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ABSTRACT

Road traffic crashes have become one of the leading causes of death worldwide.
Bangladesh, a developing country, is rapidly becoming a major victim of road accidents.
Due to traffic crashes, different types of injuries eventuate depending on the severity
level of the crashes. Double vehicle crashes are the most critical type of road accidents
that have the potential to cause serious injuries and fatalities. Unfortunately, Bangladesh
is still in nascent stage in dealing with road accidents, especially for double vehicle
crashes. A precise prediction of crash severity in road accidents significantly improves
traffic safety. Therefore, there has recently been a tactical shift among safety researchers
to apply machine learning (ML) algorithms to estimate crash severity due to their
superior predictive ability. Although there have been an increasing number of
applications of machine learning methods in crash severity research, however there is a
limited applicability of these methods in estimating the severity of a double vehicle
crashes. As a result, this study aimed to apply machine learning algorithms in predicting

double vehicle crash severities in the context of Bangladesh.

The aim of this study is to compare the predicted performance of numerous machine
learning and traditional statistical regression techniques in modeling double vehicle crash
severities, as well as to identify the contributing components and how they impact crash
severity prediction. Using Dhaka's most recent crash record collected from Accident
Research Institute (ARI), BUET (2017-2020), this study employed classification and
regression tree, support vector machine, random forest, adaptive boosting, logistic
regression, and soft voting classifier-based hybrid models. This study compared the
performance of logistic regression and other machine learning classifiers using the most
commonly known evaluation criteria: Accuracy (ACC), Receiver Operating
Characteristics (ROC) Curve, and Area Under the Curve (AUC) Value. The comparison
of predictive performance revealed that the hybrid model, built on logistic regression,
random forest, and adaptive boosting, outperforms other individual models with a subset
of twenty explanatory variables and with an accuracy of 75% and an AUC score of 0.71.
With the same subset of features, random forest performs better with an accuracy of 70%
and an AUC score of 0.69 within the individual models. This study uses the SHAP
(Shapley Additive Explanation) methodology to determine how well the features

contribute to the severity prediction, thus finding influential factors. SHAP Global



Feature Importance represents the marginal contribution of each feature in the prediction.
SHAP Local Explanation identifies how the contributing factors affect double vehicle
crash severities. According to the SHAP (Shapley Additive Explanation) technique, the
most significant elements of double vehicle crash severities are the day of the week,
vehicle type, time of day, vehicle maneuver, road geometry and they have important
contribution in predicting crash severities by an average of 10.2, 4.8, 4.6, 3.8 and 2.9
percentage points respectively. This means that the factor day of week alone contributed
in predicting whether the double vehicle crash severity would be fatal or not by an
average of 10.2 percentage points. In addition, vehicle type is another most critical
variables in predicting double vehicle crash severities whether it would be fatal or not by

an average of 4.8 percentage points.
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Chapter 1

INTRODUCTION

1.1 Background

Road traffic fatality rates are higher in low- and middle-income countries (21.5 and
19.5 per 100,000 population, respectively) than in fast countries (10.3 per 1,00,000)
(WHO 2018). Low and middle-income countries account for 93 percent of global
road accident fatalities despite owning only 60 percent of the world's motor vehicles
(WHO 2022). Global losses from traffic crashes are estimated to be $518 billion,
costing nations around 1% and 3% of their gross national product (GNP) - greater
than the total amount of development assistance received by these countries. While
accidental fatality rate in many high-income nations have resolved or declined in
recent decades, data indicate that the global epidemic of automobile accidents is still
growing in most regions of the world. Road deaths are expected to rise to the fifth top
cause of death by 2030, resulting in around 2.4 million fatalities per year unless
immediate action is taken (WHO, 2009). The actual fatality rate is likely to be higher.
Between 1982 and 2000, the number of accidents increased by 43%, while the death
toll increased by around 400% (Louis Burger, 2005).

Bangladesh, a low-income Asian country, has the highest death rate in Asia, with
1020 persons killed each year per 100,000 motor vehicles (WHO 2018). According to
official statistics, there are more than 60 fatalities in road accidents for every 10,000
cars in Bangladesh (WHO 2018). Every day, approximately eight people are killed in
traffic accidents. Bangladesh's number of deaths from accidents is comparable to that
of countries at war, like Sierra Leone and Liberia (Al-Mahmood, 2007). According to
a report published by the Bangladesh Road Transport Authority (BRTA), there were a
total of 4,625 road accidents in Bangladesh in 2021, resulting in 4,999 deaths and
7,460 injuries. Over the past two decades, the death toll has increased 3.5 times,
reaching over 3,000 annually. However, some have speculated that the number is
higher than 12,000 annually (due to non-reporting and misreporting) (UNESCAP,
2007). As the country's population, total road length, and modal share of road



transport continue to grow, the number of fatalities from road accidents is expected to

rise further.

Although Bangladesh's official traffic accident data paints a rosy picture of traffic
safety, the reality is quite different. Traffic accidents have earned a permanent place
in the print and annual deaths from road accidents could be 20,000, taking into
account under reporting and definitional inconsistencies, whereas police reported
statistics show that it is around 3,000 each year. Road accidents in Bangladesh cost
the economy nearly 2% of its gross domestic product (GDP) (Hoque et al., 2008). As
a result, measures to reduce accidents based on a thorough understanding of the
underlying causes are of great interest to Bangladesh.

Road accidents are caused by several crash groupings, including single cars, two
vehicles, and multi-vehicles. Among all subgroups, two-vehicle crashes are a critical
type of road accidents that have the potential to cause serious injuries and fatalities.
The severity of two-vehicle road accidents varies around the world, depending on a
range of factors such as road infrastructure, driver behavior, the implementation of
effective safety measures, and so on. Despite the use of safer vehicles, improved road
design, and better enforcement of traffic laws, in developed countries, two-vehicle
road accidents can still be severe and result in fatalities and serious injuries. For
example, in the United States, two-vehicle collisions accounted for over 60% of all
traffic fatalities in 2019, according to the National Highway Traffic Safety
Administration (NHTSA). In Europe, approximately 40% of all road accidents
involve two or more vehicles colliding with each other (Source: European
Commission). In Australia, two-vehicle crashes account for approximately 62% of all
fatal crashes. (Source: Awustralian Department of Infrastructure, Regional
Development and Cities). Unfortunately, Bangladesh is still in nascent stage in
dealing with road accidents, especially for two-vehicle crashes. No work on
identification to identifying factors influencing two-vehicle crash outcomes and

prediction to predicting two-vehicle crash outcomes has been done till now.

Researchers in transportation safety have been developing and implementing safety
performance functions (SPFs) to achieve better traffic safety. In the past, research has
shown that analyzing overall accidents without defining probable subgroups can miss

connections between of subgroups and lead to inaccurate results when developing
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SPFs (Geedipally, S., and D. Lord, 2010, Ma, J., and K. M. Kockelman, 2006,
Geedipally, S. R., and D. Lord, 2010). Appropriately, the researchers attempted to
develop the SPFs of multiple crashes simultaneously by dividing the total crashes into
different categories based on injury severity, crash types, and the number of vehicles
involved in a crash (Geedipally, S. R., and D. Lord, 2010, Martensen, H., and E.
Dupont, 2013, Kitali, A. E., and P. E. T. Sando, 2017). Modeling collisions with
possible clusters in crash data can aid in gaining a better understanding of the impact
of multiple factors on every crash category, allowing for the development of effective

protective measures.

Researchers frequently divide crash data into two groups when modeling crash
frequency based on the total number of vehicles involved: single-vehicle crashes and
two-plus vehicle crashes. (i.e multi-vehicle crashes) (Geedipally, S., and D. Lord,
2010, Geedipally, S. R., and D. Lord, 2010, Martensen, H., and E. Dupont, 2013,
Chen, F., and S. Chen, 2011, Pasupathy et al., 2000, Ma, X. et al., 2016). Previous
research has shown that crashes involving two or more vehicles differ significantly
from those involving only one car, As a result, the two crash types must be modeled
individually (Geedipally, S., and D. Lord, 2010, Geedipally, S. R., and D. Lord, 2010,
Ma, X. et al., 2016, Qin, X. et al., 2004, Lord, D. et al., 2005 and Griffith, M. S,
1999). According to the findings of these studies, developing separate models for
single-vehicle and two-plus vehicle accidents offers more accurate predictions than
establishing models that combine the two crash categories (Geedipally, S. R., and D.
Lord, 2010).

1.2 Present State of the Problem

Two vehicle collisions are the most dominant types of traffic accidents in Bangladesh,
accounting for 35% of total accidents and 30% of total fatalities (Raihan et al. 2017).
As a result, developing preventive mechanisms to minimize two vehicle crash
fatalities is crucial. The estimation and use of disaggregate level crash severity models
is a vital component of the preventative measure in identifying and obtaining a full
understanding of the elements that lead to two vehicle crash severity. Furthermore, an
independent two vehicle crash severity modeling is required because modeling

aggregate accidents without specifying relevant subgroups may fail to find

3



associations between subgroups, resulting in incorrect parameter estimations ( Kitali
et al. 2021). Remarkably it is essential to place emphasis on identifying the factors

responsible for two vehicle crash severities.

1.3 Objectives of the Study

The purpose of the research was to investigate the prediction accuracy of different
machine learning (ML) and statistical methods to predict two vehicle crash severity in
a low-income country context, Bangladesh, specifically Dhaka city using Road
Traffic Accident (RTA) data (2017- 2010) from ARI, BUET. The global objective of
this study is employing machine learning algorithms to predict drivers’ injury
severities in two-vehicle crashes in Dhaka, Bangladesh. The specific research

objectives are:

e to evaluate the potential of different ML models, both individual and hybrid
models, and parametric regression model to predict the severity of a crash

involving two vehicles.

e to identify the contributing factors and the ways in which they impact the
prediction of crash severities in Dhaka, Bangladesh.

e to compare the hybrid model with individual classifiers to see if individual or
hybrid model can forecast the severity of a two vehicle crash with greater

accuracy.

1.4 Scope of the Research

This research is concerned with the crash severity prediction of two vehicles using
Logistic Regression (LR) as a statistical method and some popular ML methods such
as classification and regression tree (CART), support vector machine (SVM), random
forest (RF), adaptive boosting and soft voting classifier- based hybrid model. The
study shows how accident intensity is related to various factors associated of accident
events, as well as which factors cause what type of accident severity. In-depth
analyses of the study results needed to create defensive measures and strong policy

decisions, however, were outside the scope of this thesis.



1.5 Thesis Outline

The thesis consists of six chapters.

Chapter 1 has explained the background, present state of the problem, purpose and

objectives as well as the scope of the research.

Chapter 2 has been dedicated to review the relevant literature of two vehicle crashes

in the context of this study.

Chapter 3 has illustrated the data description, data preparation, and the fundamentals
of various machine learning, statistical and hybrid methods that have been applied in
this thesis. These include Logistic Regression (LR), Classification and Regression
Tree (CART), Support Vector Machine (SVM), Random Forest (RF), Adaptive
Boosting (AdaBoost) and Classifier-specific Soft Voting as Hybrid model. The
feature selection and model evaluation metrics have also described in this chapter.

The descriptions are brief yet self-containing.

Chapter 4 has addressed the detailed analysis and interpretation of model results

regarding two vehicle crash severity predictions.

