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ABSTRACT

The acoustic radiation due to natural vibration of. baffled rectangular

flat plates of constant thickness with three different pure boundary condi-

tions htlsbeen investigated in thi.s thesi.s.The ,",,<Hationefficiency of a ,"ec-

tangular flat plate with all four edges simply supported, has also been found

to check the reliability of the method employed by comparing with the results

available in the literature. Extensive numerical results on the acoustic power

radiation by plates with different aspect ratios, thickness ratios and mode

orders have been presented.
Tbe functions developed by Warburton t.o represent the vibration of

beams, have been used to apply to different cases of vibrating plates. The

method of solution involves the formulation of the expression for the acoustic'

power radiation in terms of the farfield acoustic pressure distribution;

Numerical integration of the acoustic intensity have been used to obtain the

total average acoustic power radiation from one side of the plate under

consideration. The Simpson rule for numerical integration has been used in the

computer programming.

It has been found that, at low mode numbers, the power radiation "depends

upon the boundary conditions, mode numbers, aspect ratios and thickness

ratios, but at high mode numbers, the effects of boundary'conditions and mode

numbers are almost nullified.
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. CIIAPTEH -l

INTRODUCTION

1. 1. GENERAL:

Within the last few years. concern about the protection of environment

has grown rapidly as it has become generally recognized that the steady rise

in pollution of all kinds can not.be'allowed to continue indefinitely. With

the growth of mechanization in modern life, the problem of noise is also. grow-

ing steadily. The escalation in number, size and complexity of machines, in-

creasing road traffics etc. are contributing to the higher level of noise and

hen~e degrading the quality of life. The problem is already recognized as one

of consider"able importance and demands iouuediate attention. To combat this

problem, many countries and communities have recently introduced legislations

making it a legal requirement to measure community noise level, to reduce

noise from vehicles at source and to maintain. acceptable noise levels in fac-
tor"ies to prevent hear"ing loss.

This activity has led to a greater appreciation of the benefits of quiet

environment and a preference for quieter domestic equipments, if these are

available. The quieter Hem therefore, often has a sales advantage over its

more noisy competitor which may be reflected in the command of a higher price.

Economic advantages are also apparent in property values which are lower in

noisy areas than in quiet areas.

The cost of insulating against noise must also be 'considered. The con-

trol of noise is therefore, of importance not only in the prevention of hear-

ing damage and in providi.ng an acceptable acoustic environment but also from

economic point of view.
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1.2. SOURCES AND MECHANISM OF PRODUCTION AND PROPAGATION OF SOUND:

To identify the sources of sound and to understand the mechanism by

which it is produced and how it travels from one point to another is the first

prerequisite to the study of acoustics. Noise is caused by the vibration of

solid, liquid or gaseous medium. When this vibration is within the range of

audi.ble frequency of the human beings, H human cur cun perceive the noise,
otherwise, they go unnoticed; When a solid body vibrates at a frequency within

the audible frequency 1'"nge,>" pArt of the energy dissip,ll:edis tr"nsmitted to

the surrounding environment as perceivable sound. Energy is transferred from

one vibrating particle to the next and the acoustic energy travels through the

surrounding medium as longitudinal waves. In the current study, attention is

concentrated to >the amount of acoustic energy dissipated as noise due to

natural vibration of plane rectwlgular plates of constant thickness.

1.3. MOTIVATION REIIlND THE SELECTION OF THE PROBLEM:

In a solid stl>ucture, the dominant sound generating mechanism is at-

tributed to the mechanical vibration of the system. The structure in this

analysis is taken to be a simple plane rectangular plate of constant thickness

vibrating in flexure. In everyday life, many problems are encountered with un-

wanted sound. Many of these noise sources are in the form of flat plates. The

windows, walls and floors of buildings, the exposed surfaces of large

machines, the walls of air-conditioning ducts, the air plane wings are some of

the examples of such noise radiators. To control noise produced by these

structures, it is always very convenient to become familiar with the idealized
proble.ms.

>Investigations into the interaction of acoustic field and vibrating

structure have demonstrated the importance for a greater understanding of

energy radiation from vibrating structures. Numerous attempts are made in the

... ,
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past to evaluate the noise characteristics of different vibrating sources by

direct measurement. Continued efforts in this direction has also led. to the

develo~nent of very sophisticated sound measuring devices. But an exact

analysis of the noise radiation from flexur'al vibr'ation of 11 plate vibrating

in.its natural modes under different edge conditions is yet to be achieved.

1.4. OBJECTIVES OF THE STUDY:

In this analysis, attempt is made. to study the noise generating charac-

teristics of a rectangular flat plate in an infinite baffle. The plate is

studied under three different boundary conditions. These are: (i) all four

edges of the plate are simply supported, (ii) all four' edges of the pla.te are

clamped and (iii) all four edges of the plate are freely suspended. These

three boundary conditions of the plate are herein referred to as pure boundary

conditions in order to differentiate them from large number of mixed boundary

conditions. The objectives of the current study can be outlined as follows.

(i) The development of appropriate displacement functions that satisfy

the boundary conditions of the rectangular plates vibrating in flexure.

(ii) Derivation of an expression for the natural frequency of the

vibr'ating plate for different mode shapes.

(iii) Evaluation <ifthe frequency of vibration for a particular case 'and

study its variation with the mode number's.

(iv) geriv~tion of an expression for the power radiated due to natural

vibration of the plate under consideration.

(v) Evaluation of the magnitude of the ~verage power radiated from one

side of the baffled plates by the method.of numerical integration of the ex-

pression for the power radiated. For this purpose, a computer program is to be
developed.

(vi) To study the variation in the radiated power from tbe plate with
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the variation of mode numbers, aspect ratio, and thickness ratio under dif-

ferent bOWldal"y conditions.

(vii) Determination of the radiation efficiency of the simply supported

plate and plotting the same against the 'wave number ratio for comparing the

results of the current investigations with those of the previous works in or-

der to verify soundness of the pl"esent analysis and to ascel"tain the absence

of any mistake in the numerical procedure employed here.

1.5. DEFINITION OF TERMS:

Some of the terms used in this thesis are defined here in order to

remove ambiguity in their use and to attach precise meaning to them.

(a) ACOUSTIC PRESSURE:

Sound travels as a wave of compression and rarefaction with an as-

sociated wave of pressure variation. In most practical problems, it is the

pressure variation that is of greater importance and greater interest. The

acoustic pressure at any point is the difference between the actual pressure

at that point in the presence of the sound and the pressure that would exist?,

at that point under identical conditions in the absence of any sound. This,'
c,

acoustic over pressure at any point varies sinusoidally with time exactly as

an electrical current and exactly as in electrical measurements, it is con-
venient to use the r.m.s. value.

(b) ACOUSTIC INTENSITY:

Perhaps the most basic quantity with which one is closely concerned is

sound power. This is associated wi th the actual sOUl'ce of sound. The source

radiates power'which is transmitted in the form of sound. The sound power of a
' ,

source is the total power coming from it. It is the rate at which energy in

" r
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the form of sound leaves the source.

For defining acoustic intensity, a point at some distance from a source

of sound and a small area perpendicular to the line joining the point to the

source has to be considered. Some of the power being generated by the source

will be transmitted through the area; the exact amount depends not only on the

sound power of the source, but also on its directional properties, the dis-

tance of the area from the source and the.presence of sound absorbing and

sound reflecting materials. If the power passing through the area A is W, then

the acoustic intensity I is the power passing thr'ough a unit area or
I=W/A.
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eneq~y applied to the source. However in this thesis the radiation resistance
of a source is defined as (68),

'.

Rmn=P",/< lUm :2>, where,

Pw is the total average acoustic energy radiated by the solid and <:Um:2> is

the temporal and spatial average of the square of the surface velocity.



CHAPTER -2

LITERATURE REVIEW

2.1. INTRODUCTION:

The his lory of the study of vibration of flat plates dates

back to as early as the 19th century. The first person to begin

the study of the dynamical behavior of structures was probably

Rayleigh, who, in 1889, developed the fundamental equations

governing the vibration of plates. But the problem did not get

significant importance until the middle of the 20th century.

During the middle of the 20th century, people began to consider

noi~e as a source of environmental pollution and consequently the

sludy of vibration was initiated. Yet, the study of the acouslic

radiation characteristics of flat plates has not yet got the full

momentum.

2.2. VIBRATION OF PLATES:

Within lhe lasl few decades, intensive work has be~n

reported on vibration analysis of plates. Most of the initiators

confined their study to the determination of the frequency of

vibrating plates.

Toshiyuki Sakata(51) derived an approximate formula for the-

estimation of the fundamental natural frequency of the simply-

supported orthoiroplc rectangular plates with thickness varying

linearly in one direction. The accuracy of the formula and the

influence of the flexural rigidity D on the natural frequency was

also discussed. Approximate values of the natural frequency of an
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isotropic rectangular plate with thickness varying in one direc-

tion were reported by Apple and Byers(l), Gontkevich(20) and Soni

and Rao(59) .. Apple and Byers calculated the upper and lower

bounds for the fundamental natural frequency of the simply-

supported plates. Gontkevich derived approximate expression for

calculating the natural frequency of the plate with various

boundary conditions by use of finite difference method.

John Hunt, Max Knittel and Don Branch(28) jointly reported

an approximate method for solving the equations of motion that

describe the vibration of an elastic structure immersed in an in-

finite acoustic fluid medium. The mathematical model that was

developed used the finite element method to calculate the vibra-

tional characteristics of the elastic body and the acoustic pres-

sure field of that portion of the fluid which closely surrounds

the vibrating structure. Analytical methods were used to obtain

the boundary conditions for the mathematical model. Claassen and

Thorne(4) presented four graphs giving the first ten vibration

frequencies of a clamped rectangular plate as a function of the

ratio of sides and one graph of nodal lines to illustrate the

transition from one mode of vibration to another. Similar results

for a rectangular plate. clamped on two opposite edges and free on

the other two edges as well as a table, discussions of conver-

gence and complete mathematical model in both boundary value

problems were reported by the same authors(5). T'he results of

these investigstions (4 and 5) were found to agree upto an ac-

curacy that could be expected with the previous results of

similar investigations (65,71), as checked by the authors.

Dickinson(7) extended the sine series solution, previ.ously
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used for the study of the flexural vibration of rectangular

isotropic plates, to freely vibrating orthotropic plates. The

author presented the application of the method to three par-

ticular plates with different support conditions and also the

numerical results of two of these examples. The author used the

sille series solutiol} developed Dill nnd Pister(8).

Warburton(70) derived approximate expressions for the frequencies

of ~ll the modes of vibration of isotropic plates subjected to

any combination of free, simply supported or clamped edges. He

applied the Ray~eigh method, assuming that the deflections of the

plates could be represented by suitable characteristic functions

satisfying the boundary conditions(72). In his analysis, the

author first developed a set of beam functions satisfying the

edge conditions of beams and applied those results to the vibra-

tion of plates. He expressed the frequency in terms of a dimen-

sionless frequency factor which in its turn is a function of the

mode shapes. The factors of the frequency factor for different

combinations of simply supported, clamped or freely suspended

edge conditions are given .in the form of a table. He also dis-

cussed the accuracy of the approximate frequency expression and

the existance of the modes m/n+n/m. Henrmon(23) extended the

treatment presented by Warburton to the orthotropic plates with

any of its edges either clamped or simply supported, that is to

a plate made of a material possessing three mutually perpen-

dicular axes of symmetry, two of which lie in the plane of the

plate parallel to the respective sides. The third symmetry axis

is normal to the other two and is therefore perpendicular to the

plane of the plate. The results of his study (23) were found to
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be satisfactory except that the exact boundary conditions could

seldom be realized in experimental work(24).

