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Abstract 

 
Network Intrusion Detection System (NIDS) is an essential tool for network administrators to de- 

tect security breaches. Currently, the existing anomaly-based intrusion detection methods rely on 

traditional machine learning models such as Support Vector Machine and Random Forest. However, 

current machine learning-based NIDS applications often do not perform well due to the diversity of 

attacks and imbalanced datasets having less data pertinent to attack events. Therefore, it is impor- 

tant to synthesize data in a probabilistic manner that is similar to original attack event-related data. 

Accordingly, in this paper, we propose a new paradigm of the synthesizing task based on Variational 

Laplace AutoEncoder (VLAE) and Deep Neural Network. We exploit the paradigm to develop a new 

intrusion detection method.   Here, we go beyond the existing VLAE model through incorporating 

class labels as an input in the VLAE model. Hence, the latent representation of samples of different 

class labels separate in the latent space and we can generate attack samples based on the class labels. 

We term the enhanced model as Conditional Variational Laplace Autoencoder (CVLAE). We further 

extend our proposed model by adding attention mechanism to better reconstruct features, named Con- 

ditional Variational  Laplace  Attention  AutoEncoder  (CVLAAE).  We  employ  CVLAE  and  CVLAAE 

to learn latent variable representations of network data features and to synthesize data in a proba- 

bilistic manner. To do so, we use a Deep Neural Network (DNN) classifier, which is trained on the 

original and synthesized data. The DNN classifier is used to classify the attack samples. We evaluate 

our model on different benchmark datasets namely NSL-KDD and KDD CUPP 99 datasets. Here, we 

demonstrate the efficacy of our proposed method through showing that our method achieves higher 

performance in the cases of minority attacks compared to other existing methods in our experimenta- 

tion. The experimental results further demonstrate that adding the attention mechanism in CVLAE 

resulting in CVLAAE has the best overall performance in terms of precision, recall, specificity, and 

F1 score. 
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Chapter 1 

 
Introduction 

 
With the rapid advancement in communications and information technology, the Internet has reached 

all aspects of our life. More and more people are now using online services and applications, which 

results in a high volume of data transferred over the network everyday. However, with the advance- 

ment of technology and network systems, network attacks are growing rapidly and becoming more 

sophisticated [3]. Besides the Internet, enterprise networks are also facing the attacks because of their 

complex network environment [4]. Therefore, ensuring network security has become a huge challenge 

for both public as well as enterprise networks. 

For example, in July 2019, a hacker gained access to 100 million Capital One credit card appli- 

cations and accounts [5].  In the first half of 2019, Kaspersky detected more than 100 million attacks 

on smart devices [6]. In March 2020, hackers compromised a commercial software application made 

by SolarWinds and gained access to the systems running the SolarWinds products [7]. In May 2021, 

a significant DDoS attack disabled the ISP used by Belgium’s government, which cut off Internet 

access to more than 200 organizations, including Belgium’s Parliament [8]. These incidents suggest 

that hackers can now exploit different systems’ security holes to gain access to confidential data and 

financial accounts. 

As network protocols and services have increased rapidly over the last decades, the risk of exploiting 

them is also growing. Security attacks through such exploitation bring substantial financial loss, 

reputational damage, and legal consequences to organizations. According to UK Cyber Security 

Breaches Survey [9], in 2021,  among the 39% of businesses that identified attacks,  21% of them 

ended up losing money, data, or other assets. 35% of them experienced a negative impact, such 
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(a) Anomaly-based NIDS (b) Signature-based NIDS 
 

Figure 1.1: Categories of NIDS based on its detection strategies 
 

as loss of customers, business disruption, etc., as a result of the attacks. Therefore, protecting the 

network from security intrusions has become an essential and challenging task for security experts. A 

Network Intrusion Detection System or NIDS is one of several security mechanisms to manage security 

intrusions. An NIDS detects malicious activities by analyzing incoming and outgoing network traffic. 

Based on the detection strategies adopted by NIDSs, there can be two primary categories of detection: 

i) signature-based detection and ii) anomaly-based detection [10]. A signature-based NIDS (Figure 

1.1b) compares traffic data with a predefined set of attacks. It can only detect known attacks. On 

the other hand, an anomaly-based NIDS (Figure 1.1a) creates a normal model of the behaviour of 

a network using machine learning, statistical-based or knowledge-based methods. Any significant 

deviation between the observed behaviour and the modeled behaviour is regarded as a potential 

intrusion. Although it can identify new and existing attacks, there are some challenges in applying it 

in the real network environments. 

 

 Limitations of Existing Studies And Approaches 
 

Most of the existing security solutions use signature-based systems because of their efficiency in 

detecting known attacks. However, signature-based NIDSs are unable to recognize zero-day or new 

attacks [10]. In contrast, anomaly-based detection systems compare network traffic with normal traffic 

model and marks a significant deviation from the normal traffic behaviour as an anomaly. As a result, 

these systems can detect zero-day attacks. However, these are not commercially used due to low 

detection accuracy and high false alarm rates [10]. 
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Machine learning-based approaches are generally utilized in anomaly-based NIDSs to improve de- 

tection accuracy and to achieve a low false alarm rate. These approaches include Decision Tree [11], 

K-nearest Neighbor [12], Naive Bayes Network [13], Self-organized Map [14], Support Vector Machine 

[15], and Artificial Neural Network [16]. However, these techniques demand extensive feature engineer- 

ing because of having high-dimensional1 network data. Here, another challenge is that more number 

of samples is required for the predictive modeling. It is usually called the curse of dimensionality. 

Recently, deep learning-based approaches are being applied in implementing anomaly-based 

NIDSs. Deep learning-based systems have  the  capability  to  learn  feature  correlation  automati- 

cally. Deep learning-based methods used for intrusion detection includes Deep Belief Network (DBN) 

[17, 18], Deep Neural Network (DNN) [19], AutoEncoder [20], and Recurrent Neural Network (RNN) 

[21]. However, there are some problems in applying deep learning-based methods in intrusion detec- 

tion. Firstly, network data is not balanced. Attack samples are very low in comparison to normal 

samples. This causes biasedness in the classification. Secondly, most of the network data is unlabeled. 

To achieve good performance deep learning algorithms require a significant amount of labeled data. 

 

 Motivation behind This Study 
 

To overcome the challenges in applying deep learning-based methods in intrusion detection, synthe- 

sizing intrusion data that resemble original data is very important. State-of-the-art algorithms in 

synthesizing data are based on SMOTE [22] and ADASYN [23]. Recently, Variational AutoEncoder 

(VAE) based approaches have been applied for intrusion data generation [24, 25]. Variational Au- 

toEncoder is a probabilistic generative model that combines variational inference with deep learning 

[26]. However, VAE approximates posterior distribution by fully factorized Gaussian that has limited 

expressiveness [27]. 

To overcome the limitations, in this study, we present two probabilistic data generative models 

called Conditional Variational Laplace AutoEncoder (CVLAE) and Conditional Variational Laplace 

Attention AutoEncoder (CVLAAE), which are based on Variational Laplace AutoEncoder [27] used 

to generate intrusion data. Variational Laplace AutoEncoder approximates posterior distribution 

by fully-factorized Gaussian, whose covariance is determined by the local behaviour of the generative 

network. We modify the conventional VLAE architecture to include class labels along with features to 
 

1High-dimensional data usually makes a predictive modeling task harder. This happens as the computational com- 
plexity increases exponentially with the increase in the number of features. 
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generate latent variable representation.  Besides, we introduce attention mechanism [28] in CVLAAE 

to learn the latent features more effectively. Here, we use Deep Neural Network as a classifier of 

network intrusion trained on the combination of original and synthesized data. 

 

 Our Contributions 
 

This study contributes to the field of anomaly-based network intrusion detection systems. Here, we 

primarily focus on improving the capability of intrusion detection systems in identifying new and zero- 

day attacks. However, as the problem in this regard lies in the availability of enough data pertinent to 

the new and zero-day attacks, our study aims to efficiently generate the data. To do so, we leverage 

deep learning-based data generative models to overcome the challenges as already mentioned above. 

Based on our work, we make the following set of contributions in this study: 
 

• We propose two new probabilistic data generative models named CVLAE and CVLAAE for 

intrusion data generation. CVLAE incorporates class labels in VLAE [27] model to learn the 

latent distribution of complex network traffic. Then, we extend CVLAE by adding attention 

mechanism [28] to learn feature representation more effectively. Using them, we generate attack 

samples according to class labels and balance the network traffic data. 

• We explore a DNN to train on our generated and original data to classify the attack samples. 

To do so, We adopt two benchmark datasets namely the NSL-KDD[1] and KDD CUP 99 [2] 

datasets. 

• We compare our proposed method against three state-of-the-art methods namely DNN, SAAE- 

DNN, and CVAE-DNN based on the two benchmark datasets. We achieve better performance 

in terms of precision, recall, specificity, and F1 score in comparison to the other three existing 

methods. 
 
 

 Organization of This Study 
 

We organize the rest of this study in the following way. In Chapter 2, we will discuss background 

of our work. We will present research studies related to this work in Chapter 3. After that, we will 

discuss our proposed method in Chapter 4. Next, we will show the experimental results and compare 
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performance of our proposed method with other existing methods in Chapter 5. We will discuss 

limitations and applications of this study in Chapter 6. Finally, we will conclude the study, including 

some future work in Chapter 8. 



