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ABSTRACT 

Road traffic crashes have become one of the leading causes of death worldwide. 

Bangladesh, a developing country, is rapidly becoming a major victim of road accidents. 

Due to traffic crashes, different types of injuries eventuate depending on the severity 

level of the crashes. Double vehicle crashes are the most critical type of road accidents 

that have the potential to cause serious injuries and fatalities. Unfortunately, Bangladesh 

is still in nascent stage in dealing with road accidents, especially for double vehicle 

crashes. A precise prediction of crash severity in road accidents significantly improves 

traffic safety. Therefore, there has recently been a tactical shift among safety researchers 

to apply machine learning (ML) algorithms to estimate crash severity due to their 

superior predictive ability. Although there have been an increasing number of 

applications of machine learning methods in crash severity research, however there is a 

limited applicability of these methods in estimating the severity of a double vehicle 

crashes. As a result, this study aimed to apply machine learning algorithms in predicting 

double vehicle crash severities in the context of Bangladesh. 

The aim of this study is to compare the predicted performance of numerous machine 

learning and traditional statistical regression techniques in modeling double vehicle crash 

severities, as well as to identify the contributing components and how they impact crash 

severity prediction. Using Dhaka's most recent crash record collected from Accident 

Research Institute (ARI), BUET (2017-2020), this study employed classification and 

regression tree, support vector machine, random forest, adaptive boosting, logistic 

regression, and soft voting classifier-based hybrid models. This study compared the 

performance of logistic regression and other machine learning classifiers using the most 

commonly known evaluation criteria: Accuracy (ACC), Receiver Operating 

Characteristics (ROC) Curve, and Area Under the Curve (AUC) Value. The comparison 

of predictive performance revealed that the hybrid model, built on logistic regression, 

random forest, and adaptive boosting, outperforms other individual models with a subset 

of twenty explanatory variables and with an accuracy of 75% and an AUC score of 0.71. 

With the same subset of features, random forest performs better with an accuracy of 70% 

and an AUC score of 0.69 within the individual models. This study uses the SHAP 

(Shapley Additive Explanation) methodology to determine how well the features 

contribute to the severity prediction, thus finding influential factors. SHAP Global 
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Feature Importance represents the marginal contribution of each feature in the prediction. 

SHAP Local Explanation identifies how the contributing factors affect double vehicle 

crash severities. According to the SHAP (Shapley Additive Explanation) technique, the 

most significant elements of double vehicle crash severities are the day of the week, 

vehicle type, time of day, vehicle maneuver, road geometry and they have important 

contribution in predicting crash severities by an average of 10.2, 4.8, 4.6, 3.8 and 2.9 

percentage points respectively. This means that the factor day of week alone contributed 

in predicting whether the double vehicle crash severity would be fatal or not by an 

average of 10.2 percentage points. In addition, vehicle type is another most critical 

variables in predicting double vehicle crash severities whether it would be fatal or not by 

an average of 4.8 percentage points. 
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Chapter 1  

INTRODUCTION 

1.1 Background 

Road traffic fatality rates are higher in low- and middle-income countries (21.5 and 

19.5 per 100,000 population, respectively) than in fast countries (10.3 per 1,00,000) 

(WHO 2018). Low and middle-income countries account for 93 percent of global 

road accident fatalities despite owning only 60 percent of the world's motor vehicles 

(WHO 2022). Global losses from traffic crashes are estimated to be $518 billion, 

costing nations around 1% and 3% of their gross national product (GNP) - greater 

than the total amount of development assistance received by these countries. While 

accidental fatality rate in many high-income nations have resolved or declined in 

recent decades, data indicate that the global epidemic of automobile accidents is still 

growing in most regions of the world. Road deaths are expected to rise to the fifth top 

cause of death by 2030, resulting in around 2.4 million fatalities per year unless 

immediate action is taken (WHO, 2009). The actual fatality rate is likely to be higher. 

Between 1982 and 2000, the number of accidents increased by 43%, while the death 

toll increased by around 400% (Louis Burger, 2005).  

Bangladesh, a low-income Asian country, has the highest death rate in Asia, with 

1020 persons killed each year per 100,000 motor vehicles (WHO 2018). According to 

official statistics, there are more than 60 fatalities in road accidents for every 10,000 

cars in Bangladesh (WHO 2018).  Every day, approximately eight people are killed in 

traffic accidents. Bangladesh's number of deaths from accidents is comparable to that 

of countries at war, like Sierra Leone and Liberia (Al-Mahmood, 2007). According to 

a report published by the Bangladesh Road Transport Authority (BRTA), there were a 

total of 4,625 road accidents in Bangladesh in 2021, resulting in 4,999 deaths and 

7,460 injuries. Over the past two decades, the death toll has increased 3.5 times, 

reaching over 3,000 annually. However, some have speculated that the number is 

higher than 12,000 annually (due to non-reporting and misreporting) (UNESCAP, 

2007). As the country's population, total road length, and modal share of road 
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transport continue to grow, the number of fatalities from road accidents is expected to 

rise further. 

Although Bangladesh's official traffic accident data paints a rosy picture of traffic 

safety, the reality is quite different. Traffic accidents have earned a permanent place 

in the print and annual deaths from road accidents could be 20,000, taking into 

account under reporting and definitional inconsistencies, whereas police reported 

statistics show that it is around 3,000 each year. Road accidents in Bangladesh cost 

the economy nearly 2% of its gross domestic product (GDP) (Hoque et al., 2008). As 

a result, measures to reduce accidents based on a thorough understanding of the 

underlying causes are of great interest to Bangladesh.  

Road accidents are caused by several crash groupings, including single cars, two 

vehicles, and multi-vehicles. Among all subgroups, two-vehicle crashes are a critical 

type of road accidents that have the potential to cause serious injuries and fatalities. 

The severity of two-vehicle road accidents varies around the world, depending on a 

range of factors such as road infrastructure, driver behavior, the implementation of 

effective safety measures, and so on. Despite the use of safer vehicles, improved road 

design, and better enforcement of traffic laws, in developed countries, two-vehicle 

road accidents can still be severe and result in fatalities and serious injuries. For 

example, in the United States, two-vehicle collisions accounted for over 60% of all 

traffic fatalities in 2019, according to the National Highway Traffic Safety 

Administration (NHTSA). In Europe, approximately 40% of all road accidents 

involve two or more vehicles colliding with each other (Source: European 

Commission). In Australia, two-vehicle crashes account for approximately 62% of all 

fatal crashes. (Source: Australian Department of Infrastructure, Regional 

Development and Cities). Unfortunately, Bangladesh is still in nascent stage in 

dealing with road accidents, especially for two-vehicle crashes. No work on 

identification to identifying factors influencing two-vehicle crash outcomes and 

prediction to predicting two-vehicle crash outcomes has been done till now. 

Researchers in transportation safety have been developing and implementing safety 

performance functions (SPFs) to achieve better traffic safety. In the past, research has 

shown that analyzing overall accidents without defining probable subgroups can miss 

connections between of subgroups and lead to inaccurate results when developing 
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SPFs (Geedipally, S., and D. Lord, 2010, Ma, J., and K. M. Kockelman, 2006, 

Geedipally, S. R., and D. Lord, 2010). Appropriately, the researchers attempted to 

develop the SPFs of multiple crashes simultaneously by dividing the total crashes into 

different categories based on injury severity, crash types, and the number of vehicles 

involved in a crash (Geedipally, S. R., and D. Lord, 2010, Martensen, H., and E. 

Dupont, 2013, Kitali, A. E., and P. E. T. Sando, 2017). Modeling collisions with 

possible clusters in crash data can aid in gaining a better understanding of the impact 

of multiple factors on every crash category, allowing for the development of effective 

protective measures. 

Researchers frequently divide crash data into two groups when modeling crash 

frequency based on the total number of vehicles involved: single-vehicle crashes and 

two-plus vehicle crashes.  (i.e multi-vehicle crashes) (Geedipally, S., and D. Lord, 

2010, Geedipally, S. R., and D. Lord, 2010, Martensen, H., and E. Dupont, 2013, 

Chen, F., and S. Chen, 2011, Pasupathy et al., 2000, Ma, X. et al., 2016). Previous 

research has shown that crashes involving two or more vehicles differ significantly 

from those involving only one car, As a result, the two crash types must be modeled 

individually (Geedipally, S., and D. Lord, 2010, Geedipally, S. R., and D. Lord, 2010, 

Ma, X. et al., 2016, Qin, X. et al., 2004, Lord, D. et al., 2005 and Griffith, M. S., 

1999). According to the findings of these studies, developing separate models for 

single-vehicle and two-plus vehicle accidents offers more accurate predictions than 

establishing models that combine the two crash categories (Geedipally, S. R., and D. 

Lord, 2010). 

1.2 Present State of the Problem 

Two vehicle collisions are the most dominant types of traffic accidents in Bangladesh, 

accounting for 35% of total accidents and 30% of total fatalities (Raihan et al. 2017). 

As a result, developing preventive mechanisms to minimize two vehicle crash 

fatalities is crucial. The estimation and use of disaggregate level crash severity models 

is a vital component of the preventative measure in identifying and obtaining a full 

understanding of the elements that lead to two vehicle crash severity. Furthermore, an 

independent two vehicle crash severity modeling is required because modeling 

aggregate accidents without specifying relevant subgroups may fail to find 
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associations between subgroups, resulting in incorrect parameter estimations ( Kitali 

et al. 2021). Remarkably it is essential to place emphasis on identifying the factors 

responsible for two vehicle crash severities. 

1.3 Objectives of the Study 

The purpose of the research was to investigate the prediction accuracy of different 

machine learning (ML) and statistical methods to predict two vehicle crash severity in 

a low-income country context, Bangladesh, specifically Dhaka city using Road 

Traffic Accident (RTA) data (2017- 2010) from ARI, BUET. The global objective of 

this study is employing machine learning algorithms to predict drivers’ injury 

severities in two-vehicle crashes in Dhaka, Bangladesh. The specific research 

objectives are: 

• to evaluate the potential of different ML models, both individual and hybrid 

models, and parametric regression model to predict the severity of a crash 

involving two vehicles. 

• to identify the contributing factors and the ways in which they impact the 

prediction of crash severities in Dhaka, Bangladesh. 

• to compare the hybrid model with individual classifiers to see if individual or 

hybrid model can forecast the severity of a two vehicle crash with greater 

accuracy. 

1.4 Scope of the Research 

This research is concerned with the crash severity prediction of two vehicles using 

Logistic Regression (LR) as a statistical method and some popular ML methods such 

as classification and regression tree (CART), support vector machine (SVM), random 

forest (RF), adaptive boosting and soft voting classifier- based hybrid model. The 

study shows how accident intensity is related to various factors associated of accident 

events, as well as which factors cause what type of accident severity. In-depth 

analyses of the study results needed to create defensive measures and strong policy 

decisions, however, were outside the scope of this thesis. 
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1.5 Thesis Outline 

The thesis consists of six chapters. 

Chapter 1 has explained the background, present state of the problem, purpose and 

objectives as well as the scope of the research. 

Chapter 2 has been dedicated to review the relevant literature of two vehicle crashes 

in the context of this study. 

Chapter 3 has illustrated the data description, data preparation, and the fundamentals 

of various machine learning, statistical and hybrid methods that have been applied in 

this thesis. These include Logistic Regression (LR), Classification and Regression 

Tree (CART), Support Vector Machine (SVM), Random Forest (RF), Adaptive 

Boosting (AdaBoost) and Classifier-specific Soft Voting as Hybrid model. The 

feature selection and model evaluation metrics have also described in this chapter. 

The descriptions are brief yet self-containing. 

Chapter 4 has addressed the detailed analysis and interpretation of model results 

regarding two vehicle crash severity predictions.  

Chapter 5 has presented the major findings of the thesis along with its limitations and 

future scopes. 
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Chapter 2  

LITERATURE REVIEW 

2.1 Introduction 

Two vehicle collisions are the quite common types of traffic accidents currently in 

Bangladesh and developing preventive mechanisms to minimize two vehicle crash 

fatalities is crucial to improve road traffic safety. Statistical models have traditionally 

been the most commonly used methods for analyzing crash injury severity. For better 

prediction, besides traditional parametric statistical method, some popular machine 

learning techniques have been introduced in this study. This chapter commences by 

defining traditional parametric statistical method along with machine learning 

method. The limitations of statistical method, the advantages and shortcoming of 

machine learning method have also been incorporated in this chapter. It then clarifies 

the concept from the standpoint of transportation. The paper then summarizes the 

previous relevant literatures, conducting a thorough review of the objective and 

guidance in this evolving and absolutely vital research field.  

