions 

of the model were generated according to the following rules: 

(i) The right and left edge were fixed in horizontal direction and free to move in the 

vertical (UX = 0).  

(ii) The bottom boundary was fixed in all three directions, (Ux = Uy= Uz = 0).  

(iii) The top boundary was free in all directions 

(iv) For ground water flow drainage boundary was closed in all directions except the 

Zmin.  

Here, the modern material models of the code could be used to directly enter the 

characteristics of the soil. For this study, the Hardening Soil material model was used. 

For granular soils, the undrained A type was used, and for cohesive soils, the undrained 

B type was used. In the model, the pile was modeled by "embedded pile elements." 

4.6.2 Interfaces 

Interfaces are used when modeling soil structure interaction. Interfaces will be required 

to simulate the finite frictional resistance between the structure such as pile and adjacent 

soil. It allows relative displacement and separation between the structure and soil mas. 

The basic property of an interface element is the associated material data set for soil 

and interfaces. Interface element models the interaction between a pile and the soil 

which is intermediate between smooth and fully rough. The roughness of the interaction 

is modeled by choosing a suitable value for the strength reduction factor in the interface 

(Rinter). This factor relates the interface strength (structure surface friction and adhesion) 

to the soil strength (friction angle and cohesion) to model the soil-structure interaction 

accurately. The interface strength for these elements was assumed in the order of 1 
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(Rinter = 1) since no detailed information could be obtained and as also recommended 

earlier (Vilhar et al., 2018). 

4.6.3 Mesh 

Plaxis allows for a fully automatic generation of finite element mesh. The generation 

of the mesh is based on a robust triangulation procedure, which results in “unstructured” 

meshes. These meshes may look disorderly, but the numerical performance of such 

meshes may yield better results than for regular structure meshes. The mesh generator 

requires a general meshing parameter which represents the average element size, le,  

computed based on the outer geometry dimensions xmax, xmin, ymax, ymin, zmax and 

zmin using the following relationship: 

le =
re

20
√(xmax − xmin)2 + (ymax − ymin)2 + (Zmax − Zmin)2 

Where,  re    = 2.0 (very coarse mesh) 

                   = 1.5 (coarse mesh) 

                   = 1.0 (medium mesh) 

                   = 0.7 (fine mesh) 

                   = 0.5 (very fine mesh) 

The target element dimension or average element size, (le) is based on the parameter 

called relative element size factor (re). Regarding the element distribution, distinction 

is made between the above mentioned five global levels. More displacement and 

bending moment can be induced by a finer mesh.  When the mesh goes from very fine 

to very coarse, the sizes can change by up to 20% (Dao, 2011). Also, the time it takes 

to do calculations goes up a lot as the mesh size gets smaller. 

4.6.4 Elements 

The elements contain Gauss points (stress points), where the constitutive relation is 

applied to define the relation between stresses and strains. In PLAXIS 3D, the basic 

soil elements of the 3D finite element mesh are the 10-node tetrahedral elements. The 

element stiffness matrix is evaluated by numerical integration using four Gauss points 

(Stress points) in Plaxis 3D (Figure 4.7). These elements are generated from the mesh. 
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The accuracy of the 10-node tetrahedral element and the compatible structural elements 

depend on the sufficient fineness of the mesh.  

 
 

(a) (b) 

 

Here, the pile was modeled as embedded beam. Properties and model parameters for 

embedded beams were entered in separate material data sets. Embedded beams can be 

used to model different types of slender structures that interact with the surrounding 

soil/rocks such as piles, ground anchors or rock bolts. A data set for embedded beams 

generally represents a certain type of embedded beam, including the pile/rock bolt 

material and geometric properties, as well as the interaction properties with the 

surrounding soil or rock (bearing capacity). 

4.6.5 Modelling Staged Construction 

In Plaxis 3D, the calculation process was broken up into stages called "calculation 

phases". The defined calculation phases for FEM modeling are mentioned in the Table 

4.5.  As was already said, the first phase is always the initial conditions. After the first 

phase, a good number of other phases could be added based on how the construction 

process was planned. Starting from this phase, it’s also possible to change the soil and 

structural parameter data and the water condition, as well as turn on or off loadings, soil 

clusters, and structural objects. The water table was considered at ground level in this 

case referring to borehole data for the selected site. 

Here in Plaxis 3D, this initial phase was defined selecting the calculation type K0 

procedure which indicates the initial ground condition considering the earth pressure at 

rest. Mainly, two calculation types that were used are: 

Figure 4.7: (a) Soil elements and (b) Beam elements (Plaxis 3D manual 2020) 
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(i) Plastic: To apply the loading conditions. 

(ii) Consolidation: To allow the required time interval for settlement. 

Next, the calculation phases are set up in a staged construction mode based on the 

objectives of the study once all the geometric entries have been finalized. Calculation 

is divided into several phases to simulate the entire load test process based on ASTM 

D1143, as it will be in the actual case. Table 4.4 lists the steps and required adjustments 

of significant features in each calculation phase and the associated settlement results. 

Each geometric element for each stage can be turned on or off depending on the 

conditions and steps of the calculation phases. The characteristics of each stage of the 

analysis, such as the type of calculation, the maximum time interval for each phase, and 

the allowable level of error, can be set independently. Analysis can be done once every 

stage has been set up. 

4.6.6 Settlement Analysis Results of Plaxis-3D 

There are several ways to monitor the outcomes of an analysis in Plaxis 3D. Curves, 

graphs, and tables are just a few of the numerous ways the Plaxis 3D Output program 

displays the outcomes of the numerical analysis. It is mostly composed of the alterations 

caused by stresses and deformations that are shown in a distorted mesh. An analysis of 

the field test condition was carried out after mesh generation and defined calculation 

phases with loading steps. At the very beginning the model offered a settlement of 0.69 

mm for make ground condition (Figure 4.8) or earth pressure at rest. It has been 

observed basically due to the construction of pile and its self-weight. Hence, before 

applying load, the displacement was set to zero. At this no or 0% loading condition the 

settlement was initially monitored to be 0. Gradually, after increasing the load the 

settlement was monitored to be 7.9 mm (Figure 4.9) at the 100% design load of kN for 

the selected test pile TP-07. Figure 4.10 provides the finite element mesh for the overall 

model at maximum loading condition. 
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Table 4.5: Calculation Phases of Plaxis-3D for Static Load Test (SLT) simulation 

Phases Analysis type Elements Activated Load 

(%) 

Time 

(day) 

Settlement 

(mm) 

Initial K0 

(1) Surrounding soil 

- - - 
(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

Phase 1 

(Constructi

on Phase) 

Plastic 

drained 

(1) Surrounding soil 

- - 0.69 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 2 

L0 

Plastic 

drained 

(1) Surrounding soil 

0 0 0 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 3 

L25 

Plastic 

drained 

(1) Surrounding soil 

25 0 2.107 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 4 Consolidation 

(1) Surrounding soil 

25 0.083 3.465 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 5 

L50 

Plastic 

drained 

(1) Surrounding soil 

50 0 
 

4.991 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 6 
Consolidation 

(1) Surrounding soil 

50 0.083 
 

5.582 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 7 

L75 

Plastic 

drained 

(1) Surrounding soil 

75 0 6.209 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 8 

 
Consolidation 

(1) Surrounding soil 

75 0.083 6.483 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 9 

L100 

Plastic 

drained 

(1) Surrounding soil 

100 0 7.254 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 
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Phases Analysis 

type 

Elements Activated Load 

(%) 

Time 

(day) 

Settleme

nt (mm) 

 

