A MORPHOLOGICAL STUDY OF MIXED-USE FUNCTIONS IN AN UNPLANNED AREA OF DHAKA By #### Aneeka Habib A Thesis submitted in partial fulfillment of the requirement for the degree of **MASTER OF ARCHITECTURE** March 2023 Department of Architecture BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY Dhaka, Bangladesh Department of Architecture Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh. The thesis titled "A MORPHOLOGICAL STUDY OF MIXED-USE FUNCTIONS IN AN UNPLANNED AREA OF DHAKA" Submitted by Aneeka Habib, Roll No-1016012028 F, Session: October-2016, has been accepted as satisfactory in partial fulfillment of the requirements for the Degree of MASTER OF ARCHITECTURE on this day 20th March, 2023. | BOA | ARD OF EXAMINERS | | |-----|--|--------------------------| | 1. | Dr. Fateria Meher Khan Associate Professor Department of Architecture, BUET, Dhaka | Chairman
(Supervisor) | | 2. | Dr. Mohammed Zakiul Islam Professor and Head Department of Architecture, BUET, Dhaka | Member
(Ex-Officio) | | 3. | Dr. Catherine Daisy Gomes Professor Department of Architecture, BUET, Dhaka | Member | | 4. | Md. Tariquzzman Assistant Professor Department of Architecture, BUET, Dhaka | Member | | 5. | Dr. Neelopal Adri Assistant Professor Department of LIRP BLIET, Dhaka | Member
(External) | ### CANDIDATE'S DECLARATION It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the award of any degree or diploma. Signature of the Candidate Aneeka Habib ## **DEDICATION** To my Family ACKNOWLEDGEMENT All praise be upon the Almighty for his endless blessings on me throughout this thesis. I would like to express my sincere gratitude and deepest thankfulness to my supervisor Dr. Fatema Meher Khan for her unwavering guidance, methodical support and constructive advice at every stage of this thesis. This work would not have reached its current state without her profound knowledge, relentless effort and moral support. I would like to mention the personnel from DSCC and DNCC for sharing resources during the archival survey. Many thanks to Arch.BU team; my colleagues, for their guidance and countless motivational boosts, my students, Emran for the RAJUK base map data and Faisal for assisting during the field survey. I extend my gratitude to all the people who had a peripheral or minor impact on this work. I am deeply indebted to my beloved parents who underpin my every strength with unconditional support. Immense gratitude to my sisters, Dr. Adiba and Dr. Brishti for their affectionate care and support at different stages of my M.Arch. Big thanks to my spouse for his invaluable support and persevering effort to keep my motivation high. Lastly, I acknowledge my powerhouse, my son, Mahrus Amayr Rahman, for the sacrifices he endured during this work. Any omission in this brief acknowledgment does not indicate lack of gratitude. Aneeka Habib March 2023 iii #### **ABSTRACT** Mixed functions have been an urban design principle for ensuring vitality and land-use efficiency. Dhaka exhibits a mix of planned-unplanned areas where unplanned areas offer an understanding of spontaneous mix of uses. Historically, Dhaka's land use was primarily mixed which existed within the old fabric and later expanded in different areas. By the end of 20th Century, Dhaka's land use was identified as 'predominantly mixed-use functions. Presently, the extent and functional complexities of mixed functions have created a composite land use where mixed functions work in connection with their associated morphologies. These interconnections are fundamental for comprehending cities' operations. Urban design theories assert that morphological element and their attributes guide land-use patterns. Conversely, in unplanned areas, mixes develop spontaneously within organic morphologies. Hence, complex integrations of mixed functions require investigation to explore the logic – how unplanned morphologies sustain mixed functions. This study thus employs an empirical approach to explore interconnections between mixed functions and associated morphologies in unplanned areas which have remained underexplored in previous studies. The Study area, Moghbazar (wards-19,34,35) is an old unplanned area where mixes have evolved for decades within organic morphologies. The area's proximity to the urban center and business district influences it's functional diversity. Hence, Moghbazar is an appropriate context to understand processes of spontaneous mix of uses by investigating alliances of different uses and their interconnections with urban morphology. The findings depict spontaneously developed extensive mixed functions are evident throughout the study area, ranging from primary to secondary and tertiary roads. In the study area, these mixes have been found to be developed in different spatial layers —both horizontally (at street level within buildings and as informal street traders) and vertically (stacked through vertical extension of non-residential functions). These mix of uses work in connection with the associated morphologies — streets, plots, and densities. Mostly the mixed functions seek better accessibility for their business and prevail along the primary nodes, well-accessible roads connected to primary roads. Non-residential mixes are mostly seen on larger plots and residential mixed functions commonly develop on small plots. The mix of functions occurs more in the mid-high density (FAR) plots. These plots mostly have high coverage and more floors of these buildings hold diverse mixes. | Candidate's Declaration Dedication Acknowledgment Abstract Table of Contents List of Appendices List of Illustrations List of Tables List of Abbreviations X CHAPTER 01: INTRODUCTION 1.1 Background 1.2 Problem Statement 1.2 Problem Statement 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 1.8.3 Mapping 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 2.4 Urban Morphological Elements 13 | TABL | E OF CONTENTS | Page | |--|--------|--|------| | Dedication ii Acknowledgment iii Abstract iv Table of Contents v List of Appendices vii List of Tables ix List of Abbreviations x CHAPTER 01: INTRODUCTION 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Rationale 5 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 | | | No. | | Acknowledgment iii Abstract iv Table of Contents v List of Appendices vii List of Tables ix List of Abbre viations x CHAPTER 01: INTRODUCTION 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 </td <td>Candi</td> <td>date's Declaration</td> <td>i</td> | Candi | date's Declaration | i | | Abstract | | | | | Table of Contents v List of Appendices vii List of Illustrations viii List of Tables ix List of Abbreviations x CHAPTER 01: INTRODUCTION 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significan | Ackno | owledgment | iii | | List of Appendices vii List of Illustrations viii List of Tables ix List of Abbreviations x CHAPTER 01: INTRODUCTION 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1
Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions | Abstra | act | iv | | List of Tables viii List of Abbreviations ix CHAPTER 01: INTRODUCTION 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | Table | of Contents | V | | List of Tables ix List of Abbre viations x CHAPTER 01: INTRODUCTION 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | List o | f Appendices | vii | | List of Abbre viations x CHAPTER 01: INTRODUCTION 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | List o | f Illustrations | viii | | CHAPTER 01: INTRODUCTION 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | List o | f Tables | ix | | 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | List o | f Abbreviations | X | | 1.1 Background 1 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | | | | | 1.2 Problem Statement 2 1.3 Research Questions, Specific Aim and Objectives 3 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | CHAI | TER 01: INTRODUCTION | | | 1.3 Research Questions, Specific Aim and Objectives 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions | 1.1 | Background | 1 | | 1.4 Outcomes of the Study 4 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | 1.2 | Problem Statement | 2 | | 1.5 Research Gap 4 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | 1.3 | Research Questions, Specific Aim and Objectives | 3 | | 1.6 Research Rationale 5 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | 1.4 | Outcomes of the Study | 4 | | 1.7 Scope and Limitation 5 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | 1.5 | Research Gap | 4 | | 1.8 Overview of the Methodology 6 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | 1.6 | Research Rationale | 5 | | 1.8.1 Literature Review 6 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | 1.7 | Scope and Limitation | 5 | | 1.8.2 Case study and Field survey 6 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | 1.8 | Overview of the Methodology | 6 | | 1.8.3 Mapping 7 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | | 1.8.1 Literature Review | 6 | | 1.8.4 Analysis and Synthesis 7 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | | 1.8.2 Case study and Field survey | 6 | | 1.9 Dissertation Structure 7 CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | | 1.8.3 Mapping | 7 | | CHAPTER 02: LITERATURE REVIEW 2.1 Introduction 10 2.2 Mixed-Use Functions and Theoretical Perspectives 10 2.3 Significance of Mixed-use Functions 12 | | 1.8.4 Analysis and Synthesis | 7 | | 2.1Introduction102.2Mixed-Use Functions and Theoretical Perspectives102.3Significance of Mixed-use Functions12 | 1.9 | Dissertation Structure | 7 | | 2.1Introduction102.2Mixed-Use Functions and Theoretical Perspectives102.3Significance of Mixed-use Functions12 | | | | | 2.2 Mixed-Use Functions and Theoretical Perspectives 2.3 Significance of Mixed-use Functions 10 12 | CHAI | TER 02: LITERATURE REVIEW | | | 2.3 Significance of Mixed-use Functions 12 | 2.1 | Introduction | 10 | | | 2.2 | Mixed-Use Functions and Theoretical Perspectives | 10 | | 2.4 Urban Morphological Elements 13 | 2.3 | Significance of Mixed-use Functions | 12 | | | 2.4 | Urban Morphological Elements | 13 | | 2.5 | Morphology of Unplanned Areas | 16 | |-------|---|----| | 2.6 | Chronological Development of Mixed-use Functions in Dhaka | 19 | | 2.7 | Mixed-use in the Regulatory Scheme of Dhaka | 25 | | 2.8 | Morphology of Mixed-use Functions in Unplanned Cities in Global Context | 30 | | 2.9 | Space Syntax Theory | 34 | | | 2.9.1 Natural Movement | 36 | | | 2.9.2 Movement Economics | 37 | | 2.10 | Urban Economics | 37 | | 2.11 | Summary | 38 | | | | | | СНАРТ | ER 03: RESEARCH FRAMEWORK | | | 3.1 | Introduction | 39 | | 3.2 | Research Strategy: Mixed Method Research | 39 | | 3.3 | Case Study Research and Study Area | 40 | | 3.4 | Data Collection | 41 | | | 3.4.1 Literature Review | 41 | | | 3.4.2 Archival Data Collection | 41 | | | 3.4.3 Field Survey | 43 | | | 3.4.4 Photographic Survey | 44 | | 3.5 | Mapping and Analysis | 44 | | | 3.5.1 Mapping of Mix of Uses in the City Scale | 44 | | | 3.5.2 Mapping of Mixed Functions in the Study Area | 45 | | | 3.5.3 Mapping of Morphological Elements | 46 | | 3.6 | Analytic
Method of Space Syntax | 46 | | 3.7 | Summary | 50 | | | | | | CHAPT | ER 04: FIELD SURVEY AND FINDINGS | | | 4.1 | Introduction | 51 | | 4.2 | Background of Moghbazar | 51 | | 4.3 | Mixed Functions | 53 | | | 4.3.1 Vertical Mix | 53 | | | 4.3.2 Horizontal Mix | 59 | | | 4.3.3 | vertical Extension of Non-Residential Functions | 03 | |---|----------------------------|---|-----| | 4.4 | Mixed-use and Morphology 6 | | | | | 4.4.1 | Road Network and Accessibility | 63 | | | 4.4.2 | Plot | 78 | | | 4.4.3 | Building Density | 78 | | | | 4.4.3.1 Building Height | 80 | | | | 4.4.3.2 Building Coverage Ratio (BCR) | 82 | | | | 4.4.3.3 Floor Area Ratio (FAR) | 85 | | 4.5 | Summa | ary | 85 | | | | | | | СНАРТІ | ER 05: | SUMMARY OF FINDINGS AND CONCLUSION | | | 5.1 | Introdu | uction | 88 | | 5.2 | Pattern | n of Mixed Functions in the Study Area | 88 | | | 5.2.1 | Vertical Mix | 88 | | | 5.2.2 | Horizontal Mix | 90 | | | 5.2.3 | Vertical Extension of Non-Residential Functions | 90 | | | 5.2.4 | Street Traders | 91 | | 5.3 | Morph | nological Attributes of the Study Area | 92 | | 5.4 | Mixed | Functions and Morphology | 94 | | 5.5 | Interco | onnections of Mixed Functions and Associated Morphologies | 96 | | 5.6 | Deviat | ion with the Planning Scheme | 98 | | 5.7 | Conclu | usion and Scope for Future Research | 98 | | | | | | | BIBLIO | GRAPI | НҮ | 100 | | | | | | | | | | | | LIST OF | APPE | NDICES | | | Chapter | 1 | | | | Appendix | 1.1: M | Iixed-use in Dhaka from the Inception | 108 | | Appendix 1.2: Mixed-use in Dhaka from the Recent Past 109 | | | 109 | | Chapter | 2 | | | | Appendix | 2.1: T | hana Boundary in Dhaka Map | 110 | | | | | | | Appendix 2.2: DMDP Urban Area Plan (1995-2005) indicated zone-wise Land | 111 | |---|-----| | use map | | | Appendix 2.3: The Historical Growth of Dhaka City | 112 | | Chapter 3 | | | Appendix 3.1: Base map of Ward no 36 | 113 | | Appendix 3.2: Base map of Ward no 19 | 114 | | Appendix 3.3: Base map of Ward no 22 | 115 | | Appendix 3.4: Base map of Ward no 23 | 116 | | Appendix 3.5: Base map of Ward no 35 | 117 | | Appendix 3.6: Combined map of Ward no 19, 22, 23, 35 and 36 | 118 | | Chapter 04 | | | Appendix 4.1: Moghbazar Map with Building Reference Number (Blue Text) | | | and Plot Reference Number (Red Text). | 119 | | | | | Appendix 4.2: Base Data of the Maps for Individual Buildings and Plots | | | | 120 | | LIST OF ILLUSTRATIONS | | | Chapter 1 | | | Figure 1.1: Conceptualization of the Research Process | 8 | | Chapter 2 | | | Figure 2.1: Overlapping functions and Live/Work/Visit triangle | 12 | | Figure 2.2: Dhaka's Unplanned Areas | 17 | | Figure 2.3: Chronological Development of mixed-use functions in Dhaka | 24 | | Figure 2.4: Mixed-use Addressed by the Planning Scheme | 29 | | Figure 2.5: Traditional Shop-houses and Current Mixed-use in Unplanned | 22 | | Cities | 33 | | Chapter 3 | | | Figure 3.1: Moghbazar Area | 42 | | Figure 3.2: Different Steps in the Process of Axial Map Generation and | 40 | | Analysis | 48 | | Figure 3.3: Steps of Modeling Axial Map from the Layout Plan of a Settlement. | 49 | | Chapter 4 | | | Element 4.1. Condend Amerikansan | 50 | | Figure 4.1: Study Area-Moghbazar | 52 | | Figure 4.2: Vertical Mix in the Study Area | 55 | |---|--------------| | Figure 4.3: Diverse Vertical Mixes Along Different Hierarchical Roads | 56 | | Figure 4.4: Bar Chart Showing the Percentages of Vertical Mix in the Stu | ldy | | Area. | 57 | | A. According to the Number of Plots per Function/mixes | 37 | | B. According to the Percentage of Area per Function/mixes | | | Figure 4.5: Section of Vertical Mix of Uses in the Study Area. | 58 | | Figure 4.6: Horizontal Mix in the Study Area. | 60 | | Figure 4.7: Diverse Horizontal Mix Along Different Hierarchical Roads | 61 | | Figure 4.8: Bar Chart Showing the Percentages of Horizontal Mix in the | Study | | Area. | 62 | | A. According to the Number of Plots per Function/ mixes | 62 | | B. According to the Percentage of Area per Function/ mixes. | | | Figure 4.9: Vertical Extension of Non-Residential Functions | 64 | | Figure 4.10: Vertical Extension of Non-Residential Functions at Diff | ferent
65 | | Floors along Different Hierarchical Roads | 03 | | Figure 4.11: Bar Chart Showing the Percentage of Vertical Extension of | Non- | | residential Functions in the Study Area According to | the 66 | | Number of Individual Buildings. | | | Figure 4.12: Hierarchical Road Layout | 67 | | Figure 4.9: Road Network | 68 | | Figure 4.14: Typical Sections of Different Hierarchical Roads. | 69 | | Figure 4.15: Different Hierarchical Roads. | 70 | | Figure 4.16: Accessibility map. Integration (HH), R=4 (A) without Rail | line, 72 | | (B) with Railline | 12 | | Figure 4.17: Location of Street Traders on Street | 76 | | Figure 4.18: Fixed and Semifixed Street Traders at Different Public Space | es 77 | | Figure 4.19: Plot Size | 79 | | Figure 4.20: Bar Chart Showing the Percentage of Plot Size in the Study | Area 80 | | According to the Number of Plots. | 80 | | Figure 4.21: Building Height | 81 | | Figure 4.22: Bar Chart Showing the Percentage of Building Height in the | Study 82 | | Area According to the Number of Individual Buildings. | 62 | | Figure 4.23: Building Coverage Ratio (BCR) | 83 | |---|----| | Figure 4.24: Bar Chart Showing the Percentage of Building Coverage Ratio in | | | the Study Area According to the Number of Plots. | 84 | | Figure 4.25: Floor Area Ratio (FAR) | 86 | | Figure 4.26: Bar Chart Showing the Percentage of Floor Area Ratio in the | 07 | | Study Area According to the Number of Plots. | 87 | | | | | LIST OF TABLES | | | Chapter 4 | | | Table 4.1: Vertical Mix in the Study Area. | 57 | | Table 4.2: Horizontal Mix in the Study Area. | 62 | | Table 4.3: Vertical Extension of the Non-Residential Functions in the Study | | | Area. | 66 | | Table 4.4: Road Network of the Study Area. | 71 | | Table 4.5: Integration [HH] R4 values of Primary, Secondary and a Few | | | Significant Tertiary Roads (Axial lines) in the Study Area (with the | 73 | | rail line) | | | Table 4.6: Integration [HH] R4 values of different Primary, Secondary and a | | | Few Significant Tertiary Roads (Axial lines) in the Study Area | 74 | | (without the rail line) | | | | | | Chapter 5 | | | Table 5.1: Pattern of Vertical Extension of Non-residential Functions | 91 | | Table 5.2: Pattern of Street Traders in the Study Area | 92 | | Table 5.3: Functional and Morphological Attributes of Mix of Uses in the | 05 | | Study Area. | 95 | | Table 5.4: Table showing the Association of the Different Functions and Their | 97 | | Mixes with Associated Morphologies | | | | | | LIST OF ABBREVIATIONS | | | RAJUK Rajdhani Unnayan Kartripakkha | | | DMDP Dhaka Metropolitan Development Plan | | | LWV Live Work Visit | | HBE Home Based Enterprise DIT Dhaka Improvement Trust DMAIUDP Dhaka Metropolitan Area Integrated Urban Development Project DMA Dhaka Metropolitan Area DMBCR Dhaka Metropolitan Building Construction Rules FAR Floor Area Ratio BCR Building Coverage Ratio UAP Urban Area Plan SP Structure Plan CBD Central Business District GIS Geographic Information System DAP Detailed Area Plan DNCC Dhaka North City Corporation DSCC Dhaka South City Corporation HH Hillier and Hanson #### **CHAPTER 01** #### INTRODUCTION #### 1.1 Background The mixing of different uses has been an inherent characteristic of the urban fabric since the dawn of human civilization (DeLisle & Terry, 2013; Herndon J. D., 2011). The mixed function has become a central principle of the underlying visions and ideals for urban development goals and movements relating to build-environment improvement (Hirt, 2016; Herndon J. D., 2011). Mixed-use is the co-location or immediate proximity of homes, workplaces, and services within buildings, neighborhoods, and districts (Hirt, 2016; Schwanke, 1987). Mixed-use brings multiple interrelated independent functions in close proximity and injects more life into the locality. Thus, mixed function has long been a major urban design principle for ensuring vitality, land-use efficiency, and reduced travel distance (Jacobs, 1961; Rabianski, Karen, O. Alan, & J. Sherwood, 2009). Diverse mix of uses interacts with each other and revealing these interactions is critical to comprehending how cities work (Jacobs, 1961). Mixed-use in South Asia and Southeast Asia has a distinct characteristic (DeLisle & Terry, 2013). Literature stages mixed-use practice in South Asia and Southeast Asia to have developed spontaneously which is characterized by unplanned land-use conversions and complex mix of functions. (Nahrin, 2008; Shakil, Begum, & Begum, 2017; Verma, 1993; Nahrin, 2019). Dhaka's land-use pattern has primarily been mixed since its inception. Historically, mix of uses was evident within Dhaka's old fabric in the form of 'shop-houses¹' where various professional groups used to live and work within the same housing unit (Islam & Adnan, 2011; Mohsin, 1991; Ahsan, 1991). Over time, to keep pace with the growing population and economic demand, diverse mixed uses have developed in different areas of the city. At present, the extent of diverse functions and their complexities have created a ¹ Shop-house is a building type that has shops on the ground floor and living quarters on the upper floors (Wakita & Shiraishi, 2010) composite land-use pattern. The unpredictable strive for mixed functions has also led mixed-use to occupy many levels and almost the whole coverage of the buildings (Imon, 2001; Khan T. H., 2014). These compactly developed mixed functions interact combinedly in Dhaka's fabric. Thus, a complex pattern of urban form
has emerged, where these spontaneous growths of mixes have developed an intricate relationship with the legal/formal system. Consequently, in Dhaka Metropolitan Development Plan (DMDP) 1995-2015 and later in the Detailed Area Plan (DAP) 2016-2035, the city's land use was identified as a 'predominant mixed-use function' (RAJUK, 1997; RAJUK, 2020). DAP (2016-2035) also encourages the use of mixed functions for future Dhaka where only 5% of the urban area has been designated as residential, the rest has been proposed as a mix of residential and commercial uses. Hence, mixed-use has been visioned to play an important role in terms of land use in Dhaka in the upcoming future. Therefore, this study aims to obtain a comprehensive knowledge of the development of mixed-use functions in Dhaka. In particular, this study intends to comprehend the pattern and working process of mixed-use functions in an unplanned area of Dhaka in connection with their associated urban morphologies — street, plot, and density. It is necessary to study the interconnections between mixed-use functions and associated morphologies as these interconnections can make urban life lively. #### 1.2 Problem Statement Urban Dhaka exhibits a mix of planned and unplanned settlements. The unplanned settlement is primarily characterized by spontaneously developed mixed -use functions. Initially, the Planning Authority never conducted the need assessment of the growing population of Dhaka and planned different areas without adequate supporting community facilities (Ahsan R., 1991; Afroj, et al., 2021). Hence, later, the lack of city services, steady infrastructural provision and weak governance influenced the development of spontaneous mixed functions in different localities to fulfill the needs of the common people (Islam & Adnan, 2011). Presently, in unplanned areas of Dhaka, the extent, nature of functional complexity and mixing have created a composite land-use pattern including incompatible mix of uses (Nahrin, 2008; Islam & Adnan, 2011; Shakil, Begum, & Begum, 2017). These mixed functions work in connection with associated morphologies and these interconnections are fundamental for comprehending cities' operations (Dovey & Pafka, 2019; Dovey, 2016). Urban theories affirm that morphological element and their attributes — street accessibility, plot size, building density, etc. guide land-use patterns (Gentin M., 2009; Prasad, 2014). In unplanned areas, mixes develop spontaneously within organic morphologies to fulfill common needs (Islam & Adnan, 2011). In this regard, the unplanned morphology requires a careful examination to interpret the continuing forces that shape the city's functions. Such investigation of the complex integrations of mixed functions within the morphology of unplanned areas will help to explore the logic — of how unplanned morphologies sustain mixed functions. This study thus focuses on interconnections between mixes and associated morphologies in unplanned areas. Moreover, DAP (2016-2035) proposes unplanned areas of Dhaka as wholly mixed functions (RAJUK, 2020). Therefore, this also forms a basis for investigating mixed functions in unplanned areas to evaluate whether the spatial logic of spontaneous mixes complies with the latest planning scheme. To explore the pattern and working process of spontaneous mixed-use functions, Moghbazar, an old unplanned area is selected as the case study where mixes have evolved for decades within organic morphologies (Ahsan R., 1991; Nilufar, 2010). Presently, it contains considerable concentrations of mixed functions that are the result of several morphological adjustments. Moghbazar is also spatially important for its proximity to the urban center and business district which likely influences the area's functional diversity. Hence, Moghbazar offers an appropriate context for understanding working processes of spontaneous mixes by exploring synergies of diverse functions and their interconnections with associated morphologies. #### 1.3 Research Questions, Specific Aim and Objectives Reviewing the issue and considering the complex nature of mixed-use, the research problem starts with the following queries: - What is the pattern of mixed-use functions in an unplanned area of Dhaka? - What are the interrelations between these mixed functions and the morphology of the study area the building, plots, access networks, and densities? To respond to the research questions, the research has established a specific aim and two objectives which are as follows. The specific aim is, To explore the existing morphology (form and structure) and working process of spontaneous mixed-use functions in an unplanned area of Dhaka. Objectives are, - i. To investigate the morphological pattern of horizontal and vertical mixed-use functions in the study area. - ii. To identify how mixed-use functions work in connection with associated morphology in the study area. #### 1.4 Outcomes of the Study The outcomes of this study are listed as follows, - The emerging pattern of mixed-use functions in an unplanned area, Moghbazar. - Exploration of the interrelations between urban functions and associated morphological elements. The outcome of this study will lead to an understanding of how morphological forces shape the city. This knowledge can help to plan and control the future development of mixed-use functions in an unplanned city like Dhaka. The outcome of the study can be feasibly generalized to other informal cities containing mixed-use functions. #### 1.5 Research Gap A considerable concentration of spontaneously developed mixed-use functions is evident in Dhaka presently, particularly in the unplanned morphology. Still, there is a lack of case study based empirical research on the mixed-use functions in the Dhaka context. Though, there are studies on the history and morphology of shophouses of old Dhaka and street vendors (Khan F. M., 2015; Huq, Akter, Hafiz, Mamun, & Rahman, 2017; Husain, Yasmin, & Islam, 2015; Lata, Walters, & Roitman, 2019). But the existing pattern and working process of mixed-use functions in unplanned areas of new Dhaka has remained underexplored. Hence, this study has addressed a gap in the literature on the morphological pattern and operation of mixed functions. #### 1.6 Research Rationale Mixed-use functions have evolved in Dhaka since the inception of urban development and it has been operated in the city's fabric through till today. The embeddedness of mixed functions in Dhaka's fabric has been recently acknowledged by the Planning Scheme and it has also promoted mixed functions for the future development of the city. Thus, mixed-use functions have become an emerging issue for the urban research. The knowledge of this study can help the respective authorities, and professionals to formulate effective policies and design guidelines regarding the future development of mixed-use functions in different areas of Dhaka. This study shall also be useful documentation for the researchers in similar fields. #### 1.7 Scope and Limitation The scope of this study is to investigate the pattern and working process of mixed functions in relation to associated urban morphologies. To investigate the pattern of mix of uses, this study extends to find out diverse mixed functions and detect their locations in different spatial levels in the study area. For investigating their working processes, the scope is to explore the morphological characteristics of the study area (streets, plots, building densities) and compare these with the location of mix of uses to understand their interconnections. The scope of the study has been impeded because of a few limitations. Physical investigation of the interior functional arrangements of a few buildings was hindered due to the privacy and safety issues of a few local residents. Hence, for the functional data of those buildings, the research relied on the residents' verbal information and on-site observation. #### 1.8 Overview of the Methodology In response to the aim and objectives of the thesis, various modes of data collection, and analysis are done in different methodological steps. This section provides a brief overview of the research method. A detailed description of the methodological framework has been discussed in chapter-03 of this dissertation. #### 1.8.1 Literature Review The initial step of the literature review was to find the research topic and formulation of the research questions. Literature on published articles, books, and web documents has been reviewed to understand the notion of mixed functions, significance, and their development in Dhaka. Literature was also reviewed to comprehend urban morphological elements, their influence on the textures of the urban fabric and the morphology of mixed functions in unplanned cities in global context. Theories of space syntax and urban economics were also reviewed from the literature. #### 1.8.2 Case Study and Field Survey An intensive field survey was conducted with the aim to acquire in-depth data on the current morphology of mixed functions from the context of the study area. The (entire) Moghbazar area (1374241.61 m²) consisting of ward no-19, 34, 35 has been selected as the case study where mixed functions have evolved within organic morphologies for a long and presently, it contains considerable mixes. Moghbazar allows an understanding of the processes of mixes by studying alliances of functions and their interconnections with morphologies. A survey of all buildings and related morphologies has been conducted to collect data on land use mix, street network, plot, building height, and coverage. #### 1.8.3 Mapping Mixed-use and morphological mapping have been done on collected data. The field survey data regarding mixed functions have been categorized according to the LWV (Live, Work, Visit) triangular mapping index (which has been elaborated in section 3.5.2) in terms of both horizontal and vertical mixes. During
mapping, diverse functions and their mixes were marked with respective colors on the specific plots. Other functional and morphological aspects – the vertical extension of non-residential functions, streets, plots, building height, BCR, and FAR are mapped through color graphical representations. #### 1.8.4 Analysis and Synthesis Mapped data have been statistically analyzed to understand the current pattern and morphology of mixed functions regarding horizontal-vertical mixes, plots, building height, coverage, and FAR. The spatial structure of Moghbazar has been modeled by 'Space Syntax' and used to analyze street accessibility of mixed functions. All analyses regarding mixed functions and morphologies have been synthesized to understand their interconnections. This methodical approach is a linear analytic framework towards achieving the objectives of the study. The framework has been illustrated in Figure 1.1. Initially, the literature review has been done to understand the basic notions of mixed functions and to develop the research questions, aim and objectives. Eventually, field survey and mapping have been conducted to understand the pattern and process of mixed functions in the study area. Ultimately all the data have been analyzed and synthesized to achieve the findings of the thesis. #### 1.9 Dissertation Structure The dissertation is divided into 5 chapters. **Chapter 01** introduces the research topic with background and the problem statement finds out research gaps, formulates the research questions, aim, and objectives, and states an overview of the methodology. **Chapter 02** includes literature review regarding mixed-use functions and morphology. It also reviews methodological and theoretical concepts like space syntax, natural movement, movement Figure 1.1: Conceptualization of the Research Process. economics and urban economics. **Chapter 03** discusses the methodological framework that the research followed. This includes a detailed description of data collection, field survey, mapping and analysis techniques. **Chapter 04** discusses the analytical findings about the case study area from first-hand data. These findings are illustrated by the mapped representations. The findings are arranged in the order of, the mixed-use functions, associated morphologies- street, plot, and building densities and their interrelationships. **Chapter 05** summarizes the significant findings of the research by providing some propositions and a direction for further research. #### **CHAPTER 02** #### LITERATURE REVIEW #### 2.1 Introduction This chapter reviews the literature to comprehend the notion of mixed-use functions and their development in unplanned morphologies. It also reviews different theories to understand the operation of mix of uses in the urban system. The chapter is structured into eleven (11) parts. The first and second parts (sections-2.2, 2.3) discusses the theoretical perspective of mixed-use and it's significance. The third and fourth parts (sections-2.4, 2.5) describe urban morphological elements and their characteristics in unplanned areas. The fifth and sixth parts (sections-2.6, 2.7) narrate the chronological development of the mix of uses in Dhaka and the status of mixed-use in the city's regulatory scheme. The seventh part (section-2.8) discusses the morphology of mixes in general in unplanned Asian cities. The eighth and ninth parts (sections- 2.9 and 2.10) review the theories of space syntax and urban economics. The last part (section-2.11) summarizes the chapter. #### 2.2 Mixed-use Functions and Theoretical Perspectives In general terms, 'Mixed-use functions' means the combination of different functions within a building, neighborhood or urban district (Coupland 1997). Mixed-use functions have been defined by many scholars differently in literature. In 1961, the notion of mixed-use functions was revived in Jane Jacobs's book "The Death and Life of Great American Cities" where she emphasized the importance of mixed-use functions and criticized the modernist segregation of cities. Jane Jacobs categorized urban functions into two groups-primary and secondary uses. Primary uses - dwellings, offices, factories - are the attractors that draw people to a certain place. The secondary uses i.e., enterprises like shops, restaurants and other small-scale facilities evolve to serve the need of the primary uses. Jacobs argued that diverse functions work in interactions, and revealing these interconnections was key to comprehending how cities work. According to her, an urban district must serve more than one primary function; preferably more than two. For Jacobs, the mixed-use function is significant for its contribution to the city's socio-economic vitality and intensity (Jacobs, 1961). The Urban Land Institute (1987) has defined 'mixed-use' as the combination of at least three physically and functionally integrated revenue-generating uses within an architectural project. Other literature also discussed mixed functions under the concept of 'mixed-use development'. But the term 'mixed-use' was criticized as an ambiguous concept (Rowley, 1996; Hoppenbrouwer & Louw, 2005; Gentin, 2009). The trouble remained for the clarification of functions and to limit the number of developments. Different types of land uses exist in the city. These can be mixed in diverse ways and in this way infinite forms of development are possible. The critical definition of functions that emerges due to the mix of two or more uses was undeveloped. Scholars and academicians like Kim Dovey and Elek Pafka (2017) have critically explained the mixed-use functions under the title "Functional Mix" in order to map the mixed functions in the city. Following the work of Hoek and the Delft-based research team, Dovey and Pafka have divided the urban functions into three major categories of live, work and visit (Van Nes, Berghauser Pont, & Mashhoodi, 2012; Hoek, 2008). This categorization is based on the conception that at any particular time, the population in a building, street or neighborhood remains there because they live there, work there or visit the place. As the background for formulating this concept of "Functional Mix", Dovey and Pafka clarified that prior studies considered urban functions in categories, like residential, industrial, commercial, retail, education, entertainment, recreation, health, transport, government, community, parking, vacant, hospitality, etc., which is a modernist approach to segregate the city into different categories. Such categorization of functions has some problems. First, any well-mixed urban area will have too many functional categories for any analysis of patterns. Second, many of these functional categories overlap and become subsets of one another. A triangular model has been suggested by Dovey and Pafka as a framework to map the city as an assemblage of flows between diverse functions. This mapping index is represented as LWV (live, work, visit) triangle with three primary colors (Red, Blue, and Green) indicating the three primary functions plus various forms of a mix between them that fade towards white for the mix of all three functions. This triangular scheme is useful to map mixed functions as it is not focused on the primary functions, but instead on the mix and flows between them. In the LWV mapping index, live indicates the residential functions i.e., dwelling unit, housing, residence, hostel etc., work indicates the offices, educational institutes, industries etc. and visit refers to the amenities like shops, plazas, parks, theatre, museum (Dovey & Pafka, 2017). Also, a mix of live and visit is represented as yellow, a mix of work and visit as cyan, a mix of live and work as magenta, while a mix of all three primary uses is white. Dovey and Pafka recommended this mapping index for cities that are complex and informal. Figure 2.1: Overlapping Functions and Live/Work/Visit Triangle (Dovey & Pafka, 2017). #### 2.3 Significance of Mixed-use Functions The mixed function has long been considered a sustainable urban development strategy for ensuring social equity, economic vitality and environmental quality (Grant, 2002). Different social, economic, health, and environmental factors explain the significance of mixed-use functions in the urban fabric. Mixed-use functions bring people to the public space all day long which enhances vitality and provides a sense of security (Jacobs, 1961; Rabianski, Gibler, Tidwell, & Clements, 2009). The mixed function thus allows social interactions that enhance neighborhood relationships. The combination of different functions and diversifying complementary activities produces an attractive urban environment and creates a sense of place. This urban environment where more people use diverse functions also ensures urban intensity. The mix of uses thus creates a live-work-play environment for urban dwellers (Anunobi, Adedayo, Oyetola, Shuaib, & H.I, 2015). Since mixed-use functions provide scope for different employment choices, it becomes more attractive to the workers for ensuring equity. Additionally, the merge of commercial with residential uses results in higher property values and an increase in local tax. Business functions provide recognizable benefits for people of different abilities together and further increase economic activity and mutual support (Herndon, 2011). With enhanced proximity of the related activities, mixed-use reduces car ownership, and vehicle trips and increases pedestrian and transit use (Hoek, 2008). Thus, the environmental consequences associated with automobile use get alleviated (Grant, 2005). Additionally, the by-product, 'walkable environment' produced by mixed-use function saves the dwellers from cardiac diseases and many more adverse health effects (Rabianski, Gibler, Tidwell, & Clements, 2009). Mixed-use promotes the retention of the scale and character of the older areas and helps to preserve historic buildings (Tucker,
1980). #### 2.4 Urban Morphological Elements This section discusses the functional and physical elements of urban morphology, their characteristics, and how they influence the texture of urban form and mixed functions. Urban Morphology is the study that creates coherent theoretical logic for urban research through its physical form (Whitehand, 2001). During the Seminar on Urban Form (ISUF or *SIFU*) in 1996, urban morphology has been acknowledged as an interdisciplinary field by a group of researchers from different arenas and distinguished countries (Moudon, 1997). This methodical approach evaluates the form, shape, map, structure and functions of the city, and the origin and evolution process of urban fabric (Madanipour, 2001; Sadeghi & LI, 2019). The prevalent interrelationship between the dynamic state of the city and its morphological elements has led many urban morphologists to prefer the term 'urban morphogenesis' to describe their field of study (Moudon, 1997). Researchers like Moudon, Koster and Cortes worked on the framework of dividing urban morphological studies into three schools of thought - British, Italian and French (Cortes, 2005; Sadeghi & LI, 2019). Moudon has summed these three schools of thought to have three main objectives i.e. explanatory-descriptive, prescriptive and evaluation (Sadeghi & LI, 2019). These schools have a widespread acknowledgment that morphological studies of urban form are defined by functional and physical elements recognized by Conzen (Moudon, 1997). Conzen has divided the complex town plan elements into three plan elements. - Streets and their arrangement in a street system; - Plot and its aggregation in street block - Buildings, or more precisely their block plan (Conzen M. R., 1960). M.R.G Conzen also noted functional aspects like land use as a significant element of analyzing and understanding urban form (Whitehand, 2001). These morphological elements can be understood at different time resolutions from their history (Conzen M. R., 1960; Moudon, 1997; Sadeghi & LI, 2019). Land use is the functional element of urban form. Different functions in the urban environment can be defined as land use (Dempsey, et al., 2010). Location, terrain, and accessibility are determinants of land use and different stages of histogenesis evolution shape or bring more changes to it (Deyllas, 1997). Land use pattern is the restructuring of land use like-residential to commercial, and the development of different mixed-use. Land use is the least resilient of all the morphological elements of urban form (Mandal, Chatterjee, & Chatterjee*, 2016). Land use goes through rapid changes compared to the physical elements of urban morphology. The aggregated volume of change makes the spatial pattern of land use at local and regional levels (Verburg, Kling2, & Hecky, 2003). A **street** is an open space within the urban area which creates surfaces for different traffic and is bounded by street lines (Conzen M. R., 1960). Separately viewing these independent and connected spaces arrangements in an urban area is defined as a street system. This morphological element of urban form prevails like a transition and allows the private and public to interact. The relationship between the plot and the street in an urban system remains consistent (Erickson & Jones, 1997). Street patterns can bring differences in plot patterns and geographical characteristics widely. Accessibility is related to the morphology of the urban street network. Accessibility can be measured by the interconnectivity of the street pattern. According to Hiller (1996), increased accessibility attracts more commercial use within an area. An individual **plot or lot** is the basic element of urban form physically defined by boundaries on or above ground (Kropf, 2009). The arrangement of the adjacent plots defined by boundaries considered separate from other elements of the town plan may be defined as plot patterns (Conzen M. R., 1960). Plot/lot defines the boundary for initial building or development for functions. The size of the plot/ lot/ grain influences the texture of the urban fabric which can be fine or coarse grain. Gentin stated fine grain sustains more mix of functions than coarse grain in close proximity (Gentin, 2009). Dovey argued that a mix of small (fine) and large (coarse) grain helps encourage more mix of uses for both opulent and marginal enterprises (Dovey, 2016). Plots may be subdivided or amalgamated to accommodate land use changes over time (Erickson & Jones, 1997). The **building** is the smallest element of urban form. 'Building' defines the third dimension sitting on an individual lot/plot and creates the basic unit for two-three-dimensional space attribution in the city. The smallest cell of the city comprises a combination of buildings and associated open spaces on an individual parcel of land (Conzen M. R., 1960). The relations between an area and a certain number of entities, for instance, people, services, dwellings, or floor areas are described by density (Mashhoodi & Pont, 2011). Building density is an important aspect of cities. FAR (floor area ratio) is popularly used as a measure of density to manage the total floor area and total bulk of a building (Dovey, 2016). Building density is also affected by building height and coverage. Building density measures can be either net or gross. Net density is measured within a development site and gross density include the wider network of public space (Dovey & Pafka, 2014). Density encourages a horizontal and vertical mix of functions. Also, density can change over time and bring change to the prevailing functions (Ryan, 2006; Zarin, 2009). #### 2.5 Morphology of Unplanned Areas Unplanned areas are those that are not developed according to any formal planning scheme (Marpaung & Silaban, 2018). The unplanned areas develop with the cumulative experience of the settlers and their refinement over the course of time to cater to their living needs (Marpaung & Silaban, 2018; Student research, McGill.CA). The organic morphology of the unplanned areas may appear random and difficult to identify, yet, there is a pattern that connects the formation of an unplanned area with another unplanned area (Sobreira & Gomes, 2001). The major part of the development of Dhaka is spontaneous and beyond any rigid planning proposal (Khan & Nilufar, 2009). Thus, the city exhibits a complex mix of planned and unplanned fabric with a dominance of unplanned areas within (Detail Area Plan 2016-2035). The patterns of unplanned morphology have been very little investigated (Iovene, Córdova, Romice, & Porta, 2018). Urban morphological studies are generally conducted using its elements as parameters. The morphological elements are mentioned widely in different literature while investigating problems encountered in unplanned areas. The spontaneous fabric due to lack of planning is the most distinctive feature of unplanned areas (Khalifa, 2011; Bek, Azmy, & Sameh, 2018). Research using spatial metrics on segmented images shows that unplanned areas share similar spatial features like (ii) organic layout (i) high densities; (iii) lack of public (green) spaces; (iv) small plots and building sizes (Filho & Sobreira, 2005; Kuffer & Barrosb, 2011). To accommodate rapid uncontrolled urbanization, **land use** in unplanned areas develops as mainly mixed-use functions (Hossain, 2001; Nilufar, 1997). While describing the unplanned morphology of Dhaka, Nilufar noted that the unplanned areas have dominant residential uses and the more accessible roads hold commercial activities and most Figure 2.2: Dhaka's Unplanned Areas; Source: Author, 2021; Reference: DAP 2015-2035). buildings are designed to accommodate shops at the ground level (Nilufar, 1997). Furthermore, Khan (2020) stated that in unplanned areas the large-scale mix of uses are found along the main roads and small-scale mixes, like- small shops and enterprises develop in the local streets. This kind of mixed land use is the result of informal practices derived from local needs (Khan, 2020). In unplanned urban structure, land use is influenced by the spatial patterns and at times makes it easier to determine the land-use policies by unrevealing the unique spatial pattern (Marpaung & Silaban, 2018). Nilufar (1997) described the important morphological element of unplanned areas-street to be less intricate than old city streets but there prevails a labyrinthine mixture of lanes, by-lanes and cul-de-sacks like in the old city (Nilufar, 1997). Generally, the urban development process in unplanned areas creates irregular, curved and unpaved accesses that link built forms with the utilities where the inner roads or alleys are narrow and winding (Kuffer & Barrosb, 2011; Nilufar, 2010). Nilufar has added that the main streets in some unplanned areas of Dhaka appear as wider lines as parts of a formal planning system, which generally holds - broad land use (Nilufar, 2010). Plot divisions are common in unplanned areas for their organic growth (Nilufar, 2010). More plots have been noticed in unplanned settlements to have subdivided in the early time than in the subsequent period through private initiatives to serve their need without any approved plan (Khan & Nilufar, 2009). In the case of Dhaka's unplanned areas, recent studies found that sub-division/amalgamations of plots in different neighborhoods have been influenced by the growth of the mixed-use (Ferdous & Nilufar, 2007; Zaman & Lau, 2000; Zareen, 2009). Khan described unplanned areas as a mix of different plot sizes of irregular shapes. She further added that smaller plots prevail throughout the unplanned settlement- primarily in local streets and larger plots are more evident on the main roads (Khan F. M., 2020). The buildings in unplanned areas are mostly a combination of modern and traditional features and designed to hold mixed-use within it, especially the building along with the major access roads.
These buildings merely leave narrow strips beside boundary walls by covering the whole plot most of the time (Nilufar, 2010). Unplanned areas have an ever-increasing deficit of_land and open spaces (Hassain, 2014). In unplanned areas of Dhaka, the building coverage is at around 80% and there is no control over the height as building owners develop buildings beyond the legal height (Kuffer & Barrosb, 2011). This again contributes to the flux of more density as consequence. Khan (2020) has mentioned that in unplanned areas, buildings with higher FAR (Floor Area Ratio) are noticed along main roads, around the principal node and adjacent areas, and also into some local streets. #### 2.6 Chronological Development of Mixed-use Functions in Dhaka This section discusses the chronological development of the mixed-use functions with the growth of Dhaka in different historical phases. The growth and development of Dhaka can be categorized as, Pre-Mughal (Before 1608), Mughal (1608-1764), East India Company and British colonial period (1764-1947), Pakistan (1947-1971) and Bangladesh period (1971-to-date) (Ahsan, 1991; Ahmed et al., 2014). Here, the evolution of mixed-use functions has been reviewed from the literature along with historic maps. #### Pre-Mughal Period (Before 1608) During the pre-Mughal time, Dhaka was located on the southern bank of the Buriganga river. Buriganga river and Dholai Khal formed the north-eastern boundary of the city which can be demarcated as part of present Old Dhaka (Ahsan, 1991; Chowdhury & Faruqui, 1991, Mowla, 2012; Ahmed et al., 2014). In this era, the main settlement was laid between the River Buriganga and Dholai Khal (Islam & Adnan, 2011). Since then, Dhaka has been suitable as a trade center for its location on stable soil, above the highest flood levels of the surrounding rivers, and having strategic short-cuts of water routes from the river Brahmaputra to the Ganges (Ahsan, 1991). Mixed-use settlements were developed spontaneously on the north side of the river in the form of "shop-houses" (Islam & Adnan, 2011; Mohsin, 1991). No segregation of land use was evident then, since the main business centers contained markets, shops and workshops adjacent to the settlements with clusters of shophouses (Islam & Adnan, 2011; Khatun, 1991). During this time, many parts that contained mixed-use were named after the profession of craftsmen like Lakshmibazar, Banglabazar, Shankhari Bazar, Tantibazar, Sutarnagar, Goalnagar, Banianagar, Kamarnagar, Patuatuli, and Kumartuli (Islam & Adnan, 2011). These areas grew spontaneously along the streets in a linear pattern (Islam & Adnan, 2011). These settlements were accessed by adjacent waterways and formed opportunities for great open-air trade (Mowla, 2016). Pre-Mughal Dhaka had informal morphology that is still prevalent. Street network was winding and intricate. There is evidence of a few long lines passing through the residential areas but most of the streets were narrow and continuously twisted. The long roads had no lanes and by-lanes held the central commercial interfaces. Therefore, two contrasting patterns define the morphological pattern of the old city in which some streets are characterized by closely spaced buildings in contrast to the pattern with loosely spaced buildings (Nilufar, 2011). #### Mughal Period (1608-1764) Dhaka was the capital of Mughal Bengal in 1608 (Islam & Adnan, 2011). Then the city started extending toward the west and the north (Ahmed et al., 2014). Prevailing trading towns of the pre-Mughal period flourished during this period. Dhaka's prominence increased with the influx of both poor and high-class residents and foreign traders (Ahsan, 1991, Mohsin, 1991; Chowdhury & Faruqui, 1991; (Islam & Adnan, 2011). Like the pre-Mughal period, the industry and/or shop used to grow within the same residential units (Chowdhury & Faruqui, 1991; Mohsin, 1991; Ahsan, 1991). Thus, Dhaka's natural trait of being developed with mixed-use continued (Khan, 2020). By 1640, the city had extended to the west to Maneshwar and Hazaribagh with the eastern limit at Narinda and Phulbaria (Ahsan, 1991; Karim, 1991, Chowdhury and Faruqui, 1991). The northern limit of the city extended up to the Mir Jumla's Gate (at present Dhaka gate) located near the south-eastern corner of the Suhrawardy Udyan (Chowdhury & Faruqui, 1991; Karim, 1991). During this period, Dhaka grew from a suburban to metropolis (Chowdhury & Faruqui, 1991; Khan & Atiquallah, 1965). The markets containing shops, workshops, and industries were developed on the riverbank by primarily using waterways for a good supply (Ahsan, 1991; Islam & Adnan, 2011). The western end of the city also contained similar kind of commercial functions like workshops, industries and shops (Ahsan, 1991). On the other hand, the European trading companies settled their industries and settlements on the northern outskirts of the city (Tejgaon area) and existed during the next century (Chowdhury & Faruqui, 1991). During the Mughal reign, the spontaneous morphological pattern followed through. The city extended with no particular plan and the streets were narrow and winding like the other Indian cities (Chowdhury & Faruqui, 1991, Ahsan, 1991). Most people used to move in and around the city on foot while some used horses (Huq, 1991). #### East India Company & British Colonial Period (1764-1947) After the Palashi Battle (1757), an English trading company (East India Company) ruled India and Bengal capital was moved from Dhaka to Kolkata. Thus, Dhaka lost its political importance and faced a massive economic fall. Many trading activities of the Mughals were closed during that time. The old Mughal city did not expand much and the mixed functions had their dominance with no regulating plan in an unplanned manner (Nilufar, 2011). British colonies developed in the northern part of the old city. The commercial activities extended from the old core (Chawkbazar) to the north of the town along the adjacent roads (Ahsan, 1991; Ahmed et al., 2014). The British developed some utility services. Dhaka became the capital (1905) of the new province of east Bengal and Assam (Ahsan, 1991). The mixed function of the new urban area had extended within its new municipality limit to serve the British bureaucrats which was towards the north through Nababpur into Ramna area (Ahsan, 1991; Islam & Adnan, 2011; Nilufar, 2011). While the irregular pattern prevailed in the historic core, the eastern part of the old city was developed as planned residential neighborhoods (Wari and Gandaria) with the introduction of the grid pattern of roads in 1885 (Nilufar, 2011). The streets and rectangular blocks followed a general grid. In the new neighborhood, the streets were broad traversing with low-density and horizontal development by the British (Nilufar, 1997). #### **Pakistan Period** (1947-1971) Dhaka resumed its glory after becoming the capital of east Pakistan. The influx of people and the increase in the area fostered the expansion of businesses and industries in Dhaka. The city developed primarily northward during this period (Ahmed et al., 2014; Nilufar, 2011). Later the growth continued rapidly in an unplanned way in every direction (Ahmed et al., 2014). Initially, mixed-use settlements were no more evident in new development of the city (Khan, 2020). Planning for a number of single-function areas had been undertaken from government initiatives in 1956. Thus, the city adapted to the trend of the concept of functional segregation and it extended accordingly (Mowla, 2012; Chowdhury & Faruqui, 1991; Nilufar, 2011). Different planned residential projects, industrial areas, and market hubs developed in the west, northwest and northeast parts without following any formal planning (Khan, 2020). Despite mixed-use being located within Central Business Districts in Motijheel and Azimpur, the traditional business stayed close to the old city in Chawk, Patiatuli and Sadarghat during 1960 (Ahsan, 1991; Islam & Adnan, 2011). Thu, during 1960-1970 Dhaka experienced two urban centers with two different characteristics (Ahsan, 1991). The mix of business and residential functions retained in the spatial center of the old town and the Central Business District lacked residential functions as the trend of developing segregated residential projects persisted. The high land that was available in Ramna's north-east and north-west within various pockets between the previously developed areas like Purana Paltan to Naya Paltan, Eskaton to Mogbazaar, Siddheswari and Kakrail to Kamlapur through Razarbagh, Shantinagar and Segun Bagicha became residential dominant mixed-use areas (Nilufar, 2011). These residential settlements were developed without following any formal planning. Morphology of the unplanned areas during this period characterize mix of winding lanes, by-lanes and cul-de-sacs like the Historic Core but simpler and wider than the old city. The primary roads followed the master plan of 1959; hence they were long and wider. The street pattern seemed like a representation of traditional urban development with a modern backdrop. The planned residential areas of this period follow the pattern of the street layout with a few semicircular arcs (Nilufar, 1997). #### Bangladesh Period (1971-to date) In 1971Dhaka had undergone a vast readjustment with political and economic alteration of the newly formed independent country "Bangladesh". During this period, the retail trade areas in the city extended towards the north with the residential neighbourhood (Ahsan, 1991, Ahmed and Mohuya, 2013). Previous business centers had faced characteristic changes due to functional and political frictions (Ahsan, 1991). The evolution of new business centers like Elephant Road, Moghbazar, Mouchak, Farmgate and Gulshan became specialized in two or three uses (Ahsan, 1991). Ahsan (1991) mentioned that these centers led to the city's prosperity and took advantage of the access
points. Shopping areas grew in an unplanned manner along major roads like New Elephant Road, specifically the frontage of the road thus creating ribbon patterns and the retail areas clustered along the nodes (Ahsan, 1991). In 1995, there were three major thoroughfares (Mirpur Road, Mymensingh Road and Green Road) which are the functional core in reality (Nilufar, 2011). Later on, private developers became interested to invest in mixed-use buildings with shopping at the lower stories (Islam & Adnan, 2011). The spontaneous and non-regulatory development of mixed-use functions also occupied the middle and upper-income planned residential areas - Dhanmondi, Bonani, and Gulshan- located in the north, northeast, and northwest parts of the city (Khan, 2020). Over time, to keep pace with the growing population and economic demand, diverse mixed uses have developed in different areas of the city. Spontaneous retail functions also infiltrated the local streets connected with the main roads - Mirpur Road, Sat Masjid Road, Dhanmondi 27, Banani 11 and Elephant Road (Ahsan, 1991). The growth of these retail functions within planned and unplanned areas was beyond the regulatory framework (Nilufar, 2011). Consequently, the retail functions faced many demolitions and alterations in these residential areas. Around 1986, functions like government institutes and major shopping areas had been distributed in the north and the formation of the new CBD made the land use involving offices and factories close to the strategic center of the city (Ahsan, 1991; Mohsin, 1991; Nilufar, 2011). Commercial facilities began to spread out from a single core to many centers to cope with the city's physical and demographic growth. Dhaka transformed from monocentric to polycentric city like many other cities in the world (Ahsan, 1991; Islam& Adnan, 2011). Consequently, in DMDP 1995-2015 and later in DAP 2016-2035, the city's land use was identified as a "predominant mixed-use function" (RAJUK, 1997; Figure 2.3: Chronological Development of Mixed-use Functions in Dhaka. Source: Author. ### 2.7 Mixed-use in the Regulatory Scheme of Dhaka The major portion of mixed-use functions in Dhaka city is self-regulated and unplanned, but it has always been the dominant land-use pattern in Dhaka. Despite this, no planning effort before DMDP (1995-2015) had a trace of acknowledging the development of mixed-use in Dhaka. Dhaka has seen a number of master/ structure/ urban plans developed by experts, professionals and relevant authorities. Among them, the first master plan for the city was done in 1917 by Patrick Geddes. The Sir Patrick Gaddes master plan recommended transportation systems by encouraging waterways and motor buses considering the density, socio-economic and physical environment of the city (Jahan, 2011). The unimplemented plan did not include recommendations for the city's mixed functions. The Second Master Plan 1959 was prepared by reputed British firm Minoprio Spencely, and P. W Macfarlane. This Master Plan for Dhaka for the then Dhaka Improvement Trust (DIT) mainly gave assumptions about the futuristic population growth and expansion of the city. The plan had indications towards some areas that were assumed for major expansion. It also proposed the development of a few "commercial" functions between major roads. But the master plan of 1959 became obsolete due to several unpredicted physical, economic, social and environmental changes after 1971 (Jahan, 2011). The prediction about population growth and expansion of cities with existing densities became absolutely obsolete after the extreme intensification. Despite these consequences, no alterations led to revision of the master plan. As a result, the Master Plan 1959 became impractical and incompetent. Dhaka Metropolitan Area Integrated Urban Development Plan (DMAIUDP), 1981 was directly undertaken by the Planning commission and not by RAJUK. This master plan was set out to guide and regulate the future growth of Dhaka with long-term urban development strategies. The plan mainly established general guidelines for physical development within Dhaka Metropolitan Area (DMA) and undertook development programs to address priority projects. The Dhaka Building Construction Act (ঢাকা ইমারত নির্মাণ বিধিমালা)1996 by RAJUK incorporated rules for adjacent road and distance of building form which is a general guideline, not specific to any building use. For non-residential functions² in the residential and ancillary use zone, this regulation provides directions for location of plot (at the junction of two roads) and minimum width (6 m) of at least one adjacent road. These non-residential uses will follow the rules of residential and ancillary uses for protection of open space, building coverage rules. According to this act (1996), in the areas for residential-commercial mixes residential, commercial and mixes of both can be developed with the rules for residential and ancillary use ensuring direct entry from adjacent road if non-residential use is provided. According to this act, junctions of several roads are restricted to develop non-residential functions (market, theater, auditorium or such assembly place) within 50 m. But for permitted road width (23 m or more) market can be built with condition (total floor area not exceeding 500 m²). For market (300 m²) there is regulation for keeping area within plot (6m parallel to road apart from parking) for entry-exit and drop-off-pickup. Though this act has permitted non-residential uses in residential and residential-commercial mixed areas, there is no directions provided regarding types of mixing, extend of mixing or any specific FAR and ground coverage guidelines for mix of uses. The Dhaka Metropolitan Building Construction Rules, 2008 (ঢাকা ইমারত নির্মাণ বিধিমালা, ২০০৮) by RAJUK proposed the rules and regulations for improving the city's living environment through the proper layout of different functions like residential, commercial, institutional, industrial, health care, etc (Jahan, 2011). In the plan of 2008, guidance for FAR and maximum ground coverage was mentioned but has no trace of distinct regulation exclusively for mixed-use buildings (Jahan, 2011). According to the regulation for the mix of residential and commercial uses, FAR and maximum ground coverage will follow the regulation for residential functions (*Rajdhani Unnayan* ² Buildings with non-residential uses that can be build in residential and ancillary use areas are not more than 10-bed clinics, banks, fast food restaurants, grossary shops, hairdresser saloon, doctor's chamber, pharmacies, newspapers and periodicals stands, flower kiosk, library, video club, nursery, school, laundry and tailoring shops. Kartripakkha, 2008). The rules have mentioned different permissible FAR ranging from 3.15-6.5 for road widths ranging from 6-24 m and plot size ranging from 134 m² to 1340 m² and more. On the other hand, for the mixes of shops/markets and offices, FAR and plot coverage will follow the regulation of commercial functions. Mixes other than residential and commercial, buildings will follow stringent requirements likelowest FAR, MGC and set-back as per lowest FAR) of specific type of buildings. Additionally, in the regulation there are a few restrictions regarding setback (2.5 m setback from residential plot), utilization of road (widest road for non-residential vehicular movement) and placement of opening and veranda (veranda of nonresidential uses are not permitted to place on the side of residential plots) for mixed-use plots. In Dhaka Metropolitan Building Construction Rules, 2008, there is regulation for road width (min 6 m) in case of plot amalgamation and subdivisions for non-residential uses. Hence, 2008 regulation provided no specific rule for the types of uses that are permitted within mixed-use buildings. The regulation has also discouraged mixed-use in residential areas by restricting informal changes in land use. These building construction regulations were not implemented strictly. DMDP 1995-2015, was the first gazetted development plan of Dhaka. It consisted of three tiers, i.e., the Structure Plan (SP), Urban Area Plan (UAP) and Detailed Area Plan (DAP). The Urban Area Plan 1995-2005 in DMDP 1995-2015 involved a concentrated and mixed land-use development strategy where the land-use of the whole of Dhaka has been identified as 'predominant mixed-use functions', including existing mixed-use areas, along with areas that have the potential for future development as mixed-use (Dhaka Metropolitan Development Plan - DMDP: 1995-2015). The Urban Area Plan 1995-2005 showed two types of mixed-use developments- planned and spontaneous mixed-use. DMDP 1995-2015 was criticized for not being implemented, as, the Detailed Area Plan could not be prepared in 12 years after the adoption of the DMDP. This hindered the development of particular areas of Dhaka with detailed plans by the Planning Authority. Consequently, Dhaka encountered a major drawback to progress by following the mixed-use planning scheme. Later on, the Dhaka Structural Plan 2016-2035 initially made contradiction with the previous plan of DMDP 1995-2015. Only 0.59% of the area of the city has been identified as mixed-use i.e., the Dhaka Structural Plan 2016-2035 includes only the then-first CBD and some parts of Old Dhaka as mixed-use functions (Khan F. M., 2020). This does not portray the actual spontaneous mixed-use that prevails all over Dhaka. But structure plan has raised the needs of harmonized and pre-planned mix of uses to maintain an acceptable level of livability in centers. Later in DAP 2016-2035, the city's land use was identified as "predominant mixed-use function" (Detailed Area Plan: 2016-2035, Dhaka, 2022). DAP (2016-2035) also encourages mixed functions for future Dhaka from farmland to industrial zones (Detailed Area Plan: 2016-2035, Dhaka, 2022; Devnath, 2020). In the document, area-wise proposed land use shows
most of the land use has been proposed as mixed-use under four (4) categories- residential dominant mixed-use, commercial dominant mixed-use, industrial dominant mixed-use, residential-commercial mixed-use zone (Detailed Area Plan: 2016-2035, Dhaka, 2022). DAP 2016-2035 also mentions the possibility of uncontrolled mixed-use functions and advocates for guidelines regarding "Guided Mixed Use" to avoid any adverse effect on the surrounding environment. "Guided Mixed-use" means the development that will follow rules and regulations so that the development do not deteriorate the surrounding environment. The incompatible mixed functions such as residences and heavy industries have been foresightedly given alert for future developments. DAP 2016-2035 mentioned to impose appropriate conditions for essential uses at different scales. DAP 2016-2035 has mentioned "Overlay Zone" to describe the areas that are of special nature and mentioned further development for those areas considering the probable change in the innate nature and land price hikes. Experts also suspect a rise in uncontrolled urban development in Dhaka city as DAP 2016-2035 restricts commercial use to at least 40% of floor area and monofunctional zoning has been reduced to not more than 10-15% of the total land. DAP 2016-2035 permits poultry farms, and commercial units to spice grinding and manufacturing of shoes and leather goods in some of the permissible mixed use of land in residential areas which might be the issues of sound and air pollution as well as stench. Although, DAP does not specify how many building floors can be used for business purposes within the four types of mixed-use Figure 2.4: Mixed-use Addressed by the Planning Scheme. Source: Author, Reference: Detail Area Plan 2016-2035. zone proposed. Planners and experts stated that horizontal mixed-use functions (at street level) like a grocery store or a community space within a residential building as well as functions like schools, hospitals and shops provide social services for the residential areas but those should be restricted to the ground and first floors. To respond to this, DAP needs to mention the portion of land to be used for business entities in a particular area and their locations. DAP proposed entire area is subject to mixed-use which is a very broad decision (Detailed Area Plan: 2016-2035, Dhaka, 2022). # 2.8 Morphology of Mixed-use Functions in Unplanned Cities in Global Context Land use patterns in unplanned cities are typically characterized by intensive mixed-use functions (Verma, 1993; Tu & Lin, 2008; Zhong & Hui, 2021; Shankar & Vidhya, 2013). Mostly, these mixed functions in unplanned cities have developed spontaneously beyond any formal framework. Such non-residential uses have developed in residential localities to combat the population growth and the increasing need for community facilities (Haque, 2015). These mixed functions support the city's needs. They also put some adverse impacts on the urban environment (Shankar & Vidhya, 2013). Therefore, mixed functions in unplanned cities have sustained the urban morphology in an intricate manner, along with the legal system. The traditional form of mixed-use functions is found in form of 'shophouses' particularly in Asian and Southeast-Asian cities (Bahadure & Kotharkar, 2015; Han & Beisi, 2015; Zakariaa, Kubota, & Toe, 2015; Omar & Syed-Fadzil, 2011). There is also evidence of similar structures like shophouses in other region of the world including parts of Latin America and Caribbean islands (The Shophouse Investment Guide, 2023). Literature also portrays a mix of economic activities and residential functions in European cities before industrialization (Tasan-Kok, Kempen, Raco, & Bolt, 2014). Mixed-use functions have gained prominence in several cities across Europe and North America since World War-II (Hoppenbrouwer & Louw, 2005). The compact units (shophouses) with shops and residences are evident till now in the old fabric of Asian and other cities mentioned above (Wakita & Shiraishi, 2014). These linear building units are set perpendicular to the street on fine grains (Khan, 2020). These 'shop-houses' are low-storied buildings and organize their shorter edges on the roadside to ensure the street frontage for business (Yung, Langston, & Chan, 2014; Aranha, 2013). In the case of single-story shop-houses, the shops are positioned in the front of the structure, and the residential quarters are placed in the back (Han & Beisi, 2015; Yung, Langston, & Chan, 2014; Aranha, 2013). For the multi-storied shop-houses, residential units stack over the services (like, shops, workshops, wholesale, etc.) (Han & Beisi, 2015). These traditional shop-houses offer the scope of adaptability that can alter for any transition evolved from personal or communal demands (Aranha, 2013). Currently, a greater concentration of mixed-use functions is evident not only along the important major roads and nodes of unplanned cities but also in the local streets of residential neighborhoods (Ratnayake, 2015; Verma, 1993). The contemporary layout and building morphology of mixed-use functions of Southeast Asian cities are characterized by some conversions from the traditional shophouses (Khan, 2020). Presently, mix of functions include diverse uses such as- offices, restaurants, storage, wholesale, micro-industries, educational institutes and residences (Haque, 2015; Ujang & Shamsuddin, 2008). Mixing of non-residential and residential functions occurs both at ground and multiple levels in multi-storied buildings (Weinberger, 2010). This sometimes led to incompatible mixing of functions and thus, deteriorates the residential environment. Non-residential functions like retail, and restaurants seek good accessibility from the road to run their business well (Sim, 2019). Hence, these visit functions are mainly found at the ground floor and sometimes at the upper floors to accommodate the increased demand. There is evidence that contemporary mixed-use functions contain diverse uses and mixes in four to more than ten floors of the buildings (Aranha, 2013). Home-based enterprises (HBE) are another form of mixed-use functions that are widespread in developing Asian cities (Tipple A., 2006). These are service hubs for different production and repairing of different items like craft, furniture, food, woodwork, cloth, shoes, mechanical items, and electrical supplies. But these HBEs have no separate spaces as work-place (Tipple A. G., 2005). Thus, conflicts between work and live functions remain in these HBEs. Street vending is an age-old occupation found in every country and major cities around the world (Bromley, 2020). Particularly in Asian cities, street traders are common features of mixed functions (Aranha, 2013). They do not bear legal status for their vending activities but they play an important part in the urban economy (Mahadevia, Vyas, & Mishra, 2014). In some countries street vending is actual source of potential revenue as they are liable to pay charges on the consumption, incomes or property of the street vendors and their dependents (Bromley, 2020). In Asian cities, unauthorized carts develop in an area, bringing an influx of permanent commercial activities with well accessed places (Bhowmik, 2012). They often hinder the flow of street users and cause inconvenience to them (Husain, Yasmin, & Islam, 2015). Street traders can be categorized into three according to their way of functioning (Bhowmik S. K., 2005). Those are- (a) stationary (fixed); (b) peripatetic / partially mobile (semi-fixed) and (c) mobile (Dimas, 2008; Bhowmik S. K., 2005). Stationary vendors are those who possess a public space or sidewalk on regular basis to vend their goods. Peripatetic vendors are those who vend under temporary sheds or pushcarts and settle in several locations. Mobile vendors are those who walk/cycle around from place to place and announce their goods and services for their target groups to buy goods /services from them. These street traders sometimes have conflicts with the shop owners by blocking shop frontage and threating their business by selling similar goods at fewer wages (Husain, Yasmin, & Islam, 2015). On the other hand, there are cases where a mutual business runs between the shop owners and vendors using the shop fronts (Recio, 2018; Husain, Yasmin, & Islam, 2015). Mixed-use comes with dual characteristics in all cases (Hoppenbrouwer & Louw, 2005). It brings community facilities together and serves the needs of the residents. On the other hand, the unplanned development of mixed functions sometimes affects the residential characteristics in many ways including, disturbing the calmness, breaking social cohesiveness, causing a lack of privacy and security, and management of utilities etc (Ratnayake, 2015; Bahadure & Kotharkar, 2015). The transformation from residential functions to an unregulated mix of uses also brings high population density. A. Shop-House in Phnom Penh (Cambodia). Adapted from Wakita, Y., & Shiraishi, H. (2010). B. Band Type Urban Prototype, Singapore; Source: Firley, E., & Stahl, C. (2011) C. Floor plans of case study Chinese shophouse; Source: Zakaria, M. A., Kubota, T., & Toe, D. H. C. (2015) D. Vibant Shophouses in Singapore; Source: https://www.istockphoto.com/photo/singapore-main-attractions-gm1199670510-343329467 E. Shophouse in Phuket, Thiland; Source: https://diwerent.com/blog/the-shophouse---fusional-style--functional-elegance-290 F. Mixed Functions in Cambodia; Source: https://diwerent.com/blog/the-shophouse---fusional-style-functional-elegance-290 G. Cureent Mixed-use in Wellington Street and Graham Street, Hongkong, Source: Yung, E. H., Langston, C., & Chan, E. H. (2014) Figure 2.5: Traditional Shop-houses and Current Mixed-use Functions in Unplanned Cities. This causes stress on power, infrastructure and utility supplies like water supply, traffic and transportation, sewerage, etc. (Shankar & Vidhya, 2013).
