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ABSTRACT 
 

A mathematical model of a non-uniformly doped silicon solar cell for all illumination 

condition has been developed. The drift-diffusion equation has been solved under low 

injection approximation for the derivation of the model.  The model is iteration-free and 

integration-free, so it offers an elegant way to study the wide variation of several 

transport parameters, their individual contributions and interdependence. This analytical 

expression can successfully describe the mobility and lifetime variation, variation of 

surface recombination, positional dependence of parameters, effect of biasing, the 

contribution from dark and light response, and the response from standard terrestrial solar 

spectrums. For the validation of the derived model, a COMSOL Finite Element Model 

of solar cell has been developed. Along with that, a physically-based (TCAD) model in 

Silvaco/ATLAS is constructed for checking the results. The proposed model is in good 

agreement with both of the numerical models. The model is further improved so that the 

same model can also analyze the effect of individual wavelength, the addition of multiple 

emitter/base layers, and the inclusion of other non-uniform doping variation. The 

solution even works for non-Silicon photovoltaic materials, when the material properties 

are tailored properly. All the aforementioned effects and transport physics have been 

aggregated in a compressed expression, but with an added complexity of Bessel and 

Hypergeometric function. This analytical model can be helpful in optimizing solar cell 

designs by providing direct relationship of the physics with the device dimensions.  
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interface between region 1 and region 2 of 
emitter 

(m) 

Jn-Drift, 
Jp-Drift 

= Drift component of current density for electron 
and hole, respectively 

(Am2) 

Jn-Diff, 
Jp-Diff 

= Diffusion component of current density for 
electron and hole, respectively 

(Am2) 

Jn-Totol, 
Jp-Totol 

= Total current density for electron and hole, 
respectively 

(Am2) 

Jn-Drift (), 
Jp-Drift () 

= Drift component of monochromatic current 
density for electron and hole, respectively 

(Am2m1) 

Jn-Diff (), 
Jp-Diff () 

= Diffusion component of monochromatic current 
density for electron and hole, respectively 

(Am2m1) 

Jn-Total (), 
Jp-Total () 

= Total monochromatic current density for 
electron and hole, respectively 

(Am2m1) 

V = Applied voltage across the cell (V) 

E = Strength of Electric field (Vm1) 

EG = Energy Band gap (eV) 

q = Electronic Charge = 1.6  1019 (A∙s) 

kB = Boltzmann Constant =1.38  1023 (m2 kg s-2 K-1) 

h = Planck's constant = 6.626 × 10−34 (J.s) 

c = Velocity of light = 3  108 (ms–1) 

T = Absolute temperature (K) 

VT = Thermal voltage = kBT/q (V) 

ai = Coefficient of approximated generation, 
G(x) =  ai exp(bix) 

(m3s1) 



xxi 
 

bi = Coefficient of approximated generation, 
G(x) =  ai exp(bix) 

(m1) 

K = Parameter in empirical equation of lifetime: 
 = KNk 

(cm6s) 

k = Parameter in empirical equation of lifetime: 
 = KNk 

(unitless) 

M = Parameter in empirical equation of mobility: 
 = MNm 

(cm0.86V1s1) 

m = Parameter in empirical equation of mobility: 
 = MNm 

(unitless) 

f = Coefficient in expression of BGN (unitless) 
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CHAPTER 1 

INTRODUCTION 
 

 

 

1.1.   Introduction 

An accurate and closed-form analytical or semi-analytical expression for the minority 

carrier concentration and current in solar cell has been searched over a long time [1-8]. 

Quasi-neutral silicon regions have been the subject of extensive investigation, due to its 

relevance in determining the electrical behavior of many photovoltaic and bipolar 

devices. For example, it is well established that the minority-carrier injection and storage 

into the heavily doped emitter may strongly affect dc as well as transient device 

performance. This holds particularly true for modem polysilicon bipolar transistors, 

where the minority-carrier current injected into the emitter represents the dominant 

component of the base current.  

 

An extensive study of minority carrier profile is essential for successful understanding 

of the performance and efficiency of the solar cell [9, 10]. The dark and illumination 

current-voltage characteristics, which can be calculated from the carrier concentration, 

determine the overall behaviour of the solar cell. To predict the performance of a 

semiconductor device, the analytical and numerical models has been very reliable tools, 

as well as in providing an elegant alternative to costly experimental procedures. An 

obvious step in modelling solar cell is to analyse the transport phenomena of minority 

carrier [6] to obtain the saturation & collection current densities as a function of doping 

profile and surface recombination velocity. As the understanding of heavily doped 

semiconductors has gradually evolved, the transport properties of minority carriers 

injected into heavily doped emitters and other types of semiconductor devices has been 

extensively studied. For a non-uniformly doped emitter, heavy doping effects, such as 

bandgap narrowing, Auger lifetime, and minority-carrier diffusion, all becomes position 

dependent. Thus an intuitive understanding of the minority-carrier transport becomes 

complex. Besides, the presence of minority carrier recombination greatly complicates the 
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situation to the point where, in spite of decades of effort, no completely general and 

mathematically-compact solution for the emitter and base region has been found that can 

offer a compromise between accuracy and analytical simplicity. 

 

There has been several attempts though, to propose general analytical models that can 

use full-dependency of the transport parameters (e.g. lifetime, mobility, and bandgap 

narrowing), are simple enough for transistor design, can predict both emitter and base 

current, can retain a direct functional dependence of the transport parameters on impurity 

concentration in their formulation. It is advantageous to keep general functional forms 

for the transport parameters because these parameters are known to be very dependent 

upon process conditions, doping variation, and of course, the semiconductor material. 

Quite a number of authors have resorted to different simplifying assumptions that result 

in approximated analytical solutions. These models can describe minority-carrier 

transport in highly doped emitter region, in spite of the inherent complexity and the 

failure of these approximations outside the valid zone. Certainly, these approximations 

are the weakness towards achieving one unified analytical model. 

 

On the other hand, obtaining a one dimensional numerical solution for low level 

injection, using basic numerical techniques [11] and considering today’s widely available 

computing power, is essentially a trivial exercise. Simple, extremely efficient numerical 

models [12-14] are available that can provide solutions in very short computational time. 

But, analytical expressions present an advantage over numerical approaches by providing 

insight into the physics and electrical behavior, and by presenting an elegant way of 

device optimization. Unlike numerical simulation, the mathematical analysis offers an 

excellent means to study the effects from specific contributions, which can be invaluable 

in computer aided design. Besides, the analytical modelling has added advantages of 

faster calculation time and no convergence issues [15]. Along with that, the search for 

analytic solutions, which can provide engineers and scientists with an accurate “mental 

model”, is more appealing in quantitatively and qualitatively interpreting experimental 

results, proposing more robust equivalent circuits and improving existing solar cell 

designs.  
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1.2. Literature Review 

The difficulty in developing analytical model for non-uniformly doped solar cell arises 

from the fact that the minority transport parameters, specifically mobility, lifetime and 

band structure become dependent on position. Incorporation of these non-linear 

dependencies in the continuity equation and the minority carrier current equation makes 

the analysis intractable. Hence, numerical modelling has become a common approach 

for describing the behaviour of minority carriers in solar cells. Though numerical model 

of solar cell [16, 17], TCAD-based models [13, 14, 18-21] and efficient computer codes 

like PC-1D [12], AMPS [22] can address the photovoltaic physics reliably, a complete 

analytical model has no alternatives to understand the physical phenomena and to gain 

more comprehension for designing.  

 

Several authors have attempted to analytically solved the minority carrier transport 

taking into account the position dependencies under dark condition [6, 15] and 

illuminated conditions [2]. In these works, they have used several physical assumptions 

[23-25] to simplify the functional dependence on doping profile.  

 

Taking the assumption of doping-independent diffusion coefficient and neglecting drift 

component, Dumke [23] has proposed a Hermite polynomial expression for Gaussian 

profile. This hypothetical simplification results in inappropriate analytical solution since 

the approach considers only the diffusion mechanism due to the gradient of minority 

carrier concentration. In practical device, the induced electric field arising from the 

doping gradients and band gap narrowing is also a significant factor on device 

performance.  

 

de Graff et al. [26] has considered the band gap narrowing due to high doping 

concentrations, doping-dependent Auger lifetime, built-in electric field, and finite 

surface-recombination velocity at the emitter contact.  They included field dominant and 

diffusion dominant components in the emitter, but their expressions are based on 

computer simulation.  

 

Amantea [24] took similar approach to [26] by dividing the emitter region in specific 

sections and solved the transport equations as boundary value problem which avoids the 
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need for iteration. This solution differs from previous results by showing exactly when 

Auger recombination must be included in the analysis. Effects such as Shockley-Read-

Hall (SRH) recombination, Auger recombination, bandgap narrowing, graded impurity 

profile, and position-dependent mobility have been included in that study. This analytic 

model is developed by using approximate models of the physical effects and by applying 

a variation of the regional-approximation method [27]. The emitter is divided into two 

separate regions: a field-dominated region adjacent to the junction and a diffusion-

dominated region adjacent to the surface. In diffusion dominated region, they assumed 

constant diffusion coefficient, constant SRH and approximated the impurity profile by 

piecewise exponential grades near the surface. Besides, this model has another 

conspicuous limitation that it is a model for dark current (basically for bipolar transistor) 

and hence, does not apply for solar cell under light. 

 

Assuming a thin and transparent emitter, Shibib et al. [28] proposed another analytical 

model, including majority-carrier degeneracy and finite surface-recombination velocity. 

They assumed rigid-band approximation that indicates to the bandgap narrowing without 

changing the parabolic dependence on energy of the density of states. They also 

considered transparent approximation which is valid for shallow emitter junction only. 

For this assumption, the minority carriers are assumed to be able to cross the quasi-

neutral emitter without appreciable bulk recombination and, recombine only at the 

emitter surface. This assumption of infinite carrier lifetime is acceptable [29, 30] for very 

thin solar cell with high recombining contact. Hence, the applicability of their model is 

limited to specific p-n structure under dark condition, provided that the emitter 

recombination is low enough for the Auger process to dominate over the Shockley-Read-

Hall process. 

 

Later, Fossum et al. [31, 32] improved the analytical model by dividing the emitter into 

two or three regions: in first region, BGN, Auger recombination and Fermi-Dirac 

Statistics are considered; in second region, Boltzmann statistics and negligible BGN are 

considered; and with very high surface doping density, the third region is considered 

opaque to minority carriers. They considered diffusion-dominant current near the surface 

like [24], where effective doping is constant and the drift-dominant current at base-

emitter junction, where the doping concentration gradient is large. Along with all that 

approximations, they have also taken “field-free” approximation, which they claim to be 
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the basis for their model [32]. Hence, the net “effective” electric field acting on minority 

carriers (in the heavily doped or gradient-doped region) is assumed small enough so that 

the carriers flow mainly by diffusion. This assumption certainly makes this model invalid 

for drift-field solar cell. 

 

The Transparent (T) Model in [28, 32] has been revisited by other authors [33, 34] taking 

the advantage from “no bulk recombination” approximation. Later, the T model is 

improved by del Alamo and Swanson [11] by incorporating the bulk recombination effect 

on the distribution of minority carrier. Their version of Quasi-Transparent (QT) 

analytical model offers a fast converging numerical method of calculating excess 

minority carrier density. QT model becomes increasingly inaccurate as the magnitude of 

bulk recombination increases with respect to the surface recombination. This situation 

occurs when the overall doping level or emitter thickness increases.  

 

Selvakumar [10, 25] derived the analytical solution by using special functional 

dependence. The success of [10] is that a close form solution is presented, which crucially 

depends on the assumed empirical relationship of carrier lifetime. 

 

So far, the objective of these abovementioned models was to develop a compact 

expression by solving the transport equations directly. But, along with them, another 

group of authors has been working on iterative approach of solving the drift-diffusion 

equations. Park et al. [15] presented a general closed-form analytical solution of the 

minority-carrier transport equations for non-uniformly doped emitter. Their solution is 

in the form of a multiple integral series and applicable for heavy doping profile and for 

any value of surface recombination velocity. Moreover, by truncating higher order terms, 

they simplified the analytical solution as known as three lowest-order approximations: 

the zeroth-order quasi-neutral quasi-equilibrium approximation (QNQE), and the 1st-

order and 2nd-order approximations. The shortcoming of this model is that it needs at 

least two iterations to get accurate results [15]. Moreover, their model is rife with nested 

integration that does not give direct relationship with the transport parameters, rather 

makes the model obscure and certainly, it is not in compact form.  

 

Rinaldi [7] extended the iterative and integral solution [6, 15] and rigorously obtain a 

new succession of approximate expressions for the minority-carrier current. As a solution 
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of transport equations, that work also contain multiple integral asymptotic series, which 

is not in closed form and only accurate after certain number of iteration.  

 

Verhoef et al. [8] has developed a complete closed-form expression for minority carrier 

transport by proposing new empirical expression of minority carrier mobility and 

lifetime; but the expression is developed excluding the generation rate in the transport 

equations, rather focusing on evaluating the dark current of solar cell.  

 

Not to mention that, these previous models are neglecting sunlight in their derivation. 

They are already complex in nature, even without the inclusion of solar spectrum. Very 

few models have been proposed for illumination conditions [2]. The attempt to solve the 

solar cell under solar irradiation starts with the work of Wolf [35-37]. This model can 

predict the behaviour of single layer and two-layer solar cell under different 

monochromatic light source. The solution is based on directly solving the differential 

equation. But the limitations of this model are many [35, 36]. The solution by Wolf takes 

the assumption of constant lifetime, constant mobility and avoids the heavy doping 

effects. Hence this model, although includes the effects of incident light, is still basic in 

nature. 

 

The method to model the solar cell with light is explored latter by [6]. This model actually 

extends the Dark current model of Park et al. [15]. Hence the solution given by them 

contains infinite sum of nested integrals, whose application to practical cases is prone to 

computational error [2]. Cuevas et al. [38] attempted to improve the model by 

incorporating the third-order approximations, which offers a compromise between the 

accuracy and computational efforts. 

 

Along with these development, Daliento et al. [2, 9] proposed an extension of previous 

Dark current model in [39] to incorporate the effect of light. The solution is in 

approximate close-form and applicable for opaque heavy doped emitter. The downside 

of this model is that their solution suddenly introduces a constant factor in transport 

equation, which has to be determined by calculating mean-square-error with actual 

solution. The value of this constant determine the accuracy of their solution and this 

assumed constant does not stay constant for all cases of emitter width and surface 
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recombination. Moreover, the expression of this constant contains integrals that have to 

be evaluated beforehand.    

 

In summary, there has been very active research over a long time to find out one general 

model that can explain solar cell, with all its inherent physics and non-ideal behaviour. 

 

1.3. Motivation Behind This Research 

From the comprehensive literature review presented in previous section, it can be 

concluded that compact analytical model of solar cell under illumination is not complete. 

Previous models mainly focused on the dark current component and the impact of the 

dark saturation current when different physics is added to it. Their trend was gradually 

converging towards numerical integration and iteration. Similarly, some authors indeed 

have developed illumination models, but they have resorted to iterative approach too. It 

is clear that no one has yet developed a model that – 

 is compact in nature 

 does not need any iteration, numerical integration or numerical fitting 

 shows direct relationship with the physics 

 does not take unnecessary approximations to make the equation easier to solve 

 is applicable over a wide range of surface recombination velocities and widths. 

 

This thesis has got its motivation from this everlasting struggle of finding one generalized 

model of solar cell. Previous models rely heavily on several assumptions in the pursuit 

of getting analytical models. Their approximations were of wide varieties, including the 

assumptions for – 

 Depth of emitter (Shallow or thick) [11, 28, 32-34]  

 Different ranges of surface recombination velocity (high, low or medium) [2, 9, 

24, 28] 

 Photo-excitation (under dark condition or under light) [1-3, 15] 

 Loss mechanism (either Auger or, SRH or, not recombination at all) [11, 33, 34] 

 Transport Dominant Regions (dividing in either drift-dominant or diffusion-

dominant) [24, 31, 32] 



8 | P a g e  
 

 Specific doping profile (constant [36], exponential [8] or Gaussian[2]) 

 Simplifying transport parameters (Constant mobility or lifetime) [35, 36] 

 Neglecting heavy doping effect (BGN, band tailing, rigid band shift etc.) [37] 

 

These are the approximations to simplify the physics only. Along with that, the previous 

works have taken assumption in solving the differential equation too. These includes – 

 Taking some terms in the differential equation as constant [4, 36] 

 Introducing new constant parameters that actually tries to fit the solution with 

numerical solution [2, 9] 

 Resorting to iterative approach that uses coupled equations to be solved with an 

initial assumed value [3] 

 Employing infinite integral series and taking only some terms as the solution 

(Zeroth order, 1st order, 2nd order etc.) [4, 7, 15, 39] 

 

The limitations of the existing works have motivated this thesis to work on a new 

analytical model that can overcome those weaknesses. Hence, the main focus of this 

thesis will be to solve the fundamental transport equations directly with “as little as 

possible” approximations.  

 

It is interesting to note the trend of the existing research endeavour. The initial attempts 

of modelling solar cell do involve the effort to directly solve the transport equations. As 

more physics are introduced into modelling, this direct approach gets complicated and 

gradually neglected by the authors; rather they resort to iteration and numerical 

integration, although this direct attempt promises the possibility of getting a compact 

solution. Adding the solar spectrum makes the direct attempt more unpleasant because it 

makes differential equations intractable to solve. To the author’s knowledge, no one have 

attempted to solve the resulting complex differential equation directly with lifetime, 

mobility, wavelength and heavy doping effect. This thesis wants to explore this 

unexplored section of analytical modelling for the potential and the promises it offers. 
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1.4. Specific Research Objective 

The main research objective of this thesis is to present a new closed-form analytical 

model, which does not have the need for iteration or integration. The model will try to 

achieve the following objectives – 

 

A compact 

model 
 

This is the primary objective of this whole endeavour. Our 

model will avoid all iterative schemes, any expression with 

integrations and any kind of numerical steps. 

Moreover, this solution will not try to solve the differential 

equation by comparing and fitting the solution with numerical 

models of solar cell. The sole purpose of this work is to avoid 

any approximated technique in solving the system of 

differential equations. This strict approach may warrant the 

use of advance mathematical functions. Previous models have 

already used convoluted iterating expressions to address the 

dark current. Hence, if necessary, this thesis will also use 

complex mathematical functions, for the sake of getting one 

general model.  

   

Doping and 

Positional 

Dependency 
 

Functional dependence of transport parameters for wide 

range of doping variation will be included in the solution. 

Unlike previous works, parameters like mobility and lifetime 

will not be taken as constant or region-wise constant. 

The positional variation of lifetime along the device depth, 

which arises from the Auger and SRH mechanism, will be 

considered into the derivation.  
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Effect of 

Incident Light 
 

The solution will be general enough to include the effect from 

monochromatic wavelength. This work will try to present a 

complete model that can address the dark and illumination 

current simultaneously. When the generation terms are forced 

to zero, the same model will transform into a dark current 

model. 

Moreover, the contribution of the dark and light component 

and how directly other parameters interact to their influence 

will be studied from the derived expression.  

   

Valid for 

Wide Range 

of Devices 
 

The model will be developed without restricting it for certain 

values of emitter/base width. Some of the previous models 

work only for swallow emitter. Our model will try to be a 

general model for all emitters by overcoming this issue of 

thickness.  

Besides, existing models shows that some models are only 

good at low or high surface recombination and some works 

well in the middle. Hence, this will be a concern for our model 

to find out how robust our model is when surface 

recombination velocity varies. 

   

Heavy Doping 

Effects 
 

Some of the Dark models have included the band gap 

narrowing (BGN) in the transport equations. BGN will be 

also included in our illumination model.  

All the heavy doping effects will be considered, including 

rigid band shift, band tailing, Fermi-Dirac Statistics and 

degeneracy.  



11 | P a g e  
 

Effect of 

Biasing 
 

The effect of biasing will be integrated in the final expression. 

This will be helpful in obtaining the Current-Voltage (I-V) 

characteristics and in finding the key parameters of solar cells 

(e.g. efficiency) 

   

Expandable to 

multi-layer 

regions 
 

An expansion of the model will be presented so that the same 

model can be used elegantly for multi-layered emitter 

regions.  

Besides, the base region is often followed by a back surface 

field (BSF). This highly-doped region improves the 

performance of solar cell. The expanded model will be able 

to handle this type of solar cell too. 

   

Expandable to 

other non-

Silicon 

material 

 
The model will be versatile enough so that the analytical 

expression can be easily applied to other photovoltaic 

material. 

   

Simplified 

model  
 

Possible ways to simplify the proposed analytical model will 

be explored. But no approximation will be taken that may 

hamper the included physics. Only approximation related to 

the mathematical functions will be explored. 

   

More General 

Model with 

standard 

solar 

spectrum 

 

The initial version of our analytical solution uses an elegant 

approximated generation rate in the differential equation. An 

improvement of this model will use the absorption profile and 

actual solar spectrum, which will certainly be more accurate. 
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The standard solar spectrum for the Earth surface (terrestrial) 

and for the Space (Extra-terrestrial) will be incorporated in 

the model. 

   

Expandable to 

other non-

uniform 

doping profile 

 

The model developed here is based on exponential doping 

profile. Since Gaussian profile is also common in diffused 

regions, the model will be expanded for Gaussian profile. 

This will make our model complete in handling any types of 

non-uniform doping profile.  

 

No previous model has tried to include so much physics, options and generality in one 

compact analytical model before.   

 

 

1.5. Thesis Organization 

The thesis hierarchy begins with this chapter, which has extensively reviewed the 

previous research and development in the field of analytical modeling of solar cell. This 

chapter has also presented the objectives to be achieved.  

 

Chapter 2 will focus on the semiconductor device physics that is pertinent to the 

photovoltaic physics. Besides the fundamentals, some of the significant models will be 

discussed to familiarize the reader with the existing analytical approaches so far.  

 

Chapter 3 is the crucial chapter that will develop the core analytical model. This chapter 

will lead the way to gradual development of the model and hence fulfilling the objectives 

one by one.  

 

Chapter 4 provides the basic of TCAD modeling of solar cell. It explains the ATLAS and 

COMSOL numerical model, which is developed in this thesis to support and verify the 

analytical model.  
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The results and analysis are presented in chapter 5. The developed analytical model is 

applied for various device structures here. Besides, this chapter runs a series of analysis 

to check how robust the model is when the several device parameters are widely varied. 

 

The conclusion based on the analysis is drawn in chapter 6. Besides, this chapter offers 

the future scope and focuses on the possibilities from this research.  

 

Finally, Appendices A to E provides the mathematical details, briefly introduces to 

special mathematical functions, refers to the standard solar spectrums and documents the 

numerical coding of solar cell used in ATLAS device simulator. 
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CHAPTER 2 

DEVICE PHYSICS OF SOLAR CELL 
 

 
2.1. Introduction 

A solar cell is just a simple p-n junction that can absorb solar irradiation and transform 

the photo-excitation into electricity. The performance of the solar cell depends on the 

material used for photovoltaic action and the inherent physics that comes with it. To 

increase the comparative performance of a cell, several key parameters (e.g. efficiency) 

have to be studied meticulously and tailored wisely. Again, these parameters depend on 

the minority carrier transport and the current density. Therefore, the principles of carrier 

drift, diffusion, generation, and recombination, as well as their contribution in the 

transport equations and the current-voltage characteristics will be the focus of this 

chapter. Gradually, other non-ideal physics of photovoltaic operation will be introduced 

step-by-step. Understanding these parameters will certainly pave the way to designing 

more efficient solar cell.  

 

One way to comprehend the solar cell is to develop analytical models that can predict the 

optical and electrical behavior reliably. These models can offer us the insight in 

optimizing the photovoltaic devices. Hence, some of existing prominent models will be 

discussed here. 

 

In summary, this chapter will serve two purposes: at one side, it will laid the foundation 

of photovoltaic physics to help the evolvement of this thesis; on the other hand, it will 

introduce some of the well-established analytical models, focusing on their individual 

strength, development technique, approximations, advantage, applicability and 

limitation. 
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2.2. Solar Cells: Operating principle 

The photovoltaic effect is the process of converting the light energy into electrical 

energy. The solar cell is the semiconductor device that employs this photovoltaic 

conversion technique to make use of the terrestrial and extraterrestrial solar spectrum. A 

solar cell has three essential components:  

 Light absorbing material 

 A built-in electric field 

 A conductive contact layer e.g. transparent conducting oxide (TCO) layer  

When photons are absorbed in a material, a pair of electron and hole (EHP) is generated 

inside the absorbing material. After EHP generation, a built-in field will act differentially 

on this pair and pull out these excited EHP, before they are lost by recombining together. 

The presence of separating electric field is a crucial mechanism for all kinds of solar cell. 

The separated carriers are then fed to an external circuit via conductive contacts to get 

electrical work.  

 
Fig. 2.1 The essential components of a typical solar cell [40] 

The energy of photons depends on the color (wavelength) of light. The material, which 

makes up the solar cell, determines the photovoltaic properties when light is applied. 

When light is absorbed by matter, such as metal, photons provide the energy for electrons 

to move to higher energy states within the material. Afterwards the excited electrons 

return to their original energy state. However, in semiconductor materials, there is a built-

in asymmetry (band gap). This allows the electrons to be transferred to an external circuit 

before they can return to their original energy state. An electromotive force can be used 



16 | P a g e  
 

to direct the electrons through a load in the external circuit to perform electrical work 

(fig 2.2).  

