

M.SC. ENGG. THESIS

CONDITIONAL VARIATIONAL LAPLACE
AUTOENCODER BASED NETWORK INTRUSION

DETECTION SYSTEM
by

Shuhana Azmin (0416052062)

Submitted to
Department of Computer Science and Engineering

(In partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering)

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

September, 2022

Dedicated to my loving parents

AUTHOR’S CONTACT

Shuhana Azmin

Email: shuhana.azmin@gmail.com

mailto:shuhana.azmin@gmail.com�

Acknowledgment

First, I would like to express my paramount gratitude to my supervisor, Dr. A. B. M. Alim Al Islam,

for allowing me to be a part of this research project. During this time, his guidance helps me go

beyond my level and bring the best in my work. His limitless patience gives me the courage to think

out of the box and make this thesis successful.

Besides, I would like to thank the honourable members of my thesis committee: Prof. Dr. Mah-

muda Naznin, Prof. Dr. Abu Sayed Md. Latiful Hoque, Asst. Prof. Dr. Rezwana Reaz, and Prof.

Dr. M. Kaykobad, for their encouragement, comments, and valuable feedback.

I am also thankful to Sajeda Akter (M.Sc. student, CSE, BUET), Kazi Sharmin Dina (M.Sc.

student, CSE, BUET), and Tarik Reza Toha (M.Sc. student, CSE, BUET). I sought help from them

several times in different phases of the study. I am also grateful to all honourable teachers of the

department for their comments and suggestions.

Most importantly, I am grateful for the constant support from my beloved parents, who always

remains to inspire me in every aspect of my life.

iv

Abstract

Network Intrusion Detection System (NIDS) is an essential tool for network administrators to de-

tect security breaches. Currently, the existing anomaly-based intrusion detection methods rely on

traditional machine learning models such as Support Vector Machine and Random Forest. However,

current machine learning-based NIDS applications often do not perform well due to the diversity of

attacks and imbalanced datasets having less data pertinent to attack events. Therefore, it is impor-

tant to synthesize data in a probabilistic manner that is similar to original attack event-related data.

Accordingly, in this paper, we propose a new paradigm of the synthesizing task based on Variational

Laplace AutoEncoder (VLAE) and Deep Neural Network. We exploit the paradigm to develop a new

intrusion detection method. Here, we go beyond the existing VLAE model through incorporating

class labels as an input in the VLAE model. Hence, the latent representation of samples of different

class labels separate in the latent space and we can generate attack samples based on the class labels.

We term the enhanced model as Conditional Variational Laplace Autoencoder (CVLAE). We further

extend our proposed model by adding attention mechanism to better reconstruct features, named Con-

ditional Variational Laplace Attention AutoEncoder (CVLAAE). We employ CVLAE and CVLAAE

to learn latent variable representations of network data features and to synthesize data in a proba-

bilistic manner. To do so, we use a Deep Neural Network (DNN) classifier, which is trained on the

original and synthesized data. The DNN classifier is used to classify the attack samples. We evaluate

our model on different benchmark datasets namely NSL-KDD and KDD CUPP 99 datasets. Here, we

demonstrate the efficacy of our proposed method through showing that our method achieves higher

performance in the cases of minority attacks compared to other existing methods in our experimenta-

tion. The experimental results further demonstrate that adding the attention mechanism in CVLAE

resulting in CVLAAE has the best overall performance in terms of precision, recall, specificity, and

F1 score.

v

Contents

Board of Examiners ii

Candidate’s Declaration iii

Acknowledgment iv

Abstract v

1 Introduction 1

1.1 Limitations of Existing Studies And Approaches . 2

1.2 Motivation behind This Study . . 3

1.3 Our Contributions . 4

1.4 Organization of This Study . 4

2 Background of Our Study 6

2.1 Network Intrusion Detection System (NIDS) . 6

2.2 AutoEncoder (AE) 8

2.3 Variational AutoEncoder (VAE) . 9

2.4 Variational Laplace AutoEncoder (VLAE) . . 11

2.5 Attention Mechanism . 12

3 Related Work 14

3.1 Machine Learning-based Approaches in NIDSs . . 14

3.1.1 Supervised Learning Approaches . 14

3.1.2 Unsupervised Learning Approaches . . 15

vi

3.1.3 Semi-supervised Learning Approaches .. 15

 Deep Learning-based Approaches .. 16

 Variational AutoEncoder-based Approaches ... 18

 Attention-based Approaches .. 19

 Limitations of the Existing Studies .. 19

4 Methodology of Our Study 20

 Proposed Conditional Variational Laplace AutoEncoder (CVLAE) 20

 Proposed Conditional Variational Laplace Attention Autoencoder (CVLAAE) 21

 Four Phases of Our Proposed Approach ... 23

 Phase-1: Data Preprocessing .. 23

 Phase-2: Development and Training CVLAE and CVLAAE 24

 Phase-3: Data Augmentation ... 25

 Attack Classification .. 26

5 Evaluation of Our Proposed Approach 27

 Experimental Setup ... 27

 Network Intrusion Datasets .. 28

 KDD CUP 99 Dataset .. 28

 NSL-KDD Dataset .. 30

 Metrics for Performance Evaluation .. 32

 Evaluation Results and Performance Comparison .. 33

 The Detection Performance ... 34

 Performance Comparison with Other Alternatives ... 36

6 Discussion 44

 Comparison with Other Existing Approaches .. 44

 Applications of This Study ... 45

 Limitations of This Study ... 46

7 Future Work 47

8 Conclusion 48

List of Figures

1.1 Categories of NIDS based on its detection strategies ... 2

 Architecture of an NIDS ... 7

 Architecture of AE ... 9

 Architecture of VAE ... 10

 Architecture of VLAE ... 11

 Architecture of CVLAE ... 21

 Architecture of CVLAAE ... 22

 Development and training model, data augmentation, and attack classification in our

proposed approach ... 24

 Training loss of CVLAAE .. 28

 Training loss of DNN ... 29

 Training accuracy of DNN .. 29

 Comparison of accuracies of different methods on NSL-KDD test set [1] 36

 Comparison of accuracies of different methods on KDD CUP 99 test set [2] 37

 Comparison of precisions of different methods on NSL-KDD test set [1] .. 37

 Comparison of recalls of different methods on NSL-KDD test set [1] ... 38

 Comparison of specificities of different methods on NSL-KDD test set [1] 38

 Comparison of F1 scores of different methods on NSL-KDD test set [1] .. 39

 Comparison of precisions of different methods on KDD CUP 99 test set [2] 39

 Comparison of recalls of different methods on KDD CUP 99 test set [2] 40

 Comparison of specificities of different methods on KDD CUP 99 test set [2] 40

 Comparison of F1 scores of different methods on KDD CUP 99 test set [2] 41

viii

 Comparison of average data generation time per instance .. 43

List of Tables

 Features in the KDD CUP [2] dataset ... 30

 Attack types in the KDD CUP 99 [2] dataset .. 31

 Attacks in training and testing set of KDD CUP 99 10% [2] dataset .. 31

 Attacks in the training and testing set of NSL-KDD [1] dataset ... 32

 Confusion matrix for classification problems ... 32

 Number of samples in original and synthesized data from NSL-KDD [1] dataset 34

 Performance results of our CVLAE-DNN for NSL-KDD [1] (KDDTest+) dataset 35

 Performance results of our CVLAE-DNN for KDD CUP 99 [2] (KDD 10%) dataset 35

 Performance results of our CVLAAE-DNN for NSL-KDD [1] (KDDTest+) dataset 35

 Performance results of our CVLAAE-DNN for KDD CUP 99 [2] (KDD 10%) dataset . 35

 Percentage of improvement achieved by CVLAAE-DNN in precision on NSL-KDD test

set[1] .. 41

 Percentage of improvement achieved by CVLAAE-DNN in recall on NSL-KDD test set

[1] . 41

 Percentage of improvement achieved by CVLAAE-DNN in specificity on NSL-KDD

test set [1].. 42

 Percentage of improvement achieved by CVLAAE-DNN in F1 score on NSL-KDD test

set [1] ... 42

 Percentage of improvement achieved by CVLAAE-DNN in precision on KDD CUP 99

test set [2].. 42

 Percentage of improvement achieved by CVLAAE-DNN in recall on KDD CUP 99 test

set [2] ... 42

x

 Percentage of improvement achieved by CVLAAE-DNN in specificity on KDD CUP 99

test set [2] ... 43

 Percentage of improvement achieved by CVLAAE-DNN in F1 score on KDD CUP 99

test set [2] ... 43

Chapter 1

Introduction

With the rapid advancement in communications and information technology, the Internet has reached

all aspects of our life. More and more people are now using online services and applications, which

results in a high volume of data transferred over the network everyday. However, with the advance-

ment of technology and network systems, network attacks are growing rapidly and becoming more

sophisticated [3]. Besides the Internet, enterprise networks are also facing the attacks because of their

complex network environment [4]. Therefore, ensuring network security has become a huge challenge

for both public as well as enterprise networks.

For example, in July 2019, a hacker gained access to 100 million Capital One credit card appli-

cations and accounts [5]. In the first half of 2019, Kaspersky detected more than 100 million attacks

on smart devices [6]. In March 2020, hackers compromised a commercial software application made

by SolarWinds and gained access to the systems running the SolarWinds products [7]. In May 2021,

a significant DDoS attack disabled the ISP used by Belgium’s government, which cut off Internet

access to more than 200 organizations, including Belgium’s Parliament [8]. These incidents suggest

that hackers can now exploit different systems’ security holes to gain access to confidential data and

financial accounts.

As network protocols and services have increased rapidly over the last decades, the risk of exploiting

them is also growing. Security attacks through such exploitation bring substantial financial loss,

reputational damage, and legal consequences to organizations. According to UK Cyber Security

Breaches Survey [9], in 2021, among the 39% of businesses that identified attacks, 21% of them

ended up losing money, data, or other assets. 35% of them experienced a negative impact, such

1

CHAPTER 1. INTRODUCTION 2

(a) Anomaly-based NIDS (b) Signature-based NIDS

Figure 1.1: Categories of NIDS based on its detection strategies

as loss of customers, business disruption, etc., as a result of the attacks. Therefore, protecting the

network from security intrusions has become an essential and challenging task for security experts. A

Network Intrusion Detection System or NIDS is one of several security mechanisms to manage security

intrusions. An NIDS detects malicious activities by analyzing incoming and outgoing network traffic.

Based on the detection strategies adopted by NIDSs, there can be two primary categories of detection:

i) signature-based detection and ii) anomaly-based detection [10]. A signature-based NIDS (Figure

1.1b) compares traffic data with a predefined set of attacks. It can only detect known attacks. On

the other hand, an anomaly-based NIDS (Figure 1.1a) creates a normal model of the behaviour of

a network using machine learning, statistical-based or knowledge-based methods. Any significant

deviation between the observed behaviour and the modeled behaviour is regarded as a potential

intrusion. Although it can identify new and existing attacks, there are some challenges in applying it

in the real network environments.

 Limitations of Existing Studies And Approaches

Most of the existing security solutions use signature-based systems because of their efficiency in

detecting known attacks. However, signature-based NIDSs are unable to recognize zero-day or new

attacks [10]. In contrast, anomaly-based detection systems compare network traffic with normal traffic

model and marks a significant deviation from the normal traffic behaviour as an anomaly. As a result,

these systems can detect zero-day attacks. However, these are not commercially used due to low

detection accuracy and high false alarm rates [10].

CHAPTER 1. INTRODUCTION 3

Machine learning-based approaches are generally utilized in anomaly-based NIDSs to improve de-

tection accuracy and to achieve a low false alarm rate. These approaches include Decision Tree [11],

K-nearest Neighbor [12], Naive Bayes Network [13], Self-organized Map [14], Support Vector Machine

[15], and Artificial Neural Network [16]. However, these techniques demand extensive feature engineer-

ing because of having high-dimensional1 network data. Here, another challenge is that more number

of samples is required for the predictive modeling. It is usually called the curse of dimensionality.

Recently, deep learning-based approaches are being applied in implementing anomaly-based

NIDSs. Deep learning-based systems have the capability to learn feature correlation automati-

cally. Deep learning-based methods used for intrusion detection includes Deep Belief Network (DBN)

[17, 18], Deep Neural Network (DNN) [19], AutoEncoder [20], and Recurrent Neural Network (RNN)

[21]. However, there are some problems in applying deep learning-based methods in intrusion detec-

tion. Firstly, network data is not balanced. Attack samples are very low in comparison to normal

samples. This causes biasedness in the classification. Secondly, most of the network data is unlabeled.

To achieve good performance deep learning algorithms require a significant amount of labeled data.

 Motivation behind This Study

To overcome the challenges in applying deep learning-based methods in intrusion detection, synthe-

sizing intrusion data that resemble original data is very important. State-of-the-art algorithms in

synthesizing data are based on SMOTE [22] and ADASYN [23]. Recently, Variational AutoEncoder

(VAE) based approaches have been applied for intrusion data generation [24, 25]. Variational Au-

toEncoder is a probabilistic generative model that combines variational inference with deep learning

[26]. However, VAE approximates posterior distribution by fully factorized Gaussian that has limited

expressiveness [27].