 

 
 
 
 
 
 
 
 

Chapter 2 

 
Background of Our Study 

 
As this study aims at developing an anomaly-based NIDS that can detect both known and unknown 

network attacks, different notions such as NIDS, AE, VAE, VLAE, and attention mechanism are 

highly related to this study. Therefore, in this section, we present brief backgrounds on NIDS, AE, 

VAE, VLAE, and attention mechanism. 

 

 Network Intrusion Detection System (NIDS) 
 

Intrusion Detection System or IDS monitors and analyzes the events in a computer system or network 

to detect possible attacks. IDS is an important security system to protect network resources against 

security threats, which are increasing significantly in their number and impacts. IDS can be used to 

monitor host and network-based environments. A host-based IDS (HIDS) monitors the events of hosts 

to detect suspicious activities [29]. A network-based IDS or NIDS monitors network traffic to identify 

remote attacks over a network connection [29].  An NIDS realizes an essential security mechanism, as 

it provides a solid line of defence against malicious activities in a network. In this study, we focus on 

the network-based intrusion detection system. 

Figure 2.1 shows typical architecture of an NIDS. An NIDS is typically placed behind the firewall 

on the edge of a network. It can also be placed in various locations for different purposes. An NIDS 

between the Internet and firewall is useful for learning about malicious activities on the Internet. 

An NIDS in the DMZ will see attacks originating from the Internet that can get through the outer 

firewall to public servers. It sniffs the internal interface of the firewall and sends alerts to an NIDS 

management server. It analyzes all the traffic to detect malicious traffic. There are three major 

 
6 



CHAPTER 2.   BACKGROUND OF OUR STUDY 7 
 

 
 

categories of NIDSs namely Signature-based IDS(SIDS), Anomaly-based IDS(AIDS), and Stateful 

Protocol Analysis (SPA) [29]. 

Figure 2.1:  Architecture of an NIDS 
 

• Signature-based IDS (SIDS): A signature is a pattern that represents a known attack or threat. 

An SIDS is based on pattern matching techniques to find a known attack. It compares captured 

events with signatures of known attacks to detect possible intrusions. Because of using the 

knowledge accumulated based on specific attacks and system vulnerabilities, SIDS is also known 

as knowledge-based detection system or misuse detection system. 

• Anomaly-based IDS (AIDS): An AIDS creates a standard model of the behaviour of a network 

using machine learning, statistical-based, or knowledge-based methods. Any significant devia- 

tion between the model and observed behaviour is regarded as an intrusion in an AIDS. It can 

identify known and unknown attacks and require less effort to construct its profile of the normal 

behaviour of the network than an SIDS. 

• Stateful Protocol Analysis (SPA): An SPA examines and traces protocol states, e.g., pairing 

requests with replies. Although an SPA is mostly similar to an AIDS, it relies on vendor- 

developed profiles of certain protocols. It requires information of the relevant network’s protocol 

standard from international standard organizations, e.g., IETF [29]. An SPA focuses on known 

attacks or threats. SPA is also known as a specification-based detection system. 

 
This thesis focuses on probabilistic generative models and how to use them to design an anomaly- 
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based IDS. We specifically focus on AIDS considering its generalizability compared to other alter- 

natives. Here, we attempt to leverage the capability of an AIDS through exploiting the notion of 

variational autoencoder. 

 

 AutoEncoder (AE) 

AutoEncoder (AE) refers to a neural network that learns to reconstruct the original input while com- 

pressing the data to create a more efficient and compressed representation. AE consists of an encoder 

and a decoder, as shown in Figure 2.2. The encoder compresses the data to a lower-dimensional latent 

representation, and the decoder decodes the latent representation to a very close representation to the 

original data. The decoder ensures that the latent space can capture most of the information from 

the dataset space by forcing the latent space to mostly output what was fed as input to the encoder. 

To exemplify the tasks of encoder and decoder, let’s say x is a 28×28-pixel photo of a handwritten 

digit. The encoder encodes the 784-dimensional (28×28) data into a latent (hidden) representation 

space z, which is much less than 784 dimensions. The decoder takes the latent representation z as 

input and outputs the reconstructed input data. Thus, the output of the decoder will be another 

784-dimensional (28×28) photo of a handwritten digit. 

AE is trained to minimize the reconstruction error between the input data x and the reconstructed 

data x′, and thus, ensures that the latent space can capture important information from the input 

data. Here, the reconstruction error can be the mean squared error between the encoder input and 

the decoder output [30], which can be modeled as follows. 
 
 

L(x, x′) = ∥x − x′∥2 = ∥x − dθ(z)∥2 = ∥x − dθ(eϕ(x))∥2 (2.1) 
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Figure 2.2: Architecture of AE 
 

Parameters θ and ϕ are learned jointly by minimizing the reconstruction error using the notion of 

backpropagation. Here, the encoder maps the input x to the latent variable z. In this regard, there 

is no constraint on the distribution of the latent space. 

 

 Variational AutoEncoder (VAE) 

Variational AutoEncoder [26] is a data generative model that has recently shown tremendous perfor- 

mance in producing highly realistic pieces of data, such as images [31], texts [32] and speeches [33]. 

Variational AutoEncoder [26] realizes a deep latent generative model  pθ(x, z) = pθ(x|z)p(z) consisting 

of an inference model qϕ(z|x) (encoder) and a generative model pθ(x|z) (decoder). Here, the encoder 

compresses the data into a low-dimensional latent representation and the decoder reconstructs the 

data from the latent representation. 

To exemplify the tasks of encoder and decoder here having a similarity with our previous example, 

let’s again consider x as a 28×28-pixel photo of a handwritten digit. Here, contrasting to our earlier 

case, the encoder encodes the 784-dimensional (28×28) data into a latent (hidden) representation 

space z through providing parameters of the probability distribution of z. The parameters of the 

probability distribution are even much lesser than the 784 dimensions.    Besides,   again contrasting 

to our earlier case, here, the decoder takes the latent representation z as input and outputs the 

parameters of the probability distribution of the data. In the case of black and white picture of a 
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digit, the probability distribution of a single pixel can be a Bernoulli distribution. 

The architecture of VAE is shown in Figure 2.3. VAE approximates the posterior pθ(z|x) by an 

inference model [26] as follows. 

 

pθ(z|x) ≈ qϕ(z|x) (2.2) 

VAE optimizes the evidence lower bound (ELBO) of the marginal log-likelihood of data [26] as 

follows. 

 
Lθ,ϕ(x) = log pθ(x) − DKL(qϕ(z|x)||pθ(z|x)) (2.3) 

The first part of the ELBO is the log likelihood of pθ(x), that is the probability to obtain the 

desired data x. The second part is the Kullback-Leibler (KL) divergence between the probability 

distribution qϕ(z|x) and the actual posterior distribution pθ(z|x). 

 
Figure 2.3: Architecture of VAE 

 

Both inference and generative network of VAE are jointly trained to maximize the ELBO. VAE 

amortizes variational inference (VI) [34] by the encoder network. VAE uses fully-factorized Gaussian 

as the posterior distribution. However, fully-factorized Gaussian does not have enough expressive 

power and cannot properly capture complex posterior distribution. This causes approximation error 

[35]. Another problem of VAE is the amortization error that causes due to amortized inference of 

posterior distribution [36]. 
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 Variational Laplace AutoEncoder (VLAE) 

 
Variational Laplace AutoEncoder [27] is a variant of VAE that uses full-covariance Gaussian as pos- 

terior distribution. VLAE enhances the expressive power of the posterior distribution and reduces 

amortization error using Laplace Approximation of the posterior distribution [27] as follows. 

 
q(z|x) = N (µ, Σ), where Σ−1 = −∇2 log pθ(x, z)|z=µ (2.4) 

For Gaussian output ReLU network, local linearity is used to approximate the posterior. The 

architecture of VLAE is shown in Figure 2.4. 

 
Figure 2.4: Architecture of VLAE 

 

Posterior mode is iteratively searched for T steps under the linear assumption gθ(µt) ≈ Wtµt + bt 

[27] as follows. 
 
 

µt+1 = σ−1(σ−1Wt
T Wt + I)−1WT (x − b) (2.5) 

VLAE approximate the posterior distribution using pθ(x|z) = N (Wµz + bµ, σ2I) [27] as follows. 

 
q(z|x) = N (µ, σ), where Σ = (σ−2Wµ

T Wµ + I)−1 (2.6) 
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 Attention Mechanism 

 
Attention Mechanism allows neural networks to focus and give more “Attention” on the relevant 

parts of the input data as needed [28, 37, 38]. The notion of Attention is used to realize the fact that 

the encoder network can compress data, however, all of them are not equally important. Attention 

mechanism was originally introduced to improve the performance of Seq2Seq model for neural machine 

translation, and now, it is applied in different cases. 

To exemplify, let’s consider a case where we have to translate a English sentence “How was your 

day?”  to  the  French  version  “Comment  se  passe  ta  journée?”.  What  the  Attention  layer  of  a  neural 

network will do for each word in the output sentence is map the important and relevant words from 

the input sentence and assign higher weights to these words, enhancing the accuracy of the output 

translation. Thus, the Attention layer ensures giving more attention to the more important parts. 