Lin (38) studied the free vibration of ilat~s, stiffened

with many stingers. The differential equation was solved for an

individual plate and the solution for an individual plate were

coupled with the boundary conditiotis. Duffield and Williems (9)

analyzed the parametric resonance of a plate using the energy

method. Saito and Suzuki (50) performed an analytical evaluation

of the viscoelsstic beam effect on plate vibration

characteristics. Ohtomi (44) reported the analytical study of the

free vibration of a simply supported rectangular plate, stiffened

with viscoelastic beams. The effects of the volume and number of

stiffening beams were clarified.

Goreman (15) conducted free vibration analysis for all

plates with combinations.of clamped-si~ply supported edge, ex-

cepting those with two opposite edges simply supported. He dis-

cussed the vibration of plates with opposite edges simply-

supported in a separate paper (16). The author also intr6duced

the analysis of free vibration of rectangular plates in his ear-

lier works (17). A thorough analysis of the cantilever plates by

the method of superposition was also reported by the author (18).

Laura, Brcoli, Cortinez and Padin de Iriso (35) studied the

transverse vibration of rectangular plates, continuous in two

'di"rections. The author used the Rayleigh-Schmidt methodology

coupled with the use of polynomial coordinate functions. The

frequency values obtained by. these authors were very close to

those obtained by Leissa (36).

For problems of solid circular plates, lO!nalytical so"1utions
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was presented by Wah (67)and the Ritz and Galekin solution have

been obtained by Laura and others (33,34,35) to calculate the

fundamental frequency and buckling loads. Pardoen (45,46) dealt

with the problem by finite element approach. Jain (30) and Gupta

and Lal (21) analyzed circular plates of variable thickness by

the Frobenius method and. this problem was also solved by the Ritz

method (66). Narita (43) made an attempt to develop a general

solution procedure for the vibration and stability analysis under

arbitrary distribution of inplane forces.

2.3. ACOUSTIC RADIATION FROM PLATES:

Though intensive research works have been performed to study

the vibration of plates and plate-like structures, the study of

the acoustic radiation due to vib'ration of flat plates is still

in its infancy. The acoustic radiation from elastic structures

has occupied acousticiolls interested in radiated noise. Many

structures are either large compared to the wave length or highly

damped so that outgoing waves do not reflect from boundaries, ef-

fectively ~aking the structure infinite in extent.

The first solution to the radiated power from an elastic

plate, modeled by classical plate theory, was obtained by

Skudrzyk (56,57) and Heckl (25,26,27) for a time harmonic point

force and by Thompson and Rattaya (63) for time harmonic point

moment. The solutions for the acoustic radiated pressure from a

point excited plate using the classical theory was given by Gutin

(22), Feit (10) and Skudrzyk (57). The influence of fluid loading

on the radiation from elastic plate was~investigated by Maidanik

and Kerwin (42). All of these investigations employ classical
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Such theory fails at high frequencies ,where the

phase and group velocities become infinite as the frequency be-

come unbounded. Such a plate theory is useful only for

frequencies where the ratio of the wavelength to the plate thick-

ness exceeds eight.
To improve the high frequency prediction of elastic plates,

Feit (11) e~ployed the Timoshenko-Miudlin theory for such a

prediction. This theory adds shear deformation and rotary iner-

tia to the classical flexural theory.' There are two, dispersion

curves for this plate. The flexural branch (acoustic) has phase

and group velocities approaching the Rayleigh velocity of ,the

plate material as the frequency increases. Stuart (60,61,62) ex-

plored the solutions for the same plate with new insights into

the leaky wave emanating from the plate BI,d obtained a more ac-

curate solution when the angle of observation approaches the

coincidence angle. This new solution would be accurate at closer

observer distance than Feit's (11).

Sound radiation from beam reinforced plate, excited by point

or line forces, has been investigated by a few authors. Romanov

(49) obtained the solution of the radiated pressure from a plate

reinforced with beam and excited by a line force. Feit and

Saurenman (12) analyzed the acoustic radiation of a point excited

plate reinforced with a beam, but confined their interests to

high fr~quencies. Gorman (19) obtained the solution for a plate

reinforced by many beams and excited by a line force parallel to

,the beam. His solutions thus makes the beams' reaction on the

plate purely as rotary and transverse impedences without flexural

wave travelling in the beams. Garrelick and Lin (13) analyzed the
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radiation from a beam reinforced plate and confined their atten-

tion to an on-axis response. Lin and Hayek (37) obtained the ex-

act solution for the radiation from a point excited plate rein-

forced by one beam, which is valid in the entire acoustic space.

The transient acoustic radiation from a plate under the in-

fluence of time dependent point ~orces was investigated by Magrnb

and Reader (40) and Stuart (60). Magrab and Reader predicted the

time signature. of radiated pressure from a sinusoid phase.

However, the solution was valid only after the acoustitnl arrival

and there was an analytical error in the choi~e of the complex

poles of the solution. Stuart predicted the impulse response of

an elastic plate. His formulation accounts for shear and rotary

inertia of the plate as well as the fluid loading of the acoustic

medium. The resulting farfield radiated pre.sure as determined

from the standard saddle point method was obtained for times

before and after the acoustic arrival. However, the origin of the

first arriVar was not predictable from his solution. Furthermore,

he predicts the solutions for the acoustic pressure after the

acoustic arrival time to be a monotonically decaying solution.

However, the author supposed that it is more physically

reasonable to assume that the plate will vibrate freely, gener-

atini a decaying sinusoid time signature. Seroj, Mackertich and

Sabih (53) reviewed the acoustic radiation from an infinite elas-

tic plate .. The author considered only the infinite elastic plate

due to the fact that many structures are large compared to the

wavelength or highly damped so that outgoing waves do not reflect

from boundaries effectively making the structure infinite in
extent.
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Wallace (69) found the radiation resistance from the far-

field pressure distribution produced by a baffled beam, vibrating

with simple harmonic motion in one of its natural modes. He con-

sidered beams hinged at each end and clamped at each end. The

author derived expressions for the radiation resistance which are

assymptotic to the exact solution as the frequency approaches

zero. In addition, numerical integration of the farfield acoustic

intensity was used-to obtain graphs covering the entire frequency

range for the first ten modes of the beam. In another paper (68)

the same author determined the radiation resistance correspondin~

to the natural modes of a finite rectangular panel supported in

an infinite baffle. He used the appropriate beam functions given

by Warburton (70). But his analysis was confined to simply-

supported plates only.

It is found that not much work has been done to analyze the

acoustic radiation characteristics of rectangular flat plates

the determination of the exact

vibrating in its natural modes.

reported in the literature on

Till now, no development is-

amount of acoustic radiation due to.flexural vibration of rectan-

gular flat plates.



CHAPTER -3

FORMUJ~ATION OF THE PROBLEM

3.1. INTRODUCTION:
In this analysis, a uniform, elastic, plane rectangular pIute of size

2aK2b is. assumed to be contained in an infinite baffle. The baffle prevents

the movement of air around the edges of the plate and permits radialion inlo

the half spaces in front of either of the surfaces of lhe plate. The plale may

have any combination of simply supported, clamped or freely suspended condi-

tions'at lhe edges. This analysis will be confined only to the pure boundary

conditions. The pure boundary conditions are: (i) all four edges of the plale

simply supported, (iil all four edges of the plate clamped and (iii) all four

edges of the plate freely suspended. The plate, along with lhe coordinate sys-

tems used in the analysis is shown in figure 1. Each of the boundary concli-

tions will be deall with in separate seclions. But only a general mathematical

model will be presented in this chapler.

3.2. ASSUMPTIONS:
The analysis that follows in lhe subsequenl sections is based on the

following assumptions:

(i) 'The plale is lhin and of uniform lhickness h; thus lhe free surfaces

of lhe plale are the planes z=%(h/2).

(ii) The direct stress in lhe transvel'se direction is zero. This slress

must be zero al lhe free surfaces and pl'ovided lhat the plate is thin, it is

reasonable lo assume that il is zero at any seclion z.

(iii) The' stresses in lhe middle plane of lhe plate (membrane stress)

are neglected, that is, transverse forces are supported by bending stresses',
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as in flexure of a b~am. For membrane action not to occur, the displa~ement

must be small compared wi.th the thickness of the plate.

(iv) Plane sections. that are initially plane and normal to the middle

plane remain plane and normal to it,

(v) Only the transverse displacement has to be considered.

3.3. MATHEMATICAL MODELING:

(A). DETERMINATION OF THE POWER RADIATED:
When excited, the plate will vibrate with si.mple harmonic motion in one

of its natural modes. The instantaneous transverse displacement at a point

(x,y) on, the surface of the plate, corresponding to the (m,n)th mode of

vibration, is given by (70)

Wmn=Wmn e(x)e(y)el /,)mnt .................. , ... (3.1)

where, Wmn is the amplitude of transverse displacement and w is the

natural angular frequency of vibration of the plate corresponding to the

(m,n)th mode and t is the time. e(x) and e(y) are the displacement functions

describing the wave form of the vibrating plate and satisfying the conditions

at the edg",s.

The motion of the plate surface which generates the "coustic .radiation

is given by the normal velocity distribution,

dWmn i&Jmnt
u=------ =i6JmnWmn e(x) e(y)e

dt
•..•...... , ,'..••• , •..•.... (3.2)

The approximate expression for the velocity potential, d ~ of the

elemental area dA, I'adiating in only one direction is given by,

U ikr
det>= e

2TI r
dA •••........ ,. , . , , : (3.3)



17

where U is the normal vibrational velocity of the element dA, r is the

distance of the receiving point (R,e ,0'-) of'sound wave from the element and k

is the acoustic wave number, 2rr/A, where A is the wave length of the sound

The elemental acoustic pressure, dp at the receiving point (R,e, Cl- ) due

to the elemental area dA is given by the relation

dp= ikP cd'" ....••..•...........••.......•.... (3.4)

where, p is the density of the medium surroWlding the.plate.

Substitution of equation (3.3) into equation (3.4) gives,

ik pcU ikr
dp= ------- e dA

2n: r
......•....• ' ............•.. (3. 5)

where, c is the velocity of sOWld waves in the medium surrounding the
plate.

If the receiving point (R,e ,00) is located in the farfield, then the dis-

tance r of the receiving point fl"Om the elemental area dA can be expressed

with first approximation as,

r:::R-(xCoso<+ySino< )Sine ....................... (3.6)

The' second term (xCoso<-+ySino<-)Sine1. in equation (3.6) is very small compared

to the first and its effect can be neglected in the amplitude factor of equa-

tion (3.5). However, both terms are equally significant as far as the phose

factor of equation (3.5) is concerned.

Substituting equations (3.2) and (3.6) in equation (3.5) and neglecting
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the second term in the expression of r in the amplitude factor of equation

(3:5), it can be shown that,

-pckc.>mnWmn
dp=------------ e(x)e(y)e

2nR
i{Wmn t+kR-k(xCoso' +ySin()l..)Sine}

dA •
........••.•..••.......•.•..•. (3.7)

Thus the net acoustic pressure at the point (R,e,"") due to the (m,n)th mode of

vibration of the plate is given by,

- pckwmnWmn
. p= -------------e

2rtR

i(Wmn t+kR) a b -ik(xCoso.+ySino<)Sine• f r e(x)e(y)e . dxdy.
-a-b

...........•....••...•••.•. (3. B)

Substituting 1=2akcoso< sine and s=2bksino< sine

found that the equation takes the form,

into equation (3.8), it is

- pckwmnWmn
p= -----------

2ITR
i(w mn t+kR) a b

e _l-~(x) e(y)e(-iIX/Z.)e(-iSY/Zb) dxdy.

