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Abstract

Since the first demonstration of quantum cascade lasers (QCLs) in 1994, there

has been extensive research on their improvements as QCLs have potential appli-

cations in remote chemical sensing and pollution monitoring. By incorporating

a distributed feedback (DFB) grating in a QCL structure, single-mode operation

with narrower linewidth has been achieved. The coupling coefficient of a DFB-

QCL is one of the most important parameters to be considered for manipulating

the behavior of the device. In this thesis, we have modeled this parameter using

Coupled-Wave theory and observed its dependance on various design parame-

ters such as temperature, grating depth, grating period, tooth angle, duty cycle,

and grating shape. It has been found that the value of the coupling coefficient is

greatly design-dependent. Since the higher its value, the better the performance of

the DFB-QCL to select a single-mode, the design parameters can be changed to

obtain a high value of the coupling coefficient. We have also developed a model

to obtain the output optical power from a a DFB-QCL. A wide range of operating

parameters have been varied to design a stable DFB-QCL for single-mode opera-

tion. It has been found that for every design of a DFB-QCL structure, there is an

optimum grating depth, grating period and grating shape for which single-mode

operation with high value of side-mode suppression ratio (SMSR) is possible.
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Chapter 1

Introduction

The development of lasers has been a turning point in the history of science and

engineering. It has produced a completely new type of systems with potentials for

applications in a wide variety of fields. Albert Einstein first explained the theory

of stimulated emission in 1917, which became the basis of laser. He postulated

that when the population inversion exists between upper and lower levels among

atomic systems, it is possible to realize amplified stimulated emission and the

stimulated emission has the same frequency and phase as the incident radiation.

However, it was in the 1950s that scientists and engineers did extensive work to

realize a practical device based on the principle of stimulated emission [2]. Since

then, they have become ubiquitous, finding utility in thousands of highly varied

applications in every section of modern society, including consumer electronics,

information technology, science, medicine, industry, law enforcement, entertain-

ment, and the military.

In the early years of the evolution of semiconductor laser, the attention was mainly
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focussed on bandgap lasers where the recombination of electron-hole pairs across

the semiconductor bandgap results in optical amplification. However, at the end of

the 1980s, and beginning of the 1990s, researchers working on resonant tunneling

started to work on unipolar laser [3]. In the span of a few years, several proposals

appeared on how to achieve population inversion by using intersubband transitions

in superlattices or in coupled quantum wells, but none was implemented into a real

laser structure [4]. It was only in 1994 that a commercially viable mid-infrared

light source versatile enough for a broad range of applications was invented by

Faist et. al., who demonstrated a semiconductor injection laser that is built out of

semiconductor quantum structures and differs from diode lasers in a fundamental

way [5]. In quantum cascade lasers (QCLs), the wavelength is entirely determined

by quantum confinement and can be tailored from the mid-infrared to the submil-

limeter wave region in the same heterostructure material [5].

Modern technologies make extensive and broad use of the electromagnetic spec-

trum that spans from ultraviolet light through the radio bands. The mid-infrared,

nestled within this electromagnetic medium, is very important for sensing a num-

ber of gas species like ammonia, benzene, carbon dioxide, carbon monoxide,

ethane, formaldehyde, hydrogen sulfide, methane, nitric oxide, nitrous oxide, ni-

trogen dioxide, sulphur dioxide, and water vapor [6]. The absorption spectra of

some of these gases are shown in Fig. 1.1. By using mid-infrared light, scientists

within the last decade have developed the ability to detect the presence of specific

molecules with unprecedented sensitivity and flexibility.

Within the mid-IR range, a number of environmentally important molecular species

2
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Figure 1.1: Absorption spectra for five gases in the mid IR region of the spectrum
(all at 100% vol), taken from the PNNL database [1].

have unique “finger prints” as shown in Fig. 1.1. Whether it is greenhouse gases or

toxic chemicals in the workplace, there are many situations where governments,

research institutions, and private companies have a need to know “what” and “how

much.” By detecting if certain wavelengths of light are being absorbed, it can be

determined which molecular species exist in a sampled environment and in what

quantity, with up to parts per trillion sensitivity. These QCL-based detection sys-

tems are compact, portable, and therefore, widely deployable.

Semiconductor diode lasers, including quantum well lasers, rely on transitions

between energy bands in which conduction electrons and valence band holes are

injected into the active layer through a forward biased p-n junction and radiatively

recombine across the material bandgap [7]. However, QCLs rely on only one type

of carriers (unipolar semiconductor laser) and on cascading electronic transitions

between conduction band states arising from size quantization in semiconductor

3



heterostructures [8], as schematically shown in Fig. 1.2.

Unipolarity
Optical transition
between subbands

Cascading
More photons
per electron 

Figure 1.2: Schematic representation of unipolar transition and cascading in a
quantum cascade laser.

The unipolarity in QCLs is a consequence of the optical transitions that occur be-

tween conduction band states (subbands) arising from size quantization in quan-

tum wells. These transitions are commonly denoted as intersubband transitions.

The other fundamental feature of QCLs is the multistage cascade scheme, whereby

electrons are recycled from period to period, contributing each time to the gain and

the photon emission [8]. In a unipolar QCL, once an electron has undergone an

intersubband transition and emitted a photon in one period of the superlattice, it

can tunnel into the next period of the structure where another photon can be emit-

ted. This process of a single electron causing the emission of multiple photons as

it traverses through the QCL structure gives rise to the name “cascade” and makes

a quantum efficiency of greater than unity possible which leads to higher output

powers than semiconductor laser diodes.
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For most of the applications of QCLs in trace gas sensing, environmental pol-

lution monitoring, and medical diagnostics, they are expected to have a stable

single mode emission [9]. The emission spectra of QCLs can be made single

mode by processing them as distributed feedback (DFB) lasers [10]. DFB-QCLs

use a diffraction grating either buried within or on top of the ridge waveguide to

preferentially select a single output wavelength. The attractive feature of single-

mode operation of DFB-QCLs have made researchers pursue such devices for the

last few years [9, 11, 12, 13].

Since the first report of continuous-wave (CW) operation of Fabry-Perot (FP)

QCLs with 3 mW at 312 K around λ ∼ 9.1 µm [14], researchers have been able

to demonstrate high CW output powers of several hundred milliwatts at room

temperature for FP QCLs [11, 15] through an improved material design, growth

quality, and thermal management. However, the output of these FP-QCLs have a

multimode emission spectra. As mentioned previously, for many applications, a

well-defined single-mode output is desired from a QCL. As a result, room tem-

perature DFB-QCLs have been demonstrated over a wide wavelength range of

3.5−16 µm [10, 16, 17, 18]. Recently, a pulsed room temperature single mode op-

eration DFB-QCL at a wavelength of 3.34 µm with an output power of 0.8 W has

been demonstrated [19]. Recent thermoelectrically (TE) cooled devices provide

from hundreds of milliwatt up to watts of CW radiation power from DFB-QCLs

[20]. CW DFB-QCLs are increasingly available and combine the advantages of

pulsed lasers, such as near room temperature operation and continuously tuneable

single mode emission, with straightforward and convenient tuning options [20].

5



Many groups have employed a number of spectroscopic techniques such as long

pass absorption, photoacoustic spectroscopy, cavity ringdown, intracavity absorp-

tion, magnetic rotation spectroscopy to monitor a number of molecules of differ-

ent sizes [21]. Using DFB-QCLs, an ultra-sensitive and selective quartz-enhanced

photoacoustic spectroscopy (QEPAS) sensor platform has been demonstrated for

detection of carbon monoxide (CO) and nitrous oxide (N2O) [22]. The devel-

opment of a sensitive SO2 QEPAS based sensor platform employing a 140 mW

CW-DFB-QCL has also been reported recently [23]. The TE cooled DFB-QCL

has been fabricated that emits at ∼4.27 µm to detect the presence of SiH4 [24]. A

DFB-QCL array has been demonstrated [25], which achieved single mode lasing

coverage of 85 cm−1 near 9 µm using a bound-to-continuum active-region design.

To demonstrate the applicability of DFB-QCL arrays for remote sensing, the ab-

sorption spectrum of isopropanol was measured at a distance of 6 m from the laser

array [26].

In DFB-QCLs, the coupling coefficient, κ, is the central parameter, which is a

measure of the amount of feedback per unit length provided by the diffraction

grating [27]. It is expected to design DFB QCLs with a large κ, so that the cou-

pling strength (κL) that includes the grating length (L), remains large and a shorter

device can be used [25]. Also, in order to achieve a single longitudinal mode oper-

ation and high-power output, the DFB coupling has to be strong enough to support

a single longitudinal mode for the desired laser cavity [9]. A number of design

parameters such as the period, duty cycle, tooth angle and depth of the grating,

type of cladding material, and temperature can be used to control the value of κ

[28, 29]. There have been experimental demonstrations of DFB-QCLs and the
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effects of κ on the output characteristics [10, 25, 30]. However, the single mode

operation of DFB QCLs is also affected by the operating parameters and a detail

theoretical analysis of the dynamics is still lacking. For a successful design and

engineering of stable single mode operation of DFB QCLs, a detail theoretical

analysis of the diffraction grating and its critical interaction with the laser’s gain

spectrum is essential. In this thesis, we have performed this analysis by varying

the value of κ with various design parameters and its effect on the single-mode

operation of the DFB-QCL.

Usually experimental research on DFB-QCLs has been conducted for the anal-

ysis of their characteristics [9, 10, 11, 12, 13]. However, with experimental ap-

proach, it is difficult to explain the details of the complicated interactions between

the electromagnetic wave and the corrugated layer in the top cladding layer of

the DFB-QCL. Therefore, it is desirable to establish a theoretical technique for

systematically treating wave propagation through a DFB-QCL structure. In this

technique, Maxwell’s equations are discretized in space and time for the analysis

of electromagnetic wave propagation [31] allowing the interaction of the electro-

magnetic wave and the particles to be traced temporally by the finite-difference

time-domain (FDTD) method over time. FDTD is a state-of-the-art method for

solving Maxwell’s equations in complex geometries [32, 33]. Being a direct time

and space solution, it offers a unique insight into all types of problems in electro-

magnetics and photonics [34]. FDTD technique is not only useful for analyzing

the characteristics of the electromagnetic wave in DFB-QCLs, but also can be

used as a design tool for performance enhancement of the devices. In this theis,

we have used FDTD method for calculating the electric field intensity of output
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emission of the QCL and associated optical power with varying wavelength. Us-

ing FDTD analysis, we have observed the actual output optical power emitted

from the device by varying different design parameters. Thus, from a microscopic

analysis of DFB gratings, we have been able to observe the macroscopic effect on

DFB-QCLs.

The rest of the thesis is organized as follows:

Chapter 2 focuses on the calculation of the coupling coefficient of DFB-QCLs.