A basic seq2seq approach consists of an encoder-decoder model, where the encoder analyzes the in- 

put data and compresses the information into a context vector of a fixed length (sentence embedding), 

and the decoder is computed with the context vector to emit the transformed output. Though, this 

architecture has shown its effectiveness in Seq2Seq models, it has one crucial drawback. The sentence 

embedding is generated in one vector. When the length of the input data increases, it becomes difficult 

for the model to capture the information in this vector. Thus, it has the inability to preserve longer 

input data as it tends to forget parts of it. The attention mechanism was introduced by Bahdanau 

[28] to solve the problem associated with fixed-length context vector in neural machine translation. 

As the encoder encodes every input sequence to the fixed-length context vector,  the decoder does 

not have enough information for long or complex sentences. The attention mechanism solves this 

problem by creating shortcuts between the context vector and the entire input sequence. It permits 

the decoder to utilize the most relevant parts of the input sequence by a weighted combination of all 

of the encoded input vectors, with the most relevant vectors being given the highest weights. 

Each input words is assigned a weight by the attention mechanism which is then used by the 

decoder to predict the next word in the sentence. The attention weights are computed by applying 

softmax function to the alignment scores of the input sequence. The alignment score, eti, that indicates 

how well the elements of the input sequence align with the current output at position, t, can be 

calculated by applying a feed forward network over the encoded hidden states, hi, and the previous 

decoder output, st−1, shown in the following equation. 
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eti = tanh(W1hi + W2st−1) (2.7) 
 

The attention weights ati are computed by applying softmax function to the alignment scores, eti 

as shown in the following equation. 
 

a  =   exp(eti)   (2.8) 
ti T 

k=1 exp(etk) 

The context vector, Ci, is computed by a weighted sum of all, T , encoder hidden states using the 

following equation. 
 

T 

ci = atihi (2.9) 
i=1 



 

 
 
 
 
 
 
 
 
 

Chapter 3 

 
Related Work 

 
Various machine learning and deep learning-based approaches have been applied to implement NIDS. 

This section presents several related studies based on such NIDSs. 

 

 Machine Learning-based Approaches in NIDSs 
 

Machine learning-based approaches are categorized in three categories namely supervised, unsuper- 

vised, and semi-supervised learning approaches [39]. Accordingly, NIDSs adopt three different cate- 

gories of machine learning. 

 
 Supervised  Learning  Approaches 

 
In supervised learning, the algorithms learn mapping functions from the input to the output using 

labelled training data [40]. Supervised learning approaches applied in NIDS include Support Vector 

Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (KNN), Random Forest (RF), Artificial 

Neural Network (ANN), etc., [41, 40]. For example, Wagner et al., [42] leveraged one-class SVM to 

build a network anomaly detection system. Besides, the study in [15] proposed a detection model using 

the ant system for feature reduction and SVM for classification. Another study [43] built a least-square 

SVM based intrusion detection system using the features selected by own feature selection algorithm. 

Kim et al., [11] proposed a hybrid intrusion detection method that incorporated a DT based 

misuse detection model and a one-class SVM based anomaly detection model through a decomposition 

structure. Here, the normal training data was decomposed into smaller subsets using DT and multiple 

one-class SVM models were built for the decomposed subsets. Another study [44] explored eight tree- 
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based classification algorithms for classifying network attacks. Here, DT was used for feature selection 

and RF was applied as a classifier. 

Kuang et al., [45] proposed a Dependable Network Intrusion Detection System (DNIDS) based on 

the Combined Strangeness and Isolation Measure K-Nearest Neighbor (CSI-KNN) algorithm. Jadhav 

et al., [46] proposed distributed and parallel approaches using SVM, KNN, DT, and NB classifier to 

enhance the efficiency of detecting the intrusions. Besides, Manzoor et al., [47] proposed a detection 

system that used information gain and correlation-based ranking for feature reduction along with 

a classifier based on ANN. Amoordon et al., [48] proposed a method based on RF and KNN that 

can detect several attacks in wireless networks. Ouiazzane et al., [49] proposed a model based on 

multi-agent systems and DT model to detect DoS attacks in the UAV networks. 

 
 Unsupervised  Learning  Approaches 

 
In unsupervised learning, the algorithms learn patterns and representations from unlabeled data []. 

Examples of unsupervised learning algorithms adopted in NIDS are K-means, Principal Component 

Analysis (PCA), Self-Organizing Map (SOM), etc.  [41, 40].  In this regard, Bhuyan et al., [50] designed 

an outlier-based NIDS in which legitimate data were clustered using a K-means technique, and then, 

a reference point was computed for each cluster. With these points, samples are classified as attacks if 

they differ by a certain threshold value. Another study [51] adopted a Principal Component Analysis 

(PCA) algorithm for feature selection and a Support Vector Machine as a classifier to select the 

optimum feature subset. The study in [52] proposed a lightweight DDoS flooding attack detection 

solution, which used emulation to build a NOX based network in SDN using Self-Organized Map 

(SOM). Wang et al., [53] designed an IDS using the ensemble of AutoEncoders to learn the network 

data and an Isolation Forest algorithm to perform the anomaly detection. 

 
 Semi-supervised Learning Approaches 

 
Semi-supervised learning approaches use a small amount of labeled data and a large amount of unla- 

beled data during their training. Semi-supervised learning algorithms are required where labeling data 

is challenging or expensive. In this regard, a semi-supervised Support Vector Machine was used to 

enhance the accuracy of NIDSs in [54]. In another study [55], two semi-supervised classification meth- 

ods namely Spectral Graph Transducer and Gaussian Fields were used to detect unknown attacks, 

and a semi-supervised clustering method namely MPCK-means was used to improve the performance 
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of the detection systems. 
 
 
 Deep Learning-based Approaches 

 
Deep learning algorithms present an advancement to artificial neural networks that  use multiple 

layers of neurons to progressively extract higher-level features from the raw input data. Deep learning 

algorithms can learn the representation of data with various levels of generalization. Deep learning 

methods such as Deep Belief Network (DBN), Deep Neural Network (DNN), Convolutional Neural 

Network (CNN), Long Short-Term Memory (LSTM), and Generative Adversarial Network (GAN), etc. 

have been applied successfully in computer vision, speech recognition, natural language processing, 

machine translation, information retrieval, and many other fields [56].  In recent years, this method 

has been widely used to identify network intrusion and achieved remarkable detection results. 

Tang et al., [19] build a Deep Neural Network (DNN) model for flow-based anomaly detection 

systems and train the model with the NSL-KDD [1] dataset. In this work, they used six basic 

features and gained an accuracy of 75.75%. Besides, Ma et al., [57] proposed a hybrid method, named 

SCDNN, leveraging Spectral Clustering (SC) and Deep Neural Network (DNN). Here, SC divided 

the original training dataset into training subsets, and the subset was used to train multiple DNN 

classifiers. The method achieved 72.64% and 44.55% accuracy on the NSL-KDD (KDDTest+) [1] and 

NSL-KDD (KDDTest-21) [1] datasets respectively. Additionally, Niyaz et al., [20] proposed a Stacked 

AutoEncoder (SAE) based DL approach only for DDoS detection systems in Software Defined Network 

(SDN). The authors claimed that they have achieved a binary classification accuracy of 99.82% and 

an 8-class classification accuracy of 95.65%. Further, Javaid et al., [58] used Self-Taught Learning 

(STL), a deep learning-based technique, on the NSL-KDD dataset. They achieved an accuracy of 

79.10% for the 5-class classification. 

The study in [21] presented a Recurrent Neural Network (RNN) based model with a soft-max 

classifier. In this study, the model was evaluated on the NSL-KDD dataset. They achieved 81.29% 

accuracy for the test set KDDTest+ for five-class classification. In another study [59], the authors 

applied LSTM in flow-based network for intrusion detection and compared performance with various 

machine learning classifiers. They achieved 74.26% accuracy for five-class classification. 

Khan et al., [60] proposed a deep learning model based on Stacked AutoEncoder with a soft-max 

classifier for network intrusion detection.  The model comprised two decision stages. The first stage 
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was responsible for classifying network traffic as normal or abnormal using a probability score value. 

This classification is then used in the final decision stage as an additional feature for detecting the 

normal state and other classes of attacks. The proposed model was evaluated on the KDD 99 [2] and 

UNSW-NB15 [61] datasets, and achieved 99.996% and 89.134% accuracy on the datasets respectively. 

Besides, in [62], Li et al. used LSTM and Gated Recurrent Unit (GRU) with a variable number of 

hidden layers along with a Broad Learning System (BLS) to build network anomaly detection models. 

The BGP [63] and NSL-KDD datasets were used to evaluate the performance of the proposed models 

in terms of training time, accuracy, and F1 score. On the BGP dataset, the experimental results 

showed that RNN and BLS models can provide the best accuracy and F1 score over the range of 

90%-95%.  On the NSL-KDD dataset, the experimental results showed that the best performance can 

be obtained using LSTM4 and GRU3 along with the CFBLS (BLS with cascades of mapped features). 

Additionally, Vinayakumar et al., [64] employed distributed DNN models to develop a scalable and 

hybrid intrusion detection model called Scale-Hybrid-IDS-AlertNet (SHIA). The proposed SHIA could 

effectively monitor a large number of network-level and host-level events to automatically identify 

malicious attacks to provide network administrators with appropriate alerts. Experimental tests on 

various benchmark IDS datasets showed that the proposed model performed well compared to other 

traditional machine learning classifiers. 