......................•.. (3.9)

The total average power radiated from one side of the baffled

plate,found by integrating the farfield acoustic intensity over the hemis-

pherical surface is,

Pw=
pc

WSin9 dB ddo ................... (3.10)

where :p:z is the square of the root mean square value of the net acous-

tic pressur'e.

(B). DWfERMINATlON OF NATURAL FREQUENCY:.

The natural frequency of the plate u'mn that corresponds to the
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transverse mode of vibration (m,n) can be determined in terms of the boundary

conditions, the nodal patterns, the dimensions of the plate and the constants'

of the plate material. Warburton (70) derived the expression for the natural

frequency from the enel'gy equation. He expressed the natural frequency in

terms of a dimensionless frequency factor,A(, given by,

............. (3.11)

and the relation betweenCJmn and "I'.l is given by,

A,2= ------------------
n4Eh2g

..•.•. '..••••........•.•..•••. ~•. (3. 12)

where, Pm is the density of the plate material, a,b are the dimensions of

the plate, 0' is the Poisson's ratio and E is the modulus of elasticity of the

plate material, h is the thickness of the plate and g is the acceleration due

to gravity. The quanti ties G., Gy ,Hx ,Hy ,J. and Jy are the funct ions of boundary

conditions and mode shapes. The values of these quantities are given by War-

burton (70) in the form of a table. In this thesis, the expression for natural

frequency given by Warburton (70) will be used. The values of these quantities

for the boundary conditions under consideration, are given in the form of a

table in the following page as a ready reference.

(0
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Table giving the values.of the terms of the frequency factor expression.

o

'Boundary Condition' m Jx--------~--------- --------:------:---------------------- ----------------------
.0,

Simply-Supported 2,3,4, ..: m-1 (m-1 )2 (m-1 )2

2 : 1.506: 1.248 1.248

Clamped 2
:3,4,5, •.om-0.50 (m-0.5)2[1- ---------]

(m-0.5)21t

2
(m-0.5)2[1- ------~--]

(m-0.5)2Tt.
------------------:-------- ------ ---------------------- ----------------------
Freely-Suspended 2 1.506 1.248 5.017

2
:3,4,5, •.,m-0.50 (m-0.5)2 [1- ---------]

(m-0.5)2R

n

6
(m-0.5)2[1+ ---------]

(m-O. 5) 2 Tt

o.------------------ ------:----------------------:----------------------
: Simply-Supported 2,3,4, •• n-1 (n-1 )2 (n-1 )2
------------------ -------- ------:----------------------:----------------------

2 1.506 :' 1.248 1.248
-------- ------l---------------------- ----------------------

Clamped 2
3,4,5, ••,n-0.50:(n-0.5)2[1- ---------]

(n-O. 5)2 It

2
(n-0.5)2[1- ---------]

(n-0.5 )2Tt:
------------------ --------:------ ---------------------- ----------------------

--------:------ ---------------------- ----------------------
Freely-Susperlded 2 :1.506 1.248 5.017

2
3,4,5, ••:n-0.50 (n-0.5)2 [1- ---------]

(n-O. 5 )211:

6
(n-0.5)2[1+ ---------]

(n-O. 5 )21{
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(C). DETERMINATION OF RADIATION RESISTANCE:
The concept of radiation resistance is very useful in calculating the

radiation efficiency of a vibrating system. Though the main objective of the

present investigation is to determine the actual amount. of acoustic energy

radiated from one side of the plate, the radiation efficiency of.a plate with

simply supported boundary condition is det.ermined here for the purpose of com-

paring the results of the present study with those of the previous works

"(68,69). For this purpose,' it is required t.oformulate the expression for

radiation resistance.

The radiat.ion resistance is defined by C.E.Wallace (68,69) as,

Rw=Pw/< :uw :2) .........•.......... (3.13)

wher'e P" is the total average power radiated from one side of .the

baffled plate and <:uw:2) i.sthe average of the temporal and spAtial factor of

the square of the surface velocity, given by,

............. : (3.14)

The expression for Uw can be obtained from equation (3.2) as,

Uw"i WmnWmn e(x) e(y)

(D). DETERMINATION OF RADIATION EFFICIENCY:

.......•.............. (3. 15)

C.E.Wallace, in his paper (68,69) introduced the concept of radiation

efficiency with a view t.osimplify the matters. The main idea behind the in-

troduct.ion of the concept of radiation efficiency was to eliminate the depen-



22

denee on the impedanee of the aeoustie mediumand the plate size while. cal-

culating the acoustic radiation from vibrating plates. The radiation ef-

ficiency is defined as,

Smn=Rn;n/4 Pcab .............................. (3.16)

Combining equations (3.15) and (3.16) the expression for radiation efficiency

becomes,

Smn=Pw/4 pcab<: Uw:2 >

3.4. DISPLACEMENTFUNCTIONS:

... ~ (3.17)

Warburton (70) found a number of beam functions for describing the dis-

placement of a vibrating beam under different combinations of end conditions.

He also used the 'functions to represent the vibration of rectfmgu181' fla l

plates. In this solution. the same beam functions, slightly modified to

satisfy the boUndary eonditions, are used. The modified beam functions. which

are henceforth refen'ed to as displacement functions. for different boundary

condi tions are:

.(i) Simply supported Plates:

(m-l) n (x+a)
e(x)=Sin-----~--------~, m=2.3.4•...• -a~x~a

2a

(n-l) IT (y+b)
e(y)=Sin------------, n=2.3.4, ... , -b~y~b

21>

'~-\
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(ii) Clamped Plates:

e(x)=cos( llmx/2a)+RmCosh(lImx/2a), 10=2,4,6, .. ,. -a~x~a

where, Rm=Sin(~m/2)/Sinh(&/2) and ~mare the roots of the

equation tan( 1S/2)+tanh( ~/2)=0

e(x)=Sin( ~'mx/2a)+ikSinh( 6;'x/2a), 10=3,5,7.. -a~x~a

where ~=-Sin(~~/2)/Sinh(~~/2)

equation tan( ~/2)-tanh( ~/2)=0

and" ~m are the roots of the

e(y)=cos(?5 ny/2b)+RnCosh( l5ny/2b), n=2,4,6,... -b~y~b

where, Rn=Sin(ls'n/2)/Sinh(6n/2)

equation tan( lI/2)+tanh( ~/2)=0

and (\n are the roots of the

e(y) =Sin( ;(n y/2b)+R,;'Sinh( I$'ny/2b), n=3,5 ,7 .. -b~y~b

where, R;;=- Sin(6~/2)/Sinh«\~/2) . and 15~are the roots of the

equation tan( ~/2)-tanh( 15/2)=0

(iii) Freely Suspended Plates:

e(x)=cos( (\mx/2a)+RmCosh(IImx/2a), m=2,4,6,... -a~x~a

where, Rm=- Sin«((m/2)/Sinh(~m/2) and limare the roots of the

equation tan( ~/2)+tan( 3/2)=0

, , ,
e(x)=Sin( 15mx/2a)+RmCosh(~mx/2a) m=3,5,7, .... -~x~a

where, Ik=Sill(a'~/2)/Sinh( lS'~/2)

equation tan( ~/2)-tanh( 15/2)=0

,
and lim are the roots of the
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e(y)=cos( I!ny/2b)+RnCosh( i'lny/2b), n=2,4,6, ...• -~y~b

where, Rn=- Sin(~n/2)/Sinh(~n/2) and '5n are the roots of the

equation tan( t'/2)+tanh( (1/2)=0

e(y):OSin( l!-;'y/2b)+R~Sinh( 1l'~y/2b), n=3,5, 7,. -b~y~b

where, R~=Sin«i~/2)/Sinh(1l'~/2) and 1l': are the roots of the

equation tan( 6/2)-tanh( i'l/2)=0



CHAPTER -4

SOLUTION OF THE PROBLEM

4.1. INTRODUCTION:
The solution of the problem comprises two pnrts, namely, analytical and

numerical. In the analytical part,. integration of the expression for the

elemental pressure is performed to obtain the fnrfield pressure distribution.

In the second part, numerical integration of the expression for the acoustic

intensity is performed in order to get the total average power radiated from

one side of the baffled plate. For the plate with simply~supported edge

conditions, the values of the radiation efficiency is also found by the method

of numerical integration. In the subsequent sections, the method of integra-

tion for each set of boundary conditions will be treated individually.

4.2. SIMPLY-SUPPORTED PLATE:
(a) POWER RADIATED:

From equation (3.9), given in chapter -3, the acoustic pressure dis-
tribution is given by,

- pckG>mn Wmn
p=---------.-

2nR
i (Wmn t+kR) a ~

e' S. e(x)e(y)
-a-

el-llx/2.le(-ISY/2bl dx dy

The displacement fWlctions for the simply-supported plate are,

(m-l)n (x+a)
e(x)= ------------- , m=2,3,4;, .

2a

and
(n-l)rr(y+h)

e(y)=Sin------------, n=2,3,4, .
2b

-b~y~b
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Substituting in the expression for pressure distribution,

-pckWmnWmn i(Wmnt+kR)
p= ----------- e

2ft R

H b

JJ
(m-l)TT(x+a)

Sin-----------
2a

(n-l)rr(y+b)
Sin----------- x

2b

e(-Jlx/2a)e(-lsY/2b) dx dy .•.••............•........................ (4.1)

where, 1=2akCosC'-Sine and s=2bkSinoo Sine.

Integt"ation of equation (4.1) gives,

t>clwmnWmni(wmnt+kR) {2a/(m-l) }{(-1)m-le(-11l2)-e(-11/2)}
p=---.:.------e (-------------------------------------- ]x

2ftR {F/(m-l)2n:2}-1

{2b/(n-l) }{(-I)n-1e(-IS/2)-e(-IS/2)}
(-------------------------------------]

{s2/(n-I)2n: 2}-1

Further simplification gives, (

-pckwmnWmni(~mnt+kR) 16ab ~~~ ~) ~~~\~)
p=----.,------e ------------- (------------ ] ( ]

2rtR (m-l)(n-l)TI2 F -1 S2 -1
(m-I)2rr2 (n-l)2n:2
." (4.2)

where Cos(1/2) is used when m is an even integer and Sin(I/2) is used

when m is an odd integer.

The farfield acoustic intensity is given by,

Substituting p from equation (4.2) it is found that,
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1=-------------------
8rr2R2(m-l)2 (ll-1)2rr4
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CoS{ 1) cost s\
. Sin \2- Sin 2-'
[------- ]2[ ]2

12 -1' 52-1
(m-I)7.n:2 (n-l)2"2

.': .•.............. (4.3)

Now k=2T1/l\, whe,'e A i5 the wave length. As r..=c/f, so k=211f/c=.'/c, where c is

the velocity of sound, f is the frequency and w is the circular

frequency. Substituting in equation (4.3),

p c~W2256a2b21=-------------------------
8.0 c2n:2R2(m-l)2 (n-l)2Tl4

Cos (1\, Cos (!".)
Sin ~ Sin 2

[-------------J2[--------------]2
F -1 52-1

(m-J)2rr2 (n-1)2rr2

, Cos (1) Cos /.s\
p(il4W232a2b2 Sin 2 Sin \2/

=------------------[-------------]2[----------------]2
1l6R2c(m-l)2(n-l)2 F -1 s2-1

(m-1)~2 (n-1)2rr2

and 1 and 5 become,

1;2akCosoe Sine=(2a"'/c)CoslX Sine

5=2bkSinOGSine=(2bw/e)Si.no<. Si.ne

From equation (3.12) the dimensionless frequency factorA, is given by,

pm a%l2 12(l -0-2 )Af =------------------ , SO
n:4 Eh2 g

The,oefore,
A,41tBE2h4g2

!AI 4 =-------------- °
2' a2 (12Pm (l-~2 ))

where hris given by,

/\{'rt4Eh2g
CV2=--------------.