2.2 Relevant Studies on Two vehicle Crashes 

Numerous studies have been conducted to investigate the mechanism of a single 

vehicle collision, however just a few studies have been performed to evaluate two 

vehicle crashes (WHO 2022). Earlier researches in many nations have mostly 

concentrated on evaluating the causes of crashes involving two cars at signalized 

junctions, construction sites, urban and rural locations (Dancan et al., 1998; Chiou et 

al., 2020 and Yuan et al., 2022).  

Yuan et al. (2022) in Pennsylvania, applied mixed logit models to discover the 

elements that determine injury severity in a two-vehicle incident, taking vehicle 

characteristics of the distinct crash roles into consideration. The result revealed that 

the type and movement of vehicles have a substantial impact on crash severity (WHO 

2022).  

Two-vehicle crashes have been studied extensively, with Champahom et al. (2020) 

and Wang & Abdel-Aty (2006) focusing on studying the mechanism of crashes at 
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signalized intersections, in construction zones, in urban, and rural settings. The factors 

that contribute to the severity of crashes involving two vehicles at unsignalized 

intersections are poorly understood.  

Two-vehicle collisions under similar traffic situations can vary greatly in severity due 

to the difference in the performance, type, weight, and vehicle movement (struck and 

striking vehicles), as determined by Yuan et al., (2017) and Lee & Li, (2014). 

It has been found by Shao et al. (2020) that the severity of injuries sustained in truck-

versus-car crashes differs significantly from those sustained in truck-only crashes. 

According to Abay et al. (2013), a front-facing vehicle poses a greater threat of injury 

to the driver than a frontal collision.  

Lee and Li (2014) studied in Ontario, Canada, the severity of driver injuries in one 

and two-vehicle crashes and analyzes the impact of independent factors amongst 

various crash scenarios using heteroscedastic ordered logit (HOL) models. The study 

showed that, young car drivers have reverse impacts in car-to-car collisions, while 

side-impact collisions have distinct consequences in car-car and truck-truck collisions. 

They also found that car- heavy truck crashes are the mostly turn into fatal injury 

(Lee, C., and X. Li , 2014).  

Zeng et al. (2016) studied the interaction influence on vehicle unit injury severity in 

two-vehicle crashes and found that, compared to cars, other types of vehicles were 

significantly more severe. Injury severity is lower for the driver of the vehicle 

himself, but to a greater extent for the driver of other vehicles (Yang et al., 2019).  

Chiou et al. (2020) in Taiwan, considered the severity of the crash by two parties 

(referred to as the "responsible party" and the "non-responsible party") using the 

Generalized Estimation Equation (GEE) and the result indicated that the most 

significant variable that contributes to the severity of a crash is the vehicle type 

(motorcycle), followed by speed, angle, impact and alcohol consumption (Duncan et 

al., 1998).  

Lombardi et al. (2017) researched age-related disparities in fatal accidents between 

two vehicles, and the findings revealed that older and younger drivers were more 

prone to engage in road accidents than average-aged drivers (Zeng et al., 2016).  
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Ji and Levinson (2020) in USA, analyzed some popular ML models and some 

ensemble techniques such as K-Nearest Neighbors (KNN), Support Vector Machine 

(SVM), Generalized Linear Model (GLM), Gradient Boosting Machine (GBM), 

Random Forest (RF), and AdaBoost (Adaptive Boosting) for predicting occupant 

injuries collision between two vehicles and result showed that, combining models can 

perform better than individual model (Ji, A., and D. Levinson, 2020).  

Yang et al. (2019) in Japan, examined the critical variables that determine the severity 

of driver injuries in two vehicle crashes, passenger car and truck, using bivariate 

ordered probit model and found that, time of the day, locations, traffic conditions, 

types of collisions, and types of roads have different effects on the two vehicle 

crashes where the weather condition and age of drivers have relatable impacts for two 

types of crashes (Jamal et al., 2021).  

Duncan et al. (1998) in USA, studied the effect of numerous factors on the injuries 

sustained by occupants in two vehicle incidents by using the ordered probit model and 

found that the factors responsible for injuries to passenger vehicle occupants in rear-

end collisions on split roads are darkness, high speed differentials, high speed limits, 

grades, particularly if they are damp (Fan et al., 2019). 

Sobhani et al. (2011) in Australia, aimed to measure the extent of injuries to people in 

road crashes involving two vehicles using a Log-Gamma regression model and result 

showed that, the interaction of the type of impact, presence of airbag, presence of seat 

belt, and age of the occupants are the triggering factors for the crash injury severity. It 

also showed that the severity of crash injury is higher for crashes where the airbags 

and seat belts are available for near side crashes rather than crashes on far side and 

front crashes (Liao et al., 2018). 

Previous research has discovered that accident type is one of the determining elements 

of two vehicle crash severity (Yang et al., 2019; Duncan et al., 1998; Chiou et al., 

2020; Lee, C., and X. Li, 2014 and Ji, A., and D. Levinson, 2020). Vehicle factors 

such as vehicle type and vehicle movement have also been demonstrated to have a 

substantial impact on the severity of a two vehicle crash (Yuan et al., 2022 and Zeng 

et al., 2016). The characteristics of the roadway and surrounding environment (for 

example, traffic conditions, road types, and lighting conditions) can explain the level 
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of crash severity (Yang et al., 2019; Duncan et al., 1998). According to certain 

research, the temporal characteristics of accidents (i.e., day of week, specific time of 

day) and the level of alcohol intake of drivers are also connected with the level of 

severity in two vehicle crashes (Yang et al., 2019 and Chiou et al., 2020). However, 

these conclusions are derived from the setting of high-income countries, despite the 

fact that the hotspot of accidents is in low- and middle-income countries. Because of 

the differences in their contexts, further research should be conducted in low- and 

middle-income areas to build an effective and comprehensive preventive strategy.  

2.3 Statistical Methods in Crash Severity Modeling 

The four main ways in which statistical methods aid classification are, : developing 

probability models for data and classes to identify probable classifications for a given 

set of data; creating tests of validity of specific classes produced by a classification 

scheme; contrasting the relative efficacy of various classification schemes; and 

increasing the search for ideal classifications by probability- based research 

techniques. Algorithms for standard hierarchical and splitting data are analyzed 

statistically (J.A. Hartigan, 2001). Statistical models have traditionally been the most 

frequently used techniques for analyzing crash injury severity. Several parametric 

statistical techniques have been employed in previous studies to model the severity of 

a two-vehicle incident in an attempt to uncover potential risk factors for death. The 

most popular modeling method among them is probably the ordered probit (OP) 

model (C. Lee and M. Abdel-Aty, 2005, N. Siddiqui et al., 2006, K. K. W. Yau, 2006, 

Y. Xie, 2009 and Wang et al., 2011) which may order the severity of an accident into 

categories (Yang et al., 2019, Duncan et al., 1998 and Chiou et al., 2020). Savolainen 

et al. (2011) provided a thorough literature review of approaches to assessing crash 

injuries. In the literature, multinomial logit (MNL) model (V. Shankar and F. 

Mannering, 1996, A. Khorashadi, 2005 and P. Savolainen and F. Mannering, 2007), 

the binary logit (BL) model (A. SAl-Ghamdi, 2002), Logistic Regression (LR) 

(J.A. Hartigan, 2001), Mixed Logit Model, and Binomial Regression Model are all 

frequently used methodologies ( Kitali, 2021, Yuan et al., 2022, Lee, C., and X. Li, 

2014 and Zeng et al., 2016).  
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Crash injury severity modeling has made extensive use of various types of statistical 

regression. Multi-level ordered logit models, binomial logistic models, and their 

variants are the most popular regression prediction techniques. Regression models 

like these can analytically shed light on the connections between various factors and 

provide a plausible theoretical interpretation (J. Tang et al., 2019). However, they 

require that you adhere to certain mathematical forms when relating your dependent 

and explanatory variables (Z. Li et al., 2012). Due to their inflexible premise, 

regression models have poorer predictive power than other algorithms (A. Iranitalab 

and A. Khattak, 2017). There are some caveats to using statistical models, despite the 

fact that their mathematical interpretation is sound and they help shed light on the part 

played by various predictor variables. To begin with, they are predicated on a set of 

presumptions (with regards to linear link functions and error distribution terms) and a 

predefined relationship between the variables, and violating any of these can lead to 

skewed model estimation (Ullah et al., 2021; Zahid, Chen, Jamal, Al-Ahmadi, et al., 

2020; Zahid, Chen, Jamal, and Memon, 2020). Second, they have low reliability and 

poor prediction accuracy. In addition, class imbalance problems have been identified 

in statistical models that use past crash data (Vilaça et al., 2019; Wang et al., 2019; 

Elamrani Abou Elassad et al., 2020). Statistical procedures assume, by definition, that 

classrooms are evenly populated (Leevy et al., 2018). Hyden's safety pyramid 

describes the distribution of crash severity, which is a common example of a dataset 

with class imbalance (Laureshyn et al., 2010). The results have been shown to support 

the majority class, leading to biased predictions and even misleading conclusions if 

there is major class imbalance (rare events are under about 5%) in the datasets (Ferrari 

& Bacciu, 2021; King & Zeng, 2001). Analyzing the efficacy of various sampling 

strategies for addressing class imbalance using crash datasets is crucial for reducing 

the impact of class imbalance problems. Researchers in the past have turned to 

machine learning techniques for predicting crash injuries' severity (M. A. Abdel-Aty 

and H. T. Abdelwahab, 2004, L.-Y. Chang and H.-W. Wang, 2006, Y. Xie et al., 

2007, J. de Oña, 2011, J. Abellán, 2013 and A. Iranitalab and A. Khattak, 2017) to get 

around the shortcomings of statistical models.  

The output of statistical models is often straight forward formulas that illustrate the 

relationships between the dependent and explanatory variables. However, in spite of 

their solid conceptual foundation, statistical models have certain caveats. A linear 
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function is used to establish a connection between the dependent variable and the 

explanatory factors in statistical modeling, for instance, and this technique needs 

assumptions about the data distribution. There is no guarantee that all of those 

premises hold true. Incorrect parameter estimates will be generated if such 

assumptions are broken (L. Mussone et al., 1999 and C. Chen et al., 2016). Model 

estimate may also be impacted by other factors, like multicollinearity (S. Washington 

et al., 2010), within-crash correlation (P. Savolainen and F. Mannering, 2007 and R. 

Paleti et al., 2010) and unobserved heterogeneity (P. Xu and H. Huang, 2015 and Z. 

Li et al., 2013). Complex frameworks are often needed to mitigate the destructive 

effects of such problems, making the corresponding statistical models challenging to 

solve. (P. T. Savolainen et al., 2011). Conventional parametric regression models, for 

example, require linear functions to link the response variable to determinants and 

rely on a specific distribution of crash data. There are instances when these 

assumptions can lead to incorrect estimations and biased model inferences (Jamal et 

al., 2021). These data-related shortcomings, which are a prevalent limitation in 

parametric regression models, can be eliminated by using ML algorithms, which have 

the ability to uncover key factors and enhance prediction accuracy (Raihan et al. 

2017, Fan et al., 2019 and Liao et al., 2018).  

The severity of a crash injury is often indicated by different classes such as damage to 

property, possible injuries, capacitating injury, incapacitating injury, fatality, and so 

on. Damage to property only (PDO)/no injuries, injuries, and deaths have all been 

utilized as injury severity groups in numerous researches (C. Ma et al., 2018 and 

Mesa-Arango et al., 2018). Because crash injury severity levels are discrete, discrete 

outcome models such as binary or multinomial logit/probit models have been 

extensively used (Azimi et al., 2020; Rifaat & Chin, 2007; Shankar & Mannering, 

1996; Yu & Abdel-Aty, 2014a). To accommodate for variability and causality, as well 

as the ordinal character of within-crash correlation a number of complex models as 

Bayesian hierarchical (Huang et  al., 2008; Li et  al. 2018), ordered logit models 

(Azimi et  al., 2020; C. Chen et  al., 2016; Khattak et  al., 1998; O’Donnell & Connor, 

1996), bivariate/multivariate models (Aguero-Valverde & Jovanis, 2009; C. Lee & 

Abdel-Aty, 2008; Russo et  al., 2014; Zeng et  al., 2017), nested logit model (Osman 

et  al., 2016; Shankar et  al., 1996), random parameter model (Milton et  al., 2008; J. 

