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ABSTRACT 

The innovative uses of nanofluids in thermal engineering, biomedical engineering, and 

manufacturing processes have made this field of research interesting on a global scale. In 

view of such significant applications, the goal of this work is to look into the thermal 

performance of nanofluid inside a hexagonal heat exchanger. This examines mixed 

convective phenomena for fluid flow with heat transfer of Titanium Oxide (TiO2) and water 

(H2O) based nanofluid. A hot cylinder on the left portion and another cold cylinder on the 

right portion are taken horizontally to form a heat exchanger. All of the surrounding walls 

are considered adiabatic where a magnetic field is acted on the right walls. The Galerkin 

weighted residual technique of finite element method is utilized to execute the governing 

equations numerically. The investigation is carried out for the Reynolds number (Re = 10-

200), Richardson number (Ri = 0.01-10), Hartmann number (Ha = 0-100), and nanoparticle 

volume fraction (ϕ = 0-0.1), which are some relevant parameters. Streamlines, isotherm 

lines, velocity fields, and average Nusselt numbers (Nuav) are used to depict the collected 

results. The response surface methodology is used to conduct a sensitivity analysis of 

independent variables on response function. It is observed that growing value of Re 

and ϕ strengthen the thermal performance of nanofluid whereas increasing Ha causes it to 

decrease. When Ha is maintained at 0, the Nuav reaches its maximum values at Re = 200 and 

ϕ = 0.1. Moreover, ϕ and Re have positive sensitivity to the Nuav while Ha has negative 

sensitivity. The results of this study may assist engineers and researchers for creating 

effective mixed convective heat exchangers. 
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CHAPTER 1 

Introduction and Literature Review 

1.1   Introduction 

Nowadays, an important research topics known as Computational Fluid Dynamics (CFD) is 

utilized to address numerous industrial and engineering problems in the fields of mechanical 

engineering, chemical engineering, biomedical engineering, aeronautical engineering and 

civil engineering. Actually, CFD deals with numerous computational techniques on Fluid 

Dynamics which relates to fluid flow and heat transfer of liquids and gases. Moreover, the 

hydrodynamics and the aerodynamics are two branches of fluid dynamics. The analysis of 

heat transfers and fluid flow behavior on distinct enclosure and over surfaces has already 

received a vast attention today’s researchers due to the existence of fluid about every sector 

of human life and uses. Not only in terms of thermal energy but also in terms of forecasting 

the rate of heat exchanges that take place under specific circumstances. Heat is transported 

due to the variance in temperature switching between systems in the field of heat 

transformation science. 

1.2   Fluid 

A substance with surface tension and the ability to flow is called a fluid. In other words, a 

fluid is something that continuously deforms under shear force. Two sorts of fluids are 

available: liquids and gases. For all intents and purposes, liquids are considered 

incompressible fluids while gases are considered compressible fluids. Five physical 

characteristics of real fluids include density, volume, temperature, pressure and velocity.  

1.3   Classification of Fluid 

1.3.1 Compressible and Incompressible Fluid  

The variation of a fluid's density with relation to changes in pressure is referred to as 

compressibility. If a fluid's pressure variation matches its density variation, such as air, the 

fluid is said to be compressible. That is,    

0
p





                                                                                                                                     (1.1)
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where  and p are the density and pressure of fluids respectively. If a force applied to a 

fluid does not alter its density, the fluid is said to be incompressible such as water, engine 

oil, human blood, etc. That is, for incompressible fluid: 

0
p





                                                                                                                        (1.2) 

1.3.2 Ideal and Real Fluid 

Ideal fluid is assumed to has zero viscosity  0  and incompressible; hence there is no 

tangential force between adjacent fluid layers. In other words, a perfect fluid has no internal 

resistance to changing its shape. Whether the fluid is at rest or in motion, the pressure at 

each point of an ideal fluid is the same in all directions. It is an imagined fluid because in 

nature none of the other fluids have these characteristics. However, only a few liquids, such 

as water, which has a constant viscosity, may be regarded as ideal for all practical uses. 

On the other hand, when a layer of fluid flows past an adjacent layer in real fluids, 

both tangential and normal strains are present. In a real fluid, these tangential and frictional 

forces are linked to a characteristic known as viscosity. Internal friction, which is what 

causes it, is a significant factor in fluid motion. During the motion, it provides resistance to 

shearing stress. In contrast to solids, this resistance is dependent on the rate of deformation 

rather than the deformation itself. Actually, every liquid found in nature is a real fluid. 

Newtonian fluid and non-Newtonian fluid are the two subcategories of real fluids.  

1.3.3 Newtonian and non-Newtonian Fluid 

Generally, the term "Newtonian fluid" refers to a fluid that complies with Newton's law of 

viscosity, whereas the Newtonian’s law of viscosity is mathematically defined as: 

               

du

dy
                                                                                                                 (1.3) 

where τ, μ, and du dy denote the share stress, dynamic viscosity, and rate of share 

deformation of a fluid respectively. Examples of Newtonian fluids that can withstand the 

spectrum of shear loads and shear rates found in daily life include water, air, alcohol, 

glycerol, and thin motor oil. Conversely, the term "non-Newtonian fluid" refers to a fluid 

that don’t comply with Newton's law of viscosity is called non-Newtonian fluid. Such fluid 

exhibits nonlinear relationships between shear stress and shear rate.  
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For example, human blood, Casson fluid, Maxwell fluid, Carreau fluid, etc. Due to their 

variety, non-Newtonian fluids are categorized by introducing various constitutive models. 

1.3.4 Viscous and Inviscid Fluid 

If a fluid is subject to both shearing and normal forces, it is said to be viscous. Honey, Tooth-

paste, human blood, molasses and heavy oil treated as viscous fluid. When a fluid does not 

exert any shearing force either at rest or in motion, it is said to be non-viscous or inviscid. 

It is obvious that the pressure that an inviscid fluid applies to any surface is always along 

the surface's normal at the point. Every gas is regarded as an inviscid fluid. 

1.4   Different Types of Fluid Flow 

1.4.1 Laminar and Turbulent Flow 

Laminar flow is defined as a flow in which each fluid particle carves out a distinct curve 

and where no two individual fluid particles' curves cross. Conversely, a flow is described as 

turbulent when each fluid particle does not trace out a distinct curve and when the curves 

that the fluid particles do trace out intersect.  

1.4.2 Steady and Unsteady Flow 

Pressure, velocity, temperature, density and other fluid parameters can all be considered 

functions of time or space. It is referred to as steady flow if the liquid flow properties at 

every location in the flow field are independent of time. Mathematically, steady flow is 

defined as: 

 = 0
P

t




                                                                                                                     (1.4) 

where P stands for the properties of fluid, which could be pressure, velocity, temperature, 

density, etc. On the other hand, unsteady flow, also known as non-steady flow, is a flow in 

which the fluid's flow parameters (such as pressure, velocity, temperature, density, and other 

variables) change with time. Any process often starts with an unstable fluid flow that could 

eventually become steady or zero flow. As an illustration, the water flow in a newly opened 

tap initially fluctuates before becoming stable after a few repetitions. In mathematics, 

unsteady flow is represented as: 

  0
P

t




                                                                                                                      (1.5) 
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1.4.3 Uniform and Non-uniform Flow 

When a flow's conditions and attributes are independent of the direction the fluid is traveling 

in or when all of the fluid's particles have the same magnitude and direction of velocity 

vector at any given time, the motion is said to be uniform. For instance, a liquid flowing 

uniformly via a long straight pipe is an example of uniform flow.  

On the other hand, non-uniform flow is defined as a flow in which all fluid particles 

move at the same speed across each segment of a pipe or channel, causing the flow 

characteristics at any one time to vary with distance. For instance, the flow of a liquid via a 

curved conduit is not uniform. 

1.4.4 Rotational and Irrotational Flow 

Rotational flow is characterized by the fluid particles continuing to revolve about their own 

axes while trailing. On the other hand, a flow is considered irrotational if the fluid particles 

follow but do not spin about their own axes. 

1.5   Modes of Heat Transfer 

The manner of thermal energy moving from one area to another due to a temperature 

differential is known as heat transfer. Conduction, convection, and radiation are the three 

major techniques or modalities by which heat is transferred. A higher temperature medium 

is always used to transfer heat to a lower temperature medium, and the process ends when 

the two mediums achieve the identical temperature.  

1.5.1 Conduction 

Conduction is the process by which energy is transferred from a substance's higher-energy 

particle to nearby less-energetic ones due to the contacts between the particles. In solids, 

liquids, or gases, conduction can occur. Conduction occurs when molecules collide and 

diffuse as they move randomly through gases, liquids, and solids. In solids, conduction 

occurs when molecules vibrate in a lattice and free electrons convey energy. The geometry, 

thickness and material of a medium, as well as the temperature variance through the 

medium, all affect the rate of heat conduction through it. We may see numerous examples 

of conduction all around us.  
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Due to energy conduction through the spoon, the exposed end of a metal spoon that is 

unexpectedly submerged in a cup of boiling tea will ultimately become warmed. A heated 

room loses a lot of energy throughout the winter to the outside air. Since it conducts heat, 

the composite wall separating the interior environment from the exterior is mostly to blame 

for this loss. 

1.5.2 Convection 

In the existence of bulk fluid motion brought on by the temperature variance, convection is 

the mechanism through which heat is transferred through a fluid. Convection is the name 

for this form of heat transmission. Natural convection and forced convection are the two 

types of convection used in heat transfer. Natural (or free) convection is the term used when 

the fluid flow caused by convection happens naturally. In most cases, natural convection 

has happened as a result of the temperature differences within an enclosure and the 

buoyancy forces. In this instance, buoyancy effects coming from the density variance 

induced by the fluid's temperature difference and gravitational force set up fluid motion. On 

the other hand, forced convection is the heat transmission mode where the fluid motion is 

artificially produced by an external pressure, inlet velocity, lid velocity, etc. When forced 

convection occurs, an external factor such as a lid velocity, external pressure and rotational 

velocity is used to compel the fluid to flow over a surface or inside a pipe. Convection is 

used to move heat through a fluid when there is bulk fluid motion, whereas conduction is 

used when there is no fluid motion. Therefore, it is possible to think of conduction as the 

limiting case of convection in a fluid that leads to the situation of quiescent fluid due to the 

absence of fluid motion at solid surfaces. Moreover, the combination of natural convection 

and force convection is known to mixed convection that has numerous industrial and 

engineering applications. That is, for a mixed convective heat transfer process, there will 

have an external factor to force, and the buoyancy force will act due to temperature 

differences on entire fluid domain. 

1.5.3 Radiation 

Radiation is the name for the energy that matter emits as electromagnetic waves (or photons) 

in response to changes in the electrical structure of the atom or molecule. Heat can be 

transferred by radiation without the need for an intermediary medium, in contrast to 

conduction and convection.  
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Actually, in a vacuum, radiation-based heat transfer is more rapid and exhibits no 

attenuation. The sun's energy enters the planet in this way. All solids, liquids, and gases 

emit, absorb, or transmit radiation to variable degrees since it is a volumetric phenomenon. 

When it comes to solids like metals, wood, and rocks, which are opaque to heat radiation, 

radiation is typically thought of as a surface phenomenon. 

1.6   Base Fluid 

The conventional available fluid serves as the base fluid in thermal engineering. The use of 

numerous dissimilar liquids with low thermal conductivity as base fluid is successful and 

efficient. These liquids include water (H2O), engine oil, ethylene glycol, pump oil, bio-

fluids, kerosene, glycerol and other lubricants, and so on. Many of them work in a variety 

of industrial settings and engineering fields. 

1.7   Nanofluids 

Nanofluids are fluid suspensions of nanoparticles that exhibit a considerable improvement 

in their characteristics at low nanoparticle concentrations. As engineering equipment get 

smaller, there is a growing need to speed up heat transmission in tiny devices like micro-

sensors and laser crystals. Adding nanoparticles to the base fluid, often known as nanofluid, 

is one way to solve this issue. A novel type of heat transmission fluid named a nanofluid is 

made up of a small number of uniformly distributed, stable nanoparticles (such as: Cu, CuO, 

TiO2, Al2O3, etc.,) with a diameter of less than 100 nm. In Figure 1.1, a sample of Titanium 

oxide (TiO2) nanoparticles is represented. Argonne National Laboratory came up with the 

term "nanofluids" to designate a fluid in which nanometer-sized particles are suspended.  

 

Figure 1.1: Titanium oxide nanoparticles [1]. 
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The thermal conductivity and convective heat transfer capabilities of the base liquids have 

been proven to be improved by nanofluids made up of such particles suspended in liquids 

(usually conventional heat transfer liquids). Even at low volume concentrations, nanofluids 

significantly improve thermal performance since their thermal conductivities are often 

orders-of-magnitude better than those of the base fluids like water, ethylene glycol, and light 

oils. In Figure 1.2, the process of nanofluid formation is shown by using nanoparticles and 

base fluid. In comparison to basic fluids like oil or water, the thermal conductivity, thermal 

diffusivity, viscosity and convective heat transfer coefficients of nanofluids have all been 

found to be improved over those of conventional fluids.  