To overcome the limitations, in this study, we present two probabilistic data generative models

called Conditional Variational Laplace AutoEncoder (CVLAE) and Conditional Variational Laplace

Attention AutoEncoder (CVLAAE), which are based on Variational Laplace AutoEncoder [27] used

to generate intrusion data. Variational Laplace AutoEncoder approximates posterior distribution

by fully-factorized Gaussian, whose covariance is determined by the local behaviour of the generative

network. We modify the conventional VLAE architecture to include class labels along with features to

1High-dimensional data usually makes a predictive modeling task harder. This happens as the computational com-
plexity increases exponentially with the increase in the number of features.

CHAPTER 1. INTRODUCTION 4

generate latent variable representation. Besides, we introduce attention mechanism [28] in CVLAAE

to learn the latent features more effectively. Here, we use Deep Neural Network as a classifier of

network intrusion trained on the combination of original and synthesized data.

 Our Contributions

This study contributes to the field of anomaly-based network intrusion detection systems. Here, we

primarily focus on improving the capability of intrusion detection systems in identifying new and zero-

day attacks. However, as the problem in this regard lies in the availability of enough data pertinent to

the new and zero-day attacks, our study aims to efficiently generate the data. To do so, we leverage

deep learning-based data generative models to overcome the challenges as already mentioned above.

Based on our work, we make the following set of contributions in this study:

• We propose two new probabilistic data generative models named CVLAE and CVLAAE for

intrusion data generation. CVLAE incorporates class labels in VLAE [27] model to learn the

latent distribution of complex network traffic. Then, we extend CVLAE by adding attention

mechanism [28] to learn feature representation more effectively. Using them, we generate attack

samples according to class labels and balance the network traffic data.

• We explore a DNN to train on our generated and original data to classify the attack samples.

To do so, We adopt two benchmark datasets namely the NSL-KDD[1] and KDD CUP 99 [2]

datasets.

• We compare our proposed method against three state-of-the-art methods namely DNN, SAAE-

DNN, and CVAE-DNN based on the two benchmark datasets. We achieve better performance

in terms of precision, recall, specificity, and F1 score in comparison to the other three existing

methods.

 Organization of This Study

We organize the rest of this study in the following way. In Chapter 2, we will discuss background

of our work. We will present research studies related to this work in Chapter 3. After that, we will

discuss our proposed method in Chapter 4. Next, we will show the experimental results and compare

CHAPTER 1. INTRODUCTION 5

performance of our proposed method with other existing methods in Chapter 5. We will discuss

limitations and applications of this study in Chapter 6. Finally, we will conclude the study, including

some future work in Chapter 8.

Chapter 2

Background of Our Study

As this study aims at developing an anomaly-based NIDS that can detect both known and unknown

network attacks, different notions such as NIDS, AE, VAE, VLAE, and attention mechanism are

highly related to this study. Therefore, in this section, we present brief backgrounds on NIDS, AE,

VAE, VLAE, and attention mechanism.

 Network Intrusion Detection System (NIDS)

Intrusion Detection System or IDS monitors and analyzes the events in a computer system or network

to detect possible attacks. IDS is an important security system to protect network resources against

security threats, which are increasing significantly in their number and impacts. IDS can be used to

monitor host and network-based environments. A host-based IDS (HIDS) monitors the events of hosts

to detect suspicious activities [29]. A network-based IDS or NIDS monitors network traffic to identify

remote attacks over a network connection [29]. An NIDS realizes an essential security mechanism, as

it provides a solid line of defence against malicious activities in a network. In this study, we focus on

the network-based intrusion detection system.

Figure 2.1 shows typical architecture of an NIDS. An NIDS is typically placed behind the firewall

on the edge of a network. It can also be placed in various locations for different purposes. An NIDS

between the Internet and firewall is useful for learning about malicious activities on the Internet.

An NIDS in the DMZ will see attacks originating from the Internet that can get through the outer

firewall to public servers. It sniffs the internal interface of the firewall and sends alerts to an NIDS

management server. It analyzes all the traffic to detect malicious traffic. There are three major

6

CHAPTER 2. BACKGROUND OF OUR STUDY 7

categories of NIDSs namely Signature-based IDS(SIDS), Anomaly-based IDS(AIDS), and Stateful

Protocol Analysis (SPA) [29].

Figure 2.1: Architecture of an NIDS

• Signature-based IDS (SIDS): A signature is a pattern that represents a known attack or threat.

An SIDS is based on pattern matching techniques to find a known attack. It compares captured

events with signatures of known attacks to detect possible intrusions. Because of using the

knowledge accumulated based on specific attacks and system vulnerabilities, SIDS is also known

as knowledge-based detection system or misuse detection system.

• Anomaly-based IDS (AIDS): An AIDS creates a standard model of the behaviour of a network

using machine learning, statistical-based, or knowledge-based methods. Any significant devia-

tion between the model and observed behaviour is regarded as an intrusion in an AIDS. It can

identify known and unknown attacks and require less effort to construct its profile of the normal

behaviour of the network than an SIDS.

• Stateful Protocol Analysis (SPA): An SPA examines and traces protocol states, e.g., pairing

requests with replies. Although an SPA is mostly similar to an AIDS, it relies on vendor-

developed profiles of certain protocols. It requires information of the relevant network’s protocol

standard from international standard organizations, e.g., IETF [29]. An SPA focuses on known

attacks or threats. SPA is also known as a specification-based detection system.

This thesis focuses on probabilistic generative models and how to use them to design an anomaly-

CHAPTER 2. BACKGROUND OF OUR STUDY 8

based IDS. We specifically focus on AIDS considering its generalizability compared to other alter-

natives. Here, we attempt to leverage the capability of an AIDS through exploiting the notion of

variational autoencoder.

 AutoEncoder (AE)

AutoEncoder (AE) refers to a neural network that learns to reconstruct the original input while com-

pressing the data to create a more efficient and compressed representation. AE consists of an encoder

and a decoder, as shown in Figure 2.2. The encoder compresses the data to a lower-dimensional latent

representation, and the decoder decodes the latent representation to a very close representation to the

original data. The decoder ensures that the latent space can capture most of the information from

the dataset space by forcing the latent space to mostly output what was fed as input to the encoder.

To exemplify the tasks of encoder and decoder, let’s say x is a 28×28-pixel photo of a handwritten

digit. The encoder encodes the 784-dimensional (28×28) data into a latent (hidden) representation

space z, which is much less than 784 dimensions. The decoder takes the latent representation z as

input and outputs the reconstructed input data. Thus, the output of the decoder will be another

784-dimensional (28×28) photo of a handwritten digit.

AE is trained to minimize the reconstruction error between the input data x and the reconstructed

data x′, and thus, ensures that the latent space can capture important information from the input

data. Here, the reconstruction error can be the mean squared error between the encoder input and

the decoder output [30], which can be modeled as follows.

L(x, x′) = ∥x − x′∥2 = ∥x − dθ(z)∥2 = ∥x − dθ(eϕ(x))∥2 (2.1)

CHAPTER 2. BACKGROUND OF OUR STUDY 9

Figure 2.2: Architecture of AE

Parameters θ and ϕ are learned jointly by minimizing the reconstruction error using the notion of

backpropagation. Here, the encoder maps the input x to the latent variable z. In this regard, there

is no constraint on the distribution of the latent space.

 Variational AutoEncoder (VAE)

Variational AutoEncoder [26] is a data generative model that has recently shown tremendous perfor-

mance in producing highly realistic pieces of data, such as images [31], texts [32] and speeches [33].

Variational AutoEncoder [26] realizes a deep latent generative model pθ(x, z) = pθ(x|z)p(z) consisting

of an inference model qϕ(z|x) (encoder) and a generative model pθ(x|z) (decoder). Here, the encoder

compresses the data into a low-dimensional latent representation and the decoder reconstructs the

data from the latent representation.

To exemplify the tasks of encoder and decoder here having a similarity with our previous example,

let’s again consider x as a 28×28-pixel photo of a handwritten digit. Here, contrasting to our earlier

case, the encoder encodes the 784-dimensional (28×28) data into a latent (hidden) representation

space z through providing parameters of the probability distribution of z. The parameters of the

probability distribution are even much lesser than the 784 dimensions. Besides, again contrasting

to our earlier case, here, the decoder takes the latent representation z as input and outputs the

parameters of the probability distribution of the data. In the case of black and white picture of a

CHAPTER 2. BACKGROUND OF OUR STUDY 10

digit, the probability distribution of a single pixel can be a Bernoulli distribution.

The architecture of VAE is shown in Figure 2.3. VAE approximates the posterior pθ(z|x) by an

inference model [26] as follows.

pθ(z|x) ≈ qϕ(z|x) (2.2)

VAE optimizes the evidence lower bound (ELBO) of the marginal log-likelihood of data [26] as

follows.

Lθ,ϕ(x) = log pθ(x) − DKL(qϕ(z|x)||pθ(z|x)) (2.3)

The first part of the ELBO is the log likelihood of pθ(x), that is the probability to obtain the

desired data x. The second part is the Kullback-Leibler (KL) divergence between the probability

distribution qϕ(z|x) and the actual posterior distribution pθ(z|x).

Figure 2.3: Architecture of VAE

Both inference and generative network of VAE are jointly trained to maximize the ELBO. VAE

amortizes variational inference (VI) [34] by the encoder network. VAE uses fully-factorized Gaussian

as the posterior distribution. However, fully-factorized Gaussian does not have enough expressive

power and cannot properly capture complex posterior distribution. This causes approximation error

[35]. Another problem of VAE is the amortization error that causes due to amortized inference of

posterior distribution [36].

CHAPTER 2. BACKGROUND OF OUR STUDY 11

z

t

 Variational Laplace AutoEncoder (VLAE)

Variational Laplace AutoEncoder [27] is a variant of VAE that uses full-covariance Gaussian as pos-

terior distribution. VLAE enhances the expressive power of the posterior distribution and reduces

amortization error using Laplace Approximation of the posterior distribution [27] as follows.

q(z|x) = N (µ, Σ), where Σ−1 = −∇2 log pθ(x, z)|z=µ (2.4)

For Gaussian output ReLU network, local linearity is used to approximate the posterior. The

architecture of VLAE is shown in Figure 2.4.

Figure 2.4: Architecture of VLAE

Posterior mode is iteratively searched for T steps under the linear assumption gθ(µt) ≈ Wtµt + bt

[27] as follows.

µt+1 = σ−1(σ−1Wt
T Wt + I)−1WT (x − b) (2.5)

VLAE approximate the posterior distribution using pθ(x|z) = N (Wµz + bµ, σ2I) [27] as follows.

q(z|x) = N (µ, σ), where Σ = (σ−2Wµ

T Wµ + I)−1 (2.6)

CHAPTER 2. BACKGROUND OF OUR STUDY 12

 Attention Mechanism

Attention Mechanism allows neural networks to focus and give more “Attention” on the relevant

parts of the input data as needed [28, 37, 38]. The notion of Attention is used to realize the fact that

the encoder network can compress data, however, all of them are not equally important. Attention

mechanism was originally introduced to improve the performance of Seq2Seq model for neural machine

translation, and now, it is applied in different cases.

To exemplify, let’s consider a case where we have to translate a English sentence “How was your

day?” to the French version “Comment se passe ta journée?”. What the Attention layer of a neural

network will do for each word in the output sentence is map the important and relevant words from

the input sentence and assign higher weights to these words, enhancing the accuracy of the output

translation. Thus, the Attention layer ensures giving more attention to the more important parts.

A basic seq2seq approach consists of an encoder-decoder model, where the encoder analyzes the in-

put data and compresses the information into a context vector of a fixed length (sentence embedding),

and the decoder is computed with the context vector to emit the transformed output. Though, this

architecture has shown its effectiveness in Seq2Seq models, it has one crucial drawback. The sentence

embedding is generated in one vector. When the length of the input data increases, it becomes difficult

for the model to capture the information in this vector. Thus, it has the inability to preserve longer

input data as it tends to forget parts of it. The attention mechanism was introduced by Bahdanau

[28] to solve the problem associated with fixed-length context vector in neural machine translation.

As the encoder encodes every input sequence to the fixed-length context vector, the decoder does

not have enough information for long or complex sentences. The attention mechanism solves this

problem by creating shortcuts between the context vector and the entire input sequence. It permits

the decoder to utilize the most relevant parts of the input sequence by a weighted combination of all

of the encoded input vectors, with the most relevant vectors being given the highest weights.

Each input words is assigned a weight by the attention mechanism which is then used by the

decoder to predict the next word in the sentence. The attention weights are computed by applying

softmax function to the alignment scores of the input sequence. The alignment score, eti, that indicates

how well the elements of the input sequence align with the current output at position, t, can be

calculated by applying a feed forward network over the encoded hidden states, hi, and the previous

decoder output, st−1, shown in the following equation.

CHAPTER 2. BACKGROUND OF OUR STUDY 13

Σ

Σ

eti = tanh(W1hi + W2st−1) (2.7)

The attention weights ati are computed by applying softmax function to the alignment scores, eti

as shown in the following equation.

a = exp(eti) (2.8)
ti T

k=1 exp(etk)

The context vector, Ci, is computed by a weighted sum of all, T , encoder hidden states using the

following equation.