Mighan et al., [65] combined the advantages of deep network and machine learning methods, using 

an Stacked AutoEncoder (SAE) network for latent feature extraction, followed by several machine 

learning methods, such as Support Vector Machine, Random Forest, Decision Tree, and Naive Bayes 

for intrusion detection. In another study [66], Zhou et al., proposed a Variational Long Short-Term 

Memory (VLSTM) learning model that detects intrusion anomalies efficiently based on feature recon- 

struction. Here, an encoder–decoder neural network associated with a variational reparameterization 

scheme was designed to learn the low-dimensional feature representation from high-dimensional raw 

data. The proposed VLSTM resulted in  an  accuracy  of  89.5%  on  UNSW-NB15  dataset. Further, 

Khan et al., [67] proposed a Convolutional Recurrent Neural Network (CRNN) based hybrid frame- 

work namely HCRNNIDS to predict malicious attacks in the network. In HCRNNIDS, a Convolutional 

Neural Network performs convolution to capture local features and a Recurrent Neural Network cap- 

tures temporal features to improve the system’s performance. HCRNNIDS attained an accuracy of 

up to 97.75% on CSE-CIC-IDS2018 [68] dataset with 10-fold cross-validation. 

Saurabh et al., [69] developed models based on variants of LSTMs namely stacked LSTM and 
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bidirectional LSTM for intrusion detection systems for IoT networks. Alqahtani et al., [70] proposed 

a hybrid optimized LSTM approach for IoT networks. In this approach, CNN was used to extract 

the temporal and spatial correlated features of IoT networks, and the optimized LSTM was used to 

predict the different attacks in the networks. 

 
 Variational  AutoEncoder-based  Approaches 

 
Variational AutoEncoder (VAE) is a deep learning based probabilistic generative model that has 

achieved significant improvements in different areas [71, 72, 73, 74, 75]. Some recent studies have 

incorporated VAE in intrusion detection. For example, Jinwon et al., [76] presented an anomaly de- 

tection system based on VAE using reconstruction probability. Besides, Kawachi et al., [77] employed 

VAE for supervised anomaly detection. Sun et al., [78] also used VAE to learn sparse representations 

for anomaly detection. Additionally, Lopez–Martin et al., [79] proposed a conditional VAE (CVAE) 

based intrusion detection system, called Intrusion Detection-Conditional Variational AutoEncoder (ID-

CVAE). To classify a sample, ID-CVAE reconstructed samples associated with each class label. 

Subsequently, ID-CVAE used the Euclidean distance to measure the similarity between reconstructed 

samples and original samples. Yanq et al., [24] proposed a method that combined an improved condi- 

tional VAE (ICVAE) with a DNN classifier. ICVAE was used to learn sparse representations between 

network data features and classes. ICVAE achieved 85.97% and 89.08% accuracy on NSL-KDD and 

UNSW-NB15 dataset respectively. Xu et al., [80] proposed a method named Log-Cosh Conditional 

Variational Autoencoder (LCVAE) using conditional VAE and log hyperbolic cosine (log-cosh) loss 

function. Neuschmied et al., [81] proposed a two-stage approach combining a filtering method with 

VAE using reconstruction probability. In the first step, a fast anomaly detector filters out data that 

do not belong to any anomaly. In the second step, the remaining data are then evaluated by a more 

specific VAE based anomaly detector providing more accurate decision. Sabeel et al.,[82] proposed 

an adversarial incremental learning approach. The approach was based on a hybrid model consisting 

of a conditional VAE and a Generative Adversarial Network (GAN). Lova et al., [83] proposed a 

conditional VAE with an adaptive loss function. This study replaced the classical reconstruction loss 

function with a flexible loss function for the purpose of minimizing reconstruction error. 
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 Attention-based Approaches 
 

Attention is one of the most influential ideas in deep learning research that imitates cognitive attention. 

This mechanism has been extensively used in different fields such as natural language processing 

[84] and computer vision [85]. Some recent studies have applied attention mechanism in detecting 

network attacks too. For example, Yang et al., [86] used bidirectional RNN with attention mechanism 

to extract relevant features and give explainable results in identifying dominant attributes. Tang et 

al., [87] proposed a method based on Stacked AutoEncoder, DNN, and attention mechanism, named 

SAAE-DNN. Here, SAAE selected the needed features from the intrusion dataset and  initialized 

weights of DNN to improve the intrusion detection accuracy. The proposed SAAE-DNN showed an 

accuracy of 87.74% on NSL-KDD dataset. Laghrissi et al., [88] proposed a detection model based 

on LSTM and attention mechanism. They also used four feature reduction algorithms namely Chi- 

Square, UMAP, PCA, and Mutual Information. The experimental results showed that using attention 

with all features and using PCA with three components exhibited the best performance, achieving 

an accuracy of 99.09% and 98.49% for binary and multi-class classification on NSL-KDD dataset 

respectively. 

 
 Limitations of the Existing Studies 

 
As present in the previous sections, different types of approaches have been investigated in the lit- 

erature.   However, leveraging DNN using the exploitation of Variational Laplace AutoEncoder is yet 

to be explored in the literature to the best of our knowledge. Therefore, in this paper, we explore 

a new intrusion detection system based on VLAE  and DNN. Here, considering the fact that VLAE 

has higher expressiveness and lower amortized error than VAE [27], we extend VLAE to incorporate 

class labels in the encoder of VLAE so that the latent representations of the feature data of different 

class labels are separated in latent space and we can generate attack samples based on class labels. 

We present out proposed methodology in the next section. 



 

 
 
 
 
 
 
 
 

Chapter 4 

 
Methodology of Our Study 

 
In this chapter, we present the details of our proposed approach for network intrusion detection. Here, 

we first elaborate our proposed two models in Section 4.1 and 4.2 respectively. Then, we discuss four 

different phases of our approach namely data preprocessing, training CVLAE and CVLAAE, data 

augmentation, and attack classification in Section 4.3. 

 

 Proposed Conditional Variational Laplace AutoEncoder 

(CVLAE) 

CVLAE is generally based on VLAE model that incorporates the class label as an input in the encoder. 

Incorporating the class label enables us to generate new data from separated latent space according 

to class labels. Here, the encoder qϕ(z|x, y) is conditioned on input features x and class labels y. 

Besides, the decoder pθ(x|z, y) is conditioned on latent variables z and class labels y. The encoder 

learns the parameters of the intermediate probability distribution, qϕ(z|x, y) from the input features 

and class labels. Latent variable z is sampled from the intermediate distributions and passed as the 

input to the decoder. The decoder learns the parameters of the probability distribution pθ(x|z, y) 

from the latent variables and the class labels. The output samples x′ are generated from the learned 

distribution of the decoder. Figure 4.1 shows the structure of the proposed CVLAE model. Here, the 

evidence lower bound objective function of CVLAE is formulated as follows. 
 
 

Lθ,ϕ(x, y) = log pθ(x|y) − DKL(qϕ(z|x, y)||pθ(z|x, y)) (4.1) 
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The ELBO function consists of two parts: The first part is the log-likelihood of data and the second 

part is the KL divergence between the approximate distribution and the true posterior distribution. 

 
Figure 4.1: Architecture of CVLAE 

 
The posterior mode is initialized by the inference ReLU network. Then the model iteratively 

searches for the posterior mode over T steps where density is concentrated and approximates a full- 

covariance Gaussian posterior at the mode. We use multivariate Gaussian as the distribution for 

pθ(x|z, y) and use multivariate standard normal distribution N (0, I) as the prior pθ(z). Here,  the 

model is trained to optimize the ELBO using Adam [89] optimization algorithm. 
 
 

 Proposed Conditional Variational Laplace Attention Autoen- 

coder (CVLAAE) 

We extend the CVLAE model by adding an attention mechanism layer between the encoder and the 

latent layer. The original input data passes through the encoder, and the data get compressed. The 

layer calculates the attention vector of each simplified feature. The attention vector and the feature 

are multiplied to generate data input to the latent layer. When the attention vector finds that a 

specific feature does not contribute to the prediction, it sets the specific value in the vector to 0 

causing the network to forget the feature. Figure 4.2 shows the structure of our proposed CVLAAE 

model. 
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Figure 4.2: Architecture of CVLAAE 
 

The attention mechanism layer contains a set of attention weights, and each weight denotes the 

importance value of the corresponding feature. Important features are selected from the input data 

through weighted summation according to the following equations. 

 

M = tanh(Wax′ + ba) (4.2) 
 
 

ai = softmax(Mi) (4.3) 
 
 

D 
T (4.4) 

i=0 
 

Here x′ is the feature vector, Wa is the weight, ba is the offset value, and ai is the probability 

distribution of Mi normalized by softmax, and D is the number of samples. ai is taken as the attention 

vector. It is multiplied by x′ and summed up to obtain the more representative feature vector v. 

Finally, the probability distribution is taken as the weight and summarized with x′ to obtain a more 

representative feature vector v, which eliminates unnecessary features. The attention layer focuses on 

important features and improves the performance of the network. 
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 Four Phases of Our Proposed Approach 

 
In this section, we discuss our proposed approach for network intrusion detection model. The proposed 

approach consists of four phases namely data preprocessing, training CVLAE and CVLAAE, data 

augmentation, and attack classification. Figure 4.3 shows the last three steps in sequence. 

 
 Phase-1: Data Preprocessing 

 
Categorical features need to be converted to numerical values before being fed to deep learning models. 

For this purpose, we use one-hot encoding [90, 91, 92, 93, 94] and numeralize the categorical features. 