Wang et  al., 2020), Markov switching multinomial model (Malyshkina & Mannering, 
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2009; Xiong et  al., 2014), and their mixed versions (Christoforou et  al., 2010; Eluru 

& Bhat, 2007; Huang et  al., 2011; Li et  al. 2019), were reviewed.  

2.4 Machine Learning (ML) Methods in Crash Severity Modeling 

The term "machine learning" (ML) refers to an approach to "learning" by analyzing 

data. Discovering regularities in the information is a key part of this process. 

Predictions and classifications are aided greatly by the robust algorithms made 

available by Machine Learning (ML). The goal of ML models is to increase 

prediction precision via a non-parametric method (L. Wahab and H. Jiang, 2019). 

Researchers have paid close attention to machine learning (ML) methods over the past 

two decades due to their rapid development and accurate regression and classification 

performance. More and more studies have used ML techniques to examine crash 

severity. Unlike conventional statistical methods, which have rigid and well-defined 

functional forms, ML approaches are extremely adaptable, make few if any 

assumptions about the crash severity data, and can deal with missing values, noises, 

and outliers (Tang et al., 2019). The models used in machine learning make no 

assumptions about the connections between different variables. Some studies have 

found that machine learning techniques outperform statistical ones at producing 

fitting. 

In order to generate predictions or choices without being explicitly taught to do so, 

machine learning algorithms develop a mathematical model based on sample data, 

often known as training data (Bishop, 2006). The challenge of concentrating on the 

most pertinent information in a potentially overwhelming amount of data has become 

more significant as machine learning attempts to tackle bigger, more complex tasks.  

Machine learning-based models have appeared as valuable technology in road safety 

studies in recent years, overcoming the drawbacks of statistical methods due to rapid 

advances in soft computing methods. However, there are still data and methodology 

issues with ML that have yet to be resolved. To begin, traffic crash severity datasets 

are inherently imbalanced and, in some cases, under reported. Many studies have 

found that while ML methods frequently produce high overall prediction accuracy, 

they produce poor accuracy for severity categories with fewer observations, such as 

potentially deadly and serious accidents (Abdel-Aty & Abdelwahab, 2004; Chang & 
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Wang, 2006; Chene et al., 2016a; Chene et al., 2016b; Lie et al., 2012). Second, most 

ML approaches suffer from the "black-box" problem, in which it is unclear how to 

interpret the modeling results and derive the underlying relationships between 

independent/explanatory variables and crash severity outcomes. Sensitivity analysis 

(SA), and more specifically local sensitivity analysis (LSA), has been implemented to 

get around this issue. In order to reduce the 'black box' effect, researchers have 

developed techniques like sensitivity analysis (M. B. Anvari et al., 2017; R. Yu and 

M. Abdel-Aty, 2014; A. Das et al., 2009; J. Zhang et al., 2018; L. Jiang et al., 2019; 

X. Li et al., 2008; Li et al. 2012 and Y. Zhang & Xie, 2007). An application of 

sensitivity analysis is in extracting features and ranking the relative importance of 

different variables in relation to a given target variable. It's made it much easier to 

implement ML models into research on vehicular safety. To capture the joint effects 

of multiple risk factors, however, sensitivity analysis must make the potentially false 

assumptions of linearity, normality, and local variations. When applying ML 

approaches to crash severity analysis, additional data/methodology-related issues, 

such as model performance metrics, crash spatiotemporal correlations, causality, 

transferability, and heterogeneity, often arise. 

To address the shortcomings of statistical approaches, various machine learning (ML) 

models are being investigated for modeling possibly nonlinear correlations between 

accident contributing elements and injury severity outcomes. (Abdel-Aty & 

Abdelwahab, 2004; Iranitalab & Khattak, 2017; Li et al. 2012; Pradhan & Sameen, 

2020; Sameen & Pradhan, 2017; Sarkar et  al., 2020; Tang et  al., 2019) Machine 

learning models have the benefit of being more adaptable to processing outliers, 

noisy, or missing data, as well as being more flexible with no or few post assumptions 

for input variables. 

When compared to statistical methods, ML methods are said to fit better. Machine 

learning models have been extensively used to predict the severity of traffic accidents. 

( M. Taamneh et al., 2016). Some widely used ML algorithms in crash severity 

modelling domain are: Artificial Neural Networks (ANN) (Abdelwahab & Abdel-Aty, 

2001; Amiri et  al., 2020; Zeng & Huang, 2014), Support Vector Machines (SVM) 

(Dong et  al., 2015; Mokhtarimousavi et  al., 2019; Zhibin Li et  al. 2012), Decision 

Trees (DT) (Abellán et  al., 2013; Oña et  al., 2013; P. Lu et  al., 2020), K-means 
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Clustering (KC) (Anderson, 2009; Fiorentini & Losa, 2020; Mauro et  al., 2013), 

Random Forest (Iranitalab & Khattak, 2017; Mondal et  al., 2020; J. Zhang et  al., 

2018), and Naïve Bayes (Arhin & Gatiba, 2020; Budiawan et  al., 2019; C. Chen et  

al., 2016). 

The comprehensive literature review shows that most of the previous studies have 

been done based on parametric regression whereas there are few studies which are 

based on Machine Learning (ML). To the best knowledge, Ji and Levinson (Ji, A., 

and D. Levinson , 2020) in USA, analyzed some popular ML algorithms for 

predicting occupant injuries collision between two vehicles. 

2.5 Ensemble or Hybrid Methods in Crash Severity Modeling 

In comparison to any of the individual classifiers, ensemble learning improves 

prediction accuracy by combining a number of weak classifiers. 

Bagging (also known as random forests) and boosting are the two main ensemble 

learning techniques used in crash severity analysis (Wen et al., 2021). 

Boosting and Bagging are two examples of ensemble methods, which are a type of 

cutting-edge learning strategy in which multiple learners are trained separately and 

then combined for application. It is common knowledge that multiple learners in an 

ensemble can improve accuracy significantly over a single learner, and ensemble 

methods have seen huge success in many practical uses (Zhi-Hua Zhou, Ensemble 

Methods Foundations and Algorithms, 2012). Liu, L. et al (2020) applied an ensemble 

model (CSSV-AGX) of AdaBoost (Adaptive Boosting), GBDT (Gradient Boosting 

Decision Tree), and XGBoost (eXtreme Gradient Boosting) based on Classifier-

specific Soft Voting and Several major factors have been analyzed to determine 

connections between accident factors (like speed) and the distribution of various 

occupant accident severity levels. The intense Gradient Boosting (XGBoost) model 

was studied by Jamal, A. et al. (2021) to determine if it could be used for analyzing 

crash injuries more accurately than more conventional machine learning algorithms 

like logistic regression, random forest, and decision tree. 
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2.6 Summary 

There are some significant differences of this study from previous studies. Firstly, this 

study has employed the Shapley Additive explanations (SHAP) approach, developed 

by Lundberg and Lee (Lundberg, S. M., and S.-I. Lee, 2017), to explain the model's 

output. An individual feature's contribution, based on its marginal contribution, to the 

predicted value can be calculated using SHAP (Parsa et al., 2019). Secondly, this 

study has used feature engineering technique to extract useful features. An essential 

and challenging problem in ML is deciding on the best subset of features to use. 

Choosing a decent collection of attributes reduces computational load while 

simultaneously improving accuracy. Noisy data can lead classifiers to form inaccurate 

connections, and redundant or linked features raise classification intricacy without 

delivering innovative information to the system (Moons et al., 2016 and Wang et al., 

2017). In this study, RF model has been used to select the effective features. Thirdly, 

in this study, the Classifier-specific Soft Voting has been employed to integrate 

individual models in predicting the two-vehicle crash severity. Soft voting employs 

class-specific weights to boost combinatorial performance while reducing computing 

cost. On top of all that, it improves classifier weightings by taking into account 

both soft class probabilities (Cao et al., 2015). Fourthly, the majority of prior studies 

evaluated the influence of vehicle features on crash severity at the accident level, but 

they failed to consider the effect of diverse roles in an accident (Yuan et al., 2022). In 

this study, besides vehicle characteristics (vehicle type, vehicle maneuver), it has been 

also focused on driver characteristics (age, sobriety condition, seatbelt/helmet usage), 

roadway conditions/environment (road geometry, surface condition, light condition, 

junction, road class, traffic control, movement), crash characteristics (collision type) 

and temporal features (time, day of week) in predicting two vehicle crash severities. 

One of the benefits of using many explanatory factors is that it allows models 

overcome the biasness associated with the absence of potential independent 

variables. In this study different machine learning (ML) methods and traditional 

statistical regression method have been applied to identify the contributing factors 

responsible for such crashes and also compared the prediction accuracy of such 

models.  
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Chapter 3  

DATA COLLECTON AND METHODOLOGY  

3.1 Introduction 

Several machine learning methods, as well as a statistical method, were used in this 

study and also employed a hybrid model and evaluate the best performing model in 

predicting two vehicle crash severities. This chapter gives a brief but comprehensive 

description of these methods, as well as their applicability. The chapter also discusses 

the data collection and preparation procedures for this study. 

3.2 Methods and Work Flow of the Study  

The following Figure 3.1 depicts the entire operational framework of this thesis. 

 

Figure 3.1: Work methodology of the study 

The work flow of this study can be listed as followed: 

(i) The filtered data of two vehicle crashes has been divided into training dataset 

(80%) and testing dataset (20%) and trained the models through a 10-fold 

cross-validation. To resolve data imbalance issue, method of random over-

sampling (ROS) has been adopted on training dataset. 
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(ii) Important features have been selected using Random Forest (RF) and all the 

models (ML, Statistical method and all possible hybrid models) have been 

trained with all possible combinations of feature subset to assess the 

performance of different predictors. Hyper parameter tuning has been done 

with 10-fold cross validation.  

(iii) The efficiency of the various models has been evaluated utilizing the most 

commonly known performance metrics and compared the prediction accuracy 

of different classifiers using Confusion Matrix. 

(iv)  An individual feature's contribution, based on its marginal contribution, to the 

predicted value has been calculated using SHAP.  

Following sections describe the methods sequentially. 

3.3 Data Description 

 This study has been utilized the recent crash data of ARI for two vehicle crash 

severity prediction analysis. The overall data processing and description have been 

mentioned in the following sections. 

3.3.1 Data Overview  

In Bangladesh, police are mainly concerned with the collection of crash data at field 

level in Accident Report Form (ARF) (Appendix-A). A guideline for filling the 

Accident Report Form (ARF) has been published by Accident Research Institute 

(ARI) of Bangladesh University of Engineering and Technology (BUET) (Appendix-

B). The reports are then recorded in the Microcomputer Accident Analysis Package 5 

(MAAP5) repository by the Accident Research Institute (ARI) of Bangladesh 

University of Engineering and Technology (BUET). In our study, crash data of 2017-

2020 for Dhaka city have been collected from ARI, BUET. At time of collection, 

these data were available in a tabular format with each sample containing information 

about crash, roadway geometry, environment, vehicle, driver, passenger, and 

pedestrian characteristics. 
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3.3.2 Data Preparation 

Since this study focuses on modeling two-vehicle crashes, the very first task of 

processing was filtering out crashes that involved only two vehicles. The Excel 

database extracted from MAAP5 database needed some further processing to be used 

for machine learning. At first, the Excel format was converted to CSV (comma 

delimited) format; so that it can be imported by the python software. Later, it was 

found that the computer that was designated for the modeling could not handle this 

huge database. Therefore, it became urgent to reduce the size of this accident 

database. 

There were numerous crash data that were collected from Accident Research Institute 

(ARI), BUET (2017-2020). This study, which focuses on two-vehicle crashes, was 

reduced from 357 variables to 25 variables by eliminating the irrelevant variables. 

Index system has been adopted to eliminate single and multi-vehicle crash data. 

Eventually total 1494 crash data have been reduced to 692 crash data which was 

further reduced to 329 crash data for better accuracy.  

