
MEDICAL SOUND EVENT DETECTION USING
AUDIO SPECTROGRAM FOURIER NETWORK

by

K. M. Naimul Hassan

0421062556

MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONIC ENGINEERING

.

Department of Electrical and Electronic Engineering

Bangladesh University of Engineering and Technology

Dhaka, Bangladesh

July 2023









Dedication

To my family

iv



”The measure of intelligence is the ability to change.”

— Albert Einstein

v





Contents

Certification ii

Candidate’s Declaration iii

Dedication iv

List of Figures x

List of Tables xi

List of Important Abbreviations xii

Acknowledgement xiv

Abstract xvi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Deep Learning and Transformers 7
2.1 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Scaled Dot-Product Attention . . . . . . . . . . . . . . . . . . . 11
2.3.2 Multi-Head Attention . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Advantages and Applications of Attention . . . . . . . . . . . . 12

2.4 CNN+Attention Hybrid Network . . . . . . . . . . . . . . . . . . . . . 13
2.5 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vii



2.5.1 Encoder and Decoder Stacks . . . . . . . . . . . . . . . . . . . 16
2.5.2 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.3 Feed-Forward Networks . . . . . . . . . . . . . . . . . . . . . 17
2.5.4 Embeddings and Softmax . . . . . . . . . . . . . . . . . . . . . 17
2.5.5 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Literature Review 22
3.1 Audio Classification in Medical Environments . . . . . . . . . . . . . . 22
3.2 CNNs for Audio Classification Problems . . . . . . . . . . . . . . . . . 24
3.3 Transformers for Audio Classification Problems . . . . . . . . . . . . . 25
3.4 Fourier Transform in Neural Networks . . . . . . . . . . . . . . . . . . 29

3.4.1 Fourier Transform in CNNs . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Fourier Transform in RNNs . . . . . . . . . . . . . . . . . . . . 30
3.4.3 Fourier Transform in Transformers . . . . . . . . . . . . . . . . 31

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Speech Source Separation using Wave-U-Net 34
4.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 MAudioSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Synthetic Soundscapes . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Wave-U-Net Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Evaluation Strategy and Metric . . . . . . . . . . . . . . . . . . 38
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Medical Sound Event Detection using ASFNet 42
5.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.3 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 ASFNet Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Evaluation Strategy and Metrics . . . . . . . . . . . . . . . . . 46
5.3.2 Tools and Resources Used for Implementation . . . . . . . . . . 46

viii



5.3.3 Classification Performance . . . . . . . . . . . . . . . . . . . . 47
5.3.4 Model Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.5 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.1 Effect of Fourier Sublayers on the Classification Performance . 50
5.4.2 Effect of Fourier Sublayers on the Model Effeciency . . . . . . 50
5.4.3 ASFNet without Positional Embeddings . . . . . . . . . . . . . 51
5.4.4 Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusions 55
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

References 58

ix



List of Figures

2.1 (left) Scaled Dot-Product Attention. (right) Multi-Head Attention con-
sists of several attention layers running in parallel. . . . . . . . . . . . . 10

2.2 Transformer Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Vision Transformer Architecture. . . . . . . . . . . . . . . . . . . . . . 18

3.1 Model architecture of AST. . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Speech source separation prior to SED. . . . . . . . . . . . . . . . . . . 34
4.2 Model architecture of Wave-U-Net. . . . . . . . . . . . . . . . . . . . . 35
4.3 Visualization of a sample of MAudioSet. . . . . . . . . . . . . . . . . . 36
4.4 Visualization of a synthetic soundscape. . . . . . . . . . . . . . . . . . 37
4.5 Visualization of the output of Wave-U-Net for a test sample along with

the ground truth sources. . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Scatter Plot of Correlation Coefficients between the Separated Speech

and the Ground Truth (GT) Speech sources. . . . . . . . . . . . . . . . 40

5.1 Model architecture of ASFNet. . . . . . . . . . . . . . . . . . . . . . . 43
5.2 ASFNet Training loss curve. . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Visualization of the performance and efficiency comparison between

AST and ASFNet variants. . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Effect of Fourier sublayers on the classification performance. . . . . . . 51
5.5 Effect of Fourier sublayers on the model efficiency. . . . . . . . . . . . 52

x



List of Tables

4.1 Summary of MAudioSet . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Summary of the training configurations of WaveUNet . . . . . . . . . . 38
4.3 Performance of Wave-U-Net on the MAudioSet validation subset . . . . 39

5.1 Summary of the experimental configurations of ASFNet . . . . . . . . . 45
5.2 Variants of ASFNet and AST . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Performance comparison of ASFNet and other methods on the MAu-

dioSet validation subset . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Performance comparison of ASFNet and other methods on the MAu-

dioSet validation subset without the speech and silence events . . . . . . 48
5.5 Number of model parameters and size of the models . . . . . . . . . . . 49
5.6 Quantitative Improvements of ASFNet . . . . . . . . . . . . . . . . . . 50
5.7 Performance of ASFNet without positional embeddings . . . . . . . . . 52

xi



List of Important Abbreviations

ASFNet Audio Spectrogram Fourier Network

AST Audio Spectrogram Transformer

CNN Convolutional Neural Network

CV Computer Vision

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

mAP Mean Average Precision

NLP Natural Language Processing

PANNs Pretrained Audio Neural Networks

RNN Recurrent Neural Network

SDR Source-to-Distortion Ratio

SED Sound Event Detection

ViT Vision Transformer

xii





Acknowledgement

I would like to take this opportunity to express my sincere gratitude to all those who
have supported me throughout the completion of my thesis.

First and foremost, I would like to express my deepest appreciation to my supervisor,
Dr. Mohammad Ariful Haque. His guidance, expertise, and unwavering support have
been invaluable to the successful completion of this research. Dr. Haque’s profound
knowledge in the field, his constructive feedback, and his constant encouragement have
played a significant role in shaping the direction and quality of my work. I am truly
grateful for his mentorship and the opportunity to learn from him.

I would also like to extend my thanks to the faculty members of the department for their
valuable insights, suggestions, and encouragement. Their expertise and dedication to
academic excellence have greatly enriched my research experience.

I am indebted to my family, friends, seniors, and juniors for their continuous love,
support, and understanding throughout this journey. Their encouragement and belief in
my abilities have been a constant source of motivation.

To everyone who has supported me along this journey, thank you from the bottom of
my heart. Your contributions and encouragement have made this thesis possible, and I
am truly grateful for your presence in my life.

xiv





Abstract

Sound event detection (SED) in medical environments is crucial for extracting valuable
information from diverse sound events such as coughing, sneezing, sniffling, speech,
gasping, and snoring. These events carry vital information for diagnosis, monitoring,
and prevention. By utilizing sound events, healthcare professionals can make informed
decisions and provide optimal care. Due to the success of Transformer encoder archi-
tectures for sound event detection, they seem to be a prudent choice for detecting audio
events in hospital settings. However, applying Transformers to medical audio event de-
tection faces two significant challenges. Firstly, there is a severe scarcity of medical
audio data, making it difficult to train Transformer models effectively. Secondly, SED
models must be computationally efficient to be deployable in resource-limited medical
environments. Unfortunately, Transformers have high computational complexity due to
the attention mechanism they employ. To tackle these obstacles, this thesis introduces
Audio Spectrogram Fourier Network (ASFNet), a novel attention-free Transformer en-
coder specifically designed for sound event detection in medical environments. ASFNet
replaces the attention operation with a simplified Fast Fourier Transform. By employ-
ing this technique, ASFNet surpasses other methods, achieving an impressive average
mean average precision (mAP) of 0.474 with a 16.76% relative improvement. ASFNet
achieves this performance with fewer model parameters and smaller model size, making
it a highly efficient and effective solution for detecting medical audio events.

Furthermore, speech-privacy is a critical consideration in medical audio event detection.
It is important to separate speech data from audio recordings to protect privacy of the
patients when collecting the dataset. While audio source separation techniques can
separate speech signals of different speakers, we need to differentiate speech and other
medical audio events of the same speaker. Therefore, a custom dataset was prepared and
a Wave-U-Net model was trained for separating speech data from medical audio events
during data acquisition. Wave-U-Net demonstrates an overall source-to-distortion ratio
(SDR) of 11.829 indicating a near-perfect source separation task.

Therefore, the combination of ASFNet and Wave-U-Net has the potential to play a
significant role in developing speech-privacy conscious and resource-efficient medical
sound event detection or monitoring systems.

xvi
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Chapter 1

Introduction

1.1 Motivation

Sounds contain valuable information about our surroundings and the physical events
occurring in them. Our ability to perceive sound scenes and recognize individual sound
sources opens up possibilities for developing signal processing methods to automati-
cally extract this information, which can be applied in various applications. However,
while there has been research focused on sound event detection (SED) in urban or en-
vironmental contexts [1, 2], there is a noticeable lack of research specifically targeting
sound event detection in medical environments.

In medical settings, diverse sound events such as coughing, sneezing, sniffling, speech,
gasping, snoring, and others carry vital information that is crucial for diagnosis, mon-
itoring, and prevention. One notable application is in the field of influenza-like-illness
(ILI) surveillance, where the detection and quantification of cough events have proven
to be valuable [3]. By extracting cough counts, healthcare professionals can track and
analyze the prevalence of coughing, which is a significant symptom in ILI cases.

Furthermore, extracting important features from sound events can aid in the identifica-
tion of patients with chronic cough. Features such as cough frequency, cough count,
and the ratio of coughs to speech provide valuable insights into the severity and persis-
tence of a chronic cough condition. These quantitative measures assist in the diagnostic
process and inform appropriate treatment strategies.

Sleep apnea encompasses various types, with Obstructive Sleep Apnea (OSA) being the
most common and a primary sleep-related breathing disorder. OSA is characterized by
recurrent interruptions in breathing during sleep, caused by periodic relaxation of the
throat muscles leading to airway obstruction. One prominent indicator of obstructive
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sleep apnea is the presence of loud snoring. Therefore, the detection of snoring sounds
offers a potential means to identify the occurrence of OSA.