 
Fig. 2.2 Photo-generation and recombination in a simple p-n solar cell [41] 

 

2.3. Performance parameters 

The performance of any solar cell module is determined by measuring some specific 

quantities. The most prominent parameters, which are generally used for comparing 

photovoltaic devices, are introduced here briefly. 

 

2.3.1. Dark and Light J-V Characteristics 

It is useful to characterize a solar cell in terms of the current it produces at a given voltage, 

which is typically represented as a current density vs. voltage (J-V) curve. The total 

current is normalized via the area of the solar cell to obtain a current density J. A typical 

J-V curve is shown in Fig. 2.3.  

 

Dark current (JDark) and illumination current (JL) together determine the current-voltage 

characteristics of solar cell. Dark current is the current of p-n junction without any 

external photo-excitation. It is evident from fig. 2.3 that the illuminated J-V curve can be 

found simply by adding a photogeneration current to the dark J-V curve. In other words, 

the dark J-V curve gets shifted from the first quadrant (power dissipating mode) to the 
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fourth quadrant (power generating mode) when light is incident on the cell. Hence, it can 

be said that typical solar cell exhibit superposition of currents [42]. 

 

 
Fig. 2.3 Typical J-V characteristics of a p-n junction diode in the dark and under 

illumination 

 

The dark current flows in the opposite direction to the illumination current. So, the net 

current is reduced from total generated photo-current. That’s why, one of the main 

concerns of improving solar cell design is to reduce dark current component. The 

equation for the dark current is identical to the p-n junction current [43]. 

0 exp 1Dark
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qVJ J
K T
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Where, J0 is the dark saturation current density [44]. Fundamentally, J0 corresponds to 

the recombination current of the solar cell, when the cell is in thermal equilibrium with 

the ambient temperature. On the other hand, the illumination current depends on the 

incident photon-flux on the surface of the cell per unit time for a band of wavelength 

(d). The equation of light current [35] is given by equation (2.2)(2.3). 

( )( ) ( ) ( )
0

Energy per Photon

0 inL ph
q P
hc

I q N d d        
  

 
 

        (2.2) 
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( ) ( )in Ph
hcP P d N d

   
   

 
 0 0in    


       (2.3) 

Here, Nph() d is the number of photon incident on the surface of the cell per unit time 

in a range of d. () is the overall collection efficiency, as will be defined later in 

equation (2.12). The other symbols have their usual meanings (see ‘List of Symbols’). 

The actual current density (J) is a superposition of the contributions from both dark and 

light response of equation (2.1)–(2.3). 

0 exp 1 L
B

qVJ J J
K T

  
    

  
              (2.4) 

The J-V characteristic of fig. 2.3 is generally represented as in fig. 2.4, which is an 

inversion of J-V curve about the voltage axis. Several important parameters, that reflects 

the performance of photovoltaic conversion, can be extracted from the curve of fig. 2.4



 
Fig. 2.4 A Typical J-V curve [45] with the open circuit voltage, Voc, short circuit current 

density, Jsc, and maximum power operating point (Vmp, Jmp) labeled  

 

2.3.2. Open Circuit Voltage (VOC) 

The open circuit voltage is the voltage across the solar cell when the net current is zero 

(or, alternatively when the load resistance R). For this condition, the generated 
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photocurrent is balanced by the forward-biased junction current, as indicated by equation 

(2.5).   

0 exp 1    ; O  pen circuit condition OC
L

B

qVJ J
K T

  
   

  
    (2.5) 

Low values of VOC are valuable indicator of material defects and inferior quality of 

semiconductor. VOC is also temperature dependent and decreases linearly with increasing 

T. 

 

2.3.3. Short Circuit Current Density (JSC) 

The short circuit condition is another limiting case which occurs when the load resistance 

is zero. In other words, when the terminals are connected to one another with no external 

load; hence the voltage across the cell, V=0 in equation (2.4). 

Short circuit condition          ; SC LJ J   (2.6) 

The short circuit current is an indicator how well the device can absorb the incident 

photons. ISC increases linearly with increasing temperature (T). Besides, the short circuit 

current increases with band gap narrowing (BGN). BGN changes the absorption 

coefficient and hence changes the ISC. 

The relationship between the Voc and Isc is given in [44],  

1SC
OC

o

JkTV ln
q J

 
  

 
    (2.7) 

 

2.3.4. Maximum Power Point (MPP) 

The output power (P) of the solar cell can be determined for any point of the J-V curve. 

The Maximum Power Point (MPP) represents the point over the P–V curve, which gives 

best possible power. This corresponds to an optimum voltage (Vmp) and current density 

(Jmp), as indicated in fig. 2.32.4. MPP can be easily located by differentiating the P-V 

curve. Ideally, this maximum power point should be the operating point of the device. It 

has been reported that maximum power point (Vmp, Imp) shows parabolic variation with 

T [37]. 
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2.3.5. Fill factor (FF) 

The fill factor is defined as the ratio of maximum power and total available power. Fill 

factor (FF) measures how “square” the output I-V characteristics are. 

mp mp

OC SC

V J
FF

V J

 
 
                

(2.8) 

The fill factor degrades if emitter layer is too shallow and doping in emitter is too small.  

 

2.3.6. Efficiency () 

The efficiency of a solar cell is the ratio of the output power to the incident optical power 

(Pin). 

oc sc

in

V J FF
P

 
 
 
            

(2.9) 

The input power (Pin) for standard solar spectrum is specified in Appendix D. The 

efficiency of photovoltaic solar cells gets limited because of several losses and non-

idealities [37]. Some major factors are – 

 

I. Reflection losses on the surface 

The reflection loss is generally negligible in typical solar cells [37]. Most of the 

cases, the reflection coefficient r() is small enough to be neglected; nonetheless 

the loss can be accounted in the generation term easily. Besides, the device 

structure with Anti-reflection coating (ARC) can further minimize the reflection 

loss. 

 

II. Incomplete absorption of incident photon 

There is a cut-off wavelength beyond which the absorption coefficient rapidly 

decreases [46]. This limitation results from the bandgap of the material after 

which the photon energy is not sufficient enough to generate EHP. The limit of 

spectral utilization for silicon (and others) is illustrated in fig. 2.5.  

 

 



21 | P a g e  
 

III. Utilization of only part of the photon energy for the creation of EHP 

The energy of an incident photon that creates EHP may exceed the bandgap 

energy. This excess energy is dissipated to lattice vibration as heat (phonon). For 

the high frequency part of the spectrum, the heat loss is more dominant. It is 

already reported from the numerical evaluation that maximum 46% of the 

incident solar energy can be used in generating EHP for a band gap of 0.9eV [37]. 

This result is based on the assumption that all photons having higher energy than 

the bandgap will be absorbed in semiconductor to generate one EHP. 

 

IV. Incomplete collection of the EHPs by diffusion to the p-n junction 

The EHP has to be separated for collection. The electric field at the space-charge 

region works as the central mechanism for separating carrier pairs. Since not all 

the generated EHP are at the space-change region, only EHPs that are within 

diffusion length of the junction will be collected. The EHP can recombine before 

reaching the junction, which will, in turns, hamper the collection efficiency. 

Successful collection depends on the location of EHP, carrier diffusion, carrier 

recombination and lifetime. It has been demonstrated that optimum collection 

efficiency will be obtained if the layer between the light exposed surface and the 

p-n junction is as thin as possible, and if at the same time the minority carrier 

diffusion length is as large as possible [41]. 

 

V. The ratio of VOC to Energy Bandgap (EG) 

The band gap determines the energy available for photovoltaic action. The 

highest achievable voltage, which is VOC, is generally smaller than EG. The reason 

behind this is apparent bandgap narrowing (BGN) and the typical operating 

condition of the solar cell at low injection level. It is obvious that better VOC can 

be achieved when the semiconductor with large bandgap is used as solar cell. On 

the downside, high band gap material will reduce the percentage of spectrum 

utilization. Fig. 2.5 shows that GaP (EG  2.25eV) can only use the high frequency 

portion, while Silicon solar cell gets benefit from most of the spectrum. 
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Fig. 2.5 The energy spectrum of the sun, and the parts of this spectrum utilizable in the 

generation of electron-hole pairs in semiconductors with energy gaps. An abrupt 

absorption edge with complete absorption and zero reflection on its high energy 

side are assumed [37] 

 

VI. Dependence on the values of fill factor (FF) 

Geometrically, FF indicates the position of Maximum Power Point (MPP) for 

which a largest square can be inscribed into the J-V curve.  Like VOC, higher FF 

can be obtained for high bandgap material [37] and by tailoring the impurity 

concentration. 

 

VII. Degradation of the performance due to internal series resistance 

The presence of series resistance will degrade the J-V curve (and, hence the 

efficiency). Carefully designing the emitter layer thickness and the doping level, 

as well as resorting to proper technique of contact formation, the negative effect 

of series resistance can be minimized. 

 

 

 

 



23 | P a g e  
 

2.3.7. External Quantum Efficiency (EQE) 

External Quantum efficiency (EQE) is the probability that an incident photon of energy 

Eph will be absorbed in the solar cell and excite one EHP that will be collected before 

recombining. In mathematical terms, 

 

Rate of charge carriers collected under Short circuit condition, ( )
Total Incident photon rate, ( )

( ) q

ph
QE

n
n




       (2.10) 

 

EQE determines the short-circuit photocurrent density (JSC) by relation (2.11).  

ph

Incident Specturm

ph ph(E ) EQE(E )dEspecSC IJ q              (2.11) 

 

2.3.8. Collection Efficiency 

The collection efficiency is defined as the ratio of EHPs separated by the space-charge 

electric field to the total number of generated EHPs (only for absorbed photons), as given 

in equation (2.12). 

 Coll

number of minority carrier collected by the junction

Number of photons absorbed 
          (2.12) 

 

The effectiveness of a photovoltaic device can be understood by the emitter collection 

efficiency (), which depends on the actual photogeneration current Jph(x) and integrated 

carrier generation current, Jgen(x). The collection efficiency of the cell can be calculated 

from the minority carrier current density Jn() and Jp(), as shown in relationship (2.13) 

– (2.14). 

( )
ph ph

coll w
gen

J J
J q G x dx

  

0
   (2.13) 

 ( )

      Fraction of
Transmitted Photon

( ) ( )
( ) 1 e
n p

coll d
Ph

J J
qN  

 


 




    (2.14) 
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It is noteworthy that the high collection efficiency does not necessarily mean high output 

efficiency. Improving the collection efficiency may increase the losses in series 

resistance and this may offset the improvement in collection efficiency [36].  

 

When the collection efficiency considers the reflection losses, it is called overall 

collection efficiency (). 

 ( )( ) 1 ( ) 1 e d
collr      

       (2.15) 

To achieve higher overall collection efficiency, it is apparent from equation (2.15) that 

reflection losses have to be minimized. Over some specific spectrum (near 5000 A– 

7000 A), scattering reflection loss is significant e.g., losses from direct reflection. As 

seen in fig. 2.6, more than 6% loss is observed towards long wavelength (after 1100 A). 

As stated before, this reflection loss can generally be neglected [35] because of its small 

value.  

 
Fig. 2.6 Light reflection from a solar cell surface at different wavelength [35] 

 

2.3.9. Spectral Response 

The spectral response S() of a solar cell is defined as, 

( )( )
( )spec

SCJS
E





      (2.16) 

Here, Espec() is the spectral irradiance (see appendix D). 
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2.4. Models for Describing Solar cell 

To understand the real-time performance and optimization of solar cell, both optical and 

electrical part have to be focused on. The behavior of the solar cell can be predicted by 

developing a comprehensive model which self-consistently treat the physics behind the 

optical and electrical performance. Some of the prominent models are introduced here. 

 

2.4.1. Optical Models 

There are several optical models that can predict the optical absorption inside the device. 

The major goal of these models is to determine the amount of light absorbed inside the 

device. Each of the models employs some underlying assumptions that may not be 

applicable to all, rather suitable to specific device structures. A general assumption is 

that the photon with energy greater than the semiconductor bandgap will generate one 

EHP. This actually indicates that the absorption rate along the device is equivalent of 

generation rate. The generation rate of EHP, for a certain optical frequency inside the 

absorbing semiconductor, can be calculated from the divergence of the poynting vector 

[45], 

''( ) ( , )
( , )

2

2Optical

E r
G r

  
     (2.17) 

 

Here, () stands for the imaginary part of the complex permittivity of the 

semiconductor. The complete discussion of the optical models is beyond the scope of 

this thesis; only some important optical models are summarized in this section 



Beer-

Lambert 

Law 

 This is a basic model that describes the exponential absorption (Si) 

of  light intensity (I) by  

 ( ) exp0 SiI x I x   

This 1D relationship is useful for calculating absorption in simple 

structures. On the contrary, the applicability of this model is limited 

when thin-film anti-reflection effects or Fabry-Perot type standing 

wave pattern is dominant [45]. 
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Ray 

Tracing 

 This technique is based on ray optics that uses Beer-Lambert law to 

calculate the reduction of rays’ intensity inside the structure. It also 

incorporates the ray reflection and Snell’s law of refraction inside 

any multidimensional structure [47]. One limitation of this approach 

is from basic optics that demands the feature size of the structure 

has to be greater than the wavelength. Another concern of this 

method is that dense beams of rays have to be considered for 

accurate modeling of the absorption of multiple photons. 

 

Numerical 

(FTDT) 

 This numerical approach uses Maxwell’s equations (see below) and 

is applicable when the feature size is comparable to or smaller than 

the wavelength.  

D H
t




    
and,  

0

1H E
t 


  


 

This method uses the classical electrodynamics to simulate the 

electromagnetic light wave inside a structure in time domain. 

Although the model can solve wide range of device, solving large 

geometry using FTDT can be computationally intensive. 

 

2.4.2. Electrical Models 

To understand the electrical performance of the solar cell, there exists several electrical 

models that can shed the light on the underlying physics. The general equivalent circuit 

proposed for the solar cell can predict the basic behavior of the cell under illumination. 

One common equivalent circuit [44] is shown in fig. 2.7 below,  
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Fig. 2.7 An equivalent circuit [45] that models the J-V behavior of a solar cell  

The parameters of this circuit and the contribution from their presence are summarized 

in table 2.1. 

 
Table 2.1 The parameters in Equivalent circuit of Solar cell 

photocurrent 
source, Iph 

 This represents the illumination current which does not depend on 
biasing and remain constant for a certain spectrum. 

 
 

 

Ideal Diode 
 

The forward biased diode is here to model the dark current. 
 

 
 

Series 
resistance  

(Rs) 
 

 This characterizes the internal losses from contact resistance 
which dissipate power parasitically. The origin of this resistance 
is the internal resistance of the device, sheet resistance of the 
emitter, BSF and TCO [45]. 

 
 

 

Shunt 
resistance  

(Rsh) 

 This represents the current leakages in the device. The origin of 
this parameter is to account for the conductive pathways in the 
device, e.g. edge and cracks. 

 

The current-voltage characteristic [41] of the above circuit is given by equation (2.18). 

exp s s
ph

D T sh

V IR V IRI I I
n V R

  
  

   
   

 
   0 1     (2.18) 

It is true that this equivalent circuit offers an intuitive understanding of the current-

voltage characteristics, and can address the problems caused by poor contacts and shunt 

resistances. But this thesis is more focused on the physics-based modeling and the 

microscopic description of electrical performance. This work will explore the underlying 

equations behind these types of equivalent circuits. Hence, to aid the development of our 

model that will be developed in the next chapter, the rest of this chapter will discuss the 

fundamental device transport equations and the prominent physics behind the transport 

mechanism.  
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2.5. Fundamental Transport Physics of Solar Cell 

2.5.1. Mobility Models  

On the macroscopic level, the carrier can be approximated to move at constant drift 

velocity (vd) under the influence of electric field. For typical operation of solar cell, the 

effect of electric field on carrier mobility is not that significant. Lattice and ionized 

impurity scattering are the dominant factors of carrier mobility, which depends on lattice 

temperature (equation (2.19) below).  
3/2

3/2 ,      I
L L I

D A

C TC T
N N

 

 
 


    (2.19) 

Phonon scattering, impurity scattering and carrier-carrier scattering are important 

mechanism in solar cell. Hence, Klaassen Mobility Model [48] can be quite useful in 

modeling solar cell, especially for simulation purpose. 

 

Empirical expression of mobility vs. doping is also available in literature. For example, 

hole mobility can be describe by the equation (2.20) [49] or equation (2.21) [9]. 

3
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  
 
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 
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
 

 
 

 
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   (2.21) 

The values of these parameters can be found in [9]. Another simplified empirical 

relationship is proposed in [50]. They have assumed a power-law variation of mobility 

on the doping density (N), as in equation (2.22). 

m(N) MN      (2.22) 

As seen in fig. 2.8, equation (2.22) is reasonably good over wide range of doping for the 

fitting parameters listed in table 2.1. The fit is even better for electron mobility. 
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Table 2.2 Values of M and m [8] for best predicting the experimental mobility 

Electron Mobility M = 1.1  1010 cm–0.86 V–1 s–1 m = 0.42 
   

Hole Mobility M = 1.4  109 cm–0.86 V–1 s–1 m = 0.38 

 

 
 

Fig. 2.8 Hole mobility vs. doping variation [8]: lines represent the empirical relationship 

and the symbols stands for the experimental data 

2.5.2. Carrier Recombination  

Carriers recombine both in the bulk and at defective interfaces. Typical sources of 

recombination in solar cells include  

 Band-to-band radiative recombination 

 Auger recombination 

 Trap-mediated (Shockley-Read-Hall) recombination  

 

The recombination mechanisms are summarized in the fig. 2.9. 
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Fig. 2.9 The process of S.R.H., Radiative and Auger recombination [51] 

 

2.5.2.1. Shockley-Read-Hall recombination 

Trap-mediated recombination is the dominate recombination mechanism in the 

photovoltaic materials. Traps are localized electronic states in the energetic band-gap of 

the semiconductor. Typical sources of traps include chemical impurities and 

crystallographic defects in the material. The statistics of recombination through such 

states is described by Shockley-Read-Hall statistics. For a trap located at energy ET, the 

valence band of the material, the recombination rate is given by – 

   

2

/ /
. .

i iT T

i
SRH E E KT E E KT

i iSRH n SRH p

pn nR
p n n n 

    
   
   




  

  (2.23) 

1
SRH

TthN




 
 
 
 

       (2.24) 

Where  is the trap capture cross-sections for electrons and holes, respectively, NT is the 

concentration of trap states, ni is the intrinsic carrier concentration and SRH is carrier 

lifetime. According to Scharfetter relation [47], SRH lifetime can be related with the 

doping density by equation (2.25). 
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   (2.25) 

Where  and Nref are fit parameters, max and min are the best and worst case carrier 

lifetimes, and NA and ND are the bulk acceptor and donor doping. 

 

2.5.2.2. Radiative Recombination 

This recombination is a dominant recombination mechanism of direct band gap 

materials. In this process, the electron in conduction band and the hole in valance band 

recombine together, and emit a photon having the energy difference of the carriers. Hence 

this recombination is actually the opposite mechanism of photon absorption. The 

recombination rate under radiative recombination is expressed by the following equation 

[51], 

 2
Radiative

Material 
Constant

iR B pn n     (2.26) 

For low injection condition in N-type material, the radiative recombination can be 

approximated by equation (2.27) 

0

.radiative
Radiative

p

p pR


 
   
 

     (2.27) 

Since Silicon is an indirect bandgap semiconductor, radiative recombination will not be 

dominant in Silicon solar cell. But for other photovoltaic material with indirect band, this 

recombination will be a significant mechanism for EHP loss.   

 

2.5.2.3. Auger Recombination 

When electron and hole recombine, an energy equal to the difference of their individual 

energy states is released. Unlike radiative recombination, if the energy is passed to 

another electron (or hole), the electron (or hole) becomes excited. Afterwards, the excited 

carrier can lose the energy through phonon emission. This is the process of Auger 

recombination. From the discussion, it is clear that Auger recombination is the inverse 

process of impact ionization. Auger recombination rate can be expressed mathematically 

by equation (2.28). 
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  2
Auger n p iR C n C p pn n       (2.28) 

Where, Cn and Cp are temperature dependent coefficients. Under low injection condition, 

Cn  Cp. This reduces equation (2.28) to a simplified form, as shown below – 

0
Auger .Auger 2

.Auger 0

1when, p
p n

p pR
C n




   
     

  
     (2.29) 

The Auger recombination is a dominant recombination mechanism for the heavily doped 

regions of solar cells [51].  

 

In particular it is important to note that Si, the most widely used photovoltaic material, is 

fundamentally limited by SRH and Auger recombination due to its indirect band gap and 

correspondingly low radiative efficiency [52]. The net recombination rate is the 

contribution from all the above mechanisms.  

Total Radiative Auger

Total SRH Radiative Auger

or, 
1 1 1 1

SRHR R R R

   

  

    
         
     

 (2.30) 

The empirical relationship of lifetime of minority carrier exists in literature [49], e.g. – 

13 31 2

1( )
50 2x10 ( ) 2.2 10 ( )P x

N x x N x


 


          (2.31) 

Another author [8]  presented a comparative study of several experimental data of 

minority carrier lifetime and proposed a power-law dependence of lifetime. This doping 

dependent lifetime [8, 31] is more straightforward to apply in analytical models. The 

empirical relation of mobility is shown in equation (2.32). 

 ( ) kN KN      (2.32) 

The fitting values of K and k are shown in table 2.2 and the fitting is illustrated in fig. 

2.10. K is known as Band-to-band Auger recombination coefficient. For these 

parameters, the empirical lifetime has good match with existing models and experimental 

data [50, 53]. 
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Table 2.3 Values of K and k for best predicting the experimental lifetime [8] 

Hole  
recombination 

lifetime 

15 18 310  < N < 5  10 cm   K = 1.3  1012 cm–3/s k = 1 

18 20 35  10  < N < 10 cm  K = 5.5  1030cm–6/s k = 2 

Electron 
recombination 

lifetime 
15 20 310  < N < 10 cm   K = 1.0  1031 cm–6/s k = 2 

 

 
Fig. 2.10 Data for minority-hole lifetime versus doping density. The solid line is a fit 

according to equation (2.32). 

 

2.5.2.4. Surface Recombination 

This is basically SRH recombination through the surface defect states. The EHP can 

recombine at the material-interface or at the grain boundaries. Simple defects inside the 

semiconductor create discrete energy levels inside the band gap. Hence, it is expected 

that abrupt termination of the material surface will result in several defect energy levels 

(as seen in fig. 2.11).  
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Fig. 2.11 Surface recombination in semiconductors [51] 

The SRH expression in equation (2.24) has already revealed that the carrier lifetime is 

inversely proportional to the defect density, NT. Therefore, the higher defect density at 

the surface will certainly reduce the minority carrier concentration through 

recombination. The modified SRH Equation that includes the surface states will be 

equation (2.33). 
2

1 1

i

P n

SRH surf
pn n

n n p p
S S

R 

   
  

   





    (2.33) 

1 1with, ,            trap trap
ieff ieff

E E
KT KT

n n exp p n exp   
   
  




   

Sn and Sp are the surface recombination velocities (SRV) of electron and hole. SRV is a 

measure of the diffusion process which arises from the carrier gradient between the 

surface and the bulk [43]. The diffusion towards the surface can be described by the 

following equation – 

pˆ pP P Surf
Surf

dD n S
dx

 
  

 
   (2.34) 

2.6. Basic Equations for modeling Solar Cell 

The behavior of any semiconductor device, under equilibrium or under excitation (light, 

electric field etc.) can be described by using five differential equations [43]. These inter-

dependent equations of (2.35)-(2.39) are the basic of semiconductor device analysis. 

They are – 
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A. Poisson’s Equation 

This expresses the relationship between the electric field E (or, electrostatic 

potential, ) and the space-charge density, .  

2

2
( ) ( ) ( )d x dE x x

dxdx
 


        (2.35) 

  is the static relative permittivity of the medium. 

 

B. Electron and Hole Current Density 

The current density equations describe the carrier transport mechanisms, which 

consist of drift mechanism driven by an electrostatic field and diffusion 

mechanism driven by the random thermal motion of individual carriers. The 

equations are  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )p Diffusion Drift p p
dp xJ x J x J x qD x q x p x E x

dx
      (2.36) 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )n Diffusion Drift n n
dn xJ x J x J x qD x q x n x E x

dx
           (2.37) 

Here, n and p are electron and hole densities respectively, µ represents mobility, 

and D stands for the diffusivity constants. Both hole and electron current have 

drift component and diffusion component. The electric field contributes in the 

drift, while the carrier concentration gradient causes the diffusion according to 

Fick’s law. 

 

C. Continuity Equation 

The continuity equation consists of derivatives of current density, carrier 

generation term and recombination term.  

( )1 ( ) ( )p
p p

dJ x
R x G x

q dx
               (2.38)    

( )1 ( ) ( )n
n n

dJ x R x G x
q dx

          (2.39) 

Combining the above equations will result in transport equations of carriers, as shown in 

(2.40)-(2.41) below. These differential equations are the core equations in deriving 

analytical solution and finite element based simulation. Several difficulties arises in 
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solving these coupled equations without any approximations. Besides, the accuracy of 

incorporating different approximations is also a major concern. 