2.9 Space Syntax Theory Space Syntax is a theory and method for analyzing the layout of space in buildings and cities (Nes and Yamu, 2021). This theory describes the correlation between the spatial structure of the city and its way of functioning (Nilufar, 2010). This theory contains a set of techniques that can be used individually or in various combinations to study the different morphologies of cities and their relations to urban functions (Nes & Yamu, 2021; Rashid, 2019). Space syntax as a widely used method connects the fields of urban spatial analysis and urban design in the arena of transport, land use, and people's behavior (Nes and Yamu 2021). Space Syntax explains the accessibility of different spaces in an urban grid (Hillier & Hanson, 1984). The accessibility between spaces in an urban grid varies according to changes in the configuration of the urban form (Marcus, 2010). With the increase of accessibility of an area, the movement pattern and integration of the area will increase with the whole urban grid and the area will attract more movement-seeking functions - market or retail land uses - within it (Hillier, 1996). Thus, space syntax investigates how movement and various activities are influenced by urban spatial configuration with the help of a computer-based analytic tool called "Depth map" (Hillier & Hanson, 1984). This research investigates the correlation between the morphology of unplanned areas and mixed-use functions within. Thus, the measure of integration i.e., accessibility is important for this study to help understand the pattern of the functional mix in the study area. In the study of space syntax, urban spaces are categorized by human visual ability and scale. Based on the categorization of human movement, urban space comprises free and blocked spaces. Blocked spaces are those where human movement from one location ³ Depthmap is primarily a computer program to perform visibility analysis of architectural and urban systems. It takes input in the form of a plan of the system and is able to construct a map of visually integrated locations within it. In addition, the most recent version of Depthmap now supplies a range of configurational analyses which come under the umbrella term of space syntax'. (Turner, 2004) to another is blocked by spatial obstacles like built forms. On the contrary, free urban spaces allow free human movement which includes streets, squares, alleys, etc. Space Syntax analyzes free urban spaces measured by Euclidean distance⁴ (Hillier 1996). Free urban spaces can be large-scale and small-scale free spaces. Large-scale free spaces are perceived from the set of fragmented small-scale spaces called Convex Space. Convex spaces are used to explain the two-dimensional organization of space. It can be defined as any two points in a space that can be joined by a straight line to form a polygon that does not go beyond the boundaries (Hillier and Hanson 1984). The other hand, the "axial lines" are the longest and fewest sight lines (straight lines) that cover all the convex spaces and represent the one-dimensional organization of the spatial layout (Yamu, Nes, and Garau 2021). Of the four first-order syntactic measures of space syntax (Integration, Connectivity, Control and Choice), integration is the most important and widely used syntactic unit in space syntax for the quantitative description of urban layout. Integration is a static global measure that describes the average depth of a space to all other spaces in the system (Klarqvist 1993). Integration analyses through the calculation of how close the origin space is to all other spaces, and can be seen as the measure of relative asymmetry or relative depth. The spaces of a system can be ranked from the most integrated to the most segregated. The average number of lines and direction changes required to reach all other spaces in the system determine the integration (Hillier and Hanson 1984). Therefore, integration is about syntactic accessibility rather than metric accessibility, and the term "depth" rather than "distance" is used to describe how far the space is. In integration, any spatial system's relative depth and shallowness are seen from any particular point inside it. A global index of relative integration and segregation for that line relative to all others is provided from a global static measure in which all axial lines are assigned a value that is the characteristic of their relation to all other lines in the grid. These values of well below 1 - of the order of 0.4 to 0.6 indicate more segregation and; while the value ending to and above 1 shows strong integration. The space syntax ⁴ In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment betweenthetwo points. (Wikipedia) method is also used to understand the urban structure locally through the measure of local integration which is one of the fundamental properties of urban space. It is conjectured that parts of the urban grid are differentially connected within and between themselves, which should be revealed by the rank order of the local integration value. High global or local integration values are presented in the axial line with warmer color, and vice versa. For example, the red line represents the highest integration value; the dark blue line represents the lowest integration value, i.e., the most segregated. "Integration core" illustrates the important deep structure of a spatial system. Once the integration of each space of the whole system has been calculated, the "Integration core" can be identified. The integration core forms the pattern of the most integrated lines of an urban system. The shape, connectivity, and geometry of the urban system as well as its manner of expansion determine the character of the integration core, its size and space. #### 2.9.1 Natural Movement Human movement pattern in urban systems is primarily caused by the system's configuration itself (Hillier et al. 1992). The spatial attractors are equalizers or multipliers for movement on the core pattern set by the configuration. They might, at times, succeed in the configuration with the multiplier effect⁵ on human movement. Arguments state that the morphology of the urban grid and the distribution of the attractors over the grid require an understanding of the configuration to reveal the pattern of human movement. The theory of natural movement depicts the observable quantity of movement along the line with its association with the configuration of the urban system and the spatial attractors (Hillier et al. 1992). This theory establishes a primary basis of movement generation with global spatial configuration rather than spatial attractor and secondarily with local spatial configuration by connecting one space with its neighboring space and so on (Hillier 1988). Natural movement is ⁵ According to the theory of natural movement and movement economics, the location of the retail land usehasbæninfluenced by the configuration of the urban system in which they are distributed. In such cases, shops locatethemselvesonthemost integrated (most accessible) route and these groups of attractors act as a multiplier on the basic pattern of natural movement. However, according to Hillier this concept "Multiplier effect" follows the conventional gravity model which is an attempt to explain accessibility in terms of the relationship between attraction and distance. Hiller's concept of accessibility refers to the most integrated route in an urban grid configuration. Thus, there will be more integrating and less integrating areas, depending on how the internal structure of the area is embedded into the larger-scale structure of the grid. This will leadtothearea with more multiplier effect and the area with less. essential and consistent in an urban system irrespective of any urban grid and culture. With the diversity of grid patterns and different cultures, natural movement is seen to be molded with respect to the particular pattern. Also, the urban grid seems to create a probabilistic ground for movement to free flow or be obstructed (Hillier et al. 1992). #### 2.9.2 Movement Economics Both empirical and theoretical evidence suggests that attractor and configuration are interrelated in the processes of causing natural movement and creating attraction inequalities in the urban configuration through the operation of the movement economy (Hillier et al. 1992). Urban functions seek movement and act as attractors of natural movement on the line. A well-functioning urban system creates harmony between, its configuration, attractors, and movement to create the multiplier effect on the pattern of movement (Hillier 1999). With the increase of movement, the diverse attractors i.e., diverse urban functions seem to use the benefit of the space-movement relationship by multiplying the movement pattern. According to the theory of space syntax, this process is known as movement economics. Movement economics is a very dynamic process since the urban configuration initially creates movement, later movement-seeking functions cater to the movement-rich lines and produce multiplier effects on movement, which further attract retail and other uses to develop and this allows the local grid to adapt to the accommodation of the greater density and mix of uses. Thus, it can be said that space and movement have a correlative effect that helps the movement economics run its process. The urban spatial pattern develops naturally toward a combination of busy and quiet areas and with the extreme end in the most integrated areas where the process is initiated from the configuration of the spatial grid of the area (Hillier, 1997). #### 2.10 Urban Economics Urban Economics is an economic analysis of the locational perspective of urban phenomena aiming to address the intersection between economics and geography (Griffith, 2021). Urban economics explores the location
choices of different functions and their efficiencies supporting the concept of creating resilient urban habitats for the current city without hampering the future cities' socioeconomic/demographic and environmental impacts. The theory depicts that while making locational choices utility maximization is the priority for household functions and profit maximization is the priority for offices, firms, shops, etc. (O'Sullivan, 2012). Accessibility is the primary consideration as a locational advantage for urban functions to develop land-use patterns. According to the theory, site location, plot area, and configuration of the site foster maximization of profit. Urban functions get an economic boost for the selection of the site measuring more accessibility as it increases consumer access more frequently (Goodall, 1972). Goodall added, the increase in degrees of accessibility makes higher chances for different activities to interact and cluster. Urban economics has emphasized the locational choice of retail functions in a city. Retail functions focus on profit maximization as the fundamental principle guiding the position, scale, and design of the site of economic activity. Retailing plays a vital role in attracting diverse marketplaces and offers to retail the highest prices for the location. Such functions require locations accessible by all consumers and workers. Generally, groups of retail activity, and chain of shops occupy the ground level of the urban district (Goodall, 1972). This makes retail a major part of mixed functions (Zakariaa, Kubotaa, & Toe, 2015; Firley & C., 2011) #### 2.11 Summary This chapter has reviewed the notion of mixed functions, urban morphology, different theories of space syntax and urban economics to understand the development and operation of mix of uses in the urban fabric. Based on these understandings, the next chapter will describe detailed methodology i.e., various data collection and analytic methods to conduct this study. # CHAPTER 03 ## RESEARCH FRAMEWORK ## 3.1 Introduction This chapter discusses the research approach and methodology. This chapter is structured into six (6) parts. The first part, (section-3.2) discusses the research strategy adopted. The second part, (section-3.3) briefly discusses the case study research and study area. The third part, (section 3.4) describes the different methods for data collection. The fourth part, (section-3.5) narrates the mapping and analysis processes. The fifth part, (section-3.6) describes the methodology of space syntax. And the last part, (section-3.7) concludes the chapter. ## 3.2 Research Strategy: Mixed Method Research This research explores the morphological pattern and working process of mixed-use functions of an unplanned area of Dhaka in correlation with the associated urban morphological elements. To explore these objectives, the research converged a mix of both quantitative and qualitative methods. Quantitative research explains phenomenon by acquiring data based on numbers which are analyzed using a mathematical basis of methods (Aliaga & Gunderson, 2000). This research attempts to generalize the results from an investigation of a large sample area (Babbie, 2004). In complement, qualitative research explores details of a particular subject involving the interpretation of the natural settings (Denzin & Lincoin, 2000). Simultaneous answers to the qualitative and quantitative questions and multiple viewpoints, perspectives, and positions can be found with the combination of the qualitative and quantitative methods. This combination is applied here since the research has the urge to analyze both numerical and contextual data. As a qualitative approach, this study employs-field survey, photographic survey, and analyses of mixed functions and morphological maps. As a part of quantitative approach, numerical data analysis of the study involves the computation of the number of buildings, plots, and density and calculation of the integration level i.e., accessibility of the street network. Both the qualitative and quantitative approaches helped the analysis and synthesis process to find distinct morphological pattern of mixed-use in the unplanned study area. # 3.3 Case Study Research and Study Area This research applies "Case Study" as methodology. Case study research is a systematic investigation of a single event or a series of associated events with the aim to describe and explain the phenomena of interest (Eisenhardt, 1989). This empirical study explores contemporary phenomena within their real-life context when the boundaries between phenomena and the context are not clearly evident and in which multiple sources of evidence are used (Yin, 1984). The case study method enables researchers to conduct a detailed contextual analysis of the data within a small geographical area or a very limited number of individuals to explore and investigate the true essence of the contemporary real phenomenon of a finite number of events or conditions and their relationships (Zainal, 2007). This research explores a technically distinctive situation with more variables of interest than data points and numerous levels of analysis including qualitative and quantitative approaches (Yin, 1984; Groat & Wang, 2013). Since this strategy focuses on the embeddedness of the case in its context, this holds the capacity to explain causal links between the richness of multiple data sources and allow generalization to theory (Zainal, 2007; Groat & Wang, 2013). This study investigates- the pattern and working process of the spontaneously developed mix of uses within a specific context that has not been explored before. The number of first-hand studies based on this subject is also the least. Hence, the case study method has been applied to acquire in-depth and up-to-date data on the topic. Moghbazar has been selected as the case study area. It is an old unplanned area where mixes have evolved for decades within organic morphologies (Nilufar, 2010; R.M.Ahsan, 1991). Presently, it contains considerable concentrations of mixed functions that are the result of several morphological adjustments. Also, Moghbazar is spatially significant for its proximity to the urban center and business district which likely influences the area's functional diversity. Hence, Moghbazar offers an appropriate context for understanding processes of spontaneous mixes by exploring synergies of diverse functions and their interconnections with associated morphologies. Moghbazar is located near the spatial center of the city near Tejgaon, Ramna, and Malibagh areas under the Ramna thana (Figure 3.1). It partly falls under Dhaka North City Corporation (DNCC) and mostly under Dhaka South City Corporation (DSCC) (Ward-19 of DNCC and Ward-35,36 of DSCC). A recent intervention, Hatirjheel, is bounded at one side of the case study area. DIT Road on the other side has separated the study area from Malibagh and created a defined outline for Moghbazar. Its origins date back to the Mughal Empire (Haider, 1967). Since the 20th century, various mixed-use functions have developed here and gradually it has intensified over time. The present morphology presents a substantial concentration of mixed-use with a combination of narrow-wide streets and fine and coarse grain development. #### 3.4 Data Collection Prior to the field survey, literature survey and archival data collection have been performed to prepare the base data for the field survey, mapping and analysis. #### 3.4.1 Literature Review Fundamental conceptions and exploration of the research questions have been led by a theoretical framework. The theoretical framework focuses on the topics like mixed-use function, it's significance, urban morphology, growth of mixed-use in Dhaka, its regulatory framework and morphology of mix of uses in unplanned cities. The theoretical framework also covers the theories like space syntax, natural movement, movement economics and urban economics to understand the operation of mix of uses in the urban system. #### 3.4.2 Archival Data Collection Base maps of different wards have been collected from Dhaka City Corporations. The base map of ward no 19 has been collected from Dhaka North City Corporation (DNCC) and base maps of wards no 35 and 36 have been collected from Dhaka South City Corporation (DSCC). These base maps (2003) contain, street pattern, block outlines, and plot demarcation, placement of the building on the plot and building height. These base maps of three wards have been joined to produce the base map of the entire site. This map was eventually used to produce maps of mixed-use functions and associated morphological aspects from the field survey data. Figure 3.1: Moghbazar Area; Source: Author; Reference: Google Earth. # 3.4.3 Field Survey Field investigation is the study of a phenomenon as it occurs without much intervention (Fidel, 1984). In this study, field survey is the primary data acquisition process for mapping and analysis. Prior to the actual field investigation, a number of unplanned areas in Dhaka like Moghbazar, Monipur, Eskaton, and Malibag were preliminary surveyed to choose the specific site and its initial boundary. Based on the availability of data, base maps and the presence of a diverse mix of uses and their concentration, Moghbazar was finally chosen as the study area. This preliminary survey was undertaken during December, 2021. This preliminary survey supported the formulation of the research process in which the field survey followed the detailed steps further. The detail field survey was conducted from mid-February, 2022 to mid-May 2022, mostly from 11 pm to 6 pm on office days. Moghbazar has its weekly close day on Thursday. Thus, Thursdays were avoided for the survey since usual mixed-use functions and associated activities may not be observed on that day. The field survey explored the diversity of mixed-use functions in the study area and their interconnection with the
associated morphological elements. A detailed field survey of a total area of 1374241.61 m² was conducted covering the whole Moghbazar (Figure-3.1) area containing wards no. 19, 35 and 36. The demarcation of the study area was primarily inquired from the personnel of DNCC and DSCC during the data and base map collection process. The recheck and precision of the site line have been marked during the intensive field survey. The field survey included two steps. The first task was to observe the exterior of individual buildings to identify the various types of functions and their distributions on different floors. The second task was to survey and inquire about the interior functions from building residents/concerned people. During the detailed field survey, all the buildings on individual plots within the site line (the entire Moghbazar area) have been surveyed to investigate functional data at different spatial levels. Field survey has recorded the functional aspects like horizontal mixed functions (mixes side-by-side at the street level), vertical mixed functions (stacked), vertical extension of non-residential functions and street traders' locations. Street traders have been categorized following the literature review. Field survey has also recorded the morphological aspects like street, plot, building height (stories), plot coverage. During the survey process, the base map that has been drawn combining the three ward maps has been updated with the data from the field survey. Regarding roads, the categorization of roads and mode of movement have been recorded. For the calculation of densities, the number of stories in a building and plot coverage have been updated from the base map. ## 3.4.4 Photographic Survey The photographic survey was undertaken from mid-February, 2022 to mid-May 2022, mostly from 11 pm to 6 pm on office days. This photographic survey was conducted to gather and document information on diverse mixed functions in the study area. Vertical extension of the non-residential functions, location of street traders, their variety, building height and coverage have also been captured with cameras during this survey.723 photographs have been taken from different streets, nodes and strategic points. This survey has been done in daylight to ensure the accuracy in the visibility of the variety of mixed-use of the site and their associated morphologies. This survey excludes the areas where the streets became too narrow to capture the full view of buildings and the built form that completely contain residential functions. ## 3.5 Mapping and Analysis A map is a visual representation of the physical layout and settlement patterns of a region. Mapping allows multi-scale of analysis of urban data to understand cities' working processes and predict futuristic transformation through planning and design (Dovey, 2016). ## 3.5.1 Mapping of Mix of Uses in the City Scale The development of mixed-use functions in Dhaka city has been mapped to understand its chronological growth in different time periods. The information about the growth of mixed functions in different time periods has been collected from different literature and historical maps. Mapping of mixed functions at the city level has been done with color graphical representation. ### 3.5.2 Mapping of Mixed Functions in the Study Area Mapping of the mixed-use functions in the study area includes mapping of the horizontal mix, vertical mix, vertical extension of the non-residential functions and the street traders. For the convenience of mapping, individual plots and buildings have been given unique reference IDs (numbers) and those unique IDs were followed to mention to the individual plots and holdings for mapping (appendix-4.1). Vertical and horizontal mix of functions has been mapped following the LWV (live, work, visit) triangular mapping index. LWV triangle is a mapping index conceptualized and developed by Kim Dovey and Elek Pafka in 2017. This mapping index can be used to comprehend and map the diverse mixed functions in different urban morphologies since it is more focused on the mix and flows between urban functions. In this mapping index, live, work, and visit as the three primary urban functions are represented by three primary colors (red, blue, and green) plus various forms of mixes between them (live/work-purple; live/visit-yellow; work/visit-cyan), that fading towards white for the mix of all three functions (Dovey & Pafka, 2017). In the mapping process, the plots containing different single and mixed functions are coded by specific colors mentioned in the LWV triangular mapping index in CAD. The plots containing different mixed functions are mathematically analyzed to find out the pattern of horizontal and vertical mixed functions in the study area. Vertical extension of non-residential functions and location of street traders have been mapped with color graphical representation through CAD and Photoshop. In the map of vertical extension of functions, the darker colors in the gradation scale indicate increasing number of floors of non-residential functions and vice-versa. The number of floors containing non-residential functions were numerically analyzed to find out the pattern of non-residential functions in buildings. The pattern of different types of street traders were identified from their locations in maps. From these maps, the data regarding the counts and area of plots, buildings and vertical extension of non-residential functions have been numerically analyzed through the "data extraction" tool in CAD to comprehend the morphology of the study area. ## 3.5.3 Mapping of Morphological Elements The morphological maps that have been produced in this study are street, plot size, building height, building coverage ratio (BCR), and floor area ratio (FAR). These morphological aspects have been mapped with color graphical representation through ArcMap software. With data on building height, plot area and building area, BCR and FAR have been calculated from ArcMap through the operation "spatial join" and following the formulas below — $$BCR(\%) = \frac{Bulding \ area}{site \ area} \times 100$$ $$FAR(\%) = \frac{Total\ Floor\ Area}{Site\ Area} \times 100$$ The first-hand numerical data regarding building height and the number of buildings on a single plot has created the basis for the quantitative analysis to get realistic outcomes for the calculation of the building coverage ratio (BCR) and floor area ratio (FAR). ## 3.6 Analytic Method of Space Syntax The spatial structure of Moghbazar modeled by 'Space Syntax' has been used to analyze the street accessibility. Eventually, all the maps of mixed functions and morphologies will be compared with the accessibility map to understand their interconnections. Prior research regarding the neighborhood of Dhaka represents that, the new localities represent intensified local area effect at the radius R=4, whereas the historic area characterizes its localities at the radius R=3 (Nilufar, 1997). Therefore, in this research, the local integration of Moghbazar area has been performed at radius R=4 to find out the accessibility. Local integration relates to the spatial properties up to four steps (R=4) away from the root. The two axial analyses had been performed in Moghbazar to show the integration level including and excluding the railway line within the study area. The syntactic analysis of accessibility has been done in the 'Depthmap'. Depthmap is a multi-platform software to perform a set of spatial network analyses which works at a variety of scales from building through small urban to whole cities or states (UCL Space Syntax, 2023). At each scale, the aim of the software is to produce a map of open space elements, connect them via some relationship and then perform graph analysis of the resulting network. Most studies of urban areas and cities in the space syntax literature use the techniques of axial map analysis in which axial lines represent straight lines of movement and visibility (Rashid, 2019). Through the axial analysis, the movement routes' degrees of (inter) connectivity can be examined using a graph-based approach (Van Nes and Yamu, 2021). For a strategic city model, all streets and roads whether incorporating a tram or bus line or are pedestrianized or are only accessible for public transport are treated in the same manner for generating an axial map (Van Nes and Yamu, 2021). In this study, the updated drawing of the street polygon of the study area (drawn from the DCC base map and updated from field survey) has been used to produce the axial map in Depthmap. Figure 3.2 shows the stepwise process and 3.3 illustrates the process involved in producing and analyzing axial maps from the open space structure of the urban grid. At first, road polygon map⁶ has been prepared in CAD by drawing enclosed polylines on the base map of Moghbazar. During drafting careful measures have been taken so that all the polylines enclosing each street polygon are properly joined. Then the resultant CAD drawing of the road polygons of Moghbazar has been imported into Depthmap. After that, an all-line map⁷ has been generated from the imported file using Depthmap tool. _ ⁶ Road polygons often contain the road right of way between blocks of parcels and often include the area occupied by sidewalks and curbs. (GIS Online; accessed on 02 April 2023) ⁷ The all-line map joins all pairs of inter-visible vertices in the map. The number of lines in all-line maps varies with the level of detail of the map, and it, therefore, has limited use. Finally, the all-line map has been converted into fewest-line map⁸ which is the axial representation of the street network. Axial map is used to derive the measure of the properties of the configuration of the street grid. In this way, spatial configurations in Moghbazar are modeled with axial lines, generated from the open space structure of the urban grid. Eventually, axial maps are
simulated by the 'Depth map' to do the spatial analysis of street configurations. 'Depth-map' generates colored maps, where different colors indicate different degrees of spatial order. In this study, the axial map was simulated to analyze the local integration. Integration (HH) at radius = 4 map shows higher to lower integration level of the street network with colored axial lines where blue line shows the lowest integration value, and red line shows the highest value. Higher values indicate higher integration level in the map. Integration value is the determination of accessibility for each road. According to the theory of space syntax, more integrated streets are more accessible ones and streets showing lower integration value are less accessible. Figure 3.2: Different Steps in the Process of Axial Map Generation and Analysis. _ ⁸ A fewest-line map attempts to cover the system with as few lines as possible. This fewest-line map is used for axial analysis. Reference: UCL Depthmap 7: Axial Line Analysis by Alasdair Turner available at https://archtech.gr/varoudis/depthmapX/LearningMaterial/depthmap7axial.pdf (Accessed: 3 April 2023) Figure 3.3: Steps of Modeling Axial Map from the Layout Plan of a Settlement. Source: (Khan F. M., 2013); Adapted from the Social Logic of Space, 1984. # 3.7 Summary This chapter discusses different methods to study the pattern and process of mixed-use functions in an unplanned area of Dhaka. This may work as a helpful framework for the morphological study of mixed-use functions in different urban fabrics. The next chapter points out the findings of the study based on the analysis of the functional mix and morphological maps. ## **CHAPTER 04** ## FIELD SURVEY AND FINDINGS #### 4.1 Introduction This chapter investigates the pattern and working process of mixed-use functions in connection with the associated morphology of an unplanned area – Moghbazar by juxtaposing and comparing the mixed-use and morphological maps. The mixed-use and morphological maps have been prepared based on the field survey. The chapter has been structured into four (4) parts. The first part (section-4.2) introduces the contextual background of the study area. The second part (section-4.3) narrates the pattern of mixed-use functions of the study area with a focus on the vertical mix, horizontal mix, and vertical extension of non-residential functions. The third part (section- 4.4) discusses the morphological aspects of the mixed-use functions in terms of road network and accessibility, plot, and density (building height, BCR, FAR). The last part (section-4.5) concludes the findings with a brief description. ### 4.2 Background of Moghbazar Maghbazar (মগবাজার) is among the old unplanned areas of Dhaka (RAJUK, 2022; Nilufar, 2010). The present boundary of Maghbazar demarks the west by Eskaton, the south by Ramna, the north by Tejgaon and the east by the Malibagh-Siddheswari area. The area is under Ramna thana and is administered partly by Dhaka North City Corporation and mostly by the Dhaka South City Corporation. This historic area can be traced back to the Mughal period (Ahsan, 1991). The name Maghbazar appears to be derived from the Maghs or Mogs of Arakan. The area where the Maghs were permitted by the Mughal subadar Ibrahim Khan Fath-I-Jang to build their settlements was subsequently known as Maghbazar (Haider, 1967). Even at the end of the nineteenth century (1801-1900), Maghbazar was a dense forest with ferocious animals (Nessa, 2012). With the pace of urban development, Moghbazar has developed as a spatially significant area for its proximity to the urban center and business district of Dhaka. Currently, the Figure 4.1: Study Area-Moghbazar. area is structured by two major primary roads —Outer Circular Road and Shaheed Tajuddin Ahmed Avenue. Hatirjheel Link Road, Moghbazar Road and DIT Road surround the site and a long secondary road—Old Elephant Road—crosses and connects the Moghbazar area with Hatirjheel Link Road. Outer Circular Road and the Mouchak-Mailbag flyover establish a connection between the study area and the city. The recent intervention of the Hatirjheel project has also made transportation easier in the area. The well connectivity of Moghbazar with other major parts of the city influences the area to hold significant functional diversity and mixes. As Moghbazar has existed since the Mughal period, the area has undergone many alterations and still encountering many changes. Presently, the area features unplanned morphological aspects with spontaneously developed mixed-use functions which have been elaborated in the following sections. This area also characterizes mix of built types, rents and middle and upper-middle groups of people (Huda, Zubayer, & Faruk, 2011). Most of the area consists of built-up spaces except for a limited number of parks, school fields, and graveyards (figure-4.1). ## 4.3 Mixed Functions This section describes the pattern of mixed-use functions in Moghbazar area in terms of vertical mix, horizontal mix, and the vertical extent of non-residential functions. #### 4.3.1 Vertical Mix Figure 4.2 demonstrates vertically prevailing mixed-use functions within the site and figure 4.4 represents the percentages of vertical mixes in the study area with bar charts. The map (figure 4.2) depicts a diversity of mixed functions in the study area with a dominance of live functions (49%). These live functions are mostly evident along the tertiary roads and lanes. There are a number of gated communities in the study area where mix of uses is restricted to develop. There is a prevalence of governed residential quarters like BTCL colony, Pubali bank quarter, Eastern apartments, and Century state apartments in the study area. These quarters/housings have open spaces that are restricted for public use, few community functions and residential units within their boundaries. Among the mixed functions, live-visit mixes are dominant (20%) and they are mostly found along the secondary, tertiary roads and nodes. Among other mixes, work-visit and live-work-visit mixes characterize the primary roads as these functions require good accessibility and visibility from primary roads. Along secondary and tertiary roads, these mixes (work-visit and live-work-visit) are evident closer to the major nodes. Live-work mixes are evident in the north, north-western side, a few on the south and close to the spatial center of the study area. Visit functions, are a significant part of mixed-use functions in the study area. Visit functions are evident along the primary, secondary and tertiary roads and nodes. Mainly northern side of the study area characterizes the visit functions. Visit functions like hospitals, mosques, restaurants, shopping malls, convention centers, super shops, and showrooms are dominant, along the primary road. Small shops like food shops, stationery, grocery, vegetable shop, beauty parlors, ATM booths and laundry are evident along secondary and tertiary roads. Visit functions like, small tea stalls are dominant around the site especially near the rail line. Besides live and visit functions, numerous work functions are apparent throughout the site, particularly along the secondary and tertiary roads as these functions don't require higher accessibility and visibility from the primary roads. Work functions like Government offices - BTCL (Bangladesh Telecommunication Company Limited), Vat Bhaban, RAB headquarter and Hatirjheel police station, different schools, colleges, medical colleges and technical institutes, etc. are evident along the primary, secondary and tertiary roads. Small offices and local enterprises are found only along the secondary and tertiary roads. Besides, a good number of workshops are found along a few secondary and tertiary roads and the Hatirjheel link road. The combination of residential and non-residential functions in buildings is found differently along primary, secondary and tertiary roads. In most of the cases along the primary road, non-residential functions prevail on the lower floor/s and residential functions develop on the upper floors. On the contrary, some buildings in the secondary and tertiary roads are found to have residential functions on the lower floor and non- Figure 4.2: Vertical Mix in the Study Area. Figure 4.3: Diverse Vertical Mixes Along Different Hierarchical Road. Table 4.1: Vertical Mix in the Study Area. | Vertical Mix | Functions | No of plot | Calculated Area | Percentage (%) | |--------------|--------------------|------------|-----------------|----------------| | | Live | 2048 | 628523 | 49 | | | Work | 112 | 99505 | 8 | | | Visit | 159 | 47769 | 4 | | | Live-Work | 50 | 49240 | 4 | | | Live-Visit | 480 | 260142 | 20 | | | Work-Visit | 61 | 36010 | 3 | | | Live-Work-Visit | 56 | 48504 | 4 | | | Vacant | 136 | 59985 | 5 | | | Under Construction | 129 | 43934 | 3 | | | Total | 3231 | 1273612 | 100 | Figure 4.4: Bar Chart Showing the Percentages of Vertical Mix in the Study Area. - C. According to the Number of Plots per Function/mixes. - D. According to the Percentage of Area per Function/mixes. A. A Section of the Southern Side of the Rail-line Figure 4.5: Sections of Vertical Mix of Uses in the Study Area. residential functions like doctor's chambers (visit), small schools (work), and prayer spaces (visit) on the upper floors. #### 4.3.2 Horizontal Mix Figure 4.6 illustrates the pattern of mix of functions at the ground level and figure 4.8 represents the percentages of horizontal mixes in the study area with bar charts. The map (Figure 4.6) shows that various types of mixed functions are evident throughout the site along the primary, secondary and tertiary roads. The area is dominated by live functions (49%) since it was developed as a middle-income residential area at its inception. Live functions are widespread throughout the study area specifically along the secondary and tertiary roads. On the other hand, visit functions and
work-visit mixes characterize primary roads (Outer Circular Road and Shaheed Tajuddin Avenue) as these functions require good accessibility and visibility from the primary road. It has been found that with the increase of depth from the primary roads to secondary and tertiary roads, live functions get prominence and mixed-use reduces. Among the mixed functions, the live-visit mix is predominant (19%) and they are mostly found along the secondary, tertiary roads and nodes. Among these live-visit mixes, a combination of residences, residential hotels, boys'/girls' hostels and condominiums with shops are common. Among the other mixes, mix of live-work-visit functions are found scattered throughout the study area but are mostly evident along secondary and tertiary roads. Live-work mixes are evident along the northern side and close to the spatial center of the area. Apart from the primary road, a few work-visit mixes are also found along the secondary and tertiary roads. Visit functions are evident throughout the site – mostly along the secondary, and tertiary roads and nodes. However, they are dominantly evident along the northwest and western part of the study area. Besides live and visit functions, numerous work functions are apparent throughout the site, particularly along the secondary and tertiary roads. These Work functions are most evident along the northern and north-western parts of the study area. Figure 4.6: Horizontal Mix in the Study Area. Figure 4.7: Diverse Horizontal Mix Along Different Hierarchical Roads. Table 4.2: Horizontal Mix in the Study Area. | | Functions | No of plot | Calculated Area | Percentage (%) | |------------|--------------------|------------|-----------------|----------------| | | Live | 2068 | 632654 | 49 | | | Work | 135 | 111910 | 9 | | Mix | Visit | 329 | 99674 | 8 | | | Live-Work | 33 | 38402 | 3 | | Horizontal | Live-Visit | 354 | 237135 | 19 | | rize | Work-Visit | 55 | 30422 | 2 | | H0 | Live-Work-Visit | 13 | 25511 | 2 | | | Vacant | 136 | 59985 | 5 | | | Under Construction | 129 | 43934 | 3 | | | Total | 3252 | 1279627 | 100 | Figure 4.8: Bar Chart Showing the Percentages of Horizontal Mix in the Study Area. - A. According to the Number of Plots per Function/ mixes. - B. According to the Percentage of Area per Function/ mixes. Street trading is an inseparable part of mixed-use at ground level. The pattern of street trading has been elaborated with the road network in section 4.4.1 to understand their interconnections. #### 4.3.3 Vertical Extension of Non-Residential Functions Figure 4.9 illustrates the vertical extension of non-residential functions and figure 4.11 illustrates a bar chart showing the percentage of the vertical extension of non-residential functions in the study area according to the number of individual buildings. The map (Figure 4.8) shows that most of the mixed-use functions have non-residential uses confined to the ground floor and these types of buildings are evident throughout the study area, particularly along the secondary and tertiary roads. Non-residential functions on the multiple floors of the building are evident along the primary roads (Outer Circular Road, Moghbazar Road and New Eskaton Road) and around the principal nodes. Non-residential functions on the multiple floors are also found along the secondary and tertiary roads, particularly on the northern, north-western and south-eastern sides of the study area. In this study area, non-residential functions are organized up to the sixteenth floor of the building. Typically, non-residential functions like shops develop on the ground floor. Other visit functions like, shopping malls, convention centers, etc. extend to the upper floors (more than 4th floor) in the study area. Besides, work functions like, educational institutes and offices extend to more than fourth floor of the building. ### 4.4 Mixed-use and Morphology This section describes the working process of mixed functions in the study area in connection with the associated morphological elements - roads, plots, and building densities. # 4.4.1 Road Network and Accessibility Figures 4.12 and 4.13 show the road layout of the study area where Figure 4.12 demonstrates the hierarchical layout of roads and streets of varying widths and Figure 4.13 categorizes the roads based on vehicular and pedestrian accessibility. The road Figure 4.9: Vertical Extension of Non-Residential Functions. A. Vertical Extention of Non-Residential Functions multiple Floors along Secondary Road B. Vertical Extention of Non-Residential Functions till Second to fourth Floors along Secondary Road C. Vertical Extention of Non-Residential Functions in More than 4th Floors along Primary Road D. Vertical Extention of Non-Residential Functions in More than 4th Floors along Primary Road Figure 4.10: Vertical Extension of Non-Residential Functions at different Floors along Different Hierarchical Roads. Table 4.3: Vertical Extension of the Non-Residential Functions in the Study Area. | S | No of Floors | No of buildings | Percentage (%) | |--|--------------|-----------------|----------------| | of the
etior | None | 3303 | 77 | | Vertical Extension of the
Jon-Residential Functions | Ground | 774 | 18 | | rtens | 1-2 Floor | 123 | 3 | | al Ex | 3-4 Floor | 59 | 1 | | Vertical Extens
Non-Residential | 4+ | 52 | 1 | | » Š | Total | 4311 | 100 | Figure 4.11: Bar Chart Showing the Percentage of Vertical Extension of Non-residential Functions in the Study Area According to the Number of Individual Buildings. network of the study area (Figure 4.12 and Figure 4.14) can be grouped into four categories. The first in the hierarchy are the primary roads (Outer Circular Road, Moghbazar Road and New Eskaton Road). The width of these roads ranges between 20 to 27 meters. These roads are accessed by cars, other motorized and non-motorized vehicles. These roads have sidewalks for pedestrians. Next in the hierarchy are secondary roads. Here, those roads are categorized as secondary roads (Old Elephant Road, Nayatola road and Modhubagh road) which are long and branched from the primary roads. The width of these roads range between 8 to 10 meters. These roads are accessed by cars, other motorized, and non-motorized vehicles and have separate pedestrian Figure 4.12: Hierarchical Road Layout. Figure 4.13: Road Network. Figure 4.14: Typical Sections of Different Hierarchical Roads. Figure 4.15: Different Hierarchical Roads. Table 4.4: Road Network of the Study Area | Type of Hierarchical | Road Names | Width (m) | Mode of Movement | | | Separate | |----------------------|---------------------|-----------|-----------------------|---------------------------|------------|-----------------------| | Road | | | Motorized
Vehicles | Non-Motorized
Vehicles | Pedestrian | Pedestrian
Walkway | | | Outer Circular Road | | ~ | <u> </u> | | Yes | | Primary Roads | Moghbazar Road | 20-27 | | | | | | | New Eskaton Road | | | | | | | | Old Elephant Road | 8-10 | ~ | ~ | \vee | Inconsistent | | Secondary Roads | Nayatola Road | | | | | | | | Modhubagh | | | | | | | Tertiary Roads | | 2-5 | ~ | $\overline{\mathbf{v}}$ | ~ | No | | Lane | | 1-3 | | ✓ | ~ | No | sidewalks inconsistently. Third, in the hierarchy, are tertiary roads. Here, tertiary roads mean those roads which are branched from secondary roads and are comparatively narrow. The width of these roads ranges between 2 to 5 meters. These roads are mostly accessed by motorized, non-motorized vehicles and pedestrians. Last, in the hierarchy are narrow lanes and dead-ends which are only accessed by pedestrians. The width of these lanes ranges between 1 to 3 meters. The primary and secondary roads of the study area divide the whole area into large blocks. This study also analyzes the accessibility of the road network through the syntactic analysis of the axial map. Figure 4.16 maps the accessibility of the road network. Two axial analyses had been performed where figure 4.16 (A) shows the analysis of integration without the rail line and figure 4.16 (B) shows the analysis with the rail line. According to the theory of space syntax, higher values of the axial lines indicate higher integration in the map. In figure 4.16 (A), the Old Elephant Road (secondary road) is the major integrated axis that runs through the spatial center of the area. Here, the absence of the railway line makes the integration stronger in the northern part along Old Elephant Road and Mirertek Road. The connectivity is relatively weak in the southern part of the area than in the northern part. In figure 4.16 (A), the integration of the primary roads and important secondary roads like Outer Circular Road, Moghbazar Road, Nayatola Road, Old Elephant Road, and Modhubagh Road is higher than the average integration level (1.28614) which means these roads have better accessibility in the study area. Figure 4.16: Accessibility Maps. Integration (HH), R=4 (A) without Rail line, (B) with Railline. From Map 4.16 (B), two major axes/highest integrated roads can be identified from the local integration analysis. One is the inter-city railway line, another is the Old Elephant Road. These two axes intersect near the Beapri Goli. Here, the railway line integrates the southern part of the Old Elephant Road with the Outer Circular Road. As the spatial influence of the railway line does not seem to have a strong impact on the overall configuration. In both maps (Figure 4.16 A and B), the portion of Old Elephant Road is more integrated with the northern part of the area near Modhubagh Road where the number of connecting streets is relatively high. An important road - Nayatola Road - Table 4.5: Integration [HH] R4 values of Primary, Secondary and a few Significant Tertiary Roads (Axial lines) in the Study Area (with the rail line). | SL
No. | Road name | Axial line
Reference | Integration
[HH] R4 | Average Integration
[HH]
R4 of the road | Average Integration [HH] R4 of
Moghbazar (with rail line) | | |-----------|-------------------|-------------------------|------------------------|--|--|--| | 1 | New Eskaton | 559 | 2.134976 | 2.152352 | 1.28614 | | | 1 | road | 515 | 2.169728 | 2.132332 | 1.28014 | | | | | 559 | 2.134976 | | | | | 2 | Outer Circular | 515 | 2.169728 | 2.21072575 | 1.28614 | | | 2 | Road | 420 | 2.244035 | 2.21072373 | 1.28014 | | | | | 234 | 2.294164 | | | | | _ | Moghbazar | 574 | 2.043623 | 2.195520 | 1 29614 | | | 3 | Road | 572 | 2.327455 | 2.185539 | 1.28614 | | | | | 353 | 2.584893 | | | | | | | 237 | 2.419958 | | | | | | Old Elephant | 209 | 2.553466 | 2.422472833 | 1 29614 | | | 4 | Road | 219 | 2.587512 | 2.422472833 | 1.28614 | | | | | 7 | 2.440574 | | | | | | | 201 | 1.948434 | | | | | | | 574 | 2.043623 | | | | | | | 586 | 2.292384 | | 1.28614 | | | | Nayatola Road | 575 | 1.838085 | | | | | | | 558 | 1.690429 | | | | | | | 538 | 1.552216 | | | | | | | 504 | 1.698876 | | | | | 5 | | 487 | 1.665197 | 1.816873154 | | | | | | 438 | 1.483129 | | | | | | | 423 | 1.704322 | | | | | | | 380 | 1.852177 |] | | | | | | 336 | 1.768685 | | | | | | | 282 | 1.921006 | | | | | | | 242 | 2.109222 | | | | | | | 178 | 1.61593 | | | | | 6 | Modhubagh
Road | 144 | 1.551727 | 1.706193 | 1.28614 | | | ٥ | | 105 | 1.776806 | 1.700193 | 1.20014 | | | | | 15 | 1.880309 | | | | | 7 | Rail line | 155 | 2.679457 | 2.679457 | 1.28614 | | Table 4.6: Integration [HH] R4 values of different Primary, Secondary and a Few Significant Tertiary Roads (Axial lines) in the Study Area (without the rail line). | SL
No. | Road name | Axial line
Reference | Integration
[HH] R4 | Average Integration [HH] R4 of the road | Average Integration [HH] R4
of Moghbazar (with rail line) | | |-----------|----------------------|-------------------------|------------------------|---|--|--| | 1 | New Eskaton | 514 | 2.158828 | 2.137444 | 1.24572 | | | 1 | road | 558 | 2.11606 | 2.137444 | 1.24372 | | | | | 514 | 2.158828 | | | | | 2 | Outer
Circular | 418 | 2.204748 | 2.18095225 | 1.24572 | | | | Road | 221 | 2.244173 | 2.100/3223 | 1.24372 | | | | | 558 | 2.11606 | | | | | 3 | Moghbazar | 571 | 1.969631 | 1.998952 | 1 24572 | | | 3 | Road | 573 | 2.028273 | 1.998932 | 1.24572 | | | | | 327 | 2.342659 | | | | | | | 224 | 2.415715 | | 1.24572 | | | | Old Elephant
Road | 202 | 2.593888 | 2.3991565 | | | | 4 | | 207 | 2.632373 | | | | | | | 195 | 2.453579 | | | | | | | 194 | 1.956725 | | | | | | | 573 | 2.028273 | | 1.24572 | | | | | 585 | 2.000114 | | | | | | Nayatola
Road | 574 | 1.684103 | | | | | | | 557 | 1.535519 | | | | | | | 537 | 1.287434 | | | | | | | 503 | 1.616225 | | | | | 5 | | 485 | 1.648037 | 1.741515308 | | | | | | 436 | 1.48068 | | | | | | | 421 | 1.707096 | | | | | | | 354 | 1.852177 | | | | | | | 309 | 1.768685 | | | | | | | 263 | 1.921114 | | | | | | | 228 | 2.110242 | | | | | 6 | Modhubagh | 171 | 1.624907 | 1.70870325 | 1.24572 | | appears relatively distinct in both the maps which connect Old Elephant Road with Moghbazar bus stop. The spectrum of the spatial grid around the railway line and some other connecting roads in the northern part, i.e., Nayatola Road, remained almost unchanged in both maps. Accessibility has a strong connection with mixed-use functions. A comparison of vertical mix with accessibility shows that better accessible roads characterize more mix of uses. For example, visit functions, work-visit and live-work-visit mixes need more traffic for their business. Hence, these functions are more evident along the primary roads (Outer Circular Road, Moghbazar Road) and principal nodes that have better connections with surroundings and good accessibility. On the other hand, the dominant mixes of the area- live-visit mixes, are more prominent along the important secondary roads like Old Elephant Road and Nayatola Road which are well connected with the primary roads. This study has also found connections between mixed functions and access modes. Roads accessed by motorized, non-motorized vehicles and pedestrians simultaneously develop more work-visit and live-work-visit mixes. On the other hand, roads that are only accessed by non-motorized vehicles and pedestrians mostly develop live functions. Figure 4.17 maps the street traders in the study area. Here, the location of street traders is juxtaposed with the vehicular and pedestrian access road network map (Figure 4.13). The circles shown here as locations of vendors have been exaggerated a bit for better visibility. A high association between road network and street traders is evident in the study area. The map depicts a higher concentration of street traders along the rail line, primary roads (Outer Circular Road) and secondary roads (Nayatola Road and Old Elephant Road) that are well connected and accessible from the main roads. Some street traders are also seen on a few tertiary roads specifically along the northern, northwestern and southern sides of the area. In the study area, three types of street tradersfixed, semi-fixed and mobile - are noticeable. They sell both food (fruits, vegetables, fish, meat, snacks, etc.) and non-food goods (clothes, utensils, lights, toys, accessories, etc.). Fixed vendors are those who have fixed locations for their regular vending on sidewalks or in any other public space. Fixed street traders generally choose their location in front of mixed-use buildings close to the work, visit functions and workvisit related mixes. They seem to act more like permanent shops. Semifixed vendors are those who vend with a moving cart and at times settle at specific locations. The semi-fixed vendors are more likely to develop around live functions and live-visit mixes. Lastly, mobile vendors are those who vend around walking or cycling with their goods or services with a convenient carrying mode. Mobile vendors are widespread throughout the site even in the lanes with minimum accessibility. These street traders are more prevalent near the visit, work functions and live-visit mixes. Some visit functions shelter the street traders by partially sacrificing the shop frontage/interface in exchange for wages. These street traders spill from the visit functions of the pedestrian spaces and hinder the movement flow. However, the intensification of street traders Figure 4.17: Location of Street Traders. ixed Street Traders clustering on the Pedestrian Space C. Fixed Street, Semifixed and Mobile Trader on both side of the Rail Line D. Semi-Fixed Street Trader on Secondary Road E. Mobile Street Trader on Pedestrian along Primary Road G. Mobile Street Trader in Secondary Road Figure 4.18: Fixed, Semi-fixed and Mobile Street Traders at Different Public Spaces. makes the public spaces active by attracting visitors and creating vibrant spaces with social interactions. #### **4.4.2** Plot Figure 4.19 maps the current pattern of plots in the study area and figure 4.20 shows bar chart showing the percentage of plot size in the study area according to the number of plots. The map (figure 4.19) demonstrates that this area has a combination of plots with various geographical shapes- irregular, quadrilaterals and polygons. The plot sizes differ to a great degree between 23 sqm (smallest) to 103099 sqm (largest). The most of the plots are small (0-250 sqm) and they are distributed throughout the site. These small plots are more common in the northern part than in the southern part. Large plots (above 1000 sqm) are apparent along the primary roads and a few secondary roads (Outer Circular Road, Old Elephant Road, Hatirjheel Link Road). A number of plots (3%) in the study area are found to be under construction. Many large plots (above 1000 sqm) are detected vacant within the site in the present condition. This phenomenon seems to indicate a future subdivision of the plots according to the usual pattern in the study area. At present, an association of plot sizes, types of functions and vertical extension of non-residential functions is evident in the study area. The majority of the large plots along the primary road (Outer Circular Road) are noticeably characterized by multi-storied work functions, work-visit and live-work-visit mixes. The non-residential functions extend to higher floors (more than 4 stories) in the bigger size plots. Mid-size plots (501-750sqm) mostly have live, work functions and live-visit mixes. Small plots mostly characterize live functions in the residential dominant part of the study area. ### 4.4.3 Building Density This section discusses densities regarding building height, building coverage ratios (BCR) and floor area ratio (FAR). The maps of building height, BCR and FAR have been under critical analysis with the functional mix maps in order to understand their working process in connection with these aspects. Figure 4.19: Plot Size. Figure 4.20: Bar Chart Showing the Percentage of Plot Size in the Study Area According to the Number of Plots. ### 4.4.3.1 Building Height Figure 4.21 illustrates the building height of the study area and figure 4.22 shows bar chart showing the percentage of building height in the study area according to the number of plots. The map (Figure-4.21) demonstrates that the building heights range between 1 - 17 stories. Buildings between 1-6 stories are prevalent within the study area and those are mostly evident along the secondary and tertiary roads. Higher stored (above 10 stories) buildings are scattered all over the site. However, those are dominant along the primary roads (Outer Circular Road, Shaheed Tajuddin Avenue) and major nodes. According to Building Construction Rules 2008, the permissible building heights of the area should be within 5-13 stories, considering the plot size and
road width ranging from 23-103099 sqm and 1-27 meters. DAP 2022-2035 has also referred Building Construction Rules 2008 for calculating the building height for Dhaka. However, most of the building height in the area depict deviations (below the standard range specified in the Building Construction Rules, 2008 for this area) from the regulation. The mix of functions occurs along both primary, secondary and tertiary roads of the study area irrespective of all heights. Yet, an association between building height, types of functions, and the vertical extension of non-residential uses is evident in the study area. Figure 4.21: Building Height. Figure 4.22: Bar Chart Showing the Percentage of Building Height in the Study Area According to the Number of Individual Building. Along the primary road and major node, building heights ranging from 4-6 and 7-9 stories have work, visit functions, work-visit and live-work-visit mixes. Higher-storied buildings mostly (10+ stories) hold live-visit mixes. Along the secondary and tertiary roads, buildings of 4-6 stories have live-visit mixes and buildings of 7-9 stories, generally, have live functions. 1-3 storied buildings mostly hold live-work mixes. The vertical extension of non-residential uses is mostly evident in buildings with more heights ranging from 7- 10 stories. There are buildings within the study area that contain non-residential functions till the top 17th floor of the building. ### 4.4.3.2 Building Coverage Ratio (BCR) Figure 4.23 illustrates the building coverage ratio within the study area and figure 4.24 shows bar chart showing the percentage of building coverage ratio in the study area according to the number of plots. The map (Figure 4.23) demonstrates that the majority of the plots have high coverage (60-100%). These higher coverage plots are dominant along the primary roads and a few secondary roads (Outer Circular Road, Old Elephant Road and Nayatola Road). The lower coverage plots (0-40%) are mostly located on the west side of the site. In cases of the governed quarters, BCR is mid-ranged (41-60%). But the gated community depicts the presence of higher BCR (61-100%) similar to the Figure 4.23: Building Coverage Ratio (BCR). Figure 4.24: Bar Chart Showing the Percentage of Building Coverage Ratio in the Study Area According to the Number of Plots. other residential developments. The highest plot coverage of the area is 98.18% and the lowest is 7.52%. According to the building construction rules 2008, BCR ought to be 50% -67.5%. DAP 2022-2035 has also referred the Building Construction Rules 2008 for calculating the building coverage ratio (BCR) for Dhaka. However, many of the constructions deviate from these rules. Most of the buildings have higher coverage (60%-100%) than the specified one for this area. In the study area, an affiliation between building coverage ratio (BCR), types of functions, vertical extension of non-residential functions and plots is evident. The plots with higher BCR (61-100%) along the primary road contain work-visit and live-work-visit mixes. These plots are also characterized by vertical extension of nonresidential functions up to higher floors. Conversely, the plots with higher BCR (61-100%) in the secondary and tertiary roads are characterized by live, visit functions and related mixes. In the study area, the smaller plots (0-500 sqm) have high building coverage ratio ranging from 61-100%. On the other hand, big plots (751-100 sqm) along the primary road (Outer Circular Road) have high coverage of 61-100%. ### 4.4.3.3 Floor Area Ratio (FAR) Figure 4.25 illustrates the Floor Area Ratio (FAR) of the study area and figure 4.26 shows bar chart showing the proportion of floor area ratio in the study area according to count of plots. The map (figure-4.25) demonstrates that the majority of the plots have low FAR (0-6) and these are distributed all over the site. Among the plots with high FAR, the majority are located along the primary road (Outer Circular Road). A few plots with higher FAR (8.1 -10) is evident along a secondary road (Old Elephant Road). The highest FAR of the area is 17.6 and the lowest is 0.1. DAP 2022-2035 presents two types of FAR rules, area-wise FAR and plot-wise FAR. Area-wise FAR of Moghbazar ranges from 1.8-2.2 (DNCC_ward 35-2, DNCC_ward 36-1.8 and DSCC_ward 19-2.2) and plot-wise FAR ranges from 1.5-4.5. According to the Building Construction Rules, 2008, FAR for this area ought to be from 3.15-6.5. Since most of the buildings were constructed before both of the mentioned regulations, deviations regarding FAR are found in the area. An association between FAR and types of function is evident in the study area. Along the primary road, plots with mid-FAR (4.1-6) are characterized by work, work-visit and livework-visit mixes. On the secondary and tertiary roads, plots with FAR ranging from 4.1-8 are dominated by live and live-visit mixes. ### 4.5 Summary This chapter has explored the pattern of mixed-use functions and its operation process in relation to the associated morphological elements. From its inception as a residential area, Moghbazar has emerged into a complex functional and physical form due to its spontaneous growth. Initially, the lack of community facilities influenced the development of mixed-use to cater to the demand of the area. Better accessibility, connectivity and building densities also influenced the densification of mixed functions in the area over time. Thus, the interconnections of diverse mixed functions and Figure 4.25: Floor Area Ratio (FAR). Figure 4.26: Bar Chart Showing the Percentage of Floor Area Ratio in the Study Area According to the Number of Plots. associated morphological elements have shaped the current unplanned fabric of Moghbazar area. # **CHAPTER 05** ### SUMMARY OF FINDINGS AND CONCLUSION #### 5.1 Introduction This thesis takes a morphological approach to investigate the pattern of mixed functions and their working process within an unplanned area of Dhaka-Moghbazar. This chapter draws the conclusion of this thesis with an affirmation of the significant findings of the investigation toward the core questions -What is the pattern of mixed-use functions in an unplanned area of Dhaka? -What are the interrelations between these mixed functions and the morphology of the study area — buildings, plots, access networks, and densities? The significant findings have been asserted into the seven (7) sections of this chapter. The first part (section 5.2) discusses the pattern of mixed functions in the study area. The second part (section-5.3) describes the morphological attributes of the study area. The third and fourth parts (sections 5.4 and 5.5) discuss the associated morphologies of the functional mix and the interconnections between them. The Fifth part (section 5.6) points out the deviation of the Planning Scheme from the actual pattern of mix in the study area. Lastly, section 5.7 provides conclusive remarks and proposes directions for future research. # 5.2 Pattern of Mixed Functions in the Study Area The spontaneous mix of uses in the study area associated with the legal framework reflects a complex land use pattern. The morphological pattern of mixed functions in the study area has been reviewed in the following segments in different spatial levels- vertical mix (stacked), horizontal mix (side-by-side at street level), vertical extension of non-residential functions and street trading. # 5.2.1 Vertical mix Diverse mixes comprising different combinations of functions are evident along the primary roads and a few secondary and tertiary roads. As the depth of the urban block increases, the mix of uses decreases, and live functions get prominence. - The live uses dominate the study area-at present. Since its inception, the area was developed as a residential neighborhood. Here, live functions are mainly private residences which are mostly seen on the tertiary streets and lanes. The dominance of live functions like residential hotels and hostels is evident on the primary roads. - In vertical mixes, the live-visit mix is the most prevalent and mostly evident along the secondary and tertiary roads. These live-visit mixes mostly contain shops and residences. These visit functions (shops) on the ground floor have developed in response to the common needs of the locality along the secondary and a few tertiary roads. But shops near the principal nodes and primary roads target the people outside the locality who come to work functions and other visit functions as consumers/ customers. - Among the other mixes, live-work mixes are mostly seen along secondary and tertiary roads. The presence of work-visit and live-work-visit mixes is evident along the primary roads. The non-residential mixes in the study area serve a large number of people inside and outside the locality. Hence, these mixes generally develop along primary roads as they seek good accessibility for their business. - Visit functions are significant part of mixed functions in the study area. Visit functions like, markets and bazar are evident along the primary and secondary roads. Small shops and super shops are seen along the secondary and tertiary roads. - Work functions are prevalent throughout the site. People do not need to travel far away to avail these work functions. Work functions that offer services to a comparatively large number of people like- banks, corporate offices, and medical colleges are evident along the primary road. The work functions like schools, small enterprises, and specialized offices that offer services to a selective or comparatively less number of people tend to develop along the secondary roads. A large number of workshops are also seen specially surrounding the periphery. These workshops are mainly service functions and they don't need good accessibility for their business. #### 5.2.2 Horizontal mix - In terms of the horizontal mix (at the street level), the area is also dominated by
residential (live) functions (49%). - Among the mixes at the street level, the live-visit mix is dominant (49%). Live-visit mixes comprise mostly residences and shops and these mixes are prevalent throughout the study area. These shops mainly serve residential needs and usually sell household products. - A typical pattern of horizontal mix in the study area comprises, work, visit functions and their mixes mainly prevail along the primary roads and live functions and livevisit mixes exist throughout the site, mainly along the secondary and tertiary roads. Better accessible roads tend to have more non-residential functions. ### 5.2.3 Vertical Extension of Non-Residential Functions - The general pattern of the vertical extension of non-residential functions shows that, along the secondary and tertiary roads, non-residential uses tend to confine to the ground floor whereas along the primary roads they extend up to multiple floors (table 5.1). Since functions along the primary roads get the most exposure, the non-residential functions there tend to extend to multiple floors. - However, in some locations particularly on the northern, north-western and south-eastern sides of the study area, non-residential functions are found on multiple floors along the secondary and tertiary roads. For the spatial proximity of these locations to the city, these areas seem to hold non-residential functions on multiple floors. - In the study area, ground floors are found to be mostly occupied by non-residential functions like shops, whereas shopping malls, convention centers etc. extend up to 4th floor of the building. Some work functions like educational institutes are also found to be extended up to the 4th floor, however, office functions extend further, sometimes to the top floor of the building. Table 5.1: Pattern of Vertical Extension of Non-residential Functions. | Vertical Extension of Non-
Residential Functions | Morphological Pattern | | |---|---|--| | Ground Floor | - Along the secondary and tertiary roads. | | | Till 1st Floor | - Along the secondary and tertiary roads. | | | Till 2 nd Floor | - Along the secondary and tertiary roads. | | | Till 3 rd Floor | - Along the primary roads. | | | More than 4 th Floor | Along the primary roads. On the bigger size plots. In the buildings with heights ranging from 7- 10 stories. On the plots with higher BCR (61-100%). | | In most of the cases along the primary roads, non-residential functions prevail in the lower floor/s and residential function develops in the upper floors. On the contrary, some buildings along the secondary and tertiary roads are found to have residential functions on the lower floor and non-residential functions like doctor's chambers (work), small schools (work), and prayer spaces (visit) are found on the upper floors. ### **5.2.4** Street Traders - Table 5.2 shows that three types of street traders (i.e., fixed, semi-fixed and mobile) selling foods and non-food goods are mostly found on the streets near mixed-use buildings in the study area. - From the distribution pattern of the street traders, it has been observed that their locational preferences are highly influenced by the road network. The street traders in the study area are found to be concentrated along the primary roads, secondary roads and the rail line. Better accessible roads welcome more fixed and semi-fixed traders with vehicles. Tertiary roads and lanes welcome more mobile street traders. - Fixed street traders are commonly located around visit, work and work-visit mixes. Most of the semi-fixed vendors tend to develop near the live functions. Mobile vendors, on the other hand, are found throughout the study area even along the least accessible lanes. Their locations are more common near the visit, work, and live-visit mixes (Table 5.2). - Frontages of some visit functions i.e., shops are often rented to the street traders. Therefore, they spread from the visit functions in the buildings to the front pedestrian zones on public spaces, thus, impeding the normal movement flow. - Street traders usually seek public spaces for their business without exchange of any wages. Since there are a good number of vacant lands (5%) and under-construction buildings (3%) in the study area at present, street traders are often found to cater around these vacant lands and under-construction buildings. Table 5.2: Pattern of Street Traders in the Study Area. | Type of Street
Trader | Total
Count
(approx.) | Interconnections with Road
Network | Interconnections with Mixed-
Functions | | |-----------------------------|-----------------------------|---|--|--| | Fixed
Street Traders | 186 | High association with the primary and secondary roads. | Develop close to buildings wivisit functions and work-visit | | | Semifixed Street
Traders | 404 | | Develop close to live functions and live-visit mixes. | | | Mobile
Street Traders | - | All hierarchical roads and lanes with minimum accessibility | Develop near the visit, work functions and live-visit mixes. | | ### 5.3 Morphological Attributes of the Study Area Moghbazar is one of the indigenous neighborhoods and resembles spontaneous spatial structure in the streets, plots, and building densities. #### Street - The street network of the study area is categorized into four hierarchical types - primary, secondary, tertiary roads, and lanes based on the width and mode of movement. - The primary and peripheral roads are wider and secondary and tertiary roads are winding and narrow which are also locally named. - The wide primary and peripheral roads are more integrated/ accessible and secondary and tertiary roads show a mid-integration value (Average Integration [HH] R4 of Moghbazar with rail line: 1.28614) that reduces further with the decrease in length. This depicts that those roads having more length are better accessible and shorter length roads and dead-ends show a lower value i.e., less accessibility. - The railline crossing the study area leaves the area with two morphological patterns. The north part has larger urban blocks and the south part shows a contrast. - All hierarchical roads primary, secondary, and tertiary characterize mixed functions. However, intensity of mix reduces with the hierarchy from primary to tertiary roads. ### **Plot** - The north part of the study area has smaller plots (0-500 sqm) and the south part accommodates the larger ones (751-1000+ sqm). It seems that the small plots occurred as a result of gradual subdivisions. - The plot shapes are irregular. This unplanned configuration and subdivisions of plots reflect the anticipation of the private owners to develop the plots according to their own interests. ### **Densities** ### Height - The building heights range between 1 -17 stories. The north part of the study area has most of the buildings with lower floors (1-9 stories) and the buildings in the south part have comparatively higher floors (6-20 stories). - The majority of the buildings are between 1-6 stories and those are mostly evident along the secondary and tertiary roads. - Buildings above the 10 stories mainly prevail along the primary roads and major nodes. ### **BCR** (Building Coverage Ratio) - The majority of the plots have high coverage (60%-80%). These higher coverage plots are dominant along the primary roads and along a few secondary roads. - The lower coverage plots (0-40%) are mostly located on the west part of the site. - The highest building coverage of the area is 98.18% and the lowest is 7.52%. ### FAR (Floor Area Ratio) - The majority of the plots have low FAR (0-6) and these are distributed all over the site. - Among the plots with high FAR, the majority are located along the primary roads. A few plots with higher FAR (8.1 10) are evident along a secondary road. - The highest FAR of the area is 17.6 and the lowest is 0.1. # 5.4 Mixed Functions and Morphology Table 5.3 summarizes the functional and morphological characteristics of the mix of uses in the study area. This table thus also fosters the understanding regarding the associated morphological pattern of mixed-use functions. Here, the morphological characteristics are summarized in a quantitative approach with percentages, averages, and values of individual attributes. Along with the percentages and averages, table 5.3 also shows the mode (the ranges that appears the most in the data set), for all the attributes under investigation. For better understanding, the values have been coded with graduated color from low to high for all the attributes. Both for vertical and horizontal mixes, live-visit mixes are the most prevalent in the study area. Table 5.3 shows that 56% of the plots are between 0-250 sqm which is the lowest range and the average plot size is 351 sqm which is also comparatively a lower value. This seems to be a representation of gradual plot subdivisions that characterize unplanned areas. In the study area, mixed functions are found to be developed on all sizes and shapes of plots. However dominant functions- live functions and live-visit mixes are commonly seen on small to mid-sized plots. In terms of building height, for the highest 53% of buildings, height ranges from 1-3 stories and the average height is 3.8 which also belongs to a lower height range. Since a major portion of the area was under development, the average value of building height shows a bit deviated scenario than usual. The same reason applies to FAR and in the sequence for the majority of buildings, FAR also Table 5.3: Functional and Morphological
Attributes of Mix of Uses in the Study Area. | Functional and
Morphological Attributes | Mode | Percentage | Average | |--|---------------|------------|---------| | Vertical Mixed Functions | Live-Visit | 20% | - | | Horizontal Mixed Functions | Live-Visit | 19% | - | | Street | Tertiary Road | _ | - | | Plot | 0-250 sqm | 56% | 312 sqm | | Building Height | 1-3 | 53% | 3.7 | | BCR | 61-80% | 33% | 63.41% | | FAR | 0-2 | 41% | 2.8 | | Low | | н | GH | remains in the lowest range (0-2) and the average value of FAR (2.2) is also closer to the lower range. In the study area, plots with low FAR mostly have live functions and plots with mid-FAR (4.1-6) are characterized by work, work-visit and live-work-visit mixes along the primary road. The plots with FAR ranging from 4.1-8 are dominated by live and live-visit mixes along secondary and tertiary roads. But the calculation of BCR depicts a different situation where the majority of the buildings (33%) belong to mid-high range values (60-80%) and the average coverage (63%) also follows this. In the study area, plots with high coverage have live-visit, work-visit and live-work-visit mixes. #### 5.5 Interconnections of Mixed Functions and Associated Morphologies The interconnection of mixed-use function and associated morphologies is evident in the study area in various spatial levels. - An association between mixed functions with street network is seen in the study area. The prominent live-visit mixes demonstrate their presence along the well-accessible secondary and tertiary roads. The work-visit mixes seek more accessibility and thus, cater along the (wider) primary roads. With the decrease in accessibility, mix of functions decrease significantly in the inner urban areas. - Also, the mixed functions have non-residential uses confined to the ground floor throughout the study area, particularly along the secondary and tertiary roads. Nonresidential functions on the multiple floors of the building are evident along the primary roads and around the principal nodes. At present, non-residential functions are organized up to the sixteenth floor in the building. - An association of plots with mixed functions shows that large plots hold more mix of uses than small plots. Live-visit mixes are evident, particularly in the small-mid sized plots. In contrast, large plots hold work-visit mixes. However, there are a few large plots in the study area which hold live-visit and live-work mixes. - The study area also demonstrates an interconnection between mixed functions, streets and densities. The mix of functions occurs more in the higher mid and high FAR plots. Mixes mostly intensify in the plots with higher coverage and buildings with more floors hold diverse mixes. These high-density developments are evident along the primary roads and occasionally along the secondary and tertiary roads. - Street traders (Fixed) densify on the rail line, primary roads, and secondary roads that are well connected and accessible from the main roads. Street traders are also seen on a few tertiary roads specifically along the northern, north-western, and southern sides of the area. Table 5.4: Table showing the Association of the Different Functions and Their Mixes with Associated Morphologies. | Mixed Functions | Morphological Pattern | |------------------------|---| | Live | -Along tertiary roads and lanes. - Along roads with lower integration value (≤1.70). - Develops on mid-sized plot (501-750sqm) and small plots (250-500 sqm and 0-250 sqm). - On plots with BCR (61-100%) on the secondary and tertiary roads. - On plots with FAR ranging from 4.1-8. | | Work | Along secondary roads. Along roads with mid-integration value (≥1.81). Develops on mid-sized plot (501-750sqm). In buildings of 4-6 and 7-9 stories. On plots with mid FAR (4.1-6). | | Visit | Along primary, secondary and tertiary roads. Along roads with high integration value (≤2.21). In buildings of 4-6 and 7-9 stories. On plots with higher BCR (61-100%) on the secondary and tertiary roads. | | Live-Visit | Along secondary and tertiary roads (with mid to low integration value). Develops on mid-sized plot (501-750sqm). Along primary road in 10+ storied buildings. Along secondary and tertiary roads in 4-6 storied buildings. On plots with high BCR (61-100%) on the secondary and tertiary roads. On plots with mid FAR ranging from 4.1-8. | | Live-Work | - Along secondary and tertiary roads(with high to mid integration value) In 1-3 storied buildings. | | Work-Visit | Along primary Roads (with high integration value). Situates on large plots (750-1000 sqm & 1000+ sqm). Along primary roads in 4-6 and 7-9 storied buildings. In 4-6 and 7-9 storied buildings. On plots with higher BCR (61-100%) along the primary road. On plots with mid-FAR (4.1-6). | | Live-Work-Visit | - Along primary roads (with high integration value) Situates on large Plots (750-1000 sqm & 1000+ sqm) In 4-6 and 7-9 storied buildings On plots with higher BCR (61-100%) along the primary road - On plots with mid-FAR (4.1-6) | Since it's a residential dominant area, a few incompatible mixes between urban functions occur but, in most cases, the synergy of diverse functions and their interconnections with associated morphologies benefits the areas for achieving vitality, and utilization of resources. #### 5.6 Deviation with the Planning Scheme It has been mentioned earlier in Chapter 01 that, the Planning Scheme directs that the entire Dhaka will be developed as mixed functions (DAP, 2022). The field investigation and analysis find that particularly in unplanned areas, mixed functions do not develop irrespective of the surrounding morphological elements but rather are highly interconnected with associated urban morphology. The more accessible roads sustain more mix of uses. The space syntax study of the street network of the study area demonstrates any of the four categories (primary, secondary and tertiary roads, and lanes) of roads/streets having integration value more than average attract more mix of uses. Hence, the statement of the Planning Scheme regarding the whole Dhaka to be developed as mixed functions deviates from the actual scenario of the working process of mixed functions. Therefore, regarding the future development of mixed functions of Dhaka, the Planning Scheme should be responsive to the specific attributes of the morphology of unplanned areas. #### **5.7** Conclusion and Scope for Future Research This thesis investigates the pattern and working process of mixed functions in an unplanned area of Dhaka. Here, empirical data has been collected and mapped to get an understanding of the operation of mix of uses. This section concludes the thesis with remarks and shows the scope for further research. From the traditional 'shophouses' within the fabric of old Dhaka to the current use trend, Dhaka's land use has always been mixed. Mixed functions mainly prevail in the unplanned settlements of Dhaka. Currently, the intensification of spontaneous mixed functions, their nature of functional complexity and mixing within the unplanned morphology have created a combined land-use pattern. The Government Planning Scheme has also acknowledged spontaneous mix of uses as the norm of the city and has suggested mixed functions for its future development. The schemes have also mentioned the threat due to the prevailing situation of unregulated mixes and promoted 'guided mixed-use' for future Dhaka. With an intention to reveal such a complex pattern of mixed functions, this study has employed an in-depth and up-to-date study of Moghbazar, as a representative of unplanned areas to comprehend the current pattern and process of spontaneous mixed-use functions in connection with the associated morphologies. This research depicts that, mixed-functions have developed following the common need of the people and this has been the norm of land-use changes in unplanned settlements in Dhaka. Literature asserts this norm prevails in other Asian cities too. Like the other cities, in unplanned areas of Dhaka, mixed-use comes with many integral advantages. Mixed-use functions create a retail-like environment within the neighborhood and give scope for further economic boots by bringing different uses at close proximity and customization of the services according to the local need. Mixeduse functions also play an important role in keeping the liveliness of the street throughout the day and to some extent ensuring a secure environment for daily activities. Although some literature have critically analyzed the challenges of unregulated mixed-use functions but mix of uses are considered vital for the vibrancy and diversity of urban life (Bakır, 2020; Green, 2020; Harris, 2017; Mualam, Salinger, & Max, 2019; Nahrin, 2008). This research also explored the ways how unplanned morphology sustains mixed-functions. Mixes have interconnections with associated morphologies and to get the full benefits of mixes in diverse morphologies, the synergy between mixed-use functions and associated morphologies is vital. Despite many emerging potentials of mixed-use functions in urban life, the spontaneously evolved mixed-use in unplanned morphology has not been the subject of many empirical studies. Hence, this thesis encourages future studies that will
investigate the operation of the spontaneous mix of uses in the similar contexts to investigate their similarity and/or differences. Also, studies regarding the incremental adaptive process of spontaneous mixes in unplanned morphology and the impact of the growth of mixes in the urban fabric may be conducted. This can help to formulate future guidelines for the further improvement of mixed functions in unplanned settlements. #### **BIBLIOGRAPHY** - Afroj, S., Hanif, F., Hossain, M. B., Fuad, N., Islam, I., Sharmin, N., & Siddiq, F. (2021). Assessing The Municipal Service Quality of Residential Neighborhoods Based on Servqual, AHP and Citizen's Score Card: A Case Study of Dhaka North City Corporation Area, Bangladesh. Journal of Urban Management, 10(3). - Ahmed, B., Hasan, R., & Maniruzzaman, K. M. (2014). Urban Morphological Change Analysis of Dhaka City, Bangladesh, Using Space Syntax. ISPRS International Journal of Geo-Information, 3(4) (1412-1444). - Ahmed, S. U., & Mohuya, F. A. (2013). Growth and Development of Dhaka North: 1971-2011. Journal of The Asiatic Society of Bangladesh (Hum.), 58(2). - Ahsan, R. (1991). Changing Pattern of The Commercial Area of Dhaka City. In S. U. Ahmed, Dhaka Past. The Asiatic Society of Bangladesh. - Aliaga, M., & Gunderson, B. (2000). Interactive Statistics. Prentice Hall: The Statistics Teacher Network. - Anunobi, A., Adedayo, O., Oyetola, S., Shuaib, I., & H.I, A. (2015). Assessment Of Parking Spaces in Mixed-Used Buildings in Kano State. Assessment, 27. - Aranha, J. (2013). The Southeast Asian Shophouse as A Model for Sustainable Urban Environments. International Journal of Design & Nature and Ecodynamics 8, 4. - Babbie, E. (2004). The Practice of Social Research. Cengage Learning. Belmont: A: Wadsworth/Thomson Learning. - Bahadure, S., & Kotharkar, R. (2015). Assessing Sustainability of Mixed-Use Neighbourhoods through Residents' Travel Behaviour and Perception: The Case of Nagpur, India. Sustainability, ISSN 2071-1050. - Bakır, N. Y. (2020). Bakir, N. Y. (2020). Replacing "Mixed Use" With "All Mixed Up" Concepts; A Critical Review of Turkey Metropolitan City Centers. Land Use Policy, 97. - Bek, M., Azmy, N., & Sameh, E. (2018). The Effect of Unplanned Growth of Urban Areas on Heat Island Phenomena. Ain Shams Engineering Journal 9, No. 4. - Bhowmik, S. K. (2005). Bhowmik, S. K. (2005). Street Vendors in Asia: A Review. Economic And Political Weekly. - Bhowmik, S. K. (2012). Street Vendors in Asia: Survey of Research. Street Vendors in The Global Urban Economy. Taylor & Francis Group. - Chowdhury, A. M., & Faruqui, S. (1991). Physical Growth of Dhaka City. In Dhaka; Past, Present & Future (S. U. Ahmed, Ed.). Asiatic Society of Bangladesh. - Conzen, M. P. (1969). Spatial Data from Nineteenth Century Manuscript Censuses: A Technique for Rural Settlement and Land Use Analysis. The Professional Geographer, 21(5). - Conzen, M. R. (1960). Alnwick, Northumberland: A Study in Town-Plan Analysis. Transactions And Papers, Institute of British Geographers. - Cortes, C. P. (2005). Morphologies Of Fragmentation and Continuity. In M. Barke (Ed.), Approaches in Urban Morphology, University of Northumbria. - Dhaka Metropolitan Development Plan DMDP: 1995-2015, (Vol. I & Ii). (N.D.). Rajdhani Unnayan Kartripakkha RAJUK (1997). - Delisle, J., & Terry, G. (2013). An Empirical Study of The Efficacy of Mixed-Use Development: The Seattle Experience. Journal Of Real Estate Literature 21, No. 1. - Dempsey, N., Brown, C., Raman, S., Porta, S., Jenks, M., Ones, C., & Bramley, G. (2010). Elements Of Urban Form. In M. J. Jones, Dimensions of The Sustainable City. London: Springer. - Denzin, N., & Lincoin, Y. (2000). Handbook Of Qualitative Research. London: SAGE. - Detail Area Plan 2016-2035. (2022). - Deyllas, J. (1997). Berlin In Transition: Analyzing the Relationship Between Land Use, Land Value and Urban Morphology. Proceedings Space Syntax Today. - Dimas, H. (2008). Street Vendors: Urban Problem and Economic Potential. Fakultas Ekonomi Universitas Padjajaran. Bandung. - Devnath, B. (2020, December 7). More Chaos Is Feared as The Revised DAP Allows Mixed Land Use. The Business Standard. - Dovey, K. (2016). Urban Design Thinking: A Conceptual Toolkit. London: Bloomsbury Publishing. - Dovey, K., & Pafka, E. (2014). The Urban Density Assemblage: Modelling Multiple Measures. Urban Design International, 19(1). - Dovey, K., & Pafka, E. (2017). 'What Is Functional Mix? An Assemblage Approach'. Planning Theory and Practice, 18(2). - Dovey, K., & Pafka, E. (2019). What Is Walkability? The Urban DMA. Urban Studies, Vol.57.1. - Duarte, P. G. (2009). Informal Settlements: A Neglected Aspect of Morphological Analysis. Urban Morphology,13(2). - Eisenhardt, K. M. (1989). Building Theories from Case Study Research. The Academy of Management Review, Vol. 14, No. 4. - Erickson, B., & Jones, T. L. (1997). Experiments With Settlement Aggregation Models. Environment And Planning B: Planning and Design, 24(6). - Ferdous, F., & Nilufar, F. (2007). Morphological Transformation and Evolution of Panthapath as A Commercial Belt of Dhaka City. Protibesh 11. - Fidel, R. (1984). The Case Study Method: A Case Study. Library And Information Science Research, 6(3). - Filho, M. B., & Sobreira, F. (2005). Assessing Texture Pattern in Slum Across Scales: An Unsupervised Approach. CASA Working Papers Series. - Firley, E., & C., S. (2011). The Urban Housing Handbook. John Wiley & Sons. - Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., . . . Coe, M. T. (2005). Global Consequences of Land Use. - Gentin, M. (2009). All Mixed Up, A Critical Analysis of Mixed Use, Unpublished M.S. Thesis, City Planning, University of New South Wales, Australia. - Goodall, B. (1972). The Economics of Urban Areas (Vol. 3). Pergamon Press Limited, Oxford. - Grant, J. (2002). Mixed Use in Theory and Practice: Canadian Experience with Implementing a Planning Principle. Journal of the American Planning Association, 68(1). - Grant, J. (2005). Planning The Good Community: New Urbanism in Theory and Practice. Routledge, Abingdon. - Green, J. (2020). Holistic Understanding of Mixed-Use Theory in Practice: Analyzing the Factors of Success in Three Kansas City Mixed-Use Developments. Unpublished Master Thesis. - Griffith, D. A. (2021). Urban Economics: Geography and Spatial Dependence Matter to The Sustainability of Cities. Specialty Grand Challenge Article, Frontiers in Sustainable Cities. - Groat, L., & Wang, D. (2013). Architectural Research Methods. Willy. - Haider, A. (1967). Dacca: History and Romance in Place Names, Dacca, 1967. In Dhakar Kotha. - Harris, M. (2017). Competitive Precinct Projects: The Five Consistent Criticisms Of "Global" Mixed-Use Megaprojects. Project Management Journal, 48(6). - Han, W., & Beisi, J. (2015). A Morphological Study of Traditional Shophouse in China and Southeast Asia. Procedia-Social and Behavioral Sciences, 179. - Haque, N. U. (2015). Flawed Urban Development. PIDE Working Paper, Pakistan Institute of Development. - Hassain, N. (2014). 'Street' As Accessible Open Space Network in Earthquake Recovery Planning in Unplanned Urban Areas. Asian Journal of Humanities and Social Sciences. - Herndon, J. D. (2011). Mixed-Use Development in Theory and Practice: Learning from Atlanta's Mixed Experiences. - Hillier, B., & Hanson, J. (1984). The Social Logic of Space. Cambridge University Press. - Hillier, B. (1988). Against Enclosure. Rehumanizing Housing 2. - Hillier, B., Perm, A., Grajewski, T., & Xu, J. (1992). Natural Movement: or, Configuration and Attraction in Urban Pedestrian Movement. - Hillier, B. (1996). Cities As Movement Economics. Cambridge University Press. - Hillier, B., & Hanson, J. (1984). The Social Logic of Space. Cambridge University Press. - Hillier, B. (1988). Against Enclosure. Rehumanizing Housing 2. - Hillier, B., Perm, A., Grajewski, T., & Xu, J. (1992). Natural Movement: Configuration and Attraction in Urban Pedestrian Movement. - Hillier, B. (1996). Cities as Movement Economics. Cambridge University Press. - Hillier, B. (1996). Space is the Machine: A Configurational Theory of Architecture. Space Syntax. - Hirt, S. A. (2016). Rooting Out Mixed Use: Revisiting the Original Rationales. Land Use Policy 50 - Hoek, J. (2008). The MXI (Mixed-Use Index) as Tool for Urban Planning and Analysis. Corporation and Cities, Delft University of Technology, 1-15. - Hoppenbrouwer, E., & Louw, E. (2005). Mixed-Use Development: Theory and Practice in Amsterdam's Eastern Docklands. European Planning Studies, 13(7). - Hossain, N. (2001). The Socio-Spatial Structure of 'Spontaneous' Retail Development in Dhaka City. University of London, University College London (United Kingdom). - Huda, S. S., Zubayer, M., & Faruk, O. (2011). Marketing Strategies of Retail Stores: An Evaluation of Grocery Shops of Dhaka City. Global Journal of Management and Business Research Volume 11 Issue 7 Version 1.0. - Husain, S., Yasmin, S., & Islam, M. (2015). Assessment of the Socioeconomic Aspects of Street Vendors in Dhaka City: Evidence from Bangladesh. Asian Social Science; 11(26). - Iovene, M., Córdova, G. F., Romice, O., & Porta, S. (2018). Towards Informal Planning: Mapping the Evolution of Spontaneous Settlements in Time. 24th ISUF International Conference. Book of Papers (Pp. 545-557). Editorial Universitat Politècnica De València. - Islam, I., & Adnan, S. (2011). Commercial Land-Use in Dhaka: An Analysis of Trends and Pattern. In S. U. Ahmed, 400 Years of Capital Dhaka and Beyond, Vol.3. Dhaka: Asiatic Society of Bangladesh, Dhaka. - Jahan, S. (2011). Dhaka: An Urban Planning Perspective. In 400 Years of Capital Dhaka and Beyond (Vol. III). Asiatic Society of Bangladesh. - Jacobs, J. (1961). Death And Life of Great American Cities. New York: Vintage Books. - Kamalipour, H. (2016). Urban Morphologies in Informal Settlements. Contour Journal, 1(2). - Karim, A. (1991). Origin And Development of Mughal Dhaka.
In Dhaka; Past, Present & Future. Asiatic Society of Bangladesh. - Khalifa, M. A. (2011). Redefining Slums in Egypt: Unplanned Versus Unsafe Areas. Habitat International 35, 1. - Khan, F. M. (2020). Functional Mix and Changing Morphology of Dhaka. Unpublished PhD Thesis. - Khan, F. M. (2020). Urban Transformation of Informal Mix in Dhaka. Context. Retrieved September 29, 2022, From: https://contextbd.com/urban-transformation-informal-mix-dhaka/ - Khan, F. M. (2021, September). Tracing The Pattern of Morphological Transformation of Shop-Houses in Tanti Bazar. Conference Paper. - Khan, N., & Nilufar, F. (2009). Spatial Logic of Morphological Transformation: A Paradigm of Planned Unplanned Areas in Dhaka City. In Proceedings of the 7th International Space Syntax Symposium, 52. - Khatun, H. (1991). Pre-Mughal Dhaka. In Dhaka; Past, Present & Future. Asiatic Society of Bangladesh. - Klarqvist, B. (1993). A Space Syntax Glossary. NA, 2. - Kropf, K. (2009). Aspects of Urban Form. Urban Morphology 13. - Kuffer, M., & Barrosb, J. (2011). Urban Morphology of Unplanned Settlements: The Use of Spatial Metrics in VHR Remotely Sensed Images. 1st Conference on Spatial Statistics 2011, Mapping Global Change. - Madanipour, A. (2001). Design of Urban Space: An Inquiry into A Socio-Spatial Process. Tehran: Publication of Pardazeshvabarnamerizi Shahri. - Mahadevia, D., Vyas, S., & Mishra, A. (2014). Informal Economy Monitoring Study: Street Vendors in Ahmedabad, India. Manchester. UK: WIEGO. - Mandal, K., Chatterjee, S., & Chatterjee*, N. D. (2016). Morphological Analysis of a Historical Urban Landscape: The Case of Tamluk, An Early Urban Centre of Eastern India. International Journal of Scientific and Research Publications. - Marpaung, B., & Silaban, N. W. (2018). The Spatial Study of Unplanned Settlements on The Coastal of Belawan Medan Fishermen Village. In IOP Conference Series: Earth and Environmental Science, 126. - Mashhoodi, B., & Pont, M. B. (2011). Studying Land-Use Distribution and Mixed-Use Patterns in Relation to Density, Accessibility and Urban Form. ISUF 2011: 18th International Seminar on Urban Form: Urban Morphology and The Post-Carbon City. - Mohsin, K. M. (1991). Commercial And Industrial Aspects of Dhaka in The Eighteenth Century. In S. U. Ahmed, Dhaka Past Present Future. The Asiatic Society of Bangladesh. - Mowla, Q. A. (2016). Colonial Spatial Planning Versus Local Tradition in The Morphology of Urban Dhaka. Dhaka: An Urban Reader, 01-28. - Moudon, A. V. (1997). Urban Morphology as An Emerging. Urban Morphology. - Mowla, Q. A. (2012). A Mega City of Persistence and Change. Urbanization In South Asia-Focus on Mega Cities. Cambridge University Press. - Mualam, N., Salinger, E., & Max, D. (2019). Increasing The Urban Mix Through Vertical Allocations: Public Floorspace in Mixed Use Development. Cities, 87. - Nahrin, K. (2008). Violation of Land Use Plan and Its Impact on Community Life in Dhaka City', Jahangirnagar Planning Review, 6. - Nahrin, K. (2019). Environmental Area Conservation Through Urban Planning: Case Study in Dhaka, Conservation. - Nes, A. V., & Yamu, C. (2021). Introduction to Space Syntax in Urban Studies 123. 3. - Nilufar, F. (1997). The Spatial and Social Structuring of Local Areas in Dhaka City-A Morphological Study of The Urban Grid with Reference to Neighborhood Character Within Naturally-Grown Areas. University of London, University College London (United Kingdom). - Nilufar, F. (2010). Urban Morphology of Dhaka City: Spatial Dynamics of Growing City and The Urban Core. Proceedings of International Seminar Proceedings on The Celebration of, Vol. 400. - O'Sullivan, A. (2012). Urban Economics. Eighth Edition, Mcgraw-Hill, Irwin. - Omar, N., & Syed-Fadzil, S. (2011). Assessment of Passive Thermal Performance for a Penang Heritage Shop House. The 2nd International Building Control Conference 2011. Procedia Engineering, 20. - Prasad, J. (2014). Emerging Urban Land Use Characteristics of Jhansi City. JAUTS, Vol. 2(1and 2). - Rabianski, J., Gibler, K., Tidwell, O., & Clements, J. (2009). 'Mixed-Use Development: A Call for Research', Journal of Real Estate Literature, 17(2), 205-230. Journal of Real Estate Literature, 17(2). - Rabianski, J., Karen, G., O. Alan, T., & J. Sherwood, C. (2009). Mixed-Use Development: A Call for Research. Journal of Real Estate Literature 17, No. 2. - RAJUK, R. U. (1997). DMDP: 1995-2015, Dhaka Metropolitan Development Plan, Volume 01. Dhaka. - RAJUK, R. U. (2020). Detailed Area Plan: 2016-2035. Dhaka. - Rashid, M. (2019). Space Syntax: A Network-Based Configurational Approach to Studying Urban Morphology. Springer Nature Switzerland, 199-251. - Ratnayake, R. (2015). Traditional Small Retail Shops Vs. Emerging Supermarkets and Shopping Malls in a Sri Lankan City. Bhúmi, The Planning Research Journal (Special Issue). - Recio, R. (2018). Who Governs The 'ungovernable'? Examining Governing Relations in Urban Informality. Unpublished PhD Thesis. - Rowley, A. (1996). Mixed-Use Development: Ambiguous Concept, Simplistic Analysis and Wishful Thinking? Planning Practice & Research, 11(1). - Ryan, B. (2006). Morphological Change through Residential Redevelopment: Detroit. Urban Morphology. - Sadeghi, G., & LI, B. (2019). Urban Morphology: Comparative Study of. Current Urban Studies, 7. - Schwanke, D. (1987). Urban Land Institute and Urban Development/Mixed-use Council, "Mixed-use Development Handbook", Washington, D.C.: Urban Land Institute. - Shakil, H., Begum, D., & Begum, A. (2017). Assessment of Housing and Community Status in Higher Middle Class Residential Areas of Dhaka City: A Case Study of Wari.". - Shankar, D., & Vidhya, D. (2013). Changing Dynamics of Land Use in Residential Neighbourhood of Vani Vilasa Mohalla, Mysore. International Journal of Modern Engineering Research (IJMER), 3. - Sim, D. (2019). Soft City: Building Density for Everyday Life. Island Press. - Sobreira, F., & Gomes, M. (2001). The Geometry of Slums: Boundaries, Packing and Diversity. Center for Advanced Spatial Analysis, Working Paper Series, UCL. - Student Research, Mcgill.CA. (N.D.). Settlement Patterns in Unplanned Areas. Retrieved Oct 10, 2022. - Swapan, M. S. H., Zaman, A. U., Ahsan, T., & Ahmed, F. (2017). Transforming Urban Dichotomies and Challenges of South Asian Megacities: Rethinking Sustainable Growth of Dhaka, Bangladesh. Urban Science, 1(4)(31). - Tipple, A. (2006). Employment And Work Conditions in Home-Based Enterprises in Four Developing Countries: Do They Constitute 'Decent Work'? Work, Employment and Society 20.1. - Tipple, A. G. (2005). 'The Place of Home-Based Enterprises in The Informal Sector: Evidence from Cochabamba, New Delhi, Surabaya and Pretoria. Urban Studies, 42(4). - Tu, K.-J., & Lin, L.-T. (2008). Evaluative Structure of Perceived Residential Environment Quality in High-Density and Mixed-Use Urban Settings: An Exploratory Study on Taipei City. Landscape And Urban Planning. - UCL Space Syntax, "Depthmapx", UCL Space Syntax, University College London. Available At: https://www.spacesyntax.online/software-and-manuals/depthmap/ [Accessed: 27 Feb 2023] - Ujang, N., & Shamsuddin, S. (2008). Place Attachment in Relation to Users' Roles in The Main Shopping Streets of Kuala Lumpur. Urban Design Issues in The Developing World, The Case Study in Malaysia and Nigeria. - Van Nes, A., Berghauser Pont, M., & Mashhoodi, B. (2012, January). Combination Of Space Syntax with Space matrix and The Mixed-Use Index: The Rotterdam South Test Case. In 8th International Space Syntax Symposium, Santiago De Chile. - Verburg, P., Kling2, H., & Hecky, R. E. (2003). Ecological Consequences of a Century of Warming in Lake Tanganyika. Science 301. - Verma, G. D. (1993). Inner City Renewal: Lessons from The Indian Experience*. Great Britain: Habftatii, YTL. Vol. 17. No. I. - Wakita, Y., & Shiraishi, H. (2010). Spatial Recomposition of Shophouses in Phnom Penh, Cambodia. Journal Of Asian Architecture and Building Engineering, Vol.9, No.1. - Weinberger, N. (2010). The Shophouse as A Tool for Equitable Urban Development: The Case of Phnom Penh, Cambodia. Unpublished Master Thesis, University of Pennsylvania. - Whitehand, J. W. (2001). British Urban Morphology: The Conzenian Tradition. Urban Morphology 5, 2. - Yamu, C., Nes, A. V., & Garau, C. (2021). Bill Hillier's Legacy: Space Syntax- A Synopsis of Basic Concepts, Measures, and Empirical Application. MDPI. - Yin, R. K. (1984). Case Study Research: Design and Methods. California: SAGE. - Yung, E. H., Langston, C., & Chan, E. H. (2014). Adaptive Reuse of Traditional Chinese Shophouses in Government-Led Urban Renewal Projects in Hong Kong. Cities 39. - Zainal, Z. (2007). Case study as a Research Method. Jornal Kemanusiaan bil.9. - Zakariaa, M. A., Kubota, T., & Toe, D. H. (2015). The Effects of Courtyards on Indoor Thermal Conditions of Chinese Shophouse in Malacca. 9th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) and the 3rd International Conference on Building Energy and Environment (COBEE). Hiroshima, Japan: Procedia Engineering 121. - Zakariaa, M. A., Kubotaa, T., & Toe, D. H. (2015). The Effects of Courtyards on Indoor Thermal Conditions of Chinese Shophouse in Malacca. 9th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) and the 3rd International Conference on Building Energy and Environment (COBEE). - Zaman, M. U., & Lau, S. S. (2000). City Expansion Policy versus Compact City Demand: The Case of Dhaka. In Compact Cities. - Zareen, N. (2009). A Study on the Morphological Transformation and the Emerged Built Forms along Gulshan Avenue Dhaka. Unpublished M. Arch Thesis. - Zarin, N. (2009). Study on the Morphological Transformation and the Emerged Built-forms along Gulshan Avenue, Dhaka. Unpublished M. arch Thesis. - Zhong, J., & Hui, E. C. (2021). Real Option and Vertical Mixed-use Development. International Journal of Strategic Property Management, 25. ## **APPENDICES** ### CHAPTER
01 ### **APPENDIX 1.1** SHAKHARI BAZAR (Imamuddin, a.h., Hassan, s.a. and Alam, w., 1990.) Figure: Mixed-use in Dhaka from the Inception. ### **APPENDIX 1.2** Figure: Mixed-use in Dhaka from the Recent Past. Figure: Thana boundary in Dhaka Map. Source: Banglapedia, National Encyclopedia of Bangladesh, 2014. Figure: DMDP Urban Area Plan (1995-2005) Indicated Zone-wise Land-use Map. (Source: DMDP Volume-2, Urban Area Plan, 1995-2005). Figure: B. The Historical Growth of Dhaka City. Source: Urban Planning Department, Dhaka City Corporation, 2007 (Ahmed, 2014). Figure: Base map of Ward no.36; Source: Dhaka City Corporation (DCC). Figure: Base map of Ward no 19; Source: DCC (Dhaka City Corporation). Figure: Base map of Ward no 22; Source: DCC (Dhaka City Corporation). Figure: Base map of Ward no 23; Source: DCC (Dhaka City Corporation). Figure: Base map of Ward no 35; Source: DCC (Dhaka City Corporation). Figure: Combined Base Map of wards -19, 35, 36, 22, 23. Figure: Moghbazar Map with Building Reference Number (Blue Text) and Plot Reference Number (Red Text). Appendix 4.2 Table: Base Data of Mapping for Individual Buildings and Plots. | Plot | Buildin | ASSESSMENT | Building | Building | Plot | Sum of
Storeys | Sum of
Building | Sum of
Building | Building | Floor | |---------------|--------------|---------------------|----------------------------|---------------------|---|-------------------|--------------------|--------------------|------------------|---------------| | Ref. | g Ref. | Building
Storeys | Footprint | Floor
Area | Area | of
Buildings | Footprin
t on | Floor
Area on | e Ratio | Area
Ratio | | No. | No. | | (sqm) | (sqm) | (sqm) | on Same
Plot | Same
Plot | Same
Plot | (BCR) | (FAR) | | 1 2 | 360
359 | 1 2 | 33,923
82,302 | 33.92
164.60 | 38,12
90.94 | 1 2 | 33.92
82.30 | 33,92
164.60 | 89.00
90.51 | 0.9 | | 3 | 358
357 | 3 4 | 110.828
117.875 | 332,48
471,50 | 288.39 | 7 | 228.70 | 803.99 | 79,30 | 2.8 | | <u>4</u>
5 | 356
355 | 6 | 149.279
165.890 | 895,68
995,34 | 162,37
186,31 | 6 | 149.28
165.89 | 895.68
995.34 | 91,94
89,04 | 5.5
5.3 | | 6 7 | 499
352 | 4 | 90,110 | 360.44
1208.22 | 118.43
133.31 | 4 11 | 90.11 | 360.44
1208.22 | 76.09
82.39 | 3.0
9.1 | | 8 9 | 351
805 | 1 4 | 43,448 | 43.45 | 87.66
105.24 | 1 4 | 43.45
87.50 | 43.45 | 49.56
83.14 | 0.5 | | 10 | 366
350 | 2 | 87,498
56,099
84,067 | 112.20
84.07 | 134.04 | 2 | 56.10
84.07 | 112.20
84.07 | 41.85
58.95 | 0,8 | | 12 | 349
348 | 1 | 31,975 | 31.97
164.23 | 2377.08 | 4 | 1818.88 | 3441.55 | 76.52 | 1.4 | | 20000 | 347 | 2 | 164.234
1622.673 | 3245.35 | 010100000000000000000000000000000000000 | - 20 | 303-03000000 | 2000000000 | Westres. | 0555 | | 13
14 | 367
390 | 1 4 | 55,677
176,179 | 55.68
704.72 | 96,39
213,34 | 1 4 | 55.68
176.18 | 55.68
704.72 | 57.76
82.58 | 0.6
3.3 | | 15 | 391
389 | 2 | 46,355
64,030 | 46.35
128.06 | 339.11 | 4 | 155.35 | 219.38 | 45,81 | 0.6 | | 40 | 392
369 | 3 | 44,963
124,819 | 44.96
374.46 | CO 4 E 4 | 42 | 274.00 | 1072.02 | 45.40 | 4.0 | | 16 | 368
370 | 4
5 | 51,323
98.837 | 205,29
494.18 | 604.54 | 12 | 274.98 | 1073.93 | 45.49 | 1.8 | | 17 | 393
394 | 3 2 | 81.603
67,877 | 244.81
135.75 | 129.51
135.80 | 3 2 | 81.60
67.88 | 244.81
135.75 | 63,01
49,98 | 1.9 | | 19
20 | 371
377 | 5 2 | 213.576
121.852 | 1067,88
243,70 | 337,30
199,91 | 5 2 | 213.58
121.85 | 1067.88
243.70 | 63.32
60.95 | 3.2
1.2 | | 21 | 372
373 | 3 2 | 94,649
51,833 | 283,95
103,67 | 196.57 | 3 | 94.65 | 283.95
120.27 | 48.15
56.01 | 1.4 | | 23 | 374
376 | 4 | 16,606
72,987 | 16.61
291.95 | 261.00 | 5 | 115.35 | 334.31 | 44.20 | 1.3 | | 19596 | 375
380 | 1 | 42,365
32,424 | 42.37
32.42 | lest resistation in | | 2000000 | Statement | | 0.0000 | | 24 | 378
379 | 1 | 56.359
43.448 | 56.36
43.45 | 266.06 | 3 | 132.23 | 132.23 | 49.70 | 0.5 | | 25 | 406
405 | 2 | 90,300
41,024 | 180,60
41,02 | 226.86 | 3 | 131.32 | 221.62 | 57.89 | 1.0 | | 26 | 459
460 | 5 | 84,578
69,719 | 422.89
69.72 | 217.58 | 6 | 154.30 | 492,61 | 70.92 | 2.3 | | 27 | 404
381 | 2 5 | 208.680
220.432 | 417.36
1102.16 | 322.12 | 2 | 208.68 | 417.36 | 64,78 | 1,3 | | 28 | 383
382 | 2 | 154.421
105.187 | 308.84
105.19 | 794.41 | 8 | 480.04 | 1516.19 | 60.43 | 1.9 | | 29
30 | 407
464 | 5 2 | 58,750
27,455 | 293.75
54.91 | 106,79
56,07 | 5 2 | 58.75
27.46 | 293.75
54.91 | 55.02
48.97 | 2.8 | | 31 | 461 | 4 | 35,789 | 143,15 | 130.99 | 7 | 79.16 | 273,28 | 60.44 | 2.1 | | 32 | 462
463 | 2 | 43.374
35.034 | 130.12
70.07 | 130.99
59.72 | 7 2 | 79.16
35.03 | 70.07 | 58.66
74.10 | 1.2 | | 33
34 | 408
409 | 5 | 112.681
197.769 | 450,72
988,84 | 151,89
278.00 | 5 | 112.68
197.77 | 450.72
988.84 | 74.19
71.14 | 3.0 | | 35 | 806
3845 | 1 | 49.525
33.291 | 99.05
33.29 | 153.88 | 3 | 82.82 | 132.34 | 53.82 | 0.9 | | 36
37 | 410
549 | 5 4 | 172.891
148.412 | 864,46
593,65 | 235.20
208.21 | 5
4 | 172.89
148.41 | 864.46
593.65 | 73.51
71.28 | 3.7
2.9 | | 38
39 | 550
551 | 3 4 | 154,743
218,441 | 464.23
873,76 | 216.11
279.97 | 3 4 | 154.74
218.44 | 464.23
873.76 | 71.60
78.02 | 3.1 | | 40 | 465
466 | 2 | 32.966
25.302 | 65.93
50.60 | 45.24
44.82 | 2 2 | 32.97
25.30 | 65.93
50.60 | 72.88
56.46 | 1.5 | | 42 | 467
412 | 3 4 | 40.706
51.998 | 122.12
207.99 | 66.47
95.24 | 3 4 | 40.71
52.00 | 122.12
207.99 | 61.24
54.59 | 1.8 | | 44 | 411
472 | 3 2 | 73.908
38.954 | 221.72
77.91 | 139.15
135.18 | 3 | 73,91 | 221.72 | 53.11 | 1.6 | | 45
46 | 473
474 | 2 5 | 37.140
69.936 | 74.28
349.68 | 135.18 | 5 | 76.09
69.94 | 152.19
349.68 | 56.29
62.66 | 1.1
3.1 | | 47 | 559 | 1 | 116.544 | 116.54 | 166,19
359,19 | 1 6 | 116,54 | 116.54
1388.37 | 70.13
64.42 | 0.7 | | 49 | 560
413 | 6 | 231.395
73.220 | 1388.37
292.88 | 451.26 | 14 | 231.39
306.16 | 1457.58 | 67.85 | 3.9 | | 49 | 414
415 | 5 | 74.907
158.033 | 374.54
790.16 | 451.26 | 14 | 306.16 | 1457.56 | 67.00 | 3.2 | | 50 | 417 | 5 | 43,684
153,421 | 218,42
767,11 | 381.64 | 10 | 197.11 | 985,53 | 51.65 | 2.6 | | 51
52 | 416
419 | 5 | 162,682
124,131 | 813.41
620.65 | 367.48 | 5 | 162.68 | 813.41
1222.15 | 69.44 | 3.1 | | 200 | 420
422 | 4 | 150.375
253,330 | 601.50
1013.32 | | | Contraction on | | 101000
400000 | | | 53 | 423
4549 | 4 | 246.474
146.632 | 985.90
146.63 | 819.59 | 9 | 646.44 | 2145.85 | 78.87 | 2.6 | | 54
55 | 427
558 | 5 | 249.950
144.806 | 1249.75
868.84 | 363.13
182.15 | 5
6 | 249.95
144.81 | 1249.75
868.84 | 68.83
79.50 | 3,4
4.8 | | 56
57 | 557
471 | 2 5 | 65,414
306,656 | 130.83
1533.28 | 181.34
373.68 | <u>2</u>
5 | 65.41
306.66 | 130.83
1533.28 | 36.07
82.06 | 0.7 | | 58 | 470
469 | 5 | 212.422
30.909 | 1062.11
30.91 | 250.97 | 5 | 212.42 | 1062.11 | 84,64 | 4.2 | | 59
60 | 468
424 | 3 2 | 336.668
160.845 | 1010.01
321.69 | 777.65 | 4 2 | 367.58
160.84 | 1040.91
321.69 | 47.27
53.12 | 1.3 | | 61 | 425
428 | 2 4 | 192,442
235,314 | 384.88
941.26 | 242.25 | 2 | 192,44 | 384.88 | 79.44 | 1,6 | | 62 | 429 | 1 | 105,966 | 105.97 | 549.81 | 6 | 470.59 | 1176.53 | 85.59 | 2.1 | | 63 | 4550
426 | 3 | 129,305
288,762 | 129,31
866.28 | 379.09 | 3 | 288.76 | 866,28 | 76.17 | 2.3 | | 64
65 | 1925 | 3 | 278.087 | 834.26 | 376.39
383.87 | 3 0 | 278.09
0.00 | 834.26
0.00 | 73.88
0.00 | 0.0 | | 66 | 802
803 | 8 | 298.756
257.859 | 2390.05
1547.15 | 340.43 | 8 6 | 298.76
257.86 | 2390.05
1547.15 | 67.53
75.74 | 5.4
4.5 | | 68
69 | 842
848 | 8 | 343.928
184.543 | 2751.42
184.54 | 672,76
524,17 | - 8
- 5 | 343.93
264.12 | 2751.42
502.83 | 51,12
50.39 | 1.0 | | 70 | 849
853 | 1 | 79.572
76.768 | 318.29
76.77 | 406.02 | 5 | 307.09 | 998.05 | 75.63 | 2.5 | | | 852
861 | 4 | 230.320
14.985 | 921,28
14,99 | - | | | | 0.0154 | | | 71 | 862
863 | 1 4 | 13.595
104.306 | 13.60
417.22 | 363,91 | 14 | 211.15 | 758.84 | 58.02 | 2.1 | | | 864
865 | 4 | 35,726
42,534 | 142,90
170,13 | 10.5 | | | | | | | 72 | 1264
1265 | 15
15 | 862.794
497.122 | 12941.91
7456.83 | 1285.61
1726.93 | 15
29 | 862.79 | 12941.91 | 67.11 | 10.1 | | 73 | 1261
1262 | 7 | 219.029
261.185 | 1533,20
1828,30 | 1726,93
1726,93 | 29
29 | 977.34 | 10818.33 | 56.59 | 6.3 | | 74 | 1263
1266 | 7 2 | 424.257
237.553 | 2969.80
475.11 | 1087.60 | 7 | 424.26 | 2969.80 | 39.01 | 2.7 | | 75 | 1267
1268 | 7 14 | 203,071
387,990 | 1421.50
5431.87 | 1521.62 | 23 | 828.61 | 7328.47 | 54.46 | 4.8 | | 76
77 | - | | - AAAAAAA | | 434.37
1329.17 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 78
79 | 1287 | 7 | 911.898 | 6383.28 | 1741.32
1413.21 | 7 0 | 911.90 | 6383.28 | 52.37
0.00 | 3.7 | | 80 | 4526
1286 | 8 5 | 343,213
277,832 | 2745.71
1389.16 | 1305.36 | 8 5 | 343.21
277.83 | 2745.71
1389.16 | 26.29
79.76 | 2.1 | | 82 | 3866 | 5 | 271,248 | 1356,24 | 1357.31 | 10 | 621.00 | 3105.00 | 45.75 | 2.3 | | 83 | 4525 | . 0 | 349.753 | 1748.77 | 113.18 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 84
85 | 1269 | 12 | 711.665 | 8539.98 | 103.31
756.95 | 0
12 | 711.66 | 0.00
8539.98 | 0.00
94.02 | 11.3 | | 86
87 | 1271
3818 | 6 | 529,972
195,446 | 3179.83
195.45 | 532.97
194.93 | 6 | 529.97
195.45 | 3179.83
195.45 | 99.44
100.26 | 1.0 | | 88
89 | 1272
1285 | 3 | 161,537
120,850 | 484.61
120.85 | 329.76
561.33 | 3 | 161.54
120.85 | 484,61
120,85 |
48.99
21.53 | 1.5
0.2 | | 90
91 | 1294 | .5 | 326,941 | 1634.71 | 554.77
1438.80 | 5
0 | 326.94
0.00 | 1634.71
0.00 | 58.93
0.00 | 2.9 | | 92 | 1293 | 2 | 46,214 | 92.43 | 234.67 | 6 | 0.00 | 0.00 | 0.00 | 0.0 | | 93 | 3865
1297 | 4
5 | 69.289
99.785 | 277.15
498.92 | 249.41
153.87 | 5 | 115.50
99.78 | 369.58
498.92 | 46.31
64.85 | 1.5 | | 95
96 | 1296
1295 | 5 | 154.022
108.064 | 770.11
540.32 | 194.53 | 5 | 154.02
108.06 | 770.11
540.32 | 79.18
76.75 | 4,0 | | 97 | 1299
1298 | 5 4 | 150.177
539.031 | 750.88
2156.13 | 1259.65 | 9 | 689.21 | 2907.01 | 54.71 | 2.3 | | 98 | 1300 | 1 | 367.237 | 367.24 | 713.42 | 1 | 367.24 | 367.24 | 51.48 | 0.5 | | 99 | 1301 | 7 | 73.225
375.732 | 73.23
2630.12 | 1135.81 | 8 | 448.96 | 2703.35 | 39.53 | 2.4 | | 100 | 1291 | 5 | 173.441
215.090 | 173.44 | 2193.65 | 6 | 388.53 | 1248.89 | 17.71 | 0.6 | | 101 | 1290
3867 | 4 | 408.972
207.964 | 1635.89
207,96 | 776.12
1465.91 | 9 | 408.97 | 1635.89
2282.87 | 52.69
31.88 | 1.6 | | 103 | 1289 | 8 | 259.364 | 2074.91 | 266.81 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sqm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|----------------------|---------------------|--------------------------------|-------------------------------------|----------------------------|---|---|---|--|---------------------------------| | 104 | 1318 | 6 | 46.666
184.585 | 280.00
1107.51 | 2204.32 | 30 | 894.63 | 5367.81 | 40.59 | 2.4 | | 104 | 1319
1315 | 6 | 135.919
201.621 | 815.52
1209.73 | 2204.32 | 30 | 694.63 | 3367.81 | 40.59 | 2.4 | | 105 | 1316
1321
1325 | 6 | 325.843
216.124 | 1955.06
1296.74
1659.00 | 483.72
480.83 | 6 | 216,12 | 1296,74 | 44.68
57.50 | 2.7
3.5 | | 106 | 1330
1329 | 12 | 276.500
777.081
541.284 | 9324.97
1082.57 | 1081.40 | 12 | 276.50
777.08 | 1659.00
9324.97 | 71.86 | 8.6 | | 108 | 1328
1327 | 5 | 438.001
354.303 | 2190.00 | 2501.38
734.88 | 7 | 979.28
354.30 | 3272.57
2125.82 | 39.15
48.21 | 1.3 | | 110 | 1326 | 6 | 567.028 | 3402.17 | 878.13
1253.57 | 0 6 | 0.00
567.03 | 0.00 | 0.00
45.23 | 0.0 | | 112 | 1324
1323 | 10 | 243.687
118.556 | 2436.87
1185.56 | 508.78
213.93 | 10 | 243.69
118.56 | 2436.87
1185.56 | 47.90
55.42 | 4.8 | | 114
115 | 3817 | 10 | 131.711 | 1317,11 | 483.03
284.12 | 10 | 131.71 | 1317.11 | 27.27 | 2.7 | | 116 | 1322 | 10 | 269.593 | 2695.93 | 414.16
706.07 | 10 | 0.00
269,59 | 0.00
2695.93 | 0.00 | 0.0 | | 118 | 1320
1308 | 6
5 | 261.466
143.478 | 1568.79
717.39 | 432.17
233.86 | 6
5 | 261.47
143.48 | 1568.79
717.39 | 60.50
61.35 | 3.6 | | 120 | 1309
1303 | 13 | 351.936
63.044 | 4575.17
63.04 | 639.09
326.89 | 13 | 351.94 | 4575,17 | 55.07 | 7.2 | | 121 | 3864
1274 | 1 4 | 103.621
170.819 | 103.62
683.28 | 326.89
344.61 | 2 | 166.66
170.82 | 166.66
683.28 | 50.98
49.57 | 2.0 | | 123
124 | 1275 | 6 | 280.331 | 1681.99 | 166.98
374.54 | 0
6 | 0.00
280.33 | 0.00
1681.99 | 0.00
74.85 | 0.0
4.5 | | 125
126 | 1276
1277 | 3 | 32.592
24.138 | 65.18
72.41 | 81.62
63.66 | 3 | 32.59
24.14 | 65.18
72.41 | 39.93
37.92 | 0.8 | | 127
128 | 1279
1278 | 5 | 64.679
90.007 | 323.39
450.03 | 116.65
150.84 | 5
5 | 64.68
90.01 | 323,39
450.03 | 55.45
59.67 | 2.8
3.0 | | ECENTRIC . | 1310
1313 | 1 | 22.146
29.282 | 22.15
29.28 | | | organism of | toreresent | 2000000 | 61/0 | | 129 | 1311
1312 | 1 | 72.075
37.469 | 72.08
37.47 | 533.19 | 5 | 190.25 | 190.25 | 35.68 | 0.4 | | 130 | 1314
1284 | 6 | 29.282
142.374 | 29.28
854.24 | 568.01 | 12 | 300.03 | 1800.16 | 52.82 | 3.2 | | 131 | 1283
1282 | 6 | 157.653
52.064 | 945.92
52.06 | 118.77 | 1 | 52.06 | 52.06 | 43.84 | 0.4 | | 132
133 | 1280
1281 | 8 | 223.887
624.867 | 895.55
4998.93 | 251,85
985,26 | 4
8 | 223,89
624,87 | 895.55
4998.93 | 88.90
63.42 | 3.6
5.1 | | 134 | 1332
1333 | 1 | 65.004
43.534 | 65.00
43.53 | 390.09 | 3 | 213.68 | 213.68 | 54.78 | 0.5 | | 135 | 1334
3868 | 5 | 105.145
201.676 | 105.14
1008.38 | 266.89 | 5 | 201.68 | 1008.38 | 75.56 | 3.8 | | 136 | 1331 | 6 | 209.056 | 1254.34 | 680.05
229.84 | 6 | 209.06
0.00 | 1254.34
0.00 | 30.74
0.00 | 1.8 | | 138
139
140 | 598
-
597 | 5 | 225.262 | 1126.31 | 351.12
354.39
431.67 | 5
0
5 | 225.26
0.00 | 1126,31
0.00
1220.76 | 64.16
0.00 | 3.2
0.0 | | 141 | 596
601 | 3 2 | 372.847
140.929 | 1118.54
281.86 | 538.61 | 3 | 244.15
372.85 | 1118.54 | 56.56
69.22 | 2.8 | | 142 | 3879
603 | 5 | 124.937
117.882 | 624.69
353.65 | 339.97 | 7 | 265.87 | 906.54 | 78.20 | 2.7 | | 143 | 602
599 | 3 4 | 311.064
99.375 | 933.19
397.50 | 850.85 | 6 | 428.95 | 1286.84 | 50.41 | 1.5 | | 144 | 600
3880 | 6 4 | 504 494
126 500 | 3026.97
506.00 | 1332.22 | 14 | 730.37 | 3930.47 | 54.82 | 3.0 | | 145 | 606
586 | 9 | 245.930
127.221 | 2213.37
1017.77 | 521.09 | 9 | 245.93 | 2213.37 | 47,20 | 4.2 | | 146 | 589
590 | 1 | 16.174 | 16.17 | 439.22 | 9 | 143.39 | 1033.94 | 32.65 | 2.4 | | 147 | 588
591 | 8 | 111,386
273,639
111,507 | 111.39
2189.11
111.51 | 2506.64 | 14 | 633.84 | 2961.22 | 25.29 | 1.2 |
 148 | 3878
584 | 5 | 137.305
377.880 | 549.22
1889.40 | 736.14 | 5 | 377.88 | 1889.40 | 51.33 | 2.6 | | 149 | 583
582 | 4 5 | 137.105
165.869 | 548.42
829.34 | 676.18
280.54 | 4 5 | 137.11
165.87 | 548.42
829.34 | 20.28
59.13 | 0.8 | | 151 | 581
569 | 5 | 182.426
500.497 | 912.13
2502.48 | 1022.07 | 5 | 182.43 | 912.13 | 17.85 | 0.9 | | 152 | 568 | 5 | 280 237 | 1401.18 | 661.53
531.95 | 10 | 780.73 | 3903.67 | 0.00 | 5.9 | | 10,2400 | 564
565 | 1 | 48.816
20.520 | 48.82
20.52 | / or respective to the | 0.00 | 2007/04/1000/05 | 1777 - 2000 - 200 | UPSCHOOL | 0000 | | 154 | 563
566 | 5 | 148.783
75.065 | 743.92
75.07 | 820.26 | 8 | 293.18 | 888.32 | 35.74 | 1.1 | | 155
156 | - | | 10,000 | | 768.78
307.10 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 157
158 | 804 | 5 | 228.548 | 1142.74 | 286.10
86.13 | 5 0 | 228.55
0.00 | 1142.74
0.00 | 79.88 | 4.0
0.0 | | 159
160 | - | | | - | 120.13
121.69 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 161
162 | 567 | 5 | 303.728 | 1518.64 | 365,48
86.00 | 5 | 303.73
0.00 | 1518.64
0.00 | 83.10
0.00 | 4.2
0.0 | | 163
164 | 458 | 5 | 1094.903 | 5474.52 | 166.25
1237.65 | 0
5 | 0.00 | 0.00
5474.52 | 0.00
88.47 | 0.0
4.4 | | 165
166 | 585
587 | 3 4 | 199.988
182.588 | 599.96
730.35 | 492.21
515.76 | 3
4 | 199,99
182,59 | 599.96
730.35 | 40.63
35.40 | 1.2 | | 167
168 | 592
3822 | 5 | 205.672
394.454 | 1234.03
1972.27 | 535.61
546.00 | 6
5 | 205.67
394.45 | 1234.03
1972.27 | 38.40
72.24 | 2.3
3.6 | | 169 | 593
4374 | 5 | 125.980
19.474 | 629.90
19.47 | 455.11
455.11 | 6 | 145.45 | 649,38 | 31.96 | 1.4 | | 170 | 3816
3821 | 5 | 356.372
582.970 | 1425.49
2914.85 | 529.37
759.38 | 5 | 356.37
582.97 | 1425.49
2914.85 | 67.32
76.77 | 3.8 | | 172 | 594 | 4 | 456.745 | 1826.98 | 655,84
321,24 | 0 | 456,74
0,00 | 1826.98
0.00 | 69.64
0.00 | 0.0 | | 174 | 457
456 | 5 | 179.890
456.013 | 899.45
456.01 | 368.88
619.12 | 5 | 179,89
456.01 | 899.45
456.01 | 48.77
73.66 | 0.7 | | 176
177 | 455
595
439 | 6 4 | 269 427
124 330
283 767 | 1616.56
497.32 | 349.06
250.06 | 6
4 | 269.43
124.33 | 1616.56
497.32 | 77.19
49.72 | 2.0 | | 178
179
180 | 439
441
440 | 1
6
5 | 283.767
198.887
74.163 | 283.77
1193.32
370.81 | 625.83
204.53
155.58 | 6
5 | 283.77
198.89
74.16 | 283,77
1193,32
370,81 | 45.34
97.24
47.67 | 0.5
5.8
2.4 | | 181 | 4531
4532 | 6 | 85.210
80.545 | 511.26
483.27 | 107.74 | 6 6 | 85.21
80.54 | 511.26
483.27 | 79.09
78.32 | 4.7 | | 183 | 435
443 | 5 | 376.976
632.262 | 1884.88
632.26 | 1481.28 | 7 | 1108.24 | 2616.14 | 74.82 | 1.8 | | 00,000 | 442
453 | 1 | 99.000
35.164 | 99.00
35.16 | | 200 | Distance A | 1000000000 | CONTRACTOR AND ADDRESS OF THE PARTY ADDRES | 20000 | | 184 | 434
454 | 1 | 183.059
35.370 | 183.06
35.37 | 320.47 | 2 | 218.22 | 218.22 | 68.09 | 0.7 | | 185 | 433 | 1 | 67.880 | 67.88 | 307.09
492.60 | 0 | 103.25
0.00 | 103.25 | 33.62
0.00 | 0.3 | | 187 | 436
444 | 1 5 | 64.664
239.610 | 64.66
1198.05 | 125.27
390.28 | 1 5 | 64.66
239.61 | 64.66
1198.05 | 51.62
61.39 | 0.5 | | 189
190 | 445
451 | 3
6 | 157.780
111.374 | 473.34
668.25 | 199.83
132.04 | 3
6 | 157.78
111.37 | 473.34
668.25 | 78.96
84.35 | 2.4
5.1 | | 191
192 | 3815
452 | 5 | 70.492
85.433 | 352,46
85,43 | 70.49
135.23 | 5
1 | 70.49
85.43 | 352.46
85.43 | 100.00
63.17 | 5.0
0.6 | | 193
194 | 447
3863 | 1 | 73.946
92.510 | 147.89
92.51 | 141,76
155,47 | 2 | 73.95
92.51 | 147.89
92.51 | 52.16
59.51 | 1.0
0.6 | | 195
196 | 446
450 | 1
5 | 153.647
210.076 | 153.65
1050.38 | 349.71
864.94 | 6 | 153.65
392.74 | 153.65
1233.05 | 43.94
45.41 | 1.4 | | 197 | 449
448 | 1 | 182 669
362 824 | 182.67
362.82 | 477.13 | 1 | 362.82 | 362.82 | 76,04 | 0.8 | | 198 | 1567
1568 | 16
16 | 220,314
252,580 | 3525.03
4041.27 | 626.81 | 32 | 472.89 | 7566.30 | 75.44 | 12.1 | | 199 | 293
292 | 16
16 | 622.066
157.967 | 9953.06
2527.47 | 995.82 | 32 | 780.03 | 12480.53 | 78.33 | 12.5 | | 200
201 | 1557
202 | 8
15 | 1414.120
389.497 | 11312.96
5842.46 | 1927.92
502.09 | 8
15 | 1414.12
389.50 | 11312.96
5842.46 | 73.35
77.58 | 5.9
11.6 | | 202
203 | 201
200 | 6 | 230.974
194.472 | 1385.84
1166.83 | 339.20
377.10 | 6 | 230.97
194.47 | 1385.84
1166.83 | 68.09
51.57 | 4.1
3.1 | | 204
205 | 196
197 | 15 | 151.439
444.214 | 151,44
6663,21 | 596.96
1316.22 | 1
15 | 151.44
444.21 | 151.44
6663.21 | 25.37
33.75 | 0.3
5.1 | | 206 | 199
198 | 8 | 301.075
283.700 | 1806.45
2269.60 | 366.16
377.48 | 6 8 | 301.07
283.70 | 1806.45
2269.60 | 82.22
75.16 | 6.0 | | 208 | 259
195 | 9 | 158 000
596,344 | 632.00
5367.09 | 713.34
808.26 | 4
9 | 158.00
596.34 | 632.00
5367.09 | 22.15
73.78 | 0.9
6.6 | | 210 | 291
189 | 16
8 | 393.581
480.535 | 6297,30
3844.28 | 558.48
607.02 | 16 | 393.58
480.53 | 6297.30
3844.28 | 70.47
79.16 | 11.3
6.3 | | 212 | 345
4347 | 9 | 152.716
246.840 | 916.29
2221.56 | 192.60 | 19 | 152.72
487.25 | 916.29
3708.31 | 79.29 | 4.8 | | | 4348
4349 | 2 | 167.654
72.758 | 1341.24
145.52 | , GE/MASS/CV. | 17905 | 0.000.000.000 | 5.5-0.7496F/A | 75.57 | 5.8 | | 214 | | | | | 875.83 | 0 | 0.00 | 0.00 | 0.00 | 1.00 | | Plot
Ref.