Various design parameters such as the period, duty cycle, tooth angle, and depth

of the diffraction grating have been varied and their effects on the coupling coef-

ficient have been analyzed.

In Chap. 3, frequency domain solutions have been used to calculate the modes

and time-domain solutions have been used to study the dynamics of the distributed

feedback of the diffraction grating. The electric field intensity and the output op-

tical power of DFB-QCLs with varying grating period, grating shape, and grating

depth have been simulated and single-mode operation has been achieved.

Chapter 4 draws conclusions on the findings of this work. It summarizes the

effect of the coupling coefficient on the single mode operation of DFB-QCLs. It

also mentions the present technological limitations and future challenges in the

performance of the distributed feedback quantum cascade lasers.
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Chapter 2

Analysis of Coupling Coefficient of

Distributed Feedback Quantum

Cascade Laser

2.1 Introduction

To understand the operational characteristic of a DFB-QCL, it is necessary to con-

sider wave propagation in periodic structures. Grating or corrugation-induced di-

electric perturbation leads to a coupling between the forward and backward prop-

agating waves. Various approaches like coupled wave theory [27, 35] and Bloch

wave analysis [36] have been used to model this coupling behavior. Although

these two methods have been proven to be equivalent [37], the coupled wave the-

ory has been accepted widely because numerical algorithms can be implemented

to solve the equations in this method, whereas in Bloch wave analysis, several

fitting parameters are required for solving the structure that can only be found by

9



experimental analysis [28].

The coupling coefficient (κ) in a DFB-QCL is a key parameter representing the

grating feedback strength in coupled wave theory [29]. It measures the strength

of the backward Bragg scattering and thus the amount of feedbcak per unit length

provided by the structure. Therefore, the change of κ will have a significant effect

on the laser operating characteristics. The coupling coefficient, κ, depends on the

operating temperature of the grating as well as on the depth, shape, and duty cycle

of the grating. Thus the output characteristics of QCLs can be changed and con-

trolled by varying the operating temperature of the grating as well as the depth,

shape, and duty cycle of the grating.

2.2 Coupled Wave Equations

The DFB-QCL has a multi-dielectric stack in which periodic corrugations are

formed along one boundary, e. g., in z direction. Within this grating region, pertur-

bation is introduced so that the refractive index and the amplitude gain coefficient

become [27, 28]

n(z) = n0 + ∆n cos(2β0z + Ω) (2.1)

and

α(z) = α0 + ∆α cos(2β0z + Ω + θ). (2.2)

Here, n0 and α0 are the steady-state values of the refractive index and amplitude

gain, respectively, ∆n and ∆α are the amplitude modulation terms of n(z) and α(z)

respectively. The parameter Ω is the non-zero residue phase at the z-axis origin,

10



β0 is the Bragg propagation constant so that β0 = 2πn0/λB = mπ/Λ with m being

the order of Bragg diffraction and Λ being the period of the corrugation. The pa-

rameter θ is the relative phase difference between perturbations of the refractive

index and amplitude gain.

In a semiconductor laser that has a transversely and laterally confined structure,

the electric field must satisfy the one-dimensional homogeneous wave equation

such that [
d2

dz2 + k2(z)
]

E(z) = 0, (2.3)

where the time dependance of the electric field E(z) is e jωt.

With corrugations extending along the longitudinal direction, the wave propaga-

tion constant, k(z), can be written as

k2(z) = ω2µε, (2.4)

where ω is the angular frequency and ε is the complex permittivity. When the

radiation frequency is sufficiently close to the resonance frequency, Eq. (2.4) be-

comes [7]

k2 = k2
0n2(z)

(
1 + j

2α(z)
k0n(z)

)
, (2.5)

where n(z) and α(z) are given by Eqs. (2.1) and (2.2) respectively. It is assumed

that the DFB laser oscillates at or near the Bragg wavelength, i. e., λ ≈ λB, so

that the gain is small over distances of the order of a wavelength λB, and that the

perturbations of the refractive index and the gain are small, i. e., ∆n � n0 and

11



∆α� α0. Substituting Eqs. (2.1) and (2.2) into Eq. (2.5) and assuming that θ = 0

generates

k2(z) ≈ β2 + 2 jα0β + 4β
[
π∆n
λ

+ j
∆α
2

]
cos(2β0z + Ω), (2.6)

where

β =
2πn0

λ
. (2.7)

By collecting all the perturbed terms, one can define a parameter κ [27] such that

κ =
π∆n
λ

+ j
∆α
2

= κi + jκg, (2.8)

where κi includes all contributions from the refractive index perturbation while κg

covers all contributions from the gain perturbation.
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Figure 2.1: Schematic illustration of laser oscillation in a periodic structure.

In Fig. 2.1, we show a simplified illustration which demonstrates the operation of

a DFB structure. In the diagram we show two waves represented by arrows, one

which travels to the left and the other to the right. As each wave travels in the

periodic structure, it receives light at each point along its path by Bragg scattering
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from the oppositely traveling wave. This creates a feedback mechanism which is

distributed throughout the length of the periodic structure.

If we consider R(z) to be the right traveling wave and S(z) to be the left trav-

eling wave, then following the procedures in [27], we get a pair of coupled wave

equations for the DFB-QCL structure such that

−
dR
dz

+ (α0 − jδ)R = jκRSSe− jΩ, (2.9)

dS
dz

+ (α0 − jδ)S = jκSRRe jΩ, (2.10)

where

κRS = κi + jκge− jθ (2.11)

is the general form known as the forward coupling coefficient [38], and

κSR = κi + jκge jθ (2.12)

is the backward coupling coefficient.

2.3 QCL Gain Medium

The QCL structure that we have used has an active region based on a bound-to-

continuum design [39]. The bound-to-continuum approach provides a high pop-

ulation inversion and low-threshold current densities even at high temperatures

[39]. In this design the active region spans the whole period and consists of a

chirped superlattice presenting a tilted lower miniband whose width is maximum
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in the center and decreases on both sides close to the injection barriers. The up-

per state is created in the first minigap by a small well adjacent to the injection

barrier. Its wavefunction has a maximum close to the injection barrier and de-

creases smoothly in the active region. This upper state is well separated from the

higher-lying states of the superlattice, lying in its first minigap. It therefore does

not need to be confined by separating the structure into an active region and an

injection/relaxation region.
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Figure 2.2: Band structure and the relevant moduli squared wave functions for
active/injector region under an applied electric field of 35 kV/cm and 200 K
temperature. The layer sequence of a period of the structure, is 3.9/ 2.2/ 0.8/6/
0.9/ 5.9/1/5.2/ 1.3/ 4.3/1.4/3.8/1.5/3.6/ 1.6/ 3.4/1.9/ 3.3/ 2.3/ 3.2/2.5/ 3.2/2.9/3.1,
where the layer sequences are given in nm, In0.52Al0.48As barriers are in bold face,
In0.53Ga0.47As wells are in normal face, and numbers underlined correspond to the
n-doped layers (Si, 2.3 × 1017 cm−3).

The QCL gain medium that we have used is based on the works mentioned in [40].
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It uses alternate layers of In0.52Al0.48As and In0.53Ga0.47As layers. It is designed

to emit light in the 9 µm range. The conduction band diagram of one stage is

shown schematically in Fig. 2.2 with the computed relevant wavefunctions.

2.4 Waveguide Structure

The first step in processing quantum cascade gain material to make a useful light-

emitting device is to confine the gain medium in an optical waveguide. This makes

it possible to direct the emitted light into a collimated beam, and allows a laser

resonator to be built such that light can be coupled back into the gain medium.

Two types of optical waveguides are in common use. A ridge waveguide is cre-

ated by etching parallel trenches in the quantum cascade gain material to create

an isolated stripe of QC material as shown in Fig. 2.3(a). A dielectric material is

typically deposited in the trenches to guide injected current into the ridge, then the

entire ridge is typically coated with gold to provide electrical contact and to help

remove heat from the ridge when it is producing light. Light is emitted from the

cleaved ends of the waveguide.

The second waveguide type is a buried heterostructure as shown in Fig. 2.3(b).

Here, the QC material is also etched to produce an isolated ridge. Now, how-

ever, new semiconductor material is grown over the ridge. The change in index of

refraction between the QC material and the overgrown material is sufficient to cre-

ate a waveguide. Dielectric material is also deposited on the overgrown material
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Figure 2.3: (a) End view of QC facet with ridge waveguide. Darker gray: InP,
lighter gray: QC layers, black: dielectric, gold: Au coating, (b) End view of QC
facet with buried heterostructure waveguide. Darker gray: InP, lighter gray: QC
layers, black: dielectric.

around QC ridge to guide the injected current into the QC gain medium. Buried

heterostructure waveguides are efficient at removing heat from the QC active area

when light is being produced.

Our design is based on a first-order DFB of rectangular shape that is formed in

the upper waveguide cladding of the QCL [25]. It is designed as an etched corru-

gation in a buried InGaAs layer just above the active region of the laser as shown

in Fig. 2.4. Referring to Fig. 2.4, the DFB-QCL structure consists of a bottom

waveguide cladding of 4 µm of InP doped 1 × 1017cm−3 (red), followed by 580

nm of InGaAs doped 3 × 1016cm−3 (yellow), a 2.4 µm thick lattice-matched ac-

tive region (blue), 580 nm of InGaAs doped 3 × 1016cm−3 where the grating is

etched 500 nm deep (yellow), and a top waveguide cladding of 4 µm InP doped

1 × 1017cm−3 (red). The active region consists of 35 stages based on a bound-to-

continuum design as described in Sec. 2.3. The period of the grating is 1.4 µm.

This type of structure is known as purely index-coupled DFB, where coupling is

solely generated by the refractive index perturbation [41]. Since most carrier tran-

16



Upper Cladding

Active Region

Lower Cladding

Grating

Grating Period

InP

InGaAs

InGaAs

InP

InGaAs/InAlAs
z

x

y

Figure 2.4: Schematic illustration of the DFB-QCL waveguide with rectangular
grating. The grating is etched in InGaAs layer (yellow) in the top waveguide
cladding, just above the active region (blue). An InP layer is overgrown on top of
the grating (red).

sition is confined along the active layer, the amplitude gain of the DFB-QCL will

not be affected. Therefore, with κg = 0, the index coupling coefficient κi, which

is purely real, is related to κRS and κSR by the following expression [28]

κRS = κSR = κi. (2.13)

Therefore, the expression of the coupling coefficient for a DFB-QCL reduces to

κ =
π∆n
λ

= κi. (2.14)

There can be two other types of DFB-QCL waveguide. In a mixed-coupled DFB,

due to the variation of refractive index along the corrugation layer, index coupling

is induced. Also, the active layer thickness becomes a periodic function along the

longitudinal direction and so it modifies the amplitude gain along that direction.
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Thus, gain coupling is induced. This type of structure is shown in Fig. 2.5(a).