Pma412(l-oi' )
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Substituting forw 4 in the expression for I,

pW232a2b2l\r4n:BE2h4g2
1=----------------------------------

CR2(m-l)2 (n-l )2nGf1n2a8144( 1-0.2)2

Cos (!!)
Sin Z
( ----------- J2

S2 -1
(n-l)2IT.2

Cos 11)
Sin \"2

(----------------]2X
12 -1

(m-l)"R 2

=------------------------
~~~(t) ~~~(~)( ]2(-----------~]2

___ 1_2__ -1 S2 -1
(m-l.)2n2 (n-l)2n2

:---------------------------

........•••........ , ..•.......•..•...... (4.4)

where He is defined as aspect ratio, bla, and Rt is defined as thickness

ratio, h/a.

,1 and s in terms of He and Rt are given by.

2aJ.,rr2hVilg Rt1yrr2.;Eg
1~(2a~/c)CosCLSine=--------------Cos~Sine=-------~---Cos~ SinS

ca2/12Pm (1-0.2) c(3An (1-0.2)
and

HeRtlIrlt2/Ei
s=(2bwlc)Cos~ SinS =------------ SinOGSine

cJ3Ro (l-o(') ,

'The total average power radiated from one side of the baffled plate

is given by,

Zfr 0/.2 :p :2
Pw=f 5---- R2Sine

o 0 c

2IT0/2
de dOG=J J IR2SinS de de<

Substituting the value of I f'"om equation (4.4), Pw tClkes the form,
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8pW2n:"i'f4E2g2p rr,l2 rv.2 ~~.~ (~)
Pw = ----.--------------------- Ra 2 Rt 4 5 ) [-------------] 2 X

9c(m-l)2 (n-l)2Pm2 (l-o?-)2 0 0 12 -1
. (m-l)2n2

~~~(~)
[ ]2 Sine de d~

S2 -1
(n-l )?n2

........................•...•....... (4.5)

The examination of equation (4.5) shows that Pw is independent of R.

This should be so. as the total average powel' radiated froID one side of the

plate is not a function of R. Only the acoustic intensity varies inversely as

the square of R as depicted by equation (4.4).

(b) RADIATION EFFICIENCY:
The objective here is to determine the radiation efficiency of the

simply-supported plates ill order to compare the l'esul ts of this study with

those by_ the previous workers (68,69).

Radiation efficiency of a vibl'ating plate is given in equation (3.17) by,

Smn=Pw/pcab<:Uw:2,>

where Pw is the total average power radiated from one side of the

baffled plate. But here the original expression has to be used in ol'del' to get

the radiation efficiency. This is so because, the radiation efficiency ob-

tained by other authors (68',69) aloe in terms of the parameters other than

those used in the determination of Pw.

Taking the expression for p fl-om equation (4.2),
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p=-------e ------------

2ITR (m-l)(n-1)]c2

30

Cos (1\ Cos (fl.)
Sin ~ Sin 2

[-----~------][--------------]
12 -1 S2 -1

(m-I)'n2. (n-l)"rr2

Nowthe acoustic intensity I is given by, I=:p:2/pc

So that,

Cos (1) COS(S)
32pcr.?-W2k2a2b2 Sin 2 Sin 2

I=---------~----------[--------------]2[~----~-~------]2
n2R2 (m-l)2 (n-I)2n:' 12 -1 s2-1

(m-I)'n2 (n-I)2n2

where 1=2akCoso<Sine and .s=2bkSinc<-Sine

The total average power radiated from one side of the plate becomes,

12Bpcw"k2W2a2b2
Pw=----------------
n6 (m-l)2 (n-I)2

Sine de d"" :

Cos (1) Cos Is)
"'-;'2.n;t2 Sin 2 .. Sin \2
}\ [------------J2X[---------~---]2X
o 6 . 12 -1 s2._-1

(m-I)"),2 (n-l )2n:2

...........................•.....•........... (4.6)

The average of the temporal and spatial factor of the square of the surface

velocity, <:uw:7.) is given by,

a b
<:uw:2)=(l/4ab) J J O/2)uw2 dx dy

-a-b

(m-l)n:(x+a)
But Uw = ie.:we(x)e(y) =j(,JWS in------------

2a

..•.•............. (4.7)

(n-l)n:(y+b)
Sin-------------

2b

Substituting in equation (4.7) and carrying out the integration,
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Substitution in the expression for the radiation efficiency gives,

Sine de da; .......•................• .' (4.8)

The plate wave nwnber, kp is now defined as,

kp=( {(m-I)n/2a)2+{(n-I)n,t2b)2 JO. 5,

't' =k/kp •

Thus, k='I'kp or k2='t'2 kp2 .