It is obvious from the current review that nanofluids have improved thermal 

conductivity, and that this conductivity increases as the volumetric percentage of 

nanoparticles increases. Nanofluids have thermal properties that are considerably different 

from those of traditional heat transfer fluids, according to study findings from nanofluid 

research groups throughout the world. The thermal conductivity augmentation of various 

nanoparticles in a variability of fluids with volume concentrations in the range of 0.5-4% 

has been determined by several researchers, as will be addressed further. Because these can 

be employed in a wide range of industrial and engineering applications, including heat 

exchangers, biomedical engineering, chemical production, computer processors, 

transformer cooling, and others, nanofluids are significant. Therefore, it is crucial to 

undertake additional study in order to determine how these parameters affect the thermal 

conductivity of a variety of nanofluids. 

 

Figure 1.2: Formation of nanofluid. 

 



8 
 

1.8    Solid Volume Fraction of Nanoparticles 

The volumetric fraction, size, and shape of the nanoparticles have an impact on the 

properties of the nanofluid. The volume of all the nanofluid ingredients is divided by the 

nanoparticle volume fraction ( ) . When the volumes of the constituents are additive, the 

volume fraction and volume concentration coincides in an ideal solution. In other words, 

the solution's volume is the same as the total volume of the nanoparticles. The volume 

fractions of the solution added together equal to one.  

That is, 

               1

1
M

i

i




                                                                                                                        (1.6) 

where M is the total number of nanoparticles in a nanofluid.  

1.9   Magnetohydrodynamics 

The study of magnetohydrodynamics (MHD) explains how magnetic fields affect 

electrically conducting liquids. The terms magneto, hydro, and dynamics, which collectively 

denote a magnetic field, a liquid or fluid, and movement, respectively, are the basis for the 

theory of MHD. The movement of liquid or gaseous electrically conducting fluids in electric 

and magnetic fields is the subject of this subfield of magneto fluid dynamics. MHD is 

heavily invested in the fields of cooling of fission and fusion reactors, nuclear fusion, earth 

magnetic field, X-ray radiation, electrolytes, star formation, plasmas, tumor therapy, solar 

wind, etc. Several researchers looked at MHD heat transport in various cavities as a result 

of these practical applications at various times. In order to link the flow field and dynamics 

equations, it examines the dynamics of a substance moving in an electromagnetic field 

where currents are created in the material by induction modified field. By moving the 

conducting fluid, which affects the magnetic field as well as the action of the magnetic field, 

electrical currents are produced with the help of the magnetic field's influence. The magnetic 

field's impact helps to increase the mechanical forces, which change how fluid flows. 

Electromagnetic forces will be produced for the weak electrical conductivity, whether it is 

gases or liquids, and these might have a similar strength to the hydrodynamic and inertial 

forces. 
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1.10 Viscosity 

Real fluids have a characteristic called viscosity that makes them resistant to shearing and 

allows particles to slide through or close to one another. Viscosity is often referred to as 

fluid internal friction. This characteristic exists in various degrees in all known fluids. Fluids 

with low viscosity include water, alcohol, and air; whereas, fluids with high viscosity 

include oils, glycerin, and other substances. Generally, viscosity is denoted by  . 

1.11 Kinematic Viscosity 

The ratio of absolute viscosity to density is known as the kinematic viscosity. It is denoted 

by , and it is defined as: 

          
cosVis ity

Density





                                                                                                      (1.7) 

It is noted that, for water, gases, and alcohol μ is very small but not insignificant values, but 

for oil and glycerin μ is quite big values. Also, for a large number of fluids, μ relies on both 

pressure and temperature, whereas μ is inversely proportional to temperature and 

independent of pressure for gases. 

1.12 Useful Dimensionless Parameters 

1.12.1 Prandtl Number 

The Prandtl number (Pr), a non-dimensional quantity, essentially corresponds to the 

relationship between momentum diffusivity (kinematic viscosity) and thermal diffusivity. It 

bears the name Ludwig Prandtl in honor of the German physicist who developed the idea of 

the boundary layer in 1904 and made substantial contributions to the theory of the boundary 

layer. Heat diffuses very slowly in liquids relative to momentum, which is represented by a 

large Prandtl number (Pr >> 1) in the behavior. In contrast, a low Prandtl number (Pr << 1) 

denotes the dominant thermal diffusivity, which means that heat moves through liquids 

relatively quickly. Pr = 1 (about) means that both heat and momentum diffuse through the 

fluid at roughly the same rates. Mathematically, Prandtl number is defined as: 

          

 
Pr  =

 p

Momentum diffusivity

Thermal diffusivity k c

  

 
                                                             (1.8) 

where , , , , , and pk c    indicate the kinematic viscosity, thermal diffusivity, dynamic 
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viscosity, thermal conductivity, density of fluid, and specific heat at constant pressure 

respectively. 

1.12.2 Reynolds Number 

Laminar flow changes to turbulent flow depending on a number of factors, including fluid 

type, flow velocity, surface temperature, and surface geometry. To clarify the change from 

laminar to turbulent flow Osborn Reynolds made the important discovery in 1883 that the 

ratio of the fluid's inertia forces to viscous forces regulates the flow organization.  

In fact, the Reynolds number (Re) that is a dimensionless number aids in the prediction of 

fluid flow patterns in many circumstances. Laminar flow typically predominates in flows 

with low Reynolds numbers, while turbulent flow typically predominates in flows with high 

Reynolds numbers. The Reynolds number that encapsulates this ratio is written as: 

         

 
Re  =

 

Inertia force uL uL

Viscous force



 
                                                                                (1.9) 

where , , , andu L   represent the magnitude of fluid flow velocity, characteristic length of 

fluid domain, dynamic viscosity, and density of fluid. Also, 





 is known as kinematic 

viscosity of fluid. 

1.12.3 Grashof Number 

Grashof, a German scientist, number (Gr) is a dimensionless number which measures the 

proportion of the buoyancy force to the fluid's viscous forces, and determines the flow 

regime in free convection. Mathematically, it is defined as: 

         

 3

2
 =

wg L T TBouyancy force
Gr

Viscous force






                                                                  (1.10) 

where , , , , ,andwg L T T  represent the acceleration due to gravitational force, thermal 

expansion coefficient, characteristic length of fluid domain, wall temperature, ambient 

temperature, and kinematic viscosity respectively. The Reynolds number's function plays 

significant role in forced convection, whereas the Grashof number's function plays in free 

convection. In order to determine whether the fluid is laminar or turbulent during free 

convection, the Grashof number serves as the primary criterion. Moreover, Gr >0 and Gr 

<0 are used for cooling and heating Newtonian fluids respectively. 
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1.12.4  Richardson number 

The English mathematician Lewis Fry Richardson is honored by having his number, the 

Richardson number (Ri), named after him. It is a dimensionless number that represents the 

proportion of the buoyancy term to the flow shear term. It illustrates the significance of 

natural convection in thermal convection problems as comparison to forced convection. 

Mathematically, Richardson number is defined as: 

          
2

 =
Re

Gr
Ri                                                                                                                   (1.11) 

where Gr and Re denote the Grashof number and the Reynolds number respectively. 

1.12.5  Hartmann number 

A non-dimensional quantity called the Hartmann number (Ha), firstly introduced by Julius 

Hartmann, represents the proportion of electromagnetic force to viscous force. This non-

dimensional number gauges the significance of drag forces brought on by magnetic effects 

and viscous forces. It describes conducting fluid flow in a transverse magnetic field as well. 

Due to the fact that it is a function of the magnetic flux density, characteristic length, and 

the square root of the electrical conductivity to viscosity ratio. Mathematically, the 

Hartmann number defined as: 

           
0

 
 =

 

Electromagnetic force
Ha B L

Viscous force



                                                             (1.12) 

where 0 , , ,L  and   express the magnetic field, characteristic length, electrical 

conductivity, and kinematic viscosity of fluid respectively. 

1.12.6  Nusselt Number 

The Nusselt number (Nu) is a non-dimensional number that shows how convection, as 

opposed to conduction, increases the amount of temperature that may be transported 

throughout the fluid layer. It is named after a German scientist Wilhelm Nusselt at the 

beginning of the twenty-first century. It shows how much more heat is transported when a 

fluid is moving as opposed to when heat is transferred through conduction. Nu significantly 

influenced convection temperature transport. The larger value of Nu denotes strong 

temperature convection transport and a big temperature gradient at the surface.  
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According to the Nu = 1, fluid is immobile and all temperature is transferred through 

conduction. Mathematically, Nusselt number defined as: 

          
 = =

Convective heat transfer hL
Nu

Conductive hea transfer k
                                                                    (1.13) 

where , ,h L and k indicate the heat transfer coefficient, characteristics length of fluid 

domain, and thermal conductivity of the fluid respectively.                                                                                 

1.13 Background of the Study 

A current focus of scientific and engineering research is on nanofluid flow due to its rapid 

heat exchanging rate. The enrichment of heat transfer rates in industrial processes such as 

heat exchangers, microelectronics, cooling of electronic tools, solar water heating, solar 

collector, fusion reactors, computer processors, nuclear reactor cooling, transformer cooling 

and mineral oils is made possible by this significant scientific phenomenon [2-6]. Since 

nanofluid offer innovative prospects to improve heat transfer enactment with respect to pure 

liquids, it can be predicted to become the subsequent-generation heat transfer fluids. 

Correspondingly, there are distinct biomedical uses for nanofluids, including the treatment 

of cancer and the delivery of drugs. A suitable suspension of common liquids (base fluid) 

and nanometer size solid particles (Cu, CuO, TiO2, Fe, Al2O3, etc.,) is called a nanofluid. 

First of all, in 1995, Choi [7] introduced nanofluid at Argonne National Laboratory in the 

USA. This study showed that a conventional fluid's thermal characteristics can be boosted 

by the addition of nanoparticles into base fluid (water, motor oil, pump oil, etc.). 

Sheikholeslami et al. [8] employed the Lattice Boltzmann method (LBM) to talk over the 

physical appearance of heat transfer of Al2O3-H2O nanofluid flow in a semi-annular 

enclosure including the consequences of magnetic field. It was discovered that the average 

Nusselt number (Nuav) was a decreasing function of Hartmann number, whereas the average 

Nusselt number was an accumulative function of the Rayleigh number and the nanoparticle 

volume fraction. In a triangular cavity, Rahman et al. [9] analyzed the performance of heat 

transfer for Cu-H2O nanofluid in a mixed convective inclined lid-driven triangular cavity, 

where the Nuav on the hot surface was used to describe the overall heat transfer rate of the 

heated surface. On the flow and heat fields, it was explored that the tilt angle and the solid 

volume fractions had a considerable impact. 
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  Additionally, the solid volume percentage was optimized to produce the maximum 

heat transfer rate for the evaluated Richardson numbers (Ri). Cimpean et al. [10] examined 

mixed convection in a porous trapezoidal chamber filled with a hybrid nanofluid to 

accelerate the rate of heat transfer. By selecting various suitable nanoparticle amalgamations 

in hybrid nanofluid, the anticipated heat transfer rate may be accomplished, according to 

calculations made using the change of the fluid flow and heat transfer rate. Another 

investigation on mixed convective hybrid nanofluid was described by Ghadikolaei et al. [11] 

including the effect of Hydrogen bond. For numerical simulation, Runge- Kutta Fehlberg 

5th order (RKF-5) numerical method was used. They came to the conclusion that the Lorentz 

force brought about by increasing the magnetic square parameter results in a decrease in the 

velocity profile. Patil et al. [12] investigated hybrid nanofluid on a moving cylinder, where 

implicit finite difference method was applied to complete the numerical simulation. They 

found that when hybrid nanoparticles were added to base fluid, heat transmission was 

increased compared to base fluid and nanofluid. Another investigation about heat and mass 

transfer appearances using nanofluid on a Riga plate was completed by Vaidya et al. [13]. 

They used the optimal homotopy analysis (OHA) and concluded that the modified Hartmann 

number decreased the fluid temperature profile. Likewise, the radiation parameter used to 

the dissolution of fluid molecule hydrogen bonds. Additionally, recently multiple studies on 

nanofluid flow were done in order to explore the heat transfer mechanisms in a number of 

systems [14-18].  

Moreover, the present researchers are also interested by mixed convective fluid flow 

and heat transfer on close cavity, where the amalgamation of natural and force convection 

is acknowledged as mixed convection. Due to a wide range of applications, including 

electronics cooling system, heat exchangers, solar panel storage, etc., it has recently 

attracted a lot of attention in the fields of engineering [19]. In reality, natural convection has 

taken place automatically because of the temperature difference and buoyant forces in an 

enclosure whereas the force convection occurs due to external force or pressure into the 

cavity. That is, for mixed convective analysis these two types of convection are occurred. 