Different independent variables like vehicle characteristics (vehicle type, vehicle 

maneuver), driver characteristics (age, sobriety condition, seatbelt/helmet usage), 

roadway conditions/environment (road geometry, surface condition, traffic control, 

movement, light condition, junction, road class,), crash characteristics (collision type) 

and temporal features (time, day of week) have been used in predicting two vehicle 

crash severities. Summary of the filtered data with information on crash, roadway 

geometry, environment, temporal, vehicle, and driver characteristics have been 

presented in Table 3.1. A total of 658 drivers were involved in 329 traffic crashes 

reported during the years 2017-2020 in Dhaka. The dataset then divided into 80% 

‘Training’ dataset with 526 drivers and the 20% ‘Testing’ dataset with remaining 132 

drivers. 
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Table 3.1: The Descriptive Statistics of Variables 

 

Variable Variable Description Frequency Ratio 

(%) 

Target Variable 

Injury Severity 0 - Non-Fatal 468 71.1 

1 – Fatal 190 28.9 

Explanatory Variables 

Crash Characteristics 

Collision Type not a rear end collision 288 43.7 

a rear end collision 370 56.3 

Roadway Characteristics 

Junction no junction was present 326 49.5 

junction was present 332 50.5 

Traffic Control no traffic control system is present 142 21.5 

traffic control system is present 516 78.5 

Movement the road was one way 332 50.5 

the road was two-way 326 49.5 

Surface 

Condition 

the road surface was dry 632 96 

the road surface was not dry 26 4 

Road Geometry the road was not straight 66 10 

the road was straight 592 90 

Road Class the road flows within the city 340 51.7 

the road flows to outside of the city 318 48.3 

Environment Characteristics 

Light Condition 
dawn/dusk 108 16.4 

Daylight 312 47.4 

Dark 238 36.2 

Temporal Characteristics 

Day of Week Weekday 492 74.8 

Weekend 166 25.2 

Time 
during night hours 258 39.2 

during off-peak hours 168 25.5 

during peak hours 232 35.3 
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Vehicle Characteristics 

Vehicle Type 

one of the involved vehicles was a bus 190 28.9 

one of the involved vehicles was a car 55 8.4 

one of the involved vehicles was a 

motorcycle 

162 24.6 

one of the involved vehicles was an NMV 62 9.4 

one of the involved vehicles was a pick-up 25 3.8 

one of the involved vehicles was a truck 73 11.1 

one of the involved vehicles was a van/SUV 23 3.5 

one of the involved vehicles was any other 

vehicle 

68 10.3 

Vehicle 

Maneuver 

vehicle was going straight 435 66.1 

vehicle was not going straight 223 33.9 

Driver Characteristics 

Driver Age 

driver age <=30 231 35.1 

driver age >50 14 2.1 

driver age 31-40 295 44.8 

driver age 41-50 118 18 

Sobriety 

Condition 

driver was not suspected drunk 591 89.8 

driver was suspected drunk 67 10.2 

Seatbelt/Helmet driver/biker did not-worn seatbelt/helmet 533 81 

driver/biker worn seatbelt/helmet 125 19 

 

Each feature has been categorized for better distribution and more accuracy. 

According to the severity level, the distribution of each individual category has been 

observed through further visualization.  
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Figure 3.2: Distribution Graph of Driver Age 

After reviewing previous studies, in this study, driver’s age has been categorized in 

four categories “age<=30”, “age=31-40”, “age=41-50” and “age>50”. From Figure 

3.2, it has been found that total counts of two vehicle crashes were highest for 31-40 

aged drivers. Crashes has found lowest for drivers’ aged greater than 50. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Distribution Graph of Sobriety Condition 
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Driver’s sobriety condition has been categorized in two categories “suspected” and 

“non-suspected”. From Figure 3.3, it can be identified that the total counts of two 

vehicle crashes were high for sobriety condition “not suspected”. For “non-suspected” 

category the rate of fatality has found about one-third compared with the non-fatality 

rate. Whereas, the fatality rate was almost half of the non-fatality rate in case of 

“suspected” condition. 

 

 

 

 

 

 

 

 

 

Figure 3.4: Distribution Graph of Seatbelt/Helmet Use 

 

Driver/Biker’s seatbelt/helmet use condition has been categorized in two categories 

“worn” and “not-worn”. From Figure 3.4, it can be identified that the total counts of 

two vehicle crashes were high for the drivers/bikers who did not wear seatbelt/helmet.  
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Figure 3.5: Distribution Graph of Vehicle Type 

 

The variable “vehicle type” has been categorized in eight categories bus, car, 

motorcycle, NMV, pick-up, truck, van/SUV and others. From Figure 3.5, it has been 

found that the total counts of two vehicle crashes were high if one of the vehicles 

involved in the crash was bus whereas, the rate of fatality has found maximum when 

one of the vehicles involved in two vehicle crashes was motorcycle. 

 

 

 

 

 

 

 

 

Figure 3.6: Distribution Graph of Vehicle Maneuver 
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The variable “vehicle maneuver” has been categorized in two categories “going 

ahead” and “not going ahead”. From Figure 3.6, it can be identified that the total 

counts of two vehicle crashes were high for “going ahead” maneuver. 

 

 

 

 

 

 

 

 

 

Figure 3.7: Distribution Graph of Junction 

The roadway characteristics “junction” has been categorized in two categories 

“present” and “absent”. From Figure 3.7, it can be identified the total counts of two 

vehicle crashes were nearly similar for both the conditions. 

 

 

 

 

 

 

 

 

Figure 3.8: Distribution Graph of Traffic Control 
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The roadway characteristics “traffic control” has been categorized in two categories 

“present” and “absent”. From Figure 3.8, it can be identified the total counts of two 

vehicle crashes were high where traffic control was present. 

 

 

 

 

 

 

 

 

Figure 3.9: Distribution Graph of Movement 

The roadway characteristics “traffic movement” has been categorized in two 

categories “one-way” and “two-way”. From Figure 3.9, it can be identified that the 

total counts of two vehicle crashes were almost similar for both one-way and two-way 

movements. 

 

 

 

 

 

 

 

 

Figure 3.10: Distribution Graph of Surface Condition 
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The roadway characteristics “surface condition” has been categorized in two 

categories “dry” and “not dry”. From Figure 3.10, it can be identified that the total 

counts of two vehicle crashes were much higher when the surface was dry. 

 

 

 

 

 

 

 

 

Figure 3.11: Distribution Graph of Road Geometry 

The roadway characteristics “road geometry” has been categorized in two categories 

“straight” and “not straight”. From Figure 3.11, it can be identified that the total 

counts of two vehicle crashes were much higher when the road geometry was straight. 

 

  

 

 

 

 

 

 

 

Figure 3.12: Distribution Graph of Road Class 
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The roadway characteristics “road class” has been categorized in two categories 

“city” and “not city”. From Figure 3.12, it can be identified that the total counts of 

two vehicle crashes were nearly similar for both road class categories. 

 

 

 

 

 

 

 

 

Figure 3.13: Distribution Graph of Light Condition 

The environmental characteristics “light condition” has been categorized in three 

categories “night”, “dawn/dusk” and “daylight”. From Figure 3.13, it can be identified 

that the total counts of two vehicle crashes were slightly high in daylight condition 

than in night condition. Number of crashes have found low in dawn/dusk condition. 

 

 

 

 

 

 

 

 

Figure 3.14: Distribution Graph of Collision Type 
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The crash characteristics “collision type” has been categorized in two categories “not 

rear end” and “rear end”. From Figure 3.14, it can be identified that the total counts of 

two vehicle crashes were high for rear end collision. 

 

 

 

 

 

 

 

 

Figure 3.15: Distribution Graph of Day of Week 

The temporal characteristics “day of week” has been categorized in two categories 

“weekday” and “weekend”. From Figure 3.15, it can be identified that the total counts 

of two vehicle crashes were high while the accidents took place on a weekday. 

 

 

 

 

 

 

 

 

Figure 3.16: Distribution Graph of Time 

The temporal characteristics “time” has been categorized in three categories “peak 

hours”, “off-peak hours” and “night hours”. From Figure 3.16, it can be identified that 
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the total counts of two vehicle crashes were high while the accidents took place at 

night time and low at off-peak hours. 

 

 

 

 

 

 

 

 

Figure 3.17: Distribution Graph of Severity 

Among four injury severity categories such as fatal, grievous, simple injury and non-

fatal, this study has used two injury severity categories: fatal and non-fatal. However, 

a major issue of data imbalance was observed in the dataset. As shown in Figure 3.17, 

a sum of 468 drivers’ involvement resulted in non-fatal (NF), 190 drivers’ 

involvement resulted in fatal (F) (Non-Fatal: 71%, Fatal: 29%). Further re-sampling 

has been done for balancing the data. 

Before re-sampling in this study, as all the variables were categorical, hot coding or 

dummy variables have been created. In machine learning, categorical variables (such 

as geometric characteristics) can only range over a series of fixed values. Generally, a 

feature of k possible values needs to be encoded as a set of k derived dummy variables 

so that all the categories within the feature can be represented. For each sample, there 

is only one setting for each of the derived dummy variables that has a value of 1. For 

the remaining parts of the dummy variables, they are equal to 0. According to the 

thumb rule, for each feature among all dummy variables one dummy has to be 

discarded randomly.   

The accuracy of classification algorithm is seriously compromised when built on 

imbalanced data (Yuan et al., 2022). Since, this study builds on maximizing 

prediction capability of classifiers, re-sampling was a big necessity before diving 
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further into modeling details. Sampling strategies aim to resolve data imbalance issue 

by balancing class distribution in the dataset, either by eliminating some data from the 

majority class (under-sampling) or adding some artificially generated data to the 

minority class (over-sampling) (Elamrani et al., 2020). In this study, after straining 

different re-sampling strategies the method of random over-sampling (ROS) has been 

adopted instead of under-sampling because the latter often results in the loss of 

important information (Ma et al., 2022). So, soon after the crash data was reduced to 

526 samples by removing outliers, irrelevant levels, and missing data, the revised data 

was sliced into training (80%) and testing (20%) sets, and ROS was applied on the 

training data (Non-Fatal: 376, Fatal: 150) making the ratio 1:1 (Non-Fatal: 376, Fatal: 

376) where the total data then became increase of 752 in terms of total driver count. 

After ROS, the further distribution of each individual category in terms of the severity 

level can be observed as follows:  

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Distribution Graph of Day of Week 
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Figure 3.19: Distribution Graph of Peak-Time 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Distribution Graph of Night-Time 
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Figure 3.21: Distribution Graph of Junction 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Distribution Graph of Traffic Control 
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Figure 3.23: Distribution Graph of Collision Type 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: Distribution Graph of Movement 

 

 

C
o

u
n

t 

25 

50 

75 

100 

0 

125 

150 

175 

200 

1 

 

0  
Collision Type_Rear 

End 

Severity 
    0 
    1 

 

C
o

u
n

t 

50 

75 

100 

125 

0 

150 

175 

1 
 

0  
Movement_One-way 

Severity 
    0 
    1 

 

25 

Severity 

0 

1 

Severity 

0 

1 



34 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: Distribution Graph of Light Condition (Daylight) 
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Figure 3.26: Distribution Graph of Light Condition (Night) 
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Figure 3.27: Distribution Graph of Road-Geometry 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28: Distribution Graph of Road Class 
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Figure 3.29: Distribution Graph of Surface Condition 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30: Distribution Graph of Vehicle Type (Bus) 
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Figure 3.31: Distribution Graph of Vehicle Type (Car) 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: Distribution Graph of Vehicle Type (Motorcycle) 
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Figure 3.33: Distribution Graph of Vehicle Type (NMVs) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34: Distribution Graph of Vehicle Type (Pick-Up) 
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Figure 3.35: Distribution Graph of Vehicle Type (Truck) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.36: Distribution Graph of Vehicle Type (Van/SUV) 
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Figure 3.37: Distribution Graph of Vehicle Maneuver 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38: Distribution Graph of Driver Age <= 30 
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Figure 3.39: Distribution Graph of Driver Age (31-40) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.40: Distribution Graph of Driver Age (41-50) 
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Figure 3.41: Distribution Graph of Sobriety Condition 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.42: Distribution Graph of Seatbelt/Helmet Use 
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Figure 3.43: Distribution Graph of Severity 

 

In the above Figure 3.18 to Figure 3.43, it can be seen that after creating dummy 

variables and after random over sampling (ROS), the ratio of fatal and non-fatal have 

balanced. 