Another significant application of sound event detection in medical environments is
the monitoring of patients’ progress over time. For instance, in the case of a patient
with chronic cough prescribed medication, tracking the cough frequency over a spe-
cific period allows for the assessment of the drug’s effectiveness. A decrease in cough
frequency indicates a positive response to the medication, confirming its efficacy. Con-
versely, if the cough frequency remains persistent or increases, healthcare professionals
may consider alternative treatment options or adjustments to the current medication
regimen.

Overall, sound event detection in medical environments has the potential to greatly
enhance treatment decision-making for healthcare professionals. By harnessing the in-
formation embedded in sound events, including coughing and other relevant sounds,
medical practitioners can gain valuable insights into patients’ conditions, monitor treat-
ment effectiveness, and make informed decisions to provide optimal care.

1.2 Challenges

The detection of medical audio events presents significant challenges for two main rea-
sons. Firstly, the availability of medical audio data for training sound event detection
models is extremely limited. Secondly, it is necessary for the sound event detection
model to be computationally efficient for deployment in resource-limited medical set-
tings and edge devices.

Previous research has explored audio classification models based on manually designed
features [4, 5]. However, with advancements in deep neural networks, it has become
possible to develop end-to-end architectures that directly convert spectrograms into
event labels [6–8]. Convolutional Neural Networks (CNNs) have gained popularity
in this domain. Another approach involves incorporating a self-attention mechanism
alongside CNNs to capture extensive global context. Hybrid models combining CNNs
and attention have demonstrated state-of-the-art performance in various audio classifi-
cation tasks [9–12].

While attention-based models have shown success in vision tasks [13–15], the question
arises as to whether audio classification still requires CNNs. In response to this, the
Audio Spectrogram Transformer (AST), an attention-based model, was introduced and
demonstrated superior performance compared to other state-of-the-art models [16].
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Given the circumstances, employing AST for sound event detection in medical envi-
ronments would be a prudent choice. However, Transformers have a higher data re-
quirement for training [13], which poses a challenge as there is typically a lack of audio
data in medical environments to meet these demands. Additionally, the attention mech-
anism in Transformers makes them computationally inefficient, especially for inputs
with large context sizes, as the attention operation exhibits quadratic time and space
complexity.

Recent works in Natural Language Processing (NLP) and Computer Vision (CV) have
addressed this scalability issue by approximating or replacing the attention process [17–
23]. Approaches such as kernel approximation, locality-sensitive hashing, and sparsity,
low-rank decomposition aim to approximate or replace attention [24]. However, in the
context of audio spectrogram transformers, no such approximation or alternative to the
attention mechanism has been proposed so far.

Furthermore, ensuring speech-privacy is a crucial aspect to consider in medical au-
dio event detection. When deploying SED algorithms in a medical device, it becomes
necessary to separate speech data to protect privacy and prevent potential breaches.
Although audio source separation models have been extensively used in general envi-
ronmental settings and for music source separation tasks, there is a notable scarcity of
research focused on utilizing these models in hospital environments.

So, the main challenge of this thesis is to address the following inquiries-

• How can we train a robust SED model using a restricted amount of medical audio
data?

• What strategies can be employed to enhance the efficiency of the SED model
while maintaining its classification performance?

• How can we guarantee speech privacy in the context of medical audio event de-
tection?

1.3 Objectives of the Thesis

The objectives with specific aims are-

• To detect audio events such as breath, cough, gasp, hiccup, sneeze, sniffling,
speech, silence, and throat-clearing in the medical environment.
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• To build a data acquisition pipeline for separating speech data from medical audio
events in order to ensure speech-privacy.

• To improve the accuracy of medical audio event detection models compared to
the state-of-the-art.

• To develop a data-efficient model that can be trained properly with a limited
amount of medical audio data.

1.4 Contribution

The contributions of this thesis are as follows-

• We have introduced the Audio Spectrogram Fourier Network (ASFNet), a Trans-
former encoder architecture specifically designed for sound event detection in
medical environments. In the domains of NLP and CV, the Fourier transform is
a commonly used operation to approximate or speed up CNNs [25–31], RNNs
[32–34], and even transformers [35–37]. Taking inspiration from these ideas,
ASFNet deviates from traditional self-attention sublayers and instead incorpo-
rates Fourier sublayers, eliminating the need for attention mechanisms.

• We have compared ASFNet with the other state-of-the-art models in terms of
both performance and efficiency. ASFNet outperforms the other methods with an
average mAP of 0.474 and it is achieved with fewer model parameters and model
size.

• We have adapted the Wave-U-Net [38] architecture, an audio source separation
model for the data pre-processing pipeline of our medical audio event detection.
Wave-U-Net shows a near-perfect speech source separation task under the hospi-
tal settings ensuring the speech-privacy.

1.5 Thesis Outline

The rest of this thesis is organized as follows-

Chapter 2 presents the conceptual and theoretical background of deep neural networks
including Transformers. It provides a comprehensive guide to the conceptual and theo-
retical foundations of deep neural networks, with a particular emphasis on Transform-
ers.
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Chapter 3 provides a comprehensive survey of existing literature and research efforts
that are relevant to medical sound event detection. It aims to present a holistic overview
of the advancements, methodologies, and findings in the field, showcasing the existing
body of knowledge and identifying the gaps and opportunities for further research.

Chapter 4 presents the speech source separation model, Wave-U-Net. It delves into the
details of Wave-U-Net, explaining its underlying architecture and the rationale behind
its design choices. The chapter covers the training methodology employed for Wave-
U-Net and assesses the model’s performance, discussing metrics and evaluations that
demonstrate its effectiveness in separating speech sources and maintaining the confi-
dentiality of speech data.

Chapter 5 is dedicated to the exploration of the Audio Spectrogram Fourier Network
(ASFNet), a proposed model for medical sound event detection. The chapter cov-
ers important aspects such as the model’s architecture, the methodology employed for
training, and its performance evaluation. It begins by providing a detailed overview of
the ASFNet model architecture, highlighting its design principles and key components.
The chapter then proceeds to discuss the experimental setup used during the training
phase of ASFNet. Following that, the chapter presents an evaluation of the model’s
performance and efficiency. Additionally, the chapter includes an ablation study, which
investigates the impact of incorporating Fourier sublayers instead of self-attention sub-
layers in ASFNet.

Chapter 6 provides the conclusive remarks and highlights the potential directions for
future research. This chapter serves as a summary of the key findings, insights, and
contributions discussed throughout the book. It also reflects on the main outcomes of
the research, emphasizing the significance and implications. Additionally, it outlines
the prospects of future work, unresolved questions, and potential areas of exploration
that could advance the field.
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Chapter 2

Deep Learning and Transformers

In this chapter, we will provide an overview of the fundamental concepts and theo-
retical foundation behind deep neural networks, specifically focusing on Transformers.
Initially, brief details of deep neural networks and convolutional neural networks (CNN)
are given. Then we describe the attention mechanism- how it works and its applications.
Next, we discuss hybrid models comprising CNNs and attention mechanisms. Finally,
the architectures and applications of Transformers including Vision Transformer are
described in detail.

2.1 Deep Neural Network

Deep neural networks, often referred to as deep learning models, are a class of artifi-
cial neural networks that are capable of learning and extracting complex representations
from data. They have gained significant attention and popularity in the field of machine
learning due to their remarkable ability to solve a wide range of challenging tasks, in-
cluding image recognition, natural language processing, speech recognition, and more.

The term “deep” in deep neural networks refers to the presence of multiple layers of
interconnected nodes, also known as artificial neurons or units. These layers form a
hierarchical architecture that enables the network to learn and model intricate patterns
and relationships in the input data. Each layer in the network performs a set of computa-
tions on the data and passes the transformed information to the next layer, progressively
building a higher level of abstraction.

The fundamental building block of a deep neural network is the artificial neuron, also
called a perceptron. A neuron takes a set of inputs, applies weights to them, sums
them up, and passes the result through an activation function. The activation function
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introduces non-linearity into the network, enabling it to capture complex relationships
between inputs and outputs.

Deep neural networks typically consist of an input layer, one or more hidden layers,
and an output layer. The input layer receives the raw data, such as pixel values of an
image or word embeddings of a sentence. Each neuron in the hidden layers receives
inputs from the previous layer and computes a weighted sum, followed by an activation
function. This process continues until the output layer, which produces the final result
based on the learned representations.

Training a deep neural network involves an optimization process called backpropaga-
tion. During training, the network learns to adjust its internal parameters, including the
weights and biases associated with each neuron, in order to minimize a predefined loss
function. This is done by iteratively propagating the error signal from the output layer
back to the earlier layers and adjusting the weights along the way using gradient de-
scent or related optimization algorithms. This process allows the network to fine-tune
its parameters and improve its ability to make accurate predictions or classifications.

One of the key advantages of deep neural networks is their ability to automatically
learn feature representations from raw data. In traditional machine learning approaches,
engineers and researchers often had to manually engineer relevant features from the
data, which can be a time-consuming and challenging task. Deep learning models,
on the other hand, can automatically learn hierarchical representations from the data,
relieving the need for explicit feature engineering.

2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) [39] is a specialized type of deep neural network
designed specifically for processing grid-like data, such as images or videos. CNNs
have been instrumental in achieving groundbreaking results in computer vision tasks,
such as image classification, object detection, and image segmentation.

The architecture of a CNN is inspired by the organization of the visual cortex in the
human brain. It leverages the concept of local receptive fields, shared weights, and hier-
archical representations to effectively extract features and capture spatial dependencies
in an input image.

The key components of a CNN are convolutional layers, pooling layers, and fully con-
nected layers. Let’s explore each of these components in more detail:
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• Convolutional Layers: These layers perform convolution operations on the input
image using a set of learnable filters or kernels. Each filter slides over the image,
computing dot products between its weights and the corresponding local regions
of the image. This process generates a feature map that represents the presence
of specific features or patterns in the input. Multiple filters are typically applied
simultaneously to capture different features at different spatial locations.