The cavity's geometry and orientation have an impact on the mixed convection 

phenomenon. Generally, mixed convection is occurred in a cavity for either lid velocity of 

any sides of the cavity or created ventilation on cavity. So, a number of investigations on 

mixed convective heat transfer containing nanofluid have been completed by various 

researchers.  
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Using a modified power-law viscosity model, Molla et al. [20] conducted a computational 

investigation on mixed convective heat transport of non-Newtonian fluids on a flat plate. 

Beg et al. [21] explored mixed convective nanomaterial flow through porous space 

originating from exponential stretched sheet. Explicit finite difference method (EFDM) was 

utilized to complete that simulation where stability and convergence test were performed. It 

was discovered that the flow accelerated with rising thermal and species Grashof numbers, 

rising Brownian motion, and rising thermophoresis effects. Hatami et al. [22] analyzed the 

mixed convective phenomenon by taking lid velocity in a T-shaped porous cavity that 

contain nanofluids, where the impact of various nanoparticles (Cu, TiO2, Al2O3) and their 

volume fraction was studied. For optimization purpose the response surface methodology 

(RSM) was used in that work. Additionally, the impact of various nanoparticles and their 

volume fraction on the Nusselt number was examined. Another investigation on mixed 

convection with magnetic field was performed by Alshare et al. [23]. The cavity’s lower 

part had wavy boundary heated condition that was filled with nanofluid. In their analysis, 

they found that the entropy formation was mostly caused by heat transmission, with only 

minor contributions from frictional and magnetic phenomena. For a square-shaped cavity, 

Manchanda et al. [24] examined mixed convection for a non-Newtonian fluid. The top and 

bottom walls of the square hollow were thermally insulated and kept moving in opposing 

directions along the X-axis whereas the left and right standing walls are visible to ambient 

state. In a lid driven cavity, Gangawane et al. [25] described the effects of a block which 

had a uniform heat flux into this cavity. According to the study's findings, the centered block 

position transfers heat more quickly than the other two positions. Moreover, in a trapezoidal 

cavity double-diffusive mixed convective analysis was performed by Mondal et al. [26] with 

Al2O3-H2O fluid. It was assumed that the cavity’s top wall shifted with constant velocity u0 

in the direction of the positive X-axis. By utilizing the biconjugate gradient stabilized 

approach, the governing equations were solved via second and fourth order finite difference 

approximations. The main objective was to limit entropy formation caused by the interaction 

of magnetic field, heat transfer, mass transfer, and fluid flow in order to reduce energy loss. 

Furthermore, magnetohydrodynamics (MHD) is the field of research that described 

the impact of magnetic fields on electrically conducting liquids. The earth's magnetic field, 

X-ray radiation, nuclear fusion, fission reactor’s cooling, solar wind, tumor therapy, etc., 

are all involved with MHD. Due of these real-world uses, a large number of researchers 

looked at MHD heat transport in various cavities at various points in time [27-29]. 
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Abderrahmane et al. [30] analyzed mixed convection on a porous triangular cavity, filled by 

hybrid nanofluid, with rotating cylinder. The well-known finite element technique was 

utilized for involved governing equations, and founded that the heat transfer rate on that 

cavity was boosted by increasing Darcy number.  Alsedais et al. [31] selected an undulating 

porous enclosure to analyze mixed convection where a solid obstacle was fixed on the 

cavity. The finite volume technique was applied to make such a conclusion that the average 

heat transfer rate developed by 42.86% by growing undulation effect. Parveen et al. [32] 

investigated the temperature-dependent thermal conductivity of a free convective viscous 

incompressible fluid in the presence of heat absorption along a vertical wavy surface that 

was uniformly heated. The Keller-box scheme, an implicit finite difference method (IFDM), 

was used to solve it numerically. It was found that for the higher values of the temperature-

dependent thermal conductivity variation parameter, both the fluid flow and the temperature 

distribution within the boundary layer greatly increased. Sheikholeslami et al. [33] inspected 

magnetic field and how radiation affected the suspension of Al2O3-H2O nanofluid in an 

enclosure with uniform heat flux. In order to simulate the thermal conductivity and the 

viscosity of a nanofluid, the Koo-Kleinstreuer-Li (KKL) correlation was used. The findings 

indicated that improvements in heat transfer had a direct link with the Hartmann number 

and the radiation parameter, but that the Rayleigh number had a reverse relationship. 

Parveen et al. [34] examined the impact of the temperature-dependent variables viscosity 

and viscous dissipation on the boundary layer flow of an electrically conducting fluid that 

is viscous and incompressible along a vertical undulating surface in the existence of a 

transverse magnetic field. The uniform wall temperature, which was greater than the 

ambient temperature, was kept at the undulating surface.  

The impact of magnetic field for an MHD nanofluid flow on a straight up plate was 

investigated by Chamkha et al. [35] in the presence of a magnetic field, heat generation or 

absorption, and suction or injection effects. An effective, iterative, tri-diagonal implicit 

finite-difference technique was used to numerically solve the governing equations. Another 

laminar MHD fluid flow model was created by Molla et al. [36] for an isothermal sphere 

immersed in a fluid whose viscosity was proportional to a linear function of temperature. 

The very effective IFDM, the Keller box scheme, and a straight numerical strategy were 

used to resolve the governing equations. To visualize heatline contours for energy 

transportation, Islam et al. [37] discussed an MHD fluid flow model containing Cu-

nanoparticles in a prismatic enclosure.  
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On that cavity’s wall, two types of boundary conditions were applied. The Galerkin 

weighted residual finite element method was utilized, and came to the conclusion that the 

thermal boundary condition and form of the nanoparticles are significantly influenced by 

the heat transfer rate. Including outer magnetic field in a horizontal channel containing Cu-

H2O fluid, Ali et al. [38] performed another mixed convective exploration, where the 

channel was partially heated. The governing equations were resolved using the finite 

element method based on the Boussinesq approximation. According to the findings, the 

height and orientation of alternated baffles had an impact on the flow of fluid and the transfer 

of heat. Moreover, Jakeer et al. [39] studied MHD Cu-Al2O3-H2O nanofluid in a porous lid 

driven cavity including Cattaneo-Christov heat flux. Dimensionless versions of the 

governing equations were numerically computed using the SIMPLER algorithm and the 

finite volume method (FVM). It was concluded that the in comparison to other nanofluids, 

the hybrid kind offers a higher rate of heat transmission. Ali et al. [40] quantitatively 

examined another mixed convective nanofluid flow mode that filled a cavity created by the 

thermal buoyancy force, a moving wall, and a rotating flat plate exposed to an external 

magnetic field. At the center of the chamber was a flat plate that rotated counterclockwise, 

and found that maximum heat transfer was produced by the plate's longer length and faster 

rotation.  

1.14 Motivation of the Research 

From the aforesaid literature survey, it is clear that the researchers are very interested in the 

MHD mixed convective heat exchanger because it has applications in numerous engineering 

disciplines. Though distinct studies were completed in different time on dissimilar closed 

cavity to investigate the MHD mixed convective fluid flow and heat transfer behavior but 

specifically a few studies on hexagonal enclosures holding various nanoparticles have also 

been done in recent years [41-45]. Once more, a very few studies on heat exchangers (a 

mechanical device is used to handover heat between two or more fluids) were conducted to 

create the rapid heat transfer system [46-50]. But in this piece, these two phenomena (mixed 

convection and heat exchanger) are combined into a hexagonal-shaped cavity.  

This means that in this work, the mixed convective heat transfer process for a hexagonal 

heat exchanger with TiO2-H2O nanofluid composition is analyzed including the existence 

of a magnetic field. As far as the author is aware, this issue has not yet been the subject of 

any research.  
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Furthermore, a sensitivity analysis on input parameters is done with the response surface 

methodology (RSM) by using statistical analyzing software. The analysis of variance 

(ANOVA) test is performed and explained. The finite element method [51-52] is utilized to 

simulate the governing equations of this heat exchanger model. The influences of involved 

parameters are discussed graphically and physically. The manner of heat transfer rate is 

explained in details by average Nusselt number (Nuav). Also, streamlines and isotherm lines 

are explained with the changes of involved factors. The primary goal of this research is to 

examine how this mixed convective heat exchanger is affected by the Richardson number 

(Ri), Hartmann number (Ha), Reynolds number (Re), and nanoparticle volume fraction (ϕ).  

1.15 Main Objectives of the Study 

The present study examines numerically time-independent mixed convective heat transfer 

process with sensitivity analysis inside a hexagonal heat exchanger filled in TiO2-H2O 

nanofluid composition with the presence of a magnetic field.  The outcomes of various 

involved parameters such as Reynolds number (Re), Richardson number (Ri), Hartmann 

number (Ha), and nanoparticles volume fraction (ϕ) will be presented in terms of 

streamlines, isotherms, and Nuav. The following are the primary goals of the planned study: 

a) To develop an appropriate mathematical model for exploring the fluid flow and heat 

transfer characteristics for a mixed convective hexagonal heat exchanger that 

contains nanofluids.   

b) To solve the governing equations numerically using the Galerkin weighted residual 

finite element method. 

c) To evaluate the thermal efficiency of heat exchangers with or without existence of 

nanofluids. 

d) To analyze the influence of involved parameters, namely Reynolds number (Re), 

Richardson number (Ri), Hartmann number (Ha), and nanoparticle volume fraction 

(ϕ) for heat transfer enhancement. 

e) To develop a best fitted mathematical correlation among independent factors and 

response function, and discussed sensitivity analysis by using response surface 

methodology for these independent factors of this model.  

f) To compare the obtained results with published work, and publish this research into 

a good scientific journal. 
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1.16 Outlines of the Thesis 

The consequences of steady mixed convective fluid flow and heat transfer of a hexagonal 

heat exchanger that contains TiO2-H2O nanofluid under the control of a constant magnetic 

field are examined in this inquiry. Some important ideas about this subject, the principles of 

nanofluids and pertinent discussion on dimensionless parameters have been provided in 

Chapter 1. The literature overview of previous investigations on fluid flow and heat transfer 

in various cavities or channels is briefly discussed here. Additionally, a succinct introduction 

is provided along with the primary goals and sources of motivation for choosing the current 

study. The computational techniques that are usually used to solve governing equations have 

discussed in Chapter 2. Also, the mathematical modelling of proposed model is also 

described here. Moreover, a set of transformation variables has used to convert the nonlinear 

governing partial equations with boundary conditions into a non-dimensional form. 

Furthermore, the finite element method’s formulation and result comparison have discussed 

in details in Chapter 2. In Chapter 3, the outcomes of involved parameters, such as, Reynolds 

number (Re), Richardson number (Ri), Hartmann number (Ha) and nanoparticle volume 

fraction (ϕ) have explained in terms of streamlines, isotherm lines and average Nusselt 

number (Nuav) from a physical point of views. Also, the sensitivity analysis about involved 

factors on Nuav has been discussed with the response surface method (RSM). Finally, in 

Chapter 4, a summary of the major accomplishments and some suggestions for future work 

have been provided. 
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CHAPTER 2 

Computational Techniques & Mathematical Modelling 

2.1   Computational Fluid Dynamics 

The study of thermodynamic flow and heat transfer can be done theoretically or 

experimentally. Due to their restricted flexibility and applications, experimental study of 

such problems was unable to become very prominent in the field of thermodynamics. Since 

it takes a long time and costs to solve fluid flow issues experimentally, the computational 

fluid dynamics (CFD) method is growing in popularity for technological and scientific 

objectives. Fluid dynamics is not flexible enough to allow for adequate experimental 

examination of temperature transport and fluid movement. Ordinary or partial differential 

equations, which have been the focus of analytical and numerical research, may be used to 

represent numerous complex physical models mathematically. But due to the involvement 

of complex geometric entities, numerous variables, nonlinearity in governing equations, 

various boundary forms, and circumstances, the straight-forward analytical methods of 

solution are not also more beneficial. Therefore, the best choice for solving real-world 

partial differential equations issues is to use numerical methods. CFD is utilized to tackle 

such engineering problems via computer-based simulation for sophisticated geometry or 

some crucial aspect that cannot be solved using a regular method. A practical approximation 

of a natural living system, CFD uses information from a set of algebraic equations. The 

results of the computational process can be used to comprehend a system's performance. In 

order to create realistic physical solutions with appropriate accuracy, researchers use CFD 

simulation software using finite grids. Complex geometry's precise and reliable prophecy 

more than meets the intense demand for increased superior reliability and economic 

challenges. These phenomena typically occur in CFD, which has been used for years to 

numerically calculate fluid dynamical model. Today, it is successfully used to large-scale 

industrial and engineering challenges, such as laminar flow, turbulent flows, compressible 

flow, single phase flow, two phase flow, etc.  
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2.2   Discretization Methods 

In order to approximate the differential equations for the variable at a set of discrete 

locations in space and time, one must first select a suitable mathematical model. Next, one 

must select an appropriate discretization scheme. Accordingly, each element of a differential 

equation is converted into a numerical analog, characterized in a computer, and then deal 

with a software application based on an algorithm. With regard to the high-performance 

numerical calculation in CFD, a number of discretization techniques are available, including 

the finite difference method (FDM), finite volume method (FVM), finite element method 

(FEM), boundary element method (BEM) and boundary volume method (BVM).  