and the wave nwnber rat io '" as,

Substituting. in equation (4.8) the expression for the radiation efficiency is

obtained as,

64[ {(m-I)21la }+{(n-I)2 IRa) Jiy 1

Srnn=----------------------------
n:4 (m-I)2 (n-I)2

~~~(~)
[ ]2 Sine de ~

S2 -1
(n-I)"J{2

Cos (1\
TTj2 11/2 Sin 2/J J [--------------~]2X
o 0 12 -1

(m-I)2T(2

...............•... : (4.9)

Making the same substitution, the expressions for 1 and s become,

1=((m-I)2+{ (n-I)2 lila 2}]O. SIf'Il:CoSO< Sine und

s=[Ra2(m--I)2+(n-I)2]0. s~'TtSine<.Sine.
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4.3.CLAMPED PLATE:

For a plate with all four edges fixed, only the amount of aeoustic power

radiation °from olle side of the plate has to be calculated. The farfield pres-

sure distribution is given by equation (3.9),

-pckwW i(wt+kR)
p= ----------e

2TlR

a b-l-i e(x)e(y)e{-ilX/2a)e{-iSY/2b) dx dy

The displacement functions for the clamped plates are,

e(x) =Cos( ~mx/2a)+RmCosh(i3mx/2a) , m=2.4,6 •...... -a~x~a

where Rm=Sin(~m/2)/Sinh(6m/2) and ~m are the roots of the equation,

tan( ~/2)+tanh( ~/2)=0

e(x)=Sin(~~x/2a)+~Cosh(6~x/2a), m=3,5,7, ... -a~x~a

where a,;=-Sin(i5~/2)/Sillh(i5~/2)and 6~ are the roots of the equation,

tan(~/2)-tanh( 11/2)=0

e(y)=COs(~ny/2b)+RnCosh(6ny/2b), n=2,4.6, ..... -~y~b

where Rn=Sin(6n/2)/Sinh(6n/2) and 6n are the roots of the equation,

tan{~/2)+tanh{6/2)=0

e{y)=Sin{6~y/2b)+R~Sinh(6:y/2b). n=3.5.7 •... ; -b~y~b

where R~"!>ill(~~/2)/Sinh(1i~/2) and;';~ are the roots of the equation,

tan( ~/2)-tanh( 6/2)=0

It is now required to consider each of the combinations of odd and

even values of m and n separately.
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CASE-I: EVEN VALUES OF m AND n.

Substituting the displacement functions e(x) and e(y) the acoustic

pressure distr'ibution p becomes,

-pckG.lW i(wt_+kR)
p=------ e

2TIR
a bjJ (Cos(l5mx/2a)+RmCosh(~mx/2a)]x

(COs(tny/2b)+RnCosh(iny/2b)] e(-llx/2ale(-lsY/2bldx dy

Integration of equation (4.10) gives,

•••. '....• (4. 10)

-pck£JW i(CJt+kR) 16ab 1CosO\m/2)Sin(l/2)-'6mSin(~m/2)C()s(l/2)
p=------e ------({--------------------------------------}

2\1:R '11m2~n2 (12 l~m2)-1

1Cosh( lim12) Sin (1/2) +I!mSinh( ~m12 )Cos (1/2)
+Rm {--------------------------.,--------------- }]x

(12/tm2+1)

sCas (IS n/2) Sin(s/2) --1\nSin (6n12 )Cos (s/2) sCosh (lI'n12) Sin (s/2)
({--------------------------------------}+Rn{--------------------

_(S2/15n2)-J (S2/In2)+1

gnSinh(lIn/2)Cos(s/2)
+ ----------------------}]

(S2/~n2 )+1

>-ht.4Eh2g
Here k=6¥c and w2 =------------

Pma412(1--0.2)

1=2akCoSOt Sine=(2aw,lc)Cosoc Sine and,

s=2bkSin~ Sine=(2bWlc)Sinx Sine.

............................... (4. 11)

After making all necessary substitutions and simplifications the amount of

power radiated comes out to be,
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W2 IT/2 lCos(llm/2)Sin(l/2)
Ra 2 Rt 4 ~ 5[{ -------------------

o 0 (12/lS'm2)-1

(5mSin(ll:m/2 )Cos (1/2) lCosh <6m/2) Sin (1/2 )fbm Sinh (1l'm/2 )Co",(1/2
----~----~--------}+Rm{-----------------~---------------------}J2
(F/llm2)-1 (F/6m2)+1 .

sCos (~n/2) Sin (9/2) -linSin (lin/2 )Cos (s/2) sCosh (/I'n/2) Siii (s/2)
X [ {---------------------------.----------- }+Iln {----.--------------:--

(S2/6n2)-1 (S2/l$n2)+l

~nSinh(6n/2)Cos(s/2)
+ ---------------------}J2 Sine de ~

(S2/ll'n2)+1
.....•.•.......... : ..... (4. 12)

/ ,

.............. (4. 13)

RtJlcIl2,;'Eg RtRaA(TI2/Eif"
where l=------------Cos()(. Sine and s=-----'------- Sinet Sine

cl3An(l ~ ) c/'J Pm(l-Ql2)
Equation (4.12) gives the total average power radiated from one side of a

clamped plate vibrating with even values of m and n.

CASE-II: EVENVAWESOF m ANDODDVALUES01' n.

For this case,' the expression for the farfield pressure, after

substitution of the appropriate displacement function, becomes,

-pckwW i(~t+kR) a ~
p=--------e j I [Cos(gmx/2a)+RmCosh(6mx/2a)Jx

2rt R -a-b

(Sin(lS'~y/2b)+R~Sinh(6~ y/2b) Je( - i Ix12. ) e( - '" y 12b) dx dy

Integration of the expression for p gives,

-pckooW i(6Jt+kR) 16ab lCos(lim/2)Sin(l/2)
p=--------e . --------[{------------------- -

2TIR '/{m215';2 (F/lim2)-1 .

&Si n(l5'm/2)Cos (1/2) leosh( ~m/2)Sin( 1/2)+~mSinh( b'm/2)Cos (1/2)
------------------}+Rm{----------------------------------------}]

(F/ll'm2)-1 (F/11'm2)fl

. sSin(1!~/2)Cos(s/2)-~~Cos( 8~/2) Sin(s/2)
x[{-----------------------------------------}+R~ x

(s216~2 )'::1

sSinh(g~/2)Cos(s/2)-g~Cosh(ll'~/2)Sin(s/2)
{-------------------~---------------------)J

(S21ll'~2)+ 1
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Proceeding in the same way as in the case of even values of m and n, the total

average power radiated from one side of a clamped plate .vibrating with even

values of m and odd values of n comes out to be,

. P" ,,----~~~~:~~~~:~~---- Ra2 Rt 4 l'J2 12
[{_~~~~~~:~:2~~~~~~:2__

9c'llm4ll'"''Pm2 0--{)\2)2 0 (F/tl'm2 F1

~mSin(~m/2)Cos( 1/2) lCosh(6m /2)Sin( 1/2)+ll'mSinh(lim /2 )Cos (1/2)
------------------} +Rm {----------------------------------------} ]2

(12/l1'm2)-1 (12/ll'm2)+1

. "sSin(6" /2)Cos(s/2) -6" CosOf" /2) Sin(s/2)
x [ {----------------------------------------} +

(s2/6~2)-1

. ", sSinh(IS"/2)Cos(s/2)-Ii"Cosh(Ii"/2)Sin(s/2)
R"{~-----------------------------------------}]2Sine de de< .

(S2/Il ~2 )+1 .....••........... (4. 14)
where 1 and s are the same as defined earlier.

CASE-Ill: ODDVALUESOF m ANDEVENVALUESOF m.

For this case, when the displacement functions are substituted into

the expression for the farfield pressure distribution, the expression takes

the form,

-.pc~W i(~t+kR) a b

S J ' , .
P"------- e [Sin(~mx/2a)+RmSinh(ll'm/2a)] x

2llR -a-b
[Cos(hy/2b)+R"Cosh(d" y/2b))e< -i iX/2.) e<-is yl2b) dx dy_
After integration it becomes,

o.

-pckwW
P"-------

2rtR

i (cut+kR)
e

16ab lSin(1l'~ /2)Cos 0/2)
[{---------------------- -

(12~~2 )-1

1\~Cos(ll'~/2)SinO/2) lSinh(ll~ /2)Cos 0/2)
---------~------------}+~{----------------------

(12k:'?)-l 02/6~2)+1
, ,

XmCosh(gm/2)Sin(1/2)
----------------------}] x

(12 ;g~2)+1

sCos (li" /2) Sin (s/2)
[{-------------------- -

(S2/"6"2 )-1

ll'"Sin(Ii"/2)Cos(s/2) sCosh(X"/2)Sin(s/2)
-------------------}+R" {--------------------- -

(s2/6"2)-1 (s2111"2)+1

ll'"Sinh(X" /2 )Cos (s/2)
--------------------}]

. (S2/lS'"2)+1
.........•..•...• _.' (4. 15)

/" "",

\
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Following the same procedure liS in CASE-I.,the final expression for the

acoustic power rad.iation becomes,

BW'¥'t"f(6 E2g2p
Pw=-----.---------------- Ra 2 Ht " x

9cim' "1':n"Pm2(l-Q\2)2

I , I -

lSinh(o' m/2)Cos( 1/2)-il'mCosh(gm/2)Sin( 1/2)
{---------------------------------~---------}J2 x

(12 hs'm2 )+1

sCos(o'n/2)Sin(s/2)-~nSin(Kn/2)Cos(s/2)
[{--------------------------------------}+Rn x

(S2 /Kn2 )-1

sCosh(~n/2)Sin(s/2)+~nSinh(~n/2)Cos(~/2)
{----------------------------------------}J2SinS de d~.

(S2/~n2)+1

where 1 and s are the same as given in CASE-1.

, (4.16)

Equation (4.16) gives the total average power radiated from one side of

the baffled plate with clamped edges vibrating in its {m,n)th mode with odd

values of m and even values of n.

CASE-IV: ODDVALUESOF m ANDn.
~',

In this case when the appropriat.e displacement functions are subst.i tuted ,.,',

in the expression for the farfield pressure distribution, the expression takes

the form,

-cpkGJWp=-------
21tH

i (GJt+kR)
e

a b

-Li , , .
[Sin(llmx/2a)+RaSinh(ll'mx/2a) 1x

[Sin(lS~y/2b)+H.;Sinh(l(~y/2b)le(-llx/2a)e(-ISy/2b) dx dy.
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After integration it becom~s,

-pckwW i(wt+kR)p=-------- e
211.R

16ab lSin(B~/2)Cos(1/2)
--------- [{ ----------------------- -
&:21i~2 (12/~~2)-1

...................... (4.17)

~~Cos(!~/2)Sin(1/2) lSinh(Ii~/2)Cos(1/2)----------------------}+~{-----~-----------~------
(F/6'~2 )-1 (1216~2 )+1

!~Cosh(~~/2)Sin(1/2) sSin(t~/2)Cos(s/2)
-------------~----,-----} J2 [ {--------------.--------- -

(12/1~2)+1 (s2/'~2)-1

I~Cos(t~/2)Sin(s/2) sSinh(~~/2)Cos(s/2)
---------------------}+R~{---------------------- -

(S2/B~2)-1 (s216~2)+1

I~Cosh(~~/2)Sin(s/2)
-----------------------}J2 Sine dB ~_

(s2/l(~2)+1

Following the same procedure as in CASE-I,

p" = ------------------------ Ra 2 Rt 4 x
9cB'~' 6~' Pm2 ( 1-<", )2

TY.2rr/2 ISin (/(~12)Cos(l/2)-B'~Cos(15~12)Sin (l/2)5 S [{----------------------------------------}+~ x
o 0 (12/~~2)-1

lSinh«j~/2)Cos( l/2H~~Cosh(1l'~/2)Sin( 1/2)
{--------------------------------------------}J2 x

. (J2!cl'~2)+1

sSin(~~/2)Cos(s/2)-6~Cos(t~/2)Sin(s/2)
[ {-----------------------------------------} +~ X

(s2/1~2 )-1

sSinh(lS~/2)Cos(s/2)-B~Cosh(lS~/2)Sin(s/2)
{------------------------------------------- }J2Sine de de"

(s216~2)+1 .
. ........••..•.•...•...•••• (4. 18)

where 1 and s al'e the same as .given in CASE-I.

Equation (4,]8) gives the total average acoustic power radiated from one

side of baffled plate with all four edges clamped and vibrating with odd

values of m and n.

'\
\
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4.4. FREE~Y-SUSPENDED PLATE:
For a plate with all four edges freely-suspended, the total average

power radiated from one side of the plate is required to be calculated. The

total average power radiated from one side of the plate is given by equation

(3.10). The analytical integration of equation (3.10) is very difficult and

thus numerical integration is performed as discussed in the section' of numeri-

cal solution. But to obtain the expression for acoustic pressure distribution

as used in equation (3.10), equation (3.9) is required to bl' ,integrated over

the entire surface of the plate with displacement functions satisfying the

edge conditions of the freely-suspended plate. This integration is presented

here, leading finally to the equation' for the total aver'age power radiated from

one 'side of the plate.

The displacement functions satisfying the conditions at the edges of a,

freely-suspended plate are;

e(x)=Cos(~mx/2a)+RmCosh(~mx/2a), m=2,4,6,.... -a~x~a

where Rm=-Sin(~m/2)/Sinh(tm/2), and '5m are the roots of the equation,

tan(g/2)+tanh(~/2)=0

e(x)=Sin(~~x/2a)+~Sinh(~~x/2a), m=3,5,7, ••• -a~x~a
I I I Iwhere, Rm=Sin(gm/2)/Sinh(~m/2), and 11m are the roots of the equation,

tan(~/2)-tanh(~/2)=0

e(y)=Cos(~ny/2b)+RnCosh(gny/2b), n=2,4,6, -b~y~b

where, Rn=-Sin(1Sn/2)/Sinh~n/2), and 1Sn are lhe 1'ouls of the equation,

tan(~/2)+tanh(~/2)=0
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e(y)=Sin(g,;y/2b)+R~Sinh(lS~y/2b), n=3,5, 7, .... -~;'.{b

wherlc', Tl;"'SiJl(1l":,/2)/Sinh(IS~/2), ond ~;, ore the roots of the equotion,

tan( 1S/2)-tanh( lS/2)=O

Now each of the combinations of even and odd values of m and n will be coi:l-

side,-cd separately.

CASE- I: EVEN VHUES OF m AND n.

For this combination of mode orders, the expression for the farfield

acoustic p,-essure distribution, after making the necessary substitution,comes

out to be,

-PcwW . i (wt+kR)p=------ e
2 ITR

a b-{l [Cos(~ mx/2a)+RmCosh(~ mx/2a)] x

r
[COs(~ny/2b)+RnCosh(l(ny/2b) ]e( - i I '/2a) e( - i sr/2b) <Ix dy

After integration it becomes,

-PCklolWi(wt+kR) 16ab lCos(ls'm/2)Sin(l/2)-"6mSin(~/2)Cos(l/2)
p=------e ------'[{-------:-------------------------------}

2nR lSm21S'n2 (F/lS'm2)-1

lCosh(6 m/2) si n (1/2) "l\"mSiuh(t m/2) Cos (1/2)
+Rm{----.----------------------------- ------- }]X

(F/((m2)+1

sCOS«((n/2)Sin(s/2Hl"n Sin USn/2)Cos (1/2) sCosh(lin /2)Sin(sj2)
[ {--------------------~------------------} +Rn{--------------------

(S2/lIn2)-1 " (s2/6n2)+1

~nSinh(6n/2)Cos(s/2)
+---------------------}]

(S2 /<ln2) , ]
................................ (4.19)

Following the same procedure as followed in the cases of the clamped

plates, the cxpression for the acoustic powe,- radiation becomes,
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8W2}1f41l6 E2g2p
Pw= --------------------

nL2 rtL2 lCos(lSm/2)Sin(l/2)-tmSin(~m 12)Cos (l/2)
b ~ [{----------(~;~:;)=~-------------------}+Rm x

lCosh(6m 12) Sin (1/2) +1SmSinh( Il'm12) Cos (112)
{-------:---------------- -------------------- ------------ J ]" "

(12 Ill'm2)+ 1

sCos (lin12) Sin (s/2 )--/In Sin( 1l'n12)Cos (s/2)
[{---~------------------------------------ J+Rn x

(s2/11' n2 )--1

sCosh(1Sn12) Sin (s/2) +~n Sinh(lSn12) Cos (s/2)
{-----------------------------------------J)2 Sine de d><

, (s216 /12 )l .. ; (4.20)
where 1 and s are the same as given in the cases of the clamped plates.

Equation (4.20) gives t.he total average acoustic power radiated from one

side of a freely-suspended plate vibrating with even values of m nnd n.

CASE--II:EVEN VALUES OF m AND ODD VAWES m' n.

For this particular combination of mode orders, the expression for the

farfield acoustic pressure distribution becomes,

-pckt.>W i(Qt+kR)
p=------- e

2ITR
1f b -
J J [Cos(6 mx/2a)+RmCosh(llmx/2a)]x
-a -b

lCos(ll'm/2)Sin(1/2)
[ {--------------------- -

(Fltm2)-1

l6abi(wt+kR)

[Sin(1S~y/2b )+R~ Sinh(ll'~y/2b) ]e(- I I x/2a) e(- i I x/2b)
After integration it becomes,

-pck&JW
P"------- e

2IT R

'6mSin(lIm12)Cos( 1/2) lCosh(1Sm/2)Sin( 1/2) +tmSinh(tm 12)Cos( 1/2)
------------------ }+Rm {----------------------------------------)) x
(F/~m2)-1 (F/tm2)+l,

, ,/sSin(~ n12)Cos (s/2)-<l'nCoS(~ 12)8in(s/2)
[ - ,{-----------~----------------------------J+Rn x

(s2/11'~2 )-1

sSinh(lI~12)Cos (8/2) -If~ Cosh(6 ~12) Sin (s/2)
{-~------------_---------------------------- J ]

(s2/11~2)+ 1
.......... (4.21)
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Following the same. procedure as followed in the previous cases, the expression

for the power radiated finally becomes,

Pw = ----------------------- Ra 2 Rt 4 x