In this study, the dataset has been spitted into the ‘Training’ set (80%) and the 

‘Testing’ set (20%) and trained the models through a n-fold cross-validation by the 

‘Training’ set (here n = 10). That means, during the training process, the data have 

split into n subsets (n-1 for training and 1 for validation), and the hyper parameters 

have been tuned by repeating the procedure n times. The dedicated ‘Testing’ set have 

then tested the trained model used in this study. 
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LR is a regression analysis suitable to perform when the dependent variable is 

dichotomous (binary). It is a widely used tool for predictive analysis. The correlation 

between a binary dependent variable and one or more nominal, ordinal, interval, or 

proportional independent variables is explained using LR. In the LR model, 
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will obtain on a particular value (Abdelwahab, H. T., and M. A. Abdel-Aty, 2001). 
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it easy to perform analysis and then interpret the results in simple language. Since it is 

possible for linear regression to produce probabilities larger than one or less than zero, 

it cannot be used for analysis of crash severity classification. That's why you should 

employ logistic regression instead (LR). Also, unlike the linear regression model, the 

assumptions made by logistic regression can be tested. Instead of producing discrete 

classes, LR generates probabilities on a scale from one to zero (Jamal et al., 2021). 

The LR model determines the relationship between the target class y = (y1, yn) given p 

= (p1, pn) and set of j predictors X = (x1, ......, xj ). The strategy makes an effort to 

model the connection f between a set of independent variables x and a set of class 

variables y. The dependent/target variable was designed to have two possible 

outcomes: {y1 = non fatal damage; y2 = fatal}, which can be coded as {y1 = 0; y2 = 1}. 

The LR modeling function characterizes the connection between the set of 

independent or predictor variables and the probability of a specific class, such as y = 

1. The equations (3.1 and 3.2) below illustrate a common form of the LR model: 

 

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒(−𝑧)
=

𝑒(𝑧)

1+𝑒(𝑧)
∈ [0,1]        (3.1) 

𝑧 = 𝛽° + 𝛽1𝑥1+. . . … . . . +𝛽𝑛𝑥𝑛 = 𝑥𝛽        (3.2) 

 

Where xβ represents the sigmoid S-shaped function. A fatality, injury, or property 

loss was recorded in the data set when the probability was greater than 0.5. Many 

variables, such as the number of iterations, epsilon, learning rate strategy, step size, 

and regularization, were considered in logistic regression. In addition, both the 

regularization and the learning rate strategy were assumed to be constants.                                 

This study used scikit-learn package of Python program to conduct the activities 

related to LR.                                                 

3.5 Classification and Regression Trees (CART) 

CART is a type of classification algorithm established by Breiman et al. (2001) that 

builds a decision tree on the basis of Gini’s impurity index. As mentioned by Wen et 
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al. (2021), the categorical and continuous variable types are both acceptable for use as 

inputs and outputs in CART models. They also stated that, CART utilizes a repetitive 

binary splitting strategy. In this strategy, the training dataset is offered to the root 

node initially, and then it is split into two inner nodes. Then the splitting is repeatedly 

employed to each inner node. Certain requirements govern the split strategy ensure 

that an internal node's outputs are as uniform as possible. Here the procedure is 

continued until no further division is possible (Wen et al., 2021 and Chong et al., 

2005). Finally, every leaf node in the tree indicates a distinct crash severity. 

Let there be xi in the learning datasets for i = 1 to M. After splitting, let tp be the 

parent node and tl, tr be the left and right child nodes. The splitting rule in CART aims 

to split the data into two portions with the greatest possible homogeneity. The 

algorithm determines This study will demonstrate the Gini splitting rule for separating 

nodes and cross-validation for pruning trees, even though there are many other 

algorithms that can do the same thing. The splitting value xiR in such a way that xiR 

maximizes homogeneity of the child nodes for all splitting values of all variables. 

This is determined by developing an impurity function I(t). The concept emphasizes 

that xiR will maximize the difference in impurity between the parent and child nodes, 

as shown in Equation. 3.3 (Hossain, 2011):  

 

   arg max [△I(t) = I(tp) – Pl*I(tl) – Pr*I(tr)]                                  (3.3) 

  

where Pl and Pr represent the percentages of left and right node information. To 

determine the correct value of xiR, several algorithms exist for defining the impurity 

functions that meet the conditions of the equation 3.3.  

Anyway, it has been established that the algorithm has no bearing on the final tree. In 

this analysis, the Gini index is used to determine how to divide up nodes. The Gini 

index will be in the range (-1/K) to (1-1/K) if the outcome variable has K categories. 

The minimum value is seen for pure nodes (those that only contain data from one 

class), while the highest value is reached for nodes with an even distribution of 

outcome classes. At any given node t, the Gini index is defined as (Hossain, 2011): 

𝐼(𝑡) = ∑ 𝑝(𝑗|𝑡) 𝑝(𝑙|𝑡)𝑗≠1 =  ∑ 𝑝(𝑗|𝑡)(1 − 𝑝(𝑝(𝑗|𝑡))𝑗 = ∑ 𝑝(𝑗|𝑡)2
𝑗 = 1 − ∑ 𝑝(𝑗|𝑡)2

𝑗             

          (3.4) 
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where  j and l are the outcome variable categories and is p(j|t) the proportion of 

outcome class j in node t. Now, by plugging Equation 3.4 into Equation 3.3, the 

change in impurity can be calculated. By minimizing [Pl*I(tl) + Pr*I(tr)], the change 

in impurity can be. The tree is grown to the maximum depth using this splitting 

algorithm by recursive splitting until each node contains a pure class. Following that, 

the tree is pruned based on a trade-off between the tree's complexity and the 

miscalculation error. It is accomplished by minimizing the cost-complexity (cp) 

function, a compound function, as shown in Equation 3.5. 

 

                                                min Rα(T) = R(T) + α(T')           (3.5) 

                                                             

where R(T) denotes the misclassification error of tree T; T' denotes the total number of 

terminal nodes in tree T and α(T') denotes the complexity. The cross-validation 

method computes the value of by repeatedly using a portion of the data as a learning 

sample to build the tree and the remaining portion to test classification accuracy 

(Hossain, 2011). 

There are many algorithms for determining the value of, but they all produce the same 

tree in the end. For your convenience, another approach is outlined below. For the 

sake of argument, let's say the complexity parameter starts at 0. Now, we need to 

calculate the value of a function defined as tree costs plus the complexity parameter 

increased by the tree size for every tree (including the first, which has only the root 

node). You can make the root node the largest tree by continuously increasing the 

complexity parameter till the the function's value for the largest tree surpasses the the 

function's value for a smaller sized tree to become the new largest tree. It will be 

obvious to those versed in numerical analysis that this algorithm makes use of a 

penalty function. Expenses, which tend to reduce with tree size, are combined with 

tree size, which also tends to increase linearly, to form the function. To a certain 

point, larger trees incur a greater penalty for their complexity as the complexity 

parameter is increased. However, there is a point at which the additional complexity 

of the largest tree no longer justifies the additional cost of the smaller tree (Hill et al., 

2006). The largest tree in a sequence generated by this algorithm exhibits several 

interesting properties. 
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There is a nesting relationship between trees that have been successively pruned 

because each larger tree contains every one of the nodes of the following smaller tree. 

When trying to move from one tree to the following smaller tree in the sequence, 

many nodes are frequently pruned, but very few nodes are pruned as the root node is 

approached. Due to the absence of a smaller-cost alternative, the sequence of the 

biggest trees is optimally pruned. Evidence and/or explanations of these properties 

can be found in Breiman et al. (1984). 

The completed tree serves as a useful visual representation of the problem space and 

can also be used to infer additional information. Each data point can be run down the 

tree according to the splitting criteria, and the class of the data will become the 

dominant class of the node at which it lands. The scikit-learn package of the Python 

programming language was used to perform the CART-related tasks in this study.  

3.6 Support Vector Machine (SVM) 

SVM was developed by Vladimir Vapnik with colleagues in 1992 (Boser et al., 1992). 

It is a ML approach entrenched on statistical learning advanced theory of C. Cortes 

and H. Drucker (Shafizadeh et al., 2017) and the structural risk minimization principle 

(Cortes et al., 1995). SVM was initially applied to the binary classification problem of 

linear discrete data (Liao et al., 2018). It is also an algorithm for predicting and 

classifying linear and non-linear data (Farhat et al., 2020). SVM is able to handle 

complicated nonlinear classification issues by mapping the original data through some 

kernel methods in higher dimensional space where the input is nonlinear but the 

output relation can be linearized (Wen et al., 2021). In the 𝑛 dimensional space, SVM 

seeks for the beneficial solution 𝑛 − 1  dimensional hyperplane to divide changed 

data into various groups, where the distance between the hyperplane and the nearest 

data points is optimized (Wen et al., 2021). The hyperplane is known as the maximum 

margin hyperplane, and the linear classifier is also recognized as the maximum 

margin classifier. The goal of SVM is to find the maximum margin of the hyperplane. 

The training examples closest to the hyperplane with the largest margin are called 

support vectors as shown in Figure 3.43.   
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Figure 3.44: Maximum-margin Hyperplane Support Vector Machine 

For this reason, SVM was first implemented for the binary classification problem of 

linear discrete data. Figure 3.44 depicts the basic idea, which is to locate an optimal 

hyper plane that satisfies the data classification demands and achieves the highest 

margin among two sample points while making sure classification accuracy.  (Liao Y 

et al 2018). 

 

Figure 3.45: Concept of Optimal Hyperplane 

The following is a brief mathematical description of the SVM algorithm (Equation 

3.6). Assume a training set Q = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁  with input vector xi = {xi1, … , xin}T∈ R 

and target labels yi ∈ (-1, +1), according to Vapnic Formula, satisfies the following 

conditions:  
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                  {
𝑊𝑇∅(𝑥𝑖) + 𝑏 ≥ +1, 𝑖𝑓𝑦𝑖 = +1

𝑊𝑇∅(𝑥𝑖) + 𝑏 ≥ +1, 𝑖𝑓𝑦𝑖 = −1
           (3.6)

                                                                                             

    

Which is equivalent to: 

yi [WT∅(xi) + b] ≥ 1, i = 1           (3.7)                                            

     

Where the weight vector (maximum margin) and b is the bias (Equation 3.7). 

In the case of linear classification, suppose the training sample is SV = 

{(x1, y1), (x2, y2), . . . , (xm, ym)}, x ∈ Rd, yk ∈{-1,1}, k = 1, 2, . . . ,m, among which xk 

is theinput variable, yk represent the crash injury severity, m is the number of training 

samples, and Rd is a d-dimensional real number space. 

SVM linear classification denotes the existence of a hyperplane ꞷ.x + b = 0 that can 

correctly classify instances. Classify all samples, where ꞷ is a weight vector that can 

be adjusted and b is the bias. The hyperplane must satisfy. 

𝑦𝑘(𝜔 ∙ 𝑥𝑘 + 𝑏) ≥ 1, 𝑘 = 1,2, … … … , 𝑚                       (3.8)                                              

 

Calculate the classification interval as shown in Equation 3.9, 

 

     min
{𝑥𝑘|𝑦𝑘=1}

𝜔∙𝑥𝑘=𝑏

||𝜔||
− min

{𝑥𝑘|𝑦𝑘=−1}

𝜔∙𝑥𝑘=𝑏

||𝜔||
=

2

||𝜔||
                       (3.9)

                                   

When the classification interval is maximized, that is, when the ||ω|| is minimized, 

then the optimal hyperplane problem can be written as finding the minimum function 

that satisfies the constraint of Equation (3.8). 

The study used scikit-learn package of Python program to model SVM. 

3.7 Random Forest 

Random Forest (RF) was constructed by Breiman (2001) based on bagging method is 

a popular group learning method that involves various decision tree (DT) models with 

various attributes and integrates their model results to improve predictive accuracy. 
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According to Wen et al., (2021), in RF, a set of DT classifiers is trained, and each 

classifier is formed using samples obtained through bagging. For each DT classifier, 

only one casually selected subset of independent variables is used to separate the 

nodes. Each trained DT classifier votes for the severity results based on the input and 

ultimate classification is decided by majority votes (Wen et al., 2021). Before starting 

the search for optimal features and split points, the RF method requires the 

completion of two procedures. To begin, a predetermined number from the set of 

training data is selected at random A random subset of the growing trees is then 

selected each time by the RF. Over fitting can be reduced in RF based on two 

procedures. The model performance result in RF is achieved by combining respective 

results of all learners (Cai et al., 2022). 

The prime steps of the RF algorithm are (Hossain, 2011):  

(i) Let's say we have data set L with M predictors and N records, and we want to 

use a random forest (RF) with a total of B CART trees. Here we'll refer to Lb 

as the b-th bootstrap sample produced by selecting randomly n samples and 

replacing them with samples from L. Out of bag data (OOB) refers to the 

information that was left over after drawing the b-th bootstrap sample. 