2

2
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 0n n n n n

d n x dn x dE xD x x E x x n x R x G xdx dxdx
         (2.40) 

2

2
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 0p pp pP

d p x dp x dE xD x x E x x p x R x G xdx dxdx
     

 
(2.41) 

Since all the fundamental equations and necessary physics are introduced, the next 

section will discuss some prominent solar cell models, as well as present the recent 

analytical solutions under dark and light response. 

 

2.7. Basic Model of p-n Junction 

The limiting case of efficiency from unified optical and electrical idealization of a Silicon 

solar cell is calculated by Shockley and Queisser [54] using the principle of detailed 

balance. The assumption behind this maximum efficiency is that the solar cell absorbs 

all the incident photons, and no electron-hole pair is lost from radiative emission. The 

model developed by Shockley is rudimentary in nature. The approach of his work will 

be presented here briefly. 

 

2.7.1. Shockley p-n Junction model Under Equilibrium 

An abrupt-junction p-n solar cell under thermal equilibrium is taken for this simple 

model; so, there is no external photo-excitation or biasing. The abrupt junction 

approximation works fine for epitaxial growth of the junction, but gives significant error 

for diffused layers [51]. For this simplified structure (fig. 2.12), the calculation of carrier 

density, electric field and electrostatic potential are the prime interest.  
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Fig. 2.12 (a) Simple p-n junction structure, (b) The space-charge density ρ across the 

junction, (c) Band bending across the junction 

When p-type and n-type materials are contacted, the Fermi levels become identical across 

the junction (fig. 2.12). The mobile charge carriers from one side of the junction travel 

to the other side. This introduces band bending of the conduction band-edge energy and 

valence band-edge energy. A diffusion current of electrons from the n-doped to the p-

doped semiconductor leads to a positively charged region in the n-type semiconductor. 

Similarly a layer of positive charge is accumulated in the p-type layer. The space-charge 

region is almost completely depleted of mobile charge carriers, hence the name 

‘Depletion region’. The resulting electric field produces a drift force that stops the 

diffusion current. The diffusion and drift forces are equal at equilibrium conditions. For 

quasi-neutral region beyond the depletion region, the donor and acceptor charges are 

balanced by electrons and holes, so the space-charge density there is zero.  

 

One of the assumptions that is commonly used in modeling solar cell is low injection 

condition. This condition requires that the majority carriers are the dominant carrier 

types. This can be expressed by the following conditions  
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(Majority Carrier) (Minority Carrier) : in n-type material
(Majority Carrier) (Majority Carrier) : in p-type material

n n

p p

n p
p n  

 

In other words, the minority carriers can be neglected when compared to the majority 

carriers. Inside the quasi-neutral region, the majority carriers are almost equal to the 

dopant density, if the donors/acceptors are fully ionized. Under low injection 

approximation and with thermal equilibrium, the carrier concentration follows the 

Boltzmann statistics [43]. 

exp


 
 
 
 

c F
c

E E
n N

kT     (2.42)
 

exp


 
 
 
 

F v
v

E E
p N

kT     (2.43)
 

Where Nc and Nv are effective density of states for conduction band and valance band, 

respectively. To find out the potential profile inside the depletion region, rectangular 

charge density approximation is used in Shockley’s derivation (see fig. 2.12(b)). The 

space charge density inside the depletion region is 

 

( ) Dx qN    for,    0 nx W     (2.44) 

( ) Ax qN     for,   0PW x      (2.45) 

Here, Wn and Wp stand for the depletion edge at the n and p side respectively (see fig. 

2.12).  

2 1Si bi a
n

d a d

V N
W

q N N N

  
       

   (2.46) 

2 1Si bi d
p

a a d

V N
W

q N N N

  
       

   (2.47) 

Using Poisson’s law from equation (2.35), the electric field can be obtained by 

integrating (2.44)-(2.45).  

( ) ( )A
P

Si

qNE x W x  


 for,  0PW x     (2.48) 
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( ) ( )D
n

Si

qNE x W x  


 for,      0 nx W    (2.49) 

Finally, using the electric field variation, the potential profile inside the depletion region 

can be derived [44]. As seen in equation (2.50)–(2.51), the potential shows quadratic 

dependence on distance. Fig. 2.13 shows the electric field and potential variation. 

x( ) (2 )2
A

P
Si

qNx W x  


  for,  0PW x     (2.50) 

x( ) (2 )2
D

P
Si

qNx W x  


  for,      0 nx W    (2.51) 

The explicit relation of the built-in potential, which results from the charge inside the 

depletion region, can be derived from (2.50)–(2.51).  

 2 2

2 n pD Abi
qV N W N W


       (2.52) 

Under equilibrium, the diffusion current of one carrier is compensated by the drift current 

of same type. Hence, at thermal equilibrium, there is no net current flow. The electron 

diffusion current from the n-doped side recombine with the holes in p-doped side, and 

the electron drift current from the p-doped side to the n-doped side is supplied by the 

thermally generated electron at the p-doped side. 

 

 
Fig. 2.13 (a) Space-charge density ρ(x); (b) electric field, E(x); (c) potential φ(x) across 

junction [42] 
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2.7.2. Shockley p-n Junction model Under non-Equilibrium 

When external voltage (Va) is applied in forward bias, the equilibrium condition is 

disturbed and the potential barrier across the junction changes. A forward bias decreases 

the potential barrier and increases the recombination current with the Boltzmann factor 

exp(Va/VT). But the thermal generation is not influenced by the applied voltage [42]. In 

summary, the generation-recombination current density under non-equilibrium will be – 

a

a

. .V

. .V

Generation Current Density: 
e gen e genV Equilibrium

h gen h genV Equilibrium

J J

J J




 






            (2.53) 

a

a

. .V

. .V

Recombination Current Density:

exp

exp

 

a
e rec e recV Equilibrium

T

a
h rec h recV Equilibrium

T

V

V

V

V

J J

J J





  
  

 


      

            (2.54) 

   . . . .

0

Total Current Density:  

exp 1                      or,   a

T

e h e rec e gen h rec h gen

V

V

J J J J J J J

J J 

     

   
   

   

         

(2.55) 

Equation (2.55) is the Shockley equation. In case of high reverse bias (Va < 0), the 

exponential term in (2.54)–(2.55) can be neglected and total current is only the reverse 

saturation current (J0). 

 

The Shockley model described the ideal p-n junction with the emphasis on the 

recombination mechanism. This basic model does not consider any special 

semiconductor physics, e.g. variable carrier lifetime etc. Hence, more elaborate models 

under both dark and light conditions will be the topic of subsequent sections. 

 

2.8. General Analytical models of solar cell 

There are several analytical models [1, 7-9, 15, 53, 55] that consider more physical 

phenomena in their derivations. Being unable to solve the transport equation in a compact 

form, these works have either assumed constant lifetime/mobility [36]; or assumed 
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special functional relationship [8]; or taken an iterative approach [2, 5, 9]; or used 

coordinate transformation [3]; or resort to numerical approach [13, 56]; or discarded the 

generation term altogether [7, 15]. To focus on the limitations of these previous models 

and to comprehend the accomplishment of our work (in chapter 3), two of the prominent 

models for dark current and one model for the illumination current are presented here 

briefly.  

 

2.8.1. General Analytical models of solar cell Under Dark Condition 

To get a good idea about the model under the dark condition, a solar cell structure of fig. 

2.14 can be considered.  

 

The n-type emitter is non-uniform and p-type substrate has constant doping. The steady 

state transport equations for this quasi-neutral n-type emitter region are   

( )( ) ( ) ( ) ( ) ( ) n n n
dn xJ x qD x q x n x E x

dx


                    
(2.56)

 

( )( ) ( ) ( ) ( ) ( )  p p p
dp xJ x qD x q x p x E x

dx


  
(2.57)

 

0( ) ( )1 
 

p

P

dJ x q p p
q dx      

(2.58)
 

  
Fig. 2.14 A one-dimensional quasi-neutral n-type emitter region with graded doping profile  
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There is no generation term in the continuity equation, which makes this a dark current 

model. Under full ionization and low injection, n(x)  ND. For equilibrium condition, 

P0(x) = nio
2/NDeff. Here nio is the intrinsic carrier concentration and NDeff is the effective 

doping concentration. The hole quasi-electric field is given by 

 lnP Deff
KT dE N
q dx

 
  

 
  

Equation (2.59) results in the following equation for minority carrier current, 

ln( )
( ) ( )

 
   

 

Deff
p p

d N dPJ x qD x p
dx dx     

(2.60) 

The boundary conditions at the top surface and at the junction are  

2

(0) exp 1
(0)

io BE

Deff T

n Vp
N V

  
   

       
(2.61) 

 0( ) ( ) ( ) ( )P E P E E P EJ W qS p W P W qS p W  
        

(2.62) 

Up to now, the equations introduced are common in all the approaches taken by the 

authors. But to solve the equations, several approximations are employed to make the 

solution easy.  

 

Previous analytical works have shown heavy dependence on iterative approach [7, 15]. 

Beside this technique, coordinate transformation approach has also been used. These two 

models will be discussed here. 

 

2.8.1.1. Integral and Iterative Approach  

Iterative solutions are one of the attempts to address the system of differential equations 

for solar cell. Park et al. [15] has proposed a systematic integral approach of analytical 

solution by integrating (2.60) from 0 to x,  

0 0
0

1 1'( ) ( ) 1 ' '( ')
( ') ( ')

x

P

p x p x dx J x
q D x p x

 
  

 
   (2.63) 

In the above equation, p(x) and J(x) are normalized quantities [15]. Equation (2.63) 

expresses the dependence of current density on the minority carrier concentration. Now, 

integrating (2.58),  
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'( ')'( ) '(0) '
( ')

x

o
P

p xJ x J q dx
x

 
        (2.64) 

Substituting the above equation back into (2.63) gives  

'

0 0
0

1 ' '( '')'( ) ( ) 1 '(0) ''
( ') ( ') ( '')

x x

o
P P

dx p xp x p x J q dx
q D x p x x

  
    

  
       (2.65) 

After substituting repeatedly, an iterative analytical expression can be obtained 

0 2 1 2
1 1

'(0)'( ) ( ) 1 ( ) ( )i i
i i

Jp x p x A x B x
q

 



 

 
   

 
             (2.66) 

Where, 

 
1

2 2

0 2
2i 1 1 20 0

1 0 1 2

2 10
2 1 0 2 1

( )1A x  
( ) ( ) ( )

1...
( ) ( )

i

x x

P P

x

i
P i i

p xdx dx
D x p x x

dx
D x p x







 


 


 

 
1

2 1

0 2
2i 1 20 0

1 0 1 2

0 2
20

2

( )1B x  
( ) ( ) ( )

( )...
( )

i

x x

P P

x i
i

P i

p xdx dx
D x p x x

p xdx
x








 


 

As seen from equation (2.66), the current and carrier concentration are coupled  together. 

Park et al. has proposed different approximations by truncating the solution at finite 

order:  

Zeroth Order Approximation The simplest approximation is to take only the 
first term in (2.66) 

 
First Order Approximation This approximation takes A1 term in (2.66) 

 

Second Order Approximation This approximation keeps both A1 and B2 term 

 

The expression developed here are not explicit in nature, rather obscure in terms of 

repetitive integration. Besides, the expression has to maintain a convergence criterion 

[15]. The fast convergence is obtained if hole quasi-Fermi potential is nearly spatially 

independent in the Quasi Neutral Emitter. This extended QE is satisfied in the small S, 

and WE << Lp. For emitters with large S, or for emitters with WE >> Lp, deviations from 
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this condition increase with distance from x = 0. Hence, their model is not strictly 

satisfactory for large Sp or thicker emitter [7].  

 

The above analytical model also does not consider the effect from the solar spectrum. 

The solution from each approximation of this integral approach and the exact simulation 

shows the region where the model fails (see fig. 2.15). 

 
Fig. 2.15 Comparison of exact numerical solution with the first- and second order 

approximation for various emitter width [7]. 

Along with Park [15], the work of Cuevas [4, 5, 38] and Rinaldi [7, 55] fall in the same 

category. The approach of Rinaldi is similar to integral technique, where the iterative 

solution is improved by adding another approximation (by considering the third term in 

the expansion).  

 

2.8.1.2. Coordinate Transformation Approach 

This attempt is taken by Burger et al. [3]. A coordinate transformation technique is 

applied to simplify the transport parameter. Moreover, this transformation shows 

advantageous symmetry in the developed equation. This method uses two first-order non-

linear differential equations for the dimensionless surface recombination velocity s and 

its reciprocal r [3]. The drawback of this work is that an approximate initial solution has 

to be taken, which is obtained from solving a uniformly doped emitter. Besides, this is 

actually an incarnation of previously described iterative approach. 
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The underlying transport equations are same as (2.58)-(2.62). The important step in the 

derivation is the introduction of a new coordinate y(x) as follows – 

0
( )

( )
x

n

dy x
L





     
(2.67) 

This coordinate transformation results in the following differential equations for a P-type 

emitter layer, 

0 0 'n
n c

n

D dJ q n J
L dx

  
   
 

    (2.68) 

0 0
n n

c
n

dJ Dq n J
dx L

 
    
 

    (2.69) 

Where,  = [n(x) n0(x)] / n0(x) and Ln
2 = Dnn. The equations (2.68)-(2.69) form a 

symmetrical set of equations. The diffusion length Ln is required for the transformation. 

Their work takes the assumption that for every y coordinate an effective surface 

recombination velocity S(y) is defined. 

( )( )
( )

nJ yS y q n y
         

(2.70) 

By introducing a dimensionless quantity s = S(y)Ln(y)/Dn(y) & its reciprocal r = 1/s, 

equation (2.68) and (2.69) can be decoupled and reduced to first order equations (see 

below). 

' s     

' rn nJ J   

From the above development, it is now possible to deploy a set of 2 linear second-order 

differential equation for Jn & , and two equivalent first-order non-linear differential 

equations for s and r [3]. 

 

linear second-order differential 
equation

 

Equivalent first-order non-linear 
differential equations

 

0

0

''' ' 0c

c

J
J

 
      

 
 

2 0

0

'' 1 c

c

Js s s
J

 
    

 
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0

0

''' ' 0c
n n n

c

JJ J J
J

 
   

 
 

2 0

0

'' 1 c

c

Jr r r
J

 
    

 
 

 

It is noteworthy to mention that their final expressions, those obtained after solving the 

above differential equations, are also in asymptotic series like equation (2.66) of Park et 

al. [15]. Besides, first-order Newton approximation is used to get the improved initial 

solution by linearizing the differential equation of s (or, r).  

 

In summary, the approach taken by Burgers et al. is just a derivatives of previous iterative 

model. Not to mention that, their work is limited to dark condition only. 

 

2.8.2. General Analytical model of solar cell Under Illumination 

Previous models discussed so far assumed an extreme assumption that has made those 

model inapplicable to solar cell. That assumption is the elimination of generation term 

(G) completely. Although those dark response models are useful for many practical 

devices, they cannot predict the electrical behavior of solar cell. This section will briefly 

introduce the analytical works that attempted to model the effect from solar spectrum. 

 

In the literature, the models for illumination conditions are very few. Even those few 

works have considered several assumptions, depending on the emitter thickness W with 

respect to the minority carrier diffusion length (LP). Three common models are 

 

Models Condition 

Transparent Model 

(T model) 

W < LP, accurate only for very thin regions, with a highly 

recombining contact and negligible bulk recombination  

Quasi-Transparent 

Model (QT model) 
W  LP 

Opaque Model W > LP 

 

To discuss the traditional approach of solving solar cell under illumination, the model of 

Daliento et al. [2] will be introduced here briefly. Their model actually follows the steps 

of coordinate transformation, as discussed in previous section. From the traditional 
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transport equations and defining the normalized excess hole concentration u(x) = (p-

p0)/p0, they transformed the differential equation as follows, 

' '
( )

2
2

0 0

2 0

p p
p

p p

S SC C

p D p Dd u Gu L
dy L L u

     
          

    
   (2.71) 

At this point, they defined a quantity Cs, and assumed Cs to be constant so that the 

differential equation can be solved. The value of Cs is obtained by minimizing the mean-

square error with the exact numerical solution under dark condition [2].  

( ) exp
( ) ( )

exp
( ) ( ) ( )

1

2

0

0 0

0 0
0

2

1
2

w x

p p

w x

p p

p x d dx
x L

Cs
d dx

p x D x L



 





  
   

  
   
    

  

 

 

 

This is certainly a huge limitation of their model which first needs the exact numerical 

solution to get Cs. Besides, the error in assumed value of Cs strongly hampers the 

accuracy of the model.  

 

The authors have compared the efficiency of their model with the Silvaco/Atlas 

simulation and another previous model [6] (see fig. 2.16). Although they are claiming 

that the final expression of efficiency directly relates the technological parameters of 

emitter, actually the relationship is obscure and not in direct form; besides, it is based on 

unsound approximations and contains a lot of integrals. Moreover, their model works 

well for high surface recombination velocity; while for lower surface recombination, it 

shows significant deviation. Other models e.g. that of Bisschop [6] or Wolf [36] has taken 

direct approach, but they assumed constant lifetime and mobility in solving the 

differential equations. 
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Fig. 2.16 Comparison between the emitter efficiency evaluated by [2] and that by the fourth-

order truncation of the Bisschop series [6], with the actual solution given by the 

numerical simulator ATLAS  

 

 

2.9. Conclusion 

The objective of this chapter is to offer the necessary background of the transport physics 

behind solar cell that will aid the development of subsequent chapters. Along with that, 

this chapter presents several prominent optical and electrical models briefly to point out 

the limitation of previous analytical approaches; this will be helpful in clearly 

understanding the success of our analytical model over the existing ones. 
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CHAPTER 3 

DEVELOPMENT OF THE ANALYTICAL MODEL  
 

 

3.1. Introduction 

The aim of this chapter is to develop a complete analytical model of minority carrier 

profile for a non-uniformly doped silicon solar cell. It is the first time for an iteration-

free and integral-free compact analytical expression, which includes solar spectrum, 

positional dependence of doping, lifetime and mobility variation, all in one model. The 

position-dependent doping turns the transport parameters (e.g. minority carrier mobility 

and lifetime) into a function of position, which leads to an analytically intractable 

differential equation. However, the proposed work will try to overcome the problem and 

offer a complete analytical solution by adopting various mathematical functions. 

Afterwards, the mathematical model will be improved gradually to achieve more general 

solution. The validity of this solution by numerical (TCAD & FEM) models will be the 

topic of subsequent chapter. 

 

This chapter is organized and developed to achieve the following objectives – 

 Establishing the analytical model for Hole concentration in n-type region, where 

the donor doping is exponentially decreasing 

 Establishing the analytical model for Electron concentration in P-type region, 

where the acceptor doping is exponentially decreasing 

 Modifying the analytical model of Hole concentration, if the donor doping is 

exponentially Increasing 

 Developing a More general analytical model without using any approximations 

in generation term G 

 Developing a Two layer model for multi-layer Solar Cell 

 Extending the analytical solution for Gaussian doping profile 

 

In obtaining the solution for doping non-uniformity, exponential doping will be 

considered. The reason behind is that exponential variation in doping is quite common 
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in device fabrication. When the emitter region of p+n junction is fabricated by 

implantation followed by a drive-in anneal, the doping profile follows an exponential 

dependence with depth [8]. Hence, exponential doping will be our choice.  

  

3.2. Analytical Model For Minority Carrier Hole Density 

An exponentially-doped n(x)–p drift field (DF) silicon solar cell is shown in Fig. 3.1. 

The analytical solution for DF solar cell structure with non-uniformly doped region is 

presented in [36]; but their derivation assumed constant lifetime or piece-wise linear 

lifetime, which made the resulting differential equations easy to solve. This assumption 

certainly is not valid when there is concentration gradient in impurity. To establish our 

model, similar DF solar cell structure of fig. 3.1 will be used. Unlike previous work, 

doping-dependent lifetime and mobility under solar spectral irradiance will be used in 

the transport equations. Besides, the solution will avoid any kind of iterative approach. 

At first, the expression of hole concentration in an n-type emitter will be investigated. 

 

In solar cell modelling, the transport parameters are generally assumed as a function of 

depth (x) only. This assumption is very common is literature [9, 15, 55] and also verified 

by numerical simulation [18]. Since the length and width dimensions are extremely large 

compared to a diffusion length for minority carriers, this assumption is reasonable. Our 

TCAD simulation also supports this assumption (see ATLAS 2-D simulation of electron 

and hole concentration in chapter 4). Hence the analysis here will be confined to one 

dimension. Besides, the minority carrier continuity and current equations will be solved 

considering the quasi-neutrality and low-injection conditions [3] under steady state. 

 
Fig. 3.1. A DF (Drift Field) solar cell structure 
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The transport equations [9] for minority carriers in the emitter region are already 

presented in chapter 2 and repeated here for easy access, 

( ) ( ) ( )p diffusion drift p
dpJ x J x J x qD q pE
dx

        (3.1) 

p

p

dJ pq qG
dx

  


                  (3.2) 

Here, JP denotes hole-current density, P is the minority carrier recombination lifetime, 

DP is hole diffusivity, p is the minority carrier (Hole) density and E is the electric field 

introduced due to non-uniform doping in emitter. Another important parameter is carrier 

generation rate (G), which is the result of exposed solar illumination. Generation rate is 

a function of depth into the material (x) and wavelength () of incident solar spectrum. 

G(, x) is generally considered as a sum of individual contributions over the whole solar 

spectrum, but it can be well-approximated by a series of three to five exponential terms 

[57, 58]. The validity of this approximation is well-established in literature [57] for 

different material and different solar spectrum. The approximated generation rate [59] of 

minority carrier can be expressed by, 

 
1

( ) i
n

b x
i

i
G x a e



                            (3.3) 

Since the emitter is non-uniformly doped, lifetime () and mobility () will depend on 

doping profile (N). For our purpose, the empirical equation of mobility [8] will be used. 

( ) mN MN       (3.4) 

Equation (3.4) can predict the minority carrier hole mobility when M = 1.4  109 cm0.86V-

1s-1 and m = 0.38. This gives very good approximations of actual experimental data. 

Power-law dependence of lifetime [8, 31] will also be used in this analysis. The empirical 

relation of lifetime is given by equation (3.5). 

 ( ) kN KN       (3.5) 

Carefully calculated values of K and k shows good match (see chapter 2) with the existing 

experimental data [53]. Hence, the above power-law dependence of lifetime will be used 

in the drift-diffusion equation. 

 

The important thing to note here is that our model will use all these general parameters 

(K, k, M, and m) to address the position dependency of mobility and lifetime in the 
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solution. Hence, the same model will be able to analyse a wide range of photovoltaic 

materials if the parameters are tailored appropriately for other doping profile & material 

properties. 

 

The electric field associated with the exponential doping is taken into account by 

equation (3.6) under quasi-neutrality condition. Equation (3.6) includes the effects from 

doping gradient in the first term and the effects of band gap narrowing in second term. 

 
ln 1 G

T
d Ed NE V

dx q dx


        (3.6) 

0

lnG T
NE efV
N

 
   

 
                (3.7) 

Equation (3.7) represents the apparent band gap narrowing data [53], where No = 7  1017 

cm-3. When doping (N) is below N0, there is no BGN and hence, f = 0. However, for N> 

N0, the BGN is significant and f = 0.75. This equation is a good approximation to include 

the heavy doping effects like Fermi-Dirac statistics, rigid band shift, band tailing and 

degeneracy. 

 

The doping profile in the emitter is given by equation (3.8). The peak emitter doping 

concentration (Nd0) and exponential decay () are positive quantities. 

0( ) x
dN eN x        (3.8) 

Considering equations (3.1)-(3.4), (3.5)-(3.7), the minority carrier hole concentration 

p(x) can be expressed in terms of doping (N), 

  

22 2

2 2

5

1

ln ln ln(1 ) (1 ) ( 1)
T

i
T

i

m k

m

i

b x

d p d N dp d N d N Nm f m f f p
dx dx dx dx dx KMV

N a e
MV







  
         

   

 
  

 


  (3.9) 

This is a second order non-homogeneous differential equation. By inserting N(x) from 

equation (3.8) into (3.9), the differential equation can be expressed as a function of device 

depth x. 
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2
2 0

2

5
0

1

( )
( 1) (1 )

i

d

T

d
i

iT

m k xm k

m mx
b x

N ed p dpm f m f p
dx dx KMV

N e a e
MV





 



 




 
 
 
 

 
 
 

     

  

  (3.10) 

Finally, substituting z = e –  (m+k) x/2 in (3.10) results in equation (3.11). 

 
2 5

2 2 2 2
2

1
(1 2 ) iD

i
i

d p dpz A z z p C z
dz dz

 


                  (3.11) 

Here,   

1f mA
m k
  

  
 

             (3.12) 

02
( )

m k
d

T

N
m k KMV









          (3.13) 

2 (1 )m f
m k





           (3.14) 

0
2 2

4
( )

m
d

i i
T

NC a
MV m k




               (3.15) 

2( )
( )
i

i
b mD

m k








          (3.16) 

Introducing  p z ( )Az u z  will reduce equation (3.11) to a non-homogeneous Bessel 

equation of order . 

 
2 5

2 2 2 2
2

1
i

i

d u duz z z u C z
dz dz

 


          (3.17) 

Here,  2 2 24 (1 ) ( 1)A m f f m m k         , which is a non-integer number 

and  iD A   . The homogeneous solution of (3.17)  can easily be obtained in terms of 

modified Bessel function of first kind. 