leosh (~m/2) Sin (l/2)+ I5'mSinh(~m /2 )Cos (1/2)
{------------------~---------------------- }]2 X

(F/gm2 )+1

sSin(1S~/2)Cos(s/2)-)(~Cos(lS~/2)Sin(s/2)
[{-----------------------------~----------}+a: x
. (S2/~~2 )-1

, " .sSinh(1Sn/2)Cos(s/2)-~nCosh(~n/2)S\n(s/2)
{---------------------~------------------}]2Sinede dd .

.(s2/ls'~2)+1
.................... (4. 22)

where 1 and s al'e the Same as defined in the earlier cases.

Equation (4.22) gives the total nverage power radiated from one side of n

freely-suspended p.l.atevibrating with even values ofm and odd values of m.

CASE-Ill: ODD VALUES OF m AND EVEN VAl.UES OF n.

For this case of odd values of m and even values of n, the expression

for the fnrfield acoustic pressure distribution, after necessary substitution

becomes,

-pckr.lW i(CNt+kR)
p=------- e

2TlR

a b

jj [Sin(lS'~x/2a)+U;Sillh(~~x/2a) J x

[Cos (IIny/2b )+RnCosh(6n y/2b)] e(- i J X;2a) e(- i sY/2b) <Ix dy
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After integration it becomes,

-pdl6lW i(wt+kR) 16ab lSin(~~/2)Cos(l/2)-~;"Cos(~~/2)Sin(l/2)
P"-----e ------- [{--------------------------------------- 1

2 fIR ~26n2 (F/2S~2)-1
, . I I

, lSinh(ll'm/2 )Cos (1/2) +limCosh(lim/2) Sin 0/2)
+Rm{----------------------~---------~---------l) x

(F/~2)+1

sCos (~n/2) Sin (5/2) - in Sin (ISn/2 )Cos (s/2)
[ {--------------------------:...--------------- 1+Rn x

(S2/6n2 )-1

sCosh{1s'n/2) Sin (s/2) -)S'nSinh(lSn /2)Cos (s/2)
(---------------------------------------------})

(S2/25n2)+1
..........•.. (4. 23)

Following the same procedure as in the previous cases, it is found that

the expression for the power radiated comes out to be,

Pw = ----------------------- Ra 2 Rt' x
9C6~'ISn'Pm2(l-oi')2

I . I I

lSinh(~m/2)Cos(1/2)-~mCosh(~m/2)Sin(1/2){-- ~ })2 x

(FI6~2)+1

sCos (6n/2) Sin( s/2) -'6nSin (Iin/2 )Cos (s/2)
[ {--------------------------------------------------- 1+Hn x

(S2/~ n2 )-1

sCosh(~n/2)Sin(s/2)+linSinh(g~/2)Cos(s/2)
(:...---------------------------------------l)2Sine de d~

(S2//(n2)+ r
..................... (4. 24)

where 1 and s are the smne as defined in the earlier cases.

Equation (4.24) gives the total average acoustic power radiated from one

side of a freely suspended plate in an infinite baffle and vibrating in its

(m,n)th mode with odd values of m and even values of n.
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CASE-tV: ODD VALUES OF m AND m.

For the case of odd values of m and n, the expression for the farfie1d

pressure distribution after substituting

functions, becomes"

the appropriate displacement

,-pckruW i (6Jt+kR)
p=-------e
ZTlR

a b, ff j [Sin(<'\mx/Za)+lkSinh(lI'mx/Za)]x
-a -b

, ,
[Sin(iSn y/ZI1)+HnSinh(lI' ny/ZI1)] e( - II x/20 ) e( - 1 s y /2b) dx dy

After integration it becomes,

-Pcki.>Wp=------ e
, ZIT R

i(wt+kR) 16al1 1Sin(/S'm/2)Cos(l/2)
---------({------------------- -
~~?1f~2 (F/~~?)-l

, , ,
~mCOS(~m./Z)Sin(l/2) lSillh~ m/2)Cos (1/2)
-----------,~----,---,--} +R~{---------'- -----,-------

, '(F/~m2)-1 (F/~m2)+1
, .

IfmCosh(tm/2)Sin(1/2)
----------------------}]

(F/t~2)+1

I '15nCos(lS'n/Z)Sin(s/2)
---------------------} +

(S2/l!~2 )-1

~~Cosh(ll'~/2)Sin(s/2)
---~-----~-----------}]

(S2/lIn2)+1

. 'sS1n(~n/2)Cos(s/2)
x [{--------------------- -

•(S2/lI'n2 )-1

. 'SSlIlh(lS'n/2 )Cos (s/2), .I~{--------~-------------
(s2/1(.,2)+1

...•...••.................•••. (4. 25 )

1
'I

r/

Following the same procedure as followed in the previous Cllses, it. is found

that the expression for the acoustic power radiation becomes,
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Pw =

I / ,-n/2 n£2 lSin(~m/2)Cos(1/2)-~mCos(~m/2)Sin(1/2)J J [{--------------------;------------------}+ ~ x
o 0 (12hm2)-1

, '"lSinh(lI'm/2)Cos( 1/2)-~mCosh(~m /2)Sine 1/2){ })2 x
(12/1S~2)+1

, "sSin(~ n/2)Cos(s/2)-lSnCos ~ /2)Sin(s/2)
{--------------------------------------- }

. (s2/~~2)-1

,
+ Rn x_

, .,'sSinh(~n/2)Cos (s/2)-~nCosh(lln/2)Sin (s/2){ })2 Sine de ~.
(S2/1l~2)+1

.•.•••....•......•••... (4. 26)

where 1 and s are the same as defined in the previous cases.

Equation (4.26) gives the total average acoustic power radiated from one

side of a plate freely suspended in an infinite baffle and vibrating in its
(m,nyth mode with odd values of m and n:-- .--~-~- __ ~---"c-_)

4.5. NUMERICAL SOLUTION:

It has becn mentioned earlier that the analytical solution of equation

(3.10) for'calculating the total average acoustic power' radiation, after the

necessary substitution, is very cumbersome. Considering the fact that it)

modern times, the tools and techniques of numerical soluUon are highly

developed, the numerical method of solution has becn used toosolve equation

-.(3.10) with the help of a compu ter The equations tan(~/2)Hanh(~/2)=0 were

solved by the method of bisection and the integration was performed by the ap-

plication of the Simpson Rule. The method involved the prepar-ation of a com-

puter program. The results of integration are presented in tabular as well as

in graphical forms.
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THE METHOD OF BISECTION:

The method of bisection has been a very efficient method for solving

lionltnear as well as complicated linear equations. In fact the method can be

applied to solve any kind of equations. The method of bisection is presented

here in brief for ready reference.

In this method, the equation to be solved is expressed in the form

f(x)=O. Then an approximate root is determined, may be by obsel'vation or by

graphical presentation of the equation, The value of the function is then

determined for successive regular intervals. If Xo be the approximate value of

one of the roots of the equation f(x)=O, then"

f(xo),f(xo+h), f(xo+2h) .

value of x, are determined.

where h is the successive increament in the

If the product of two consecutive values of the

function becomes negative, it can be concluded that at least one root of the

equation lies in t'hatinterval. Then the average(arithmatic mean) of those two

successive values of x gives one of the I"Oots of the equation under

consideration. The, accuracy of the result can be increased to,any degree by

taking smaller values of h or by making'successive iterations. In a part of

the computer program developed for the solution of the whole problem, this

method has been introduced to find the values by solving the equations tan(

'l¥2)Hanh(~/2) =0.

THE SIMPSON FORMULA:

The Simpson Formula is an extensively used multi segment formula

for integration. The accuracy of the ['esulls obtained is principally

I
),

i
i

determined by the number of segments' taken in the calculation. In this

method, the whole range of integration is divided into a number of equal

segments and the sum of the values of the function obtained by successive

increment of the independent variable with certain weightage, gives the

.\ .
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results of integration. If the range (b-a) of the integral f(x)dx is divided

into n equal divisions, so that h=(b-a)/n, then by Simpson Formula, the in-

tegrated result is given by,

I=(h/3)(f(a)+4f(a+h)+2f(a+2It)+ +4f{a+(n-l)h)+f(b)].

This method can be ~nployed to calculate the integral of any order.

In the present solution, the range 0 to rv2 was divided into 35 equal

intervals for applying the Simpson Formula. The number 35 was taken because of

the fact that the accuracy of the result witli .further increase in the number

.of divisions increases only slightly, but the computer time required increases

proportionately. When highly accurate results are desired, the number of divi-

sions can be further increased or the method of Romberg integration can b~

used to improve the accuracy of the results.
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CHAPTER -5

RESULTS AND.DISCUSSIONS

5.1. RELIABILITY OF THE METHOD:
It is always expected that the efficiency and reliability of any new

technique is established first, prior to its -acceptance as a genuine tool, by

applying the technique to problems for which solutions nre already available

in the literature. In other wen"ds, it should be ascer-tained that no error due

to logic is conunitted in formulating the problem and no mistake is made in the

computer programming. Keeping all these in mind, a number of standard problems

are solved with the present method of solution and the results are compared

with those of others, obtained analytically or by some other method. On the

basis of this comparison, the reliability and efficiency of the method

employed here are determined.

Wallace (69) found the radiation resistance and radiation efficiency of

a baffled beam from the farfield pressure distribution produced by the beam,

vibrating in simple harmonic motion in one of its natural bending modes. lie

analyzed the beams with hinged ends as well as clamped ends. Wallace derived

an expression for the radiation resistance which is assymptotic to the exact

solution as the frequency appr"oaches zero. In addition to that, he found the

radiation efficiency by numerical integration of the farfield acoustic inten-

sity produced by the vibrating beam, covering the entire frequency range for

the first ten modes of vibration of the beam.

Wallace also studiedth~ vibration characteristics of a rectangular

plate of uniform thickness (68). He used the same method of solution as of the

beam, but confined his attention only to the plates with all the four edges

simply-supported. As in the case of the beam, the expression for the radiation
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resistance proved to be assymptotic to the exact solution. The results of the

numerical integration of thefarfield acoustic intensity we['e used to obtain

graphs representing the radiation efficiency of-the simply-supported plate at

different mode orders. When compared, it is observed that these graphs are

identical to the radiation efficiency graphs obtained in the present study.

The .above developments prove that the method of solution employed here

is extremely accurate and no error is committed either in formulating the

problem or in the computer programming.

5.2. VALIDITY OF 1'HE BEAM FUNCTIONS:

Warburton (70) developed a number of functions to satisfy the

conditions at the ends of a vibrating beam. The functions were designed to

represent accurately the wave form of a beam vibrating in its natural modes.

Wallace (69) used Warburton's beam functions in his analysis of the acoustics

of beams with hinged and clamped ends. The results of the investigations by

Wallace proved to be satisfactory as the .expression for the radiation resis-

tance assymptotically approached the exact solution as the frequency

decreases .. The results of the numerical integration of farfield acoustic in-

tensity presented in the form of graphs also proved to be satisfactory. In

another investigation (68) Wallace applied the beam functions developed by

Warburton to the case of vibration of plates. He studied the case of a simply-

supported plate in an infinite baffle vibrating in its natural modes. He

derived the expression for the radiation resistance .using the beam functions.

The expression for the ['adiation ["esistance was assymptotic to the exact solu-

tion at low frequencies. The results of the numerical integration of the far-

field acoustic intensity were presented in the form of graphs. The graphs for

different mode orders of a simply-supported rectangular plate proved to be

satisfactory when compared with the results .ofbeam investigations.

... :C"':
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In the present analysis, the beam functions by Watburton have been used

to represent the motions of surfaces of the vibrating plates with different

boundary conditions. The functions used are slightly modified to meet the

requirements of the different boundary conditions at the edges of simply

supported, clamped and freely suspended plates in infinite baffles. The exact

representations of the beam mode slmpes pr'esented by the modi.fied beam func-

tions are given in figures 2, 3 and 4, respectively, for simply-supported;

clamped and freely suspended plates. It is observed from these figures that,

the beam mode shapes are satisfactorily able to represent the mode shapes of a

vibrating plate with different boundat'y conditions. Mot'eover, before attempt-

ing the solutions of the actual problem, the expression for the radiation

resistance for a vibrating plate with. all tl;e four edges simply supported are

derived using the moqified beam functions. This expression proved to be of the

same nature as derived by Wallace (68) using the original beam functions of

Warburton. Further, for comparison, the farfield acoustic intensity in the

form of radiation efficiency is obtained by integration and plotted in the

same way as by W~llace (68). The graphs thus obtained (Figures-5,6,7 and ,8)

are identical to those of Wallace (68) obtained by using the original beam

functions applied to rectangular panel with simply-supported edges.

The above verifications not only pI'ove the validity of the modified beam

functions, but also prove that the modified beam functions truly represent the

vibration characteristics of a baffled plate.

5.3.RESULTS AND DISCUSSIONS:
The method of investigation employed here is a versatile method for

solving any problem of vibrating plates. The input variables for any rec.tan-

gular flat plate with uniform thickness are the aspect ratios, (b/a) and the