2.2.1   Finite Difference Method 

The finite difference method (FDM) is the earliest technique for numerically solving PDEs, 

and Euler is thought to have developed it in the eighteenth century. The conservation 

equation in differential form serves as the starting point, and a grid is used to define the 

solution domain. By substituting approximations in terms of the nodal values of the 

functions for the partial derivatives at each grid point, the differential equation is roughly 

approximated. As a result, each grid node has a single algebraic equation, in which the 

unknowns are the variable value at that node and a specific number of its neighbors. 

Although it is typically used for structured grids, the FDM can be applied to any form of 

grid. The grid lines also act as lines of local coordinates. The first and second derivatives of 

the variables with respect to the coordinates can be approximated using polynomial fitting 

or the Taylor series expansion. These techniques can also be utilized, if necessary, to get 

variable values away from grid nodes. It is simple to understand and utilize. Although the 

FDM has a few benefits, it is extremely challenging and nearly impossible to perform when 

dealing with complex geometric body shapes and boundary constraints. 

2.2.2   Finite Volume Method 

The integral form of the conservation equations serves as the foundation for the finite 

volume method (FVM). The conservation equations are applied to each of the finitely many 

contiguous control volumes (CVs) that make up the solution domain. A computational node 

where the variable values are to be determined is located at the centroid of each CVs. To 

translate variable values at the CV surface into nodal values, interpolation is used. Suitable 

quadrature equations are used to approximate surface and volume integrals.  
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The output is an algebraic equation for each CV that contains a number of neighbor nodal 

values. The grid need not be connected to a coordinate system and just sets the control 

volume limits. By design, the approach is conservative, provided that the surface integrals-

which represent the convective and diffusive fluxes-are the same for the CVs that share the 

borders. It is favored by engineers since it has physical meaning for all terms that must be 

approximated. However, this computational strategy has a drawback in comparison to other 

computational techniques in that it is more challenging to build methods in three dimensions 

for orders higher than two. This is because interpolation and integration are the two levels 

of approximation required by the FVM. Additionally, the geometric body shape is intricate, 

and managing the boundary conditions is quite challenging. 

2.2.3   Finite Element Method 

Each numerical approach for solving partial differential equations has certain strengths and 

some weaknesses. When all other techniques have failed, finite element method (FEM) 

manages complex geometrical bodies and boundaries. The FEM is similar to the FVM in 

many ways. The domain is divided into a number of discrete, unstructured volumes of finite 

components; in 2D, these volumes are typically made up of triangles or quadrilaterals, while 

in 3D, they are most frequently made up of tetrahedral or hexahedra. In FEM, the entire 

domain (Г) is partitioned into a number of smaller subdomains known as finite elements 

(Λe). A discretization process for FEM is represented in Figure 2.1 for a 2D domain. An 

overview about this discretization technique was discussed by Reddy [53]. By using the 

Delaunay triangular method [54], the current numerical strategy is discretized the 

computational domain into unstructured triangles. While mesh generation was still in its 

early stages, the Delaunay triangulation has been a very popular geometric construction. 

 

Figure 2.1: Finite element discretization of a two-dimensional domain. 
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Moreover, the equations that are solved by FEM are multiplied by a weight function before 

being integrated across the entire domain, which is how FEMs are distinguished from other 

approaches. The solution is approximated by a linear shape function inside each element in 

the most basic FEM, ensuring continuity of a solution across element boundaries. From its 

values in the corners of the elements, such a function can be created. Typically, the weight 

function takes the same shape. Following that, the approximation is substituted into the 

weighted integral of the conservation law, and the equations to be solved are derived by 

requiring that the integral's derivative with respect to each nodal value be zero. This 

corresponds to choosing the best option from the list of permitted functions. Several non-

linear algebraic equations are the end result. The ability to work with any geometry is one 

of the main benefits of FEM. The grids can be readily improved; just divide each piece. 

Finite element techniques can be proved to exhibit optimality properties for specific kinds 

of equations, and mathematical analysis of these techniques is not too difficult. The ability 

of a particular model to derive the equations for each element before assembly is another 

benefit of FEM. Mathematical problems involving FEM can be analyzed rather easily. 

The finite element technique with Galerkin weighted residuals has been applied in 

recent numerical computation. It is a highly effective method for computing numerically 

and approximating solutions to a system of PDEs. The use of FEM in solving fluid dynamics 

problems has gained prominence over time. For dealing with time-dependent, independent 

and nonlinear flow issues in irregular domains, this method is sufficiently universal. The 

mathematical model generation is created by clipping together the local approximations of 

the phenomena under study, which is a key feature of FEM. The capacity to handle any 

complicated geometries is the key benefit of FEM. Additionally, the grid may be readily 

redefined, and each element can be divided easily. FEM generates equations for every 

component separately from every other component. The interactions between the 

components are only taken into consideration when the equations are compiled and 

combined into a global matrix. The majority of the computational techniques for these ideal 

qualities are dominated by FEM. When the sides of the elements are appropriately aligned 

and share the same nodes as their adjacent elements, there are no constraints on how the 

components can be connected in FEM. We are able to represent quite complex geometries 

because to this flexibility. In fact, a set of discrete volumes of finite elements, which are 

typically unstructured, are used to divide the domain in FEM. Finite elements in 2D 

geometry are often made up of triangles or quadrilaterals.  
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The equations are multiplied by a weight function prior to being integrated over the full 

domain, which is what makes the weighted residual finite element method unique. In order 

to ensure continuity of a solution across element boundaries, a linear shape function 

approximates the solution within each element. Generally speaking, the weight function is 

a shape function. The weighted integral of the conservation equations is then changed to 

reflect the approximation. For viscous incompressible thermal flows, in 1999, Dechaumphai 

et al. [55] applied finite element method. Also, in different time in numerous simulations 

the FEM is used successfully to simulate distinct complex shape model [5, 9, 30, 38]. 

2.3   Mathematical Modelling 

The first step in any numerical technique is to create a mathematical model of the physical 

issue at hand, which typically consists of a collection of ordinary and partial differential 

equations that are either linear or nonlinear and include the necessary boundary conditions. 

The conservation of mass, momentum, and energy is the foundation of the generalized 

governing ordinary or partial differential equations. Researchers and scientists are primarily 

concerned with improving the rate of heat transfer in all thermal systems and industries. 

Actually, the mixed convective fluid flow and heat transfer analysis is so much essential in 

industrial and engineering applications such as in heat exchanger, air-conditioning systems, 

refrigerator, cooling electronic devices, solar collectors, building insulation, etc. As a result, 

enhancing heat transfer efficacy in these systems is crucial from the standpoint of energy 

conservation. Improved fluid properties known as nanofluids have many advantages over 

base fluids that are typically employed in engineering and industrial applications including 

microelectronics, computer processors, heat exchangers, electrical devices, etc. 

Several mixed convective studies completed on numerous cavities containing 

nanofluid, for example, triangular shape, square shape, prismatic shape, circular shape, 

hexagonal shape, that have been described in literature review section for different 

nanofluids. Again, a very few studies on heat exchangers were conducted to create the rapid 

heat transfer system. So, to the best of my knowledge, no research has yet been done on the 

literature review pertaining to a mixed convective heat exchanger in the shape of a hexagon 

that is filled with various nanofluids and is affected by a magnetic field. That is, in this 

numerical investigation, a study of MHD mixed convective fluid flow and heat transfer for 

hexagonal shape heat exchanger filled with nanofluid under the influence of the uniform 

magnetic field has been performed.  
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Due to its ability to solve complicated problems, the FEM is one of the numerical methods 

that have gained prominence. The discretization of the governing equations in this study 

will be accomplished using FEM. The Galerkin finite element method will yield the solution 

of the governing equations as well as the boundary conditions. The current numerical 

simulations offer a forecast that may be used for design optimization and the enhancement 

of thermal performance of energy systems such heat exchangers, solar thermal collectors, 

biomedical engineering, cooling of electronic appliances, and so on. 

2.3.1   Physical Modelling 

In this numerical analysis, a mixed convective hexagonal heat exchanger is chosen as a fluid 

area containing with Titanium oxide (TiO2) nanoparticles with water (H2O), which is 

considered steady, Newtonian, and incompressible laminar fluid including the influence of 

a magnetic field. This hexagonal enclosure is heat and mass insulated that’s height and 

length is H and L respectively. The top horizontal wall is moving by a lid velocity u0. Two 

cylindrical pipes (radius is 0.1L) are used as a cooler and heater, respectively, on the right 

and left sides. The configuration of this hexagonal heat exchanger-based fluid model is 

shown in Figure 2.2. The right cylindrical pipe is considered as a cooled surface Tc, and the 

left pipe is considered as a hot surface Th. The fluid domain's exterior walls are completely 

preserved and insulated. Along the negative direction of the Y-axis, the gravitational 

acceleration g is acted to this fluid field. Moreover, the enclosure is encased in a constant 

magnetic field B0 that extends from the right to the left. The size and form of the TiO2 

nanoparticles are thought to be identical, and adjacent mediums are regarded as non-slip. 

The nanofluid's thermophysical characteristics are listed in Table 1.  

 
Figure 2.2: Physical configuration of proposed hexagonal heat exchanger. 
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A two-dimensional (2D) coordinate system is used to view and complete the fluid domain 

model, with the X-axis denoting the bottom wall and the Y-axis pointing in the direction of 

the left sidewall. A 2D coordinate system is used to view the fluid domain model, with the 

X-axis denoting the bottom wall and the Y-axis pointing in the direction of the left sidewall. 

Table 1: Thermophysical properties of the solid particle and base fluid [12]. 

Nanoparticle 

& Base fluid 
cp 

(J.kg-1.K-1) 

ρ 

(kg.m-3) 

κ 

(W.m-1.K-1) 

β 

(K-1) 

σ 

(Sm-1) 

μ 

(kg.m-1.s-1) 

Pr 

Solid (TiO2) 686.2 4250 8.953 0.9×10-5 3.5×106 - - 

Fluid (H2O) 4179 997.1 0.613 21×10-5 5.5×10-6 0.001003 6.9 

 

2.4   Governing Equations 

The associated governing equations for this 2D steady mixed convective hexagonal heat 

exchanger nanofluid model with the influence of magnetic field are as follows: [22, 40]: 

Continuity Equation: 

 + = 0
u v

x y

 

 
                                                                                                                       (2.1) 

X-momentum Equation: 

2 2

2 2
+  = -v

u u p u u
u

nf nfx y x x y
 

      
   

       
                                                                     (2.2) 

Y-momentum Equation: 

   
2 2

2

02 2
+ = -v c nfnf

v v p v v
u g T T B v

nf nfx y y x y
   

      
      

       
                           (2.3) 

Energy Equation: 

 
2 2

2 2
+  = v

T T T T
c u kp nfnf x y x y


     

  
      

                                                                      (2.4) 

where p denotes the pressure, g is the acceleration due to gravity,  is the density,  is the 

dynamic viscosity,   is the thermal expansion coefficient, and  T is temperature. Also, the 

subscript ‘nf ’ denotes the respective properties of nanofluid. 
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Moreover, cT  is the reference temperature,   is the electric conductivity, 0B is the 

magnetic field, pc  is the specific heat at constant pressure, k is the thermal conductivity, 

and u, v are the velocity components along X, Y directions, respectively. In the momentum 

equation, the external magnetic field and buoyancy force are considered as body force (F), 

as a result,     2

0c nfnf
g T T B v    is added in the Y-momentum equation. According 

to this study's formation, the boundary conditions must satisfy each of the followings:  

0

on the left circular surface

n

0

 the right circular surface

on the top ho0 rizontal wall

and on all other surrounding w

0

alls

0, 0,

0, 0, o

, ,

0,

h

c

u v T T

u v T T

T
u u v

y

T
u v

n

   


  



   
 


   

 

                                                                  (2.5)  

where n is the perpendicular vector acted on the heated surface. 

2.5   Properties of Nanofluid  

Actually, the thermophysical characteristics of nanofluid are mathematically interrelated 

with the properties of base fluid (H2O) and nanoparticles (TiO2). In general, the following 

correlations are used to determine the density  nf , thermal expansion coefficient 

 
nf

 , heat capacitance  p nf
c , and thermal diffusivity of nanofluid  nf [22]:  

  
(1 )

bf spnf
      

                                                                                           (2.6a) 

       (1 )
nf bf sp

                                                                                         (2.6b) 

      (1 )c c cp p pnf bf sp
                                                                                     (2.6c) 

 
 

nf

nf
c

p
nf





                                                                                                              (2.6d) 
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Moreover, the Brinkman viscosity model [56] is used to calculate the nanofluid’s viscosity 

which is a key property of fluids. 