Chapter 5 has presented the major findings of the thesis along with its limitations and

future scopes.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

Two vehicle collisions are the quite common types of traffic accidents currently in
Bangladesh and developing preventive mechanisms to minimize two vehicle crash
fatalities is crucial to improve road traffic safety. Statistical models have traditionally
been the most commonly used methods for analyzing crash injury severity. For better
prediction, besides traditional parametric statistical method, some popular machine
learning techniques have been introduced in this study. This chapter commences by
defining traditional parametric statistical method along with machine learning
method. The limitations of statistical method, the advantages and shortcoming of
machine learning method have also been incorporated in this chapter. It then clarifies
the concept from the standpoint of transportation. The paper then summarizes the
previous relevant literatures, conducting a thorough review of the objective and

guidance in this evolving and absolutely vital research field.

2.2 Relevant Studies on Two vehicle Crashes

Numerous studies have been conducted to investigate the mechanism of a single
vehicle collision, however just a few studies have been performed to evaluate two
vehicle crashes (WHO 2022). Earlier researches in many nations have mostly
concentrated on evaluating the causes of crashes involving two cars at signalized
junctions, construction sites, urban and rural locations (Dancan et al., 1998; Chiou et
al., 2020 and Yuan et al., 2022).

Yuan et al. (2022) in Pennsylvania, applied mixed logit models to discover the
elements that determine injury severity in a two-vehicle incident, taking vehicle
characteristics of the distinct crash roles into consideration. The result revealed that
the type and movement of vehicles have a substantial impact on crash severity (WHO
2022).

Two-vehicle crashes have been studied extensively, with Champahom et al. (2020)
and Wang & Abdel-Aty (2006) focusing on studying the mechanism of crashes at
6



signalized intersections, in construction zones, in urban, and rural settings. The factors
that contribute to the severity of crashes involving two vehicles at unsignalized

intersections are poorly understood.

Two-vehicle collisions under similar traffic situations can vary greatly in severity due
to the difference in the performance, type, weight, and vehicle movement (struck and
striking vehicles), as determined by Yuan et al., (2017) and Lee & Li, (2014).

It has been found by Shao et al. (2020) that the severity of injuries sustained in truck-
versus-car crashes differs significantly from those sustained in truck-only crashes.
According to Abay et al. (2013), a front-facing vehicle poses a greater threat of injury

to the driver than a frontal collision.

Lee and Li (2014) studied in Ontario, Canada, the severity of driver injuries in one
and two-vehicle crashes and analyzes the impact of independent factors amongst
various crash scenarios using heteroscedastic ordered logit (HOL) models. The study
showed that, young car drivers have reverse impacts in car-to-car collisions, while
side-impact collisions have distinct consequences in car-car and truck-truck collisions.
They also found that car- heavy truck crashes are the mostly turn into fatal injury
(Lee, C.,and X. Li, 2014).

Zeng et al. (2016) studied the interaction influence on vehicle unit injury severity in
two-vehicle crashes and found that, compared to cars, other types of vehicles were
significantly more severe. Injury severity is lower for the driver of the vehicle

himself, but to a greater extent for the driver of other vehicles (Yang et al., 2019).

Chiou et al. (2020) in Taiwan, considered the severity of the crash by two parties
(referred to as the "responsible party" and the "non-responsible party") using the
Generalized Estimation Equation (GEE) and the result indicated that the most
significant variable that contributes to the severity of a crash is the vehicle type
(motorcycle), followed by speed, angle, impact and alcohol consumption (Duncan et
al., 1998).

Lombardi et al. (2017) researched age-related disparities in fatal accidents between
two vehicles, and the findings revealed that older and younger drivers were more
prone to engage in road accidents than average-aged drivers (Zeng et al., 2016).



Ji and Levinson (2020) in USA, analyzed some popular ML models and some
ensemble techniques such as K-Nearest Neighbors (KNN), Support Vector Machine
(SVM), Generalized Linear Model (GLM), Gradient Boosting Machine (GBM),
Random Forest (RF), and AdaBoost (Adaptive Boosting) for predicting occupant
injuries collision between two vehicles and result showed that, combining models can

perform better than individual model (Ji, A., and D. Levinson, 2020).

Yang et al. (2019) in Japan, examined the critical variables that determine the severity
of driver injuries in two vehicle crashes, passenger car and truck, using bivariate
ordered probit model and found that, time of the day, locations, traffic conditions,
types of collisions, and types of roads have different effects on the two vehicle
crashes where the weather condition and age of drivers have relatable impacts for two

types of crashes (Jamal et al., 2021).

Duncan et al. (1998) in USA, studied the effect of numerous factors on the injuries
sustained by occupants in two vehicle incidents by using the ordered probit model and
found that the factors responsible for injuries to passenger vehicle occupants in rear-
end collisions on split roads are darkness, high speed differentials, high speed limits,
grades, particularly if they are damp (Fan et al., 2019).

Sobhani et al. (2011) in Australia, aimed to measure the extent of injuries to people in
road crashes involving two vehicles using a Log-Gamma regression model and result
showed that, the interaction of the type of impact, presence of airbag, presence of seat
belt, and age of the occupants are the triggering factors for the crash injury severity. It
also showed that the severity of crash injury is higher for crashes where the airbags
and seat belts are available for near side crashes rather than crashes on far side and
front crashes (Liao et al., 2018).

Previous research has discovered that accident type is one of the determining elements
of two vehicle crash severity (Yang et al., 2019; Duncan et al., 1998; Chiou et al.,
2020; Lee, C., and X. Li, 2014 and Ji, A., and D. Levinson, 2020). Vehicle factors
such as vehicle type and vehicle movement have also been demonstrated to have a
substantial impact on the severity of a two vehicle crash (Yuan et al., 2022 and Zeng
et al., 2016). The characteristics of the roadway and surrounding environment (for

example, traffic conditions, road types, and lighting conditions) can explain the level



of crash severity (Yang et al., 2019; Duncan et al., 1998). According to certain
research, the temporal characteristics of accidents (i.e., day of week, specific time of
day) and the level of alcohol intake of drivers are also connected with the level of
severity in two vehicle crashes (Yang et al., 2019 and Chiou et al., 2020). However,
these conclusions are derived from the setting of high-income countries, despite the
fact that the hotspot of accidents is in low- and middle-income countries. Because of
the differences in their contexts, further research should be conducted in low- and
middle-income areas to build an effective and comprehensive preventive strategy.

2.3 Statistical Methods in Crash Severity Modeling

The four main ways in which statistical methods aid classification are, : developing
probability models for data and classes to identify probable classifications for a given
set of data; creating tests of validity of specific classes produced by a classification
scheme; contrasting the relative efficacy of various classification schemes; and
increasing the search for ideal classifications by probability- based research
techniques. Algorithms for standard hierarchical and splitting data are analyzed
statistically (J.A. Hartigan, 2001). Statistical models have traditionally been the most
frequently used techniques for analyzing crash injury severity. Several parametric
statistical techniques have been employed in previous studies to model the severity of
a two-vehicle incident in an attempt to uncover potential risk factors for death. The
most popular modeling method among them is probably the ordered probit (OP)
model (C. Lee and M. Abdel-Aty, 2005, N. Siddiqui et al., 2006, K. K. W. Yau, 2006,
Y. Xie, 2009 and Wang et al., 2011) which may order the severity of an accident into
categories (Yang et al., 2019, Duncan et al., 1998 and Chiou et al., 2020). Savolainen
et al. (2011) provided a thorough literature review of approaches to assessing crash
injuries. In the literature, multinomial logit (MNL) model (V. Shankar and F.
Mannering, 1996, A. Khorashadi, 2005 and P. Savolainen and F. Mannering, 2007),
the binary logit (BL) model (A. SAI-Ghamdi, 2002), Logistic Regression (LR)
(J.A. Hartigan, 2001), Mixed Logit Model, and Binomial Regression Model are all
frequently used methodologies ( Kitali, 2021, Yuan et al., 2022, Lee, C., and X. Li,
2014 and Zeng et al., 2016).



Crash injury severity modeling has made extensive use of various types of statistical
regression. Multi-level ordered logit models, binomial logistic models, and their
variants are the most popular regression prediction techniques. Regression models
like these can analytically shed light on the connections between various factors and
provide a plausible theoretical interpretation (J. Tang et al., 2019). However, they
require that you adhere to certain mathematical forms when relating your dependent
and explanatory variables (Z. Li et al., 2012). Due to their inflexible premise,
regression models have poorer predictive power than other algorithms (A. Iranitalab
and A. Khattak, 2017). There are some caveats to using statistical models, despite the
fact that their mathematical interpretation is sound and they help shed light on the part
played by various predictor variables. To begin with, they are predicated on a set of
presumptions (with regards to linear link functions and error distribution terms) and a
predefined relationship between the variables, and violating any of these can lead to
skewed model estimation (Ullah et al., 2021; Zahid, Chen, Jamal, Al-Ahmadi, et al.,
2020; Zahid, Chen, Jamal, and Memon, 2020). Second, they have low reliability and
poor prediction accuracy. In addition, class imbalance problems have been identified
in statistical models that use past crash data (Vilaca et al., 2019; Wang et al., 2019;
Elamrani Abou Elassad et al., 2020). Statistical procedures assume, by definition, that
classrooms are evenly populated (Leevy et al., 2018). Hyden's safety pyramid
describes the distribution of crash severity, which is a common example of a dataset
with class imbalance (Laureshyn et al., 2010). The results have been shown to support
the majority class, leading to biased predictions and even misleading conclusions if
there is major class imbalance (rare events are under about 5%) in the datasets (Ferrari
& Bacciu, 2021; King & Zeng, 2001). Analyzing the efficacy of various sampling
strategies for addressing class imbalance using crash datasets is crucial for reducing
the impact of class imbalance problems. Researchers in the past have turned to
machine learning techniques for predicting crash injuries' severity (M. A. Abdel-Aty
and H. T. Abdelwahab, 2004, L.-Y. Chang and H.-W. Wang, 2006, Y. Xie et al.,
2007, J. de Ofia, 2011, J. Abellan, 2013 and A. Iranitalab and A. Khattak, 2017) to get

around the shortcomings of statistical models.

The output of statistical models is often straight forward formulas that illustrate the

relationships between the dependent and explanatory variables. However, in spite of

their solid conceptual foundation, statistical models have certain caveats. A linear
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function is used to establish a connection between the dependent variable and the
explanatory factors in statistical modeling, for instance, and this technique needs
assumptions about the data distribution. There is no guarantee that all of those
premises hold true. Incorrect parameter estimates will be generated if such
assumptions are broken (L. Mussone et al., 1999 and C. Chen et al., 2016). Model
estimate may also be impacted by other factors, like multicollinearity (S. Washington
et al., 2010), within-crash correlation (P. Savolainen and F. Mannering, 2007 and R.
Paleti et al., 2010) and unobserved heterogeneity (P. Xu and H. Huang, 2015 and Z.
Li et al., 2013). Complex frameworks are often needed to mitigate the destructive
effects of such problems, making the corresponding statistical models challenging to
solve. (P. T. Savolainen et al., 2011). Conventional parametric regression models, for
example, require linear functions to link the response variable to determinants and
rely on a specific distribution of crash data. There are instances when these
assumptions can lead to incorrect estimations and biased model inferences (Jamal et
al., 2021). These data-related shortcomings, which are a prevalent limitation in
parametric regression models, can be eliminated by using ML algorithms, which have
the ability to uncover key factors and enhance prediction accuracy (Raihan et al.
2017, Fan et al., 2019 and Liao et al., 2018).