No. | Buildin
g Ref.
No. | Building
Storeys | Building
Footprint
(sqm) | Building
Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same | Sum of
Building
Footprin
t on
Same | Sum of
Building
Floor
Area on
Same | Building
Coverag
e Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|--------------------------|---------------------|--------------------------------|------------------------------------|-----------------------|---|--|--|---|---------------------------------| | 215 | 194 | 4 | 283 143 | 1132.57 | 375.30 | Plot
4 | Plot
283.14 | Plot
1132.57 | 75.44 | 3.0 | | 216 | 193
4528 | 4 8 | 74.898
260.487 | 299.59
2083.90 | 124.12
446.65 | 4 8 | 74.90
260.49 | 299.59
2083.90 | 60.34
58.32 | 2.4 | | 218 | 299
298 | 4 | 85.719
69.592 | 342.88
278.37 | 139.10
119.78 | 4 4 | 85.72
69.59 | 342.88
278.37 | 61.62
58.10 | 2.5 | | 220
221 | 188
187 | 4 | 158.406
225.132 | 633.62
900.53 | 225.88
369.24 | 4 | 158.41
225.13 | 633.62
900.53 | 70,13
60,97 | 2.8 | | 222 | 186 | 5 | 305.009 | 1525.04 | 418.53 | 5 | 305.01 | 1525.04 | 72.88 | 3.6 | | 223
224 | 185
184 | 6 | 252.420
137.143 | 1514.52
548.57 | 361.85
323.60 | 6 | 252.42
137.14 | 1514.52
548.57 | 69.76
42.38 | 1.7 | | 225
226 | 183
4529 | 5 | 318.961
119.772 | 1594.80
598.86 | 381.88
468.37 | 5
5 | 318.96
119.77 | 1594.80
598.86 | 83.52
25.57 | 1.3 | | 227
228 | 290
288 | 5 | 88.215
197.495 | 88.22
987.48 | 106.39
316.98 | 1
5 | 88.22
197.50 | 88.22
987.48 | 82.92
62.31 | 0.8 | | 229 | 289
287 | 4 | 297.902
230.871 | 1191.61
1385.23 | 408.11 | 4 6 | 297.90
230.87 | 1191.61
1385.23 | 73.00
74.91 | 2.9 | | 231 | 286 | 5 | 323,149 | 1615.75 | 909.89 | 14 | 609.47 | 4192.62 | 66.98 | 4.6 | | 232 | 4360
285 | 9
5 | 286.319
418.636 | 2576.87
2093.18 | 646.49 | 5 | 418.64 | 2093.18 | 64.76 |
3.2 | | 233
234 | 283
284 | 5 | 104.647
120.973 | 418.59
604.87 | 187.75
178.28 | 5 | 104.65
120.97 | 418.59
604.87 | 55.74
67.85 | 3,4 | | 235 | 182
276 | 3 | 192.035
90.280 | 576.10
270.84 | 495.40 | 6 | 282.31 | 846.94 | 56,99 | 1,7 | | 236 | 4346
181 | 8 | 99.103
567.842 | 792.83
3407.05 | 167.15
685.18 | 8
6 | 99.10
567.84 | 792.83
3407.05 | 59,29
82.87 | 4.7
5.0 | | 238 | 282 | 6 | 105.334 | 632.00 | 164.58 | 6 | 105.33 | 632.00 | 64.00 | 3.8 | | 239 | 275
274 | 3 | 97.315
97.937 | 194.63
293.81 | 144.06
162.82 | 3 | 97.32
97.94 | 194.63
293.81 | 67.55
60.15 | 1.4 | | 241 | 4361
180 | 6 | 91.043
162.341 | 91.04
974.04 | 136.78
236.08 | 6 | 91.04
162.34 | 91.04
974.04 | 66.56
68.76 | 0.7
4.1 | | 243
244 | 4366
152 | 6 | 300.032
164.267 | 1200.13
985.60 | 474.81
250.20 | 6 | 300.03
164.27 | 1200.13
985.60 | 63.19
65.65 | 2.5
3.9 | | 245 | 153 | 5 | 202.074 | 1010.37 | 250.74 | 5 | 202.07 | 1010.37 | 80.59 | 4.0 | | 246 | 151
150 | 6 | 143.302
125.989 | 286.60
755.93 | 368.18 | 8 | 269.29 | 1042.54 | 73.14 | 2.8 | | 247 | 149
4364 | 6 | 283.066
20.749 | 1698.40
20.75 | 693.01 | 6 | 283.07 | 1698.40 | 40.85 | 2.5 | | 248 | 3872
148 | 3 | 242.884
2539.853 | 728.65
7619.56 | 569.06
2540.73 | 3 | 2539.85 | 749.40
7619.56 | 46.33
99.97 | 1.3 | | 250 | 147
4352 | 10 | 349 162
192 629 | 3491.62
2696.80 | 496.06 | 10 | 349.16 | 3491.62 | 70.39 | 7.0 | | 251 | 4350 | 16 | 179.207 | 2867.32 | 687.35 | 46 | 546.90 | 8365.15 | 79.57 | 12.2 | | 252 | 4351
3841 | 16
6 | 175.064
170.566 | 2801.03
1023.40 | 306.72 | 6 | 170.57 | 1023.40 | 55.61 | 3.3 | | 253
254 | 4530
177 | 4 | 202.741
190.235 | 810.96
760.94 | 312.43
287.31 | 4 | 202.74
190.24 | 810.96
760.94 | 64.89
66.21 | 2.6
2.6 | | 255 | 179
3842 | 3 | 144.361
180.244 | 433.08
540.73 | 215.69
396.51 | 3 | 144.36 | 433.08 | 66,93 | 2.0 | | 256 | 178 | 1 | 92.801 | 92,80 | 396.51 | 4 | 273.05 | 633.53 | 68.86 | 1.6 | | 257 | 280
279 | 2 | 33.232
68.093 | 66.46
136.19 | 460.19 | 6 | 169.41 | 338.81 | 36.81 | 0.7 | | 258 | 278
174 | 6 | 68.083
231.312 | 136.17
1387.87 | 680.33 | 8 | 345.63 | 1616.50 | 50.80 | 2.4 | | 258 | 176
173 | 2 4 | 114.317
96.052 | 228.63
384.21 | 135.08 | 8 | 345.63
96.05 | 1616.50
384.21 | 71.11 | 2.4 | | 260 | 281
142 | 3 4 | 136.133
205.532 | 408.40
822.13 | 229.00 | 3 | 136.13 | 408.40 | 59.45 | 1.8 | | 261 | 143 | 4 | 225.928 | 903.71 | 594.32 | 8 | 431.46 | 1725.84 | 72.60 | 2.9 | | 262
263 | 175
172 | 5
7 | 267.008
146.075 | 1335.04
1022.53 | 317.61
182.44 | 5
7 | 267.01
146.08 | 1335.04
1022.53 | 84.07
80.07 | 4.2
5.6 | | 264 | 171
170 | 7 2 | 162.056
89.539 | 1134,39
179,08 | 232.29 | 7 | 162.06 | 1134.39 | 69.76 | 4.9 | | 265 | 277 | 2 | 92.044 | 184.09
128.25 | 286.60 | 4 | 181.58 | 363.17 | 63.36 | 1.3 | | 266
267 | 320
145 | 2 | 128 248
238 203 | 476.41 | 216.51
286.17 | 2 | 128.25
238.20 | 128.25
476.41 | 59.24
83.24 | 1.7 | | 268 | 144 | 3 | 251.349
357.352 | 502.70
1072.05 | 319.53 | 2 | 251.35 | 502.70 | 78.66 | 1.6 | | 269 | 3843
97 | 3
17 | 395.464
580.137 | 1186.39
9862.33 | 1048.63
729.84 | 6 | 752.82
580.14 | 2258.45
9862.33 | 71.79
79.49 | 13.5 | | 271 | 141 | 16 | 183.137 | 2930.19 | 846.46 | 27 | 504.15 | 6461.32 | 59.56 | 7.6 | | 272 | 140
138 | 11
6 | 321.012
705.727 | 3531.13
4234.36 | 837.98 | 6 | 705.73 | 4234.36 | 84.22 | 5,1 | | 273 | 96
95 | 7 2 | 319.018
266.610 | 2233.12
533.22 | 433.12
385.24 | 7 2 | 319.02
266.61 | 2233.12
533.22 | 73.65
69.21 | 5.2 | | 275 | 3890
346 | 6 | 139.061
437.569 | 834.36
2625.41 | 601.51 | 12 | 576.63 | 3459.78 | 95.86 | 5.8 | | 276 | 343 | 1 | 46.695 | 46.70 | 170.72 | 2 | 77.06 | 77.06 | 45.14 | 0.5 | | 277 | 344
166 | 1 | 30.362
97,288 | 30.36
97.29 | 127.98 | 1 | 97.29 | 97.29 | 76.02 | 0.8 | | 278 | 167
165 | 1 2 | 134.871
56.038 | 134.87
112.08 | 216.14 | 1 | 134.87 | 134.87 | 62.40 | 0.6 | | 279 | 164 | 4 | 70.074 | 280.30 | 187.21 | 6 | 126.11
92.88 | 392.37
371.52 | 67.36
76.43 | 2.1 | | 281 | 163
162 | 5 | 92.880
174.761 | 371.52
873.80 | 224.80 | 5 | 174.76 | 873.80 | 77.74 | 3.9 | | 282 | 161 | 1 | 50.852
49.841 | 50.85
49.84 | 320.13 | 3 | 147.68 | 147.68 | 46.13 | 0.5 | | 283 | 159
158 | 1 | 46,986
75,784 | 46.99
75,78 | 113.45 | 1 | 75.78 | 75.78 | 66.80 | 0.7 | | 284 | 157 | 1 | 105.582 | 105.58 | 268.50 | 1 | 105.58 | 105.58 | 39.32 | 0.4 | | 285 | 295
296 | 1 | 39.857
42.188 | 39.86
42.19 | 228.41 | 3 | 129.98 | 129.98 | 56.91 | 0.6 | | 286 | 294
119 | 3 | 47.931
140.303 | 47.93
420.91 | 203.72 | 3 | 140.30 | 420.91 | 68.87 | 2.1 | | | 121
122 | 1 | 23.702
39.126 | 23.70
39.13 | | | | | | | | 207 | 155 | 1 | 26.080 | 26.08 | ger re | 7 | 200.00 | 200.00 | 45.04 | 20.00 | | 287 | 154
120 | 1 | 129.538
18.579 | 129.54
18.58 | 655.55 | 4 | 299.00 | 299.00 | 45.61 | 0.5 | | | 156
118 | 1 1 | 16.362
45.609 | 16.36
45.61 | | | | | | | | 288 | 117 | 4 4 | 131.697
166.320 | 526.79
665.28 | 192.68 | 4 | 131.70 | 526.79 | 68.35 | 2.7 | | 289 | 3886 | 6 | 164.838 | 989.03 | 435.99 | 10 | 331.16 | 1654.31 | 75.96 | 3.8
5.5 | | 290 | 111 | 8 7 | 148.741
112.428 | 1189.93
786.99 | 217.28
177.10 | 8 7 | 148.74
112.43 | 1189.93
786.99 | 68,45
63,48 | 4.4 | | 292
293 | 115
113 | 4
8 | 102.360
82.363 | 409.44
658.90 | 160.42
138.03 | 4
8 | 102.36
82.36 | 409.44
658.90 | 63.81
59.67 | 2.6
4.8 | | 294 | 112
3887 | 10
7 | 86.681
152.580 | 866.81
1068.06 | 134.55 | 10 | 86.68 | 866.81 | 64.42 | 6.4 | | 295 | 3888 | 5 | 45.873 | 229.37 | 268.58
186.72 | 12 | 198.45 | 1297.43
717.48 | 73.89
76.85 | 4.8 | | 296
297 | 78
87 | 5 7 | 143.496
85.770 | 717.48
600.39 | 186.72
120.20 | 5
7 | 143.50
85.77 | 717.48
600.39 | 76.85
71.36 | 3.8
5.0 | | 298 | 109
110 | 1 4 | 56.662
72.276 | 56.66
289.10 | 203.82 | 5 | 128.94 | 345.77 | 63.26 | 1.7 | | 299
300 | 107
108 | 1 4 | 53.333
67.462 | 53.33
269.85 | 90.98
97.90 | 1 4 | 53.33
67.46 | 53.33
269.85 | 58.62
68.91 | 0.6
2.8 | | 301 | 106 | 1 | 141.446 | 141.45 | 197.68 | 1 | 141.45 | 141.45 | 71.55 | 0.7 | | 302
303 | 104
4527 | 6 4 | 79.740
45.191 | 478.44
180.76 | 162.07
108.99 | 6 4 | 79.74
45.19 | 478.44
180.76 | 49.20
41.46 | 1.7 | | 304
305 | 105
99 | 1 1 | 45.191
251.239 | 45.19
251.24 | 105.44
387.31 | 1 1 | 45.19
251.24 | 45.19
251.24 | 42.86
64.87 | 0.4 | | 306 | 3881
85 | 6 | 60.350
563.571 | 241.40
3381.43 | 91.26 | 4 | 60,35 | 241.40 | 66,13 | 2.6 | | 307 | 4354 | 3 | 98.161 | 294.48 | 1045.73 | 9 | 661.73
202.61 | 3675.91 | 63.28
76.05 | 3.5
4.6 | | 309 | 76
79 | 3 | 202.606
156.124 | 1215.63
468.37 | 266.40
250.83 | 3 | 156.12 | 1215.63
468.37 | 62.24 | 1.9 | | 310 | 77
75 | 5 | 218.054
249.865 | 1090.27
1749.05 | 291.66
287.53 | 5
7 | 218.05
249.86 | 1090.27
1749.05 | 74,76
86,90 | 3.7
6.1 | | 312 | 3889
4365 | 1 | 75.872
68.519 | 75.87
68.52 | 478.93 | 2 | 144.39 | 144.39 | 30.15 | 0.3 | | 313 | 74 | 6 | 393.286
294.149 | 2359.72 | 462.71 | 6 | 393.29 | 2359.72 | 85.00 | 5.1 | | 314 | 86 | 3 | | 882.45 | 317.99
110.71 | 3 | 294. 1 5
0.00 | 882.45
0.00 | 92.50
0.00 | 0.0 | | 316
317 | 123
127 | 3 2 | 68.479
40.830 | 205.44
81.66 | 140.63
71.03 | 2 | 68.48
40.83 | 205.44
81.66 | 48.69
57.48 | 1.5 | | 31B
319 | 126
128 | 5 | 187.838
124.784 | 939.19
748.70 | 237.55
172.64 | 5 | 187.84
124.78 | 939.19
748.70 | 79.07
72.28 | 4.0 | | 320 | 125 | 6 | 91.212 | 547.27 | 136,01 | 6 | 91.21 | 547.27 | 67.06 | 4.0 | | 321
322 | 66
67 | 7 3 | 147.765
71.650 | 1034.36
214.95 | 210.63
111.26 | 7 3 | 147.77
71.65 | 1034.36
214.95 | 70.15
64.40 | 1.9 | | 323 | 68
65 | 6 8 | 124.220
107.593 | 745.32
860.74 | 300.70 | 14 | 231.81 | 1606.06 | 77.09 | 5.3 | | 324 | 64 | 7 | 62.287 | 436.01 | 107.42 | 7 | 62.29 | 436.01 | 57,98
66,45 | 4.1 | | 325
326 | 63
60 | 2 | 94.523
133.316 | 189.05
266.63 | 142.24
196.51 | 2 | 94.52
133.32 | 189.05
266.63 | 66,45
67,84 | 1,3 | | 327
328 | 62
59 | 6 | 130.335
269.592 | 782.01
1617.55 | 219.32
390.02 | 6 | 130.33
269.59 | 782.01
1617.55 | 59.43
69.12 | 3.6
4.1 | | | 58 | 6 | 123.456 | 740.73 | 276.97 | 6 | 123.46 | 740.73 | 44.57 | 2.7 | | 329 | 94 | 15 | 698.159
303.069 | 10472.38
606.14 | 839.83
761.75 | 15
2 | 698.16
303.07 | 10472.38
606.14 | 83,13
39,79 | 12.5 | | 330
331 | 93 | | | | | | | | | | | 330 | 93
4337
90 | 6 9 | 320.347
454.082 | 1922.08
4086.74 | 553.01
605.60 | 9 | 320.35
454.08 | 1922.08
4086.74 | 57.93
74.98 | 3.5
6.7 | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sqm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |--|----------------------|---------------------|--------------------------------|-------------------------------------|----------------------------|---|---|---|---
---------------------------------| | 336 | 4342
50 | 4 5 | 87,660
199,414 | 350.64
997.07 | 102.03 | 4 | 87.66 | 350.64 | 85.92 | 3.4 | | 337
338 | 92
47 | 4 | 126,475
124,101 | 505.90
496.40 | 515.13
169.05 | 9 | 325.89
124.10 | 1502.97
496.40 | 63.26
73.41 | 2.9 | | 339
340 | 48
49 | 5 | 178.833
268.381 | 894.16
1341.90 | 319.63 | 5 | 178.83
268.38 | 894.16
1341.90 | 55.95
102.14 | 2.8 | | 341
342 | 46
45 | 3 4 | 139.836
131.827 | 419.51
527.31 | 181.25
172.01 | 3 4 | 139.84
131.83 | 419.51
527.31 | 77.15
76.64 | 2.3 | | 343
344 | 43
44 | 6 | 329.594
160.652 | 1977.56
963.91 | 330.60
92.62 | 6 | 329.59
160.65 | 1977.56
963.91 | 99.70
173.45 | 6.0
10.4 | | 345
346 | 2791 | 5 | 352.292 | 1761.46 | 116.12
100.02 | 5 | 0.00
352.29 | 0.00
1761.46 | 0.00
352.21 | 0.0
17.6 | | 347
348 | 4340 | 9 | 312.199 | 2809.79 | 140.64
997.78 | 17 | 0.00
590.02 | 5032.38 | 0.00
59.13 | 5.0 | | 349 | 42
91 | 8 4 | 277.824
324.461 | 2222.59
1297.84 | 470.47 | 4 | 324.46 | 1297.84 | 68.97 | 2.8 | | 350
351 | 4341
57 | 5 | 347.816
112.178 | 2782.53
560.89 | 552.89
133.37 | 8
5 | 347.82
112.18 | 2782.53
560.89 | 62.91
84.11 | 5.0
4.2 | | 352
353
354 | 56
55
54 | 5
6
8 | 137.693
279.973
187.926 | 688.46
1679.84
1503.41 | 189.33
318.28
323.69 | 5
6
8 | 137.69
279.97
187.93 | 688.46
1679.84
1503.41 | 72.73
87.96
58.06 | 3.6
5.3
4.6 | | 355
356 | 53
51 | 6 | 282.238
352.712 | 1693.43
2116.27 | 324.65
597.59 | 6 | 282.24
352.71 | 1693.43
2116.27 | 86.94
59.02 | 5.2 | | 357
358 | 2792
52 | 2 | 255,483
131,464 | 510.97
394.39 | 514.45
141.16 | 2 3 | 255.48
131.46 | 510.97
394.39 | 49.66
93.13 | 1.0 | | 359 | 83
84 | 5 | 83.919
46.230 | 419.59
231.15 | 687.42 | 17 | 431.06 | 278000 WW99 | 62.71 | 2.5 | | 308 | 3884
3885 | 3 4 | 114.614
186.295 | 343.84
745.18 | | | | 1739.76 | | 333.5.1 | | 360
361 | 82
81 | 7
5 | 280.313
80.296 | 1962.19
401.48 | 396.45
140.81 | 7
5 | 280.31
80.30 | 1962.19
401.48 | 70.71
57.02 | 4.9
2.9 | | 362 | 80
3882 | 6 | 106.627
139.023 | 639.76
834.14 | 454.94 | 19 | 355.13 | 2240.27 | 78.06 | 4,9 | | 363 | 3883
335 | 7
5 | 109.481
121.793 | 766.37
608.96 | 156.36 | 5 | 121.79 | 608.96 | 77.89 | 3.9 | | 364
365 | 336
337 | 5 | 194,281
197,946 | 971.40
989.73 | 231.62
259.89 | 5 | 194.28
197.95 | 971.40
989.73 | 83.88
76.16 | 3.8 | | 366
367 | 73
342 | 7 | 77.667
59.491 | 543.67
59.49 | 108.95
94.69 | 7 | 77.67
59.49 | 543.67
59.49 | 71.29
62.83 | 5.0
0.6 | | 368
369 | 341
338 | 2 | 54.519
62.569 | 109.04
125.14 | 83.62
110.79 | 2 | 54.52
62.57 | 109.04
125.14 | 65.20
56.47 | 1.3 | | 370
371
372 | 72
69
70 | 5
6
6 | 254.442
306.889
313.159 | 1272.21
1841.33
1878.96 | 318.34
371.01
362.45 | 5
6
6 | 254.44
306.89
313.16 | 1272.21
1841.33
1878.96 | 79.93
82.72
86.40 | 4.0
5.0
5.2 | | 373
374 | 71 | 5 | 279,756 | 1398.78 | 350.33
284.58 | 5 | 279.76
0.00 | 1398.78
0.00 | 79.85
0.00 | 4.0
0.0 | | 375
376 | - | | | | 135.42
563.23 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 377
378 | 23 | 1 | 146,961
75,440 | 146,96
75,44 | 152.67
75.78 | 1 1 | 146.96
75.44 | 146.96
75.44 | 96.26
99.56 | 1.0 | | 379
380 | 22 | 3 | 115,445 | 346.34 | 107.77 | 3 | 0.00
115.45 | 0.00
346.34 | 0.00
43.39 | 0.0 | | 381 | 21
20 | 4 | 265,445
87,580 | 1061.78
350.32 | 396.88 | 8 | 353.02 | 1412.10 | 88.95 | 3.6 | | 382 | 18
19 | 1 6 | 110.233
393.045 | 110.23
2358.27 | 903.38 | 7 | 503.28 | 2468.50 | 55.71 | 2.7 | | 383 | 27
25 | 4
6 | 30.185
26.831 | 120.74
160.98 | 557.87 | 40 | 242.50 | 751.46 | 20.20 | 12 | | 383 | 28
26 | 3 3 | 92.439
64.139 | 277.32
192.42 | 337.87 | 16 | 213.59 | 751.46 | 38.29 | 1.3 | | 384 | 32
33 | 3 4 | 102.534
276.534 | 307.60
1106.13 | 868.97 | 7 | 379.07 | 1413.73 | 43.62 | 1.6 | | 385 | 297
29 | 3 | 170,348
90,570 | 681.39
271.71 | 342.12 | 4 | 170.35 | 681.39 | 49,79 | 2.0 | | 386 | 30
31 | 1 | 80.657
48.502 | 80,66
48.50 | 369,11 | 5 | 219.73 | 400.87 | 59.53 | 1.1 | | 387
388 | 34
35 | 6 | 93.545
103.893 | 561.27
623.36 | 144.29
156.89 | 6 | 93.54
103.89 | 561.27
623.36 | 64.83
66.22 | 3.9
4.0 | | 389 | 36
37 | 5 4 | 84,917
160,164 | 424.58
640.65 | 152.61
168.32 | 5 4 | 84.92
160.16 | 424.58
640.65 | 55.64
95.16 | 3.8 | | 391
392 | 38
39 | 5 | 103.902
137.399
135.457 | 623.41
687.00 | 128.71 | 6
5 | 103.90
137.40 | 623.41
687.00 | 80.73
92.35 | 4.8
4.6 | | 393
394 | 40
12 | 3
4
4 | 122,890 | 406.37
491.56 | 149.44 | 3 4 | 135.46
122.89 | 406.37
491.56 | 90.64
84.86 | 3.4 | | 395
396
397 | 11
13
15 | 5 2 | 107.249
149.346
87.232 | 429.00
746.73
174.46 | 127.98
207.85
93.60 | 5
2 | 107.25
149.35
87.23 | 429.00
746.73
174.46 | 83.80
71.85
93.19 | 3.4
3.6
1.9 | | 398
399 | 16
10 | 7 4 | 81.238
199.190 | 568.67
796.76 | 116.37 | 7 4 | 81.24
199.19 | 568.67
796.76 | 69.81
82.07 | 4.9 | | 400
401 | 9 | 4 4 | 145,333
200,767 | 581.33
803.07 | 211.30 | 4 | 145.33
200.77 | 581.33
803.07 | 68.78
82.94 | 2.8 | | 402
403 | 98 | 10 | 232.717 | 2327.17 | 349.50
172.48 | 10 | 232.72 | 2327.17 | 66.59
0.00 | 6.7 | | 404
405 | 1 8 | 6
5 | 647.956
835.493 | 3887.74
4177.47 | 852.72
881.17 | 6
5 | 647.96
835.49 | 3887.74
4177.47 | 75.99
94.82 | 4.6 | | 406
407 | 6 7 | 5 | 201.022
167.127 | 804.09
835.63 | 209.33
170.25 | 5 | 201.02
167.13 | 804.09
835.63 | 96.03
98.16 | 3.8
4.9 | | 408
409 | 5
4 | 6 4 | 97.538
105.860 | 585.23
423.44 | 155.42
167.33 | 6
4 | 97,54
105.86 | 585.23
423.44 | 62.76
63.27 | 3.8
2.5 | | 410 | 3 | 5 | 93.174 | 320.91
465.87 | 83.09
132.73 | 5 | 80,23
93.17 | 320.91
465.87 | 96.55
70.20 | 3.9
3.5 | | 412 | 17
233 | 6 | 185.074
420.693 | 740.30
2524.16 | 218.83
580.42 | 6 | 185.07
420.69 | 740.30
2524.16 | 84.57
72.48 | 3.4
4.3 | | 414 | 234
1558 | 8 | 142.743
527.478 | 570.97
4219.82 | 277.03
783.83 | 8 | 142.74
527.48 | 570.97
4219.82 | 51.53
67.30 | 2.1
5.4 | | 416 | 218
217 | 5 | 221.452
224.414 | 664.36
1122.07 | 340.31
394.97
218.28 | 3
5
3 | 221.45
224.41 | 664.36
1122.07
390.16 | 65.07
56.82
59.58 | 2.0 | | 418
419 | 219
229
400 | 3
4 | 130.055
137.593 | 390.16
550.37
340.75 | 294.40 | 4 | 130.05
137.59 | 550.37 | 46.74 | 1.8 | | 420 | 4339 | 3 | 68.149
93.583 | 280.75 | 250.13 | 8 | 161.73 | 621.50 | 64.66 | 2.5 | | 421 | 402
497
403 | 3 3 | 103,663
74,344
79,015 | 207.33
223.03
237.04 | 389.64 | 8 | 257.02 | 667.40 | 65.96 | 1.7 | | 422
423 | 397
395 | 4 5 | 102.031
76.883 | 408.12
384.42 | 164.25
231.28 | 4 5 | 102.03
76.88 | 408.12
384.42 | 62.12
33.24 | 2.5 | | 424
425 | 388
387 | 3 2 | 159.147
185.748 | 477.44
371.50 | 290.73
300.68 | 3 2 | 159.15
185.75 | 477.44
371.50 | 54.74
61.78 | 1.6 | | 426 | 487
488 | 1 2 | 51.886
54,600 | 51.89
109.20 | 237.25 | 3 | 106.49 | 161.09 | 44.88 | 0.7 | | 427
428 | 384
552 | 6 | 223.327
174.123 | 1339.96
174.12 | 337.75
250.34 | 6 | 223.33
174.12 | 1339.96
174.12 | 66.12
69.55 | 4,0
0.7 | | 429 | 553
554 | 5 | 100.894
104.672 | 504.47
523.36 | 366.05 | 10 | 205.57 | 1027.83 | 56.16 | 2.8 | | 430
431 | 561 | 1 | 105.744 | 105.74 | 146.82
193.19 | 1 0 | 105.74
0.00 | 105.74
0.00 | 72.02
0.00 | 0.7 | | 432
433 | 1584
1580 | 1 4 | 205.879
271.876 | 205.88
1087.50 | 282.93
271.15 | 1 4 | 205.88
271.88 | 205.88
1087.50 | 72.77
100.27 | 0.7
4.0 | | 434
435 | 431 | 3 | 158.522 | 475.57 | 128.91
227.85 | 3 | 0.00
158.52 | 0.00
475.57 | 0.00
69.57 | 0.0
2.1 | | 436
437 | 884
430 | 6 | 107.321
152.781 | 321.96
916.68 | 160.03
253.64 | 3
6 | 107.32
152.78 | 321.96
916.68 | 67.06
60.23 | 2.0
3.6 | | 438
439 | 1335
1336 | 3
6 | 96.580
113.371 | 289.74
680.23 | 138.69
160.51 | 3
6 | 96.58
113.37 | 289.74
680.23 | 69.64
70.63 | 2.1 | | 440
441 | 886
885 | 3 | 124.983
66.314 | 499.93
198.94 | 158.80
97.45 | 3 | 124.98
66.31 | 499.93
198.94 | 78.70
68.05 | 3.1
2.0 | | 442 | 888
889 | 1 | 53,576
46,580 | 214.30
46.58 | 355.92 | 6 | 114.14 | 274.87 | 32.07 | 0.8 | | 443 | 887
882 | 2 | 13.988
38.809
84.858 | 13.99
77.62 | 597.61 | 9 | 168.82 | 552.50 | 28.25 | 0.9 | | 0.0000 | 883
361 | 3 6 | 84.858
45.149
642.147 | 339.43
135.45
3852.88 | (0.000) | - 20 | 00000000 | 2333320 | 100000000000000000000000000000000000000 | 5000 | | 444
445
446 | 361
500
503 | 6
3
5 | 642,147
250,139
113,142 | 3852.88
750.42
565.71 | 865.42
644.30
162.98 | 6
3
5 | 642.15
250.14
113.14 | 3852.88
750.42
565.71 | 74.20
38.82
69.42 | 4.5
1.2
3.5 | | 446
447
448 | 503
505
504 | 5 4 | 113.142
100.243
317.490 | 565.71
501.22
1269.96 | 162.98
142.37
381.11 | 5
5
4 | 113.14
100.24
317.49 | 565.71
501.22
1269.96 | 70.41
83.31 | 3.5
3.5
3.3 | | 448 | 502
610 | 5 1 | 164.449
65.956 | 822.24
65.96 | 229.79 | 5 | 164.45 | 822.24 | 71.56 | 3.6 | | 450 | 607
608 | 11 10 | 394,468
325.673 | 4339.15
3256.73 | 3562.93 | 24 | 978.60 | 7854.34 | 27.47 | 2.2 | |
:::::::::::::::::::::::::::::::::::::: | 609
611 | 1 1 | 126.835
65.664 | 126.84
65.66 | | (576)2 | | | assett. | 80,000 | | 451
452 | 612
613 | 2 | 912.892
673.394 | 1825.78
673.39 | 1400.53
1814.50 | 2 | 912.89
673.39 | 1825.78
673.39 | 65.18
37.11 | 1.3
0.4 | | 453
454 | 364
362 | 5 4 | 168 175
146.907 | 840.88
587.63 | 293.02
307.18 | 5
4 | 168.18
146.91 | 840.88
587.63 | 57.39
47.82 | 2.9 | | 455
456 | 363
492 | 6 | 94,132
85,435 | 564.79
512.61 | 188.23
791.69 | 6
12 | 94.13
531.92 | 564.79
3191.53 | 50.01 | 3.0
4.0 | | 456 | 365
491 | 6 | 446.486
119.262 | 2678.91
715.57 | 494.71 | 12 | 208.02 | 1248.10 | 67.19
42.05 | 2.5 | | 458 | 490
489 | 6
3 | 88,755
272,549 | 532.53
817.65 | 767.84 | 3 | 272.55 | 817.65 | 35.50 | 1.1 | | | | | | | | | | | | | | Plot | Buildin | Building | Building | Building
Floor | Plot | Sum of
Storeys
of | Sum of
Building | Sum of
Building | Building
Coverag | Floor
Area | |-------------------|----------------------|-------------|-------------------------------|-------------------------------|-------------------------------|-------------------------|----------------------------|-------------------------------|--|-------------------| | Ref.
No. | g Ref.
No. | Storeys | Footprint
(sqm) | Area
(sqm) | Area
(sqm) | Buildings
on Same | footprin
t on
Same | Floor
Area on
Same | e Ratio
(BCR) | Ratio
(FAR) | | | 1378 | 1 | 487.341 | 487.34 | | Plot | Plot | Plot | 130 | V | | | 1379
1380
1381 | 1 1 | 198,591
593,138
99.553 | 198.59
593,14
99.55 | | | | | | | | 459 | 1382
1383 | 1 | 323.061
82.163 | 323.06
82.16 | 6780.70 | 8 | 2041.06 | 2041.06 | 30.10 | 0.3 | | | 1384
3970
614 | 1 1 5 | 154.440
102.772
310.546 | 154.44
102.77
1552.73 | | | | | | | | 460 | 616
615 | 5
5 | 245.120
319.227 | 1225.60
1596.13 | 5205.89 | 21 | 1529.63 | 6681.13 | 29.38 | 1.3 | | 461 | 618
617
619 | 5
1
5 | 412,984
241,750
230,055 | 2064.92
241.75
1150.27 | 253.22 | 5 | 230.05 | 1150.27 | 90.85 | 4.5 | | 462 | 763
3823 | 1 1 | 104.263
12.394 | 104,26
12,39 | 987.12 | 3 | 317.53 | 317.53 | 32.17 | 0.3 | | 463 | 761
1372 | 2 | 200.870
117.402 | 200.87 | 1162.26 | 6 | 513.89 | 702.89 | 44.21 | 0.6 | | 463
463
463 | 1374
1373
1371 | 1 1 | 71.602
23.180
301.703 | 143.20
23.18
301.70 | 1162.26
1162.26
1162.26 | 6 6 | 513.89
513.89
513.89 | 702.89
702.89
702.89 | 44.21
44.21
44.21 | 0.6
0.6 | | 464
465 | 1375
386 | 7 6 | 227,797
144,175 | 1594.58
865.05 | 862.34
175.86 | 7
6 | 227.80
144.17 | 1594,58
865.05 | 26.42
81.99 | 1.8
4.9 | | 466
467
468 | 385
401
398 | 6
5
4 | 120.660
97.314
115.534 | 723.96
486.57
462.13 | 160,69
135,81
138,22 | 6
5
4 | 120.66
97.31
115.53 | 723.96
486.57
462.13 | 75.09
71.66
83.58 | 4.5
3.6
3.3 | | 469
470 | 654
655 | 1 1 | 56.125
63.466 | 56.12
63.47 | 77.01
73.82 | 1 1 | 56.12
63.47 | 56.12
63.47 | 72.88
85.98 | 0.7 | | 471
472
473 | 396
399
485 | 4 1 | 140.271
184.731
60.309 | 561.08
738.92
60.31 | 229.25
270.66
233.24 | 4 4 3 | 140.27
184.73
147.22 | 561.08
738.92
234.13 | 61.19
68.25
63.12 | 2.4
2.7
1.0 | | 473
474 | 486
481 | 2 | 86.913
72.346 | 173.83
72.35 | 233,24
444,18 | 3
6 | 147.22
361.71 | 234.13
1519.18 | 63,12
81.43 | 1.0 | | 474
475
475 | 480
482
483 | 5
1
5 | 289.368
75.593
158.796 | 1446.84
75.59
793.98 | 389.66
389.66 | 6 6 | 361.71
234.39
234.39 | 1519.18
869.57
869.57 | 81.43
60.15
60.15 | 3.4
2.2
2.2 | | 476
477 | 484
542 | 5
3 | 206.077
161.405 | 1030.38
484.21 | 321,15
358,35 | 5
6 | 206.08
238.61 | 1030.38
715.82 | 64.17
66.58 | 3.2
2.0 | | 477
478 | 543
544 | 6 | 77.200
205.739 | 231.60
1234.43 | 358.35
313.53 | 6 | 238.61
205.74 | 715.82
1234.43 | 66,58
65,62 | 2.0
3.9 | | 479
480
481 | 547
548
656 | 4 4 6 | 71.863
77.452
374.272 | 287.45
309.81
2245.63 | 102.90
112.74
504.36 | 4
4
6 | 71.86
77.45
374.27 | 287.45
309.81
2245.63 | 69.84
68.70
74.21 | 2.8
2.7
4.5 | | 482
483 | - | | | | 231.98
199.14 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 484 | 540
539 | 4 3 | 114.552
300.336 | 458.21
901.01 | 706.78 | 7 | 0.00
414.89 | 1359.22 | 58.70 | 1.9 | | 486
487 | 545
541 | 3 | 197,562
230,274 | 790.25
690.82 | 252.31
293.31 | 3 | 197.56
230.27 | 790.25
690.82 | 78,30
78.51 | 3.1
2.4 | | 488
489 | 506
507
519 | 6
7 | 129.443
55.903
75.255 | 517.77
335.42
526.79 | 672.53
118.89 | 10 | 185.35
75.26 | 853.19
526.79 | 27.56
63.30 | 1.3 | | 490
491 | 518
515 | 7 6 | 111.486
197.196 | 780.40
1183.18 | 159.28
313.27 | 7 6 | 111.49
197.20 | 780.40
1183.18 | 69.99
62.95 | 4.9
3.8 | | 492
493
494 | 516
493
494 | 5
3
3 | 236,711
91,897
24,700 | 1183.56
275.69
74.10 | 340.58
150.18
91.55 | 5
3
3 | 236,71
91,90
24,70 | 1183.56
275.69
74.10 | 69,50
61,19
26,98 | 3,5
1.8
0.8 | | 495 | 496
495 | 3 3 | 73,686
22,445 | 221,06
67.33 | 173.65 | 6 | 96,13 | 288.39 | 55.36 | 1.7 | | 496 | 4535
4535 | 2 2 | 14.110
14.110 | 28.22
28.22 | 207.84 | 2 | 14.11 | 28.22 | 6.79 | 0.1 | | 497 | 521
520
522 | 1 1 | 67.845
17.138
15.594 | 135.69
17.14
15.59 | 281.79 | 4 | 100.58 | 168.42 | 35.69 | 0.6 | | 498 | 525
524 | 3 | 60,356
133,437 | 181.07
400.31 | 268.46 | 6 | 193,79 | 581.38 | 72.19 | 2.2 | | 499
500
501 | 477
-
526 | 3 | 150,106
61,788 | 450.32
185.36 | 176.27
114.12
116.25 | 3
0
3 | 150,11
0.00
61,79 | 450.32
0.00
185.36 | 85.16
0.00
53.15 | 2.6
0.0
1.6 | | 502
503 | 523
4536 | 6 3 | 79.658
98.072 | 477.95
294.22 | 112.53
128.70 | 6 3 | 79.66
98.07 | 477.95
294.22 | 70.79
76.20 | 2.3 | | 504 | 475
528
527 | 3
1
1 | 239.385
13.842
21.580 | 718.16
13.84
21.58 | 343.96 | 3 | 239.39 | 718.16 | 69.60 | 2.1 | | 505 | 530
529 | 1 | 19.058
23.396 | 19.06
23.40 | 255.70 | 4 | 77.88 | 77.88 | 30.46 | 0.3 | | 506
507 | 532
533 | 1 | 43.033
30.924 | 43.03
30.92 | 282.66 | 2 | 73.96 | 73.96 | 26.16 | 0.3 | | 508
509 | 534
476 | 6 3 | 293.545
277.764 | 1761.27
833.29 | 92,01
345.77
425.71 | 0
6
3 | 0.00
293.54
277.76 | 0.00
1761.27
833.29 | 0,00
84.90
65.25 | 0.0
5.1
2.0 | | 510
511 | 498
478 | 2 | 206.057
248.309 | 412.11
993.24 | 278.24
424.87 | 2
5 | 206.06
318.59 | 412.11
1063.51 | 74.06
74.98 | 1.5
2.5 | | | 479
659
660 | 1
5
5 | 70,277
71,099
102,913 | 70.28
355.49
514.57 | | 1866 | HEREAS, MADE | | The Control of Co | ONOR | | 512 | 658
657 | 5
5 | 95.607
94.214 | 478.03
471.07 | 808.97 | 20 | 363.83 | 1819.16 | 44.97 | 2.2 | | 513 | 661
3828
3827 | 5
6
6 | 119.351
130.610
364.086 | 596,75
783.66
2184.51 | 200.78
863.36 | 5
17 | 119.35
612.05 | 596,75
3554.92 | 59,44
70.89 | 3.0
4.1 | | 515 | 663
662 | 5 | 117,350
72,739 | 586.75
436.43 | 129.80 | 6 | 72.74 | 436.43 | 56.04 | 3.4 | | 516
517 | 794
799 | 5 | 154.629
211.512 | 618,51
1057,56 | 259.41
301.41 | 4
5 | 154.63
211.51 | 618.51
1057.56 | 59.61
70.17 | 2.4
3.5 | | 518
519
520 | 512
511
513 | 6 7 | 209.880
171.502
176.623 | 839.52
1029.01
1236.36 | 218.51
232.94
218.93 | 4
6
7 |
209.88
171.50
176.62 | 839.52
1029.01
1236.36 | 96.05
73.62
80.68 | 3.8
4.4
5.6 | | 521
522 | 3820
638 | 6
7 | 279.449
163.903 | 1676.69
1147.32 | 291.45
217.91 | 6 7 | 279.45
163.90 | 1676.69
1147.32 | 95.88
75.21 | 5.8
5.3 | | 523
524 | 508
4534
4533 | 6 | 407.619
229.002 | 1630.47
1374.01
1447.33 | 593.24
252.17
229.53 | 6 6 | 229.00
241.22 | 1630.47
1374.01
1447.33 | 68.71
90.81
105.09 | 2.7
5.4
6.3 | | 525
526
527 | 628 | 8 | 241.221
537.273 | 4298.19 | 791.24
589.49 | 8 | 241.22
537.27
0.00 | 4298.19
0.00 | 67.90
0.00 | 5.4
0.0 | | 528
529 | 629
630
510 | 9 2 | 28.829
207.474
112.864 | 28.83
1867.27
225.73 | 479.88
403.29 | 10 | 236.30
112.86 | 1896.10
225.73 | 49.24
27.99 | 4.0
0.6 | | 530
531 | 509
632 | 3
6 | 228,132
626,342 | 684.40
3758.05 | 303.52
800.77 | 3
6 | 228.13
626.34 | 684.40
3758.05 | 75.16
78.22 | 2.3
4.7 | | 532
533 | 633
631 | 6 | 647.509
353.386 | 3885.05
2120.31 | 1044.56
826.28 | 6 | 647.51
353.39 | 3885,05
2120,31 | 61,99
42,77 | 3.7
2.6 | | 534 | 634
635
636 | 1 1 6 | 33.025
39.373
225.199 | 33.03
39.37
1351.19 | 713.94 | 8 | 297.60 | 1423.59 | 41.68 | 2.0 | | 535
536 | 637
639 | 6 | 439.975
16.795 | 2639,85
16.79 | 671.27
517.34 | 6
7 | 439.98
214.70 | 2639.85
1204.22 | 65.54
41.50 | 3.9
2.3 | | 537
538 | 640
690
531 | 6
3
4 | 197.904
171.350
105.847 | 1187.43
514.05
423.39 | 176.12
177.32 | 3 4 | 171.35
105.85 | 514.05
423.39 | 97.29
59.69 | 2.9 | | 539
540 | 646
647 | 6 | 107.325
86,550 | 643.95
519.30 | 192.44
153.18 | 6 | 107.32
86,55 | 643.95
519.30 | 55.77
56.50 | 3.3 | | 541
542
543 | 644
645
641 | 6 6 7 | 103.908
140.061
113.926 | 623.45
840.37
797.48 | 185.43
226.38
196.17 | 6
6
7 | 103.91
140.06
113.93 | 623.45
840.37
797.48 | 56.04
61.87
58.08 | 3.4
3.7
4.1 | | 544 | 642
643 | 1 6 | 128.380
95.546 | 128.38
573.28 | 362.88 | 7 | 223.93 | 701.66 | 61.71 | 1.9 | | 545
546
547 | 691
692
693 | 3
3
6 | 200.620
179.437
106.066 | 601.86
538.31
636.40 | 200.48
196.89
128.87 | 3
3
6 | 200.62
179.44
106.07 | 601.86
538.31
636.40 | 100.07
91.14
82.31 | 3.0
2.7
4.9 | | 548 | 649
650 | 6
1 | 195.720
14.268 | 1174.32
14.27 | 128.87
264.57 | 6 | 195.72 | 1174.32 | 73.98 | 4.4 | | 549 | 694
695 | 3 3 | 45,481
47,171 | 136,44
141,51 | 468.79 | 9 | 191.94 | 462.27 | 40.94 | 1.0 | | 550
551 | 648
538
537 | 2
8
1 | 85.020
364.319
66,179 | 170.04
2914.55
66.18 | 532.22
93.75 | 8 | 364.32
66.18 | 2914,55
66.18 | 68.45
70.59 | 5.5
0.7 | | 552
553 | 536
652 | 6
7 | 220.430
164.215 | 1322.58
1149.50 | 361.93
259.15 | 6
7 | 220.43
164.21 | 1322.58
1149.50 | 60.90
63.37 | 3.7
4.4 | | 554
555
556 | 653
705 | 2 | 235.403
161.597 | 706.21
323.19 | 289.41
287.89
287.11 | 3
2
0 | 235.40
161.60
0.00 | 706.21
323.19
0.00 | 81.34
56.13
0.00 | 2.4
1.1
0.0 | | 557 | 669
670 | 3 7 | 152.040
193.567 | 456.12
1354.97 | 543,39 | 10 | 345.61 | 1811.09 | 63.60 | 3.3 | | 558 | 668
671 | 3 | 41,405
105,535 | 124.21
422.14 | 237,25 | 7 | 146.94 | 546.35 | 61,93 | 2.3 | | 559
560 | 664
665
666 | 1 2 | 218.860
203.345
95.104 | 875.44
203.35
190.21 | 618.14 | 5 | 422.21 | 1078.78
393.38 | 68.30 | 1.7 | | 560
561 | 667
676 | 6 | 101.585
213.733 | 203.17
1282.40 | 269.40 | 6 | 196.69
213.73 | 1282.40 | 73.01
76.40 | 1.5
4.6 | | 562
563 | 672 | 6 | 99.837 | 599.02 | 166,56
712.34 | 6 | 99.84
0.00 | 599.02
0.00 | 59.94
0.00 | 3.6
0.0 | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same | Sum of
Building
Footprint
on Same
Plot | Sum of
Buildin
g Floor
Area on
Same | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|----------------------|---------------------|--------------------------------|-------------------------------------|-----------------------|---|--|---|--|---------------------------------| | 564 | 673 | 7 | 143 042 | 1001.29 | 206.91 | Plot
7 | (sgm)
143.04 | Plot
1001.29 | 69.13 | 4.8 | | 565
566 | 674
675 | 4 | 143.633
90.535 | 574.53
362.14 | 183.17
128.13 | 4 | 143.63
90.53 | 574.53
362.14 | 78.41
70.66 | 3.1
2.8 | | 567
568 | 678
689 | 3 | 87.017
133.374 | 261.05
400.12 | 120.37
276.24 | 3 | 87.02
133.37 | 261.05
400.12 | 72.29
48.28 | 1.4 | | 569
570 | 727
729 | 6 | 111.796
79.240 | 111.80
475.44 | 230.07
131.44 | 6 | 111.80
79.24 | 111.80
475.44 | 48.59
60.28 | 0.5
3.6 | | 571
572 | 728
688 | 6 7 | 140.501
95.890 | 843.01
671.23 | 223.53
150.45 | 6 7 | 140.50
95.89 | 843.01
671.23 | 62.86
63.73 | 3.8
4.5 | | 573 | 687 | 6 | 94.923 | 569.54 | 206.08 | 6 | 94.92 | 569.54 | 46.06 | 2.8 | | 574 | 680 | 1 | 79.949 | 79.95 | 175.66 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 575 | 682
681 | 5 | 250.447
245.930 | 1502.68
1229.65 | 1222.86 | 20 | 788.63 | 3370.57 | 64.49 | 2.8 | | 3/3 | 679
683 | 6 | 63.946
69.197 | 63.95
415.18 | 1222.00 | 2.0 | 700.03 | 3370.37 | 04.43 | 2.0 | | 576 | 3826 | 1 | 79,163 | 79.16 | 468.38 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 577 | 686
684 | 6 | 195.895
250.349 | 1175.37
1502.09 | 800.90 | 15 | 525.33 | 2914.72 | 65.59 | 3.6 | | 578 | 685
698 | 3 | 79.084
213.468 | 237.25
640.40 | 406,94 | 3 | 213.47 | 35000000000 | 52.46 | 1.6 | | 579 | 704 | 3 | 88.618 | 265.85 | 166.65 | 3 | 88.62 | 640.40
265.85 | 53.18 | 1.6 | | 580 | 703
702 | 2 | 99.164
57.232 | 198.33
114.46 | 240.30 | 4 | 156.40 | 312.79 | 65.08 | 1.3 | | 581
582 | 699
696 | 6 | 114.770
377.151 | 229.54
2262.90 | 182.44
439.52 | 6 | 114.77
377.15 | 229.54
2262.90 | 62.91
85.81 | 1.3
5.1 | | 583
584 | 697
700 | 3 | 186.395
51.707 | 559.19
51.71 | 249.42
118.94 | 3 | 186.40
51.71 | 559.19
51.71 | 74.73
43.48 | 2.2
0.4 | | 585 | 701 | 1 | 134.078
197.192 | 134.08
985.96 | 187.09 | 1 | 134.08 | 134.08 | 71.66 | 0.7 | | 586
587 | 4521
732 | 5 | 63.296 | 63,30 | 426.29
141.48 | 5 | 197.19
63.30 | 985.96
63.30 | 46.26
44.74 | 0.4 | | 588
589 | 625
4537 | 5 | 305.302
348.290 | 1831.81
1741.45 | 1046.64 | 6 | 305.30
462.55 | 1831.81 | 46.61 | 1.8 | | 505 | 627
726 | 6 | 114.259
84.907 | 114.26
509.44 | 1046.04 | | 402.33 | 1000.71 | 44,19 | 1.0 | | 590 | 723
725 | 6 | 127.288
27.209 | 763.73
27.21 | 416.09 | 14 | 267.63 | 1328.61 | 64.32 | 3.2 | | | 724 | 1 | 28.227 | 28.23 | | | | | | | | 591 | 721
720 | 1 | 52.889
57.949 | 52.89
57.95 | 755.03 | 5 | 313.44 | 451.48 | 41.51 | 0.6 | | | 3825
722 | 2 | 138.033
64.570 | 276.07
64.57 | -500 | | | | - 114 | 33 | | 592 | 626
624 | 5
8 | 149.737
419.960 | 748.68
3359.68 | 692.97 | 13 | 569.70 | 4108.36 | 82.21 | 5.9 | | 593 | 3824
623 | 1 4 | 105.050
169.923 | 105.05
679.69 | 747.71 | 6 | 408.45 | 918.22 | 54.63 | 1.2 | | | 622 | 1 | 133.477 | 133.48 | | | | | | | | 594 | 730
731 | 1 4 | 45.883
287.399 | 45.88
1149.60 | 689.38 | 5 | 333.28 | 1195.48 | 48.35 | 1.7 | | 595
596 | 621 | 8 | 273.313 | 2186.51 | 196.47
345.80 | 8 | 0.00
273.31 | 0.00
2186.51 | 0.00
79.04 | 0.0
6.3 | | 597
598 | 733
4368 | 2 | 107.403
104.939 | 214.81
104.94 | 192,73
118,41 | 2 | 107.40
104.94 | 214.81
104.94 | 55.73
88.62 | 1.1
0.9 | | - 000 | 738
737 | 1 | 20.897 | 20.90
109.05 | 110.51 | | 107.07 | 107.07 | 00.02 | 0.0 | | 599 | 734 | 1 | 109.048
73.809 | 73.81 | 441.07 | 5 | 264.79 | 264.79 | 60.03 | 0.6 | | | 735
736 | 1 | 33.892
27.139 | 33.89
27.14 | | | | | | | | 600 | 739
745 | 3 4 | 170.996
108.420 | 512.99
433.68 | 392.21 | 7 | 171.00 | 512.99 | 43.60
44.22 | 1.3 | | 8870257 | 746
742 | 3 4 | 48.884
161.223 | 146.65
644.89 | 355.74 | | 157.30 | 580.33 | C Protestation | 1.6 | | 602
603 | 743
747 | 1 | 45.962
175.536 | 45.96
175.54 | 321.23
397.90 | 5 | 207.18
175.54 | 690.85
175.54 | 64.50
44.12 | 0.4 | | 604 | 741 | 4 | 131.409 | 525.64 | 219.65 | 4 | 131.41 | 525.64 | 59.83 | 2.4 | | 605
606 | 740
1586 | 3 | 94,269
72.613 | 377.08
217.84 | 239.89
152.29 | 3 | 94.27
72.61 | 377.08
217.84 | 39.30
47.68 | 1.6 | | 607 | 1587 | 2 | 72.613 | 145.23 | 95.26
251.24 | 0 | 72.61 | 145.23
0.00 | 76.22 | 1.5 | | 609 | 755
754 | 3 | 119.388
489.297 | 477.55
1467.89 | 1292.97 | 7 | 608.68 | 1945.44 | 47.08 | 1.5 | | 610
611 | 752
753 | 4 4 | 146.686
108.681 | 586.74
434.72 | 202.45
150.20 | 4 | 146.69
108.68 | 586.74
434.72 | 72.46
72.36 | 2.9 | | 612 | 748 | 4 | 96.812 | 387.25 | 140.47 | 4 | 96.81 | 387.25 | 68.92 | 2.8 | | 613
614 | 751
774 | 1 | 76.713
47.131 | 306.85
47_13 | 123.72
87.75 | 1 | 76.71
47.13 | 306.85
47.13 | 62.00
53.71 | 2.5
0.5 | | 615
616 | 775
749 | 4 | 47.562
97.965 | 47.56
391.86 | 82.35
205.10 | 4 | 47.56
97.98 | 47.56
391.86 | 57.76
47.77 | 1.9 | | 617 | 750
776 | 3 | 80.471
72.675 | 321.88
218.03 | 132.13 | 4 | 80,47 | 321,88 | 60.90 | 2.4 | | 618 | 778
777 |
4 3 | 46.027
54.821 | 184.11
164.46 | 511.49 | 10 | 173.52 | 566.60 | 33.92 | 1.1 | | 619 | 100 | | | avansteen ; | 2178.76 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 620 | 765
767 | 6 | 122.497
71.103 | 489.99
426.62 | 191.02 | 12 | 122.50 | 489.99
716.78 | 64.13 | 3.9 | | 622 | 766
809 | 6 4 | 48.360
118.961 | 290.16
475.84 | 199.52 | 4 | 118.96 | 475.84 | 59.62 | 2.4 | | 623
624 | 768
1346 | 5 | 137.485
192.977 | 824.91
964.88 | 197.52
201.23 | 5 | 137.49
192.98 | 824.91
964.88 | 69.60
95.90 | 4.2 | | 625 | 1345
756 | 7 | 169.975
66.728 | 1189.83
66.73 | 222.24 | 7 | 169.98 | 1189.83 | 76.48 | 5.4 | | 626 | 757
620 | 1 8 | 48.992
297.247 | 48.99
2377.97 | 701.24 | 10 | 412.97 | 2493.69 | 58.89 | 3.6 | | 627 | 758 | 1 | 71.829 | 71.83 | 643.11 | 9 | 392.49 | 2637.12 | 61.03 | 4.1 | | 628 | 759
760 | 8 | 320.661
273.770 | 2565.29
1642.62 | 550.62 | 6 | 273.77 | 1642.62 | 49.72 | 3.0 | | 629
630 | 1337 | 6 | 247.756 | 1486.54 | 319.34
414.64 | 6
0 | 247.76
0.00 | 1486.54
0.00 | 77.58
0.00 | 4.7
0.0 | | 631 | 1340
1339 | 6
5 | 108.808
114.851 | 652.85
574.25 | 664.60 | 17 | 349.24 | 1980.56 | 52.55 | 3.0 | | 632 | 1338
1341 | 6 | 125.576
155.794 | 753.46
934.76 | 225.03 | 6 | 155.79 | 934.76 | 69.23 | 4.2 | | 633 | 1342
1343 | 6 7 | 92.656 | 555.94
875.47 | 142.36
189.03 | 6 7 | 92.66 | 555.94
875.47 | 65.09 | 3.9 | | 634
635 | 1344 | 6 | 125.068
138.724 | 832.34 | 200.06 | 6 | 125.07
138.72 | 832.34 | 66.16
69.34 | 4.6 | | 636 | 3988
3987 | 6 | 199.181
20.779 | 1195.08
20.78 | 288.49 | 7 | 219.96 | 1215.86 | 76.25 | 4.2 | | 637
638 | 1354
4042 | 5 | 88.982
196.698 | 177.96
983.49 | 192.04
512.00 | 11 | 88.98
384.61 | 177.96
2110.99 | 46.33
75.12 | 0.9
4.1 | | 639 | 4043 | 6 | 187.917 | 1127.50 | 2091.69 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 640
641 | 707
708 | 1 2 | 80.305
109.134 | 80.31
218.27 | 132.10 | 1 2 | 80.31
109.13 | 80.31
218.27 | 60.79
69.23 | 0.6 | | 642 | 556 | 5 | 273.847 | 1369.23 | 360.13 | 5 | 273.85 | 1369.23 | 76.04 | 3.8 | | 643 | 715
716 | 5 | 103.770
168.888 | 518.85
844.44 | 160.76
249.86 | 5 | 103.77
168.89 | 518.85
844.44 | 64.55
67.59 | 3.2 | | 645
646 | 718
719 | 2 | 182.225
211.594 | 728.90
423.19 | 252.70
247.82 | 2 | 182.22
211.59 | 728.90
423.19 | 72.11
85.38 | 2.9
1.7 | | 647
648 | 1583
714 | 9 | 184.312
126.963 | 1658.81
253.93 | 363.38
173.77 | 9 | 184.31
126.96 | 1658.81
253.93 | 50.72
73.07 | 4.6
1.5 | | 649
650 | 840
713 | 8 4 | 133.281
226.058 | 1066.25
904.23 | 195.45
258.52 | 8 4 | 133.28
226.06 | 1066.25
904.23 | 68.19
87.44 | 5.5 | | 651 | 712 | 5 | 97.509 | 487.54 | 151.87 | 5 | 97.51
137.73 | 487.54 | 64.21 | 3.2 | | 652
653 | 710
709 | 1 | 137.730
106.017 | 137.73
106.02 | 174.78
179.21 | 1 | 106.02 | 137.73
106.02 | 78.80
59.16 | 0.8 | | 654
655 | 841
844 | 8 4 | 136.079
89.939 | 1088,63
359.76 | 170.41
179.39 | 8 4 | 136.08
89.94 | 1088.63
359.76 | 79,85
50.14 | 6.4
2.0 | | 656
657 | 845
846 | 3 4 | 105.852
133.478 | 317.56
533.91 | 163.98
260.68 | 3 4 | 105.85
133.48 | 317.56
533.91 | 64.55
51.20 | 1.9 | | 658
659 | 847
850 | 3 | 81.766
50.616 | 245.30
50.62 | 206.72
103.73 | 3 | 81.77
50.62 | 245.30
50.62 | 39.55
48.80 | 1.2
0.5 | | 660 | 854 | 5 | 195.998 | 979.99 | 771.17 | 10 | 358.16 | 1790.79 | 46.44 | 2.3 | | 661 | 855
860 | 6 | 162 159
113 581 | 810.80
681.48 | 157.58 | 6 | 113.58 | 681.48 | 72.08 | 4.3 | | 662
663 | 4538
866 | 5
4 | 160.471
105.443 | 802.36
421.77 | 250.72
161.01 | 5
4 | 160.47
105.44 | 802.36
421.77 | 64.00
65.49 | 3.2
2.6 | | 664
665 | 867
868 | 10
9 | 87.816
72.304 | 878.16
650.73 | 136.91
126.16 | 10
9 | 87.82
72.30 | 878.16
650.73 | 64.14
57.31 | 6.4
5.2 | | 666
667 | 869
870 | 5 | 44.146
32.105 | 220.73
32.10 | 80.54
68.01 | 5 | 44.15
32.10 | 220.73
32.10 | 54.81
47.21 | 2.7
0.5 | | 668 | 3830
3831 | 1 3 | 65.908
184.628 | 65.91
553.88 | 353.10 | 4 | 250.54 | 619.79 | 70.95 | 1.8 | | 669 | 3829 | 8 | 465.898 | 3727.19 | 613.47 | 8 | 465.90 | 3727.19 | 75.95 | 6.1 | | 670
671 | 3832
3846 | 4 | 104.329
96.406 | 417.32
385.62 | 139.81
126.08 | 4 | 104.33
96.41 | 417.32
385.62 | 74.62
76.47 | 3.0 | | 672
673 | 3834
1347 | 5 | 133.893
111.331 | 535.57
556.65 | 295.68
198.88 | 5 | 133.89
111.33 | 535.57
556.65 | 45.28
55.98 | 1.8 | | 674
675 | 1348 | 5 | 93.142 | 465.71 | 105.26
70.36 | 5 | 93.14
0.00 | 465.71
0.00 | 88.49
0.00 | 4.4
0.0 | | 676 | 1349
1350 | 4 | 130.309
52.275 | 521.24
52.28 | 325.23 | 5 | 182.58 | 573.51 | 56.14 | 1.8 | | 677 | 1353 | 5 | 190.819 | 954.10 | 271.93 | 5 | 190.82 | 954.10 | 70.17 | 3.5 | | 678 | 1352 | 5 | 88.132 | 440.66 | 162.05 | 5 | 88.13 | 440.66 | 54.39 | 1.00 | | - | | | | | *********** | Sum of | Sum of | Sum of | | | |-------------------|----------------------|---------------------|------------------------------|----------------------------|-----------------------------|-----------------|--------------------------|---|-------------------------|-------------------| | Plot | Buildin | Duilding | Building | Building | Plot | Storeys | Building | Building | Building | Floor | | Ref.
No. | g Ref.