   
2.5

1
nf bf

  


                                                                                                    (2.6e) 

Also, the Maxwell-Garnetts model [27, 57] for thermal conductivity of nanofluids, and 

Maxwell model [28] for electrical conductivity of nanofluids are used to build this mixed 

convective nanofluid model. 

  

 
 

2 2

2

k k k ksp spbf bf
k

nf bf
k k k ksp spbf bf






  



  

 
 
 
 
 

                                                                   (2.6f) 

3 1

1

2 1

sp

bf

nf bf
sp sp

bf bf






 
 


 



  
  
  
   

    
      
        

                                                                       (2.6g) 

2.6   Dimensionless Governing Equations  

The following non-dimensional governing equations (2.8-2.11) are created, accordingly, by 

including the dimensionless variables in (2.7) into the dimensional equations (2.1-2.4). 

 2
0 0 0

, , , , and
T Tx y u v p cX Y U V P

L L u u T Tu h cnf




 
      

 


                                        (2.7)

 

The continuity, momentum, and energy equations that result from the dimensionless 

variables mentioned above are as follows: 

0
U V

X Y

 
 

 
                                                                                                                         (2.8)          

2 21

2 2Re

U U P U Unf
U V

X Y X X Ybf





            
        

                                                                 (2.9) 
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 2 2 2

2 2

1

Re Re

nf bf nf

nf bf nf bf

V V P V V Hanf
U V Ri V

X Y Y X Y
bf

   


    

                            

         (2.10)  

2 2

2 2

1

RePr X Y

nf
U V

X Y
bf

 


 


 
          

 

 
 

 
                                                             (2.11)                                                                                                                                        

The Reynolds number (Re), Prandtl number (Pr), Grashof number (Gr) and Hartmann 

number (Ha), which are each four different parameters in the equations above that govern 

this issue, are defined as: 
  3

0

2
Re , ,

bf bf h c

bf bf bf

g T T Lu L
Pr Gr

 

  


   , and 

0 bf

bf

LB
Ha






respectively. Here, 
2Re

Gr
Ri  is known as Richardson number and 

Pr

Ra
Gr  , where 

  3

bf h c

bf bf

g T T L
Ra



 


 is known as Rayleigh number. Furthermore, the dimensionless 

boundary conditions are:  
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on all other surroundin

p

face

1, 0, 0 on the to horizontal wa

a

ll

a , g w llsnd 0 0

U V

U V

U V
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







   

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

  

 


   
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                                                         (2.12) 

The local Nusselt number (Nuloc) is defined as: 

.h S
Nu

loc k
bf

                                                                                                                        (2.13a) 

where h, kbf  and S represent the convective heat transfer rate, thermal conductivity of base 

fluid, and arc length of heated surface respectively. Also, the convective heat transfer rate 

from heated surface is obtained form: 

heated surface

h k
nf N

 
   

 
                                                                                                                    (2.13b) 

where N is the perpendicular vector acted on heated surface.  
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By using equations (2.13a) and (2.13b), the local Nusselt number along to the cooler surface 

is calculated by: 

k
nf

Nu S
local k N

bf

 
   

 
                                                                                                             (2.13c) 

Also, to determine the heat transfer rate from the heated left circular surface to cooler surface 

the average Nusselt number (Nuav) is calculated by using:  

S

k
nf

Nu dS
av k N

bf


 

  
  
 

                                                                                                        (2.14) 

Here, S represents the surface area of the heated surface. Moreover,  denotes the stream 

function that is connected by andU V
Y X

  
  
 

. Furthermore, Ω is the vortices vector 

that is defined by: 

2 2

2 2

V U

X YX Y

     
      

    
Ω, where U and V stand for X and Y-axes 

velocities respectively.  

2.7   Finite Element Formulation 

Here, the mixed convective heat transfer process is solved using a set of linked nonlinear 

partial differential equations that are based on the conservation of mass or continuity 

equation (2.1), conservation of momentum equations (2.2) and (2.3), and conservation of 

energy equation (2.4). The FEM is a sophisticated numerical method for solving ordinary 

and partial differential equations that appear in scientific and engineering problems. With 

this approach, the entire domain is partitioned into smaller, so-called "finite elements," 

which have finite dimensions. The FEM is an excellent numerical technique for study of 

scientific and engineering problems. Fluid mechanics, heat transfer, electrical systems, 

chemical processes, and many other domains use FEM to solve integral equations. 

Therefore, using the Galerkin weighted residual-based finite element technique, the 

governing dimensionless equation (2.8) to equation (2.11) with the initial and boundary 

conditions (2.12) have been numerically solved.   
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The equations (2.8) -(2.11) are subjected to the weighted residuals Zienkiewicz [52] method 

to generate the finite element equations as: 

0
A

U V
N dA

X Y


  
  

  
                                                                                                       (2.15) 

2 21

2 2Re
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
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              (2.16) 
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              (2.17) 
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where the element shape functions for the pressure are represented by  1,2,3H   and A 

is the element area. Also, for the velocity component and temperature,  1,2,...,6N

represents the element's shape functions or interpolation functions. The velocity components 

U, V, the temperature θ, and the pressure P are the primary unknowns for the differential 

equations describing incompressible thermal flow.  

In this study, the finite element equations are developed using the six-node triangular 

element. Only the corner nodes are connected to pressure; the other five nodes are all 

connected to velocities and temperature. This indicates that a lower order polynomial, which 

is satisfied by the continuity equation, is chosen for pressure. Equations (2.15) through 

(2.18) are now subjected to Gauss's theorem in order to produce the boundary integral terms 

for the surface tractions and heat flux. According to the Gauss’s theorem in 2D:

. .

A c

F dA F n ds   , we have: 

              . .

A c

N U dA N U nds                                                                                      (2.19) 

where F N U  .  



31 
 

Again using the vector identity  . . .F F F      , we can write 

               . . .N U N U N U                                                                                  (2.20) 

That is,    . . .

A A A

N U dA N U dA N U dA             

       Or,    . . .

A A A

N U dA N U dA N U dA             

     Or,  . . .

A c A

N U dA N U nds N U dA            (by using 2.19)                               (2.21) 

Now, with the help of equation (2.21), the equation (2.16) can be written as, 

0

0

1

Re

1

Re

A A A

x

s

N NU U P U Unf
N U V dA H dA N dA

X Y X X X Y Y
bf

nf
N s ds

bf

 
  











 
                               

 

 
 
 
 

  



 (2.22) 

Similarly, the equation (2.16) and (2.17) can be written as, 
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                       (2.24) 

where .xs U n  and .ys V n
 
are the surface tractions along outflow boundary 0s . 

Also, .wq n is the heat flux that flows into or out from domain along wall boundary ws

. Here,  , , andU V P are the fundamental unknowns representing velocity components, 

temperature, and pressure, respectively of the differential equations (2.22)-(2.24).  
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Now, substitute the element velocity distribution, temperature distribution, pressure 

distribution and their derivatives. That is, 
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Also,  
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                                                                                    (2.26) 

Now, apply (2.25) and (2.26) into the equations (2.15) and (2.22)-(2.24) one can obtain,  
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Then the finite element equations (2.27)-(2.30) can be written in the form: 

0x yK U K V  
                                                                                                           (2.31) 
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                                            (2.32) 
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               (2.33) 

 x y x x y yK U K V M M Q           
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where the integrals at the element edges so and sw are the coefficients in the element matrices 

take the form of: 
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Nonlinearity exists in the resulting finite element equations (2.31)-(2.34). By first 

formulating the unbalanced values from the set of the finite element equations (2.31)-(2.34) 

as follows, the Newton-Raphson iteration approach is used to solve these nonlinear 

algebraic equations. 

p x yF K U K V   
                                                                                                       (2.36) 

 u x y x x x y y uF K U U K V U H P S S U Q             
                                       (2.37) 

 v x y y x x y y vF K U V K V V H P S S V K N V Q                 
             (2.38) 

 x y x x y yF K U K V M M Q            
                                                       (2.39) 

This results in a series of algebraic equations in which the element nodal velocity components, 

temperatures, and pressures are incremental unknowns in the form: 
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where,  
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and 0u p p ppK K K K                                                                                          (2. 41m) 

If the percentage of the overall change from previous iteration is less than the given value, 

the iteration process ends. In MATLAB, a set of global nonlinear algebraic equations is 

produced using Newton-Raphson iteration approach that can be used to solve these 

governing equations. The convergence condition for this weighted residual approach is 

established such that 
1 510m m    for any variables that is not as important where 

m+1 and m represent two repetitions in succession, and  , ,U V   stands for the iteration's  

values. 
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2.8   Computational Procedure 

The dimensionless governing equations (2.8)-(2.11), including boundary conditions (2.12), 

are used for the numerical calculations. Also, the hexagonal enclosure has been discretized 

into multiple triangle-shaped parts. These governing equations are numerically solved with 

the aid of the finite element Galerkin weighted residual method [9]. In order to measure the 

thermal performance and the motion of fluid, the whole territory is partitioned into non-

overlapping triangular form elements, which requires six nodes and takes into account 

quadratic interpolation functions. Six nodes are used in the current inquiry, and triangle-

shaped components from those nodes are used to improve finite element equations where 

velocity and temperature are coupled to all six nodes. Only pressure is connected to the 

nodes in the corner. Between momentum equations for the continuity requirement and a 

shape function of lower order chosen for the pressure that is satisfied by the continuity 

equation, the matching of the pressure gradient has occurred. Additionally, to calculate 

pressure gradient the linear interpolation algorithm is occupied.  

 

Figure 2.3: A complete flow chart of the computational procedure. 
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Furthermore, each element's dependent variables are roughly represented as local element 

coordinates by the involvement of interpolation functions. In this thesis work, to understand 

the finite element technique, all necessary calculations are performed in section 2.7 over the 

dimensionless governing equations (2.8)-(2.11) and the non-dimensional boundary 

conditions (2.12). While it is non-continuous between the elements, the same pressure is 

taken into account with linear elements. The governing non-linear partial differential 

equations are then given the Galerkin weighted residual approach, which converts the non-

linear partial differential governing equations into a system of integral equations. These 

equations' integral components are solved using Gauss' quadrature method. The non-linear 

algebraic equations are then modified by boundary conditions as well. If the overall change 

percentage from the previous iteration is less than the stated value, the iteration process 

comes to an end. The Figure 2.3 depicts the entire flowchart of this computing process by 

finite element method.  

2.9   Mesh Generation 

In finite element method (FEM), the approach to partition a domain into a collection of 

subdomains is known as mesh generation or grid generation. Mesh cells are used to 

discretize a local approximation from a vast domain. The objective is to produce a mesh 

with high-quality (well-shaped) cells that precisely represents the input domain geometry 

while not having an excessive number of cells that would make further calculations 

impossible. The mesh should also have fine (tiny elements) elements in locations that are 

crucial for the calculations that follow. Meshes are utilized for physical simulations like 

FEM or CFD as well as for rendering to a computer screen. In Figure 2.4, a hexagonal 

domain is shown separated into a number of subdomains by triangular elements. But, 

tetrahedral, pyramids, prisms, or hexahedra must be used for building 3D meshes for finite 

element analysis. By using the Delaunay triangular method, the current numerical strategy 

will discretize the computational domain into unstructured triangles. Among all feasible 

triangulations of a vertex set in 2D, the Delaunay triangulation maximizes the smallest 

angle. 
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Figure 2.4: Discretization for finite element method of a domain. 

2.10   Grid Independence Analysis 

A grid sensitivity assessment is described in order to procure the ideal number of elements 

for this finite element scheme. For using the finite element approach, the entire domain for 

this fluid model is discretized into five distinct numbers of triangle elements these are 2094, 

3372, 8878, 24600 and 32618 respectively. To test the grid independence two different cases 

are used, where case 1 for Re = 10, Ha =100 and ϕ = 0, and case 2 for Re = 200, Ha =0 and 

ϕ = 0.1. For both cases Ri =1 and Pr = 6.9 are taken as fixed.  

Again, to perform this independency test for mesh generation, the optimum value of 

the average Nusselt number (Nuav) is chosen. In Table 2, the computational outcomes of 

Nuav for various numbers of triangle elements of this hexagonal cavity are shown.  

Table 2: Grid independency analysis for present study. 

Number of Triangular Elements 

 2094 3372 8878 24600 32618 

Nuav (case 1) 1.7832 1.8080 1.8940 1.9222 1.9222 

Nuav (case 2) 12.113 12.307 12.755 12.830 12.830 
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Figure 2.5: Grid sensitivity test by Nuav for Ri = 1, Re =10, Ha = 100, and ϕ = 0.  