The severity of a crash injury is often indicated by different classes such as damage to
property, possible injuries, capacitating injury, incapacitating injury, fatality, and so
on. Damage to property only (PDO)/no injuries, injuries, and deaths have all been
utilized as injury severity groups in numerous researches (C. Ma et al., 2018 and
Mesa-Arango et al., 2018). Because crash injury severity levels are discrete, discrete
outcome models such as binary or multinomial logit/probit models have been
extensively used (Azimi et al., 2020; Rifaat & Chin, 2007; Shankar & Mannering,
1996; Yu & Abdel-Aty, 2014a). To accommodate for variability and causality, as well
as the ordinal character of within-crash correlation a number of complex models as
Bayesian hierarchical (Huang et al., 2008; Li et al. 2018), ordered logit models
(Azimi et al., 2020; C. Chen et al., 2016; Khattak et al., 1998; O’Donnell & Connor,
1996), bivariate/multivariate models (Aguero-Valverde & Jovanis, 2009; C. Lee &
Abdel-Aty, 2008; Russo et al., 2014; Zeng et al., 2017), nested logit model (Osman
et al., 2016; Shankar et al., 1996), random parameter model (Milton et al., 2008; J.
Wang et al., 2020), Markov switching multinomial model (Malyshkina & Mannering,
11



2009; Xiong et al., 2014), and their mixed versions (Christoforou et al., 2010; Eluru
& Bhat, 2007; Huang et al., 2011; Li et al. 2019), were reviewed.

2.4 Machine Learning (ML) Methods in Crash Severity Modeling

The term "machine learning" (ML) refers to an approach to "learning"” by analyzing
data. Discovering regularities in the information is a key part of this process.
Predictions and classifications are aided greatly by the robust algorithms made
available by Machine Learning (ML). The goal of ML models is to increase
prediction precision via a non-parametric method (L. Wahab and H. Jiang, 2019).
Researchers have paid close attention to machine learning (ML) methods over the past
two decades due to their rapid development and accurate regression and classification
performance. More and more studies have used ML techniques to examine crash
severity. Unlike conventional statistical methods, which have rigid and well-defined
functional forms, ML approaches are extremely adaptable, make few if any
assumptions about the crash severity data, and can deal with missing values, noises,
and outliers (Tang et al., 2019). The models used in machine learning make no
assumptions about the connections between different variables. Some studies have
found that machine learning techniques outperform statistical ones at producing

fitting.

In order to generate predictions or choices without being explicitly taught to do so,
machine learning algorithms develop a mathematical model based on sample data,
often known as training data (Bishop, 2006). The challenge of concentrating on the
most pertinent information in a potentially overwhelming amount of data has become

more significant as machine learning attempts to tackle bigger, more complex tasks.

Machine learning-based models have appeared as valuable technology in road safety
studies in recent years, overcoming the drawbacks of statistical methods due to rapid
advances in soft computing methods. However, there are still data and methodology
issues with ML that have yet to be resolved. To begin, traffic crash severity datasets
are inherently imbalanced and, in some cases, under reported. Many studies have
found that while ML methods frequently produce high overall prediction accuracy,
they produce poor accuracy for severity categories with fewer observations, such as
potentially deadly and serious accidents (Abdel-Aty & Abdelwahab, 2004; Chang &
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Wang, 2006; Chene et al., 2016a; Chene et al., 2016b; Lie et al., 2012). Second, most
ML approaches suffer from the "black-box™ problem, in which it is unclear how to
interpret the modeling results and derive the underlying relationships between
independent/explanatory variables and crash severity outcomes. Sensitivity analysis
(SA), and more specifically local sensitivity analysis (LSA), has been implemented to
get around this issue. In order to reduce the 'black box' effect, researchers have
developed techniques like sensitivity analysis (M. B. Anvari et al., 2017; R. Yu and
M. Abdel-Aty, 2014; A. Das et al., 2009; J. Zhang et al., 2018; L. Jiang et al., 2019;
X. Li et al., 2008; Li et al. 2012 and Y. Zhang & Xie, 2007). An application of
sensitivity analysis is in extracting features and ranking the relative importance of
different variables in relation to a given target variable. It's made it much easier to
implement ML models into research on vehicular safety. To capture the joint effects
of multiple risk factors, however, sensitivity analysis must make the potentially false
assumptions of linearity, normality, and local variations. When applying ML
approaches to crash severity analysis, additional data/methodology-related issues,
such as model performance metrics, crash spatiotemporal correlations, causality,

transferability, and heterogeneity, often arise.

To address the shortcomings of statistical approaches, various machine learning (ML)
models are being investigated for modeling possibly nonlinear correlations between
accident contributing elements and injury severity outcomes. (Abdel-Aty &
Abdelwahab, 2004; Iranitalab & Khattak, 2017; Li et al. 2012; Pradhan & Sameen,
2020; Sameen & Pradhan, 2017; Sarkar et al., 2020; Tang et al., 2019) Machine
learning models have the benefit of being more adaptable to processing outliers,
noisy, or missing data, as well as being more flexible with no or few post assumptions

for input variables.

When compared to statistical methods, ML methods are said to fit better. Machine
learning models have been extensively used to predict the severity of traffic accidents.
( M. Taamneh et al., 2016). Some widely used ML algorithms in crash severity
modelling domain are: Artificial Neural Networks (ANN) (Abdelwahab & Abdel-Aty,
2001; Amiri et al., 2020; Zeng & Huang, 2014), Support Vector Machines (SVM)
(Dong et al., 2015; Mokhtarimousavi et al., 2019; Zhibin Li et al. 2012), Decision
Trees (DT) (Abellan et al., 2013; Ofia et al., 2013; P. Lu et al., 2020), K-means
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Clustering (KC) (Anderson, 2009; Fiorentini & Losa, 2020; Mauro et al., 2013),
Random Forest (Iranitalab & Khattak, 2017; Mondal et al., 2020; J. Zhang et al.,
2018), and Naive Bayes (Arhin & Gatiba, 2020; Budiawan et al., 2019; C. Chen et
al., 2016).

The comprehensive literature review shows that most of the previous studies have
been done based on parametric regression whereas there are few studies which are
based on Machine Learning (ML). To the best knowledge, Ji and Levinson (Ji, A.,
and D. Levinson , 2020) in USA, analyzed some popular ML algorithms for

predicting occupant injuries collision between two vehicles.

2.5 Ensemble or Hybrid Methods in Crash Severity Modeling

In comparison to any of the individual classifiers, ensemble learning improves

prediction accuracy by combining a number of weak classifiers.

Bagging (also known as random forests) and boosting are the two main ensemble

learning techniques used in crash severity analysis (Wen et al., 2021).

Boosting and Bagging are two examples of ensemble methods, which are a type of
cutting-edge learning strategy in which multiple learners are trained separately and
then combined for application. It is common knowledge that multiple learners in an
ensemble can improve accuracy significantly over a single learner, and ensemble
methods have seen huge success in many practical uses (Zhi-Hua Zhou, Ensemble
Methods Foundations and Algorithms, 2012). Liu, L. et al (2020) applied an ensemble
model (CSSV-AGX) of AdaBoost (Adaptive Boosting), GBDT (Gradient Boosting
Decision Tree), and XGBoost (eXtreme Gradient Boosting) based on Classifier-
specific Soft Voting and Several major factors have been analyzed to determine
connections between accident factors (like speed) and the distribution of various
occupant accident severity levels. The intense Gradient Boosting (XGBoost) model
was studied by Jamal, A. et al. (2021) to determine if it could be used for analyzing
crash injuries more accurately than more conventional machine learning algorithms

like logistic regression, random forest, and decision tree.
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2.6  Summary

There are some significant differences of this study from previous studies. Firstly, this
study has employed the Shapley Additive explanations (SHAP) approach, developed
by Lundberg and Lee (Lundberg, S. M., and S.-I. Lee, 2017), to explain the model's
output. An individual feature's contribution, based on its marginal contribution, to the
predicted value can be calculated using SHAP (Parsa et al., 2019). Secondly, this
study has used feature engineering technique to extract useful features. An essential
and challenging problem in ML is deciding on the best subset of features to use.
Choosing a decent collection of attributes reduces computational load while
simultaneously improving accuracy. Noisy data can lead classifiers to form inaccurate
connections, and redundant or linked features raise classification intricacy without
delivering innovative information to the system (Moons et al., 2016 and Wang et al.,
2017). In this study, RF model has been used to select the effective features. Thirdly,
in this study, the Classifier-specific Soft Voting has been employed to integrate
individual models in predicting the two-vehicle crash severity. Soft voting employs
class-specific weights to boost combinatorial performance while reducing computing
cost. On top of all that, it improves classifier weightings by taking into account
both soft class probabilities (Cao et al., 2015). Fourthly, the majority of prior studies
evaluated the influence of vehicle features on crash severity at the accident level, but
they failed to consider the effect of diverse roles in an accident (Yuan et al., 2022). In
this study, besides vehicle characteristics (vehicle type, vehicle maneuver), it has been
also focused on driver characteristics (age, sobriety condition, seatbelt/helmet usage),
roadway conditions/environment (road geometry, surface condition, light condition,
junction, road class, traffic control, movement), crash characteristics (collision type)
and temporal features (time, day of week) in predicting two vehicle crash severities.
One of the benefits of using many explanatory factors is that it allows models
overcome the biasness associated with the absence of potential independent
variables. In this study different machine learning (ML) methods and traditional
statistical regression method have been applied to identify the contributing factors
responsible for such crashes and also compared the prediction accuracy of such

models.
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DATA COLLECTON AND METHODOLOGY

3.1 Introduction

Chapter 3

Several machine learning methods, as well as a statistical method, were used in this

study and also employed a hybrid model and evaluate the best performing model in

predicting two vehicle crash severities. This chapter gives a brief but comprehensive

description of these methods, as well as their applicability. The chapter also discusses

the data collection and preparation procedures for this study.

3.2 Methods and Work Flow of the Study

The following Figure 3.1 depicts the entire operational framework of this thesis.
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Figure 3.1: Work methodology of the study

The work flow of this study can be listed as followed:

(i) The filtered data of two vehicle crashes has been divided into training dataset
(80%) and testing dataset (20%) and trained the models through a 10-fold

cross-validation. To resolve data imbalance issue, method of random over-

sampling (ROS) has been adopted on training dataset.




(ii) Important features have been selected using Random Forest (RF) and all the
models (ML, Statistical method and all possible hybrid models) have been
trained with all possible combinations of feature subset to assess the
performance of different predictors. Hyper parameter tuning has been done

with 10-fold cross validation.

(iii) The efficiency of the various models has been evaluated utilizing the most
commonly known performance metrics and compared the prediction accuracy

of different classifiers using Confusion Matrix.

(iv) An individual feature's contribution, based on its marginal contribution, to the

predicted value has been calculated using SHAP.

Following sections describe the methods sequentially.

3.3 Data Description

This study has been utilized the recent crash data of ARI for two vehicle crash
severity prediction analysis. The overall data processing and description have been

mentioned in the following sections.

3.3.1 Data Overview

In Bangladesh, police are mainly concerned with the collection of crash data at field
level in Accident Report Form (ARF) (Appendix-A). A guideline for filling the
Accident Report Form (ARF) has been published by Accident Research Institute
(ARI) of Bangladesh University of Engineering and Technology (BUET) (Appendix-
B). The reports are then recorded in the Microcomputer Accident Analysis Package 5
(MAAPS5) repository by the Accident Research Institute (ARI) of Bangladesh
University of Engineering and Technology (BUET). In our study, crash data of 2017-
2020 for Dhaka city have been collected from ARI, BUET. At time of collection,
these data were available in a tabular format with each sample containing information
about crash, roadway geometry, environment, vehicle, driver, passenger, and

pedestrian characteristics.
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3.3.2 Data Preparation

Since this study focuses on modeling two-vehicle crashes, the very first task of
processing was filtering out crashes that involved only two vehicles. The Excel
database extracted from MAAPS database needed some further processing to be used
for machine learning. At first, the Excel format was converted to CSV (comma
delimited) format; so that it can be imported by the python software. Later, it was
found that the computer that was designated for the modeling could not handle this
huge database. Therefore, it became urgent to reduce the size of this accident

database.