Phase 10 
Consolidati

on 

(1) Surrounding soil 

100 0.25 7.911 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 11 

UL75 

 

Plastic 

drained 

(1) Surrounding soil 

75 

 

0 

7.194 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 12 

 

Consolidati

on 

(1) Surrounding soil 

 

75 

 

0.083 
6.965 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 13 

UL50 

 

Plastic 

drained 

(1) Surrounding soil 

50 
 

0 
6.387 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 24 

 

Consolidati

on 

(1) Surrounding soil 

50 0.083 
6.268 

 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 15 

UL25 

 

Plastic 

drained 

(1) Surrounding soil 

25 0 5.842 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 16 
Consolidati

on 

(1) Surrounding soil 

25 0.083 5.509 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 17 

UL0 

Plastic 

drained 

(1) Surrounding soil 

0 0 4.467 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 18 
Consolidati

on 

(1) Surrounding soil 

0 0.083 4.235 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 19 

L50 

Plastic 

drained 

(1) Surrounding soil 

50 0 5.766 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 20 
Consolidati

on 

(1) Surrounding soil 

50 0.083 6.275 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 
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Phases Analysis type Elements Activated Load 

(%) 

Time 

(day) 

Settlement 

(mm) 

 

Phase 21 

L100 
Plastic 

drained 

(1) Surrounding soil 

100 0 8.008 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 22 

Consolidation 

(1) Surrounding soil 

100 0.083 8.405 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 23 

L125 
Plastic 

drained 

(1) Surrounding soil 

125 0 9.901 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 24 

Consolidation 

(1) Surrounding soil 

125 0.083 

10.3 

 

 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 25 

L150 
Plastic 

drained 

(1) Surrounding soil 

150 0 10.91 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 26 

Consolidation 

(1) Surrounding soil 

150 0.083 11.04 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 27 

L175 
Plastic 

drained 

(1) Surrounding soil 

175 0 12.76 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 28 Consolidation 

(1) Surrounding soil 

175 0.083 13.78 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 29 

L200 

Plastic 

drained 

(1) Surrounding soil 

200 0 15.54 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

Phase 30 Consolidation 

(1) Surrounding soil 

200 0.5 15.65 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 
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Phases Analysis type Elements Activated Load 

(%) 

Time 

(day) 

Settlement 

(mm) 

Phase 31 

UL150 

Plastic 

drained 

(1) Surrounding soil 

150 0 13.37 

(2) Top/bottom boundary surface 
(3) Top/bottom prescribed 

displacements 
(4) Embedded pile 

 

Phase 32 

Consolidation 

(1) Surrounding soil 

150 0.0417 12.90 

(2) Top/bottom boundary surface 
(3) Top/bottom prescribed 

displacements 
(4) Embedded pile 

 

Phase 33 

UL100 
Plastic 

drained 

(1) Surrounding soil 

100 0 11.14 

(2) Top/bottom boundary surface 
(3) Top/bottom prescribed 

displacements 
(4) Embedded pile 

 

Phase 34 

Consolidation 

(1) Surrounding soil 

100 0.0417 10.68 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 35 

UL50 
Plastic 

drained 

(1) Surrounding soil 

50 0 9.29 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 36 

Consolidation 

(1) Surrounding soil 

50 0.0417 8.869 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 37 

UL0 
Plastic 

drained 

(1) Surrounding soil 

0 0 7.498 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 

 

Phase 38 

Consolidation 

(1) Surrounding soil 

0 0.125 7.042 

(2) Top/bottom boundary surface 

(3) Top/bottom prescribed 

displacements 

(4) Embedded pile 
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(a) 

 

 

 

 

(b) 

Figure 4.8: (a) Deformed mesh and (b) Total displacements at make ground condition  
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(a) 

 

(b) 

 

Figure 4.9: (a) Deformed mesh and (b) Total displacements at 100% design load  
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(a) 

 

 

 

(b) 

Figure 4.10: (a) Deformed mesh and (b) Total displacements at 200% of design load  
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Following the ASTM D1143 guideline of loading-Unloading steps followed in the 

field, initially, the modeled pile was loaded till the 100% of design load with an 

increment of 25% for every loading steps. Next, it went through unloading phases with 

a decrement rate of same 25% till 0 kN of load. Then started the second loading phase 

with an initial increment of 50% for each steps till the 100% of design load. After 

reaching 100% of design load in the second loading phase, the loading rate was reduced 

to 25% and the pile was loaded with the maximum force of 5448 kN, which was 

precisely equal to 200% of the predicted capacity of the pile for the particular project 

that was chosen. The calculation results in an exceptional overall displacement of 15.54 

mm. Further details are depicted in the deformed mesh model in Figure 4.10. Finally, 

the second loading phases were introduced and ultimately around 46% of the maximum 

settlement were noticed to get recovered with a permanent settlement of 7 mm (in 

Figure 4.11) at the end of the 2nd unloading phases. 

 

 

In order to have a Displacements and Cartesian effective stresses in the direction of 

movement are given from various viewpoints and cross sections are represented in the 

Figure 4.12 (a) and Figure 4.12 (b) respectively for 100% and 200% of the design load 

respectively. For further clarifications regarding soil structure (pile) interactions, 

however, one can also look into the details of the Displacement contours (in Figure 

Figure 4.11: Total displacements at 0% of design load (end of final phase) 
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4.13), Stress Arrow Diagrams (Vector Diagrams) in Figure 4.14 (a) and Figure 4.14 (b) 

and 3D surface plots from Figure 4.15 (a) and Figure 4.15 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

Figure 4.12: Total cross-sectional displacements at the pile center for (a) 100% and 

(b) 200% of design load 
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(a) 

 

(b) 

 

    Figure 4.13: Displacement contours for (a) 100% and (b) 200% of design load 
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(a) 

 

(b) 

Figure 4.14: Stress-vector diagrams at loading condition of (a) 100% and (b) 200% 

design load 



 

69 

 

 

(a) 

 

(b) 

Figure 4.15: Surface plots at loading condition (a) 100% and (b) 200% of design load 
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4.7  Summary 

Soil, structures, mesh, water levels, and construction stages are the five primary input 

programs that were set in the context. Boreholes are utilized to provide the soil 

stratigraphy. It also includes locating the water level in boreholes. 

Finally, load-settlement graph of numerical analysis results using hardening soil model 

are compared with the respective actual pile load test. Comparison of field test and 3D 

analysis. From this model, the applicability and the efficiency of Plaxis-3D was clearly 

validated for the simulation of Static Load Test (SLT) of pile foundations.  

Figure 4.16 illustrates how the FEM approach slightly over estimates the pile 

foundation's load-settlement behavior with the relevant material parameter sets. In fact, 

this result from the Plaxis 3D provides a reasonable match, adopting such an approach 

for the selection of soil parameter seems to be fair justification from an engineering 

point of view. Also, the co-efficient of determination value of 0.9162 observed in 

Figure 4.17 (a) and for normalized case in Figure 4.17 (b) are within a quite good range 

while comparing the Plaxis 3D result with insitu data. In light of this, it can be 

concluded that, when compared to other modeling approaches that have been looked 

into previous literatures, the Plaxis 3D finite element program coupled with the HS 

model approach efficiently forecasts the load-settlement behavior of pile foundations. 
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CHAPTER 5  

DNN MODEL DEVELOPMENT 

5.1  Introduction 

In this chapter, the development procedures of the proposed Deep Neural network 

(DNN) models have been presented in details. DNN models were developed with the 

collected data. Google Colab notebooks which are Jupyter notebooks hosted by Colab, 

was used as the platform for the development of DNN models. Colab notebooks execute 

code on Google's cloud servers, meaning it is possible to leverage the power of Google 

hardware, including GPUs and TPUs, regardless of the power of your machine (Abid 

et al., 2019; Andrew, 2019). Description of the datasets and method of training or 

testing has also been discussed here. 