1 2( ) ( ) ( )u z C I z C I z       (3.18) 

If the contribution from spectrum is not included, then the right hand side (RHS) of (3.17) 

will be zero and (3.18) will be the solution of dark condition. This is exactly the approach 

of [8]. Finding the particular solution with RHS (i.e., under solar illumination) is avoided 
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by the previous works. Several authors [15, 49, 60] rather resorted to iterative scheme. 

But we insist on finding the particular solution of equation (3.17). 

 

To obtain the complete solution  u z considering the non-homogeneous term in the 

RHS of equation (3.17), the variation of parameter [61-63] will be employed. Presence 

of Bessel function in the complementary solution of equation (3.18) warrants the use of 

Hypergeometric function. The computation of this part is straightforward albeit 

moderately time consuming. The mathematical details are presented in the appendix A 

and skipped here for the readability. After applying variation of parameter and re-

substituting  p z ( )Az u z , the minority carrier profile  p z  can be expressed as 

follows, 

1 1 2 2 3
Dark Response Light Response

( ) ( ) ( ) ( )p z P z C P z C P z      (3.19) 

With, 

            1( ) ( )AP z z I z  ; 2( ) ( )AP z z I z   

         
 

 

 

 

5

3
1

2 2

1 2

2 2

1 2

( )
2sin( )

2 2( ) ; 1, ;
2 2 41

2 2( ) ; 1, ;
2 2 41

Ai

i

EP z z

z zI z F

z zI z F

 



 







     
 

  

     
 

  









 

    
   

    

   
   

   



 (3.20)              

Here, I and I  are the modified Bessel functions of the first kind and 1 2F  is the 

Generalized Hypergeometric function. C1 and C2 are constants which will be determined 

by using proper boundary conditions of certain type of solar cell.  

 

If the n-type emitter of fig. 3.1 is considered as an example, then the boundary conditions 

[8]  for this DF solar cell will be, 

 
2

exp
( )

i
j

j T

n Vp x
N x V

 
  

 
        (3.21) 

             
0

( ) ( ) 0( )
p p

x
x Ep x D x S pdp x

dx 

 
 

 
     (3.22)                   



55 | P a g e  
 

The boundary conditions can easily be modified for z using the transformation

 exp ( ) / 2 .z m k x    The 1st boundary condition in (3.21) is evaluated at

exp ( ) / 2j jz z m k x      . The 2nd boundary condition in (3.22) describes front-

surface characteristics through surface recombination velocity (Sp). Equation (3.22) 

involves the derivatives of p(z), which means the derivatives of Bessel function and 

Hypergeometric function has to be calculated first. Using the identities of differentiating 

Bessel and Hypergeometric function, ( )dp z dz can be obtained as follows (see Appendix 

A). 

1 1 2 2 3
( ) ( ) ( ) ( )dp z X z C X z C X z

dz
      (3.23) 

Here,  

 1
1 1 1( ) ( ) ( ) ( )

2
A AX z Az I z z I z I z  


  

                   (3.24) 

 1
2 1 1( ) ( ) ( ) ( )

2
A AX z Az I z z I z I z  


  

               (3.25) 

3

5

1
( ) ( ) ( )2sin( )

i

i

EX z F z F z


 


 
 

            (3.26) 

F+(z) is defined in (3.27) which strongly depends on transport constants (K, k, M, m) 

and generation coefficients (ai, bi). F–(z) is similar to (3.27) with  replaced by – and 

vice versa. 

 

  
 

2 2
1 2

2 2
1 2 1

2 12 4; 2, ;2 2 4 2 2

2( )
1

2; 1, ; ( ) ( )2 2 4

( )

A

zF

zF z

z AF I z I zz

z I z





   



      
 


  

        

 

      
   

     


  
  
  
  



  

 

     
  

 


  

       (3.27) 

Replacing the derivative in (3.22) and after some mathematical manipulations, the 

following equation can be obtained: 

1 21 2 22 23C T C T T             (3.28) 

Where,  
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21 (1 ) ( ) ( ) ( )
2

( ) m
d T p

m
m k m k

MN V z f P z zX z S P zzT
 
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  



 
  

   
   

    

   (3.29) 

0 2 2 2

2

22 (1 ) ( ) ( ) ( )
2

( ) m
d T p

m
m k m k

MN V z f P z zX z S P zzT
 
 

  



 
  

   
   

    

    (3.30) 

3 0 3 3

2

23 ( ) (1 ) ( ) ( )
2

( ) m
p d T

m
m k m k

S P z MN V z f P z zX zzT
 
 

  



 
  

   
   

    

   (3.31) 

The simplified equations obtained from the boundary conditions give the coefficient C1 

and C2. 

 
22 0 2 23 0

1
1 22 0 21 0 2

2

3exp ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

j j
j T

j j

in V P z T z P z T z
N z V

C
P z T z T z P z

  
    

  


   (3.32) 

  
1 23 0 21 0

2
1 22 0 21 0 2

2

3( ) ( ) ( ) exp ( )
( )

( ) ( ) ( ) ( )

j j
j T

j j

in VP z T z T z P z
N z V

C
P z T z T z P z

  
    

  


   (3.33) 

These simplified equations obtained from the boundary conditions give the coefficient 

C1 & C2. Replacing C1 & C2 back in equation (3.19) results in a complete analytical 

expression of Hole profile p(z) for non-uniformly doped emitter of DF solar cell. 
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Equation (3.34) is the final expression of minority carrier obtained in terms of z. This is 

the key equation of our compact analytical model. 

 

3.3. Analytical Model For Minority Carrier Electron Density 

The model that describes the minority carrier hole can be extended for electron by 

modifying the equations (3.1)–(3.7). The drift-diffusion equations for excess electron is–  

( ) ( ) ( )n diffusion drift n
dnJ x J x J x qD q nE
dx

       (3.35) 

n

n

dJ nq qG
dx

 


               (3.36) 

The lifetime and mobility for electron have similar equations as that of for hole, but 

obviously the fitting parameters K, k, M and m will be different for equation (3.4)-(3.5). 

For successful matching of electron recombination lifetime in p-type silicon with 

available experimental data [31], K = 1031 cm–6s and k = 2 results in a reasonably good 

fit. Similar fitting parameter is reported in [64] for electron mobility (M = 1.1  1010 

cm0.74 V–1s–1 and m = 0.42). As already discussed in chapter 2, these fitting parameters 

give good approximation for wide range of doping and hence this equation will be used 

in our derivation too. The induced electric field inside the device due to non-uniform 

acceptor doping and band gap narrowing will be considered by the following equation: 

ln 1 G
T

d Ed NE V
dx q dx


      (3.37) 

Considering above equations, the minority carrier electron concentration (n) can be 

expressed in terms of doping N.  
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            

 
  

 


  (3.38) 

This second-order non-homogeneous differential equation is slightly different to that of 

hole equation. As compared to hole transport equation in (3.9), the terms that have 

changed is indicated in equation (3.38). It should be noted that the difference is mainly 

in the expression of the electric field. Placing the expression of exponential doping N(x) 

into the continuity equation (3.38) results in equation (3.39).  
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      (3.39) 

After substituting  exp ( ) / 2z m k x   in (3.39) and then  n z ( )Az u z , a 

modified Bessel Equation is obtained in equation (3.40), with non-integer order of 

 24 (1 ) ( 1)m f m f m k       . 

 
2 5

2 2 2 2
2

1
i

i

d u duz z z u C z
dz dz 

         (3.40) 

Here, all the constants are same as those for Hole concentration, except the following 

three constants – 

1m fA
m k
  

  
 

      (3.41) 

2 (1 )m f
m k





                   (3.42) 

  iD A          (3.43) 

The complete solution of this inhomogeneous equation is obtained in terms of modified 

Bessel function of first kind.   

1 1 2 2 3( ) ( ) ( ) ( )n z n z C n z C n z       (3.44) 

With, 

       1( ) ( )An z z I z  ; 2( ) ( )An z z I z 
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



 

    
   

    

   
   

   



 

Note that n3(z) is the almost same as p3(z) in (3.20), except z–A term. If a p-type emitter 

of p-n DF solar cell is considered for analysis now, the modified boundary condition will 

be – 
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  
2

At Emitter-Base Junction:     exp
( )

i
j

j T

n Vn x
N x V

 
  

 
                              (3.45) 

   
0

At the Emitter Surface:  ( ) ( ) 0
( )        nn

x
x En x D x S n

dn x
dx 


 

 
 

      (3.46)                   

 ( )dn z dz will have the same form as (3.23), except that constant A will be replaced by 

–A in X1, X2 and X3.  

1 1 2 2 3
( ) ( ) ( ) ( )dn z X z C X z C X z

dz
      (3.47) 

Application of above identity of (3.47) in boundary condition of (3.46) results in the 

following equation – 

1 11 2 12 13C T C T T       (3.48) 

The coefficient C1 and C2 are almost identical to (3.32)-(3.33). Of course, T11, T12 and 

T13 will have slight change because of the difference in electric field and electron current 

equation, when compared to the expression of hole concentration. 
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 (3.51) 

From the above derivation for electron concentration, it can be concluded that the 

expression for electron concentration is quite similar to hole concentration, with some 

change in constants and signs. Hence from now on, any discussion on hole concentration 

will be equally applicable to electron concentration without the loss of generality and 

vice versa. But if for any case, the analysis of electron and hole transport needs separate 

attention, then both analysis will be discussed distinctively. 
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3.4. Carrier Concentration For Exponentially Increasing Doping 

The analytical model developed for exponentially decreasing doping profile can be easily 

expanded for exponentially increasing profile. But it is not that simple like replacing - 

with , as that might result in negative values of certain constants and imaginary 

arguments of special functions. Hence, properly addressing this modification is 

necessary. This section will investigate this modified expression when doping is 

exponentially increasing. 

 

The exponentially increasing doping can be converted into exponentially decreasing 

doping by reversing the x axis, as evident from fig. 3.2 below. In that case, the solution 

developed in the previous section seems to work fine for this case too. But one 

approximation needs to be revisited. The carrier generation approximation is defined by 

exponentially dependent terms, i.e., ( ) ib x
ia eG x  , which works for increasing x only. 

The alternative way is to re-derive the whole solution taking N(x) = Nd0exp(x). Hence, 

there are actually two ways to solve the problem: 

 Reverse the x axis. Consequently, calculate the 10 coefficients (a1, a2, a3, a4, a5, 

and b1, b2, b3, b4, b5) of exponentially increasing G(x), which is tough to 

calculate. 

 Re-derive and make some change in constants. 

This thesis will take the second approach. Since all the derivations are at hand, inserting 

this increasing doping profile and changing the corresponding Bessel and 

Hypergeometric equation seem easier. 

N(x)

x = 0 xj xj + W

W

h

P
+

x

D
o

p
in

g
 C

o
n

c
.

 
Fig. 3.2. Exponentially increasing doping in base region of a p+-n(x) cell 
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It is quite straightforward to get the following transport equation, 

2 5
2 0 0

2
1

( )
(1 ) (1 ) id d

i
iT T

m k xm k m mx
b xN e N ed p dpm f m f p a e

dx dx KMV MV

 

 





   
    

  

        

The variable transfer will now be z = exp[(m+k)x/2]. The solution is same as (3.19), 

with the change in following constants – 

2( )
( )

i
i

b mD
m k





 



 

 iD A    

Besides, all occurrence of A will be replaced with –A. The boundary conditions for the 

device in fig. 3.2 are for the base junction-edge and the back interface. The surface 

boundary condition will need the derivatives of p(z). The second condition will end up 

in same equation with the following slight change – 
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   

The analysis for electron concentration is similar and hence will not be discussed here.   

 

3.5. Close Inspection of the Derived Solution 

The solution for hole concentration is repeated here for discussion: 
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 (3.52) 

As seen from the compact expression above, the contribution from biasing and dark 

component, variable doping, surface states and spectrum response can be identified and 

separately analyzed for optimizing cell design. The success of this work is that together 

all these contributions, as well as their inter-dependence can be explored effectively using 

one unified expression of minority carrier. 

 

In the results section, the change in the contributions under dark condition and light 

condition will be discussed. In [8], influence of spectrum is totally overlooked. Our 

solution simply reduces to the expression developed by Verhoef and Sinke [8], when 

contribution from spectrum is discarded in equation (3.52).  

 

From the above equation, it is evident that the boundary conditions will change greatly 

when light in incident on the cell. The amount of change is reflected in the spectrum 

contribution parts of C1 and C2. Aside from these terms, there is also a constant 

illumination term P3(x), which is independent of boundary conditions; rather it depends 

on position x (through z), generation (through ai, bi), and transport parameters (through 

m, M, k, K). This is important because effects from biasing and surface recombination 

velocity comes to the compact solution only through boundary condition and affect the 

constants, not P3. Hence, P3(x) will be independent of biasing and surface recombination 
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velocity. This finding is consistent with the existing theory of solar cell. It is obvious 

from this analytical model that the illumination term can be considered as a superimposed 

current source with the p-n junction dark current, as normally seen in equivalent circuit 

of solar cell (see fig. 2.7).    

 

3.6.  Minority Carrier Current Density 

The minority carrier hole current variation with depth is easily obtainable from equation 

(3.1). The diffusion component of the current can be obtained using the derivative of 

solution, as given below – 
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 (3.53) 

The drift component, depending on the E(x), can be described by – 

0 1 0 2

0 3

2 2

2

1 2

Dark Response

Contribution from Solar S

(1 ) ( ) (1 ) ( )

(1 ) ( )

( ) m m
d T d T

m
d T

m m
m k m k

m
m k

P Drift qMN V z f P z qMN V z f P z

qMN V z f P z

J z C C 



    
   

    

 
 

 

  



   
   
   

 
 
 





  



pectrum

 

(3.54) 

Total hole current density will be the summation of drift and diffusion components. As 

seen in the equations above, the specific contribution from the spectrum can be separately 

identified in the expression of current. This is noteworthy because we can focus on 

certain parts of the solution to propose more effective designs and reduce pitfalls that are 

responsible in reducing current.  

 

The expression for electron current density is not mentioned here, since that is quite 

similar to hole current density. 
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3.7. Two Layer Model  

The model developed in previous sections covers electron and hole concentration in p-

type and n-type emitter/base respectively. But the solar cell structure of fig. 3.1 or fig. 

3.2 is quite simple in design. In practical solar cell, the diffusion region of the emitter 

may be accompanied by another diffusion region having either uniform or non-uniform 

doping. Similarly, the base region may be followed by a Base Surface Field (BSF) layer 

that changes the effective surface recombination at the back contact. These 

improvements are often employed in optimizing the cell performance. So, in this section, 

a two layer model will be attempted that will make this analysis applicable to multiple-

layer solar cells. Besides, uniform doping will be consider for one of the emitter 

segments, so that the derivation for this case of doping can be presented along the way. 

 
Fig. 3.3. A DF (Drift Field) solar cell structure with additional diffusion layer at the emitter 

and a BSF layer at the back side: Base (n-type) is uniformly doped and doping 

density in BSF increases exponentially from n-n+ interface (at x=W) to back surface 

(x=WBSF). Seff is the effective surface recombination velocity for n-n+ interface 

 

The cell structure for the two-layer model is shown in fig. 3.3. The two-segment emitter 

layer will be considered first. The transport equation for uniform doping can be derived 

as a special case of equation (3.38), by removing all the derivatives containing  doping 

concentration in it.  
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2
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m k m
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




   
        

   


 
(3.55) 

The solution of this differential equation is quite simple one, as seen below. 
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(3.56) 

111 1 12 2 13( ) ( ) ( )or,    ( ) n z C n z C n zn z      (3.57)
 

Here, 0
m k

d

T
u

N
KMV



 is the modified  for uniform case. For the exponential doped part 

of emitter, the solution in terms of z is same as discussed in equation (3.44), with the 

unknown constants D1 and D2. 

2 21 1 22 2 23( ) ( ) ( ) ( )n z n z D n z D n z       (3.58) 

At this point, there are two solutions, n1(x) and n2(x), at each segment of the emitters. 

For determining the four constants C1, C2, D1 and D2, total 4 equations are necessary. 

The boundary condition at top surface (x=0) and at the E-B junction (x=Xj) are standard 

boundary conditions used for single-layer solar cell in previous section 3.2. The rest of 

the conditions are obtained from the continuity of excess minority carrier concentration 

and continuity of current density at the boundary located at x=XE. Note that Sn will have 

negative value, since it is opposite to the x direction (Sn is for top surface). All the 

boundary conditions are – 
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► Carrier continuity at the intermediate region (x = XE): 
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► Current continuity at the intermediate region (x = XE):   
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By placing (3.56)-(3.58) into equations (3.59)-(3.62) above, four sets of linear equations 

containing C1, C2, D1 and D2 can be obtained. T11, T12, T13 are same as (3.49)-(3.51), with 

the only exception that there will be a negative sign before each Sn. 

 At the E-B junction:  
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(3.63) 

 At the top surface:    

0 0 01 11 2 12 13(z ) (z ) (z )C T C T T    (3.64) 

 Current continuity at the intermediate region (x = XE):   
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 Carrier continuity at the intermediate region (x = XE): 
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After some mathematical manipulation, C1, C2, D1 and D2 can be obtained as follows– 
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The terms responsible for the effect from solar spectrum are n13, Y13 and T13. The other 

terms in the numerator are from the dark response and the effect from the applied bias. 

For example, the constant C2 can be divided into following parts – 
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Replacing them into (3.56)-(3.58) will result in general equation for minority carrier 

concentration in a double-layer p-type emitter. For a double layer n-type base, the 

development will be similar, with the obvious exception of using the constants for hole 

concentration developed in section 3.1.  
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3.8. A General Analytical Model  

In this section, the previously developed model will be expanded to a more general level. 

Instead of actual generation rate, our previous approach uses approximated rate. The 

generation term is approximated by three/five position-dependent terms in aiexp(–bi x). 

Although the validity of using approximated G is well-established, inclusion of this 

approximation is certainly a loss of accuracy. Moreover, the effect of individual 

wavelength is not explicitly expressed in the compact model. In this section, this idea of 

incorporating the effect of each wavelength in the general expression will be explored. 

If correctly developed, this solution will be able to predict the collection efficiency (i.e. 

the spectral response for constant number of photons) as a function of wavelength. 

 

The traditional approach of obtaining the light generation term G is to use the numerical 

data for light intensities (E0) incident on a unit area within a bandwidth (). 

0
( )( ) dEE

d


   


     (3.67) 

Here, dE()/d is the spectral irradiance (in Wcm2m1). The incident photon density 

can be calculated from the light intensity [57] by the following relationship – 

0 0
( )( ) ( ) dEN E

hc hc d
    

        
  

  (3.68) 

Since the silicon layer will absorb the incident photon density along the depth, the change 

in photon flux can be expressed by the exponential relationship in equation (3.69), 

 0 Si( , ) ( )exp ( )N x N x                  (3.69) 

The absorption coefficient (Si) determines the amount of light absorbed by any 

absorbing material. Si is generally expressed in cm-1. The rate of change in photon 

density can be obtained simply by differentiating (3.69). If each absorbed photon 

produces one electron-hole-pair, then the rate of decreasing photo density is equal to the 

generation rate (g) of EHP for . 
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The total generation rate G(, x) is equal to the sum of all the generation terms from each 

 range, as given below by (3.71). 

 Si Si
1

0

Spectral Irradiance

( )

( )( , ) ( ) exp ( )
n

i i
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N

dEG x i i x
hc d
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    
       

   
  (3.71) 

From the above equation, it is clear that the contribution from G(, x) can be incorporated 

in the transport equation by considering each term separately over a certain  range. 

Afterwards, summing all the contribution will give the total light-generated current.  
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Fig. 3.4. Absorption coefficient for Silicon [65], The green shading indicates the region 

where the absorption is dominant for Si. 
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Fig. 3.5. Solar spectral irradiance for AM1.5G [66]. The green shading indicates portion of 

spectrum mainly used by Si absorbing layer. 

As already discussed, the generation term depends on intensity (photon-flux) and 

absorption coefficient [66]. These quantities are already available (see fig. 3.4-3.5). The 

generation rate can be calculated using equation (3.71) (see fig. 3.6).  
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Fig. 3.6. Carrier Generation in Si obtained from the absorption data in fig. 3.4 and from the 

spectrum data in fig. 3.5. 
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The important thing to note here is that actual G(, x) has similar exponential dependence 

on x, like approximated G(x) in equation (3.3). The comparison is shown in the table 3.1 

below. 

 
Table 3.1. Comparison between Approximated Generation Rate and Actual Generation Rate 

Approximated Generation Rate Actual Generation Rate 

 iapprox.

5

1
( ) a exp i

i
G x b x



    Si 0

i
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i ba
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G x xi N i


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 
 
  
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Instead of 5 terms in Gapprox., total number of terms in G(,x) will now depend on the 

considered range of wavelength. Equation (3.71) will now be used in drift-diffusion 

equation.  
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(3.72) 

This equation is very similar to (3.9), if the following generation constants are redefined 

(see Table 3.1), 

0N ( )i Sia       (3.73) 

S iib                     (3.74) 

The solution and the boundary conditions of the previous development will be exactly 

same. This approach will certainly reduce the error in approximated generation. 

Although the effect of individual wavelength can be now studied, this solution will take 

much time at an added benefit of accuracy. 

 

3.9. Extension of the Model to non-Silicon Material 

In this section, the analytical models for different materials, other than Si, will be 

investigated. So far, we have seen that the model developed in the previous section is 

versatile. The same model can be extended easily for GaAs, Ge, InP and Al0.3Ga0.7As. 

These non-Si materials will have similar solution, but some modifications are needed for 

these materials. The first change is in the generation rate G. The coefficients (ai and bi) 
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for approximated generation rate have been already reported for the abovementioned 

materials in our previous publication [59] and repeated below.  

 
Table 3.2. Coefficients ai (×1020s-1cm-3) and bi (×104cm-1) For Different Solar Cells [59] 

Coeff. 
 ai, bi 
 

Si Si GaAs Al0.3 

Ga0.7As Ge InP 

AM1.5D AM1.5G 

a1 28.63 50.63 120 60.63 500.63 110.63 
a2 6.60 10.00 65 30 90 100 
a3 4.20 3.90 3.9 2.5 7 2 
a4 0.511 0.45 0 0.00201 0.25 0.250 
a5 0.0211 0.0201 0 0 0.0200 0.0071 

 
b1 70.44 65.44 55.44 65.44 55.44 30.44 
b2 3.72 3.72 4.72 3.72 5.72 5.72 
b3 0.35 0.35 0.65 0.9620 0.70 0.935 
b4 0.0720 0.0620 0  0.9161 0.1 0.1720 
b5 0.0055 0.0061 0 0 0.0061 0.0061 

 

Hence the carrier generation rates in other semiconductors are easy to obtain by 

modifying ai and bi. The other properties inherent to the material are the lifetime and 

mobility. The variation of these parameters with doping is available in literature. Hence 

using simple curve fitting tool, it is possible to extract power-law dependence empirical 

relationship of lifetime and mobility. This will produce new coefficients K, k, M, m for 

that specific material. Approximating the lifetime variation by one power-law curve may 

produce significant error; hence carefully dividing the doping range into several sub-

ranges and using good-matched power-law relationship within those sub-ranges will give 

more accurate result. Actually this divided approach is used for Silicon, where K and k 

have two different values depending on doping range [8, 59].  

 

If the solution with actual generation rate is desired, then changing the absorption 

coefficients by equation (3.73) will be just enough. 

 

3.10.  Extension of the model to Other spectrums 

Extending the compact solution to other spectrum is also possible. Since different 

spectrum means different ai and bi, same model can be used to predict device operation 
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of solar array under terrestrial spectrum (AM1.5), as well as solar cells on satellite under 

space spectrum (AM0).  

 

As mentioned before, if actual generation rate is used in the analysis, then incident 

photon-flux N() of equation (3.73) has to be modified. This will accommodate any 

change in spectral intensity vs. wavelength for new spectrum.  

 

3.11. Extension of the model to Gaussian Profile 

The doping profile that is used in this compact modelling is exponential in nature. 

Another most common doping profile is Gaussian profile; hence the solution will be 

extended in this section to accommodate Gaussian profile variation. 

 

If the doping profile follows a Gaussian variation, the previously developed solution will 

certainly not be compatible for this case. Including a Gaussian profile like N = N0 

exp[(xxm)2/2] in equation (3.9) results in a differential equation that becomes 

impossible to solve without introducing any simplifying approximations. 

 

To address this issue of Gaussian doping in analytical solution, exponential 

approximation technique can be used here. It has been reported [67] that approximating 

the Gaussian doping by an exponential profile causes insignificant error, if the integrated 

doping concentration is kept same for both cases. Applying this idea to the current 

analysis, the same exact solution can be used to Gaussian or any other profile, without 

increasing the mathematical complexity or loss of physical understanding. According 

this technique, Gaussian doping profile can be well approximated by either one 

exponential doping term, or by a combination of constant doping and exponential doping. 

Fig. 3.6  shows the comparison of their approximations for two Gaussian profiles [67].  

 

If Gaussian doping can be replaced by piecewise exponential doping, then the compact 

model developed in section 3.1–3.10 will be applicable for Gaussian profile too. 
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Fig. 3.7. Gaussian doping profile I (solid line) and exponential approximation (dashed line). 