There were numerous crash data that were collected from Accident Research Institute
(ARI), BUET (2017-2020). This study, which focuses on two-vehicle crashes, was
reduced from 357 variables to 25 variables by eliminating the irrelevant variables.
Index system has been adopted to eliminate single and multi-vehicle crash data.
Eventually total 1494 crash data have been reduced to 692 crash data which was
further reduced to 329 crash data for better accuracy.

Different independent variables like vehicle characteristics (vehicle type, vehicle
maneuver), driver characteristics (age, sobriety condition, seatbelt/helmet usage),
roadway conditions/environment (road geometry, surface condition, traffic control,
movement, light condition, junction, road class,), crash characteristics (collision type)
and temporal features (time, day of week) have been used in predicting two vehicle
crash severities. Summary of the filtered data with information on crash, roadway
geometry, environment, temporal, vehicle, and driver characteristics have been
presented in Table 3.1. A total of 658 drivers were involved in 329 traffic crashes
reported during the years 2017-2020 in Dhaka. The dataset then divided into 80%
‘Training’ dataset with 526 drivers and the 20% ‘Testing’ dataset with remaining 132

drivers.
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Table 3.1: The Descriptive Statistics of Variables

Variable Variable Description Frequency | RGO
(%)
Target Variable
Injury Severity 0 - Non-Fatal 468 71.1
1 — Fatal 190 28.9
Explanatory Variables
Crash Characteristics
Collision Type | nota rear end collision 288 43.7
a rear end collision 370 56.3
Roadway Characteristics
Junction no junction was present 326 49.5
junction was present 332 50.5
Traffic Control | no traffic control system is present 142 21.5
traffic control system is present 516 78.5
Movement the road was one way 332 50.5
the road was two-way 326 49.5
Surface the road surface was dry 632 96
Condition the road surface was not dry 26 4
Road Geometry | the road was not straight 66 10
the road was straight 592 90
Road Class the road flows within the city 340 51.7
the road flows to outside of the city 318 48.3
Environment Characteristics
dawn/dusk 108 16.4
Light Condition Daylight 312 474
Dark 238 36.2
Temporal Characteristics
Day of Week Weekday 492 74.8
Weekend 166 25.2
during night hours 258 39.2
Time during off-peak hours 168 25.5
during peak hours 232 35.3
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Vehicle Characteristics

one of the involved vehicles was a bus 190 28.9
one of the involved vehicles was a car 55 8.4
one of the involved vehicles was a 162 24.6
Vehicle Type one of the involved vehicles was an NMV 62 9.4
one of the involved vehicles was a pick-up 25 3.8
one of the involved vehicles was a truck 73 11.1
one of the involved vehicles was a van/SUV | 23 3.5
one of the involved vehicles was any other 68 10.3
Vehicle vehicle was going straight 435 66.1
Maneuver vehicle was not going straight 223 33.9

Driver Characteristics

driver age <=30 231 35.1
Driver Age driver age >50 14 2.1
driver age 31-40 295 44.8
driver age 41-50 118 18
Sobriety driver was not suspected drunk 591 89.8
Condition driver was suspected drunk 67 10.2
Seatbelt/Helmet | driver/biker did not-worn seatbelt/helmet 533 81
driver/biker worn seatbelt/helmet 125 19

Each feature has been categorized for better distribution and more accuracy.
According to the severity level, the distribution of each individual category has been

observed through further visualization.
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Figure 3.2: Distribution Graph of Driver Age
After reviewing previous studies, in this study, driver’s age has been categorized in
four categories “age<=30", “age=31-40", “age=41-50" and “age>50". From Figure
3.2, it has been found that total counts of two vehicle crashes were highest for 31-40
aged drivers. Crashes has found lowest for drivers’ aged greater than 50.
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Figure 3.3: Distribution Graph of Sobriety Condition
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Driver’s sobriety condition has been categorized in two categories “suspected” and
“non-suspected”. From Figure 3.3, it can be identified that the total counts of two
vehicle crashes were high for sobriety condition “not suspected”. For “non-suspected”
category the rate of fatality has found about one-third compared with the non-fatality
rate. Whereas, the fatality rate was almost half of the non-fatality rate in case of

“suspected” condition.
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Figure 3.4: Distribution Graph of Seatbelt/Helmet Use

Driver/Biker’s seatbelt/helmet use condition has been categorized in two categories
“worn” and “not-worn”. From Figure 3.4, it can be identified that the total counts of

two vehicle crashes were high for the drivers/bikers who did not wear seatbelt/helmet.
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Figure 3.5: Distribution Graph of Vehicle Type

The variable “vehicle type” has been categorized in eight categories bus, car,
motorcycle, NMV, pick-up, truck, van/SUV and others. From Figure 3.5, it has been
found that the total counts of two vehicle crashes were high if one of the vehicles
involved in the crash was bus whereas, the rate of fatality has found maximum when

one of the vehicles involved in two vehicle crashes was motorcycle.
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Figure 3.6: Distribution Graph of VVehicle Maneuver
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The variable “vehicle maneuver” has been categorized in two categories “going

ahead” and “not going ahead”. From Figure 3.6, it can be identified that the total
counts of two vehicle crashes were high for “going ahead” maneuver.
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Figure 3.7: Distribution Graph of Junction

The roadway characteristics “junction” has been categorized in two categories

“present” and “absent”. From Figure 3.7, it can be identified the total counts of two
vehicle crashes were nearly similar for both the conditions.
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Figure 3.8: Distribution Graph of Traffic Control
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The roadway characteristics “traffic control” has been categorized in two categories

“present” and “absent”. From Figure 3.8, it can be identified the total counts of two
vehicle crashes were high where traffic control was present.
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Figure 3.9: Distribution Graph of Movement
The roadway characteristics “traffic movement” has been categorized in two
categories “one-way” and “two-way”. From Figure 3.9, it can be identified that the
total counts of two vehicle crashes were almost similar for both one-way and two-way
movements.
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The roadway characteristics “surface condition” has been categorized in two
categories “dry” and “not dry”. From Figure 3.10, it can be identified that the total

counts of two vehicle crashes were much higher when the surface was dry.
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Figure 3.11: Distribution Graph of Road Geometry

The roadway characteristics “road geometry” has been categorized in two categories
“straight” and “not straight”. From Figure 3.11, it can be identified that the total
counts of two vehicle crashes were much higher when the road geometry was straight.
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Figure 3.12: Distribution Graph of Road Class
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The roadway characteristics “road class” has been categorized in two categories

“city” and “not city”. From Figure 3.12, it can be identified that the total counts of
two vehicle crashes were nearly similar for both road class categories.
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Figure 3.13: Distribution Graph of Light Condition
The environmental characteristics “light condition” has been categorized in three
categories “night”, “dawn/dusk” and “daylight”. From Figure 3.13, it can be identified
that the total counts of two vehicle crashes were slightly high in daylight condition
than in night condition. Number of crashes have found low in dawn/dusk condition.
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Figure 3.14: Distribution Graph of Collision Type
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The crash characteristics “collision type” has been categorized in two categories “not
rear end” and “rear end”. From Figure 3.14, it can be identified that the total counts of

two vehicle crashes were high for rear end collision.
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Figure 3.15: Distribution Graph of Day of Week

The temporal characteristics “day of week” has been categorized in two categories
“weekday” and “weekend”. From Figure 3.15, it can be identified that the total counts

of two vehicle crashes were high while the accidents took place on a weekday.
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Figure 3.16: Distribution Graph of Time

The temporal characteristics “time” has been categorized in three categories “peak

hours”, “off-peak hours” and “night hours”. From Figure 3.16, it can be identified that
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the total counts of two vehicle crashes were high while the accidents took place at

night time and low at off-peak hours.
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Figure 3.17: Distribution Graph of Severity

Among four injury severity categories such as fatal, grievous, simple injury and non-
fatal, this study has used two injury severity categories: fatal and non-fatal. However,
a major issue of data imbalance was observed in the dataset. As shown in Figure 3.17,
a sum of 468 drivers’ involvement resulted in non-fatal (NF), 190 drivers’
involvement resulted in fatal (F) (Non-Fatal: 71%, Fatal: 29%). Further re-sampling

has been done for balancing the data.

Before re-sampling in this study, as all the variables were categorical, hot coding or
dummy variables have been created. In machine learning, categorical variables (such
as geometric characteristics) can only range over a series of fixed values. Generally, a
feature of k possible values needs to be encoded as a set of k derived dummy variables
so that all the categories within the feature can be represented. For each sample, there
is only one setting for each of the derived dummy variables that has a value of 1. For
the remaining parts of the dummy variables, they are equal to 0. According to the
thumb rule, for each feature among all dummy variables one dummy has to be
discarded randomly.

The accuracy of classification algorithm is seriously compromised when built on

imbalanced data (Yuan et al.,, 2022). Since, this study builds on maximizing

prediction capability of classifiers, re-sampling was a big necessity before diving
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further into modeling details. Sampling strategies aim to resolve data imbalance issue
by balancing class distribution in the dataset, either by eliminating some data from the
majority class (under-sampling) or adding some artificially generated data to the
minority class (over-sampling) (Elamrani et al., 2020). In this study, after straining
different re-sampling strategies the method of random over-sampling (ROS) has been
adopted instead of under-sampling because the latter often results in the loss of
important information (Ma et al., 2022). So, soon after the crash data was reduced to
526 samples by removing outliers, irrelevant levels, and missing data, the revised data
was sliced into training (80%) and testing (20%) sets, and ROS was applied on the
training data (Non-Fatal: 376, Fatal: 150) making the ratio 1:1 (Non-Fatal: 376, Fatal:
376) where the total data then became increase of 752 in terms of total driver count.
After ROS, the further distribution of each individual category in terms of the severity

level can be observed as follows:
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Figure 3.18: Distribution Graph of Day of Week
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Figure 3.23: Distribution Graph of Collision Type
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Figure 3.24: Distribution Graph of Movement
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Figure 3.25: Distribution Graph of Light Condition (Daylight)
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Figure 3.27: Distribution Graph of Road-Geometry
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Figure 3.28: Distribution Graph of Road Class
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Figure 3.29: Distribution Graph of Surface Condition
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Figure 3.32: Distribution Graph of Vehicle Type (Motorcycle)
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Figure 3.33: Distribution Graph of Vehicle Type (NMVs)
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Figure 3.34: Distribution Graph of Vehicle Type (Pick-Up)
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Figure 3.35: Distribution Graph of Vehicle Type (Truck)
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Figure 3.36: Distribution Graph of Vehicle Type (Van/SUV)
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Figure 3.37: Distribution Graph of Vehicle Maneuver
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Figure 3.39: Distribution Graph of Driver Age (31-40)
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Figure 3.40: Distribution Graph of Driver Age (41-50)
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In the above Figure 3.18 to Figure 3.43, it can be seen that after creating dummy
variables and after random over sampling (ROS), the ratio of fatal and non-fatal have
balanced.