thickness ratios, (h/a). In addition, the appropriate beam functions satisfy-
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ing the conditions at the edges of the plate problem to be solved has to be

used. In this analysis, plates with three pure boundary conditions al"e

considered. The boundary conditions are; (i) all four edges of the plate are

simply-supported, (ii) all foul" edges of the plate al'" clamped and (iii) all.

four edges of the plate are freely suspended. The results are found for three

values of the aspect I"atios and three values of the thickness rati.os in each

case of the three boundary conditions. The results are presented here in the

form of graphs. The computel" outputs used in plot ting the graphs are given in

tabular form in the appendix. In the following sections, the results of each

of the three boundary conditions are discussed separately. At the end, the

results for the three boundary conditions are compared for aspect ratio=I.OO

and thickness ratio=0.002. The other aspect ratios considered are, 0.50 and

2.00 and thickness ratios are, 0.001 and 0.004. The values of the different

parameters. used in the numerical evaluations are:Density of the surrounding

medium ( P )=1.21 kg/m3• Velocity of sound in the surrounding" medium

(c)"341 m/sec., density of the plate material (8" )=7700.0 kg/m3, modulus of

elastici ty of the plate materi aJ (E)"206x10g N/m" and the ",ilplitude of vibra-

tion (W)=O.OOOl.

(I). pJ,ATES WITH ALL FOUR EDGES SIMPLY-SUPPORTED:

Figures 9 to 16 represent the total. average acoustic powel' radiated from

one side of the baffled plate, plotted against the number of nodal lines in

the y-direction. The figures compare the influence of different parameters

used in the analysis on the power radiated. In figures 9 and 10, the values of

the aspect ratio and thickness ratio al"e kept constant alid the variation of

the power radiated with the variation of the number of nodal lines in the x-

directi.on are presented. From figure 9, it is seen that, for low values of

m, the amount of power radiated increases more or less regularly with the i.n-

"

, .
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crease of n. This is expected as the power radiated should increase with the

increase of the frequency of vibl'ation which, in its turn, increases with the

increase in the values of n. It is also observed that, the value of the power

radiated is higher fOl'higher values of m following the same logic as above.

From figure 10 it is seen that, the power radiated does not show significant

rise with the incl'ease in the values of n.' Moreover, the graphs show a wavi-

ness after certain values of n. With the increase in the mode orders, the

frequency of vibration and consequently the frequency of the sound radiated

increases. at the same time, the total number of waves in the plate also in-

creases with the inel'ease in the mode orders. At this condition, the effect of

the mode orders over the amount of power radiated become insignificant and as

such the power radiated does not show significant rise with further increase

in the mode orders. But it should be noted that, with the increase in the

mode orders, the fr'equency of vibr'ation still i'ncreases moking the power'

radiated to rise slightly. The waviness of the graphs are due to the inter-

ference of the waves from the," and y-directions. At high mode or'ders, the

roots and crests of the plate waves, from the two directions interfere each

other making the acoustic power radiation to fluctuate. Wlien two crests from

the two directions superimpose one another, the total average acoustic power

radiation increases giving rise to a crest of the wavy graphs. On the other

hand, when the crests from the two directions oppose one another, the total

acoustic power radiation decreases as depicted by the roots of the graphs.

r .. ,u•...•

",

The frequency of this waviness depends upon the number of interferences in

the ,plate. It can be genel'ally concluded that, the number of interferences

increases with the increase in the mode orders. Thus, the frequency, and

amplitude of the waviness increases with increasing mode

il1 figure" ]] and 12.

nwnhers as shown

Figures 11 and 12 show the acoustic power radiation with increasing

-',



52

values of n: It is observed from thes~ figures that, the rate of increase in

the acoustic power radiation assymptotically reaches zero at very high mode

numbers, with waviness still existing. The variation of the acoustic power

radiation can be explained with the help of the variation of acoustic pressul'e

in the surrounding medium due to the vibration of the plate. The three major

factors are the frequency, effective radiating surface and the effective

acoustic pressure. At lower mode orders, the effective radiating surface is

high, virtually, the whole of the surface radiates energy, but this is not the

case at high mode orders. With increasing mode orders, the regions of zero

displacement of the plate increases. These points of zero displacement do not

have any role in radiating acoustic power as they can not produce compression

or rarefaction in the surrounding medium. Thus, with increasing mode orders,

the effective radiating surface of the plate decreases. But the frequency of

the vibrating plate increases with incl'easing mode orders as shown in figul'es

37 and 38. The rate of increase in the frequency is very high at low mode or-

ders and decreases with increasing mode' orders. These effects increases the

acoustic power radiation with mode orders but with a decreasing rate. But as

can be observed fl'omfigures II and 12,' at very high mode numbel's, the ab-

solute amount of acoustic radiation does not show any further increase with

mode numbers, rathel', it attains a stable magnitude. At very high mode orders,

the plate wave numbers become very high and as such the alternate crests and

roots of the plate waves come very close to each other. At any instant of

time, a particular crest produces a compression, ,in the surrounding medium

while the neighbouring root produces a ra!'efaction. These alternate compres-

sion and rarefaction causes the acoustic energy to travel through the sur-

rounding medium. When the plate wave number becomes very high, the neighbour-

ing roots and crests come so close to each other that, the rarefaction by the

root partially 'leutralizes the compression produced by the crest. This
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neutralization,in its turn, reduces the amount of acoustic power radiation.

Al! these effects, the effective radiating surface, the frequency of vibration

and the interference of compressions and rarefactions, when combined at high

mode orders, results in the stable magnitude of the acoustic power r'adiaUon.

Though' the power radiated displays a fluctuating characteristic at high

modes, the radiation efficiency converges to wlity and does not show any

change with further increase in the mode numbers, as shown in figures 5,6,7

and 8. This is because of the fact that, radiation efficiency presents the

power radiated from a plate due to its vibration at certain mode orders in

comparison to the power' radiated by the same plate vibrating as' a solid

without forming waves, with a velocity equal to the root mean square value of

the surface velocity distribution of the plate under consideration. At high

mode orders, the interferences of the compressions and rarefactions produced

by alternate roots and crests of the "plate waves tends to reduce the rate of

increase in the total acoustic power radiation. Above the critical frequency

of the plate, the acoustic radiation from the plate become stable and does nol.

increase with increasing mode orders. This stable acoustic radiation is equiv-

alent to the acoustic radiation from a plate vibrating, as a solid body

without forming waves, with a velocity equal to the root mean square value of

the surface velocity distribution of the plate. The effect of this 'stable mag-

,nitude of the acoustic radiation from a plate converges the radiation ef-

ficiency to unity above the critical frequency of the plate.

Figures 13 and 14 show the effect of the thickness ratio over the power

radiated. The examination of the expression for the power radiated would

reveal that the total power radiated must increase with-the increase in the

values of the thickness ratios. This fact is reflected in figures 13 and 14

showing an increase in the power radiated with increase in the values of the

thickness ratio. Figure 13 shows this variation for low values of m and figure
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14 for high values of m.
Figures 15 and 16 are plotted with the view to present the variation of

the total power radiated due to the variation of the aspect ratio of the

plate. The effect of the variation of the aspect ratio over the total power

radiated can not be straight way predicted, as in the case of the thickness

ratio, from the expression of power. This is clear from the observation of

the graphs given in figures 15 aud 16. Figure 15 shows the variation of power

with aspect ratio at lower values of m and figure 16 shows the sume for

higher values of 01. It can be seen from figure 15 that the value of the total

acoustic power radiated increases with the decrease in the values of the

aspect rati.o. But this is not the case when vibration with higher values of m

is considered, as shown in figure 16. From figure 16 it is found that the

,total acoustic power radiated increases with the increase of,the aspect ratio

for high values of m and for lower range of the values of n. But the trend is

gradually reversed with the increase in the values of n. This variation in

the acoustic power radiation is due to the change in the frequency 'of vibra-

tion of the plate at different aspect ratios. Figures 37 and 38 show the

variation of the frequency with mode numbers at different aspect 'ratios of a

simplY,supported plate. It is observed that at all mode orders, the frequency

shows an increase with the decreasing aspect ratios. The change of the

frequency due 'to the change of the aspect ratio from 2.00 to 1.00 is smaller

than that due to change from 1.00 t.o0.50. Moreover, the frequency curve for

an aspect ratio of 0.50 is steeper than those for the other two aspect ratios
I

st.udied. At lower mode orders, ~he influence of frequency over t.heamount of
I

acoustic power radiated is insign'ificant.' In this range, the amount of power

radiated depeads ,on the effectivel radiat.ing surface, which is more in the

case of a plate with an aspectl ratio of 0.50 than those with 1.00 and 2.00.

For t.hisreason, at.low mode numbers, the plate with an aspect rat.io of 0.50

I,
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radiates the highest amount of power. The plate with an aspect ratio of 2.00

radiates the lowest amount and t~e radiation from the plate with
I

an aspect

-\

ratio of 1.00 falls in between the two .. This is presented in figure 15. At

high values of m and lower range of the values of n, as shown in figure 16,

the plate with an aspect ratio of 2.00 radiates the highest amount of power,

the plate with an aspect ratio of 0.50 radiates the lowest amount and that

with 1.00 radiates power falling in between the two. This trend can be ex-

plained by considering the fact that, at these mode orders, the effective

radiation surface is more in the case of a plate with an aspect ratio of 2.00

as the longer side of the plate is divided into fewer waves. With the

increase in the mode orders, the effective radiating surface decreases and

the frequency of vibration increases. But the increase in the frequency of

vibration far exceeds the reduction in the effective radiating surface. As

such, at high mode orders, the frequency of vibration begins to play a

dominating role over the acoustic radiation from the plate. Since the

increase in the frequency of vibration with the increase in the mode numbers

is more in the case of a plate with an aspect ratio of 0.50, the amount of

acoustic power radiation show a steeper rise as shown in figure 16. The power

'radiation from the plates with the other two aspect ratios also increases but

the increase is only small.

(II). PLATES WITH ALL FOUR EDGES CL~lPED:

Figures 17 to 24 present the total average acoustic power radiated from

one side of the plate clamped in an infinite baffle, plotted against the num-

ber of nodal lines in the y-direction. Figures 17,18,19 and 20 compare the

amount of acoustic power radiated from a clamped plate at different modes of

vibration. fi.gur'es21 and 22 'present the variation of the power radiated with,

the variation of the thickness ratio, (h/a), of the plate and figures 23 and
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24 give the variation of the power with the aspect ratio of the plate. From

figures 17 to 20, it is'observed that upto a certain mode orders, the power

radiated from a plate increases with the increase in the mode numbers. After

that with the increase in the mode numbers the acoustic power radiation does

increase significantly, rather, it attains a stable state. The power

radiated due to vibration of a plate is largely dep~ndent upon the frequency

of vibration and the effective radiating surface of the plate. With increasing

mode numbers, the effective radiating surface decreases and the frequency

.increases. The increase in the frequency associated with the increase in