• Pooling Layers: Pooling layers are used to downsample the spatial dimensions of
the feature maps, reducing the computational complexity and providing a degree
of translation invariance. The most common pooling operation is max pooling
[40], which selects the maximum value within a local region of the feature map.
Pooling helps to retain the most salient features while reducing the sensitivity to
small spatial shifts or distortions in the input.

• Fully Connected Layers: These layers are typically placed at the end of the
CNN and are responsible for making final predictions based on the extracted fea-
tures. Fully connected layers connect every neuron in one layer to every neuron
in the next layer, similar to traditional neural networks. They capture high-level
representations by learning complex combinations of features from the previous
layers and provide the network with discriminative power for classification or
regression tasks.

During the training process, CNNs employ backpropagation [41] and gradient descent
[42] to optimize their weights and learn meaningful feature representations. The net-
work is trained by comparing its predicted outputs with the ground truth labels, using a
loss function such as cross-entropy. The gradients of the loss function are propagated
backward through the network, allowing the weights to be updated based on the error
signal.

One of the significant advantages of CNNs is their ability to automatically learn hi-
erarchical representations from raw image data. The early layers of a CNN capture
low-level features, such as edges and textures, while deeper layers learn more abstract
and high-level representations, such as shapes, objects, or semantic concepts. This hi-
erarchical learning process enables CNNs to effectively model complex visual patterns
and achieve superior performance in various computer vision tasks.

Furthermore, CNNs have been augmented with additional architectural components to
enhance their performance. For instance, architectures like ResNet [43], DenseNet
[44], and Inception [45] incorporate skip connections, bottleneck layers, and parallel
convolutions to alleviate the vanishing gradient problem and improve gradient flow,
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enabling the training of even deeper networks.

The success of CNNs can be attributed to their ability to exploit local spatial correla-
tions, share weights to reduce the number of parameters, and hierarchically learn rep-
resentations. These models have been applied not only in image analysis but also in
domains like natural language processing and audio processing.

2.3 Attention Mechanism

An attention function [46] is a mapping that takes a query and a collection of key-value
pairs as inputs and produces an output. In this mapping, the query, keys, values, and
output are represented as vectors. The output is calculated by taking a weighted sum
of the values, where the weight assigned to each value is determined by a compatibility
function that compares the query with its corresponding key.

Scale

Mask (opt.)

Softmax

MatMul

MatMul

Q K V

Linear Linear Linear

V K Q

Scaled Dot Product

Concat

Linear

h

Scaled Dot-Product Attention Multi-Head Attention

Figure 2.1: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists
of several attention layers running in parallel.
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2.3.1 Scaled Dot-Product Attention

The attention mechanism, known as “Scaled Dot-Product Attention” (Fig. 2.1), oper-
ates on queries and keys of size dk and values of size dv. It calculates the dot product
between each query and key, divides the result by

√
dk, and applies a softmax function

to obtain weights for the values.

In practical applications, we perform the attention function on a batch of queries, which
are organized into a matrix Q. The keys and values are also organized into matrices K
and V . The output matrix is computed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

There are two commonly used attention functions: additive attention and dot-product
attention. Dot-product attention lacks the scaling factor of 1√

dk
. Additive attention,

on the other hand, uses a feed-forward network with a single hidden layer to compute
the compatibility function. While both mechanisms have similar theoretical complex-
ity, dot-product attention is faster and more memory-efficient due to optimized matrix
multiplication implementations.

For small values of dk, the performance of the two mechanisms is comparable. How-
ever, as dk increases, additive attention outperforms dot-product attention without scal-
ing. This discrepancy may be attributed to the dot products growing significantly in
magnitude for larger dk values, resulting in the softmax function entering regions with
extremely small gradients. To address this issue, the dot products are scaled by 1√

dk
.

2.3.2 Multi-Head Attention

Instead of utilizing a single attention function with dmodel-dimensional keys, values, and
queries, the advantages of employing h linear projections on the queries, keys, and val-
ues have been discovered. These projections, learned individually, result in dimensions
dk, dk, and dv, respectively. Each of the projected query, key, and value versions under-
goes the attention function in parallel, producing output values of dimension dv. These
outputs are then concatenated and projected once more, culminating in the final values
depicted in Fig. 2.1. Multi-head attention enables the model to simultaneously attend
to information from diverse representation subspaces and various positions. Averaging,
which occurs with a single attention head, hinders this capability.
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The formulation for multi-head attention is as follows:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2.2)

where headi = Attention(QWi
Q, KWi

K , V Wi
V ) (2.3)

The projections are parameter matrices: Wi
Q ∈ Rdmodel×dk , Wi

K ∈ Rdmodel×dk , Wi
V ∈

Rdmodel×dv , and Wi
O ∈ Rhdv×dmodel .

2.3.3 Self-Attention

Self-attention, also known as intra-attention, is an attention mechanism that establishes
connections between different positions within a single sequence to generate a repre-
sentation of the sequence. In self-attention, each element in the sequence attends to
other elements within the same sequence. It captures dependencies between different
positions or elements within the input sequence. Self-attention allows for capturing
long-range dependencies and modeling interactions between different parts of the se-
quence. It has proven to be effective in various tasks such as reading comprehension,
abstractive summarization, textual entailment, and learning task-independent sentence
representations [47–50].

2.3.4 Advantages and Applications of Attention

The attention mechanism is a key component in modern deep learning models that has
greatly improved the performance of various tasks, particularly in the fields of natural
language processing (NLP) and computer vision. It enables models to focus on specific
parts of the input data that are deemed more relevant or informative for the task at hand.

At its core, the attention mechanism allows the model to assign different weights or
importance values to different elements in the input. These weights are dynamically
computed based on the context and content of the data, allowing the model to selectively
attend to relevant information. The attention mechanism has its roots in neuroscience,
inspired by the human cognitive process of selectively focusing on particular aspects of
the environment.

In the context of NLP, attention mechanisms have gained significant prominence in
tasks such as machine translation, text summarization, question answering, and senti-
ment analysis. They have also been successfully applied to computer vision tasks like
image captioning, image generation, and object recognition.
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The benefits of attention mechanisms include improved model interpretability, as the
attention weights indicate which elements the model is focusing on, and enhanced per-
formance in tasks that involve long or complex sequences, where the model needs to
selectively attend to relevant parts.

Attention mechanisms have become a fundamental component in state-of-the-art mod-
els, such as Transformers, which have achieved remarkable results in various NLP tasks.
They have also contributed to significant advancements in computer vision tasks, where
attention mechanisms can attend to different spatial regions of an image and generate
descriptive captions.

In summary, attention mechanisms have revolutionized deep learning models by en-
abling selective focus on relevant parts of the input data. By assigning attention weights
and attending to important elements, models can better capture dependencies, improve
performance, and gain interpretability in complex tasks across NLP and computer vi-
sion domains.

2.4 CNN+Attention Hybrid Network

CNN+Attention hybrid models combine the strengths of Convolutional Neural Net-
works (CNNs) and attention mechanisms to improve the performance of various tasks,
particularly in the field of computer vision and natural language processing.

Convolutional Neural Networks are powerful models for extracting spatial features from
grid-like data such as images. They excel at capturing local patterns and hierarchically
learning representations through convolutional and pooling layers. However, CNNs
treat all regions of the input equally, which may not be ideal when certain regions or
elements are more important than others.

On the other hand, attention mechanisms provide a way to selectively focus on relevant
parts of the input, allowing the model to allocate more attention to specific regions or el-
ements that are crucial for the task at hand. Attention mechanisms have been successful
in tasks involving sequential data, such as machine translation and text summarization,
by attending to different words or phrases based on their relevance.

In CNN+Attention hybrid models, attention mechanisms are integrated into CNN ar-
chitectures to enhance their performance. This combination allows the model to benefit
from both the spatial feature extraction capability of CNNs and the selective attention
mechanism. Here’s a high-level overview of how CNN+Attention hybrid models work:
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• Convolutional Layers: The initial layers of the model typically consist of convo-
lutional layers to extract spatial features from the input data. These layers apply
filters to the input, capturing local patterns and generating feature maps that rep-
resent different aspects of the data.

• Attention Mechanism: The attention mechanism is introduced to the model to
selectively focus on relevant regions or elements within the extracted features. At-
tention weights are calculated based on learned parameters and applied to the fea-
ture maps, assigning higher weights to more important regions and lower weights
to less relevant ones.

• Aggregation: The attended feature maps are then aggregated to produce a com-
pact representation that captures the most salient information. This aggrega-
tion can be performed through pooling operations or by using attention-based
weighted sums.

• Fully Connected Layers: Following the aggregation step, fully connected layers
are often employed to further process the attended features and make predictions
based on the task requirements. These layers can perform classification, regres-
sion, or any other relevant operations.

The integration of attention mechanisms into CNNs enables the model to selectively
attend to relevant parts of the input, giving more emphasis to important features or
regions. This improves the model’s ability to focus on the most informative aspects of
the data, leading to enhanced performance in tasks such as image captioning, image
classification, visual question answering, and text-to-image synthesis.

Overall, CNN+Attention hybrid models leverage the strengths of both CNNs and at-
tention mechanisms to improve performance in various computer vision and natural
language processing tasks. By integrating attention mechanisms, these models can se-
lectively attend to relevant regions or elements, leading to more accurate predictions
and a better understanding of the input data.

2.5 Transformer

Transformer [46] is based on the concept of self-attention mechanisms, which allow
it to capture relationships between different words or tokens in a sequence. Unlike
traditional recurrent neural networks (RNNs) or convolutional neural networks (CNNs),
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Figure 2.2: Transformer Architecture.

the Transformer does not rely on sequential processing or fixed-size convolutional fil-
ters. Instead, it processes the entire sequence of input tokens in parallel, making it
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highly parallelizable and efficient for both training and inference. The architecture of
the Transformer is shown in Fig. 2.2.