In this study, the dataset has been spitted into the ‘Training’ set (80%) and the
‘Testing’ set (20%) and trained the models through a n-fold cross-validation by the
‘Training’ set (here n = 10). That means, during the training process, the data have
split into n subsets (n-1 for training and 1 for validation), and the hyper parameters
have been tuned by repeating the procedure n times. The dedicated ‘Testing’ set have

then tested the trained model used in this study.

3.4 Logistic Regression (LR)

LR is a regression analysis suitable to perform when the dependent variable is
dichotomous (binary). It is a widely used tool for predictive analysis. The correlation
between a binary dependent variable and one or more nominal, ordinal, interval, or
proportional independent variables is explained using LR. In the LR model,
independent variables are used to anticipate the probability that the response variable
will obtain on a particular value (Abdelwahab, H. T., and M. A. Abdel-Aty, 2001).

LR models are sometimes difficult to interpret; The Statistical Intelligence tool makes
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it easy to perform analysis and then interpret the results in simple language. Since it is
possible for linear regression to produce probabilities larger than one or less than zero,
it cannot be used for analysis of crash severity classification. That's why you should
employ logistic regression instead (LR). Also, unlike the linear regression model, the
assumptions made by logistic regression can be tested. Instead of producing discrete

classes, LR generates probabilities on a scale from one to zero (Jamal et al., 2021).

The LR model determines the relationship between the target class y = (y1, yn) given p
= (p1, pn) and set of j predictors X = (X1, ...... , Xj ). The strategy makes an effort to
model the connection f between a set of independent variables x and a set of class
variables y. The dependent/target variable was designed to have two possible
outcomes: {y:1 = non fatal damage; y. = fatal}, which can be coded as {y: = 0; y» = 1}.
The LR modeling function characterizes the connection between the set of
independent or predictor variables and the probability of a specific class, such as y =

1. The equations (3.1 and 3.2) below illustrate a common form of the LR model:

1 e(z)
1+e(-2) ~ 14e@

P(y=1|x) = € [0,1] (3.1)

Z=Lo+ Pix1+ e+ fpxy = xB (3.2)

Where xp represents the sigmoid S-shaped function. A fatality, injury, or property
loss was recorded in the data set when the probability was greater than 0.5. Many
variables, such as the number of iterations, epsilon, learning rate strategy, step size,
and regularization, were considered in logistic regression. In addition, both the

regularization and the learning rate strategy were assumed to be constants.

This study used scikit-learn package of Python program to conduct the activities
related to LR.

3.5 Classification and Regression Trees (CART)

CART is a type of classification algorithm established by Breiman et al. (2001) that

builds a decision tree on the basis of Gini’s impurity index. As mentioned by Wen et
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al. (2021), the categorical and continuous variable types are both acceptable for use as
inputs and outputs in CART models. They also stated that, CART utilizes a repetitive
binary splitting strategy. In this strategy, the training dataset is offered to the root
node initially, and then it is split into two inner nodes. Then the splitting is repeatedly
employed to each inner node. Certain requirements govern the split strategy ensure
that an internal node's outputs are as uniform as possible. Here the procedure is
continued until no further division is possible (Wen et al., 2021 and Chong et al.,

2005). Finally, every leaf node in the tree indicates a distinct crash severity.

Let there be xi in the learning datasets for i = 1 to M. After splitting, let t, be the
parent node and tj, tr be the left and right child nodes. The splitting rule in CART aims
to split the data into two portions with the greatest possible homogeneity. The
algorithm determines This study will demonstrate the Gini splitting rule for separating
nodes and cross-validation for pruning trees, even though there are many other
algorithms that can do the same thing. The splitting value xi® in such a way that xi®
maximizes homogeneity of the child nodes for all splitting values of all variables.
This is determined by developing an impurity function I(t). The concept emphasizes
that xi? will maximize the difference in impurity between the parent and child nodes,

as shown in Equation. 3.3 (Hossain, 2011):

arg max [Al(t) = I(tp) — PI*I(t) — Pr*I(tr)] (3.3)

where Py and Pr represent the percentages of left and right node information. To
determine the correct value of xi?, several algorithms exist for defining the impurity

functions that meet the conditions of the equation 3.3.

Anyway, it has been established that the algorithm has no bearing on the final tree. In
this analysis, the Gini index is used to determine how to divide up nodes. The Gini
index will be in the range (-1/K) to (1-1/K) if the outcome variable has K categories.
The minimum value is seen for pure nodes (those that only contain data from one
class), while the highest value is reached for nodes with an even distribution of

outcome classes. At any given node t, the Gini index is defined as (Hossain, 2011):
1) = X101 pUI) = Zip(lOA —plpGlt) = X;p0l)?* = 1-X;p(lt)?

(3.4)
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where j and | are the outcome variable categories and is p(j|t) the proportion of
outcome class j in node t. Now, by plugging Equation 3.4 into Equation 3.3, the
change in impurity can be calculated. By minimizing [PI*I(tl) + Pr*I(tr)], the change
in impurity can be. The tree is grown to the maximum depth using this splitting
algorithm by recursive splitting until each node contains a pure class. Following that,
the tree is pruned based on a trade-off between the tree's complexity and the
miscalculation error. It is accomplished by minimizing the cost-complexity (cp)

function, a compound function, as shown in Equation 3.5.

min Ra(T) = R(T) + o(T") (3.5)

where R(T) denotes the misclassification error of tree T; T' denotes the total number of
terminal nodes in tree T and «(7") denotes the complexity. The cross-validation
method computes the value of by repeatedly using a portion of the data as a learning
sample to build the tree and the remaining portion to test classification accuracy
(Hossain, 2011).

There are many algorithms for determining the value of, but they all produce the same
tree in the end. For your convenience, another approach is outlined below. For the
sake of argument, let's say the complexity parameter starts at 0. Now, we need to
calculate the value of a function defined as tree costs plus the complexity parameter
increased by the tree size for every tree (including the first, which has only the root
node). You can make the root node the largest tree by continuously increasing the
complexity parameter till the the function's value for the largest tree surpasses the the
function's value for a smaller sized tree to become the new largest tree. It will be
obvious to those versed in numerical analysis that this algorithm makes use of a
penalty function. Expenses, which tend to reduce with tree size, are combined with
tree size, which also tends to increase linearly, to form the function. To a certain
point, larger trees incur a greater penalty for their complexity as the complexity
parameter is increased. However, there is a point at which the additional complexity
of the largest tree no longer justifies the additional cost of the smaller tree (Hill et al.,
2006). The largest tree in a sequence generated by this algorithm exhibits several
interesting properties.
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There is a nesting relationship between trees that have been successively pruned
because each larger tree contains every one of the nodes of the following smaller tree.
When trying to move from one tree to the following smaller tree in the sequence,
many nodes are frequently pruned, but very few nodes are pruned as the root node is
approached. Due to the absence of a smaller-cost alternative, the sequence of the
biggest trees is optimally pruned. Evidence and/or explanations of these properties

can be found in Breiman et al. (1984).

The completed tree serves as a useful visual representation of the problem space and
can also be used to infer additional information. Each data point can be run down the
tree according to the splitting criteria, and the class of the data will become the
dominant class of the node at which it lands. The scikit-learn package of the Python

programming language was used to perform the CART-related tasks in this study.

3.6 Support Vector Machine (SVM)

SVM was developed by Vladimir Vapnik with colleagues in 1992 (Boser et al., 1992).
It is a ML approach entrenched on statistical learning advanced theory of C. Cortes
and H. Drucker (Shafizadeh et al., 2017) and the structural risk minimization principle
(Cortes et al., 1995). SVM was initially applied to the binary classification problem of
linear discrete data (Liao et al., 2018). It is also an algorithm for predicting and
classifying linear and non-linear data (Farhat et al., 2020). SVM is able to handle
complicated nonlinear classification issues by mapping the original data through some
kernel methods in higher dimensional space where the input is nonlinear but the
output relation can be linearized (Wen et al., 2021). In the n dimensional space, SVM
seeks for the beneficial solution n — 1 dimensional hyperplane to divide changed
data into various groups, where the distance between the hyperplane and the nearest
data points is optimized (Wen et al., 2021). The hyperplane is known as the maximum
margin hyperplane, and the linear classifier is also recognized as the maximum
margin classifier. The goal of SVM is to find the maximum margin of the hyperplane.
The training examples closest to the hyperplane with the largest margin are called

support vectors as shown in Figure 3.43.
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Figure 3.44: Maximum-margin Hyperplane Support Vector Machine

For this reason, SVM was first implemented for the binary classification problem of
linear discrete data. Figure 3.44 depicts the basic idea, which is to locate an optimal
hyper plane that satisfies the data classification demands and achieves the highest
margin among two sample points while making sure classification accuracy. (Liao Y
et al 2018).

/ margin-

= > X

Figure 3.45: Concept of Optimal Hyperplane

The following is a brief mathematical description of the SVM algorithm (Equation
3.6). Assume a training set Q = {xi, yi}\_, with input vector xi = {xi!, ... , xi"}'e R
and target labels yi € (-1, +1), according to Vapnic Formula, satisfies the following

conditions:
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{WT(Z)(xi) +b>+1,ifyi = +1 (3.6)
WT@(xi)+b = +1,ifyi = —1 '
Which is equivalent to:

yi [Wg(xi)+b] >1,i=1 (3.7)

Where the weight vector (maximum margin) and b is the bias (Equation 3.7).
In the case of linear classification, suppose the training sample is SV =

{(x1, y1), (X2, ¥2), . . ., (Xm, Ym)}, X € Rd, yk €{-1,1}, k=1, 2, . .. ,m, among which Xk
is theinput variable, yk represent the crash injury severity, m is the number of training

samples, and Rd is a d-dimensional real number space.

SVM linear classification denotes the existence of a hyperplane @.x + b = 0 that can
correctly classify instances. Classify all samples, where o is a weight vector that can

be adjusted and b is the bias. The hyperplane must satisfy.

Vi(w-x,+b) =1, k=12, ...... ,m (3.8)

Calculate the classification interval as shown in Equation 3.9,

wXg=b . wXxg=b 2 (3.9)

m — m =
(xrlye=1} llol| xlvie=—1} llwll [lw]]

When the classification interval is maximized, that is, when the ||| IS minimized,
then the optimal hyperplane problem can be written as finding the minimum function
that satisfies the constraint of Equation (3.8).

The study used scikit-learn package of Python program to model SVM.

3.7 Random Forest

Random Forest (RF) was constructed by Breiman (2001) based on bagging method is
a popular group learning method that involves various decision tree (DT) models with

various attributes and integrates their model results to improve predictive accuracy.
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According to Wen et al., (2021), in RF, a set of DT classifiers is trained, and each
classifier is formed using samples obtained through bagging. For each DT classifier,
only one casually selected subset of independent variables is used to separate the
nodes. Each trained DT classifier votes for the severity results based on the input and
ultimate classification is decided by majority votes (Wen et al., 2021). Before starting
the search for optimal features and split points, the RF method requires the
completion of two procedures. To begin, a predetermined number from the set of
training data is selected at random A random subset of the growing trees is then
selected each time by the RF. Over fitting can be reduced in RF based on two
procedures. The model performance result in RF is achieved by combining respective

results of all learners (Cai et al., 2022).
The prime steps of the RF algorithm are (Hossain, 2011):

(i) Let's say we have data set L with M predictors and N records, and we want to
use a random forest (RF) with a total of B CART trees. Here we'll refer to Lb
as the b-th bootstrap sample produced by selecting randomly n samples and
replacing them with samples from L. Out of bag data (OOB) refers to the
information that was left over after drawing the b-th bootstrap sample.