One-hot encoding maps each categorical value into a new categorical column and assigns a value of 

one or zero to those columns. We represent the categorical values as binary vectors. We set the 

column corresponding to the categorical feature as one and all other columns as zero. To exemplify, 

the NSL-KDD dataset contains three categorical features, protocol type (i.e., tcp, udp, and icmp), 

service (i.e., ftp, http, ssh, etc.) and flag (i.e., REJ, RSTO, RSTOS0, etc.). After one-hot encoding, 

they are mapped into 84-dimensional binary vectors. 

The numerical features have different scales, and data normalization is required to improve the 

performance and training stability of ML models. We use the min-max [95, 96, 97, 98] normalization 

method to transform features to be on a similar scale.  Then, we convert all numerical feature values 

to the range of 0 to 1 using the following equation. 
 

x  = 
   x − xmin  

xmax − xmin 
(4.5) 
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Figure 4.3: Development and training model, data augmentation, and attack classification in our 
proposed approach 

 
 

 Phase-2: Development and Training CVLAE and CVLAAE 
 

We train our proposed CVLAE and CVLAAE models using benchmark datasets 1. We  train  the 

models to minimize the difference between the reconstructed and original data by optimizing the 

ELBO function. The original input feature data and class labels pass through the encoder, and they 
 

1we use NSL KDD train+ [1] and KDD CUP 10% [2] training datasets for this purpose. 
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get mapped to parameters (mode and variance) of the latent distribution q(z|x). Then, the posterior 

mode is iteratively updated for T steps. Subsequently, the latent variable z is sampled from the 

distribution and passed through the decoder. The decoder maps the latent variable to the probability 

distribution p(x|z), from which we get the reconstructed feature vector. We concatenate the feature 

vector with the one-hot encoded class labels and feed them into the models. Each encoder and decoder 

of the models have two hidden layers of 32 dimensions. The latent variable has 16 dimensions. Using 

such models, we update the posterior mode iteratively for ten steps. We use Adam optimizer [89] 

as the optimization algorithm to update network weights iteratively. Additionally, in our case, the 

activation function of all hidden layers is ReLU [99], and the activation function of output layer of 

the decoder is Sigmoid. 

After training these models, we calculate the log-probability of each training sample (xi, yi) as 

follows. 
 

log p (x |z, y ) = −n log σ − n 
log(2π) −  1  

 

 Σ
(x 

 

— µ) (4.6) 

Where xi,j represents the jth feature value of xi and n represents the number of features. The 

parameters µ and σ are the mean and standard deviation of the posterior distribution respectively. 

We calculate the minimum log probability of the kth class as follows. 
 
 

minPk  = min{log pθ(xi|z, yi), for each yi ∈ class k} (4.7) 

 
 Phase-3: Data Augmentation 

We use multivariate Gaussian distribution N (0, I) as the prior distribution. Besides, for data augmen- 

tation, we sample the latent variable z from N (0, I), concatenate it with specified class label y′, and 

feed it into the trained decoder network. We feed the newly generated sample (x′, y′) into the model, 

and we calculate the log probability of the newly generated sample log pθ(x′|z, y′) using Equation 4.6. 

If the log probability is greater than the minimum log probability minPk of the specified class k, then 

we merge the sample into the original training data. Otherwise, we discard the sample. 

S = 


S 

S 
{x′, y′} , if y′ in class k  and log pθ(x′|z, y′) ≥ minPk 

S, Otherwise 

i=1 
i,j 
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 Attack Classification 
 

We use a DNN as the intrusion classifier. The classifier is trained on the original and generated 

data. We use ReLU as the activation function of all hidden layers and Softmax [100] as the activation 

function of the output layer of the classifier. Besides, we optimize the classifier by Adam optimizer. 

Finally, we feed the test dataset into the trained DNN classifier to classify attacks. 

We detail our proposed intrusion detection approach in Algorithm 1. 
 

Algorithm 1 Proposed Intrusion Detection Approach 
 

1: Input: Training dataset S = (x, y), latent variable Z, and learning rate lr. 

2: Output: The final classification results. 

3: Data preprocessing: Categorical features are one-hot encoded, and numerical features  are 

scaled to [0,1] using min-max normalization. 

4: Train CVLAE on training dataset S with multivariate Gaussian distribution as prior p(z) using 

learning rate lr and Adam optimization method. 

5: Calculate the minimum log probability for each attack type in the training data set using Equation 

4.7. 

6: Sample z from N (0, I), specify the attack class y, and feed them into the trained CVLAE decoder 

to generate a new attack sample x′.  If the reconstruction loss of the newly generated sample is 

less than the maximum reconstruction loss, The newly generated sample (x′, y′) is merged into 

the training data set S. 

7: Train the DNN classifier on the merged dataset. 

8: Evaluate the DNN classifier on the test data set and return the result. 



 

 
 
 
 
 
 
 
 

Chapter 5 

 
Evaluation of Our Proposed Approach 

 
In this chapter, we present an experimental evaluation of our proposed approach for network intrusion 

detection. Here, we compare results of our proposed approach against that of three recent state- of-

the-art approaches. We perform our experimentation over two benchmark datasets pertinent to 

network intrusion. To elaborate our experimental outcomes, first, we describe our experimental setup, 

evaluation metrics,  and the intrusion datasets used in our experimental evaluation.  After that,  we 

will present the performance comparison in detail. 

 

 Experimental  Setup 
 

For training and testing purposes, we use a Linux Pop! OS 20.04 LTS laptop having AMD Ryzen 7 

CPU and 16 GB RAM. To speed up the training process, we use one NVIDIA GeForce RTX 2060 GPU 

having 8 GB RAM. As the training process requires huge time, we also train our models in Google 

Colaboratory. We use the Anaconda environment having Tensorflow 2.3 framework with Python 3.7 

and CUDA 11.2. 

Each encoder and decoder of CVLAE and CVLAAE has two hidden layers having 50 and 25 

dimensions respectively. Besides, the latent variable has ten dimensions. With three dimensions, We 

update the posterior mode iteratively for ten steps. Here the activation function of hidden layers is 

ReLU, and the activation function of output layer of the decoder is Sigmoid. Our DNN classifier has 

five hidden layers. The activation function of hidden layers is ReLU, and the activation function of 

the output layer is Softmax in the classifier. We preprocess and normalize the data before feeding 

to the models. We train CVLAE and CVLAAE on NSL-KDD (KDDTrain+) and KDD-CUP (10%) 
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Figure 5.1: Training loss of CVLAAE 
 

training set, and train the DNN classifier on the training and generated datasets. We use Adam [89] 

optimizer with a learning rate of 0.001 for all networks. We evaluate the DNN classifier on NSL-KDD 

(KDDTest+) and KDD-CUP(10%) testing set.  Epochs of all the models are set to 100.  Figure 5.1 

and 5.2 show the training loss of CVLAAE and DNN respectively. Figure 5.3 shows the training 

accuracy of the DNN classifier. 

 

 Network Intrusion Datasets 
 

We evaluate our proposed approach on two benchmark datasets namely KDD CUP 99 [2] and NSL- 

KDD [1]. We present a brief elaboration on each of these datasets below. 

 
 KDD CUP 99 Dataset 

 
The KDD CUP 99 [2] intrusion detection dataset is based on the DARPA 98 [101] dataset, which was 

generated in a simulation in the US Air Force military network. DARPA 98 dataset was collected as 

binary tcpdump files from nine weeks of network traffic. The training data comprised about five million 

connection records, and the testing data comprised around two million records. In 1999, the DARPA 

98 dataset was processed into 41 features and one label for each connection record by the BRO-IDS 
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Figure 5.2: Training loss of DNN 
 

 
Figure 5.3: Training accuracy of DNN 

 

tool and named KDD CUP 99 dataset. Among the 41 features, 34 features are continuous, and seven 

are discrete. The features are grouped into three categories namely basic, content and traffic. The 

basic features are derived from the headers of the network packets. The content features are captured 

from the payloads of the network packets. The traffic features are obtained from information about 
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Table 5.1: Features in the KDD CUP [2] dataset 
 
 

No Variable Name Type No Variable Name Type 
 

1 Duration Continuous 22 Is guest login Discrete 
2 Protocol type Discrete 23 Count Continuous 
3 Service Discrete 24 Srv count Continuous 
4 Flag Discrete 25 Serror rate Continuous 
5 Src bytes Continuous 26 Srv serror rate Continuous 
6 Dst bytes Continuous 27 Rerror rate Continuous 
7 Land Discrete 28 Srv rerror rate Continuous 
8 Wrong fragment Continuous 29 Same srv rate Continuous 
9 Urgent Continuous 30 Diff srv rate Continuous 

10 Hot Continuous 31 Srv diff host rate Continuous 
11 Num failed logins Continuous 32 Dst host count Continuous 
12 Logged in Discrete 33 Dst host srv count Continuous 
13 Num compromised Continuous 34 Dst host same srv rate Continuous 
14 Root shell Continuous 35 Dst host diff srv rate Continuous 
15 Su attempted Continuous 36 Dst host same src port rate Continuous 
16 Num root Continuous 37 Dst host srv diff host rate Continuous 
17 Num file creations Continuous 38 Dst host serror rate Continuous 
18 Num shells Continuous 39 Dst host srv serror rate Continuous 
19 Num access files Continuous 40 Dst host rerror rate Continuous 
20 Num outbound cmds Continuous 41 Dst host srv rerror rate Continuous 
21 Is host login Discrete 42 Normal or Attack Discrete 

 

previous connections. Table 5.1 shows the feature list of KDD CUP 99. Here, the training set 

contains 22 attack types and the testing set contains 15 attack types. Attack types are grouped 

into four categories namely User to Root, Remote to Local, Denial of Service, and Probe. Table 5.2 

presents definition of the attack types. The attack types and their counts in “10% KDD” training 

dataset are summarized in Table 5.3, which shows high imbalance in the dataset. Here, most records 

are of type normal, Denial of Service, or Probe. U2R and R2L attack types rarely appear in the 

dataset. 