2.5.1 Encoder and Decoder Stacks

The encoder (left half of Fig. 2.2) consists of a series of N identical layers, each contain-
ing two sub-layers. The first sub-layer is a multi-head self-attention mechanism, while
the second sub-layer is a simple, fully connected feed-forward network that operates on
each position in the sequence. To ensure smooth gradient flow during training, residual
connections [43] are incorporated around both sub-layers, followed by layer normaliza-
tion [51]. This means that the output of each sub-layer is obtained by applying layer
normalization to the sum of the original input and the output of the corresponding sub-
layer function.

The decoder (left half of Fig. 2.2) is also constructed using a series of N identical
layers. Each layer contains three sub-layers. In addition to the two sub-layers present
in the encoder, the decoder includes an additional sub-layer that performs multi-head
attention over the encoder stack’s output. Similar to the encoder, residual connections
are incorporated around each sub-layer, followed by layer normalization. To maintain
the autoregressive property, the self-attention sub-layer in the decoder stack is modified.
This modification prevents positions from attending to subsequent positions, ensuring
that each prediction at position i only depends on the known outputs at positions less
than i. This masking, along with the fact that the output embeddings are shifted by one
position, guarantees the desired dependency structure in the decoder’s predictions.

2.5.2 Attention

The Transformer model utilizes multi-head attention in three distinct manners:

• For “encoder-decoder attention” layers, the queries originate from the previous
decoder layer, while the memory keys and values come from the encoder’s out-
put. This enables each position in the decoder to attend to all positions in the
input sequence. This approach resembles the typical encoder-decoder attention
mechanisms found in sequence-to-sequence models [52–54].

• The encoder employs self-attention layers where the keys, values, and queries are
derived from the same source, which in this case is the output of the preceding
layer in the encoder. This allows each position in the encoder to attend to all
positions in the previous encoder layer.
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• Similarly, the decoder employs self-attention layers that enable each position in
the decoder to attend to all positions in the decoder, including and preceding that
specific position. To maintain the auto-regressive property, it is crucial to prevent
the flow of information from future positions to past positions in the decoder.
This is achieved by incorporating masking within the scaled dot-product atten-
tion. Specifically, all elements in the input to the softmax function that correspond
to invalid connections are masked out (assign a value of ∞), thereby preserving
the desired information flow. Please refer to Fig. 2.1 for a visual representation
of this process.

2.5.3 Feed-Forward Networks

In addition to the attention sub-layers, each layer in both the encoder and decoder of
the Transformer incorporates a fully connected feed-forward network. This network
operates independently and uniformly in each position in the sequence. It consists of
two linear transformations separated by a ReLU activation function. The feed-forward
network is defined as,

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.4)

Although the linear transformations remain consistent across different positions, they
utilize distinct parameters at each layer. Alternatively, this can be understood as two
1-dimensional convolutions.

2.5.4 Embeddings and Softmax

Like other models that transform sequences, learned embeddings are utilized in Trans-
formers to convert the input and output tokens into vectors of dimension dmodel. Ad-
ditionally, standard learned linear transformations and softmax functions are employed
to convert the decoder output into predicted probabilities for the next token. Weight
sharing is adopted by utilizing the same weight matrix for both the embedding layers
and the linear transformation preceding the softmax. This weight-sharing approach is
akin to the method described in [55]. Notably, the weights are scaled in the embedding
layers by

√
dmodel.
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2.5.5 Positional Encoding

As Transformer lacks recurrence and convolutional layers, it requires additional mecha-
nisms to capture the sequential order of tokens. To address this, “positional encodings”
is introduced into the input embeddings at the lowermost layers of both the encoder and
decoder stacks. These positional encodings serve to convey information about the rela-
tive or absolute positions of the tokens within the sequence. Importantly, the positional
encodings have the same dimensionality (model) as the embeddings, allowing them to
be added together. There exist various options for implementing positional encodings,
including both learned and fixed alternatives [54].

2.6 Vision Transformer

Vision Transformer (ViT) [13], is a variation of the Transformer model designed specif-
ically for computer vision tasks like image classification and object detection. Unlike
its original purpose in natural language processing, the Vision Transformer has been
modified to handle visual data. The model architecture of ViT is shown in Fig. 2.3.

Linear Projection of Flattened Patches

1 2 3 4 5 6 7 8 90 *

Patch+Position
Embedding

*Extra learnable
[class] Embedding

Transformer Encoder

MLP HeadClass

Figure 2.3: Vision Transformer Architecture.

The main concept of the Vision Transformer involves dividing the input image into a
grid of patches with consistent sizes. These patches are then considered as sequence
tokens and undergo linear embedding to generate token embeddings. These embed-
dings serve as input for the Transformer encoder. By utilizing self-attention mecha-
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nisms inspired by the original Transformer, the model can effectively capture spatial
relationships and dependencies among the image patches.

The standard Transformer model operates on 1D sequences of token embeddings. To
handle 2D images, the image is reshaped, denoted as x ∈ RH×W×C , into a sequence
of flattened 2D patches xp ∈ RN×(P 2·C). Here, (H,W ) represents the original image
resolution, C is the number of channels, (P, P ) denotes the resolution of each image
patch, and N = HW/P 2 represents the resulting number of patches. This N value
serves as the effective input sequence length for the Transformer. Throughout all layers
of the Transformer, a constant latent vector size D is used. Hence, we flatten the patches
and map them to D dimensions using a trainable linear projection (see Eq. 2.5). These
mapped patches are referred to as patch embeddings.

zo = [xclass;xp
1E;xp

2E; ...;xp
NE] + Epos, E ∈ R(P 2·C), Epos ∈ R(N+1)×D (2.5)

z′l = MSA(LN(zl−1)) + zl−1, l = 1...L (2.6)

zl = MLP (LN(z′l)) + z′l, l = 1...L (2.7)

y = LN(z0L) (2.8)

Similar to the [class] token in BERT, a learnable embedding is prepended to the se-
quence of embedded patches (zL0 = xclass). The state of this embedding at the output
of the Transformer encoder (zL0) serves as the image representation y (Eq. 2.8). During
both pre-training and fine-tuning, a classification head is attached to (zL

0). The classi-
fication head is implemented as a multi-layer perceptron (MLP) with one hidden layer
during pre-training and as a single linear layer during fine-tuning.

To retain positional information, we add position embeddings to the patch embeddings.
We use standard 1D position embeddings, as we have not observed significant perfor-
mance improvements when using more advanced 2D-aware position embeddings. The
resulting sequence of embedding vectors is then fed into the encoder.

The Transformer encoder, as described by [46], consists of alternating layers of multi-
headed self-attention and multi-layer perceptron (MLP) blocks (Equations 2.6 and 2.7).
Layer normalization (LN) is applied before each block, and residual connections are
added after each block, following the approach of [56] and [57].

The Vision Transformer (ViT) exhibits significantly fewer image-specific biases com-
pared to Convolutional Neural Networks (CNNs). In CNNs, properties such as locality,
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two-dimensional neighborhood structure, and translation equivariance are inherently
embedded in each layer throughout the entire model. However, in ViT, only the Multi-
Layer Perceptron (MLP) layers possess local and translationally equivariant proper-
ties, while the self-attention layers operate on a global scale. The utilization of a two-
dimensional neighborhood structure is minimal, primarily occurring at the beginning of
the model through patch-based image segmentation and during fine-tuning to adjust po-
sition embeddings for images of varying resolutions. In ViT, the position embeddings
at the initialization stage do not contain any information regarding the two-dimensional
positions of the patches. Consequently, all spatial relationships between the patches
must be learned from scratch during training. This minimal reliance on image-specific
biases allows ViT to capture more diverse and flexible patterns in the data, making it
suitable for a wide range of visual tasks.

Instead of using raw image patches, an alternative approach involves creating the input
sequence from feature maps generated by a Convolutional Neural Network (CNN). In
this hybrid model, the patch embedding projection E (Equation 1) is applied to patches
extracted from a CNN feature map. In a specific scenario, the patches can have a spatial
size of 1x1. This implies that the input sequence is formed by flattening the spatial
dimensions of the feature map and projecting it to match the dimensions required by
the Transformer model. The classification input embedding and position embeddings
are then added to the sequence following the same procedure as described earlier.

2.7 Summary

In this chapter, we aimed to offer the foundational knowledge that supported the de-
velopment of this research. CNNs and CNN+attention hybrid models initially gained
popularity demonstrating state-of-the-art performances. But Transformers have been
surpassing those and giving the research of deep learning a new direction specifically
in the domains of computer vision and natural language processing.
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Chapter 3

Literature Review

In this chapter, we will discuss the existing works related to the thesis. First, we will
discuss the previous works on audio classification in medical environments. Then we
will discuss different state-of-the-art algorithms and models including CNNs, hybrid
networks, and Transformers used in audio classification problems. Finally, we present
the related works on the Fourier transform in approximating or speeding up neural net-
works.

3.1 Audio Classification in Medical Environments

While there is a significant body of research focusing on sound event detection in urban
or environmental contexts, there is a noticeable dearth of studies specifically addressing
audio event detection in medical settings.

The paper [3] introduces FluSense, an innovative platform designed for syndromic
surveillance of influenza-like illness in hospital waiting areas. The system utilizes con-
tactless sensing technologies, such as microphones and thermal sensors, to capture and
analyze environmental data, including cough sounds and crowd movements. By lever-
aging machine learning algorithms, FluSense can detect and track flu-like symptoms
in real time without the need for direct contact with individuals. The paper provides
a detailed description of the system’s architecture and design, emphasizing its cost-
effectiveness and unobtrusive surveillance capabilities in high-traffic areas. Field de-
ployment of the system in a hospital waiting area is presented to demonstrate its ef-
fectiveness in detecting and monitoring influenza-like illness patterns. This research
contributes to the development of non-invasive and innovative surveillance platforms
for public health monitoring and disease control.
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The authors in [58] focus on the development and implementation of an audio event
detection system specifically tailored for in-home care settings. The system aims to
monitor and detect various audio events relevant to the well-being and safety of indi-
viduals receiving care at home. The paper addresses the challenges associated with
audio event detection in this context, including background noise and the need for real-
time processing. It provides an overview of the system’s architecture, encompassing
audio data collection, feature extraction, and machine learning algorithms employed
for event detection. The research also includes a performance evaluation of the sys-
tem and highlights its potential applications in enhancing the quality of in-home care
services. This work contributes to the advancement of audio-based monitoring systems
that can improve the safety and care provided to individuals in a homecare environment.