(ii) For the b-th tree Thb, instead of growing a CART tree with M predictors, m
predictors are chosen randomly from M predictor space (M > m) at each node,
and the best separator among m is used to split the node at each level,

producing two maximum pure nodes.

(iii) Trying to predict from new data: run the newly collected data through every
individual (here B number of trees) tree and the new data's class is the class of
the leaf in every tree where it ended up. The final class of the data is
determined by collecting the presumptions of the B trees. In the case of

classification trees, it is achieved through majority voting.

(iv) Estimating OOB error rate: At each bootstrap iteration, the L-Ly datasets are
used to calculate the misclassification rate r, of tree Ty (this misclassification
rate rp is used for calculating the variable importance as well). This is achieved
by reducing the L-L, dataset to Ty grown in steps (ii). The majority vote

determines the class of every data point (can be weighted). This majority vote

50



is only needed to calculate the OOB error rate (not for variable importance). In
other words, at the end, the rp, of all B trees is accumulated to measure the
OOB error rate.

(v) Variable importance: Variable importance is a concept that differs from
typical statistical approaches in RF. In this case, it is determined by permuting
the values of every variable (one at a time) and then determining the new error
rate. As any error in calculating its value has a significant impact on RF
classification performance, the permuted variable with the maximum error rate
is considered as the most critical variable. As a result, the values of the j-th
predictor of M predictors in L-Ly are permuted, and the data set is used to
measure the misclassification rate rjn. |rb - rjp| represents the variable
importance Vj of the j-th variable in the b-th tree. The technique is repeated for
B trees, with the final variable importance calculated by averaging the V;j for

every variable (j = 1 to M).

The study employed scikit-learn package of Python program to model random forest.

3.8 Adaptive Boosting (AdaBoost)

The AdaBoost was first proposed by Freund and Schapire (1997). Weak learners'
errors are taken into account in this iterative algorithm. The distribution of the sample
set is modified in each iteration depending on whether the pattern is accurately
classified or not. In addition, it is essential to weight and integrate weak learners
because the basic concept of AdaBoost is to teach many weak learners to construct a
strong learner (Liu et al., 2020). Unlike RF, AdaBoost performs successive predictor
learning and revises the weights on each analysis based on the error. At first, all
findings are consistently weighted. Then, throughout iterative training, the learner's
poorly approximated findings will be given more weight. Thus, the algorithm can
successively adjust and minimize the deviation (Cai et al., 2022).

AdaBoost fits a series of learners to slightly modified versions of the original data at
each boosting iteration. Through a series of iterations, the weights of correctly
classified samples are decreased while the weights of incorrectly classified samples

are increased.
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The hypothesis of AdaBoost is shown in Equation 3.10,

(1 if 1 1 1
R ={ otnetwise Dr-1(1087)h () = 31, log 5~ (3.10)

The hypothesis hs combines the outputs of the T weak hypotheses using a weighted
majority vote.

3.9 Hybrid Model

Incorporating various algorithms in an ensemble or hybrid model can frequently
deliver improved predictive abilities (Pradhan, B., and M. Ibrahim Sameen). So, in
this study, besides training the LR and machine learning models, voting classifier
method was implemented to integrate the individual models to develop a hybrid
model. The aim to see if the hybrid model can better predict two-vehicle crash

severity in Dhaka.

There are four distinct voting methods, including majority voting, simple voting,
weighted voting, and soft voting (Zhou, Z.-H, 2012). Majority voting is a voting
mechanism in which the output class label receives more than fifty percent of
classifier votes for a class label. Simple voting, also known as proportional voting,
determines the winner by casting the most votes. In addition, weighted voting is well
suited for addressing the unequal performance classifiers. It gives more power for
stronger classifiers when voting. Weighted voting can outperform both individual
classifiers and majority voting when given rational weight tasks. Soft voting is
commonly used for individuals who generate class probability outputs (Liu et al.,
2020 and Zhou, Z.-H, 2012). Because the chosen base classifiers, LR, CART, SVM,
RF, and Adaboost, generate class probability to determine the final class label,
classifier-specific weight based soft voting may be a better method for obtaining the
multi-label classifier (Zhou, Z.-H, 2012).

Here, to simply introduce the Classifier-specific Soft Voting we define that the
individual classifier h; outputs a I- dimensional vector (h; 1(x),....hy 1(x))T for the
instance x;, where hy j(xj) € [0,1] can be regarded as an estimate of the posterior

probability P (c;\x;).
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Each classifier is given a unique weight, and the combined result for class cj is

calculated and expressed as Equation (3.11) as follows:

H (%) = X ko @k hi j(X) (3.11)

Where wy, is the weight assigned to the classifier hy

Then, the calculation of output class label expressed as Equation 3.12 as follows:

;= arg ™% [H (colx;), H (c1|x;), H' (calx)) (3.12)

In this study, numerous classifier-specific soft voting models (hybrid models) were
developed with all the possible combinations of the individual models: of LR, CART,
SVM, RF, and Adaboost. The best performing hybrid model with the combination of
LR, RF and Adaptive Boosting has presented in this study.

3.10 Feature Selection

As a data preprocessing strategy, feature selection is been shown to be effective and
efficient in preparing data (particularly high-dimensional data) for various machine-
learning problems. Building simpler and more understandable models, bettering
machine learning performance, and getting ready clean, understandable data are all
goals of feature selection. The curse of dimensionality occurs when machine-learning
algorithms are applied to high-dimensional data. It refers to the phenomenon in which
data becomes sparser in high-dimensional space, which has a negative impact on
algorithms designed for low-dimensional space (Hastie et al. 2005). Furthermore,
with a high number of features, learning models tend to overfit, that can lead to
performance degradation on unseen data. High-dimensional data can significantly
increase memory storage needs and computational costs for data analytics.
Dimensionality reduction is one of the most effective tools for addressing the
aforementioned problems. It consists primarily of two parts: feature extraction and
feature selection. Feature extraction maps the original, high-dimensional features to a
new, low-dimensional feature space. Typically, the newly created feature space is a

linear or nonlinear combination of the actual features. In contrast, feature selection
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directly selects a subset of pertinent features for model construction (Guyon and
Elisseeff 2003; Liu and Motoda 2007). Both feature extraction and feature selection
have the benefits of enhancing learning performance, growing computational
efficiency, reducing memory requirements, and constructing more accurate

generalization models.

Feature selection preserves the physical significance of the original features and
improves the readability and interpretability of models. In many applications, such as
text mining and genetic analysis, feature selection is therefore commonly preferred.
Despite the fact that feature dimensionality is often not that high, feature
extraction/selection still plays a crucial role in certain circumstances, like improving
learning performance, preventing overfitting, and reducing computational costs. There

are numerous unrelated, redundant, and noisy features in real-world data.

Eliminating these features through feature selection lessens storage and computational
costs without causing significant information loss or learning performance

degradation.

The technique for selecting features not only saves estimation expenses but also
performs adequately (Li et al., 2020). So, all the models (LR, CART, SVM, RF,
Adaboost, and all possible hybrid models) were trained with all possible combinations
of features (i.e., set of first one feature, set of first two features, etc.). However, before
creating feature groups, at first the features were ranked based on their importance. In
this study, prior to using Random Forest (RF) as classifiers, we used RF to rank

features to conduct feature selection.

3.11 Model Evaluation Metrics

There are considerable methods of performance evaluation for ML algorithms. In this
study, the most commonly known performance metrics were utilized to test the
efficiency of the various techniques. Confusion matrix can be used to evaluate
classification method performance. Confusion matrix contains a comparison between
the outcomes of the system's classification and the results that should have been
achieved (Prasetyo, E., 2012).
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Based on Table 2, this study compared the performance of LR and different ML
classifiers using the following evaluation criteria: Accuracy (ACC), Receiver
Operating Characteristics (ROC) Curve, and Area Under the Curve (AUC) Value. For
classification problems, the confusion matrix is made up of four possible scenarios,
i.e., true (TP) positive rate which indicates the positive data entered into the system is
detected correctly by the system, true negative (TN) rate indicates negative data
entered into the system is detected incorrectly by the system, false positive (FP) rate
indicates the negative data entered into the system is detected correctly by the system,
and false negatives (FN) rate indicates positive data entered into the system is

detected incorrectly by the system, that are shown in Table 2.

Table 3-1: Confusion Marix for evaluating model’s performance

Predicted Fatal Injury Predicted Non-Fatal Injury

Actual Fatal Injury True Positive (TP) False Negative (FN)

Actual Non-Fatal Injury False Positive (FP) True Negative (TN)

Accuracy, precision, and recall can be calculated using the True Negative (TN), False
Positive (FP), False Negative (FN), and True Positive (TP) values. Accuracy values
describe the precision with which a system can classify data. In other words, the

accuracy value is a comparison among correctly classified data and total data.

3.11.1 Accuracy (ACC)

Accuracy values describe the precision with which a system can classify data. In other
words, the accuracy value is a comparison between correctly classified data and total
data. The "error rate" is the proportion of misclassified samples in relation to total

samples (Zhang et al., 2022). According to the same author, if there are m

misclassified samples among the total samples n, the error rate is E = % In a similar
fashion, ACC can be expressed as Equation 3.13,

ACC = —2HTV (3.13)

TP+FN+TN+FP
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3.11.2 Receiver Operating Characteristic (ROC) Curve and Area under the
Curve (AUC)

The ROC curve is utilized to assess the performance of a classifier by plotting
Sensitivity versus Specificity (Zhang et al., 2022). For binary classification problems,
the AUC (Equation 3.16) is used. It identifies the two-dimensional region under the

entire receiver operating characteristic curve (Zhang et al., 2022).

Specificity and sensitivity (also referred to as Recall) are two metrics described in the
following section. As defined in Equation 3.14, the proportion of correctly predicted
negative samples within all predicted negative class samples is referred to as
specificity. Sensitivity is described as the proportion of correctly predicted positive

samples among all real positive class samples, as shown in Equation 3.15.

v .. TN (3.14)
Specificity = TN T FP
o TP (3.15)
Sensitivity = TPXFN
AUC = [x = Sensitivity,y = 1 — Specificity] (3.16)

Many studies have used sensitivity analysis (Tang et al., 2019 and Chen et al., 2016)
to uncover the connections in between independent and dependent variables. The
values of sensitivity, specificity, and the area under the ROC possibility curve (AUC)
can ascertain how effectively and identifiably the models predict positive and
negative classes (Ji, A., and D. Levinson, 2020).

3.12 Shapley Additive Explanations (SHAP)

Despite the fact that machine learning is designed to produce extremely precise
estimates, it has proven to be challenging to assess the effect of explanatory variables
on the output. This study examines the interpretability of tree-based ensemble models
in order to better identify road safety solutions. The SHAP method developed by
Lundberg and Lee (2017) is utilized to characterize the significance of the factors and
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to determine how these factors have an impact. To illustrate the prediction model's
output, SHAP makes use of game theory. The Shapley value (Equation 3.17) can be

determined using the following formula:

S ZSQF—iW sy (xsug) — fs(xs)] (3.17)

where |F| is the total number of explanatory variables, S resembles any subset of
explanatory variables that doesn’t contain the i*" variable and |S| is the size of that
subset. fsyry(xsuy) indicates model trained with i, and fs(xs) is model trained

without i.

3.13 Summary

This chapter discussed the methodologies and the data collection processes that were
adopted to achieve the objectives of this research. The chapter discussed the data
collection and preparation procedures for this study. Different machine learning
methods as well as a statistical method were discussed along with their applicability
in this chapter. In this chapter, the most commonly known performance metrics were

also discussed.