 
 NSL-KDD Dataset 

 
NSL-KDD [1] is an enhanced version of  the  KDD  CUP  99  dataset. It  is  one  of  the  most  widely 

used datasets for evaluating intrusion detection systems. The total number of records in the training 

set (KDDTrain+) is  127,973,  and  in  the  testing  set  (KDDTest+)  is  22,544. Each  traffic  record  in 

the NSL-KDD dataset contains 41 features. According to feature characteristics, the attacks in the 
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Table 5.2: Attack types in the KDD CUP 99 [2] dataset 
 
 

 
Denial of Service (DoS) 

Attacks, such as SYN flood, smurf, and teardrop exhaust the 
target system to obstruct legitimate users from using 

a service provided by system 
 

Remote to Local (R2L) 
Attacks are designed to get right of access to a machine 

without authorization, for example, the 
password-guessing attack 

User to Root (U2R) Attacks give super-user (root) access to the normal user, 
for instance, buffer overflow attacks 

 
Probe 

Attacks are designed to obtain information about the 
target client, for instance, port scanning 

and ping-sweep attacks 
 

Table 5.3: Attacks in training and testing set of KDD CUP 99 10% [2] dataset 
 
 

Category Training Set Testing Set 
 

 Count Attack type Count Attack type 
Normal 97277 No attack 60593 No attack 

 
DoS 

 
391458 

back, pod, 
land, smurf, 

neptune, teardrop 

 
229853 

back, pod, mailbomb, 
land, smurf, neptune, 

teardrop, apache2, 
processtable, udpstorm 

 
Probe 

 
4107 

ipsweep, nmap, 
portsweep, satan 

 
4166 

ipsweep, nmap, 
mscan, saint, 

portsweep, satan 
 

R2L 
 

52 
guess-passwd, imap, 

multihop, warezclient, 
phf, warezmaster, 

spy, ftp-write 

 
70 

guess-passwd, multihop, 
warezmaster, snmpgetattack, 

xlock, sendmail, named, 
worm, imap, phf, ftp-write, 

snmpguess, xsnoop 

U2R 1126 buffer-overflow, perl, 
loadmodule, rootkit 16347 buffer-overflow, perl, 

ps, loadmodule, rootkit, 
sqlattack, xterm, httptunnel 

 

NSL-KDD dataset can be classified into four types: User  to  Root  (U2R),  Denial  of  Service  (DOS), 

Root to Local (R2L), and Probing attacks (Probe). The number of attacks of type R2L and U2R is 

very low. Table 5.4 summarizes the types and their counts in the dataset. Several attacks exist in the 

testing set (KDDTest+) but not in  the  training  set  (KDDTrain+). The  difference  between  training 

and testing sets provides a realistic theoretical basis for intrusion detection. 

Attack Type Definition of the Attack Type 
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Table 5.4: Attacks in the training and testing set of NSL-KDD [1] dataset 
 
 

Category Training Set Testing Set 
 

 Count Attack type Count Attack type 
Normal 67343 No attack 9711 No attack 

 
DoS 

 
45927 

back, pod, 
land, smurf, 

neptune, teardrop 

 
7458 

back, pod, mailbomb, 
land, smurf, neptune, 

teardrop, apache2, 
processtable, udpstorm 

 
Probe 

 
11656 

ipsweep, nmap, 
portsweep, satan 

 
2421 

ipsweep, nmap, 
mscan, saint, 

portsweep, satan 
 

R2L 
 

995 
guess-passwd, imap, 

multihop, warezclient, 
phf, warezmaster, 

spy, ftp-write 

 
2754 

guess-passwd, multihop, 
warezmaster, snmpgetattack, 

xlock, sendmail, named, 
worm, phf, ftp-write, 
snmpguess, xsnoop 

U2R 52 buffer-overflow, perl, 
loadmodule, rootkit 200 buffer-overflow, perl, 

loadmodule, rootkit, ps, 
sqlattack, xterm, httptunnel 

 
Table 5.5: Confusion matrix for classification problems 

 
 

 Actual Negative Actual Positive 
Predicted Negative TN FP 
Predicted Positive FN TP 

 
 Metrics for Performance Evaluation 

 
In order to effectively evaluate the performance, we use accuracy, precision, recall, specificity, and F1 

score as evaluation metrics.  These metrics are measured from the confusion matrix, which is built for 

a classification problem, as shown in Table 5.5. Here, TP (True Positive) is the number of correctly 

classified attack traffic records, and TN (True Negative) is the number of correctly classified normal 

traffic records. FP (False Positive) is the number of normal traffic records which are misclassified as 

attack traffic, and FN (False Negative) is the number of attack traffic records which are misclassified 

as normal traffic. Next, based on the measures of TP, TN, FP, and FN, we explain these evaluation 

metrics in detail. 

Accuracy (AC): Defined as the percentage of correctly classified records over the total number of 
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records, as shown in Eq. 5.1. 
 
 

AC = 

 
 

TP + TN 
 

 

TP + TN + FP + FN 

 
 

(5.1) 
 

Precision (P): Defined as the number of correctly predicted attacks divided by the total number 

of predicted attacks, as shown in Eq. 5.2. 
 

TP 
P = 

TP + FP 

 
(5.2) 

 
Recall (R): Defined as the number of correctly predicted attacks divided by the total number of 

actual attacks, as shown in Eq. 5.3. 
TP 

R = 
TP + FN 

(5.3) 
 

Specificity (S): Defined as the number of correctly predicted normal records divided by the total 

number of normal records, as shown in Eq. 5.4. 
 

TN 
S = 

TN + FP 

 
(5.4) 

 
F1 Score (F1): Defined as the harmonic mean of precision and recall, as shown in Eq. 5.5. 

 
F 1 = 

 
 
 2 × TP  

2 × TP + FP + FN 
(5.5) 

 

In general, F1 score is considered as the most important metric for evaluating NIDS methods. F1 

score is more useful for performance evaluation when dealing with unbalanced datasets. 

Besides, In a multi-class classification problem, there are two possible ways to calculate results 

namely aggregated and One-vs.-Rest results [79]. In an aggregated result, a summary result over all 

classes is calculated. In One-vs.-Rest result, focus is given on a particular class and other classes are 

considered as a single class altogether. We have used One-vs.-Rest results, provided by scikit-learn 

[102] library, to calculate the precision, recall, specificity, and F1 score. 
 
 
 Evaluation Results and Performance Comparison 

 
This section presents the detection performance of our proposed approach and shows a comparison 

with other methods. We compare our method with three state-of-the-art methods namely DNN [58], 
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Table 5.6: Number of samples in original and synthesized data from NSL-KDD [1] dataset 
 
 

Category Original data samples Synthesized data samples Total 
 

Normal 67343 0 67343 
DoS 45927 21416 67343 
Probe 11656 55687 67343 
R2L 995 66348 67343 
U2R 52 67291 67343 

 

SAAE-DNN [87], and CVAE-DNN [24] based on results obtained over the two benchmark datasets. 

Among these three state-of-the-art methods under comparison, SAAE-DNN [87] and CVAE-DNN [24] 

are well-known data-augmentation methods and more related to our method than the other methods 

in the literature. This happens as the SAAE-DNN and our method have incorporated attention 

mechanism in the encoder. Besides, as we condition VLAE on class labels, we compare it with CVAE-

DNN that also used conditional VAE. Moreover, we compare with DNN [58] to evaluate our 

effectiveness of data augmentation compared to the baseline benchmark method. 

 
 The Detection Performance 

 
NSL-KDD [1] presents an imbalanced dataset. Here, many attack types present in the testing dataset 

do not appear in the training dataset. Besides, the number of attacks under the categories of R2L 

and U2R is significantly low. However, most classification machine learning algorithms require a near- 

equal number of samples in every class. Accordingly, machine learning models trained on imbalanced 

dataset generally result in bias toward the majority classes and high false positive rate for minority 

classes. To solve the problem of imbalanced data, we use the data generation algorithm involving our 

proposed CVLAE and CVLAAE. Table 5.6 shows the number of data generated for each class using 

our proposed approach. 