(b) Gaussian profile II (solid line) and the constant-exponential approximation 

(dashed line) [67] 

 

3.12. Summary 

The aim of this chapter is to develop the analytical model for specific doping profile 

using advanced mathematical functions. The earlier sections have successfully discussed 

the development of such compact model by using the approximation in carrier generation 

rate. The solution is obtained in a closed-form expression of position, surface states, 

biasing and spectrum, all in one model.  

 

The mathematics used for the development is robust enough to employ the same 

technique to exponentially increasing doping profile. Complete expression for the current 

density is also reported for minority carrier (both electron and hole) density.  

 

To increase the applicability of this model for multi-layer solar cell, compact solution for 

two-layer emitter (and base) is also derived. The analysis further attempts to include the 

effects from individual wavelength. This time the derivation is done by including the 
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actual generation from absorption and spectrum profile. As a result, the modified solution 

presents an elegant way to address the variation in spectral response.  

 

The model has been improved to predict the behaviour of other material (including GaAs, 

AlGaAs, Ge and InP) and other spectrums (AM1.5D, AM1.5G, AM0). At the end, 

another technique is employed so that the solution can calculate the carrier concentration 

for other non-uniform doping variation (Gaussian profile). 

 

In summary, a compact mathematical model has been developed and then upgraded to 

such substantial span that same analytical model can describe the effect of biasing, dark 

response, light response, solar spectral variation, change in photovoltaic material, 

mobility and lifetime variation, surface recombination, positional dependence, addition 

of layer and complex doping variation, but with an added complexity of Bessel and 

Hypergeometric function.   
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CHAPTER 4 

NUMERICAL MODELING OF SOLAR CELL   
 
4.1. Introduction 

The significance of modeling electronic and photonic devices in TCAD simulator are 

increasing day by day because they make a drastic reduction in testing time and costs 

involved in fabricating and experimenting semiconductor devices. The focus of this 

thesis is not to offer the details on numerical simulation techniques for photovoltaic 

devices; rather this work will use the numerical tools as an effective way to verify the 

developed analytical solution. Hence a short and only relevant discussion will be 

presented in this chapter for understanding the results presented in later chapters. 

 

SILVACO (Silicon Valley Company) is one of the most reliable tools for semiconductor 

devices [14, 20, 21, 68, 69]. It offers technology computer aided design (TCAD) software 

that simulates the behavior of semiconductor materials efficiently [70]. SILVACO’s 

Atlas will be used in this thesis to simulate the solar cell and compare the results. Along 

with that, the proposed solution includes several mathematical functions. To clearly 

understand the physics and the mathematical integrity of the analytical expression, 

Equation-based-modeling in COMSOL Multiphysics [71] will be employed.  

 

4.2. Silvaco/Atlas Device Simulator 

ATLAS is a physically-based device simulator which solves the electrical characteristics 

at each points of the devices for the provided biasing condition [47]. The device is 

mapped into a 2D or 3D grid and a set of fundamental equations (derived from Maxwell’s 

laws), which link together electrostatic potential and carriers densities, are solved at each 

mesh points (node points). Actually the device operation is governed by and described 

in a set of two coupled, partial differential equations: 

 The Poisson equation 

 The equation of continuity 
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ATLAS provides a comprehensive set of advanced models, as mentioned in the table 

below [47]. The physics that will be used here is highlighted in the table 4.1.   

 
Table 4.1 Important Physical models and numerical methods used in ATLAS   

Physical models Advanced Numerical Methods 

 DC, AC small-signal, and full time-
dependency. 

 Drift-diffusion transport models 
 Energy balance and Hydrodynamic 

transport models. 
 Lattice heating and heat sinks. 
 Graded and abrupt hetero-junctions. 
 Optoelectronic interactions with general 

ray tracing. 
 Amorphous and polycrystalline 

materials. 
 General circuit environments. 
 Stimulated emission and radiation. 
 Fermi-Dirac and Boltzmann statistics. 
 Advanced mobility models. 
 Heavy doping effects. 
 Full acceptor and donor trap dynamics. 
 Ohmic, Schottky, and insulating contacts. 
 SRH, radiative, Auger, and surface 

recombination. 
 Impact ionization (local and non-local). 
 Floating gates. 
 Band-to-band and Fowler-Nordheim 

tunneling. 
 Hot carrier injection. 
 Quantum transport models. 
 Thermionic emission currents. 

 Accurate and robust techniques 
of calculation in discrete level. 
 

 Gummel, Newton, and block-
Newton nonlinear iteration 
strategies. 

 
 Efficient solvers, both direct 

and iterative way for linear 
problems. 

 
 Powerful initial guess 

strategies. 
 
 Small-signal calculation 

techniques that converge at all 
frequencies. 

 
 Stable and accurate time 

integration. 

 

4.2.1.  Order of Commands 

For simulating any semiconductor device, a list of commands has to be delivered to 

ATLAS. These statements have to follow a certain order so that ATLAS can generate 

the device after execution. The following five groups of statements that must occur in 

the correct order (see Figure 4.1).  
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Fig 4.1. ATLAS Command Groups [68]  

General format for statements and parameters in ATLAS follows a common syntax rule: 

<STATEMENT> <PARAMETER>=<VALUE> 

 

For example:    

DOPING UNIFORM CONCENTRATION=1E16 N.TYPE REGION=1 

 

The statement is indicating doping profile. The parameters of this command are: uniform, 

n.type, concentration and region.  

 

The numerical solar cell developed here will be addressed in subsequent sections along 

with the explanation. The complete code is presented in the Appendix. 

 

4.2.2.  Structure and Model Specification 

A device structure is specified when the meshing, region, electrodes and doping are 

explicitly defined for simulation. Afterwards, the created device can be simulated by 

incorporating the desired physical models and numerical methods. The steps only those 

necessary for the development and readability of this thesis will be discussed here.  
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4.2.2.1. Mesh 

The mesh is a grid of horizontal and vertical lines over the dimensions of the device. Like 

finite element simulation, this gridline area is used to define data points and solution 

points.  The general format of defining the mesh is given below: 

mesh width=<Value> 

x.mesh   location=<Value>  spacing=<Value> 

y.mesh   location=<Value>  spacing=<Value> 

 

The x.mesh and y.mesh parameters are defined to specify the area of simulation. mesh 

width sets total number of 2D xy-plane solar cell slices along the un-simulated third 

dimension.  The 2D meshing used for modeling solar cell in this work is shown in fig. 

4.2 below.  

 

 
Fig 4.2. 2D Meshing for a 2m thick solar cell 

Since the emitter region (0.5m) is of primary concern for its small dimension, the 

solution nodes (or alternatively the mesh density) are finer upto 0.5m thickness. 

Moreover, the junction region generally has sharp changes in electric field and doping, 

hence denser mesh is necessary near the E-B depletion edge (fig. 4.2). 
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4.2.2.2. Region 

Regions have to be defined along the mesh lines. The general syntax of this command is: 

region number=<value>  material=<name of the material> / 

x.min=<value> x.max=<value> y.min=<value> y.max=<value> 

 

ATLAS allows the user to define up to 1000 different regions [47]. For this work, only 

one Silicon region is necessary (fig. 4.3). Hence, the code is quite straightforward– 

region num=1 material=Silicon y.min=0.00 y.max=2 

 

4.2.2.3. Electrode 

Electrodes are the external electrical contacts. The electrode can be placed on desired 

location by specifying the position parameters: x.min, x.max, y.min, y.max. For p-n or 

p-n-n+ solar cell of this work, only anode and cathode has to be defined as electrodes. 

ATLAS will use default material as conductors [47], but Aluminum will be used in our 

simulation (fig. 4.3). The code used for defining electrodes is – 

 

electrode num=1 name=anode x.min=0 x.max=0.5 y.max=0.0 

material=Aluminum 

electrode num=2 name=cathode y.min=2 material=Aluminum 

 

4.2.2.4. Doping Profile 

The silicon region needs to be exponentially doped for our purpose. Doping can either 

be n- or p-type with uniform profile, Gaussian profile, or complementary error function 

profile [13]. Doping statement has no parameter that will define exponential doping. To 

address the situation, analytically obtained doping profile from equation (3.8) is loaded 

as an ASCII file. This input data file contains the concentration (in cm-3) vs. depth (in 

m) information.  The following code will generate the n-type exponential doping of fig. 

4.4. 

DOPING n.TYPE Y.MIN = 0 Y.MAX = 0.5 ASCII INFILE = Exponential_doping  
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Fig 4.3. Regions and electrode of a simple solar cell  

 
 

Fig 4.4. 2D variation of total doping. The n-type emitter is exponentially doped and the 

base region is uniformly doped 
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Fig 4.5. Extracted 1D doping variation (total) along the depth of the device  

 

4.2.2.5. Material Model Specification 

Once the simulation geometry is designed, the next step is to set the default material 

properties or override them if necessary. To define the properties for the materials used 

in the modeling of the device, the command material statement is used.  

 

material material=Aluminum sopra=Al.nk 

 

Here, the complex refractive index as a function of temperature and composition for 

Aluminum is incorporated in the simulation by the SOPRA parameter. Refractive indices 

play a major role in defining the amount of light transmitted, reflected and refracted. This 

property can be defined with the help of SOPRA database [72]; Properties that is limited 

to a certain material like optical properties, low field mobility, recombination lifetimes, 

conduction band density of states at 300K etc. can be assigned using the material 

command. Moreover, the built-in materials library in ATLAS is very rich.  Many 

common materials are member of this library [47] and their respective useful properties 

are included in their library file. Other than that, ATLAS has the ability to use new 

materials from outside the library by defining them manually [21].  
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4.2.2.6. Specifying Surface State 

The analytical model developed in previous chapter uses surface recombination velocity 

to calculate the carrier concentration at the surface. To ensure that the physically-based 

simulation in ATLAS is comparable with the analytical solution, the surface 

recombination velocity will be included by the contact command.  

 

contact name=anode SURF.REC VSURFP=5e2 

 

The default property of top surface (anode contact) is overridden by the SURF.REC 

parameter and the minority carrier (hole) recombination velocity is specified by 

VSURFP. Similar coding goes for the cathode contact. 

 

4.2.2.7. Models 

There are many models in ATLAS to improve the accuracy of the structure and to get 

more realistic values. BGN, SRH, CONSRH, AUGER, CONMOB and OPTR are the 

dominant models that will be used here for photovoltaic simulation. 

A. BGN defines band-gap-narrowing. Since the doping variation that will be used 

in analysis exceeds 1018cm-3, the p-n product in silicon will become doping 

dependent [73]. As the doping level increases, a decrease in the band-gap is 

inevitable, where the conduction band is lowered by approximately the same 

amount as the valence band is raised [74].  

B. SRH is for Shockley-Read-Hall recombination 

This transition occurs in the presence of a trap (or defect) within the forbidden 

gap of the semiconductor. 

C. CONMOB for concentration dependent mobility: 

 The local electric field, lattice temperature, doping variation, surface and 

 material imperfection inside the device will affect the mobility of the carriers. 

 Since the non-uniformly doped DF solar cell has electric field across the quasi-

 neutral region and inside the junction, their effects have to be included in the 

 modeling process.  
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Atlas offers 4 mobility models – 

i. Low-field behavior 

ii. High field behavior 

iii. Bulk semiconductor behavior 

iv. Inversion layer 

At low field, the carrier mobility is in quasi-equilibrium and depends on phonon 

and impurity scattering. To include the low field mobility in the simulation, 

CONMOB model is used here, which uses a look-up table for experimental 

mobility values at 300K. The mobility vs. doping dependence it follows is shown 

in the fig. 4.15 below. 
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Fig 4.6. The empirical data of mobility dependence on doping used in CONMOB model of 

ATLAS.  

There are other mobility models (see table 4.2) that can be employed in the quest of 

verifying the analytical model.  
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Table 4.2. Different mobility models in ATLAS [47] 

 
 

4.2.3.  Optoelectronic Simulator: LUMINOUS 

In the numerical study of solar cell, simulating light propagation and absorption must be 

integrated. LUMINOUS is the default tool that will simulate the electrical responses to 

optical signals, by converting optical intensity profile into photogeneration rate. 

 

There are several physical models for propagation of light inside the device,  

 Ray tracing 

 The transfer matrix method 

 The beam propagation method 

 Finite difference time domain method 

 User-Defined Photogeneration 

 

For our purpose, 2D ray tracing method will be used to simulate the solar spectrum. This 

method uses the real component of the refractive index to calculate the optical intensity 

and the imaginary component in the absorption model to calculate the carrier 

concentration.  
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By using the BEAM command, the optical source can be modeled inside ATLAS. The 

general syntax is BEAM <parameters>. 

The parameters cover a broad spectrum including terrestrial spectrum AM1.5 and space 

spectrum AM0. The code to include the AM1.5G spectrum is below: 

 

beam num=1 AM1.5 x.origin=1 y.origin=-1 angle=90.0 waval.start=0.1  

waval.end=1.2 waval.num=500 reflect=4 back.refl 

 

The spectrum imported in this command is AM1.5, which is actually a table of 

wavelength vs. intensity from NREL [66]. X.ORIGIN and Y.ORIGIN are shown in 

figure 4.7, with an ANGLE. Since silicon cell mostly absorbs light up to 1.1m, 

discretizing the spectrum between 0.1m to 1.1m is enough for simulating sunlight. 

Hence WAVEL.START sets the starting wavelength of the AM1.5 spectrum, 

WAVEL.END denotes the end of the spectrum. WAVEL.NUM sets the number of steps 

taken in this spectrum range. REFLECT parameter takes the specified number of 

reflections at the front interfaces and BACK.REFL considers if there is any back 

reflection from the device. 

 
Fig 4.7. Schematic describing the 2D ray tracing by BEAM command parameters [47] 

ATLAS allows user-defined photo-generation techniques. The mentionable ones are – 

 Exponential Photogeneration 

 Tabular Photogeneration 
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The exponential photogeneration is a function of location. It is noteworthy because 

similar photogeneration is used in our analytical model (see equation (3.3) of 

approximated Generation rate). The equation ATLAS uses [47] is mentioned here – 

 
The above generation rate can be expressed as a sum of exponential terms by carefully 

setting the values of CONSTANT, LINEAR, FACTOR, EXPONENT and RADIAL. The 

relationship is an important indicator that the approximation used in the derivation of our 

analytical model is already well-used in standard device simulation tools.  

 

The tabular photogeneration rate takes into account an ASCII file that contains the 

photogeneration rates over the x-y grid points, in units of per second per cubic cm. This 

command is useful to check how well our model can predict carrier concentration when 

ATLAS simulation uses same tabulated G(x) as our analytical approach uses.  

 

The photogeneration that will be used to compare with analytical generation rate is shown 

in fig 4.8. 

 
 

Fig 4.8. Photogeneration rate G(x) for AM1.5, obtained from ATLAS 2D ray tracing 

method 
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4.2.4. Numerical Method Selection 

Numerical methods are used to calculate solutions to semiconductor device problems. 

There are three types of solution techniques:  

 Decoupled (GUMMEL)  

 Fully coupled (NEWTON)  

 BLOCK  

The GUMMEL method solves for each unknowns by keeping all other unknowns 

constant. The process is repeated until there is a stable solution. The NEWTON method 

solves all unknowns simultaneously. The BLOCK method solves some equations with 

the GUMMEL method and some with the NEWTON method.  

 

4.2.5. Solution Specifications 

Once the structure, physical model, optical techniques and numerical methods are set 

correctly, it is quite easy to extract the solution at each node points. For example, to get 

the solved structure, the following code is enough. 

 

solve b1=1.0  

structure outf = pn_sun.str 

tonyplot pn_sun.str  

 

This will solves the structure with the BEAM over the device. The designer can also 

solve a sweeping bias using the following commands:  

solve vcathode=0  

solve vanode=-5 vfinal=5 vstep=0.1 name=anode 

 

This will solve the circuit for a basing sweep of anode voltage from -5 to 5 with 0.1 

voltage steps. The results can be saved to a log file (see below) for extracting the desired 

solved quantities. 

log outfile=Solar_cell_Under_light.log  
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4.2.6. Results Analysis 

Silvaco offers a post-processing viewing program named TONYPLOT. The structure 

and log files created from ATLAS can be visualized here. The structure files (.STR) 

display mesh density, doping concentrations, current densities, and many more 

parameters. The LOG files present the results of ATLAS’s electrical and optical analysis.  

 

The simulated hole and electron concentration under AM1.5 is presented in the fig. 4.9. 

Since this is a p-n junction, the majority carrier (hole) concentration at the emitter is 

almost uniform, but the minority carrier concentration varies significantly. Same 

observation applies for the carrier concentration in base region. These results will be used 

in the results section to validate the analytical model.  

 

A 3D model of Silicon solar cell is also developed which can be used to investigate the 

effect from 3rd dimension. The complete code is given in the appendix. 

 

 
Fig 4.9. Hole concentration along the depth. simulation results extracted from ATLAS 
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Fig 4.10. Electron concentration along the depth. Simulated results extracted from 

ATLAS.  

 

4.3. COMSOL Multiphysics 

COMSOL Multiphysics is an interactive environment for modeling engineering 

problems. Using the built-in physics interfaces and the advanced support for material 

properties, powerful models can be developed that includes relevant physics by defining 

the underlying partial differential equations (PDEs). COMSOL Multiphysics uses the 

finite element method (FEM) to create the model [75]. The software can also use adaptive 

meshing and error control by the help from a variety of numerical solvers.  

 

COMSOL Multiphysics creates sequences to record the steps of creating device 

geometry, the meshing information, numerical studies and the results. This offers the 

ability to study the model by varying the necessary parameters.  

 

For this thesis, the COMSOL Multiphysics will be used a second verification tool. The 

equation based modeling technique will be employed to address the mathematical 

soundness of the analytical model.  
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There are several tools that can be used to model the underlying equations of solar cell. 

They are [75]  

 The Mathematics Interfaces 

 PDE Interfaces 

 Weak Form Modeling 

 Using Weak Constraints 

 Solving ODEs and DAEs 

 The Wall Distance Interface 

 Theory for the Wall Distance Interface 

For our purpose, the PDE interface will be used; specifically the Coefficient form PDE 

interface will be our main focus. This interface covers several well-known PDEs that can 

help in solving the differential equations of chapter 3.  

 

The Scalar Coefficient Form Equation 

The dependent variable u(z) is an unknown function on the computational domain (). 

COMSOL Multiphysics determines it by solving the PDE problem that is specified. In  

Coefficient form, the PDE equation used by COMSOL is  

 
2

2a a
u ue d c u u u u ftt

 
         


   (4.1) 

The COMSOL PDE formulations uses coefficient names that fall within the realm of 

continuum mechanics and mass transfer (see General Names in Table 4.2). This PDE 

interface will, by default, add the nodes: Zero Flux and Initial Values. These nodes will 

indicate the boundary conditions at the computational domain. 

   at the domain boundary         ;Tn c u u qu g h            (4.2) 

             at the domain boundary ;    r       (4.3) 

 

Equation (4.2) is a generalized Neumann boundary condition. This is also known as 

natural boundary conditions, since it does not occur explicitly in the weak form of PDE 

problem. Equation (4.3) is a Dirichlet boundary condition, which corresponds to a flux 

or source. This is known as essential boundary condition that specifies the value of the 

numerical flux at the boundary.  
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The Neumann condition specifies the value of the dependent variable at the boundary, 

while the Dirichlet boundary condition forces an arbitrary function of the dependent 

variables to equal zero on the boundary [75].  

 

To include our differential equation in the finite element modeling, the coefficients c, , 

, , a, h, and the terms f, g, r have to be specified. Equation (3.10) and the boundary 

conditions are repeated here for easy access  
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The above equation is non-linear, because the coefficients depend on p(x) and its 

derivatives. Comparing the above equation and the boundary conditions with equation 

(4.1)-(4.3) above, the coefficient values are obtained for modeling. These are listed in 

table 4.3. 



Table 4.3. Values of coefficients and Terms used in COMSOL modelling 

Coefficient 

and Terms 
General Name Value 

u(x) Dependent Variable Hole concentration, p(x) 

c Diffusion Coefficient 1 

 
Conservative Flux 

Convection Coefficient 
0 

 Convection Coefficient  (1fm) 

 Conservative  Flux Source 0 

a Absorption Coefficient 
 Nd0

 m+k/(KMVT)  exp [ (m+k) x] 

 m(1f) 2 

f Source Term -Nd0
m exp(mx)/(MVT)   ai exp(bix) 

g Boundary Flux/Source 0 

r 
Dirichlet Boundary 

Coefficient 
(ni2/Nd_W) exp(V/VT) 
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ea Mass Coefficient 0 

da Damping Coefficient 0 

q 
Boundary Absorption / 

Impedance Term 
S/(VTMNd0

m)+(1-f) 

 

All the symbols used in the table 3.2 are already introduced in chapter 3. The solution is 

obtained for very fine meshing. After the FEM modeling, the results from the COMSOL 

can be extracted for further analysis, as seen in fig. 4.11.   

0.0 0.1 0.2 0.3 0.4 0.5
10

7

10
10

10
13

10
16

Depletion Edge

 

 

M
in

o
ri
ty

 C
a
rr

ie
r 

C
o
n
c
e
n
tr

a
ti
o
n
, 

n
(x

) 
 (

m
-3
)

Emitter Depth, x (m)

Front Surface

 
Fig 4.11. Minority carrier concentration, extracted from the COMSOL multi-physics 

model. 

 

4.4. Conclusion 

This chapter presents the details of developing numerical solar cell models. For this 

purpose, a physically-based TCAD simulator Silvaco/ATLAS is used. The electrical 

behavior of the cell is simulated by including the BGN, SRH, CONSRH and Auger 

models and light response is taken into account by using a beam of AM1.5 solar 

spectrum. 
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Besides, a physics-based simulator COMSOL is used to model the differential equation 

behind the photovoltaic operation. The equation-based modeling technique uses finite 

element method to discretize the calculation domain and provide the desired results. 

 

The numerical models of solar cell developed in this chapter will be used to validate the 

previously derived analytical model. 
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Chapter 5 

RESULTS AND DISCUSSIONS 
 

5.1. Introduction 

The main success of this work is that one single model includes the effect of solar 

illumination, doping profile, surface & bulk recombination, heavy doping effect and 

mobility & lifetime variation. Besides, this model can be extended to other materials (e.g. 

Ge, GaAs, GaP, CIGS etc.), other solar spectrum (AM1.5D, AM1, AM0 etc.) and other 

practical doping profiles (Gaussian profile, power-law profile). In this chapter, the 

applicability of this analytical work will be discussed by exploring the model more 

profoundly, for some common solar cell configurations. Along with the analysis, the 

results will be verified by Silvaco/ATLAS Device simulator and Numerical model of 

COMSOL Multiphysics, which have already been developed in Chapter 4. 

 

5.2.  Effect of Transport parameters on minority carrier 

concentration 

Since the model reported here considers several position-dependent parameters, it is 

easier to evaluate each of their effects separately and simultaneously to get more insight 

in the physics.  

 

5.2.1. Effect of BGN on Solution Parts 

The hole concentration in an n-type emitter will be taken as an example. The analysis for 

electron will be similar & discussed later. The expression of p(x) in (3.19) has three 

constituting terms:  

 The first two terms, namely P1(x) & P2(x) corresponds to dark condition, which is 

just normal p-n junction current under no generation i.e., G = 0. 

 The third term is the contribution from illumination. This specific P3(x) is the 

major concern for photovoltaic action.  
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All three terms and their effects will now be studied meticulously. A thin emitter layer 

(0.5 µm) is considered for this purpose. This range of emitter thickness is quite common 

for practical solar cells. The doping profile is exponential in nature. Doping concentration 

is varied from 1020 cm–3 (at x = 0 µm, surface) to 6  1018 cm–3 (Emitter-Base junction 

is at x = xj = 0.5 µm). The recombination at the front surface is characterized by surface 

recombination velocity (Sp). Moderate values of recombination velocity (S = 5  104 

cm/s) is considered at the top surface.  

 

P1(x) and P2(x) are calculated (see fig. 5.1) without BGN (f = 0) and with BGN (f = 0.75). 

It is found that BGN has no effect on P1(x). On the other hand, P2(x) term depends greatly 

on the band gap narrowing effect. Previous works [36], that have neglected BGN, will 

certainly give significant error for P2(x) term. The contribution from illumination, 

namely P3(x), has no significant change for BGN. This can be explained easily since 

P3(x) depends on incident solar spectrum. This is also evident in fig. 5.2. The change of 

spectrum from AM1.5G to AM1 (keeping all other parameters same), has improved 

P3(x), although the change is not that much in value. The detailed analysis of effects from 

spectrum will be revisited later. 

 

5.2.2. Effect of Variable Lifetime and Mobility on Analytical Solution 

Instead of normalized solution parts, the complete solution for a practical emitter layer 

will be studied now. Two device configurations will be considered to ensure the 

versatility of the analytical model. 

 A p+-n junction, where mobility and lifetime strongly depend on doping variation. 

The band gap narrowing will be ignored. Generally for a emitter or base region of 

DF solar cell, when the doping variation does not exceed 5 x 1018 cm-3, the mobility 

and lifetime show power-law dependence on doping. The band gap narrowing, on the 

other hand, can be neglected safely for this range of doping.    

 A p-n junction where mobility, lifetime & BGN depend on doping profile. This 

situation will arise for that particular cell when the doping profile is higher (exceeds 

5 x 1018 cm-3). 
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Fig 5.1. Effect of band gap narrowing on the solution of minority carrier concentration. 