57



Chapter 4

MODEL DEVELOPMENT AND INTERPRETATION OF
RESULTS

4.1 Application of RF for Feature Engineering

Feature Selection is a fundamental concept in machine learning which has a
significant impact on the model's performance. Important for classification, feature
selection eliminates irrelevant method to enhance model performance, make the
model simpler to comprehend and decrease its running time. Feature Selection
(variable elimination) facilitates data comprehension, reduces computation
requirements, mitigates the curse of dimensionality, and enhances predictor
performance. The objective of feature selection is to select a subset of variables from
the input that can effectively characterize the input data while minimizing the effects
of noise or irrelevant variables and still producing accurate predictions (Guyon and
Elisseeff 2003).

In terms of feature selection, extensive experiments were used to propose a minimum
redundancy—maximum relevance (MRMR) method for selecting the key features,
which significantly improved class predictions (Ding and Peng, 2008). The random
forest (RF henceforth), that is an ensemble learning algorithm based on decision trees,
has just been widely utilized in a variety of fields and offers excellent predictive
ability. Furthermore, the model is even more rigorous than other well-known models.
Feature Selection based on the Random Forest (FSRF henceforth) can assess the
significance of the features and select a subset of the most significant ones with good
interpretability. The FSRF was utilized to extract the global, local, and evolutionary
characteristics from protein data (Pan and Shen, 2009). To select the effective
features, the RF model has been implemented. The current popular classification
models LR, SVM, CART, AdaBoost, and RF were used to evaluate the efficacy of the
feature selection of various feature combinations. Moreover, the performance of
classifiers with various combinations of features has been compared using a variety of

metrics.
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To achieve specific goals or develop a model with excellent predictive performance,
optimum features must be chosen from raw data. In this study, the RF model has been
used to discover effective features since it can assess feature relevance and identify a
group of relevant indicators with improved interpretability (Li et al., 2020). It is clear
from Figure 4.1 that RF extracted various types of features from the raw feature set,
including vehicle related factors (vehicle type, vehicle maneuver), driver
characteristics (age, sobriety condition, seatbelt/helmet usage), roadway and
environment conditions (road geometry, surface condition, junction, road class, traffic
control, movement, light condition), crash characteristics (collision type), and

temporal features (time, day of week).

4.2 Feature Selection Using RF

After extracting useful features using RF, twenty-five features have been selected for
better predictive performance of the different classifiers as shown in Figure 4.1. In
case of vehicle characteristics vehicle type and vehicle maneuver have been used as

independent variables.
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Figure 4.1: Useful Feature Selection Using RF
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Vehicle type such as bus, car, motorcycle, NMV, pick-up, truck, van/SUV and any
other types have been counted in raw data set. All the vehicle types have been
selected in twenty five extracted feature set where motorcycle, bus, truck, car,
NMVs, van/SUV and pick-up have been considered most important features
respectively among them. There are two types of vehicle maneuver considered in the
dataset one is “going straight” and another one is “not going straight”; where “going
straight” maneuver has been selected as more important feature in case of two
vehicle crashes. Considering driver characteristics driver age, sobriety condition and
seatbelt/helmet use have been incorporated in data as important variables. Driver age
have been categorized as driver age <= 30, driver age >50, driver age 31-40 and
driver age 41-50; where driver age <= 30, driver age 31-40 and driver age 41-50
have been considered as important features for severity prediction of two vehicle
crashes. There were two sobriety conditions depending on drunken suspecting
whether “driver suspected drunk” or “driver not suspected drunk”. It has been found
those drivers who were not suspected drunk had important contribution in predicting
crash severities of two vehicle accidents. According to the feature seatbelt/helmet
use, it has been identified that seatbelt/helmet not worn has been selected as an
influential variable in severity prediction. In case of roadway characteristics road
geometry (straight/not straight), surface condition (dry/not dry), junction (present/
not present), road class (within the city/outside of the city), traffic control
(present/not present) and movement (one-way/two-way) have been used as
independent variables. Among all these variables movement (one-way), junction
(present), road class (city), traffic control (present), road geometry (straight), surface
condition (dry) have been extracted as significant features for predicting two vehicle
crash severities. In environmental characteristics, three light conditions (dawn-
dusk/daylight/dark) that have been used as predicting variables; where daylight and
dark/night condition have been identified as important features respectively. Crash
characteristics (collision type), and temporal features (time, day of week) have been
extracted from raw feature set. After feature selection it has been confirmed that rear
end collision had significant contribution in two vehicle crashes. Besides them,
temporal features peak-time and night-time along with weekdays have been

contributed significant role in crash severity prediction.

61



4.3 Model Evaluation

Taking into account the importance levels of the twenty-five features shown in
Figure 4.1, all possible combinations of the features were developed, of which five
significant combinations such as beginning with the first five features, afterwards
correspondingly first ten features, first fifteen features, first twenty features and at
last ending with all twenty-five features have been demonstrated better prediction
performance. To assess the performance of different predictors, the number of
selected attributes was increased from the first five to the first twenty, and finally all
twenty-five features were employed combined. Five distinct individual models
(CART, AdaBoost, LR, RF, and SVM) have been developed, with these five feature
combinations introduced for each model to assess the efficacy of the classifiers.

4.3.1 Accuracy and AUC Score of Different Models

This study compared the performance of LR and different ML classifiers using the
evaluation criteria: Accuracy (ACC), Area under the Curve (AUC), Receiver
Operating Characteristics (ROC) curve values. Receiver Operating Characteristics
(ROC) curves have been plotted for LR, SVM, CART, RF, Adaboost and voting
classifier in Figure 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 respectively for all five feature
subset. In order to compare the all the classifiers, in this study, Receiver Operating
Characteristics (ROC) curves of different classifies for all feature subset have been
plotted as shown in Figure 4.8. It showed the AUC-ROC curves for six different
methods, illustrating the trade-off between sensitivity and specificity for different
classifiers. The accuracy and AUC scores of different models (LR, CART,
Adaboost, RF, SVM and voting classifier) for each feature subset have been

identified from the ROC curves shown in Table 4.1.
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Table 4.1 Accuracy and AUC Score of Different Models

Model Name No. of Features Accuracy AUC Score
5 0.70 0.62
10 0.65 0.66
CART 15 0.64 0.58
20 0.66 0.60
25 0.61 0.55
5 0.70 0.63
10 0.69 0.69
AdaBoost 15 0.70 0.67
20 0.68 0.69
25 0.67 0.70
5 0.70 0.68
10 0.69 0.69
LR 15 0.71 0.69
20 0.68 0.68
25 0.68 0.70
5 0.70 0.65
10 0.66 0.59
RF 15 0.69 0.61
20 0.70 0.69
25 0.69 0.61
5 0.70 0.67
10 0.64 0.55
SVM 15 0.61 0.56
20 0.64 0.61
25 0.63 0.58
5 0.70 0.67
Classifier-specific 10 0.70 0.64
soft voting 15 0.70 0.66
20 0.75 0.71
25 0.71 0.71
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According to Table 4.1, when the first five most significant characteristics have been
incorporated into the models, the accuracy values have been found 0.70 for five
distinct individual models (CART, AdaBoost, LR, RF, and SVM) and AUC scores
of CART, AdaBoost, LR, RF, and SVM have been identified 0.62, 0.63, 0.68, 0.65
and 0.67 respectively. It has been observed that for first five most significant
characteristics, LR and SVM outperformed other individual models with the same
accuracy value of 0.70 and AUC score of 0.68 and 0.67, respectively. For the top
ten most significant features, accuracy values of CART, AdaBoost, LR, RF, and
SVM have been found 0.65, 0.69, 0.69, 0.66 and 0.64 respectively. AUC scores of
CART, AdaBoost, LR, RF, and SVM have been identified 0.66, 0.69, 0.69, 0.59 and
0.55 respectively. AdaBoost and LR fared better for the top ten most significant
features, with an accuracy value of 0.69 and an AUC score of 0.69. When the top
fifteen most significant features have been put into the models, CART, AdaBoost,
LR, RF, and SVM have been performed with accuracy value of 0.64, 0.70, 0.71, 0.69
and 0.61 respectively. AUC scores of CART, AdaBoost, LR, RF, and SVM have
been identified 0.58, 0.67, 0.69, 0.61 and 0.56 respectively. When the top fifteen
most significant features have been put into the models, LR performed better than
other individual models, with an accuracy value of 0.71 and an AUC score of 0.69.
When the top twenty most significant features have been put into the models, CART,
AdaBoost, LR, RF, and SVM have been performed with accuracy value of 0.66,
0.68, 0.68, 0.70 and 0.64 respectively. AUC scores of CART, AdaBoost, LR, RF,
and SVM have been identified 0.60, 0.69, 0.68, 0.69 and 0.61 respectively. For the
first twenty most significant features, RF performed better, with an accuracy value of
0.70 and an AUC score of 0.69. There is further evidence of RF's predictive
superiority in the research literature (Ji, A., and D. Levinson, 2020; Hagenauer, J.,
and M. Helbich, 2017 and Yassin, S. S., and Pooja, 2020). For all twenty-five
selected features, accuracy values of CART, AdaBoost, LR, RF, and SVM have been
found 0.61, 0.67, 0.68, 0.69 and 0.63 respectively; where AUC scores of CART,
AdaBoost, LR, RF, and SVM have been identified 0.55, 0.70, 0.70, 0.61 and 0.58
respectively. It was discovered that, for all twenty-five selected features, AdaBoost
and LR performed the best, with accuracy values of 0.67 and 0.68, respectively, and

the identical AUC score of 0.70. Above all, this means that when the top fifteen and
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twenty most significant features have been picked as model predictors, accurate
prediction of two vehicle crash severity has been discovered. The soft voting
classifier, which combines three separate approaches AdaBoost, RF, and LR,
outperforms individual models in relation to accuracy and AUC score. For each

feature subset, the accuracy of soft voting classifier have found higher.

4.3.2 Graphical Representation of Accuracy and AUC Score of Different
Models

The accuracy and AUC score for different combination of feature set have been

expressed graphically in this study.
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Figure 4. 9: Accuracy and AUC score for CART

When CART has been used as classifier, from Figure 4.9 it has been identified that
this model has performed better when first five most significant characteristics have
been incorporated into the model with an accuracy value of 0.70 and AUC score of
0.62.
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When SVM have been used as classifiers, from Figure 4.10 it has been identified
that this model has performed better when first five most significant characteristics
have been incorporated into the model with an accuracy value of 0.70 and AUC

score of 0.67.
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When AdaBoost has been used as individual classifier, from Figure 4.11 it has been

identified that this model has performed better when first fifteen most significant

characteristics have been incorporated into the model with accuracy value and AUC

score of 0.70 and 0.67 respectively.
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Figure 4.12: Accuracy and AUC score for LR

Similarly, when LR has been used as individual classifier, from Figure 4.12 it has

been identified that this model has also performed better when first fifteen most

significant characteristics have been incorporated into the model with accuracy value

and AUC score of 0.71 and 0.69 respectively.
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Figure 4.13: Accuracy and AUC score for RF

When the classifier RF has been used, from Figure 4.13 it has been identified that the
model has performed better for first twenty feature sub-set with accuracy value and
AUC score of 0.70 and 0.69 respectively.
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Figure 4.14: Accuracy and AUC score for hybrid model using soft voting classifier
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Additionally, a hybrid model using soft voting classifier has been built with all
conceivable combinations of separate models, among which a voting classifier with
the combination of AdaBoost, LR, and RF demonstrated the best prediction
accuracy. It was observed that a combination of different approaches based on
classifier-specific soft voting performed satisfactorily (Liu et al., 2020). As shown in
Figure 4.14, for the first five set of features the accuracy value and AUC score of
voting classifier have been identified 0.70 and 0.67 respectively. The accuracy value
and AUC score of voting classifier have been found 0.70 and 0.64 respectively for
the first ten feature set. While for the first fifteen set of features, the accuracy value
and AUC score of voting classifier have been identified 0.70 and 0.66 respectively.
For the first twenty set of features, the accuracy value and AUC score have been
identified 0.75 and 0.71 respectively. At the end, for all twenty-five feature set, both
the accuracy value and AUC score have been identified 0.71 for voting classifier. It
has been recognized that the voting classifier performed better in terms of accuracy
(0.75) and AUC score (0.71) for the first twenty set of features.