Figure 2.5: Simplified schematic diagrams showing (a) a mixed-coupled DFB-
QCL and (b) a purely gain-coupled DFB-QCL.

The other type of DFB grating id gain-coupled or loss-coupled DFB as shown in

Fig. 2.5(b). In this case, the second corrugation demonstrates an inverse corru-

gation phase with respect to the first layer of grating. Thus, the effect of index

coupling can be canceled out.

We note that although the gain-coupled DFB lasers have attracted considerable

interest because of smaller sensitivity to external reflection [42, 43], their weak

optical confinement limits the beam quality [44]. Moreover, it is difficult to ob-

tain a stable output in single longitudinal mode. As a result, the index-guiding

mechanism has become the mainstream in semiconductor laser development and

a large number of index-guided structures have been proposed [41], where a lat-

eral variation of refractive indices is used to confine the optical energy.

We have also analyzed a DFB-QCL structure with a layer of trapezoidal corru-

gation. Although the rectangular grating DFB-QCLs are better for single-mode

operation, trapezoidal gratings are important since fabrication processes are more

18



likely to build trapezoidal gratings rather than rectangular ones [45]. The schematic

illustration of the structure is shown in Sec. 2.6.4 with the results obtained from

such structure.

The DFB grating gives rise to a photonic band gap (PBG). PBG is a term applica-

ble to dielectric media which possess alternate regions of low and high refractive

index such that the transmission of photons or light energy of certain frequencies

is forbidden. Thus it is a photon forbidden region analogous to electron forbidden

region in the case of electron band gap of semiconductors. The DFB supports

lasing for longitudinal modes on either side of this gap. There are two modes that

are directly at either edge of the photonic gap as schmeatically shown in Fig. 2.6.

In the higher index part of the grating the low-frequency mode is more concen-

trated and in the lower index part of the grating the high-frequency mode is more

concentrated.

Frequency

In
te

ns
it

y

Low Frequency Mode High Frequency Mode

Photonic Band Gap

Figure 2.6: Schematic illustration of the photonic band gap created inside a DFB-
QCL.
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The coupling coefficient (κ) of the grating is usually a complex number. Its real

part corresponds to the refractive index perturbation and proportional to the pho-

tonic gap. Its imaginary part corresponds to the gain (or loss) perturbation. The

modes can be simulated numerically to find κ using Eq. (2.15) and expanding into

κ =
π∆n
λ

=
π(n1 − n2)

λ
. (2.15)

Here, n1 is the modal effective refractive index of the higher index part of the grat-

ing, i. e., InGaAs layer and n2 is the modal effective refractive index of the lower

index part of the grating, i. e., InP layer. These two values of refractive indices are

obtained from Lumerical MODE Solutions software where the refractive indices

of core and cladding layers are given as input.

Figure 2.7: Mode simulation of the mode on the (a) low frequency side and (b)
high frequency side of the photonic gap of the DFB grating. The plots display the
magnitude of the electric field in the laser structure.

Figures 2.7(a) and (b) show the mode profile calculated for the low and high fre-

quency DFB modes, for two periods of the grating. In the grating structure, the

part that is indented down has a lower effective refractive index than the part that
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is raised up. As previously mentioned, the low-frequency mode is more concen-

trated in the higher index part of the grating and the high-frequency mode is more

concentrated in the lower index part of the grating.

2.5 Calculation of Refractive Indices

2.5.1 Active Region

We take the weighted average of the refractive indices of the materials of the well

and barrier of the hetero-structure to calculate the index of refraction of the active

region which is also the core of our waveguide structure. If n1 and n2 are the

refractive indices of the well and the barrier materials, respectively, and x1 and x2

are the thicknesses of the well and the barrier materials, respectively, the index of

refraction of the active region can be calculated by

nactive =

∑
n1x1 +

∑
n2x2∑

x1 +
∑

x2
. (2.16)

The refractive indices of the well and barrier material (n1 and n2 respectively)

have been modeled using the Ravindra relation [46], which is an approximation

of the Penn model [47] and is given by

n = 4.16 − 1.12Eg + 0.31E2
g − 0.08E3

g. (2.17)

Here, Eg is the bandgap of the material that can be calculated using the model of

Varshni [48] as

Eg = Eg,0 −
αT2

β + T
, (2.18)
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where Eg,0 is the bandgap at 0 K temperature, α and β are fitting parameters char-

acteristics of a given material.

In the case of alloy materials, the temperature-dependent bandgaps of the con-

stituents, EA
g and EB

g , are calculated by Eq. (2.18). However, for materials where

the bandgap changes between direct and indirect, the multiple valley conduction

bands are considered. For that purpose, additional model parameters are needed

for the higher energy valleys in the respective III-V binary materials.

The bandgap and the energy offset of an alloy A1−xBx are calculated by

EAB
g,X = EA

g,X(1 − x) + EB
g,Xx + Cg,X(1 − x)x, (2.19)

EAB
g,Γ = EA

g,Γ(1 − x) + EB
g,Γx + Cg,Γ(1 − x)x, (2.20)

EAB
g = min(EAB

g,X,E
AB
g,Γ). (2.21)

The above mentioned parameters are given in Table 2.1. The bowing parameters

Cg,X and Cg,Γ are summarized in Table 2.2.

2.5.2 InP Layer

The InP layer in the top and bottom waveguide cladding of the waveguide in

Fig. 2.4 is a doped layer. The model of the refractive index of InP described in

Sec. 2.5.1 is based on undoped InP. Therefore, we need a different refractive index

model for InP to incorporate doping.
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Table 2.1: Values of Eg,0, α and β for different materials

Material Minimum Eg,0 (eV) α (eV/K) β (K) References

GaAs Γ 1.521 5.58 × 10−4 220 [49]

GaAs X 1.981 4.6 × 10−4 204 [50]

AlAs Γ 2.891 8.78 × 10−4 332 [50]

AlAs X 2.239 6 × 10−4 408 [51]

InAs Γ 0.420 2.5 × 10−4 75 [52]

InAs X 2.278 5.78 × 10−4 83 [50]

Table 2.2: Values of Cg,Γ and Cg,X for different materials

Material Cg,Γ (eV) Cg,X (eV) References

InGaAs −0.475 −0.475 [51]

InAlAs −0.3 −0.713 [51]
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Pettit et al. proposed a Sellmeier formula for InP doped with N = 5 × 1016cm−3

that relates refractive index with wavelength [53]. The proposed relation is given

by,

n2 = 7.255 +
2.316λ2

λ2 − 0.392 × 106 , (2.22)

where λ is in nm. The validity of Eq. (2.22) can be extended to InP materials

exhibiting a doping level lower than 1018cm−3 [54]. Following the work in [53],

Martin et al. proposed a similar Sellmeier formula that was obtained as the best-fit

of their measured data and given as [55]

n2 = 7.194 +
2.282λ2

λ2 − 0.422 × 106 , (2.23)

where λ is in nm. Equation (2.23) applies to N = 2 × 1018cm−3 doped InP.

Equations (2.22) and (2.23) are particular for two different doping concentrations

and have a similar behavior with wavelength. Therefore, we can interpolate the

value of refractive index of InP for a different doping concentration from these

two curves using linear curve fitting technique.

2.5.3 InGaAs Layer

As in the case of InP layer mentioned in Sec. 2.5.2, the InGaAs layer in the top

and bottom waveguide cladding of the waveguide in Fig. 2.4 is also a doped layer.

The model of the refractive index of InGaAs described in Sec. 2.5.1 is based on

undoped InGaAs. To calculate the effect of doping concentration on the refrac-

tive index of InGaAs, we take similar approach as in the case of InP and use the

results obtained by Gozu et al. [56]. Using the Sellmeier equation for GaAs they
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proposed a simple model based on the shift of the band gap energy Eg(x) of the

InxGa1−xAs alloy given by

n2 = 8.95 +
2.054

1 −
[
0.6245 1.424

λEg(x)

]2 , (2.24)

with

Eg(x) = 1.424 − 1.501x + 0.436x2, (2.25)

where x is the In content in InxGa1−xAs.

2.6 Effects of Different Parameters on κ

Since the coupling coefficient is associated with the perturbed relative permittivity,

the numerical value of κ depends on the shape, depth, duty cycle and period of

the corrugation. In addition, as the temperature changes the refractive indices, it

may also affect the coupling coefficient.

2.6.1 Variation of Duty Cycle of Grating

The duty cycle of the grating is defined as the ratio of the groove to the total

length of groove and ridge. The DFB-QCL waveguide structure of Fig. 2.4 has

been analyzed to determine the coupling coefficient with varying duty cycle. We

have varied the grating periods between 1.3 and 1.5 µm with 0.1 µm increment,

satisfying the Bragg condition for lasing wavelengths between 8.5 and 9.6 µm,

with an effective refractive index of 3.27 as calculated in our mode simulations.

The grating depth is 500 nm and the temperature is 200 K. The result is shown in
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Fig. 2.8.
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Figure 2.8: Dependence of Coupling Coefficient on Duty Cycle of the waveguide
of Fig. 2.4.

As can be seen from Fig. 2.8, the value of the coupling coefficient shows a max-

ima at 50% duty cycle and decreases as the duty cycle is made higher or lower to

this value. This is coherent with the result found by Millett et al. [57]. A 50%

duty cycle maximizes the refractive index contrast [25]. This means the wave

propagating through the length of the structure is incident on equal length of InP

and InGaAs layer. Therefore, the difference of the refractive indices gets maxi-

mum and we get the highest value of κ. If we increase or decrease the duty cycle,

the length of either the InP layer or the InGaAs layer increase with respect to the

other. This minimizes the refractive index contrast and thus κ decreases.
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2.6.2 Variation of Grating Depth

The grating coupling coefficient per unit length has also been calculated for vary-

ing grating depth for the waveguide structure of Fig. 2.4. As in the variation of κ

with duty cycle in Sec. 2.6.1, the period of the grating is varied between 1.3 and

1.5 µm with 0.1 µm increment. The duty cycle is 0.5 and the temperature is 200

K. The results are shown in Fig. 2.9.
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Figure 2.9: Dependence of Coupling Coefficient on the Grating Depth of the
waveguide of Fig. 2.4.

It is evident from Fig. 2.9 that for a grating period of 1.4 µm, with increasing

grating depth, coupling coefficient reaches a maximum of 29.15 cm−1 for a grat-

ing depth of 500 nm. Lee et. al. fabricated a DFB-QCL waveguide structure of

Fig. 2.4 for a grating depth of 500 nm and from their experimental data they found

a coupling coefficient of ∼ 30 cm−1 [25], which shows only ∼ 2% deviation from
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our result. Thus, we can say that our model for the calculation of the coupling

coefficient is fairly accurate. We can see that increasing grating depth beyond

this value has little effect on κ. With shallower gratings, there is less amount of

refractive index contrast, so the value of κ is smaller. This is particular for the

waveguide structure of Fig. 2.4. Although a deeper grating would be beneficial

in maximizing the reflectivity [58], it would minimize the side-mode suppression

ratio [59] and maximize the spectral width of the gain spectrum, which in turn

would create a multi-mode laser instead of a single mode. Therefore, a grating

depth of 500 nm has been chosen for the waveguide of Fig. 2.4 as a trade-off

between these two effects.