The doping is varied exponentially from 1020 cm–3 to 6  1018 cm–3 (a) P1(x) 

normalized to P1(xj), (b) P2(x), normalized to P2(xj) and (c) P3(x), normalized to 

P3(xj). Spectrum: AM1.5G. 
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Fig 5.2. Effect of Solar spectrum (AM1 and AM1.5G) on illumination term P3(x)  
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A p+–n(x) DF Silicon Solar Cell: 

The DF solar cell is assumed to have uniform doping at emitter region and exponential 

doping at Base region. Hence this serves as good example to demonstrate the impact of 

both doping profiles at the same time. For this uniform doping density in P-type emitter, 

mobility and lifetime will become constant along the device depth (m, M, k, K all are 

constant in equation (3.4)-(3.5)). As mentioned in chapter 3, the resulting model will 

become a special case of our solution. BGN in equation (3.10) is ignored for this case, 

i.e., f = 0. The excess minority carrier electron density is described by equation (5.1), 

     
m

T

5
d0 i

1 2 i2 2
i 1 i

u
u

u
N
MV

aC exp C exp
b

n (x) x x exp( b x)


  
  
       


 


       (5.1) 

u is already defined in chapter 3. M, N are constants to be determined from boundary 

conditions at top surface and depletion edge. The solution is depicted in fig. 5.3 for high 

front surface recombination velocity (5  106
 cm/s). A comparison with numerical 

models, developed in COMSOL and ATLAS, is also presented in the same figure. Since 

the bang gap narrowing is neglected and the doping is constant throughout this region, 

the electric field inside the emitter is zero. As seen from the fig. 5.3, the analytical model 

slightly underestimates the electron concentration near the middle of the device. Also at 

the edge of the emitter-base depletion region, unlike numerical model, the concentration 

drops. This can be explained from the fact that ATLAS considers the minority carrier 

variation inside the depletion region, while the analytical solution uses (ni2/ND) in its 

boundary condition at E-B edge (see equation (3.46)). This slight mismatch seen in fig. 

5.3 can also be attributed on the approximation of carrier generation rate (G) and the 

empirical relationships of mobility and lifetime. It is noteworthy that the COMSOL drift-

diffusion-based FEM model for the same device perfectly matches with analytical 

solution. This proves that, from mathematical viewpoint, our analytical model is robust 

and the solution is correct for the included physics. 
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Fig 5.3. Minority carrier (electron) concentration for uniformly doped (2  1019 cm-3) P-

type Emitter. The front surface recombination velocity (SP) is 5  106 cm/s. The 

symbols represent numerical solution (COMSOL Model and ATLAS model) 

and the line represents our analytical model. 

For base region, increasing exponential doping is considered. This corresponds to the 

modified model of section 3.4. There will be induced electric field in base due to non-

uniform doping. This built-in electric field in base region is important for reducing the 

damage from nuclear particle radiation [36]. Since the induced field in base has practical 

application in improving radiation resistance, considering such a base in our analytical 

model will be an effective way to test practical situation.  

 

The doping density is minimum (Nd-min = 7  1017 cm–3) at 𝑥 =  𝑥𝑗  +  𝑊 (the edge of 

depletion region at the base side) and at the end of base (𝑥 = 𝐻), it is 4.5  1018 cm–3 (see 

the device configuration at fig. 3.1). Since the doping range is not that high, ignoring 

BGN is justified, although it can easily be included in calculation by setting f = 0.75. 

Besides, along with exponentially increasing doping profile, the lifetime and mobility 

gradually fall towards the back surface. The power-law dependence of lifetime and 

mobility on doping (hence, position) makes our analytical solution effective in analysing 

this type of base region. The electric field E, on the other hand, is constant because the 
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impurity density has exponential variation and contribution from the band gap narrowing 

is excluded in E (see equation (3.6) for f = 0). The electric field is negative with respect 

to depth (x), as it should be, since the donor concentration is gradually increasing as x 

increases. Fig. 5.4 shows the positional variations of transport parameters which are 

included in the solution. 

 

The boundary conditions for this base region are: 
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Fig 5.4. Device characteristics for exponentially doped base region of DF solar cell- (a) 

exponential doping variation (71017cm–3 to 4.51018cm–3) with base depth (x), 

(b) Mobility dependence on position, (c) lifetime changing with depth, (d) 

Electric field inside Base for increasing exponential doping 
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Here, Xj can be calculated easily from the acceptor and donor doping across the E-B 

junction [43] (for details, see chapter 2). The solution of the drift-diffusion equation will 

be similar to (3.19), but the coefficients of solution will change depending on the 

abovementioned boundary conditions. The resulting hole concentration inside the base 

is depicted in fig. 5.5. Again, the COMSOL model ensures the mathematical soundness 

of our analytical model. The TCAD model of ATLAS also shows close match with 

mathematical solution.  

 

The effect of BGN is also investigated for the base. As seen in fig 5.6., BGN affects the 

hole conc. very little and near the back surface only. This is understandable because 

doping is gradually exceeding 7  1017 cm–3 (after which BGN becomes dominant) 

towards the back interface. 

 

To investigate the effect of surface recombination velocity (SRV), both surface (front & 

back) recombination velocity for electron and hole is varied for a wide range. The effect 

is apparent in fig. 5.75.10, where the high recombination velocity has necessarily 

reduced the minority carrier concentration at the surface. The result has been compared 

with ATLAS Device Simulator and the match is significant between the numerical and 

analytical model. In this numerical model, concentration dependent models, CONMOB 

and SRH are included, but no BGN model is incorporated.  

 

We have investigated how well our model can predict the surface effects when extreme 

conditions are forced. As observed in fig. 5.9, this model can handle very high 

recombination velocity, e.g. like those in metal with ohmic contact. On the other hand, 

low SRV e.g. 1 m/s in fig. 5.9 also works for this model. 
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Fig 5.5. Minority carrier hole concentration for exponentially doped n-type Base. The 

Back surface recombination velocity (Sp) is 5  102 cm/s. The line represents 

our analytical model. The symbols represent numerical solution: COMSOL 

Model and ATLAS model. 
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Fig 5.6. The effect of BGN on Minority carrier hole concentration in Base: The Back 

surface recombination velocity (Sp) is 5  102 cm/s. 
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Fig 5.7. Effect of surface recombination on carrier concentration (electron). The front 

surface recombination velocity (Sn) varies from 5  103 cm/s to 5  106 cm/s. 

The symbols represent the solution from ATLAS model and lines indicates 

analytical model. Band gap narrowing is ignored. Spectrum: AM1.5 
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Fig 5.8. comparing the effect of Band gap narrowing on the carrier profile in emitter 
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Fig 5.9. Effect of surface recombination on carrier concentration (hole) for 

exponentially doped base. The SRV (SP) varies from 5  103 cm/s to 5  106 

cm/s. The symbols represent the solution from SILVACO model and lines 

indicates analytical model. BGN is ignored. Spectrum: AM1.5 
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Fig 5.10. Some extreme cases of Surface Recombination velocity are investigated (SRV: 

1m/s and 1020m/s). The symbols represent the solution from ATLAS model and 

lines indicate analytical model. 
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The electric field inside the device is zero at the uniformly doped emitter as it should be 

(since no dopant variation and no band gap variation). At the quasi-neutral base side, the 

electric field is constant, as predicted by equation (3.6). We are not deriving E(x) inside 

the depletion region, since the expression of E(x) is quite common in standard textbooks 

[43]. 
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Fig 5.11. Electric field inside the solar cell: Solid line represents the analytical solution 

and symbols indicate the numerical data. 

 

5.3.  Minority Carrier Current Density 

If the minority carrier profile is known all over the device, then it is quite easy to calculate 

the minority carrier current density inside DF solar cell. For P+ uniformly-doped emitter 

region, the current density is described by equation (3.35). The drift component of hole 

current will certainly be negligible (as electric field is zero). But the diffusion component 

of hole current density will exist inside emitter, as given by following equation – 
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As we can see from fig. 5.12, the electron current density is divided in two parts – dark 

current and illumination current. The total current is a superposition of both components. 

Now, to find out the minority carrier current variation in exponentially-doped n-base 

region, the compact equation in section 3.6 will be used. Since electric field exists in this 

region, both drift and diffusion component will be dominant factors. The minority carrier 

(Hole) current density is repeated here in equation (5.3). The comparison of hole current 

density with ATLAS model shows good agreement with our model (fig. 5.12). Fig. 5.13 

stands for the base region that shows the drift (JP-Drift) and diffusion (JP-Diff) components 

that together shape the total current density, JTOTAL.  
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Fig 5.12. Electron current Density inside emitter: line represents the analytical solution 

and Symbol represents TCAD simulation 
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Fig 5.13. Hole current Density inside Base: line represents the analytical solution and 

Symbol represents TCAD simulation 
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5.4. Effect of Spectrum 

The attractive feature of this model is the inclusion of solar spectrum in a compact 

expression, without using elaborate numerical approach. Besides, this solution does not 

need any number of iterations to show satisfactory correct results with experimental data 

and device simulator.  In this section, we will consider the effect of two different solar 

spectrums: AM1.5D and AM1.5G. According to NREL, these are standard solar 

spectrum for terrestrial applications [66]. The details are also presented in Appendix D.  

 

As explained in chapter 3, the spectrum is included in the solution process using 

approximated carrier generation rate equation, which is repeated here for helping the 

discussion – 

 iapprox.

5

1
( ) a exp i

i
G x b x



   

The ai and bi values needed for approximated G is tabulated in the following table [57, 

59]: 

 
Table 5.1. Coefficients ai (×1020s-1cm-3) and bi (×104cm-1) in Si for different solar spectrum  

Co-efficient (ai, bi) AM1.5D 
(Diffused) 

AM1.5 G 
(Global) 

AM0 
(Space) 

 
a1 28.63 50.63 27.09 
a2 6.60 10.00 13.03 
a3 4.20 3.90 6.23 
a4 0.511 0.45 1.02 
a5 0.0211 0.0201 0.103 

 
b1 70.44 65.44 30.81 
b2 3.72 3.72 3.568 
b3 0.35 0.35 0.571 
b4 0.0720 0.0620 0.116 
b5 0.0055 0.0061 0.0175 

 
Approximated 

Carrier Generation, 
G(x) 

G =  ∑ ai exp(−bix)

𝑛

𝑖=1
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5.4.1. Effect of Changing Solar Spectrum on Carrier Concentration 

To observe the effect of AM1.5G and AM1.5D, we are considering a heavily-doped n-

type emitter. To include the AM1.5D spectrum, simply the ai and bi values from Table 

5.1 will be included in the expression of minority carrier concentration. To verify that 

our mathematical model is correctly predicting the solar cell performance under different 

spectrum in 1-Sun condition, Hole concentration from all the irradiation is compared 

with Silvaco/ATLAS simulation. The top surface recombination velocity is 5  104 cm/s 

and the biasing voltage is 0V. The doping profile is exponentially varying from top 

surface (1020 cm–3) to the E-B junction at 0.5 m (7  1018 cm–3).  

 

As seen in fig. 5.14-5.15, the analytical model works fine for both spectrums. It should 

be noted that the change in hole concentration due to change in spectrum from AM1.5D 

to AM1.5G is very little. The reason behind this is that both are standard terrestrial 

irradiance with almost similar spectrum: AM1.5D is considering the direct irradiance and 

AM1.5G is including total global irradiance (see Appendix D: Section D.1). Hence, fig. 

5.14 and fig.5.15 has very small change.   
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Fig 5.14. Effect of spectrum on carrier concentration. Spectrum: AM1.5D. line represents 

the analytical solution and Symbol represents TCAD simulation 
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Fig 5.15. Effect of spectrum on carrier concentration. Spectrum: AM1.5G. line represents 

the analytical solution and Symbol represents TCAD simulation 

 

 

5.4.2. Comparing Approximated and Simulated Generation Rate 

It is desirable to find out how good the approximation of G is when compared to TCAD 

device simulator. As seen in the fig. 5.16, the approximation is quite good for a typically 

thick solar cell (above 300m), but the 5-term approximation of equation (3.3) shows 

error for small depth. This is certainly a concern for thin cells. Fig. 5.17 reveals that the 

approximation taken for AM1.5D is better than that of AM1.5G. 



111 | P a g e  
 

0 50 100 150 200 250 300

10
25

10
27

 

Ph
ot

og
en

er
at

io
n 

R
at

e,
 G

(x
) (

m
-3

s-1
)

Emitter Depth, x (m)

 Approximated G(x) : AM1.5G
 Silvaco Model: AM1.5G

Over-estimated by Approximated G(x)

 

0.0 0.5 1.0 1.5 2.0
10

26

10
28

 

 

Ph
ot

og
en

er
at

io
n 

R
at

e,
 G

(x
) (

m
-3

s-1
)

Emitter Depth, x (m)

 Approximated G(x) for AM1.5G
 Silvaco Model: AM1.5G

 
Fig 5.16. Photogeneration rate for AM1.5G (Global) solar spectrum. The solid line 

represents 5-term approximation of photogeneration and the symbol represents 

the data from TCAD simulator: (a) for a thick (300m) Solar Cell, (b) for a thin 

(2m) Cell. No reflection is considered in ATLAS model.  
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Fig 5.17. Photogeneration rate for AM1.5D (Direct) solar spectrum. The solid line 

represents 5-term approximation of photogeneration and the symbol represents 

the data from TCAD simulator: (a) for a thick (300m) Solar Cell, (b) for a thin 

(2m) Cell. No reflection is considered in ATLAS model. 
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For most of the cases the emitter region is very thin (around 0.5m); hence the error in 

the generation rate will cause much mismatch. To correct this approximation, we are 

reporting a new set of ai and bi, as presented in table 5.2 below. The corresponding new 

generation rate is illustrated in fig. 5.18, along with Ray tracing simulation data. The hole 

concentration, using new values of ai and bi from table 5.2, shows that carrier distribution 

shows very good match with the ATLAS simulator.  

 
Table 5.2. New Coefficients ai (×1020s-1cm-3) and bi (×104cm-1) in Si for different solar spectrum  

New Coefficient (ai, bi) AM1.5 G (Global) 
a1 78.1 
a2 15 
a3 4.8 
a4 0.8 
a5 0.0011 
  

b1 75.44 
b2 4.19 
b3 0.6 
b4 0.052 
b5 0.0015 
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Fig 5.18. Better approximation rate for photogeneration in AM1.5 solar spectrum: The 

solid line represents 5-term approximation of photogeneration and the symbol 

represents the data from TCAD simulator 



114 | P a g e  
 

0.0 0.1 0.2 0.3 0.4 0.5
10

6

10
8

10
10

10
12

10
14

10
16

10
18

E-B Depletion Edge

 

M
in

o
ri
ty

 C
a

rr
ie

r 
C

o
n

c
e
n

tr
a

ti
o

n
, 

P
(x

) 
 (

m
-3
)

Emitter Depth, x (m)

 Analytical Model
 Silvaco Simulation
 COMSOL Model

Front Surface

 
Fig 5.19. Minority carrier concentration using the better approximation in G, proposed 

by this work  

 

5.5. Effect of Biasing  

The effect of applied bias is embedded in the developed model through the boundary 

condition of Emitter-Base junction (for example, see equation (3.21)). The applied bias 

will certainly increase the injection of minority carrier from the base side and increase 

the current. To understand the effect of biasing, we will take a thin emitter (0.3 m) as 

example and separate the terms which are affected by applied bias. A simple observation 

of the general expression for minority carrier (both electron and hole) shows that the 

contribution from V is hidden in the boundary constants C1 and C2. Increasing the applied 

voltage will increase the injection level in the emitter region. Besides, as evident from 

equation (5.4) the illumination term is not affect at all by the applied voltage.  
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  (5.4) 

To observe the impact of increasing injection level on a 0.3 m emitter, biasing is varied 

from 0.1 to 0.7V. As seen in fig. 5.20 below, the minority carrier at the junction gradually 

increases due to high injection from the base side. If the voltage is very high, the low 

injection condition becomes invalid. Fig. 5.20 shows that, when V is near 0.7V, the 

minority carrier concentration becomes comparable to majority carrier concentration (or, 

alternatively the doping density). Since generally the analytical models work on the basic 

assumption of low injection, this solution also should not be used for biasing beyond 0.8 

V. 

 

Since the complete expression of current density is known to us (from chapter 3), J-V 

curve for this device structure is straightforward to calculate. A closer look at the compact 

expression for current density (both drift and diffusion) reveals that, only the dark 

component contains C1 and C2. Since the expression of C1 and C2 (see equation (5.4)) 

contains the Voltage part only, it is obvious that the current is proportional to the 

exponential variation of applied voltage. It is also obvious from the current equations that 

the contribution from the solar spectrum works like a constant current source, irrespective 

of the applied biasing. This is consistent with basic photovoltaic physics. 
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Fig. 5.21 illustrates the current density for various voltages. As the J-V curve is now 

acquired, calculations of the key parameters (efficiency, FF) are just some trivial work. 

For example, the open circuit voltage for this thin emitter is found to be 0.55V and the 

short circuit current is nearly 30 A/m2. 
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Fig 5.20. The minority carrier concentration for different applied bias. Thin emitter (0.3 

m) is considered with high surface recombination velocity (5  106 cm/s).  
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Fig 5.21. J-V curve obtained from the compact model 
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Fig 5.22. P-V curve obtained from the compact model 

 

From the J-V curve, the power-voltage curve and the corresponding MPP point can be 

easily obtained by applying the theory in Chapter 2. As seen in fig. 5.21 and 5.22, the 
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optimal operating voltage and current density is 0.475 V and 28.5 A/m2 respectively, 

with an optimal power density of 13.3W/m2. The fill factor square is also shown in fig. 

5.21.  

 

Comparison with the experimental work: 

A commercial (R.T.C France) silicon solar [76] cell is considered to compare with the 

proposed analytical model. Their experimental I-V data is obtained under controlled 

conditions from an automated measuring system with a CBM 8096 microcomputer 

acting as the controller which once finishes the acquisition of data, starts executing the 

optimization program in order to determine the model parameters. The cell key 

parameters from [76] is presented below – 

 
The experimental result is compared to the result of our analytical model. As seen from 

fig. 5.23 below, the mathematical model shows promising matching with the experiment. 

The mismatch near the MPP (Maximum Power Point) can be explained easily from the 

concept of shunt and series resistance. As explained by Prince [77], when the series and 

shunt resistances are negligible (Rseries=0 and Rshunt=), the I-V curve follows a sharp fall 

(like in our model). But if the series resistance becomes significant (even near 5), the 

I-V curve falls drastically. The experimental R.T.C France solar cell contains series 

resistance, hence the curve in fig. 5.23 is different because in our model, no series 

resistance is included in the analysis.  

 

The open circuit voltage from experimental solar cell is also close enough with the 

developed analytical model. 
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Fig 5.23. Comparison of the analytical I-V characteristics with the experimental solar 

cell module data from [76] 

5.6. Effect of Thickness 

In this section, the applicability of our model will be analysed when the emitter thickness 

is varied from thin layer to thick layer. First, five emitters with different thickness are 

considered to observe the trend in carrier concentration. From fig. 5.23, it is found that 

when doping gradient  is kept constant ( = 5.6268106) and emitter depth is gradually 

increased, the corresponding hole concentration just spreads over the emitter (range of 

xj). The resulting hole concentration is almost similar in shape near the junction. This 

can be explained since for very thin emitter (0.1m), the surface and junction are too 

close and they drag the p(x) together than the p(x) for thick emitter (0.5m). Since  is 

same for all five emitter profile, the Electric field (and hence, drift component of p(x)) 

will be same. The diffusion component, however, has spacial dependence and will vary 

with x. This can also be understood from the current density variation for the five cases 

of emitter profile.  

 

The effect of emitter thickness can be studied from another perspective. For the previous 

case, the exponential gradient  was kept same; so, the doping at depletion edge (at Xj) 
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was different for each case. Now same doping range (1020 cm–3 to 61018 cm–3) will be 

assumed for each case of emitter (see fig. 5.24), i.e., unlike fig. 5.23, the gradient  will 

be different. It is seen that there is not much change in hole conc., since the doping density 

are closer for both cases. 
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Fig 5.24. Five emitters (0.1–0.5m thickness) are analysed for same SRV and zero bias 

condition. (a) The doping concentration falls with same gradient () in all the 

cases. (b) Corresponding minority carrier concentration 
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Fig 5.25. Five emitters (0.1–0.5m thickness) are analysed for same SRV and zero bias 

condition. (a) The doping is maximum at the top surface (1020 cm–3) and 

gradually falls to the junction-edge (61018 cm–3). Same doping profiles are 

considered for all the emitters. (b) Corresponding minority carrier 

concentration 
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So far, thin emitter has been our main concern. But what happens when the emitter 

thickness exceeds the range of ‘thin emitter’? To explore this situation, we will consider 

an n-type base region, where doping is exponentially increasing towards the back contact. 

The base depth is varied from 1m to 7m. Back Surface recombination velocity is 

constant (5  104 m/s). As seen in fig. 5.25, the effect is similar to emitter case. As the 

width of the base is increased, the hole concentration remains same at the boundary. Only 

slight increase in concentration with W is observed at the middle of the base region. 

 

This result is important for another reason. Many of the previous analytical models work 

only for swallow emitter/base regions (near 0.3m  0.5m), while our model can solve 

structure beyond that range. The reason behind this is that our model does not employ 

any kind of approximations that may arise from shallow emitters exclusively. Hence, the 

model is robust for both thin and thick layer of devices. 

 

The current density profile for various base thicknesses is shown in fig. 5.26. It is 

noteworthy that for increasing W, the absolute value of hole current density at each 

boundary increases. For this specific solar cell, hole current density at the E-B junction 

increases 2.4 times for a 3.5 times change in base thickness.  
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Fig 5.26. Hole concentration for three base regions for same SRV (5  104 m/s) and zero 

bias condition. The impurity concentration gradually increases towards the 

back contact.  
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Fig 5.27. Current density for three base regions.  



124 | P a g e  
 

5.7. Analysis With Accurate Generation Rate 

Generation rate is a function of depth into the material (x) and wavelength of incident 

solar spectrum. The light generation rate is the sum of individual contributions over the 

whole solar spectrum. So far, G has been approximated by a series of three to five 

exponential terms in previous analysis. As discussed in chapter 3, that the analytical 

solution obtained using approximated G has the same form when actual generation rate 

is considered [57]. Approximated G will now be avoided and more accurate generation 

rate will be the focus of this section. 

 

Fig. 5.27 uses the general analytical expression of Section 3.8 and explains the effect of 

individual wavelength on the minority carrier concentration. As evident from the figure, 

with increasing photon energy (decreasing wavelength), the contribution to carrier 

concentration gradually decreases. The wavelength considered in this analysis is from 

0.2 to 1.2 m (with a 10 nm step). The reason of taking this band can be explained from 

fig. 3.4. The absorption for Silicon is dominant in this region.  

 

In fig. 5.27, the hole concentration at the junction is same for all wavelength, but the 

surface concentration depends on the incident photon energy. Besides, the concentration 

does not have similar profile for some wavelength; for example, at 0.9 m, the surface 

carrier concentration suddenly increases (marked with arrow). The reason behind this is 

the unevenness in absorption coefficient and sudden change in solar spectrum. Studying 

this type unexpected change is possible with our model.  

 

It should be noted that the small change in one wavelength will not change the overall 

hole concentration over the device, because the overall hole concentration is the 

summation (integration) of the all contributions. Hence for monochromatic study, as well 

as for study of overall spectrum, this model is very helpful. But if studying the effect of 

spectrum is prime concern, then the model with approximate generation rate will be 

accurate enough to use. To clear this point, the hole concentration of an ultra-shallow 

emitter (0.1m) is presented in fig. 5.28. This figure is obtained by summing over the 

individual frequency concentration in AM1.5G solar spectrum. It is clear that the general 

solution with actual G(x) and the approximated analytical solution actually overlap on 

one another. Hence, both solutions (in section 3.1 and in section 3.8) can be used without 
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introducing any significant errors in the carrier concentration. The ATLAS device 

simulator data is also presented in fig. 5.28. 
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Fig 5.28. The contribution from individual wavelength on a 0.5 m emitter. SRV is 5  

104cm/s. The wavelength of incident light is varied from 0.3m to 1.2m.  
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Fig 5.29. General analytical solution for a 0.1 m emitter with very high SRV (5  106 

cm/s) and no bias is applied. AM1.5 spectrum in the range of 0.3m to 1.2m 

is incident on the cell. BGN factor, f=0.  
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5.8. Simplification of the Analytical model  

The main drawback of this model is the mathematical complexity that may limit its 

applicability in getting a quick estimate for optimization purpose. Although this model 

can include many effects simultaneously with the added cost of complexity, it will serve 

better purpose if the expression is much less complex and more straightforward. A simple 

look at the expression of hole concentration (or, electron concentration) shows that one 

particular function is making it complex to interpret. That is the Hypergeometric 

function, 1F2. To achieve a simplified version of equation (3.19), several mathematical 

approximations will be explored in this section to deal with these advanced functions.  