T

ci = atihi (2.9)
i=1

Chapter 3

Related Work

Various machine learning and deep learning-based approaches have been applied to implement NIDS.

This section presents several related studies based on such NIDSs.

 Machine Learning-based Approaches in NIDSs

Machine learning-based approaches are categorized in three categories namely supervised, unsuper-

vised, and semi-supervised learning approaches [39]. Accordingly, NIDSs adopt three different cate-

gories of machine learning.

 Supervised Learning Approaches

In supervised learning, the algorithms learn mapping functions from the input to the output using

labelled training data [40]. Supervised learning approaches applied in NIDS include Support Vector

Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (KNN), Random Forest (RF), Artificial

Neural Network (ANN), etc., [41, 40]. For example, Wagner et al., [42] leveraged one-class SVM to

build a network anomaly detection system. Besides, the study in [15] proposed a detection model using

the ant system for feature reduction and SVM for classification. Another study [43] built a least-square

SVM based intrusion detection system using the features selected by own feature selection algorithm.

Kim et al., [11] proposed a hybrid intrusion detection method that incorporated a DT based

misuse detection model and a one-class SVM based anomaly detection model through a decomposition

structure. Here, the normal training data was decomposed into smaller subsets using DT and multiple

one-class SVM models were built for the decomposed subsets. Another study [44] explored eight tree-

14

CHAPTER 3. RELATED WORK 15

based classification algorithms for classifying network attacks. Here, DT was used for feature selection

and RF was applied as a classifier.

Kuang et al., [45] proposed a Dependable Network Intrusion Detection System (DNIDS) based on

the Combined Strangeness and Isolation Measure K-Nearest Neighbor (CSI-KNN) algorithm. Jadhav

et al., [46] proposed distributed and parallel approaches using SVM, KNN, DT, and NB classifier to

enhance the efficiency of detecting the intrusions. Besides, Manzoor et al., [47] proposed a detection

system that used information gain and correlation-based ranking for feature reduction along with

a classifier based on ANN. Amoordon et al., [48] proposed a method based on RF and KNN that

can detect several attacks in wireless networks. Ouiazzane et al., [49] proposed a model based on

multi-agent systems and DT model to detect DoS attacks in the UAV networks.

 Unsupervised Learning Approaches

In unsupervised learning, the algorithms learn patterns and representations from unlabeled data [].

Examples of unsupervised learning algorithms adopted in NIDS are K-means, Principal Component

Analysis (PCA), Self-Organizing Map (SOM), etc. [41, 40]. In this regard, Bhuyan et al., [50] designed

an outlier-based NIDS in which legitimate data were clustered using a K-means technique, and then,

a reference point was computed for each cluster. With these points, samples are classified as attacks if

they differ by a certain threshold value. Another study [51] adopted a Principal Component Analysis

(PCA) algorithm for feature selection and a Support Vector Machine as a classifier to select the

optimum feature subset. The study in [52] proposed a lightweight DDoS flooding attack detection

solution, which used emulation to build a NOX based network in SDN using Self-Organized Map

(SOM). Wang et al., [53] designed an IDS using the ensemble of AutoEncoders to learn the network

data and an Isolation Forest algorithm to perform the anomaly detection.

 Semi-supervised Learning Approaches

Semi-supervised learning approaches use a small amount of labeled data and a large amount of unla-

beled data during their training. Semi-supervised learning algorithms are required where labeling data

is challenging or expensive. In this regard, a semi-supervised Support Vector Machine was used to

enhance the accuracy of NIDSs in [54]. In another study [55], two semi-supervised classification meth-

ods namely Spectral Graph Transducer and Gaussian Fields were used to detect unknown attacks,

and a semi-supervised clustering method namely MPCK-means was used to improve the performance

CHAPTER 3. RELATED WORK 16

of the detection systems.

 Deep Learning-based Approaches

Deep learning algorithms present an advancement to artificial neural networks that use multiple

layers of neurons to progressively extract higher-level features from the raw input data. Deep learning

algorithms can learn the representation of data with various levels of generalization. Deep learning

methods such as Deep Belief Network (DBN), Deep Neural Network (DNN), Convolutional Neural

Network (CNN), Long Short-Term Memory (LSTM), and Generative Adversarial Network (GAN), etc.

have been applied successfully in computer vision, speech recognition, natural language processing,

machine translation, information retrieval, and many other fields [56]. In recent years, this method

has been widely used to identify network intrusion and achieved remarkable detection results.

Tang et al., [19] build a Deep Neural Network (DNN) model for flow-based anomaly detection

systems and train the model with the NSL-KDD [1] dataset. In this work, they used six basic

features and gained an accuracy of 75.75%. Besides, Ma et al., [57] proposed a hybrid method, named

SCDNN, leveraging Spectral Clustering (SC) and Deep Neural Network (DNN). Here, SC divided

the original training dataset into training subsets, and the subset was used to train multiple DNN

classifiers. The method achieved 72.64% and 44.55% accuracy on the NSL-KDD (KDDTest+) [1] and

NSL-KDD (KDDTest-21) [1] datasets respectively. Additionally, Niyaz et al., [20] proposed a Stacked

AutoEncoder (SAE) based DL approach only for DDoS detection systems in Software Defined Network

(SDN). The authors claimed that they have achieved a binary classification accuracy of 99.82% and

an 8-class classification accuracy of 95.65%. Further, Javaid et al., [58] used Self-Taught Learning

(STL), a deep learning-based technique, on the NSL-KDD dataset. They achieved an accuracy of

79.10% for the 5-class classification.

The study in [21] presented a Recurrent Neural Network (RNN) based model with a soft-max

classifier. In this study, the model was evaluated on the NSL-KDD dataset. They achieved 81.29%

accuracy for the test set KDDTest+ for five-class classification. In another study [59], the authors

applied LSTM in flow-based network for intrusion detection and compared performance with various

machine learning classifiers. They achieved 74.26% accuracy for five-class classification.

Khan et al., [60] proposed a deep learning model based on Stacked AutoEncoder with a soft-max

classifier for network intrusion detection. The model comprised two decision stages. The first stage

CHAPTER 3. RELATED WORK 17

was responsible for classifying network traffic as normal or abnormal using a probability score value.

This classification is then used in the final decision stage as an additional feature for detecting the

normal state and other classes of attacks. The proposed model was evaluated on the KDD 99 [2] and

UNSW-NB15 [61] datasets, and achieved 99.996% and 89.134% accuracy on the datasets respectively.

Besides, in [62], Li et al. used LSTM and Gated Recurrent Unit (GRU) with a variable number of

hidden layers along with a Broad Learning System (BLS) to build network anomaly detection models.

The BGP [63] and NSL-KDD datasets were used to evaluate the performance of the proposed models

in terms of training time, accuracy, and F1 score. On the BGP dataset, the experimental results

showed that RNN and BLS models can provide the best accuracy and F1 score over the range of

90%-95%. On the NSL-KDD dataset, the experimental results showed that the best performance can

be obtained using LSTM4 and GRU3 along with the CFBLS (BLS with cascades of mapped features).

Additionally, Vinayakumar et al., [64] employed distributed DNN models to develop a scalable and

hybrid intrusion detection model called Scale-Hybrid-IDS-AlertNet (SHIA). The proposed SHIA could

effectively monitor a large number of network-level and host-level events to automatically identify

malicious attacks to provide network administrators with appropriate alerts. Experimental tests on

various benchmark IDS datasets showed that the proposed model performed well compared to other

traditional machine learning classifiers.

Mighan et al., [65] combined the advantages of deep network and machine learning methods, using

an Stacked AutoEncoder (SAE) network for latent feature extraction, followed by several machine

learning methods, such as Support Vector Machine, Random Forest, Decision Tree, and Naive Bayes

for intrusion detection. In another study [66], Zhou et al., proposed a Variational Long Short-Term

Memory (VLSTM) learning model that detects intrusion anomalies efficiently based on feature recon-

struction. Here, an encoder–decoder neural network associated with a variational reparameterization

scheme was designed to learn the low-dimensional feature representation from high-dimensional raw

data. The proposed VLSTM resulted in an accuracy of 89.5% on UNSW-NB15 dataset. Further,

Khan et al., [67] proposed a Convolutional Recurrent Neural Network (CRNN) based hybrid frame-

work namely HCRNNIDS to predict malicious attacks in the network. In HCRNNIDS, a Convolutional

Neural Network performs convolution to capture local features and a Recurrent Neural Network cap-

tures temporal features to improve the system’s performance. HCRNNIDS attained an accuracy of

up to 97.75% on CSE-CIC-IDS2018 [68] dataset with 10-fold cross-validation.

Saurabh et al., [69] developed models based on variants of LSTMs namely stacked LSTM and

CHAPTER 3. RELATED WORK 18

bidirectional LSTM for intrusion detection systems for IoT networks. Alqahtani et al., [70] proposed

a hybrid optimized LSTM approach for IoT networks. In this approach, CNN was used to extract

the temporal and spatial correlated features of IoT networks, and the optimized LSTM was used to

predict the different attacks in the networks.

 Variational AutoEncoder-based Approaches

Variational AutoEncoder (VAE) is a deep learning based probabilistic generative model that has

achieved significant improvements in different areas [71, 72, 73, 74, 75]. Some recent studies have

incorporated VAE in intrusion detection. For example, Jinwon et al., [76] presented an anomaly de-

tection system based on VAE using reconstruction probability. Besides, Kawachi et al., [77] employed

VAE for supervised anomaly detection. Sun et al., [78] also used VAE to learn sparse representations

for anomaly detection. Additionally, Lopez–Martin et al., [79] proposed a conditional VAE (CVAE)

based intrusion detection system, called Intrusion Detection-Conditional Variational AutoEncoder (ID-

CVAE). To classify a sample, ID-CVAE reconstructed samples associated with each class label.

Subsequently, ID-CVAE used the Euclidean distance to measure the similarity between reconstructed

samples and original samples. Yanq et al., [24] proposed a method that combined an improved condi-

tional VAE (ICVAE) with a DNN classifier. ICVAE was used to learn sparse representations between

network data features and classes. ICVAE achieved 85.97% and 89.08% accuracy on NSL-KDD and

UNSW-NB15 dataset respectively. Xu et al., [80] proposed a method named Log-Cosh Conditional

Variational Autoencoder (LCVAE) using conditional VAE and log hyperbolic cosine (log-cosh) loss

function. Neuschmied et al., [81] proposed a two-stage approach combining a filtering method with

VAE using reconstruction probability. In the first step, a fast anomaly detector filters out data that

do not belong to any anomaly. In the second step, the remaining data are then evaluated by a more

specific VAE based anomaly detector providing more accurate decision. Sabeel et al.,[82] proposed

an adversarial incremental learning approach. The approach was based on a hybrid model consisting

of a conditional VAE and a Generative Adversarial Network (GAN). Lova et al., [83] proposed a

conditional VAE with an adaptive loss function. This study replaced the classical reconstruction loss

function with a flexible loss function for the purpose of minimizing reconstruction error.

CHAPTER 3. RELATED WORK 19

 Attention-based Approaches

Attention is one of the most influential ideas in deep learning research that imitates cognitive attention.

This mechanism has been extensively used in different fields such as natural language processing

[84] and computer vision [85]. Some recent studies have applied attention mechanism in detecting

network attacks too. For example, Yang et al., [86] used bidirectional RNN with attention mechanism

to extract relevant features and give explainable results in identifying dominant attributes. Tang et

al., [87] proposed a method based on Stacked AutoEncoder, DNN, and attention mechanism, named

SAAE-DNN. Here, SAAE selected the needed features from the intrusion dataset and initialized

weights of DNN to improve the intrusion detection accuracy. The proposed SAAE-DNN showed an

accuracy of 87.74% on NSL-KDD dataset. Laghrissi et al., [88] proposed a detection model based

on LSTM and attention mechanism. They also used four feature reduction algorithms namely Chi-

Square, UMAP, PCA, and Mutual Information. The experimental results showed that using attention

with all features and using PCA with three components exhibited the best performance, achieving

an accuracy of 99.09% and 98.49% for binary and multi-class classification on NSL-KDD dataset

respectively.

 Limitations of the Existing Studies

As present in the previous sections, different types of approaches have been investigated in the lit-

erature. However, leveraging DNN using the exploitation of Variational Laplace AutoEncoder is yet

to be explored in the literature to the best of our knowledge. Therefore, in this paper, we explore

a new intrusion detection system based on VLAE and DNN. Here, considering the fact that VLAE

has higher expressiveness and lower amortized error than VAE [27], we extend VLAE to incorporate

class labels in the encoder of VLAE so that the latent representations of the feature data of different

class labels are separated in latent space and we can generate attack samples based on class labels.

We present out proposed methodology in the next section.

Chapter 4

Methodology of Our Study

In this chapter, we present the details of our proposed approach for network intrusion detection. Here,

we first elaborate our proposed two models in Section 4.1 and 4.2 respectively. Then, we discuss four

different phases of our approach namely data preprocessing, training CVLAE and CVLAAE, data

augmentation, and attack classification in Section 4.3.