No. | Building
Storeys | Footprint
(sqm) | Floor
Area | Area
(sqm) | of
Buildings | Footprin
t on | Floor
Area on | Coverag
e Ratio | Area
Ratio | | | 1101 | | (54) | (sqm) | (24) | on Same
Plot | Same
Plot | Same
Plot | (BCR) | (FAR) | | 679
680 | 1361
1351 | 1 2 | 108.320
123.362 | 108.32
246,72 | 239.57
469.20 | 10 | 108.32
296.08 | 108.32
1628.47 | 45.21
63.10 | 0.5
3.5 | | 681 | 3896
1368 | 8 1 | 172.718
51.238 | 1381,74
51.24 | 247.95 | 10 | 51.24 | 51.24 | 20.66 | 0.2 | | 682 | 1366
1365 | 5 | 34.536
35.005 | 69.07
175.02 | 197.01
197.01 | 12 | 135.39 | 573.35 | 68.72 | 2,9 | | 683 | 1364
1370 | 5 | 65.850
51.157 | 329.25
255.79 | 197.01
84.50 | 5 | 51.16 | 255.79 | 60.54 | 3.0 | | 684
685 | 1369
1367 | 3 | 54.606
114.328 | 109.21
342.98 | 99.40 | 3 | 54.61
114.33 | 109.21
342.98 | 54.94
86.70 | 2.6 | | 686
687 | 1360
1358 | 7 7 | 141.932
83.727 | 283.86
586.09 | 207.06 | 14 | 141.93
161.73 | 283.86
1132.11 | 68.55
73.39 | 5.1 | | 688
689 | 1359
1357
1356 | 6 | 78.004
143.341
89.670 | 546.02
860.05
538.02 | 222.86
153.27 | 6 | 143.34
89.67 | 860.05
538.02 | 64.32
58.51 | 3.9
3.5 | | 690
691 | 1355 | 5 | 49.967 | 249.84 | 153.57
3919.69 | 5 | 49.97 | 249.84 | 32.54
0.00 | 1.6 | | 692
693 | 1376
1377 | 7 5 | 150.891
119.509 | 1056.24
597.55 | 311.19
169.31 | 7 5 | 150.89
119.51 | 1056.24
597.55 | 48.49
70.59 | 3.4
3.5 | | 694 | 1589
1505 | 6 9 | 143.091
355.345 | 858.54
3198.10 | 198.03 | 6 | 143.09 | 858.54 | 72.26 | 4.3 | | 695 | 1504
1503 | 9 | 87.877
82.686 | 790,89
744,17 | 954.16 | 36 | 583.27 | 5249.45 | 61.13 | 5.5 | | 696 | 1502
3971 | 9 | 57.365
204.549 | 516.28
1227.29 | 291.18 | 6 | 204,55 | 1227.29 | 70.25 | 4.2 | | 697
698 | 3972
3973 | 5 | 166.936
140.088 | 834.68
700.44 | 194.81 | 5 | 166.94
140.09 | 834.68
700.44 | 85.69
86.32 | 4.3 | | 699 | 1390
1391 | 4 | 132.778
161.415 | 531.11
645.66 | 444.46 | 8 | 294.19 | 1176.77 | 66.19 | 2.6 | | 700 | 1389
1385 | 3 | 187.470
215.539 | 374.94
646.62 | 267.93 | 2 | 187.47 | 374.94 | 69.97 | 1,4 | | 701 | 1386
1387 | 1 | 42.007
36.921 | 42.01
36.92 | 719.76 | 5 | 294.47 | 725.55 | 40.91 | 1.0 | | 702
703 | 1388
1401 | 6 2 | 115.451
135.522 | 692.71
271.04 | 225.85
185.73 | 6 2 | 115.45
135.52 | 692.71
271.04 | 51.12
72.97 | 3.1
1.5 | | 704 | 1399
1398 | 2 | 212 232
254.310 | 212.23
508.62 | 888.49 | 4 | 535.90 | 790.21 | 60.32 | 0.9 | | 705 | 1400
1393 | 3 | 69.360
259.567 | 69.36
778.70 | 630.27 | 4 | 321.15 | 840.28 | 50,95 | 1,3 | | 706 | 1394
1392 | 1 | 61.585
122.966 | 61.58
122.97 | 348.19 | 5 | 276.08 | 735.41 | 79.29 | 2.1 | | 707 | 1395
1396 | 2 | 153.112
149.957 | 612.45
299.91 | 190.61 | 2 | 149.96 | 299.91 | 78,67 | 1.6 | | 708
709 | 1588
1397 | 1 4 | 73.698
99.855 | 73.70
399.42 | 180.32
137,44 | 1 4 | 73.70
99.86 | 73.70
399.42 | 40.87
72.66 | 0.4
2.9 | | 710
711 | 1402
1403 | 1 2 | 102.599
72.484 | 102.60
144.97 | 218.13
157.34 | 1 2 | 102.60
72.48 | 102.60
144.97 | 47.04
46.07 | 0.5 | | 712
713 | 1409
1410 | 6 | 182.098
58.903 | 1092.59
58.90 | 267.66
101.10 | 6 | 182.10
58.90 | 1092.59
58.90 | 68.03
58.26 | 4.1
0.6 | | 714
715 | 1404
1406 | 4 | 158.370
31.615 | 633.48
31.62 | 224.24
56.34 | 4 | 158.37
31.62 | 633.48
31.62 | 70.62
56.12 | 2.8 | | 716 | 1405
1408 | 1 | 48.201
77.679 | 48.20
77.68 | 375.37 | 3 | 221.17 | 221.17 | 58.92 | 0.6 | | 717 | 1407
1414 | 7 | 95.290
208.570 | 95.29
1459.99 | 330.63 | 7 | 208.57 | 1459.99 | 63.08 | 4.4 | | 718
719 | 1411 | 6 4 | 137,809
124,558 | 826.86
498.23 | 249.10
170.15 | 6 | 137,81
124.56 | 826.86
498.23 | 55.32
73.21 | 3.3 | | 720
721 | 1413
1415 | 4 | 121.881
69.604 | 487.52
278.42 | 152.79
108.40 | 4 | 121.88
69.60 | 487.52
278.42 | 79.77
64.21 | 3.2
2.6 | | 722 | 1416
1417 | 5 9 | 72.918
199.579 | 364.59
1796.21 | 112.82 | 5 | 72.92 | 364.59 | 64.63 | 3.2 | | 723 | 1418
1419 | 10 | 126.459
131.568 | 1264.59
657.84 | 815.97 | 30 | 569.14 | 4260.25
 69.75 | 5.2 | | 2.45 | 1420
3989 | 5 | 107.519 | 537.59 | | | 3933333 | 200000000000000000000000000000000000000 | | 5.57365 | | 724
725 | 1421
1425 | 10 | 158.129
103.836 | 1581.29
415.34 | 226.15
136.79 | 10
4 | 158.13
103.84 | 1581.29
415.34 | 69,92
75.91 | 7.0 | | 726
727 | 1424
1423 | 4 6 | 74.204
132.967 | 296.82
797.80 | 127.29 | 4 6 | 74.20
132.97 | 296.82
797.80 | 58.30
77.14 | 2.3 | | 728 | 1422 | 6 | 140.506
137.920 | 843.04
827.52 | 178.62 | 6 | 140.51 | 843.04 | 78.66 | 4.7 | | | 1430
1429 | 4 4 | 51.306
80.734 | 205.23
322.94 | | | | | | | | 729 | 1432 | 6 5 | 82.071
100.955 | 492.43
504.78 | 1128.76 | 36 | 756.14 | 3966.58 | 66.99 | 3,5 | | | 1431 | 6 5 | 97.910
205.246 | 587,46
1026.23 | | | | | | | | | 1440
1439 | 7 4 | 77.749
65.861 | 544.24
263.44 | | | | | | | | 730 | 1438
1436 | 4 4 | 74.231
154.612 | 296.92
618.45 | 646.00 | 22 | 449.95 | 1955.54 | 69.65 | 3.0 | | 1000 | 1437 | 3 4 | 77.495
140.882 | 232.49 | | 2000 | 20/85802 | | | | | 731 | 1442 | 7 4 | 108.341 | 563,53
758.39 | 312.83 | 11 | 249.22 | 1321.91 | 79.67 | 4.2 | | 732
733 | 1441 | 4 | 216.643
121.766 | 866.57
487.06 | 243,92
135,19
1846.66 | 4 | 216.64
121.77
0.00 | 866,57
487,06
0.00 | 90,07
0.00 | 3.6
3.6
0.0 | | 734 | 1444 | 1 1 | 44.863
95.675 | 44.86
95.68 | 1040.00 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 735 | 1445 | 1 1 | 59.664
57.505 | 59.66
57.51 | 768.16 | 5 | 300.03 | 300.03 | 39.06 | 0.4 | | 736 | 1446 | 1 7 | 42.328 | 42.33 | 494.97 | 7 | 235.98 | 1651.84 | 54.34 | 3,8 | | 135 | 1449
1450 | 7 | 235.976
116.193 | 1651.84
813.35 | 434,27 | - | 235.96 | 1651.64 | 34,34 | 3.6 | | 737 | 1451 | 6
1 | 172.068
33.268 | 1032.41
33.27 | 572.12 | 15 | 340.04 | 1897.54 | 59.44 | 3.3 | | 738 | 1452
1460 | 7 | 18.515
114.211 | 18.51
799.47 | 169.16 | 7 | 114.21 | 799.47 | 67.52 | 4.7 | | 739 | 1459
1456 | 1 | 59.778
68.720 | 59.78
68.72 | 59.78 | 5 | 59,78 | 59.78 | 100.00 | 1.0 | | 740 | 1455
1454 | 2 2 | 67.118
52.320
87.865 | 134.24
104.64 | 409.69 | | 188.16 | 307.60 | 45.93 | 0.8 | | 741
742
743 | 1457
1494 | 5 | 87.865
171.779
109.404 | 175.73
858.89 | 203.66
258.30 | 5 | 87.86
171.78 | 175.73
858.89
437.62 | 43.14
66.50
65.55 | 3.3 | | 744 | 1493 | 5 | 118,473 | 437.62
592.36 | 166.90
191.00 | 4
0
5 | 109.40
0.00 | 0.00 | 0.00
82.48 | 2.6
0.0
4.1 | | 745
746 | 1491
1492
1490 | 5 5 | 97.738
72.253 | 488,69 | 143.64
106.88 | 5 | 118,47
97,74 | 592.36
488.69 | 91.44 | 4.6 | | 747 | 1489 | 4 | 130.384 | 361.26
521.54 | 357.33 | 9 | 202.64 | 882.80 | 56.71 | 2.5 | | 748
749 | 1486
1485 | 1 1 | 169.738
168.694 | 169,74
168,69 | 172.84 | 1 1 | 169.74
168.69 | 169,74
168,69 | 98.20
98.41 | 1.0 | | 750
751 | 1484
1487 | 5 | 139.014
112.861 | 556.06
564.31 | 238.74
144.23 | 5 | 139.01
112.86 | 556.06
564.31 | 58.23
78.25 | 3.9 | | 752
753 | 1488
1482 | 2 2 | 118.933
235.973 | 475.73
471.95 | 197.30
393.62 | 2 2 | 118.93
235.97 | 475.73
471.95 | 60.28
59.95 | 1.2 | | 754
755 | 1481 | 1 1 | 157.315
54.520 | 471.94
54.52 | 166.60
93.95 | 3 | 157.31
54.52 | 471.94
54.52 | 94.42
58.03 | 0.6 | | 756
757 | 1480 | 1 | 68.629 | 68.63 | 102.53
53.28 | 0 | 68.63
0.00 | 0.00 | 0.00 | 0.7 | | 758 | 3976
3975 | 2 | 159.860
175.927 | 319.72
351.85 | 589.27 | 4 | 335.79 | 671.57 | 56.98 | 1.1 | | 759
760 | 1478
1483 | 5
2 | 132.491
101.818 | 662.46
203.64 | 190.57 | 5 2 | 132.49 | 662.46
203.64 | 55,20
53,43 | 1.1 | | 761
762 | 4477 | | 440.407 | 100 50 | 4794.07
5129.83 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 763
764 | 1477
1675 | 3 | 146,165
288,904 | 438.50
866.71 | 230.51
459.93 | 3 | 146.17
288.90 | 438.50
866.71 | 63.41
62.81 | 1.9 | | 765
766 | 1476 | 2 | 95,998
56,160 | 192.00
112.32 | 132,36
92,35 | 2 | 96.00
56.16 | 192.00
112.32 | 72.53
60.81 | 1.5 | | 767
768 | 1468
1467 | 1 | 53,389
24,609 | 53.39
24.61 | 79.18
114.25 | 1 | 53,39
24.61 | 53,39
24.61 | 67.43
21.54 | 0.7 | | | 1470
1469 | 1 | 38.971
45.158 | 38.97
45.16 | | | | | | | | 769 | 1692
1691 | 1 | 59.817
71.571 | 59.82
71.57 | 620.93 | 7 | 321.99 | 321.99 | 51.86 | 0.5 | | | 1693
1694 | 1 | 63.654
23.364 | 63.65
23.36 | | | | | | | | 770 | 1695
1690 | 1 | 19.458
82.795 | 19.46
82.79 | 221.28 | 2 | 154.92 | 154.92 | 70.01 | 0.7 | | | 1689
1471 | 1 2 | 72.123
81.498 | 72.12
163.00 | | | 18,000,000 | 25031109482 | 10000000 | 100000 | | 771 | 1472
1473 | 2 2 | 90.274
90.407 | 180.55
180,81 | 341.39 | 6 | 262.18 | 524.36 | 76.80 | 1.5 | | 772 | 1463
1464 | 2 2 | 82.056
76.445 | 164.11
152.89 | 397.59 | 6 | 304.33 | 608.66 | 76.54 | 1.5 | | 2000 | 1474
1462 | 2 | 145.828
92.431 | 291.66
92.43 | 250.45 | 2 | 075050000 | 000000000 | 74.50 | 10000 | | 773 | 1461
1465 | 1 2 | 96.622
252.277 | 96.62
504.55 | 253.45
292.48 | 2 2 | 189.05
252.28 | 189.05
504.55 | 74.59
86.25 | 1.7 | | 775
776 | 1466
1696 | 2 | 215.251
106.142 | 430.50
212.28 | 292.41 | 2 2 | 215.25
106.14 | 430.50
212.28 | 73,61
84.18 | 1.5 | | - | | | | - | | | | - | | | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sgm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|------------------------------|---------------------|---------------------------------------|--------------------------------------|----------------------------|---|---|---|--|---------------------------------| | 7777 | 1440
1439
1438
1436 | 7
4
4
4 | 77.749
65.861
74.231
154.612 | 544.24
263.44
296.92
618.45 | 646.00 | 22 | 449.95 | 1955.54 | 69.65 | 3.0 | | 778 | 1437
1433 | 3
9 | 77,495
448.951 | 232.49
4040.56 | 592.11 | 9 | 448.95 | 4040.56 | 75.82 | 6.8 | | 779
780 | 1496
1234
1232 | 6
7
1 | 219.875
143.747
33.731 | 1319.25
1006.23
33.73 | 459.63
246.51 | 6 7 | 219.87
143.75 | 1319.25
1006.23 | 47.84
58.31 | 2.9
4.1 | | 781
782 | 1233
1225 | 2 9 | 268.164
220.270 | 536.33
1982.43 | 764.93
823.19 | 3 | 301.90
220.27 | 570.06
1982.43 | 39.47
26.76 | 0.7 | | 783
784 | 1231
1227 | 7 7 | 185.366
229.025 | 1297,56
1603,18 | 240.38
269.22 | 7 | 185.37
229.03 | 1297.56
1603.18 | 77.12
85.07 | 5.4
6.0 | | 785
786 | 1230
1229 | 2 | 148.770
98.513 | 297.54
197.03 | 310.36
256.94 | 3 | 148.77 | 297.54
276.11 | 47.93
69.12 | 1.0 | | 787 | 1228
1226
1240 | 1
6
8 | 79.087
224.570
275.847 | 79.09
1347.42
2206.78 | 308.63 | 6 | 224.57 | 1347.42 | 72.76 | 4.4 | | 788
789 | 1241
1239 | 1 6 | 164.238
155.492 | 164.24
932.95 | 1006.49
243.88 | 9 | 440.08
155.49 | 2371.02
932.95 | 43.72
63.76 | 3.8 | | 790
791 | 1238
1237 | 5
8 | 269.431
222.749 | 1347.16
1781.99 | 366.59
310.29 | 5
8 | 269.43
222.75 | 1347.16
1781.99 | 73.50
71.79 | 3.7
5.7 | | 792
793 | 1247
1242
1246 | 5
6 | 180,994
107,766
413,340 | 904.97
646.59
2480.04 | 466.17
413.34 | 11
6 | 288.76
413.34 | 1551.56
2480.04 | 61.94
100.00 | 3.3
6.0 | | 794 | 1253
1256 | 3 5 | 408.370
146.239 | 1225.11
731.19 | 608,70 | 3 | 408.37 | 1225.11 | 67.09 | 2.0 | | 795
796 | 3852
1255 | 6 | 398.487
226.493 | 2390.92
2038.43 | 955.28
486.28 | 11
9 | 544.73
226.49 | 3122.12
2038.43 | 57.02
46.58 | 3.3
4.2 | | 797
798 | 1257
1497 | 9 | 357.163
109.483 | 3214.47
656.90 | 636.38
110.11 | 9 | 357.16
109.48 | 3214.47
656.90 | 56.12
99.43 | 5.1
6.0 | | Volent | 1224
1223
1221 | 1 1 | 32.595
68.297
46.451 | 32.60
68.30
46.45 | Cogoverna | | | 20045-24.5 | 7900000 | 34-575 | | 799 | 1222
1220 | 1 | 19.516
35.598 | 19.52
35.60 | 787.49 | 6 | 225.37 | 225.37 | 28.62 | 0.3 | | 800 | 1219
305 | 1
6 | 22.912
141.766 | 22.91
850.60 | 288.07 | 6 | 141.77 | 850.60 | 49.21 | 3,0 | | 801
802 | 1498 | 6 | 198.658
235.393 | 1191.95 | 341.99
465.63 | 6
0
6 | 198.66
0.00
235.39 | 1191.95
0.00 | 58,09
0.00
67.80 | 3.5
0.0 | | 803
804
805 | 255
254 | 6 8 | 197.925
216.090 | 1412.36
1187.55
1728.72 | 347.18
242.78
218.16 | 6 8 | 197.92
216.09 | 1412.36
1187.55
1728.72 | 81.53
99.05 | 4.1
4.9
7.9 | | 806
807 | 253
251 | 8 | 149.102
347.863 | 1192.82
1391.45 | 237.70
715.68 | - 8
- 5 | 149.10
370.82 | 1192.82
1414.41 | 62.73
51.81 | 5.0 | | 808 | 252
250 | 1 | 22.959
38.745 | 22.96
38.74 | 513.23 | 5 | 196.32 | 669.06 | 38.25 | 1.3 | | 809 | 247
249 | 6 | 157.579
167.913 | 630.31
1007.48 | 350.41
113.04 | 6 | 167.91 | 1007.48 | 47.92 | 2.9 | | 810
811
812 | 248
245 | 5 | 268,702
223,950 | 1343.51
1343.70 | 277.16
388.21 | 5 6 | 0.00
268.70
223.95 | 0.00
1343.51
1343.70 | 0.00
96.95
57.69 | 4.8
3.5 | | 813
814 | 263
271 | 3 | 309.595
198.159 | 928.79
594.48 | 307.53
215.01 | 3 3 | 309.60
198.16 | 928.79
594.48 | 100.67
92.16 | 3.0 | | 815
816 | 273
272 | 4 |
76.430
84.885 | 305.72
339.54 | 114.43
129.05 | 4 | 76.43
84.89 | 305.72
339.54 | 66.79
65.78 | 2.7 | | 817
818 | 238
236 | 5
9 | 191.332
250.464 | 956.66
2254.17 | 442.39
528.06 | 5
9 | 191,33
250.46 | 956.66
2254.17 | 43.25
47.43 | 4.3 | | 819 | 243
240
241 | 5
1 | 149.409
39.756
33.812 | 747.05
39.76
33.81 | 551.59 | 7 | 222.98 | 820.62 | 40.42 | 1.5 | | 820 | 244
242 | 1 6 | 43.540
156.879 | 43.54
941.27 | 544.88 | 7 | 200.42 | 984.81 | 36.78 | 1.8 | | 821
822 | 246 | 5 | 152.193 | 760,96 | 209.61
427.61 | 5 | 152.19
0.00 | 760.96
0.00 | 72.61
0.00 | 3.6
0.0 | | 823
824 | 239 | 3 | 219.324 | 997.33 | 337,93
284.62 | 3 | 219.32
0.00 | 657.97
0.00
997.33 | 64.90
0.00
64.40 | 1,9
0.0
3.9 | | 825
826
827 | 261
232 | 6
10
10 | 166.222
209.963
197.261 | 2099.63
1972.61 | 258.13
259.43
334.06 | 6
10
10 | 166.22
209.96
197.26 | 2099.63
1972.61 | 80.93
59.05 | 8.1
5.9 | | 828 | 230
231 | 2 4 | 108.310
197.257 | 216.62
789.03 | 731.40 | 6 | 305.57 | 1005.65 | 41.78 | 1.4 | | 829
830 | 262
262 | 5 | 387,119
387,119 | 1935.60
1935.60 | 387.43
387.71 | 5 | 387.12
387.12 | 1935.60
1935.60 | 99.92
99.85 | 5.0 | | 831
832
833 | 1499 | 4 | 348.345 | 1393.38 | 349.62
237.31
416.55 | 0 0 | 348.34
0.00
0.00 | 0.00
0.00 | 99.64
0.00
0.00 | 0.0
0.0 | | 834 | 270
264 | 2 | 441.496
89.196 | 882.99
267.59 | 780.09 | 2 | 441.50 | 882.99 | 56.60 | 1.1 | | 835
836 | 265
266 | 2 | 29.900
95.529 | 59.80
95.53 | 363.43
170.94 | 5 | 119.10
95.53 | 327.39
95.53 | 32.77
55.88 | 0.9 | | 837 | 269
268 | 6 | 105.159
73.814 | 736.11
442.89 | 148.12
235.81 | 14 | 105.16
153.73 | 736.11
1082.24 | 71.00
65.19 | 5.0
4.6 | | 839 | 267
228
227 | 3 3 | 79.920
92.473
82.456 | 639.36
277.42
247.37 | 464.22 | 11 | 298.21 | 1141.21 | 64.24 | 2.5 | | 840 | 226
225 | 5 7 | 123.286
163.898 | 616.43 | 188.43 | 7 | 163.90 | 1147.29 | 86.98 | 6.1 | | 841 | 224
220 | 5
4 | 159.878
145.836 | 799.39
583.34 | 298.74 | 5 | 159.88 | 799.39 | 53.52 | 2.7 | | 842 | 223
221
222 | 1 1 | 43.608
35.976
60.015 | 43.61
35.98
60.01 | 1078.98 | 7 | 285.43 | 722.94 | 26.45 | 0.7 | | 843 | 1556
1555 | 5 3 | 655.590
57.043 | 3277.95
171.13 | 2196.03 | 11 | 767.53 | 3613.77 | 34.95 | 1.6 | | 2031220 | 1554
4053 | 3 | 54.899
98.090 | 164.70
98.09 | | 7650 | Destructives. | | F-11115550. | 1000000 | | | 4052
4051 | 2 | 117.286
117.286 | 469.15
234.57 | | | | | | | | | 4046
4050 | 3 | 76,640
117,286
76,494 | 76.64
351.86 | | | | | | | | | 4045
4049
4048 | 4 3 | 66.751
60.193 | 76.49
267.01
180.58 | | | | | | | | 844 | 4047
4044 | 1 | 50.716
193.670 | 50.72
193.67 | 3834.88 | 41 | 1354.29 | 2970.07 | 35.31 | 0.8 | | 1.1725 | 4057
4055 | 1 2 | 13.832
44.006 | 13.83
88.01 | | | | | | | | | 4056
4061
4062 | 2 | 44.006
23.233
12.661 | 88.01
46.47
12.66 | | | | | | | | | 4058
4054 | 2 4 | 68.232
60.431 | 136.46
241.72 | | | | | | | | | 4059
4060 | 2
4 | 54.877
58.595 | 109.75
234.38 | | | | | | 0 | | 845 | 950
949 | 1 1 4 | 68.909
60.312 | 68.91
60.31 | 1146.81 | 15 | 505.17 | 1879.48 | 44.05 | 1.6 | | 643 | 946
948
947 | 5 4 | 81,908
246,450
47,595 | 327,63
1232.25
190.38 | 1140.01 | 15 | 303,17 | 10/3.40 | 44.05 | 1.0 | | 846 | 903
902 | 1 1 | 41.616
88.365 | 41.62
88.36 | 549.95 | 4 | 361.24 | 592.49 | 65.68 | 1.1 | | 847 | 910
913 | 1 | 231,256
54,170 | 462.51
54.17 | 119.76 | 1 | 54.17 | 54.17 | 45.23 | 0.5 | | 848
849 | 912
909 | 1 | 35.603
50.982 | 35.60
50.98 | 92.06
82.07 | 1 | 35.60
50.98 | 35.60
50.98 | 38.67
62.12
53.39 | 0.4 | | 850 | 908
905
907 | 1 1 | 45,402
8,314
19,881 | 45.40
8.31
19.88 | 85.03 | 1 | 45.40 | 45,40 | | 0.5 | | 851 | 904
906 | 1 | 22.411
7.411 | 22.41
7.41 | 142.73 | 4 | 58.02 | 58.02 | 40.65 | 0.4 | | 852
853 | 917
918 | 3 | 52.964
46.533 | 52.96
139.60 | 94.23
73.67 | 1 3 | 52.96
46.53 | 52.96
139.60 | 56.21
63.16 | 0.6
1.9 | | 854 | 920
921 | 1 1 | 53.348
54.364 | 53.35
54.36 | 359.42 | 3 | 210.84 | 210.84 | 58.66 | 0.6 | | 855 | 919
929
915 | 1 1 | 103.125
106.061
49.345 | 103.12
106.06
49.34 | 183.24 | 1 | 106.06 | 106.06 | 57.88 | 0.6 | | 856 | 914
916 | 1 1 | 41.925
62.114 | 41.93
62.11 | 357.88 | 3 | 153.38 | 153.38 | 42.86 | 0.4 | | 857 | 930
931 | 1 | 101,954
115,186 | 101.95
115.19 | 290.06 | 2 | 217.14 | 217.14 | 74,86 | 0.7 | | 858
859 | 922
923
924 | 1 2 | 124.373
107.119
91.100 | 124.37
214.24
91.10 | 551.64
139.60 | 3 | 231.49
91.10 | 338.61
91.10 | 41.96
65.26 | 0.6 | | 860
861 | 924
925
926 | 2 2 | 91.100
214.039
58.823 | 91.10
428.08
117.65 | 314.11
113.56 | 2 2 | 91.10
214.04
58.82 | 91.10
428.08
117.65 | 65.26
68.14
51.80 | 1.4 | | 862 | 928
927 | 1 | 28.215
61.248 | 28.22
61.25 | 205.72 | 2 | 89.46 | 89.46 | 43.49 | 0.4 | | 863
864 | 932
933 | 1 | 97.678
169.351 | 97.68
169.35 | 170.09
209.23 | 1 | 97.68
169.35 | 97.68
169.35 | 57.43
80.94 | 0.6 | | 865
866 | 935
3877
936 | 3
2
1 | 78.197
105.848
71.119 | 234.59
211.70
71.12 | 260.91
281.23 | 5 | 184.05
71.12 | 446.29
71.12 | 70.54
25.29 | 1.7 | | | 930 | | (1,113 | 11.16 | 20123 | | 11.16 | 11.12 | 23.23 | 123 | | Section Sect | Plot
Ref.
No. | Buildin
g Ref.
No. | Building
Storeys | Building
Footprint
(sqm) | Building
Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same | Sum of
Building
Footprin
t on
Same | Building
Floor
Area on
Same | Building
Coverag
e Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |--|---------------------|--------------------------|---------------------|--------------------------------|------------------------------------|---|---|--|--------------------------------------|---|---------------------------------| | | | | | | | | 5 | 183.61 | 918.05 | | | | 10 | 869 | 939 | 4 | 44,414 | 177.66 | 76.60 | 4 | 44.41 | 177.66 | 57.98 | 2.3 | | 1972 1972 1972 1972 1973 1974 1974 1974 1975
1975 | 871 | 938 | 1 | 64.402 | 64,40 | 99.44 | 1 | 64.40 | 64.40 | 64.77 | 0.6 | | 150 | 873 | 323 | 1 | 137.706 | 137.71 | 201.19 | 1 | 137.71 | 137.71 | 68.44 | 0.7 | | 177 178 | 875 | 324 | 7 | 119.323 | 835.26 | 161.79 | 7. | 119.32 | 835.26 | 73.75 | 5.2 | | 100 | | 319 | 6 | | | 168.29 | | 130.89 | | 77.77 | 4.7 | | 1511 | | | | | 819.07 | | | | | | | | Sept | | 329 | | 142.672 | 856.03
3691.09 | | | 142.67 | | | | | 989 321 | 882 | 334 | 6 | 147.602 | 885.61 | 276.00 | 6 | 147.60 | 885.61 | 53,48 | 3.2 | | 100 | 884 | 331 | 6 | 295.544 | 1773.26 | 369.88 | 6 | 295.54 | 1773,26 | 79.90 | 4.8 | | 100 | 995.50 | 257 | 5 | 330.276 | 1651.38 | | 1976 | 110000000000000000000000000000000000000 | 7773V-57A54141454-1 | , and the second | | | 1902 | 100000 | 203 | 1 | 215.938 | 215.94 | N. Talloca | | 700000000 | 20.0073555077 | N 0000000 | 155 | | | | 192 | 4 | 325.832 | 1303.33 | | | | | | | | 1962 1962 4 | 890 | 1560 | 6 | 290.906 | 1745.44 | 529.55 | 6 | 290.91 | 1745.44 | 54.93 | 3.3 | | 1946 1954 19 | 892 | | | | | 582.53 | 4 | 449.67 | 1798.69 | 77.19 | 3.1 | | 1950 | | | | | | | | | | | | | 1902 6 | 895 | 1251 | 1 | 121.680 | 121.68 | 585.72 | 7 | 412.93 | 1214.83 | 70.50 | 2.1 | | 196 | 896 | | | | | 211.35 | 6 | 123.12 | 738.71 | 58.25 | 3.5 | | 1989 | 897 | | 3 | 70.273 | 210.82 | 113,95 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | March Marc | ann | 214 | 3 | 276.864 | 830.59 | ADD CO | ** | 970.00 | 4000 55 | 70.44 | 0.0 | | 1.5 | 898 | 4357 | 1 | 6.040 | 6.04 | 468.60 | 10 | 3/2.28 | 1066.55 | 79.44 | 2.3 | | 200 | | 4359 | 1 | 5.146 | 5.15 | | | | | | \square | | 1999 | | 206 | 4 | 213.238 | 852.95 | | | | | | | | 1906 | 899 | 208 | 3 | 206.684 | 620.05 | 3049.03 | 33 | 1410.89 | 5196.01 | 46.27 | 1.7 | | 217 | | 211 | 2 | 175.260 | 350.52 | | | | | | 15.55 | | 100 | | 212 | 9 | 63.865 | 574.79 | | | | | | | | 1912 1912 1913 1914 1915 1914 1915 | 100 70 70 11 | 1566 | 14 | 341.006 | 4774.09 | A. (10 A. (1) | | | | | | | 1900 1.00 | 902 | 302 | 8 | 342.283 | 2738.27 | 863.15 | 6 | 345.97 | 2075.81 | 40.08 | 2.4 | | 1904 1523 | 903 | | | | | 484.99 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1906 | 904 | | | 266.726 | | 1238.01 | 11 | 476,93 | 1927.81 | 38.52 | 1.6 | | 1907 | | 4524 | 6 | 76.459 | 458.75 | | | | | | | | 1999 | 907 | 2 | | | | 628.72 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1917 | 909 | 3850 | . 7 | 104.885 | 734.20 | 271.19 | 7 | 104.89 | 734.20 | 38.68 | 2.7 | | 1915 1571 6 | 911 | | | | | 512.77 | 6 | 361.91 | 2171.48 | 70.58 | 4.2 | | 919 15/4 0 146,522 878,53 36,97 0 146,524 878,53 36,97 0 146,524 878,53 36,97 0 146,524 878,53 36,97 0 146,524 878,53 36,97 0 146,524 878,53 36,97 0 146,524 147,53 0
147,53 0 | 913 | | | | | 516.23 | 6 | 257.28 | 1543.66 | 49.84 | 3.0 | | 1979 | 915 | | | | | 314.23 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 919 - | 917 | 1579 | 6 | 134.549 | 807.30 | 191.04 | 6 | 134.55 | 807.30 | 70.43 | 4.2 | | 922 311 1 1 96.576 94.2 349.2 329.1 4 88.10 352.40 30.16 1.2 329.2 311 1 1 96.576 94.2 349.3 349 | | 1577 | 6 | 179.915 | 1079.49 | | | | | | | | Section Sect | 920 | | | | | | | | | | | | 223 310 1 102,596 102,604 102,043 13 900,68 5290,27 79,89 4.4 4.5 300,000 1 100,764 300,000 1 100,764 300,000 1 100,764 300,000 1 100,764 300,000 1 100,764 300,000 1 100,764 300,000 1 300,764 300,000 1 300,764 300,000 317 6 131,105 796,68 301,101 1 16,822 385,11 1 16,822 116,822 383,11 1 116,822 116,92 383,588 0.4 302,000 317 6 131,105 796,68 302,000 317 6 311,105 796,68 302,000 317 6 311,105 796,68 302,000 300,000 5 47,504 327,200 315,100 607,99 102,000 300,000 5 47,504 427,504 301,100 | | 311 | 1 | 84.576 | 84.58 | | | | | | | | 924 307 6 6 344.174 2066.04 926 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 1 100.764 100.76 309 1 325 5 5 1 133.519 667.99 192.67 5 133.52 667.50 69.23 3.5 300 316 1 1 16.231 10.20 300 316 1 1 16.231 10.20 301 10.30 10 | 923 | 237 | 8 | 258.747 | 2069.98 | 478.10 | 9 | 361.34 | 2172.57 | 75.58 | 4.5 | | Section 1 | 024 | 308 | 6 | 344.174 | 2065.04 | 4202.42 | 42 | 000.00 | 5200.27 | 70.00 | 4.4 | | 1906 317 6 | 3899799 | 309 | 1 | 100.764 | 100.76 | | 3555 | 03(315)(6) | 223603030 | 777,938.57 | 03040 | | 1928 326 5 | 926 | 317 | 6 | 131.105 | 786.63 | 201.79 | 6 | 131.10 | 786.63 | 64.97 | 3.9 | | 316 | 928 | 326 | 5 | 110.920 | 554.60 | 164.41 | 5 | 110.92 | 554,60 | 67.47 | 3.4 | | 314 | | 316 | 1 | 16.231 | 16.23 | | | | | | | | 1932 1718 6 189 225 189 225 189 | 930 | 314 | 1 | 60.133 | 60.13 | 384.87 | 3 | 124.43 | 124.43 | 32.33 | 0.3 | | 337 | 931 | | | | | 712.81 | 11 | 351.27 | 2515.52 | 49.28 | 3.5 | | 3870 2 74,711 149,42 1936 53 5 227,395 1136,53 143,19 10 530,76 1972,19 46,43 1,7 1,7 1,5
1,5 | | | | | | | | | | | | | 954 3 222 747 686 24 859 93 6019 54 82 36 58 8936 76 859 935 6019 54 1044 12 7 859 93 6019 54 63 26 51 8936 955 8 199 801 1596 81 315 51 8 199 60 1596 81 63 26 51 336 13 337 956 9 225 571 2336 13 315 10 2 226 57 2336 13 82 40 74 338 9 957 4 137 478 549 91 235 79 4 137 48 549 91 58 31 2.3 338 9 957 4 137 478 549 91 235 79 4 137 48 549 91 58 31 2.3 339 952 2 156 056 366 17 74 608 74 61 74 607 3 193 82 313 04 26 77 0.4 40 11 104 11 | 934 | | | | | 1143.19 | 10 | 530.76 | 1972.19 | 46.43 | 1.7 | | 936 955 8 199.601 1596.81 315.51 8 199.00 1596.81 63.26 51. 937 956 9 259.571 2336.13 315.02 9 259.57 2338.13 82.40 7.4 938 957 4 137.478 549.91 235.79 4 137.48 549.91 58.31 2.3 939 955.2 2 198.086 74.61 74.60 396.17 74.60 396 | 1000000 | 954 | 3 | 228.747 | 686.24 | | 65.5 | (2003)074(2)0 | 0.820.000.000 | CHAPTER AND | 10007 | | 938 957 4 137478 549 91 23579 4 13748 549 15831 23 939 952 2 198.086 396.17 346.64 2 198.09 396.17 57.14 1.1 940 951 1 74.608 74.61 740.67 3 193.82 313.04 26.17 0.4 941 1929 5 209.899 1049.50 220.09 5 209.90 1049.50 95.37 4.8 941 1920 1 63.095 63.09 64.94 1 63.09 63.09 97.17 1.0 943 1927 5 157.994 789.97 162.88 5 157.99 789.97 97.00 4.8 944 1928 1 187.847 167.85 187.90 1 167.85 167.85 167.85 80.33 0.9 945 1931 2 139.505 279.01 147.97 2 139.51 279.01 94.28 1.9 946 1932 4 89.741 388.96 94.03 4 89.74 389.96 99.44 3.8 947 945 5 100.772 503.86 185.63 5 100.77 503.86 63.13 3.2 949 940 5 140.554 703.27 171.32 5 140.65 703.27 92.10 4.1 950 943 7 81.85 7.85 8.95 9.99 188.2 8 99.94 799.90 4.1 951 1833 7 81.685 573.06 180.82 10 216.99 97.23 52.76 2.4 951 1834 8 4 231.897 82.89 180.82 8 99.94 799.99 5.5 27 4.8 951 1834 8 94.03 4 89.74 1.0 952 8 8 99.84 703.27 171.32 5 140.65 703.27 92.10 4.1 951 1834 8 94.03 4 89.74 1.0 952 8 8 99.84 703.27 171.32 5 140.65 703.27 92.10 4.1 951 1834 8 94.03 1 80.85 573.06 180.82 180.82 180.92 99.94 799.99 5.5 27 4.8 951 1834 8 94.03 1 80.85 573.06 180.82 8 99.94 799.99 5.5 27 4.8 952 3872 4 120.20 480.81 180.82 8 99.94 799.99 5.5 27 4.4 951 1834 8 94.03 1 80.85 573.06 180.82 8 99.94 799.99 70.77 2.8 953 8 196.6 4 231.897 98.78 180.82 8 99.94 799.99 70.77 2.8 953 8 196.6 4 231.897 79.78 92.78 8 180.82 8 99.94 799.99 70.77 2.8 953 8 10.85 79.94 180.82 8 99.94 79.94 98.82 1.3 953 976 976 4 249.16 98.96 67 33.97 4 4 120.20 4 40.8 11 1.8 959 977 4 120.20 480.81 180.82 8 99.84 79.94 98.67 33.94 2.9 959 979 8 130.695 1045.66 77.99 3.79 77 19.33 8 19.85 17.99 17.97 19.89 19.99 19. | 936 | 955 | 8 | 199.601 | 1596.81 | 315.51 | 8 | 199.60 | 1596.81 | 63.26 | 5.1 | | 940 956 2 119216 23843 740.67 3 193.82 313.04 26.17 0.4 941 1929 5 209.899 1404.50 220.09 5 209.90 1049.50 95.37 4.8 941 1929 5 209.899 1404.50 220.09 5 209.90 1049.50 95.37 4.8 942 1930 1 630.99 61.94 789.97 162.88 5 157.99 789.97 97.00 4.8 943 1927 5 157.994 789.97 162.88 5 157.99 789.97 97.00 4.8 944 1928 1 167.477 167.86 187.90 1 167.85 167.85 89.33 0.9 945 1931 2 139.505 279.01 147.97 2 139.51 279.01 94.28 1.9 946 1932 4 89.741 388.96 94.03 4 89.74 388.96 95.44 3.8 947 945 5 100.772 503.86 159.69 4.9 949 940 5 140.654 703.27 171.32 5 140.65 703.27 52.10 950 943 3 134.724 404.17 950 1933 7 81.855 573.06 140.52 10 216.59 977.23 52.76 2.4 952 3876 4 115.925 483.70 203.76 4 115.92 483.70 56.89 2.3 954 1-91.94 193.94 8 99.94 193.94 193.94 193.94 193.94 193.94 193.94 193.94 193.94 193.94 193.94 193.94 193.94 193.94 193.95 193.94 19 | 938 | 957 | 4 | 137,478 | 549.91 | 235.79 | 4 | 137.48 | 549.91 | 58.31 | 2.3 | | 941 1929 5 209.999 1049.50 220.09 5 20.99 1049.50 95.37 4.8 942 1930 1 63.095 63.09 64.94 1 63.09 63.09 67.77 1.0 943 1927 5 157.994 789.97 162.88 5 157.99 789.97 77.00 4.8 944 1928 1 167.847 167.86 187.90 1 167.85 167.85 89.33 0.9 945 1931 2 139.505 279.01 147.97 2 139.51 279.01 94.28 1.9 946 1932 4 89.74 1 358.99 69.03 4 89.74 38.98 6 54.43 3.8 947 945 5 100.772 503.86 159.63 5 100.77 503.86 63.13 3.2 949 940 5 140.954 703.27 171.32 5 140.65 703.27 52.10 950 943 3 134.724 404.17 1.00 950 1933 7 81.865 573.06 140.52 10 216.59 977.23 52.76 2.4 952 3876 4 115.925 483.70 203.76 4 115.92 483.70 56.89 2.3 954 - 51.934 8 99.936 799.49 180.82 8 99.94 799.49 55.27 4.4 952 3876 4 115.925 483.70 203.76 4 115.92 483.70 56.89 2.3 956 977 4 122.03 840.81 264.69 4 120.20 0.00 0.00 0.00 0.00 956 977 4 122.03 840.81 264.69 4 120.20 480.81 1.8 959 978 3 130.926 4 231.897 97.75 33.87 40.81 1.7 950 978 4 79.94 180.82 8 99.94 799.49 55.27 4.4 952 3876 4 179.927 179.12 3 327.66 4 231.90 927.59 70.77 2.8 954 - 51.30 167.30
167.30 | 2000 | 951 | 1 | 74.608 | 74.61 | 245 BB | | 1205 PART 1 | 1,8575,93564 | T 5000 8000 | 15,000 | | 943 1927 5 157.994 789.97 162.88 5 157.99 789.97 97.00 4.8 1944 1928 1 167.85 187.95 89.33 0.9 945 1931 2 139.505 279.01 41.977 2 139.51 279.01 94.28 1.9 946 1932 4 89.741 358.96 94.03 4 89.74 138.89 6 94.03 4 89.74 138.89 6 94.03 4 89.74 138.89 6 94.03 4 89.74 138.89 6 94.03 4 89.74 138.89 6 94.03 4 89.74 138.89 6 95.44 3.8 947 945 5 100.477 547.49 134.77 5 100.55 547.49 13.27 5 140.55 547.49 13.27 5 140.55 547.49 13.27 5 140.55 547.49 13.27 5 140.55 547.49 13.27 5 140.55 7 140.55 140.5 | | 1929 | 5 | 209.899 | 1049.50 | | | | | | | | 946 1932 4 89.741 338.96 94.03 4 89.74 38.86 95.44 3.8 947 945 5 100.497 547.49 13.477 5 100.56 547.49 13.27 948 944 5 100.772 503.86 156.63 5 100.77 503.86 6 63.13 3.2 949 940 5 100.654 703.27 171.32 5 140.65 703.27 82.10 4.1 950 943 3 134.724 404.17 950 1933 7 81.865 573.06 410.52 10 216.59 977.23 52.76 2.4 952 38.76 4 115.925 463.70 203.76 4 115.92 463.70 55.89 2.3 863 1926 4 231.897 927.69 32.766 4 231.80 927.89 92.57 2.7 4.2 952 38.76 4 120.203 480.81 28.68 9.8 9.9 94 99.94 99.95 55.77 2.8 954 | 943 | 1927 | 5 | 157.994 | 789.97 | 162.88 | 5 | 157.99 | 789.97 | 97.00 | 4.8 | | 947 945 5 109.497 547.49 134.77 5 109.50 547.49 81.25 41 948 944 5 100.772 503.86 155.86 15 100.772 503.86 155.86 15 100.772 503.86 155.86 153.3 3.2 949 940 5 140.654 703.27 171.32 5 140.65 703.27 82.10 4.1 950 1933 7 81.855 573.06 410.52 10 216.59 977.23 52.76 2.4 1933 7 81.855 573.06 410.52 10 216.59 977.23 52.76 2.4 1933 8 99.936 799.49 180.82 8 99.94 799.49 55.27 4.4 195.25 463.70 203.76 4 115.92 463.70 56.89 2.3 853 192.6 4 231.897 927.59 327.66 4 115.92 463.70 56.89 2.3 853 192.6 4 231.897 927.59 327.66 4 231.90 927.59 70.77 2.8 155.71 0 0.00 0.00 0.00 0.00 0.00 95.50 - 155.71 0 0.00 0.00 0.00 0.00 0.00 95.50 - 155.71 0 0.00 0.00 0.00 0.00 0.00 95.50 - 155.71 0 0.00 0.00 0.00 0.00 0.00 95.50 17 4 120.203 480.81 264.69 4 120.20 480.81 45.41 18.957 97.97 8 130.895 1045.56 4 129.30 18.39 19.89 19 | 945 | 1931 | 2 | 139.505 | 279.01 | 147.97 | 2 | 139.51 | 279.01 | 94.28 | 1.9 | | 949 940 5 140.654 703.27 171.32 5 140.656 703.27 82.10 4.1 950 1933 7 81.855 573.06 40.17 1933 52.76 2.4 951 1934 8 99.98 79.49 180.82 8 99.4 799.49 55.27 4.4 952 3876 4 115.925 463.70 203.76 4 116.92 463.70 56.89 2.3 953 1926 4 231.897 927.59 327.66 4 231.90 927.59 70.77 2.8 954 - 152.71 0 0.00 0.00 0.00 0.00 0.00 955 - 1 546.78 0 0.00 0.00 0.00 0.00 0.00 0.00 955 977 4 120.203 480.81 264.69 4 120.20 480.81 45.41 18. 957 976 4 249.168 996.67 339.72 4 249.17 996.67 73.34 2.9 958 3875 3 23.678 710.03 360.73 3 238.68 716.03 86.16 2.0 959 979 8 130.895 1045.56 12.03 42.146 12 310.50 1764.79 73.67 4.2 960 978 4 271.352 1085.41 341.70 4 271.35 1085.41 79.41 3.2 961 980 1 77.961 77.96 299.01 1 77.96 77.9 6.80 9.9 98.9 1 77.961 77.9 6.2 99.01 1 77.961 77.96 299.01 1 77.961 77.96 299.01 1 77.961 77.96 299.01 1 77.961 77.96 299.01 1 77.961 77.96 299.01 1 77.961 77.9 6.2 99.01 1 77.961 77.96 299.01 1 77.961 77.96 299.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.961 77.9 6.2 99.01 1 77.9 6.2 99.01 1 77.9 6.2 99.01 1 77.9 6.2 99.01 1 77.9 6.2 99.0 99.8 5 84.79 423.96 70.14 3.5 99.6 99.6 4 165.535 626.14 17.9 3 4 166.53 626.14 87.9 8 152.303 1218.42 235.56 8 152.30 7 1218.42 233.33 1218.42 235.56 8 152.30 7 1218.42 233.33 1218.42 235.56 8 152.30 7 1218.42 233.33 1218.42 235.56 8 152.30 7 1218.42 233.33 1218.42 235.56 8 152.30 7 1218.42 233.33 1218.42 235.56 8 152.30 7 1218.42 233.33 1218.42 235.56 8 152.30 7 1218.42 233.33 1218.42 235.56 8 152.30 7 1218.42 233.33 1218.42 235.56 8 152.30 7 1218.42 233.33 1218.42 235.56 8 152.30 7 1218.42 235.33 3 4.3 4.3 955.9 966 99.4 12.2 0.2 1218.42 10 12.0 12.0 12.0 12.0 12.0 12.0 12.0 | 947 | 945 | 5 | 109.497 | 547.49 | 134.77 | 5 | 109.50 | 547.49 | 81.25 | 4.1 | | 951 1934 8 9936 79949 18082 8 9994 7794 7949 18082 8 9994 77949 18082 8 9994 78949 5527 4.4 952 3876 4 115.925 463.70 203.76 4 115.92 483.70 56.89 2.3 953 1926 4 231.897 927.59 327.66 4 231.90 927.59 770.77 2.8 954 - | | 940 | 5 | 140.654 | 703.27 | | | | | | | | 952 | 25/1927 | 1933 | 7 | 81.865 | 573.06 | 100000000000000000000000000000000000000 | 1000 | (1000) | (5/97/016) | 2000 | 2000 | | 953 1926 4 231.897 927.59 327.66 4 231.90 927.59 70.77 2.8 954 - | 952 | 3876 | 4 | 115.925 | 463.70 | 203.76 | 4 | 115.92 | 463,70 | 56.89 | 2.3 | | 9555 - 546 78 0 0.00 0.00 0.00 0.00 0.00 0.00 9.00 0.00 9.00 0.00 9.00 0.00 0.00 9.956 977 4 120,203 480.81 264.69 4 120,20 480.81 45.41 1.8 956 77.334 2.9 988 3875 3 238.678 716.03 360.73 3 238.688 716.03 66.16 2.0 959 975 4 179.807 719.23 421.46 12 310.50 1764.79 73.67 4.2 960 976 4 179.807 719.23 421.46 12 310.50 1764.79 73.67 4.2 961 980 1 77.961 77.96 299.01 1 77.96 260.7 0.3 962 989 5 84.791 423.96 120.89 5 84.791 423.96 120.89 5 84.791 423.96 120.899 5 84.791 423.96 <t< td=""><td>954</td><td></td><td>4</td><td>231.897</td><td>927.59</td><td>153.71</td><td>0</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.0</td></t<> | 954 | | 4 | 231.897 | 927.59 | 153.71 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 957 976 4 249 168 996 67 33 972 4 249 17 996 67 73 34 2 9 958 3875 3 238 678 716 03 360 73 3 238 68 716 03 66.16 2.0 959 975 4 179 807 719 23 421 46 12 310.50 1764.79 73.67 4.2 960 978 4 271,352 1085.41 341.70 4 271,35 1095.41 79.41 3.2 961 980 1 77.961 77.96 299.01 1 77.96 77.96 26.07 0.3 962 989 5 84.791 423.96 120.89 5 84.79 423.96 70.14 3.5 963 988 5 136.371 681.86 5 136.37 681.86 68.92 3.4 964 987 8 152.303 1218.42 285.56 8 152.30 1218.42 < | | 977 | 4 | 120 203 | 480 81 | 546.78 | | | 0.00
480.81 | | | | 959 979 8 130,885 1045,56 421,46 12 310,50 1764,79 73,67 42 960 978 4 271,352 1085,41 341,70 4 271,35 1085,41 79,41 3.2 961 980 1 77,961 77,96 299,01 1 77,96 26,07 0.3 962 989 5 84,791 423,96 10,43 3.5 963 988 5 136,371 681,86 197,86 5 136,37 681,86 68,92 3.4 964 987 8 152,303 1218,42 285,56 8 152,307 1218,42 53,33 4.3 966 986 4 156,635 566,14 177,93 4 156,635 626,14 87,98 3.5 966 984 1 126,099 126,10 156,52 1 126,10 160,53 68,14 87,98 3.5 967 < | 957 | 976 | 4 | 249.168 | 996.67 | 339.72 | 4 | 249.17 | 996.67 | 73.34 | 2.9 | | 960 978 4 271.352 1085.41
341.70 4 271.35 1085.41 79.41 3.2 961 980 1 77.961 77.96 299.01 1 77.96 77.96 26.07 0.3 962 989 5 84.791 423.96 120.89 5 84.79 423.96 70.14 3.5 963 988 5 136.371 681.86 197.86 5 136.37 681.86 68.92 3.4 964 987 8 152.303 1218.42 253.33 4.3 965 986 4 156.535 626.14 177.93 4 156.53 626.14 87.98 3.5 965 984 1 126.999 126.10 156.52 1 126.10 156.53 62.14 87.98 3.5 966 984 1 126.999 126.10 156.52 1 126.10 156.52 1 126.10 156.52 | 1,000 | 979 | 8 | 130.695 | 1045.56 | | 1/1 1860 | 1 100 100 100 1 | | | 10.000 | | 962 989 5 84.791 423.96 120.89 5 84.79 423.96 70.14 3.5 963 988 5 136.371 681.86 197.86 5 136.37 681.86 68.92 3.4 964 987 8 152.303 1218.42 236.56 8 152.30 1218.42 53.33 4,3 965 986 4 156.635 626.14 177.93 4 156.53 626.14 87.98 3.5 966 984 1 126.09 156.52 1 126.10 126.10 10.56 84.85 2 50.28 100.56 59.26 1.2 968 982 4 56.894 227.58 88.22 4 56.89 227.55 64.49 2.6 969 983 6 207.016 1242.10 120.00 122.70 176.21 1 122.70 122.70 69.63 0.7 971 991 | | 978 | 4 | 271.352 | 1085.41 | | | | | | | | 964 987 8 152,303 1218,42 285,56 8 152,30 1218,42 53,33 4.3 965 986 4 156,53 626,14 177,93 4 156,53 626,14 87,98 3.5 966 984 1 126,099 126,10 156,52 1 126,10 126,10 80,56 0.8 967 981 2 50,281 100,56 84,85 2 50,28 100,56 59,26 12 968 982 4 56,894 227,58 64,92 227,58 64,92 26,969 983 6 207,016 1242,10 287,16 6 207,02 1242,10 72,09 43 970 990 1 122,700 122,70 176,21 1 122,70 169,63 0.7 971 991 3 125,931 377,79 171,51 3 125,93 377,79 73,43 2.2 972 < | 962 | 989 | 5 | 84.791 | 423.96 | 120.89 | 5 | 84.79 | 423.96 | 70.14 | 3.5 | | 966 984 1 126 099 126 10 156 52 1 126 10 126 10 80 56 0 8 967 981 2 50 281 100.56 84.85 2 50 28 100.56 59 26 1.2 968 983 4 56.894 227.58 88 82 4 56.89 227.55 64.49 2.6 969 983 6 207.016 122.70 122.70 122.70 122.70 122.70 122.70 96.63 0.7 971 990 1 122.70 122.70 122.70 122.70 122.70 96.63 0.7 971 991 3 125.931 377.79 171.51 3 125.93 377.79 73.43 2.2 972 994 3 112.378 337.13 144.36 3 112.39 619.85 90.48 4.5 974 993 5 122.861 614.30 138.03 5 122.86 | 964 | 987 | 8 | 152.303 | 1218,42 | 285.56 | 8 | 152.30 | 1218.42 | 53.33 | 4.3 | | 988 982 4 56.894 227.58 88.22 4 56.89 227.58 64.49 2.6 969 983 6 207.016 1242.10 287.16 6 207.02 1242.10 72.09 4.3 970 990 1 122.70 122.70 176.21 1 122.70 122.70 69.63 0.7 971 991 3 125.931 377.79 171.51 3 125.93 377.79 73.43 2.2 972 994 3 112.378 337.13 17.85 2.3 973 992 5 123.969 619.85 137.01 5 123.97 619.85 90.48 4.5 974 993 5 122.861 614.30 138.03 5 122.86 614.30 89.01 4.5 975 995 4 118.777 475.11 143.34 4 118.78 475.11 82.86 3.3 96 </td <td>966</td> <td>984</td> <td>1</td> <td>126.099</td> <td>126.10</td> <td>156.52</td> <td>1</td> <td>126.10</td> <td>126.10</td> <td>80.56</td> <td>0.8</td> | 966 | 984 | 1 | 126.099 | 126.10 | 156.52 | 1 | 126.10 | 126.10 | 80.56 | 0.8 | | 970 990 1 122,700 122,70 176,21 1 122,70 196,63 0.7 971 991 3 125,931 377,79 171,51 3 125,93 377,79 73,43 2,2 972 994 3 112,378 337,13 144,36 3 112,38 337,13 77,85 2,3 973 992 5 123,969 619,85 137,01 5 123,97 619,85 90,48 4,5 974 993 5 122,861 614,30 138,03 5 122,86 614,30 89,01 4,5 975 995 4 118,777 475,11 143,34 4 118,78 475,11 82,86 3,3 976 997 2 50,598 101,20 98,92 2 50,60 101,20 51,15 1.0 977 998 2 75,211 150,42 75,00 1,5 978 996 4 | 968 | 982 | 4 | 56.894 | 227.58 | 88.22 | 4 | 56.89 | 227.58 | 64.49 | 2.6 | | 971 991 3 125,931 377,79 171,51 3 125,93 377,79 73,43 2.2 972 994 3 112,378 337,13 144,36 3 112,38 337,13 77,85 2.3 973 992 5 123,969 619,85 137,01 5 123,97 619,85 90,48 4.5 974 993 5 122,861 614,30 138,03 5 122,86 614,30 89,01 4,5 975 995 4 118,777 475,11 143,34 4 118,78 475,11 82,86 3,3 976 997 2 50,598 101,20 98,92 2 50,60 101,20 51,15 1.0 977 998 2 75,211 150,42 100,28 2 75,21 150,42 75,00 1,5 978 996 4 87,577 350,31 10,88 4 87,58 350,31 | 970 | 990 | 1 | 122.700 | 122.70 | 176.21 | 1 | 122.70 | 122.70 | 69.63 | 0.7 | | 973 992 5 123,969 619,85 137,01 5 123,97 619,85 90,48 4.5 974 993 5 122,861 614,30 138,03 5 122,86 614,30 89,01 4,5 975 995 4 118,777 475,11 143,34 4 118,78 475,11 82,86 3,3 976 997 2 50,598 101,20 98,92 2 50,60 101,20 51,15 1.0 977 998 2 75,211 150,42 75,00 1,5 978 996 4 87,577 350,31 108,82 4 87,58 350,31 80,48 3,2 979 999 4 91,244 364,98 119,68 4 91,24 364,98 119,68 4 91,24 364,98 119,68 4 91,24 364,98 119,68 4 91,24 364,98 119,68 4 91,24 3 | 971 | 991 | 3 | 125.931 | 377.79 | 171.51 | 3 | 125.93 | 377.79 | 73.43
77.85 | 2.2 | | 975 995 4 118.777 475.11 143.34 4 118.78 475.11 82.86 3.3 976 997 2 50.598 101.20 98.92 2 50.60 101.20 51.15 1.0 977 998 2 75.211 150.42 75.00 1.5 978 996 4 87.577 350.31 108.82 4 87.58 350.31 80.48 3.2 979 999 4 91.244 364.98 119.68 4 91.24 364.98 76.24 3.0 980 1000 6 277.280 1663.68 339.12 6 277.28 1663.08 81.77 4.9 981 1002 5 95.576 477.88 111.01 5 95.58 477.88 86.10 4.3 982 1003 3 97.641 282.92 119.83 3 97.64 282.92 28.207 2.5 983 | 973 | 992 | 5 | 123.969 | 619.85 | 137.01 | 5 | 123.97 | 619.85 | 90.48 | 4.5 | | 977 998 2 75.211 150.42 100.28 2 75.21 150.42 75.00 1.5 978 996 4 87.577 350.31 108.82 4 87.58 350.31 80.48 3.2 979 999 4 91.244 364.98 76.24 3.0 980 1000 6 277.280 1663.68 339.12 6 277.28 1663.68 81.77 4.9 981 1002 5 95.576 477.88 111.01 5 96.58 477.88 86.10 4.3 982 1003 3 97.641 222.92 118.98 3 97.64 292.92 82.07 2.5 983 1004 6 213.901 1283.40 251.35 6 213.90 1283.40 85.10 5.1 984 1001 6 265.125 1590.75 515.62 6 265.12 1590.75 514.2 3.1 | 975 | 995 | 4 | 118.777 | 475.11 | 143.34 | 4 | 118.78 | 475.11 | 82.86 | 3.3 | | 979 999 4 91.244 364.98 119.68 4 91.24 364.98 76.24 3.0 980 1000 6 277.280 1663.68 339.12 6 277.28 1663.68 81.77 4.9 981 1002 5 95.76 477.88 111.01 5 95.58 477.88 86.10 4.3 982 1003 3 97.641 292.92 118.98 3 97.64 292.92 82.07 2.5 983 1004 6 213.901 1283.40 251.35 6 213.90 1283.40 85.10 5.1 984 1001 6 265.125 1590.75 515.62 6 265.12 1590.75 51.42 3.1 985 1009 4 59.461 237.85 89.09 4 59.46 237.85 66.74 2.7 986 1007 3 55.607 166.82 80.25 3 55.61 <t< td=""><td>977</td><td>998</td><td>2</td><td>75.211</td><td>150.42</td><td>100.28</td><td>2</td><td>75.21</td><td>150.42</td><td>75.00</td><td>1.5</td></t<> | 977 | 998 | 2 | 75.211 | 150.42 | 100.28 | 2 | 75.21 | 150.42 | 75.00 | 1.5 | | 981 1002 5 95.576 477.88 111.01 5 95.58 477.88 86.10 4.3 982 1003 3 97.641 292.92 118.98 3 97.64 292.92 82.07 2.5 983 1004 6 213.901 1283.40 251.35 6 213.90 1283.40 85.10 5.1 984 1001 6 265.125 1590.75 515.62 6 265.12 1590.75 51.42 3.1 985 1009 4 59.461 237.85 86.74 2.7 986 1007 3 55.607 166.82 80.25 3 55.61 166.82 69.29 2.1 987 1006 3 54.064 162.19 83.01 3 54.06 162.19 65.13 2.0 988 1005 3 67.629 172.89 84.52 3 57.63 172.89 68.18 2 0 | 979 | 999 | 4 | 91.244 | 364.98 | 119.68 | 4 | 91.24 | 364.98 | 76.24 | 3.0 | | 983 1004 6 213.901 1283.40 251.35 6 213.90 1283.40 85.10 5.1 984 1001 6 265.125 1590.75 515.62 6 265.12 1590.75 51.42 3.1 985 1009 4 59.461 237.85 89.09 4 59.46 237.85 66.74 2.7 986 1007 3 55.607 166.82 80.25 3 55.61 166.82 69.29 2.1 987 1006 3 54.064 162.19 83.01 3 54.06 162.19 65.13 2.0 988 1005 3 57.629 172.89 84.52 3 57.63 172.89 68.18 2.0 | 981 | 1002 | 5 | 95.576 | 477.88 | 111.01 | 5 | 95.58 | 477.88 | 86.10 | 4.3 | | 985 1009 4 59.461 237.85 89.09 4 59.46 237.85 66.74 2.7 986 1007 3 55.607 166.82 80.25 3 55.61 166.82 69.29 2.1 987 1006 3 54.064 162.19 83.01 3 54.06 162.19 65.13 2.0 988 1005 3 57.629 172.89 84.52 3 57.63 172.89 68.18 2.0 | 983 | 1004 | 6 | 213.901 | 1283.40 | 251.35 | 6 | 213.90 | 1283.40 | 85.10 | 5.1 | | 987 1006 3 54.064 162.19 83.01 3 54.06 162.19 65.13 2.0 988 1005 3 57.629 172.89 84.52 3 57.63 172.89 68.18 2.0 | 985 | 1009 | 4 | 59.461 | 237.85 | 89.09 | 4 | 59.46 | 237.85 | 66.74 | 2.7 | | | 987 | 1006 | 3 | 54.064 | 162.19 | 83.01 | 3 | 54.06 | 162.19 | 65.13 | 2.0 | | | | | | | | | | | | | | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same | Sum of
Building
Footprint
on Same
Plot | Sum of
Buildin
g Floor
Area on
Same | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|----------------------|---------------------|--------------------------------|-------------------------------------|-----------------------|---|--|---|--|---------------------------------| | 990 | 1008 | 6 | 152.958 | 917.75 | 179,85 | Plot
6 | (sqm)
152.96 | Plot
917.75 | 85.05 | 5.1 | | 991
992 | 1012 | 6
5 | 135.389
114.917 | 812.33
574.59 | 175.06
155.95 | 6
5 | 135,39
114,92 | 812.33
574.59 | 77.34
73.69 | 4.6
3.7 | | 993
994 | 3996
3997 | 1 1 | 64.629
191.821 | 64.63
191.82 | 78.82
252.19 | 1 | 64.63
191.82 | 64.63
191.82 | 82.00
76.06 | 0.8 | | 995
996 | 1040
1038 | 4 3 | 156.977
130.025 | 627.91
390.07 | 208.63
169.66 | 4 3 | 156.98
130.02 | 627.91
390.07 | 75.24
76.64 | 3.0 | | 997 | 1037 | 4 | 390.952 | 1563.81 | 495.09 | 4 | 390.95 | 1563.81 | 78.97 | 3.2 | | 998 | 1036
3894 | 5 | 242.434
9.907 | 1212.17
9.91 | 492.88 | 6 | 252.34 | 1222.08 | 51.20 | 2.5 | | 999 | 1039 | 3 | 235.524
37.830 | 706.57
37,83 | 280.09 | 3 2 | 235.52
79.20 | 706.57
79.20 | 84.09
58.58 | 0.6 | | 1000 | 1034
1035 | 5 | 41.370
103.727 | 41.37
518.63 | 128,61 | 5 | 103.73 | 518.63 | 80.65 | 4.0 | | in seemen. | 1011
1015 | 8 1 | 434.790
11.476 | 3478.32
11.48 | CIANON AND | 19896 | 400000000 | Venezaran | NORTH-CO. | 7/65 | | 1002 | 3892 | 4 | 127.376
128.394 | 509.50 | 1007,51 | 17 | 702.04 | 4512.88 | 69.68 | 4.5 | | 1003 | 3893
1021 | 7 | 113.097 | 513.58
791.68 | 143.32 | 7 | 113.10 | 791.68 | 78.91 | 5.5 | | 1004
1005 | 1020
1018 | 4 | 78.984
137.850 | 315.94
551.40 | 162.50
188.95 | 4 | 78.98
137.85 | 315.94
551.40 | 48.60
72.96 | 1.9 | | 1006
1007 | 1016 | 6 4 |
153,736
155,264 | 922.42
621.06 | 191.98
192.43 | 6 4 | 153.74
155.26 | 922.42
621.06 | 80.08
80.69 | 4.8
3.2 | | 1008 | 1019
1026 | 1 | 144.973
157.293 | 144.97
157.29 | 182.09
191.33 | 1 | 144.97
157.29 | 144.97
157.29 | 79.62
82.21 | 0.8 | | | 1027
1025 | 2 | 172.370
81.228 | 344.74
81.23 | | | | | | | | 1010 | 1023 | 1 | 12.103 | 12.10 | 832.03 | 10 | 526.88 | 1441.73 | 63.33 | 1.7 | | | 1024
1022 | 2 | 20.538
240.646 | 41.08
962.58 | | | | | | | | 1011 | 1032 | 1 | 33.000 | 33.00 | 73.83
582.76 | 0 | 0.00 | 33.00
0.00 | 44.70
0.00 | 0.4 | | 1013 | 871
872 | 5 | 497.306
70.940 | 2486.53
70.94 | 588.82 | 5 | 497.31 | 2486.53 | 84.46 | 4.2 | | 1014 | 873
858 | 5 | 166.146
229.554 | 830.73
1606.88 | 430.19 | 6 | 237.09 | 901.67 | 55.11 | 2.1 | | 1015 | 859 | 2 | 57.380 | 114.76 | 469.50 | 9 | 286.93 | 1721.64 | 61.11 | 3.7 | | 1016 | 874
875 | 5
7 | 121.877
79.562 | 609.39
556.93 | 191.36
139.64 | 5
7 | 121.88
79.56 | 609.39
556.93 | 63.69
56.98 | 3.2
4.0 | | 1018 | 876
856 | 5 | 69 429
153.177 | 347.15
765.89 | 125.42
442.00 | 5
9 | 69.43
255.96 | 347.15
1177.03 | 55.36
57.91 | 2.8 | | 1019 | 857
836 | 9 | 102.785
337.853 | 411.14
3040.68 | 427.94 | 9 | 337.85 | 3040.68 | 78.95 | 7.1 | | 1021 | 837
3839 | 2 9 | 43.565
394.966 | 87.13
3554.70 | 251.49
487.01 | 2 9 | 43.56
394.97 | 87.13
3554.70 | 17.32
81.10 | 0.3
7.3 | | 1023 | 835 | 5 | 275.380 | 1376.90 | 426.03 | 5 | 275.38 | 1376.90 | 64.64 | 3.2 | | 1024
1025 | 834
838 | 5 | 48.179
216.967 | 48.18
1084.83 | 207.96
332.54 | 5 | 48.18
216.97 | 48.18
1084.83 | 23.17
65.25 | 3.3 | | 1026
1027 | 833
3838 | 1 9 | 65.616
1071.806 | 65.62
9646.26 | 214.67
1233.15 | 1 9 | 65.62
1071.81 | 65.62
9646.26 | 30,57
86.92 | 0,3
7.8 | | 1028
1029 | 4539
878 | 5 4 | 424 206
87,736 | 2121.03
350.94 | 677.19
141.29 | 5
4 | 424.21
87.74 | 2121.03
350.94 | 62.64
62.10 | 3.1
2.5 | | 1030 | 879 | 3 | 70.869 | 212.61 | 109.43 | 3 | 70.87 | 212.61 | 64.76 | 1.9 | | 1031 | 877 | 5 | 202.428 | 1012.14 | 81.22
254.11 | 5 | 0.00
202.43 | 0.00
1012.14 | 0.00
79.66 | 4.0 | | 1033 | 832
4542 | 1 | 120.770
52.553 | 120.77
52.55 | 336.56 | 2 | 173.32 | 173.32 | 51.50 | 0.5 | | 1034
1035 | 829
825 | 1 5 | 182.336
141.364 | 182.34
706.82 | 344.26
193.04 | 1
5 | 182.34
141.36 | 182.34
706.82 | 52.97
73.23 | 0.5
3.7 | | 1000 | 816 | 5 | 95.565 | 477.83 | 199.04 | | 141.30 | 700.02 | 73.23 | 3.7 | | | 815
824 | 5 | 125.905
154.023 | 503.62
770.11 | | | | | | | | | 817
823 | 7 4 | 65.890
46.333 | 461.23
185.33 | | | | | | | | 1036 | 819
820 | 5 | 130.765
84.950 | 653.83
424.75 | 1476.57 | 52 | 995.53 | 4383.46 | 67.42 | 3.0 | | | 821 | 5 | 67.842 | 339.21 | | | | | | | | | 818
822 | 5 | 70.666
42,113 | 70.67
210.57 | | | | | | | | | 3848
3849 | 4 | 79.797
31.683 | 159.59
126.73 | | | | | | | | 1037 | 813
814 | 5 | 284.284
287.228 | 1137.14
1436.14 | 415.24
350.92 | 5 | 284.28
287.23 | 1137.14
1436.14 | 68,46
81,85 | 2.7 | | 1039 | 826
830 | 5 | 163.031
132.009 | 815.16
660.04 | 343.14
205.17 | 5 | 163.03
132.01 | 815.16
660.04 | 47.51
64.34 | 3.2 | | 1041 | 831
828 | 5 4 | 100.844
66.711 | 504.22
266.84 | 122.58
198.58 | 5 4 | 100.84
66.71 | 504.22
266.84 | 82.27
33.59 | 4.1 | | 1043 | 827 | 4 | 268.219 | 1072.88 | 495.39 | 4 | 268.22 | 1072.88 | 54.14 | 2.2 | | 1044
1045 | 896
901 | 3 | 71.748 | 300.64
71.75 | 165.83
108.39 | 3
1 | 100.21
71.75 | 300.64
71.75 | 60.43
66.19 | 0.7 | | 1046
1047 | 881
900 | 5 | 82.739
64.159 | 413.69
192.48 | 141.95
102.20 | 5
3 | 82.74
64.16 | 413.69
192.48 | 58.29
62.77 | 1.9 | | 1048
1049 | 894
1581 | 3 | 204.693
126.737 | 204.69
380.21 | 279.88
257.38 | 3 | 204.69
126.74 | 204.69
380.21 | 73.14
49.24 | 1.5 | | 1050 | 4541
1582 | 3 | 169.899
126.909 | 509.70
380.73 | 239.48 | 3 3 | 169.90
126.91 | 509.70
380.73 | 70,94
30.04 | 2.1 | | 1051 | 893 | 4 | 117.412 | 469.65 | 232.50 | 4 | 117.41 | 469.65 | 50.50 | 2.0 | | 1053
1054 | 890
3847 | 5 | 136.420
132.581 | 682.10
530.32 | 164.90
178.83 | 5
4 | 136.42
132.58 | 682,10
530,32 | 82.73
74.14 | 3.0 | | 1055
1056 | 899
892 | 3 | 59.910
57.765 | 179.73
57.76 | 106.85
105.85 | 3 1 | 59.91
57.76 | 179.73
57.76 | 56.07
54.57 | 0.5 | | 1057 | 897
898 | 7 | 42.868
120.723 | 42.87
845.06 | 223.86 | 8 | 163.59 | 887.93 | 73.08 | 4.0 | | 1058 | 651 | 9 | 328.287 | 2954.58 | 458.28 | 9 | 328.29 | 2954.58 | 71.63 | 6.4 | | 1059 | 3922
3923 | 1 2 | 155,221
211,951 | 155.22
423.90 | 1215.44 | 4 | 467.05 | 679.00 | 38.43 | 0.6 | | 1060 | 4308
1803 | 5 | 99.879
216.877 | 99.88
1084.38 | 238.58 | 5 | 216.88 | 1084.38 | 90,90 | 4.5 | | 1061
1062 | 3929
3930 | 5 | 50.801
109.023 | 50.80
545.11 | 50.87
113.55 | 1
5 | 50.80
109.02 | 50,80
545.11 | 99.86
96.02 | 1.0
4.8 | | 1063
1064 | 1759
3931 | 5 | 159.185
58.425 | 795.92
292.13 | 168.59
58.70 | 5 | 159.18
58.43 | 795.92
292.13 | 94.42
99.53 | 4.7
5.0 | | 1065 | 1760 | 6 | 105.778 | 634.67 | 105.78 | 6 | 105.78 | 634.67 | 100.00 | 6.0 | | 1066
1067 | 1761 | 5 | 99.367 | 496.83 | 41.01
108.36 | 5 | 0.00
99.37 | 0.00
496.83 | 0.00
91,70 | 4.6 | | 1068
1069 | 3926
1808 | 5 | 143.592
142.845 | 287.18
714.22 | 152.94
144.63 | 5 | 143,59
142.84 | 287.18
714.22 | 93.89
98.76 | 1.9
4.9 | | 1070 | 3925
1806 | 5
5 | 72.153
70.635 | 360.77
353.18 | 93.33 | 5 | 72.15 | 360.77 | 77,31 | 3.9 | | 1071 | 1807
3924 | 5 | 92.596
55.328 | 462.98
276.64 | 286.20 | 15 | 218.56 | 1092.80 | 76.37 | 3.8 | | 1072 | 3918 | 1 2 | 61.699 | 61.70 | 155.03 | 1 2 | 61.70 | 61.70 | 39.80 | 0.4 | | 1073
1074 | 3919
1752 | 4 | 96.148
75.000 | 192.30
300.00 | 154.42
75.00 | 2 4 | 96.15
75.00 | 192.30
300.00 | 62.26
100.00 | 4.0 | | 1075 | 1751
1753 | 3 | 82.698
56.378 | 248.09
169.13 | 196.36 | 6 | 139.08 | 417.23 | 70.83 | 2.1 | | 1076 | 4269
1814 | 3 4 | 74.205
35.313 | 222.62
141.25 | 89.86 | 3 | 74.21 | 222.62 | 82.58
97.06 | 2.5 | | 1077 | 3954
1813 | 4 5 | 34.227
85.035 | 136.91
425.18 | 79.06
140.78 | 8
5 | 69.54
85.04 | 278.16
425.18 | 87.96
60.40 | 3.5 | | 1079 | 1812 | 5 | 86.508 | 432.54 | 152.27 | 5 | 86.51 | 432.54 | 56.81 | 2.8 | | 1080
1081 | 1816
3920 | 5 | 107.529
38.140 | 537.65
38.14 | 120.72
96.11 | 5 | 107,53
38,14 | 537.65
38.14 | 89.08
39.68 | 4.5
0.4 | | 1082
1083 | 1815 | 1 | 39.084 | 39.08 | 51,41
88.52 | 0 | 0.00
39.08 | 0.00
39.08 | 0.00
44.15 | 0.0 | | 1084 | 1810
1811 | 4 | 132.116
50.041 | 528.47
50.04 | 293.88 | 5 | 182.16 | 578.51 | 61.98 | 2.0 | | 1085 | 3921 | 5 | 119.669 | 598.34 | 334.11 | 9 | 267.54 | 1189.83 | 80.07 | 3.6 | | 1086 | 1809
1826 | 3 | 147.872
95.535 | 591.49
286.60 | 155.68 | 3 | 95.53 | 286.60 | 61.36 | 1.8 | | 1087
1088 | 1827
1828 | 4 | 93,131
83,896 | 372.52
335.58 | 96.92
89.60 | 4 | 93.13
83.90 | 372,52
335,58 | 96.09
93.63 | 3.8 | | 1089 | 1829
1831 | 4 | 81.932
43.740 | 327.73
43.74 | 81.94 | 4 | 81.93 | 327.73 | 99.99 | 4.0 | | 1090 | 1830 | 1 | 19.548 | 19.55 | 120.25 | 3 | 91.78 | 91.78 | 76.33 | 0.8 | | 1091 | 1832
1833 | 6 | 28.496
141.503 | 28.50
849.02 | 151.88 | 6 | 141.50 | 849.02 | 93.17 | 5.6 | | 1092 | 1817
1818 | 1 1 | 67.966
86.258 | 67.97
86.26 | 301.99 | 2 | 154.22 | 154.22 | 51.07 | 0.5 | | 1093 | 1819
1820 | 2 | 84.584
100.784 | 169.17
302.35 | 168.92 | 2 | 84.58 | 169.17 | 50.07 | 1.0 | | 1094 | 1821 | 4 | 126,979 | 507.92 | 310.58 | 7 | 227.76 | 810.27 | 73.33 | 2.6 | | 1095 | 1824
1823 | 5 | 56.070
46.482 | 280.35
232.41 | 102.55 | 10 | 102.55 | 512.76 | 100.00 | 5.0 | | 1096
1097 | 3934
3935 | 6
5 | 89.044
48.694 | 534.26
243.47 | 107.63
48.81 | 6
5 | 89.04
48.69 | 534.26
243.47 | 82.73
99.77 | 5.0
5.0 | | 1098
1099 | 1836 | 4 | 118.688 | 474.75 | 137.98
57.18 | 4
0 | 118.69
0.00 | 474.75
0.00 | 86.02
0.00 | 3.4
0.0 | | 1100 | 1835 | 2 | 46.450
76.428 | 92.90
229.29 | 160.16 | 5 | 122.88 | 322.19 | 76.72 | 2.0 | | 1101 | 1834
1822 | 5 | 76.428
57.310 | 286.55 | 59.20 | 5 | 57.31 | 286.55 | 96.81 | 4.8 | | 1102 | 1825
1798 | 3 4 | 136.527
107.196 | 409.58
428.79 | 139.47
351.19 | 7 | 136.53
233.60 | 409.58
807.99 | 97.89
66.52 | 2.9 | | 1103 | 1799 | 3 | 126.400 | 379.20 | 551.19 | - 1 | 200.00 | 98.100 | 00.02 | 1.2 | | Plot
Ref.
No. | Buildin
g Ref.