(ii) For the b-th tree Tb, instead of growing a CART tree with M predictors, m 

predictors are chosen randomly from M predictor space (M > m) at each node, 

and the best separator among m is used to split the node at each level, 

producing two maximum pure nodes. 

(iii) Trying to predict from new data: run the newly collected data through every 

individual (here B number of trees) tree and the new data's class is the class of 

the leaf in every tree where it ended up. The final class of the data is 

determined by collecting the presumptions of the B trees. In the case of 

classification trees, it is achieved through majority voting.    

(iv)  Estimating OOB error rate: At each bootstrap iteration, the L-Lb datasets are 

used to calculate the misclassification rate rb of tree Tb (this misclassification 

rate rb is used for calculating the variable importance as well). This is achieved 

by reducing the L-Lb dataset to Tb grown in steps (ii). The majority vote 

determines the class of every data point (can be weighted). This majority vote 
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is only needed to calculate the OOB error rate (not for variable importance). In 

other words, at the end, the rb of all B trees is accumulated to measure the 

OOB error rate. 

(v) Variable importance: Variable importance is a concept that differs from 

typical statistical approaches in RF. In this case, it is determined by permuting 

the values of every variable (one at a time) and then determining the new error 

rate. As any error in calculating its value has a significant impact on RF 

classification performance, the permuted variable with the maximum error rate 

is considered as the most critical variable. As a result, the values of the j-th 

predictor of M predictors in L-Lb are permuted, and the data set is used to 

measure the misclassification rate rjb. |rb - rjb| represents the variable 

importance Vj of the j-th variable in the b-th tree. The technique is repeated for 

B trees, with the final variable importance calculated by averaging the Vj for 

every variable (j = 1 to M).  

The study employed scikit-learn package of Python program to model random forest. 

3.8 Adaptive Boosting (AdaBoost) 

The AdaBoost was first proposed by Freund and Schapire (1997). Weak learners' 

errors are taken into account in this iterative algorithm. The distribution of the sample 

set is modified in each iteration depending on whether the pattern is accurately 

classified or not. In addition, it is essential to weight and integrate weak learners 

because the basic concept of AdaBoost is to teach many weak learners to construct a 

strong learner (Liu et al., 2020). Unlike RF, AdaBoost performs successive predictor 

learning and revises the weights on each analysis based on the error. At first, all 

findings are consistently weighted. Then, throughout iterative training, the learner's 

poorly approximated findings will be given more weight. Thus, the algorithm can 

successively adjust and minimize the deviation (Cai et al., 2022).  

AdaBoost fits a series of learners to slightly modified versions of the original data at 

each boosting iteration. Through a series of iterations, the weights of correctly 

classified samples are decreased while the weights of incorrectly classified samples 

are increased.  
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The hypothesis of AdaBoost is shown in Equation 3.10, 

ℎ𝑓(𝑥) = {
1
0

   𝑖𝑓
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  ∑ (log
1

𝛽1
)ℎ𝑡(𝑥) ≥

1

2
∑ log

1

𝛽1

𝑇
𝑡=1

𝑇
𝑡=1     (3.10) 

The hypothesis hf combines the outputs of the T weak hypotheses using a weighted 

majority vote. 

3.9 Hybrid Model 

Incorporating various algorithms in an ensemble or hybrid model can frequently 

deliver improved predictive abilities (Pradhan, B., and M. Ibrahim Sameen). So, in 

this study, besides training the LR and machine learning models, voting classifier 

method was implemented to integrate the individual models to develop a hybrid 

model. The aim to see if the hybrid model can better predict two-vehicle crash 

severity in Dhaka. 

There are four distinct voting methods, including majority voting, simple voting, 

weighted voting, and soft voting (Zhou, Z.-H, 2012). Majority voting is a voting 

mechanism in which the output class label receives more than fifty percent of 

classifier votes for a class label. Simple voting, also known as proportional voting, 

determines the winner by casting the most votes. In addition, weighted voting is well 

suited for addressing the unequal performance classifiers. It gives more power for 

stronger classifiers when voting. Weighted voting can outperform both individual 

classifiers and majority voting when given rational weight tasks. Soft voting is 

commonly used for individuals who generate class probability outputs (Liu et al., 

2020 and Zhou, Z.-H, 2012). Because the chosen base classifiers, LR, CART, SVM, 

RF, and Adaboost, generate class probability to determine the final class label, 

classifier-specific weight based soft voting may be a better method for obtaining the 

multi-label classifier (Zhou, Z.-H, 2012).  

Here, to simply introduce the Classifier-specific Soft Voting we define that the 

individual classifier ℎ𝑘  outputs a l- dimensional vector (ℎ𝑘 1(𝑥),…,ℎ𝑘 l(𝑥))T  for the 

instance 𝑥𝑗, where ℎ𝑘 j(𝑥𝑗) ∈ [0,1] can be regarded as an estimate of the posterior 

probability P (𝑐𝑗\𝑥𝑗). 
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Each classifier is given a unique weight, and the combined result for class cj is 

calculated and expressed as Equation (3.11) as follows: 

 

                                           𝐻𝑗 (xj) = ∑ 𝜔𝑘 
𝑇
𝑘=1 ℎ𝑘 j(xj)         (3.11) 

 

Where 𝜔𝑘 is the weight assigned to the classifier hk 

Then, the calculation of output class label expressed as Equation 3.12 as follows: 

 

                           𝑦̂𝑗 = arg  [𝐻𝑗
c

max  (c0|𝑥𝑗), 𝐻𝑗(c1|𝑥𝑗), 𝐻𝑗 (c2|𝑥𝑗)        (3.12) 

 

In this study, numerous classifier-specific soft voting models (hybrid models) were 

developed with all the possible combinations of the individual models: of LR, CART, 

SVM, RF, and Adaboost. The best performing hybrid model with the combination of 

LR, RF and Adaptive Boosting has presented in this study.  

3.10 Feature Selection 

As a data preprocessing strategy, feature selection is been shown to be effective and 

efficient in preparing data (particularly high-dimensional data) for various machine-

learning problems. Building simpler and more understandable models, bettering 

machine learning performance, and getting ready clean, understandable data are all 

goals of feature selection. The curse of dimensionality occurs when machine-learning 

algorithms are applied to high-dimensional data. It refers to the phenomenon in which 

data becomes sparser in high-dimensional space, which has a negative impact on 

algorithms designed for low-dimensional space (Hastie et al. 2005). Furthermore, 

with a high number of features, learning models tend to overfit, that can lead to 

performance degradation on unseen data. High-dimensional data can significantly 

increase memory storage needs and computational costs for data analytics. 

Dimensionality reduction is one of the most effective tools for addressing the 

aforementioned problems. It consists primarily of two parts: feature extraction and 

feature selection. Feature extraction maps the original, high-dimensional features to a 

new, low-dimensional feature space. Typically, the newly created feature space is a 

linear or nonlinear combination of the actual features. In contrast, feature selection 
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directly selects a subset of pertinent features for model construction (Guyon and 

Elisseeff 2003; Liu and Motoda 2007). Both feature extraction and feature selection 

have the benefits of enhancing learning performance, growing computational 

efficiency, reducing memory requirements, and constructing more accurate 

generalization models. 

Feature selection preserves the physical significance of the original features and 

improves the readability and interpretability of models. In many applications, such as 

text mining and genetic analysis, feature selection is therefore commonly preferred. 

Despite the fact that feature dimensionality is often not that high, feature 

extraction/selection still plays a crucial role in certain circumstances, like improving 

learning performance, preventing overfitting, and reducing computational costs. There 

are numerous unrelated, redundant, and noisy features in real-world data. 

Eliminating these features through feature selection lessens storage and computational 

costs without causing significant information loss or learning performance 

degradation.  

The technique for selecting features not only saves estimation expenses but also 

performs adequately (Li et al., 2020). So, all the models (LR, CART, SVM, RF, 

Adaboost, and all possible hybrid models) were trained with all possible combinations 

of features (i.e., set of first one feature, set of first two features, etc.). However, before 

creating feature groups, at first the features were ranked based on their importance. In 

this study, prior to using Random Forest (RF) as classifiers, we used RF to rank 

features to conduct feature selection. 

3.11 Model Evaluation Metrics  

There are considerable methods of performance evaluation for ML algorithms. In this 

study, the most commonly known performance metrics were utilized to test the 

efficiency of the various techniques. Confusion matrix can be used to evaluate 

classification method performance. Confusion matrix contains a comparison between 

the outcomes of the system's classification and the results that should have been 

achieved (Prasetyo, E., 2012). 



55 

 

Based on Table 2, this study compared the performance of LR and different ML 

classifiers using the following evaluation criteria: Accuracy (ACC), Receiver 

Operating Characteristics (ROC) Curve, and Area Under the Curve (AUC) Value. For 

classification problems, the confusion matrix is made up of four possible scenarios, 

i.e., true (TP) positive rate which indicates the positive data entered into the system is 

detected correctly by the system, true negative (TN) rate indicates negative data 

entered into the system is detected incorrectly by the system, false positive (FP) rate 

indicates the negative data entered into the system is detected correctly by the system, 

and false negatives (FN) rate indicates positive data entered into the system is 

detected incorrectly by the system, that are shown in Table 2. 

Table 3-1: Confusion Marix for evaluating model’s performance 

 Predicted Fatal Injury Predicted Non-Fatal Injury 

Actual Fatal Injury True Positive (TP) False Negative (FN) 

Actual Non-Fatal Injury False Positive (FP) True Negative (TN) 

Accuracy, precision, and recall can be calculated using the True Negative (TN), False 

Positive (FP), False Negative (FN), and True Positive (TP) values. Accuracy values 

describe the precision with which a system can classify data. In other words, the 

accuracy value is a comparison among correctly classified data and total data. 

3.11.1 Accuracy (ACC)  

Accuracy values describe the precision with which a system can classify data. In other 

words, the accuracy value is a comparison between correctly classified data and total 

data. The "error rate" is the proportion of misclassified samples in relation to total 

samples (Zhang et al., 2022). According to the same author, if there are 𝑚 

misclassified samples among the total samples 𝑛, the error rate is 𝐸 =
𝑚

𝑛
. In a similar 

fashion, ACC can be expressed as Equation 3.13, 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
          (3.13) 
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3.11.2 Receiver Operating Characteristic (ROC) Curve and Area under the 

Curve (AUC)  

The ROC curve is utilized to assess the performance of a classifier by plotting 

Sensitivity versus Specificity (Zhang et al., 2022). For binary classification problems, 

the AUC (Equation 3.16) is used. It identifies the two-dimensional region under the 

entire receiver operating characteristic curve (Zhang et al., 2022).  

Specificity and sensitivity (also referred to as Recall) are two metrics described in the 

following section. As defined in Equation 3.14, the proportion of correctly predicted 

negative samples within all predicted negative class samples is referred to as 

specificity. Sensitivity is described as the proportion of correctly predicted positive 

samples among all real positive class samples, as shown in Equation 3.15. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

      (3.14) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

      (3.15) 

𝐴𝑈𝐶 = [𝑥 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑦 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦]       (3.16) 

  

Many studies have used sensitivity analysis (Tang et al., 2019 and Chen et al., 2016) 

to uncover the connections in between independent and dependent variables. The 

values of sensitivity, specificity, and the area under the ROC possibility curve (AUC) 

can ascertain how effectively and identifiably the models predict positive and 

negative classes (Ji, A., and D. Levinson, 2020).  

3.12 Shapley Additive Explanations (SHAP) 

Despite the fact that machine learning is designed to produce extremely precise 

estimates, it has proven to be challenging to assess the effect of explanatory variables 

on the output. This study examines the interpretability of tree-based ensemble models 

in order to better identify road safety solutions. The SHAP method developed by 

Lundberg and Lee (2017) is utilized to characterize the significance of the factors and 
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to determine how these factors have an impact. To illustrate the prediction model's 

output, SHAP makes use of game theory. The Shapley value (Equation 3.17) can be 

determined using the following formula: 

 

                          𝜑𝑡 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹−𝑖 [𝑓𝑆𝑈{𝑖}(𝑥𝑆𝑈{𝑖}) − 𝑓𝑆(𝑥𝑆)]                    (3.17) 

 

where |𝐹| is the total number of explanatory variables, 𝑆 resembles any subset of 

explanatory variables that doesn’t contain the 𝑖𝑡ℎ variable and |𝑆| is the size of that 

subset. 𝑓𝑆𝑈{𝑖}(𝑥𝑆∪{𝑖}) indicates model trained with 𝑖, and 𝑓𝑆(𝑥𝑆) is model trained 

without 𝑖. 