2.6.3 Variation of Grating Tooth Angle

To observe the dependence of the coupling coefficient on the shape of the grating

tooth, it has been calculated by varying the tooth sidewall angle of the waveguide.

A 90◦ angle results in rectangular grating as shown in the waveguide of Fig. 2.4

and an angle less than 90◦ results in trapezoidal grating as shown in the waveguide

of Fig. 2.11. The grating angle has been varied from 60◦ to 90◦ for 1.3, 1.4, and

1.5 µm. The grating depth is 500 nm and the temperature is 200 K. The result is

shown in Fig. 2.10.

As shown in Fig. 2.10, the value of κ is largest for rectangular grating with 90◦

tooth angle. However, trapezoidal grating with lower tooth angle is still of interest

since it has been shown that the maximum reflectance of the waveguide mode is

attained using a trapezoidal grating [60]. Also, the top and bottom width of the
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Figure 2.10: Dependence of Coupling Coefficient on the Grating Tooth Angle of
the waveguide of Fig. 2.4.

grating (WT and WB, respectively, in Fig. 2.11) can be changed to get a maxi-

mum value of the coupling coefficient. This effect has been presented in detail in

Sec. 2.6.4.

2.6.4 Coupling Coefficient for Trapezoidal Corrugation

The fabrication of gratings by dry etching techniques results in a trapezoidal shape

and the wall angle can be modified by the ion incident angle [45]. In this section,

the coupling coefficient values based on the five-layer DFB waveguide with trape-

zoidal grating, as shown in Fig. 2.11, will be investigated. The structural parame-

ters as defined in Fig. 2.11 are listed in Table 2.3.

As explained for rectangular corrugation, since the active layer thickness remains
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Figure 2.11: Schematic illustration of the DFB-QCL waveguide with trapezoidal
grating. The grating is etched in InGaAs layer (yellow) in the top waveguide
cladding, just above the active region (blue). An InP layer is overgrown on top of
the grating (red).

constant along the longitudinal direction, any gain or loss coupling can be ne-

glected and only pure index coupling exists in the case of trapezoidal corrugation.

By setting m = 1 in β0 = mπ/Λ, the coupling coefficient of the first-order trape-

zoidal corrugation has been determined following the method described in [41].

We have studied the effects of different corrugation shapes on the coupling coeffi-

cient and the results are illustrated in Fig. 2.12. The results are similar with those

found by Ghafouri-Shiraz et. al. [61].

In Fig. 2.12, the coupling coefficient is plotted against the bottom width of cor-

rugation (WB), while different values of the top width of corrugation (WT) have

been used as a comparison. Both WB and WT are normalized with respect to the
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Table 2.3: Structural parameters used in determining κ of the first-order trape-
zoidal corrugation

Parameter Value

m 1

d 580 nm

g 500 nm

n1 = n5 3.11

n2 = n4 3.2

n3 3.27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

W
B
 /Λ

C
o

u
p

lin
g

 C
o

e
ff

ic
ie

n
t 

(c
m−

1 )

 

 

W
T
 /Λ = 0.1

W
T
 /Λ = 0.3

W
T
 /Λ = 0.5

W
T
 /Λ = 0.7

Figure 2.12: The change in the first-order coupling coefficient with WB/Λ for
different values of WT/Λ.
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corrugation period (Λ). As observed in Fig. 2.12, there exists a peak coupling

coefficient where the largest possible optical feedback can be achieved. With the

normalized top width WT/Λ increasing from 0.1 to 0.7, the associated WB/Λ val-

ues of the peak coupling coefficient also increase.

The similar analysis has been done for second-order Bragg diffraction. The pa-

rameters used to determine the coupling coefficient of the second-order trape-

zoidal corrugation can be found in Table 2.4.

Table 2.4: Structural parameters used in determining κ of the second-order trape-
zoidal corrugation

Parameter Value

m 2

d 1080 nm

g 1000 nm

n1 = n5 3.11

n2 = n4 3.2

n3 3.27

The effect of corrugation shapes on the second-order coupling coefficient has been

investigated in Fig. 2.13.

Just as for the first-order plot shown in Fig. 2.12, the coupling coefficient is shown

as a function of WB/Λ for various values of WT/Λ. As observed in Fig. 2.13,

there exist two peak values of coupling coefficients along the WB/Λ axis for each
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Figure 2.13: The change in the second-order coupling coefficient with WB/Λ for
different values of WT/Λ.

selected value of WT/Λ. In between the peaks, there are places where the cou-

pling coefficient drops to almost zero value. This may happen because the electric

field diffracted by the second-order corrugation is completely out of phase with

the incident wave. Therefore, zero coupling coefficients follow at that particular

corrugation shape.

2.6.5 Variation of Temperature

We have analyzed the DFB-QCL waveguide structure of Fig. 2.4 to determine the

coupling coefficient with varying temperature. The period of the grating is 1.4

µm, the depth is 500 nm and the duty cycle is chosen to be 50%, which is typical

of first-order DFBs, as this maximizes the refractive index contrast [25]. The vari-

ation of refractive index of the active layer with temperature is shown in Fig. 2.14.

33



100 150 200 250 300 350 400
3.24

3.26

3.28

3.30

3.32

3.34

Temperature (K)

n
ac

ti
v
e

Figure 2.14: Index of refraction of active region vs. temperature.

As can be seen from Fig. 2.14, the refractive index tends to increase with increas-

ing temperature. This can be explained by considering impurity levels and interfa-

cial defects. At high temperature, these effects dominate and linewidth increases

due to a larger energy spread of the carrier distribution and phonon scattering [62].

Also, the electron wavefunctions at impurity levels may generate a narrow impu-

rity band extending into the conduction band and reducing effective bandgap [63].

As a result, the index of refraction increases.

The variation of refractive indices of InP and InGaAs cladding layers with temper-

ature are also shown in Fig. 2.15. We note that the refractive index of InP cladding

layer is essentially constant with the changing temperature. This is due to the fact

that the refractive index of InP has been modeled assuming that it depends only
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Figure 2.15: Index of Refraction vs. Temperature of the InP and the InGaAs
cladding layer.

on the doping concentration and emission wavelength as described in Sec. 2.5.2.

The model is based on the works of Pettit et al. [53] and Martin et al. [55] where

temperature has not been considered as an affecting parameter. Therefore, we do

not notice significant changes in the value of refractive indices of InP and InGaAs

layer with changing temperature. However, there is an increase in the refractive

index of InGaAs in the 160 K to 190 K temperature range that affects the coupling

coefficient value as will be shown in 2.16.

The variation of the coupling coefficient of the waveguide structure of Fig. 2.4

with temperature is shown in Fig. 2.16. MATLAB and Lumerical MODE Solu-

tions have been used to determine the coupling coefficient, the details of which

are given in Appendix A.
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Figure 2.16: Dependence of Coupling Coefficient on Temperature of the waveg-
uide of Fig. 2.4.

The coupling coefficient decreases with increasing temperature. The value is well

matched with that determined by Lee et al. [25]. The higher the temperature, the

lower the coupling coefficient, and the lower the strength of the backward Bragg

scattering and consequently, lower amount of feedback provided by the structure.

However, there is a slight increase in the value of κ in the 160 K to 190 K temper-

ature change. This corresponds to the increase of refractive index of InGaAs layer

in the same temperature range that results into larger difference in the refractive

indices of the modes (Eq. (2.15)) and a larger value of κ.
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2.7 Summary

In this chapter, the analysis of the coupling coefficient (κ) of distributed feedback

quantum cascade laser has been performed. The key points found in this chapter

have been summarized here:

• The value of κ is maximum for 50% duty cycle of the corrugation of our

structure. This helps to maximize the refractive index contrast and also the

fabrication of the device gets easier.

• As the grating depth is increased, the value of κ for our chosen structure

first increases and after a depth of 500 nm, the change in its value is not

substantial.

• With increasing grating period, the value of κ increases.

• The value of κ increases with increasing tooth angle of the grating. It is

highest for rectangular corrugation with a tooth angle of 90◦.

• The effect of trapezoidal grating in DFB-QCL waveguide structure has been

analyzed with changing the top and bottom width of the corrugation. The

value of κ reaches a maximum value for a particular value of the top and

bottom width of corrugation. This has been analyzed for both first-order

and second-order coupling coefficient.

• With increasing temperature, the value of κ decreases. This results into

lower amount of feedback from the corrugation degrading its performance

as a single-mode lasing source. For the QCL structure discussed in Sec. 2.3
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and waveguide structure discussed in Sec. 2.4, it has been found that the

value of κ is maximum at 200 K.

Following the results found in this chapter, the waveguide structure of Sec. 2.4

has been used in analyzing the output characteristics of the DFB-QCL with 200

K temperature, 50% duty cycle, various grating depth, both rectangular and trape-

zoidal corrugation and three different grating periods.
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Chapter 3

Single Mode Operation of

Distributed Feedback Quantum

Cascade Laser

3.1 Introduction

DFB laser diodes do not use two discrete mirrors to form the optical cavity (as

they are used in conventional laser designs). The grating acts as the wavelength

selective element for at least one of the mirrors and provides the feedback, reflect-

ing light back into the cavity to form the resonator. The grating is constructed so

as to reflect only a narrow band of wavelengths, and thus produce a single longi-

tudinal lasing mode. This is in contrast to a Fabry-Perot Laser, where the facets

of the chip form the two mirrors and provide the feedback. In that case, the mir-

rors are broadband and either the laser functions at multiple longitudinal modes

simultaneously or easily jumps between longitudinal modes. In this chapter, we
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first discuss about the gain spectrum and the oscillating modes of the QCL. Next,

we present a detailed description of our computational model for simulating the

output characteristics of the DFB-QCL. Finally, we present our analytical results.

3.2 Gain Spectrum

To analyze the effect of grating structure (in the upper cladding of the waveg-

uide) on the output emission wavelength and how it affects the performance of a

quantum cascade laser, we have focussed our attention on the gain of the lasing

medium and the modes of the output emission. In general, the gain in a laser

refers to the light produced by stimulated emission of photons. For photon gener-

ation population inversion is a necessary condition. It refers to a state where the

carrier population density in upper lasing level of the laser is more than the lower

lasing level. Lasing levels are the discrete energy levels created by the quantum

well structures in the conduction band. Some of the photons generated by elec-

tron transitions get absorbed in lasing medium and at the two mirrors by various

processes. To get sufficient light output the gain co-efficient must be large enough

to overcome the different losses in the laser.