We present values of the performance metrics for CVLAE and CVLAAE in Table 5.7 - Table 5.8 

and 5.9 - 5.10 respectively. We have achieved 77% and 96.50% accuracy for CVLAE-DNN on NSL- 

KDD and KDD CUP 99 datasets respectively. For CVLAAE-DNN, we have achieved 80% and 96.14% 

accuracy on NSL-KDD and KDD CUP 99 datasets respectively. On NSL-KDD dataset, CVLAE has 

gained precision of 83.00% and 78.00% in R2L and U2R attack types respectively, which are higher 

than CVLAAE has. However, CVLAAE has gained higher precision of 95.31%, 84.65%, and 72.96% 

in DoS, Probe, and normal attack types. CVLAAE has higher recall, F1 score, and specificity in all 
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Table 5.7:  Performance results of our CVLAE-DNN for NSL-KDD [1] (KDDTest+) dataset 
 
 

Category Accuracy Precision Recall Specificity F1 score 
 

DoS  
 

77% 

92.00% 84.00% 96.39% % 88.00 
Probe 80.00% 70.00% 97.89% 75.00% 
R2L 83.00% 17.00% 99.52% 28.22% 
U2R 78.00% 7.00% 99.98% 13.00% 

Normal 69.00% 93.00% 68.38% 79.00% 
 

Table 5.8: Performance results of our CVLAE-DNN for KDD CUP 99 [2] (KDD 10%) dataset 
 
 

Category Accuracy Precision Recall Specificity F1 score 
 

DoS  
 

96.50% 

99.00% 99.00% 99.56% 99.00% 
Probe 98.89% 97.27% 99.52% 98.07% 
R2L 92.74% 94.57% 100.00% 93.64% 
U2R 95.08% 94.80% 99.56% 94.94% 

Normal 99.88% 99.96% 99.95% 99.92% 
 

Table 5.9:  Performance results of our CVLAAE-DNN for NSL-KDD [1] (KDDTest+) dataset 
 
 

Category Accuracy Precision Recall Specificity F1 score 
 

DoS  
 

80% 

95.31% 85.60% 97.92% 90.19% 
Probe 84.65% 73.84% 98.39% 78.88% 
R2L 82.58% 18.18% 99.47% 29.80% 
U2R 75.86% 22.00% 99.94% 34.11% 

Normal 72.96% 96.78% 72.86% 83.20% 
 

Table 5.10: Performance results of our CVLAAE-DNN for KDD CUP 99 [2] (KDD 10%) dataset 
 
 

Category Accuracy Precision Recall Specificity F1 score 
 

DoS  
 

96.14% 

99.00% 99.44% 99.56% 99.22% 
Probe 97.91% 99.03% 99.07% 98.46% 
R2L 96.59% 93.04% 100.00% 94.78% 
U2R 93.10% 81.92% 99.45% 87.16% 

Normal 99.58% 99.87% 99.81% 99.72% 
 

the attack types than CVLAE has. On KDD CUP dataset, CVLAE has higher precision of 98.89% 

and 95.08% in Probe and U2R attack types respectively, but CVLAAE has gained higher precision 

of 96.59% in R2L attack type. CVLAE has achieved higher recall in R2L and U2R attack types. In 

other attack types, both have achieved similar recall. Both models have gained almost similar results 

in terms of F1 score and specificity. 
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Figure 5.4: Comparison of accuracies of different methods on NSL-KDD test set [1] 
 

 Performance Comparison with Other Alternatives 
 

We compare outcomes of our proposed approach with that of other alternatives namely DNN, SAAE- 

DNN, and CVAE-DNN in terms of accuracy, precision, recall, specificity, and F1 score. Figure 5.4 

- 5.13 show values of the performance metrics for these three alternatives along with our proposed 

CVLAE and CVLAAE on NSL-KDD and KDD 99 datasets respectively. As per these figures, we 

can achieve 6%, 4%, and 3% higher accuracy than DNN, SAAE-DNN, and CVAE-DNN respectively 

on NSL KDD test set using CVLAAE-DNN. Besides, on KDD CUP 99 test set, the accuracy of 

CVLAAE-DNN is 17%, 16%, and 7% higher than DNN, SAAE-DNN, and CVAE-DNN, respectively. 

Besides, CVLAE-DNN gains 2% and 1% higher accuracy than DNN and SAAE-DNN respectively on 

NSL-KDD test set and 17%, 16%, and 7% higher accuracy than DNN, SAAE-DNN, and CVAE-DNN 

respectively on KDD CUP 99 test set. CVLAAE-DNN achieves 3% higher accuracy than CVLAE- 

DNN on NSL KDD and has similar on KDD CUP for the two methods. 

Figure 5.6 shows that CVLAAE-DNN has achieved the highest precision  for  Dos,  Probe  and 

Normal traffic types as well as the second highest precision for R2L and U2R on NSL-KDD test set. 

CVLAE-DNN  has  slightly  higher  precision  for  R2L  and  U2R  than  CVLAAE-DNN.  Besides,   Figure 

5.7, 5.8, and 5.9 show that CVLAAE-DNN achieves the highest recall, specificity,  and F1 score values 

for all types of attacks respectively. Figure 5.10 presents that both CVLAAE-DNN and CVLAE-DNN 
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Figure 5.5: Comparison of accuracies of different methods on KDD CUP 99 test set [2] 
 

Figure 5.6: Comparison of precisions of different methods on NSL-KDD test set [1] 
 

achieve much higher precision than the other methods on KDD CUP 99 test set. Figure 5.11, 5.12, 

and 5.13 depict similar results for recall, specificity, and F1 score on KDD CUP 99 test set. 

Table 5.11 - 5.18 show the percentages of improvement achieved by CVLAAE-DNN over the other 
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Figure 5.7: Comparison of recalls of different methods on NSL-KDD test set [1] 
 

Figure 5.8: Comparison of specificities of different methods on NSL-KDD test set [1] 
 

four methods. We present the improvement in terms of precision, recall, specificity, and F1 score both 

for NSL-KDD and KDD CUP 99 datasets. The extents of improvement confirm that our proposed 

approach achieves noteworthy increase in performance in most of the cases. 



CHAPTER 5.  EVALUATION OF OUR PROPOSED APPROACH 39 
 

 
 

 
 

Figure 5.9: Comparison of F1 scores of different methods on NSL-KDD test set [1] 
 

Figure 5.10: Comparison of precisions of different methods on KDD CUP 99 test set [2] 
 

Nonetheless, to analyze whether our proposed approach introduce any substantial time penalty or 

not, we measure the time required for generating each data instance by each of the approaches in our 

experimental setup. To do so, we generate ∼20K instances by each of the classification approaches 
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Figure 5.11: Comparison of recalls of different methods on KDD CUP 99 test set [2] 
 

Figure 5.12: Comparison of specificities of different methods on KDD CUP 99 test set [2] 
 

and take an average over the data generation time values to measure the time required for generating 

a single data instance. Figure 5.14 shows the comparison of average data generating time for SAAE, 

CVAE, CVLAE, and CVLAAE. The figure shows that the data generating time for each of the 
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Figure 5.13: Comparison of F1 scores of different methods on KDD CUP 99 test set [2] 
 

Table 5.11: Percentage of improvement achieved by CVLAAE-DNN in precision on NSL-KDD test 
set[1] 

 
 

Method DoS Probe R2L U2R Normal 
 

DNN 5.04% 3.23% 35.84% 11.57% 4.38% 
SAAE 5.73% 6.92% 34.73% 42.53% 4.38% 
CVAE 3.95% 0.55% 13.11% 25.8% 3.90% 
CVLAE 3.31% 4.65% -0.42% -2.14% 3.96% 

 
Table 5.12:  Percentage of improvement achieved by CVLAAE-DNN in recall on NSL-KDD test set 
[1] 

 
 

Method DoS Probe R2L U2R Normal 
 

DNN 7.93% 6.65% 4.00% 17.50% 4.24% 
SAAE 6.37% -0.29% 3.47% 20.53% 3.73% 
CVAE 3.09% 3.01% 0.85% 15.50% 4.64% 
CVLAE 1.60% 3.84% 1.18% 15.00% 3.78% 

 

approaches including our proposed ones is very small (in the scale of microseconds). Besides, due to 

integration of the iterative inference of posterior, CVLAE introduces a small time penalty resulting in 

a bit slower data generation compared to SAAE and CVAE (by 7% and 11% respectively). Moreover, 

due to the integration of attention mechanism in addition to the iterative inference of posterior in 
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Table 5.13: Percentage of improvement achieved by CVLAAE-DNN in specificity on NSL-KDD test 
set [1] 

 
 

Method DoS Probe R2L U2R Normal 
 

DNN 2.06% 0.23% 1.71% -0.04% 4.94% 
SAAE 2.47% 0.94% 1.70% -0.04% 5.12% 
CVAE 1.78% 0.00% 0.53% 0.00% 4.10% 
CVLAE 1.53% 0.49% -0.05% -0.04% 4.48% 

 
Table 5.14: Percentage of improvement achieved by CVLAAE-DNN in F1 score on NSL-KDD test 
set [1] 

 
 

Method DoS Probe R2L U2R Normal 
 

DNN 6.69% 5.26% 8.05% 25.70% 4.42% 
SAAE 6.10% 2.99% 7.30% 33.12% 4.24% 
CVAE 3.48% 1.98% 2.07% 22.61% 4.25% 
CVLAE 2.19% 3.88% 1.58% 21.11% 4.20% 

 
Table 5.15: Percentage of improvement achieved by CVLAAE-DNN in precision on KDD CUP 99 
test set [2] 

 
 

Method DoS Probe R2L U2R Normal 
 

DNN 0.00% 0.16% 0.38% 32.67% -0.15% 
SAAE 0.00% -1.60% -0.49% 31.40% 0.14% 
CVAE 0.00% -1.38% 2.18% 10.88% 0.25% 
CVLAE 0.00% -0.98% 3.85% -1.98% -0.30% 

 
Table 5.16: Percentage of improvement achieved by CVLAAE-DNN in recall on KDD CUP 99 test 
set [2] 

 
 

Method DoS Probe R2L U2R Normal 
 

DNN 0.44% 3.20% 26.45% 20.38% -0.07% 
SAAE 0.44% -0.09% 37.00% 26.15% -0.08% 
CVAE 0.44% -0.31% 48.01% 10.77% -0.06% 
CVLAE 0.44% 1.76% -1.53% -12.88% -0.09% 