 Proposed Conditional Variational Laplace AutoEncoder

(CVLAE)

CVLAE is generally based on VLAE model that incorporates the class label as an input in the encoder.

Incorporating the class label enables us to generate new data from separated latent space according

to class labels. Here, the encoder qϕ(z|x, y) is conditioned on input features x and class labels y.

Besides, the decoder pθ(x|z, y) is conditioned on latent variables z and class labels y. The encoder

learns the parameters of the intermediate probability distribution, qϕ(z|x, y) from the input features

and class labels. Latent variable z is sampled from the intermediate distributions and passed as the

input to the decoder. The decoder learns the parameters of the probability distribution pθ(x|z, y)

from the latent variables and the class labels. The output samples x′ are generated from the learned

distribution of the decoder. Figure 4.1 shows the structure of the proposed CVLAE model. Here, the

evidence lower bound objective function of CVLAE is formulated as follows.

Lθ,ϕ(x, y) = log pθ(x|y) − DKL(qϕ(z|x, y)||pθ(z|x, y)) (4.1)

20

CHAPTER 4. METHODOLOGY OF OUR STUDY 21

The ELBO function consists of two parts: The first part is the log-likelihood of data and the second

part is the KL divergence between the approximate distribution and the true posterior distribution.

Figure 4.1: Architecture of CVLAE

The posterior mode is initialized by the inference ReLU network. Then the model iteratively

searches for the posterior mode over T steps where density is concentrated and approximates a full-

covariance Gaussian posterior at the mode. We use multivariate Gaussian as the distribution for

pθ(x|z, y) and use multivariate standard normal distribution N (0, I) as the prior pθ(z). Here, the

model is trained to optimize the ELBO using Adam [89] optimization algorithm.

 Proposed Conditional Variational Laplace Attention Autoen-

coder (CVLAAE)

We extend the CVLAE model by adding an attention mechanism layer between the encoder and the

latent layer. The original input data passes through the encoder, and the data get compressed. The

layer calculates the attention vector of each simplified feature. The attention vector and the feature

are multiplied to generate data input to the latent layer. When the attention vector finds that a

specific feature does not contribute to the prediction, it sets the specific value in the vector to 0

causing the network to forget the feature. Figure 4.2 shows the structure of our proposed CVLAAE

model.

CHAPTER 4. METHODOLOGY OF OUR STUDY 22

Σ
′v =

 x a
i

Figure 4.2: Architecture of CVLAAE

The attention mechanism layer contains a set of attention weights, and each weight denotes the

importance value of the corresponding feature. Important features are selected from the input data

through weighted summation according to the following equations.

M = tanh(Wax′ + ba) (4.2)

ai = softmax(Mi) (4.3)

D
T (4.4)

i=0

Here x′ is the feature vector, Wa is the weight, ba is the offset value, and ai is the probability

distribution of Mi normalized by softmax, and D is the number of samples. ai is taken as the attention

vector. It is multiplied by x′ and summed up to obtain the more representative feature vector v.

Finally, the probability distribution is taken as the weight and summarized with x′ to obtain a more

representative feature vector v, which eliminates unnecessary features. The attention layer focuses on

important features and improves the performance of the network.

CHAPTER 4. METHODOLOGY OF OUR STUDY 23

′

 Four Phases of Our Proposed Approach

In this section, we discuss our proposed approach for network intrusion detection model. The proposed

approach consists of four phases namely data preprocessing, training CVLAE and CVLAAE, data

augmentation, and attack classification. Figure 4.3 shows the last three steps in sequence.

 Phase-1: Data Preprocessing

Categorical features need to be converted to numerical values before being fed to deep learning models.

For this purpose, we use one-hot encoding [90, 91, 92, 93, 94] and numeralize the categorical features.

One-hot encoding maps each categorical value into a new categorical column and assigns a value of

one or zero to those columns. We represent the categorical values as binary vectors. We set the

column corresponding to the categorical feature as one and all other columns as zero. To exemplify,

the NSL-KDD dataset contains three categorical features, protocol type (i.e., tcp, udp, and icmp),

service (i.e., ftp, http, ssh, etc.) and flag (i.e., REJ, RSTO, RSTOS0, etc.). After one-hot encoding,

they are mapped into 84-dimensional binary vectors.

The numerical features have different scales, and data normalization is required to improve the

performance and training stability of ML models. We use the min-max [95, 96, 97, 98] normalization

method to transform features to be on a similar scale. Then, we convert all numerical feature values

to the range of 0 to 1 using the following equation.

x =
 x − xmin

xmax − xmin
(4.5)

CHAPTER 4. METHODOLOGY OF OUR STUDY 24

Figure 4.3: Development and training model, data augmentation, and attack classification in our
proposed approach

 Phase-2: Development and Training CVLAE and CVLAAE

We train our proposed CVLAE and CVLAAE models using benchmark datasets 1. We train the

models to minimize the difference between the reconstructed and original data by optimizing the

ELBO function. The original input feature data and class labels pass through the encoder, and they

1we use NSL KDD train+ [1] and KDD CUP 10% [2] training datasets for this purpose.

CHAPTER 4. METHODOLOGY OF OUR STUDY 25

n
2

θ i i 2 2σ2

get mapped to parameters (mode and variance) of the latent distribution q(z|x). Then, the posterior

mode is iteratively updated for T steps. Subsequently, the latent variable z is sampled from the

distribution and passed through the decoder. The decoder maps the latent variable to the probability

distribution p(x|z), from which we get the reconstructed feature vector. We concatenate the feature

vector with the one-hot encoded class labels and feed them into the models. Each encoder and decoder

of the models have two hidden layers of 32 dimensions. The latent variable has 16 dimensions. Using

such models, we update the posterior mode iteratively for ten steps. We use Adam optimizer [89]

as the optimization algorithm to update network weights iteratively. Additionally, in our case, the

activation function of all hidden layers is ReLU [99], and the activation function of output layer of

the decoder is Sigmoid.

After training these models, we calculate the log-probability of each training sample (xi, yi) as

follows.

log p (x |z, y) = −n log σ − n
log(2π) − 1

 Σ
(x

— µ) (4.6)

Where xi,j represents the jth feature value of xi and n represents the number of features. The

parameters µ and σ are the mean and standard deviation of the posterior distribution respectively.

We calculate the minimum log probability of the kth class as follows.

minPk = min{log pθ(xi|z, yi), for each yi ∈ class k} (4.7)

 Phase-3: Data Augmentation

We use multivariate Gaussian distribution N (0, I) as the prior distribution. Besides, for data augmen-

tation, we sample the latent variable z from N (0, I), concatenate it with specified class label y′, and

feed it into the trained decoder network. We feed the newly generated sample (x′, y′) into the model,

and we calculate the log probability of the newly generated sample log pθ(x′|z, y′) using Equation 4.6.

If the log probability is greater than the minimum log probability minPk of the specified class k, then

we merge the sample into the original training data. Otherwise, we discard the sample.

S =

S

S
{x′, y′} , if y′ in class k and log pθ(x′|z, y′) ≥ minPk

S, Otherwise

i=1
i,j

CHAPTER 4. METHODOLOGY OF OUR STUDY 26

 Attack Classification

We use a DNN as the intrusion classifier. The classifier is trained on the original and generated

data. We use ReLU as the activation function of all hidden layers and Softmax [100] as the activation

function of the output layer of the classifier. Besides, we optimize the classifier by Adam optimizer.

Finally, we feed the test dataset into the trained DNN classifier to classify attacks.

We detail our proposed intrusion detection approach in Algorithm 1.

Algorithm 1 Proposed Intrusion Detection Approach

1: Input: Training dataset S = (x, y), latent variable Z, and learning rate lr.

2: Output: The final classification results.

3: Data preprocessing: Categorical features are one-hot encoded, and numerical features are

scaled to [0,1] using min-max normalization.

4: Train CVLAE on training dataset S with multivariate Gaussian distribution as prior p(z) using

learning rate lr and Adam optimization method.

5: Calculate the minimum log probability for each attack type in the training data set using Equation

4.7.

6: Sample z from N (0, I), specify the attack class y, and feed them into the trained CVLAE decoder

to generate a new attack sample x′. If the reconstruction loss of the newly generated sample is

less than the maximum reconstruction loss, The newly generated sample (x′, y′) is merged into

the training data set S.

7: Train the DNN classifier on the merged dataset.

8: Evaluate the DNN classifier on the test data set and return the result.

Chapter 5

Evaluation of Our Proposed Approach

In this chapter, we present an experimental evaluation of our proposed approach for network intrusion

detection. Here, we compare results of our proposed approach against that of three recent state- of-

the-art approaches. We perform our experimentation over two benchmark datasets pertinent to

network intrusion. To elaborate our experimental outcomes, first, we describe our experimental setup,

evaluation metrics, and the intrusion datasets used in our experimental evaluation. After that, we

will present the performance comparison in detail.

 Experimental Setup

For training and testing purposes, we use a Linux Pop! OS 20.04 LTS laptop having AMD Ryzen 7

CPU and 16 GB RAM. To speed up the training process, we use one NVIDIA GeForce RTX 2060 GPU

having 8 GB RAM. As the training process requires huge time, we also train our models in Google

Colaboratory. We use the Anaconda environment having Tensorflow 2.3 framework with Python 3.7

and CUDA 11.2.

Each encoder and decoder of CVLAE and CVLAAE has two hidden layers having 50 and 25

dimensions respectively. Besides, the latent variable has ten dimensions. With three dimensions, We

update the posterior mode iteratively for ten steps. Here the activation function of hidden layers is

ReLU, and the activation function of output layer of the decoder is Sigmoid. Our DNN classifier has

five hidden layers. The activation function of hidden layers is ReLU, and the activation function of

the output layer is Softmax in the classifier. We preprocess and normalize the data before feeding

to the models. We train CVLAE and CVLAAE on NSL-KDD (KDDTrain+) and KDD-CUP (10%)

27

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 28

Figure 5.1: Training loss of CVLAAE

training set, and train the DNN classifier on the training and generated datasets. We use Adam [89]

optimizer with a learning rate of 0.001 for all networks. We evaluate the DNN classifier on NSL-KDD

(KDDTest+) and KDD-CUP(10%) testing set. Epochs of all the models are set to 100. Figure 5.1

and 5.2 show the training loss of CVLAAE and DNN respectively. Figure 5.3 shows the training

accuracy of the DNN classifier.

 Network Intrusion Datasets

We evaluate our proposed approach on two benchmark datasets namely KDD CUP 99 [2] and NSL-

KDD [1]. We present a brief elaboration on each of these datasets below.

 KDD CUP 99 Dataset

The KDD CUP 99 [2] intrusion detection dataset is based on the DARPA 98 [101] dataset, which was

generated in a simulation in the US Air Force military network. DARPA 98 dataset was collected as

binary tcpdump files from nine weeks of network traffic. The training data comprised about five million

connection records, and the testing data comprised around two million records. In 1999, the DARPA

98 dataset was processed into 41 features and one label for each connection record by the BRO-IDS

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 29

Figure 5.2: Training loss of DNN

Figure 5.3: Training accuracy of DNN

tool and named KDD CUP 99 dataset. Among the 41 features, 34 features are continuous, and seven

are discrete. The features are grouped into three categories namely basic, content and traffic. The

basic features are derived from the headers of the network packets. The content features are captured

from the payloads of the network packets. The traffic features are obtained from information about

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 30

Table 5.1: Features in the KDD CUP [2] dataset

No Variable Name Type No Variable Name Type

1 Duration Continuous 22 Is guest login Discrete
2 Protocol type Discrete 23 Count Continuous
3 Service Discrete 24 Srv count Continuous
4 Flag Discrete 25 Serror rate Continuous
5 Src bytes Continuous 26 Srv serror rate Continuous
6 Dst bytes Continuous 27 Rerror rate Continuous
7 Land Discrete 28 Srv rerror rate Continuous
8 Wrong fragment Continuous 29 Same srv rate Continuous
9 Urgent Continuous 30 Diff srv rate Continuous

10 Hot Continuous 31 Srv diff host rate Continuous
11 Num failed logins Continuous 32 Dst host count Continuous
12 Logged in Discrete 33 Dst host srv count Continuous
13 Num compromised Continuous 34 Dst host same srv rate Continuous
14 Root shell Continuous 35 Dst host diff srv rate Continuous
15 Su attempted Continuous 36 Dst host same src port rate Continuous
16 Num root Continuous 37 Dst host srv diff host rate Continuous
17 Num file creations Continuous 38 Dst host serror rate Continuous
18 Num shells Continuous 39 Dst host srv serror rate Continuous
19 Num access files Continuous 40 Dst host rerror rate Continuous
20 Num outbound cmds Continuous 41 Dst host srv rerror rate Continuous
21 Is host login Discrete 42 Normal or Attack Discrete

previous connections. Table 5.1 shows the feature list of KDD CUP 99. Here, the training set

contains 22 attack types and the testing set contains 15 attack types. Attack types are grouped

into four categories namely User to Root, Remote to Local, Denial of Service, and Probe. Table 5.2

presents definition of the attack types. The attack types and their counts in “10% KDD” training

dataset are summarized in Table 5.3, which shows high imbalance in the dataset. Here, most records

are of type normal, Denial of Service, or Probe. U2R and R2L attack types rarely appear in the

dataset.