3.2.1 Gain

The peak modal gain between two sub-bands i and j assuming Lorentzian line-

shape is given by [64]

Gm = GpΓ, (3.1)
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where Gp is the peak material gain between sub-bands i and j, and is given by

Gp =
4πq2

εonλo

z2
i j

2γi jLp
(Ni −N j). (3.2)

Here, q is the charge of an electron, εo is the permittivity of free space, n is the ef-

fective refractive index of laser, λo is the photon wavelength, 2γi j is the linewidth

(FWHM) of QCL, Lp is the length of active region of QCL, zi j is the dipole matrix

element, Ni is the sheet electron density in upper lasing level i and N j is the sheet

electron density in lower lasing level j.

The dipole matrix element is given by [64]

zi j =
~

2(E j − Ei)

〈
ψi

∣∣∣pz
1

m∗(Ei, z)
+

1
m∗(E j, z)

pz

∣∣∣ψ j

〉
, (3.3)

where the energy dependent effective mass is given by

m∗(E) = m∗(E = 0)
(
1 +

E − V
Eg

)
. (3.4)

In Eq. (3.4), E is the electron energy and V is the energy of the conduction band

edge.

The gain linewidth of a QCL with the lasing transition from subband i to sub-

band j is given by

2γi j = ~

(
1
τi→ j

+
1
τi→i

+
1
τ j→ j

)
, (3.5)
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where τi→ j is the lifetime of electrons due to inter-subband scattering between

subbands i and j and τi→i is the intra-subband scattering lifetime in subband i.

Among the different inter-subband scattering mechanisms in QCLs, electron-LO

phonon scattering rate is greater than that of other mechanisms by at least an order

of magnitude [65]. However, electron scattering rate due to interface roughness

within the subbands in QCLs becomes significant [66]. Therefore, in this work,

we calculate the inter-subband lifetimes considering electron scattering due to LO

phonons only and intra-subband lifetimes considering electron scattering due to

interface roughness and LO phonons. This modeling approach for gain linewidth

agrees well with experiments [67].

We calculate the carrier densities in the subbands using the rate equation approach

that has been discussed in [68]. The rate equations that we solve are given by [68]

dn j

dt
=

N∑
i=1,i, j

ni

τi j
− n j

N∑
i=1,i, j

1
τ ji
, (3.6)

where ni is the carrier density in level i and τi j is the scattering lifetime from sub-

band i to subband j. As we have mentioned before, electron-LO phonon scattering

is much more dominant among the scattering mechanisms of inter-subband transi-

tions. Therefore, we have calculated the scattering lifetimes considering only the

electron-LO phonon scattering. Equation (3.6) is formulated assuming periodic-

ity of the quantum-cascade structure, i.e., the electrons extracted from an active

region are injected into the injector region of the next period. In this approach,

we do not solve the rate equations in k-space. However, we calculate the scat-

tering rates assuming that the carriers are distributed at high in-phase k-values,
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which depends on the temperature and carrier density of the subband. Then the

scattering rates are calculated taking the average assuming Fermi distribution of

the carriers. In this approach, initially, we distribute the carriers equally among

the energy levels in the injector region. The carrier densities are redistributed in

the injector and active region energy levels as the rate equations are solved with

respect to time. Finally, we get steady-state carrier densities in a time scale greater

than the scattering lifetimes of the states.

Γ is the confinement factor given by [69]

Γ = 0.3Nw
L
Lo
, (3.7)

where Nw is the number of quantum wells, L is the thickness of single quantum

well and Lo is an arbitrary parameter taken to be 1000Å.

The peak emission gain has been collected from the gain spectrum which is plot-

ted using the Lorentzian lineshape given by [64]

L(Ei j) =

1 +

(
Ei j − Eo

2γi j

)2−1

, (3.8)

where Ei j is the energy difference between sub-bands i and j and Eo is the photon

energy. Lorentzian lineshape given by Eq. (3.8) determines the peak of the gain

spectrum.
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The gain spectrum of the QCL can be plotted using the following equation,

G = GmL(Ei j), (3.9)

where Gm is the peak modal gain given by Eq. (3.1) and L(Ei j) is the Lorentzian

lineshape given by Eq. (3.8).

3.2.2 Mode

Modes of QCLs depend on the cavity length and effective refractive index of the

cavity. The two mirrors of the laser form a resonant cavity and standing wave

patterns are set up between the mirrors in exactly the same way that standing

waves develop on a string or within an organ pipe. Thus, the resonant frequencies

of the QCL is given by [7]

f = m
c

2nL
, (3.10)

where m is an integer, c is the speed of light and L is the cavity length of QCL.

Each value of m satisfying Eq. (3.10) defines an axial or longitudinal mode of

the cavity. While all the integer m’s give possible axial cavity modes, only those

which lie within the gain curve above the loss line can be sustained in the cavity.

3.2.3 Gain Spectrum

For the QCL structure described in Sec. 2.3, the gain spectrum has been plot-

ted with the axial modes in Fig. 3.1. In this figure, only those axial modes have

been shown which are above both the loss line and the FWHM. The cavity length

has been considered to be 1 mm and the refractive index is 3.27. Thus in this
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condition, only the modes shown can exist as radiation in the cavity, that is, for

propagation along the cavity axis.
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Figure 3.1: Gain spectrum of the QCL structure of Sec. 2.3 with loss line and axial
modes.

From the gain spectrum of Fig. 3.1, we can see that peak gain occurs at a wave-

length of ∼ 9 µm. This matches quite perfectly with the Bragg wavelength

(λB = 2nΛ/m) of 8.988 µm that has been calculated with m = 1 (first order

grating), 3.21 guide material refractive index (n) and 1.4 µm grating period (Λ).

Also, the wavelengths of the allowed modes span a wavelength range from about

8.65 µm to 9.35 µm.

For a multi-mode or Fabry-Perot QCL, the output of the laser will be the modes

which have gain above the losses of the laser cavity. Amongst these modes we
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consider the mode nearest to peak to be the fundamental emission mode. For

single mode DFB-QCL, a resonator is attached to the laser cavity by creating a

grating into the top cladding layer so that light of only one single frequency or

mode is emitted. The laser emits light as long as the gain of that mode is above

the losses of the laser. It produces a finer range of wavelengths than a Fabry-

Perot cavity as it has a a Bragg reflector (BR) built on top of the waveguide to

allow emission of desired wavelength only. This forces single mode operation of

the laser at all operating conditions as will be shown in Sec. 3.4.1 for rectangular

gratings and in Sec. 3.4.2 for trapezoidal gratings.

3.3 FDTD Simulations of DFB-QCLs

We have performed our analysis using the QCL structure of Sec. 2.3 and the rect-

angular and trapezoidal waveguide structures of Sec. 2.4. In order to find out the

output emission characteristics of DFB-QCLs, we have used the finite-difference

time-domain (FDTD) method for calculating the electric field intensity of output

emission of the QCL and associated optical power with varying wavelength.

In a DFB laser, radiation is fed from the active into the corrugated layer along

the whole cavity length so that the corrugating medium can be thought of as pos-

sessing an optical gain. Traveling waves are reflected partially and periodically as

they propagate. The left and right traveling waves can only coherently couple to

set up a mode if their frequency is related to the corrugation periodicity (Λ).

To model this behavior, we have simulated the waveguide for output power and
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electric field intensity using Lumerical FDTD Solutions, the details of which are

given in Appendix B. We have used a mode source that is placed on one side of

the waveguide. It has been designed to emit electromagnetic radiation that has

the peak emission wavelength equal to the Bragg wavelength (λB), and a FWHM

calculated from the gain spectrum of the QCL. This multi-mode emission is in-

cident on one side of the DFB-QCL waveguide and travel across the cavity length.

We have used mode source in our simulation. The mode source is used to in-

ject a guided mode into the simulation region. In two-dimensional simulations

the modes are computed across a line. From the calculated gain spectrum of the

QCL, we have selected a wavelength range with modes having higher gain than

both the FWHM and the assumed loss for the structure. From the gain spectrum

of Fig. 3.1, we see that the wavelengths of the allowed modes span a wavelength

range from about 8.65 µm to 9.35 µm. This range has been used in the mode

source in our simulation. The output spectrum of the source is shown in Fig. 3.2.

Boundary conditions are very important in electromagnetics and simulation tech-

niques. FDTD supports a range of boundary conditions, such as perfectly matched

layer (PML), periodic, and Bloch. We have used PML for our simulation purpose.

PML boundaries absorb electromagnetic energy incident upon them and allow

radiation to propagate out of the computational area without interfering with the

fields inside [70]. Furthermore, PML boundaries perform best when the surround-

ing structures extend completely through the boundary condition region.

We have used 1 mm cavity so that considering rectangular grating with 1.4 µm
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Figure 3.2: Output spectrum of the source used in FDTD solutions.

period and 500 nm depth, the value of κL is approximately 3. This value is slightly

higher than typically calculated from experimental data (close to 1-1.5) [30, 71],

which suggests that the device is slightly overcoupled. This overcoupling is help-

ful to secure single-mode operation at high operating currents [12]. The waves

propagate through the waveguide that acts as a wavelength dependent mirror.

Strong reflection occurs for a particular wavelength when 2Λ = mλB/n, where

Λ is the grating period, λB is the Bragg wavelength, n is the effective refractive

index of the medium and m is an integer. On the opposite side of the structure,

a monitor is placed to capture the frequency-domain field profile that calculates

the output optical power with varying wavelength. The schematic of the model is

shown in Fig. 3.3.

We have considered 500 ps to be the total simulation time for the DFB-QCL.

This gives sufficient time for the electromagnetic radiation to propagate through
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Figure 3.3: Schematic illustration of the DFB-QCL structure used in Lumerical
FDTD Solutions to analyze its output characteristics.

the structure and reflect at each end several times so that a stable single mode is

achieved on the output. For example, for a refractive index of 3.27 and a 1 mm

cavity, the wave travels back and forth for a total of ∼46 times.

3.4 Results

We have performed the FDTD solutions to find out the output power of the de-

vices of Sec. 2.4 by the process described in Sec. 3.3. We have considered both

rectangular and trapezoidal gratings with three corrugation periods of 1.3 µm, 1.4

µm, and 1.5 µm and five grating depths of 100 nm, 300 nm, 500 nm, 800 nm, and

1000 nm for each period. The results of our analysis are given in this section.

3.4.1 Rectangular Grating

From Chap. 2, we have found that the value of the coupling coefficient (κ) is high-

est for a tooth angle of 90◦, i. e., the grating is of rectangular shape. Here we have
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calculated the output optical power of a DFB-QCL using FDTD technique with

light injected through one of the facets and collected from the other facet after the

light has propagated back and forth several times. We have calculated the output

optical power for three different cases of 1.3 µm, 1.4 µm, and 1.5 µm grating

period.