Details of the analysis and performance comparison have been presented here. 

Validation was done for overall accuracy of the fitted full load-settlement curve. Model 

outcome for unknown characters have also been checked. At the end, performances of 

the models will be used to draw conclusions. Figure 5.1 demonstrates the overall 

methodology that has been adapted using MLP, LSTM, Bi-LSTM, CNN and TabNet 

architectures in this chapter. The total process has been diagramed indicating all major 

steps in the models. 

 

 

Figure 5.1: DNN model pipeline 
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5.2  Model inputs 

Most traditional pile settlement methods include the following fundamental parameters: 

pile geometry, pile material properties, applied load and soil properties (All random 

literatures). Similarly, pile diameter (d), embedded length (Ld), Cross-sectional Area of 

pile bottom (Ab), Surface Area of pile in contact with the soil (As), Elastic Modulus in 

mega Pascal (Es), applied loads and corresponding settlement were among the input 

parameters for DNN model. However, there are some additional factors, such as the 

loading-unloading phase and load cycle considerations, layered soil profile, load test 

method and the depth to the water table. The depth of water table is not included in this 

study, as it is believed that its effect is already accounted for in the measured SPT blow 

count. However, the effect of these missing consideration from previous literatures 

were considered in this study. 

The SPT (N) throughout the embedded length of the pile is employed as a measure of 

soil compressibility for the purposes of this study because settlement is dependent on 

soil compressibility and the SPT is one of the most frequently used tests in practice for 

identifying the in-situ compressibility of soils. The embedded length of the pile is 

divided into several segments based on variability and corresponding depth of soil 

layers of equal thickness, with each segment being an average of N over that segment, 

in order to more accurately account for the variability of soil properties within different 

layers along the pile shaft. The average N count for each subdivision Ni, where "i" is 

determined using the recommendations from previous literatures (Hunt, 1984; Terzaghi 

and Peck, 1967). Also, the average of the SPT-N value along the shaft and SPT-N value 

where the pile bottom locates were also considered as ‘Navg’ and ‘Nb’ respectively. 

Table 5.1 represents the layered soil profile considerations for proposed models. 

Table 5.1: Criterion for layered soil profile considerations 

SPT-N value Soil Profile Annotation 

>50 Very Dense Sand N1 

30-50 Dense Sand N2 

10-30 
Moderately Dense 

Sand/Silt 
N3 

4-10 Loose Sand/Medium Clay N4 

<4 Very loose Sand/Soft Clay N5 
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Moreover, soil classification also has a greater effect on settlement (Moayedi et al., 

2021; Elkateb et al., 2003; Coduto, 2001; McCarthy and McCarthy, 1977;). Hence, the 

percentages of Sand, Silt and Clay along the pile embedded length and toe were also 

within the list of input parameters for the proposed DNN models. 

5.3  Data Preprocessing 

Preparation of raw data in a manner that the network can accept is a typical first step in 

the deep learning workflow. Preprocessing the collected data in order to fit the models 

was the first major issue. The shortage of data due to unavailability of large number of 

full-scale pile load test on same location was the most difficult challenge. However, the 

DNN models require a large amount of data to be able to fully capture the relationship. 

The raw data collected from field Static Load Test (SLT), pile geometry, materials and 

relevant soil profiles need to be pre-processed first to make it compatible with the deep 

neural network. This pre-processing stage consists of different operations. Each of them 

is described in detail below. 

5.3.1 Data Cleaning 

In total 712 Pile load-settlement data points, corresponding geometry, material 

properties and soil profile were used from 42 full load test data sets for training and 

testing purposes. As part of data preprocessing, data cleaning is done to clean the data 

by filling in missing values, smoothing out noisy data and outlier’s removal. 

(i) Missing Values: The issues of missing values for a set or subset can be solved by 

ignoring those tuples when the data set is large in number. This can also be handled 

by filling the values by means of predicting the missing values using regression, 

arithmetic mean or other numerical tools. 

(ii) Noisy Data: It means getting rid of a random error or variation in an attribute that 

has been considered. It can be done with methods like Binning, Clustering, and so 

on. Binning is a way to smooth out any noise in data values that have already been 

put in order. The data is put into buckets that are all the same size, and each bucket 

is dealt with on its own. The segment's mean, median, or boundary values can be 

used to replace all of the data in the segment. On the other hand, clustering is the 

process of putting together groups or clusters of data with similar values. The 
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values that don't fit in the cluster can be thought of as noisy data and discarded for 

use. 

(iii)  Removing Outliers: Clearing Outliers or inconsistent data means removing the 

data/pairs that don't fit into the cluster. 

5.3.2  Data Scaling or Normalization 

In this method, we limit our data attribute to a certain container in order to find a link 

between different data points. Scaling can be done in a number of ways. To improve 

convergence, the input parameters must be scaled (Alvarez et al., 2012). The numbers 

are scaled up or down so that they fit within a certain range.  

Standardization was used to scale the input data because Garca et al. (2016) and 

Marquardt et al. Marquardt et al. (1980) found this to be the best way to do it for 

machine learning models. The standardization scaler was put on the training features, 

and it was used to change the testing features so that there wouldn't be any data leakage 

while the model was being tested (Anysz et al., 2016). The following equations are used 

to standardize the data: 

Standardization, 

zi =
xi − µ

σ
 

Here, mean  

µ =
1

N
∑(xi)

N

i=1

 

And standard deviation 

σ = √
1

N
∑

N

i=1

(xi − µ)2 

Where, xi is the ith input value to the network and N is the total number of input values. 

However, normalization can be performed using other methods like: Min-max 

normalization or even Decimal scaling normalization. In this research the 

standardization scalar was put on the training features, and it was used to change the 

testing features so that there wouldn't be any data leakage while testing. 
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5.4  Dimensionality Reduction and Feature Selection 

Dimensionality is the number of input variables or "features" in a dataset. 

Dimensionality reduction is a term for methods that cut down on the number of 

variables in a dataset (Murphy, 2018; Witten and Frank, 2002). When there are a lot of 

input features, the performance of machine learning algorithms may degrade. The curse 

of dimensionality is the idea that adding more features to a predictive modeling task 

makes it more difficult to predict. So, the trial keeps going with reducing the number 

of input features in order to better fit a predictive model. These methods can be used in 

applied machine learning to make a dataset for classification or regression easier to 

understand (Velliangiri and Alagumuthukrishnan, 2019; Xu et al., 2019). Feature 

selection, linear algebra methods, projection methods, and autoencoders are all ways to 

reduce the number of dimensions (Zebari et al., 2020; Huang et al., 2019; Thangavel 

and Pethalakshmi, 2009). In this research, ''Feature Selection'' method was introduced 

to reduce the dimension of input features. Initially, all the input features were annotated 

according to Table 5.2. Models were trained and tested selecting different batches of 

considered features. 