 NSL-KDD Dataset

NSL-KDD [1] is an enhanced version of the KDD CUP 99 dataset. It is one of the most widely

used datasets for evaluating intrusion detection systems. The total number of records in the training

set (KDDTrain+) is 127,973, and in the testing set (KDDTest+) is 22,544. Each traffic record in

the NSL-KDD dataset contains 41 features. According to feature characteristics, the attacks in the

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 31

Table 5.2: Attack types in the KDD CUP 99 [2] dataset

Denial of Service (DoS)

Attacks, such as SYN flood, smurf, and teardrop exhaust the
target system to obstruct legitimate users from using

a service provided by system

Remote to Local (R2L)
Attacks are designed to get right of access to a machine

without authorization, for example, the
password-guessing attack

User to Root (U2R) Attacks give super-user (root) access to the normal user,
for instance, buffer overflow attacks

Probe

Attacks are designed to obtain information about the
target client, for instance, port scanning

and ping-sweep attacks

Table 5.3: Attacks in training and testing set of KDD CUP 99 10% [2] dataset

Category Training Set Testing Set

 Count Attack type Count Attack type
Normal 97277 No attack 60593 No attack

DoS

391458

back, pod,
land, smurf,

neptune, teardrop

229853

back, pod, mailbomb,
land, smurf, neptune,

teardrop, apache2,
processtable, udpstorm

Probe

4107

ipsweep, nmap,
portsweep, satan

4166

ipsweep, nmap,
mscan, saint,

portsweep, satan

R2L

52
guess-passwd, imap,

multihop, warezclient,
phf, warezmaster,

spy, ftp-write

70

guess-passwd, multihop,
warezmaster, snmpgetattack,

xlock, sendmail, named,
worm, imap, phf, ftp-write,

snmpguess, xsnoop

U2R 1126 buffer-overflow, perl,
loadmodule, rootkit 16347 buffer-overflow, perl,

ps, loadmodule, rootkit,
sqlattack, xterm, httptunnel

NSL-KDD dataset can be classified into four types: User to Root (U2R), Denial of Service (DOS),

Root to Local (R2L), and Probing attacks (Probe). The number of attacks of type R2L and U2R is

very low. Table 5.4 summarizes the types and their counts in the dataset. Several attacks exist in the

testing set (KDDTest+) but not in the training set (KDDTrain+). The difference between training

and testing sets provides a realistic theoretical basis for intrusion detection.

Attack Type Definition of the Attack Type

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 32

Table 5.4: Attacks in the training and testing set of NSL-KDD [1] dataset

Category Training Set Testing Set

 Count Attack type Count Attack type
Normal 67343 No attack 9711 No attack

DoS

45927

back, pod,
land, smurf,

neptune, teardrop

7458

back, pod, mailbomb,
land, smurf, neptune,

teardrop, apache2,
processtable, udpstorm

Probe

11656

ipsweep, nmap,
portsweep, satan

2421

ipsweep, nmap,
mscan, saint,

portsweep, satan

R2L

995
guess-passwd, imap,

multihop, warezclient,
phf, warezmaster,

spy, ftp-write

2754

guess-passwd, multihop,
warezmaster, snmpgetattack,

xlock, sendmail, named,
worm, phf, ftp-write,
snmpguess, xsnoop

U2R 52 buffer-overflow, perl,
loadmodule, rootkit 200 buffer-overflow, perl,

loadmodule, rootkit, ps,
sqlattack, xterm, httptunnel

Table 5.5: Confusion matrix for classification problems

 Actual Negative Actual Positive
Predicted Negative TN FP
Predicted Positive FN TP

 Metrics for Performance Evaluation

In order to effectively evaluate the performance, we use accuracy, precision, recall, specificity, and F1

score as evaluation metrics. These metrics are measured from the confusion matrix, which is built for

a classification problem, as shown in Table 5.5. Here, TP (True Positive) is the number of correctly

classified attack traffic records, and TN (True Negative) is the number of correctly classified normal

traffic records. FP (False Positive) is the number of normal traffic records which are misclassified as

attack traffic, and FN (False Negative) is the number of attack traffic records which are misclassified

as normal traffic. Next, based on the measures of TP, TN, FP, and FN, we explain these evaluation

metrics in detail.

Accuracy (AC): Defined as the percentage of correctly classified records over the total number of

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 33

records, as shown in Eq. 5.1.

AC =

TP + TN

TP + TN + FP + FN

(5.1)

Precision (P): Defined as the number of correctly predicted attacks divided by the total number

of predicted attacks, as shown in Eq. 5.2.

TP
P =

TP + FP

(5.2)

Recall (R): Defined as the number of correctly predicted attacks divided by the total number of

actual attacks, as shown in Eq. 5.3.
TP

R =
TP + FN

(5.3)

Specificity (S): Defined as the number of correctly predicted normal records divided by the total

number of normal records, as shown in Eq. 5.4.

TN
S =

TN + FP

(5.4)

F1 Score (F1): Defined as the harmonic mean of precision and recall, as shown in Eq. 5.5.

F 1 =

 2 × TP

2 × TP + FP + FN
(5.5)

In general, F1 score is considered as the most important metric for evaluating NIDS methods. F1

score is more useful for performance evaluation when dealing with unbalanced datasets.

Besides, In a multi-class classification problem, there are two possible ways to calculate results

namely aggregated and One-vs.-Rest results [79]. In an aggregated result, a summary result over all

classes is calculated. In One-vs.-Rest result, focus is given on a particular class and other classes are

considered as a single class altogether. We have used One-vs.-Rest results, provided by scikit-learn

[102] library, to calculate the precision, recall, specificity, and F1 score.

 Evaluation Results and Performance Comparison

This section presents the detection performance of our proposed approach and shows a comparison

with other methods. We compare our method with three state-of-the-art methods namely DNN [58],

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 34

Table 5.6: Number of samples in original and synthesized data from NSL-KDD [1] dataset

Category Original data samples Synthesized data samples Total

Normal 67343 0 67343
DoS 45927 21416 67343
Probe 11656 55687 67343
R2L 995 66348 67343
U2R 52 67291 67343

SAAE-DNN [87], and CVAE-DNN [24] based on results obtained over the two benchmark datasets.

Among these three state-of-the-art methods under comparison, SAAE-DNN [87] and CVAE-DNN [24]

are well-known data-augmentation methods and more related to our method than the other methods

in the literature. This happens as the SAAE-DNN and our method have incorporated attention

mechanism in the encoder. Besides, as we condition VLAE on class labels, we compare it with CVAE-

DNN that also used conditional VAE. Moreover, we compare with DNN [58] to evaluate our

effectiveness of data augmentation compared to the baseline benchmark method.

 The Detection Performance

NSL-KDD [1] presents an imbalanced dataset. Here, many attack types present in the testing dataset

do not appear in the training dataset. Besides, the number of attacks under the categories of R2L

and U2R is significantly low. However, most classification machine learning algorithms require a near-

equal number of samples in every class. Accordingly, machine learning models trained on imbalanced

dataset generally result in bias toward the majority classes and high false positive rate for minority

classes. To solve the problem of imbalanced data, we use the data generation algorithm involving our

proposed CVLAE and CVLAAE. Table 5.6 shows the number of data generated for each class using

our proposed approach.

We present values of the performance metrics for CVLAE and CVLAAE in Table 5.7 - Table 5.8

and 5.9 - 5.10 respectively. We have achieved 77% and 96.50% accuracy for CVLAE-DNN on NSL-

KDD and KDD CUP 99 datasets respectively. For CVLAAE-DNN, we have achieved 80% and 96.14%

accuracy on NSL-KDD and KDD CUP 99 datasets respectively. On NSL-KDD dataset, CVLAE has

gained precision of 83.00% and 78.00% in R2L and U2R attack types respectively, which are higher

than CVLAAE has. However, CVLAAE has gained higher precision of 95.31%, 84.65%, and 72.96%

in DoS, Probe, and normal attack types. CVLAAE has higher recall, F1 score, and specificity in all

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 35

Table 5.7: Performance results of our CVLAE-DNN for NSL-KDD [1] (KDDTest+) dataset

Category Accuracy Precision Recall Specificity F1 score

DoS

77%

92.00% 84.00% 96.39% % 88.00
Probe 80.00% 70.00% 97.89% 75.00%
R2L 83.00% 17.00% 99.52% 28.22%
U2R 78.00% 7.00% 99.98% 13.00%

Normal 69.00% 93.00% 68.38% 79.00%

Table 5.8: Performance results of our CVLAE-DNN for KDD CUP 99 [2] (KDD 10%) dataset

Category Accuracy Precision Recall Specificity F1 score

DoS

96.50%

99.00% 99.00% 99.56% 99.00%
Probe 98.89% 97.27% 99.52% 98.07%
R2L 92.74% 94.57% 100.00% 93.64%
U2R 95.08% 94.80% 99.56% 94.94%

Normal 99.88% 99.96% 99.95% 99.92%

Table 5.9: Performance results of our CVLAAE-DNN for NSL-KDD [1] (KDDTest+) dataset

Category Accuracy Precision Recall Specificity F1 score

DoS

80%

95.31% 85.60% 97.92% 90.19%
Probe 84.65% 73.84% 98.39% 78.88%
R2L 82.58% 18.18% 99.47% 29.80%
U2R 75.86% 22.00% 99.94% 34.11%

Normal 72.96% 96.78% 72.86% 83.20%

Table 5.10: Performance results of our CVLAAE-DNN for KDD CUP 99 [2] (KDD 10%) dataset

Category Accuracy Precision Recall Specificity F1 score

DoS

96.14%

99.00% 99.44% 99.56% 99.22%
Probe 97.91% 99.03% 99.07% 98.46%
R2L 96.59% 93.04% 100.00% 94.78%
U2R 93.10% 81.92% 99.45% 87.16%

Normal 99.58% 99.87% 99.81% 99.72%

the attack types than CVLAE has. On KDD CUP dataset, CVLAE has higher precision of 98.89%

and 95.08% in Probe and U2R attack types respectively, but CVLAAE has gained higher precision

of 96.59% in R2L attack type. CVLAE has achieved higher recall in R2L and U2R attack types. In

other attack types, both have achieved similar recall. Both models have gained almost similar results

in terms of F1 score and specificity.

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 36

Figure 5.4: Comparison of accuracies of different methods on NSL-KDD test set [1]

 Performance Comparison with Other Alternatives

We compare outcomes of our proposed approach with that of other alternatives namely DNN, SAAE-

DNN, and CVAE-DNN in terms of accuracy, precision, recall, specificity, and F1 score. Figure 5.4

- 5.13 show values of the performance metrics for these three alternatives along with our proposed

CVLAE and CVLAAE on NSL-KDD and KDD 99 datasets respectively. As per these figures, we

can achieve 6%, 4%, and 3% higher accuracy than DNN, SAAE-DNN, and CVAE-DNN respectively

on NSL KDD test set using CVLAAE-DNN. Besides, on KDD CUP 99 test set, the accuracy of

CVLAAE-DNN is 17%, 16%, and 7% higher than DNN, SAAE-DNN, and CVAE-DNN, respectively.

Besides, CVLAE-DNN gains 2% and 1% higher accuracy than DNN and SAAE-DNN respectively on

NSL-KDD test set and 17%, 16%, and 7% higher accuracy than DNN, SAAE-DNN, and CVAE-DNN

respectively on KDD CUP 99 test set. CVLAAE-DNN achieves 3% higher accuracy than CVLAE-

DNN on NSL KDD and has similar on KDD CUP for the two methods.

Figure 5.6 shows that CVLAAE-DNN has achieved the highest precision for Dos, Probe and

Normal traffic types as well as the second highest precision for R2L and U2R on NSL-KDD test set.

CVLAE-DNN has slightly higher precision for R2L and U2R than CVLAAE-DNN. Besides, Figure

5.7, 5.8, and 5.9 show that CVLAAE-DNN achieves the highest recall, specificity, and F1 score values

for all types of attacks respectively. Figure 5.10 presents that both CVLAAE-DNN and CVLAE-DNN

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 37

Figure 5.5: Comparison of accuracies of different methods on KDD CUP 99 test set [2]

Figure 5.6: Comparison of precisions of different methods on NSL-KDD test set [1]

achieve much higher precision than the other methods on KDD CUP 99 test set. Figure 5.11, 5.12,

and 5.13 depict similar results for recall, specificity, and F1 score on KDD CUP 99 test set.

Table 5.11 - 5.18 show the percentages of improvement achieved by CVLAAE-DNN over the other

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 38

Figure 5.7: Comparison of recalls of different methods on NSL-KDD test set [1]

Figure 5.8: Comparison of specificities of different methods on NSL-KDD test set [1]

four methods. We present the improvement in terms of precision, recall, specificity, and F1 score both

for NSL-KDD and KDD CUP 99 datasets. The extents of improvement confirm that our proposed

approach achieves noteworthy increase in performance in most of the cases.