1.3 µm Grating Period

For 1.3 µm grating period, the Bragg wavelength is ∼8.5 µm. As we consider only

those modes above both the loss line and FWHM of the gain spectrum, we choose

the wavelength range from 8.15 µm to 8.85 µm. Since we found in Sec. 2.6.2

that the value of κ reaches its peak with a grating depth of 500 nm, we have first

plotted the output power with a grating depth of 500 nm in Fig. 3.4.
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Figure 3.4: Output power of the DFB-QCL of Fig. 2.4 with 1.3 µm rectangular
grating period and 500 nm grating depth.
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The output powers for different wavelengths have been normalized with respect

to the peak output power for a wavelength of ∼8.76 µm. This mode has the high-

est optical power associated with it and is more likely to lase from the cavity. To

compare this with other devices with different grating depths, we perform FDTD

simulations and obtain the results given in Fig. 3.5.
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Figure 3.5: Output power of the DFB-QCL of Fig. 2.4 with 1.3 µm rectangular
grating period for (a) 100 nm, (b) 300 nm, (c) 800 nm, and (d) 1000 nm grating
depth.

From Sec. 2.6.2, we know that for our chosen waveguide structure the value of

κ increases with increasing grating depth upto 500 nm, and then remains almost

constant. Therefore, we get a single peak for a DFB-QCL with a grating depth of

500 nm and multi-peaks for DFB-QCLs with grating depths of 100 nm and 300

nm. For DFB-QCLs with grating depths of 800 nm and 1000 nm, although the re-

sults show a distinct mode at ∼8.22 µm, the side-mode suppression ratio (SMRR),

which is the ratio of power between peak longitudinal mode with the next higher
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order mode, is lower than that DFB-QCL with a 500 nm grating depth.

1.4 µm Grating Period

For 1.4 µm grating period, the Bragg wavelength is ∼9 µm. As we consider only

those modes above both the loss line and FWHM of the gain spectrum, we choose

the wavelength range from 8.65 µm to 9.35 µm. Since we found in Sec. 2.6.2

that the value of κ reaches its peak with a grating depth of 500 nm, we have first

plotted the output power with a grating depth of 500 nm in Fig. 3.6.
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Figure 3.6: Output power of the DFB-QCL of Fig. 2.4 with 1.4 µm rectangular
grating period and 500 nm grating depth.

As is shown in Fig. 3.6, from a range of wavelengths emitted from the mode

source, the DFB grating allows only one mode with a wavelength of 8.81 µm to

oscillate within the laser cavity. Also, if we compare the result with that obtained

from a DFB-QCL with a grating period of 1.3 µm, we note that the SMSR is also
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better in this case. The greater value of SMSR can be attributed to the greater

value of κ in the case of 1.4 µm grating period than that in the case of 1.3 µm

grating period. We next compare this with other devices with different grating

depth, but same grating period in Fig. 3.7.
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Figure 3.7: Output power of the DFB-QCL of Fig. 2.4 with 1.4 µm rectangular
grating period for (a) 100 nm, (b) 300 nm, (c) 800 nm, and (d) 1000 nm grating
depth.

The performance of the 100 nm depth DFB is quite unsatisfactory. The value of κ

for this device is as low as 10.35 cm−1 and there is very little coupling between the

forward and backward moving waves, resulting in poor single-mode selection by

the device. The DFB-QCL with a grating depth of 300 nm has also multi-peaked

output power spectrum with dominating modes at about 8.79, 8.95, and 9.1 µm.

By contrast, the output spectra of the DFB-QCL with a grating depth of 800 nm

is single-peaked at 9.24 µm, while that of the DFB-QCL with a grating depth of

1000 nm has a dominant side mode. The values of κ are almost equal in the cases
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when the grating depth is 500 nm and 800 nm. Therefore, we note single-mode

operation to occur with 500 nm and 800 nm grating. We note that the SMSR is

greater in the case of 1.4 µm grating period than that of 1.3 µm grating period.

1.5 µm Grating Period

For 1.5 µm grating period, the Bragg wavelength is ∼9.6 µm. As we consider only

those modes above both the loss line and FWHM of the gain spectrum, we choose

the wavelength range from 9.25 µm to 9.95 µm. Since we found in Sec. 2.6.2 that

the value of κ reaches its peak with a grating depth of 500 nm, again we have first

plotted the output power with a grating depth of 500 nm in Fig. 3.8.
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Figure 3.8: Output power of the DFB-QCL of Fig. 2.4 with 1.5 µm rectangular
grating period and 500 nm grating depth.

We note that the output power is concentrated at a wavelength of ∼9.62 µm. The

linewidth of the mode is also very small, on the order of nm, as is expected from
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a DFB laser [63]. The value of κ reaches its peak for this structure at 37.47 cm−1.

This results in the lower value of the linewidth compared with those DFB-QCLs

with grating periods of 1.3 µm and 1.4 µm Figs. 3.4 and 3.6 respectively, which

means that this device has higher modal purity. We next plot the output power for

four other grating depths in Fig. 3.9.
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Figure 3.9: Output power of the DFB-QCL of Fig. 2.4 with 1.5 µm rectangular
grating period for (a) 100 nm, (b) 300 nm, (c) 800 nm, and (d) 1000 nm grating
depth.

We see that the high value of κ for 1.5 µm period devices (shown in Fig. 2.9)

makes them oscillate at a single-mode for almost all grating depths. In this case,

the performance of DFB-QCLs with grating period of 1.5 µm and grating depths

depths of 100 nm and 300 nm in obtaining a single-mode emission is better than

those DFB-QCLs with same grating depths but grating periods of 1.3 µm and 1.4

µm. The DFB-QCL with grating depth of 100 nm has two peaks at ∼9.65 and

∼9.86 µm, while the DFB-QCL with grating depth of 300 nm is single-peaked
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at ∼9.84 µm. Both DFB-QCLs with grating depths of 800 nm and 1000 nm are

single-peaked at ∼9.93 and ∼9.56 µm respectively. Also, for each grating depth,

the SMSR is also much better than the previous shorter period devices.

Comparison between Three Grating Periods

We next compare the relative output power for all the three grating periods. If

we plot the output power for 500 nm grating depth devices of the 1.3, 1.4 and

1.5 µm period, we can compare their relative output power. The plot is shown in

Fig. 3.10.

1.3 1.4 1.5
0.2

0.4

0.6

0.8

1.0

Grating Period (µm)

P
ea

k 
O

ut
pu

t P
ow

er
 (

no
rm

.)

Figure 3.10: Comparison of Output power of the DFB-QCL of Fig. 2.4 with three
different periods and 500 nm grating depth.

The output power increases with increasing grating period. It increases signif-

icantly if we increase the period to 1.5 µm. This means that when the output

power from a laser is a big concern, the longer period DFB-QCLs should be used.
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3.4.2 Trapezoidal Grating

It is important to analyze DFB-QCLs with trapezoidal shaped gratings since fab-

rication processes are more likely to build trapezoidal gratings than rectangular

ones [45]. Thus, we have calculated the optical power for the trapezoidal grating

devices for three different cases of 1.3 µm, 1.4 µm, and 1.5 µm grating period.

1.3 µm Grating Period

For 1.3 µm grating period, the Bragg wavelength is ∼8.5 µm. As we consider

only those modes above both the loss line and FWHM of the gain spectrum, we

choose the wavelength range from 8.15 µm to 8.85 µm.
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Figure 3.11: Output power of the DFB-QCL of Fig. 2.11 with 1.3 µm trapezoidal
grating period and 500 nm grating depth.

We have first plotted the output power with a grating depth of 500 nm in Fig. 3.11.
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Although there is a distinct peak at ∼8.44 µm, the SMSR for this device is quite

poor. We compare this with four other grating depths in Fig. 3.12.
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Figure 3.12: Output power of the DFB-QCL of Fig. 2.11 with 1.3 µm trapezoidal
grating period for (a) 100 nm, (b) 300 nm, (c) 800 nm, and (d) 1000 nm grating
depth.

We can see from Fig. 3.12 that almost all DFB-QCLs with 1.3 µm period of trape-

zoidal grating have poor performance in terms of single-mode selection. The

DFB-QCL with grating depth of 100 nm has several distinct modes with com-

parable intensity, while the DFB-QCL with grating depth of 300 nm has three

distinct peaks. Although the DFB-QCLs with grating depths of 800 nm and 1000

nm have one distinct peak, both of them have very low SMSR. This is due to the

lower grazing angle of the trapezoidal gratings (< 90◦). From Sec. 2.6.3, we know

that the lower the grazing angle, the lower the value of the coupling coefficient.

Therefore, in case of DFB-QCLs with 1.3 µm period of trapezoidal grating, the

value of κ is lower than those of rectangular gratings (Fig. 2.9), resulting in poor
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single-mode selection of the devices.

1.4 µm Grating Period

For 1.4 µm grating period, the Bragg wavelength is ∼9 µm. As we consider only

those modes above both the loss line and FWHM of the gain spectrum, we choose

the wavelength range from 8.65 µm to 9.35 µm. Since we found in Sec. 2.6.2

that the value of κ reaches its peak with a grating depth of 500 nm, we have first

plotted the output power with a grating depth of 500 nm in Fig. 3.13.
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Figure 3.13: Output power of the DFB-QCL of Fig. 2.11 with 1.4 µm trapezoidal
grating period and 500 nm grating depth.

As is shown in Fig. 3.6, in terms of single-mode selection, this DFB-QCL with

grating period of 1.4 µm has better performance than the DFB-QCL with grating

period of 1.3 µm. From a range of wavelengths emitted from the mode source, the

DFB grating allows only one mode with a wavelength of ∼8.91 µm to oscillate
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within the laser cavity. Also, if we compare the result with that of 1.3 µm period

(shown in Fig. 3.11), we see that the SMSR is also better in this case. This can

be attributed to higher value of κ for DFB-QCLs with 1.4 µm period than those

DFB-QCLs with 1.3 µm period. We next compare this with other devices with

different grating depth, but same grating period in Fig. 3.14.
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Figure 3.14: Output power of the DFB-QCL of Fig. 2.11 with 1.4 µm trapezoidal
grating period for (a) 100 nm, (b) 300 nm, (c) 800 nm, and (d) 1000 nm grating
depth.

We see that the DFB-QCL with 1.4 µm grating period shows better performance

than that with 1.3 µm period. The DFB-QCLs with grating depths of 100 nm and

300 nm devices are still multi-peaked but with better SMSR. Both DFB-QCLs

with grating depths of 800 nm and 1000 nm are single-peaked at ∼8.91 µm and

∼8.71 µm respectively. The performances of the DFB-QCLs with grating depths

of 500 nm and 800 nm device are comparable in terms of their single-mode selec-

tion. This can be attributed to their close value of the coupling coefficient.
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1.5 µm Grating Period

For 1.5 µm grating period, the Bragg wavelength is ∼9.6 µm. As we consider only

those modes above both the loss line and FWHM of the gain spectrum, we choose

the wavelength range from 9.25 µm to 9.95 µm. Since we found in Sec. 2.6.2 that

the value of κ reaches its peak with a grating depth of 500 nm, again we have first

plotted the output power with a grating depth of 500 nm in Fig. 3.15.
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Figure 3.15: Output power of the DFB-QCL of Fig. 2.11 with 1.5 µm trapezoidal
grating period and 500 nm grating depth.