 

Figure 2.6: Grid sensitivity test by Nuav for Ri = 1, Re =200, Ha = 0, and ϕ = 0.1.  

Also, the Figure 2.5 and Figure 2.6 demonstrate line graphs of the values of Nuav for 

different number of elements. These two figures and Table 2 exhibit that for the 24600 

triangular elements, for both cases, the values of Nuav are essentially the same to those found 

for the subsequent higher triangular elements. As a result, in order to solve this heat 

exchanger fluid flow model, the 24600 triangular elements is chosen for discretization. 
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2.11   Code Validation 

In this section, isotherm lines with streamlines are operated to evaluate the authenticity of 

this study with the work of Sivakumar et al. [58] that was a lid driven mixed convection 

analysis. Sivakumar’s results are compared to the current findings for a proper agreement 

about this lid driven mixed convection heat exchanger model. They made a square arena by 

absorbing some heat on the left side and lid velocity on the upper wall where Ri = 0.01, Pr 

= 0.71, and Re = 100 were consider in that simulation. Moreover, in this work, the authors 

are simulated the work of Sivakumar’s et al. [58], and compared with the isotherm lines as 

well as streamlines (in Figure 2.7). The top two are the results of Sivakumar’s work, and the 

bottoms two are from the present investigation.  

 

  

 

  
 Streamlines Isotherm lines 

Figure 2.7: Comparison of streamlines and isotherm lines: (a) Sivakumar et al. [58];  

(b) present code.  

 

(a
) 

(b
) 
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Figure 2.8: Comparison of streamlines and isotherm lines: (a) Khanafer et al. [59]; 

(b) present code. 

Another validation from Khanafer et al. [59] is used to prove the authenticity of current 

work. They took a lid-driven square arena with rotating cylinder where Ri = 0.01, Pr = 0.7, 

and Re = 100. The top two are the results of Khanafer’s work, and bottoms two are from 

present study. The streamline and isotherm shape closely resemble this current result. These 

two results based on lid-driven mixed convective enclosure demonstrate good agreement 

with the current numerical study, which raises our level of confidence in this mixed 

convective within close cavity. 

 

 

 

 

 

(a
) 

(b
) 
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CHAPTER 3 

Results and Discussion 

In this section, engineering-focused simulations of physical variables for mixed convective 

nanofluid flow inside a hexagonal-shaped heat exchanger with the consequence of magnetic 

field have been discussed. Within this cavity, streamline and isotherm contours are used to 

explain the outcomes that are obtained. The hexagonal cavity is filled by TiO2-H2O 

nanofluid where TiO2 nanoparticles are used as uniform spherical shape. The Figures 3.1-

3.21 are used to illustrate how this heat exchanger model is affected by the crucial variables 

like Hartmann number (Ha), Richardson factor (Ri), Reynolds parameter (Re) and 

nanoparticle volume fraction (ϕ). Also, the heat exchanger’s enactment for nanofluid as well 

as for water is explained through the use of Nuav. Furthermore, the response surface method 

(RSM) is applied for stability analysis of response function (Nuav) with respect to input 

factors Re, Ha and ϕ. Moreover, ANOVA test is performed and analyzed in details for 

getting a proper regression equation of dependent and independent factors. The standard 

values for these key parameters that are considered to fulfill this work are ϕ = 0.04, Ri = 1, 

Ha = 10, and Re = 100. 

3.1   Influence of Reynolds number 

In Figure 3.1-3.2, the result of Reynolds number (Re) on heat transportation and fluid motion 

is exposed by streamline and isotherm contours for this mixed convection model. The Figure 

3.1(a) explains the control of Re (10-200) on velocity field of fluid using streamline contours 

when Ri = 1, Ha = 10, Pr = 6.9, and ϕ = 0.04. Physically, the higher values of Re rises the 

fluid inertia, as a result, streamline concentration and flow circulation magnitude rise 

noticeably. Also, the intensification of Re indicates the rise of inertia forces of the top wall 

of the hexagonal cavity, the movement of fluid flow goes along to the upper wall from the 

left to the right with lid velocity. This movement of fluid flow from left to right along the 

upper surface are increasing with the upsurge of Re, which is the maximum for Re = 200. A 

small vorticity is also noticed at the bottom-right corner of this enclosure. That is, with the 

development of Re, the fluid velocity (along Y-axis) complete the full domain is becoming 

upsurge which is represented by Figure 3.2.  
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On the other hand, the control of Re on fluid temperature by isotherm contours is explained 

in Figure 3.1(b) that demonstrates the improvement in heat transfer in the fluid domain with 

the increasing of Re. At low value of Re (10), the existence of natural convection is 

noticeable. Consequently, the isotherm lines shift uniformly from the left hot cylinder to the 

right cooler one. With the rise of Re (50), the lid velocity is increased, and force convection 

occurred due to the rise of lid velocity of the higher wall.  

 

   

 

   

 

   

 

   

  (a) (b) 

Figure 3.1. Influence of Re on: (a) streamlines; (b) isotherms contours. 
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As a result, the heat transfer rate is increased by 82.51% than the previous. So, the red color 

contour lines that represents the high temperature moves to the cooler surface with the fluid 

movement. Also for improving the Reynolds number from 50 to 100, the heat transfer rate 

from the hot surface is 35.43%. Finally, for Re = 200, this rate is 23.06%. That is, the rate 

of heat transportation is improved through the intensification of Re.  

 

Figure 3.2. Influence of Re on velocity field. 

3.2   Influence of Richardson number 

The influence of Richardson number (Ri) is illustrated in Figure 3.3-3.5 by involving 

streamline and isotherm contours along with fluid velocity and Nuav. The changing value of 

Ri affects the fluid flow pattern which is clearly noticeable in Figure 3.3(a). Firstly, take a 

look at the mixed convection mode (for Ri = 1) when the buoyancy and inertia forces are in 

balance. As a result, the central vortex has a moving effect along the upper lid wall. Also, 

the effect of natural convection flow is clear from the uniform streamlines. Secondly, when 

the value of Ri is become increasing, the vortex turns into wider in the streamlines. The 

physical interpretation is that the increasing value of Ri indicates the dominance of natural 

convection that improve the shear stresses. As a result, this produced shear stresses gives 

resistance to fluid motion. That means, growing value of Ri decreases the fluid velocity 

which is represented in Figure 3.4.  
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Conversely, when the magnitude of Ri goes to 0.1 and 0.01 from 1, the mode of mixed 

convection turns to force convection. Due to this, the streamlines are slightly moved to the 

lid wall. Alternatively, the isotherm lines in Figure 3.3(b) and the Nuav in Figure 3.5 

demonstrate that the rate of thermal transportation is enlarged with rising Ri values, which 

is analogous to the work of Toudja et al. [42]. When Ri goes to 1 to 10, the average heat 

transfer rate (Nuav) is enlarged by 17.94%. 

 

   

 

   

 

   

 

   

  (a) (b) 

Figure 3.3. Influence of Ri on: (a) streamlines; (b) isotherms contours. 
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Figure 3.4. Influence of Ri on velocity field. 

 

Figure 3.5. Influence of Ri on Nuav. 

Moreover, the average heat transfer rate (for different values of Re and Ri) from the left hot 

cylinder (Nusource) which is acted as heat source to the right cylinder is expressed by Table 

3. Also, the average heat acceptance rate from the right cold cylinder (Nusink) which is acted 

as heat sink is also expressed by Table 3. Since all other surrounding walls are adiabatic, so 

the value of Nusource and Nusink will be very close. Also, there occurs a little difference 

between these two that is expressed by absolute percentage error. These error is very low. 

This low error expresses that this heat exchanger model is also sufficient to transfer heat 

from hot surface to cooler on. 
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Table 3: Heat transfer and acceptance rate from hot and cold surface by Re and Ri. 

 Re Nusource Nusink 
Absolute 

% error 

Ri = 0.01 

10 3.2126 3.2428 0.94 

50 6.4996 6.5831 1.28 

100 7.6378 7.827 2.47 

200 8.2386 8.6653 5.17 

Ri = 0.1 

10 3.2203 3.2505 0.93 

50 6.5694 6.6479 1.19 

100 7.8187 7.986 2.13 

200 8.6062 8.9582 4.09 

Ri = 1 

10 3.2997 3.3285 0.87 

50 6.9957 7.032 0.51 

100 8.8291 8.84 0.12 

200 15.262 15.167 0.84 

Ri = 10 

10 4.0439 4.0581 0.35 

50 9.0028 8.8785 1.38 

100 12.379 11.855 4.23 

200 21.421 21.28 0.65 

 

3.3 Influence of Hartmann number 

In Figure 3.6-3.7, the outcome of Hartmann variable (Ha) on thermal transportation and 

fluid motion are showed by streamline, isotherm and heatline contours when Ri = 1, Re = 

100, Pr = 6.9, and ϕ = 0.04. Actually, Ha portrays the control of magnetic force on this 

hexagonal heat exchanger. The density of streamlines is maximum when the magnetic field 

is not active (that is Ha = 0), as can be seen in Figure 3.6(a). However, as the magnetic field 

intensifies (Ha = 25), the strength of the flow circulation inside the enclosure slows down.  

Moreover, in absence of magnetic force (Ha = 0), the fluid movement is maximum 

rather than the existence of magnetic field (Ha = 25, 50, 100). With the increasing of Ha, 

the fluid movement is becoming slower. As a consequence, convection form of heat 

transport gradually gives way to conduction mode, and the isotherm lines are being to 

uniform shape along vertical direction. A resistive force named Lorentz force, which has a 

liability to reduce the speed of the nanofluid's motion inside the enclosure, is active resulting 

from the magnetic force effect. This is the physical reasons behind this phenomenon. So, 

the streamlines are nearly close to the top lid surface.  
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  (a) (b) 

Figure 3.6. Influence of Ha on: (a) streamlines; (b) isotherms contours. 

Furthermore, the fluid velocity is also a decreasing function of Ha that is represented in 

Figure 3.7. In addition, as Ha increased, the temperature field changed slightly which is 

illustrated by isotherm lines in Figure 3.6(b). When the magnetic effect is inactive (Ha = 0), 

the heat transfer rate (Nuav) is maximum. For Ha =25, the Nuav is decreased at 32.52%. From 

changing the Ha number 25 to 50, this diminishing rate is 30.43%. Also, for highest value 

of magnetic effect (Ha = 100), this reducing rate is 19.76%. 
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Figure 3.7. Influence of Ha on velocity field. 

3.4   Influence of Nanoparticle Volume Fraction 

In this section, Figure 3.8-3.12 is used to describe the nature of fluid motion and heat 

transport on current heat exchanger model for dissimilar values of nanoparticle volume 

fraction (ϕ). When nanoparticles are included to the base fluid, the particles' motion on this 

fluid domain faces resistance. The fluid's inertia force is amplified by adding nanoparticles 

because they increase the fluid's overall mass in the cavity. Due to the increasing inertia 

force, the fluid flow begins to slightly slow down.  

Another aspect is that adding more nanoparticles makes the solution more viscous, 

and particle-particle interactions in this solution inside the enclosure are insignificant. As a 

result, the streamline contours which expressed in the Figure 3.8(a) represent that the fluid 

movement along the cavity is being minimized with the adding nanoparticle volume 

fraction. Also, the fluid velocity along Y-axis is being decreased with the rise of ϕ which is 

clear from the Figure 3.9 (zoom view) at Ri = 1, Re = 100, and Ha = 10. Though the changes 

of fluid motion are very small but the changes of heat transfer rate are clearly seen in by 

using isotherm contours in the Figure 3.8(b).  The heat exchanger's heat transfer rate (Nuav) 

is being increased through the intensification of ϕ which is explained by Figure 3.10. The 

line graph in Figure 3.10(a) expresses that without nanoparticle (ϕ = 0) the heat 

transportation rate is minimum compared to the existence of nanoparticles, and for ϕ = 0.01 

and 0.04, the Nuav is uniformly developed. Also, Nuav is maximum when the size of 

nanoparticles is increased by 10% (ϕ = 0.1). 
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  (a) (b) 

Figure 3.8. Influence of ϕ on: (a) streamlines; (b) isotherms contours. 

Furthermore, when the ϕ is increased by 10% (ϕ = 0.1), the Nuav is significantly developed 

by 17.69% compared to ϕ = 0. The physical reason of this occurrences is that the thermal 

conductivity of nanofluid of entire enclosure rises for the greater size of nanoparticles. The 

physical reason of this occurrence is that the thermal conductivity of nanofluid of entire 

enclosure rises for the greater size of nanoparticles. Moreover, Figure 3.10(b) represents a 

2D contour plot to visualize Nuav due to change of ϕ and Re. This also indicates the same 

effect for developing the size of nanoparticles into the water on this heat exchanger.  
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Figure 3.9. Influence of ϕ on velocity field. 

 

 

        (a) 

 

                                          (b) 

Figure 3.10: Influence of ϕ and Re on Nuav: (a) 2D line graph; (b) 2D contour plot. 