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 39

Figure 5.9: Comparison of F1 scores of different methods on NSL-KDD test set [1]

Figure 5.10: Comparison of precisions of different methods on KDD CUP 99 test set [2]

Nonetheless, to analyze whether our proposed approach introduce any substantial time penalty or

not, we measure the time required for generating each data instance by each of the approaches in our

experimental setup. To do so, we generate ∼20K instances by each of the classification approaches

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 40

Figure 5.11: Comparison of recalls of different methods on KDD CUP 99 test set [2]

Figure 5.12: Comparison of specificities of different methods on KDD CUP 99 test set [2]

and take an average over the data generation time values to measure the time required for generating

a single data instance. Figure 5.14 shows the comparison of average data generating time for SAAE,

CVAE, CVLAE, and CVLAAE. The figure shows that the data generating time for each of the

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 41

Figure 5.13: Comparison of F1 scores of different methods on KDD CUP 99 test set [2]

Table 5.11: Percentage of improvement achieved by CVLAAE-DNN in precision on NSL-KDD test
set[1]

Method DoS Probe R2L U2R Normal

DNN 5.04% 3.23% 35.84% 11.57% 4.38%
SAAE 5.73% 6.92% 34.73% 42.53% 4.38%
CVAE 3.95% 0.55% 13.11% 25.8% 3.90%
CVLAE 3.31% 4.65% -0.42% -2.14% 3.96%

Table 5.12: Percentage of improvement achieved by CVLAAE-DNN in recall on NSL-KDD test set
[1]

Method DoS Probe R2L U2R Normal

DNN 7.93% 6.65% 4.00% 17.50% 4.24%
SAAE 6.37% -0.29% 3.47% 20.53% 3.73%
CVAE 3.09% 3.01% 0.85% 15.50% 4.64%
CVLAE 1.60% 3.84% 1.18% 15.00% 3.78%

approaches including our proposed ones is very small (in the scale of microseconds). Besides, due to

integration of the iterative inference of posterior, CVLAE introduces a small time penalty resulting in

a bit slower data generation compared to SAAE and CVAE (by 7% and 11% respectively). Moreover,

due to the integration of attention mechanism in addition to the iterative inference of posterior in

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 42

Table 5.13: Percentage of improvement achieved by CVLAAE-DNN in specificity on NSL-KDD test
set [1]

Method DoS Probe R2L U2R Normal

DNN 2.06% 0.23% 1.71% -0.04% 4.94%
SAAE 2.47% 0.94% 1.70% -0.04% 5.12%
CVAE 1.78% 0.00% 0.53% 0.00% 4.10%
CVLAE 1.53% 0.49% -0.05% -0.04% 4.48%

Table 5.14: Percentage of improvement achieved by CVLAAE-DNN in F1 score on NSL-KDD test
set [1]

Method DoS Probe R2L U2R Normal

DNN 6.69% 5.26% 8.05% 25.70% 4.42%
SAAE 6.10% 2.99% 7.30% 33.12% 4.24%
CVAE 3.48% 1.98% 2.07% 22.61% 4.25%
CVLAE 2.19% 3.88% 1.58% 21.11% 4.20%

Table 5.15: Percentage of improvement achieved by CVLAAE-DNN in precision on KDD CUP 99
test set [2]

Method DoS Probe R2L U2R Normal

DNN 0.00% 0.16% 0.38% 32.67% -0.15%
SAAE 0.00% -1.60% -0.49% 31.40% 0.14%
CVAE 0.00% -1.38% 2.18% 10.88% 0.25%
CVLAE 0.00% -0.98% 3.85% -1.98% -0.30%

Table 5.16: Percentage of improvement achieved by CVLAAE-DNN in recall on KDD CUP 99 test
set [2]

Method DoS Probe R2L U2R Normal

DNN 0.44% 3.20% 26.45% 20.38% -0.07%
SAAE 0.44% -0.09% 37.00% 26.15% -0.08%
CVAE 0.44% -0.31% 48.01% 10.77% -0.06%
CVLAE 0.44% 1.76% -1.53% -12.88% -0.09%

CVLAAE, CVLAAE introduces a bit more time penalty compared to CVLAE. However, even in

the case of CVLAAE, the introduced time penalty remains small resulting in only a bit slower data

generation compared to SAAE and CVAE (by 10% and 14% respectively). Thus, we can conclude

that none of the CVLAE and CVLAAE introduces any significant time penalty, and therefore, they

are equally applicable for real-time data generation tasks.

CHAPTER 5. EVALUATION OF OUR PROPOSED APPROACH 43

Table 5.17: Percentage of improvement achieved by CVLAAE-DNN in specificity on KDD CUP 99
test set [2]

Method DoS Probe R2L U2R Normal

DNN 0.22% 1.68% 16.08% 26.18% -0.12%
SAAE 0.22% -0.86% 23.72% 28.57% 0.03%
CVAE 0.22% -0.86% 33.81% 10.87% 0.09%
CVLAE 0.22% 0.39% 1.14% -7.78% -0.20%

Table 5.18: Percentage of improvement achieved by CVLAAE-DNN in F1 score on KDD CUP 99 test
set [2]

Method DoS Probe R2L U2R Normal

DNN 0.00% 0.04% 0.00% 3.08% -0.07%
SAAE 0.00% -0.72% 0.00% 2.57% 0.06%
CVAE 0.00% -0.62% 0.00% 0.84% 0.11%
CVLAE 0.00% -0.45% 0.00% -0.10% -0.13%

Figure 5.14: Comparison of average data generation time per instance

Chapter 6

Discussion

In this chapter, we will qualitatively compare our approach with other existing approaches available

in the literature. Besides, We will also discuss applications and limitations of this study.

 Comparison with Other Existing Approaches

In the previous chapter, we have already quantitatively compared our approach with two other data

generative methods namely CVAE-DNN [24] and SAAE-DNN [87] along with one DNN [58] classifier.

CVAE-DNN used an improved version of conditional VAE. It embedded class label y only in the

decoder network so that the encoder network can be used to initialize parameters in the DNN classifier.

Here, the decoder probability distribution is conditional on the latent variable z and class label y,

and the encoder is only conditional on input feature data x. Besides, it used Multivariate Gaussian

distribution for the encoder Q(z|x) and multivariate Bernoulli distribution for the decoder P (x|z, y).

On the other hand, in our proposed CVLAE, we condition both encoder and decoder on class label

y to better reconstruct features according to class labels. For both encoder and decoder, we use

Multivariate Gaussian distribution. We do so as VLAE approximates posterior distribution with

full-covariance Gaussian distribution; therefore, this distribution offers more expressive power than

VAE. Accordingly, from Figures 5.6 - 5.13, we can find that CVLAE-DNN has higher precision, recall,

specificity, and F1 score in minority attack types, where data balancing through new data generation

impacts the most.

Additionally, SAAE-DNN [87] combined Stacked AautoEncoder (SAE), attention mechanism, and

DNN. SAE is built by stacking autoencoder layer by layer, where the autoencoder is data specific. The

44

CHAPTER 6. DISCUSSION 45

autoencoder can only encode data similar to the data presented in the training set. This happens as it

cannot learn the probabilistic nature of data. There is no regularization on the values or distribution of

the latent variables. The latent space may not be continuous, and therefore, the autoencoder does not

have data generative capability. Accordingly, SAAE-DNN only used the weights of the trained SAAE

to initialize the weights of the DNN classifier. As a result, experiments show that SAAE-DNN mostly

attains a much lower F1 score in U2R attacks compared to both CVLAE-DNN and CVLAAE-DNN.

It is worth mentioning that, in a few cases of some of the performance metrics, CVLAAE-DNN

exhibit slightly worse performance than the other methods. For example, in the case of NSL-KDD

dataset, CVLAAE-DNN has a bit lower specificity in U2R attack type. This happens following the

reality that a trade-off between different performance metrics such as precision, recall, specificity, etc.,

can often occur, as already reported in the literature [103, 104, 105]. Similarly, we get a trade-off

between recall and specificity in our case. Here, as CVLAAE-DNN has achieved substantially higher

recall in minority attacks, it has slightly lower specificity in some cases. Similar types of trade-off

occur in a few other cases too.

Finally, between our two proposed approaches CVLAE-DNN and CVLAAE-DNN, CVLAAE-DNN

mostly exhibits better performances in all the attack types. This happens as the addition of attention

mechanism in CVLAE improves the detection performance.

 Applications of This Study

Modern networks demand advanced security measures to ensure reliable and trusted service. As

network attacks are becoming more sophisticated, adaptive protection technologies are now becoming

more important to mitigate the threats. In this regard, NIDSs take places at various locations in a

network to monitor traffic to and from all devices on the network. When placed at a strategic point

or points within a network to monitor traffic to and from all devices on the network, an NIDS will

perform an analysis of passing traffic and match the traffic that is passed on the subnets to the library

of known attacks. Once an attack is identified or abnormal behaviour is sensed, the alert can be sent

to the administrator. Here, the introduction of adaptive technologies can enable the NIDSs to filter

out attacks that are little known. In this case, this study can be applied and leverage the filtration of

little known attacks in the NIDSs.

NIDSs can be applied in a network having a distributed or centralized architecture. The dis-

CHAPTER 6. DISCUSSION 46

tributed architecture may comprise of multiple instances of NIDSs placed at different positions of a

network [106, 107, 108, 109]. In a resource constrained environment, e.g., an IoT system, NIDSs are

usually placed in a distributed way across the network. Due to the resource constrained nature of

these systems, the NIDSs must be lightweight and work independently. Conversely, the centralized

architecture consists of a single NIDS conventionally deployed at a single position in the network

that analyzes all the traffic of the network [110, 111, 112, 113]. Centralized networks, e.g., a Soft-

ware Defined Network (SDN), can follow the centralized architecture. Such an architecture [114] is

particularly important to consider due to their potential security attacks [115, 116]. Here, our study

presented in this work will facilitate identifying new or zero-day attacks.

 Limitations of This Study

Our proposed methods have been trained and tested on two benchmark datasets. Though the bench-

mark datasets are widely used for evaluating different intrusion detection systems, they do not contain

different recent network attack types. As the network attacks are evolving rapidly and new attack

types are generating now and then, our method requires testing in more recent real network settings.

Our proposed method presents a standalone anomaly-based method. It can be combined with

signature-based methods to further improve its detection performance. Hierarchical anomaly-based

methods can also be used to provide even better detection performance. Moreover, there is no feedback

approach in our method. Feedback approach can be incorporated to strengthen the system.

Chapter 7

Future Work

Our future work will focus on improving the performance more for minority attacks and new attacks.

To do so, we will explore other variants of VAE such as β-VAE [117, 118, 119] and VQ-VAE [120, 121]

for generating new attack samples. To reconstruct samples more effectively, we will try to improve

latent variable representation. Here, we plan to use adversarial learning methods to reconstruct attack

samples better. The rationale behind this plan is that, using adversarial learning methods, attacks

can be synthesized more for diversifying attack samples. This will increase our classification accuracy.

We also plan to build relevant methods to extract important flows and features from network

traffic. The methods will choose important network flows from many packets, and then, extract

significant features related to intrusive behaviour.

Besides, we plan to incorporate our proposed method with signature-based and other anomaly-

based methods in a hierarchical manner. We will also try to apply our method in large-scale applica-

tions such as cloud computing, Internet of Things, and software-defined networks.

47

Chapter 8

Conclusion

As our dependency on network communication is increasing rapidly and the networks are also evolving

continuously, ensuring its security has become a crucial issue. Accordingly, different security measures

should be applied to different layers of the network. Besides signature-based systems, anomaly-based

systems should be employed to detect unknown attacks more effectively.

Therefore, in this study, we propose a network intrusion detection method based on Conditional

Variational Laplace AutoEncoder (CVLAE) and Deep Neural Network (DNN). We condition VLAE

on class labels so that the latent representation of samples of different class labels get separated in the

latent space. We can also generate attack samples based on class labels. VLAE uses full-covariance

Gaussian as posterior distribution, so it has higher expressive power than VAE. We name the enhanced

model Conditional Variational Laplace AutoEncoder (CVLAE). Further, we also extend the model

by adding attention mechanism to learn the feature representation more effectively and term the new

method Conditional Variational Laplace Attention AutoEncoder (CVLAE). We use the generative

models to balance the network datasets by increasing minority attack samples. We train a DNN

classifier as an intrusion classifier on the balanced dataset and the DNN classifier performs better on

minority attacks after being trained on the balanced dataset. We evaluate our proposed methods on

NSL-KDD and KDD CUP 99 datasets and compare them with three conventional data augmentation

intrusion detection methods. Experimental results confirm that CVLAE-DNN mostly exhibits sub-

stantially better performance for the minority attacks, and CVLAAE-DNN mostly exhibits overall

better performance on all the types of attacks.

48

References

[1] UNB, “Nsl kdd dataset.” https://www.unb.ca/cic/datasets/nsl.html, 2009. Accessed:

August 5, 2022.

[2] S. J. Stolfo, “Kdd cup 99 dataset.” http://kdd.ics.uci.edu/databases/kddcup99/kddcup9

9.html, 1999. Accessed: August 5, 2022.