The authors in [59] propose a study focused on automating the detection of conversa-
tional pauses in audio recordings of serious illness conversations in hospital settings.
The research aims to develop a system that can automatically identify and quantify
pauses in conversations related to serious illnesses. The study utilizes machine learning
techniques to train a model on a dataset of audio recordings, enabling the detection of
pauses based on audio features. The research contributes to the field of palliative care by
providing a novel approach to objectively measure pauses in conversations, which can
aid in assessing communication dynamics and improving the quality of care in hospital
settings.

Various recent studies have investigated algorithms for recognizing coughs based on
audio signals. For instance, cough recognition models have been trained using Mel-
frequency cepstral coefficient (MFCC) in combination with Hidden Markov Model
(HMM) [60–62]. Larson et al. and Amoh and Odame have employed spectrogram-
based features to train cough recognition models [63, 64]. Additionally, other acoustic
features such as LPC [65], Hilbert Marginal Spectrum [66], and Gammatone Cepstral
Coefficient [67] have been utilized in conjunction with both static models like Ran-
dom Forest [68] and Support Vector Machine [69], as well as temporal models like
Hidden Markov Model and Recurrent Neural Network. Furthermore, more recent stud-
ies have explored various architectures of Convolutional Neural Networks (CNN) [63].
The study presented in [70] study focuses on the detection of cough events in audio
recordings using moment theory.

The authors in [71] discuss the use of audio-processing techniques for cough and res-
piratory sound analysis, which can aid in early detection and monitoring of COVID-19
symptoms. The research also explores the application of signal processing techniques
for analyzing physiological signals and biosensor data, which can provide valuable in-
sights into the progression of the disease. Furthermore, the study delves into the use
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of speech and language processing techniques for COVID-19-related tasks, such as
automatic speech recognition for speech-based diagnostics and sentiment analysis for
assessing public opinions and emotions during the pandemic.

3.2 CNNs for Audio Classification Problems

Earlier studies have investigated audio classification models that rely on handcrafted
features [4, 5]. However, the progress in deep neural networks has enabled the creation
of comprehensive systems that directly associate spectrograms with event labels. In this
field, Convolutional Neural Networks (CNNs) have emerged as a popular choice.

The authors in [6] propose a technique to enhance the representation of speech sound-
waves by utilizing restricted Boltzmann machines (RBMs). These RBMs are trained
on a substantial dataset of speech sounds, enabling them to extract significant features
from the sound waves. This process aims to capture crucial information that can be
utilized in speech recognition tasks.

The authors in [7] propose the adoption of an end-to-end learning framework for music
audio analysis, where the entire process is directly learned from raw audio data. The
authors emphasize the utilization of deep learning architectures, particularly convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs), which enable
automatic feature extraction from raw audio and the learning of temporal relationships
within the music. The study demonstrates that this approach has the potential to im-
prove the efficiency and effectiveness of music analysis tasks.

An end-to-end approach for speech emotion recognition using a deep convolutional
recurrent network is introduced in [8]. Unlike traditional approaches that require man-
ual feature engineering, this method automatically extracts relevant features from raw
speech data. By doing so, it demonstrates the potential for achieving competitive per-
formance in speech emotion recognition tasks.

In order to improve the capability of capturing broader contextual information, an al-
ternative approach integrates self-attention mechanisms with convolutional neural net-
works (CNNs). These hybrid models, which combine CNNs with attention, have shown
exceptional performance in a range of audio classification tasks, surpassing previous
benchmarks.

The authors in [9] present PANNs, a collection of large-scale pretrained audio neural
networks developed specifically for audio pattern recognition. The authors present the
architectural design and training methodology of PANNs, emphasizing its scalability
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and effectiveness in addressing a wide range of audio classification tasks. By leveraging
convolutional neural networks (CNNs) and training on a substantial amount of labeled
audio data, the PANNs model is capable of handling extensive datasets efficiently. The
training process follows a two-step approach: initial pretraining on a large dataset with
audio tags, followed by fine-tuning on specific audio classification tasks. Notably, the
scalability of PANNs enables it to effectively process datasets comprising millions of
audio samples. Moreover, the pretrained nature of the model allows for transfer learn-
ing, facilitating its application to novel audio classification tasks with limited labeled
data.

The paper in [10] presents the PSLA framework for audio tagging, which integrates
various techniques such as pre-training, sampling, labeling, and aggregation. The PSLA
framework improves the accuracy and robustness of audio tagging tasks, surpassing the
performance of baseline methods.

The authors in [11] introduce a specialized streaming keyword spotting method de-
signed for mobile devices. This approach effectively tackles the challenges of process-
ing audio data in real-time under resource constraints. The proposed method achieves
accurate keyword spotting performance while operating efficiently on mobile platforms.

An attention pooling-based representation learning method is proposed for speech emo-
tion recognition in [12]. The proposed method utilizes attention mechanisms to improve
the discriminative power of learned representations. Experimental results demonstrate
that this approach effectively captures emotional cues and achieves competitive perfor-
mance in speech emotion recognition tasks.

3.3 Transformers for Audio Classification Problems

Since attention-based models have achieved notable success in vision tasks [13–15], it
prompts the inquiry of whether the presence of a CNN is still imperative for audio clas-
sification. In addressing this question, Gong et al. introduced the Audio Spectrogram
Transformer (AST), an attention-based model that showcased exceptional performance
surpassing other contemporary models [16]. Audio Spectrogram Transformer (AST)
is the first ever convolution-free and purely attention transformer designed mainly for
audio classification tasks. The model architecture of AST is illustrated in Fig. 3.1.
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Figure 3.1: Model architecture of AST.

To begin, the original audio waveform is transformed into 128-dimensional log Mel
filterbank features using a 25ms Hamming window every 10ms. This creates a spectro-
gram of size 128 × 100t, where t represents the duration of the audio in seconds. The
spectrogram is then divided into N 16×16 patches, with an overlap of 6 in both time and
frequency dimensions. The number of patches, N, is calculated as 12 × [100t−16

10
], and

this determines the effective input sequence length for the Transformer. Each 16 × 16

patch is flattened into a 1D patch embedding of size 768 using a linear projection layer
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referred to as the patch embedding layer.

Since the Transformer architecture doesn’t inherently capture the input order or the
temporal order of the patches, a trainable positional embedding of size 768 is added to
each patch embedding. This allows the model to capture the spatial structure of the 2D
audio spectrogram. A [CLS] token is added at the beginning of the sequence, following
a similar approach as in a previous work [72]. The resulting sequence is then fed into
the Transformer encoder.

The AST architecture focuses on classification tasks, so only the encoder part of the
Transformer is utilized. The original Transformer encoder architecture [46] is used
without any modifications. This setup has advantages in terms of ease of implementa-
tion and reproducibility, as the standard Transformer architecture is readily available in
frameworks like TensorFlow and PyTorch. Additionally, it facilitates transfer learning.
The Transformer encoder employed has an embedding dimension of 768, 12 layers,
and 12 heads, consistent with [13, 14]. The output of the [CLS] token from the Trans-
former encoder serves as the representation of the audio spectrogram. Finally, a linear
layer with sigmoid activation is used to map the audio spectrogram representation to
classification labels.

In terms of design, the patch embedding layer can be seen as a single convolution layer
with a large kernel and stride size, while the projection layer in each Transformer block
is akin to a 1×1 convolution. However, it should be noted that this design differs from
traditional CNNs, which typically consist of multiple layers with smaller kernel and
stride sizes. These Transformer models are often referred to as convolution-free to
distinguish them from CNNs [13, 14].

Given the circumstances, utilizing the AST for sound event detection in medical envi-
ronments would be a wise decision. However, Transformers face a drawback in terms
of their higher data requirements for effective training [13]. This poses a challenge as
medical environments often lack sufficient audio data to meet these demanding train-
ing needs. Additionally, transformers suffer from computational inefficiency due to the
attention mechanism, which serves as the cornerstone of their architecture. The atten-
tion operation’s time and space complexity is quadratic in relation to the context size,
making it difficult for transformers to process inputs with extensive context sizes.

To tackle this scalability issue, recent research in Natural Language Processing (NLP)
and Computer Vision (CV) has concentrated on finding solutions. Various methods,
including kernel approximation, locality-sensitive hashing, and techniques like sparsity
and low-rank decomposition, have been proposed to approximate or replace the atten-
tion process [24].
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The authors in [17] present the Reformer as an efficient implementation of the Trans-
former. The Reformer tackles computational and memory constraints by utilizing locality-
sensitive hashing and reversible residual layers. This approach enhances efficiency
without compromising performance.

Compressive Transformers are proposed in [18] as an innovative architecture for han-
dling long-range sequence modeling. The proposed approach utilizes iterative com-
pression to efficiently capture global context and overcome the limitations of standard
Transformers. Experimental results confirm the effectiveness of the method in captur-
ing long-range dependencies within sequences.

The authors in [19] introduce Sparse Transformers as a method for generating long se-
quences. By incorporating a sparsity pattern in the attention mechanism, the approach
allows for the efficient generation of high-quality sequences while minimizing compu-
tational resources.

Linformer, proposed in [20], reduces the quadratic computational complexity of self-
attention to linear by approximating the attention matrix using low-rank factorization.
This approximation enables the model to capture long-range dependencies while sig-
nificantly reducing the computational requirements.

The paper in [21] introduces Fast Autoregressive Transformers as a variant that com-
bines the strengths of RNNs and linear attention mechanisms. The model achieves ef-
ficient generation of autoregressive sequences with reduced computational complexity
by decomposing the self-attention into linear operations.

The Synthesizer model presented in [22] reimagines the self-attention mechanism by
introducing a synthesis step, which allows the model to generate new attention weights
based on the original self-attention outputs. This synthesis step helps capture more di-
verse and informative attention patterns. Additionally, an aggregation step is introduced
to combine the synthesized attention weights, providing a refined representation of the
input sequence.