We note that the output power is concentrated at a wavelength of ∼9.8 µm. Like

that DFB-QCL with rectangular grating and 1.5 µm grating period, the linewidth

of the mode is also very small, on the order of nm, but slightly higher than that

of the rectangular grating. The value of κ is highest for this structure, but still

lower than the DFB-QCL with rectangular grating due to its lower tooth angle.
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This results in the higher value of the linewidth compared with that for rectangu-

lar grating in Fig. 3.8. We next plot the output power for four other grating depths

in Fig. 3.16.
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Figure 3.16: Output power of the DFB-QCL of Fig. 2.11 with 1.5 µm trapezoidal
grating period for (a) 100 nm, (b) 300 nm, (c) 800 nm, and (d) 1000 nm grating
depth.

We see that except for the DFB-QCL with grating depth of 100 nm, all the other

structures have distinct peaks due to the higher values of κ as shown in Fig. 2.9.

The DFB-QCL with grating depth of 100 nm has many peaks of comparable in-

tensity. The DFB-QCL with grating depth of 300 nm device is single-peaked at

∼9.38 µm, but has a lower SMSR. Both DFB-QCLs with grating depths of 800 nm

and 1000 nm devices are single-peaked at ∼9.82 and ∼9.9 µm respectively. Also,

for each grating depth, the SMSR is also much better than the previous shorter

period devices with trapezoidal grating.
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Comparison between Three Grating Periods

We next compare the relative output power for all the three grating periods with

trapezoidal grating shape. If we plot the output power for 500 nm grating depth

devices of the 1.3, 1.4 and 1.5 µm period, we can compare their relative output

power. The plot is shown in Fig. 3.17.
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Figure 3.17: Comparison of Output power of the DFB-QCL of Fig. 2.11 with
three different periods and 500 nm grating depth.

As expected, we see from Fig. 3.17 that the output power increases with increas-

ing grating period. The value of output power increases slightly from 1.3 µm to

1.5 µm grating period. It then increases more if we increase the period to 1.5

µm, but the amount of increase is not as significant as it was for the rectangular

grating.
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3.4.3 Comparison between Rectangular and Trapezoidal Grat-

ing

We have seen so far that the performance of the rectangular shaped grating DFB-

QCLs is better than those with trapezoidal shaped grating. We plot the output

optical power of the 1.5 µm period and 500 nm depth devices with both rectangu-

lar and triangular shape on the same plot in Fig. 3.18.
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Figure 3.18: Comparison of Output power of the DFB-QCL of Rectangular and
Trapezoidal grating shape.

We note that both devices have single peak, but the rectangular one has slightly

higher intensity compared to the trapezoidal one. This is due to the higher value

of κ for rectangular grating than for trapezoidal grating. In Table 3.1 we give a

brief summary of the single-mode selection performance of all the devices that we
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have analyzed.

Table 3.1: Summary of Mode-Selection Performances of the DFB-QCLs analyzed
in Chap. 3.

Shape Period (µm)
Mode Profile

100 nm 300nm 500 nm 800 nm 1000 nm

Rectangular

1.3 Multiple Multiple Single Single Single

1.4 Multiple Multiple Single Single Multiple

1.5 Multiple Single Single Single Single

Trapezoidal

1.3 Multiple Multiple Single Single Multiple

1.4 Multiple Single Single Single Single

1.5 Multiple Single Single Single Single

Next we see the effect of the DFB grating on the gain spectrum of the QCL. From

Fig. 3.1, we know that there are many modes that have gain higher than the loss

or FWHM of the QCL. In a Fabry-Perot QCL, which is multi-mode device, many

of these modes will be available in the laser output. But using a DFB-QCL can

select only one output mode. To see the effect of DFB-QCL on the gain spectrum,

we plot the output optical power for the 1.5 µm period rectangular and trapezoidal

grating on the gain spectrum of the QCL in Fig. 3.19.

We note from Fig. 3.19 that use of DFB grating on the top cladding of the waveg-

uide structure has made it possible to select a single mode from a multi-mode gain

spectrum of the QCL.
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Figure 3.19: Effect of DFB grating on the gain spectrum of QCL.

3.4.4 Effect of Second Order Grating

We have seen in Sec. 2.6.4 that the coupling coefficient is smaller for a second

order grating than that for a first order grating. This implies that the second order

grating will show a poorer performance in terms of single mode selection than a

first order grating does. This is coherent with the works of [72]. We can explain

this result by considering that for a specific wavelength and for a resonator length

L, in order to maintain the Bragg wavelength (λB = 2nΛ/m) for the second-order

corrugation (m = 2), the second-order grating period must be twice of that of the

first-order value. Hence the number of the grating period decreases in the res-

onator’s length. As a result, the efficiency of the feedback process by the grating

decreases and hence the coupling between different waves decreases. Therefore,

the single-mode selection by the second order diffraction grating will not be as

efficient as the first order grating.

66



3.4.5 Selection of a Traget Wavelength

We have varied the grating shape, depth, and period of the corrugation in the top

cladding layer of the waveguide structure and observed their effects on the cou-

pling coefficient as well as the output optical power of DFB-QCLs. We have

found that DFB-QCLs with 1.5 µm grating period of rectangular shape are best

at selecting a single mode from a multi-mode source. We take the peak emis-

sion wavelengths for DFB-QCL with a rectangular grating period of 1.5 µm and

various grating depths and plot the results in Fig. 3.20 where the peak emission

wavelengths have been plotted against grating depths (red circles).
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Figure 3.20: Calculated peak emission wavelengths for a DFB-QCL with 1.5 µm
rectangular grating (red circles) and the polynomial function that fits the data-set
(green curve).

In Fig. 3.20, we also show a fourth degree polynomial function that has been

calculated using the Curve Fitting Tool of MATLAB (green curve). This curve

predicts a peak emission wavelength for a specific grating depth. To check the
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validity of the curve, we plot the output optical power for a grating depth of 700

nm. The result is shown in Fig. 3.21.
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Figure 3.21: Output power of the DFB-QCL of Fig. 2.4 with 1.5 µm rectangular
grating period and 700 nm grating depth.

We see that the DFB-QCL with a grating depth of 700 nm shows a distinct peak

at ∼9.78 µm. From our 4th degree polynomial function in Fig. 3.20, we note that

the curve predicts a peak emission wavelength at ∼9.76 µm, which is very close

to the value found from the output spectrum of Fig. 3.21. Therefore, we have de-

signed a model to select a specific peak emission wavelength that is dependent on

the grating depth of the DFB-QCL, provided we fit the polynomial functions for

the grating period for which the coupling coefficient is highest.
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3.5 Summary

The DFB-QCL is used to ensure a single mode of radiation in the laser cavity. In

Chap. 3, we have analyzed the output characteristics of various DFB-QCLs with

different grating shapes, periods, and depths. The key points of this chapter are

summarized here.

• We have presented a full-vectorial FDTD model for analysis of wave prop-

agation inside the cavity.

• The rectangular shaped gratings with higher coupling coefficients are better

at selecting a single-mode for oscillation than the trapezoidal shaped grat-

ings.

• Analysis of trapezoidal shaped gratings is still important since practical fab-

ricated devices are more likely to have a trapezoidal grating, rather than

rectangular grating.

• As we increase the grating depth, the single-mode selection performance of

the devices gets better upto 500 nm (for our structure). After that it slightly

worsens. This behavior is supported the values of the coupling coefficient

for different grating depths.

• There is an optimum grating depth for each DFB-QCL waveguide, for which

the DFB selects a mode to lase with much higher intensity than any other

allowed modes inside the laser cavity.

• The ability to select a single mode gets better with increasing grating period

of the DFB-QCL. For our chosen structure, the performance is best for a
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rectangular grating with 1.5 µ grating period.

• We have shown the effect of DFB grating in single-mode selection for os-

cillation from a multimode QCL gain medium.

• A design rule based on the obtained results has been proposed for selecting

a specific wavelength for lasing.
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Chapter 4

Conclusion

QCL is a semiconductor laser that emits highly coherent radiation in the mid-

to long-wave infrared region of the spectrum, where almost any molecule has a

strong absorption band. They have many advantages over other types of semi-

conductor lasers such as Lead Salt Diode lasers or Diode lasers. Some of the

advantages include precise tuning from one wavelength to another, higher optical

power, continuous wave operation and the ability to produce light in the terahertz

range of the spectrum, small and light to make portable systems.

A DFB-QCL has a diffraction grating grown on the cladding of the active re-

gion. This grating provides narrow band optical feedback, distributed along the

length of the waveguide, eliminating the need for discrete mirrors to form an op-

tical cavity. DFBs allow for semi-stable fixed wavelength sources. A Fabry-Perot

(FP) QCL uses the cleaved facet ends of the cavity to form two reflective surfaces.

Since the wavelengths are reflected equally in a FP QCL, all wavelengths in the

gain profile of the laser are available for lasing. DFB-QCL also has multiple ax-

71



ial resonator modes, but there is typically one mode which is favored in terms of

losses. Therefore, single-frequency operation is often easily achieved with DFB-

QCLs.

To understand the working mechanism of a DFB-QCL, the coupling coefficient

is one of the most important parameters to be considered. In this thesis, we have

developed a model to calculate the coupling-coefficient of DFB-QCLs. We have

also observed the behavior of the coupling coefficient with changing parameters

like temperature, grating depth, grating period, tooth angle, duty cycle, and grating

shape. We found that the value of the coupling coefficient decreases with tempera-

ture. The coupling coefficient reaches its peak when the grating duty cycle is 50%.

The coupling coefficient increases initially as the grating depth increases, however

remains almost fixed as the grating depth crosses a threshold value. Rectangular

grating has a greater coupling coefficient than has trapezoidal grating. Since the

coupling coefficient is a measure of the coupling between the forward and back-

ward scattering waves, the greater its value, the selective a DFB-QCL becomes in

choosing a lasing mode.

To observe the output characteristics of DFB-QCLs, we have simulated a vari-

ety of designs of DFB-QCLs. We changed the grating period, grating depth and

grating shape of the waveguide and analyzed the output optical power. We used

FDTD method solving the DFB-QCL waveguide structure. FDTD solutions help

us to obtain the frequency solution by exploiting Fourier transforms, and thus

help us to obtain full range of useful quantities, such as the electric field intensity

of output emission of the QCL and associated optical power with varying wave-
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length. From the analysis we found that the single mode operation of DFB-QCL

can be achieved by varying the grating period, grating depth, and grating shape of

the waveguide structure. For our specific structure, single-mode operation is best

achieved with a rectangular grating i. e. 90◦ tooth angle, 1.5 µm grating period

and 500 nm grating depth. For all the other designs, either the lasing output is

multi-mode or the intensity of the output power is lower.