[3] D. C. Le and N. Zincir-Heywood, “A frontier: Dependable, reliable and secure machine learning

for network/system management,” Journal of Network and Systems Management, vol. 28, no. 4,

pp. 827–849, 2020.

[4] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: Dynamic access control

for enterprise networks,” in Proceedings of the 1st ACM Workshop on Research on Enterprise

Networking, pp. 11–18, ACM, 2009.

[5] “The capital one hack.” https://edition.cnn.com/2019/07/29/business/capital-one-da

ta-breach/index.html, 2019. Accessed: August 1, 2022.

[6] “Iot under fire: Kaspersky detects more than 100 million attacks on smart devices in h1 2019.”

https://www.kaspersky.com/about/press-releases/2019 iot-under-fire-kaspersk

y-detects-more-than-100-million-attacks-on-smart-devices-in-h1-2019, 2019.

Accessed: August 1, 2022.

[7] “Solarwinds hack explained:everything you need to know.” https://whatis.techtarget.co

m/feature/SolarWinds-hack-explained-Everything-you-need-to-know, 2021. Accessed:

August 1, 2022.

[8] “Massive ddos attack disrupts belgium parliament.” https://threatpost.com/ddos-disrup

ts-belgium/165911/, 2021. Accessed: August 1, 2022.

49

https://www.unb.ca/cic/datasets/nsl.html�
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html�
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html�
https://edition.cnn.com/2019/07/29/business/capital-one-data-breach/index.html�
https://edition.cnn.com/2019/07/29/business/capital-one-data-breach/index.html�
https://www.kaspersky.com/about/press-releases/2019%20_iot-under-fire-kaspersky-detects-more-than-100-million-attacks-on-smart%20-devices-in-h1-2019�
https://www.kaspersky.com/about/press-releases/2019%20_iot-under-fire-kaspersky-detects-more-than-100-million-attacks-on-smart%20-devices-in-h1-2019�
https://whatis.techtarget.com/feature/SolarWinds-hack-explained-Everything-you-need-to-know�
https://whatis.techtarget.com/feature/SolarWinds-hack-explained-Everything-you-need-to-know�
https://threatpost.com/ddos-disrupts-belgium/165911/�
https://threatpost.com/ddos-disrupts-belgium/165911/�

REFERENCES 50

[9] U. government, “Cyber security breaches survey 2021.” https://www.gov.uk/government/st

atistics/cyber-security-breaches-survey-2021, 2019. Accessed: August 1, 2022.

[10] S. Kumar, “Survey of current network intrusion detection techniques,” Washington Univ. in St.

Louis, pp. 1–18, 2007.

[11] G. Kim, S. Lee, and S. Kim, “A novel hybrid intrusion detection method integrating anomaly

detection with misuse detection,” Expert Systems with Applications, vol. 41, no. 4, pp. 1690–

1700, 2014.

[12] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for intrusion detection,” Com-

puters & security, vol. 21, no. 5, pp. 439–448, 2002.

[13] L. Koc, T. A. Mazzuchi, and S. Sarkani, “A network intrusion detection system based on a

hidden na¨ıve bayes multiclass classifier,” Expert Systems with Applications, vol. 39, no. 18,

pp. 13492–13500, 2012.

[14] K. Choksi, B. Shah, and O. Kale, “Intrusion detection system using self organizing map: a

surevey,” International Journal of Engineering Research and Applications, vol. 4, no. 12, pp. 11–

16, 2014.

[15] T. Mehmood and H. B. M. Rais, “Svm for network anomaly detection using aco feature subset,”

in Proceedings of the International symposium on mathematical sciences and computing research,

pp. 121–126, IEEE, 2015.

[16] R. Sen, M. Chattopadhyay, and N. Sen, “An efficient approach to develop an intrusion detec-

tion system based on multi layer backpropagation neural network algorithm: Ids using bpnn

algorithm,” in Proceedings of the 2015 ACM SIGMIS Conference on Computers and People

Research, pp. 105–108, ACM, 2015.

[17] S. Huda, S. Miah, J. Yearwood, S. Alyahya, H. Al-Dossari, and R. Doss, “A malicious threat

detection model for cloud assisted internet of things (cot) based industrial control system (ics)

networks using deep belief network,” Journal of Parallel and Distributed Computing, vol. 120,

pp. 23–31, 2018.

https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2021�
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2021�

REFERENCES 51

[18] T. Aldwairi, D. Perera, and M. A. Novotny, “An evaluation of the performance of restricted

boltzmann machines as a model for anomaly network intrusion detection,” Computer Networks,

vol. 144, pp. 111–119, 2018.

[19] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep learning approach

for network intrusion detection in software defined networking,” in Proceedings of the 2016 In-

ternational Conference on Wireless Networks and Mobile Communications, pp. 258–263, IEEE,

2016.

[20] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based ddos detection system in software-

defined networking (sdn),” arXiv preprint arXiv:1611.07400, 2016.

[21] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion detection using

recurrent neural networks,” IEEE Access, vol. 5, pp. 21954–21961, 2017.

[22] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority

over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[23] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling approach for

imbalanced learning,” in Proceedings of the International Joint Conference on Neural Networks,

pp. 1322–1328, IEEE, 2008.

[24] Y. Yang, K. Zheng, C. Wu, and Y. Yang, “Improving the classification effectiveness of intrusion

detection by using improved conditional variational autoencoder and deep neural network,”

Sensors, vol. 19, no. 11, p. 2528, 2019.

[25] L. Vu, Q. U. Nguyen, D. N. Nguyen, D. T. Hoang, E. Dutkiewicz, et al., “Learning latent

distribution for distinguishing network traffic in intrusion detection system,” in Proceedings of

the International Conference on Communications, pp. 1–6, IEEE, 2019.

[26] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.

[27] Y. Park, C. Kim, and G. Kim, “Variational laplace autoencoders,” in Proceedings of the Inter-

national Conference on Machine Learning, pp. 5032–5041, PMLR, 2019.

[28] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align

and translate,” arXiv preprint arXiv:1409.0473, 2014.

REFERENCES 52

[29] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A com-

prehensive review,” Journal of Network and Computer Applications, vol. 36, no. 1, pp. 16–24,

2013.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http://www.de

eplearningbook.org.

[31] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, “Draw: A recurrent neu-

ral network for image generation,” in Proceedings of the International Conference on Machine

Learning, pp. 1462–1471, PMLR, 2015.

[32] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward controlled generation

of text,” in Proceedings of the International Conference on Machine Learning, pp. 1587–1596,

PMLR, 2017.

[33] M. Blaauw and J. Bonada, “Modeling and transforming speech using variational autoencoders,”

in Proceedings of the 2016 Interspeech, pp. 1770–1774, ISCA, 2016.

[34] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to variational

methods for graphical models,” Machine learning, vol. 37, no. 2, pp. 183–233, 1999.

[35] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling, “Improved

variational inference with inverse autoregressive flow,” Advances in Neural Information Process-

ing Systems, vol. 29, 2016.

[36] C. Cremer, X. Li, and D. Duvenaud, “Inference suboptimality in variational autoencoders,” in

Proceedings of the 35th International Conference on Machine Learning, pp. 1078–1086, PMLR,

2018.

[37] J. D. Bodapati, N. S. Shaik, and V. Naralasetti, “Composite deep neural network with gated-

attention mechanism for diabetic retinopathy severity classification,” Journal of Ambient Intel-

ligence and Humanized Computing, vol. 12, no. 10, pp. 9825–9839, 2021.

[38] T. R. Toha, N. A. Al-Nabhan, S. I. Salim, M. Rahaman, U. Kamal, and A. A. Al Islam, “Lc-

net: Localized counting network for extremely dense crowds,” Applied Soft Computing, vol. 123,

p. 108930, 2022.

http://www.deeplearningbook.org/�
http://www.deeplearningbook.org/�

REFERENCES 53

[39] A. A. Aburomman and M. Bin Ibne Reaz, “Survey of learning methods in intrusion detec-

tion systems,” in Proceedings of the 2016 International Conference on Advances in Electrical,

Electronic and Systems Engineering (ICAEES), pp. 362–365, IEEE, 2016.

[40] B. Mahesh, “Machine learning algorithms-a review,” International Journal of Science and Re-

search (IJSR), vol. 9, pp. 381–386, 2020.

[41] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on sdn based network intrusion

detection system using machine learning approaches,” Peer-to-Peer Networking and Applica-

tions, vol. 12, no. 2, pp. 493–501, 2019.

[42] C. Wagner, J. François, T. Engel, et al., “Machine learning approach for ip-flow record anomaly

detection,” in Proceedings of the International Conference on Research in Networking, pp. 28–39,

Springer, 2011.

[43] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an intrusion detection system using

a filter-based feature selection algorithm,” IEEE transactions on computers, vol. 65, no. 10,

pp. 2986–2998, 2016.

[44] S. Thaseen and C. A. Kumar, “An analysis of supervised tree based classifiers for intrusion

detection system,” in Proceedings of the International Conference on Pattern Recognition, In-

formatics and Medical Engineering, pp. 294–299, IEEE, 2013.

[45] L. Kuang and M. Zulkernine, “Dnids: a dependable network intrusion detection system using

the csi-knn algorithm,” Master’s thesis, 2007.

[46] A. D. Jadhav and V. Pellakuri, “Intrusion detection system using machine learning techniques

for increasing accuracy and distributed & parallel approach for increasing efficiency,” in Pro-

ceedings of the 5th International Conference On Computing, Communication, Control And Au-

tomation, pp. 1–4, IEEE, 2019.

[47] I. Manzoor, N. Kumar, et al., “A feature reduced intrusion detection system using ann classifier,”

Expert Systems with Applications, vol. 88, pp. 249–257, 2017.

[48] A. Amoordon, V. Deniau, A. Fleury, and C. Gransart, “A single supervised learning model

to detect fake access points, frequency sweeping jamming and deauthentication attacks in ieee

802.11 networks,” Machine Learning with Applications, vol. 10, p. 100389, 2022.

REFERENCES 54

[49] S. Ouiazzane, M. Addou, and F. Barramou, “A multiagent and machine learning based denial

of service intrusion detection system for drone networks,” in Geospatial Intelligence, pp. 51–65,

Springer, 2022.

[50] M. H. Bhuyan, D. Bhattacharyya, and J. K. Kalita, “An effective unsupervised network anomaly

detection method,” in Proceedings of the International Conference on Advances in Computing,

Communications and Informatics, pp. 533–539, IEEE, 2012.

[51] F. E. Heba, A. Darwish, A. E. Hassanien, and A. Abraham, “Principle components analy-

sis and support vector machine based intrusion detection system,” in Proceedings of the 10th

International Conference on Intelligent Systems Design and Applications, pp. 363–367, IEEE,

2010.

[52] R. Braga, E. de Souza Mota, and A. Passito, “Lightweight ddos flooding attack detection

using nox/openflow,” in Proceedings of the IEEE Local Computer Network Conference, vol. 10,

pp. 408–415, IEEE, 2010.

[53] Y. Wang, G. Sun, X. Cao, and J. Yang, “An intrusion detection system for the internet of

things based on the ensemble of unsupervised techniques,” Wireless Communications and Mobile

Computing, vol. 2022, 2022.

[54] J. Haweliya and B. Nigam, “Network intrusion detection using semi supervised support vector

machine,” International Journal of Computer Applications, vol. 85, no. 9, 2014.

[55] C. Chen, Y. Gong, and Y. Tian, “Semi-supervised learning methods for network intrusion

detection,” in Proceedings of the International Conference on Systems, Man and Cybernetics,

pp. 2603–2608, IEEE, 2008.

[56] L. Deng, D. Yu, et al., “Deep learning: methods and applications,” Foundations and Trends®

in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.

[57] T. Ma, F. Wang, J. Cheng, Y. Yu, and X. Chen, “A hybrid spectral clustering and deep neural

network ensemble algorithm for intrusion detection in sensor networks,” Sensors, vol. 16, no. 10,

p. 1701, 2016.

REFERENCES 55

[58] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach for network intrusion

detection system,” in Proceedings of the 9th EAI International Conference on Bio-inspired In-

formation and Communications Technologies (formerly BIONETICS), pp. 21–26, ICST, 2016.

[59] L. Nicholas, S. Y. Ooi, Y. H. Pang, S. O. Hwang, and S.-Y. Tan, “Study of long short-term mem-

ory in flow-based network intrusion detection system,” Journal of Intelligent & Fuzzy Systems,

vol. 35, no. 6, pp. 5947–5957, 2018.

[60] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “A novel two-stage deep learning model

for efficient network intrusion detection,” IEEE Access, vol. 7, pp. 30373–30385, 2019.

[61] ACCS, “Unsw nb15 dataset.” https://www.unsw.adfa.edu.au/australian-centre-for-c

yber-security/cybersecurity/ADFA-NB15-Datasets/, 2015. Accessed: August 5, 2022.

[62] Z. Li, A. L. G. Rios, G. Xu, and L. Trajković, “Machine learning techniques for classifying

network anomalies and intrusions,” in Proceedings of the international symposium on circuits

and systems, pp. 1–5, IEEE, 2019.