5.5  Model Training and Validation 

In order to develop the DNN models, 80% of the data sets (34 pile-load test data sets) 

were used for training and rest 20% were used for testing and validation purposes. After 

completion of the training of each model, testing and validations were performed to 

assess the model performances. Models can be validated in variety of ways. The 

quickest and most straightforward method is to compare the accuracy of the data 

between the predicted result of the model and the actual result based on field data. It 

should be remembered that the data used for validation should be distinct from the data 

used for model development or calibration. Yet, as was previously noted, some studies 

had used the traditional goodness of fit method. Comparing the outcomes directly, it 

has the benefit of simplicity. While being straightforward, the method's lack of 

credibility contributes to its inability to anticipate long-term trends. Hence, in this 

research, after designing the DNN model, the next step was to compile it with a loss 

function and an optimizer. The loss function measured how well the model was doing, 

and the optimizer helped to minimize the loss function. After training, the model's 

performance was evaluated using the prepared validation data to ensure that the model 
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was not overfitted. The next step was to fine-tune the hyperparameters of the model, 

such as the learning rate, batch size, and number of epochs, to optimize its performance. 

Finally, once the model has been trained and optimized, it can be deployed to for 

validations and make predictions on unforeseen data. 

Table 5.2: Feature selection and annotation 

Feature Annotation 

Pile diameter, d F1 

Area of pile bottom, Ab F2 

Surface Area of pile in contact with the soil, As F3 

Load, P F4 

Pile length, Ld F5 

Elastic Modulus in mega Pascal, Es F6 

Length-Diameter ratio, Ld/D F7 

Dense Sand, N1 F8 

Corresponding Depth of Dense Sand, L1 F9 

Medium Dense, N2 F10 

Corresponding Depth of Medium Dense Sand, L1 F11 

Loose sand/Silt, N3 F12 

Corresponding Depth of Loose sand/Silt, L1 F13 

Medium/Stiff Clay, N4 F14 

Corresponding Depth of Medium/Stiff Clay, L1 F15 

Soft Clay, N5 F16 

Corresponding Depth of Soft Clay, L1 F17 

Average SPT, Navg F18 

SPT value at Pile Bottom, Nb F19 

Percentage of Sand F20 

Percentage of Silt F21 

Percentage of Clay F22 

Loading/Unloading F23 

Loading Cycle F24 

Embedded Pile Length, L F25 

Percentages of Applied Design Load F26 

Settlement F27 

 

Validation of a Deep Neural Network (DNN) model is a crucial step in the model 

development process. It involves evaluating the performance of the trained model on a 

separate dataset, called the validation set, that was not used during the training process. 

The goal of validation is to assess how well the model can generalize to new, unseen 

data. Here, during validation, the validation data set was used to assess the performance 

was measured using metrics, such as accuracy, precision, recall, or F1-score. The 

validation metrics are used to determine whether the model has overfitted or underfitted 



 

78 

 

to the training data. Overfitting occurs when the model has learned the training data too 

well and is unable to generalize to new data, while underfitting occurs when the model 

is too simple and cannot capture the patterns in the data. To prevent overfitting in this 

study, the regularization technique was used, such as dropout and weight decay, during 

training. Additionally, the use of an early stopping criterion based on the validation 

performance helped to prevent overfitting. 

Both the actual and the predicted results were placed in the validation phase. The 

validation results can also be used to fine-tune the hyperparameters of the model, such 

as the learning rate, batch size, and number of epochs, to optimize its performance. 

Once the model has been validated and optimized, it was then deployed to make 

predictions on new, unseen data. 

5.6  Performance Evaluation of the Models 

Among various performance evaluation parameters, Root Mean Squared Error (RMSE) 

is the mostly used error measurement parameter and it has the benefit of drawing more 

attention to large errors than to minor ones (Hecht-Nielsen, 1989). RMSE is a common 

metric used to evaluate the performance of regression models. It measures the 

difference between the actual and predicted values of a model and is expressed in the 

same units as the target variable. The RMSE value represents the standard deviation of 

the residuals, where the residual is the difference between the actual and predicted 

values. The smaller the RMSE value, the better the model fits the data and the more 

accurate the predictions. 

Here, the RMSE was calculated by first finding the difference between the actual and 

predicted values for each data point and then squaring these differences. The squared 

differences were then averaged over all data points and the square root of this average 

was taken to arrive at the RMSE value. Here,   

MSE =
1

N
∑(yi − ŷi)

2

N

i=1

 

 

RMSE = √
1

N
∑(yi − ŷi)2

N

i=1
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Where,  

N = number of data points  

yi = Actual observations 

ŷi = Predicted observations 

The RMSE has been widely used in various domains such as finance, economics, 

engineering, and the environment. For example, in finance, the RMSE can be used to 

evaluate the accuracy of stock price predictions. In engineering, the RMSE can be used 

to evaluate the accuracy of predictions of physical quantities such as temperature and 

pressure. In the environment, the RMSE can be used to evaluate the accuracy of 

predictions of air pollution levels. There have been numerous studies that have applied 

the RMSE to evaluate the performance of machine learning models. For instance, in a 

study (Chai and Draxler, 2014) the RMSE was used to evaluate the performance of 

various machine learning models for predicting energy consumption in buildings. In 

another study (Chen et al., 2018), the RMSE was used to evaluate the performance of 

various deep learning models for predicting traffic flow in transportation networks. It 

provides a useful measure of the difference between the actual and predicted values and 

allows for the comparison of different models. The RMSE is the most popular error 

measure; it has the advantage that large errors receive much greater attention than small 

errors (Chai and Draxler, 2014). 

However, as noted earlier (Cherkassky et al., 2006), there are instances where the 

RMSE cannot ensure that the model performance is optimal; as a result, the mean 

absolute error, MAE, was also used. When evaluating smooth or continuous data, as is 

the case in the current study, the MAE minimizes the focus placed on big errors and is 

a desirable metric. As indicated by Cherkassky et al., (2006), there are situations when 

the RMSE cannot guarantee that the model performance is optimal; thus, the mean 

absolute error, MAE, was also used. 

 

MAE =
1

N
∑ |yi − ŷi|

N

i=1

 

Again, 

N = number of data points  

yi = Actual observations 

ŷi = Predicted observations 

The MAE eliminates the emphasis given to large errors, and is a desirable measure 

when the data evaluations are smooth or continuous, which is in fact the case in the 
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current study. In metrics comparison the MSE, RMSE and MAE values of the 5 types 

of models were compared to demonstrate which model had the best performance.  From 

Table 5.3, it was observed that the architecture that was proposed using TabNet 

outperforms the MLP, LSTM, Bi-LSTM and CNN architecture. 

Several graphs were presented to display and discuss the projected settlement behavior 

that were observed at each load value in the independent testing for the suggested five 

models. They are the average error and residual plot, actual vs. projected displacement 

values displayed their linear relationship and correlation. Also, graphical representation 

of load vs. displacement values illustrated how they differ at each loading/unloading 

cycle's increment and decrement. 

Table 5.3: Performance factors of DNN models 

Model MSE RMSE MAE 

MLP 22.906217 4.786043983 3.517914951 

LSTM 51.31417096 7.163391024 6.321185042 

Bi-LSTM 43.78197727 7.163391024 6.321185042 

1D-CNN 181.0845358 13.45676543 9.368135376 

TabNet 10.42549191 3.228853033 2.972474709 

 

5.6.1 MLP Model Development 

Multilayer perceptron (MLP), the first neural network employed in this research, were 

trained using the back propagation approach (Rumelhart et al., 1986). To train a Multi-

Layer Perceptron (MLP) model for the best fit, the following steps were maintained 

carefully: 

(i) Data preprocessing: The input data should be cleaned, normalized, and 

standardized to make it suitable for the model. 

(ii) Split the data into training and testing datasets: It is common to split the data into 

80/20 or 70/30 ratios. Here, 80% of the data were used for training and 20% for 

testing. 

(iii) Determine the number of neurons and hidden layers: The performance of the MLP 

model can be significantly impacted by the quantity of hidden layers and neurons. 