No. | Building
Storeys | Building
Footprint
(sqm) | Building
Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprin
t on
Same
Plot | Sum of
Building
Floor
Area on
Same
Plot | Building
Coverag
e Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |----------------------|--------------------------|---------------------|--------------------------------|------------------------------------|----------------------------|---|--|--|---|---------------------------------| | 1104 | 1801
1800 | 1 4 | 46.727
262.094 | 46.73
1048.37 | 531.21 | 5 | 308.82 | 1095.10 | 58.14 | 2.1 | | 1105
1106 | 1802
1763 | 9 | 115,076
528,403 | 690.46
4755.63 | 243.64
636.63 | 6
10 |
115.08
573.24 | 690.46
4800.47 | 47.23
90.04 | 7.5 | | 1107 | 1797 | 5 | 44.836 | 44,84
270,78 | 29.32 | 0 5 | 0.00 | 0.00 | 0.00 | 0.0 | | 1108
1109
1110 | 3932
1794 | 1 7 | 54.156
12.202
74.814 | 12.20
523.69 | 54.16
22.98
98.76 | 1 7 | 54.16
12.20
74.81 | 270,78
12.20
523,69 | 99.98
53.10
75.75 | 5.0
0.5
5.3 | | 1111 | 1795
3927 | 1 | 36.801
17.371 | 36.80
17.37 | 58,67 | 1 | 36,80 | 36.80 | 62.73 | 0.6 | | 1112 | 3928
3933 | 4 | 108.341
47.263 | 433,36
47,26 | 128.85
48.79 | 5 | 125.71
47.26 | 450.73
47.26 | 97.57
96.87 | 1.0 | | 1114 | 1762
1764 | 5 | 141.745
211.479 | 708.72
1480.35 | 171.06
274.58 | 5
7 | 141.74
211.48 | 708.72
1480.35 | 82.86
77.02 | 4.1
5.4 | | 1116 | 1765
1768 | 7 | 141,720
42,814 | 992.04
42.81 | 215.43 | 8 | 184.53 | 1034.85 | 85.66 | 4.8 | | 1117 | 1766
1767 | 7 | 135,596
50,633 | 949,17
50.63 | 225.81 | 8 | 186.23 | 999.80 | 82.47 | 4.4 | | 1118
1119 | 1769 | 7 | 202,719 | 1419.03 | 269.21
159.10 | 7 | 202.72
0.00 | 1419.03
0.00 | 75.30
0.00 | 5.3
0.0 | | 1120
1121 | 1770
1839 | 6 | 141.606
164.537 | 991.24
987.22 | 280.10
177.77 | 7
6 | 141.61
164.54 | 991.24
987.22 | 50.56
92.56 | 3.5
5.6 | | 1122 | 1837
1838
1779 | 3 | 79,193
83,675
71,312 | 237.58
251.03
142.62 | 235.88 | 6 | 162.87 | 488.60 | 69.05 | 2.1 | | 1123 | 1778
1780 | 7 4 | 112.645
135.382 | 788.51
541.53 | 198.18
135.27 | 9 | 183.96
135.38 | 931.14
541.53 | 92.82 | 4.7 | | 1125
1126 | 1781 | 5 | 112,586 | 562.93 | 113.38
751.25 | 5 0 | 112.59 | 562.93 | 99.30 | 5.0 | | 1127 | 1774
1773 | 7 2 | 41.457
198.628 | 290.20
397.26 | 318.56 | 9 | 240.09 | 687.46 | 75.37 | 2.2 | | 1128 | 1782
1785 | 1 6 | 143,022
75,848 | 143.02
455.09 | 142.99 | 1 | 143.02 | 143.02 | 100.02 | 1.0 | | 1129 | 1786
1787 | 1 3 | 19.128
46.955 | 19.13
140.86 | 251.25 | 10 | 141.93 | 615.08 | 56.49 | 2.4 | | 1130
1131 | 1788
1789 | 4 | 317.980
190.881 | 1271.92
763.52 | 319.74
303.74 | 4 | 317.98
190.88 | 1271.92
763.52 | 99.45
62.84 | 4.0
2.5 | | 1132
1133 | 1790
1791 | 6 4 | 119.390
116.885 | 716.34
467.54 | 150.07
127.25 | 6 4 | 119.39
116.88 | 716.34
467.54 | 79.56
91.86 | 4.8
3.7 | | 1134
1135 | 1792
1857 | 6 | 140.853
123.416 | 563.41
740.50 | 165.03
404.72 | 14 | 140.85
343.35 | 563.41
2499.97 | 85.35
84.84 | 3.4
6.2 | | 1136 | 1858
1775 | 6 | 219.934
162.908 | 1759.48
977.45 | 275.58 | 6 | 162.91 | 977.45 | 59.11 | 3.5 | | 1137 | 1859 | 5 | 139.786 | 698.93 | 171.82
188.33 | 0
5
3 | 0.00
139.79 | 0.00
698.93 | 0.00
74.22 | 3.7 | | 1139 | 1862
1860
1861 | 3
6
6 | 120.869
108.239
55.501 | 362.61
649.44
333.01 | 185.54
201.49 | 12 | 120.87
163.74 | 362.61
982.44 | 65.15
81.26 | 4.9 | | 1141
1142 | 1861
1772
1771 | 9 7 | 55.501
169.401
206.761 | 333.01
1524.61
1447.32 | 168.59
239.71 | 9 7 | 169.40
206.76 | 1524.61
1447.32 | 100.48
86.25 | 9.0
6.0 | | 1143 | 3936
1844 | 3 | 78.118
149.738 | 234.35
449.21 | 246.62 | 3 | 78.12 | 234.35 | 31.68 | 1.0 | | 1144 | 1843
1864 | 4 5 | 87.744
159.993 | 350.97
799.97 | 305.19 | 7 | 237.48 | 800.19 | 77.82 | 2.6 | | 1145
1146 | 1863
1865 | 5 | 108.141
197.085 | 540.70
788.34 | 349.82
210.78 | 10 | 268.13
197.08 | 1340.67
788.34 | 76.65
93.50 | 3.8 | | 1147 | 1855
1856 | 1 | 64.075
109.874 | 64.07
109.87 | 282.75 | 2 | 173.95 | 173.95 | 61.52 | 0.6 | | 1148 | 1840
1841 | 4 | 184,688
59,124 | 738.75
59.12 | 243.94 | 5 | 243.81 | 797.88 | 99.95 | 3.3 | | 1149
1150 | 1842
1846 | 5
2 | 171.769
165.739 | 858.84
331.48 | 291.48
172.93 | 5
2 | 171.77
165.74 | 858.84
331.48 | 58.93
95.84 | 2.9 | | 1151
1152 | 1845
1866 | 5 4 | 186.725
179.297 | 933.63
717.19 | 186.73
179.30 | 5
4 | 186.73
179.30 | 933.63
717.19 | 100.00
100.00 | 5.0
4.0 | | 1153 | 1854
1853 | 1 | 111.750
120.801 | 111.75
120.80 | 267.06 | 2 | 232.55 | 232.55 | 87.08 | 0.9 | | 1154
1155 | 1868
1869 | 3 | 117.526
71.573 | 352.58
214.72 | 117.53
71.57 | 3 | 117.53
71.57 | 352.58
214.72 | 100.00 | 3.0 | | 1156 | 1867
1848 | 3 | 211.556
38.561 | 846.23
115.68 | 213.44
154.76 | 8 | 211.56
75.04 | 846.23
298.08 | 99.12
48.49 | 1.9 | | 1158 | 1847
1849 | 5 | 36,480
76,773 | 182,40
460,64 | 159.42 | 6 | 76.77 | 460,64 | 48.16 | 2.9 | | 1159
1160 | 1850
1852 | 3 | 124.432
279,773 | 124.43
839.32 | 132.62
280.57 | 3 | 124.43
279.77 | 124.43
839.32 | 93.82
99.72 | 3.0 | | 1161 | 1851
3913 | 6
5 | 141.383
144.215
143.593 | 848.30
721.07 | 173.85 | 6
5 | 141,38
144.21 | 848.30
721.07 | 96.73
82.95 | 5.8
4.1
4.8 | | 1163
1164
1165 | 3914
3915
1883 | 5
5
5 | 118.789
132.057 | 717.97
593.94
660.29 | 150.10
127.66
139.33 | 5
5
5 | 143.59
118.79
132.06 | 717.97
593.94
660.29 | 95.66
93.05
94.78 | 4.7 | | 1166
1167 | 1886 | 6 | 139.628 | 837.77 | 159.77
25.16 | 6 0 | 139.63 | 837.77
0.00 | 87.40
0.00 | 5.2 | | 1168 | 1881
4310 | 5 2 | 123.910
13.792 | 619.55
27.58 | 147.58 | 7 | 137.70 | 647.14 | 93.31 | 4.4 | | 1169
1170 | 3912
1882 | 5 | 132,461
159,342 | 662.31
637.37 | 147.38
159.64 | 5
4 | 132.46
159.34 | 662.31
637.37 | 89.88
99.81 | 4.5 | | 1171 | 3967
1880 | 6
5 | 44,354
210.826 | 266.13
1054.13 | 44,66
211.31 | 6
5 | 44.35
210.83 | 266.13
1054.13 | 99.32
99.77 | 6,0
5.0 | | 1173 | 1879
1878 | 6 | 179,900
136,835 | 719.60
821.01 | 193.79
464.70 | 12 | 179.90
320.64 | 719.60
1923.85 | 92.83
69.00 | 3.7
4.1 | | 1175 | 1877
1876 | 6
5 | 183.807
237.496 | 1102.84
1187.48 | 466.59 | 5 | 237.50 | 1187.48 | 50.90 | 2.5 | | 1176 | 1875
2097 | 3 | 316,729
48,537 | 950.19
48.54 | 187.36 | 3
8 | 316.73
181.53 | 950.19
979.48 | 47.37
96.89 | 5.2 | | 1178 | 2098
2100 | 7 2 | 132.991
123.630 | 930.94
247.26 | 249.76 | 3 | 162.13 | 285.76 | 64.91 | 1.1 | | 1179 | 2099 | 4 | 38.502
253.230 | 38.50
1012.92 | 253.23 | 4 | 253.23 | 1012.92 | 100.00 | 4.0 | | 1180
1181
1182 | 2102
2111
2103 | 5 | 314.474
241.370
132.406 | 2515.79
1206.85
264.81 | 397.16
500.82
363.96 | 8
5
2 | 314,47
241,37
132,41 | 2515.79
1206.85
264.81 | 79.18
48.20
36.38 | 6,3
2.4
0.7 | | 1183 | 2103
2104
2105 | 3 3 | 105,166
123,873 | 315.50
371.62 | 463.63 | 6 | 229.04 | 687.12 | 49.40 | 1.5 | | 1184
1185 | 2109
2110 | 4 | 73.772
73.152 | 295.09
292.61 | 82.02
86.32 | 4 | 73.77
73.15 | 295.09
292.61 | 89.95
84.75 | 3.6 | | 1186
1187 | 2108 | 4 | 81.236 | 324.94 | 107.16
55.78 | 4
0 | 81.24
0.00 | 324.94
0.00 | 75.81
0.00 | 3.0 | | 1188
1189 | 2106
2107 | 4 | 276.622
109.740 | 1106,49
438,96 | 369.22
114.22 | 4 4 | 276.62
109.74 | 1106.49
438.96 | 74.92
96.07 | 3.0 | | 1190
1191 | 2141
2142 | 3 4 | 163,944
150,403 | 491,83
601.61 | 168.98
154.36 | 3 4 | 163.94
150.40 | 491,83
601,61 | 97.02
97.44 | 3.9 | | 1192
1193 | 2138
2139 | 3 4 | 163.663
201.228 | 490.99
804.91 | 231.68 | 3 4 | 163.66
201.23 | 490.99
804.91 | 70.64
99.82 | 2.1 | | 1194
1195 | 2140
1887 | 3 | 172,900
107,337 | 691.60
322.01 | 201.28
175.19 | 3 | 172.90
107.34 | 691.60
322.01 | 85.90
61.27 | 1.8 | | 1196 | 1894
2115
1893 | 4 4 | 48.815
88.713
74.499 | 48.81
354.85
298.00 | 180.67 | 5 | 137.53 | 403.67 | 76.12 | 2.2 | | 1197 | 2114
1888 | 5 4 | 124.184
105.698 | 620.92
422.79 | 248.21 | 9 | 198.68 | 918.92 | 80.05 | 3.7 | | 1198 | 1889
1891 | 4 3 | 83.249
27,693 | 333.00
83.08 | 226.12 | 8 | 188.95 | 755.79 | 83.56 | 3.3 | | 1199 | 1892
1890 | 3 4 | 46.302
86.330 | 138.91
345.32 | 650.31 | 11 | 394.56 | 801.54 | 60.67 | 1.2 | | 1200 | 2120
2113 | 1 3 | 234 229
262 678 | 234.23
788.03 | 261,52 | 3 | 262.68 | 788.03 | 100.44 | 3.0 | | 1201
1202 | 2112
2116 | 5 | 227.699
175.856 | 910.79
879.28 | 253.43
196.58 | 5 | 227.70
175.86 | 910.79
879.28 | 89.85
89.46 | 3.6
4.5 | | 1203
1204 | 2117
2118 | 4 | 104.978
160.199 | 419.91
640.80 | 107.33
159.90 | 4 | 104,98
160,20 | 419.91
640.80 | 97.81
100.19 | 3.9
4.0 | | 1205
1206 | 2119
2122 | 5 | 167.720
187.993 | 838.60
375.99 | 169.11
187.99 | 5 2 | 167.72
187.99 | 838.60
375.99 | 99.18
100.00 | 5.0
2.0 | | 1207
1208 | 2123 | 3 4 | 172,950
189,607 | 518.85
758.43 | 172.95
195.36 | 3 4 | 172,95
189,61 | 518.85
758.43 | 100.00
97.06 | 3.0 | | 1209 | 2121 | 3 | 160,994
118,713 | 643.98
356.14 | 167.94
122.32 | 3 | 160.99
118.71 | 643,98
356,14 | 95.87
97.05 | 3.8 | | 1211 | 1897
1896 | 4 4 | 51,895
132,339 | 207.58
529.36 | 265.05 | 8 | 184.23 | 736.94 | 69.51
80.20 | 2.8 | | 1212 | 1895
1900
3916 | 3
5
4 | 190.186
56.132
130.588 | 570,56
280.66
522.35 | 237.13 | 9 | 190.19
186.72 | 570.56
803.01 | 90.29 | 3.9 | | 1214
1215 | 1899
1898 | 5 4 | 97,164
208,219 | 485.82
832.87 | 145.33
224.98 | 5
4 | 97.16
208.22 | 485.82
832.87 | 66.86
92.55 | 3.3 | | 1215 | 2126
3938 | 8 4 | 112.571
101.465 | 900.57
405.86 | 259.00 | 12 | 214.04 | 1306.43 | 82.64 | 5.0 | | 1217
1218 | 2127
3939 | 1 7 | 57,670
123,098 | 57.67
861.68 | 57.67
130.06 | 1 7 | 57.67
123.10 | 57.67
861.68 | 100.00
94.64 | 1.0
6.6 | | 1219
1220 | 2132
2128 | 4 | 203.140
194.277 |
812.56
777.11 | 250.12
219.50 | 4 4 | 203.14 | 812.56
777.11 | 81.22
88.51 | 3.2 | | 1221 | 2129
2130 | 4
5 | 314.273
159.444 | 1257.09
797.22 | 314.40
269.26 | 4
5 | 314.27
159.44 | 1257.09
797.22 | 99.96
59.22 | 4.0
3.0 | | 1223
1224 | 2136
2137 | 3 4 | 166.643
222,963 | 499.93
891.85 | 166.64
222.78 | 3
4 | 166.64
222.96 | 499.93
891.85 | 100.00
100.08 | 3.0
4.0 | | | | | | | | | | | | | | 1225 | 8 97.97 1 72.69 1 72.69 1 72.69 1 76.39 6 45.27 0 58.91 0 100.00 4 97.24 8 85.95 9 99.99 99.96 7 100.00 8 96.34 9 73.24 3 100.00 6 98.72 0.00 3 100.00 9 95.95 0.00 6 63.44 4 78.43 6 59.85 8 56.07 2 69.01 5 53.89 | 3.2
2.9
0.7
5.1
5.3
0.9
2.4
4.0
3.9
0.9
4.0
4.0
4.0
3.7
2.0
4.4
0.0
3.7
2.0
4.0
1.0
0.0
1.0
1.0
1.0
1.0
1.0
1 | |--|--|--| | 1227 | 1 72.69
1 72.69
1 76.39
6 45.27
0 58.91
0 100.00
4 97.24
8 85.95
9 99.99
99.76
7 100.00
8 96.34
9 73.24
3 100.00
9 98.72
0.00
3 100.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 0.7
5.1
5.3
0.9
2.4
4.0
3.9
0.9
4.0
4.0
4.0
3.9
3.9
4.0
4.0
3.9
3.9
4.0
4.0
3.9
3.9
3.9
3.9
3.9
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0 | | 1228 2220 6 187 545 1125 27 218 70 6 187 55 1125 1125 1125 1229 2221 7 122.716 859.01 160.64 7 122.72 859.1330 2222 2 81.928 163.86 180.96 2 81.93 163.131 12144 4 99.601 394.40 167.38 4 98.60 394.4 1232 2143 4 137.950 551.80 137.95 4 137.95 551.123 2522 4 65.663 262.65 159.28 8 154.89 619. 1234 2210 1 83.162 83.16 84.52 171.82 2 147.68 147.1235 2209 4 137.746 550.99 137.77 4 137.75 550.1236 2208 4 132.451 529.80 132.78 4 132.45 529.136 2208 4 142.744 570.98 148.16 4 142.74 570.1238 2206 4 142.744 570.98 148.16 4 142.74 570.1242 2214 2212 2 69.163 138.33 69.16 2 69.16 138.1244 2214 2215 3 105.076 382.38 105.08 3 105.08 3 105.08 3 1244 2216 1 135.789 135.79 141.53 1 135.79 135.1244 2216 1 135.789 135.79 141.53 1 135.79 135.1244 2216 1 135.789 135.79 141.53 1 135.79 135.1244 2216 1 135.789 135.79 141.53 1 135.79 135.125 147.98 147.94 277.247 277.44 277.247 277.44 277.247 277.44 277.247 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.249 277.249 277.248 277.248 277.248 277.249 277.248 277.248 277.248 277.248 277.248 277.248 277.249 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277.248 277. | 85.76 1 76.39 6 45.27 0 58.91 0 100.00 4 97.24 8 85.95 9 99.99 7 100.00 8 96.34 9 73.24 3 100.00 6 98.72 0.00 3 100.00 6 63.44 4 78.43 6 59.85 8 56.07 2 69.01 5 53.89 | 5.1
5.3
0.9
2.4
4.0
3.9
0.9
4.0
4.0
4.0
3.9
3.9
3.7
2.0
4.4
0.0
3.9
1.0
0.0
2.5
3.9
1.1 | | 1229 2221 7 122,716 859.01 160.64 7 122,72 859.1 1230 2222 2 81.928 163.86 180.96 2 81.93 163.1 1231 2144 4 98.601 394.40 167.38 4 98.60 394.1 1232 2143 4 137.950 551.80 137.95 4 137.95 551.1 1233 2143 4 65.663 262.65 159.28 8 154.89 619.1 1234 2210 1 83.162 83.16 84.51 8 64.52 171.82 2 147.68 147.1 1234 2210 1 83.162 83.16 84.52 171.82 2 147.68 147.1 1235 2209 4 137.746 550.99 137.77 4 137.75 550.1 1236 2208 4 132.451 529.80 132.78 4 132.451 529.80 132.78 4 132.451 529.80 1237 4316 4 156.018 624.07 156.02 4 156.02 624.1 1238 2206 4 142.744 570.98 148.16 4 142.74 570.3 1240 2212 2 69.163 138.33 69.16 2 69.16 138.1 1241 2213 5 76.476 382.38 168.65 9 166.50 742.1 1242 - | 1 76 39 4 45 27 0 58 91 0 100.00 4 97.24 8 85.95 8 95.99 0 99.76 7 100.00 8 96.34 9 73.24 3 100.00 6 98.72 0.00 3 100.00 6 63.44 4 78.43 6 59.85 8 56.07 2 69.01 5 53.89 | 53
0.9
2.4
4.0
3.9
0.9
4.0
4.0
4.0
3.9
3.7
2.0
4.4
0.0
3.9
1.0
0.0
2.5
3.9
1.1 | | 1231 | 0 58 91
0 100.00
4 97.24
8 85.95
9 99.99
0 99.76
7 100.00
9 73.24
3 100.00
6 98.72
0.00
3 100.00
9 95.95
0.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 2.4
4.0
3.9
0.9
4.0
4.0
4.0
3.9
7
2.0
4.4
0.0
3.0
1.0
0.0
2.5
3.9
1.8
1.1 | | 1232 | 4 97.24
8 85.95
9 99.99
0 99.76
7 100.00
8 96.34
9 73.24
3 100.00
6 98.72
0.00
3 100.00
9 95.95
0.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 3.9
0.9
4.0
4.0
4.0
3.9
3.7
2.0
4.4
0.0
0.0
0.0
1.0
0.0
1.1
1.1 | | 1234 2210 | 8 85.95
9 99.99
0 99.76
7 100.00
8 96.34
9 73.24
3 100.00
6 98.72
0.00
3 100.00
9 95.95
0.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 0.9
4.0
4.0
4.0
3.9
3.7
2.0
4.4
0.0
3.0
1.0
0.0
2.5
3.9
1.8 | | 1235 2209 4 137.746 550.99 137.77 4 137.75 550.1235 2209 4 137.746 550.99 137.77 4 137.75 550.1237 2208 4 132.451 529.80 132.78 4 132.45 529.1237 4316 4 156.018 624.07 156.02 4 156.02 624.1238 2206 4 142.744 570.98 148.16 4 142.74 570.92 148.16 4 142.74 570.92 148.16 4 142.74 570.92 148.16 4 142.74 570.92 148.16 4 142.74 570.92 149.10 5 132.72 663.1240 2212 2 69.163 138.33 69.16 2 69.16 138.1241 2214 4 90.020 360.08 168.65 9 166.50 742.124 2214 4 90.020 360.08 168.65 9 166.50 742.124 2214 4 90.020 360.08 168.65 9 166.50 742.124 2216 1 135.789 135.79 141.53 1 135.79 135.1244 2216 1 135.789 135.79 141.53 1 135.79 135.1244 2216 1 135.789 135.79 141.53 1 135.79 135.1244 2216 1 135.79 141.53 1 135.79 135.1244 2216 1 135.79 141.53 1 135.79 135.1244 2216 1 135.79 141.53 1 135.79 135.1244 2216 1 135.79 141.53 1 135.79 135.1244 2216 1 135.79 141.53 1 135.79 135.1244 2216 1 135.79 141.53 1 135.79 135.1244 2216 1 135.79 141.53 1 135.79 135.1244 2216 1 135.79 141.53 1 135.79 135.1244 221.90 20.00 | 9 99 99 99 00 99 76 100.00 8 96.34 99 73.24 3 100.00 6 98.72 0.00 3 100.00 9 95.95 0.00 6 63.44 4 78.43 6 59.85 8 56.07 2 69.01 5 53.89 | 4.0
4.0
4.0
3.9
3.7
2.0
4.4
0.0
3.0
1.0
0.0
2.5
3.9
1.8 | | 1236 2208 4 132,451 529,80 132,78 4 132,455 529,123 1237 4316 4 156,018 624,07 156,02 4 156,02 624,17 1238 2206 4 142,744 570,98 148,16 4 142,74 570,123 1239 2207 5 132,719 663,59 181,20 5 132,72 663,31 1240 2212 2 68,163 138,33 89,16 2 69,16 133,12 1241 2213 5 76,476 382,38 168,65 9 166,50 742,12 1242 - - 89,47 0 0,00 0,0 1242 - - 136,783 105,08 3 105,08 315,23 105,08 3 105,08 315,23 105,08 3 105,08 315,23 105,08 3 105,08 315,23 105,08 3 105,08 315,23 | 0
99.76
100.00
8 96.34
9 73.24
3 100.00
6 98.72
0.00
3 100.00
9 95.95
0.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 4.0
4.0
3.9
3.7
2.0
4.4
0.0
3.0
1.0
0.0
2.5
3.9
1.8 | | 1238 2206 4 142,744 570,98 148,16 4 142,74 670,1239 1239 2207 5 132,719 663,59 181,20 5 132,72 663,12 1240 2212 2 69,163 138,33 69,16 2 69,16 138,12 1241 2213 5 76,476 382,38 168,65 9 166,50 742,12 1242 - 89,47 0 0,00 0,0 0 1242 - 89,47 0 0,00 0,0 1243 2215 3 105,076 315,23 105,08 3 105,08 315,23 1244 2216 1 135,799 135,79 141,53 1 135,79 135,79 1245 - - 178,67 0 0,00 0,00 0,00 1246 - - 178,67 0 0,00 0,00 0,00 0,00 0,00< | 8 96.34
9 73.24
3 100.00
6 98.72
0.00
3 100.00
9 95.95
0.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 3.9
3.7
2.0
4.4
0.0
3.0
1.0
0.0
2.5
3.9
1.8 | | 1240 2212 2 69 163 138 33 69 16 2 69 16 138 | 3 100.00
6 98.72
0.00
3 100.00
9 95.95
0.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 2.0
4.4
0.0
3.0
1.0
0.0
2.5
3.9
1.8 | | 1242 | 0.00
3 100.00
9 95.95
0.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 0.0
3.0
1.0
0.0
2.5
3.9
1.8 | | 1243 2215 3 105.076 315.23 105.08 3 105.08 315. 1244 2216 1 135.789 135.79 141.53 1 135.79 135.79 1246 - - 1758.67 0 0.00 0.00 0.00 1246 1495 4 66.264 265.06 104.45 4 66.26 265.1 1247 3974 5 78.267 391.34 99.79 5 78.27 391.1 1248 1870 3 55.755 167.26 93.16 3 55.75 167.2 1249 4274 2 57.738 115.48 102.97 2 57.74 115.1 1250 1458 1 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 195.12 <td< td=""><td>3 100.00
9 95.95
0.00
6 63.44
78.43
6 59.85
8 56.07
2 69.01
5 53.89</td><td>3.0
1.0
0.0
2.5
3.9
1.8</td></td<> | 3 100.00
9 95.95
0.00
6 63.44
78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 3.0
1.0
0.0
2.5
3.9
1.8 | | 1245 - 1758.67 0 0.00 0.0 1246 1495 4 66.264 265.06 104.45 4 66.26 265.1 1247 3974 5 78.267 391.34 99.79 5 78.27 391.1 1248 1870 3 55.755 167.26 93.16 3 55.75 167. 1249 4274 2 57.738 115.48 102.97 2 57.74 115. 1250 1458 1 195.123 195.12 282.76 1 195.12 195. 1251 1682 2 119.374 238.75 221.50 2 119.37 238. 1678 1 67.248 67.25 167.9 1 40.581 40.581 781.38 4 267.17 267. 1677 1 68.406 68.41 781.38 4 267.17 267. 1254 - 94.92 0 <td< td=""><td>0.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89</td><td>0.0
2.5
3.9
1.8</td></td<> | 0.00
6 63.44
4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 0.0
2.5
3.9
1.8 | | 1247 3974 5 78.267 391.34 99.79 5 78.27 391. 1248 1870 3 55.755 167.26 93.16 3 55.75 167.1 1249 4274 2 57.738 115.48 102.97 2 57.74 115. 1250 1458 1 195.123 195.12 282.76 1 195.12 195. 1251 1682 2 119.374 238.75 221.50 2 119.37 238. 1678 1 67.248 67.25 67.57 167.91 1 40.581 40.58 781.38 4 267.17 267. 1676 1 90.938 90.94 90.94 90.94 0 0.00 0.0 1254 2450 1 67.575 67.57 115.72 1 67.57 67.5 1255 - - 74.99 0 0.00 0.0 0.0 1256 | 4 78.43
6 59.85
8 56.07
2 69.01
5 53.89 | 3.9
1.8
1.1 | | 1249 4274 2 57.738 115.48 102.07 2 57.74 115.12 1250 1458 1 195.123 195.12 282.76 1 195.12 195.12 1251 1682 2 119.374 238.75 221.50 2 119.37 238.13 1252 1678 1 67.248 67.25 1677 1 68.406 68.41 68.41 1676 1 90.938 90.94 1253 - | 8 56.07
2 69.01
5 53.89 | 1.1 | | 1251 1682 2 119.374 238.75 221.50 2 119.37 238. 1678 1 67.248 67.25 67.57 1 40.581 40.581 40.581 40.581 677 1 68.406 68.41 676 1 90.938 90.94 | 5 53,89 | 0.7 | | 1252 | 7 24.40 | 1.1 | | 1676 1 98.406 68.41
1676 1 90.938 90.94
1253 - 94.92 0 0.00 0.0
1254 2450 1 67.575 67.57 115.72 1 67.57 67.5
1255 - 74.99 0 0.00 0.0
1256 - 144.04 0 0.00 0.0 | | 0.3 | | 1253 - 94.92 0 0.00 0.0 1254 2450 1 67.575 67.57 115.72 1 67.57 67.5 1255 - 74.99 0 0.00 0.0 1256 - 144.04 0 0.00 0.0 | 7 34.19 | 0.3 | | 1255 - 74.99 0 0.00 0.0
1256 - 144.04 0 0.00 0.0 | 0.00
58.40 | 0.0 | | | 0.00 | 0.0 | | 1257 - 132.27 0 0.00 0.0
1258 - 151.71 0 0.00 0.0 | 0.00 | 0.0 | | 1259 4286 5 102.755 513.78 151.35 5 102.76 513.
1260 4285 2 62.774 125.55 88.08 2 62.77 125. | 8 67.89 | 3.4 | | 1261 - 171.08 0 0.00 0.0 | 0.00 | 0.0
1.8 | | 1263 1648 3 107.216 321.65 222.85 3 107.22 321: | 5 48.11 | 1.4 | | 1650 2 114.606 229.21 314.96 4 176.54 333. | | 1.1 | | 1265 1507 6 126.262 757.57 294.09 6 126.26 757. 1266 1511 6 266.329 1597.97 406.29 6 266.33 1597. | 7 65.55 | 2.6
3.9 | | 1267 1512 7 101.290 709.03 229.93 7 101.29 709.01 1268 1518 7 164.023 1148.16 360.92 10 286.99 1517 | 2001/200 | 3.1
4.2 | | 1517 3 122.964 368.89
1359 1520 5 70.341 351.71 240.39 40 432.84 664 | 3 33473 | 3.2 | | 1521 5 62.500 312.50 210.39 10 152.64 66.92
1270 1522 4 66.927 267.71 92.54 4 66.93 267. | | 2.9 | | 1271 1519 3 122.252 366.76 209.63 3 122.25 366. | 6 58.32
56.66 | 1.7 | | 1272 1510 1 72.931 72.93 128.73 1 72.93 72.8 1273 1509 1 61.073 61.07 107.56 1 61.07 61.07 1274 1515 1 72.006 72.01 140.30 1 72.01 72.0 | 56.78 | 0.6 | | 1275 1514 1 100,578 100,58 166,38 1 100,58 100
1276 1513 5 180,241 901,21 255,46 5 180,24 901 | 8 60,45 | 0.6
3.5 | | 1277 1516 5 92.669 463.35 130.05 5 92.67 463.
1278 1529 2 98.435 196.87 187.02 2 98.43 196. | 5 71.26 | 3.6 | | 1279 1530 3 169.358 508.07 270.83 3 169.36 508.0 | | 1.9 | | 1280 1531 3 39.886 119.66 251.48 6 115.66 346. | 7 45.99 | 1.4 | | 1528 4 121.006 484.02
1532 4 203.135 812.54 | | | | 1281 1527 3 87.452 262.36
1535 1 62.205 62.21 1179.66 16 585.35 1844 | 3 49.62 | 1.6 | | 1534 2 57.698 115.40
1533 2 53.851 107.70 | | | | 1282 1538 2 70.248 140.50 132.59 2 70.25 140. 1283 1539 3 178.515 535.54 263.79 3 178.51 535. | 4 67.67 | 2.0 | | 1284 1537 4 132.081 528.32 288.98 4 132.08 528.
1285 1536 3 87.640 262.92 166.30 3 87.64 262. | | 1.8 | | 1541 2 57.603 115.21
1286 1540 2 52.706 105.41 529.67 9 355.78 1447 | 7 67.17 | 2.7 | | 1542 5 245.470 1227.35
1287 1543 5 238.579 1192.90 336.31 5 238.58 1192 | 0 70.94 | 3.5 | | 1525 3 303.494 910.48 897.54
1288 1547 3 168.124 504.37 897.54 11 650.12 2307 | | 2.6 | | 1546 5 178.507 892.53 897.54
1289 1523 4 74.597 298.39 111.22 4 74.60 298. | 5 30000 | 2.7 | | 1290 1524 4 125.904 503.61 195.56 4 125.90 503.
1291 3977 8 210.603 1684.82 253.60 8 210.60 1684 | 1 64,38 | 2.6 | | 1292 1550 3 204.341 613.02 249.12 3 204.34 613. | 2 82.03 | 2.5 | | 1294 3985 4 121.753 487.01 151.46 4 121.75 487 | 1 80.39 | 3.2 | | 1295 3984 5 144.717 723.58 166.37 5 144.72 723.
1296 3983 5 116.965 584.82 134.04 5 116.96 584. | 2 87.26 | 4.3 | | 1297 3980 7 140.877 986.14 209.03 7 140.88 986. 1298 3981 5 76.183 380.92 100.74 5 76.18 380.9 | 2 75.62 | 3.8 | | 1299 3982 5 72.860 364.30 105.81 5 72.86 364.30 1300 1597 6 111.793 670.76 129.87 6 111.79 670.76 | 6 86.08 | 3.4
5.2 | | 1301 1598 6 123,039 738,23 141,63 6 123,04 738,
1302 1596 6 142,356 854,14 142,49 6 142,36 854. | | 5.2
6.0 | | 1303 1595 5 91.003 455.02 252.01 10 170.55 852 | 6 67.68 | 3.4 | | 1304 3979 2 205.793 411.59 299.24 2 205.79 411.
1305 1590 3 151.722 455.17 354.27 4 388.71 692. | | 1.4 | | 1599 1 60.215 60.21
1600 1 80.791 80.79 | S (255250) | 25.5 | | 1306 1592 1 200.202 200.20 1203.57 4 406.93 406. | 3 33.81 | 0.3 | | 1591 1 65.720 65.72
1307 1553 6 199.842 1199.05 265.74 6 199.84 1199 | 5 75.20 | 4.5 | | 1307 1939 6 193,642 1199,05 265,74 6 193,64 1199
1308 1552 7 122,079 854,55 208,06 7 122,08 854,
1309 - 221,98 0 0.00 0.0 | 5 58.68 | 4.1 | | 1310 1601 7 125.572 879.00 141.64 7 125.57 879. | 0 88.65 | 6.2 | | 1311 1625 6 151.247 907.48 237.79 6 151.25 907.
1312 1624 6 108.220 649.32 179.95 6 108.22 649.
1313 1626 2 26.669 7 73.74 | 2 60.14 | 3.8 | | 1313 1626 2 36.868 73.74 284.53 2 36.87 73.7
1314 1627 6 158.632 951.79 232.23 6 158.63 951. | 9 68.31 | 0.3
4.1 | | 1315 3978 6 145.454 872.73 273.04 6 145.45 872.
1316 1628 5 87.705 438.52 115.08 5 87.70 438. | 2 76.21 | 3.2 | | 1317 1629 2 102.028 204.06 143.62 2 102.03 204.1 1318 1631 3 56.523 169.57 74.23 3 56.52 169.57 | 7 76.14 | 1.4 | | 1319 1621 1 113.011 113.01 371.13 8 202.20 737. 1319 1622 7 89.185 624.30 371.13 8 202.20 737. 7 | 1 54.48 | 2.0 | | 1320 1549 1 105.032 105.03 168.18 1 105.03 105.
1321 3986 6 126.179 757.07 151.47 6 126.18 757. | 3 62.45 | 0.6
5.0 | | 1322
1630 6 152,818 916,91 206,39 6 152,82 916,
1323 1620 5 243,722 1218,61 380.07 5 243,72 1218 | 1 74.04 | 4.4
3.2 | | 1324 1618 1 89.844 89.84 323.08 2 216.45 216. | | 0.7 | | 1325 - 87.90 0 0.00 0.0
1326 3901 7 74.458 521.20 101.87 7 74.46 521. | | 0.0
5.1 | | 1327 1604 1 213.669 213.67 1530.45 2 348.35 348 | to the second of | 0.2 | | 1328 3956 6 398.464 2390.78 581.80 6 398.46 2390 | 8 68.49 | 4.1 | | 1329 1615 7 164,169 1149,18 209,84 7 164,17 1149
1330 1616 7 69,084 483,59 101,94 7 69,08 483. | 9 67.77 | 5.5
4.7 | | 1331 3900 7 86.825 607.77 114.01 7 86.82 607.
1332 1602 6 157.498 944.99 228.05 7 203.38 990. | | 5.3 | | 1333 1700 1 66.308 66.31 171.83 1 66.31 66.3 | | 0.4 | | 1334 1699 1 58.085 58.08 2 129.76 129. | 6 40.44 | 0.4 | | 2407 1 85.630 85.63
1708 1 175.158 175.16 923.74 4 370.74 370.74 | 45.00 | 0.5 | | 1335 17409 1 174.096 74.10
2408 1 35.829 35.83 823.74 4 370.71 370. | 1 45.00 | 0.5 | | 1336 3898 1 48.740 48.74 56.85 1 48.74 48.7
1337 - 55.28 0 0.00 0.0 | | 0.9 | | 1338 3962 4 138.912 555.65 221.49 4 138.91 555.
1339 3963 1 86.393 86.39 161.51 1 86.39 86.3 | 5 62.72 | 2.5
0.5 | | 1340 3905 5 158.989 794.95 185.16 5 158.99 794. | 5 85,87 | 4.3 | | 1341 1702 1 42.172 42.17 190.15 2 126.35 126. | 5 66,45 | 125 | | ~ | | | | Building | 561 | Sum of | Sum of
Building | Sum of
Building | Building | Floor | |----------------------|----------------------|---------------------|-------------------------------|-----------------------------|------------------------------|----------------------------|----------------------------|-----------------------------|-------------------------|-------------------| | Plot
Ref. | Buildin
g Ref. | Building
Storeys | Building
Footprint | Floor
Area | Plot
Area | Storeys
of
Buildings | Footprin
t on | Floor
Area on | Coverag
e Ratio | Area
Ratio | | No. | No. | | (sqm) | (sqm) | (sqm) | on Same
Plot | Same
Plot | Same
Plot | (BCR) | (FAR) | | 1342 | 1698
1697 | 1 | 36.076
23.473 | 36.08
23.47 | 166.99 | 2 | 59.55 | 59.55 | 35.66 | 0.4 | | 1343
1344
1345 | 4303
4304
4305 | 5
5
5 | 57.294
35.903
37.629 | 286.47
179.51
188.14 | 71.78
48.70
48.39 | 5
5
5 | 57.29
35.90
37.63 | 286.47
179.51
188.14 | 79.81
73.72
77.75 | 4.0
3.7
3.9 | | 1346
1347 | 4305
4306
4307 | 7 | 74.253
64.384 | 519.77
64.38 | 90.63
75.83 | 7 | 74.25
64.38 | 519.77
64.38 | 81.93
84.91 | 5.7 | | 1348 | 3959
1705 | 4 4 | 49.548
71.706 | 198.19
286.82 | 96.57 | 4 | 49,55 | 198.19 | 51,31 | 2.1 | | 1349
1350 | 1706
1707 | 4 | 72.595
78.779 | 290.38
315.12 | 144.30 | 8 | 144.30
78.78 | 577.20
315.12 | 100.00
64.83 | 4.0
2.6 | | 1351 | 2405
2406 | 5
4 | 203.909
215.485 | 1019.54
861.94 | 678.18 | 14 | 531.77 | 2443.37 | 78.41 | 3.6 | | 1352 | 2404
1544 | 5 4 | 112.377
97.897 | 561.88
391.59 | 150.76 | 4 | 97.90 | 391.59 | 64.94 | 2.6 | | 1353 | 1646
1647
1645 | 3
3
4 | 125.573
116.581
124.746 | 376.72
349.74
498.99 | 681.18 | 12 | 458.10 | 1407.85 | 67.25 | 2.1 | | _ | 1644
1636 | 2 4 | 91,203
46,450 | 182.41
185.80 | | | | | | | | | 1637
1638 | 4 | 44.954
68.237 | 179.82
272.95 | | | | | | | | 1354 | 1639
1640 | 3 | 90.486
95.280 | 271.46
285.84 | 855.16 | 30 | 557.25 | 2191.84 | 65.16 | 2.6 | | | 1641
1642 | 5 | 77.839
39.446 | 389.19
39.45 | | | | | | | | | 1643
1633 | 5 | 94.556
129.937 | 567.34
649.68 | | | | | | | | 1355 | 1632
1634
1635 | 5
5 | 59.684
148.395
197.049 | 238,74
741,98
985,24 | 626.72 | 19 | 535,07 | 2615.64 | 85.38 | 4.2 | | 1356
1357 | 1545
1758 | 5 6 | 188.157
186.291 | 940.78
1117.75 | 288.70
445.49 | 5 | 188.16
186.29 | 940.78
1117.75 | 65.17
41.82 | 3.3
2.5 | | 1358 | 1608
1607 | 5 | 249.539
64.226 | 1247.70
64.23 | 353.20 | 6 | 313.77 | 1311.92 | 88.84 | 3.7 | | 1359
1360 | 1609 | 3 | 106.080 | 318.24 | 174.57
104.41 | 3 | 106.08 | 318.24
0.00 | 60.77
0.00 | 1.8 | | 1361
1362 | 3907
3906 | 5 2 | 117.777
86.075 | 588.89
172.15 | 145.46
99.84 | 5 | 117.78
86.08 | 588.89
172.15 | 80.97
86.21 | 1.7 | | 1363 | 1704
2521 | 8 | 282.953
85.922 | 2263.62
343.69 | 299.76 | 8 | 282.95 | 2263.62 | 94.39 | 7.6 | | 1364 | 3960
3961 | 5 | 67.039
81.963 | 67.04
409.82 | 253.23
79.61 | 10 | 234.92 | 0.00 | 92.77 | 3.2 | | 1365
1366
1367 | 1611 | 5 | 279.952
120.978 | 1399,76
604.89 | 79.61
350.36
133.81 | 5
5 | 279.95
120.98 | 1399.76
604.89 | 79.90
90.41 | 4.0
4.5 | | 1368
1369 | 1610 | 1 | 185.869 | 185.87 | 146.83
271.43 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1370 | 1613
1614 | 7 7 | 180.641
84.190 | 1264.49
589.33 | 395.96 | 14 | 264.83 | 1853.82 | 66.88 | 4.7 | | 1371
1372 | 3908
3909 | 6 | 45.930
282.506 | 45.93
1695.03 | 45.81
282.51 | 1 6 | 45.93
282.51 | 45.93
1695.03 | 100.27
100.00 | 1.0
6.0 | | 1373 | 3964
1873 | 6 | 134.792
43.172 | 808.75
43.17 | 186.04
228.98 | 5 | 134,79
201.12 | 808.75
674.95 | 72.45
87.83 | 4.3
2.9 | | 1375 | 1874
2386
2385 | 1 1 | 157.945
54.891
35.726 | 631,78
54.89
35.73 | 228.20 | 3 | 145.91 | 145.91 | 63.94 | 0.6 | | 1376 | 2384
1872 | 1 4 | 55.290
120.809 | 55.29
483.23 | 266.80 | 4 | 120.81 | 483.23 | 45.28 | 1.8 | | 1377
1378 | 2393 | 1 | 27.207 | 27.21 | 108.09 | 0 | 0.00
27.21 | 0.00
27.21 | 0.00
20.20 | 0.0 | | 1379
1380 | 1871
2397 | 4 2 | 187.019
69.611 | 748.08
139.22 | 285.51
121.76 | 4 2 | 187.02
69.61 | 748.08
139.22 | 65.50
57.17 | 2.6 | | 1381 | 1605 | 2 | 209.088 | 418.18 | 133.12 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1382 | 1606
3910 | 1 | 132.593
132.593 | 132.59
132.59 | 1085.67 | 4 | 474.27 | 683.36 | 43.68 | 0.6 | | 1383
1384
1385 | 1260
3819 | 1 10 | 1359.432
1074.035 | 1359.43
10740.35 | 813.08
4668.21
2294.51 | 1 10 | 0.00
1359.43
1074.03 | 0.00
1359.43
10740.35 | 0.00
29.12
46.81 | 0.0
0.3
4.7 | | 1386 | 1304
1307 | 4 | 220.342
55.704 | 881.37
55.70 | 334.47 | 4 | 220.34 | 881.37 | 65.88 | 2.6 | | 1387 | 1306
1305 | 1
5 | 42 429
137.755 | 42.43
688.78 | 497.04 | 7 | 235.89 | 786.91 | 47.46 | 1.6 | | 1388
1389 | 605
604 | 6 | 200.770
134.066 | 1204.62
804.39 | 218.62
504.90 | 6 | 200.77
134.07 | 1204.62
804.39 | 91.83
26.55 | 5.5
1.6 | | 1390 | 102
101 | 7 | 57.333
73.829 | 401.33
73.83 | 977.77 | 15 | 376.12 | 1146.93 | 38.47 | 1.2 | | | 100 | 5 | 184.345
60.617 | 368.69
303.08 | en ses a | 104 n. | 100000-4000000 | 553-18727 | | 50337 | | 1391
1392
1393 | 4338
61 | 2 2 | 257.975
113.696 | 515,95
227,39 | 543.75
162.85
54.10 | 2 0 | 257.98
113.70
0.00 | 515.95
227.39
0.00 | 47.44
69.81
0.00 | 0.9
1.4
0.0 | | 1394
1395 | 124
762 | 7 6 | 102.627
255.126 | 718.39
1530.75 | 169.61
341.63 | 7 | 102.63
255.13 | 718.39
1530.75 | 60.51
74.68 | 4.2 | | 1396 | 1906
1905 | 1 2 | 179.280
425.310 | 179.28
850.62 | 1874.72 | 3 | 604.59 | 1029.90 | 32.25 | 0.5 | | 1397
1398 | 1975
1974 | 5 | 200.803
191.624 | 1004.02
574.87 | 290.70
231.83 | 5 | 200.80
191.62 | 1004.02
574.87 | 69.08
82.66 | 3.5
2.5 | | 1399 | 1972
1973 | 4 | 152.153
150.385 | 152.15
601.54 | 435.79 | 5 | 302.54 | 753.69 | 69.42 | 1.7 | | 1400
1401
1402 | 1920
1919
1918 | 6
3
5 | 315.649
158.619
120.254 | 1893.89
475.86
601.27 | 433.87
177.03
150.24 | 6
3
5 | 315.65
158.62
120.25 | 1893.89
475.86
601.27 | 72.75
89.60
80.04 | 4.4
2.7
4.0 | | 1403 | 1917
1907 | 4 | 122.317
88.938 | 489.27
88.94 | 178.28
94.57 | 4 | 122.32
88.94 | 489.27
88.94 | 68.61
94.05 | 2.7 | | 1405 | 1908
1909 | 1 1 | 32.234
170.544 | 32.23
170.54 | 334.71 | 2 | 202.78 | 202.78 | 60.58 | 0.6 | | 1406 | 1910
1911 | 1 1 | 98.182
93.316 | 98.18
93.32 | 247.52 | 2 | 191.50 | 191.50 | 77.37 | 0.8 | | 1407 | 1912
1913 | 2 | 251.159
81.771 | 502.32
163.54 | 122.40 | 2 | 251.16
115.31 | 502.32
230.62 | 94.21 | 1.8 | | 1409 | 1914
1915 | 1 2 | 33.540
103.835 | 67.08
103.84 | 104.11 | 1 | 103.84 | 103.84 | 99.73 | 1.0 | | 1410 | 1916
1921
1922 | 3
1
1 | 252.062
42.699
60.558 | 756.19
42.70
60.56 | 263.90
155.73 | 2 | 252.06
103.26 | 756,19
103.26 | 95.51
66.30 | 0.7 | | 1412
1413 | 1981 | 1 | 143.489 | 143.49 | 44.03
323.34 | 0 | 0.00
143.49 | 0.00
143.49 | 0.00
44.38 | 0.0 | | 1414 | 1980
1976 | 2 2 | 279.584
252.696 | 559.17
505.39 | 288.43
347.37 | 3 | 279.58
342.00 | 559.17
594.69 | 96.93
98.45 | 1.9 | | 1416 | 1977
1978 | 1 1 | 89 302
106 582 | 89.30
106.58 | 289.78 | 1 | 106.58 | 106.58 | 36.78 | 0.4 | | 1417
1418
1419 | 4371
4372
4373 | 3
5
5 | 163.869
156.581
190.204 | 491.61
782.90
951.02 | 172.03
178.56
222.41 | 3
5 | 163.87
156.58
190.20 | 491.61
782.90
951.02 | 95.25
87.69
85.52 | 2.9
4.4
4.3 | | 1419
1420
1421 | 1982 | 5 | 365.798 | 1828.99 | 280.02
406.93 | 5
0
5 | 0.00
365.80 | 0.00
1828.99 | 0.00
89.89 | 0.0
4.5 | | 1422 | 1979
1983 | 6 | 207.407
35.690 | 1244.44
35.69 | 295.91 | 6 | 207.41 | 1244.44 | 70.09 | 4.2 | | 1423 | 1985
1984 | 5
4 | 193.733
170.358 | 968.67
681.43 | 374.95
170.36 | 6 | 229.42
170.36 | 1004.36
681.43 | 61.19
100.00 | 2.7
4.0 | | 1425
1426 | 1986
1992 | 3 2 | 136.705
50.479 | 410.12
100.96 | 136.71
236.66 | 3 | 136.71
184.78 | 410.12
369.57 | 100.00
78.08 | 3.0
1.6 | | 1427 | 1993
1994 | 5 | 134 306
175.644 |
268.61
878.22 | 236.66
218.94 | 5 | 175.64 | 878.22 | 80.23 | 4.0 | | 1428
1429 | 1995
1997 | 5
4
2 | 105.147
190.536 | 525.73
762.15
206.13 | 112.94
196.35
121.18 | 5
4
2 | 105.15
190.54
103.07 | 525.73
762.15 | 93.10
97.04
85.05 | 4.7
3.9
1.7 | | 1430 | 1996
1991
4287 | 1 1 | 103.066
65.719
114.406 | 206.13
65.72
114.41 | 343.17 | 2 | 180.12 | 206.13
180.12 | 85.05
52.49 | 0.5 | | 1432
1433 | 1987
1988 | 2 4 | 147,903
134,946 | 295.81
539.78 | 159.04
144.68 | 2 | 147.90
134.95 | 295.81
539.78 | 93.00
93.27 | 1.9
3.7 | | 1434 | 1989
1990 | 5 4 | 134,489
95,065 | 672.44
380.26 | 310.83 | 9 | 229.55 | 1052.70 | 73.85 | 3.4 | | 1435
1436 | 1902
2148 | 6
5 | 226.358
159.313 | 1358.15
796.57 | 249.70
168.39 | 6
5 | 226,36
159.31 | 1358.15
796.57 | 90.65
94.61 | 5.4
4.7 | | 1437 | 1901
4271 | 1 | 233.208
98.016 | 932.83
98.02 | 447.68 | 5 | 331.22 | 1030.85 | 73.99 | 2.3 | | 1438 | 2232
2230
2231 | 1
4
1 | 30.063
49.383
25.339 | 30.06
197.53
25.34 | 151.43 | 6 | 104.78 | 252.93 | 69.20 | 1.7 | | 1439 | 2234
2233
2233 | 4 2 | 25.339
86.354
64.458 | 25.34
345.41
128.92 | 189.69 | 6 | 150.81 | 474.33 | 79.50 | 2.5 | | 1440 | 2233 | 1 | 96.454 | 96.45 | 93.17 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1441 | 4171 | 3 | 198.766 | 596.30 | 307.95
322.95 | 0 | 295.22
0.00 | 692.75
0.00 | 95.87 | 0.0 | | 1443
1444 | 2240
2147 | 9 | 111.376
202.861 | 111,38
1825,75 | 316.79
311.13 | 1
9 | 111.38
202.86 | 111.38
1825.75 | 35.16
65.20 | 0.4
5.9 | | 1445 | 2145
2146
2040 | 8 | 56.778
199.545 | 227.11
1596.36 | 354.39 | 12 | 256.32 | 1823.48 | 72.33 | 5.1 | | 1446 | 3949
3950 | 1 | 16.078
16.464 | 16.08
16.46 | 87.85 | 2 | 32.54 | 32.54 | 37.04 | 0.4 | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sgm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|----------------------|---------------------|--------------------------------|-------------------------------------|-----------------------|---|---|---|--|---------------------------------| | 1447 | 2229
2249 | 5 | 52,369
77,067 | 261.85
154.13 | 96.78
327.42 | 5 | 52.37
248.28 | 261.85
496.55 | 54.11
75.83 | 2.7 | | 1449 | 2250
2151 | 1 | 171.208
53.755 | 342.42
53.75 | 53.72 | 1 | 53.75 | 53,75 | 100.06 | 1.0 | | 1450
1451 | 2152
2237 | 4 | 104 950
257 591 | 419.80
1030.37 | 111.05
273.39 | 4 | 104.95
257.59 | 419.80
1030.37 | 94.51
94.22 | 3.8 | | 1452
1453 | 2235
2236 | 3 | 110.005
157.822 | 330.01
157.82 | 117.28
164.74 | 3 1 | 110.00
157.82 | 330.01
157.82 | 93.80
95.80 | 1.0 | | 1454
1455 | 2238
2266 | 5 | 76.321
58.108 | 381.60
58.11 | 98.35
177.14 | 5 | 76.32
160.57 | 381.60
160.57 | 77.60
90.65 | 3.9 | | 1456 | 2265
2269 | 5 | 102,462
177,482 | 102.46
887.41 | 201.81 | 5 | 177.48 | 887.41 | 87.95 | 4.4 | | 1457 | 4149
2267 | 1 | 114.268
56.163 | 114.27
56.16 | 135.97 | 1 | 114.27 | 114.27 | 84.04 | 0.8 | | 1458 | 2268
2259 | 1 2 | 81.142
115.768 | 81.14
231.54 | 182.29
166.04 | 2 | 137.30 | 137.30
231.54 | 75.32
69.72 | 0.8 | | 1460 | 2260
2262 | 5 | 82.064
85.303 | 410.32
85.30 | 82.06 | 5 | 82,06 | 410.32 | 100.00 | 5,0 | | 1461 | 2261
2263 | 1 | 73.214
115.346 | 73,21
115,35 | 178.47 | 2 | 158.52
115.35 | 158.52
115.35 | 88.82
80.57 | 0.9 | | 1463 | 2258
2472 | 4 2 | 97.711
111.689 | 390.84
223.38 | 293.00 | 8 | 276.07 | 747.57 | 94.22 | 2.6 | | 1700 | 4319
2256 | 2 3 | 66.671
40.880 | 133.34
122.64 | 200.00 | | 270.01 | 747.01 | OTEL | 2.0 | | 1464 | 2255 | 4 4 | 47.928 | 191.71 | 305.46 | 15 | 189.91 | 718.78 | 62.17 | 2.4 | | | 2254
2257
2264 | 4 6 | 47,386
53,722
68,660 | 214.89 | | | | | 2012-0 | | | 1465 | 2471
2252 | 3 | 123.897
57.479 | 371.69
57.48 | 266.87 | 9 | 192.56 | 783.65 | 72.15 | 2.9 | | 1466 | 2251 | 3 | 34.634 | 103.90 | 339,80 | 9 | 254.97 | 975.69 | 75.04 | 2.9 | | 1467 | 2253
2248 | 5 | 162.861
91.649 | 814.30
91.65 | 371.37 | 2 | 179.52 | 179.52 | 48.34 | 0.5 | | 1468 | 4290
3942 | 1 | 87.867
18.256 | 87.87
18.26 | 97.18 | 2 | 36.51 | 36.51 | 37.57 | 0.4 | | 1469 | 3943
2223 | 7 | 18.256
73.981 | 18.26
517.86 | 106.71 | 7 | 73.98 | 517.86 | 69.33 | 4.9 | | 1470
1471 | 2228
2226 | 5 | 127.140
120.578 | 508.56
602.89 | 169.89
152.77 | 5 | 127.14
120.58 | 508.56
602.89 | 74.84
78.93 | 3.0 | | 1472 | 2227
2225 | 6 | 148,989
169,615 | 595.96
1017.69 | 151,00
188.81 | 6 | 148.99
169.61 | 595.96
1017.69 | 98.67
89.84 | 3.9
5.4 | | 1474 | 2244
4325 | 3 | 277.929
75.700 | 833.79
75.70 | 371.86 | 4 | 353.63 | 909.49 | 95.10 | 2.4 | | 1475
1476 | 2245
2246 | 5 4 | 168.036
156.729 | 840.18
626.92 | 178.42
165.15 | 5
4 | 168.04
156.73 | 840.18
626.92 | 94.18
94.90 | 4.7
3.8 | | 1477
1478 | 2247
2276 | 5 | 163.156
173.529 | 815.78
520.59 | 177.43
180.19 | 5
3 | 163.16
173.53 | 815.78
520.59 | 91.96
96.30 | 4.6
2.9 | | 1479 | 2275
2241 | 3 | 296.614
311.264 | 889.84
933.79 | 349.37
322.19 | 3 | 296.61
311.26 | 889.84
933.79 | 84.90
96.61 | 2.5
2.9 | | 1481 | 2453
3944 | 6 | 200.716
137.859 | 1204.29
827.15 | 230.79 | 6 | 200.72 | 1204.29 | 86.97 | 5.2 | | 1482 | 3945
2242 | 6 2 | 98,336
107,525 | 590.02
215.05 | 586.22 | 19 | 476.95 | 2298.38 | 81.36 | 3.9 | | | 2243
2455 | 5 | 133.232
162.152 | 666.16
810.76 | | | | | | | | 1483 | 2454 | 1 | 79.550 | 79.55 | 244.82 | 6 | 241.70
322.92 | 890.31
1937.50 | 98.73
100.00 | 3.6
6.0 | | 8787895 | 2456
3947 | 1 | 322.917
34.943 | 1937.50
34.94 | 322.92 | 7 | Service Con- | 5901075 | Experience of | 2000 | | 1485 | 2512
2457 | 5 | 130.178
39.142 | 650.89
39.14 | 221.88 | | 204.26 | 724.97 | 92.06 | 3.3 | | 1486
1487 | 2507
2272 | 3 | 136.482
200.823 | 409.45
602.47 | 247.58
246.25 | 3 | 136.48
200.82 | 409.45
602.47 | 55.13
81.55 | 1.7 | | 1488
1489 | 2270
2511 | 4 | 102.478
154.684 | 409.91
618.74 | 104.43
160.47 | 4 | 102.48
154.68 | 409.91
618.74 | 98.13
96.39 | 3.9 | | 1490 | 2271
2510 | 3 4 | 197.373
167.705 | 592.12
670.82 | 223,52
181,69 | 3
4 | 197.37
167.71 | 592.12
670.82 | 88.30
92.30 | 2.6
3.7 | | 1492
1493 | 2509
2508 | 5 | 111.633
157.008 | 558.17
942.05 | 111.63
156.99 | 5
6 | 111.63
157.01 | 558.17
942.05 | 100.00 | 5.0
6.0 | | 1494
1495 | 2470
2476 | 6 2 | 152,065
66.785 | 912.39
133.57 | 166.59
125.35 | 6 2 | 152.07
66.78 | 912.39
133.57 | 91.28
53.28 | 5.5 | | 1496 | 2474
2475 | 1 2 | 80.656
101.802 | 80.66
203.60 | 210,34 | 4 | 209.16 | 310.96 | 99.44 | 1.5 | | 1497 | 4318
2473 | 1 | 26.704
76.228 | 26.70
76.23 | 163.03 | 1 | 76.23 | 76.23 | 46.76 | 0.5 | | 1498
1499 | 2477
2354 | 5 | 121.617
77.166 | 608.09
77.17 | 128.79
158.08 | 5 | 121.62
77.17 | 608.09
77.17 | 94.43
48.81 | 4.7
0.5 | | | 2205 | 5 | 77.907
38.250 | 389.53
191.25 | | | 11700W-044W-0 | Settlet Servet Serve | Two-ton- | | | 1500 | 2203
2204
2202 | 5 | 79.618
351.433 | 398.09
3162.90 | 902.39 | 24 | 547.21 | 4141.77 | 60.64 | 4.6 | | 1501 | 2469 | 6 | 227.781 | 1366.69
282.43 | 228.56 | 6 | 227.78 | 1366.69 | 99.66 | 6.0 | | 1502 | 2467
2468 | 5 | 56.486
111.218 | 556.09 | 326.15 | 13 | 275.52 | 1161.97 | 84.48 | 3.6 | | 1503 | 2466
2492 | 3
5 | 107.817
211.222 | 323.45
1056.11 | 212.12 | 5 | 211,22 | 1056.11 | 99,58 | 5.0 | | 1504
1505 | 2188
2194 | 5 | 126.505
132.165 | 126.51
660.83 | 251.83
132.17 | 5 | 126.51
132.17 | 126.51
660.83 | 50.24
100.00 | 5.0 | | 1506 | 2191
4170 | 2 | 38.737
52.804 | 38.74
105.61 | 128.98 | 6 | 128.87 | 256.33 | 99.92 | 2.0 | | 1507 | 4321
2192 | 3 | 37.329
121.403 | 111.99
364.21 | 121.40 | 3 | 121.40 | 364.21 | 100.00 | 3.0 | | 1508
1509 | 2193
2486 | 6 | 67.488
234.254 | 67.49
1405.52 | 103.61
333.27 | 6 | 67.49
234.25 | 67.49
1405.52 | 65.13
70.29 | 0.7
4.2 | | 1510
1511 | 2489
2190 | 3 | 167.488
91.996 | 669.95
275.99 | 167.44
95.61 | 3 | 167.49
92.00 | 669.95
275.99 | 100.03
96.22 | 4.0
2.9 | | 1512
1513 | 2195
2189 | 5 | 92.856
90.435 | 464.28
452.17 | 92.86
90.53 | 5 | 92.86
90.43 | 464.28
452.17 | 100.00
99.89 | 5.0 | | 1514
1515 | 2490
4320 | 5 | 143.510
56.994 | 717.55
284.97 | 154.42
56.99 | 5 | 143.51
56.99 | 717.55
284.97 | 92.94 | 4.6
5.0 | | 1516 | 2196
2185 | 5 4 | 57,935
146,713 | 289.67
586.85 | 57.83 | 5
6 | 57.93 | 289.67 | 100.18 | 5.0 | | 1517
1518 | 4164
2187 | 5 | 100.792
362.821 | 201.58
1814.10 | 247.50
362.82 | 5 | 247.50
362.82 | 788.43
1814.10 | 100.00 | 3.2
5.0 | | 1519 | 2186
4165 | 5 9 | 127.532
97.009 | 637.66
873.08 | 469.73 | 14 | 224.54 | 1510.74 | 47.80 | 3.2 | | 1520
1521 | 2150 | 1 7 | 144.452
243.330 | 144.45
1703.31 | 158.88
276.97 | 7 | 144.45
243.33 | 144.45
1703.31 | 90.92
87.85 | 0.9
6.1 | | 1522
1523 | 2149
2156
2155 | 4 |
93.004
180.155 | 372.02
720.62 | 93.82 | 4 | 93.00
180.15 | 372.02
720.62 | 99.13
100.00 | 4.0 | | 1523 | 2154 | 4 4 | 41.567
79.716 | 166.27 | 340.30 | 12 | 157.12 | 628.49 | 46.17 | 1.8 | | .524 | 2153
4544
2162 | 4 | 35.839
55.459 | 318.86
143.35
55.46 | | | 157.12 | 325,43 | 75011 | | | 1525 | 2161 | 1 | 71.894 | 71.89 | 340.13 | 4 | 237.03 | 237.03 | 69.69 | 0.7 | | | 2159
2160 | 1 | 61.889
47.788 | 61.89
47.79 | | | | | | | | 1526 | 2158
2157 | 6 | 27.829
187.800 | 27.83
1126.80 | 355.81 | 7 | 215.63 | 1154.63 | 60.60 | 3.2 | | 1527
1528 | 2164
2163 | 4 | 223.975
271.592 | 895.90
1086.37 | 223.98
281.73 | 4 | 223.98
271.59 | 895.90
1086.37 | 100.00
96.40 | 4.0
3.9 | | 1529 | 2171
2169 | 1 | 34.666
36.993 | 34.67
36.99 | 395.74 | 4 | 210.72 | 210.72 | 53.25 | 0.5 | | | 2170
2168 | 1 | 30.352
108.711 | 30.35
108.71 | | | | | | | | 1530 | 2167
2173 | 1 1 | 208.610
28.598 | 208.61
28.60 | 458.44
250.07 | 1 2 | 208.61 | 208.61 | 45.50 | 0.5 | | 1531
1532 | 2172
2174 | 1 4 | 88.716
145.436 | 88.72
581.74 | 164.15 | 2 | 117.31
145.44 | 117.31
581.74 | 46.91
88.60 | 3.5 | | 1533
1534 | 2175
2176 | 6 5 | 193.587
124.510 | 1161.52
622.55 | 201.50
132.75 | 6
5 | 193.59
124.51 | 1161.52
622.55 | 96.07
93.80 | 5.8 | | 1535 | 2183
2182 | 3 | 60.554
18.336 | 181.66
18.34 | 87.09 | 3 | 60.55 | 181.66 | 69.53 | 2.1 | | 1536 | 2180
2181 | 1 | 46.276
43.688 | 46.28
43.69 | 277.75 | 3 | 108.30 | 108.30 | 38.99 | 0.4 | | 1537 | 2184 | 5 4 | 221.100 | 1105.50 | 224.13 | 5 4 | 221.10 | 1105.50
642.96 | 98.65
79.16 | 4.9 | | 1538
1539 | 3957
1617 | 7 | 160.741
159.706 | 642.96
1117.94 | 203.06
268.43 | 7 | 160.74
159.71 | 642.96
1117.94 | 79.16
59.50 | 3.2
4.2 | | 1540 | 3899
1623 | 4 | 16.590
343.856 | 16.59
1375.42 | 448.52 | 5 | 360.45 | 1392.01 | 80.36 | 3.1 | | 1541 | 1657
1658 | 2 | 123.930
131.372 | 495.72
262.74 | 433.44 | 6 | 255.30 | 758.46 | 58.90 | 1.7 | | 1542
1543 | 1673
1672 | 1 2 | 55.957
247.249 | 55.96
494.50 | 113.59
458.40 | 3 | 55.96
311.84 | 55.96
559.09 | 49,26
68.03 | 0.5 | | 1544 | 1671
1674 | 1 4 | 64 593
208 190 | 64.59
832.76 | 331.48 | 4 | 208.19 | 832.76 | 62.81 | 2.5 | | 1545 | 2373
2374 | 6 | 74.720
119.464 | 448.32
119.46 | 198.39 | 7 | 194.18 | 567.78 | 97.88 | 2.9 | | 1546
1547 | 2375
1667 | 3 | 264.313
146.729 | 264.31
440.19 | 440.28
283.32 | 1 3 | 264.31
146.73 | 264.31
440.19 | 60.03
51.79 | 0.6
1.6 | | 1548
1549 | 1652
1655 | 2 | 88.284
88.024 | 176.57
88.02 | 144.78 | 2 | 88.28
88.02 | 176.57
88.02 | 60.98
58.35 | 1.2 | | 1550 | 1653
1654 | 1 4 | 71.099
80.536 | 71.10
322.14 | 266.32 | 5 | 151.63 | 393.24 | 56.94 | 1.5 | | 1551 | 1656 | 3 | 189.974 | 569.92 | 297.81 | 3 | 189.97 | 569.92 | 63.79 | 1.9 | | Plot
Ref.
No. | Buildin
g Ref.
No. | Building
Storeys | Building
Footprint
(sqm) | Building
Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same | Sum of
Building
Footprin
t on
Same | Sum of
Building
Floor
Area on
Same | Building
Coverag
e Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|--------------------------|---------------------|--------------------------------|------------------------------------|-----------------------|---|--|--|---|---------------------------------| | 1552 | 1668 | 4 | 81.591 | 326.36 | 246.50 | Plot | Plot
134.73 | Plot
379.50 | 54.66 | 1.5 | | 1553 | 3990
1669 | 5 | 53.136
144.162 | 53.14
720.81 | 210.69 | 5 | 144.16 | 720.81 | 68.42 | 3.4 | | 1554
1555 | 3991
1670 | 5 | 41.170
129.087 | 41.17
645.44 | 81.71
214.42 | 5 | 41.17
129.09 | 41.17
645.44 | 50.38
60.20 | 0.5
3.0 | | 1556 | 1680
2451 | 1 | 37.262
48.515 | 37.26
48.51 | 715.06 | 7 | 183.99 | 576.83 | 25.73 | 0.8 | | 920000 | 1681
1804 | 5 2 | 98.211
70.692 | 491.06
141.38 | | - 2 | 1000000 | 7350000000 | 5000000 | 28525 | | 1557 | 1805 | 5 | 125.038 | 625.19 | 243.50 | 7 | 195.73 | 766.58 | 80.38 | 3.1 | | 1558 | 1746
1745 | 5 2 | 140.695
109.431 | 703.47
218.86 | 249.49 | 7 | 250.13 | 922.34 | 100.26 | 3.7 | | 1559
1560 | 1747 | 7 | 200.052 | 1400.36 | 200.05
119.01 | 7 | 200.05
0.00 | 1400.36
0.00 | 0.00 | 7.0 | | 1561
1562 | 1749 | 6 | 232,187 | 1393.12 | 214.94
274.00 | 6 | 0.00
232.19 | 0.00
1393.12 | 0.00
84.74 | 0.0
5.1 | | 1563 | 1750
1751 | 2 | 80.520
82.698 | 161.04
248.09 | 147,77 | 2 | 80.52 | 161.04 | 54.49 | 1.1 | | 1564 | 1753 | 3 | 56.378 | 169.13 | 196.36 | 6 | 139.08 | 417.23 | 70.83 | 2.1 | | 1565
1566 | 3917
1754 | 5 4 | 221.621
97.665 | 1108.11
390.66 | 758.73
322.00 | 5
4 | 221.62
97.66 | 1108,11
390.66 | 29.21
30.33 | 1.5 | | 1567 | 1755
1756 | 3 | 166.088
168.034 | 332.18
504.10 | 542.43 | 5 | 334.12 | 836.28 | 61.60 | 1.5 | | 1568
1569 | 1757 | 1 | 284.356 | 284.36 | 126.97
528.20 | 0 | 0.00
284.36 | 0.00
284.36 | 0.00
53.83 | 0.0 | | 1570 | 3922
3923 | 1 2 | 155.221
211.951 | 155.22
423.90 | 1217.06 | 4 | 467.05 | 679.00 | 38.38 | 0.6 | | 1571 | 4308 | Ĩ | 99,879 | 99.88 | 116.89 | 0 | 0.00 | 0.00 | 0,00 | 0.0 | | 1572 | - | | FX A. | | 64.59 | .0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1573 | 3937
3992 | 1 | 56.277
66.911 | 225.11
66.91 | 56.28
66.92 | 1 | 56.28
66.91 | 225.11
66.91 | 100.00
99.99 | 1.0 | | 1575
1576 | 3993
2422 | 2 | 127.523
92.743 | 255.05
185.49 | 165,67
135,58 | 2 | 127.52
92.74 | 255.05
185.49 | 76.98
68.40 | 1.5 | | 1577
1578 | 2419
2445 | 3 | 128.634
185.851 | 385,90
557,55 | 267.17
235.47 | 3 | 128.63
185.85 | 385.90
557.55 | 48.15
78.93 | 1.4 | | 1579 | 2446 | 2 | 109.581 | 219.16 | 191.61 | 2 | 109.58 | 219.16 | 57.19 | 1.1 | | 1580
1581 | 2481
2414 | 7 | 245.337
374.776 | 1717.36
1499.11 | 404.90
376.61 | 7 | 245.34
374.78 | 1717.36
1499.11 | 60.59
99.51 | 4.2 | | 1582 | 2380
2381 | 5 | 166.591
122.351 | 832.95
367.05 | 310.89 | 8 | 288.94 | 1200.01 | 92.94 | 3.9 | | 1583
1584 | 2376 | 6 | 149.800 | 898.80 | 174.35
183.43 | 6 | 149.80 | 898.80
0.00 | 85.92
0.00 | 5.2
0.0 | | 1585 | 2378 | 6 | 90.161 | 540.97 | 146.36 | 7 | 146.19 | 596.99 | 99.88 | 4.1 | | 1586 | 2379
2439 | 1 4 | 56.026
165.443 | 56.03
661.77 | 265.35 | 6 | 240.63 | 812.15 | 90.69 | 3.1 | | 1587 | 4107
2435 | 2 4 | 75.189
249.492 | 150.38
997.97 | 342.84 | 4 | 249.49 | 997.97 | 72.77 | 2.9 | | 1588
1589 | 4279
4283 | 1 2 | 48.317
73.451 | 48.32
146.90 | 117.71
122.43 | 1 2 | 48.32
73.45 | 48.32
146.90 | 41.05
60.00 | 0.4
1.2 | | | 2434
2432 | 1 4 | 16.154
87.939 | 16.15
351.76 | | | | | | | | 1590 | 2433 | 1 | 50.709 | 50,71 | 625.41 | 13 | 350.85 | 1168.09 | 56.10 | 1.9 | | | 2431
2430 | 6 | 110.685
85.363 | 664.11
85.36 | | | | | | | | 1591 | 2423
2425 | 5 | 136.369
64.535 | 681.84
64.53 | 163.07 | 5 | 136.37 | 681.84 | 83.62 | 4.2 | | 1592 | 2424
2428 | 5 4 | 103.345
68.590 | 516.73
274.36 | 190.98 | 6 | 167.88 | 581.26 | 87.91 | 3.0 | | 1593 | 2429
2443 | 4 | 101.517
126.992 | 406.07
380.97 | 376.23
204.85 | 8 | 170.11 | 680.43
380.97 | 45.21
61.99 | 1.8 | | 1595 | 2426 | 3 4 | 42.648 | 170.59 | 192.19 | 5 | 83.35 | 211.30 | 43.37 | 1.1 | | 1596 | 2427
1666 | 3 | 40.707
83,739 | 40.71
251.22 | 138.07 | 3 | 83.74 | 251.22 | 60.65 | 1.8 | | 1597
1598 | 1661
1683 | 6 | 102.415
95.121 | 614.49
570.72 | 138.86 | 6 | 102.42
95.12 | 614.49
570.72 | 73.75
72.78 | 4.4 | | 1599 | 1659
1660 | 1 | 30.866
196.665 | 30.87
196.66 | 434.17 | 2 | 227.53 | 227.53 | 52.41 | 0.5 | | 1600
1601 | 1662 | 1 6 | 190.033 | 190.03
274.95 | 247.98 | 1 6 | 190.03 | 190.03
274.95 | 76.63 | 0.8
4.2 | | 1602 | 1663
1665 | 4 | 45.826
57.672 | 230.69 | 65.73
92.54 | 4 | 45.83
57.67 | 230.69 | 69.71
62.32 | 2.5 | | 1603
1604 | 1664
4277 | 5 | 35.372
71.427 | 176.86
357.14 | 53.83
81.22 | 5 | 35.37
71.43 | 176.86
357.14 | 65.71
87.94 | 3.3
4.4 | | 1605
1606 | 4276
4278 | 7 | 60,466
83,312 | 60.47
583.18 | 66.15
102.07 | 7 | 60.47
83.31 | 60.47
583.18 | 91,41
81.62 | 0.9
5.7 | | 1607
1608 | 4275
2369 | 6
5 | 75.077
143.758 | 450.46
718.79 | 96.66
173.59 | 6 5 | 75.08
143.76 | 450,46
718,79 | 77.67
82.81 | 4.7 | | 1609 | 2370 | 6 | 134.035 | 804.21 | 166.10 | 6 | 134.03 | 804.21 | 80.70 | 4.8 | | 1610 | 2315
4313 | 3 | 89.781
87.257 | 269.34
261.77 | 183.57 | 6 | 177.04 | 531.11 | 96.44 | 2.9 | | 1611 | 2298
2348 | 6 4 | 81,259
79,980 | 487.55
319.92 | 84.30
79.98 | 6 | 81.26
79.98 | 487.55
319.92 | 96.39
100.00 | 5.8
4.0 | | | 2349
2350 | 3
5 | 51,420
43,112 | 154.26
215.56 | | | | | | | | 1613 | 2352
2351 | 5 4 | 50.452
27.402 | 252.26
109.61 | 331.45 | 21 | 238.01 | 994.18 | 71.81 | 3.0 | | 1614 | 2347 | 4 | 65.622 | 262.49 | 200.24 | | 222.45 | 667.36 | 94.14 | 2.8 | | 1615 | 2317
2316 | 3
5 | 222.455
92.219 | 667.36
461.09 | 236.31
101.63 | 5 | 222.45
92.22 | 667.36
461.09 | 90.74 | 4.5 | | 1616
1617 | 4113
4114 | 3 | 97,085
160,984 | 291.25
160.98 | 97.26
304.01 | 3 | 97,08
160.98 | 291.25
160.98 | 99.82
52.95 | 3.0
0.5 | | 1618
1619 | 2319
2320 | 4 | 77.118
82.679 | 308.47
82.68 | 77.12
82.68 | 4 | 77.12
82.68 | 308.47
82.68 | 100.00 | 1.0 | | 1620 |
3903
1684 | 6 5 | 57.304
225.983 | 343.82
1129.91 | 59.91
385.32 | 6 | 57.30
225.98 | 343.82
1129.91 | 95.65
58.65 | 5.7
2.9 | | 1621 | 1686 | 4 | 119.302 | 477.21 | 282.32 | 9 | | 636.34 | 63.33 | | | 1622 | 1687
1685 | 4 | 26.256
33.219 | 26.26
132.87 | | | 178.78 | 1/4/8/25/04 | ///Tentreto/ | 2.3 | | 1623
1624 | 2321
2323 | 5 2 | 198.873
148.747 | 994.36
297.49 | 220.35
218.16 | 5 2 | 198.87
148.75 | 994.36
297.49 | 90.26
68.18 | 1.4 | | 1625 | 2322
2303 | 5 | 128.324
52.268 | 641.62
52.27 | 175,60 | 5 | 128.32 | 641.62 | 73.08 | 3.7 | | 1626 | 2299
2301 | 1 | 78.949
71.426 | 78.95
71.43 | 495.78 | 6 | 274.12 | 417.07 | 55.29 | 0.8 | | 4000 | 2302 | 3 | 71.476 | 214.43 | 450.00 | 0 | 70.40 | 247.40 | 46.31 | 4.4 | | 1627
1628 | 2334
2339 | 3 | 72.398
60.029 | 217.19
60.03 | 156.33
270.13 | 3 | 72.40
127.42 | 217.19
127.42 | 46.31 | 0.5 | | 1629 | 2338
2340 | 1 4 | 67,391
146.942 | 67.39
587.77 | 153.89 | 4 | 146.94 | 587.77 | 95.48 | 3.8 | | 1630 | 2344
2345 | 6 | 43.879
21.039 | 263.28
21.04 | 105.85 | 8 | 105.25 | 324.64 | 99.43 | 3.1 | | 1631 | 4314
2304 | 1 2 | 40.328
120.293 | 40.33
240.59 | 167.91 | 2 | 120.29 | 240.59 | 71.64 | 1.4 | | 1632 | 2314 | 5 | 201.689 | 1008.45 | 201.69 | 5 | 201.69 | 1008.45 | 100.00 | 5.0 | | 1633
1634 | 2305
4137 | 8 | 188.995
156.713 | 1511.96
940.28 | 201,40
173,96 | 8 | 188.99
156.71 | 1511.96
940.28 | 93.84
90.08 | 7.5
5.4 | | 1635 | 2313
2311 | 5 | 34.245
64.950 | 68.49
324.75 | 422.25 | 15 | 262.86 | 1702.53 | 62.25 | 4.0 | | 4000 | 2312
2310 | 8 4 | 163,661
235,818 | 1309.29
943.27 | 207.44 | 94 | 205.00 | 4450.00 | 02.44 | 25 | | 1636 | 2346
2309 | 3 6 | 70,137
108.943 | 210.41
653.66 | 327.44 | 7 | 305.96 | 1153.68 | 93.44 | 3.5 | | 1637 | 2307 | 2 | 75.317 | 150.63 | 320.20 | 8 | 184.26 | 804.29 | 57.55 | 2.5 | | 1638 | 2306 | 3 | 133.990
67.460 | 1205.91
202.38 | 358,35 | 9 | 133.99 | 1205.91 | 37.39 | 3.4 | | 1639 | 4168
4169 | 4 2 | 75,774
58,051 | 303.10
116.10 | 248.25 | 9 | 201.29 | 621.58 | 81,08 | 2.5 | | 1640
1641 | 2341
2353 | 1 4 | 258.036
206.498 | 258.04
825.99 | 312.02
244.43 | 1 4 | 258.04
206.50 | 258.04
825.99 | 82.70
84.48 | 0.8
3.4 | | 1642 | 4147
4148 | 4 | 89.779
66.041 | 359.12
66.04 | 155.59 | 5 | 155.82 | 425.16 | 100.15 | 2.7 | | 1643 | 4167 | 1 | 61.311 | 61.31 | 113.80 | 1 | 61.31 | 61.31 | 53.88 | 0.5 | | 1644 | 2394
2395 | 1 | 36.397
80.348 | 36.40
80.35 | 145.17 | 2 | 116.75 | 116.75 | 80.42 | 0.8 | | 1645
1646 | 4291
1967 | 1 | 52.508
107.344 | 210.03
107.34 | 57.29
129.33 | 1 | 52.51
107.34 | 210.03
107.34 | 91.65
83.00 | 3.7
0.8 | | 1647
1648 | 1966 | 5 | 370.581 | 1852.90 | 376.82
482.86 | 5 | 370.58
0.00 | 1852.90
0.00 | 98.34
0.00 | 4.9
0.0 | | 1649
1650 | 1924
2043 | 3
5 | 335.533
182.537 | 1006.60
912.68 | 430.14 | 3 5 | 335.53
182.54 | 1006,60
912.68 | 78.01
100.00 | 2.3 | | 1651 | 2044 | 5 | 182.190 | 910.95 | 186.54 | 5 | 182.19 | 910.95 | 97.67 | 4.9 | | 1652
1653 | 2045
2050 | 3
5 | 182.985
190.126 | 548.95
950.63 | 186.86
224.74 | 5 | 182.98
190.13 | 548.95
950.63 | 97.92
84.60 | 4.2 | | 1654
1655 | 2049
2053 | 5
5 | 182.089
85.272 | 910.45
426.36 | 193.74
93.15 | 5
5 | 182.09
85.27 | 910.45
426.36 | 93.99
91.55 | 4.7
4.6 | | 1656
1657 | 2052
2051 | 5 | 118,118
173,782 | 590.59
868.91 | 131.58
195.68 | 5 | 118.12
173.78 | 590.59
868.91 | 89.77
88.81 | 4.5
4.4 | | 1658 | 2047 | 5 4 | 153,514
158,815 | 767.57 | 162.38 | 5 | 153.51 | 767.57 | 94.54 | 4.7 | | 1659
1660 | 2046
2054 | 4 | 186,812 | 635.26
747.25 | 169.27
186.81 | 4 | 158.81
186.81 | 635.26
747.25 | 93,83
100,00 | 3.8
4.0 | | 1661 | 2278
2277 | 3 | 56.405
103.402 | 169.22
103.40 | 284.77 | 5 | 192.46 | 305.27 | 67.58 | 1.1 | | 1662 | 2279
2280 | 1 4 | 32.655
111.720 | 32.65
446.88 | 115.02 | 4 | 111.72 | 446.88 | 97.13 | 3.9 | | 1002 | 2200 | . 7 | 111160 | 110.00 | .10.02 | | 11116 | 110.00 | 91.19 | 0.0 | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sgm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|----------------------|---------------------|--------------------------------|-------------------------------------|-----------------------|---|---|---|---|---------------------------------| | 1663
1664 | 4289
1965 | 7 4 | 352.977
146.191 | 2470.84
584.76 | 585.72
584.02 | 7 9 | 352.98
498.66 | 2470.84 | 60.26
85.38 | 4.2 | | 1665 | 1964 | 5 | 352.466 | 1762.33 | 192.64 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1666
1667 | 2287
2288 | 4 | 256.470
185.668 | 1025.88
742.67 | 258.73
186.69 | 4 | 256.47
185,67 | 1025.88
742.67 | 99.13
99.45 | 4.0 | | 1668
1669 | 2289
2005 | 4 4 | 159.029
164.514 | 636.12
658.06 | 159.98
172.83 | 4 | 159.03
164.51 | 636.12
658.06 | 99.41
95.19 | 3.8 | | 1670
1671 | 2006
2290 | 5 | 134.370
120.288 | 671.85
601.44 | 137.46
132.34 | 5 | 134.37
120.29 | 671.85
601.44 | 97.75
90.89 | 4.9
4.5 | | 1672 | 2004
2008 | 5 | 277.517 | 1387.59
915.76 | 279.40 | 5 3 | 277.52 | 1387.59 | 99.33
64.54 | 5.0 | | 1673
1674 | 2007 | 5 | 305.252
364.280 | 1821.40 | 472.95
428.41 | 5 | 305.25
364.28 | 915.76
1821.40 | 85.03 | 1.9
4.3 | | 1675 | 2012
2010 | 6 | 139.496
217.930 | 836.98
1307.58 | 597.77 | 22 | 536.43 | 3039.56 | 89.74 | 5.1 | | | 2013
2011 | 5 | 129.679
49.321 | 648.40
246.60 | | - 5 | | 0000.00 | | 3355 | | 1676 | 2283
2282 | 3 | 58.894
83.506 | 58.89
250.52 | 412.76 | 10 | 379.72 | 1279.21 | 92.00 | 3.1 | | 1070 | 2284
2281 | 5 | 54.200
183.121 | 54.20
915.60 | 412.70 | 10 | 313.12 | 12/3.21 | 32.00 | 3.1 | | 1677 | 2285
3941 | 3
5 | 139.953
289.363 | 419.86
1446.81 | 260.35 | 3 | 139.95 | 419.86 | 53.76 | 1.6 | | 1678
1679 | 2009
1968 | 3 | 186.319
48.066 | 558.96
48.07 | 523.07
89.29 | 8 | 475.68
48.07 | 2005.77
48.07 | 90.94
53.83 | 3.8
0.5 | | 1680 | 1969
3902 | 4 2 | 158.872
120.777 | 635,49 | 305.56 | 6 | 279.65 | 877.04 | 91.52 | 2.9 | | 1681 | 1971 | 5 | 173.842 | 241.55
869.21 | 185.10 | 5 | 173.84 | 869.21 | 93.92 | 4.7 | | 1682
1683 | 1970 | 5 | 207.431 | 1037.16 | 227,90
254.58 | 5 | 207.43
0.00 | 1037.16
0.00 | 91.02
0.00 | 4.6
0.0 | | 1684
1685 | 2034
2064 | 5 | 192.600
139.489 | 963.00
697.45 | 196.22
139.49 | 5 | 192.60
139.49 | 963.00
697.45 | 98.15
100.00 | 4.9
5.0 | | 1686 | 2065
2066 | 5 | 43.022
266.399 | 43.02
1332.00 | 411.36 | 6 | 309.42 | 1375.02 | 75.22 | 3.3 | | 1687 | 2062
2063 | 3
6 | 261.081
139.448 | 783.24
836.69 | 442.30 | 9 | 400.53 | 1619.93 | 90.56 | 3.7 | | 1688 | - | | 380041040 (| | 101.58 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1689
1690 | 2056
2057 | 1 | 149,716
161,263 | 299.43
161.26 | 153.52
161.26 | 1 0 | 149.72
161.26 | 299.43
161.26 | 97.52
100.00 | 1.0 | | 1691
1692 | 2059 | 4 | 119,934 | 479.74 | 108.23 | 0 4 | 0.00 | 0.00
479.74 | 0.00
99.66 | 4.0 | | 1693
1694 | 2058
2061 | 5
6 | 205.098
186.598 | 1025.49
1119.59 | 220.67
200.60 | 5
6 | 205.10
186.60 | 1025.49
1119,59 | 92,94
93.02 | 4.6
5.6 | | 1695 | 2060
2068 | 3 | 225.193
55.964 | 675.58
55.96 | 229.62 | 3 | 225.19 | 675.58 | 98.07 | 2.9 | | 1696 | 2071
2067 | 1 | 58.247
155.485 | 58.25
155.49 | 493.94 | 5 | 359.92 | 359.92 | 72.87 | 0.7 | | | 2070
2069 | 1 | 40.905
49.323 | 40.91
49.32 | | | | | | | | 1697 | 3953
2048 | 4 4 | 133.848
189.968 | 535.39
759.87 | 449.79 | 8 | 323.82 | 1295.27 | 71.99 | 2.9 | | 1698 | 4292 | 4 4 | 128.394 | 513.57 | 280.42 | 5 | 203.68 | 588.86 | 72.63 | 2.1 | | 1699 | 2035 | | 75,288
212,779 | 75.29 | 973.08 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1700 | 2072
2073 | 5 2 | 120.238 | 1063.90
240.48 | 212.78
120.24 | 5 2 | 212.78
120.24 | 1063.90
240.48 | 100.00 | 2.0 | | 1702 | 2074
2093 | 4 | 114.045
94.163 | 456.18
376.65 | 114.04
227.66 | 8 | 114.04
227.66 | 456.18
910.63 | 100.00 | 4.0 | | 1703 | 2094 | 4 | 133.493 | 533,97 | 283.45 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1705
1706 | 1923 | 4 | 128.184 | 512.73 | 292.28
237.20 | 0 4 | 0.00 | 0.00
512.73 | 0.00
54.04 | 0.0 | | 1707 | 2039
2040 | 4 4 | 78.574
72.735 | 314.30
290.94 | 196,08 | 8 | 151.31 | 605.24 | 77.17 | 3.1 | | 1708 | 2025 | 5 | 244.699 | 1223.49 | 287.25 | 5 | 244.70 | 1223.49 | 85.19 | 4.3 | | 1709 | 2026
4369 | 5 | 225.363
98.672 | 1126.81
98.67 | 225.36
262.54 | 5 2 | 225.36
140.94 | 1126.81 | 100.00
53.68 | 0.5 | | 1711 | 4370
2401 | 1 4 | 42.268
103.186 | 42.27
412.74 | 162.34 | 4 | 103.19 | 412.74 | 63.56 | 2.5 | | 1712 | 2400
2402 | 5 | 66.153
72.755 | 330.77
363.77 | 162.77 | 10 | 138.91 | 694.54 | 85.34 | 4.3 | | 1713
1714 | 2403
2357 | 3 | 106.651
90.379 | 426.60
271.14 | 171.37
122.06 | 4
3 | 106.65
90.38 | 426.60
271.14 | 62.23
74.04 | 2.5 | | 1715 | 2358
2398 | 4 3 | 161.779
80.371 | 647.11
241.11 | 253.05 | 4 | 161.78 | 647.11 | 63.93 | 2.6 | | 1716 | 2399 | 2 | 36.616 | 73.23
| 169.19 | 5 | 116.99
77.56 | 314.35
232.68 | 69.15
41.76 | 1.9 | | 1718 | 2396
2363 | 3 | 77.560
157.838 | 232.68
157.84 | 182.86 | 1 | 157.84 | 157.84 | 86.32 | 0.9 | | 1719
1720 | 2362
2391 | 5 | 99.473
145.202 | 198.95
726.01 | 179.49
158.31 | 5 | 99.47
145.20 | 198.95
726.01 | 55.42
91.72 | 4.6 | | 1721 | 4108
2364 | 2 | 93.359
131.980 | 93.36
263.96 | 112.21
140.26 | 2 | 93.36
131.98 | 93.36
263.96 | 94.10 | 1.9 | | 1723 | 2365
2356 | 2 4 | 122,448
84,947 | 244.90
339.79 | 129.41
294.93 | 8 | 122.45 | 244.90
636.51 | 94.62
53.95 | 1.9 | | 1124 | 2355
2359 | 2 | 74.179
79.020 | 296.72
158.04 | 234.33 | | 139,13 | 636,31 | 33,80 | 2.2 | | 1725 | 2360
2361 | 3 | 62,779
45,418 | 188.34
45.42 | 283.68 | 6 | 187.22 | 391.80 | 66.00 | 1.4 | | 1726 | 2392 | 4 | 116.511 | 466,04 | 159.11 | 4 | 116.51 | 466.04 | 73.23 | 2.9 | | 1727
1728 | 2291 | 7 | 316.499 | 2215.49 | 78.48
366.02 | 7 | 0.00
316.50 | 0.00
2215.49 | 0.00
86.47 | 6.1 | | 1729 | 2387
4309 | 1 | 45.847
69.944 | 91.69
69.94 | 219.63 | 3 | 115.79 | 161.64 | 52.72 | 0.7 | | 1730 | 2382
2383 | 3 | 74.969
127.297 | 74.97
381.89 | 323.26 | 4 | 202.27 | 456.86 | 62.57 | 1.4 | | 1731
1732 | 2366 | 1 | 216.201 | 216.20 | 103.12 | 0 | 0.00
216.20 | 0.00
216.20 | 0.00
97.88 | 1.0 | | 1733 | 4270
2390 | 3 | 111.977
14.066 | 335.93
14.07 | 207.11 | 3 | 111.98 | 335.93 | 54.07 | 1.6 | | 1734 | 2388
2389 | 1 3 | 35.742
54.662 | 35.74
163.99 | 245.78 | 5 | 104.47 | 213.79 | 42.51 | 0.9 | | 1735 | 2292
2293 | 2 | 131.214
34.899 | 262.43
104.70 | 259.77 | 5 | 166.11 | 367.13 | 63.95 | 1.4 | | 1736 | 3965 | 2 7 | 29.499 | 59.00 | 295.87 | 9 | 209.53 | 1319.25 | 70.82 | 4.5 | | 1737 | 3966
2294 | 7 | 180.036
123.882 | 1260.25
867.17 | 252.73 | 7 | 123.88 | 867.17 | 49.02 | 3.4 | | 1738 | 3911
2368 | 7 2 | 72.91
176.39 | 510.39
352.79 | 106.10
801.41 | 6 | 72.91
566.27 | 510.39
1912.29 | 68.72
70.66 | 2.4 | | 1740 | 2295
2367 | 1 | 389.88
223.24 | 1559.50
223.24 | 286.82 | 1 | 223.24 | 223.24 | 77.83 | 8.0 | | 1741
1742 | 2296
2371 | 10
3 | 347.45
138.18 | 3474.55
414.54 | 570.79
152.95 | 10
3 | 347.45
138.18 | 3474.55
414.54 | 60.87
90.34 | 6.1
2.7 | | 1743 | 2412
2411 | 6 | 52.04
51.90 | 312.27
51.90 | 394.77 | 10 | 158.30 | 527.22 | 40.10 | 1.3 | | 1744 | 4115
4116 | 3 2 | 54.35
95.47 | 163.05
190.94 | 96.48 | 2 | 95.47 | 190.94 | 98.95 | 2.0 | | 1745
1746 | 4117
4120 | 3 | 35.82
77.01 | 107.47
77.01 | 35.82
94.92 | 3 | 35.82
77.01 | 107.47
77.01 | 100.00
81.13 | 3.0 | | 1747
1748 | 4118
4119 | 1 4 | 131.21
103.90 | 131.21
415.58 | 139.77 | 1 4 | 131.21
103.90 | 131.21
415.58 | 93.88
79.55 | 0.9 | | 1749 | 2372 | 5 | 137.56 | 687.82 | 174.64 | 5 | 137,56 | 687.82 | 78,77 | 3.9 | | 1750 | 4122
4121 | 5 | 78.73
69.74 | 393.66
348.70 | 154.37 | 10 | 148.47 | 742.37 | 96.18 | 4.8 | | 1751
1752 | 2413
4124 | 5 | 77.25
72.57 | 386.27
72.57 | 91.08
92.07 | 5 | 77.25
72.57 | 386.27
72.57 | 84.82
78.82 | 0.8 | | 1753
1754 | 4123
2410 | 5
5 | 74.07
148.00 | 370,34
740,00 | 88.51
173.75 | 5
5 | 74.07
148.00 | 370.34
740.00 | 83.68
85.18 | 4.2 | | 1755 | 2480
4125 | 5 2 | 211.31
133.56 | 1056.53
267.12 | 211.31 | 5 | 211.31 | 1056.53 | 100.00 | 5.0 | | 1756 | 2514
2513 | 5 | 64.26
135.56 | 321.29
677.81 | 531.88 | 12 | 333.38 | 1266.22 | 62.68 | 2.4 | | 1757 | 2517
2516 | 4
5 | 153.96
149.91 | 615.85
749.54 | 426.85 | 9 | 303.87 | 1365.39 | 71.19 | 3.2 | | 1758
1759 | 4163
2505 | 4 7 | 98.66 | 394.64 | 107.40
240.19 | 4 7 | 98.66 | 394.64
1559.70 | 91.86 | 3.7 | | 1760 | 2500 | 4 | 222.81
94.56 | 1559.70
378.24 | 95.78 | 7 4 | 222.81
94.56
39.23 | 378.24 | 92.77
98.73
37.08 | 6.5
3.9 | | 1761 | 2504
2503 | 4 | 39.23
32.81 | 39.23
131.26 | 105.80 | - | 39.23 | 39,23 | 37.08 | 0.4 | | 1762 | 2502
2501 | 1 | 28.76
34.97 | 28.76
34.97 | 120.92 | 6 | 96.55 | 194.99 | 79.84 | 1.6 | | | 2498
2497 | 3 | 49.29
31.16 | 147.87
31.16 | | | | | | | | 1763 | 2499
2495 | 1 | 47.29
48.18 | 47.29
48.18 | 465.65 | 12 | 336.79 | 627.98 | 72.33 | 1.3 | | 0000000 | 2496
2494 | 1 | 33.24
63.43 | 33.24
63.43 | 101106000 | 475 | (SAN SAN SAN SAN SAN SAN SAN SAN SAN SAN | 90000000000000000000000000000000000000 | 14.000000000000000000000000000000000000 | (1752-Til) | | 1764 | 2493
2177 | 4 | 64.20
152.34 | 256.82
152.34 | 159.06 | - 1 | 152.34 | 152.34 | 95.77 | 1.0 | | 1765 | 2515 | 1 | 42.63 | 42.63 | 308.13 | 2 | 191.32 | 191.32 | 62.09 | 0,6 | | 1766 | 4135
4138 | 2 | 148.69
230.95 | 148.69
461.89 | 290.91 | 2 | 230,95 | 461.89 | 79.39 | 1.6 | | 1767
1768 | 2519
2518 | 1 | 72.29
64.97 | 72.29
64.97 | 74.89
70.00 | 1 | 72.29
64.97 | 72.29
64.97 | 96.53
92.82 | 0.9 | | 1769 | 4152 | 1 | 143,43 | 143,43 | 151.43 | 1 | 143.43 | 143.43 | 94.72 | 0.9 | | Plot
Ref.