 

The theoretical details of Hypergeometric functions are discussed briefly in the appendix 

C. The two Hypergeometric functions, used in the derivation, are defined as follows – 

 

   
(5.5)

 
2 2

2 1 2
2Hypergeometric function 2 ( ) ; 1, ;

2 2 4
   

    
 

zH z F     


 
(5.6)

 
 

For thin emitters (𝑋𝑗 ≤0.5 m), it is observed that the variation of Hypergeometric 

function is confined to 1.01.15 for each component of the generation terms (corresponds 

to each ai and bi). Since thin emitter is common for practical cells, taking Hypergeometric 

function to be 1 is a valid assumption for typical solar cells. As evident from the fig. 5.29 

below, the Hypergeometric function shows maximum value at the front surface (at x=0) 

and for the first component of the generation term (a1 and b1). 

 

2 2

1 1 2
2Hypergeometric function 1 ( ) ; 1, ;

2 2 4
   

    
 

zH z F     

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Fig 5.30. Variation of Hypergeometric terms 1F2 (z) in the generation expression of 

minority carrier concentration. For each of 5 components of approximated 

carrier generation G, the maximum value of Hypergeometric function is limited 

to 1. 
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Replacing the Hypergeometric function with 1 will make the expression of carrier 

concentration much simpler, as presented below – 
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To compare this above simplified solution with the full expression, same thin emitter is 

taken into consideration. From fig. 5.30, it can be observed that the approximation can 

predict the actual expression correctly over most of the device, but it overestimates the 

concentration near the front surface. This can be easily explained from previous fig. 5.29. 

Since both the Hypergeometric functions gradually exceed 1.0 near the front surface, it 

is expected the approximation will introduce more error at x=0.  
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Fig 5.31. Comparison of minority carrier profile between actual P(x) where 

Hypergeometric terms 1F2 exists in expression (3.19) and approximated P(x) 

where Hypergeometric terms 1F2 is assumed to be zero. Device Dimensions: 

0.5m thick emitter; Surface Recombination Velocity = 5  104 cm/s; Bias, V 

= 0. 
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To observe how this simplification affects the total current density (and their constituting 

components), fig. 5.31 calculates current density for both cases. It is promising that the 

current density has very good match all over the device. The drift current density is same 

before and after the approximations. This is obvious since drift component does not 

contain any Hypergeometric terms. The diffusion current component has slight mismatch 

near the front surface. The reason for this expected difference just has been explained. 

The matched values obtained for total current density with and without approximation 

conclude that the simplification can describe the device current accurately enough and 

without the need for calculating the complex Hypergeometric function. To understand 

how close the match is between them, the absolute error between the cases is calculated, 

as illustrated in fig. 5.32. It is seen that the maximum error in total current density is only 

3.05%, which is acceptable. Besides, the error is maximum only at surface, but zero for 

almost rest of the device. Since for obtaining the current-voltage characteristics of solar 

cell, traditionally the current at junction-edge (x=xj) is taken into account. Hence, instead 

of actual current density in equation (3.53)-(3.54), the approximated JTotal can be used to 

describe the J-V characteristics without introducing any error at all. This is obviously a 

useful finding towards our attempt of reducing mathematical complexity. 
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Fig 5.32. The effect of approximating Hypergeometric function on minority carrier 

current density and their components. Solid lines represent approximated 

Hypergeometric function and dotted line indicates current from actual 

expression.   
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Fig 5.33. Absolute error of minority carrier current density and their components. The 

error analysis is for comparing the effect of approximation in Hypergeometric 

function.   

The validity range of applying this approximated Hypergeometric function is the next 

obvious question. As seen from the illustration in fig. 5.33, the value of 1F2 increases too 

fast when emitter is not shallow. For a 2 m emitter, the value of Hypergeometric 

function at the top surface exceeds 2  105
. For such high values, replacing 

Hypergeometric function with 1 will certainly introduce huge error. Hence for thick 

emitters, there is no alternative but to use the original solution.  

 

It has been found that the simplified solution will work for emitter having thickness less 

than 0.5 m. After that, complete solution of section 3.1 should be used. Figure 5.34 

shows this limit. 
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Fig 5.34. Variation of Hypergeometric terms 1F2 (z) for a thick emitter (10m) 
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Fig 5.35. Variation of Hypergeometric terms 1F2 (z) with device thickness. The arrow 

indicates after which thickness the approximation in Hypergeometric function 

will gradually become erroneous and complete solution should be used. 

 

5.9.  Convergence Issues of Hypergeometric Function 

It is necessary to look at one property of Hypergeometric function more closely. The 

convergence of Hypergeometric function needs to be considered. Standard convergence 

technique dictates that the last argument of 1F2 has to obey the following criterion – 
2 2

14
z

  

Making use of (3.13) in the above condition results in – 

2 2
0

Gradually Decreasing Term
Constant

( )exp 1
( )T

d
m k

m k xN
KMV m k






 

 
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 

       

(5.7) 

This criterion is an important relation that needs further attention. The first term is a 

constant which depends on peak doping (Nd0), doping gradient constant () and, lifetime 

and mobility constants (m, M, k, K). The second term is an exponentially decreasing term 
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that has maximum value (1) at the surface (x=0). So the second term is actually helping 

in satisfying the abovementioned condition as x increases along the depth of the device. 

Hence if the condition is met at the front surface, it will certainly be valid for the rest of 

the region. The criterion then effectively reduces as follows, 

2 2
0 1

( )T

d
m kN

KMV m k

 
 
 
      

(5.8) 

Typical values of Nd0 is 1020 cm–3 is quite common. The maximum values for K, k, M, 

m are 5.5  1030cm-6/s, 2, 1.4  109 cm0.86V-1s-1 and m = 0.38 respectively.  depends on 

the peak doping and junction doping. The left side of the condition is checked in fig 5.25 

below for several emitter thickness and different junction doping, Nd (at x=Xj). The fig. 

reveals a notable sitation of hypergeometric convergence. The shaded portion is the 

allowed region where hypergeometric function will converge for all values of x. If the 

junction doping is high (e.g. 6  1018cm–3), then the solution will converge upto 1.47m 

thick emitter. On the other hand, for low junction doping like 1016 cm–3
 (which means 

doping varies widely from 1020 cm–3 to 1016 cm–3), the condition is valid upto 5m 

emitters. The curve below can also be described from the viewpoint of doping gradient 

. It is evident from fig. 5.35 below, if the doping gradient is large (wide range of doping 

variation), then the solution will converge for thicker emitter too. On the contrary, if any 

uniform doping profile is approximated by exponential doping (with very small gradient 

), this solution runs the risk of getting out of convergence region. Since for most of the 

practical thin-film emitters, thickness is near 0.5m, the convergence is certainly ensured 

for most of the common solar cells. 



134 | P a g e  
 

0 2 4 6 8 10
0

1

2

1 x
 10

16  cm
-3

8 
x 

10
16  cm

-3

7 
x 

10
17
 cm

-3

 

 

C
on

ve
rg

en
ce

 C
on

di
tio

n

Different Emiter thickness (m)

Increasing 

6 
x 

10
18

 c
m

-3

  Hypergeometric Function 

Converges inside this region 

 
Fig 5.36. The convergence region of Hypergeometric function over several emitter 

thickness for various doping concentration and doping profiles 

 

5.10. Comparison With Previous Models 

The model is compared with the previous work [8] of solar cell. The analytical model of 

Verhoef et al. [8] has been derived for dark conditions only. Since our model becomes a 

dark current model when illumination term P3 is 0 (as only dark response remains), the 

results from this model should match with Dark current model of [8].  

 

As evident from fig. 5.36, good agreement for P1(x) component is observed. But there is 

slight mismatch in 2nd term of Complementary function, P2(x). This mismatch in P2 can 

be explained using the theory of Bessel function [61]. As evident from the theory behind 

Bessel’s modified equation [62], both (I, I–) and (I, K) are valid solutions of 2nd order 

differential equations (for details, see Appendix B: Section B.2). When  is a non-integer 

(like in our case), they represent independent set of solutions. K and I- are related by 

the following identity [63]: 

 
    

 
2 sin( )

I x I x
K x  



 
  

 
    (5.9) 
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In this work, we have used the 1st set of independent solution (namely, I & I-), where 

the 2nd set (namely, I & K) is used in [8]. Hence, according to equation (5.9), there is 

an expected deviation when plotting the parts of solutions, since I- and K are related 

but not same function. If one complete device is solved for same boundary conditions 

(with C1 and C2 calculated from BCs), both sets of solution (I, I- or, I, K) will give 

same result.  

 

To demonstrate the validity of this argument, we can take a simple p-n junction under 

dark condition and exact same boundary conditions. The doping is varied exponentially 

from 1020 cm–3 to 6  1018 cm–3 for both models. As seen in fig. 5.37, the dark-response 

part of our solution in equation (3.19), matches perfectly with dark model in [8]. 
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Fig 5.37. Comparison of our solution with that of [8] (a) P1(x) normalized to P1(W), (b) 

P2(x), normalized to P2(W) and (c) P3(x), normalized to P3(W), P3 term is 

completely neglected in [8].  
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Fig 5.38. Comparison of our solution under dark condition with [8]: The light is incident 

on 0.5m emitter. The front surface is characterized by recombination velocity 

of 5  104 cm/s. The hole conc. at the junction is given by (ni
2/ND). 

 

5.11. Summary 

This chapter presents a detailed analysis of the analytical model developed in chapter 3. 

After rigorously testing the proposed model for several devices, the model is established 

firmly for wide variations of device parameters. The numerical solar cell models in 

ATLAS and COMSOL Multiphysics have been used to verify whether our model can 

predict the effect of all the parameter changes. Moreover, the comparison with existing 

literature has shown good agreement with our model. In short, the range, validity, 

robustness, limitation, success and expansions of the proposed model are explored and 

confirmed in this chapter.  
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CHAPTER 6 

CONCLUSIONS 
 

 

 

6.1.   Discussions and Conclusion 

A complete analytical model for single-junction solar cell has been presented in this 

thesis. This model presents a unique relationship of carrier concentration with the 

transport physics and incident spectrum. The solution technique is based on empirical 

expression of lifetime and mobility. The initial solution is constructed on the 

approximation of carrier generation rate, which can offer quite accurate result of solar 

cell under actual solar spectrum. Nonetheless, the solution is further expanded to a more 

general level with actual carrier generation. Along with that, the model is also expandable 

to other photovoltaic materials and other arbitrary spectrums.  

 

It is found from the analysis that the derived model can explain the minority carrier (both 

electron and hole) concentration. To verify the mathematical approaches, two numerical 

models have been developed in this thesis. A COMSOL Multiphysics equation-based 

model is constructed using the Finite Element Method (FEM). Good agreement with the 

COMSOL model has ensured that our analytical solution is mathematically correct. 

Another renowned device simulator (TCAD) Silvaco/ATLAS is also used to test the 

validity of the proposed model. Concentration-dependent parameters (mobility, SRH 

etc.), Heavy doping effects (like BGN, Fermi-Dirac Statistics) are included on the TCAD 

solar cell model. It is observed that our analytical solution is in good agreement with 

ATLAS simulation. There is slight mismatch with the TCAD solution which can be 

attributed to the error in empirical expression of lifetime and mobility. From both 

mathematical and TCAD point of view, it is concluded that the solution is very robust.  

 

The solution has been tested for several surface conditions. For wide variation of surface 

recombination velocity, it is found that the model is very successful in predicting the 
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trend of carrier concentration. The effect of BGN is also investigated using this model. 

BGN increases the carrier concentration, but the increase is not that significant.  

 

The compact expression of current density is derived and also examined carefully. From 

these equations, the individual contributions of the drift and diffusion current, as well as 

the illumination and dark current components are studied both separately and 

simultaneously. Comparing the current density with TCAD models gives satisfactory 

match. 

  

One of the strength of our model is its ability to predict the optical behavior under actual 

solar spectrum. Since the solution has the provision to add any spectrum by using the 

approximated generation rate, the effect of AM1.5G and AM1.5D spectrum is observed. 

It is seen that the spectrum has very little effect on carrier concentration because they are 

almost-identical terrestrial spectrum. The approximation taken for carrier generation is 

tested also. When compared to the ATLAS model, it is found that the traditional values 

for the approximation coefficients are not fitted closely. Hence, as a detour, a new set of 

approximated generation rate is proposed and good matching is obtained for the carrier 

concentration. 

 

The effect of biasing on the carrier concentration and current density is also investigated. 

Along with that, the J-V curve and power density characteristics are calculated. It is 

observed that this compact model is very good in calculating the key parameters of solar 

cells (e.g. efficiency, FF, VOC, ISC, and so on). 

 

The effect of Emitter depth is tested on five different emitters for two possible scenarios. 

For all cases, the minority carrier concentration remains constant at the boundary due to 

fixed SRV and biasing, and the concentration at the middle just spreads over the device. 

Similar spreading is observed for the current density profile. 

 

One major limitation of our model is the approximated generation rate. Hence, attempt 

is taken to overcome this limitation and a more general model is proposed that makes use 

of individual contributions of the solar spectrum. It includes the photon absorption and 

photon intensity in the final expression. From the analysis of the general solution, it is 

found that this solution gives slightly accurate result when compared to the previous 
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solution of approximated generation rate. Hence, the later solution will suffice for most 

of the practical cases. But if monochromatic light source is incident on the solar cell or 

the effect of certain frequency band is of interest, then the former general solution has no 

alternative. 

 

The solution, albeit its success, is complex in nature. The complexity arises from the 

Hypergeometric function. Therefore, another simple solution, derived from the previous 

general solution, has been proposed. This approach depends on the mathematical 

simplification of Hypergeometric function by replacing it with a constant value. Detailed 

analysis shows that the simplified solution shows maximum 3% error for swallow 

emitters, but gives unacceptable errors when thick emitters are used. An acceptable 

thickness range is specified beyond which this approximated solution should not be used. 

 

The convergence criterion of the Hypergeometric function is also explored for the 

completeness of the thesis. A relationship with doping and width is established after 

which the Hypergeometric function becomes too large to compute. 

 

Although the proposed model has been compared with COMSOL and ATLAS a lot of 

times, the model is also tested with existing analytical model in the literature. When the 

incident spectrum is turned off, this model has shown excellent match with the dark 

current models proposed by previous authors. 

 

 

6.2. Suggestion for future Work 

The mathematical model of this thesis has very rich potential. This analytical model will 

ensure better optimization of solar cell dimensions and make the study of calculating the 

individual contributions easier. Some suggestions for the future developments are – 

 

 The model is easily expandable to power-law doping profile. To incorporate this 

type of arbitrary doping profile, exponential-approximated doping profile can be 

used. 
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 The model can be used for new photovoltaic materials (Other than those already 

mentioned here). Simply tailoring the transport constants K, k, M, m will make 

this model as invaluable tool to study the possibility of using different materials 

as solar cell. 

 Although this model is developed for common solar cells, the same modeling 

approach can be employed for p-i-n and CIGS (Copper Indium Gallium Selenide) 

solar cell. The techniques and mathematics used in this thesis will be helpful in 

deriving the compact models for these solar cells too. 

 Effect of series and shunt resistance is not included in this study. Their effects 

can be added to the general expression to predict the deterioration in performance 

caused by them. 

 Effect of surface texturing is another factor that can increase the applicability of 

this model to more complex surface geometry. The existing numerical and semi-

analytical models of textured solar cell can be extended using the mathematical 

methods used for this work. 

 

In future, these extensions and upgrades will be explored and analyzed. That will be the 

focus of our future publications. 
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Appendix A 

Detailed Mathematical Derivation 
 

A.1 Calculating Particular Integral Containing Bessel Function  

The reduced form of differential equation (see chapter 3) that is obtained after the 

mathematical manipulation of basic semiconductor differential equations. 

 
2 5

2 2 2 2
2

1
     i

i

d u duz z z u C z
dz dz

    (A.1) 

Solving the above equation is crucial in our thesis. The homogeneous counterpart of 

equation (A.1) is  

 
2

2 2 2 2
2 0   

d u duz z z u
dz dz

   

The solution of the above homogeneous part uh(z) is easy to derive (see Chapter 3 and 

appendix B). 

  ( ) ( )h 1 2u z  C I z C I z    

The particular integral is not that much straightforward. To find the particular part, 

variation of parameter can be employed. To apply this technique, equation (A.1) is 

modified for  = z. 
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d u du u f E
d d
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




  
 

Now applying the variation of parameters, the particular solution will be  

   
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I I
u I f d I f d
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



 

   
 

 

   

 
      

       (A.2) 

Here  represents the Wronskian of Bessel function (I and I), which is 2sin()/() 

[62]. Considering the 1st part, 
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  (A.3) 

Hence, the integration of term containing Bessel function has to be determined first. For 

this purpose, the definition of Bessel function will be used in equation (A.3). The 

definition of modified Bessel function of first kind is available in any standard Math 

books [61, 63]. 
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(A.4) 

Using the definition (A.4) in the integration part of (A.3), it is straightforward to obtain, 
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(A.5) 

The last part of (A.5) can be replaced by the Hypergeometric function (See Appendix C), 

as given in (A.6). 
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(A.6) 

Replacing (A.6) back into (A.2) will give the particular solution for z = (/). 
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(A.7) 
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A.2 Derivatives of Particular Integral 

The complete solution of carrier concentration is  

1 2
Particular IntegralComplementary Function

( ) ( ) ( )( )   PC I z C I z u zp z       (A.8) 

Where, up(z) is defined in (A.7). For evaluating the current boundary condition, the 

derivatives of p(z) is necessary. Since p(z) contains both Bessel and Hypergeometric 

function, the derivatives will also contain this functions. 

 

To consider the derivatives of Bessel function, the identity from the Appendix B will be 

helpful. The derivatives of complementary function in (A.8) can be easily derived using 

the identity below  
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1 12
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        (A.9) 

Now to obtain the derivatives of particular integral of (A.8), both differentiation of Bessel 

and Hypergeometric function are necessary. Taking help from Appendix C, the 

derivatives of z dependent part in (A.7) can be obtained as follows 
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(A.10) 

Combining the above derivatives (A.9)(A.10) will results in [dp(z)/dz] of the complete 

solution p(z). 
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Appendix B 

Bessel Function 
The theory of Bessel functions is intimately connected with the theory of a certain type 

of differential equation of the first order, known as Ricatti’s equation. In fact, Bessel 

function is usually defined as a particular solution of a linear differential equation of the 

second order (known as Bessel’s equation) which is derived from Ricatti’s equation by 

an elementary transformation. This type of differential equation is quite common in 

advance scientific and engineering problems. Bessel function is often encountered when 

solving boundary value problems, such as separable solutions to Laplace’s equation or 

the Helmholtz equation, especially when working in cylindrical or spherical coordinates. 

 

B.1 Bessel Function of the First Kind 

Let us consider the following second-order differential equation, 

 2 2 2''(z) zu'(z) z (z) 0z u u       (B.1) 

This is known as the Bessel’s equation.  is an unrestricted (real or complex) number 

that is called the order of the Bessel equation.  

 

The Bessel differential equation can be solved by adopting an infinite series solution. By 

taking 
0

( ), r
r

r
u r a z 






  as a solution of equation (B.1) and evaluating the constant 

ar, it is straightforward to obtain the solution of Bessel equation [61]. The solution is 

known as Bessel function and has the following mathematical form, 
2r
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( 1)(z)
2! 1

r

r

zJ
r r










  
  

   
     (B.2) 

Since equation (B.1) is a second order differential equation, there must be two linearly 

independent solutions. Typically the general solution is given as (B.3). 

1 2( ) (z) (z)u z C J C Y
 

        (B.3) 

Here, second solution Y = [J(z)cos()–J–(z)]/ sin() and C1, C2 are constants. In 

summary, 
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Jν(x)  Bessel functions of the first kind, which are finite at x=0 for all real values 
of ν 

 
Yν(x)  Bessel functions of the second kind, (also known as Weber or Neumann 

functions) which are singular at x=0 
 

B.2 Modified Bessel Function of First Kind 

The equation that is encountered in this thesis is slightly different than equation (B.1).  

 2 2 2''(z) zu'(z) z (z) 0z u u        (B.4) 

This is known as modified Bessel equation. Comparing (B.4) with (B.1), the solution for 

the modified Bessel equation can be derived by a simple change of variable from z to iz 

( 1i   ), 

1 2( ) ( z) ( z)u z C J i C Y i
 

      (B.5) 

Defining (z) (iz)I i J

 

 , the solution becomes real function of z, 
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K

sin
 











 
 

                    (B.7) 

I and K are the modified Bessel function of 1st and 2nd kind of order . The functions 

are exponentially growing and decaying function, as shown in fig. B.1.  

 
Fig. B.1  The plot of modified Bessel function of 1st and 2nd kind, for integer order 

It should be mentioned here that I and K are not the only solution set of (B.4). I and I–

 can also be the solutions of (B.4)[63]. This is evident from the relationship in (B.7). 

When  is a non-integer order, I and I– represent the independent solution; while for 

integer , I–(z) = I(z). 
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B.3 Recurrence Relationship of Modified Bessel Functions  

Several identities of modified Bessel function exists in literature [61]. This thesis has 

amply used some of these relations, when necessary.  
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B.4 Approximation of Modified Bessel Function 

The modified Bessel function can be approximated by some functional forms. These 

functional relationships are applicable for certain types of argument (z) and order (). 

This thesis has briefly explored the ways of simplifying the derived analytical equations 

using some specific mathematical approximations. Hence, a short summary of 

approximating the Bessel function is added here to help that discussion. 

 

A. Integral representation of I:  

This representations are valid for both integer and non–integer values of . 
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 
0

(z) cosh exp( x cosh )d ;       for x > 0K nt t t



   

 

B. Asymptotic approximation of modified Bessel Function: 

This approximation is valid for large values of z. 

 
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C. Power series expansion of Modified Bessel Function 

This expansion is valid for positive order , 
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Similarly for negative , 
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D. Alternate Power series expansion of Modified Bessel Function 

This is another representation of Modified Bessel Function, 
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Appendix C 

Hypergeometric Function 
 

C.1 Definition of Hypergeometric function 

To introduce the Hypergeometric function, first Pochhammer symbol ()r needs to be 

defined as follows – 

     1 ... 1      ;  (r is positive)
r

rr 
   




       (C.1) 

Here, ()0 = 1. The general Hypergeometric function is defined using the Pochhammer 

symbol of (C.1), as shown in equation (C.2). 
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The derivatives of general Hypergeometric function is given by – 
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   (C.3) 

 

The general Hypergeometric function that is used in this thesis is 1F2, which can be 

calculated using the general relationship of equation (C.2).  
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C.2 Convergence Criteria of Hypergeometric Function 

The convergence of Hypergeometric function depends on the values of p and q. If r and 

r in (C.3) are not non-positive integers for any r, then the Ratio Test [78] can provide 

the necessary convergence criteria for the Hypergeometric function.  
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Table C.1  Convergence Criteria of generalized Hypergeometric function 

Condition  

for pFq(∙) 
Convergence Criteria 

p q   

The ratio of coefficients of zr
 in the Taylor series of Hypergeometric 

function tends to 0 as r  . Hence the radius of curvature is  and 

the series converges for all values of |z|.  

For example, the radius of curvature for 0F1 and 1F1 is . 

1p q    

The ratio of coefficients of zr
 in the Taylor series of Hypergeometric 

function tends to 1 as r  . So the radius of convergence is 1, i.e. 

the series converges only for   1z  .  

For example, the radius of curvature for 2F1 is 1. 

1p q   
The ratio of coefficients of zr tends to  as r  . So the radius of 

curvature is 0 and the series does not converge for any values of |z|. 

 

According to the table C.1, 1F2 Hypergeometric function will converge for all values of 

|z|. Since z is defined as exponentially decaying function of x (see chapter 3), the 

maximum values of z is 1 (non-negative integer). 

 

C.3 Computing Hypergeometric Function 

For computing the Hypergeometric function, this work has used MATLAB, Wolfram 

MATHEMATICA Kernel and MAPLE Math Engine. MATLAB routine for computing 

Hypergeometric functions, “hypergeom”, is generally slow but tolerable for all parameter 

and variable values (MATLAB usually took around 5-12 seconds to compute 

Hypergeometric function the first time after loading the program). Hence MAPLE math 

Engine Toolbox is incorporated in MATLAB to achieve faster calculation 1F2. Along 

with that, similar program is developed in MATHEMATICA to check the validity of the 

MATLAB Hypergeometric function.  

The methods to calculate Hypergeometric function by MATLAB and MATHEMATICA 

are not released publicly. But some authors have developed some excellent package of 

program/routines, which are published as open-source [79]. 
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Appendix D 

Standard Solar Spectrum 
 

D.1 Terrestrial Solar Spectrum 

The energy from the Sun is distributed, in ways that depend on variables like latitude, 

time of day, and atmospheric conditions, over different wavelengths. The various 

distributions that are possible are called solar spectra. Due to the variation of solar 

spectrum with weather, season, time of day, and location, standard spectra are needed to 

be defined universally. Having standard spectra allows the experimental solar cell 

performance of one device to be compared to that of other devices and to be judged fairly, 

since the cells can be exposed to the same agreed-upon spectrum. The comparisons can 

be done even in the laboratory since standard distributions can be duplicated using solar 

simulators [41]. 

 

The two spectrums that are relevant on the earth's surface are referred to as the AM1.5G 

and the AM1.5D spectrum. The AM1.5G spectrum includes direct and diffused radiation 

and has an integrated power density of 1000 W/m2. This spectrum is relevant for flat 

panel photovoltaic cells. The AM1.5D spectrum consists of only direct radiation from 

the sun and is applicable to concentrator photovoltaic cells. It has an integrated power 

density of 900W/m2 [80].  