Grid search and k-fold cross-validation were two methods used to figure out how 

many hidden layers and neurons were best. 



 

81 

 

(iv) Train the model: Train the MLP model using a loss function like mean squared 

error (MSE) or binary cross-entropy, together with an optimization technique 

known as “Adam”. 

(v) Evaluate the model: Assess the model using the testing dataset to determine its 

accuracy, precision, MSE, RMSE, MAE and residuals. 

(vi) Fine-tune the model: In order to enhance the model's performance, the 

hyperparameters such as: the learning rate, the number of hidden layers and 

neurons were modified based on the previous findings.  

An input layer, an output layer and one or more intermediate layers known as hidden 

layers make up the majority of processing components or nodes in a typical MLP. 

Weighted connections connect each processing element in one layer to the processing 

elements in the other layers. At each processing step, the weighted inputs are added up 

and a threshold value (or bias) is either added or subtracted. In this research, the output 

of the processing element was created by passing the combined input through a 

nonlinear transfer function (such as a sigmoidal or tanh function). The input for the 

processing elements in the following layer come from the output of the previous layer's 

processing element. The pattern of measured input data and associated measured 

outputs was supplied to the network at the input layer of MLPs, when information 

propagation begins. Errors mentioned in Table 5.4 were calculated by comparing the 

network's outputs to the outputs that were from actual field data. In order to decrease 

the prediction error, this error was combined with a learning rule to modify the 

connection weights and trials were given with different batch sizes. Up to a specific 

stopping requirement was satisfied, the aforementioned method kept on repeating with 

the display of the fresh input and output data. The network got a set of weights that 

creates input-output mapping with the least amount of error by following the approach 

described above. The performance of the trained model was then confirmed using an 

independent validation set (TP-07) after it has been successfully completed. 

Table 5.4: Variation of MLP model results within different batch sizes 

Batch Size MSE RMSE MAE 

8 16.7369118 4.091077095 3.84658259 

16 22.9062178 4.786043983 3.51791496 

32 20.0192820 4.474291232 4.29573456 

64 16.7369117 4.091077095 3.84658259 
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In Figure 5.2, measurements from the pile load tests were contrasted with the predicted 

load-settlement curves. The outcomes demonstrate that the model's performance was 

below average and that the projected and observed values diverge significantly. The 

observed value of co-efficient of determination R2 was 0.65 in this instance also 

justifies the comparatively lower prediction accuracy of this proposed MLP model. 

 

Figure 5.2: Performance of MLP model with respect field data 
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(b) 

Figure 5.3: Regression plot for MLP model (a) Generalized and (b) Normalized 

5.6.2 RNN Model Development 

(i) LSTM: The fundamental concept behind LSTM is that its architecture is made up 

of two states: a hidden state and a cell state. The output of the LSTM is stored in 

the hidden state and the data from the previous step is stored in the cell state. An 

LSTM node updates or modifies the cell state, which is managed by the forget 

gate, at each step. 

(ii) Bi-LSTM: As a more robust successor to the standard LSTM, the Bi-LSTM 

network has many advantages. Bi-LSTM employs two independent hidden layers, 

one for forward and one for reverse processing. Since the Bi-LSTM network can 

learn and use information from the past and the future simultaneously, this structure 

has the potential to boost the model's performance (Shen et al., 2021). 

One hidden layer network in the Bi-LSTM operates in the forward direction, while the 

other operates in the reverse direction. The LSTM and Bi-LSTM (Graves et al., 2005) 

network structures in this work were used the same as shown in Figure 5.4. 
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Like regular feedforward and back-propagation networks, these forward and backward 

propagations unfolded the concealed states at every time step (Graves et al., 2013). In 

this research, LSTMs and BI-LSTMs were trained using the following procedures: 

(i) Data pre-processing: Clean and format the input data, usually transforming it into 

sequences of fixed length. 

(ii) Model definition: Define the architecture of the RNN model using appropriate 

TensorFlow library. 

(iii) Hyperparameter tuning: Appropriate values for hyperparameters were chosen such 

as the number of hidden units, learning rate, and batch size. Initially, batch size 

was considered 16 in every case. With an initial learning rate of 0.01, it was chosen 

to employ the Adam optimizer and the SoftMax function. An L2 regularization 

term was added to an RNN-based model to prevent overfitting.  

(iv) Model training: Train the model on the pre-processed data using an optimizer, such 

as Adam or SGD, and a loss function, such as mean squared error or categorical 

cross-entropy.  

(v) Model evaluation: The performance of the model on a held-out validation set were 

evaluated using performance metrics such as MSE, RMSE and MAE. Detailed 

performances are mentioned in Table 5.5. 

Table 5.5: Performances of RNN models 

Model MSE RMSE MAE 

LSTM 51.3141709 7.163391023 6.32118504 

Bi-LSTM 43.7819772 6.616795090 5.81786446 

 

 

Figure 5.4: Adopted (a) LSTM (Hochreiter and Schmidhuber, 1997) and (b) Bi-

LSTM (Graves and Schmidhuber, 1997) architectures 
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Figure 5.5 (a) and (b) represents the prediction results of RNN models comparing with 

the actual load test results. It was observed that the RNN results were significantly 

deviated from the actual ones. Further demonstration of the RNN model performances 

were represented with the coefficient of determination depicted in Figure 5.6 (a) and 

(b) where, the coefficient of determinations (R2) was noticed to be 0.843 and 0.784 for 

LSTM and Bi-LSTM models respectively. 

 
(a)  

 
(b)  
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Figure 5.5: Prediction results of (a) LSTM model (b) Bi-LSTM model 
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Figure 5.6: Performances of different RNN models (a)  LSTM, (b) LSTM 

(Normalized), (c) Bi-LSTM and (d) Bi-LSTM (Normalized) 
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5.6.3 1D-CNN Model Development 

Exploring if it is possible to get close to some important values with a machine learning 

(ML) model instead of doing tedious numerical simulations; an additional method that 

can help automate the process more effectively (Wolf et al., 2020) is the 1D 

Convolutional Neural Network (1D CNN). Using CNNs it is possible to optimize 

numerical simulations in geotechnical engineering. Hence, an attempt was made in this 

study. Here, 1D CNN was applied to predict pile settlements. By using one-dimensional 

time series data, CNN, which primarily employed two-dimensional data, used for data 

feature extraction and data prediction analysis (Wolf et al., 2020; Erdeljan et al., 2017). 

CNN has the benefit of making training simpler by requiring fewer parameters and data 

preprocessing. The output of a CNN corresponding to one-dimensional input data is 

described by equation (5.1) below. 

s(t) = (x ∗ w)(t) = ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎)…………………...……… (5.1) 

where s(t) is the feature map, which is the output layer, w is the kernel map, and x is 

the input data. The four steps of the CNN algorithm are as follows.  

(i) In the first phase, a weighted function used as input data is traversed by the kernel 

in a certain flow, and many convolution products are produced concurrently.  

(ii) The features of the input data are recognized and output to the feature map in the 

second stage, where the values computed in parallel pass through the activation 

function.  

(iii)  The pooling function in the pooling layer is utilized in the third phase to decrease 

the feature data found in the feature map. According to what was previously said, 

the CNN algorithm extracts the data's features through repetitions of the CNN and 

pooling layers. In order to extract the periodic and non-periodic aspects of the time-

series data, this method was performed three times. As a result, the data size was 

substantially smaller than it had been initially. 