The authors in [23] introduce Performers which utilize an approximation approach
based on random feature maps, enabling efficient and scalable attention computations.
By applying the kernelized attention mechanism, Performers achieve linear complexity
in both the number of input elements and the attention dimensions.

However, in the context of ASTs, no such approximation or alternative to the attention
mechanism has been proposed thus far.
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3.4 Fourier Transform in Neural Networks

The significance of Fourier analysis in exploring the universal approximation capabili-
ties of neural networks has been demonstrated in previous studies [73, 74]. In practical
applications, discrete Fourier Transforms (DFT) and the Fast Fourier Transform (FFT)
have been successfully employed in various signal-processing tasks [75–79].

In the fields of Natural Language Processing (NLP) and Computer Vision (CV), the
Fourier transform is a widely used operation for approximating or accelerating com-
putations in CNNs [25–31], RNNs [32–34], and even transformers [35–37]. The Fast
Fourier Transform (FFT) has proven to be particularly valuable in neural network archi-
tectures, notably in speeding up computations within Convolutional Neural Networks
(CNNs) by leveraging the convolution property in the frequency domain. In Recurrent
Neural Networks (RNNs), FFTs have been utilized to accelerate training and address
issues such as exploding and vanishing gradients. Moreover, FFTs have been employed
to approximate dense, linear layers, thereby reducing computational complexity.

3.4.1 Fourier Transform in CNNs

The authors propose a novel approach that combines the strengths of neural networks
and FFT in [25]. By leveraging the neural networks’ ability to learn complex patterns
and features from input data, and exploiting the efficiency of the FFT algorithm for
signal processing, they achieve faster and more accurate detection results.

In [26], the authors introduce a method to accelerate the training of convolutional neural
networks using FFTs. They transform convolution operations into element-wise multi-
plications in the frequency domain, resulting in faster convergence and training times
without compromising model accuracy. This approach contributes to improving the
efficiency of training CNNs, especially for large-scale datasets.

To enhance computational efficiency, the authors in [27] propose the overlap-and-add
technique, which breaks down input images and filters into smaller overlapping patches.
They further utilize the FFT algorithm to compute convolutions in the frequency do-
main, resulting in improved computational efficiency.

The concept of Fourier Convolutional Neural Networks (FCNNs) is introduced in [28],
where the authors employ the Fourier transform for efficient and effective convolution
operations. Their framework incorporates architectural modifications and a phase acti-
vation function to handle the complex-valued frequency domain.
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In [29], the authors propose an FFT-based approach for deploying deep learning mod-
els on embedded systems. They transform convolutional layers into frequency domain
operations, achieving computational efficiency and addressing the constraints of em-
bedded platforms.

In the paper [30], the authors present FFT-based split convolutions as a method to accel-
erate convolutional neural networks. They divide the convolutional filters into smaller
sub-filters and perform convolutions in the frequency domain using FFT. By leveraging
the convolution theorem and the efficient computation properties of FFT, this approach
reduces computational complexity and accelerates inference time.

Lastly, [31] introduces Frequency-Domain Utilization Networks (FDUN) for generating
visually appealing images. By operating in the frequency domain and manipulating the
image’s spectral content while preserving its structural information, the authors enable
finer control over the visual characteristics of the generated images.

3.4.2 Fourier Transform in RNNs

The FN-RNN architecture, proposed in [32], utilizes recurrent neural network units that
are enhanced with Fourier analysis components. These Fourier components effectively
capture the frequency attributes of the input/output data, while the neural network units
learn the temporal relationships and patterns present in the sequences. The integra-
tion of these two elements in FN-RNNs enables the modeling of both local and global
temporal patterns, resulting in enhanced accuracy when dealing with sequential data.

In [33], the Forenet architecture is introduced, which employs recurrent network units
augmented with Fourier components. The recurrent units effectively capture the tem-
poral dependencies and patterns within time series data, while the Fourier components
accurately capture the frequency characteristics. This combination allows Forenet to
accurately model and predict time series data.

In [34], the authors propose Fourier Recurrent Units (FRUs) as an approach to learning
long-term dependencies in sequential data. By incorporating Fourier analysis into the
recurrent units, FRUs provide a more effective method for capturing both short and
long-term dependencies. Consequently, this approach leads to improved performance
in tasks involving sequential data.
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3.4.3 Fourier Transform in Transformers

In the context of Transformer models, the use of DFTs has been indirectly explored in
many prior works.

For instance, the Performer [23] employs random Fourier features to approximate a
Gaussian representation of the softmax kernel, leading to the linearization of the Trans-
former self-attention mechanism.

The authors in [36] employ spectral filters to generate hierarchical features, demon-
strating the effectiveness of filtered embeddings across different tasks. Their approach
involves segregating Fourier frequencies rather than combining features through the
transform.

FNet [37] is an attention-free transformer for NLP tasks where instead of approximat-
ing attention, is completely replaced with the Fourier Transform, which serves as an
alternative mixing mechanism for hidden representations.

GFNet [80] designed specifically for image classification substitutes the self-attention
layer in vision transformers with three primary operations: a 2D discrete Fourier trans-
form, a component-wise multiplication between features in the frequency domain and
trainable global filters, and a 2D inverse Fourier transform.

3.5 Summary

In this chapter, we discussed the literature on medical sound event detection and au-
dio classification models. Deep neural networks have greatly advanced these systems,
allowing for the direct association of spectrograms with event labels. Convolutional
Neural Networks (CNNs) have become popular in this field. Considering the success
of attention-based models in CV and NLP, the question arises whether CNNs are still
necessary for audio classification. To address this, Audio Spectrogram Transformer
(AST), a pure attention-based model was introduced that achieved exceptional perfor-
mance, surpassing other contemporary models.

Considering the situation, it would be a smart choice to use the AST for sound event
detection in medical settings. However, Transformers have a limitation regarding their
higher data requirements for effective training. This poses a challenge in medical en-
vironments where there may not be enough audio data to meet these demands. More-
over, Transformers can be computationally inefficient due to their attention mechanism,
which is a fundamental part of their architecture. Several techniques have been sug-
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gested to approximate or substitute the attention process, such as kernel approximation,
locality-sensitive hashing, and approaches involving sparsity and low-rank decomposi-
tion. Some of the previous studies have highlighted the importance of the Fourier trans-
form in investigating the approximation and acceleration capabilities of Transformers.
However, as of now, no approximation or alternative to the attention mechanism has
been proposed specifically for ASTs.
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Chapter 4

Speech Source Separation using
Wave-U-Net

One of the major concerns while capturing medical audio data for SED models is the
possible violation of speech-privacy. To ensure the preservation of speech-privacy, in
this research, we utilized the concept of source separation. The idea can be visualized
in Fig. 4.1. At first, the input audio data, Y , is fed into a speech source separation
model. This model separates the sources and we get two output signals. One of the out-
puts contains the separated speech sound and the other contains the rest of the sources.
Each of the outputs has a time duration same as the input audio signal. Finally, the
segments containing the other sources are passed through the SED model and it detects
the medical audio events. Thus by separating speech sources before feeding into the
SED model, speech-privacy is ensured.

Sound Event
Detection

Detected Audio
Events

Speech Source
Separation

Audio Data
(Mixed)

Other Sources

Speech Source

Figure 4.1: Speech source separation prior to SED.
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4.1 Model Architecture

In this study, we have used the Wave-U-Net architecture [38] as the speech source
separation model. The Wave-U-Net is a convolutional neural network for separating
sound sources working directly on raw audio data. It is an adaptation of the U-Net ar-
chitecture [81] to the one-dimensional time domain for performing end-to-end source
separation. Through a series of downsampling and upsampling blocks involving 1D
convolutions combined with a downsampling/upsampling process, features are com-
puted on multiple scales/levels of abstraction and time resolution and then combined to
make a prediction. The model architecture of Wave-U-Net used in this study is shown
in Fig. 4.2.
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1D Convolution

Other Sources Speech Source
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Block
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Copy and
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Copy and
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Figure 4.2: Model architecture of Wave-U-Net.

The depth of the model was set to be 6 (6 upsampling blocks and 6 downsampling
blocks) considering both performance and training time. If the input audio data has a
duration of T s, then two audio data each having the same duration, T are extracted from
Wave-U-Net. Each output audio data contains only one sound source (either speech or



CHAPTER 4. SPEECH SOURCE SEPARATION USING WAVE-U-NET 36

others).

4.2 Dataset

4.2.1 MAudioSet

To focus specifically on audio events within the medical environment, we utilized a
specific portion of AudioSet [82]. This subset, referred to as Medical AudioSet (MAu-
dioSet) in this research, encompasses audio recordings of various events such as breath,
cough, gasp, hiccup, sneeze, sniffle, speech, silence, and throat-clearing. These 9
classes serve as the primary categories, while any sound events outside of these classes
are categorized under the “etc” class. Consequently, MAudioSet consists of a 10-class
dataset comprising audio recordings with multiple labels. It comprises a cumulative du-
ration of around 15 hours. For training and validation purposes, the dataset was divided
into 5 folds. A visualization of a sample audio data of MAudioSet including the classes
is shown in Fig. 4.3 and a summary of MAudioSet is presented in Table 4.1.
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Figure 4.3: Visualization of a sample of MAudioSet.
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Table 4.1: Summary of MAudioSet

Label Class Total Duration (s)

0 etc 18802.89
1 hiccup 42.48
2 throat-clearing 142.36
3 breathe 287.95
4 gasp 374.72
5 sneeze 654.71
6 sniffle 733.54
7 cough 7662.17
8 speech 20738.63
9 silence 1369.03

4.2.2 Synthetic Soundscapes
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Figure 4.4: Visualization of a synthetic soundscape.