No. | Buildin
g Ref.
No. | Building
Storeys | Building
Footprint
(sqm) | Building
Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same | Sum of
Building
Footprin
t on
Same | Sum of
Building
Floor
Area on
Same | Building
Coverag
e Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |----------------------|--------------------------|---------------------|--------------------------------|------------------------------------|----------------------------|---|--|--|---|---------------------------------| | 1770 | 2520 | 1 | 66.27 | 66.27 | 79.46 | Plot | Plot
66.27 | Plot
66.27 | 83.40 | 0.8 | | 1771
1772 | 4153 | 4 | 95.74 | 382.96 | 144.57
95.74 | 0 | 0.00
95.74 | 0.00
382.96 | 0.00
100.00 | 0.0
4.0 | | 1773 | 2479
4150 | 5 | 220.29
57.24 | 1101.46
286.19 | 466.20 | 11 | 409.23 | 1519.35 | 87.78 | 3.3 | | 1774 | 4151
2523 | 2 | 131.70
99.62 | 131.70
199.24
585.45 | 115.58 | 2 | 99.62 | 199.24
585.45 | 86.19
76.75 | 1.7 | | 1775
1776
1777 | 4146
4145
2465 | 5
6 | 117.09
173.55
198.53 | 1041.29
1191.19 | 152.56
188.49
501.11 | 5
6 | 117.09
173.55
198.53 | 1041.29
1191.19 | 76.75
92.08
39.62 | 5.5
2.4 | | 1778 | 2506
2458 | 5 | 121.52
66.91 | 607.58 | 141.90 | 5 | 121.52 | 607.58 | 85.63 | 4.3 | | 1779 | 2459
2460 | 6
5 | 139.77
410.61 | 838.62
2053.05 | 284.22
416.27 | 9
5 | 206.68
410.61 | 1039.34
2053.05 | 72.72
98.64 | 3.7 | | 1781
1782 | 2464
2463 | 5
4 | 125.66
142.38 | 628.29
569.51 | 135.01
177.70 | 5 4 | 125.66
142.38 | 628.29
569.51 | 93.07
80.12 | 4.7
3.2 | | 1783
1784 | 2462
2483 | 3
5 | 138.07
197.12 | 414.20
985.60 | 247.54
292.24 | 3
5 | 138.07
197.12 | 414.20
985.60 | 55.77
67.45 | 1.7
3.4 | | 1785 | 2199
2198 | 1 | 61.96
63.64 | 61.96
63.64 | 230.85 | 3 | 179.58 | 179.58 | 77.79 | 0.8 | | 1786 | 2197
2200 | 5 | 53.99
111.36 | 53.99
556.78 | 113.17 | 5 | 111.36 | 556.78 | 98.40 | 4.9 | | 1787
1788
1789 | 2491
3053
2484 | 3
1
4 | 102.14
54.30
126.19 | 306.42
54.30
504.75 | 108.92
62.70
158.60 | 3
1
4 | 102.14
54.30 | 306.42
54.30
504.75 | 93.78
86.60
79.56 | 0.9 | | 1790
1791 | 2038
2036 | 1 5 | 121.01
187.89 | 121.01
939.46 | 171.57 | 1 5 | 126.19
121.01
187.89 | 121.01
939.46 | 70.53
86.07 | 3.2
0.7
4.3 | | 1792
1793 | 2037 | 4 | 115.34
124.49 | 461.38
497.96 | 144.96 | 4 | 115.34
124.49 | 461.38
497.96 | 79.57
77.34 | 3.2 | | 1794
1795 | 2028
2029 | 4 3 | 155.02
112.78 | 620.07
338.35 | 214.64
127.68 | 4 3 | 155.02
112.78 | 620.07
338.35 | 72.22
88.33 | 2.9 | | 1796
1797 | 2030
2031 | 1 5 | 62.86
109.34 | 62.86
546,70 | 84.61
143.93 | 1
5 | 62.86
109.34 | 62.86
546.70 | 74.30
75.97 | 0.7
3.8 | | 1798
1799 | 2032 | 4 | 184.36 | 737,43 | 166.01
256.05 | 0 4 | 0.00
184,36 | 0.00
737.43 | 0.00
72.00 | 0.0
2.9 | | 1800 | 2042
2095 | 5 | 133,93
84,00 | 267.86
420.01 | 133.93 | 14 | 133.93 | 267.86
1193.34 | 100.00 | 7.0 | | 1802 | 2096
2452 | 9 2 | 85.93
225.92 | 773.33
451.83 | 422.15 | 2 | 225.92 | 451.83 | 53.52 | 1.1 | | 1803
1804 | 2002 | 0 | 425.04 | 4007.50 | 290.11
108.93 | 0 | 0.00 | 0.00 | 0.00
0.00
96.22 | 0.0 | | 1805
1806
1807 | 2092
4293
2075 | 1 4 | 125.94
53.78
127.32 | 1007.52
53.78
509.30 | 130.89
227.02
127.32 | 8
1
4 | 125.94
53.78
127.32 | 1007.52
53.78
509.30 | 96.22
23.69
100.00 | 7.7
0.2
4.0 | | 1807
1808
1809 | 2075
2076
2079 | 4 2 | 157.18
107.85 | 628.71
215.70 | 157.18
107.86 | 4 2 | 157.18
107.85 | 628.71
215.70 | 100.00
100.00
99.99 | 4.0 | | 1810 | 2077 | 3 | 95.19
229.79 | 285.58
229.79 | 191.05 | 3 | 95.19
229.79 | 285.58
229.79 | 49.83
60.09 | 1.5 | | 1812
1813 | 2083
2033 | 8
5 | 226.82
224.00 | 1814.54
1119.98 | 278.39
330.92 | 8 5 | 226.82
224.00 | 1814.54
1119.98 | 81.47
67.69 | 6.5
3.4 | | 1814
1815 | 2024
2041 | 1 4 | 254.17
149.64 | 254.17
598.55 | 303.04
231.83 | 1 4 | 254.17
149.64 | 254.17
598.55 | 83.87
64.55 | 0.8
2.6 | | 1816
1817 | 2023
2022 | 1 3 | 146.21
177.66 | 146.21
532.99 | 165.61
189.63 | 1 3 | 146.21
177.66 | 146.21
532.99 | 88.29
93.69 | 0.9
2.8 | | 1818
1819 | 1998
2000 | 4
5 | 111.81
316.80
| 447.24
1584.01 | 140.00
348.93 | 5 | 111.81
316.80 | 447.24
1584.01 | 79.86
90.79 | 3.2
4.5 | | 1820
1821 | 2003
2002 | 7 | 131.15
102.43 | 393.45
717.04 | 144.77
121.55 | 3
7 | 131.15
102.43 | 393.45
717.04 | 90.59
84.27 | 2.7
5.9 | | 1822
1823 | 2001
1999 | 10 | 191.70
188.31 | 191.70
1883.05 | 228.56
219.24 | 10 | 191.70
188.31 | 191.70
1883.05 | 83.87
85.89 | 0.8
8.6 | | 1824 | 2080
2081 | 3 | 227.31
189.14 | 909.25
567.41 | 487.24
663.27 | 5 | 227.31
376.40 | 909.25
941.94 | 46.65
56.75 | 1.9 | | 1826 | 2082 | 2 4 | 187.26
132.90 | 374.52
531.59 | 148.30 | 4 | 132.90 | 531.59 | 89.61 | 3.6 | | 1827
1828 | 2085 | 4 | 124.37 | 497.48
875.09 | 132.89
337.08 | 0 | 0.00 | 0.00 | 93.59 | 0.0 | | 1829
1830
1831 | 2014
2015
2016 | 5
5 | 218.77
184.77
214.75 | 923.85
1073.73 | 232.69
207.18
231.58 | 5
5 | 218.77
184.77
214.75 | 875.09
923.85
1073.73 | 94.02
89.18
92.73 | 3.8
4.5
4.6 | | 1832 | 2018 | 1 6 | 53.69
141.63 | 53.69
849.79 | 387.31 | 11 | 357.63 | 1552.69 | 92.73 | 4.0 | | | 2091
2089 | 4 | 162.30
45.25 | 649.21
45.25 | | | | | | | | 1833 | 2090
2088 | 1 4 | 65.41
101.10 | 65.41
404.41 | 141.73 | 2 | 110.66 | 110.66 | 78.08 | 0.8 | | 1834
1835 | 4326
2086 | 4 | 54.71
129.54 | 218.82
518.15 | 155.75
166.39 | 8 | 155.81
129.54 | 623.23
518.15 | 100.04
77.85 | 4.0
3.1 | | 1836
1837 | 2087
2019 | 10 2 | 141.82
170.05 | 1418,17
340,10 | 162.24
198.48 | 10 | 141.82
170.05 | 1418.17
340.10 | 87.41
85.68 | 8.7
1.7 | | 1838
1839 | 2020 | 5 | 102.15 | 510.75 | 143.10
162.26 | 5 | 102.15
0.00 | 510.75
0.00 | 71.38
0.00 | 3.6
0.0 | | 1840 | 2021
3946 | 1 6 | 86.20
149.66 | 86.20
897.97 | 139.76
324.88 | 7 | 86.20
194.80 | 86.20
943.11 | 61.68
59.96 | 0.6
2.9 | | 1842 | 2485
2343 | 1 3 | 45.14
176.20 | 45.14
528.60 | 177.46 | 3 | 176.20 | 528.60 | 99,29 | 3.0 | | 1843
1844 | 2342 | 3 | 147.00 | 441.00 | 146.77
151.14 | 0 | 147.00
0.00 | 441.00
0.00 | 100.16
0.00 | 0.0 | | 1845
1846 | 2438
2436 | 3 | 169.26
203.43 | 677.05
610.30 | 170.81
312.98 | 3 | 169.26
203.43 | 677.05
610.30 | 99.09
65.00 | 1.9 | | 1847 | 4327
2529 | 5 4 | 231.24
167.59 | 1156.21
670.35 | 337.45 | 5
8 | 231.24
302.69 | 1156.21 | 68.53
80.57 | 3.4 | | 1849 | 2530
4288
2626 | 7
10 | 135.11
78.41 | 540.42
548.90
4534.19 | 188.11
718.20 | 7 | 78.41 | 548.90 | 41.69 | 2.9
6.3 | | 1850 | 2525
2526
2527 | 1 1 | 453.42
74.22
88.01 | 74.22
88.01 | 311.37 | 3 | 453.42
217.35 | 4534.19
217.35 | 69.80 | 0.7 | | 1852 | 2528
2524 | 1 | 55.11
63.60 | 55.11
63.60 | 277.36 | 1 | 63.60 | 63.60 | 22.93 | 0.2 | | 1853
1854 | 3175
3176 | 6 2 | 69.74
87.85 | 418.41
175.71 | 123.69
117.95 | 6 2 | 69.74
87.85 | 418.41
175.71 | 56.38
74.48 | 3.4 | | 1855
1856 | 3940
2534 | 2 | 137.22
49.36 | 274.43
49.36 | 324.63
122.60 | 2 | 137.22
49.36 | 274.43
49.36 | 42.27
40.26 | 0.8
0.4 | | 1857 | 2533
2532 | 1 | 51.90
41.00 | 51.90
41.00 | 120.89 | 1 2 | 51.90 | 51.90 | 42.93 | 0.4 | | 1858 | 2531
2536 | 1 | 80.98
50.25 | 80.98
50.25 | 219.79 | 2 | 121.98 | 121.98 | 55.50
53.66 | 0.6 | | 1860 | 2535
2538 | 1 | 59.22
56.36 | 59.22
56.36 | 89.39 | 1 | 56,36 | 56.36 | 63.05 | 0,6 | | 1861
1862 | 2539
2540 | 1 2 | 60.15
119.25 | 60.15
238.51 | 97.63 | 3 | 60.15
155.75 | 60.15
275.01 | 61.61
71.62 | 0.6 | | 1863 | 4105
2537 | 2 | 36.50
153.24 | 36.50
306.48 | 306.68 | 12 | 191.12 | 685.25 | 62.32 | 2.2 | | 1864 | 4106
4104 | 10 | 37.88
39.30 | 378.78
39.30 | 132.44 | 1 | 39.30 | 39.30 | 29.67 | 0.3 | | 1865 | 2543
2544
2645 | 1 1 | 66.72
34.77 | 66.72
34.77 | 254.15 | 3 | 126.66 | 126.66 | 49 84 | 0.5 | | 1866
1867 | 2545
4102
2542 | 1 1 2 | 25.18
77.38
184.06 | 25.18
77.38
368.12 | 120.40
256.65 | 1 2 | 77.38
184.06 | 77.38
368.12 | 64.27
71.72 | 0.6 | | 1868
1869 | 2542
2541
4099 | 2 2 | 201.31
139.10 | 402.63
139.10 | 256.65
232.51
177.99 | 2 2 | 201.31
139.10 | 402.63
139.10 | 71.72
86.58
78.15 | 1.4
1.7
0.8 | | 1869
1870
1871 | 4099
4103
4101 | 1 | 139.10
83.91
76.85 | 139.10
83.91
76.85 | 177.99
131.81
95.95 | 1 1 | 139.10
83.91
76.85 | 139.10
83.91
76.85 | 78.15
63.66
80.09 | 0.8
0.6
0.8 | | 1872 | 4101
4100
2561 | 1 2 | 88.27
140.05 | 88.27
280.10 | 109.54
211.05 | 1 2 | 88.27
140.05 | 88.27
280.10 | 80.58
66.36 | 0.8 | | 1874 | 2546
2630 | 5 | 183.75
26.23 | 918.73
26.23 | 216.16 | 5 | 183,75 | 918.73 | 85,00 | 4.3 | | 1875
1876 | 2629
4091 | 1 | 53.61
31.77 | 53,61
31,77 | 399.98
106.46 | 1 | 79.83
31.77 | 79.83
31.77 | 19.96
29.84 | 0.2 | | 1877
1878 | 2554
2572 | 6
4 | 116.43
134.32 | 698.57
537.27 | 167.07
199.51 | 6 | 116.43
134.32 | 698.57
537.27 | 69.69
67.32 | 4.2
2.7 | | 1879 | 2573
2576 | 4 | 144.25
37.77 | 577.01
37.77 | 262.53 | 4 | 144.25 | 577.01 | 54.95 | 2.2 | | 1880 | 2575
2574 | 1 | 32.38
83.38 | 32.38
83.38 | 283.99 | 3 | 153.53 | 153.53 | 54.06 | 0.5 | | 1881 | 2589
2588 | 4 | 176.71
21.20 | 706.82
21.20 | 180.18 | 4 | 176.71 | 706.82 | 98.07 | 3.9 | | 1882 | 2586
2587 | 1 | 111.22
71.94 | 111.22
71.94 | 324.06 | 3 | 204.36 | 204.36 | 63.06 | 0.6 | | | 2582
2581 | 1 | 26.96
21.92 | 26.96
21.92 | 40 | 2 | OF 0 T | A70.14 | F1.55 | .] | | 1883 | 2579
2580 | 1 1 | 34.00
29.05 | 34.00
29.05 | 464.74 | 8 | 252.74 | 675.18 | 54.38 | 1.5 | | | 2577
2585 | 1 1 | 140.81
43.64 | 563.25
43.64 | | | | | | \vdash | | 1884 | 2584
2583
2578 | 1 1 | 50.30
50.11 | 50.30
50.11 | 375.48 | 7 | 264.73 | 626.78 | 70.50 | 1.7 | | 1885 | 2578
2555
2552 | 6 1 | 120,68
174,14
57,19 | 482,73
1044,83
57,19 | 185.33 | 6 | 174.14 | 1044.83 | 93,96 | 5.6 | | 1886 | 2551
2553 | 1 4 | 133.39
279.68 | 133.39 | 626.36 | 6 | 470.26 | 1309.29 | 75.08 | 2.1 | | 1887
1888 | 2549
4089 | 2 4 | 192.61
156.75 | 385.22
627.01 | 239.27
216.00 | 2 4 | 192.61
156.75 | 385.22
627.01 | 80.50
72.57 | 1.6
2.9 | | | | | | | | | | | | | | Plot
Ref. | Buildin
g Ref. | Building | Building
Footprint | Building
Floor | Plot
Area | Sum of
Storeys
of | Sum of
Building
Footprin | Sum of
Building
Floor | Building
Coverag | Floor
Area | Plot
Ref. | | Building | Building
Footprint | Buildin
g Floor | Plot
Area | Sum of
Storeys
of | Sum of
Building
Footprint | Transfer . | Building
Coverage | Area | |----------------------|----------------------|--------------|----------------------------|------------------------------|----------------------------|-------------------------|--------------------------------|------------------------------|--------------------------|-------------------|----------------------|----------------------|-------------|----------------------------|------------------------------|----------------------------|-------------------------|---------------------------------|------------------------------|--------------------------|-------------------| | No. | No. | Storeys | (sqm) | Area
(sqm) | (sqm) | Buildings
on Same | t on
Same | Area on
Same | e Ratio
(BCR) | (FAR) | No. | Ref. No. | Storeys | (sqm) | Area
(sqm) | (sqm) | on Same | on Same
Plot | Area on
Same | Ratio
(BCR) | (FAR) | | 1770
1771 | 2520 | 1 | 66.27 | 66.27 | 79.46
144.57 | Plot | 66.27
0.00 | 66.27
0.00 | 83.40
0.00 | 0.8 | 1889
1890 | 4088 | 3 | 75.63 | 226.89 | 102.37
171.55 | Plot
3
0 | 75.63
0.00 | 226.89
0.00 | 73.88
0.00 | 2.2 | | 1772 | 4153
2479
4150 | 5
5 | 95.74
220.29
57.24 | 382.96
1101.46
286.19 | 95.74
466.20 | 11 | 95.74
409.23 | 382.96
1519.35 | 100.00 | 3.3 | 1891
1892
1893 | 2550
2548
2547 | 4 4 3 | 193.04
96.93
90.95 | 772.17
387.72
272.86 | 193.04
143.05
272.83 | 4 4 3 | 193.04
96.93
90.95 | 772.17
387.72
272.86 | 100.00
67,76
33,34 | 4.0
2.7
1.0 | | 1774 | 4151
2523 | 1 2 | 131.70
99.62 | 131.70
199.24 | 115.58 | 2 | 99.62 | 199,24 | 86.19 | 1.7 | 1894
1895 | 2562
2566 | 5 | 154.39
52.34 | 771.95
52.34 | 181.95 | 5 2 | 154.39
99.55 | 771.95
99.55 | 84.85
72.59 | 0.7 | | 1775
1776
1777 | 4146
4145
2465 | 5
6 | 117.09
173.55
198.53 | 585.45
1041.29
1191.19 | 152.56
188.49
501.11 | 5
6
6 | 117.09
173.55
198.53 | 585.45
1041.29
1191.19 | 76.75
92.08
39.62 | 3.8
5.5
2.4 | 1896
1897 | 2567
-
2568 | 4 | 47.21
145.84 | 47.21
583.35 | 90.97 | 0 4 | 0.00 | 0.00 | 0.00 | 0.0 | | 1778
1779 | 2506
2458 | 5 | 121.52
66.91 | 607.58
200.73 | 141.90
284.22 | 5 | 121.52
206.68 | 607.58
1039.34 | 85.63
72.72 | 4.3
3.7 | 1898
1899 | 2569
2571 | 5 | 153.98
159.48 | 769.88
797.39 | 194,73
185.89 | 5
5 | 153.98
159.48 | 769.88
797.39 | 79.07
85.79 | 4.0 | | 1780
1781 | 2459
2460
2464 | 6
5
5 | 139.77
410.61
125.66 | 838.62
2053.05
628.29 | 416.27
135.01 | 5
5 | 410.61
125.66 | 2053.05
628.29 | 98.64
93.07 | 4.9
4.7 | 1900
1901
1902 | 2563
2570 | 5 | 134.87
95.02 | 674.34
570.14 | 120.92
155.72
95.62 | 0
5
6 | 0.00
134.87
95.02 | 0.00
674.34
570.14 | 0.00
86.61
99.37 | 0.0
4.3
6.0 | | 1782
1783
1784 | 2463
2462
2483 | 4
3
5 | 142.38
138.07
197.12 | 569.51
414.20
985.60 |
177.70
247.54
292.24 | 3 5 | 142.38
138.07
197.12 | 569.51
414.20
985.60 | 80.12
55,77
67,45 | 3.2
1.7
3.4 | 1903
1904
1905 | 4282
4281
2444 | 6 6 5 | 62.26
87.15
264.89 | 373.56
522.92
1324.45 | 91.14
143.17
323.54 | 6
6
5 | 62.26
87.15
264.89 | 373.56
522.92
1324.45 | 68.32
60.87
81.87 | 4.1
3.7
4.1 | | 1785 | 2199
2198 | 1 1 | 61.96
63.64
53.99 | 61.96
63.64 | 230.85 | 3 | 179.58 | 179.58 | 77.79 | 0.8 | 1906
1907 | 3994
2478 | 3 | 55.44
125.03 | 221.75
375.08 | 72.75
153.55 | 3 | 55.44
125.03 | 221.75
375.08 | 76.21
81.42 | 3.0
2.4 | | 1786
1787 | 2197
2200
2491 | 5 3 | 111.36
102.14 | 53.99
556.78
306.42 | 113.17
108.92 | 5 3 | 111,36
102,14 | 556.78
306.42 | 98.40
93.78 | 4.9
2.8 | 1908
1909 | 2449
2448 | 3 3 | 51.01
179.79 | 153.03
539.38 | 94.52
321.73 | 6 | 230.81 | 0,00
692.42 | 71.74 | 2.2 | | 1788
1789
1790 | 3053
2484
2038 | 4 | 54.30
126.19
121.01 | 54.30
504.75
121.01 | 62.70
158.60
171.57 | 4 | 54.30
126.19
121.01 | 54.30
504.75
121.01 | 86.60
79.56
70.53 | 0.9
3.2
0.7 | 1910
1911
1912 | 2447
4084
4085 | 2
4
4 | 76.51
110.56 | 208.29
306.06
442.24 | 211.01
89.63
122.77 | 2
4
4 | 104.14
76.51
110.56 | 208.29
306.06
442.24 | 49.35
85.36
90.05 | 1.0
3.4
3.6 | | 1791
1792 | 2036
2037 | 5 4 | 187.89
115.34 | 939,46
461.38 | 218.29
144.96 | 5 4 | 187,89
115,34 | 939.46
461.38 | 86.07
79.57 | 4.3
3.2 | 1913
1914 | 4086
4087 | 5 | 160.34
132.80 | 801.68
132.80 | 180.69
150.16 | 5
1 | 160.34
132.80 | 801.68
132.80 | 88.73
88.44 | 4.4
0.9 | | 1793
1794
1795 | 2027
2028
2029 | 4 4 3 | 124.49
155.02
112.78 | 497.96
620.07
338.35 | 160.95
214.64
127.68 | 4 4 3 | 124.49
155.02
112.78 | 497.96
620.07
338.35 | 77.34
72.22
88.33 | 3.1
2.9
2.6 | 1915
1916 | 2556
2559
2560 | 1 4 | 201.61
70.49
97.40 | 1411.26
70.49
389.60 | 253.55 | 5 | 201.61
167.89 | 1411.26
460.09 | 100.00
66.22 | 1.8 | | 1796
1797
1798 | 2030
2031 | 1
5 | 62.86
109.34 | 62.86
546,70 | 84.61
143.93
166.01 | 5
0 | 62.86
109.34
0.00 | 62.86
546.70
0.00 | 74.30
75.97
0.00 | 0.7
3.8
0.0 | 1917
1918 | 2558
2557
2564 | 6 | 160.03
185.27
85.64 | 320.06
1111.62
85.64 | 270.44
186.20 | 2
6 | 160.03
185.27 | 320.06
1111.62 | 59.17
99.50 | 1.2
6,0 | | 1799
1800 | 2032
2042 | 4 2 | 184.36
133.93 | 737,43
267.86 | 256.05
133.93 | 4 2 | 184,36
133,93 | 737.43
267.86 | 72.00
100.00 | 2.9 | 1919 | 2565
2590 | 7 | 101.69
222.20 | 711.81
1555.42 | 362.44
400.01 | 13 | 187.33
338.96 | 797.45
2255.98 | 51.69
84.74 | 5.6 | | 1801
1802 | 2095
2096
2452 | 5
9
2 | 84.00
85.93
225.92 | 420,01
773,33
451.83 | 169.53
422.15 | 14 | 169.93
225.92 | 1193.34
451.83 | 100.23
53.52 | 7.0 | 1921
1922 | 2591
2592
4239 | 6
4
5 | 116.76
145.88
124.62 | 700,56
583,53
623,10 | 205.40
148.60 | 4 5 | 145.88
124.62 | 583.53
623.10 | 71.02
83.86 | 2.8 | | 1803
1804 | | | | | 290.11
108.93 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | 1923
1924 | 4237
4238 | 6 7 | 102.49
81.93 | 614.95
573.50 | 107.20
85.35 | 6 7 | 102.49
81.93 | 614.95
573.50 | 95.61
95.99 | 5.7
6.7 | | 1805
1806
1807 | 2092
4293
2075 | 8
1
4 | 125.94
53.78
127.32 | 1007.52
53.78
509.30 | 130.89
227.02
127.32 | 1 4 | 125.94
53.78
127.32 | 1007.52
53.78
509.30 | 96.22
23.69
100.00 | 7.7
0.2
4.0 | 1925
1926 | 2595
2594
2606 | 6
4
5 | 104.68
66.35
163.11 | 628.06
265.38
815.55 | 223.21 | 10
5 | 171.02
163.11 | 893.44
815.55 | 76.62
80.21 | 4.0 | | 1808
1809
1810 | 2076
2079
2077 | 4
2
3 | 157.18
107.85
95.19 | 628.71
215.70
285.58 | 157.18
107.86
191.05 | 2 3 | 157.18
107.85
95.19 | 628.71
215.70
285.58 | 100.00
99.99
49.83 | 4.0
2.0
1.5 | 1927
1928
1929 | 2604
2605
4240 | 1 1 | 121.54
100.88
157.98 | 243.09
100.88
157.98 | 122.09
148.14
237.36 | 1 1 | 121.54
100.88
157.98 | 243.09
100.88
157.98 | 99.55
68.10
66.56 | 2.0
0.7
0.7 | | 1811
1812 | 2078
2083 | 1 8 | 229.79
226.82 | 229.79
1814.54 | 382.39
278.39 | 1 8 | 229.79
226.82 | 229.79
1814.54 | 60.09
81.47 | 0.6
6.5 | 1930 | 2603
4241 | 5 | 80.79
46.48 | 403.93
278.87 | 218.41 | 11 | 127.26 | 682.80 | 58.27 | 3.1 | | 1813
1814
1815 | 2033
2024
2041 | 5
1
4 | 224.00
254.17
149.64 | 1119,98
254,17
598,55 | 330.92
303.04
231.83 | 1 4 | 224.00
254.17
149.64 | 1119.98
254.17
598.55 | 67.69
83.87
64.55 | 3.4
0.8
2.6 | 1931
1932
1933 | 2602
2601
3736 | 1 1 3 | 86.17
87.03
139.96 | 86.17
87.03
419.89 | 165.02
166.04
149.41 | 1 1 3 | 86.17
87.03
139.96 | 86.17
87.03
419.89 | 52.22
52.41
93.67 | 0.5
0.5
2.8 | | 1816
1817 | 2023
2022 | 1 3 | 146.21
177.66 | 146.21
532.99 | 165.61
189.63 | 1 3 | 146.21
177.66 | 146.21
532.99 | 88.29
93.69 | 0.9
2.8 | 1934
1935 | 2600
2599 | 3 4 | 113.86
146.34 | 341.58
585.34 | 193.22
166.28 | 3
4 | 113.86
146.34 | 341.58
585.34 | 58.93
88.00 | 1.8
3.5 | | 1818
1819
1820 | 1998
2000
2003 | 5
3 | 111.81
316.80
131.15 | 447.24
1584.01
393.45 | 140.00
348.93
144.77 | 5
3 | 111.81
316.80
131.15 | 447.24
1584.01
393.45 | 79.86
90.79
90.59 | 3.2
4.5
2.7 | 1936
1937
1938 | 4243
4242
3737 | 6
1
6 | 71.83
48.06
31.88 | 430.98
48.06
191.29 | 78.41
82.95
116.96 | 6
1
12 | 71.83
48.06
79.13 | 430.98
48.06
474.76 | 91.61
57.94
67.65 | 5.5
0.6
4.1 | | 1821
1822
1823 | 2002
2001
1999 | 7
1
10 | 102.43
191.70
188.31 | 717.04
191.70
1883.05 | 121.55
228.56
219.24 | 7
1
10 | 102.43
191.70
188.31 | 717.04
191.70
1883.05 | 84.27
83.87
85.89 | 5.9
0.8
8.6 | 1939 | 3738
4244
2608 | 6 | 47.24
43.05
68.86 | 283.47
43.05
68.86 | 110.12 | 1 | 43.05 | 43,05 | 39.10 | 0.4 | | 1824
1825 | 2080
2081 | 3 | 227.31
189.14 | 909.25
567.41 | 487.24 | 4 5 | 227.31
376.40 | 909.25
941.94 | 46.65
56.75 | 1.9 | 1940
1941 | 2607
4245 | 1 5 | 51.66
76.33 | 51.66
381.67
783.10 | 257.13
140.33 | 5 | 120.52
76.33 | 120.52
381.67 | 46.87
54.40 | 0.5
2.7 | | 1826
1827 | 2082
2084
2085 | 2
4
4 | 187.26
132.90
124.37 | 374.52
531.59
497.48 | 148.30
132.89 | 4 | 132.90
124.37 | 531.59
497.48 | 89.61
93.59 | 3.6 | 1942
1943 | 3735
2609
2610 | 6 5 | 195.77
87.92
164.14 | 783.10
527.50
820.70 | 213,28
415.81 | 11 | 195.77
252.06 | 783.10
1348.20 | 91.79
60.62 | 3.7 | | 1828
1829 | 2014 | 4 | 218.77 | 875.09 | 337.08
232.69 | 0 4 | 0.00
218.77 | 0.00
875.09 | 0.00
94.02 | 3.8 | 1944 | 2612
2611 | 6 | 63.51
81.73 | 381.08
490.35 | 328.90 | 12 | 145.24 | 871.43 | 44.16 | 2.6 | | 1830 | 2015
2016
2018 | 5
5
1 | 184.77
214.75
53.69 | 923.85
1073.73
53.69 | 207.18 | 5 | 184.77
214.75 | 923.85
1073.73 | 89.18
92.73 | 4.5 | 1945
1946 | 2613
2614
2615 | 3 6 | 77.12
199.57
157.74 | 231.36
598.70
946.42 | 345.90
172.60 | 6 | 276.69
157.74 | 830.06
946.42 | 79.99
91.39 | 2.4
5.5 | | 1832 | 2017
2091
2089 | 6
4
1 | 141.63
162.30
45.25 | 849.79
649.21
45.25 | 387.31 | 11 | 357.63 | 1552.69 | 92.34 | 4.0 | 1947
1948 | 2617
2616
4254 | 1 1 2 | 94.28
134.41
63.14 | 94.28
134.41
126.28 | 428.66
103.20 | 2 | 228.68
63.14 | 228.68
126.28 | 53.35
61.18 | 0.5 | | 1833 | 2090
2088 | 1 4 | 65.41
101.10 | 65.41
404.41 | 141.73 | 2 8 | 110.66 | 110.66
623.23 | 78.08
100.04 | 4.0 | 1949
1950 | 4252
2627 | 1 6 | 81.02
164.30 | 81.02
985.80 | 129.23
214.02 | 1 6 | 81.02
164.30 | 81.02
985.80 | 62.69
76.77 | 0.6
4.6 | | 1835
1836 | 4326
2086
2087 | 4
4
10 | 54.71
129.54
141.82 | 218.82
518.15
1418,17 | 166.39
162.24 | 4 10 | 129.54
141.82 | 518.15
1418.17 | 77.85
87.41 | 3.1
8.7 | 1951
1952
1953 | 4255 | 1 | 83.82 | 83.82 | 160.02
121.81
131.36 | 0 0 | 0.00
0.00
83.82 | 0.00
0.00
83.82 | 0.00
0.00
63.81 | 0.0
0.0
0.6 | | 1837
1838 | 2019
2020 | 5 | 170.05
102.15 | 340,10
510,75 | 198.48
143.10 | 5 | 170.05
102.15 | 340.10
510.75 | 85,68
71,38 | 1.7
3.6 | 1954 | 2624
2623 | 1 1 | 42,70
57.50 | 42.70
57.50 | 161.58 | 2 | 100.20
70.40 | 100.20 | 62.02 | 0.6 | | 1839
1840
1841 | 2021
3946 | 1 6 | 86.20
149.66 | 86.20
897.97 | 162.26
139.76
324.88 | 7 | 0.00
86.20
194.80 | 0.00
86.20
943.11 | 0,00
61,68
59,96 | 0.0
0.6
2.9 | 1955
1956
1957 | 2626
2625
2621 | 1 | 70,40
78,86
50.58 | 70.40
78.86
50.58 | 120.84
140.79
178.23 | 1 2 | 78.86
110.67 | 70,40
78,86
110,67 | 58.26
56.01
62.10 | 0.6
0.6 | | 1842
1843 | 2485
2343
2342 | 3 3 | 45.14
176.20
147.00 | 45.14
528.60
441.00 | 177,46
146.77 | 3 | 176.20
147.00 | 528.60
441.00 | 99.29
100.16 | 3.0 | 1958
1959 | 2622
2618
2619 | 1 1 3 | 60.09
88.40
109.43 | 60.09
88.40
328.30 | 241.54
159.01 | 1 3 | 88.40
109.43 | 88.40
328.30 |
36.60
68.82 | 0.4 | | 1844
1845 | 2438 | 4 | 169.26 | 677.05 | 151.14
170.81 | 0 4 | 0.00
169.26 | 0.00
677.05 | 0.00
99.09 | 0.0
4.0 | 1960
1961 | 2620
4253 | 1 | 85.43
38.57 | 85.43
38.57 | 113.77
65.85 | 1 1 | 85.43
38.57 | 85.43
38.57 | 75.09
58.58 | 0.8 | | 1846
1847 | 2436
4327
2529 | 3
5
4 | 203.43
231.24
167.59 | 610.30
1156.21
670.35 | 312.98
337.45 | 5 | 203,43 | 610.30
1156.21 | 65.00
68.53 | 3.4 | 1962
1963
1964 | 2593
4090
2628 | 6
6
4 | 104.91
191.95
320.50 | 629.44
1151.72
1282.01 | 176.51
195.29
391.79 | 6
6
4 | 104.91
191.95
320.50 | 629.44
1151.72
1282.01 | 59.43
98.29
81.80 | 3.6
5.9
3.3 | | 1848 | 2530
4288 | 7
10 | 135.11
78.41
453.42 | 540.42
548.90 | 375.67
188.11
718.20 | 7 | 78.41
453.42 | 1210.77
548.90
4534.19 | 80.57
41.69
63.13 | 2.9 | 1965 | 2597
2596 | 8 | 127,69
82,37 | 1021.49
494.20
97.13 | 351.37 | 14 | 210.05 | 1515.69 | 59.78 | 4.3 | | 1850 | 2525
2526
2527 | 1 1 | 74.22
88.01 | 4534.19
74.22
88.01 | 311.37 | 3 | 217.35 | 217.35 | 69.80 | 0.7 | 1966
1967 | 2598
4333
2669 | 1 7 | 97.13
62.51
171.63 | 62.51
1201.39 | 245.99
297.86 | 7 | 159.64
171.63 | 159.64
1201.39 | 64.90
57.62 | 0.6
4.0 | | 1852
1853 | 2528
2524
3175 | 1 1 6 | 55.11
63.60
69.74 | 55.11
63.60
418.41 | 277.36
123.69 | 1 6 | 63.60
69.74 | 63.60
418.41 | 22.93
56.38 | 0.2 | 1968 | 2668
2642
2640 | 6 6 | 39,12
42,43
207,06 | 39.12
254.60
1242.34 | 194.31
454.08 | 18 | 39.12
351.02 | 39.12
2106.14 | 20.13
77.30 | 4.6 | | 1854
1855 | 3176
3940 | 2 2 | 87.85
137.22 | 175.71
274.43 | 117.95
324.63 | 2 2 | 87.85
137.22 | 175.71
274.43 | 74,48
42,27 | 1.5 | 10000 | 2641
2638 | 6 | 101.53
44.22 | 609.20
44.22 | | 15000 | (SOMETE) | 20.0000000 | 13.6461363 | 1 | | 1856
1857 | 2534
2533
2532 | 1 1 | 49.36
51.90
41.00 | 49.36
51.90
41.00 | 122.60 | 1 | 49.36
51.90 | 49.36
51.90 | 40.26
42.93 | 0.4 | 1970 | 2636
2637 | 1 | 67.37
56.23 | 67.37
56.23 | 418.97
156.36 | 0 | 167.82 | 167.82 | 40.05 | 0.4 | | 1858
1859 | 2531
2536 | 1 1 | 80.98
50.25 | 80.98
50.25 | 219.79 | 2 | 121.98 | 121.98 | 55.50
53.66 | 0.6 | 1972
1973 | 2639
2666
2665 | 3 1 | 169.10
82.08
70.25 | 507.29
82.08
70.25 | 168.98
257.04 | 3 2 | 169,10
152.33 | 507.29
152.33 | 100.07
59.26 | 3.0
0.6 | | 1860
1861 | 2535
2538
2539 | 1 | 59.22
56.36
60.15 | 59.22
56.36
60.15 | 89.39
97.63 | 1 | 56.36
60.15 | 56,36
60.15 | 63.05
61.61 | 0.6 | 1974
1975 | 2665
2667
2664 | 1 1 | 70.25
102.69
56.61 | 70.25
102.69
56.61 | 264.60
182.74 | 1 1 | 102,69
56,61 | 102.69
56.61 | 38.81
30.98 | 0.4 | | 1862 | 2540
4105
2537 | 1 2 | 119.25
36.50
153.24 | 238.51
36.50
306.48 | 217.47 | 3 | 155.75 | 275.01 | 71.62 | 1.3 | 1976
1977 | 2663
2662
4262 | 1 1 | 124.98
93.05
46.00 | 124.98
93.05
46.00 | 348.33
89.12 | 2 | 218.03
46.00 | 218.03
46.00 | 62.59
51.62 | 0.6 | | 1863
1864 | 4106
4104 | 10 | 37.88
39.30 | 378.78
39.30 | 306.68
132.44 | 12 | 191.12
39.30 | 685.25
39.30 | 62.32
29.67 | 0.3 | 1978 | 2643
2644 | 1 1 | 312.48
216.28 | 312.48
216.28 | 704.24 | 2 | 528.75 | 528.75 | 75.08 | 0.8 | | 1865 | 2543
2544
2545 | 1 1 | 66.72
34.77
25.18 | 66.72
34.77
25.18 | 254.15 | 3 | 126.66 | 126.66 | 49.84 | 0.5 | 1979
1980
1981 | 2646
2649
2648 | 1 4 | 375.72
131.88
106.98 | 1502.88
131.88
427.93 | 597.91
186.17
286.61 | 4
1
4 | 375.72
131.88
106.98 | 1502.88
131.88
427.93 | 62.84
70.84
37.33 | 2.5
0.7
1.5 | | 1866
1867
1868 | 4102
2542 | 2 2 | 77.38
184.06
201.31 | 77.38
368.12 | 120.40
256.65
232.51 | 2 2 | 77.38
184.06
201.31 | 77.38
368.12
402.63 | 64.27
71.72
86.58 | 0.6
1.4
1.7 | 1982
1983 | 2647
4268 | 2 | 243.12
162.89
22.30 | 972.48
325.79
22.30 | 298.47
470.80 | 3 | 243.12
185.19 | 972.48
348.08 | 81.46
39.33 | 3.3
0.7 | | 1868
1869
1870 | 2541
4099
4103 | 1 | 139.10
83.91 | 402.63
139.10
83.91 | 232.51
177.99
131.81 | 1 1 | 139.10
83.91 | 139.10
83.91 | 86.58
78.15
63.66 | 0.8 | 1984 | 2645
2683
2686 | 1 1 | 129.67
72.49 | 518.69
72.49 | 139.03 | 4 | 129.67 | 518.69 | 93.27 | 3.7 | | 1871
1872
1873 | 4101
4100
2561 | 1 1 2 | 76.85
88.27
140.05 | 76,85
88,27
280,10 | 95.95
109.54
211.05 | 1 1 2 | 76.85
88.27
140.05 | 76.85
88.27
280.10 | 80.09
80.58
66.36 | 0.8
0.8
1.3 | 1985
1986 | 2685
2684 | 1 | 78.40
46.90 | 78.40
46.90 | 312.97 | 3 | 197.79 | 197.79 | 0,00 | 0,6 | | 1874
1875 | 2546
2630 | 5 | 183.75
26.23 | 918.73
26.23 | 216.16 | 5 | 183.75
79.83 | 918.73
79.83 | 85.00
19.96 | 4.3 | 1987
1988 | | | EA FA | 50.00 | 109,42
92.27 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1876
1877 | 2629
4091
2554 | 1 1 6 | 53.61
31.77
116.43 | 53,61
31,77
698.57 | 106,46
167,07 | 1 6 | 31.77
116.43 | 31,77
698.57 | 29.84
69.69 | 0.3 | 1989
1990
1991 | 3177
2650
2773 | 4 | 56.59
235.54
90.11 | 56.59
942.16
90.11 | 171.26
336.52
303.16 | 1 4 2 | 56.59
235.54
192.05 | 56,59
942,16
192,05 | 33.04
69.99
63.35 | 0.3
2.8
0.6 | | 1878
1879 | 2572
2573
2576 | 4 4 | 134.32
144.25
37.77 | 537.27
577.01
37.77 | 199.51
262.53 | 4 | 134.32
144.25 | 537.27
577.01 | 67.32
54.95 | 2.7 | 1991
1992
1993 | 2772
2661 | 1 | 101.94
126.44 | 101.94
126.44 | 378.90
364.98 | 1 0 | 192.05
126.44
0.00 | 192.05
126.44
0.00 | 33.37
0.00 | 0.6 | | 1880 | 2575
2574 | 1 | 32.38
83.38 | 32.38
83.38 | 283.99 | 3 | 153.53 | 153.53 | 54.06 | 0.5 | 1994 | 2694
2693 | 1 | 97.35
88.19 | 97.35
88.19 | 359.25 | 2 | 185.55 | 185.55 | 51.65 | 0.5 | | 1881 | 2589
2588
2586 | 1 1 | 176.71
21.20
111.22 | 706.82
21.20
111.22 | 180.18
324.06 | 3 | 176.71
204.36 | 706.82
204.36 | 98.07
63.06 | 0.6 | 1995 | 2692
2689
2687 | 1 1 | 163,36
87,77
163,90 | 163.36
87.77
163.90 | 245.53 | 1 | 163.36 | 163.36 | 66.53 | 0.7 | | | 2587
2582 | 1 | 71.94
26.96 | 71.94
26.96 | | TT. | | | | | 1996 | 2691
2690 | 1 | 98.12
88.97 | 98.12
88.97 | 971.90 | 5 | 588.18 | 588.18 | 60.52 | 0.6 | | 1883 | 2581
2579
2580 | 1 1 | 21.92
34.00
29.05 | 21.92
34.00
29.05 | 464.74 | 8 | 252.74 | 675.18 | 54.38 | 1.5 | 1997 | 2688
2696
2695 | 1 1 | 149.41
137.39
152.23 | 149.41
137.39
152.23 | 688.90 | 2 | 289.62 | 289.62 | 42.04 | 0.4 | | | 2577
2585 | 1 1 | 140.81
43.64 | 563.25
43.64 | | | | | | | 1998 | 2699
2698 | 1 1 | 153.13
110.69 | 153,13
110,69 | 582.05 | 3 | 359.58 | 359.58 | 61.78 | 0.6 | | 1884 | 2584
2583
2578 | 1 4 | 50.30
50.11
120.68 | 50.30
50.11
482,73 | 375.48 | 7 | 264.73 | 626.78 | 70.50 | 1.7 | 1999
2000 | 2697 | 1 | 95,75 | 95.75 | 809.89
584.20 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1885
1886 | 2555
2552
2551 | 6
1
1 | 174.14
57.19
133.39 | 1044.83
57.19
133.39 | 185.33
626.36 | 6 | 174.14
470.26 | 1044.83 | 93,96
75,08 | 5.6 | 2001
2002
2003 | 4261 | 1 | 243.41 | 243.41 | 222.83
165.67
175.03 | 0 0 1 | 0.00
0.00
243.41 | 0.00
0.00
243.41 | 0.00
0.00
139.07 | 0.0
0.0
1.4 | | 1887 | 2553
2549 | 2 | 279.68
192.61 | 1118.71
385.22 | 239.27 | 2 | 192.61 | 385.22 | 80.50 | 1.6 | 2004
2005 | - | | 2.307.1 | 23201 | 140.80
249.25 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 1888 | 4089 | 4 | 156.75 | 627.01 | 216.00 | 4 | 156.75 | 627.01 | 72.57 | 2.9 | 2006 | | | | | 102.83 | 0 | 0.00 | 0.00 | 0.00 | 128 | | Plot
Ref.
No. | Buildin
g Ref.
No. | Building
Storeys | Building
Footprint
(sqm) | Building
Floor
Area | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings | Sum of
Building
Footprin
t on | Floor
Area on | Building
Coverag
e Ratio | Floo
Area
Ratio | |--|---|--|--|---|---|--------------------------------------|---|--|--|---------------------------------| | | | | (,) | (sqm) | | on Same
Plot | Same
Plot | Same
Plot | (BCR) | (FAR | | 2007 | 2682
4280 | 1 1 | 73.10
92.69 | 73.10
92.69 | 269.65 | 2 | 165.79 | 165.79 | 61.48 | 0.6 | | 2008 | 2680
2681 | 4 4 | 175.26
125.33 | 701.06
501.31 | 189.95
127.94 | 4 | 175.26
125.33 | 701.06
501.31 | 92.27
97.96 | 3.7 | | 2010 | 4096
4093 | 1 3 | 34.13
78.67 | 34.13
236.01 | 81.43 | 1 | 34.13 | 34.13 |
41.92 | 0.4 | | 2011 | 4094 | 1 | 39.66 | 39.66 | 143.92 | 4 | 118.34 | 275.68 | 82.22 | 1.9 | | 2012 | 4095
4092 | 3 4 | 30.90
136.60 | 92.69
546.39 | 57.95
174.10 | 3
4 | 30.90
136.60 | 92.69
546.39 | 53.32
78.46 | 1.6
3.1 | | 2014 | 2660
2659 | 3 | 179.02
102.67 | 716.06
308.01 | 318.63 | 7 | 281.69 | 1024.07 | 88.41 | 3.2 | | 2015
2016 | 2652
2651 | 5 | 161.10
138.51 | 805.50
692.56 | 161.10
152.67 | 5 | 161.10
138.51 | 805.50
692.56 | 100.00
90.73 | 5.0
4.5 | | 2010 | 2653 | 1 | 54.67 | 54.67 | 102.07 | | 130.31 | 092,30 | 50.73 | 4.0 | | 2017 | 2654
2655 | 1 | 46.70
41.80 | 46.70
41.80 | 579.05 | 6 | 307.61 | 307.61 | 53.12 | 0.5 | | 2011 | 2657
2658 | 1 | 54.20
43.25 | 54.20
43.25 | 0,0.00 | | 337.37 | 331.31 | 00.12 | 1000 | | 2018 | 2656
2670 | 1 | 66.99
159.24 | 66.99
159.24 | 159.24 | 1 | 159.24 | 159.24 | 100.00 | 1.0 | | 2019
2020 | | | | | 1044.61
405.96 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2021 | 2700 | 4 | 346.31 | 1385.24 | 363.52 | 4 | 346.31 | 1385.24 | 95.27 | 3.8 | | 2022 | 2678
2679 | 4 | 82.53
61.67 | 330.11
246.67 | 186.97 | 8 | 144.19 | 576.78 | 77.12 | 3.1 | | 2023 | 2677
2482 | 5 | 135.18
194.79 | 675.89
973.97 | 197.50 | 5 | 135.18
194.79 | 675.89
973.97 | 68,44
84.38 | 3.4
4.2 | | 2025
2026 | 2727
2728 | 5 | 123.69
118.91 | 618.46
594.53 | 141.03
136.63 | 5
5 | 123.69
118,91 | 618.46
594.53 | 87.70
87.03 | 4.4 | | 2020 | 2761
2760 | 1 | 139.89 | 139.89 | 150.05 | | 110,51 | 004.00 | 07,03 | - 4.4 | | 2027 | 2759 | 1 | 105.62
96.58 | 105.62
96.58 | 815.08 | 5 | 529.90 | 529.90 | 65.01 | 0.7 | | | 2757
2758 | 1 | 103.44
84.37 | 103.44
84.37 | | | | | | | | 2028 | 2756
4216 | 2 | 329.71
252.66 | 659,42
252,66 | 1219.45 | 3 | 582.38 | 912.09 | 47.76 | 0.7 | | 2029 | - | | | | 522.40 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2030 | 2701
4217 | 3 | 219.82
106.53 | 659.45
106.53 | 269.39
131.82 | 3
1 | 219.82
106.53 | 659.45
106.53 | 81.60
80.81 | 2.4
0.8 | | 2032
2033 | 4179
4178 | 1 | 90.46
86.08 | 90.46
86.08 | 121.60
106.91 | 1 1 | 90.46
86.08 | 90.46
86.08 | 74.39
80.51 | 0.7 | | 2034
2035 | 4180
2769 | 2 | 38.69
72.46 | 77.39
72.46 | 92.54
85.87 | 2 | 38.69
72.46 | 77.39
72.46 | 41.82
84.38 | 0.8 | | | 2768 | 1 | 77.61 | 77.61 | | | | | | | | 2036 | 2767
2766 | 1 | 30.70
22.82 | 30.70
22.82 | 290.13 | 3 | 131.13 | 131.13 | 45.20 | 0.5 | | 2037
2038 | 2702
4219 | 3 | 150.67
62.83 | 452.02
62.83 | 180.73
94.04 | 3 | 150.67
62.83 | 452.02
62.83 | 83.37
66.82 | 2.5
0.7 | | 2039 | 4218 | 2 | 101.35 | 202.71 | 150.04 | 2 | 101.35 | 202.71 | 67.55 | 1.4 | | 2040 | 2703
2704 | 3 4 | 165.44
126.60 | 496.31
506.39 | 173.56
136.61 | 3 4 | 165.44
126.60 | 496.31
506.39 | 95.32
92.67 | 3.7 | | Cay Political | 2707
2706 | 1 | 24,34
81,68 | 24.34
81.68 | | | 1000000 | 0.0000000000000000000000000000000000000 | VALUE 1 | | | 2042 | 2708
2705 | 1 | 17.00
19.97 | 17.00
19.97 | 281.83 | 4 | 142.99 | 142.99 | 50.74 | 0.5 | | 2043 | 2709 | 4 | 254.55 | 1018.21 | 321.65 | 4 | 254.55 | 1018.21 | 79.14 | 3.2 | | 2044 | 2713
2754 | 5 | 102.23
90.64 | 408.94
453.21 | 602.49
130.07 | 5 | 102.23
90.64 | 408 94
453.21 | 16.97
69.68 | 3.5 | | 2046 | 2735
2734 | 1 3 | 29.17
67.00 | 29.17
201.01 | 217.96 | 4 | 96.17 | 230.18 | 44.12 | 1.1 | | 2047 | 4161 | 5 | 99.50 | 497.51 | 115.32 | 5 | 99.50 | 497.51 | 86.28 | 4.3 | | 2048 | 2733 | 2 | 90.21 | 180,41 | 207.93
70.99 | 0 | 90.21
0.00 | 180,41
0.00 | 43.38
0.00 | 0.9 | | 2050 | 2755
2671 | 5 | 59.97
210.51 | 299.85
1052.57 | 68.45 | 5 | 59.97
465.34 | 299.85 | 87.61 | 4.4 | | 2051 | 4263
4228 | 1 4 | 254.83
98.86 | 254.83
395.43 | 907.38 | 6 | 98.86 | 1307.39
395.43 | 51.28
88.16 | 3.5 | | 2053 | 4229 | 1 | 47.02 | 47.02 | 59.27 | 1 | 47.02 | 47.02 | 79.32 | 0.8 | | 2054 | 2752
3172 | 2 | 104.99
55.21 | 419.96
110.42 | 168.89 | 4 | 104.99 | 419.96
212.25 | 62.17
77.85 | 2.5 | | 2056 | 3173
2751 | 3 | 50.92
175.52 | 101.84
526.55 | 228.00 | 3 | 175.52 | 526.55 | 76.98 | 2.3 | | 2057
2058 | 2753 | 1 | 37.44 | 37.44 | 88.07
197.26 | 0 1 | 0.00
37.44 | 0.00
37.44 | 0.00 | 0.0 | | 2059 | 2750 | 4 | 247.11 | 988,43 | 273.10 | 4 | 247.11 | 988,43 | 90.48 | 3.6 | | 2060 | 2749
2748 | 1 | 35,93
75.89 | 35.93
75.89 | 210.23 | 2 | 111.83 | 111.83 | 53.19 | 0.5 | | | 4222
4223 | 1 | 92,20
122,99 | 92.20
122.99 | | | | | | | | 2061 | 4224
4225 | 1 | 122.99
44.71 | 122.99
44.71 | 765.21 | 5 | 427.60 | 427.60 | 55.88 | 0.6 | | | 4226 | 1 | 44.71 | 44.71 | | | | | | | | 2062
2063 | 4221
2712 | 4 | 156.25
140.69 | 625.00
562.77 | 194.24
158.28 | 4 | 156,25
140,69 | 625.00
562.77 | 80.44
88.89 | 3.2 | | 2064 | 4200
2711 | 4 | 78,96
60,52 | 315.85
60.52 | 109.04 | 4 | 78.96 | 315.85 | 72.42 | 2.9 | | 2065
2066 | 2710
2672 | 1 4 | 72.66
293.94 | 72.66
1175.74 | 163.48
511.62 | 2 | 133.17
293.94 | 133.17 | 81.46
57.45 | 2.3 | | 2067 | | | 1 | | 116.23 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2068
2069 | 3178
4154 | 4 | 93.32
82.41 | 373.26
329.64 | 93.32
82.41 | 4 | 93.32
82.41 | 373.26
329.64 | 100.00 | 4.0 | | 2070
2071 | 4155
2747 | 3 | 69.29
221.57 | 277.15
664.70 | 69.29
250.96 | 3 | 69.29
221.57 | 277.15
664.70 | 100.00
88.29 | 4.0
2.6 | | 2072 | 4158 | 2 | 176,96 | 353.91 | 229.83 | 2 | 176.96 | 353.91 | 76.99 | 1.5 | | 2073 | 4312 | 5 | 114.29 | 571.43 | 169.25
157.55 | 5 | 0.00 | 571.43
0.00 | 67.52
0.00 | 0.0 | | 2075
2076 | 4098
4097 | 5 | 75.24
61.57 | 300.96
307.85 | 104.37
88.29 | 5 | 75.24
61.57 | 300.96
307.85 | 72.09
69.74 | 2.9
3.5 | | 2077 | 4128
2719 | 7 5 | 197.67
134.31 | 1383.71
671.54 | 255.47
149.69 | 7 5 | 197.67
134.31 | 1383.71
671.54 | 77.38
89.72 | 5.4 | | 2079 | 4127 | 4 | 137.19 | 548.75 | 152.53 | 4 | 137.19 | 548.75 | 89.94 | 3.6 | | 2080
2081 | 2720
4126 | 3 | 109.86
155.51 | 439.45
466.53 | 204.48
198.73 | 3 | 109.86
155.51 | 439.45
466.53 | 53.73
78.25 | 2.1 | | 2082
2083 | 4136
2721 | 3
5 | 154.42
133.07 | 463.27
665.33 | 157.55
133.07 | 3
5 | 154.42
133.07 | 463.27
665.33 | 98.01
100.00 | 2.9
5.0 | | 2084
2085 | 4130
2673 | 1 | 146.46 | 146.46
314.25 | 170.87
163.98 | 1 2 | 146.46 | 146.46
314.25 | 85.72
95.82 | 0.9 | | 2086 | 2674 | 5 | 157.13
146.34 | 731.70 | 169.14 | 5 | 157.13
146.34 | 731.70 | 86.52 | 4.3 | | 2087
2088 | 2675
4157 | 5 2 | 133.10
55.27 | 665.48
110.54 | 148.68
87.62 | 5
2 | 133.10
55.27 | 665.48
110.54 | 89.52
63.08 | 4.5
1.3 | | 2089 | 2736
4160 | 2 2 | 120.40
71.24 | 240.81
142.47 | 158.51 | 2 | 120.40 | 240.81 | 75.96 | 1.5 | | 2090 | 4159 | 1 1 | 63.42 | 63.42 | 143.76 | 3 | 134,65 | 205.89 | 93.66 | 1.4 | | 2091 | 2732
4156 | 1 | 31.45
47.42 | 31.45
47.42 | 205.17 | 2 | 78.87 | 78.87 | 38.44 | 0.4 | | 2092 | 2715
2714 | 6 | 38.78
134.44 | 77.57
806.65 | 352.39 | 8 | 173.22 | 884.21 | 49.16 | 2.5 | | 2093 | 2718
2717 | 1 2 | 78.09
82.09 | 78.09
164.19 | 259.98 | 4 | 255.47 | 337.57 | 98.27 | 1.3 | | oral de | 2716 | 1 | 95.29 | 95.29 | | (100 H | | oceants. | 0.0.000) | | | 2004 | 2723
2722 | 1 | 49.54
41.18 | 49.54
41.18 | 256.48 | 3 | 136.23 | 136.23 | 53,11 | 0.5 | | 2094 | 2724
2726 | 3 | 45.50
108.36 | 45.50
325.08 | | | | - | | _ | | OVALUE CO. | | 2 | 182.53
65.98 | 365.06
65.98 | 398.33 | 6 | 356.87 | 756.13 | 89.59 | 1.9 | | OVALUE CO. | 2725 | | 34.85 | 34.85 | 61.80 | 1 | 34.85 | 34.85 | 56.38 | 0.6 | | 2095 | 4131
4134 | 1 | - | 714 (72) | 78.04 | 6 | 61.11 | 221.46 | 78.31 | 2.8 | | 2095
2096
2097 | 4131
4134
4132
4133 | 1
5 | 21.03
40.09 | 21.03
200.43 | | 6 | 270.73 | 1624.38 | 97.96 | 5.9
1.8 | | 2095
2096
2097
2098 | 4131
4134
4132
4133
2676 | 1
5
6 | 40.09
270.73 | 200.43
1624.38 | 276.37
173.25 | 2 | | 300 80 | H9 44 | 1.0 | | 2095
2096
2097
2098
2099 | 4131
4134
4132
4133
2676
2729
2730 | 1
5
6
2
5 | 40.09
270.73
154.95
67.46 | 200.43
1624.38
309.89
337.31 | 276.37
173.25
160.26 | 10 | 154.95
115.74 | 309.89
578.68 | 89.44
72.22 | 3.6 | | 2095
2096
2097
2098
2099
2100 | 4131
4134
4132
4133
2676
2729
2730
4139
4273 | 1
5
6
2
5
5 | 40.09
270.73
154.95
67.46
48.27
147.20 | 200.43
1624.38
309.89
337.31
241.36
588.79 | 173.25 | 3.5 | 154.95 | 100000000000000000000000000000000000000 | NW21454 | 3.6 | | 2095
2096
2097
2098
2099 | 4131
4134
4132
4133
2676
2729
2730
4139
4273
4173 | 1
5
6
2
5
5 | 40.09
270.73
154.95
67.46
48.27
147.20
88.97 | 200.43
1624.38
309.89
337.31
241.36
588.79
88.97 | 173.25
160.26 | 10 | 154.95
115.74 | 578.68 | 72.22 | | | 2095
2096
2097
2098
2099
2100 | 4131
4134
4132
4133
2676
2729
2730
4139
4273
4173
4174
4175 | 1
5
6
2
5
5
4
1
1 | 40.09
270.73
154.95
67.46
48.27
147.20
88.97
88.97
218.22 | 200.43
1624.38
309.89
337.31
241.36
588.79
88.97
88.97
218.22 | 173.25
160.26
170.94 | 10 | 154.95
115.74 | 578.68 | 72.22 | | | 2095
2096
2097
2098
2099
2100
2101 | 4131
4134
4132
4133
2676
2729
2730
4139
4273
4173
4174
4175
4176
4177 | 1
5
6
2
5
5
5
4
1
1
1
1 |
40.09
270.73
154.95
67.46
48.27
147.20
88.97
88.97
218.22
246.07
163.87 | 200.43
1624 38
309.89
337.31
241.36
588.79
88.97
218.22
246.07
163.87 | 173.25
160.26 | 10 | 154.95
115.74 | 578.68 | 72.22 | 3.4 | | 2095
2096
2097
2098
2099
2100
2101 | 4131
4134
4132
4133
2676
2729
2730
4139
4273
4174
4175
4176
4177
4196 | 1
5
6
2
5
5
4
1
1 | 40.09
270.73
154.95
67.46
48.27
147.20
88.97
88.97
218.22
246.07
163.87
185.62 | 200.43
1624.38
309.89
337.31
241.36
588.79
88.97
218.22
246.07
163.87
185.62 | 173.25
160.26
170.94 | 10
4 | 154.95
115.74
147.20 | 578.68
588.79 | 72.22
86.11 | | | 2095
2096
2097
2098
2099
2100
2101
2102 | 4131
4134
4132
4133
2676
2729
2730
4139
4273
4173
4174
4175
4176
4177 | 1
5
6
2
5
5
5
4
1
1
1
1
1 | 40.09
270.73
154.95
67.46
48.27
147.20
88.97
88.97
218.22
246.07
163.87 | 200.43
1624 38
309.89
337.31
241.36
588.79
88.97
218.22
246.07
163.87 | 173.25
160.26
170.94
3122.12 | 10 4 | 154.95
115.74
147.20
1341.76 | 578.68
588.79
1341.76 | 72.22
86.11
42.98 | 0.4 | | 2095
2096
2097
2098
2099
2100
2101
2102 | 4131
4134
4132
4133
2676
2729
2730
4173
4173
4174
4175
4176
4197
4198 | 1 5 6 2 5 5 5 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 40.09
270.73
154.95
67.46
48.27
147.20
88.97
88.97
218.22
246.07
163.87
185.62
185.62
180.09
163.96 | 200.43
1624.38
309.89
337.31
241.36
588.79
88.97
88.97
218.22
246.07
163.87
185.62
186.09
163.96 | 173.25
160.26
170.94
3122.12
566.03 | 10
4
8 | 154.95
115.74
147.20
1341.76 | 578.68
588.79
1341.76 | 72.22
86.11
42.98 | 0.4 | | 2095
2096
2097
2098
2099
2100
2101
2102 | 4131
4134
4132
4133
2676
2729
2730
4139
4273
4174
4175
4176
4177
4196
4197
4198 | 1
5
6
2
5
5
4
1
1
1
1
1
1
1 | 40.09
270.73
154.95
67.46
48.27
147.20
88.97
218.22
246.07
163.87
185.62
196.09 | 200.43
1624 38
309.89
337.31
241.36
588.79
88.97
218.22
246.07
163.87
185.62
186.09
163.96 | 173.25
160.26
170.94
3122.12 | 10 4 | 154.95
115.74
147.20
1341.76 | 578.68
588.79
1341.76 | 72.22
86.11
42.98 | 0.4 | | 2095
2096
2097
2098
2099
2100
2101
2102
2102 | 4131
4134
4132
4133
2676
2729
2730
4139
4273
4173
4175
4176
4177
4196
4197
4198
2178
2178
2179
4273 | 1 5 6 2 2 5 5 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 40.09
270.73
154.95
67.46
48.27
147.20
88.97
218.22
246.07
163.87
185.62
185.09
163.96 | 200.43
1624 38
309.89
337.31
241.36
588.79
88.97
218.22
246.07
163.87
185.62
186.09
163.96 | 173.25
160.26
170.94
3122.12
566.03 | 10
4
8 | 154.95
115.74
147.20
1341.76 | 578.68
588.79
1341.76 | 72.22
86.11
42.98 | 0.4 | | 2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106 | 4131
4134
4132
4133
2676
2729
2730
4173
4173
4174
4175
4176
4197
4198
2178
2178
2178
2178
2178
2178
2178
217 | 1 5 5 6 2 2 5 5 5 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 40.09
270.73
154.95
67.46
48.27
147.20
88.97
218.22
246.07
163.87
185.62
186.09
163.96
56.18
69.92
185.07
74.50
49.68
148.21 | 200.43
1624.38
309.89
337.31
241.36
588.79
88.97
218.22
246.07
163.87
185.62
186.09
163.96
337.10
209.77
49.58
49.68 | 173.25
160.26
170.94
3122.12
566.03
402.03
207.21
156.21 | 10
4
8
0
14
2 | 154.95
115.74
147.20
1341.76
0.00
311.17
124.18
148.21 | 578.68
588.79
1341.76
0.00
1472.20
124.18
148.21 | 72.22
86.11
42.98
0.00
77.40
59.93
94.88 | 0.4
0.0
3.7
0.6
0.9 | | 2097
2098
2099
2100 | 4131
4134
4132
4133
2676
2729
2730
4139
4273
4174
4175
4176
4177
4198
2179
2179
2279
23073 | 1 5 6 2 5 5 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 40.09
270.73
154.95
67.46
48.27
147.20
88.97
218.22
246.07
163.87
185.62
186.09
163.96 | 200.43
1624.38
309.89
337.31
241.36
588.77
218.22
246.07
163.87
163.87
163.87
163.87
17
195.09
163.97
17
195.09
17
195.09
17
195.09 | 173.25
160.26
170.94
3122.12
566.03
402.03 | 10
4
8
0
14 | 154.95
115.74
147.20
1341.76
0.00
311.17 | 578.68
598.79
1341.76
0.00
1472.20 | 72.22
86.11
42.98
0.00
77.40 | 0.4
0.0
3.7
0.6 | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sgm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |----------------------|----------------------|---------------------|--------------------------------|-------------------------------------|----------------------------|---|---|---|--|---------------------------------| | 2110
2111 | 3065
3056 | 3 4 | 193.02
43.55 | 579.06
174.21 | 195.98 | 3
5 | 193.02
72.27 | 579.06
202.92 | 98.49
60.83 | 3.0
1.7 | | 2112 | 3057
3058 | 3 | 28.71
143.18 | 28.71
429.54 | 143.59 | 3 | 143.18 | 429.54 | 99.71 | 3.0 | | 2113 | 3059
3060 | 3 | 119.28
103.69 | 715.66
311.08 | 119.28 | 6
3 | 119.28
103.69 | 715.66
311.08 | 100.00
99,93 | 3.0 | | 2115
2116 | 3061
3062 | 5
4
1 | 256.72
104.61
61.55 | 1283.60
418.44
61.55 | 257.87
104.61 | 5 4 | 256.72
104.61 | 1283.60
418.44 | 99.55
100.00 | 5.0
4.0 | | 2117 | 3064
3063
3055 | 1 6 | 49.62
215.84 | 49.62
1295.06 | 122.62
215.84 | 6 | 111.18
215.84 | 111.18
1295.06 | 90.67 | 6.0 | | 2119 | 2488
2487 | 6 | 106.81
57.91 | 640.83
347.47 | 291.29 | 12 | 164.72 | 988.30 | 56.55 | 3.4 | | 2120
2121 | 3050
3052 | 4 3 | 142.83
229.06 | 571.31
687.18 | 169.88
279.39 | 4 3 | 142.83
229.06 | 571.31
687.18 | 84.08
81.99 | 3.4
2.5 | | 2122 | 3051
2201 | 3 4 | 225.09
249.31 | 675.26
997.24 | 291.62
336.03 | 3 4 | 225.09
249.31 | 675.26
997.24 | 77.19
74.19 | 2.3 | | 2124
2125 | 3170
3171 | 1 3 | 41.90
142.66 | 41.90
427.97 | 54.31
199.73 | 1 3 | 41.90
142.66 | 41.90
427.97 | 77.15
71.42 | 0.8 | | | 3166
3167 | 5 2 | 30.60
38.43 | 152.98
76.86 | | | | | | | | 2126 | 3168
3164 | 5 2 | 65.36
51.32 | 326.79
102.63 | 316.75 | 18 | 209.17 | 753.16 | 66.04 | 2.4 | | | 3165
3163 | 1 | 23.48
32.17 | 93.91
32.17 | | | | | | | | 2127 | 3162
3160 | 5 | 46.60
46.68 | 233.02
46.68 | 326.17 | 11 | 252.68 | 820.81 | 77.47 | 2.5 | | 2128 | 3161
3155 | 5 | 127.24
149.97 | 508.95
749.85 | 157.44 | 5 | 149.97 | 749.85 | 95.25 | 4.8 | | 2129 | 3154
3159 | . <u>5</u> | 191.08
54.16 | 955.40
270.78 | 192.76 | 5
10 | 191.08
124.37 | 955.40
621.87 | 99.13
66.25 | 5.0
3.3 | | 2131 | 3158
3157 | 5 | 70.22
48.61 | 351.09
48.61 | 152.23 | 2 | 72.82 | 72.82 | 47.83 | 0.5 | | 2132 | 3156
3152 | 5 | 24.21
216.94 | 24.21
1084.71 | 248.00 | 5 | 216.94 | 1084.71 | 87.48 | 4.4 | | 2133
2134 | 3151
3153 | 3 | 275.44
237.12 | 1101.77
711.36 | 283.39
271.31 | 3 | 275.44
237.12 | 1101.77
711.36 | 97.20
87.40 | 3,9
2.6 | | 2135 | 3150
3149 | 3 | 132.75
132.03 | 398.26
396.10 | 417.59 | 6 | 264.79 | 794.36 | 63.41 | 1.9 | | 2136 | 3147
3148 | 9 | 114.33
126.46 | 1029.01
379.37 | 414.50 | 12 | 240.79 | 1408.38 | 58.09 | 3.4 | | 2137 | 3014
3013 | 10
10 | 187.29
102.87 | 1872.86
1028.71 | 339.36 | 20 | 290.16 | 2901.57 | 85.50 | 8.6 | | 2138 | 3012
3005 | 10 | 393,77
112.87 | 3937.71
225.74 | 414.88 | 10 | 393,77 | 3937.71 | 94.91 | 9.5 | | 2139 | 3004
3003 | 4 | 101.64
64.38 | 406.55
64.38 | 544.84 | 7 | 278.88 | 696.66 | 51.19 | 1.3 | | 2140
2141 | 2996
2995 | 7
5 | 139.65
126.26 | 977.55
631.30 | 149.10
169.92 | 7
5 | 139.65
126.26 | 977.55
631.30 | 93.66
74.31 | 6.6
3.7 | | 2142 | 2994
2997 | 3 | 115,78
71.04 | 463.12
213.12 | 367.69 | 10 | 276.22 | 944.43 | 75.12 | 2.6 | | 2143 | 2998
2991 | 3
5 | 89.40
206.82 | 268.19
1034.08 | 245.24 | 5 | 206,82 | 1034.08 | 84.33 | 4.2 | | 2144
2145 | 2992
2993 | 5 | 167,85
120,35 | 839.25
601.77 | 167.38
149.00 | 5
5 | 167.85
120.35 | 839,25
601,77 | 100.28
80.78 | 5.0
4.0 | | 2146
2147 | 3054
2990 | 5 4 | 336.20
131.52 | 1681.02
526.09 | 339.79
137.76 | 5
4 | 336.20
131.52 | 1681.02
526.09 | 98.95
95.47 | 4.9
3.8 | | 2148
2149 | 2984
2989 | 6 | 222.70
258.47 | 1336.20
1033.89 | 326.33
297.56 | 6 4 | 222.70
258.47 | 1336.20
1033.89 | 68.24
86.86 | 4.1
3.5 | | 2150
2151 |
2988
4201 | 6 | 154.45
84.77 | 926,72
84.77 | 170.75
163.75 | 6 | 154.45
84.77 | 926.72
84.77 | 90.46
51.77 | 5.4
0.5 | | 2152
2153 | 3100 | 6 | 88.91 | 533,44 | 90.03
87.89 | 6 0 | 88.91
0.00 | 533.44
0.00 | 98.76
0.00 | 5.9 | | 2154
2155 | 3101
3102 | 3 4 | 99.93
122.46 | 299.80
489.83 | 107.23
268.30 | 9 | 99.93
258.78 | 299.80
1171.45 | 93.19
96.45 | 2.8 | | 2156 | 3103
3104 | 5
5 | 136.32
251.85 | 681.62
1259.25 | 285.88 | 5 | 251.85 | 1259.25 | 88.10 | 4.4 | | 2157 | 3095
3096 | 1 1 | 47.11
48.47 | 47.11
48.47 | 183.64 | 3 | 115.07 | 115.07 | 62.66 | 0.6 | | 2158 | 3097
3098 | 1 3 | 19.49
140.29 | 19.49
420.88 | 160.12 | 3 | 140.29 | 420.88 | 87.62 | 2.6 | | 2159
2160 | 3099
2741 | 4 | 115.73
190.22 | 462.94
190.22 | 133.29
326.86 | 1 | 115.73
190.22 | 462.94
190.22 | 86.83
58.20 | 3.5
0.6 | | 2161
2162 | 3094
2746 | 2 4 | 85.78
106.28 | 171.57
425.12 | 127.68
128.70 | 2 4 | 85.78
106.28 | 171.57
425.12 | 67.18
82.58 | 1.3 | | 2163
2164 | 4545
4215 | 1 | 44.29
24.88 | 44.29
24.88 | 74.45
43.06 | 1 | 44.29
24.88 | 44.29
24.88 | 59,49
57.77 | 0.6 | | 2165
2166 | 2745
2743 | 5 4 | 131.68
174.95 | 658,40
699,82 | 133.94
178.10 | 5
4 | 131.68
174.95 | 658.40
699.82 | 98.31
98.23 | 4.9
3.9 | | 2167
2168 | 4199
2744 | 4 | 84.05
142.06 | 336.21
568.26 | 154.78
142.99 | 4 | 84.05
142.06 | 336.21
568.26 | 54.30
99.35 | 2.2
4.0 | | 2169
2170 | 4211
4210 | 5 | 73.61
82.85 | 368.07
331.40 | 73.61
82.92 | 5
4 | 73.61
82.85 | 368.07
331.40 | 100.00
99.92 | 5.0 | | 2171 | 3074
2742 | 5 | 70.82
127.52 | 141.65
637.59 | 75.31
134.48 | 5 | 70.82
127.52 | 141.65
637.59 | 94.04
94.83 | 4.7 | | 2173
2174 | 4266
2739 | 1 | 52.75
43.74 | 52.75
43.74 | 101.95
92.97 | 1 | 52.75
43.74 | 52.75
43.74 | 51.74
47.04 | 0.5 | | 2175
2176 | 2738
2737 | 5
4 | 50.19
148.27 | 250.96
593.08 | 119.68
160.18 | 5 | 50.19
148.27 | 250.96
593.08 | 41.94
92.56 | 3.7 | | 2177
2178 | 3108
2789 | 1 4 | 81.16
196.84 | 81.16
787.36 | 181.83
200.09 | 4 | 81.16
196.84 | 81.16
787.36 | 44.63
98.38 | 3.9 | | 2179
2180 | 2788
3111 | 1 4 | 156,70
240.82 | 156.70
963.28 | 211.89
243.60 | 1 4 | 156.70
240.82 | 156.70
963.28 | 73,96
98,86 | 4.0 | | 2181
2182 | 2790
3109 | 1 | 159.50
58.94 | 638.01
58.94 | 136.33 | 2 | 159.50
124.62 | 638.01
124.62 | 78.00
91.41 | 0.9 | | 2183 | 3110
4185 | 1 | 65.69
81.70 | 65.69
81.70 | 105.05 | 1 | 81.70 | 81.70 | 77.78 | 0.8 | | 2184
2185 | 3106
4184 | 1 | 77.58
128.17 | 77.58
128.17 | 77.61
156.70 | 1 1 | 77.58
128.17 | 77.58
128.17 | 99,95
81.79 | 1.0
0.8 | | 2186
2187 | 3107
3105 | 7 | 173.00
306.26 | 173.00
2143.79 | 177.79
308.93 | 7 | 173.00
306.26 | 173.00
2143.79 | 97.31
99.13 | 1.0
6.9 | | 2188
2189 | 4181
4186 | 1 1 | 78.98
103.00 | 78.98
103.00 | 94.65 | 3 | 78.98
209.25 | 78.98
315.49 | 83.45
196.95 | 3.0 | | 2190 | 3113
3114 | 2 2 | 106,25
123,45 | 212.49
246.89 | 127.96 | 2 | 123.45 | 246.89 | 96.47 | 1.9 | | 2191
2192 | 4334
3117
2785 | 2 2 | 95.07
93.28
48.13 | 190.15
186.57
48.13 | 100.29 | 2 2 | 95.07
93.28 | 190.15
186.57 | 94.80
90.82 | 1.9 | | 2193 | 2785
2786
2787 | 1 | 48.13
61.50
73.45 | 48.13
61.50
73.45 | 234.33 | 3 | 183.08 | 183.08 | 78.13 | 8.0 | | 2194 | 2787
2784
3115 | 1 1 2 | 73.45
64.05
72.08 | 73.45
64.05 | 125.47
123.37 | 1 2 | 64.05 | 64.05 | 51.05
58.42 | 0.5 | | 2195
2196
2197 | 3115
3116
4187 | 2 2 1 | 72.08
170.19
152.60 | 144.15
340.37
152.60 | 123.37
170.19
153.43 | 2 1 | 72.08
170.19
152.60 | 144.15
340.37
152.60 | 100.00
99.46 | 1.2
2.0
1.0 | | 2198
2199 | 3112 | 1 | 55.28 | 55.28 | 62.20
176.86 | 0 1 | 0.00
55.28 | 0.00 | 0.00
31.26 | 0.0 | | 2200 | 2770
2771 | 1 | 44.34
38.70 | 35.28
44.34
38.70 | 145.69 | 2 | 83.04 | 83.04 | 57.00 | 0.6 | | 2201 | 2765
3118 | 7 | 218.17
70.94 | 1527.22
70.94 | 407.90 | 7 | 218,17 | 1527.22 | 53.49 | 3.7 | | 2202 | 3120
3119 | 1 | 61.19
98.01 | 61.19
98.01 | 312.49 | 3 | 230.14 | 230.14 | 73.65 | 0.7 | | 2203 | 4190
4189 | 1 2 | 82.03
116.87 | 82.03
233.74 | 204.16 | 3 | 198.90 | 315.77 | 97.43 | 1.5 | | 2204 | 3122
3121 | 2 | 67,02
43.56 | 134.03
43.56 | 192.93 | 3 | 110.58 | 177.60 | 57,32 | 0.9 | | 2205 | 4194
2764 | 2 | 126.60
23.68 | 253.19
23.68 | 194.59 | 2 | 126.60 | 253.19 | 65.06 | 1.3 | | 2206 | 2762
2763 | 1 | 51.99
118.97 | 51.99
118.97 | 369.50 | 3 | 194.65 | 194.65 | 52.68 | 0.5 | | 2207 | 4193
4192 | 1 2 | 72.41
73.40 | 72.41
146.79 | 473.38 | 6 | 249.07 | 529.00 | 52.62 | 1.1 | | 2208 | 4191 | 3 | 103.26 | 309.79 | 240.46 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2200 | 2775
2776 | 1 | 51.09
32.37 | 51.09
32.37 | 240,40 | | 0.00 | 0.00 | 5.00 | 5.5 | | 2209 | 2777 | 2 | 61.53
40.72 | 123.06
40.72 | 447.34 | 8 | 303.89 | 441.85 | 67.93 | 1.0 | | | 2780
2779 | 1 2 | 41.76
76.42 | 41.76
152.85 | | | | | | | | 2210 | 2783
2782 | 2 2 | 203.61
126.91 | 407.22
253.82 | 460.31 | 4 | 330.52 | 661.04 | 71.80 | 1.4 | | 2211
2212 | 2781 | 3 | 156.58 | 469.75 | 261.10
191.25 | 3 0 | 156.58
0.00 | 469.75
0.00 | 59.97
0.00 | 1.8 | | | 2977
2979 | 2 2 | 122.38
316.22 | 244.77
632.44 | | | | 2000 | 18000 | | | 2213 | 2978
2980 | 1 1 | 175.27
81.61 | 175.27
81.61 | 1116.83 | 6 | 695.48 | 1134.08 | 62.27 | 1.0 | | 2214 | 3141
3142 | 1 2 | 53.63
173.98 | 53.63
347.97 | 323.43 | 3 | 227.62 | 401.60 | 70.38 | 1.2 | | 2215 | 3123
3124 | 1 1 | 116,01
62,28 | 116.01
62.28 | 190.10 | 2 | 178.29 | 178.29 | 93.79 | 0.9 | | 2216 | 3125 | 1 | 151.31 | 151.31 | 151.62 | 1 | 151.31 | 151.31 | 99.80 | 1.0 | | ot
ef.
o. | Buildin
g Ref.
No. | Building
Storeys | Building
Footprint
(sqm) | Building
Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same | Sum of
Building
Footprin
t on
Same | Sum of
Building
Floor
Area on
Same | Building
Coverag
e Ratio
(BCR) | Floor
Area
Ratio
(FAR) | Plot
Ref.