 

The standardization of the solar spectrum is recognized by the photovoltaic (PV) 

industry, the American Society for Testing and Materials (ASTM) [81] and government 

research and development laboratories. Only AM1.5G and AM1.5D are the terrestrial 

solar spectral irradiance distributions those are defined as standard. The current Standard 

Reference Spectra (ASTM G173) can be obtained from [82] and has presented in fig. 

D.1. 

Standard Direct Normal  
Spectral Irradiance 

Direct component contributing to the total 
global (hemispherical) spectrum 

Standard Total  
Spectral Irradiance 

Global, hemispherical, within 2 Steradian 
field of view of the tilted plane 
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The standard terrestrial spectral irradiance is for a surface of specified orientation under 

specific set of atmospheric conditions. The power distributions as a function of 

wavelength provide a single common reference for evaluating spectrally selective PV 

materials with respect to performance measured under varying natural and artificial 

sources of light with various spectral distributions. The specified atmospheric conditions 

are [66]:  

 The 1976 U.S. Standard Atmosphere with temperature, pressure, aerosol density 

(rural aerosol loading), air density, molecular species density specified in 33 

layers  

 An absolute air mass of 1.5 (solar zenith angle 48.19°s)  

 Angstrom turbidity (base e) at 500 nm of 0.084 c 

 Total column water vapor equivalent of 1.42 cm  

 total column ozone equivalent of 0.34 cm  

 Surface spectral albedo (reflectivity) of Light Soil as documented in the Jet 

Propulsion Laboratory ASTER Spectral Reflectance Database  

 
Fig. D.1   ASTM G173 standard solar spectrums: AM1.5G, AM1.5D, AM0 [66] 
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D.2 Extraterrestrial Solar Spectrum 

The spectrum of available energy from the sun at the outer edge of the earth's atmosphere 

is referred to as the air mass zero (AM0) spectrum. This spectrum has an integrated power 

density of 1366.1 W/m2. 

 

ASTM has developed this AM0 reference spectrum (ASTM E-490) using the data from 

satellites, space shuttle missions, high-altitude aircraft, rocket soundings, ground-based 

solar telescopes, and modeled spectral irradiance [83]. This spectral irradiance is 

specifically suitable for the aerospace community. Figure D.1 shows the irradiance 

profile of AM0 extraterrestrial spectrum. 

 

D.3 Global Solar Energy Distribution  

The annual power from the sun depends on the location over the Earth and in average, 

the energy to the Earth’s surface is 730,000 Trillion KWh [84]. The global distribution 

of solar radiation is shown in fig. D.2. 

 

 
Fig. D.2  Global average annual insolation. Data from NASA [84].  
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Appendix E 

Silvaco/Atlas Code 
 

E.1 Simple P+N Solar Cell 

GO ATLAS 

MESH AUTO 

X.MESH LOC=0.0 SPACING=0.1 

X.MESH LOC=2.0 SPACING=0.1 

 

Y.MESH LOC=0.0 SPACING=0.01 

Y.MESH LOC=0.5 SPACING=0.01 

Y.MESH LOC=2.0 SPACING=0.2 

 

REGION NUM=1 MATERIAL=SILICON Y.MIN=0.00 Y.MAX=2 

ELECTRODE NUM=1 NAME=ANODE X.MIN=0 X.MAX=0.5 Y.MAX=0.0 MATERIAL=ALUMINUM 

ELECTRODE NUM=2 NAME=CATHODE Y.MIN=1 MATERIAL=ALUMINUM 

MATERIAL MATERIAL=ALUMINUM SOPRA=AL.NK 

DOPING P.TYPE CONC=5E18 UNIFORM  

DOPING N.TYPE Y.MIN = 0 Y.MAX = 0.5 ASCII INFILE=EXPONENTIAL_DOPING 

 

CONTACT NAME=ANODE SURF.REC VSURFP=5E2 

SAVE OUTF=SOLAR.STR 

# SET LIGHT BEAM USING SOLAR SPECTRUM FROM EXTERNAL FILE 

BEAM NUM=1 X.ORIGIN=1.0 Y.ORIGIN=-1.0 ANGLE=90.0 AM1.5 

 

# SAVES OPTICAL INTENSITY TO SOLUTION FILES 

# OUTPUT OPT.INT 

 

# MODELS SRH CONMOB FERMI NI.FERMI BGN OPTR AUGER 

MODEL PRINT SRH CONMOB BGN OPTR AUGER 

 

SOLVE INIT 

SOLVE PREV 

 

# 

# TURN ON THE SUN. 

# 

SOLVE B1=0.0  

STRUCTURE OUTF = PN_SUN.STR 

TONYPLOT PN_SUN.STR 
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E.2 General 2D Solar Cell Code 

 

GO ATLAS  

 

TITLE 2-D SOLAR CELL SIMULATOR, by B. DEBNATH, 2014  

 

#  THE LIGHT IS INCIDENT ON INTERFACE AT Y = 0 OVER n+ REGION  

#  DEVICE IS CONSTRUCTED ALONG +Y DIRECTION  

 

# ---------------------- < DEVICE PARAMETERS >------------------------ 

 

# DEVICE LENGTH (ALONG X) 

  SET LENGTH = 100 

  SET HALF_LENGTH = 50 

 

# N+P METALURGICAL JUNCTION  

  SET NP_JUNCTION = 0.5 

 

# P REGION WIDTH FROM N+P JUNCTION 

  SET P_WIDTH = 50 

 

# DOPING PROFILE 

 # N+ REGION CONCENTRATION (PER cm-3) 

   SET N_DOPING = 5.0E+19 

 # P REGION CONCENTRATION (PER cm-3) 

   SET P_DOPING = 1.5E+16 

 

# FRONT SURFACE  

 # ELECTRODE THICKNESS 

   SET ELECTRODE_THICKNESS = 0.100 

 # OXIDE THICKNESS 

   SET OXIDE_THICKNESS = 0.050 

 # FRONT SURFACE RECOMBINATION VELOCITY (cm/s) 

   SET FRONT_RECOM_VELOCITY = 5e2 

 # ELECTRODE LENGTH 

   SET ELECTRODE_HALF_LENGTH = 2 

# BACK SURFACE  

 # BACK SURFACE RECOMBINATION VELOCITY (cm/s) 

   SET BACK_RECOM_VELOCITY = 2e5 

 

 

# LIGHT SOURCE 

 # AIR MASS 1.5 (THETA = 45 DEGREE) 

   SET THETA = 90.0  

 # LIGHT POSITION  

   SET LIGHT_X = $HALF_LENGTH 

   SET LIGHT_Y = -1 

 # LIGHT INTENSITY (W/SQ.cm) 

   SET LIGHT_INTENSITY = 1 

 

 

# ----------< DERIVED DEVICE PARAMETERS >-------------------- 

 

# DEPLETION WIDTH (0.28273 um) 

  SET DEPLETION_WIDTH = 0.300 

 

# FOR FINE MESHING BEFORE DEPLETION REGION 

  SET DEPLETION_START = $NP_JUNCTION - 0.100   

 

# END OF FINE MESHING INSIDE DEPLETION REGION 

  SET DEPLETION_END = $NP_JUNCTION + $DEPLETION_WIDTH + 1   

   

# TOTAL DEVICE WIDTH 

  SET DEVICE_WIDTH = $NP_JUNCTION + $P_WIDTH 

 

# END OF DEVICE ALONG Y 
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  SET END_OF_DEVICE = $DEVICE_WIDTH + $ELECTRODE_THICKNESS 

 

 

# TRANSPARENT ELECTRODE WINDOW STARTING X (INACTIVE) 

  SET ELECTRODE_WINDOW_START = $HALF_LENGTH - $ELECTRODE_HALF_LENGTH 

 

# TRANSPARENT ELECTRODE WINDOW ENDING X (INACTIVE) 

  SET ELECTRODE_WINDOW_END = $HALF_LENGTH + $ELECTRODE_HALF_LENGTH 

 

# ELIMINATION BOUNDARY Y => ELIMINATE MESHING UPTO THIS Y FROM DEPLETION END 

  SET ELIMINATION_BOUNDARY_Y = $END_OF_DEVICE - 5 

 

# FINE GRID STARTING FOR THE SILICON LAYER NEAR ANODE 

  SET ANODE_GRID_STARTING = $ELIMINATION_BOUNDARY_Y + 1 

 

# ---------------------- < MESHING >------------------------ 

MESH   SPACE.MULT = 3 

X.MESH  LOC = 0     SPAC = 0.1 

X.MESH  LOC = 0.5    SPAC = 1 

X.MESH  LOC = $HALF_LENGTH   SPAC = 10 

X.MESH  LOC = $LENGTH    SPAC = 20 

 

 

Y.MESH  LOC = -$ELECTRODE_THICKNESS SPAC = 0.050 

Y.MESH  LOC = -$OXIDE_THICKNESS  SPAC = 0.050 

Y.MESH  LOC = 0     SPAC = 0.050 

Y.MESH  LOC = 0.25     SPAC = 0.050 

Y.MESH  LOC = $NP_JUNCTION   SPAC = 0.05 

Y.MESH  LOC = $DEPLETION_START  SPAC = 0.05 

Y.MESH  LOC = $DEPLETION_END  SPAC = 0.1 

 

Y.MESH  LOC = $ELIMINATION_BOUNDARY_Y SPAC = 5 

Y.MESH  LOC = $ANODE_GRID_STARTING  SPAC = 0.5 

Y.MESH  LOC = $DEVICE_WIDTH   SPAC = 0.1 

Y.MESH  LOC = $END_OF_DEVICE  SPAC = 0.1 

 

# ELIMINATION IN NEUTRAL REGION FOR FAST CALCULATION 

ELIMINATE X.DIR X.MIN = 1 X.MAX = $LENGTH Y.MIN = $DEPLETION_END Y.MAX = 

$ELIMINATION_BOUNDARY_Y  

ELIMINATE Y.DIR X.MIN = 1 X.MAX = $LENGTH Y.MIN = $DEPLETION_END Y.MAX = 

$ELIMINATION_BOUNDARY_Y  

 

# ---------------------- < REGIONS >------------------------ 

# SILICON LAYER 

REGION NUM = 1 Y.MIN = 0 Y.MAX = $DEVICE_WIDTH X.MIN = 0 X.MAX = $LENGTH 

MATERIAL = SILICON  

 

# TOP AIR REGION  

REGION NUM = 2 Y.MIN = -$ELECTRODE_THICKNESS Y.MAX = 0 X.MIN = 0 X.MAX = 

$LENGTH MATERIAL = AIR 

 

# ALUMINUM STRIP OVER n+ MATERIAL  

# REGION NUM = 4 Y.MIN = -$ELECTRODE_THICKNESS Y.MAX = 0 X.MIN = 

$ELECTRODE_WINDOW_START \ 

#      X.MAX = $ELECTRODE_WINDOW_END MATERIAL = ALUMINUM 

 

 

 

# ---------------------- < SET THE ELECTRODES >------------------------ 

# TOP ELECTRODE OVER n+ MATERIAL  

ELECTRODE NAME = ANODE Y.MIN = -$ELECTRODE_THICKNESS Y.MAX = 0 X.MIN = 0 \ 

     X.MAX = 0.1 MATERIAL = ALUMINUM  

 

# BOTTOM ELECTRODE BELOW P+ MATERIAL 

ELECTRODE NAME = CATHODE Y.MIN = $DEVICE_WIDTH Y.MAX = $END_OF_DEVICE \ 

     X.MIN = 0 X.MAX = $LENGTH MATERIAL = ALUMINUM 
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# ---------------------- < DOPING PROFILE >------------------------ 

# N+ DOPING  

DOPING UNIFORM N.TYPE CONC = $N_DOPING Y.MIN = 0 Y.MAX = $NP_JUNCTION \ 

     X.MIN = 0 X.MAX = $LENGTH  

 

# N+ DOPING 

# DOPING GAUSS N.TYPE CONC = $N_DOPING PEAK = 0.0 CHAR = 0.1 X.LEFT = 0 

X.RIGHT = $LENGTH 

  

 

# P DOPING 

DOPING UNIFORM P.TYPE CONC = $P_DOPING Y.MIN = $NP_JUNCTION \ 

  Y.MAX = $DEVICE_WIDTH X.MIN = 0 X.MAX = $LENGTH  

 

 

# ---------------------- < MATERIALS >------------------------ 

# ELECTRODE  

# MATERIAL MATERIAL = ALUMINUM IMAG.INDEX = 1  

 

 

# FOR AMORPHOUS SILICON 

# MATERIAL MATERIAL = SILICON MUN = 20 MUP = 1.5 

 

MATERIAL MATERIAL=ALUMINUM SOPRA=AL.NK 

 

# --------------------- < SPECIFY CONTACT TYPE >-------------------- 

CONTACT NAME = ANODE  SURF.REC  VSURFP = $FRONT_RECOM_VELOCITY 

CONTACT NAME = CATHODE  SURF.REC  VSURFN = $BACK_RECOM_VELOCITY 

 

 

# ---------------------- < SAVE STRUCTURE >------------------------ 

STRUCTURE OUTFILE = SOLAR_CELL_2D.STR  

# TONYPLOT SOLAR_CELL_2D.STR 

 

 

# --------------------- < LIGHT SOURCE >------------------------------ 

BEAM NUM = 1 X.ORIGIN = $LIGHT_X Y.ORIGIN = $LIGHT_Y ANGLE = 90.0 AM1.5 \ 

rays = 10 

 

 

# --------------------- < SPECIFY MODELS >------------------------------ 

# SAVE OPTICAL INTENSITY TO SOLUTION FILE 

OUTPUT OPT.INT 

OUTPUT BAND.PARAM CON.BAND 

MODELS FLDMOB SRH CONMOB BGN OPTR PRINT 

METHOD TRAP MAXTRAP = 10 

 

# DO NOT USE CONMOB FOR POLYSILICON SELECTION 

# OTHERWISE, IT WILL REPLACE LOW MUN, MUP 

# MODELS CONMOB 

SOLVE 

 

SOLVE B1 = 1 

SAVE OUTFILE = SOLAR_CELL_WITH_BEAM.STR 

TONYPLOT SOLAR_CELL_WITH_BEAM.STR 

 

 

 

# ---------------------- < ANALYSIS > -------------------------------- 

 

# --- < I-V CURVE > -- 

SOLVE B1 = 1 

SOLVE VCATHODE = -1 VSTEP = 0.05 VFINAL = 0.1 NAME = CATHODE 

 

LOG OUTFILE = Id_Vd.LOG 

SOLVE VCATHODE=0 VSTEP = 0.005 VFINAL = 0.6 NAME = CATHODE 

TONYPLOT Id_Vd.LOG 

LOG OFF  
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# --- < SHORT CIRCUIT CURRENT (MAX CURRENT OF CATHODE CURRENT)> --- 

LOG OUTFILE = SHORT_CIRCUIT.LOG 

SOLVE B1 = $LIGHT_INTENSITY  

SAVE OUTFILE = SOLAR_CELL_SHORT_CIRCUIT.STR 

  

 

# --- < OPEN CIRCUIT VOLTAGE (MAX OF CATHODE INTERNAL VOLTAGE) > -- 

SOLVE INIT  

CONTACT NAME = CATHODE CURRENT 

SOLVE ICATHODE = 0 B1 = $LIGHT_INTENSITY  

SAVE OUTFILE = SOLAR_CELL_OPEN_CIRCUIT.STR 

 

 

# --------< SPECTRAL EFFICIENCY WITH A MONOCROMATIC LIGHT SOURCE >------  

BEAM NUM = 1 X.ORIGIN = $LIGHT_X Y.ORIGIN = $LIGHT_Y ANGLE = 45.0 RAYS = 30 

 

SOLVE INIT B1 = 0 

LOG OUTFILE=SPECTRAL_EFFICIENCY.LOG 

SOLVE B1 = 1 LAMBDA = 0.1 

SOLVE B1 = 1 LAMBDA = 0.2 

SOLVE B1 = 1 LAMBDA = 0.3 

SOLVE B1 = 1 LAMBDA = 0.4 

SOLVE B1 = 1 LAMBDA = 0.5 

SOLVE B1 = 1 LAMBDA = 0.6 

SOLVE B1 = 1 LAMBDA = 0.7 

SOLVE B1 = 1 LAMBDA = 0.8 

SOLVE B1 = 1 LAMBDA = 0.9 

 

 

E.3 General 3D Solar Cell Code 

 

GO ATLAS  

 

TITLE 3-D SOLAR CELL SIMULATOR, by B. DEBNATH, 2014  

 

#  THE LIGHT IS INCIDENT ON INTERFACE AT y = 0 OVER n+ REGION  

#  DEVICE IS CONSTRUCTED ALONG +y DIRECTION  

 

# ---------------------- < DEVICE PARAMETERS >------------------------ 

  

# DEVICE LENGTH (ALONG X) 

  SET LENGTH = 2 

 

# DEVICE WIDTH (ALONG Z) 

  SET WIDTH = 2 

 

# SILICON LAYER WITH DONOR DOPING (n TYPE) 

 # THICKNESS 

   SET SI_N_THICKNESS = 0.5 

 # DOPING 

   SET SI_N_DOPING = 5e+19 

 

# SILICON LAYER WITH ACCEPTOR DOPING (P TYPE) 

 # THICKNESS 

   SET SI_P_THICKNESS = 2 

 # DOPING 

   SET SI_P_DOPING = 1.5e+16 

 

# FRONT SURFACE  

 # ELECTRODE FINGER 

   SET FNGER_NUMBER = 5 

 # ELECTRODE THICKNESS 

   SET ELECTRODE_THICKNESS = 0.005 
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 # FRONT SURFACE RECOMBINATION VELOCITY 

   SET FRONT_RECOM_VELOCITY = 1e2 

 

# BACK SURFACE  

 # BACK SURFACE RECOMBINATION VELOCITY 

   SET BACK_RECOM_VELOCITY = 1e5 

 

 

# LIGHT SOURCE 

 # LIGHT INTENSITY (G) 

   SET LIGHT_INTENSITY = 1.0 

 # LIGHT POSITION  

   SET LIGHT_X = 1 

   SET LIGHT_Z = 1 

 # LIGHT HEIGHT FROM DEVICE SURFACE Y = 0 

   SET LIGHT_Y = 1 

 

 

# ------------------ < DERIVED DEVICE PARAMETERS >----------------------- 

 # DEVICE THICKNESS 

   SET DEVICE_THICKNESS = $SI_P_THICKNESS + $SI_N_THICKNESS 

 # BOTTOM OF DEVICE 

   SET BOTTOM_OF_DEVICE = $DEVICE_THICKNESS + $ELECTRODE_THICKNESS  

 # SET BOUNDARY REGION BELOW P TYPE WHERE COARSE MESHING WILL BE APPLIED 

   SET COURSE_MESH_BOUNDARY = $SI_N_THICKNESS + 0.05 

 

 

# ---------------------- < MESHING >------------------------ 

MESH THREE.D 

 

X.MESH  LOC = 0    SPAC = 0.5 

X.MESH  LOC = $LENGTH   SPAC = 0.5 

 

Y.MESH  LOC = -$ELECTRODE_THICKNESS SPAC = 0.3 

Y.MESH  LOC = 0   SPAC = 0.05 

Y.MESH  LOC = $SI_N_THICKNESS  SPAC = 0.5 

Y.MESH  LOC = $DEVICE_THICKNESS SPAC = 1 

Y.MESH  LOC = $BOTTOM_OF_DEVICE  SPAC = 0.3 

 

Z.MESH  LOC = 0   SPAC = 0.5 

Z.MESH  LOC = $WIDTH   SPAC = 0.5 

 

   

# ---------------------- < REGIONS >------------------------ 

# TOP SILICON LAYER - N TYPE 

REGION NUM = 1 X.MIN = 0 X.MAX = $LENGTH Y.MIN = 0 Y.MAX = $SI_N_THICKNESS \ 

  Z.MIN = 0 Z.MAX = $WIDTH MATERIAL = SILICON  

 

# TOP OXIDE LAYER 

REGION NUM = 2 X.MIN = 0 X.MAX = $LENGTH Y.MIN = -$ELECTRODE_THICKNESS \ 

Y.MAX = 0 Z.MIN = 0 Z.MAX = $WIDTH MATERIAL = OXIDE  

 

# BOTTOM LAYER - P TYPE 

REGION NUM = 3 X.MIN = 0 X.MAX = $LENGTH Y.MIN = $SI_N_THICKNESS Y.MAX = 

$DEVICE_THICKNESS Z.MIN = 0 Z.MAX = $WIDTH MATERIAL = SILICON 

 

# ALUMINUM LAYER - TOP ELECTRODE 

REGION NUM = 4 X.MIN = 0 X.MAX = 0.25 Y.MIN = -$ELECTRODE_THICKNESS   Y.MAX = 

0 Z.MIN = 0 Z.MAX = 0.25 MATERIAL = ALUMINUM 

 

 

# ---------------------- < SET THE ELECTRODES >------------------------ 

# TOP ELECTRODE OVER n+ MATERIAL  

ELECTRODE NAME = ANODE X.MIN = 0 X.MAX = 0.25 Y.MIN = -$ELECTRODE_THICKNESS \ 

Y.MAX = 0 Z.MIN = 0 Z.MAX = 0.25 MATERIAL = ALUMINUM 

 

# BOTTOM ELECTRODE BELOW P+ MATERIAL 
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ELECTRODE NAME = CATHODE X.MIN = 0 X.MAX = $LENGTH Y.MIN = $DEVICE_THICKNESS \ 

Y.MAX = $BOTTOM_OF_DEVICE  Z.MIN = 0 Z.MAX = $WIDTH 

 

 

# ---------------------- < DOPING PROFILE >------------------------ 

DOPING UNIFORM N.TYPE CONC = $SI_N_DOPING Y.MIN = 0 Y.MAX = $SI_N_THICKNESS \ 

   X.MIN = 0 X.MAX = $LENGTH  Z.MIN = 0 Z.MAX = $WIDTH   

DOPING UNIFORM P.TYPE CONC = $SI_P_DOPING Y.MIN = $SI_N_THICKNESS \ 

Y.MAX = $DEVICE_THICKNESS X.MIN = 0 X.MAX = $LENGTH  Z.MIN = 0 Z.MAX = $WIDTH   

 

 

# ---------------------- < SAVE STRUCTURE >------------------------ 

STRUCTURE OUTFILE = SOLAR_CELL.STR  

 

 

# ---------------------- < NUMERICAL ANALYSIS>------------------------ 

# ELECTRODE  

MATERIAL MATERIAL=ALUMINUM IMAG.INDEX = 1 region = 4 

 

 

# --------------------- < LIGHT SOURCE >------------------------------ 

 

BEAM NUM = 1 X.ORIGIN = $LIGHT_X Y.ORIGIN = -$LIGHT_Y Z.ORIGIN = $LIGHT_Z \ 

PHI = 90 THETA = 0 NX = 3 NZ = 3 BACK.REFL FRONT.REFL XMIN = -$LENGTH \ 

XMAX = $LENGTH ZMIN = -$WIDTH ZMAX = $WIDTH AM1.5 

SOLVE B1 = 0.1 

SAVE OUTFILE = SOLAR_CELL_WITH_BEAM.STR 

 

 

# --------------------- < SPECIFY MODELS >------------------------------ 

 

# SAVE OPTICAL INTENSITY TO SOLUTION FILE 

OUTPUT OPT.INT 

MODELS CONMOB FLDMOB SRH  

SOLVE  

 

 

# --------------------- < ANALYSIS >------------------------------ 

 

# ---> SHORT CIRCUIT CURRENT (MAX CURRENT OF CATHODE CURRENT) 

LOG OUTFILE = SHORT_CIRCUIT.LOG 

SOLVE B1 = 1.5 

SAVE OUTFILE = SOLAR_CELL_SHORT_CIRCUIT.STR 

 

# ---> OPEN CIRCUIT VOLTAGE (MAX OF CATHODE INTERNAL VOLTAGE) 

SOLVE INIT  

CONTACT NAME = CATHODE CURRENT 

SOLVE ICATHODE = 0 B1 = 1 

SAVE OUTFILE = SOLAR_CELL_OPEN_CIRCUIT.STR 

 

 

# ---> SPECTRAL EFFICIENCY WITH A MONOCROMATIC LIGHT SOURCE 

BEAM NUM = 1 X.ORIGIN = $LIGHT_X Y.ORIGIN = -$LIGHT_Y Z.ORIGIN = $LIGHT_Z \ 

PHI = 90 THETA = 90  

OUTPUT OPT.INT 

MODELS CONMOB FLDMOB SRH PRINT 

 

SOLVE INIT B1 = 0 

LOG OUTFILE=SPECTRAL_EFFICIENCY.LOG 

SOLVE B1 = 1 LAMBDA = 0.1 

SOLVE B1 = 1 LAMBDA = 0.2 

SOLVE B1 = 1 LAMBDA = 0.3 

SOLVE B1 = 1 LAMBDA = 0.4 

SOLVE B1 = 1 LAMBDA = 0.5 

SOLVE B1 = 1 LAMBDA = 0.6 

SOLVE B1 = 1 LAMBDA = 0.7 

SOLVE B1 = 1 LAMBDA = 0.8 

SOLVE B1 = 1 LAMBDA = 0.9 