3.13 Summary 

This chapter discussed the methodologies and the data collection processes that were 

adopted to achieve the objectives of this research. The chapter discussed the data 

collection and preparation procedures for this study. Different machine learning 

methods as well as a statistical method were discussed along with their applicability 

in this chapter. In this chapter, the most commonly known performance metrics were 

also discussed.  
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Chapter 4  

MODEL DEVELOPMENT AND INTERPRETATION OF 

RESULTS 

4.1 Application of RF for Feature Engineering  

Feature Selection is a fundamental concept in machine learning which has a 

significant impact on the model's performance. Important for classification, feature 

selection eliminates irrelevant method to enhance model performance, make the 

model simpler to comprehend and decrease its running time. Feature Selection 

(variable elimination) facilitates data comprehension, reduces computation 

requirements, mitigates the curse of dimensionality, and enhances predictor 

performance. The objective of feature selection is to select a subset of variables from 

the input that can effectively characterize the input data while minimizing the effects 

of noise or irrelevant variables and still producing accurate predictions (Guyon and 

Elisseeff 2003).  

In terms of feature selection, extensive experiments were used to propose a minimum 

redundancy–maximum relevance (MRMR) method for selecting the key features, 

which significantly improved class predictions (Ding and Peng, 2008). The random 

forest (RF henceforth), that is an ensemble learning algorithm based on decision trees, 

has just been widely utilized in a variety of fields and offers excellent predictive 

ability. Furthermore, the model is even more rigorous than other well-known models. 

Feature Selection based on the Random Forest (FSRF henceforth) can assess the 

significance of the features and select a subset of the most significant ones with good 

interpretability. The FSRF was utilized to extract the global, local, and evolutionary 

characteristics from protein data (Pan and Shen, 2009). To select the effective 

features, the RF model has been implemented. The current popular classification 

models LR, SVM, CART, AdaBoost, and RF were used to evaluate the efficacy of the 

feature selection of various feature combinations. Moreover, the performance of 

classifiers with various combinations of features has been compared using a variety of 

metrics. 
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To achieve specific goals or develop a model with excellent predictive performance, 

optimum features must be chosen from raw data. In this study, the RF model has been 

used to discover effective features since it can assess feature relevance and identify a 

group of relevant indicators with improved interpretability (Li et al., 2020). It is clear 

from Figure 4.1 that RF extracted various types of features from the raw feature set, 

including vehicle related factors (vehicle type, vehicle maneuver), driver 

characteristics (age, sobriety condition, seatbelt/helmet usage), roadway and 

environment conditions (road geometry, surface condition, junction, road class, traffic 

control, movement, light condition), crash characteristics (collision type), and 

temporal features (time, day of week).  

4.2 Feature Selection Using RF 

After extracting useful features using RF, twenty-five features have been selected for 

better predictive performance of the different classifiers as shown in Figure 4.1. In 

case of vehicle characteristics vehicle type and vehicle maneuver have been used as 

independent variables.  
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Figure 4.1: Useful Feature Selection Using RF
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Vehicle type such as bus, car, motorcycle, NMV, pick-up, truck, van/SUV and any 

other types have been counted in raw data set. All the vehicle types have been 

selected in twenty five extracted feature set where motorcycle, bus, truck, car, 

NMVs, van/SUV and pick-up have been considered most important features 

respectively among them. There are two types of vehicle maneuver considered in the 

dataset one is “going straight” and another one is “not going straight”; where “going 

straight” maneuver has been selected as more important feature in case of two 

vehicle crashes. Considering driver characteristics driver age, sobriety condition and 

seatbelt/helmet use have been incorporated in data as important variables. Driver age 

have been categorized as driver age <= 30, driver age >50, driver age 31-40 and 

driver age 41-50; where driver age <= 30, driver age 31-40 and driver age 41-50 

have been considered as important features for severity prediction of two vehicle 

crashes. There were two sobriety conditions depending on drunken suspecting 

whether “driver suspected drunk” or “driver not suspected drunk”. It has been found 

those drivers who were not suspected drunk had important contribution in predicting 

crash severities of two vehicle accidents.  According to the feature seatbelt/helmet 

use, it has been identified that seatbelt/helmet not worn has been selected as an 

influential variable in severity prediction. In case of roadway characteristics road 

geometry (straight/not straight), surface condition (dry/not dry), junction (present/ 

not present), road class (within the city/outside of the city), traffic control 

(present/not present) and movement (one-way/two-way) have been used as 

independent variables. Among all these variables movement (one-way), junction 

(present), road class (city), traffic control (present), road geometry (straight), surface 

condition (dry) have been extracted as significant features for predicting two vehicle 

crash severities. In environmental characteristics, three light conditions (dawn-

dusk/daylight/dark) that have been used as predicting variables; where daylight and 

dark/night condition have been identified as important features respectively. Crash 

characteristics (collision type), and temporal features (time, day of week) have been 

extracted from raw feature set. After feature selection it has been confirmed that rear 

end collision had significant contribution in two vehicle crashes. Besides them, 

temporal features peak-time and night-time along with weekdays have been 

contributed significant role in crash severity prediction. 
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4.3 Model Evaluation  

Taking into account the importance levels of the twenty-five features shown in 

Figure 4.1, all possible combinations of the features were developed, of which five 

significant combinations such as beginning with the first five features, afterwards 

correspondingly first ten features, first fifteen features, first twenty features and at 

last ending with all twenty-five features have been demonstrated better prediction 

performance. To assess the performance of different predictors, the number of 

selected attributes was increased from the first five to the first twenty, and finally all 

twenty-five features were employed combined. Five distinct individual models 

(CART, AdaBoost, LR, RF, and SVM) have been developed, with these five feature 

combinations introduced for each model to assess the efficacy of the classifiers.  

4.3.1 Accuracy and AUC Score of Different Models 

This study compared the performance of LR and different ML classifiers using the 

evaluation criteria: Accuracy (ACC), Area under the Curve (AUC), Receiver 

Operating Characteristics (ROC) curve values. Receiver Operating Characteristics 

(ROC) curves have been plotted for LR, SVM, CART, RF, Adaboost and voting 

classifier in Figure 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 respectively for all five feature 

subset. In order to compare the all the classifiers, in this study, Receiver Operating 

Characteristics (ROC) curves of different classifies for all feature subset have been 

plotted as shown in Figure 4.8. It showed the AUC-ROC curves for six different 

methods, illustrating the trade-off between sensitivity and specificity for different 

classifiers. The accuracy and AUC scores of different models (LR, CART, 

Adaboost, RF, SVM and voting classifier) for each feature subset have been 

identified from the ROC curves shown in Table 4.1.      
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Figure 4.2: ROC Curve for Logistic Regression (LR) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 3: ROC Curve for Support Vector Machine (SVM) 
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Figure 4.4: ROC Curve for Classification and Regression Tree (CART) 

 

 

Figure 4.5: ROC Curve for Random Forest (RF) 
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Figure 4.6: ROC Curve for Adaptive Boosting 

 

 

Figure 4.7: ROC Curve for Voting Classifier 
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Figure 4.8: ROC Curve for Different Models Used in This Study
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Table 4.1 Accuracy and AUC Score of Different Models 

Model Name No. of Features Accuracy AUC Score 

CART 

5 0.70 0.62 

10 0.65 0.66 

15 0.64 0.58 

20 0.66 0.60 

25 0.61 0.55 

AdaBoost 

5 0.70 0.63 

10 0.69 0.69 

15 0.70 0.67 

20 0.68 0.69 

25 0.67 0.70 

LR 
 

5 0.70 0.68 

10 0.69 0.69 

15 0.71 0.69 

20 0.68 0.68 

25 0.68 0.70 

RF 

5 0.70 0.65 

10 0.66 0.59 

15 0.69 0.61 

20 0.70 0.69 

25 0.69 0.61 

SVM 

5 0.70 0.67 

10 0.64 0.55 

15 0.61 0.56 

20 0.64 0.61 

25 0.63 0.58 

Classifier-specific 

soft voting 

5 0.70 0.67 

10 0.70 0.64 

15 0.70 0.66 

20 0.75 0.71 

25 0.71 0.71 
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According to Table 4.1, when the first five most significant characteristics have been 

incorporated into the models, the accuracy values have been found 0.70 for five 

distinct individual models (CART, AdaBoost, LR, RF, and SVM) and AUC scores 

of CART, AdaBoost, LR, RF, and SVM have been identified 0.62, 0.63, 0.68, 0.65 

and 0.67 respectively. It has been observed that for first five most significant 

characteristics, LR and SVM outperformed other individual models with the same 

accuracy value of 0.70 and AUC score of 0.68 and 0.67, respectively. For the top 

ten most significant features, accuracy values of CART, AdaBoost, LR, RF, and 

SVM have been found 0.65, 0.69, 0.69, 0.66 and 0.64 respectively. AUC scores of 

CART, AdaBoost, LR, RF, and SVM have been identified 0.66, 0.69, 0.69, 0.59 and 

0.55 respectively. AdaBoost and LR fared better for the top ten most significant 

features, with an accuracy value of 0.69 and an AUC score of 0.69. When the top 

fifteen most significant features have been put into the models, CART, AdaBoost, 

LR, RF, and SVM have been performed with accuracy value of 0.64, 0.70, 0.71, 0.69 

and 0.61 respectively. AUC scores of CART, AdaBoost, LR, RF, and SVM have 

been identified 0.58, 0.67, 0.69, 0.61 and 0.56 respectively. When the top fifteen 

most significant features have been put into the models, LR performed better than 

other individual models, with an accuracy value of 0.71 and an AUC score of 0.69. 

When the top twenty most significant features have been put into the models, CART, 

AdaBoost, LR, RF, and SVM have been performed with accuracy value of 0.66, 

0.68, 0.68, 0.70 and 0.64 respectively. AUC scores of CART, AdaBoost, LR, RF, 

and SVM have been identified 0.60, 0.69, 0.68, 0.69 and 0.61 respectively. For the 

first twenty most significant features, RF performed better, with an accuracy value of 

0.70 and an AUC score of 0.69. There is further evidence of RF's predictive 

superiority in the research literature (Ji, A., and D. Levinson, 2020; Hagenauer, J., 

and M. Helbich, 2017 and Yassin, S. S., and Pooja, 2020). For all twenty-five 

selected features, accuracy values of CART, AdaBoost, LR, RF, and SVM have been 

found 0.61, 0.67, 0.68, 0.69 and 0.63 respectively; where AUC scores of CART, 

AdaBoost, LR, RF, and SVM have been identified 0.55, 0.70, 0.70, 0.61 and 0.58 

respectively. It was discovered that, for all twenty-five selected features, AdaBoost 

and LR performed the best, with accuracy values of 0.67 and 0.68, respectively, and 

the identical AUC score of 0.70. Above all, this means that when the top fifteen and 
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twenty most significant features have been picked as model predictors, accurate 

prediction of two vehicle crash severity has been discovered. The soft voting 

classifier, which combines three separate approaches AdaBoost, RF, and LR, 

outperforms individual models in relation to accuracy and AUC score. For each 

feature subset, the accuracy of soft voting classifier have found higher. 

4.3.2 Graphical Representation of Accuracy and AUC Score of Different 

Models 

The accuracy and AUC score for different combination of feature set have been 

expressed graphically in this study. 

 
Figure 4. 9: Accuracy and AUC score for CART 

When CART has been used as classifier, from Figure 4.9 it has been identified that 

this model has performed better when first five most significant characteristics have 

been incorporated into the model with an accuracy value of 0.70 and AUC score of 

0.62. 
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Figure 4.10: Accuracy and AUC score for SVM 

When SVM have been used as classifiers, from Figure 4.10 it has been identified 

that this model has performed better when first five most significant characteristics 

have been incorporated into the model with an accuracy value of 0.70 and AUC 

score of 0.67.  

 

Figure 4.11: Accuracy and AUC score for AdaBoost 
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When AdaBoost has been used as individual classifier, from Figure 4.11 it has been 

identified that this model has performed better when first fifteen most significant 

characteristics have been incorporated into the model with accuracy value and AUC 

score of 0.70 and 0.67 respectively.  