No. | | g Building
. Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same | Sum of
Building
Footprint
on Same
Plot | G-17 | Building
Coverage
Ratio
(BCR) | | |-----------------|--------------------------|---------------------|--------------------------------|------------------------------------|-----------------------|---|--|--|---|---------------------------------|----------------------|----------------------|-------------------------|--------------------------------|-------------------------------------|----------------------------|---|--|---------------------------|--|----------| | | 4212 | 1 | 40.48 | 40.48 | 007.00 | Plot | Plot | Plot | | 70.0 | 2319 | 2859 | 6 | 187.80 | 1126.77 | 192.82 | Plot
6 | (sqm)
187.80 | Plot
1126.77 | 97,39 | 5. | | 17 | 2975
2976
3126 | 1 | 179.95
42.94
197.31 | 179.95
42.94
197.31 | 297.20
197.05 | 3 | 263.37
197.31 | 263.37
197.31 | 88.62
100,13 | 1.0 | 2320
2321 | 2838
2839 | 3 | 316.66
202.76 | 3166.58
608.29 | 344.78
203.32 | 10
3
0 | 316.66
202.76
0.00 | 3166.58
608.29
0.00 | 91.84
99.72
0.00 | 3.0 | | 19 | 3127
3140 | 2 | 192.32
152.22 | 384.63
152.22 | 219.37 | 2 | 192.32 | 384.63 | 87.67 | 1.8 | 2322
2323
2324 | 2840
2844 | 3 | 194.84
85.65 | 584.53
513.92 | 138.74
196.03
85.81 | 3 6 | 194.84
85.65 | 584.53
513.92 | 99.40
99.81 | 3. | | 20 | 3139
4267 | 1 | 115.45
167.97 | 115.45
167.97 | 302.74 | 2 | 267.68 | 267.68 | 88.42 | 0.9 | 2325
2326 | 3146
3144 | 5 | 74.68
59.81 | 373.39
358.85 | 81.88
61.73 | 5 | 74.68
59.81 | 373.39
358.85 | 91.21
96.89 | 4. | | 21 - | 3137
3138 | 7 | 61.07
409.90 | 61.07
2869.30 | 452.03 | 7 | 229.05
409.90 | 2869.30 | 69.68
90.68 | 6.3 | 2327 | 3145
2924 | 6
8 | 168.98
216.37 | 1013.87
1730.95 | 174.47 | 6 | 168.98 | 1013.87 | 96.85 | 5 | | 23 | 3091
3093 | 1 | 276.62
102.45 | 1106.50
102.45 | 306.93
102.45 | 1 | 276.62
102.45 | 1106.50
102.45 | 90.13 | 3.6
1.0 | 2328 | 2925
2926 | 3 | 45.55
81.68 | 45.55
245.04 | 692.13 | 14 | 422.77 | 2100.71 | 61.08 | 3 | | 25 | 3092
3080 | 1 | 57.12
118.73 | 57.12
118.73 | 128.04
306.90 | 2 | 57.12
233.50 | 57.12
233.50 | 76.08 | 0.4 | | 2928
2927 | 1 | 45.37
33.80 | 45.37
33.80 | | | 100.00 | | | <u>_</u> | | 27 | 3081 | 2 | 114.77
140.98 | 281.96 | 145.24 | 2 | 140.98 | 281.96 | 97.07 | 1.9 | 2329
2330 | 3143
2865 | 5 | 123.07
202.53 | 369.21
1012.64 | 144.68
325.52 | 5
0 | 123.07
202.53 | 369.21
1012.64 | 85.06
62.22 | 3 | | 28 | 3084
4208
4209 | 6
6 | 62.56
82.15
85.75 | 375.34
492.89
514.49 | 90.80 | 12 | 62.56
167.90 | 375,34
1007.39 | 68,90
90.96 | 4.1
5.5 | 2331
2332
2333 | 2843
2842 | 6 5 | 253.97
112.84 | 1523.83
564.22 | 159.17
254.23
132.76 | 6 5 | 0.00
253.97
112.84 | 0.00
1523.83
564.22 | 99.90
85.00 | 6 | | 30 | 3079
4205 | 3
| 185.37
55.49 | 556.10
166.48 | 200.18
60.75 | 3 | 185.37
55.49 | 556.10
166.48 | 92,60
91,35 | 2.8 | 2334
2335 | 2841
2845 | 6 5 | 134.54
71.79 | 807.25
358.93 | 158.15
72.57 | 6 | 134.54
71.79 | 807.25
358.93 | 85.07
98.92 | 5 | | 32
33 | 3085
3086 | 1 2 | 122.18
35.76 | 122.18
71.52 | 125.36
78.49 | 1 2 | 122.18
35.76 | 122.18
71.52 | 97,47
45.56 | 1.0 | 2336
2337 | 2836 | 3 | 144,19 | 432.57 | 248.70
147.14 | 0 3 | 0.00 | 0.00 | 0.00
97.99 | 0 2 | | 34
35 | 3078 | 2 | 99.55 | 199.09 | 99.63
120.79 | 2 | 99.55
0.00 | 199.09 | 99,91 | 2.0 | 2338
2339 | 2834
2837 | 6 4 | 124.06
88.42 | 744.38
353.68 | 125.81
93.30 | 6 4 | 124.06
88.42 | 744.38
353.68 | 98,62
94,77 | 5 | | 36
37 | 4204
3075 | 3 | 115,47
75,50 | 115.47
226.50 | 118.58
121.10 | 1 3 | 115.47
75.50 | 115,47
226.50 | 97,38
62,35 | 1.0 | 2340
2341 | 2835
2833 | 6 | 33,23
308,89 | 33.23
1853.35 | 321.58
354.14 | 6 | 33.23
308.89 | 33.23
1853.35 | 10.33
87.22 | 5 | | 38 | 3076
3077 | 5 | 136.44
71.15 | 409.32
355.76 | 140.07
71.15 | 5 | 136.44
71.15 | 409.32
355.76 | 97,41
100.00 | 2.9
5.0 | 2342
2343 | 4235
2830 | 5 | 127.83
329.47 | 383.49
1647.37 | 149.10
346.66 | 3
5 | 127.83
329.47 | 383.49
1647.37 | 85.74
95.04 | 4 | | 40 | 4206
3049 | 5 | 97.94
168.09 | 489.71
168.09 | 104.91
174.97 | 5 | 97.94
168.09 | 489.71
168.09 | 93.35
96.07 | 1.0 | 2344
2345 | 2829
2831 | 5 | 307,29
87.83 | 921.87
439.14 | 309.72
88.41 | 3
5 | 307.29
87.83 | 921.87
439.14 | 99.22
99.34 | 5 | | 42 | 3048
4207 | 1 | 90.77
94.01 | 90.77 | 186.98 | 2 | 184.77 | 184.77 | 98.82 | 1.0 | 2346
2347 | 2827
2832 | 6 | 154.43
340.57 | 617.73
2043.43 | 158.72
431.25 | 6 | 154.43
340.57 | 617.73
2043.43 | 97.30
78.97 | 4 | | 43 | 3087
3088 | 1 7 | 92.82
49.39
68.22 | 371,30
49.39
477,57 | 240.45
101.26 | 5 | 142.21
68.22 | 420.69
477.57 | 59.14 | 4.7 | 2348 | 2828
2849 | 4 4 6 | 232.45
65.66 | 929.81
262.64 | 236.54 | 4 | 232.45 | 929.81 | 98.27 | 3 | | 45 | 3090
3089 | 6 5 | 139.06
299.30 | 834.35
1496.51 | 138.74 | 6 | 139.06 | 834.35
1496.51 | 67,38
100.23
97.60 | 6.0 | 2349 | 2850
2851 | 9 | 124.96
191.69
46.77 | 749.76
1725.25
46.77 | 821.44 | 20 | 429.08 | 2784.42 | 52.24 | 3 | | 46
47
48 | 3009
3010
3011 | 7 | 110.96
102.90 | 776.72
720.32 | 114.73
106.38 | 7 7 | 110.96
102.90 | 776.72
720.32 | 96.72
96.73 | 6.8
6.8 | 2350 | 2852
2880
2882 | 5 | 267.69
53.50 | 1338.44
107.01 | 274.72 | 5 | 267.69 | 1338.44 | 97.44 | 4 | | 49 | 3007
3008 | 1 2 | 256.89
119.21 | 256.89
238.42 | 341.83
220.59 | 1 2 | 256.89
119.21 | 256.89
238.42 | 75.15
54.04 | 0.8 | 2351 | 2881
2825 | 3 | 203.76
493.81 | 611.28
2962.89 | 490.68 | 5 | 257.26 | 718.28 | 52.43 | 1 | | 51 | 3015
3006 | 1 4 | 79.16
198.83 | 79.16
795.31 | 225.01
311.69 | 1 4 | 79.16
198.83 | 79.16
795.31 | 35.18
63.79 | 2.6 | 2352 | 2826
4322 | 5 2 | 384.85
301.54 | 1924.27
603.08 | 2203.29 | 13 | 1180.21 | 5490.24 | 53.57 | 2 | | 53
54 | 3016 | 2 | 215.43 | 430.85 | 656.42
354.04 | 2 | 215.43
0.00 | 430.85
0.00 | 32.82
0.00 | 0.7 | 2353 | 2884
2883 | 1 3 | 30.49
197.01 | 30.49
591.02 | 325.69 | 4 | 227.50 | 621.51 | 69.85 | 1 | | 55
56 | 3024
3025 | 5 | 119.55
118.56 | 597.73
592.78 | 235.78
214.16 | 5
5 | 119.55
118.56 | 597.73
592.78 | 50,70
55,36 | 2.5 | 2354
2355 | 2885
2886 | 9 | 173.57
148.31 | 347.15
1334.75 | 331,39
331,64 | 2
18 | 173,57
266.06 | 347.15
2394.51 | 52.38
80.22 | 7 | | 57
58 | 3030
3031 | 1 | 130.65
81.17 | 130.65
81.17 | 133.95
160.15 | 1 1 | 130.65
81.17 | 130.65
81.17 | 97,54
50,68 | 0.5 | 2356 | 2887
2824 | 9 | 117.75
141.19 | 1059.77
847.13 | 142.49 | 6 | 141.19 | 847.13 | 99.09 | 5 | | 59
60 | 4231
3027 | 3
4 | 135.67
139.71 | 407.01
558.85 | 159.58
439.28 | 7 | 135.67
336.05 | 407.01
1147.87 | 85.02
76.50 | 2.6 | 2357 | 2822
2823 | 1 1 | 150.67
89.31 | 150.67
89.31 | 242.12 | 2 | 239.98 | 239.98 | 99.11 | 1 | | 1 | 3026
3033 | 3
4 | 196.34
120.36 | 589.02
481.44 | | 5.5 | 2.2 | 5.000.000 | 10.50000 | | 2358
2359 | 2821
2820 | 3
6 | 200.46
320.21 | 601.38
1921.25 | 329.14
334.61 | 3
6
7 | 200.46
320.21 | 601.38
1921.25 | 95.69
90.70 | 1 | | 61 | 3029
3032
4335 | 2 2 | 67.91
54.73
33.69 | 407.47
109.46
67.37 | 432.65 | 14 | 276.69 | 1065.75 | 63.95 | 2.5 | 2360
2361 | 2819
2818
2817 | 6
6 | 270.90
333.45
191.87 | 1896.27
2000.67
1151.23 | 335,31
337,50 | 6 | 270,90
333,45 | 1896.27
2000.67 | 80,79
98.80 | - 5 | | 62
63 | 3034
3028 | 2 | 123.42
130.93 | 246.83
392.79 | 133.44 | 2 | 123.42
130.93 | 246.83
392.79 | 92.49
98.42 | 1.8 | 2362 | 4323
2816 | 1 0 | 67.56
335.95 | 67.56
2687.61 | 345.05
444.56 | 7 | 259.43
335.95 | 1218.79
2687.61 | 75.19
75.57 | 3 | | 64
65 | 3035
3036 | 1 | 76.97
72.49 | 76.97
72.49 | 79.58
72.49 | 1 | 76.97
72.49 | 76.97
72.49 | 96.72
100.00 | 1.0 | 2364
2365 | 2917
2916 | 6 | 191.94
232.91 | 1151.62
698.72 | 197.81 | 6 | 191.94
232.91 | 1151.62
698.72 | 97.03
98.73 | 5 3 | | 66 | 3037 | 1 2 | 66.71
341.69 | 66.71 | 428.65 | 3 | 408.40 | 750.09 | 95.28 | 1.7 | 2366 | 2914 | 5 | 317.71
21.44 | 1588.53
21.44 | 320.98 | 5 | 317,71 | 1588.53 | 98.98 | 4 | | 67
68 | 3043
3041 | 4 | 115.65
104.74 | 462.60
104.74 | 198.53
108.50 | 4 1 | 115.65
104.74 | 462.60
104.74 | 58.25
96.53 | 2.3 | 2367 | 2911
2910 | 1 | 25.98
35.05 | 25.98
35.05 | 390.25 | 5 | 190.15 | 190.15 | 48.72 | | | 69
70 | 3042
3044 | 2
6 | 118.50
87.04 | 237.00
522.22 | 120.18
149.01 | 2
6 | 118.50
87.04 | 237.00
522.22 | 98,60
58,41 | 2.0
3.5 | 555000 | 2912
2908 | 1 | 35.26
72.41 | 35.26
72.41 | 117927-1022000 | - W | DEMINE | 01,30200000 | 63/M30/204 | | | 71 - | 3046
3045 | 2 2 | 85.19
67.97 | 170.37
135.94 | 268.98 | 4 | 153,16 | 306.31 | 56.94 | 1.1 | 2368 | 2913
2907 | 1 | 166.57
113.28 | 666.29
113.28 | 167.60 | 4 | 166.57 | 666.29 | 99,39 | - 4 | | 72 | 3047
3040 | 1 1 | 65.58
89.42 | 65.58
89.42 | 69.31 | 1 | 65.58 | 65.58 | 94,63 | 0,9 | 2369 | 2906
2905 | 6 | 146.53
277.22 | 586.13
1663.34 | 900.51 | 12 | 606.27 | 2431.99 | 67.33 | 2 | | 73 | 3039
4202 | 3 | 77.41
100.96 | 77.41
302.88 | 395.84 | 8 | 380.51 | 807.87 | 96,13 | 2.0 | 2370 | 4236
2904 | 6 | 69.24
175.02 | 69.24
1050.14 | 187.18 | 6 | 175.02 | 1050.14 | 93.51 | 5 | | 74 | 4203 | 3 | 112.72 | 338.16 | 4501.02 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | 2371
2372 | 2900 | 5 | 199,12 | 995.62 | 714.94
199.12 | 5 | 0.00
199.12 | 0.00
995.62 | 0.00
100.00 | 5 | | 75 | 3174
2966 | 2 | 695.89
104.34 | 695.89
208.68 | 695.21 | 11 | 695.89 | 695,89 | 100,10 | 1.0 | 2373 | 2901
2902 | 1 | 22,66
43,97 | 22,66
43,97 | 465.14 | 2 | 66.63 | 66.63 | 14.33 | 0 | | 76 | 2967
2965 | 7 | 1025.32
712.39 | 3075.97
4986.75 | 4861.73 | 17 | 2689.40 | 10592.49 | 55.32 | 2.2 | 2374
2375 | 2899
2895 | 5 | 178.74
205.98 | 893.71
1029.92 | 186.27
219.72 | 5 | 178.74
205.98 | 893.71
1029.92 | 95.96
93.75 | 4 | | | 2968
2969 | 2 | 626.41
220.94 | 1879.22
441.87 | 205.22 | | 00.00 | 400.00 | 24.00 | 0.7 | 2376
2377 | 2894
2893 | 7 | 130,15
209.15 | 520.61
1464.07 | 135.71
263.81 | 7 | 130.15
209.15 | 520.61
1464.07 | 95,91
79,28 | 5 | | 77
78 | 2964
2963
2970 | 2 2 | 99.30
175.45
31.55 | 198.60
350.91
31.55 | 285.32
220.04 | 2 | 99.30
175.45 | 198.60
350.91 | 34.80
79,74 | 1.6 | 2378 | 2896
2897
2892 | 4 5 | 24.25
240.61
145.62 | 24.25
962.46
728.11 | 512.95
145.65 | 5 | 264.87
145.62 | 986.71
728.11 | 51.64
99.98 | 5 | | 79 | 2971
2972 | 2 | 22.85
28.68 | 45.70
28.68 | 209.46 | 4 | 83.08 | 105.93 | 39.66 | 0.5 | 2380
2381 | 2891
2809 | 5 | 196.60
219.99 | 983.02
659.97 | 196.60
256.30 | 5 | 196.60
219.99 | 983.02
659.97 | 100.00
85.83 | 5 2 | | 80 | 3136
3133 | 1 5 | 150.59
288.30 | 150.59
1441.49 | 177.90
288.30 | 1 5 | 150.59
288.30 | 150.59
1441.49 | 84.65
100.00 | 0.8
5.0 | 2382
2383 | 2808
2807 | 8 8 | 281.60
287.07 | 2252.83
2296.58 | 304.95
357.76 | 8 8 | 281.60
287.07 | 2252.83
2296.58 | 92.34
80.24 | 7 | | 82 | 3134
3135 | 1 2 | 47.22
60.81 | 47.22
121.61 | 47.22 | 1 3 | 47.22 | 47.22 | 100,00 | 1.0 | 2384
2385 | 2806
2810 | 1 5 | 258.65
326.87 | 258.65
1634.34 | 313.57
337.93 | 5 | 258.65
326.87 | 258.65
1634.34 | 82.49
96.73 | 0 | | 83 | 4213
2973 | 1 1 | 45.74
121.95 | 45.74
121.95 | 106.48 | 3 | 106.55
199.80 | 167.36 | 100.06
77.59 | 1.6 | 2386 | 2811
3951 | 2 | 254.68
51.53 | 509.36
51.53 | 310.84 | 3 | 306.22 | 560.90 | 98,51 | 1 | | 84 | 2974
2962 | 1 2 | 77.85
185.88 | 77.85
371.76 | 257.52 | 2 | 199.80 | 199.80 | 17.59 | 0.8 | 2387
2388 | 2812
2813 | 5 | 318.54
321.92 | 1592.70
1609.61 | 318.68
327.74 | 5 | 318.54
321.92 | 1592.70
1609.61 | 99.96
98.22 | 5 | | 85 | 2961
2960 | 1 1 | 110.36
121.08 | 110.36
121.08 | 516.26 | 4 | 417.32 | 603.20 | 80.83 | 1.2 | 2389
2390 | 2804
2793 | 5
9 | 147,41
240,89 | 737.04
2168.00 | 155.94
253.82 | 5
9 | 147.41
240.89 | 737.04
2168.00 | 94.53
94.90 | 8 | | 86 | 2959
2958 | 1 | 67.41
86.14 | 67.41
86.14 | 598.61 | 5 | 269.42 | 501.17 | 45.01 |
8.0 | 2391
2392 | 2805
2794 | 5 | 129.17
158.26 | 645.84
791.29 | 140.97
160.69 | 5 | 129.17
158.26 | 645.84
791.29 | 91.63
98,49 | 4 | | 97 | 4214
2955 | 3 | 115.87
102.52 | 347.62
307.57 | 740.01 | | EFA 15 | 1001.00 | 74.00 | -0.4 | 2393
2394 | 2795
2796 | 3 4 | 144,43
213.94 | 433.29
855.74 | 149,41
218.56 | 3 4 | 144.43
213.94 | 433.29
855.74 | 96.67
97.88 | 3 | | 87 | 2956
2957 | 2 | 304.87
152.08 | 1219.49
304.16 | 749.81 | 9 | 559.48 | 1831.22 | 74.62 | 2.4 | 2395
2396
2397 | 2797
2798 | 6 | 168,13
159,97 | 1008.78
639.88 | 172.52
168.10 | 6
4 | 168.13
159.97 | 1008.78
639.88 | 97.46
95.16 | 53 | | 88 | 2953
2952
2954 | 1 1 | 23.16
153.23
26.40 | 23.16
153.23
26.40 | 270.39 | 3 | 202 79 | 202.79 | 75.00 | 0.7 | 2398 | 2799
2800
2801 | 6 8 | 81.75
219.60
185.65 | 490.50
1317.59
1485.17 | 156.85
262.74 | 6 | 81.75
219.60 | 490.50
1317.59 | 52.12
83.58 | 5 | | 89 | 2954
2951
2950 | 1 | 172.88
139.44 | 172.88
139.44 | 590.18 | 2 | 312.33 | 312.33 | 52.92 | 0.5 | 2399 | 3952
2890 | 1 3 | 93.10
204.25 | 93.10
612.74 | 289.30
205.36 | 9 | 278.74
204.25 | 1578.27
612.74 | 96.35
99.46 | 5 | | 90 | 2946
2945 | 1 | 243.26
151.76 | 243.26
151.76 | 591.01 | 2 | 395.02 | 395.02 | 66.84 | 0.7 | 2401
2402 | 2889
2888 | 3 5 | 196.35
251.02 | 589.05
1255.10 | 196.35
275.79 | 3 5 | 196.35
251.02 | 589.05
1255.10 | 100.00
91.02 | 3 | | 91 | 4188
2937 | 6 | 506,44
183.61 | 3038.63
183.61 | 654.91 | 6 | 506,44 | 3038.63 | 77.33 | 4.6 | 2403
2404 | 2814
2815 | 5 | 200.59
140.97 | 1002.94
704.85 | 200.29
192.60 | 5 | 200.59
140.97 | 1002.94
704.85 | 100.15
73.19 | 5 | | 92 | 2936
2935 | 1 4 | 82.42
193.11 | 82.42
772.43 | 686.76 | 6 | 459.14 | 1038.46 | 66.86 | 1.5 | 2405 | 2802
2803 | 6 3 | 229.63
89.18 | 1377.78
267.55 | 401.26 | 9 | 318.82 | 1645.34 | 79.45 | 4 | | 93 | 2940
2941 | 1 | 42.07
48.70 | 42.07
48.70 | 424.07 | 4 | 304.67 | 304.67 | 71.84 | 0.7 | 2406
2407 | 2929 | 6 | 190.65 | 1143.87 | 257.03
173.58 | 7 | 0.00
205.50 | 0.00 | 0.00 | (| | 7.50 | 2939
2938 | 1 1 6 | 32.35
181.55 | 32.35
181.55 | | -50 | 201/3/25 | constitute. | 332 Militario 1 | (553) | 2408 | 4234
3353 | 1 | 14.85
83.70 | 14.85
83.70 | 423.89 | 10 | 336.31 | 2357.19 | 79.34 | | | 94 | 2944
2942 | 5
5 | 89.42
318.08
73.07 | 447.11
1590.40 | 606.88 | 15 | 480.58 | 2402.88 | 79.19 | 4.0 | 2409 | 3352
3128 | 5 | 252.61
248.14
54.09 | 2273.49
1240.70 | 302.59 | 5 | 248.14 | 1240.70 | 82.01 | - 4 | | 95 | 2943
2934
2933 | 5
4 | 73,07
218.09
21.62 | 365.37
872.36 | 365.21 | 5 | 239.71 | 893.98 | 65.64 | 2.4 | 2410 | 3129
3130
3131 | 5 | 54.09
74.47
93.25 | 270.46
372.36
466.26 | 321.81 | 15 | 221.82 | 1109.08 | 68.93 | 3 | | 96
97 | 2933
2932
2931 | 1
4
5 | 21.62
169.95
181.44 | 21.62
679.80
907.20 | 205.27
215.20 | 4 5 | 169.95
181.44 | 679.80
907.20 | 82,79
84.31 | 3.3 | 2411
2412 | 3131
3132
2999 | 3 | 93.25
283.41
171.68 | 466.26
850.22
858.40 | 291.56
178.55 | 3 5 | 283.41
171.68 | 850.22
858.40 | 97,20
96,15 | 1 | | - | 2921
2920 | 1 1 | 76.71
89.56 | 76.71
89.56 | | | | | | | | 3001
3002 | 3 | 85.16
147.57 | 255.47
442.71 | | | 1000 | | | Т | | 98 | 2919
2918 | 1 1 | 132.28
93.76 | 132.28
93.76 | 404.96 | 4 | 392.32 | 392.32 | 96.88 | 1.0 | 2413 | 3000
4324 | 6 5 | 151.88
203.94 | 911.30
1019.72 | 588.25 | 17 | 588.55 | 2629.19 | 100,05 | 12 | | 99 | 2922
4336 | 5
1 | 156.21
159.82 | 781.04
159.82 | 316,11 | 6 | 316.03 | 940.87 | 99,98 | 3.0 | 2414
2415 | 2987
2986 | 7 3 | 228.89
98.15 | 1602.21
294.44 | 232.53
206.13 | 7
6 | 228.89
194.79 | 1602.21
584.36 | 98.43
94.50 | 2 | | 00 | 2923
2877 | 5
6 | 179.88
255.41 | 899.41
1532.46 | 179.79 | 5 | 179.88 | 899.41 | 100,05 | 5.0 | 2415 | 3948
2985 | 3 | 96.64
117.16 | 289.93
351.47 | 117.19 | 3 | 194.79 | 351.47 | 94.50 | 3 | | 01 | 2878
2879 | 1 1 | 127.90
165.85 | 127.90
165.85 | 591.86 | 8 | 549.16 | 1826.21 | 92.79 | 3.1 | 2417 | 2983
2982 | 1 4 | 61.07
367.42 | 61.07
1469.67 | 435.04 | 5 | 428.48 | 1530.73 | 98.49 | 3 | | 02 | 2872
2871 | 5
6 | 286.58
206.08 | 1432.91
1236.46 | | 5
6 | 286.58
206.08 | 1432.91
1236.46 | 99,94
99,35 | 5.0
6.0 | 2418 | 2981
2461 | 6 9 | 193.62
148.52 | 1161.74
1336.72 | 473.37 | 15 | 342.15 | 2498.46 | 72.28 | | | 04
05 | 2869
2873 | 11 2 | 163.20
175.80 | 1795.24
351.60 | | 11 2 | 163.20
175.80 | 1795.24
351.60 | 76.17
97.85 | 8.4
2.0 | 2419 | 744
792 | 1 | 127.85
63.07 | 511.38
63.07 | 216.64 | 4 | 127.85 | 511.38 | 59.01 | - 2 | | 06 | 2868
2867 | 7 2 | 276.80
55.04 | 1937.61
110.09 | 795.80 | 10 | 485.33 | 2201.19 | 60.99 | 2.8 | 2420 | 791
793 | 1 4 | 65.51
86.10 | 65,51
344,40 | 393.17 | 6 | 214.67 | 472,98 | 54.60 | 1 | | 07 | 2874
2876 | 6 | 153.49
81.83 | 153.49
490.96 | 87.50 | 6 | 81.83 | 490,96 | 93,51 | 5.6 | 2421
2422 | 769 | 5 | 200.92 | 1004,58 | 548.28
270.70 | 0
5 | 0.00
200.92 | 0.00
1004.58 | 0.00
74.22 | (| | 08 | 2875
2870 | 6 | 184 30
372.81 | 737.20
2236.85 | 203.54
420.67 | 6 | 184.30
372.81 | 737.20
2236.85 | 90.55
88.62 | 3.6
5.3 | 2423
2424 | 770 | 5 | 206,41 | 1032,03 | 432.21
256.18 | 5 | 0.00
206.41 | 0.00
1032.03 | 0.00
80.57 | 4 | | 10 | 2866 | 2 | 109.51 | 219.02 | 75.76
109.56 | 2 | 0.00
109.51 | 0.00
219.02 | 0.00
99.96 | 2.0 | 2425
2426 | 808
810 | 3
5 | 46.56
217.74 | 139.67
1088.68 | 171.50
245.09 | 5 | 46.56
217.74 | 139.67
1088.68 | 27.15
88.84 | 4 | | 12 | 2861
2860 | 6 | 127.44
147.39 | 637.19
884.34 | 131.67
161.09 | 5
6 | 127.44
147.39 | 637.19
884.34 | 96.79
91.50 | 4.8
5.5 | 2427
2428 | 807
771 | 8 | 288.14
189.36 | 2305.11
757.45 | 435.86
254.71 | 8 4 | 288.14
189.36 | 2305.11
757.45 | 66.11
74.34 | - 5 | | 14 | 2863
2862 | 5 2 | 58.89
29.80 | 294.43
59.59 | 172.93 | 7 | 88.68 | 354.02 | 51.28 | 2.0 | 2429 | 773
772 | 2 | 105.21
43.66 | 210.41
87.31 | 418.07 | 4 | 148.86 | 297.73 | 35.61 | (| | 15
16 | 2864
2856 | 10 | 105.83
319.96 | 105.83
3199.65 | 163.17
370.00 | 10 | 105.83
319.96 | 105.83
3199.65 | 64.86
86.48 | 0.6
8.6 | 2430
2431 | 895
811 | 9 | 241.95
128.51 | 2177.53
385.54 | 284.74
186.93 | 9 | 241.95
128.51 | 2177.53
385.54 | 84.97
68.75 | 2 | | 17 | 2857
2858 | 5 3 | 76.68
114.51 | 383.41
343.52 | 76.68
135.86 | 5 | 76.68
114.51 | 383.41
343.52 | 100.00
84.29 | 5.0
2.5 | 2432 | 780
781 | 7 | 93.35
92.37 | 373.39
646.60 | 245.59 | 11 | 185.72 | 1019.99 | 75.62 | 4 | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sgm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|----------------------|---------------------|--------------------------------|-------------------------------------|-----------------------|---|---|---|--|---------------------------------| | 2319
2320 | 2859
2838 | 6
10 | 187.80
316.66 | 1126.77
3166.58 | 192.82
344.78 | 6
10 | 187.80
316.66 | 1126,77
3166,58 | 97,39
91,84 | 5.8
9.2 | | 2321 | 2839 | 3 | 202.76 | 608.29 | 203.32 | 3 | 202.76 | 608.29 | 99.72 | 3.0 | | 2322
2323 | 2840 | 3 | 194.84 | 584.53 | 138.74
196.03 | 3 | 0.00
194.84 | 0.00
584.53 | 0.00
99.40 | 3.0 | | 2324
2325 | 2844
3146 | 6 | 85.65
74.68 | 513.92
373.39 | 85.81
81.88 | 6
5 | 85.65
74.68 | 513.92
373.39 | 99.81
91.21 | 6.0
4.6 | | 2326
2327 | 3144
3145 | 6 | 59.81
168.98 | 358.85
1013.87 | 61.73
174.47 | 6 | 59.81
168.98 | 358.85
1013.87 | 96.89
96.85 | 5.8
5.8 | | 2.02.1 | 2924 | 8 | 216.37 | 1730.95 | 17.4.47 | | 100.50 | 1015.07 | 50.05 | 0.0 | | 2328 | 2925
2926 | 3 | 45.55
81.68 | 45.55
245.04 | 692.13 | 14 | 422.77 | 2100.71 | 61.08 | 3.0 | | | 2928
2927 | 1 | 45.37
33.80 | 45.37
33.80 | | | | | | | | 2329
2330 | 3143
2865 | 5 | 123.07
202.53 | 369.21
1012.64 | 144.68
325.52 | 3
5 | 123.07
202.53 | 369.21
1012.64 | 85.06
62.22 | 2.6 | | 2331
2332 | 2843 | 6 | 253.97 | 1523.83 | 159.17
254.23 | 0 | 0.00
253.97 | 0.00
1523.83 | 0.00
99.90 | 6.0 | | 2333 | 2842 | 5 | 112.84 | 564.22 | 132.76 | 5 | 112.84 | 564.22 | 85.00 | 4.2 | | 2334
2335 | 2841
2845 | 6
5 | 134.54
71.79 | 807.25
358.93 | 158,15
72.57 | 6
5 | 134.54
71.79 | 807.25
358.93 | 85.07
98.92 | 5.1
4.9 | | 2336
2337 | 2836 | 3 | 144,19 | 432.57 | 248.70
147.14 | 3 | 0.00
144.19 | 0.00
432.57 | 97.99 | 0.0
2.9 | | 2338 | 2834
2837 | 6 | 124.06
88.42 | 744.38
353.68 | 125.81
93.30 | 6 4 | 124.06
88.42 | 744.38
353.68 | 98.62
94.77 | 5.9 | | 2340
2341 | 2835
2833 | 1 6 | 33,23
308,89 | 33.23
1853.35 | 321.58
354.14 | 1 6 | 33.23
308.89 | 33.23
1853.35 | 10.33
87.22 | 0.1
5.2 | | 2342 | 4235 | 3 | 127,83 | 383.49 | 149.10 | 3 | 127.83 | 383.49 | 85.74 | 2.6 | | 2343
2344 | 2830
2829
| 5 | 329.47
307.29 | 1647.37
921.87 | 346.66
309.72 | 5 | 329.47
307.29 | 1647.37
921.87 | 95.04
99.22 | 4,8
3.0 | | 2345
2346 | 2831
2827 | 5 | 87.83
154.43 | 439.14
617.73 | 88.41
158.72 | 5 | 87.83
154.43 | 439.14
617.73 | 99.34
97.30 | 5.0
3.9 | | 2347
2348 | 2832
2828 | 6 4 | 340.57
232.45 | 2043.43
929.81 | 431.25
236.54 | 6 | 340.57
232.45 | 2043.43
929.81 | 78.97
98.27 | 4.7
3.9 | | | 2849 | 4 | 65.66
124.96 | 262.64 | | | | 020.01 | - | 0.0 | | 2349 | 2850
2851 | 6 | 191.69 | 749.76
1725.25 | 821.44 | 20 | 429.08 | 2784.42 | 52.24 | 3.4 | | 2350 | 2852
2880 | 5 | 46.77
267.69 | 46.77
1338.44 | 274.72 | 5 | 267.69 | 1338.44 | 97.44 | 4.9 | | 2351 | 2882
2881 | 2 | 53.50
203.76 | 107.01
611.28 | 490.68 | 5 | 257.26 | 718.28 | 52.43 | 1.5 | | 2352 | 2825
2826 | 6 5 | 493.81
384.85 | 2962.89
1924.27 | 2203.29 | 13 | 1180.21 | 5490.24 | 53.57 | 2.5 | | 2302 | 4322 | 2 | 301.54 | 603.08 | E2.663.29 | 10 | 1100.21 | 5-100.24 | 55,51 | 2.0 | | 2353 | 2884
2883 | 3 | 30.49
197.01 | 30.49
591.02 | 325.69 | 4 | 227.50 | 621.51 | 69.85 | 1.9 | | 2354 | 2885
2886 | 2 9 | 173.57
148,31 | 347.15
1334.75 | 331,39 | 2 | 173.57 | 347.15 | 52.38 | 1.0 | | 2355
2356 | 2887 | 9 | 117.75 | 1059.77
847.13 | 331.64
142.49 | 18 | 266.06
141.19 | 2394.51
847.13 | 80.22
99.09 | 7.2
5.9 | | 2356 | 2824
2822 | 6 | 141.19
150.67 | 150.67 | 242.12 | 2 | 141.19
239.98 | 239.98 | 99.09 | 1.0 | | 2358 | 2823
2821 | 3 | 89.31
200.46 | 89.31
601.38 | 329.14 | 3 | 200.46 | 601.38 | 60.90 | 1.8 | | 2359
2360 | 2820
2819 | 6
7 | 320.21
270.90 | 1921.25
1896.27 | 334.61
335.31 | 6
7 | 320.21
270.90 | 1921.25
1896.27 | 95.69
80.79 | 5.7
5.7 | | 2361 | 2818
2817 | 6 | 333.45
191.87 | 2000.67
1151.23 | 337.50 | 6 | 333.45 | 2000.67 | 98.80 | 5.9 | | 2362 | 4323 | 1 | 67.56 | 67.56 | 345.05 | 7 | 259.43 | 1218.79
2687.61 | 75.19 | 3.5 | | 2363
2364 | 2816
2917 | 8 | 335.95
191.94 | 2687.61
1151.62 | 444.56
197.81 | 8 | 335.95
191.94 | 1151.62 | 75.57
97.03 | 6.0
5.8 | | 2365
2366 | 2916
2914 | 5 | 232.91
317.71 | 698.72
1588.53 | 235.90
320.98 | 3
5 | 232.91
317.71 | 698.72
1588.53 | 98.73
98.98 | 3.0
4.9 | | | 2909
2911 | 1 | 21.44
25.98 | 21.44
25.98 | | | | | | | | 2367 | 2910 | 1 | 35.05 | 35.05 | 390.25 | 5 | 190.15 | 190.15 | 48.72 | 0.5 | | | 2912
2908 | 1 | 35.26
72.41 | 35.26
72.41 | | | | | | | | 2368 | 2913
2907 | 1 | 166.57
113.28 | 666.29
113.28 | 167.60 | 4 | 166.57 | 666.29 | 99.39 | 4.0 | | 2369 | 2906
2905 | 6 | 146.53
277.22 | 586.13
1663.34 | 900.51 | 12 | 606.27 | 2431.99 | 67.33 | 2.7 | | 2370 | 4236
2904 | 1 6 | 69.24
175.02 | 69.24
1050.14 | 187.18 | 6 | 175.02 | 1050.14 | 93.51 | E 6 | | 2371 | | | | | 714.94 | 0 | 0.00 | 0.00 | 0.00 | 5.6 | | 2372 | 2900
2901 | 5
1 | 199.12
22.66 | 995.62
22.66 | 199.12
465.14 | 2 | 199.12
66.63 | 995.62
66.63 | 100.00 | 5.0 | | 2374 | 2902
2899 | 5 | 43.97
178.74 | 43.97
893.71 | 186.27 | 5 | 178.74 | 893.71 | 95.96 | 4.8 | | 2375
2376 | 2895
2894 | 5 4 | 205.98
130.15 | 1029.92
520.61 | 219.72
135.71 | 5 | 205.98
130.15 | 1029.92
520.61 | 93.75
95.91 | 4.7
3.8 | | 2377 | 2893 | 7 | 209.15 | 1464.07 | 263.81 | 7 | 209.15 | 1464.07 | 79.28 | 5.5 | | 2378 | 2896
2897 | 4 | 24.25
240.61 | 24.25
962.46 | 512.95 | 5 | 264.87 | 986.71 | 51.64 | 1.9 | | 2379
2380 | 2892
2891 | 5 | 145.62
196.60 | 728.11
983.02 | 145.65
196.60 | 5 | 145.62
196.60 | 728.11
983.02 | 99.98
100.00 | 5.0
5.0 | | 2381
2382 | 2809
2808 | 3
8 | 219.99
281.60 | 659.97
2252.83 | 256.30
304.95 | 3
8 | 219.99
281.60 | 659.97
2252.83 | 85.83
92.34 | 2.6
7.4 | | 2383
2384 | 2807
2806 | 8 | 287.07
258.65 | 2296.58
258.65 | 357.76 | 8 | 287.07 | 2296.58
258.65 | 80.24
82.49 | 6.4
0.8 | | 2385 | 2810 | 5 | 326.87 | 1634.34 | 313.57
337.93 | 5 | 258.65
326.87 | 1634.34 | 96.73 | 4.8 | | 2386 | 2811
3951 | 1 | 254.68
51.53 | 509.36
51.53 | 310.84 | 3 | 306.22 | 560.90 | 98.51 | 1.8 | | 2387
2388 | 2812
2813 | 5 | 318.54
321.92 | 1592.70
1609.61 | 318.68
327.74 | 5
5 | 318.54
321.92 | 1592.70
1609.61 | 99,96
98,22 | 5.0
4.9 | | 2389
2390 | 2804
2793 | 5 | 147.41
240.89 | 737.04
2168.00 | 155.94
253.82 | 5 9 | 147.41
240.89 | 737.04
2168.00 | 94.53
94.90 | 4.7
8.5 | | 2391 | 2805
2794 | 5 | 129.17 | 645.84 | 140.97 | 5 | 129.17 | 645.84 | 91.63 | 4.6 | | 2392
2393 | 2795 | 5 | 158.26
144.43 | 791.29
433.29 | 160.69 | 5 | 158.26
144.43 | 791.29
433.29 | 98,49
96.67 | 2.9 | | 2394
2395 | 2796
2797 | 6 | 213.94
168,13 | 855.74
1008.78 | 218.56
172.52 | 6 | 213.94
168.13 | 855.74
1008.78 | 97.88
97.46 | 3.9
5.8 | | 2396
2397 | 2798
2799 | 6 | 159.97
81.75 | 639.88
490.50 | 168.10
156.85 | 6 | 159.97
81.75 | 639.88
490.50 | 95.16
52.12 | 3.8 | | 2398 | 2800
2801 | 6 8 | 219.60
185.65 | 1317.59
1485.17 | 262.74 | 6 | 219.60 | 1317.59 | 83.58 | 5.0 | | 2399 | 3952 | 1 | 93.10 | 93.10 | 289.30 | 9 | 278.74 | 1578.27 | 96.35 | 5.5 | | 2400
2401 | 2890
2889 | 3 | 204.25
196.35 | 612.74
589.05 | 205.36
196.35 | 3 | 204.25
196.35 | 612.74
589.05 | 99.46
100.00 | 3.0 | | 2402
2403 | 2888
2814 | 5 | 251.02
200.59 | 1255.10
1002.94 | 275.79
200.29 | 5 | 251.02
200.59 | 1255.10
1002.94 | 91.02
100.15 | 4.6
5.0 | | 2404 | 2815
2802 | 5 | 140.97
229.63 | 704.85
1377.78 | 192.60 | 5 | 140.97 | 704.85 | 73.19 | 3.7 | | 2405
2406 | 2803 | 3 | 89.18 | 267.55 | 401.26
257.03 | 9 | 318.82
0.00 | 0.00 | 79.45 | 4.1
0.0 | | 2406 | 2929 | 6 | 190.65 | 1143.87 | 173.58 | 7 | 205.50 | 1158.72 | 118.39 | 6.7 | | 2408 | 4234
3353 | 1 | 14.85
83.70 | 14.85
83.70 | 423.89 | 10 | 336.31 | 2357.19 | 79.34 | 5.6 | | 2409 | 3352
3128 | 9
5 | 252.61
248.14 | 2273.49
1240.70 | 302.59 | 5 | 248.14 | 1240.70 | 82.01 | 4.1 | | 2410 | 3129
3130 | 5 | 54.09
74.47 | 270.46
372.36 | 321.81 | 15 | 221.82 | 1109.08 | 68.93 | 3.4 | | | 3131
3132 | 5 3 | 93.25
283.41 | 466.26
850.22 | 291.56 | 3 | | 333355 | 97,20 | 2.9 | | 2411
2412 | 2999 | 5 | 171.68 | 858.40 | 291.56
178.55 | 5 | 283.41
171.68 | 850.22
858.40 | 97,20
96.15 | 4.8 | | 2413 | 3001
3002 | 3 | 85.16
147.57 | 255.47
442.71 | 588.25 | 17 | 588.55 | 2629.19 | 100.05 | 4.5 | | 2413 | 3000
4324 | 6
5 | 151.88
203.94 | 911.30
1019.72 | 500.25 | - 17 | 300.33 | 2025.15 | 100,00 | 4.5 | | 2414 | 2987
2986 | 7 3 | 228.89
98.15 | 1602.21
294.44 | 232.53 | 7 | 228.89 | 1602.21 | 98.43 | 6.9 | | 2415 | 3948 | 3 | 96.64 | 289.93 | 206.13 | 6 | 194.79 | 584.36 | 94.50 | 2.8 | | 2416 | 2985
2983 | 3 | 117.16
61.07 | 351.47
61.07 | 117.19
435.04 | 5 | 117.16
428.48 | 351.47
1530.73 | 99.97
98.49 | 3.0 | | 2417 | 2982
2981 | 6 | 367.42
193.62 | 1469.67
1161.74 | 473.37 | 15 | 342.15 | 2498.46 | 72.28 | 5.3 | | 2418 | 2461
744 | 9 | 148.52
127.85 | 1336.72
511.38 | 216.64 | 15 | 342.15
127.85 | 2498.46
511.38 | 72.28
59.01 | 2.4 | | 2420 | 792 | 1 | 63.07 | 63.07 | 393.17 | 6 | | 472.98 | 54.60 | 1.2 | | 10008217 | 791
793 | 1 4 | 65.51
86.10 | 65,51
344.40 | 4000000000 | 10 | 214.67 | 30000000 | 30076-005 | 3355 | | 2421
2422 | 769 | 5 | 200.92 | 1004,58 | 548.28
270.70 | 0
5 | 0.00
200.92 | 0.00
1004.58 | 0.00
74.22 | 0.0
3.7 | | 2423
2424 | 770 | 5 | 206.41 | 1032.03 | 432.21
256.18 | 0 5 | 0.00
206.41 | 0.00 | 0.00
80.57 | 0.0 | | 2425 | 808 | 3 | 46.56 | 139.67 | 171.50 | 3 | 46.56 | 139.67 | 27.15 | 8.0 | | 2426
2427 | 810
807 | 5
8 | 217.74
288.14 | 1088.68
2305.11 | 245.09
435.86 | 5
8 | 217.74
288.14 | 1088.68
2305.11 | 88.84
66.11 | 5.3 | | 2428 | 771
773 | 4 2 | 189.36
105.21 | 757.45
210.41 | 254.71 | 4 | 189.36 | 757.45 | 74.34 | 3.0 | | 2429 | 772 | 2 | 43.66 | 87.31 | 418.07
284.74 | 9 | 148.86 | 297.73
2177.53 | 35,61 | 7,6 | | 2430
2431 | 895
811 | 9 | 241.95
128.51 | 2177.53
385.54 | 186.93 | 3 | 241.95
128.51 | 385.54 | 84.97
68.75 | 2.1 | | 2432 | 780
781 | 7 | 93.35
92.37 | 373.39
646.60 | 245.59 | 11 | 185.72 | 1019.99 | 75.62 | 4.2 | | | | | THE OWNER OF OWNER OF THE OWNER OW | Building | | Sum of | Sum of | Sum of | Building. | Floor | |----------------------|----------------------|-------------
--|----------------------------|----------------------------|----------------------|----------------------|----------------------------|-------------------------|-------------------| | Plot
Ref. | Buildin
g Ref. | Building | Building
Footprint | Building
Floor | Plot
Area | Storeys
of | Building
Footprin | Building
Floor | Building
Coverag | Floor
Area | | No. | No. | Storeys | (sqm) | Area
(sqm) | (sqm) | Buildings
on Same | t on
Same | Area on Same | e Ratio
(BCR) | Ratio
(FAR) | | 2433 | 812 | 6 | 147.98 | 887.89 | 286.16 | Plot
6 | Plot
147.98 | Plot
887.89 | 51.71 | 3.1 | | 2434 | 779
782 | 5 4 | 130.79
207.46 | 653.96
829.86 | 179.33 | 5 | 130.79 | 653.96 | 72.93 | 3.6 | | 2435
2436 | 3844
784 | 5 | 56.77
128.25 | 56.77
641.23 | 394.62
178.49 | 5 | 264.23
128.25 | 886.62
641.23 | 66,96
71.85 | 3.6 | | 2437 | 786
783 | 1 | 33.56
24.71 | 33.56
24.71 | 268,33 | 6 | 153.93 | 440.89 | 57.37 | 1.6 | | - | 785
788 | 5 | 95.65
98.69 | 382.61
493.44 | | 578 | | 7000 70 | 12/19/22 | 22.02 | | 2438 | 789
790 | 5 | 34.71
85.63 | 173.56
428.15 | 357.38 | 15 | 219.03 | 1095.15 | 61.29 | 3.1 | | 2439
2440 | 795
1585 | 5
3
3 | 113.34
137.54 | 566.72
412.63
259.73 | 312.54 | 8 3 | 250,89
86.58 | 979.35
259.73 | 80.27
66.35 | 3.1 | | 2441 | 796
797
798 | 1 4 | 86.58
44.66
148.07 | 44.66
592.28 | 130.48
164.53 | 1 | 44.66 | 44.66 | 27.14 | 0.3 | | 2442 | 4540
89 | 2 4 | 90.35
241.09 | 180.70
964.35 | 317.29
446.64 | 6 | 238.42 | 772.99
964.35 | 75,14
53.98 | 2.4 | | 2444
2445 | 41 | 5 | 217.76 | 1088.78 | 219.53
115.14 | 5 0 | 217.76
0.00 | 1088.78 | 99.19
0.00 | 5.0 | | 2446
2447 | - | | | | 68.92
70.11 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2448 | 2848
2847 | 6 | 158,50
114,08 | 951.02
684.46 | 271.13 | 12 | 272.58 | 1635.48 | 100.53 | 6.0 | | 2449
2450 | 2846
2854 | - 6
- 5 | 249.31
101.86 | 1495.84
509.28 | 250.33
195.37 | 5 | 249.31
101.86 | 1495.84
509.28 | 99.59
52.13 | 6.0
2.6 | | 2451
2452 | 2855
2853 | 1 1 | 12.00
111.52 | 12.00
111.52 | 45.34
117.33 | 1 | 12.00
111.52 | 12.00
111.52 | 26.46
95.05 | 1.0 | | 2453 | 3184
3179 | 1 | 95.68
55.64 | 95.68
55.64 | 610.77 | 7 | 383.48 | 1312.12 | 62.79 | 2.1 | | 2454 | 3180
3181 | 5 | 232.16
155.62 | 1160.79
778.08 | 155.85 | 5 | 155.62 | 778.08 | 99.85 | 5.0 | | 2455
2456 | 3182
3183 | 5 | 80.17
126.41 | 400.83
632.04 | 144.98
125.87 | 5 | 80.17
126.41 | 400.83
632.04 | 55.30
100.43 | 2.8
5.0 | | 2457
2458 | 3185
3188 | 6 | 125.01
105.21 | 750.05
105.21 | 163.77
171.30 | 6 | 125.01
105.21 | 750.05
105.21 | 76.33
61.42 | 4.6
0.6 | | 2459
2460 | 3187
3186 | 5 | 149.40
147.77 | 149.40
738.84 | 149.65
147.71 | 5 | 149.40
147.77 | 149.40
738.84 | 99,83
100.04 | 5.0 | | 2461 | 3189
3192
3191 | 1 1 | 105.87
90.64
83.90 | 105.87
90.64
83.90 | 694.38 | 4 | 358.58 | 358.58 | 51.64 | 0.5 | | | 3191
3190
3206 | 1 1 | 78.17
57.61 | 83.90
78.17
57.61 | | | | AMERICAL STREET | | 77.5 | | 2462 | 3193
3194 | 1 1 | 187,79
85.16 | 187.79
85.16 | 766.45 | 5 | 475.97 | 475.97 | 62.10 | 0.6 | | 2402 | 3194
3207
3208 | 1 | 85.16
86.43
58.98 | 85.16
86.43
58.98 | . 56.40 | | 4,0.07 | 7,0.01 | UE. 10 | 3.3 | | 2463 | 3195
3196 | 1 | 174.31
108.20 | 174.31
108.20 | 437.72 | 2 | 282.51 | 282.51 | 64.54 | 0.6 | | 2464 | 3199
3198 | 1 | 146.28
47.52 | 146,28
47.52 | 193.97 | 2 | 193.80 | 193.80 | 99.91 | 1.0 | | 2465
2466 | 3200
3212 | 1 2 | 166.82
48.40 | 166.82
96.80 | 327,07
138,00 | 1 2 | 166.82
48.40 | 166.82
96.80 | 51.01
35.07 | 0.5 | | 2.400 | 3204
3197 | 4 2 | 318.86
267,77 | 1275.43
535.53 | 100,00 | - | | 30.00 | 50.03 | 0.1 | | 2467 | 3205
3201 | 1 | 123.61
108.23 | 123.61
108.23 | 1110.21 | 10 | 1081.39 | 2305.73 | 97.40 | 2.1 | | | 3203
3202 | 1 1 | 180.84
82.08 | 180.84
82.08 | | | | | | | | 2468 | 3214
3213 | 1 | 187.29
38.98 | 187.29
38.98 | 316.75 | 2 | 226.27 | 226.27 | 71.44 | 0.7 | | 2469 | 3211
3210 | 1 | 52.84
118.08 | 52.84
118.08 | 420.39 | 3 | 308.03 | 308.03 | 73.27 | 0.7 | | 2470 | 3209
3215 | 1 | 137.10
326.32 | 137.10
326.32 | 477,76 | 1 | 326.32 | 326.32 | 68.30 | 0.7 | | 2471 | 3216
3219 | 1 | 175.41
293.34 | 175.41
293.34 | 769.22 | 4 | 704.46 | 704.46 | 91.58 | 0.9 | | 24/1 | 3218
3217 | 1 | 109.57
126.15 | 109.57
126.15 | | O.F. | | | 5-5-6-6-6-6 | | | 2472 | 3220
3221 | 1 1 | 344.56
191.80 | 344.56
191.80 | 833.27
833.27 | 3 3 | 660.46
660.46 | 660.46
660.46 | 79.26
79.26 | 0.8 | | | 3222
3227 | 1 4 | 124.09
202.05 | 124.09
808.18 | 833.27 | 3 | 660.46 | 660.46 | 79.26 | 8.0 | | 2473 | 3223
3224 | 3 | 131.03
85.09 | 393.09
85.09 | 1428.95 | 12 | 897.00 | 2244.04 | 62.77 | 1.6 | | | 3226
3225 | 2 | 192,85
286.00 | 385.69
571.99 | | | | | | | | 2474
2475 | 3235
3234 | 4 | 168.14
198.62 | 336.28
794.49 | 304.24
342.71 | 4 | 168.14
198.62 | 336.28
794.49 | 55.27
57.96 | 2.3 | | 2476 | 3228
3229 | 5 | 273.62
223.83 | 1368.12
1119.17 | 342.13 | 5 | 273.62
306.54 | 1368,12
1449.98 | 79.98
88.93 | 4.0 | | 2478
2479 | 3230
3231 | 4 | 82.70
195.98 | 330.81
783.92 | 195.98
186.82 | 4 | 195.98
151.61 | 783.92 | 100.00 | 4.0
3.2 | | 2480
2481 | 3232
3233
2903 | 1 4 | 151.61
103.89
85.91 | 606.44
103.89
343.63 | 147.67 | 1 4 | 103.89 | 606.44
103.89
343.63 | 81.15
70.35
35.91 | 0.7 | | 2482 | 3238 | 4 | 36.03
117.40 | 144.11 | 298.99
122.32 | 4 4 | 36.03
117.40 | 144.11 | 12.05 | 0.5 | | 2483
2484
2485 | 3236
3237
3239 | 1 4 | 113.16
117.51 | 469.61
113.16
470.05 | 638.76 | 1 4 | 113,16
117.51 | 469.61
113.16
470.05 | 95.98
17.72
89.40 | 3.8
0.2
3.6 | | 2486 | 2898
3240 | 4 | 243.21
54.29 | 972.83
54.29 | 280.09 | 4 | 243.21 | 972,83 | 86.83 | 3.5 | | 2487 | 3241
3242 | 4 5 | 165,90
216,54 | 663.58
1082.69 | 317.01 | 5 | 220.18
216.54 | 717.87
1082.69 | 69.46
69.92 | 2.3 | | 2489 | 3246
3247 | 1 | 143.73
64.71 | 143.73
64.71 | 335.12 | 2 | 208.44 | 208.44 | 62.20 | 0.6 | | 2490
2491 | 3248
3249 | 1 6 | 146.55
84.41 | 146.55
506.47 | 198.69
84.41 | 1 6 | 146.55
84.41 | 146.55
506.47 | 73.76
100.00 | 0.7
6.0 | | 2492 | 3250
3251 | 1 2 | 86.61
117.12 | 86.61
234.24 | 239.98 | 3 | 203.73 | 320.85 | 84.90 | 1.3 | | 2493
2493 | 3253
3252 | 4 | 183,75
111,69 | 734.98
111.69 | 329.84
329.84 | 5 | 295.44
295.44 | 846.68
846.68 | 89,57
89,57 | 2.6 | | 2494 | 3262
3261 | 1 | 49.40
76.65 | 49.40
76.65 | 503.15 | 7 | 319.69 | 658.79 | 63.54 | 1.3 | | 2434 | 3259
3260 | 1 | 113.03
80.61 | 452.12
80.61 | 505, 15 | 500 | 313.03 | 330.13 | 05.54 | 1,13 | | 2495 | 3257
3258 | 3 4 | 72.79
101.75 | 218,37
406,99 | 323.08 | 7 | 174.54 | 625.36 | 54.02 | 1.9 | | 2496
2497 | 3255
3254 | 9 | 230.55
204.20 | 461.11
1837.80 | 238.23 | 9 | 230.55 | 461.11
1837.80 | 96.78
86.63 | 1.9
7.8 | | 2498
2499 | 3256
4074 | 4 | 215.96
160.38 | 863.82
641.51 | 238.33
169.14 | 4 4 | 215.96
160.38 | 863.82
641.51 | 90.61
94.82 | 3.6 | | 2500 | 3266
3269 | 2 2 2 | 266.20
80.98 | 532.40
161.95 | 328.93 | 2 | 266.20 | 532.40 | 80.93 | 1.6 | | 2501 | 3270
3268
3267 | 1 | 60.53
134.99 | 121.06
134.99 | 574.60 | 6 | 394.82 | 536.32 | 68.71 | 0.9 | | 2502 | 3267
3275
3274 | 3 | 118.32
116.66 | 118.32
349.97
59.86 | 146,95 | 3 | 116,66 | 349,97 | 79.38 | 2.4 | | 2503 | 3274
4075
3273 | 2 |
59.86
68.38 | 59.86
136.76 | 954.51
954.51 | 11 | 515.52 | 1507.26 | 54.01 | 1.6 | | 2503 | 3273
3272
3271 | 2
1
5 | 113.86
71.04
202.38 | 227.71
71.04
1011.88 | 954.51
954.51
954.51 | - 11 | 313.32 | 1301.20 | 34.01 | 1.0 | | 2504
2505 | 3476
3477 | 4
6 | 99.98
125.72 | 399.94
754.32 | 185.72
150.28 | 4 6 | 99.98
125.72 | 399.94
754.32 | 53.84
83.65 | 2.2
5.0 | | 2506
2507 | 4076
3300 | 4 | 104,11
33.26 | 416.45
33.26 | 112.91
140.36 | 4 | 104.11
33.26 | 416.45
33.26 | 92.21
23.70 | 3.7 | | 2508 | 3299
3298 | 1 | 89.99
87.21 | 89.99
87.21 | 275.51 | 2 | 177.20 | 177.20 | 64.32 | 0.6 | | 2509
2510 | 4081 | 1 | 61.69 | 61,69 | 81.69
90.71 | 0 | 0.00
61.69 | 0.00
61.69 | 0.00
68.01 | 0.0 | | 2511
2512 | 3301
4080 | 1 4 | 25.55
80.28 | 25.55
321.13 | 106.82
110.59 | 1 4 | 25.55
80.28 | 25.55
321.13 | 23.92
72.59 | 0.2 | | 2513 | 3306
3307 | 2 | 27.81
88.98 | 55.62
88.98 | 159.82 | 3 | 116.79 | 144.60 | 73.07 | 0.9 | | 2514
2515 | 3304
3303 | 5 | 54.46
151.39 | 108.91
756.94 | 69.71
161.08 | 2
5 | 54,46
151,39 | 108.91
756.94 | 78,12
93,98 | 1.6
4.7 | | 2516
2517 | 3297
3302 | 4 4 | 235.37
192.63 | 941.49
770.52 | 310.28
265.18 | 4 | 235.37
192.63 | 941.49
770.52 | 75.86
72.64 | 3.0 | | 2518
2519 | 3296
4082 | 4 | 156.46
46.50 | 625.83
46.50 | 156.47
59.32 | 4 | 156.46
46.50 | 625.83
46.50 | 99.99
78.38 | 4.0 | | 2520
2521 | 3279
3280 | 4 | 120.85
244.76 | 483.41
244.76 | 145.67
246.46 | 4 | 120.85
244.76 | 483.41
244.76 | 82.97
99.31 | 3.3
1.0 | | 2522
2523 | 3278
3276 | 4 2 | 139,43
165,49 | 557.74
330.99 | 140.09
369.32 | 3 | 139.43
341.21 | 557.74
506.70 | 99.53
92.39 | 1.4 | | 2524 | 3277
3295 | 7 | 175.71
198.09 | 175.71
1386.63 | 219,39 | 7 | 198,09 | 1386.63 | 90,29 | 6.3 | | 2525
2526 | 3294
3293 | 5 | 216.66
228.35 | 866.65
1141.74 | 216.66
278.56 | 5 | 216.66
228.35 | 866.65
1141.74 | 100.00
81,98 | 4.0 | | 2527
2528 | 3281
3282 | 5
5 | 166,79
328,71 | 833.97
1643.56 | 207,11
340.02 | 5
5 | 166,79
328,71 | 833,97
1643.56 | 80.53
96.67 | 4.0 | | 2529
2530 | 3283
3292 | 5 | 280.70
275.42 | 1403.52
1377.12 | 462.98
724.74 | 5
10 | 280.70
546.10 | 1403.52
2730.49 | 60.63
75.35 | 3.0 | | | 3291 | 5 | 270.67 | 1353.36 | - Cedeoliki | | | | | | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sqm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |----------------------|----------------------|---------------------|--------------------------------|-------------------------------------|-----------------------|---|---|---|--|---------------------------------| | 2531 | 3285
3286
3284 | 3
4
4 | 97.03
131.63
80.62 | 291,08
526,50
322,50 | 415.42 | 11 | 309.28 | 1140.08 | 74.45 | 2.7 | | 2532
2533 | 3287
2915 | 6 7 | 96.18
134.76 | 577.06
943.35 | 166,21
258.54 | 6 7 | 96.18
134.76 | 577.06
943.35 | 57.87
52.13 | 3.5
3.6 | | 2534
2535 | 3288
3289 | 4 2 | 234.36
144.58 | 937.45
289.15 | 234,36
183,48 | 4 2 | 234.36
144.58 | 937.45
289.15 | 100.00
78.80 | 4.0
1.6 | | 2536
2537 | 3354
3355 | 4 | 221.09
122.58 | 884.38
122.58 | 221.09
122.80 | 4 | 221.09
122.58 | 884.38
122.58 | 100.00
99.82 | 4.0 | | 2538 | 3347
3348 | 6 2 | 394.75
81.00 | 2368.50
161.99 | 1059.35 | 8 | 475.75 | 2530.50 | 44.91 | 2.4 | | 2539
2540 | 3345
3344 | 6 | 165.16
279.51 | 330.32
1677.04 | 227.41
548.02 | 10 | 165.16
369.58 | 330.32
2037.32 | 72.63
67.44 | 1.5
3.7 | | 2541 | 4037
3349 | 7 | 90.07
502.35 | 360.28
3516.48 | 832.62 | 7 | 502.35 | 3516.48 | 60.33 | 4.2 | | 2542
2543 | 3290
3356 | 4 | 143.62
197.07 | 143.62
788.27 | 172.71
246.62 | 1 4 | 143.62
197.07 | 143.62
788.27 | 83.16
79.91 | 3.2 | | 2544
2545 | 3357
3358 | 4 | 44.64
184.06 | 44.64
736.24 | 75.95
348.38 | 6 | 44.64
219.14 | 44.64
806.40 | 58.77
62.90 | 2.3 | | 2546 | 3359 | 2 | 35.08 | 70.15 | 79.44 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2547
2548 | 3360
3361 | 5
6 | 145.15
143.15 | 725.74
858.89 | 149.72
200.97 | 5
6 | 145.15
143.15 | 725.74
858.89 | 96.95
71.23 | 4.8 | | 2549 | 3365
3366 | 1 | 58.82
52.49 | 58.82
52.49 | 301.24 | 4 | 259.83 | 259.83 | 86.26 | 0.9 | | 2550 | 3363
3364
3367 | 1 | 85.57
62.95
161.45 | 85.57
62.95
161.45 | 162.13 | 1 | 161.45 | 161.45 | 99.58 | 1.0 | | 2551
2552 | 3368
4034 | 4 5 | 142.34
98.14 | 569.37
490.72 | 166.13
138.64 | 4 5 | 142.34
98.14 | 569.37
490.72 | 85.68
70.79 | 3.4 | | 2553
2554 | 3362 | 4 | 165.91 | 663.65 | 109.08 | 0 4 | 0.00 | 0.00 | 0.00
56.73 | 0.0 | | 2555 | 3370
3369 | 11 | 56.38
53.41 | 620.20
587.47 | 179.01 | 22 | 109.79 | 1207.67 | 61.33 | 6.7 | | 2556
2557 | 3372 | 9 | 142.21 | 1279.92 | 165.50
169.96 | 0 | 0.00
142.21 | 0.00 | 0.00
83.67 | 0.0
7.5 | | 2558
2559 | 3371
3351 | 6 | 119.97
155.79 | 719.80
934.74 | 186.53
197.42 | 6 | 119.97
155.79 | 719.80
934.74 | 64.32
78.91 | 3.9 | | 2560
2561 | 4036
3343 | 2 | 179.58
238.18 | 359.15
1429.11 | 247.38
479.27 | 2 6 | 179.58
238.18 | 359.15
1429.11 | 72.59
49.70 | 1.5 | | 2562
2563 | 3341
3342 | 6 | 200.34
390.48 | 1202.03
1561.90 | 348.63
2066.41 | 6 4 | 200.34
390.48 | 1202.03
1561.90 | 57.46
18.90 | 3.4 | | 2564
2565 | 3377
3376 | 6 | 107.07
376.99 | 642.41
1884.97 | 107.38 | 6 5 | 107.07
376.99 | 642.41
1884.97 | 99.71
89.69 | 6.0 | | 2566 | 3375
3374 | 6 | 73.08
45.26 | 438.50
271.59 | 72.80 | 6 | 73.08 | 438.50 | 100.39 | 6.0 | | 2567 | 3373
3379 | 1 4 | 35.06
72.54 | 35.06
290.14 | 92.97 | 7 | 80.32 | 306.64 | 86.40 | 3.3 | | 2568 | 3378
4038 | 5 | 133.33
31.33 | 666.64
31.33 | 530.65 | 10 | 237.19 | 988.11 | 44.70 | 1.9 | | | 3382
3383 | 3 4 | 83,21
99.65 | 249.64
398.61 | | | | | | | | 2569 | 3380
3381 | 6 3 | 91.97
82.00 | 551,85
245.99 | 807.56 | 26 | 522.39 | 2080.46 | 64.69 | 2.6 | | | 3386
3384 | 3
5 | 41.60
87.22 | 124.80
436.11 | | | | | | | | 2570 | 3385
3391 | 2
6 | 36.72
477.69 | 73.45
2866.13 | 546.30 | 6 | 477.69 | 2866.13 | 87.44 | 5.2 | | 2571
2572 | 3390
3387 | 10
5 | 664.36
429.00 | 6643.58
2144.98 | 784.53
429.00 | 10
5 | 664.36
429.00 | 6643.58
2144.98 | 84.68
100.00 | 8,5
5.0 | | 2573
2574 | 3483
3484 | 9 4 | 168.35
82.32 | 1515.13
329.26 | 178.96
120.72 | 9 | 168.35
82.32 | 1515.13
329.26 | 94.07
68.19 | 8.5
2,7 | | 2575 | 3481
3482 | 3
5 | 111.42
274.80 | 334.25
1373.99 | 486.24 | 8 | 386.21 | 1708.24 | 79.43 | 3.5 | | | 3423
3422 | 2 4 | 147.15
233.73 | 294.29
934.92 | | | | | | | | 2576 | 3424
3421 | 10 | 127.02
139.00 | 254.03
1390.03 | 1392.45 | 34 | 942.06 | 5348.53 | 67.66 | 3.8 | | | 3420
3419 | 10 | 176.06
119.10 | 1760.62
714.62 | | | | | | | | 2577 | 4035
3460 | 2 2 | 84.32
147.72 | 168.63
295.44 | 2276.24 | 4 | 232.04 | 464.07 | 10.19 | 0.2 | | 2578 | 3461
3463 | 2 | 248.60
53.35 | 497.19
106.71 | 359,38 | 2 | 248.60 | 497,19 | 69.17 | 1.4 | | 2579 | 3462
3464 | 2 | 48.86
53.98 | 97.73
53.98 | 246.26 | 5 | 156,19 | 258.41 | 63.43 | 1.0 | | 2580 | 3465
3466 | 2 | 43.45
61.34 | 86.89
122.68 | 236.41 | 4 | 104.79 | 209.58 | 44.32 | 0.9 | | 2581
2582 | 3467
3468 | 1 | 279.31
129.19 | 279.31
129.19 | 361.24
215.34 | 1 | 279,31
129,19 | 279.31
129.19 | 77.32
59.99 | 0.8 | | 2583 | 3469
3470 | 4 | 53.99
156.14 | 215.95
156.14 | 279.84 | 5 | 210.12 | 372.09 | 75.09 | 1.3 | | | 3471
3472 | 8 | 70.72
134.62 | 282.87
1076.99 | | 550000 | 2019/00/00 | 23.000000000 | 202 2002 | ASSES | | 2584 | 3473
3474 | 8 | 123.42
135.29 | 987.33
1082.33 | 841.21 | 36 | 666,10 | 5045.95 | 79.18 | 6.0 | | 2585 | 3475
3459 | 8 2 | 202.05
294.79 | 1616.42
589.59 | 294.79 | 2 | 294.79 | 589,59 | 100.00 | 2.0 | | | 3458
3457 | 3 | 86.69
98.51 | 260.06
197.01 | | | | | | | | 2586 | 3455
3456 | 3 | 95.86
121.68 | 287,58
121,68 | 855.91 | 13 | 637.51 | 1805.43 | 74.48 | 2.1 | | 2587 | 3454
3453 | 4 | 234.77
234.50 | 939.09
938.02 | 244,48 | 4 | 234.50 | 938.02 | 95.92 | 3.8 | | 2588
2589 | 3451
3452 | 5 | 214.16
210.37 | 642.49
1051.87 | 214.16
253.13 | 3
5 | 214,16
210,37 | 642.49
1051.87 | 100,00
83.11 | 3.0
4.2 | | 2590 | 3448
3450 | 5 | 144.07
328.96 | 144.07
1644.79 | 928.68 | 7 | 654.08 | 1969.91 | 70.43 | 2.1 | | 2591 | 3449
4003 | 4 | 181.05
137.17 | 181.05
548.68 | 286.40 | 8 | 263.20 | 1052.81 | 91.90 | 3.7 | | 2592 | 4004
3447 | 8 | 126.03
188.63 | 504.14
1509.05 | 262.24 | 8 | 188.63 | 1509.05 | 71.93 | 5.8 | | 2593
2594 | 3446
4005
3445 | 5
3
3 | 156.13
155.18
147.42 | 780.67
465.53
442.26 | 322.73
199.85 | 8 | 311.31
147.42 | 1246.20
442.26 | 96.46
73.76 | 3.9 | | 2594 | 3445
3442
3443 | 5 9 | 39.67
193.28 | 198.33
1739.50 | 364.76 | 14 | 232.94 | 1937.83 | 63.86 | 5.3 | | 2596
2597 | 3441
3444
| 5 | 78.80
55.65 | 394.01
55.65 | 85.79
57.49 | 5 | 78,80
55,65 | 394.01
55.65 | 91.85
96.80 | 4,6 | | 2598 | 3444
3440
3438 | 3 | 130.58
73.53 | 391.74
220.59 | 187.62 | 3 | 130.58 | 391,74 | 69.60 | 2.1 | | 2599
2600 | 3439
3434 | 5 | 70.83
137.89 | 354.14
827.32 | 252.16
168.19 | 8 | 144.36
137.89 | 574.73
827.32 | 57.25
81.99 | 2.3
4.9 | | 2600
2601
2602 | 4006
3433 | 3 5 | 106.44
127.19 | 319.31
635.93 | 126.84 | 3 5 | 106.44
127.19 | 319.31
635.93 | 83.92
96.13 | 2.5
4.8 | | 2603 | 3432
3431 | 2 | 92.44
80.36 | 184.88
80.36 | 94.05 | 2 | 92.44 | 184,88 | 98.29 | 2.0 | | 2604
2605 | 4548
3430 | 1 5 | 44.46
117.93 | 44.46
589.66 | 123.99 | 2 | 124.82 | 124.82
589.66 | 100.67
99.41 | 5.0 | | 2606
2607 | 3429
3428 | 4 5 | 157.37
199.92 | 629.47
999.58 | 181.55 | 4 5 | 157.37
199.92 | 629.47
999.58 | 86.68
87.23 | 3.5 | | 2608
2609 | 3427
3437 | 5 3 | 132.18
115.46 | 660.91
346.37 | 256.07
172.87 | 5 3 | 132.18
115.46 | 660.91
346.37 | 51.62
66.79 | 2.6 | | 2610 | 3436
3435 | 1 4 | 36.42
231.55 | 36.42
926.20 | 351.16 | 5 | 267.97 | 962.62 | 76.31 | 2.7 | | 2611
2612 | 3346
4330 | 6 3 | 327.40
122.31 | 1964.42
366.93 | 759.00
126.34 | 6 3 | 327.40
122.31 | 1964.42
366.93 | 43.14
96.81 | 2.6
2.9 | | 2613 | 3426
4017 | 6 | 175.09
31.45 | 1050.52
31.45 | 275.19 | 13 | 232.91 | 1240.22 | 84.64 | 4.5 | | 2614 | 4018
3425 | 6 4 | 26.37
128.57 | 158.25
514.29 | 274.27 | 4 | 128.57 | 514.29 | 46.88 | 1.9 | | 2615 | 3317
4065 | 6 5 | 172.54
102.82 | 1035.27
514.09 | 325.14 | 11 | 275.36 | 1549.36 | 84.69 | 4.8 | | 2616 | 3318
4064 | 5 | 104.90
21.29 | 524.50
21.29 | 293.50 | 6 | 126.19 | 545.79 | 42.99 | 1.9 | | 2617 | 3324
3323 | 7 | 120.42
32.08 | 842.93
32.08 | 264.44 | 9 | 193.98 | 916.49 | 73.35 | 3.5 | | 2618 | 4063
3322 | 1 8 | 41.48
122.77 | 41.48
982.15 | 122.78 | 8 | 122.77 | 982.15 | 99.99 | 8.0 | | 2619 | 3321
4077 | 3 | 294.58
87.04 | 883.74
87.04 | 348.28 | 3 | 294.58 | 883.74 | 84.58 | 2.5 | | 2620
2621 | 4078
3319 | 5 | 120.84
240.00 | 120.84
1199.98 | 237.02
248.41 | 5 | 207.88
240.00 | 207.88
1199.98 | 87.71
96.61 | 0.9
4.8 | | 2622
2623 | 3320
3308 | 8 | 238,26
144,42 | 1906.08
433.25 | 250.20
154.07 | 8 | 238.26
144.42 | 1906.08
433.25 | 95.23
93.74 | 7.6
2.8 | | 2624
2625 | 3309
4079 | 5 | 356.65
95.83 | 356.65
479.16 | 387.37
100.61 | 1
5 | 356.65
95.83 | 356,65
479,16 | 92.07
95.25 | 0.9
4.8 | | 2626
2627 | 3335
3336 | 5 | 174.28
140.14 | 871.40
700.71 | 178.81
140.14 | 5 | 174.28
140.14 | 871.40
700.71 | 97.47
100.00 | 4.9
5.0 | | 2628 | 3338
3337 | 2 2 | 50.77
71.85 | 101.55
143.70 | 188.81 | 4 | 122.62 | 245.25 | 64.94 | 1.3 | | 2629
2630 | 3339
3340 | 3
5 | 115.20
139.98 | 345.60
699.90 | 137.29
166.90 | 3
5 | 115.20
139.98 | 345.60
699.90 | 83.91
83.87 | 2.5
4.2 | | 2631 | 3310 | 2 | 121.38 | 242.75 | 167.03 | 2 | 121.38 | 242.75 | 72.67 | 15 | | Plot | Buildin | | Building | Building | Plot | Sum of
Storeys | Sum of
Building | Sum of
Building | Building | Floor | |--------------|--------------|---------------------|--------------------------|-----------------------------|------------------|-------------------|--------------------|--------------------|--------------------|---------------| | Ref. | g Ref. | Building
Storeys | Footprint | Floor
Area | Area | of
Buildings | Footprin
t on | Floor
Area on | Coverag
e Ratio | Area
Ratio | | No. | No. | Storeys | (sqm) | (sqm) | (sqm) | on Same | Same | Same | (BCR) | (FAR) | | 2632 | 3334 | 3 | 134.71 | 404.13 | 153.26 | Plot
3 | Plot
134.71 | Plot
404.13 | 87.90 | 2.6 | | 2633
2634 | 3333
3332 | 5 | 107.46
253.06 | 429.83
1265.31 | 107.46
254.13 | 5 | 107.46
253.06 | 429.83
1265.31 | 100.00
99.58 | 5.0 | | 2635
2636 | 3312
3311 | 8 | 188.29
308.75 | 1506.29
2470.04 | 240.17
492.67 | 8 | 188.29
308.75 | 1506.29
2470.04 | 78.40
62.67 | 6.3
5.0 | | 2637
2638 | 3325
3326 | 4 | 146.32
141.70 | 292.64
566.81 | 212.92
171.41 | 2 | 146.32
141.70 | 292.64
566.81 | 68.72
82.67 | 3.3 | | 2639
2640 | 3313
3314 | 5 | 260,18
227,02 | 260.18
1135.11 | 309.07
279.41 | 5 | 260.18
227.02 | 260.18
1135.11 | 84.18
81.25 | 0.8
4.1 | | 2641 | 3316
3315 | 3
8 | 62.64
122.33 | 187.93
978.63 | 276.81 | 11 | 184.97 | 1166.57 | 66.82 | 4.2 | | 2642 | 3329
3328 | 4 | 210.34
56.33 | 841.35
56.33 | 594.49 | 15 | 424,46 | 2475.60 | 71.40 | 4.2 | | 2643 | 3327
3330 | 10 | 157.79
123.58 | 1577.91
741.46 | 263.36 | 10 | 245.87 | 1230.63 | 93.36 | 4.7 | | 2644 | 3331
3405 | 3 | 122.29
194.27 | 489.18
582.82 | 210.05 | 3 | 194.27 | 582.82 | 92.49 | 2.8 | | 2645 | 3404
3393 | 7 | 267.29
155.31 | 801.87
1087.20 | 267.86 | 3 | 267.29 | 801.87 | 99.79 | 3.0 | | 2646 | 3394
3392 | 7 4 | 145.63
202.23 | 1019.42
808.94 | 662.51 | 18 | 503.18 | 2915.55 | 75.95 | 4.4 | | 2647
2648 | 3406
3407 | 4 5 | 114.78
199.01 | 459.11
995.05 | 128.19
199.01 | 5 | 114.78
199.01 | 459.11
995.05 | 89.54
100.00 | 3.6
5.0 | | 2649
2650 | 4039
3395 | 5 | 132.83
149.56 | 664.14
897.39 | 140.78 | 5 | 132.83
149.56 | 664.14
897.39 | 94.35
92.95 | 4.7
5.6 | | 2651 | 3397 | 6 | 179.25
107.17 | 1075.48 | 258.00 | 6 3 | 179.25 | 1075.48 | 69.47 | 4.2 | | 2652 | 3396
3398 | 3 4 | 329.15 | 321.51
1316.58 | 114.35 | | 107.17 | 321.51 | 93.72 | 2.8 | | 2653 | 3399
3403 | 1 6 | 47.86
281.64 | 47.86
1689.84 | 3350.97 | 17 | 1826.12 | 5805.36 | 54.50 | 1.7 | | | 3400
3401 | 3 | 90.37
506.51 | 90.37
1519.52 | | | .338634.786 | | | | | | 3402
3411 | 2 | 570.59
114.96 | 1141.18
114.96 | | | | | | 1 | | 2654 | 3410
3409 | 1 1 | 88.79
58.85 | 88.79
58.85 | 989.25 | 40 | 635.73 | 4020.40 | 64.00 | ** | | 2654 | 3408
3412 | 6 | 154.76
133.85 | 928.55
133.85 | 989.25 | 16 | 635,73 | 1832.18 | 64.26 | 1.9 | | | 3413
2949 | 6 | 84.53
65.58 | 507.19 | | | | | | | | 2655 | 2948 | 4 | 95.84 | 383.36 | 544.61 | 10 | 264.38 | 963.72 | 48.54 | 1.8 | | 2656 | 2947
3415 | 5
3 | 102.96
114.83 | 514.78
344.49 | 436.90 | 8 | 221.29 | 876.77 | 50.65 | 2.0 | | 2657 | 3414
3416 | 5
3 | 106.46
217.33 | 532.28
651.98 | 217.33 | 3 | 217,33 | 651.98 | 100.00 | 3.0 | | 2658
2659 | 3417
3547 | 3 | 152.20
266.51 | 608.78
799.52 | 164.27
485.57 | 4 | 152.20
410.46 | 608.78
943.47 | 92.65
84.53 | 3.7
1.9 | | 2660 | 3548
3549 | 3 | 143.95
380.07 | 143.95
1140.22 | 468.59 | 3 | 380.07 | 1140.22 | 81.11 | 2.4 | | 2661
2662 | 3550
3551 | 2 | 238.72
276.94 | 477.44
276.94 | 294.68
292.21 | 2 | 238.72
276.94 | 477.44
276.94 | 81.01
94.78 | 1.6 | | 2663 | 3541
3542 | 5 | 281.49
31.23 | 1407.46
31.23 | 311.94 | 5 | 281.49 | 1407.46 | 90.24 | 4.5 | | 2664 | 4024
4025 | 1 | 57.44
31.85 | 57.44
31.85 | 208.95 | 3 | 120.51 | 120.51 | 57.68 | 0.6 | | 2665
2666 | 3543
4022 | 8 2 | 147.00
145.68 | 1176.04
291.35 | 198.17
244.84 | 8 2 | 147.00
145.68 | 1176.04
291.35 | 74.18
59.50 | 5.9
1.2 | | 2667
2668 | 4026
3546 | 10 2 | 77.76
301.94 | 777.63
603.88 | 110.80 | 10 | 77,76
301.94 | 777.63
603.88 | 70.18
49.67 | 7.0 | | 2669 | 3540 | 10 | 577.43 | 5774.32 | 628.98 | 10 | 577.43 | 5774.32 | 91.80 | 9.2 | | 2670 | 3538
3539 | 7 | 63.20
111.05 | 63.20
777.32 | 358.33 | 8 | 174.25 | 840.52 | 48.63 | 2.3 | | 2671
2672 | 3534
3536 | 1 | 28.24
24.95 | 112.94
24.95 | 70.72
172.11 | 2 | 28.24
69.00 | 112.94 | 39.93
40.09 | 1.6 | | 2673 | 3537
3535 | 4 | 44.05
77.13 | 44.05
308.52 | 97.82 | 4 | 77.13 | 308.52 | 78.85 | 3.2 | | 2674
2675 | 3533
3532 | 3 | 32.73
41.92 | 98.18
41.92 | 77.71
98.11 | 3 | 32,73
41,92 | 98.18
41.92 | 42.11
42.73 | 0.4 | | 2676
2677 | 3497
3496 | 7 | 194.53
231.26 | 1361.70
231.26 | 303.35
259.55 | 7 | 194.53
231.26 | 1361.70
231.26 | 64.13
89.10 | 4.5
0.9 | | 2678
2679 | 3531
3530 | 2 | 138.78
143.46 | 277.56
1004.24 | 183.97
189.12 | 7 | 138.78
143.46 | 277.56
1004.24 | 75.44
75.86 | 1.5
5.3 | | 2680
2681 | 3529
3528 | 6 2 | 120.10
81.64 | 720.61
163.27 | 207.61
129.74 | 6 | 120,10
81,64 | 720.61
163.27 | 57.85
62,92 | 3.5
1.3 | | 2682
2683 | 3527 | 2 | 52.16 | 104.31 | 91.83 | 0 2 | 0.00 | 0.00 | 0.00
34.95 | 0.0 | | 2684 | 4546 | 1 | 38.91 | 38.91 | 946.73 | 10 | 474.69 | 3960.92 | 50.14 | 4.2 | | 2685 | 4547
3485 | 5 | 435.78
285.83 | 3922.01
1429.13 | 399.45 | 6 | 303.74 | 1447.04 | 76.04 | 3.6 | | | 4019
3489 | 1 2 | 17.91
62.80 | 17.91
125.59 | | | | | | | | 2686 | 3486
3488 | 2 | 70.14
63.00 | 140.28
126.00 | 390.93 | 10 | 289.06 | 578.11 | 73.94 | 1.5 | | | 3487
4021 | 2 | 53.99
39.13 | 107.98
78.26 | | | | | | | | 2687
2688 | 3495
3494 | 2 2 | 210.67
303.47 | 421.33
606.94 | 210.67
302.35 | 2 2 | 210.67
303.47 | 421.33
606.94 | 100.00
100.37 | 2.0 | | 2689 | 3493
3490 | 2 | 325.92
112.94 | 651.84
112.94 | 335.54 | 2 | 325,92 | 651.84 | 97.13 | 1.9 | | 2690 | 3492
3491 | 1 | 47.48
68.68 | 47,48
68.68 | 500.47 | 3 | 229.11 | 229.11 | 45.78 | 0.5 | | 2691 | 3508
3506 | 1 | 163.23 | 163.23
51.15 | 209.43 | 1 | 163.23 | 163.23 | 77.94 | 8.0 | | 2692 | 3507 | 1 | 51.15
66.12 | 66.12 | 212.65 | 2 | 117.27 | 117.27 | 55.15 | 0.6 | | 2693
2694 | 3498
3499 | 7 2 | 51.57
109.87 | 361.00
219.73 | 135.21
170.01 | 7 2 | 51.57
109.87 | 361.00
219.73
 38.14
64.62 | 1.3 | | 2695 | 3500
3521 | 3
6 | 115.10
58.48 | 345.30
350.86 | 162.44 | 3 | 115.10 | 345.30 | 70.86 | 2.1 | | 2696 | 3518
3519 | 1 | 37.23
42.71 | 37.23
42.71 | 377.66 | 14 | 186.61 | 719.93 | 49.41 | 1.9 | | 2697 | 3520
3522 | 6 | 48.19
118.84 | 289.13
118.84 | 240.54 | 1 | 118,84 | 118.84 | 49.40 | 0.5 | | 2698 | 3517
3516 | 1 | 120.89
97.80 | 120.89
97.80 | 380.31 | 2 | 218.68 | 218.68 | 57.50 | 0.6 | | 2699 | 3514
3515 | 1 1 | 53.27
76.36 | 53.27
76.36 | 299.06 | 2 | 129.63 | 129.63 | 43.35 | 0.4 | | 2700 | 3524
3523 | 1 1 | 51.40
50.75 | 51.40
50.75 | 500.00 | 1 | 224.04 | 224.04 | 20.44 | 0.4 | | 2700 | 3526
3525 | 1 | 69.12
50.64 | 69.12
50.64 | 566.96 | 4 | 221.91 | 221.91 | 39.14 | 0.4 | | 2701 | 3510
3509 | 1 | 104.98
118.66 | 104.98
118.66 | 312.97 | 2 | 223.64 | 223.64 | 71.46 | 0.7 | | 2702 | 3513 | 1 | 31.28 | 31.28 | 353.24 | 3 | 194.99 | 194.99 | 55.20 | 0.6 | | CANADA | 3512
3511 | 1 | 112.74
50.97 | 112.74
50.97 | | 100 | Valorities * | 0.000 (0.000) | T 000000000 | 0.000 | | 2703 | 3552
3553 | 1 | 104.16
82.99 | 104.16
82.99 | 645.16 | 2 | 187.15 | 187.15 | 29.01 | 0.3 | | 2704
2705 | 3558
3554 | 1 | 170.48
160.45 | 170.48
160.45 | 668.26
194.73 | 1 | 170.48
160.45 | 170.48
160.45 | 25.51
82.40 | 0.3 | | 2706 | 3555
3557 | 1 | 180.99
84.79 | 180.99
84.79 | 512.24 | 3 | 343.87 | 343.87 | 67.13 | 0.7 | | 2707 | 3556
3560 | 1 1 | 78.08
180.60 | 78.08
180.60 | 202.25 | 2 | 202.22 | 282.33 | 72.05 | 0.7 | | 2101 | 3561
3562 | 1 | 101.74
108.41 | 101.74 | 383.35 | 2 | 282.33 | 262.33 | 73.65 | 0.7 | | 2708 | 3563
3564 | 1 | 104.14
73.87 | 104.14
73.87 | 463.40 | 3 | 286.42 | 286.42 | 61.81 | 0.6 | | 2709 | 3565
3567 | 1 | 64.26
73.78 | 64.26
73.78 | 267.50 | 3 | 202.30 | 202.30 | 75.63 | 0.8 | | | 3566 | 1 | 64.26 | 64.26 | | | | | | - | | 2710
2711 | 3559
3569 | 5 | 139.77
202.80 | 559.06
1014.00 | 200.06 | 5 | 139.77
202.80 | 559.06
1014.00 | 69.86
100.00 | 2.8
5.0 | | 2712
2713 | 3568
3570 | 4 | 183.59
109.92 | 734.38
109.92 | 183.59
446.73 | 2 | 183.59
172.88 | 734.38
172.88 | 100.00
38.70 | 0.4 | | 000000 | 3571
3572 | 1 2 | 62.95
143.81 | 62.95
287.63 | 433.88 | 80 | | VC2000045864 | 200000000 | 55897 | | 2714 | 3573
3574 | 3 | 95.31
82.28 | 285.93
82.28 | 433.88 | 6 | 321.41 | 655.84 | 74.08 | 1.5 | | 2715
2716 | 3575
3578 | 4 | 180,69
175,33 | 722.77
701.32 | 180.72
206.13 | 4 | 180.69
175.33 | 722.77
701.32 | 99.99
85.06 | 4.0 | | 2717 | 3576 | 2 | 83.66 | 167.31 | 257.11 | 5 | 245.78 | 653.69 | 95.60 | 2.5 | | 2718 | 3577
3579 | 3 2 | 162.13
106.95 | 486.38
213.89 | 165.29 | 2 | 106,95 | 213.89 | 64.70 | 1.3 | | 2719
2720 | 3580
3581 | 1 3 | 48.16
151.81 | 48.16
455.44 | 125.45
156.58 | 3 | 48.16
151.81 | 48.16
455.44 | 38,39
96.95 | 0.4
2.9 | | | 3582 | 2 4 | 126.66
100.79 | 253.32
403.17 | 165.00
131.83 | 2 | 126.66
100.79 | 253.32
403.17 | 76.76
76.46 | 1.5 | | 2721
2722 | 3583 | | | 500.33 | 176.77 | 4 | 125.08 | 500.33 | 70.76 | 2.8 | | 2722
2723 | 3584 | 4 | 125.08
253.77 | | | 4 | 253 77 | 1015 10 | 81 31 | 33 | | 2722 | | 4
4
3
2 | 253.77
75.80
67.98 | 1015.10
227.40
135.97 | 312.09 | 7 | 253.77
196.41 | 1015.10
468.62 | 81.31
58.84 | 3.3 | | Plot | | | Building | Buildin | Plot | Sum of
Storeys | Sum of
Building | Sum of
Buildin | Building | Floor | |----------------------|----------------------|---------------------|--------------------|-----------------------------|----------------------------|----------------------------|------------------------------|-----------------------------|----------------------------|------------------------| | Ref.