(iv)  The data created in an array are transformed into a column vector array through 

the fully connected layer in the final step for the dataset collected from the CNN 

and pooling layers, and the features of the data are categorized and relations 

between the inputs and outputs are established. On the basis of this established 

relation, future data were forecasted. 

(v)  1D Convolutional Neural Network (1D CNN) implemented using the Keras API 

in Python using Google Colab. The code consists of a series of operations that are 
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performed on the input ‘inp’ to build the layers of the network. The operations 

include batch normalization, dropout, weight normalization, and reshaping, which 

are commonly used techniques for improving the training stability and accuracy of 

neural networks. 

(a) Batch Normalization: This layer applies batch normalization to the 

activations of the previous layer. Batch normalization helps to reduce the 

internal covariate shift and stabilize the training process, leading to faster 

convergence and improved accuracy. The normalization is performed across 

the batch dimension of 16. Also, weight normalization was applied to a 

dense (fully connected) layer with 128 output units. Weight normalization 

is a type of normalization that helps to improve the training stability of 

neural networks. 

(b) Dropout (0.3): This layer applies dropout regularization to the activations of 

the previous layer. During training, dropout randomly sets a fraction of the 

activations to zero, helping to prevent overfitting. The argument 0.3 

specifies the fraction of activations that will be set to zero. 

(c) Reshape ((8, 16)): This layer reshapes the activations of the previous layer 

into a tensor with shape (8, 16). The Reshape layer is used to change the 

shape of the activation tensor, which is useful when transitioning from dense 

layers to convolutional layers in a 1D CNN. 

A full pile load test was analyzed using the suggested CNN model (i.e. with batch size 

16) and the predictions were compared with the measured settlements in order to offer 

a further evaluation of the 1D-CNN model's accuracy. It should be emphasized that 

none of the information related to this pile load tests had been sent to the CNN model 

and was therefore only being used for supplemental validation. 

The projected load-settlement curves were compared to the measurements from the pile 

load tests in Figure 5.7. The results showed that the model's performance was below 

average. It had a high error level and the predicted values were highly deviated from 

the measured ones presented in Table 5.6. Here, R2 is equal to 0.77, RMSE is 13.457 

and MAE is 9.368. The maximum predicted settlement was observed to be 36.58 mm 

which is very high compared to the actual settlement obtained during in-situ load test 

results. 
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Table 5.6: Performance on settlement behavior prediction with 1D-CNN model 

Model MSE RMSE MAE 

1D-CNN 181.085 13.457 9.368 

 

Even in case of 1D-CNN model it was observed that the statistical tests such as 

coefficient of determination (R2) from Figure 5.8 shows very low accuracy with a value 

of. On the other hand, in the context of proposed 1D-Convolutional Neural Network 

(CNN) model, residuals were plotted as the difference between the predicted values and 

the actual values of settlement. Visualizing the distribution of residuals can provide 

insights into the performance of this model. If the residuals were randomly distributed 

around zero, this suggests that the model is making accurate predictions, while a 

systematic pattern in the residuals may indicate that the model is not capturing some 

important aspect of the data. From the residual plot in Figure 5.9 it was also clear that 

the 1D-CNN model was very insignificant in predicting the load-settlement behavior 

of pile. 
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5.6.4 TabNet Model Development 

The latest addition in deep neural network which is in fact is a neural network 

architecture that combines the strengths of convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and attention mechanisms to handle structured data, 

such as tables and time series data. TabNet has shown promising results in a variety of 

tasks, such as classification, regression, and anomaly detection, and has demonstrated 

strong performance on benchmark datasets. The proposed TabNet model included 

several key features that contribute to its performance, including: 

(i) Attention mechanism: TabNet uses an attention mechanism to dynamically weight 

the importance of each feature in the input data. This allows the model to focus on 

the most important features, improving its ability to learn complex relationships in 

the data. 

(ii) End-to-end training: TabNet is an end-to-end model, meaning that it can be trained 

from raw data to predictions, without the need for preprocessing or feature 

engineering. 

(iii)  Regularization: TabNet uses a combination of dropout, L1 and L2 regularization 

to reduce overfitting and improve generalization. 
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(iv)  Scalability: TabNet is designed to be scalable, making it well suited for large 

datasets and high-dimensional data. 

Overall, the performance of TabNet was depended on the specific problem and dataset, 

but it had shown to be a strong performer in a variety of tasks and is a promising deep 

learning architecture for structured data. TabNet was a deep learning architecture that 

had shown strong performance in a variety of tasks involving structured data. However, 

as with any machine learning model, its performance also depended on the specific 

problem and dataset it was being applied to. Nonetheless, TabNet's success in various 

tasks indicates that it has the potential to be a powerful tool for data analysis and 

prediction in many different fields. Hence, in predicting load-settlement behavior of 

pile this model was incorporated in the scope of this research and was implemented 

successfully following the modeling steps of TabNet, (Arik & Pfister, 2021). This is a 

tutorial that provides an implementation of TabNet in TensorFlow, including a detailed 

explanation of the code and a discussion of the results. It provides a good understanding 

of the modeling steps of TabNet, including its architecture, training process, and 

performance evaluation. Understanding the architecture and its capabilities is an 

important step in deciding whether or not it is appropriate for a particular problem. 

Additionally, the discussion of its performance and limitations is also important, as it 

helps to set realistic expectations and highlights areas where TabNet may not be the 

best solution. This type of information can be helpful for researchers and practitioners 

alike, as it can inform decision-making and help to ensure that the best tools are being 

used for the task at hand. 

These resources should provide a good understanding of the modeling steps of TabNet, 

including its architecture, training process, and performance evaluation. The TabNet 

model performed significantly better than all other previous Neural Network models 

(Batch size=16) in terms of the training phase, producing a correlation of R2 = 0.8733 

demonstrated in Figure 5.10. Also, the values MSE = 22.906, RMSE = 4.786 and MAE 

= 3.518 validated the model to be the best one for prediction of load-settlement behavior 

of pile foundation in the scope of this research.  
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Figure 5.10: Comparison between field test data and TabNet prediction results 

without PCA (a) General case and (b) Normalized case 
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5.6.5 TabNet with PCA 

Inaccurate interpretations could result from the datasets' inclusion of noise and outlis 

(Chu et al., 2016). Therefore, in this research the goal of principal component analysis 

(PCA) was used to eliminate unnecessary dimensions.  

Following the higher accuracy of TabNet model, as discussed during the development 

of validation model, initially, the network was trained with a set of random initial 

weights, a fixed learning rate of 0.001, a “tanh” transfer function in the hidden layer 

nodes, and a sigmoidal transfer function in the output layer nodes. Also, Dropout layers 

(Maizir & Kassim, 2013) were additionally introduced to lessen the effects of 

overfitting. "RMSprop" optimizer was used to update the neural network weights. It is 

a gradient descent algorithm that modifies the learning rate for each weight using a 

moving average of the squared gradients. This promotes faster convergence and 

improved generalization performance by reducing the vanishing or exploding gradient 

problem.  As was previously noted, the cross-validation strategy was employed in this 

study since it is believed to be the most effective method for preventing overfitting and 

that there is enough data to produce training, testing, and validation sets.  

Now, trial was given by training and testing the TabNet model for Batch sizes of 

8,16,32,64 and with varying PCA of 6,7,8 and 10 respectively. It was done in order to 

determine the optimal and most appropriate DNN model in terms of coefficient of 

determination (R2), MSE, RMSE and MAE presented. 

From the comparison of performances of different models displayed in Figure 5.12, it 

was clear that the TabNet model with PCA=8 and Batch size = 32 was identified to be 

the most appropriate and best performing DNN model in terms of predicting the load-

settlement behavior of pile one because it displays the highest accuracy. Also, 

significant improvement was further justified by the higher coefficient of determination 

of 0.91685 mentioned in Figure 5.11. 