For this reason, this study has examined the accuracy and AUC scores of each model
for the first twenty characteristics and discovered that for that subset of features, RF
had the best accuracy (0.70) and AUC score (0.69) of any of the models tested. As a
result, this study has interpreted the global feature importance for twenty
characteristics by RF selection and found the influential factors affecting two vehicle

crash severities.

4.4 Model Interpretation using SHAP Methodology

This study uses the SHAP methodology to determine how well the features

contribute to the severity prediction, thus finding influential factors.
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4.4.1 Contributing Factors of Two vehicle Crash Severity According to SHAP
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dayorveei et |
weicetpe_Car [
ine_eck [
whidestanewver_coing-2hezd [
adceomeny_Svagnt |
moverrent_ne-a |
surfaceCaondion_Dry _
madCizss_City |
vehicleType_Truck _
raiicControl_Present [N
oollisionType_rearEnd _
ime_ignt [
Jdunction_Present _
ightcondition_Ngnt RGN
iightcordition_Deyight | EEGGGEGN
wericieType_varvsuv [
venicieType 8us |
wenicieType_ Nuvs
vehiclsType_Motorcycle _
venicieTyoe_PiceUp [

000 oz O.b-l 108 it ma
mean{|SHAR valuz) (average impact on model outplt magnituds)

Figure 4.15: Contributing factors of two vehicle crash severity according to SHAP
global feature importance

The global importance has been achieved by averaging the absolute Shapley values
for each feature. This represents the marginal contribution of each feature in the
prediction. For example, Shapley value for the first feature day of week (weekdays)
can be determined by sampling a correlation that contains the first feature day of
week (weekdays) and a correlation form by removing that feature. The difference
between the respective values of these two correlations is known as marginal
contribution of the first feature day of week (weekdays). This means how much the
first feature day of week (weekdays) contributes to the correlation consisting the

other nineteen features. From Figure 4.15, it has been identified that, according to
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the SHAP approach, the day of week (weekdays) has the most important
contribution in predicting the severity of crashes between two vehicles. This factor
alone contributed in predicting whether the two-vehicle crash severity would be fatal
or not by an average of 10.2 percentage points. In addition, vehicle type (car) is
another most critical variables in predicting two vehicle crash severities whether it
would be fatal or not by an average of 4.8 percentage points. Other most critical
variables in predicting two vehicle crash severities have been identified peak time
period, straight vehicle maneuver, straight-road geometry, one-way movement, dry-
surface condition, road class (city), vehicle type (truck), traffic control, collision type
(rear end), night time period, junction, night-light condition, day-light condition,
vehicle type (van/SUV), vehicle type (bus), vehicle type (NMVs), vehicle type
(motorcycle) and vehicle type (pick-up) which have been contributed in predicting
whether the two-vehicle crash severity would be fatal or not by an average of 4.3,
3.8, 29, 29,22, 22,20, 18,17, 15,15, 15, 1.4, 14, 1.4, 1.3, 1.2 and 0.9
respectively. However, it is until unclear the ways in which these features impact the
prediction of crash severities.

It has been found that, the day of week, vehicle type, time of the day, vehicle
maneuver, and road geometry are the most significant explanatory variables and
have important contribution in predicting crash severities which is consistent with
our previous studies (Chiou et al., 2020; Yuan et al., 2022; Lee, C., and X. Li, 2014
and Ji, A., and D. Levinson, 2020).
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4.4.2 Contributing Factors of Two vehicle Crash Severity According to SHAP Local Explanation
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To identify how the contributing factors affect two vehicle crash severities, Figure
4.16 depicts the SHAP values of the elements determining the severity of a two-
vehicle crash. It should be noted that SHAP values more than zero indicate positive
effects on the risk of a fatal accident occurring, whilst SHAP values less than zero
indicate negative consequences. The graphic depicts the local size, distribution, and
direction of the contributing elements in determining whether a two vehicle crash
will be fatal or non-fatal. Weekday, for example, has a red tail on the right and a
short blue tail on the left, as illustrated in Figure 4.16. It means that if a two-vehicle
collision occurs during the week, the accident is more likely to be fatal. Furthermore,
the lengthy red tail implies that weekend accidents are not nearly as important as
weekday accidents in affecting two vehicle crash severities. It can deduce from the
vehicle type variable that if at least one of the vehicles involved in the collision is a
private car, truck, or motorcycle, the probability of a fatal accident increases,
because the red tail of a private car, truck, or motorcycle only appears on the right,
whereas the red tail of an NMV, bus, van/SUV and pick-up appears on the left.
Because larger vehicles like bus, pick-up and SUV provide better protection,
resulting in fatal crashes for private cars and motorcycles, which is consistent with
previous research (Yuan et al., 2022 and Yu, R., and M. Abdel-Aty, 2014). The
vehicle maneuver depicts a long red tail on the right and a short blue tail on the left.
This means that while straight-moving vehicles are more likely to be involved in a
fatal accident, vehicles that are not travelling straight are less likely to do so. The
fact behind this could be the unconsciousness of the drivers while moving straight
without any turning on their way. The data also reveals that multiple vehicle crashes
during off-peak hours seem to be more likely to result in mortality. The road
geometry depicts a short blue tail on the right and a long red tail on the left. This
means that, the accidents are less likely to be fatal if the roads are straight. The result
is consistent with a previous study (Lee, C., and X. Li, 2014). The movement depicts
a blue tail on the right and a red tail on the left. This means that, the accidents are
more likely to be fatal for two-way movement and less likely to be fatal for one way
movement. The surface condition has a short blue tail on the right and a long red tail
on the left. It means that when the surface is wet, the accidents are more likely to be

a fatal accident and less likely to be fatal when the surface is dry. The data also
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reveals that if the road flows to outside of the city the accidents are more likely to be
a fatal accident as it depicts a long blue tail on the right for city road. The traffic
control variable shows a short blue tail on the right and a red tail on the left. That
means when there are no traffic control the accidents are more likely to be fatal. It
has also identified that two vehicle crashes during night time seem to be more likely
to result in mortality, because the red tail of night time variable has appeared on the
right. At junction, the two vehicle crashes are more likely to be fatal due to a red tail
on the right, whereas the blue tail on the left which means the accidents are less
likely to be fatal when there is no junction. If a two vehicle crash occurs during the
night light condition, the accidents are more likely to be fatal. Furthermore, the blue

tail on the left implies that the accident occurs in day light are not likely to be fatal.

45 Overview

The analytical portion of this thesis can be divided into three stages: understanding
the importance of analyzing two vehicle crashes severities of the country, applying
different machine learning (ML) methods and traditional statistical regression
method to identify the contributing factors responsible for such crashes and also

compare the prediction accuracy of different models.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 General

This research analyzed crash severity prediction of two vehicles using LR as a
statistical method and some popular ML methods such as CART, SVM, Adaboost,
RF, and soft voting classifier. Different independent variables like vehicle
characteristics (vehicle type, vehicle maneuver), driver characteristics (age, sobriety
condition, seatbelt/helmet usage), roadway conditions/environment (road geometry,
surface condition, traffic control, movement, light condition, junction, road class,),
crash characteristics (collision type) and temporal features (time, day of week) have
been used in predicting two vehicle crash severities. Using RF, this study employs a
feature engineering strategy to extract valuable features for boosting ML classifier
performance. This is the first study to compare classifier-specific Soft Voting with
individual classifiers to see if individual or hybrid models can forecast the severity of
a two vehicle crash with greater accuracy. The SHAP method, a brand new ML
model interpretation technique, was used to identify possible factors influencing two
vehicle collision severity, as well as their relative size, distribution, and direction in

estimating two vehicle crash severities.

5.2 Conclusions

It is the first to use data-driven ML techniques to predict two vehicle crash severity
in a low-income country context, Bangladesh, specifically Dhaka city. The major

conclusions and findings of the research are summarized below:

(i) It has been found that when twenty features are utilized to evaluate the
severity of a two-vehicle crash, RF achieves the highest accuracy and AUC

Score.

(i1) Between hybrid and individual classifiers, the soft voting classifier, which
combines three separate approaches AdaBoost, RF, and LR, outperforms

individual models in relation to accuracy (0.75) and AUC score (0.71).
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(iii) According to the SHAP approach, it has been found that, the day of week,
vehicle type, time of the day, vehicle maneuver, and road geometry are the
most significant explanatory variables and have important contribution in
predicting crash severities by an average of 10.2, 4.8, 4.6, 3.8 and 2.9

percentage points respectively.

(iv) If a two-vehicle crash occurs during the weekdays, the accident is more
likely to be fatal probably due to heavy traffic flow.

(v) If at least one of the vehicles included in the crash is a private car, truck or
motorcycle, the probability of a fatal accident increases. Other types of
vehicles, such as buses and vans/SUV, are less likely to be seriously injured
than passenger cars and motorcycles because larger vehicles provide better

protection, resulting in fatal crashes for private cars and motorcycles.

(vi)Furthermore, in Dhaka city, after a certain time period, the movement of
trucks prevails over other types which initiate the chances of truck-truck

collisions may lead to fatal injuries.

(vii) Time is another critical variable in predicting two vehicle crash severities.
Off-peak hours seem to be more likely to occur in fatal vehicle crashes. This
may be due to the fact that, at off peak hours, multiple vehicles move with

higher speed than peak hours and results in fatal injuries.

(viii) Another variable is vehicle maneuver that has much contribution in
predicting two vehicle crash severities. In this study it has found that,
straight-moving vehicles are more likely to be involved in a catastrophic

accident than those are not travelling straight.

(ix) Another factor showed that, the vehicles moving on a straight road are less

likely to be involved in a fatal accident than those are on a curved road.

5.3 Recommendations for Future Studies

It is being perceived that by overcoming the study limitations new research horizons

would be yielded. These can be abridged as follows:
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This study has been concerned with how accident severities are attributed to
vehicle related factors (vehicle type, vehicle maneuver), driver characteristics
(age, sobriety condition, seatbelt/helmet usage), roadway and environment
conditions (road geometry, surface condition, junction, road class, traffic
control, movement, light condition), crash characteristics (collision type), and
temporal features (time, day of week). But there was no information in the
data to indicate which of the two-vehicle crashes were caused by pedestrian
activity. The primary cause of the two-vehicle crash that may have been
caused by a pedestrian action cannot be identified because of improper
reporting system in Bangladesh. However it is important to include pertinent

information on pedestrian activity before an accident.

In-depth analyses of this research finding for developing countermeasures
and policy level decisions would provide enormous scopes for future

endeavors.

For better prediction accuracy, deep machine learning can be applied to the

data set.

Advanced modelling techniques viz., artificial neural network, can also be
applied on the same crash data used in this thesis.

This study has done only for Dhaka city. It can be conducted for other cities

of Bangladesh as well.
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