On the other hand, the impact of ϕ with the changes of Ri are depicted in Figure 3.11 in two 

different perspectives. For low values of Ri and absence of nanoparticles (ϕ = 0), the Nuav 

is comparatively low than the existence of nanoparticles into water. The line graph in Figure 

3.11(a) indicates that Nuav is maximum for rising the size of nanoparticles as 10% (ϕ = 0.1) 

with Ri = 10. Similar impact is noticeable from the 2D contour plot in Figure 3.11(b). 

Finally, the Figures 3.12(a) express the important of adding nanoparticles into base fluid for 

this mixed convective hexagonal heat exchanger MHD nanofluid model.  
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Moreover, the average heat transfer rate (for different values of Re and ϕ) from the left hot 

cylinder (Nusource) which is acted as heat source to the right cylinder is expressed by Table 

4. Also, the average heat acceptance rate from the right cold cylinder (Nusink) which is acted 

as heat sink. There occurs a little difference between these two that is expressed by absolute 

percentage error, but these error is very low.  

Table 4: Heat transfer and acceptance rate from hot and cold surface by Re and ϕ. 

 Re Nusource Nusink 
Absolute 

% Error 

ϕ = 0 

10 3.0794 3.1689 2.91 

50 6.4937 6.5684 1.15 

100 8.1928 8.1415 0.63 

200 10.356 10.067 2.79 

ϕ = 0.01 

10 3.2257 3.2384 0.39 

50 6.744 6.7603 0.24 

100 8.5018 8.5049 0.04 

200 10.886 10.828 0.53 

ϕ = 0.04 

10 3.3246 3.3382 0.41 

50 7.0322 7.0511 0.27 

100 8.8701 8.8793 0.10 

200 11.326 11.277 0.43 

ϕ = 0.1 

10 3.539 3.5546 0.44 

50 7.6076 7.6313 0.31 

100 9.6333 9.6549 0.22 

200 12.189 12.164 0.21 

 

      

         (a) 

 

                                           (b) 

          Figure 3.11: Influence of ϕ and Ri on Nuav: (a) 2D line graph; (b) 2D contour. 
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Actually, a remarkable modification in heat transportation happens from the hot surface to 

the cold one due to the presence or absence of nanoparticles. The H2O-TiO2 nanofluid shows 

superiors heat transport performance on the strength of extra-ordinary thermal 

characteristics of nanofluid. Though the magnetic field impose resistance to heat transfer, 

the nanofluid (H2O-TiO2) also exhibits more heat transfer performance than only for base 

fluid (H2O) which is clear from the Figure 3.12(b). That is, it can be concluded that the heat 

transfer performance is boosted up due to adding of TiO2 nanoparticles into base fluid. 

  

      (a)         (b) 

Figure 3.12: Variation of water and nanofluid on Nuav: (a) with Re effect; (b) with Ha 

effect. 

3.5   Response Surface Methodology  

The statistical Response Surface Methodology (RSM) is used in this part to examine how 

the three key input parameters (Re, Ha and ϕ) affect the average Nusselt number (Nuav) for 

this mixed convective heat exchanger model. It also included that how dependent and 

independent factors interacted each other [60]. RSM is one of the useful methods for 

modelling multivariate issues when the interest-generating responses are simultaneously 

impacted by the input variables, according to Montgomery [61]. Additionally, the RSM is 

employed to determine the parameters' ideal status in the computations of the research 

domain. The initial task in the majority of RSM situations is to establish an experimental 

and analytical approximation for the functional relationship between the design parameters 

(output and input variables). Despite the fact that there are other RSM models available, the 
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second-order RSM model that takes into account all linear, square, and interaction factors 

is typically sufficient to approximating the response. The quadratic polynomial model is 

provided by the following: 

    

3 3 3
2

0

1 1 1

i i ii i ij i j

i i i

y a a x a x a x x
  

                                                                          (3.1) 

where y is the response function (output), 0a  is the intercept and ia is the linear regression 

coefficient of ith factor. Also, iia is the quadratic regression coefficient of ith factor, and 

ija is the interaction of ith  and  jth factors. Here, the involved parameters Re, Ha and ϕ are 

used as input factors whereas Nuav from the hot surface is considered as response faction 

(y). The goal is to build a proper correlation between the independent variables and the 

response function by optimizing the response of the variable y. In 1992, a central composite 

design (CCD), which was first suggested by Box and Wilson [62], was used to match the 

second-order model. It is currently the most popular category of designs for second-order 

model fitting. Also, in this test, the range of the input variables Re, Ha and ϕ are 

10 Re 200,0 100Ha     and 0 0.1   respectively. Three degrees of selection are 

available for these parameters (low, medium, high). The statistical model is also defined by 

the number of parameters and their levels.  For a 3-factor face-centered (FC) CCD design, 

there are in total 20 runs: 8 cube points, 6 center points in cube and 6 axial points). A 

physical representation of face-centered CCD design for three factors are described in 

Figure 3.13.  

 

Figure 3.13: Schematic representation of a 3-factor FC-CCD design. 
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Table 5: Codded levels and design variables for CCD. 

Variables Name 

(factors) 

Coded Level 

-1 (low) 0 (medium) 1 (high) 

Re 10 105 200 

Ha 0 50 100 

ϕ 0 0.05 0.1 

 

Table 6: Levels of input factors and response function. 

Run 

Order 

Codded Values Real Values Response 

Re Ha ϕ Re Ha ϕ Nuav 

1 0 0 0 105 50 0.05 3.7066 

2 -1 0 0 10 50 0.05 2.3517 

3 0 0 0 105 50 0.05 3.7066 

4 0 -1 0 105 0 0.05 7.9067 

5 0 1 0 105 100 0.05 2.7937 

6 0 0 0 105 50 0.05 3.7066 

7 -1 -1 -1 10 0 0 3.4744 

8 0 0 1 105 50 0.1 4.0539 

9 1 1 -1 200 100 0 2.6479 

10 -1 1 -1 10 100 0 1.9219 

11 -1 -1 1 10 0 0.1 3.8395 

12 1 1 1 200 100 0.1 3.2588 

13 1 -1 1 200 0 0.1 9.264 

14 0 0 -1 105 50 0 3.3928 

15 -1 1 1 10 100 0.1 2.3659 

16 0 0 0 105 50 0.05 3.7066 

17 1 -1 -1 200 0 0 7.7847 

18 0 0 0 105 50 0.05 3.7066 

19 1 0 0 200 50 0.05 4.1984 

20 0 0 0 105 50 0.05 3.7066 
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The codded levels of input variables for CCD are described in Table 5. Moreover, Table 6 

displays the configurations of the simulation runs for both coded and real values based on 

the CCD. Using analytical software, the quadratic polynomial regression equations are 

statistically analyzed, and the corresponding coefficients and the effects of the parameters 

on variables are defined. After that, the experiment's design is used to examine the response 

and variables (as coded values). Using a specific coefficient of determination and change 

resources, depending on the p-value with a 95% certainty level, the fitting quality of the 

experiments' results has been accepted or rejected. Finally, analysis of variance (ANOVA), 

contour plot, 3D surface plot, and sensitivity analysis have all been used to assess the results. 

3.6   Analysis of variance 

This section performs investigation about estimated regression and statistical analysis of 

experimental models due to simulation studies that are taken into account under various 

experimental substances. Figure 3.14 displays three different residual plots that are 

produced after entering the data into analytical software and doing a variance analysis 

(ANOVA). The goodness-of-fit in regression is examined using graphs called residual plots. 

The normal probability plots of the residuals are in good shape when taking into account 

Figure 3.14(a).  

The normal probability plots of the residual distributions are actually shown in order to 

examine the normality of the observation. Due to the fact that this line is straight, it is 

assumed that the residual distribution for Nuav is normal. A good correlation between the 

observed and fitted values can be seen in Figure 3.14(b) by contrasting the residual diagrams 

and fitted values [63]. The variances of the error terms are comparable because the residuals 

generally form a horizontal band around the zero line. All responses show a range of 

residuals, with the greatest residuals being close to 0.6. Moreover, the distribution of 

residual histograms in Figure 3.14(c) is skewed and does not resemble a symmetrical 

distribution. Also, it is noteworthy that none of the residuals deviate significantly from the 

fundamental random pattern of residuals, suggesting that there are no outliers. The residuals 

for Nuav clearly bounce around the zero line arbitrarily, indicating that they are uncorrelated 

with one another. So, it can be said that the current RSM model has a respectable level of 

accuracy.  
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     (a) 

 
     (b) 

 
   (c) 

Figure 3.14: Residual plots for response function Nuav: (a) normal probability plot;              

(b) residual vs fit value plot; (c) histogram of residual. 

Moreover, the findings of the statistical analysis for this heat exchanger model by using 

RSM are shown in Table 7-8. According to Tables 7, the degrees of freedom (DOF) 

represent the maximum number of independent terms in this model. The total sum of squares 

(SS) is a tool for expressing the overall variation due to several causes. The value of Adj. 

SS (represents the adjusted sums of squares) is 70.2924 which is quite significant. The F-

value, which is equal to 47.05 and does not result from noise, expresses that the Nuav model 

is statistically significant. Here, the p-value is a very significant indicator of this statistical 

analysis, where p-value denotes the likelihood that the null hypothesis will be correct for a 

specific statistical model. In general, the p-value, which ranges from 0 to 1, is used to 

describe the statistical significance level. The null hypothesis is rejected when the p-value 

is very small (0 < p-value < 0.01) since it indicates stronger evidence that the result is 
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strongly statistically significant. Again, the range 0.01 < p-value ≤ 0.05 also indicates 

statistically significant. But the range p-value > 0.05 indicates don’t reject the null 

hypothesis because this result is not statistically significant. From Table 7, it is notable that 

these input factors are significant for this model.  

                    Table 7: Analysis of variance (ANOVA) for Nuav. 

Source DOF SS Adj. SS Adj. MS F-value p-value Comment 

Model 9 70.29 70.2924 7.8103 47.05 <0.0001 Significant 

   Linear 3 55.88 55.8688 18.6229 112.2 -  

       Re 1 17.43 17.4251 17.4251 104.98 <0.0001  

      Ha 1 37.18 37.1761 37.1761 223.97 <0.0001  

      ϕ 1 1.27 1.2676 1.2676 7.64 0.02  

  Square 3 6.838 5.9071 1.969 11.86 -  

      Re*Re 1 1.18 1.1815 1.1815 7.12 0.0236  

      Ha*Ha 1 5.54 5.5427 5.5427 33.39 0.0002  

      ϕ * ϕ 1 0.1180 0.118 0.118 0.71 0.4188  

  Interaction 3 8.5131 8.5165 2.8388 17.1 -  

      Re*Ha 1 8.23 8.2335 8.2335 49.6 <0.0001  

      Re* ϕ 1 0.2052 0.2052 0.2052 1.24 0.02923  

     Ha* ϕ 1 0.0779 0.0779 0.0779 0.47 0.5088  

 Residual Error 10 1.66 1.6598 0.166 - -  

     Lack-of-Fit 5 1.66 1.6598 0.332 - - Insignificant 

     Pure Error 5 0.000 0.000 0.000 - -  

Total  19 71.95 71.9522        

*Here, R2 = 97.69%, Adjusted R2 = 95.62%, Predicted R2 = 80.84%  

Also, the statistical analysis of the model and testing procedures suggest high values of the 

R2 (97.69%) for Nuav, demonstrating that this model is suitable for computing the values of 

the response function Nuav. The adjusted R2 (95.62%) is less than the R2 (97.69%) for Nuav, 

yet the model still adequately matches the experimental data [64]. Another key indicator is 

Lack-of-Fit, which is needed very low for an appropriate model. It is noted that, there are 

different order (linear, quadratic, cubic, quadratic vs 2FI, cubic vs 3FI, etc.) model for RSM 

model. But, by observing all the significant values, the Table 8 and Table 9 say that the 

‘Quadratic vs 2FI’ (2FI: 2-factors interaction) model is the best than any others. 
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Table 8: Fit summery statistics for Nuav. 

Source Sum of Squares  Mean Square F-value p-value  

Mean vs Total 332.06  332.06   - -  

Linear vs Mean 55.87  18.62 18.53 < 0.0001  

2FI vs Linear 8.52  2.84 4.88 0.0174  

Quadratic vs 2FI 5.91  1.97 11.86 0.0012 Suggested 

Cubic vs Quadratic 1.49  0.3736 13.55 0.0037 Aliased 

Residual 0.1655  0.0276    

Total 404.02  20.20    

 

Table 9: Model summery statistics for Nuav. 