No. | Building
Ref. No. | Building
Storeys | Footprint
(sqm) | g Floor
Area
(sqm) | Area
(sqm) | of
Buildings
on Same | Footprint
on Same
Plot | g Floor
Area on
Same | Coverage
Ratio
(BCR) | Area
Ratio
(FAR) | | 2726 | 3644
3645 | 1 1 | 29.73
45.31 | 29.73
45.31 | 251.32 | Plot
3 | (sqm)
85.08 | Plot
85.08 | 33.85 | 0.3 | | 2727 | 3646
3647 | 3 | 10.04
98.03 | 10.04
294.10 | 174.31 | 3 | 98.03 | 294.10 | 56.24 | 1.7 | | 2728
2729
2730 | 3648
3595
3594 | 5
4
3 | 232.47
164.54 | 1162.34
658.14
422.88 | 235.66
164.60
159.76 | 5
4
3 | 232.47
164.54 | 1162.34
658.14
422.88 | 98.65
99.96
88.23 | 4.9
4.0
2.6 | | 2731
2732 | 3593 | 4 | 140.96
162.29 | 649.15 | 207.42 | 4 | 140.96
162.29 | 649.15 | 78.24 | 3.1 | | 2733 | 3592
3586 | 5 | 396,71
316.55 | 1586.86
1582.74 | 440.92
438.39 | 5 | 396,71
316.55 | 1586.86
1582.74 | 89.97
72.21 | 3.6 | | 2734
2735 | 3590
3591 | 4 | 208.71
227.41 | 834.84
909.63 | 211.69
227.34 | 4 | 208,71
227,41 | 834.84
909.63 | 98.59
100.03 | 3.9
4.0 | | 2736 | 3587
3588 | 3 | 150.45
78.22 | 601.81
234.67 | 152.18 | 7 | 150.45 | 601.81 | 98.86 | 4.0 | | 2737 | 3589 | 4 | 125.96 | 503.82 | 304.64
55.60 | 0 | 204.18 | 738.49 | 67.02
0.00 | 0.0 | | 2739 | 4040
4041 | 1 2 | 21.97
40.76 | 21.97
81.52 | 162.77 | 3 | 62.73 | 103.49 | 38.54 | 0.6 | | 2740 | 3635
3636 | 2 3 | 108.77 | 217.54
335.12 | 286.19 | 5 | 220.48 | 552.66 | 77.04 | 1.9 | | 2741
2742 | 3650
3649 | 2 | 102.34
103.07 | 204.69
206.14 | 104.99 | 2 | 102.34
103.07 | 204.69
206.14 | 97.48
100.00 | 1.9 | | 2743 | 3651
3652 | 1 1 | 39.03
95.62 | 39.03
95.62 | 427.37 | 2 | 134.66 | 134.66 | 31.51 | 0.3 | | 2744 | 3653
3654 | 1 | 192.26
95.61 | 192.26
95.61 | 409,40 | 2 | 287.88 | 287.88 | 70.32 | 0.7 | | 2745 | 3655
3656 | 1 1 | 93.43
96.34 | 93,43
96.34 | 272.88 | 2 | 189.76 | 189.76 | 69.54 | 0.7 | | 2746
2747 | 3638
3637 | 4 | 201.85
201.63 | 807.42
806.51 | 201.85 | 4 | 201.85
201.63 | 807.42
806.51 | 100.00
98.10 | 4.0
3.9 | | 2748 | 3639
3620 | 5 | 264.66
67.16 | 1323.30
67.16 | 281.59 | 5 | 264.66 | 1323,30 | 93.99 | 4.7 | | 2749
2750 | 3619
3618 | 6 2 | 96.15
138.09 | 576.91
276.17 | 175.44
163.40 | 7 2 | 163.31 | 644.07
276.17 | 93.08
84.51 | 3.7 | | 2751 | 3616
4001 | 1 | 168.91
202.35 | 168.91
202.35 | 372.20 | 2 | 371.26 | 371.26 | 99.75 | 1.0 | | 2752
2753 | 4002 | 2 | 452.51 | 905.01 | 698.78
156.55 | 2 | 452.51
0.00 | 905.01 | 64.76 | 1.3 | | 2754 | 3613
3612 | 1 1 | 81.48
47.50 | 81.48
47.50 | 488.86 | 2 | 128.98 | 128.98 | 26.38 | 0.3 | | 2755 | 3614
3615 | 1 | 53.17
150.36 | 53.17
150.36 | 247.24 | 2 | 203.53 | 203.53 | 82.32 | 0.8 | | 2756 | 3609
3611 | 4 2 | 118.82
83.68 | 475.29
167.37 | 201.48 | 4 | 118.82 | 475.29 | 58.97 | 2.4 | | 2757
2758 | 3610
3607 | 2 5 | 52.08
92.77 | 104.17
463.83 | 180.35
92.77 | 5 | 135.77
92.77 | 271.54
463.83 | 75.28
100.00 | 1.5 | | 2759
2760 | 3606
3608 | 4 3 | 132.63
42.83 | 530.54
128.50 | 141.25
42.97 | 4 3 | 132.63
42.83 | 530.54
128.50 | 93.90
99.68 | 3.8 | | 2761
2762 | 3604 | 10 | 131,48 | 1314.78 | 131.16 | 0 | 0.00 | 0.00 | 0.00
53.02 | 0.0
5.3 | | | 3599
3600 | 1 2 | 81.12
41.18 | 81.12
82.36 | | 7.00 | | 1.250,000,000 | | | | 2763 | 3601
3602 | 1 | 34,81
79,40 | 34.81
79.40 | 416.34 | 5 | 236.51 | 277.69 | 56.81 | 0.7 | | | 3597
3627 | 7 | 120.43
48.36 | 843.01
48.36 | 100 50 | | 200.04 | 1015.10 | | | | 2764 | 3625
3626 | 1 1 | 94.32
59.73 | 94.32
59.73 | 400.53 | 10 | 322.84 | 1045.42 | 80.60 | 2.6 | | 2765 | 4295
4296 | 6 | 102.02
107.91 | 612.12
647.48 | 286.80 | 12 | 209.93 | 1259.60 | 73.20 | 4.4 | | 2766 | 3628
3630 | 4 | 106.89
78.85 | 427.58
78.85 | 153.89 | 4 | 106.89 | 427.58 | 69.46 | 2.8 | | 2767
2768 | 3631
3632 | 1 4 | 85.28
132.10 | 85.28
528.38 | 164.13 | 2 | 164.13
132.10 | 164.13
528.38 | 100.00 | 1.0 | | 2769
2770 | 3633
3596 | 5 4 | 136,97
120,18 | 684.87
480.73 | 136.97
131.59 | 5
4 | 136.97
120.18 | 684.87
480.73 | 100.00
91.33 | 5.0
3.7 | | 2771 | 3504
3505 | 1 | 72.83
154.73 | 72.83
154.73 | 316.41 | 2 | 227.55 | 227.55 | 71.92 | 0.7 | | 2772 | 3503
3502 | 3 2 | 294.01
117.31 | 882.02
234.62 | 365.94 | 3 | 294.01 | 882 02 | 80.34 | 2.4 | | 2773 | 3501
3585 | 7 | 55.19
376.85 | 55.19
2637.92 | 295.07
523.88 | 7 | 172.49
376.85 | 289.80
2637.92 | 58,46
71.93 | 1.0 | | 2775
2776 | 3617 | 10 | 214.98 | 2149.82 | 196.89
244.51 | 10 | 0.00
214.98 | 0.00
2149.82 | 0.00
87.92 | 0.0 | | 2777 | 3621
3622 | 4 | 88.64
90.83 | 354.55
363.33 | 317.92 | 9 | 207.02 | 745.43 | 65.12 | 2.3 | | 2778 | 3623
3624 | 1 4 | 27.55
256.11 | 27.55
1024.44 | 318.75 | 4 | 256.11 | 1024.44 | 80.35 | 3.2 | | 2779 | 3657
3634 | 4 2 | 153.37
82.72 | 613.47
165.44 | 156.76
153.79 | 4 2 | 153,37
82,72 | 613.47
165.44 | 97.84
53.79 | 3.9 | | 2780
2781
2782 | 3672
3671 | 5 4 | 73.69
103.65 | 368.45
414.62 | 129.73
126.67 | 5
4 | 73.69
103.65 | 368.45
414.62 | 56.80
81.83 | 2.8 | | 2783
2784 | 3669
3670 | 4 2 | 137.24
86.71 | 548.97
173.41 | 137.24
98.96 | 4 2 | 137.24
86.71 | 548.97
173.41 | 100.00
87.61 | 4.0
1.8 | | 2785 | 3673
3674 | 4 3 | 65.45
105.72 | 261.79
317.15 | 313.13 | 7 | 171.17 | 578.95 | 54.66 | 1.8 | | 2786
2787 | 3675
3676 | 6 | 200.06
226.47 | 800.24
1358.79 | 245.60
226.60 | 4 6 | 200.06
226.47 | 800.24
1358.79 | 81.46
99.94 | 3.3 | | 2788
2789 | 3664
3668 | 4 | 224.66
114.50 | 898.65
114.50 | 241.72
138.22 | 4 | 224.66
114.50 | 898.65
114.50 | 92.94
82.84 | 3.7
0.8 | | 2790
2791 | 3667
3665 | 4
 110.12
252.04 | 440.49
1008.16 | 110.12
428.09 | 4 4 | 110.12
252.04 | 440.49
1008.16 | 100.00
58.88 | 4.0
2.4 | | 2792 | 3666
3715 | 6 | 191.76
43.51 | 1150.58
43.51 | 194.09 | 6 | 191.76 | 1150.58 | 98.80 | 5.9 | | 2793 | 3714
3716 | 1 | 35.44
32.12 | 35.44
32.12 | 173.17 | 3 | 111.06 | 111.06 | 64.13 | 0.6 | | 2794 | 3679
3677 | 1 | 103.33
98.11 | 103.33
98.11 | 242.82 | 2 | 201.44 | 201.44 | 82.96 | 0.8 | | 2795
2796 | 3678
3659 | 1 6 | 70.12
99.25 | 70.12
595.53 | 113.99
133.26 | 1 6 | 70.12
99.25 | 70.12
595.53 | 61.51
74.48 | 0.6
4.5 | | 2797
2798 | 3660
3661 | 6 | 166.15
217.77 | 996.91
1306.63 | 180.56
217.77 | 6 | 166.15
217.77 | 996.91
1306.63 | 92.02
100.00 | 5.5
6.0 | | 2799
2800 | 3662
3663 | 6 | 177.79
113.41 | 1066.75
680.43 | 227.41
135.95 | 6 | 177,79
113,41 | 1066.75
680.43 | 78.18
83.42 | 4.7
5.0 | | 2801
2802 | 4294
3658 | 5 | 144,48
160.35 | 722.39
481.05 | 234.16
213.06 | 5 3 | 144.48
160.35 | 722.39
481.05 | 61.70
75.26 | 3.1 | | 2803 | 3680
3682 | 5 | 222.62
217.33 | 1113.10
1086.66 | 250.70 | 5 | 222.62 | 1113.10 | 88.80 | 4.4 | | 2804 | 3683
3684 | 1 1 | 78.35
120.40 | 78.35
120.40 | 1170.07 | 8 | 566.53 | 1435.86 | 48.42 | 1.2 | | 2005 | 3685
3689 | 1 2 | 150.46
215.02 | 150.46
430.04 | 1570 77 | - | 241.00 | EEA AT | 94.00 | 0.1 | | 2805
2806 | 3690
3681 | 1 5 | 129.63
208.86 | 129.63
1044.31 | 1579.79
266.07 | 3
5 | 344.65
208.86 | 559.67
1044.31 | 21.82
78.50 | 0.4
3.9 | | 2807 | 3686
3688 | 1 | 88.04
54.10 | 88.04
54.10 | 401.81 | 3 | 224.70 | 224.70 | 55.92 | 0.6 | | | 3687
3694 | 1 | 82.56
72.46 | 82.56
72.46 | | | | | | | | 2808 | 3691
3692 | 1 2 | 79.20
90.54 | 79.20
181.09 | 1029.13 | 15 | 388.66 | 1010,95 | 37.77 | 1.0 | | | 3695
3693 | 10 | 59.08
87.38 | 590.83
87.38 | | (1676)
(4) | \$4145666780.35° | or months and | sessionell? | | | 2809 | 3807
3808 | 1 | 41.40
59.53 | 41.40
59.53 | 327.16 | 2 | 100.93 | 100.93 | 30.85 | 0.3 | | 2810
2811 | 3605
3700 | 3 | 134.31
90.77 | 402.92
90.77 | 293.98 | 3 2 | 134.31 | 402.92
202.67 | 45.69
81.91 | 1.4 | | 2811 | 3701
3702 | 1 | 111.90
128.39 | 111,90
128,39 | 785.48 | 2 | 198.94 | 198.94 | 25.33 | 0.8 | | 2012 | 3703
3697 | 1 2 | 70.55
67.97 | 70.55
135.93 | 700.40 | | 100.04 | 100.04 | 20.00 | 0.3 | | 2813 | 3696
3699 | 2 | 234.60
93.67 | 469.20
187.34 | 739.92 | 8 | 497.94 | 995.88 | 67.30 | 1.3 | | | 3698
3706 | 2 | 101.71
60.79 | 203,41
60,79 | grange some | gatem | Section 1 | Spag-ev- | Rationaline | THEMOS | | 2814 | 3705
3704 | 1 | 34.89
31.41 | 34.89
31.41 | 188.34 | 3 | 127.08 | 127.08 | 67.48 | 0.7 | | 2815 | 4011
4012 | 1 | 10,44
8.05 | 10.44
8.05 | 73.28 | 3 | 26.54 | 26.54 | 36.22 | 0.4 | | | 4013
4010 | 1 | 8.05
12.44 | 8.05
12.44 | | 1 | | | | | | 2816 | 4014
4015 | 1 | 8.05
8.05 | 8.05
8.05 | 75.06 | 4 | 32.21 | 32.21 | 42.91 | 0.4 | | 2400 | 4016
4008 | 1 | 3.67
16.20 | 3.67
16.20 | - | 943 | | | 4121 | 122 | | 2817 | 4009
4007 | 1 | 16.20
23.23 | 16.20
23.23 | 179.41 | 3 | 55.64 | 55.64 | 31.01 | 0.3 | | 2818 | 3713
3712 | 1 | 63.30
56.01 | 63.30
56.01 | 271.14 | 3 | 174.73 | 174.73 | 64.44 | 0.6 | | 2819 | 3711
3710 | 2 | 55.42
155.72 | 55.42
311.45 | 275.15 | 2 | 155.72 | 311.45 | 56.59 | 1.1 | | 2820 | 3708
3709 | 1 1 | 119.39
99.12 | 119.39
99.12
121.75 | 381.04 | 3 | 340.27 | 340.27 | 89.30 | 0.9 | | 2821 | 3707
3717 | 4 | 121.75
337.19 | 1348.74 | 350.84 | 4 | 337.19 | 1348.74 | 96.11 | 3.8 | | | | | | | | Sum of | Sum of | Sum of | | | |----------------------|----------------------|-------------|----------------------------|----------------------------|------------------------------|----------------------|---|----------------------------|-------------------------|-------------------| | Plot | Buildin | Building | Building | Building
Floor | Plot | Storeys | Building
Footprin | Building
Floor | Building
Coverage | Floor
Area | | Ref.
No. | g Ref.
No. | Storeys | Footprint
(sqm) | Area
(sqm) | Area
(sqm) | Buildings
on Same | t on
Same | Area on
Same | e Ratio
(BCR) | Ratio
(FAR) | | 2822 | 3718 | 1 | 95,15 | 95.15 | 170.25 | Plot | Plot
95.15 | Plot
95,15 | 55.89 | 0.6 | | 2823 | 3722
3721 | 1 4 | 100.24
96.18 | 100.24
384.72 | 108.64 | 1 4 | 100.24
96.18 | 100.24 | 92.27
98.90 | 0.9 | | 2825
2826 | 3720
3719 | 7 | 133.41
126.99 | 533.65
888.91 | 133.52
129.74 | 4 7 | 133.41
126.99 | 533.65
888.91 | 99.92
97.88 | 4.0
6.9 | | 2827 | 3723
3726 | 5 | 124.11
53.07 | 620.54
53.07 | 166,35 | 5 | 124.11 | 620.54 | 74.61 | 3.7 | | 2828 | 3724
3725 | 7 7 | 108.24
68.00 | 757.68
476.03 | 303.46 | 15 | 229.32 | 1286.78 | 75.57 | 4.2 | | 2829
2830 | 3727
3728 | 5 7 | 233.03
280.01 | 1165.16
1960.05 | 283.34
419.74 | 5
7 | 233.03
280.01 | 1165,16
1960,05 | 82.24
66.71 | 4.1 | | 2831
2832 | 3730
3999 | 6 | 213.94
303.96 | 855.77
1823.74 | 267.58
394.53 | 6 | 213,94
303,96 | 855.77
1823.74 | 79,96
77,04 | 3.2
4.6 | | 2833
2834
2835 | 3731
3732 | 6
1 | 138.77
106.69 | 832,60
106,69
102,47 | 175.46
130,97
152.66 | 6 | 138.77
106.69 | 832.60
106.69
102.47 | 79.09
81.46
67.12 | 0.8
0.7 | | 2836
2837 | 3733
3734
3739 | 1 5 | 102.47
148.37
159.27 | 148.37
796.34 | 149.44
176.98 | 1 1 5 | 102.47
148.37
159.27 | 148.37
796.34 | 99.28
89.99 | 1.0 | | 2838 | 3740
3745 | 7 3 | 287.40
102.78 | 2011.78
308.34 | 287.40 | 7 | 287.40 | 2011.78 | 100.00 | 7.0 | | 2839 | 4066
3743 | 1 2 | 29.96
236.10 | 29.96
472.21 | 137.87
276.23 | 4 2 | 132.74
236,10 | 338.30
472.21 | 96.28
85.47 | 2.5 | | 2841
2842 | 3741
3742 | 6 | 127.31
105.66 | 763.87
633.96 | 149.40
121.14 | 6 | 127.31
105.66 | 763.87
633.96 | 85.21
87.22 | 5.1
5.2 | | 2843 | 3746
3788 | 4
3 | 321.27
320.58 | 1285.10
961.74 | 321.27 | 7 | 641.85 | 2246.84 | 199.78 | 7.0 | | 2844 | 3749
3748 | 1 1 | 60.09
68.40 | 60.09
68.40 | 413.30 | 5 | 256.24 | 334.16 | 62.00 | 0.8 | | 2044 | 3747
3750 | 1 2 | 49.84
77.92 | 49.84
155.84 | 415.50 | | 250.24 | 334.10 | 02.00 | 0.0 | | 2845 | 3786
3787 | 2 | 50,96
61,21 | 101.92
122.43 | 227.77 | 4 | 112.17 | 224.34 | 49.25 | 1.0 | | 2846
2847 | 3784
3785 | 9 | 289.76
136.42 | 1159.05
1227.74 | 409.97
313.37 | 9 | 289.76
136.42 | 1159.05
1227.74 | 70.68
43.53 | 2.8
3.9 | | 2848
2849 | 3790
3789 | 5 | 196,49
179,10 | 392,99
895,48 | 206.49
206.54 | 5 | 196.49
179.10 | 392.99
895.48 | 95.16
86.71 | 1,9
4.3 | | 2850 | 3792
3791 | 6 | 123.04
119.62 | 492.18
717.71 | 264.94 | 10 | 242.66 | 1209.89 | 91.59 | 4.6 | | 2851 | 3793
3794
3795 | 2 2 | 60.33
78.95 | 60.33
157.90
316.76 | 561.63 | 6 | 361.82 | 599.15 | 64.42 | 1.1 | | 0.0000000 | 3795
3796 | 1 1 | 158,38
64,15 | 316.76
64.15 | 147.37 | | 112.47 | 112.47 | 10/03/4/19 | \$1000 | | 2852
2853
2854 | 3774
3775
3773 | 1
4
6 | 112.47
89.60
147.75 | 112.47
358.38
886.50 | 147.37
146.29
171.57 | 1
4
6 | 89,60
147,75 | 358.38
886.50 | 76.32
61.25
86.12 | 0.8
2.4
5.2 | | 2854
2855
2856 | 3773
3776
3764 | 1 10 | 147.75
88.13
375.22 | 88.13
3752.20 | 134.76
439.38 | 1 10 | 88.13
375.22 | 88.13
3752.20 | 65.39
85.40 | 0.7
8.5 | | 2856 | 3762
3763 | 10 | 66.51
112.47 | 3752.20
66.51
112.47 | 477.19 | 2 | 178.98 | 178.98 | 37.51 | 0.4 | | 2858 | 3797
3798 | 1 2 | 45.90
159.54 | 45.90
319.07 | 281.79 | 3 | 205.44 | 364.97 | 72.90 | 1.3 | | 2859 | 3799
3779 | 5 | 229.87
97.25 | 1149.36
97.25 | 234.25 | 5 | 229.87 | 1149.36 | 98,13 | 4.9 | | 2860
2861 | 3780
3781 | 1 4 | 128.50
297.19 | 128.50
1188.75 | 473.10
391.56 | 2 | 225.74
297.19 | 225.74
1188.75 | 47.72
75.90 | 0.5
3.0 | | 2862
2863 | 3782
3783 | 3 4 | 163.76
123.87 | 491.28
495.49 | 219.52
141.63 | 3 4 | 163,76
123,87 | 491.28
495.49 | 74.60
87.46 | 2.2
3.5 | | 2864
2865 | 3777
3778 | 3 | 326,20
187,08 | 978.60
187.08 | 334.92
261.86 | 3 | 326,20
187,08 | 978.60
187.08 | 97.40
71.44 | 2.9
0.7 | | 2866 | 3765
3766 | 5 2 | 140.56
99.61 | 702,82
199,23 | 265.90 | 7 | 240.18 | 902.04 | 90.33 | 3.4 | | 2867 | 3767
3768 | 2 | 127.19
118.90 | 254.37
237.80 | 276.97 | 4 | 246.09 | 492.17 | 88.85 | 1.8 | | 2868 | 3769
4073 | 1
6 | 65.44
105.35 | 65.44
632.13 | 287.50 | 7 | 170.79 | 697.57 | 59.41 | 2.4 | | 2869 | 3772
3771 | 1 | 101.70
33.30 | 101.70
33.30 | 244.84 | 3 | 183.50 | 183.50 | 74.95 | 0.7 | | | 3770
3761 | 1 | 48.50
54.15 | 48.50
54.15 | Julien Service | 7/2/ | | | 1/2/27/20 | V2002 | | 2870 | 3759
3760 | 1 | 90.38
54.32 | 90.38
54.32 | 378.24 | 3 | 198.85 | 198.85 | 52.57 | 0.5 | | 2871 | 3757
3758 | 2 | 101.78
175.96 | 203.55
175.96 | 422.28 | 3 | 277.73 | 379.51 | 65.77 | 0.9 | | 2872 | 3756
4068 | 6 | 125.19
241.01 | 250.37
1446.07 | 394.78 | 8 | 366.20 | 1696,44 | 92.76 | 4.3 | | 2873
2874 | 4070
4071 | 5 | 162.08
122.04 | 810.40
122.04 | 183,49
145,16 | 5 | 162.08
122.04 | 810.40
122.04 | 88.33
84.07 | 0.8 | | 2875
2876 | 4072
4069 | 7
5 | 111,17
159,15 | 778,21
795.75 | 143.41
230.07 | 7
5 | 111.17
159.15 | 778.21
795.75 | 77.52
69.17 | 3.5 | | 2877
2878 | 3755
3754 | 3
5 | 224.40
303.25 | 673.19
1516.24 | 249.44
316.42 | 3 5 |
224.40
303.25 | 673.19
1516.24 | 89.96
95.84 | 2.7
4.8 | | 2879
2880 | 3753
3752 | 4 | 77.88
175.59 | 311.54
702.35 | 92.17
182.43 | 4 | 77.88
175.59 | 311.54
702.35 | 84.50
96.25 | 3.4 | | 2881 | 3751
4328 | 3 | 198.99
38.97 | 596.96
38.97 | 431.14 | 4 | 237.96 | 635.93 | 55.19 | 1.5 | | 2882 | 3804
4067 | 5
6 | 323.91
357.84 | 1619.57
2147.05 | 749.53 | 11 | 681,76 | 3766.62 | 90.96 | 5.0 | | 2883 | 3805
3806 | 5 2 | 276.92
162.02 | 1384.60
324.05 | 504.60
212.67 | 7 | 438.94 | 1708.65 | 0.00 | 3.4 | | 2885
2886 | 3803
3800 | 1 5 | 140.68
196.43 | 140.68
982.15 | 199.20 | 1 5 | 140.68
196.43 | 140.68
982.15 | 70.62
100.00 | 0.7
5.0 | | 2887 | 3801
3802 | 3 3 | 89.37
75.60 | 268.12
226.79 | 182.21 | 6 | 164.97 | 494.92 | 90.54 | 2.7 | | 2888
2889 | 3810
3814 | 5 4 | 276.94
208.59 | 1384.71
834.36 | 279.85
291.46 | 5
4 | 276.94
208.59 | 1384.71
834.36 | 98.96
71.57 | 4.9
2.9 | | 2890
2891 | 3813
3811 | 1 5 | 124.81
122.16 | 124.81
610.80 | 148,77 | 1 5 | 124.81
122.16 | 124.81
610.80 | 83.89
101.63 | 0.8
5.1 | | 2892
2893 | 3812
3809 | 3
5 | 143.89
262.92 | 431.68
1314.61 | 154.86
426.49 | 3
5 | 143.89
262.92 | 431.68
1314.61 | 92.92
61.65 | 2.8
3.1 | | 2894
2895 | - | | | 13/1/10/6// | 183.22
2887.90 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2896
2897 | | | | | 602.39
609.25 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2898
2899 | 3554 | 1 | 160.45 | 160.45 | 196.05
630.91 | 1 0 | 160,45
0,00 | 160,45
0.00 | 81.84
0.00 | 0.8 | | | 4028
4029 | 1 | 27.10
27.10 | 27.10
27.10 | | | | | | | | 2900 | 4030
4031 | 1 | 50.94
51.40 | 50.94
51.40 | 5007.22 | 7 | 497.61 | 497.61 | 9.94 | 0.1 | | | 4032
4331 | 1 | 53.23
155.73 | 53.23
155.73 | | | | | | | | | 4332
4256 | 1 | 132.11
54.74 | 132.11
54.74 | | | | | | | | 2901 | 4257
4258 | 1 1 | 71.79
58.44 | 71.79
58.44 | 781.21 | 5 | 274.97 | 274.97 | 35.20 | 0.4 | | 2000 | 4259
4260 | 1 | 52.51
37.49 | 52.51
37.49 | 270.00 | | 0.00 | 0.00 | 0.00 | 0.0 | | 2902
2903 | - | | | | 379.26
2939.88 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2904
2905
2906 | 4246 | 6 | 103.42 | 620.53 | 4830.50
2113.78
113.04 | 0 0 | 0,00
0,00
103,42 | 0.00
0.00
620.53 | 0.00
0.00
91.49 | 0.0
0.0
5.5 | | | 4248
4249 | 1 1 | 53.63
15.21 | 53.63
15.21 | Tour ensure | 100 | 100000000000000000000000000000000000000 | 510065000000 | 0.805.0041 | | | 2907 | 4249
4250
4251 | 1 | 15.21
15.21
61.19 | 15.21
15.21
61.19 | 436.18 | 4 | 145.25 | 145.25 | 33.30 | 0.3 | | 2908
2909 | 4247 | 3 | 209.89 | 629.66 | 435.62
157.99 | 3 0 | 209.89 | 629.66
0.00 | 48.18
0.00 | 1.4 | | 2910
2911 | 4264 | 2 | 180.38 | 360.75 | 233.67
189.97 | 2 0 | 180.38 | 360.75
0.00 | 77.19
0.00 | 1.5 | | 2912
2913 | 1435 | 2 | 243.38 | 486.76 | 378.28
276.47 | 0 2 | 0.00
243,38 | 0.00
486,76 | 0.00 | 0.0 | | 2914
2915 | - | | | | 153.09
202.22 | 0 | 0,00 | 0.00 | 0.00 | 0.0 | | 2916
2917 | | | | | 206.28
609.62 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2918 | 1742 | 3 | 400.84 | 1202.53 | 89.17 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2919 | 1744
1732 | 4 | 629.49
168.23 | 2517.98
168.23 | 7749.13 | 12 | 1414.23 | 4320.07 | 18.25 | 0.6 | | | 1739
1741 | 2 2 | 102.30
113.37 | 204.59
226.73 | | | | | | | | | 1207
1208 | 1 | 383.21
138.99 | 383.21
138.99 | | | | | | | | | 1209
1210 | 1 | 79,94
95,54 | 79.94
95.54 | | | | | | | | 2920 | 1211
1212 | 1 | 166.02
85,95 | 166.02
85.95 | 3242.97 | 11 | 1471.60 | 1471.60 | 45.38 | 0.5 | | | 1213
1214 | 1 | 61.17
57.85 | 61.17
57.85 | | | | | | | | | 1215
1216 | 1 | 39,42
101,27 | 39.42
101.27 | | | | | | | | | 3871 | 1 | 262.25 | 262.25 | | | | | | | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sgm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|--|---------------------|---|---|-----------------------|---|---|---|--|---------------------------------| | | 1194
1195 | 1 | 144.45
87.13 | 144.45
87.13 | | | | | | | | | 1196
1197 | 6 | 70.32
181.37 | 421.89
181.37 | | | | | | | | 2921 | 1198
1199 | 1 | 66.04
98.52 | 98.52 | 6320.40 | 15 | 2666.30 | 3017.88 | 42.19 | 0.5 | | | 3874
1200 | 1 | 1786.91
69.86 | 1786.91
69.86 | | | | | | | | | 1201
1202 | 1 | 97.21
64.51 | 97.21
64.51 | | | | | | | | | 1727 | 3 | 121.35 | 364,05 | | | | | | | | | 1728
1729 | 3
5 | 150.42
140.93 | 451.27
704.65 | | | | | | | | | 1730
1733 | 3 | 156.31
831.24 | 312.61
2493.71 | | | | | | | | 2922 | 1734
1735 | 3 | 98.85
98.58 | 296.56
295.75 | 4648.71 | 29 | 1919.77 | 5526.21 | 41.30 | 1.2 | | | 1736
1737 | 3 | 63.79
57.11 | 191.38
57.11 | 1 | | | | | | | | 1738 | 1 | 43.25 | 43.25 | 1 | | | | | | | 2923 | 1740
1569 | 1 | 157.94
47.20 | 315.87
47.20 | 512.75 | 17 | 503.45 | 7347.17 | 98.19 | 14.3 | | 2924 | 1570
764 | 16 | 456.25
181.50 | 7299.98
907.49 | 235.28 | 5 | 181.50 | 907.49 | 77.14 | 3.9 | | 2925
2926 | 851
843 | 5 | 111.46
292.83 | 557.32
1464.15 | 201.41
443.33 | 5 | 111.46
292.83 | 557.32
1464.15 | 55.34
66.05 | 2.8 | | 2927
2928 | 839
711 | 7 | 111.34
126.40 | 779.39
126.40 | 143.58
196.12 | 7 | 111.34
126.40 | 779.39
126.40 | 77.55
64.45 | 5.4
0.6 | | 2929 | 3833 | 3 | 233,91 | 701.72 | 421.80 | 3 | 233.91 | 701.72 | 55.45 | 1.7 | | | 1203
1204 | 1 2 | 147.87
472.18 | 147.87
944.36 | | | | | | | | | 1206
1205 | 1 | 263.80
148.95 | 527.60
148.95 | 1 | | | | | | | | 1743 | 1 | 2133.10
55.81 | 2133.10
55.81 | 1 | | | | | | | | 1710
1709 | 1 | 80.80 | 80.80 | | | | | | | | | 1712
1711 | 1 | 79.55
53.48 | 79.55
53,48 | 1 | | | | | | | | 1714
1713 | 1 | 52.85
60.15 | 52.85
60,15 | 1 | | | | | | | 2930 | 1715
1717 | 1 | 25.07
55.88 | 25.07
55.88 | 12516.68 | 26 | 5028.70 | 5764.68 | 40.18 | 0.5 | | | 1716 | 1 | 44.72 | 44.72 | 1 | | | | | | | | 1718
1721 | 1 | 51.33
78.30 | 51.33
78.30 | | | | | | | | | 1720
1725 | 1 | 322.15
186.25 | 322.15
186.25 | 1 | | | | | | | | 1719 | 1 | 51.92 | 51.92 | | | | | | | | | 1723
1724 | 1 | 188.85
124.27 | 188.85
124.27 | 1 | | | | | | | | 1722
1726 | 1 | 59.44
117.51 | 59.44
117.51 | 1 | | | | | | | | 1731
3837 | 1 | 174.48
36.71 | 174.48
36.71 | | | | | | | | 2931 | 3836 | 1 | 54.69 | 54,69
69,90 | 241.07 | 3 | 161.29 | 161.29 | 66.91 | 0.7 | | 2932 | 800
3840 | 7 | 69.90
695.84 | 4870.88 | 901.90 | 7 | 695.84 | 4870.88 | 77.15 | 5.4 | | 2933
2934 | 891
880 | 7 | 194.78
347.50 | 389.56
2432.53 | 266.80
439.49 | 7 | 194.78
347.50 | 389.56
2432.53 | 73.01
79.07 | 1.5
5.5 | | 2935
2935 | 562
555 | 1 | 109.21
38.47 | 109.21
38.47 | 287.54
287.54 | 2 | 147.69
147.69 | 147.69
147.69 | 51.36
51.36 | 0.5 | | 2936 | 3873 | 5 | 110.55 | 552.73 | 148.34 | 5 | 110.55
76.96 | 552.73
384.80 | 74.52
71.78 | 3.7 | | 2937
2938 | 421 | | 76.96 | 384.80 | 107.22
25.05 | 5 | 0.00 | 0.00 | 0.00 | 0.0 | | 2939 | 3855
3856 | 1 | 47.03
24.19 | 47.03
24.19 | 674.34 | 6 | 396.81 | 909.37 | 58.84 | 12 | | 2000 | 3854
3857 | 3 | 256.28
69.30 | 768.85
69.30 | 014.54 | 0 | 330.01 | 303.31 | 20.04 | 1.3 | | 2940 | 3859 | 4 | 131.68 | 526.72 | 139.01 | 4 0 | 131.68 | 526.72 | 94.73
0.00 | 3.8 | | 2941
2942 | 3858 | 6 | 94.62 | 567.70 | 154.22
127.76 | 6 | 0.00
94.62 | 0.00
567.70 | 74.06 | 4.4 | | 2943
2944 | 3862 | 3 | 108,11 | 324.32 | 54.26
67.01 | 3 | 0.00 | 0.00
324.32 | 0.00 | 0.0
4.8 | | 2945 | 3860
3861 | 6 | 119.40
128.69 | 716.42
772.16 | 292.89 | 12 | 248.10 | 1488.58 | 84.71 | 5.1 | | 2946 | 985 | 4 | 276.44 | 1105,77 | 337.21 | 4 | 276.44 | 1105.77 | 81.98 | 3,3 | | 2947
2948 | 340
339 | 5 | 118.98
190.00 | 594.88
190.00 | 179.82
260.54 | 5 | 118.98
190.00 | 594.88
190.00 | 66.16
72.92 | 0.7 | | 2949 | 3891
3995 | 1 | 60.58
60.64 | 60,58
60,64 | 60.64 | 2 | 121.22 | 121.22 | 199.89 | 2.0 | | 2950
2951 | 1014 | 8 | 202.44 | 1619.51 | 213.61 | 0 8 | 0.00
202.44 | 0.00
1619.51 | 73.07 | 0.0
5.8 | | | 1688
2318 | 1 5 | 21.02
165,29 | 21.02
826.46 | | | | | 1.00.00 | | | 2952 | 4109 | 6 | 143.66 | 861.97 | 694.47 | 17 | 596.89 | 2285.05 | 85.95 | 3.3 | | | 4110
4111 | 1 | 71.85
40.72 | 71.85
40.72 | | | | | | | | 2953 | 4112
1884 | 5 | 154.34
160.09 | 463.03
800.44 | 164.78 | 5 | 160.09 | 800.44 | 97.15 | 4.9 | | 2954 | 1885
3968 | 10 | 49.63
459.61 | 49.63
4596.08 | 49.63 | 1 | 49.63 | 49.63 | 100.00 | 1.0 | | 2955 | 3969 | 1 | 30.01 | 30.01 | 543.87 | 11 | 489.62 | 4626.09 | 90.02 | 8.5 | | 2956
2957 | 1793
3955 | 6 4 | 186.64
45.28 | 1119.86
181.12 | 208.59
76,15 | 6 | 186.64
45.28 | 1119.86
181.12 | 89.48
59.46 | 5.4
2.4 | | 2958 | 1776 | 6 | 151.79
96.98 | 455.37
581.87 | 287.36 | 9 | 248.77 | 1037.24 | 86.57 | 3.6 | | 2959
2960 | 1783 | 5 | 107.96 | 539.78 | 271.70
139.49 | 5 | 0,00
107.96 | 0.00
539.78 | 0.00
77.39 |
0.0 | | 2000 | 964 | 4 | 360.72 | 1442.90 | 100,10 | | 101.00 | 300.75 | 17.00 | | | | 965
966 | 4 | 307.20
260.08 | 1228.80
1040.33 | 1 | | | | | | | | 967
968 | 4 4 | 134.32
434.42 | 537.26
1737.70 | 1 | | | | | | | | 973
971 | 4 | 421,34
64.05 | 1685.34
64.05 | - | | | | | | | | 972 | 1 | 108.00 | 108.00 |] | | | | | | | | 974
4543 | 1 4 | 1010.68
538.50 | 1010.68
2153.99 | | | | | | | | | 959
962 | 3 | 685.68
164.93 | 2057.03
164.93 | 1 | | | | | | | | 961
960 | 1 | 85.61
160.75 | 85.61
160.75 | - | | | | | | | | 963 | 1 | 80.85 | 80.85 | 1 | | | | | | | | 970
969 | 4 | 380.00
100.21 | 1519.99
100.21 | 1 | | | | | | | | 1041
1047 | 5 | 218.13
117.71 | 1090.66
117.71 | 1 | | | | | | | | 1031
1045 | 1 | 352.57
187.34 | 352.57
187.34 | } | | | | | | | | 1046 | 1 | 260.91 | 260.91 | 1 | | | | | | | | 1030
1049 | 1 | 534.34
468.13 | 534.34
468.13 | 1 | | | | | | | | 1029
1042 | 1 | 202.25
436.82 | 202.25
436.82 | } | | | | | | | | 1028
1044 | 1 1 | 346.79
326.95 | 346.79
326.95 | | | | | | | | 2961 | 1050 | 1 | 215,78 | 215.78 | 103098.44 | 306 | 42994.45 | 68660.45 | 41.70 | 0.7 | | | 1043
1086 | 1 | 312.08
303.63 | 312.08
303.63 | 1 | | | | | | | | 1087
1088 | 1 | 342.39
418.49 | 342.39
418.49 | 1 | | | | | | | | 1113
1114 | 3 | 431.87
98.74 | 1295.60
98.74 | - | | | | | | | | 1112 | 3 | 369.02 | 1107.06 | 1 | | | | | | | | 1115
1116 | 1 | 171.65
315.98 | 171.65
315.98 | 1 | | | | | | | | 1111 | 1 | 343.69
208.89 | 343.69
208.89 | 1 | | | | | | | | 1119 | 1 | 157.46 | 157,46 | 1 | | | | | | | | 1120
1118 | 1 | 173.95
216.60 | 173.95
216.60 | 1 | | | | | | | | 1137
1138 | 1 2 | 66.00
119.56 | 66,00
239.12 | 1 | | | | | | | | 1121 | 1 | 168,33
64,61 | 168.33
64.61 | } | | | | | | | | | | 280.17 | 280.17 | | | | | | | | | 1139
1099 | 1 | | | | | | | | 1 | | | 1139 | 1 1 | 414.44 | 414.44 | - | | | | | l | | | 1139
1099
1083
1054
1055 | 1
1
1 | 414,44
53,39
237,53 | 414.44
53.39
237.53 | | | | | | | | | 1139
1099
1083
1054
1055
1060
1053 | 1 1 1 1 1 1 | 414.44
53.39
237.53
278.01
338.11 | 414.44
53.39
237.53
278.01
338.11 | | | | | | | | | 1139
1099
1083
1054
1055
1060 | 1
1
1 | 414,44
53,39
237,53
278,01 | 414.44
53.39
237.53
278.01 | | | | | | | | Plot
Ref.
No. | g Ref.
No. | Building
Storeys | Building
Footprint
(sqm) | Building
Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprin
t on
Same
Plot | Sum of
Building
Floor
Area on
Same
Plot | Building
Coverag
e Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |---------------------|----------------------|---------------------|--------------------------------|------------------------------------|-----------------------|---|--|--|---|---------------------------------| | | 1062
1052
1057 | 1 1 | 157.72
241.76
242.77 | 157.72
241.76
242.77 | | | | | | | | | 1063
1051 | 1 1 | 546.87
178.47 | 546.87
178.47 | | | | | | | | | 1058
1064 | 1 | 132.77
365.77 | 132.77
365.77 | | | | | | | | | 1065
1059
1066 | 1 1 | 292.05
236.30
224.47 | 292.05
236.30
224.47 | | | | | | | | | 1103
1102 | 1 | 163.14
238.76 | 163.14
238.76 | | | | | | | | | 1067
1085 | 1 | 199.61
66.06 | 199.61
66.06 | | | | | | | | | 1084
1082 | 1 | 67.90
69.81 | 67.90
69.81 | | | | | | | | | 1081
1080
1074 | 1 1 3 | 80.42
83.41 | 80.42
83.41
435.56 | | | | | | | | | 1075
1078 | 1 1 | 145.19
39.05
59.14 | 39.05
59.14 | | | | | | | | | 1076
1077 | 1 | 34.29
39.49 | 34.29
39.49 | | | | | | | | | 1079
1096 | 1 | 57.79
246.09 | 57.79
246.09 | | | | | | | | | 1091
1092 | 4 | 210.56
337.43 | 210.56
1349.70 | | | | | | | | | 1093
1097
1098 | 1 | 228.29
159.10
127.92 | 228.29
159.10
127.92 | | | | | | | | | 1094
1090 | 1 | 230.70
58.91 | 230.70
58.91 | | | | | | | | | 1089
1100 | 1 | 59.61
140.47 | 59.61
140.47 | | | | | | | | | 1095
1101 | 1 | 200.26
224.18 | 200.26 | | | | | | | | | 1155
1156
1154 | 1 1 | 34.31
162.13
48.67 | 34.31
162.13
48.67 | | | | | | | | | 1151
1153 | 1 3 | 79.77
149.29 | 79.77
447.86 | | | | | | | | | 1152
1157 | 3 4 | 95.34
347.22 | 286.02
1388.89 | | | | | | | | | 1935
1068 | 1 | 1444.68
193.72 | 1444.68
193.72 | | | | | | | | | 1073
1943
1104 | 1 1 | 333.56
117.46
347.78 | 333.56
117.46
347.78 | | | | | | | | | 1069
1110 | 1 | 251.95
205.10 | 251.95
205.10 | | | | | | | | | 1108
1109 | 1 | 270.04
359.65 | 270.04
359.65 | | | | | | | | | 1072
1070 | 1 1 | 216.96
377.73
206.88 | 216.96
377.73 | | | | | | | | | 1107
1105
1106 | 1 | 85.36
194.49 | 206.88
85.36
194.49 | | | | | | | | | 1071
1939 | 1 1 | 213.40
226.32 | 213.40 | | | | | | | | | 1938
1122 | 1 1 | 341.06
168.75 | 341.06
168.75 | | | | | | | | | 1123
1937
1940 | 1 1 | 164,24
99,33 | 164.24
99.33
165.30 | | | | | | | | | 1127
1124 | 1 | 165.30
527.01
47.58 | 527.01
47.58 | | | | | | | | | 1125
1126 | 1 1 | 116.15
211.28 | 116.15
211.28 | | | | | | | | | 1941
1128 | 1 | 208.35
632.49 | 208.35
632.49 | | | | | | | | | 1942
1135 | 1 1 | 142.77
68.10 | 142.77
68.10
399.77 | | | | | | | | 2961 | 1136
1134
1133 | 1 | 399.77
499.42
402.73 | 400.42 | 103098.44 | 306 | 42994.45 | 68660.45 | 41.70 | 0.7 | | | 1963
1140 | 1 2 | 320.24
156.72 | 320.24
313.44 | | | | | | | | | 1129
1141 | 1 2 | 64.05
141.10 | 64.05
282.21 | | | | | | | | | 1142
1150
1147 | 1 2 | 114.67
72.18 | 229.33
72.18 | | | | | | | | | 1131
1146 | 3
1
1 | 149.71
61.81
185.72 | 449.12
61.81
185.72 | | | | | | | | | 1130
1145 | 1 2 | 56.80
184.91 | 56.80
369.83 | | | | | | | | | 1144
1143 | 1 | 143.29
64.26 | 143.29
64.26 | | | | | | | | | 1132
1149
1177 | 1
3
1 | 80.68
357.33 | 80.68
1072.00 | | | | | | | | | 1176
1148 | 1 3 | 155.97
66.56
204.53 | 155,97
66,56
613,59 | | | | | | | | | 1178
1179 | 1 1 | 261.38
208.67 | 261.38
208.67 | | | | | | | | | 1180
1936 | 1 | 267.65
373.33 | 267.65
373.33 | | | | | | | | | 1184
1186 | 1 1 2 | 174.38
203.07 | 174.38
203.07 | | | | | | | | | 1192
1185
1187 | 3
1 | 270.90
211.44
120.48 | 812.70
211.44
120.48 | | | | | | | | | 1904
1188 | 1 1 | 113.85
102.91 | 113.85
102.91 | | | | | | | | | 1903
1189 | 1 | 102.68
97.22 | 102.68
97.22 | | | | | | | | | 1190
1161
1165 | 4 | 96.83
315.21
33.56 | 96.83
1260.85
33.56 | | | | | | | | | 1166
1171 | 1 1 | 33.37
92.79 | 33.37
92.79 | | | | | | | | | 1160
1172 | 1 1 | 195.28
49.16 | 195.28
49.16 | | | | | | | | | 1170
1159 | 1 | 99.70
89.50 | 199.40
89.50 | | | | | | | | | 1167
1169
1173 | 1 1 2 | 76.30
36.56
83.60 | 76.30
36.56
167.20 | | | | | | | | | 1173
1158
1162 | 2
1
3 | 83.60
90.22
345.39 | 167.20
90.22
1036.18 | | | | | | | | | 1168
1174 | 3 | 144.96
235.39 | 289.92
706.18 | | | | | | | | | 1164
1183 | 3 | 124.77
205.80 | 374.32
617.40 | | | | | | | | | 1175
1163 | 3 1 | 90.52
44.78
111.08 | 271.56
134.34
111.08 | | | | | | | | | 1181
1191
1182 | 1 | 64.36
42.64 | 64,36
42,64 | | | | | | | | | 1945
1193 | 9 | 123.56
465.77 | 1112.00
1863.09 | | | | | | | | | 1946
1952 | 1 1 | 59.63
69.68 | 59.63
69.68 | | | | | | | | | 1951
1953 | 3 3 | 114.14
141.98
281.72 | 342.41
425.93 | | | | | | | | | 1962
1961
1955 | 1 3 | 281.72
229.80
133.99 | 281.72
229.80
401.98 | | | | | | | | | 1954
1949 | 1 | 115.28
49.33 | 115.28
49.33 | | | | | | | | | 1948
1950 | 3 1 | 155.08
154.50 | 465.24
154.50 | | | | | | | | | 1959
1958
1960 | 3
1
1 | 168.46
36.97
216.94 | 505.37
36.97
216.94 | | | | | | | | | 1960
1957
1956 | 3 3 | 216.94
150.91
156.53 | 452,72
469.59 | | | | | | | | 2962 | 1947 | 1 | 125.68 | 125.68 | 50.04 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2963 | | | | | | | | | | | | 2964 | 2274 | 4
6
5 | 181.34
164.24
68.56 | 725.34
985.41
342.82 | 181.34
277.45 | 11 | 181.34
232.80 | 725.34
1328.23 | 100.00
83.91 | 4.0 | | | | | | Buildin | | Sum of | Sum of
Building | Sum of
Buildin | Building | Floor | |--------------|--------------|----------|-----------------------|--------------------|-------------------|----------------------|--------------------|-------------------|-----------------|----------------| | Plot
Ref. | Building | Building | Building
Footprint | g Floor | Plot
Area | Storeys | Footprint | g Floor | Coverage | Area | | No. | Ref. No. | Storeys | (sqm) | Area
(sqm) | (sqm) | Buildings
on Same | on Same
Plot | Area on
Same | Ratio
(BCR) | Ratio
(FAR) | | 2967 | 3958 | 5 | 238.12 | 1190.58 | 258.34 | Plot
5 | (sam)
238.12 | Plot
1190.58 | 92.17 | 4.6 | | 2968
2969 | 1884
1508 | 5 3 | 160.09
175.81 | 800.44
527.44 | 163.88
381.33 | 5 | 160.09
175.81 | 800.44
527.44 | 97.69
46.11 | 4.9
1.4 | | 2970 | 1500
4297 | 3
5 | 645.06
156.43 | 1935.18
782.17 | 1051.69 | 3 | 645.06 | 1935.18 | 61.34 | 1.8 | | | 4299
4300 | 6 2 | 344.19
77.59 | 2065.12
155.18 | | | | | | | | 2971 | 4301
1506 | 5
7 |
201.03
189.06 | 1005.14
1323.42 | 1409.01 | 32 | 1157.28 | 6133.13 | 82.13 | 4.4 | | | 4298
1501 | 5
2 | 141.37
47.61 | 706.87
95.22 | | | | | | | | 2972
2973 | 2437 | 5 | 189,60 | 947.99 | 76.64
253.60 | 0
5 | 0.00
189.60 | 0.00
947.99 | 0.00
74.76 | 0.0
3.7 | | 2974
2975 | 1548
1362 | 3 | 95.73
70.22 | 382.93
210.67 | 124.51
176.44 | 5 | 95.73
126.65 | 382,93
323,52 | 76.89
71.78 | 3.1
1.8 | | 2976 | 1363 | 2 | 56.42 | 112.85 | 31.36 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2977 | 2415
2416 | 1 | 42.84
67.07 | 42.84
67.07 | 289.28 | 2 | 109.92 | 109.92 | 38.00 | 0.4 | | 2978 | 2417
2420 | 3 4 | 66.54
109.94 | 199.61
439.75 | 351.85 | 10 | 248.62 | 855.80 | 70.66 | 2.4 | | 2979 | 2418
2421 | 3 4 | 72.15
53.22 | 216.44
212.89 | 87.97 | 4 | 53.22 | 212.89 | 60,50 | 2.4 | | 2980
2981 | 2131
3998 | 10 | 146.17
672.13 | 584.68
6721.34 | 200.85
791.53 | 10 | 146.17
672.13 | 584.68
6721.34 | 72.77
84.92 | 2.9
8.5 | | 2982
2983 | 4000 | 2 | 126.93 | 253.87 | 161.27
248.95 | 0 | 126.93
0.00 | 253.87
0.00 | 78.71
0.00 | 1.6 | | 2984
2985 | 3598
4329 | 1 4 | 225.06
66.98 | 225.06
267.93 | 274.44
102.24 | 1 4 | 225.06
66.98 | 225.06
267.93 | 82.01
65.52 | 0.8
2.6 | | 2986
2987 | 3629 | 5 | 127.19 | 635,94 | 274.27
174.46 | 5 | 0.00
127.19 | 0.00
635.94 | 0.00
72.91 | 0.0
3.6 | | 2988
2989 | - | | | | 117.87
54.44 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 2990 | 4020
3544 | 3 | 200.50
120.08 | 401.00
360.23 | 317.21 | 2 | 200.50 | 401.00 | 63,21 | 1.3 | | 2991 | 3545
4023 | 3 | 116.72
107.10 | 350.17
321.29 | 499.92 | 9 | 343.90 | 1031.69 | 68,79 | 2.1 | | 2992
2993 | 4027
3418 | 2 | 328.80
1140.94 | 657,60
1140,94 | 356.36
1154.05 | 2 | 328.80
1140.94 | 657.60
1140.94 | 92.27
98.86 | 1.8 | | 2994 | 3478
3479 | 3
5 | 189.76
232.44 | 569.28
1162.20 | 1123.75 | 11 | 847.03 | 3005.96 | 75.38 | 2.7 | | 2995 | 3480
4033 | 3 4 | 424.83
71.61 | 1274.48
286.44 | 71.63 | 4 | 71.61 | 286.44 | 99.97 | 4.0 | | 2996 | 3350
3389 | 5 | 178.10
79.88 | 890.49
798.77 | 364.60 | 5 | 178.10 | 890.49 | 48.85 | 2.4 | | 2997
2998 | 3388 | 10 | 149.12 | 1491.22 | 243.05
539.94 | 0 | 229.00 | 2290.00 | 94.22 | 9.4 | | 2999
3000 | 546
3729 | 6 2 | 235.22
130.71 | 1411.34
261.42 | 316.31
138.24 | 6 2 | 235.22
130.71 | 1411.34
261.42 | 74.36
94.56 | 4.5 | | 3001
3002 | 3305
4083 | 4 4 | 61.28
262.85 | 245.14
1051.39 | 84.42 | 4 | 61.28
262.85 | 245.14
1051.39 | 72.59
81.23 | 2.9 | | 3003 | 3244
3245 | 1 6 | 40.74
62.24 | 40.74
373.45 | 303.41 | 8 | 163.48 | 474.68 | 53.88 | 1.6 | | | 3243
3265 | 1 | 60.50
52.44 | 60.50
52.44 | | - 5 | | | | | | 3004 | 3263
3264 | 2 | 137.44
56.81 | 274.88
56.81 | 388.52 | 4 | 246.68 | 384.13 | 63.49 | 1.0 | | 3005 | 2634
2635 | 1 | 65.56
63.91 | 65.56
63.91 | 406.60 | 3 | 190.46 | 190.46 | 46.84 | 0.5 | | 3006 | 2633
2631 | 1 3 | 60.99
219.88 | 60.99
659.63 | 257.38 | 3 | 219.88 | 659.63 | 85.43 | 2.6 | | 3007 | 2442
4311 | 3 | 307.61
87.38 | 922.84
87.38 | 563.33 | 4 | 395.00 | 1010.22 | 70.12 | 1.8 | | 3008 | 4129
2440 | 2 | 119.86
63.87 | 239.71 | 155.53 | 2 | 119.86 | 239.71 | 77.06 | 1.5 | | 3009 | 2441
2300 | 6 3 | 68.46
103.55 | 410.76
310.66 | 137.50 | 9 | 132.33 | 602.37
310.66 | 96.24
76.62 | 2.3 | | 3011 | 2324
2329 | 3 2 | 101.31
22.53 | 303.94
45.05 | 125.88 | 3 | 101.31 | 303.94 | 80,49 | 2.4 | | 3012 | 2330 | 2 | 26.30 | 52.60 | 216.30 | 9 | 90,76 | 307.34 | 41.96 | 1.4 | | 3013 | 2331
2326 | 1 | 41.94
31.08 | 209.69
31.08 | 255.61 | 3 | 129.81 | 129.81 | 50.78 | 0.5 | | 3014 | 2328
2327 | 1 | 61.15
37.58 | 61.15
37.58 | | | 100000000 | 755.67 | 79.67 | 4.0 | | 3015 | 2325
2335 | 5 | 151.13
23.77 | 755.67
23.77 | 189.70 | 5 2 | 151.13
74.14 | 74.14 | 43.39 | 0.4 | | 3016 | 2336
2337 | 3 | 50.36
31.37 | 50.36
94.10 | 107.99 | 3 | 31.37 | 94.10 | 29.05 | 0.9 | | 3017 | 2333
2332 | 3 | 74.62
68.67 | 447.71
206.00 | 284.88 | 9 | 143.28 | 653,71 | 50.30 | 2.3 | | 3018
3019 | 4140 | 3 | 100.86 | 302.59 | 161,91
178,49 | 3 | 0.00
100.86 | 0.00
302.59 | 0.00
56.51 | 1.7 | | 3020
3021 | 4162
2165 | 4 | 33.42
295.96 | 133.66
1183.86 | 34.62
297.82 | 4 | 33.42
295.96 | 133.66
1183.86 | 96.52
99.38 | 3.9
4.0 | | 3022 | 2166
4315 | 1 | 191.38
96.97 | 765,53
96,97 | 288.35 | 5 | 288.35 | 862.50 | 100.00 | 3.0 | | 3023 | 2297
4166 | 4 | 69.89
86.37 | 279.55
345.50 | 270.93 | 8 | 156.26 | 625:04 | 57.68 | 2.3 | | 3024 | 4143
4144 | 1 | 219.79
74.12 | 219.79
74.12 | 1066.41 | 12 | 628.95 | 1969.13 | 58.98 | 1.8 | | 0005 | 4141
4142 | 5 | 143.99
191.05 | 719.97
955.26 | 10.11 | | 0.150 | 0.171 | | - 10 | | 3025
3026 | 3169
4317 | 3 | 21.58
75.91 | 64.74
227.74 | 48.14
75.91 | 3 | 21,58
75,91 | 64.74
227.74 | 44.82
100.01 | 3.0 | | 3027
3028 | 2774
4182 | 1 1 | 274.70
78.12 | 549.40
78.12 | 308.00
231.53 | 2 | 274.70
153.24 | 549.40
153.24 | 89,19
66.19 | 1.8 | | 3029 | 4183
2740 | 2 | 75.12
270.23 | 75.12
540.45 | 504.56 | 3 | 376.72 | 646.95 | 74.66 | 1.3 | | 3030 | 4265
3083 | 3 | 106.50
39.14 | 106.50
117.41 | 74.11 | 3 | 39.14 | 117.41 | 52,81 | 1.6 | | 3031
3032 | 4220
2632 | 4 | 56.18
184.25 | 56.18
736.98 | 56.18
184.24 | 1 4 | 56.18
184.25 | 56.18
736.98 | 100.00 | 1.0
4.0 | | 3033
3034 | 4227 | 4 | 105.14 | 420.57 | 117.20 | 0 | 105.14
0.00 | 420.57
0.00 | 89.71
0.00 | 3.6
0.0 | | 3035
3036 | 3017
3020 | 1 | 334.42
207.92 | 334.42
207.92 | 337.78
211.67 | 1 1 | 334.42
207.92 | 334.42
207.92 | 99.01
98.23 | 1.0 | | 3037 | 3019
3018 | 1 | 48.23
94.46 | 48.23
94.46 | 405.90 | 3 | 168.79 | 168.79 | 41.59 | 0.4 | | 3038 | 4233
3022 | 6 | 26.11
80.64 | 26.11
483.84 | 418.80 | 12 | 228.88 | 1373.27 | 54.65 | 3.3 | | 3039 | 3021
3023 | 5 | 148.24
89.64 | 889.43
448.19 | 210.09 | 6 | 116.80 | 475.35 | 55,60 | 2.3 | | 3040 | 4232
2930 | 7 | 27.16
196.79 | 27.16
1377.50 | 382.26 | 7 | 196,79 | 1377.50 | 51,48 | 3.6 | | 3041
3042 | 4195
2774 | 2 7 | 396 39
274 70 | 1189.16
549.40 | 630.62
308.31 | 2 7 | 396.39
274.70 | 1189.16
549.40 | 62.86
89.10 | 1.9 | | 3043
3044 | 3904
1944 | 7 | 92.28
142.65 | 645.94
142.65 | 107.69 | 7 | 92.28
142.65 | 645.94
142.65 | 85,69
100,00 | 6.0
1.0 | | 3045 | 2297
4166 | 4 | 69.89
86.37 | 279.55
345.50 | 270.93 | 8 | 156.26 | 625.04 | 57.68 | 2.3 | | 3046
3047 | 2377
2442 | 3 | 126.38
307.61 | 126.38
922.84 | 126,35
563,17 | 4 | 126.38
395.00 | 126.38
1010.22 | 70.14 | 1.0 | | 3048 | 4311
2055 | 5 | 87.38
129.17 | 87.38
645.86 | 136.94 | 5 | 129,17 | 645.86 | 94.33 | 4.7 | | 3049
3050 | 3744
787 | 2 | 212.96
35.02 | 851.83
70.05 | 216.27 | 7 | 212.96
130.17 | 851.83
545.76 | 98.47
62.07 | 3.9
2.6 | | 3051 | 677
706 | 3 | 95.14
127.48 | 475.71
382.44 | 156.88 | 3 | 127.48 | 382.44 | 81.26 | 2.4 | | 3052
3053 | 3603
4548 | 1 | 160.26
44.46 | 160.26
44.46 | 445,07
43,48 | 1 | 160.26
44.46 | 160.26
44.46 | 36.01
102.24 | 1.0 | | 3054
3055 | 4343
168 | 1 1 | 72.09
77.61 | 72.09
77.61 | 158.15
279.30 | 8 | 72.09
217.70 | 72.09
1058.27 | 45,59
77,94 | 0.5
3.8 | | 3056 | 4344
4345 | 7 | 140.10
35.46 | 980.67
35.46 | 41.38 | 1 | 35,46 | 35.46 | 85.71 | 0.9 | | 3057 | 169
321 | 4 | 77.57
59.74 | 155.14
238.95 | 200.44 | 6 | 137.31 | 394.09 | 68.50 | 2.0 | | 3058
3059 | 4345
339 | 1 | 35.46
190.00 | 35.46
190.00 | 41.42
260.55 | 1 | 35.46
190.00 | 35.46
190.00 | 85.63
72.92 | 0.9 | | 3060
3061 | 4355 | 6 | 230.53 | 1383.20 | 286.00
158.43 | 6 | 230.53
0.00 | 1383.20
0.00 | 80.61
0.00 | 4.8
0.0 | | 3062
3063 | 300
4363 | 4 | 119.77
302.12 | 239.54
1208.48 | 257.31
710.06 | 13 | 119.77
616.65 | 239.54
4039.23 | 46.55
86.84 | 0.9
5.7 | | 3064 | 4362
4391 | 9 | 314.53
432.36 | 2830.74
2594.18 | 437.77 | 6 | 432.36 | 2594.18 | 98.76 | 5.9 | | 3065 | 4392
4389 | 7 | 138.05
88.76 | 966.38
532.54 | 589.29 | 18 | 457.05 | 2650.13 | 77.56 | 4.5 | | 3066 | 4390
4393 | 5 | 230.24
190.74 | 1151.21
190.74 | 218.45 | 1 | 190.74 | 190.74 | 87.32 | 0.9 | | 3067 | 4394
4399 | 1 2 | 165.36
94.67 | 165.36
189.34 | 444.45 | 1 | 165.36 | 165.36 | 37.21 | 0.4 | | 3068 | 4400
4401 | 1 1 | 182.06
235.17 | 182.06
235.17 | 1872.22 | 4 | 511.90 | 606.57 | 27.34 | 0.3 | | 3069 | 4409 | 5 | 122.29 | 611.45 | 156.50 | 5 | 122.29 | 611.45 | 78.14 | 3.9 | | Plot
Ref.
No. | Buildin
g Ref.
No. | Building
Storeys | Building
Footprint
(sqm) | Building
Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprin
t on
Same
Plot | Sum of
Building
Floor
Area on
Same
Plot | Building
Coverag
e Ratio
(BCR) | Floor
Area
Ratio
(FAR) | |----------------------|--------------------------|---------------------|--------------------------------|------------------------------------|-------------------------------|---|--|--|---|---------------------------------| | 3070 | 4410
4411 | 14
6
2 | 1618.61
53.99
326.98 | 22660.51
323.91
653.97 | 3036.11 | 30 | 2395.98 | 25224.00 | 78.92 | 8.3 | | | 4412
4413
4398 | 4 3 |
161.65
234.75
134.40 | 646.60
939.02
403.19 | 684.55 | | | | 200 200 | | | 3071 | 4403
4402
4404 | 9
1
5 | 155.06
35.51
204.61 | 1395.55
35.51
1023.03 | 684.55
684.55
260.64 | 13 | 324.97
204.61 | 1834.25 | 47.47
78.50 | 3.9 | | 3073
3074 | 4396 | 6 | 138.12 | 828.72 | 148.31
167.51 | 6 | 0.00
138,12 | 0.00
828.72 | 0.00
82.46 | 0.0
4.9 | | 3075 | 4407
4376
4377 | 5
9
4 | 58.37
204.88
104.56 | 291,84
1843.88
418.24 | 58,37
8705.19
8705.19 | 5 | 58.37 | 291.84 | 100.00 | 5.0 | | | 4378
4380 | 8 6 | 350.60
94.52 | 2804.80
567.13 | 8705.19
8705.19 | | | | | | | 3076 | 4381
4379 | 6 8 | 754.08
283.96 | 4524.50
2271.67 | 8705.19
8705.19 | 68 | 5884.33 | 28903.42 | 67.60 | 3.3 | | | 4382
4383
4384 | 6
6
2 | 584.57
357.61
56.44 | 3507.41
2145.64
112.88 | 8705.19
8705.19
8705.19 | | | | | | | | 4385
4386 | 7 | 417.44
356.98 | 1252.32
2498.88 | 8705.19
8705.19 | | | | | | | 3077
3078 | 4387
4375
4442 | 3
9
15 | 2318.69
173.67
860.62 | 6956.07
1562.99
12909.31 | 8705.19
252.91
1133,65 | 9 | 173.67
860.62 | 1562.99
12909.31 | 68.67
75.92 | 6.2 | | 3079
3080 | 4443
4444 | 6 7 | 160.43
241.69 | 962.59
1691.83 | 222.10
280.57 | 6 7 | 160.43
241.69 | 962.59
1691.83 | 72.23
86.14 | 4.3
6.0 | | 3081
3082
3083 | 4446
4445
4462 | 6 6 9 | 255.89
227.86
321.69 | 1535,32
1367,16
2895,21 | 329.21
268.06
490.39 | 6 6 9 | 255.89
227.86
321.69 | 1535.32
1367.16
2895.21 | 77.73
85.00
65.60 | 4.7
5.1
5.9 | | 3084
3085 | 4461
4459 | 9 | 406.37
44.94 | 3657.33
359.50 | 477.09
243.16 | 9 | 406.37
118.01 | 3657.33
797.95 | 85.18
48.53 | 7.7 | | 3086
3087 | 4458
4460 | 6 | 73.07
105.55 | 438.45
633.31 | 195.98
149.66 | 6 | 105.55 | 633.31 | 53.86 | 3.2 | | 3088
3089 | 4453
4453 | 4 | 466.66
466.66 | 1866.62
1866.62 | 490.95 | 4 4 | 466.66
466.66 | 1866.62
1866.62 | 95.05
95.05 | 3.8 | | 3090
3091 | 4457
4451 | 5
6 | 363.19
56.15 | 1815.95
336.92 | 404.95
137.44 | 5
6 | 363,19
56,15 | 1815,95
336.92 | 89.69
40.86 | 4.5
2.5 | | 3092
3093 | 4450
4449 | 6 | 72.80
81.54 | 436.82
489.24 | 183.98
228.72 | 6 11 | 72.80
134.20 | 436.82
752.54 | 39.57
58.68 | 3.3 | | 3094 | 4448
4456
4454 | 5
3
5 | 52.66
229.49
477.12 | 263.30
688.47
2385.62 | 1199.15 | 13 | 874.63 | 3914.19 | 72.94 | 3.3 | | 3094 | 4455
4425 | 5 | 168.02
294.68 | 840.09
1768.07 | 414.94 | 6 | 294.68 | 1768.07 | 71.02 | 4.3 | | 3096
3097 | 4426
4428 | 4
9 | 261.06
324.41 | 1044.23
2919.73 | 382.22
451.33 | 4
9 | 261.06
324.41 | 1044.23
2919.73 | 68.30
71.88 | 2.7
6.5 | | 3098
3099 | 4427
4429 | 6 | 98.86
289.07 | 593.17
1734.40 | 673.26
367.16 | 6 | 98.86
289.07 | 593.17
1734.40 | 14.68
78.73 | 0.9
4.7 | | 3100
3101
3102 | 4430
4431
4432 | 1 6 | 181.60
144.89
134.82 | 726.42
144.89
808.92 | 388.96
267.83
292.24 | 1 6 | 181.60
144.89
134.82 | 726.42
144.89
808.92 | 46.69
54.10
46.13 | 1.9
0.5
2.8 | | 3103
3104 | 4447
4433 | 6 5 | 393.26
104.42 | 2359.56
522.09 | 634.66 | 6 5 | 393.26
104.42 | 2359.56
522.09 | 61.96
48.55 | 3.7 | | 3105 | 1217
1259 | 5 | 172.76
91.76 | 863.80
275.28 | 352.46 | 8 | 264.52 | 1139.07 | 75.05 | 3.2 | | 3106
3107 | 4436
4437 | 7 | 111.39
78.17 | 779.73
312.70 | 138.33
174.62 | 7 | 111.39
78.17 | 779.73
312.70 | 80.53
44.77 | 5.6
1.8 | | 3108
3109 | 4434
4435
4441 | 10
10
3 | 629.84
1051.81 | 6298.44
10518.11
559.22 | 2099.53
194.61 | 20 | 1681.66
186.41 | 16816.55
559.22 | 80.10
95.79 | 8.0 | | 3110
3111 | 4438
4439 | 7 | 186.41
187.68
194.57 | 1313.76
1362.01 | 203.39 | 7 | 187.68 | 1313.76
1362.01 | 92.27
95.67 | 6.5 | | 3112 | 4421
4416 | 1 | 66.39
338.85 | 66.39
338.85 | 882.27
1159.52 | 3 | 66.39
495.20 | 66.39
651.56 | 7.52 | 0.1 | | 3113 | 4417
4414 | 6 | 156.36
402.73 | 312.71
2416.38 | 1109.52 | 3 | 495.20 | 651.56 | 42.71 | 0.6 | | 3114 | 4415
4418
4419 | 7 | 360.16
261.99
172.25 | 2160.97
1833.93
1205.74 | 2137.00 | 33 | 1357.33 | 8738.39 | 63.52 | 4.1 | | 3115 | 4420
4440 | 7 | 160.20
94.88 | 1121.37 | 94.92 | 7 | 94.88 | 664.19 | 99.97 | 7.0 | | 3116
3117 | 4452
4424 | 5 2 | 400.94
145.63 | 2004.71
291.26 | 487.55
178.52 | 5 2 | 400.94
145.63 | 2004.71
291.26 | 82.24
81.58 | 4.1
1.6 | | 3118 | 4464
4463 | 1 | 227.91
100.33 | 227.91
100.33 | 511.58 | 2 | 328.24 | 328.24 | 64.16 | 0.6 | | 3119 | 4466
4467
4465 | 5
4
6 | 156.02
254.76
2309.05 | 780.09
1019.05
13854.28 | 5116.41 | 15 | 2719.83 | 15653.42 | 53.16 | 3.1 | | 3120 | 4468
4469 | 10 | 376.25
112.36 | 3762.49
112.36 | 798.69 | 10 | 376.25 | 3762.49 | 47.11 | 4.7 | | 3121 | 4470
4471 | 1
6 | 231.09
1445.79 | 231.09
8674.74 | 364.11
3430.65 | 6 | 343.45
1445.79 | 343.45
8674.74 | 94.33 | 2.5 | | 3123
3124 | 4475 | 9 | 297.66 | 2678.92 | 2434.42
623.73 | 9 | 0.00
297.66 | 0.00
2678.92 | 0.00
47.72 | 0.0
4.3 | | 3125
3126 | 4472
4477
4476 | 5
1
9 | 471.33
10.03
145.26 | 2356.65
10.03
1307.31 | 551.93
688.35 | 10 | 471.33
155.29 | 2356.65
1317.34 | 85.40
22.56 | 1.9 | | 3127
3128 | 4474
4473 | 1 6 | 190.02
383.89 | 190.02 | 317.41
444.12 | 1 6 | 190.02
383.89 | 190.02
2303.37 | 59.86
86.44 | 0.6
5.2 | | 3129
3130 | 4478
4479 | 7 | 266.43
165.88 | 532.86
1161.19 | 668.57
285.00 | 7 | 266.43
165.88 | 532.86
1161.19 | 39.85
58.21 | 0.8
4.1 | | 3131 | 4480 | 5 | 344.42 | 1722.09 | 613.48
5681.19 | 5 | 0.00 | 0.00 | 0.00 | 0.0 | | 3133
3134
3135 | 4484
4483
4482 | 9
4
16 | 311.92
219.21
295.53 | 2807.30
876.84
4728.54 | 706.56
465.12 | 9
4
16 | 311.92
219.21
295.53 | 2807.30
876.84
4728.54 | 36.87
31.02
63.54 | 1.2
10.2 | | 3136
3137 | 4481
4486 | 10
3 | 853.81
73.53 | 8538.07
220.59 | 1299.01 | 10 | 853.81
622.63 | 8538.07
5162.48 | 65.73
55.10 | 6.6 | | 3138 | 4485
1218 | 9 | 549.10
651.49 | 4941.89
651.49 | 2712.52 | 1 | 651.49 | 651.49 | 24.02 | 0.2 | | 3139
3140 | 4495
4494
4493 | 9 9 | 36.35
147.00
248.68 | 36.35
1322.99
2238.08 | 497.37
543.21 | 10 | 183.35
248.68 | 1359.34
2238.08 | 36.86
45.78 | 2.7 | | 3141
3142 | 4492
4489 | 6 | 327.16
187.13 | 1962.93
1122.76 | 498.58
277.16 | 6 | 327.16
187.13 | 1962.93
1122.76 | 65.62
67.52 | 3.9 | | 3143
3144 | 4488
4491 | 8 | 162.26
315.97 | 1298.08
2527.75 | 291.94
508.42 | 8 8 | 162.26
315.97 | 1298.08
2527.75 | 55.58
62.15 | 4.4
5.0 | | 3145
3146
3147 | 4487
4490 | 5
6 | 119.99
130.50 | 599.97
783.02
598.50 | 251.13
211.30 | 5
6 | 119.99
130.50 | 599.97
783.02
596.50 | 47.78
61.76
42.52 | 3.7 | | 3147
3148
3149 | 4496
4497
4498 | 3
6 | 198.86
216.93
133.00 | 596.59
1301.58
797.98 | 467.68
330.02
297.67 | 3
6 | 198.86
216.93
133.00 | 596.59
1301.58
797.98 | 42.52
65.73
44.68 | 1.3
3.9
2.7 | | 3150
3151 | 4499
4501 | 6 2 | 226.40
406.21 | 1358.41
812.42 | 419.08
728.08 | 6 2 | 226.40
406.21 | 1358.41
812.42 | 54.02
55.79 | 3.2
1.1 | | 3152
3153 | 4500
4504 | 4 | 208.95
112.26 | 417.89
449.03 | 603,96
618.83 | 6 | 208.95
346.61 | 417.89
917.72 | 34.60
56.01 | 0.7 | | 3154 | 4505
4502
4503 | 2
4
2 | 234.35
232.49
151.29 | 468.70
929.95
302.58 | 551.80 | 6 | 383.78 | 1232.53 | 69.55 | 2.2 | | 3155 | 4509
4510 | 4 | 180.25
12.38 | 720.98
12.38 | 377.73 | 5 | 192.63 | 733.36 | 51.00 | 1.9 | | 3156 | 4511
4506 | 8 | 361.91
208.22 | 2895.26
1249.33 | 597.19 | 8 | 361.91 | 2895.26 | 60.60 | 4.8 | | 3157 | 4507
4512 | 7
8 | 135.72
312.97 | 950.05
2503.80 | 1418.43 | 27 | 784.61 | 5469.35 | 55.32 | 3.9 | | 3158 | 4508
4513
4514 | 2 2 | 127.70
103.84
56.95 | 766.18
207.68
113.90 | 1029.60 | 6 | 189.19 | 378.38 | 18.38 | 0.4 | | 3159 | 4514
4523
4515 | 2 3 | 28.40
143.93 | 56.80
431.78 | 792.88 | 3 | 143.93 | 431.78 | 18,15 | 0.4 | | 3160
3161 | 4520
4516 | 6 | 488.24
583.06 | 2929.43
3498.36 | 747.34
721.49 | 6 | 488.24
583.06 | 2929.43
3498.36 | 65.33
80.81 | 3.9
4.8 | | 3162 | 4517
4518 | 7 4 | 48.76
111.53 | 341.33
446.12 | 297.42 | 11 | 160.29 | 787.45 | 53.89 | 2.6 | | 3163
3164 | 4519
4405
4406 | 8
4
5 | 370.47
156.63
91.33 | 2963.73
626.53
456.63 | 543.00
288.93 | 9 | 370.47
247.96 | 2963.73
1083.16 | 68.23
85.82 | 3.7 | | 3165
3166 | 4395
4422 | 6 | 195.38
310.98 | 1172.30
1865.90 | 305.79
321.48 | 6 | 195.38
310.98 | 1172.30
1865.90 | 63.89
96.73 | 3.8
5.8 | | 3167
3168 | 4423
4397 | 3
5 | 343.49
112.12 | 1030.47
560.58 | 365.61
202.96 | 3
5 | 343.49
112.12 | 1030.47
560.58 | 93.95
55.24 | 2.8 | | Plot
Ref.
No. | Building
Ref. No. | Building
Storeys | Building
Footprint
(sqm) | Buildin
g Floor
Area
(sqm) | Plot
Area
(sqm) | Sum of
Storeys
of
Buildings
on Same
Plot | Sum of
Building
Footprint
on Same
Plot
(sqm) | Sum of
Buildin
g Floor
Area on
Same
Plot | Building
Coverage
Ratio
(BCR) | Floor
Area
Ratio
(FAR | |---------------------|----------------------|---------------------|--------------------------------
-------------------------------------|-----------------------|---|---|---|--|--------------------------------| | | 1243 | 1 | 207.99 | 207.99 | | | | | | | | | 1244 | 1 | 44.71 | 44.71 | la company | | 1000000000 | 0.0000000 | 7/80/86/67 | | | 3169 | 1245 | 3 | 116.03 | 348.08 | 776,77 | 7 | 489.56 | 721.61 | 63.03 | 0.9 | | | 1249 | 1 | 42.60 | 42.60 | | | | | | | | 0.470 | 1250 | 1 | 78.25 | 78.25 | 404.40 | - | 0.00 | 0.00 | 0.00 | | | 3170 | 4500 | | 450.00 | 007.75 | 164.19 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 3171 | 4522 | 2 | 153.88 | 307.75 | 290.92 | 2 | 153.88 | 307.75 | 52.89 | 1.1 | | 3172 | 676 | - | 12.71 | 10.71 | 2411.01 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | | 575
572 | 1 | 48.64 | 12.71
48.64 | | | | | | | | | 574 | 1 | 36.85 | 36.85 | 7501000000 | 11.28 | 200000000 | | 112500000 | | | 3173 | 570 | 1 | 98.43 | 98.43 | 514.82 | 6 | 267.83 | 267.83 | 52.02 | 0.5 | | | 573 | 1 | 29.46 | 29.46 | | | | | | | | | 571 | 1 | 41.74 | 41.74 | 1 | | | | | | | 3174 | 801 | 6 | 221.50 | 1328.97 | 275.68 | 6 | 221,50 | 1328.97 | 80.35 | 4.8 | | 3175 | 1748 | 1 | 46.56 | 46.56 | 176.18 | 8 | 176.22 | 954.21 | 100.02 | 5.4 | | 3175 | 3835 | 7 | 129.66 | 907.65 | 1/0.10 | | 170.22 | 934.21 | 100.02 | 5.4 | | 3176 | 2224 | 1 | 77.12 | 77.12 | 94.68 | 1 | 77.12 | 77.12 | 81.45 | 0.8 | | 3177 | 190 | 6 | 220.01 | 1320.07 | 1192.86 | 11 | 706.28 | 3751.39 | 59.21 | 3.1 | | 2111 | 191 | . 5 | 486,26 | 2431.32 | 1102.00 | | 700.20 | 0,01.00 | 55.27 | 9.1 | | | 131 | 3 | 66.16 | 198.47 | | | | | | | | | 132 | 4 | 135.81 | 543.26 | | | | | | | | | 130 | 1 | 34,12 | 34.12 | | | | | 46.71 | | | 3178 | 137 | 1 | 26.02 | 26.02 | 876.95 | 14 | 409.65 | 949.41 | | 1.1 | | 3110 | 135
129 | 1 | 27.65 | 27.65
49.77 | 070.83 | 1.4 | 409.65 | 949.41 | | 1.1 | | | 136 | 1 | 49.77
29.21 | 29.21 | 1 | | | | | | | | 133 | 1 | 19.32 | 19.32 | | | | | | | | | 134 | 1 | 21.59 | 21.59 | | | | | | | | 3179 | 1288 | 17 | 827.40 | 14065.79 | 1721.31 | 17 | 827.40 | 14065.79 | 48.07 | 8.2 | | 3180 | 1200 | - " | 02.1,40 | 14000,10 | 387.51 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 7000 | 579 | 1 | 48.93 | 48.93 | | | - | | | | | | 580 | 1 | 90.11 | 90.11 | 1 | | | | | | | 3181 | 578 | 1 | 42.99 | 42.99 | 863.48 | 5 | 325.55 | 325.55 | 37.70 | 0.4 | | | 577 | 1 | 77.46 | 77.46 | | | | | | | | | 576 | 1 | 66.06 | 66.06 | | | | | | d. | | 2402 | 437 | 6 | 225.60 | 1353.58 | 564.07 | 7 | 212.21 | 1111 20 | 55.52 | 2.0 | | 3182 | 438 | 1 | 87.62 | 87.62 | 304.U/ | / | 313.21 | 1441.20 | 55.53 | 2.6 | | 3183 | 501 | 3 | 93.10 | 279.29 | 268.75 | 3 | 93.10 | 279.29 | 34.64 | 1.0 | | 3184 | | | | | 108.83 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 3185 | 535 | 3 | 190.36 | 571.09 | 588.17 | 3. | 190.36 | 571.09 | 32.37 | 1.0 | | 3186 | | | | | 113.95 | 0 | 0.00 | 0.00 | 0.00 | 0.0 | | 0407 | 215 | 9 | 1118.15 | 10063.35 | 0007.71 | 40 | 4444.00 | ******* | 74.00 | | | 3187 | 216 | 9 | 326.74 | 2940.63 | 2027.71 | 18 | 1444.89 | 13003.98 | 71.26 | 6.4 | | 3188 | 717 | 2 | 81.88 | 163.76 | 170.75 | 2 | 81.88 | 163.76 | 47.95 | 1.0 | | 3189 | 2731 | 5 | 52.03 | 260.17 | 103.11 | 5 | 52.03 | 260.17 | 50.47 | 2.5 | | 3190 | 139 | 4 | 127.05 | 508.21 | 164.18 | 4 | 127.05 | 508.21 | 77.39 | 3.1 | | 3191 | 517 | 7 | 99.37 | 695.62 | 244.02 | 7 | 99.37 | 695.62 | 40.72 | 2.9 | | 3192 | 514 | 7 | 327.90 | 2295.31 | 354.68 | 7 | 327.90 | 2295.31 | 92.45 | 6.5 | | 3193 | 4284 | 2 | 55.79 | 111.57 | 99.97 | 2 | 55.79 | 111.57 | 55.81 | 1.1 | | 3194 | 4388 | 8 | 524.87 | 4198.99 | 437.77 | 6 | 432.36 | 2594.18 | 98.76 | 5.9 |