It may be argued that QCL technology now meets most of the expectations re-

quired from mid-IR sources for the targeted applications in spectroscopy, imag-

ing, and remote-sensing. Whereas high-output power, single mode operation,

self-focussing, and narrow beam-patterns have been demonstrated separately, a

yet another challenge is to obtain all these characteristics simultaneously without

compromising on the temperature performance. The realization of these charac-

teristics is fulfilled only with the employment of DFB-QCLs operating in CW

mode which have a single-mode, very narrow spectral linewidth and wide tuning

range.
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Appendix A

Simulation of DFB-QCL to evaluate

the coupling coefficient

In this chapter we describe our simulation model to evaluate the coupling co-

efficient of a distributed feedback quantum cascade laser using MATLAB and

Lumerical MODE Solutions based package.

The device being studied here is a waveguide with distributed feedback corru-

gation on the top cladding layer. The active layer is QCL. The top cladding layer

is composed of InP and InGaAs grating. The bottom cladding layer is InGaAs

on an InP substrate. We will simulate this device to calculate the coupling coeffi-

cient. As an example, we will consider 200 K temperature, 500 nm grating depth,

1.4 µm grating period, 50d% duty cycle/. The steps, in progressive order, are as

follow.
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A.1 Refractive Index of Active Layer

We first calculate the refractive index of the QCL using the following MATLAB

code. Here, the variable, n, will give the result.

x_bar = 0.52; %In content in InAlAs
x_wl = 0.53; %In content in InGaAs

load Input\Maulini_APL_AI_Trial2.txt
%make a text file with 1st column the length of each layer and 2nd column
%the type of material.
C1 = Maulini_APL_AI_Trial2(:,1);
C2 = Maulini_APL_AI_Trial2(:,2);

T = 200;

n_bar = n_T_InAlAs(x_bar,T); %barrier material (InAlAs)
n_wl = n_T_InGaAs(x_wl,T); %well material (InGaAs)

len = length(C1);
sum_x = 0;
for i = 1:len

sum_x = sum_x + C1(i);
end
P1 = 0;
P2 = 0;
for i = 1:len

if ((C2(i)==3 || C2(i)==1))
P1 = P1 + n_bar*C1(i);

else
P2 = P2 + n_wl*C1(i);

end
end
n = (P1+P2)/sum_x

The function “n T InAlAs(x bar,T).m” measures the refractive index of each In-

AlAs layer using the method described in Sec. 2.5.1 and given as follows.

function n = n_T_InAlAs(x,T)

EgX_AlAs = 2.239 - ((6e-4).*(T.ˆ2)./(408+T));
EgX_InAs = 2.278 - ((5.78e-4).*(T.ˆ2)./(83+T));
CgX = -0.713;

EgG_AlAs = 2.891 - ((8.78e-4).*(T.ˆ2)./(332+T));
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EgG_InAs = 0.42 - ((2.5e-4).*(T.ˆ2)./(75+T));
CgG = -0.3;

for i = 1:length(x)
EgX(i,:) = EgX_AlAs*(1-x(i)) + EgX_InAs*x(i) + CgX*(1-x(i))*x(i);
EgG(i,:) = EgG_AlAs*(1-x(i)) + EgG_InAs*x(i) + CgG*(1-x(i))*x(i);
Eg(i,:) = min(EgX(i,:),EgG(i,:));
n(i,:) = 4.16 - 1.12*Eg(i,:) + 0.31*Eg(i,:).ˆ2 - 0.08*Eg(i,:).ˆ3;

end
end

The function “n T InGaAs(x bar,T).m” measures the refractive index of each In-

GaAs layer using the method described in Sec. 2.5.1 and given as follows.

function n = n_T_InGaAs(x,T)

EgX_GaAs = 1.981 - ((4.6e-4).*(T.ˆ2)./(204+T));
EgX_InAs = 2.278 - ((5.78e-4).*(T.ˆ2)./(83+T));
CgX = -0.475;

EgG_GaAs = 1.521 - ((5.58e-4).*(T.ˆ2)./(220+T));
EgG_InAs = 0.42 - ((2.5e-4).*(T.ˆ2)./(75+T));
CgG = -0.475;

for i = 1:length(x)
EgX(i,:) = EgX_GaAs*(1-x(i)) + EgX_InAs*x(i) + CgX*(1-x(i))*x(i);
EgG(i,:) = EgG_GaAs*(1-x(i)) + EgG_InAs*x(i) + CgG*(1-x(i))*x(i);
Eg(i,:) = min(EgX(i,:),EgG(i,:));
n(i,:) = 4.16 - 1.12*Eg(i,:) + 0.31*Eg(i,:).ˆ2 - 0.08*Eg(i,:).ˆ3;

end
end

A.2 Refractive Index of InP

Next, we calculate the refractive index of InP layer using the method described

in Sec. 2.5.2. We use the following MATLAB code to plot the refractive index

vs. wavelength for two doping concentrations.

x = 2500:1:3500;
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y = zeros(1,length(x));
z = y;
N = 5e16:5e16:2e18;
lambda = 2902.8; % wavelength in nm

for i=1:1:length(x)
y(i) = 7.255 + (2.316*x(i)*x(i))/(x(i)*x(i)-0.392*1e6);
y(i) = sqrt(y(i));
z(i) = 7.194 + (2.282*x(i)*x(i))/(x(i)*x(i)-0.422*1e6);
z(i) = sqrt(z(i));
if x(i)==lambda

index = i;
end

end
plot(x,y,x,z)

Here, the variable, ‘lambda’ is found by solving the wave-functions of the QCL,

and then dividing the free-space peak emission wavelength by the refractive index

of the active region found in Sec. A.1. The result is shown in Fig. A.1.
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Figure A.1: Refractive Index vs. Wavelength of InP using the method described
in Sec. 2.5.2.

Then using the curve fitting tool of MATLAB, we find the refractive index of InP

for our desired concentration (1 × 1017cm−3).
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A.3 Refractive Index of InGaAs

Using a similar method as for InP (Sec. A.2), we find the refractive index of

InGaAs layer using the process mentioned in Sec. 2.5.3.

A.4 Determination of Coupling Coefficient

Now, we use Lumerical MODE Solutions to draw our desired waveguide device.

We start by creating three new dielectric material with refractive indices values

found in Secs. A.1, A.2, A.3 for active region, InP and InGaAs layer respectively.

The physical structures to be modeled are created using the STRUCTURES tab in

the Layout Editor. We draw the structure as shown in Fig. 2.4. We use the object

‘Grating Coupler’ with the following properties: Next we choose ‘Eigenmode

Table A.1: Properties of the Grating Coupler

Property Name Description Value
index coating InP layer refractive index 3.1113

index grating InGaAs layer refractive index 3.2

n periods No. of Grating Periods 32

tooth angle Sloping teeth angle 90◦

duty cycle Length of each tooth divided by length of one period 0.5

period length of each repeated structure 1.4 µm

Solver’ as the Simulation Region with background index 1 and solver type ‘2D

Z Normal’. All the boundary conditions are selected as ‘PML’. After solving the

eigenmodes, we get the effective refractive indices of the low and high frequency

modes. The low-frequency mode is more concentrated in the higher index part of

the grating and the high-frequency mode is more concentrated in the lower index
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part of the grating. Then we put these values in Eq. 2.15 to find the coupling

coefficient (κ). For the device structure mentioned in the Appendix, κ equals

29.15 cm−1.
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Appendix B

Simulation of DFB-QCL to obtain

Output Optical Power

In this chapter we describe our simulation model to evaluate the output optical

power of a distributed feedback quantum cascade laser using Lumerical FDTD So-

lutions based package. Here, we demonstrate an example of a rectangular shaped

corrugated DFB-QCL with 500 nm grating depth, 1.4 µm grating period, 50%

duty cycle. This is the same structure that we used to calculate the coupling coef-

ficient in Appendix A.

We start our model by opening a blank simulation file. We first select a ‘Polygon’

from the ‘Structures’ button with the following properties for the InGaAs part of

the top cladding layer:

Next, we again choose ‘Polygon’ from the ‘Structures’ button with the following

properties for the InP part of the top cladding layer:
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Table B.1: Properties of InGaAs top cladding layer

Tab Property Value

Geometry

z (µm) 0

z span (µm) 0.5

vertices

(0,0)

(0.7,0)

(0.7,0.5)

(0,0.5)

Material material InGaAs

Table B.2: Properties of InP top cladding layer

Tab Property Value

Geometry

z (µm) 0

z span (µm) 0.5

vertices

(0,0.5)

(0.7,0.5)

(0.7,0)

(1.4,0)

(1.4,4.5)

(0,4.5)

Material material InP
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These two parts are then grouped together and work as a unit cell for the whole

structure. They are copied 720 times to get a device length of 1.008 µm, which

is equal to our assumed cavity length. Next, the active layer and the bottom

cladding layer consisting of InP and InGaAs are drawn using ‘Rectangle’ from

the ‘STRUCTURES’ menu with 1.008 µm length along x-direction. The lengths

along y-direction are as mentioned in Sec. 2.4.

Next we define a FDTD simulation region with properties set according to the

following table. Then we choose ‘Mode’ from ‘Sources’ and place it inside the

Table B.3: Properties of Simulation Region

Tab Property Value

Geometry

dimension 2D

background index 1

simulation time (fs) 500000

Mesh Settings mesh accuracy 4

Boundary Conditions
x min bc, x max bc PML

y min bc, y max bc PML

simulation region on the left side of the structure drawn. The source has the fol-

lowing properties:

Table B.4: Properties of Mode Source

Tab Property Value

General

injection axis x-axis

direction Forward

mode selection fundamental TE mode

Frequency/Wavelength
wavelength start (µm) 8.65

wavelength stop (µm) 9.35
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Lastly, we choose ‘Frequency-domain field profile’ from ‘MONITORS’ that has

the following properties. The monitor is placed on the right wall of the structure

so that the emitted radiations from the source pass through the DFB, reflects in-

side the cavity several times and we note the emitted radiation from the right side

of our drawn structure.

Table B.5: Properties of the Monitor

Tab Property Value

General

simulation type 2D Z-normal

use source limits Yes

frequency points 500

Data to record

standard fourier transform Yes

Fields Ex, Ey, Ez, Hx, Hy, Hz

Poynting vector and power output power

After running the simulation, we get the result. We choose Visualizer from the

Monitor and select ‘P’ to observe the output power and get the result shown in

Fig. 3.6.
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