In addition to MAudioSet, a dataset of soundscapes, where each soundscape was created
by combining and transforming a set of existing audio files, was used to train the speech
source separation model. The existing audio files were taken from TIMIT [83], MU-



CHAPTER 4. SPEECH SOURCE SEPARATION USING WAVE-U-NET 38

SAN [84], and MAudioSet datasets. Speech audio events were taken from TIMIT and
MUSAN datasets. Other audio events were taken from the MAudioSet training corpus.
Then the soundscapes were generated with the help of Scaper [85], a Python library.
Each of the soundscapes contains speech in the background and other sources in the
foreground. Each of the soundscapes generated has a time duration of 10s. The sound-
scapes were generated in such a way that the SNR is uniformly distributed between -10
to 25 dB. A total number of 2400 soundscapes were generated for the experiment. A
visualization of a generated soundscape is shown in Fig. 4.4.

4.3 Wave-U-Net Training

Wave-U-Net was developed using the PyTorch framework [86]. NVIDIA GeForce GTX
1650 GPU was used as the hardware accelerator for training the model. The loss func-
tion for the training algorithm was L1 (Least Absolute Deviations). Adam was used as
the optimizer algorithm with an initial learning rate of 0.001. The learning rate was
decreased by a factor of 10 whenever the validation loss did not decrease or started
increasing for consecutive epochs. The minimum learning rate set was 10−10. The
training was stopped early if there was no significant improvement in the validation
loss for consecutive epochs. The summary of the training is provided in Table 4.2.

Table 4.2: Summary of the training configurations of WaveUNet

Accelerator GPU

Loss function L1

Optimizer Adam

Initial learning rate 0.001

No. of epochs 2000

Execution time 12h 43m

4.4 Performance Evaluation

4.4.1 Evaluation Strategy and Metric

In this study, Source-to-Distortion Ratio (SDR) was used to evaluate the performance
of Wave-U-Net. SDR can be defined as,
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SDR = 10log10(
||starget||2

||einterf + enoise + eartif ||2
) (4.1)

where starget is the true source, and einterf , enoise and eartif are error terms for inter-
ference, noise, and added artifacts, respectively [87]. A higher SDR indicates a better
source separation.

Firstly, the SDR of Wave-U-Net is computed for each of the five folds of the validation
subsets of MAudioSet, and finally, the average SDR is calculated.

4.4.2 Results

The performance of Wave-U-Net on the 5-folds of the MAudioSet validation subset is
shown in Table 4.3.

Table 4.3: Performance of Wave-U-Net on the MAudioSet validation subset

SDR
Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

Speech 10.15 10.96 10.52 10.77 10.88 10.656
Others 12.72 13.56 12.38 13.52 12.84 13.004
Overall 11.43 12.26 11.45 12.145 11.86 11.829
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Figure 4.5: Visualization of the output of Wave-U-Net for a test sample along with the
ground truth sources.
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Wave-U-Net achieves an overall average SDR of 11.829 indicating a near-perfect source
separation task. For better understanding, a visualization of the output of the model for
a test sample along with the ground truth sources is shown in Fig. 4.5.

4.5 Summary

Wave-U-Net is implemented to preserve speech privacy by separating the speech source
from the mixed audio. For a quantitative analysis of how well the model is able to
separate the speech source, we have calculated the correlation coefficient between the
ground truth speech source and the model’s separated speech source. An average corre-
lation coefficient of 0.94 (out of 1) is achieved from the test dataset. This is an indica-
tion that the model is able to separate the speech source quite well and thus it preserves
speech-privacy. A scatter plot of the correlation coefficients for randomly selected 200
samples is shown in Fig. 4.6.
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Figure 4.6: Scatter Plot of Correlation Coefficients between the Separated Speech and
the Ground Truth (GT) Speech sources.
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Chapter 5

Medical Sound Event Detection using
ASFNet

In this chapter, we will discuss the details of our proposed Audio Spectrogram Fourier
Network (ASFNet) for medical sound event detection. Let, Y be a recorded audio
waveform in a medical or hospital environment that consists of multiple audio events.
If A = a0, a1, a2, a3, ....., an−1 is the set of audio events in Y where n is the total number
of events, then the goal is to develop an efficient SED model or algorithm to detect these
n events. By efficient, we mean both performance improvement and model parameter
reduction over state-of-the-art methods.

5.1 Model Architecture

The model architecture of ASFNet is illustrated in Fig. 5.1. ASFNet and AST have
similar architectures [16]. The differentiating factor in ASFNet lies in its utilization of
a Fourier sublayer, which replaces the self-attention sublayer found in each transformer
encoder. Each Fourier sublayer is then followed by a feed-forward sublayer.

5.1.1 Input

Similar to AST, ASFNet operates on raw audio with a duration of t seconds as its
input and transforms it into a spectrogram of size 128 × 100t. This spectrogram is
then divided into N patches of size 16× 16, with a 6-unit overlap in both the time and
frequency dimensions. N represents the total number of patches and can be calculated
as N = 12× [100t−16

10
].
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Figure 5.1: Model architecture of ASFNet.

5.1.2 Embeddings

Each 16 × 16 patch is flattened into a 1D patch embedding of size 768 using a linear
projection or patch embedding layer. Additionally, a trainable positional embedding is
added to each patch embedding to enable the model to perceive the spatial structure of
the audio spectrogram.
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Throughout all layers of the Transformer, we use a constant latent vector size D. There-
fore, we flatten the patches and apply a trainable linear projection to map them to D

dimensions. These transformed patches are known as patch embeddings.

5.1.3 Encoder

As ASFNet is designed specifically for audio classification tasks, it only employs the
encoder layers of the transformer architecture. In our specific implementation, the
encoder architecture comprises 12 layers with an embedding dimension of 768. The
self-attention sublayers in the Transformer are replaced by the Fourier sublayers. The
Fourier sublayer applies a 2D FFT to the input embeddings, employing a 1D FFT along
the sequence dimension and another 1D FFT along the hidden dimension. This opera-
tion by the Fourier sublayer can be defined as,

y = R(Fseq(Fh(x))) (5.1)

where x is the embedding, Fseq and Fh are the FFTs along the sequence dimension
and the hidden dimension respectively, and R is the real part of the Fourier Transform.
From equation 5.1, it can be seen that only the real part of the total transformation is
considered so that the following feed-forward sublayers or output layers do not require
dealing with complex numbers.

5.1.4 Output

The audio spectrogram representation as the encoder’s output is mapped to classifica-
tion labels using a linear layer that applies a sigmoid activation function.

5.2 ASFNet Training

MAudioSet training and validation subsets were used to train and validate ASFNet
respectively. As mentioned earlier in 4.2, MAudioSet is a multi-label audio dataset
with 10 classes and is divided into 5 folds.

We used a similar training pipeline with [10, 16] for our experiments. Data augmenta-
tion including mixup [88] with a mixup ratio of 0.5, spectrogram masking [89] with a
maximum time mask length of 192 frames, and a maximum frequency mask length of
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48 bins was used. Weight averaging [90] and ensemble [91] were used as model aggre-
gation approaches. ASFNet was trained with a batch size of 2. Adam [92] was used as
the optimizer and binary cross-entropy was the loss function. We initiated the training
process with an initial learning rate of 5e-5 and continued training the model for 25
epochs. Starting from the 3rd epoch, the learning rate was halved every 2 epochs. Mean
average precision (mAP) was used as the main evaluation metric. ASFNet was im-
plemented using the PyTorch framework [86]. Google Colaboratory’s A100 and V100
GPUs [93] were used as the hardware accelerator for training the model. The summary
of the model training is provided in Table 5.1 and the training loss curve is shown in
Fig. 5.2.
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Figure 5.2: ASFNet Training loss curve.

Table 5.1: Summary of the experimental configurations of ASFNet

Accelerator GPU
Loss function Binary cross-entropy

Optimizer Adam
Initial learning rate 5e-5

No. of epochs 25
Batch size 2

Evaluation Metric mAP
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5.3 Performance Evaluation

This section presents a discussion of the outcomes obtained from the proposed ASFNet
and the achieved results are then compared to those of previous research studies. The
performance of ASFNet was evaluated in terms of both precision and efficiency.

5.3.1 Evaluation Strategy and Metrics

This study involved the implementation and training of three different versions of ASFNet.
Likewise, three variations of AST were also implemented to ensure a fair comparison.
The distinctions among these versions can be understood by looking at Table 5.2.

Table 5.2: Variants of ASFNet and AST

Variant Embedding dimension Attention heads

AST-Tiny 192 3
AST-Small 384 6

AST 768 12
ASFNet-Tiny 192 -
ASFNet-Small 384 -

ASFNet 768 -

All the variants were trained and evaluated on the 5-fold of training and validation
subsets of MAudioSets respectively. The metric used for the performance evaluation
is Mean Average Precision (mAP). Initially, the mAPs of ASFNet and other baseline
methods are computed for each validation subset fold, and subsequently, the overall av-
erage is determined. The efficiency of the model is evaluated in terms of the number of
model parameters and the model size. Finally, a quantitative summary of results show-
casing the relative change ASFNet offers in terms of both performance and efficiency
is provided.

5.3.2 Tools and Resources Used for Implementation

All of the models were implemented using the PyTorch framework [86]. PyTorch is
a numerical library designed for implementing machine learning algorithms on a large
scale. It includes built-in functionality for automatically calculating gradients using the
backpropagation algorithm. Additionally, PyTorch offers efficient implementations of
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operations such as convolutions, matrix multiplications, and other tasks commonly as-
sociated with deep neural networks, particularly optimized for NVIDIA CUDA-enabled
GPUs [94]. The models were trained on the A100 and V100 GPUs provided by Google
Colaboratory [93] with 52 GB RAM.

5.3.3 Classification Performance

Table 5.3 summarizes the ASFNet variants’ performances, along with a comparison to
existing methods.