Source Std. Dev. R² 
Adjusted 

R² 
Predicted R²  

Linear 1.00 0.7765 0.7346 0.5655  

2FI 0.7629 0.8948 0.8463 0.7146  

Quadratic 0.4074 0.9769 0.9562 0.8048 Suggested 

Cubic 0.1661 0.9977 0.9927 -1.8254 Aliased 

 

3.7   Regression Model Estimation 

The following are the general models that the RSM produced for analyzing the relationship 

between the response (Nuav) and the effective input parameters (Re, Ha, and ϕ): 

   
2 2 2

0 1 2 3 11 22 33 12

13 23

Re Re Re

Re

y a a a Ha a a a Ha a a Ha

a a Ha

 

 

       

 
                            (3.2) 

where 0 1 2 3 11 22 33 12 13 23, , , , , , , , , anda a a a a a a a a a are coefficients of the best fitted 

regression model for this RSM model about the input factors Re, Ha, and ϕ. The Table 10 

shows the estimated coefficients of equation (3.2) for Nuav, which are derived as coded units. 

It is notable that only the important model terms which have low p-value (≤ 0.05) have been 

taken to build a proper regression equation due to the significance of these terms. 

Conversely, while the meaningless terms have been ignored (bold marked).  
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That is, the term Re, Ha, ϕ, Re2, Ha2, Re.Ha, and Re.ϕ are significant term for the response 

function average Nusselt number (Nuav). 

Table 10: Predictable regression coefficients for Nuav from RSM. 

Coefficients Actual Values p-Values 

0a  3.278      - 

1a  0.03814 <0.0001 

2a  -0.071 <0.0001 

3a  0.138 0.02 

11a  -0.000073 0.0236 

22a  0.000568 0.0002 

33a  -82.9 0.4188 

12a  -0.00021 <0.0001 

13a  0.0337 0.02923 

23a  -0.0395 0.5088 

 

Conversely, the term ϕ2 and Ha.ϕ are totally insignificant for Nuav that must be omitted to 

final best fitted regression model. So, the following mathematical connection can be used 

to summarize the relationship between the response function (Nuav) and the input variables 

(Re, Ha, and ϕ): 

       

2

2

3.278 0.03814Re 0.071 0.138 0.000073Re

0.000568 0.000 .21 R 0 0337 Re4 e

avNu Ha

Ha Ha





    

  
                           (3.3) 
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3.8   Response Surface Analysis 

In this section, 2D and 3D response surface contour plots receiving from RSM have been 

provided in Figures 3.15-3.20 to examine the effects of effective parameters on the response 

function (Nuav). The Figure 3.15 represents the effect of the factors Re and Ha on the 

response function. It is clear from this 2D contour plot that raising Re while lowering Ha 

raises the average Nusselt number while the another factor ϕ (0.1) remain fixed. At Re = 

200 and Ha = 0, the Nuav is at its highest, whereas at Re = 10 and Ha = 100, it is at its lowest. 

Moreover, a 3D surface plot is represented by the Figure 3.16 for observing the effects of 

Re and Ha on Nuav.  

 

Figure 3.15: Variation of Nuav for significant parameters Re and Ha: 2D view. 

 

Figure 3.16: Variation of Nuav for significant parameters Re and Ha: 3D view. 
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These two response surface plot exhibit the same behavior on the response function. Once 

more, the Figure 3.17 shows the fluctuations of response function Nuav with Re and ϕ. The 

Nuav increases when both Re and ϕ are improved by keeping another factor (Ha =10) fixed. 

At Re = 200 and ϕ = 0.1, the Nuav is at its highest, whereas at Re = 10 and ϕ = 0, it is at its 

lowest level. Furthermore, another 3D surface plot is represented by the Figure 3.18 for 

observing the effects of Re and ϕ on Nuav, whereas these two response surface plot 

demonstration the same behavior on the response function Nuav. 

 

Figure 3.17: Variation of Nuav for significant parameters Re and ϕ: 2D view. 

 

 

Figure 3.18: Variation of Nuav for significant parameter Re and ϕ: 3D view. 
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Similarly, another 2D graphical illustrates is expressed by Figure 3.19 to describe how a 

decrease in Ha and an increase in ϕ result in an upsurge in the response function Nuav. In 

that time, the value of another factor remains holds (Re = 100). The Nuav is the greatest when 

ϕ = 0.1 and Ha = 0, and it is lowest when ϕ = 0 and Ha = 100. Also, the Figure 3.20 represents 

the control of Ha and ϕ on response function in 3D view.   

 

Figure 3.19: Variation of Nuav for significant parameters Ha and ϕ: 2D view. 

 

 

Figure 3.20: Variation of Nuav for significant parameter Ha and ϕ: 3D view. 
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3.9   Sensitivity Analysis 

Numerical simulation heavily relies on sensitivity analysis, a technique for figuring out how 

the uncertainties in a model input affect the model output [65]. Also, the phrase "sensitivity 

analysis" refers to figuring out how the RSM model's input parameters affect its output 

variables. The most effective parameter can then be identified by using the sensitivity 

analysis results to rank the effective parameters according to their influence. The sensitivity 

analysis tests on mathematical and computational models are carried out in order to 

determine the sensitivity of the model outputs to the uncertainty of the parameter values, 

input variables, and calculations [66]. The most efficient parameters or input values on the 

model outputs are determined utilizing the findings of these experiments. The sensitivity of 

the output variables with regard to specific effective factors (Re, Ha and ϕ) is calculated 

mathematically using the partial derivatives of the response function Nuav. As a result, the 

partial derivatives of equation (3.3) to the input parameters are computed and provided as 

follows: 

      0.03814 0.000146Re 0.000214 0.0337
Re

avNu
Ha 


   


                                  (3.4) 

      0.071 0.001136 0.000214ReavNu
Ha

Ha


   


                                                           (3.5) 

      0.138 0.0337ReavNu




 


                                                                                               (3.6)  

Now, the equations (3.4)-(3.6) can be used to compute the response function’s (Nuav) 

sensitivity results in relation to the input variables Re, Ha, and ϕ. The results are shown in 

Table 11. These values are obtained using the suggested mixed convective heat exchanger 

model with Re at coded levels of -1, 0, 1 (10, 105, 200), Ha at levels of 0, 1 (0, 100), and ϕ 

at coded levels of -1, 0, 1 (0, 0.05, 0.1). It should be noted that the parameter levels are 

chosen on the basis of the idea that the parameter ranges are broad enough to reflect the 

fundamental principles and properties of Nuav's sensitivity to useful input parameters. 

Moreover, it's important to remember that a positive sensitivity number means that raising 

the input parameters causes the output parameter to rise. That means, the Reynolds number 

(Re) and nanoparticle volume fraction (ϕ) have a positive impact on the average Nusselt 

number (Nuav). With the rising of Re and ϕ, the Nuav must be increased.  
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Table 11: Sensitivity analysis of Nuav. 

Re 

 

Ha 

 

ϕ 

 Re

avNu


 avNu

Ha




 

avNu






 

-1 

0 -1 0.00458 -0.07078 0.1043 

0 0 0.03828 -0.07078 0.1043 

0 1 0.07198 -0.07078 0.1043 

0 

0 -1 0.00444 -0.0710 0.1380 

0 0 0.03814 -0.0710 0.1380 

0 1 0.07184 -0.0710 0.1380 

1 

0 -1 0.00429 -0.07121 0.1717 

0 0 0.03799 -0.07121 0.1717 

0 1 0.07169 -0.07121 0.1717 

-1 

1 -1 0.00437 -0.06965 0.1043 

1 0 0.03807 -0.06965 0.1043 

1 1 0.07177 -0.06965 0.1043 

0 

1 -1 0.004226 -0.06986 0.1380 

1 0 0.037926 -0.06986 0.1380 

1 1 0.07162 -0.06986 0.1380 

1 

1 -1 0.00408 -0.07007 0.1717 

1 0 0.03778 -0.07007 0.1717 

1 1 0.07148 -0.07007 0.1717 

 

Conversely, a negative sensitivity number means that raising the input parameters causes 

the output parameter to down which is totally opposite behavior. That means, the Hartmann 

number (Ha) has a negative impact on Nuav. So, with the increasing of Ha, the average heat 

transfer rate must be diminished consequently. As a result, the average Nusselt number is 

more sensitive to Re and ϕ, according to sensitivity comparisons. To construct a mixed 

convective heat exchanger model for potential heat transfer augmentation, researchers 

should therefore pay closer attention to the two parameters. Furthermore, the length of the 

bar diagram of Figure 3.21 and Figure 3.22 represent the value of sensitivity, where the 

upright bar denotes positive sensitivity and the inverted bar denotes the negative sensitivity 

about Nuav. 
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Figure 3.21: Sensitivity of Nuav at Re = 0 and Ha = 0. 

 

Figure 3.22: Sensitivity of Nuav at Re = 0 and Ha = 1. 

3.10   Optimization of Response Function 

A multi-criteria methodology called RSM-based optimization, which has found widespread 

use in many engineering systems, allows for the simultaneous minimization and 

maximization of one or more responses [67]. The major goal of achieving an ideal heat 

transfer rate is to increase the system's energy efficiency and reduce associated costs. The 

objective of optimization in this section is to maximize the value of Nuav in order to attain 

the highest heat transfer rate. Desirability or Derringer function, one of the most significant 

and widely used optimization methodologies, is applied to complete the optimization 

process utilizing CCD-RSM [68].  
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The maximum desirable value is chosen after the optimal solution is determined using the 

used numerical techniques. From the 55 possible optimal solution, the most 4 are given in 

Table 12 to get a clear description about the Nuav optimization. In the end, it is determined 

that Re = 200, Ha = 0, and ϕ =0.1 with an acknowledged desirability of 0.999 are the ideal 

working conditions where the greatest heat transfer takes place. 

Table 12: Optimization of response function Nuav. 

Run Re Ha ϕ Nuav Desirability 

1 200 0 0.1 9.231 0.995          (Maximized) 

2 200 0 0.099 9.227 0.995 

3 199.25 0 0.1 9.221 0.994 

4 200 0 0.097 9.219 0.994 

5 200 0.002 0.096 9.211 0.993 

6 200 0 0.095 9.209 0.992 

7 199.997 0 0.095 9.206 0.992 

8 197.457 0 0.1 9.199 0.991 

9 200 0 0.092 9.194 0.990 

10 196.949 0.024 0.1 9.189 0.990 
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CHAPTER 4 

Conclusions and Recommendations 

4.1   Summary of Major Outcomes 

The present effort scrutinizes the dynamics of magnetized water conveying Titanium Oxide 

(Titania) nanomaterial subject to mixed convection in a hexagonal heat exchanger. Here, 

titanium oxide nanoparticles with spherical form are inserted in the water to create worked 

suspension. Streamline and isotherm line contours are depicted to describe the nanofluid 

flow domains for the crucial physical parameters like, Richardson number (Ri), Reynolds 

number (Re), Hartmann number (Ha), and nanoparticle volume fraction (ϕ). Followings are 

some of the key conclusions:  

 The magnification in Reynolds number significantly strengthens the force 

convective heat transportation along the heat exchanger.  

 A larger amount of Richardson number (Ri =10) indicates natural convective 

phenomena dominated where mixed convection occurs for only Ri =1. 

 The average Nusselt number (Nuav) becomes less sensitive to the Hartmann number 

and more sensitive to nanoparticle volume fraction (ϕ) when the Re number values 

are raised.  

 In comparison to Re and Ha, in general, the heat transfer rate is more sensitive to the 

ϕ. Titania nanoparticle insertion augments water's ability to transmit heat. 

 The ϕ and Ra have positive sensitivity on the average Nusselt number, but Ha has 

negative sensitivity. 

 To establish an effective mixed convective hexagonal heat exchanger, the TiO2-

nanoparticle’s size can be used up to 10%.  

By including hybrid nanofluids, non-Newtonian flow models, various shaped geometrical 

enclosures, chemical reaction and radiation effects, the present flow model can be expanded. 

The thermal enactment of refrigerators, radiators, and microelectronic may be improved 

using the current findings. 
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4.2   Future Works 

Future research in this field has a lot of potential because it has so many industrial and 

engineering applications. There are numerous additional mathematical representations for 

these nanofluids based heat exchanger model. As a result, there are several opportunities to 

broaden this inquiry. For the ongoing work on the current study, the following suggestions 

can be made: 

 investigation about heat and mass transfer can be performed by using hybrid 

nanofluid involving distinct nanoparticles and base fluids. 

 different physics, such as radiation effects, internal heat generation and absorption, 

and capillary effects might be incorporated to future study. 

 the governing equation of concentration conservation can be used to study double 

diffusive mixed convection. 

 a porous media can be used for further investigation to analyze the heat and mass 

transfer effect. 

 different fluids or nanofluid, various thermal boundary conditions such as constant 

heat flux or radiation, and unsteady flow can all be used to extend the research to 

turbulent flow. 

 in order to study the impact of involved factors on flow fields and heat transfer in 

cavities, this discussion may be expanded to include three-dimensional analyses. 

 to study the heat transfer performance by using variable thermophysical properties. 
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