[63] I. Dataport, “Bgp dataset.” https://dx.doi.org/10.21227/98aa-sh66, 2020. Accessed:

August 5, 2022.

[64] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatra-

man, “Deep learning approach for intelligent intrusion detection system,” IEEE Access, vol. 7,

pp. 41525–41550, 2019.

[65] S. N. Mighan and M. Kahani, “A novel scalable intrusion detection system based on deep

learning,” International Journal of Information Security, vol. 20, no. 3, pp. 387–403, 2021.

[66] X. Zhou, Y. Hu, W. Liang, J. Ma, and Q. Jin, “Variational lstm enhanced anomaly detection for

industrial big data,” IEEE Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3469–3477,

2020.

[67] M. A. Khan, “Hcrnnids: hybrid convolutional recurrent neural network-based network intrusion

detection system,” Processes, vol. 9, no. 5, p. 834, 2021.

[68] UNB, “Cse-cic-ids2018 dataset.” https://www.unb.ca/cic/datasets/ids-2018.html, 2018.

Accessed: August 5, 2022.

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/�
https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/�
https://dx.doi.org/10.21227/98aa-sh66�
https://www.unb.ca/cic/datasets/ids-2018.html�

REFERENCES 56

[69] K. Saurabh, S. Sood, P. A. Kumar, U. Singh, R. Vyas, O. Vyas, and R. Khondoker, “Lbdmids:

Lstm based deep learning model for intrusion detection systems for iot networks,” in Proceedings

of the 2022 IEEE World AI IoT Congress (AIIoT), pp. 753–759, IEEE, 2022.

[70] A. S. Alqahtani, “Fso-lstm ids: hybrid optimized and ensembled deep-learning network-based

intrusion detection system for smart networks,” The Journal of Supercomputing, vol. 78, no. 7,

pp. 9438–9455, 2022.

[71] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder

for deep learning of images, labels and captions,” Advances in Neural Information Processing

Systems, vol. 29, 2016.

[72] W. Xu, H. Sun, C. Deng, and Y. Tan, “Variational autoencoder for semi-supervised text classi-

fication,” in Proceedings of the 31st AAAI Conference on Artificial Intelligence, p. 3358–3364,

AAAI, 2017.

[73] X. Li and J. She, “Collaborative variational autoencoder for recommender systems,” in Proceed-

ings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 305–314, 2017.

[74] J. Pereira and M. Silveira, “Unsupervised anomaly detection in energy time series data using

variational recurrent autoencoders with attention,” in Proceedings of the 17th IEEE Interna-

tional Conference on Machine learning and Applications, pp. 1275–1282, IEEE, 2018.

[75] V. Røsjø, “Variational autoencoders with mixture density networks for sequence prediction in

algorithmic composition-a musical world model,” Master’s thesis, 2018.

[76] J. An and S. Cho, “Variational autoencoder based anomaly detection using reconstruction

probability,” Special Lecture on IE, vol. 2, no. 1, pp. 1–18, 2015.

[77] Y. Kawachi, Y. Koizumi, and N. Harada, “Complementary set variational autoencoder for

supervised anomaly detection,” in Proceedings of the International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 2366–2370, IEEE, 2018.

[78] J. Sun, X. Wang, N. Xiong, and J. Shao, “Learning sparse representation with variational

auto-encoder for anomaly detection,” IEEE Access, vol. 6, pp. 33353–33361, 2018.

REFERENCES 57

[79] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Conditional variational

autoencoder for prediction and feature recovery applied to intrusion detection in iot,” Sensors,

vol. 17, no. 9, p. 1967, 2017.

[80] X. Xu, J. Li, Y. Yang, and F. Shen, “Toward effective intrusion detection using log-cosh condi-

tional variational autoencoder,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6187–6196,

2020.

[81] H. Neuschmied, M. Winter, K. Hofer-Schmitz, B. Stojanovic, and U. Kleb, “Two stage anomaly

detection for network intrusion detection,” in Proceedings of the International Conference on

Information Systems Security and Privacy, pp. 450–457, 2021.

[82] U. Sabeel, S. S. Heydari, K. Elgazzar, and K. El-Khatib, “Cvae-an: Atypical attack flow detec-

tion using incremental adversarial learning,” in Proceedings of the 2021 IEEE Global Commu-

nications Conference (GLOBECOM), pp. 1–6, IEEE, 2021.

[83] R. F. Lova, R. M. Fifaliana, and W. P. De Silva, “Intrusion detection toward feature reconstruc-

tion using huber conditional variational autoencoder,” in Proceedings of the 2022 International

Conference on Information Networking (ICOIN), pp. 13–17, IEEE, 2022.

[84] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov, “Transformer-xl:

Attentive language models beyond a fixed-length context,” arXiv preprint arXiv:1901.02860,

2019.

[85] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for

discriminative localization,” in Proceedings of the Conference on Computer Vision and Pattern

Recognition, pp. 2921–2929, IEEE, 2016.

[86] T. Yang, Y. Hu, Y. Li, W. Hu, and Q. Pan, “A standardized ics network data processing flow

with generative model in anomaly detection,” IEEE Access, vol. 8, pp. 4255–4264, 2019.

[87] C. Tang, N. Luktarhan, and Y. Zhao, “Saae-dnn: Deep learning method on intrusion detection,”

Symmetry, vol. 12, no. 10, p. 1695, 2020.

[88] F. Laghrissi, S. Douzi, K. Douzi, and B. Hssina, “Ids-attention: an efficient algorithm for

intrusion detection systems using attention mechanism,” Journal of Big Data, vol. 8, no. 1,

pp. 1–21, 2021.

REFERENCES 58

[89] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[90] “One-hot encoding.” https://machinelearningmastery.com/why-one-hot-encode-data-i

n-machine-learning/, 2019. Accessed: August 30, 2022.

[91] T. Al-Shehari and R. A. Alsowail, “An insider data leakage detection using one-hot encoding,

synthetic minority oversampling and machine learning techniques,” Entropy, vol. 23, no. 10,

p. 1258, 2021.

[92] L. Yu, R. Zhou, R. Chen, and K. K. Lai, “Missing data preprocessing in credit classifica-

tion: One-hot encoding or imputation?,” Emerging Markets Finance and Trade, vol. 58, no. 2,

pp. 472–482, 2022.

[93] B. Gu and Y. Sung, “Enhanced reinforcement learning method combining one-hot encoding-

based vectors for cnn-based alternative high-level decisions,” Applied Sciences, vol. 11, no. 3,

p. 1291, 2021.

[94] A. Y. Hussein, P. Falcarin, and A. T. Sadiq, “Enhancement performance of random forest

algorithm via one hot encoding for iot ids,” Periodicals of Engineering and Natural Sciences

(PEN), vol. 9, no. 3, pp. 579–591, 2021.

[95] L. A. A. Shalabi, Z. Shaaban, and B. Kasasbeh, “Data mining: A preprocessing engine,” Journal

of Computer Science, vol. 2, pp. 735–739, 2006.

[96] S. A. D. Prasetyowati, M. Ismail, E. N. Budisusila, M. H. Purnomo, et al., “Dataset feasibility

analysis method based on enhanced adaptive lms method with min-max normalization and fuzzy

intuitive sets,” International Journal on Electrical Engineering and Informatics, vol. 14, no. 1,

pp. 55–75, 2022.

[97] H.-J. Kim, J.-W. Baek, and K. Chung, “Associative knowledge graph using fuzzy clustering and

min-max normalization in video contents,” IEEE Access, vol. 9, pp. 74802–74816, 2021.

[98] H. Henderi, T. Wahyuningsih, and E. Rahwanto, “Comparison of min-max normalization and z-

score normalization in the k-nearest neighbor (knn) algorithm to test the accuracy of types

of breast cancer,” International Journal of Informatics and Information Systems, vol. 4, no. 1,

pp. 13–20, 2021.

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/�
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/�

REFERENCES 59

[99] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint

arXiv:1803.08375, 2018.

[100] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural networks,” International

Journal of Engineering Applied Sciences and Technology, vol. 4, no. 12, pp. 310–316, 2017.

[101] MIT, “Darpe 98 dataset.” https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion

-detection-evaluation-dataset, 1998. Accessed: August 5, 2022.

[102] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,” the Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[103] S. Zhang, Y. Yuan, Z. Yao, X. Wang, and Z. Lei, “Improvement of the performance of mod-

els for predicting coronary artery disease based on xgboost algorithm and feature processing

technology,” Electronics, vol. 11, no. 3, p. 315, 2022.

[104] J. Bopaiah and R. Kavuluru, “Precision/recall trade-off analysis in abnormal/normal heart

sound classification,” in International Conference on big data analytics, pp. 179–194, Springer,

2017.

[105] S. A. Alvarez, “An exact analytical relation among recall, precision, and classification accuracy

in information retrieval,” Boston College, Boston, Technical Report BCCS-02-01, pp. 1–22,

2002.

[106] A. Javadpour, P. Pinto, F. Ja’fari, and W. Zhang, “Dmaidps: a distributed multi-agent intrusion

detection and prevention system for cloud iot environments,” Cluster Computing, pp. 1–18, 2022.

[107] Z. Hu, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “High-performance distributed nids cluster

based on hybrid detection platform,” in Proceedings of the IEICE, The Institute of Electronics,

Information and Communication Engineers, 2021.

[108] Z. Ahmad, A. Shahid Khan, K. Nisar, I. Haider, R. Hassan, M. R. Haque, S. Tarmizi, and

J. J. Rodrigues, “Anomaly detection using deep neural network for iot architecture,” Applied

Sciences, vol. 11, no. 15, p. 7050, 2021.

https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset�
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset�

REFERENCES 60

[109] H. Kim, S. Ahn, W. R. Ha, H. Kang, D. S. Kim, H. K. Kim, and Y. Paek, “Panop: Mimicry-

resistant ann-based distributed nids for iot networks,” IEEE Access, vol. 9, pp. 111853–111864,

2021.

[110] M. S. Habeeb and T. R. Babu, “Network intrusion detection system: A survey on artificial

intelligence-based techniques,” Expert Systems, p. e13066, 2022.

[111] J. Verma, A. Bhandari, and G. Singh, “inids: Swot analysis and tows inferences of state-of-

the-art nids solutions for the development of intelligent network intrusion detection system,”

Computer Communications, 2022.

[112] N. M. Yungaicela-Naula, C. Vargas-Rosales, and J. A. Perez-Diaz, “Sdn-based architecture for

transport and application layer ddos attack detection by using machine and deep learning,”

IEEE Access, vol. 9, pp. 108495–108512, 2021.

[113] A. O. Alzahrani and M. J. Alenazi, “Designing a network intrusion detection system based on

machine learning for software defined networks,” Future Internet, vol. 13, no. 5, p. 111, 2021.

[114] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow: Verifying network-wide in-

variants in real time,” in Proceedings of the First Workshop on Hot Topics in Software Defined

Networks, pp. 49–54, Association for Computing Machinery, 2012.

[115] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software defined networks: A

survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2317–2346, 2015.

[116] V. Patil, C. Patil, and R. Awale, “Security challenges in software defined network and their

solutions,” in Proceedings of the 8th International Conference on Computing, Communication

and Networking Technologies (ICCCNT), pp. 1–5, IEEE, 2017.

[117] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Ler-

chner, “Beta-VAE: Learning basic visual concepts with a constrained variational framework,”

in Proceedings of the International Conference on Learning Representations, ICLR, 2017.

[118] A. Khan and A. Storkey, “Adversarial robustness of β− vae through the lens of local geometry,”

arXiv preprint arXiv:2208.03923, 2022.

REFERENCES 61

[119] Y. Xiang, J. L. Højvang, M. H. Rasmussen, and M. G. Christensen, “A deep representation

learning speech enhancement method using β-vae,” arXiv preprint arXiv:2205.05581, 2022.

[120] C. Yuan, M. Su, C. Ni, X. Liu, Y. Xu, and X. Cui, “Horizon auto-picking with quantitative

uncertainty evaluation by using a modified vq-vae framework,” Journal of Geophysics and En-

gineering, vol. 19, no. 4, pp. 788–806, 2022.

[121] T. Srikotr and K. Mano, “Vector quantization of speech spectrum based on the vq-vae embed-

ding space learning by gan technique,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. 105, no. 4, pp. 647–654, 2022.

	Dedicated to my loving parents
	Semi-supervised Learning Approaches
	Deep Learning-based Approaches
	Variational AutoEncoder-based Approaches
	Attention-based Approaches
	Limitations of the Existing Studies

	Proposed Conditional Variational Laplace AutoEncoder (CVLAE)
	Proposed Conditional Variational Laplace Attention Autoen- coder (CVLAAE)
	Four Phases of Our Proposed Approach
	Phase-1: Data Preprocessing
	Phase-2: Development and Training CVLAE and CVLAAE
	Phase-3: Data Augmentation
	Attack Classification

	Experimental Setup
	Network Intrusion Datasets
	KDD CUP 99 Dataset
	NSL-KDD Dataset

	Metrics for Performance Evaluation
	Evaluation Results and Performance Comparison
	The Detection Performance
	Performance Comparison with Other Alternatives

	Comparison with Other Existing Approaches
	Applications of This Study
	Limitations of This Study