Figure 5.13 displays the result of importance analysis with ranking of features in 

descending order. It is obvious that the pile geometry, applied load (P) and the soil 

characteristics have the most impacts on the expected settlement, which is what the 

PCA has ultimately predicted. Further, a complete pile load test was analyzed using the 

optimal DNN model (with PCA=8 and Batch size=32), and the DNN predictions are 

compared with the measured settlements, in order to offer a further assessment of the 

DNN model's accuracy. 
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Figure 5.11: Comparison between field test data and TabNet prediction results with 

PCA (a) General case and (b) Normalized case 
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Figure 5.12: Performance comparison of TabNet model with different PCA and 

batch size 
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Figure 5.14 displays the graphs of the measured versus predicted settlement for the 

testing and validation set. Here, it was noted that the differences between the actual 

settlement and the settlement predicted by the TabNet model with PCA decreased 

within a reasonable range. For this case, a maximum settlement of mm was noted to be 

around 18 mm. 

Visualizing the distribution of residuals can further illustrate the performance of 

models. The residuals being closely distributed around zero suggests the model to be 

performing better, while a systematic pattern in the residuals may indicate that the 

model is not capturing some important aspect of the data. From the residual plot in 

Figure 5.15 it is also clear that the after PCA the TabNet model performs in a very 

significant manner in predicting the load-settlement behavior of pile. 

Figure 5.13: Importance analysis of components 
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Figure 5.14: TabNet prediction results (a) Without PCA and (b) With PCA 
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5.7  Summary 

Starting from the beginning of the chapter, validation criteria and methodology was 

discussed. Based on the methodology, analyses for different machine learning 

techniques had been taken into account. Also, the predefined data set for validation 

from the collected data was utilized. As the best model was represented by a prediction 

value near to 1. From the initial performance comparisons of different models 

represented in Table 5.7, it was clear that the TabNet model was identified to be 
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Figure 5.15: Residual plot for TabNet models (a) Without PCA (b) With PCA 
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performing best for pile load-settlement behavior prediction. To get a more 

substantiated view of the best-suited model for the prediction of the load-settlement 

behavior, the component analysis was taken into account. Consequently, several 

observations with different batch sizes and Principal Component Analysis (PCA) 

displayed substantial reduction in error and improvements in the model were noticed. 

The comparative study's findings showed that the DNN model we proposed (with Batch 

size=32 and PCA=8) is the one that performs the best and has the highest level of 

accuracy (0.9795 for all data).  Hence, it was clear that the TabNet model with PCA 

was the best performing Deep Neural Network (DNN) model to be acknowledged.  

Table 5.7: Comparative experiment results 

Model MSE RMSE MAE 

MLP 22.906217 4.786043983 3.517914951 

LSTM 51.31417096 7.163391024 6.321185042 

Bi-LSTM 43.78197727 7.163391024 6.321185042 

1D-CNN 181.0845358 13.45676543 9.368135376 

TabNet 10.42549191 3.228853033 2.972474709 

TabNet 

(With PCA) 
9.025502108 3.004847345 2.320185963 
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CHAPTER 6  

COMPARISON OF MODEL PERFORMANCES 

6.1  Introduction 

Performances of DNN models vary based on the dataset, model architecture and other 

factors. Overview of the performances of used deep neural network (DNN) models has 

been illustrated in this chapter. Moreover, results from FEM model were also taken into 

account comparing with the field static load test data sets. 

6.2  Performance Comparison 

Based on the methodology, analyses for different machine learning techniques have 

been taken into account. Also, the predefined data set for validation from the collected 

data has been utilized. As the best model is represented by a prediction value near to 1, 

it goes without saying that the correlation coefficient is a crucial indicator when 

evaluating the prediction precision. From the initial performance comparisons of 

different models represented in Table 6.1, it was clear that the TabNet model was 

identified to be performing best for pile load-settlement behavior prediction. To get a 

more substantiated view of the best-suited model for the prediction of the load-

settlement behavior, the component analysis was taken into account. Consequently, 

several observations with different batch sizes and Principal Component Analysis 

(PCA) displayed substantial reduction in error and improvements in the model were 

noticed. The overall changes in between loading and unloading phases for both cycles 

of the pile-load test simulation model in Plaxis-3D and best fitted DNN model 

comparing with field load test has been clearly demonstrated in Figure 6.1. Also, 

Figure. 6.2 depicted the clear performances of several DNN models and Figure. 6.3 for 

Plaxis-3D model, where, once again TabNet with PCA 8 and batch size of 32 performed 

almost closer to the Plaxis-3D results in terms of the correlation coefficient R2. The 

comparative study's findings showed that the DNN model we proposed (with Batch 

size=32 and PCA=8) is the one that performs the best and has the highest level of 

accuracy (0.9795 for all data).  On the other hand, the observed value of co-efficient of 

determination R2 shows very low accuracy with a value of 0.65 for the proposed MLP 

model. In the context of 1D-CNN model it was observed that the R2 value is 0.7743. 

Even in case of proposed LSTM and Bi-LSTM models R2 were noticed to be 0.843 and 

0.784 respectively. In fact, at the end of the second loading phases the maximum 
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settlement was noticed to get recovered around 46% of the total settlement, offering a 

permanent settlement of 7 mm (in Figure 6.1) ultimately. These justifies the 

comparatively lower prediction accuracy. Hence, it was clear that the TabNet model 

with PCA was the best performing Deep Neural Network (DNN) model to be 

acknowledged. 

 

Figure 6.1: Prediction results of different models 

 

Table 6.1: Comparison of performances of different models 

Model R2 MSE RMSE MAE 

MLP 0.649 22.906217 4.786043983 3.517914951 

LSTM 0.843 51.31417096 7.163391024 6.321185042 

Bi-LSTM 0.7841 43.78197727 7.163391024 6.321185042 

1DCNN 0.7743 181.0845358 13.45676543 9.368135376 

TabNet 0.8733 10.42549191 3.228853033 2.972474709 

TabNet 

(With PCA) 
0.91685 9.025502108 3.004847345 2.320185963 

Plaxis-3D 0.9162 - - - 
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(a) MLP model 

 

(b) 1D-CNN 

 

(c) 

 

(d)  

 

(e) TabNet (Without PCA) (f) TabNet (With PCA) 

Figure 6.2: Performances of different DNN models (a) MLP model, (b) 1D-CNN, (c) 

LSTM, (d) Bi-LSTM model, (e) TabNet (Without PCA) and (f) TabNet (With PCA) 
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Figure 6.3: Performance of Plaxis 3D model 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1  Introduction 

The main goal of this study was to create models that can predict how pile foundations 

will behave under different loads. To achieve this, a load test simulation was conducted 

on a project with a varied soil profile using the FEM program Plaxis-3D. Popular DNN 

models, including MLP, RNN, 1D-CNN, and TabNet, were used to develop load test 

behavior prediction models. Statistical errors, coefficient of determination, and residual 

plots were generated after training the models to evaluate their performances. In 

addition, a DNN model was developed using data from 42 load-test data sets of 

nominated projects and their basic soil profiles. Approximately 712 load-test data 

points were used to predict the load-settlement behavior of pile foundations. After 

training the models, validation was done by checking statistical correlation parameters 

and assessing errors, and the best-fitted DNN model was identified. The findings of the 

investigation have been summarized in this chapter. 