 

CVLAAE, CVLAAE introduces  a  bit  more  time  penalty  compared  to  CVLAE.  However,  even  in 

the case of CVLAAE, the introduced time penalty remains small resulting in only a bit slower data 

generation compared  to SAAE and CVAE (by 10% and 14% respectively). Thus,  we can  conclude 

that none of the CVLAE and CVLAAE introduces any significant time penalty, and therefore, they 

are equally applicable for real-time data generation tasks. 
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Table 5.17: Percentage of improvement achieved by CVLAAE-DNN in specificity on KDD CUP 99 
test set [2] 

 
 

Method DoS Probe R2L U2R Normal 
 

DNN 0.22% 1.68% 16.08% 26.18% -0.12% 
SAAE 0.22% -0.86% 23.72% 28.57% 0.03% 
CVAE 0.22% -0.86% 33.81% 10.87% 0.09% 
CVLAE 0.22% 0.39% 1.14% -7.78% -0.20% 

 
Table 5.18: Percentage of improvement achieved by CVLAAE-DNN in F1 score on KDD CUP 99 test 
set [2] 

 
 

Method DoS Probe R2L U2R Normal 
 

DNN 0.00% 0.04% 0.00% 3.08% -0.07% 
SAAE 0.00% -0.72% 0.00% 2.57% 0.06% 
CVAE 0.00% -0.62% 0.00% 0.84% 0.11% 
CVLAE 0.00% -0.45% 0.00% -0.10% -0.13% 

 
 

 

Figure 5.14: Comparison of average data generation time per instance 



 

 
 
 
 
 
 
 
 

Chapter 6 

 
Discussion 

 
In this chapter, we will qualitatively compare our approach with other existing approaches available 

in the literature. Besides, We will also discuss applications and limitations of this study. 

 

 Comparison with Other Existing Approaches 

In the previous chapter, we have already quantitatively compared our approach with two other data 

generative methods namely CVAE-DNN [24] and SAAE-DNN [87] along with one DNN [58] classifier. 

CVAE-DNN used an improved version of conditional VAE. It embedded class label y only in the 

decoder network so that the encoder network can be used to initialize parameters in the DNN classifier. 

Here, the decoder probability distribution is conditional on the latent variable z and class label y, 

and the encoder is only conditional on input feature data x. Besides, it used Multivariate Gaussian 

distribution for the encoder Q(z|x) and multivariate Bernoulli distribution for the decoder  P (x|z, y). 

On the other hand, in our proposed CVLAE, we condition both encoder and decoder on class label 

y to better reconstruct features according to class labels. For both encoder and decoder, we use 

Multivariate Gaussian distribution. We do so as VLAE approximates posterior distribution with 

full-covariance Gaussian distribution; therefore, this distribution offers more expressive power than 

VAE. Accordingly, from Figures 5.6 - 5.13, we can find that CVLAE-DNN has higher precision, recall, 

specificity, and F1 score in minority attack types, where data balancing through new data generation 

impacts the most. 

Additionally, SAAE-DNN [87] combined Stacked AautoEncoder (SAE), attention mechanism, and 

DNN. SAE is built by stacking autoencoder layer by layer, where the autoencoder is data specific. The 
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autoencoder can only encode data similar to the data presented in the training set. This happens as it 

cannot learn the probabilistic nature of data. There is no regularization on the values or distribution of 

the latent variables. The latent space may not be continuous, and therefore, the autoencoder does not 

have data generative capability. Accordingly, SAAE-DNN only used the weights of the trained SAAE 

to initialize the weights of the DNN classifier. As a result, experiments show that SAAE-DNN mostly 

attains a much lower F1 score in U2R attacks compared to both CVLAE-DNN and CVLAAE-DNN. 

It is worth mentioning that, in a few cases of some of the performance metrics, CVLAAE-DNN 

exhibit slightly worse performance than the other methods. For example, in the case of NSL-KDD 

dataset, CVLAAE-DNN has a bit lower specificity in U2R attack type. This happens following the 

reality that a trade-off between different performance metrics such as precision, recall, specificity, etc., 

can often occur, as already reported in the literature [103, 104, 105]. Similarly, we get a trade-off 

between recall and specificity in our case. Here, as CVLAAE-DNN has achieved substantially higher 

recall in minority attacks, it has slightly lower specificity in some cases. Similar types of trade-off 

occur in a few other cases too. 

Finally, between our two proposed approaches CVLAE-DNN and CVLAAE-DNN, CVLAAE-DNN 

mostly exhibits better performances in all the attack types. This happens as the addition of attention 

mechanism in CVLAE improves the detection performance. 

 

 Applications of This Study 
 

Modern networks demand advanced security measures to ensure reliable and trusted service. As 

network attacks are becoming more sophisticated, adaptive protection technologies are now becoming 

more important to mitigate the threats. In this regard, NIDSs take places at various locations in a 

network to monitor traffic to and from all devices on the network. When placed at a strategic point 

or points within a network to monitor traffic to and from all devices on the network, an NIDS will 

perform an analysis of passing traffic and match the traffic that is passed on the subnets to the library 

of known attacks. Once an attack is identified or abnormal behaviour is sensed, the alert can be sent 

to the administrator.  Here, the introduction of adaptive technologies can enable the NIDSs to filter 

out attacks that are little known. In this case, this study can be applied and leverage the filtration of 

little known attacks in the NIDSs. 

NIDSs can be applied in a network having a distributed or centralized architecture.  The dis- 
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tributed architecture may comprise of multiple instances of NIDSs placed at different positions of a 

network [106, 107, 108, 109]. In a resource constrained environment, e.g., an IoT system, NIDSs are 

usually placed in a distributed way across the network. Due to the resource constrained nature of 

these systems, the NIDSs must be lightweight and work independently. Conversely, the centralized 

architecture consists of a single NIDS conventionally deployed at a single position in the network 

that analyzes all the traffic of the network [110, 111, 112, 113].  Centralized networks, e.g., a Soft- 

ware Defined Network (SDN), can follow the centralized architecture. Such an architecture [114] is 

particularly important to consider due to their potential security attacks [115, 116]. Here, our study 

presented in this work will facilitate identifying new or zero-day attacks. 

 

 Limitations of This Study 
 

Our proposed methods have been trained and tested on two benchmark datasets. Though the bench- 

mark datasets are widely used for evaluating different intrusion detection systems, they do not contain 

different recent network attack types. As the network attacks are evolving rapidly and new attack 

types are generating now and then, our method requires testing in more recent real network settings. 

Our proposed method presents a standalone anomaly-based method. It can be combined with 

signature-based methods to further improve its detection performance. Hierarchical anomaly-based 

methods can also be used to provide even better detection performance. Moreover, there is no feedback 

approach in our method. Feedback approach can be incorporated to strengthen the system. 



 

 
 
 
 
 
 
 
 

Chapter 7 

 
Future Work 

 
Our future work will focus on improving the performance more for minority attacks and new attacks. 

To do so, we will explore other variants of VAE such as β-VAE [117, 118, 119] and VQ-VAE [120, 121] 

for generating new attack samples. To reconstruct samples more effectively, we will try to improve 

latent variable representation. Here, we plan to use adversarial learning methods to reconstruct attack 

samples better. The rationale behind this plan is that, using adversarial learning methods, attacks 

can be synthesized more for diversifying attack samples. This will increase our classification accuracy. 

We also plan to build relevant methods to extract important flows  and  features  from  network 

traffic. The methods will choose important network flows from many packets, and then, extract 

significant features related to intrusive behaviour. 

Besides, we plan to incorporate our proposed method with signature-based and other anomaly- 

based methods in a hierarchical manner. We will also try to apply our method in large-scale applica- 

tions such as cloud computing, Internet of Things, and software-defined networks. 
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Chapter 8 

 
Conclusion 

 
As our dependency on network communication is increasing rapidly and the networks are also evolving 

continuously, ensuring its security has become a crucial issue. Accordingly, different security measures 

should be applied to different layers of the network. Besides signature-based systems, anomaly-based 

systems should be employed to detect unknown attacks more effectively. 

Therefore, in this study, we propose a network intrusion detection method based on Conditional 

Variational Laplace AutoEncoder (CVLAE) and Deep Neural Network (DNN). We condition VLAE 

on class labels so that the latent representation of samples of different class labels get separated in the 

latent space. We can also generate attack samples based on class labels. VLAE uses full-covariance 

Gaussian as posterior distribution, so it has higher expressive power than VAE. We name the enhanced 

model Conditional Variational Laplace AutoEncoder (CVLAE). Further, we also extend the model 

by adding attention mechanism to learn the feature representation more effectively and term the new 

method Conditional Variational Laplace Attention AutoEncoder (CVLAE). We use the generative 

models to balance the network datasets by increasing minority attack samples. We train a DNN 

classifier as an intrusion classifier on the balanced dataset and the DNN classifier performs better on 

minority attacks after being trained on the balanced dataset. We evaluate our proposed methods on 

NSL-KDD and KDD CUP 99 datasets and compare them with three conventional data augmentation 

intrusion detection methods. Experimental results confirm that CVLAE-DNN mostly exhibits sub- 

stantially better performance for the minority attacks, and CVLAAE-DNN mostly exhibits overall 

better performance on all the types of attacks. 
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