 

 

Figure 4.12: Accuracy and AUC score for LR 

 

 

Similarly, when LR has been used as individual classifier, from Figure 4.12 it has 

been identified that this model has also performed better when first fifteen most 

significant characteristics have been incorporated into the model with accuracy value 

and AUC score of 0.71 and 0.69 respectively.  
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Figure 4.13: Accuracy and AUC score for RF 

 

When the classifier RF has been used, from Figure 4.13 it has been identified that the 

model has performed better for first twenty feature sub-set with accuracy value and 

AUC score of 0.70 and 0.69 respectively.  

Figure 4.14: Accuracy and AUC score for hybrid model using soft voting classifier 
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Additionally, a hybrid model using soft voting classifier has been built with all 

conceivable combinations of separate models, among which a voting classifier with 

the combination of AdaBoost, LR, and RF demonstrated the best prediction 

accuracy. It was observed that a combination of different approaches based on 

classifier-specific soft voting performed satisfactorily (Liu et al., 2020). As shown in 

Figure 4.14, for the first five set of features the accuracy value and AUC score of 

voting classifier have been identified 0.70 and 0.67 respectively. The accuracy value 

and AUC score of voting classifier have been found 0.70 and 0.64 respectively for 

the first ten feature set. While for the first fifteen set of features, the accuracy value 

and AUC score of voting classifier have been identified 0.70 and 0.66 respectively. 

For the first twenty set of features, the accuracy value and AUC score have been 

identified 0.75 and 0.71 respectively. At the end, for all twenty-five feature set, both 

the accuracy value and AUC score have been identified 0.71 for voting classifier. It 

has been recognized that the voting classifier performed better in terms of accuracy 

(0.75) and AUC score (0.71) for the first twenty set of features.  

For this reason, this study has examined the accuracy and AUC scores of each model 

for the first twenty characteristics and discovered that for that subset of features, RF 

had the best accuracy (0.70) and AUC score (0.69) of any of the models tested. As a 

result, this study has interpreted the global feature importance for twenty 

characteristics by RF selection and found the influential factors affecting two vehicle 

crash severities. 

4.4 Model Interpretation using SHAP Methodology 

This study uses the SHAP methodology to determine how well the features 

contribute to the severity prediction, thus finding influential factors.  
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4.4.1 Contributing Factors of Two vehicle Crash Severity According to SHAP 

Global Feature Importance 

 

Figure 4.15: Contributing factors of two vehicle crash severity according to SHAP 

global feature importance 

 

The global importance has been achieved by averaging the absolute Shapley values 

for each feature. This represents the marginal contribution of each feature in the 

prediction. For example, Shapley value for the first feature day of week (weekdays) 

can be determined by sampling a correlation that contains the first feature day of 

week (weekdays) and a correlation form by removing that feature. The difference 

between the respective values of these two correlations is known as marginal 

contribution of the first feature day of week (weekdays). This means how much the 

first feature day of week (weekdays) contributes to the correlation consisting the 

other nineteen features. From Figure 4.15, it has been identified that, according to 
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the SHAP approach, the day of week (weekdays) has the most important 

contribution in predicting the severity of crashes between two vehicles. This factor 

alone contributed in predicting whether the two-vehicle crash severity would be fatal 

or not by an average of 10.2 percentage points. In addition, vehicle type (car) is 

another most critical variables in predicting two vehicle crash severities whether it 

would be fatal or not by an average of 4.8 percentage points. Other most critical 

variables in predicting two vehicle crash severities have been identified peak time 

period, straight vehicle maneuver, straight-road geometry, one-way movement, dry-

surface condition, road class (city), vehicle type (truck), traffic control, collision type 

(rear end), night time period, junction, night-light condition, day-light condition, 

vehicle type (van/SUV), vehicle type (bus), vehicle type (NMVs), vehicle type 

(motorcycle) and vehicle type (pick-up) which have been contributed in predicting 

whether the two-vehicle crash severity would be fatal or not by an average of  4.3, 

3.8, 2.9, 2.9, 2.2, 2.2, 2.0, 1.8, 1.7, 1.5, 1.5, 1.5, 1.4, 1.4, 1.4, 1.3, 1.2 and 0.9 

respectively. However, it is until unclear the ways in which these features impact the 

prediction of crash severities.  

It has been found that, the day of week, vehicle type, time of the day, vehicle 

maneuver, and road geometry are the most significant explanatory variables and 

have important contribution in predicting crash severities which is consistent with 

our previous studies (Chiou et al., 2020; Yuan et al., 2022; Lee, C., and X. Li, 2014 

and Ji, A., and D. Levinson, 2020).  
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4.4.2 Contributing Factors of Two vehicle Crash Severity According to SHAP Local Explanation 

 

Figure 4.16: Contributing Factors of Two Vehicle Crash Severity According to SHAP Local Explanation
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To identify how the contributing factors affect two vehicle crash severities, Figure 

4.16 depicts the SHAP values of the elements determining the severity of a two-

vehicle crash. It should be noted that SHAP values more than zero indicate positive 

effects on the risk of a fatal accident occurring, whilst SHAP values less than zero 

indicate negative consequences. The graphic depicts the local size, distribution, and 

direction of the contributing elements in determining whether a two vehicle crash 

will be fatal or non-fatal. Weekday, for example, has a red tail on the right and a 

short blue tail on the left, as illustrated in Figure 4.16. It means that if a two-vehicle 

collision occurs during the week, the accident is more likely to be fatal. Furthermore, 

the lengthy red tail implies that weekend accidents are not nearly as important as 

weekday accidents in affecting two vehicle crash severities. It can deduce from the 

vehicle type variable that if at least one of the vehicles involved in the collision is a 

private car, truck, or motorcycle, the probability of a fatal accident increases, 

because the red tail of a private car, truck, or motorcycle only appears on the right, 

whereas the red tail of an NMV, bus, van/SUV and pick-up appears on the left. 

Because larger vehicles like bus, pick-up and SUV provide better protection, 

resulting in fatal crashes for private cars and motorcycles, which is consistent with 

previous research (Yuan et al., 2022 and Yu, R., and M. Abdel-Aty, 2014). The 

vehicle maneuver depicts a long red tail on the right and a short blue tail on the left. 

This means that while straight-moving vehicles are more likely to be involved in a 

fatal accident, vehicles that are not travelling straight are less likely to do so.  The 

fact behind this could be the unconsciousness of the drivers while moving straight 

without any turning on their way. The data also reveals that multiple vehicle crashes 

during off-peak hours seem to be more likely to result in mortality. The road 

geometry depicts a short blue tail on the right and a long red tail on the left. This 

means that, the accidents are less likely to be fatal if the roads are straight. The result 

is consistent with a previous study (Lee, C., and X. Li, 2014). The movement depicts 

a blue tail on the right and a red tail on the left. This means that, the accidents are 

more likely to be fatal for two-way movement and less likely to be fatal for one way 

movement. The surface condition has a short blue tail on the right and a long red tail 

on the left. It means that when the surface is wet, the accidents are more likely to be 

a fatal accident and less likely to be fatal when the surface is dry. The data also 
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reveals that if the road flows to outside of the city the accidents are more likely to be 

a fatal accident as it depicts a long blue tail on the right for city road. The traffic 

control variable shows a short blue tail on the right and a red tail on the left. That 

means when there are no traffic control the accidents are more likely to be fatal. It 

has also identified that two vehicle crashes during night time seem to be more likely 

to result in mortality, because the red tail of night time variable has appeared on the 

right. At junction, the two vehicle crashes are more likely to be fatal due to a red tail 

on the right, whereas the blue tail on the left which means the accidents are less 

likely to be fatal when there is no junction. If a two vehicle crash occurs during the 

night light condition, the accidents are more likely to be fatal. Furthermore, the blue 

tail on the left implies that the accident occurs in day light are not likely to be fatal. 

4.5 Overview  

The analytical portion of this thesis can be divided into three stages: understanding 

the importance of analyzing two vehicle crashes severities of the country, applying 

different machine learning (ML) methods and traditional statistical regression 

method to identify the contributing factors responsible for such crashes and also 

compare the prediction accuracy of different models. 

 

 

 

 

 

 



79 

 

Chapter 5  

CONCLUSIONS AND RECOMMENDATIONS 

5.1 General 

This research analyzed crash severity prediction of two vehicles using LR as a 

statistical method and some popular ML methods such as CART, SVM, Adaboost, 

RF, and soft voting classifier. Different independent variables like vehicle 

characteristics (vehicle type, vehicle maneuver), driver characteristics (age, sobriety 

condition, seatbelt/helmet usage), roadway conditions/environment (road geometry, 

surface condition, traffic control, movement, light condition, junction, road class,), 

crash characteristics (collision type) and temporal features (time, day of week) have 

been used in predicting two vehicle crash severities. Using RF, this study employs a 

feature engineering strategy to extract valuable features for boosting ML classifier 

performance. This is the first study to compare classifier-specific Soft Voting with 

individual classifiers to see if individual or hybrid models can forecast the severity of 

a two vehicle crash with greater accuracy. The SHAP method, a brand new ML 

model interpretation technique, was used to identify possible factors influencing two 

vehicle collision severity, as well as their relative size, distribution, and direction in 

estimating two vehicle crash severities. 

5.2 Conclusions 

It is the first to use data-driven ML techniques to predict two vehicle crash severity 

in a low-income country context, Bangladesh, specifically Dhaka city. The major 

conclusions and findings of the research are summarized below:  

(i) It has been found that when twenty features are utilized to evaluate the 

severity of a two-vehicle crash, RF achieves the highest accuracy and AUC 

score.  

(ii) Between hybrid and individual classifiers, the soft voting classifier, which 

combines three separate approaches AdaBoost, RF, and LR, outperforms 

individual models in relation to accuracy (0.75) and AUC score (0.71).  
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(iii) According to the SHAP approach, it has been found that, the day of week, 

vehicle type, time of the day, vehicle maneuver, and road geometry are the 

most significant explanatory variables and have important contribution in 

predicting crash severities by an average of 10.2, 4.8, 4.6, 3.8 and 2.9 

percentage points respectively. 

(iv)  If a two-vehicle crash occurs during the weekdays, the accident is more 

likely to be fatal probably due to heavy traffic flow.  

(v) If at least one of the vehicles included in the crash is a private car, truck or 

motorcycle, the probability of a fatal accident increases. Other types of 

vehicles, such as buses and vans/SUV, are less likely to be seriously injured 

than passenger cars and motorcycles because larger vehicles provide better 

protection, resulting in fatal crashes for private cars and motorcycles. 

(vi) Furthermore, in Dhaka city, after a certain time period, the movement of 

trucks prevails over other types which initiate the chances of truck-truck 

collisions may lead to fatal injuries. 

(vii) Time is another critical variable in predicting two vehicle crash severities. 

Off-peak hours seem to be more likely to occur in fatal vehicle crashes. This 

may be due to the fact that, at off peak hours, multiple vehicles move with 

higher speed than peak hours and results in fatal injuries.  

(viii) Another variable is vehicle maneuver that has much contribution in 

predicting two vehicle crash severities. In this study it has found that, 

straight-moving vehicles are more likely to be involved in a catastrophic 

accident than those are not travelling straight.  

(ix)  Another factor showed that, the vehicles moving on a straight road are less 

likely to be involved in a fatal accident than those are on a curved road.  

5.3 Recommendations for Future Studies 

It is being perceived that by overcoming the study limitations new research horizons 

would be yielded. These can be abridged as follows:  
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• This study has been concerned with how accident severities are attributed to 

vehicle related factors (vehicle type, vehicle maneuver), driver characteristics 

(age, sobriety condition, seatbelt/helmet usage), roadway and environment 

conditions (road geometry, surface condition, junction, road class, traffic 

control, movement, light condition), crash characteristics (collision type), and 

temporal features (time, day of week). But there was no information in the 

data to indicate which of the two-vehicle crashes were caused by pedestrian 

activity. The primary cause of the two-vehicle crash that may have been 

caused by a pedestrian action cannot be identified because of improper 

reporting system in Bangladesh. However it is important to include pertinent 

information on pedestrian activity before an accident.  

• In-depth analyses of this research finding for developing countermeasures 

and policy level decisions would provide enormous scopes for future 

endeavors. 

• For better prediction accuracy, deep machine learning can be applied to the 

data set. 

• Advanced modelling techniques viz., artificial neural network, can also be 

applied on the same crash data used in this thesis.  

• This study has done only for Dhaka city. It can be conducted for other cities 

of Bangladesh as well. 
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