7.2  Conclusions 

As we can see from the project under discussion, different findings were obtained with 

various approaches employed to compute the pile foundation settlement under varying 

loading. Using results from construction work, it is possible to generate a valid 

conclusion using a non-linear model in a straightforward manner using both FEM 

model and DNN model. The main features of the study developed can be listed as 

follows: 

(i) Prior to the modeling of the static load test in Plaxis-3D, the HS model for silty 

clay was calibrated and was observed to show higher accuracy in simulating the 

soil behavior using triaxial test results. It clearly signifies the justification of 

preferring the HS model in predicting the load-settlement behavior of pile 

foundations with FEM techniques.  

(ii) (ii)The FEM model with the HS model accurately demonstrated the differences 

between the loading and unloading phases for both cycles during the pile-load test 

simulation in Plaxis-3D. It should be noted that the maximum settlement observed 

after the second loading phase recovered by approximately 46% of the total 

settlement. Despite a slight deviation in the curve of Plaxis-3D for the maximum 
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settlement case compared to the static load test field data using ASTM D1143 

guidelines, this exception does not affect the research findings as comparisons 

were made between the in situ SLT outcomes and Plaxis 3D prediction. From an 

engineering perspective, the obtained coefficient of determination (R2) value of 

0.9162 suggests that using this strategy for the selection of soil parameters is a 

reasonable approach due to Plaxis 3D's accurate match.  

(iii) While performing the DNN operations, focus was initially given to all 26 input 

features for predicting the settlement. In response to the model performances, 

TabNet model was noticed to be significant in terms of errors with a batch size of 

16 being the best-fitted one.  

(iv) For further better prediction modeling, PCA was introduced for the best fitted 

TabNet model with varying PCA and batch sizes. It concluded that the TabNet 

with PCA of 8 and batch size of 32 was the model with higher accuracy comparing 

to the all-other models.  

(v) TabNet with PCA 8 and batch size of 32 performed almost similarly to the Plaxis-

3D results in terms of the correlation coefficient R2. Hence, the validation model 

can be applied at any time for additional data to vindicate the consistency of the 

DNN model. It is expected that every time it would give the similar accuracy for 

RCC piles as obtained. 

(vi) From the overall research, it can also be concluded that the current study will be 

useful for predicting the pile load settlement behavior using simple parameters like 

soil profile, SPT-N value, pile geometry, pile material properties and applied load 

which will ultimately ensure optimization of test plans in a cost effective and 

compatible way. 

Despite achieving a better accuracy range, the study has certain limitations. Improving 

the precision of the DNN model and increasing its accuracy would require a larger 

number of datasets. Additionally, the accuracy of the FEM model could be enhanced if 

triaxial tests were conducted for all layers. 

One of the specific limitations of the numerical study is that it only considered the HS 

soil model. Other relevant models, such as the soft-soil model and subloading-tij model 

in Plaxis-3D, were skipped in the load-settlement assessment. Furthermore, it's worth 

noting that this study focused solely on the load-settlement behavior of prefabricated 

and cast in situ RCC piles. As a result, the DNN models developed were specific to 

RCC piles and did not account for the load-settlement behavior of steel piles. This 
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aspect creates limitations for the study, as it neglects the behavior of an essential type 

of pile used in construction. 

Overall, while the study made advancements in prediction accuracy, these limitations 

highlight the need for further research and consideration of different soil models and 

pile types to develop more comprehensive and precise models for load-settlement 

assessment in various construction scenarios.  

7.3  Recommendations for Future Research 

Due to time and resource constraints, we were unable to explore all of the potential 

avenues of inquiry that this model suggests. Together with the model's analysis and 

validation came the discovery of a few schemes. What follows is a list of suggestions 

about where to go from here in terms of future research. 

(i) For both the FEM and DNN models, it is recommended in future study to 

incorporate instrumented pile-load test data with an aim to increase the accuracy 

level of the models. Instrumented pile enables to interpret the micro level load-

settlement behavior of pile and to assess their behavioral changes with respect to 

soil conditions.  

(ii) The model developed in this study should be trained with a large number of 

datasets and tested accordingly. Variation in accuracy level may also be assessed 

tuning the activation functions and including ensemble techniques to achieve 

higher accuracy in future. A detailed study can be conducted considering the 

variations in pile types and materials. Specifically, steel piles and pre-stressed piles 

may also be taken into considerations while developing the models.  

(iii)  Detailed numerical study may be conducted using soft-soil model and subloading 

tij model to further assess the accuracy level with respect to the changes in soil 

models. Triaxial tests will also be conducted for all soil layers to enhance the 

accuracy level of used numerical modeling soil parameters. Constraints in 

collecting undisturbed sand sample may be counteract by using relative density to 

simulate the infield condition of sand sample. 

(iv) This study recommends the development of DNN model using ensemble 

techniques to assess the pile load-settlement behavior with probable higher 

accuracy of prediction results.  
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APPENDIX-A 

.ipynb file in Google Colab 

 

 

import pandas as pd 

import numpy as np 

import os 

from sklearn import preprocessing 

import scipy 

import tensorflow 

import tensorflow as tf 

from tensorflow.keras import Model 

# import theano 

# import theano.tensor as T 

import keras  

from keras.models import Sequential, load_model 

from keras.layers import Dense, Activation, Bidirectional, InputLayer, BatchNormali

zation, Reshape, AveragePooling1D, MaxPool1D, Multiply, Input 

from keras.preprocessing import image 

from __future__ import print_function 

import numpy as np 

import matplotlib.pyplot as plt 

 

from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Activation, Flatten 

from keras.layers import Convolution2D, MaxPooling2D 

from keras.utils import np_utils 

from keras.preprocessing import sequence 

from tensorflow.keras.layers import Embedding 

from tensorflow.keras.layers import LSTM, GRU, SimpleRNN 

from sklearn.preprocessing import LabelEncoder 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 

from keras.callbacks import EarlyStopping, ModelCheckpoint 

from tensorflow.keras.utils import to_categorical 

from tensorflow_addons.layers import WeightNormalization 

from keras.layers.convolutional import Conv1D 

from keras.layers.normalization.batch_normalization import BatchNormalization 

import matplotlib.pyplot as plt 

 

from sklearn import svm, metrics 

from sklearn.tree import DecisionTreeClassifier 

from xgboost import XGBClassifier 

from sklearn.metrics import matthews_corrcoef 
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import torch 

import torch.nn as nn 

from pytorch_tabnet.tab_model import TabNetClassifier, TabNetRegressor 

from sklearn.preprocessing import LabelEncoder 

from sklearn.metrics import roc_auc_score, accuracy_score, confusion_matrix, roc_c

urve 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error, mean_absolute_error, matthews_c

orrcoef 

from sklearn.decomposition import PCA 

from sklearn.metrics import matthews_corrcoef 

 

  

# Data Loading 

# !gdown 1M9a5drTvpK3EYXrzarkmaTOWI9-Eksrp 

!gdown 1JXOYaZJzD6ByvJ1bPZfr0t9ImHth0qar 

df = pd.read_excel('/content/ANN Dataset_Last.xlsx') 

  

% unnecessary rows eliminated first 

M(Msz+1:end,:) = []; 

% mean of M is determined as funtion return 

rt1 = mean(M); 

end 
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APPENDIX-B 

SOIL PROFILE FROM COLLECTED SOIL REPORTS OF DIFFERENT 

LOCATIONS 

 

 

 (a) 

 

(b) 
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(c) 

 

(d) 

TB34 TB35 BP275 BP582 BP330
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(e) 
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APPENDIX-C 
                                      SAMPLE LOAD TESTS 
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