Table 5.3: Performance comparison of ASFNet and other methods on the MAudioSet
validation subset

Model archi-
tecture mAP

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

PSLA [10] CNN+Attention 0.3967 0.4080 0.3675 0.3954 0.3755 0.389
AST-
Tiny [16]

Pure attention 0.4018 0.4083 0.3709 0.3900 0.3525 0.385

AST-
Small [16]

Pure attention 0.4016 0.4232 0.3835 0.3960 0.3841 0.398

AST [16] Pure attention 0.4140 0.4296 0.3779 0.4085 0.3762 0.401
AST-
Ensemble
[16]

Pure attention 0.4188 0.4389 0.3832 0.4093 0.3880 0.408

ASFNet-
Tiny

Attention free,
FFT

0.4334 0.5131 0.4119 0.4438 0.4365 0.448

ASFNet-
Small

Attention free,
FFT

0.5160 0.5195 0.4169 0.4336 0.4324 0.464

ASFNet
Attention free,
FFT

0.4557 0.5309 0.4451 0.4783 0.4526 0.473

ASFNet-
Ensemble

Attention free,
FFT

0.4539 0.5315 0.4508 0.4758 0.4573 0.474

As mentioned in Section 5.2, weight averaging and ensemble were used to boost the
performance of ASFNet. Note that, weight averaging and ensemble do not increase the
model size. Using weight averaging, ASFNet achieves an average mAP of 0.473 among
the five folds.

For the ensemble approach, ASFNet was trained with three different settings, precisely
three different numbers of patches. The ensemble model achieves an average mAP of
0.474. It can clearly be seen from the results that all the variants of ASFNet outperform
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AST variants and PSLA.

For additional examination, we also explored the effectiveness of ASFNet when exclud-
ing the speech and silence classes. This decision was motivated by two main factors.
Firstly, if the speech source separation model performs accurately and successfully sep-
arates speech data, the need for ASFNet to detect speech events diminishes. Secondly,
as the silence class does not contain any medical information, its detection is not essen-
tial for diagnosis. The results are shown in Table 5.4 and ASFNet demonstrates superior
performance in this case too.

Table 5.4: Performance comparison of ASFNet and other methods on the MAudioSet
validation subset without the speech and silence events

Model archi-
tecture mAP

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

PSLA [10] CNN+Attention 0.4267 0.4380 0.4075 0.4354 0.4155 0.425
AST-
Tiny [16]

Pure attention 0.4318 0.4383 0.4009 0.4200 0.3825 0.415

AST-
Small [16]

Pure attention 0.4316 0.4532 0.4135 0.4260 0.4141 0.431

AST [16] Pure attention 0.4440 0.4596 0.4079 0.4385 0.4062 0.431
AST-
Ensemble
[16]

Pure attention 0.4488 0.4689 0.4132 0.4393 0.4180 0.437

ASFNet-
Tiny

Attention free,
FFT

0.4634 0.5331 0.4619 0.4938 0.4765 0.485

ASFNet-
Small

Attention free,
FFT

0.5160 0.5195 0.4169 0.4336 0.4324 0.464

ASFNet
Attention free,
FFT

0.4957 0.5309 0.4751 0.5283 0.5026 0.506

ASFNet-
Ensemble

Attention free,
FFT

0.4939 0.5315 0.5008 0.5258 0.5073 0.511

5.3.4 Model Efficiency

We also compared ASFNet with other models in terms of model parameters and size and
the comparison is presented in Table 5.5. ASFNet demonstrates improved performance
on MAudioSet while providing faster inference time.
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Table 5.5: Number of model parameters and size of the models

Model Parameters Model Size

PSLA [10] 4 M 16 MB
AST-Tiny [16] 6 M 23.0 MB
AST-Small [16] 22 M 86.4 MB

AST [16] 87 M 334.7 MB
AST-Ensemble [16] 87 M 334.7 MB

ASFNet-Tiny 3 M 13.6 MB
ASFNet-Small 14 M 54.2 MB

ASFNet 56 M 216.4 MB
ASFNet-Ensemble 56 M 216.4 MB

5.3.5 Overall Performance

Overall, when taking into account both performance and efficiency, ASFNet demon-
strates impressive results. Even the lowest average mAP among ASFNet variants (ASFNet-
Tiny) surpasses that of existing models. If performance boosting is considered, ensem-
bling ASFNet architectures with different settings is the optimal choice. The divergence
in outcomes between AST and ASFNet variants, as well as the impact of the ensemble
approach, can be observed in Fig. 5.3.
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Figure 5.3: Visualization of the performance and efficiency comparison between AST
and ASFNet variants.

Moreover, Table 5.6 presents a concise summary of the results for a better understand-
ing, showcasing the quantitative improvements that ASFNet offers over AST.
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Table 5.6: Quantitative Improvements of ASFNet

Relative Av-
erage mAP
Improvement
(%)

Relative Model
Parameters
Reduction (%)

Relative Model
Size Reduction
(%)

ASFNet-Tiny 16.36 50.00 40.87
ASFNet-Small 16.58 36.36 37.26
ASFNet 17.95 35.63 35.34
ASFNet-
Ensemble

16.17 35.63 35.34

5.4 Ablation Study

To explore the impact of Fourier sublayers, we designed and trained hybrid models
that combine both Attention and Fourier mechanism. Instead of completely replacing
all self-attention sublayers with Fourier sublayers, we selectively replaced a few while
leaving the remaining sublayers unchanged. The standard AST has a depth of 12. For
this experiment, we replaced m numbers of self-attention sublayers with Fourier sub-
layers, and the rest of the 12−m sublayers were self-attention sublayers.

5.4.1 Effect of Fourier Sublayers on the Classification Performance

Fig. 5.4 shows the effect of varying m, or in other words, Fourier sublayers on the
performance of AST.

Except in a few cases, for all the folds, mAP increases with the increment of m. The
average mAP of the five folds is always upwards, and clearly, the worst and best perfor-
mances are with m = 0 (purely attention, AST) and m = 12 (attention-free, ASFNet)
respectively.

5.4.2 Effect of Fourier Sublayers on the Model Effeciency

We also compared the model parameters and sizes in those cases. The results are illus-
trated in Fig. 5.5.

As Fourier sublayers increase, the model parameters and size decrease in a similar
manner to the improvement in performance.
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Figure 5.4: Effect of Fourier sublayers on the classification performance.

5.4.3 ASFNet without Positional Embeddings

Due to the positional details captured by the Fourier Transform, ASFNet achieves com-
parable performance even without using positional embeddings. However, we chose to
include positional embeddings to achieve the best performance, facilitate a more direct
comparison with AST and ensure a fair evaluation. Table 5.7 presents the performance
of ASFNet trained without the positional embeddings. Even without the positional em-
beddings, ASFNet achieves an average mAP of 0.469 which is 85% of what is achieved
with positional embeddings.
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Figure 5.5: Effect of Fourier sublayers on the model efficiency.

Table 5.7: Performance of ASFNet without positional embeddings

Fold mAP Model Parameters Model Size

1 0.4471
2 0.5351
3 0.4440
4 0.4657
5 0.4518
Average 0.469 56 M 216.4 MB

5.4.4 Insight

The Fourier Transform provides a highly efficient means of combining embeddings,
enabling comprehensive access to all embeddings for the feed-forward sublayers. By
leveraging the inherent characteristics of the Fourier Transform, we can interpret each
alternate encoder block as utilizing consecutive Fourier and inverse Fourier Transforms.
This dynamic conversion of input between the temporal and frequency domains har-
nesses the multiplication of frequency domain coefficients, which corresponds to con-



CHAPTER 5. MEDICAL SOUND EVENT DETECTION USING ASFNET 53

volution in the time domain with a corresponding set of coefficients. Thus, ASFNet can
be conceptualized as a process that alternates between multiplications and convolutions.

5.5 Summary

ASFNet adopts the architecture of the AST encoder but replaces the self-attention sub-
layers with Fourier sublayers. Despite being trained with limited data, ASFNet demon-
strates promising results in terms of both performance and efficiency. On average, it
outperforms other methods with a 16.17% relative improvement in average mAP while
requiring relatively 35.63% fewer model parameters and having a relatively 35.34%
smaller model size.
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Chapter 6

Conclusions

In this chapter, we will review and summarize the work done so far. Then we will
clarify and point out future prospects for improvement and expansion.

6.1 Summary

In this thesis, we utilized the Wave-U-Net architecture as a speech source separation
model which is able to preserve the speech-privacy while capturing the audio data by
separating the speech sources in the first place. Wave-U-Net achieves an overall SDR
of 11.829 indicating a near-perfect source separation.

The main highlight of this research is the introduction of the Audio Spectrogram Fourier
Network (ASFNet), an attention-free deep neural network that can be implemented
for precise and efficient sound event detection in the hospital or medical environment.
ASFNet follows the architecture of the AST encoder but replaces the self-attention
sublayers with Fourier sublayers and demonstrates encouraging outcomes in terms of
both performance and efficiency in spite of training with a limited amount of data.
ASFNet outperforms the other methods showing 16.17% relative improvement in the
average mAP and it is able to achieve this performance with fewer model parameters
and smaller model size. Even the ASFNet variant with fewer model parameters achieves
a better mAP than that of the AST variant with the highest model parameters. Given its
lightweight nature, we anticipate that ASFNet will be highly effective when deployed in
resource-limited medical settings and edge devices for diverse healthcare applications.

Thus ASFNet, together with Wave-U-Net can be instrumental in speech-privacy aware
and low-resource medical sound event detection or monitoring systems.
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6.2 Future Prospects

We propose some prospects for improvement and elaboration of the model –

• We showed that ASFNet achieves superior outcomes in terms of both perfor-
mance and efficiency in spite of training with a limited amount of data. We could
collect a large-scale medical audio dataset to train our ASFNet and see how far
the performance improves.

• We trained and evaluated ASFNet with 10 classes. We could also investigate if
the model performs equally to distinguish among further complex sound events
such as different heart sounds: normal, murmur, artifacts, etc.

• We could also train and evaluate ASFNet on the full AudioSet to see how well
ASFNet is as a general audio classification model.

• We claimed that the proposed method could be integrated with low-resource med-
ical systems or devices for real-time classification. We could verify that by im-
plementing a software version of the proposed method in such a system.

• We utilized Wave-U-Net as a pre-processing module to separate speech sources
and maintain speech-privacy. We could also try to merge Wave-U-Net with ASFNet
and develop a better single model that not only separates speech sources but also
detects other sound events.
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