the mode numbers is shown in figures 39 alld40 for different aspect ratios of

a clamped plate.' It is observed from these figures that the change in the

frequency with the change of the mode numbers is more in the lower range of

the mode orders than the change in the higher range. In the lower range of the

mode orders, the increase in the frequency of vibration, exceeds the reduction

in the effective radiating surface associated with the increase in the mode

numbers. This results in an increase in the amount of acoustic power radiated

with the increasing mode orders. This is shown in figure 17. With further in-

crease illthe mode numbers, the amount of power radiated still increases but

with a reduced rate and shows a waviness after certain mode orders. At high

mode order"s, the waviness of the acoustic power radiat ion is caused by the in-

terference of the plate waves from the two directions. At times, one wave peak

coincides with the other", increasing the total average acoustic power

radiation. On the other hand, for certain mode orders, the'wave peaks from the

two directions cancel one another, tending to decrease the total average

acoustic power radiation. This fluctuation in the acoustic power radiation

constitutes the waviness in the total average acoustic power r'lo\diation.The'

interference of the plale waves become more frequent ,,,,dprominent at higher

modes the waviness increases in amplitude and frequency. This wavy charac-
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t.edsUe of t.he acoustic power radiation is shown in figures Hi,19 and 20.

Though the average acoustic .power radiated increases wi.th incl"easing mode

numbers, the rate of increase gradually decreases and ultimately reaches a

stable state showing no further increase i.nthe absolute value. With the in-

crease of mode numbers, the effective radiating surface decreases and the

frequency increases. As discussed earlier, the rate of increase in the

frequency of vibration exceeds the rate of decrease in the effective radiating

surface, causing the amount of power radiated to increase. But with further

increase in the mode numbers, the rate of increase in the frequency of vibra-

tion decreases resulting in a decreases in the rute of increase of the average

acoustic power radiation. This trend continues and ultimately comes down to

zero, bringing the acoustic power I'adiation to a stable state. This trend can

be explained if the factors influencing t.heacou" t.i c rndia l:'i on from the 1'1n,t.e

are taken int.oconsi.del"ati.on.In addition to the effective r:Jdiating 'iurface

and frequency of vibration, there i" another factor coming to influence the

acoustic power. radiation only at very high mode orders. This is the inter-

ference of the rarefactions and compressions of the surrounding medium

pl'oduced by the roots and crests of the plate waves. .At any instant of time,

a crest of the plate wave produces a compression in the surrounding medium,

whereas, at the same time, the neighbouring roots produce rarefactions. This

alternate compressions and rarefactions causes the acoustic energy to travel

through the surrounding medium, At high mode numbers, the plate wave numbers

become very high bringing the adjacent roots and crests very close to each

other. As the mode number is kept on increasing, the neighbouring roots and

crests come so close t.oeach other that, the compression produced by one crest

is partially neutralized by the rarefaction~ produced by the neighbouring

root.s, This neut.ralization, in its turn, reduces the acoustic power radiation

from the plate. This effect, combined with the effects of the effective
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radiating surface and the frequency of vibration, brings the acoustic power

radiation to a stable state at very high mode numbers. This is shown in

figures 19 and 20. Though the absolute value of the amount of acoustic power

radiated does not increase with increasing mode numbers after a certain mode

orders, the waviness of the"power radiated still remains. This is caused by

the fact that, the interference of the plate waves from the two directions

still exists even if the mode numbers are very high.

Figures 21 and 22 show the variation of the power' radiated at different

thickness ratios of the plate for constant values of the other parameters,

respectively, for lower and higher values of m. The dependence of the acoustic

power radiation from a clamped plate upon the the thicJmess 1'alio can be pre-

dicted by examining the expression for the radiated power. The examination of

the expression for the acoustic power radiation from a clamped plate, given

in equations (32), (34), (36) and OfJ) for"different cori,binationsof even and

odd values of m and n, reveals that the average acoustic pow~r radiation from

clamped plate will increase with the incr-ease in its thickness ratio. The in-

crease in the thickness ratio increases the stiffness of the plat.e making it

to require more energy for vibration, As a result, plates with higher thick-

ness ratio radiates more acoustic power than those with lower thickness

ratios, as shown in figures 21 and 22.
Figures 23 and 24 present the variation of the acoustic power radiation

at differ-ent"aspect ratios with constant values of the other parameters for a

plate with all four edges clamped. The two major factors influencing the

acoustic power- radiation from a plate ar-e the effect.ive radiating surface and

the frequency of vibration of t.heplate. Since both of these factors vary

with varying aspect ratios of a plate, the dependence of the acoustic power

radiation upon the aspect ratio of the plate can not be straight way predicted

as in the case of t.he thickness ratio. At lower values of m, the effective
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surface radiating acoustic power is less in the case of a plate with an

aspect ratio.of 0.50 than the other two aspect ratios considered. At low mode

orders, the effective radiating surface plays a dominating role over the

acoustic power radiation and, as such, the plate. with an aspect ratio of 0.50

radiates the minimum amount of acoustic power at a.particular mode order

amongst the three aspect ratios under' consideration. The plate with an aspect

ratio of 2.00 radiates .the maximum amount of energy and the radiation from the

plate with an aspect ratio of 1..00falls in between the two extreme cases.

This is shown in figure 23 and partly in figure 24. With increasing mode

numbers, The frequency of vibration increases and the effective radiating sur-

face decreases. The .result being the increase in the power upto a certain mode

numbers and ultimately the effects are nullified with no further rise in the

power output. For the plate with an aspect ratio of 2.00, the decrease in the

effective radiating surface with increasing mode numbers in the y-direction is

less than the lower aspect ratios. Whereas, the increase in the frequency of

vibration is more in the case of the plate with an aspect ratio of 0.50 as

shown in figure 40. These two effects, when combined, makes the power radiated

to vary as shown figure 24. It is seen that the radiation from the plate with

an aspect ratio of 2.00 is always higher than the radiation from the plates

with the other two aspect ratios. However, With still incr'easing mode numbers;

the difference gradually decreases.

(III). PLATES WITH ALL FOUR EDGES FREELY SUSPENDED:

Figures 25 to 32 present the total average acoustic power radiated from

.one side of the plate, freely suspended in infinite baffle, plotted against

the number of nodal lines in the y-direction. Figures 25,26 27 and 28 compare

the amount of acoustic radiation at:different mode orders with fixed values of

the other parameters. Figures 29 and 30 show the variation of acoustic radia-
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tion at different thickness ratios (h/a), at low and high mode orders respec-

tively and figures 31 and 32 show the acoustic radiation at different aspect

ratios (b/a), for low and high mode orders respectively, for a plate with all

four edges fr"eely suspended. At low mode order"s, the amount of acoustic power"

radiated increases with the increase in the mode numbers. The frequency of

vibration of the plate increases with increasing mode numbers, but the effec-

tive radiating surface decreases. Since, at low mode orders, the increase in

the frequency of vibration is more than the decrease in the effective radinl:-

ing surface, the amount of acoustic radiation from the plate increases as

shown in figure 25. At high mode orders, the rate of inc;rease in the fr'equency

of vibration and the rate of decrease in the effective radiating surface

decreases making the rise in the acoustic radiation to be insignificant.But at

these conditions, the acoustic radiation shows a waviness due to the inter-

ference of the waves from the two directions as shown in figures 26,27 and 28.

At still higher modes, the acoustic radiation from the,plate does ,not increase

any more with the increasing mode number's, rather, it attains a stable state.

At these higher modes the nei'ghbouring of the compressions and rarefactions

of the surrounding medium produced by the crests and roots of the plate waves

partially neutralize each other" This neutralization, in its turn, ,'educes lhe

acoustic power radiation from the plate. This eff.ect at very high mode orden',

when combined with the effects of the frequency of vibration and the effective

radiating surface, brings the radiation of the acoustic power from the plate

to a stable state. Though the radiation of the acoustic power attains a stable

state in its magnitude, the waviness, which began earlier" still remains with

higher amplitude and frequency. At very high mode orders, the interference of

the plate waves from the two dir"ections become all the more prominent and

frequent. This effect increases the amplitude and frequency of tbe waviness of

the power" radiated at very high mode order"s"



-(
II~'

hl

61
..

Figures 29 and 30 show the power r.adiat.edfrom a freely suspended plate

at different thickness ratios. As in the other two cases discussed earlier,

the amount of acoustic radiation increases with the increase in the value of

the thickness ratio of the plate.

In figures 31 and 32, the amount of acoustic radiation from a freely

suspended plate at different aspect ratios have been compared. In the lower'

nllllieof mode on1ers, the plat.e with tin"spect ratio of. 0.50 .radiates more

power than those with higher' values of the aspect ratio. For'a plate with an

aspect ratio of 0.50, the effective radiating surface is less than the plate

with higher aspect r'atios, but the frequency of vibr'ation in this case is much

higher, as shown in figures 41 and 4? This makes the acoustic radiation to be

more with an aspect ratio of 0.50 than the other two. As shown in figure 32,

at high values. of 10 and low range of the values of n, the plate with an aspect

ratio of 2.00 radiates more power than the plates with lower values of the

aspect ratio. With increasing values of 10, the effective radiating surface

decreases. This decrease is more in the case of a plate with an aspect ratio

of 0.50, making the power radiated to be less than t.hosewith higher aspect

ratios. With increase in the values of n, the. increase in frequency of vibra-

tion takes care of the decrease in the effective radiating surface and the ef-

fects of the aspect ratio of the plate upon the acoustic power radiation from

it is almost nullified as shown in figure 32.

(IV). COMPARISON OF BOUNDARY CONDITIONS:
Figures 33 to 36 compare the average acoustic power radiation from

plates with three different pure boundary conditions. The bowldar'y conditions

being; (i) all four edges simply-supported, (ii) all four edges clamped and

(iii) all ~)ur edges freely-suspended. In figure 33, the power radiated by

plates with different boundary conditions have been presented for' lower mode
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orders. It is observed that, the simply-supported plate radiates the minimum

power of the three, the freely-suspended plate radiates the maximum power and

the radiation from the clamped plate falls in between the two extremes. As can

be observed from the f."equency curves given in figures 37 to 42, the frequency

of vibration of the simply supported plate is very low as compared with.those

of clamped and freely-suspended plates. This makes the amount of acoustic

radiation .to be the minimum in case of a simply-supported plate. Comparing

figures 39 and 41, it can be concluded that, the frequency of vibration of a

clamped plate and a freely-suspended plate nearly equal over the range of the

mode orders. But due to clamping at the edges, the effective ."adiating surface

is less in the case of a clamped plate than t.hat of a freely-suspended plate.

As such, the acoustic radiation from a freely-suspended plate is the maximum.

Observation of figures 35 and 36 reveal that, at.high mode orders, the effects

of the edge condit ions on the amount of acoustic power radiation are virtually

nullified as in these cases, the alternate compressi.ons and rarefact.ions of

the surrounding medi.um of the vibratiag plate, p."oduced by the neighbouring

crests and roots of the plate waves, begin to partially neutralize each other.

This neutralization, as have been mentioned ea."lier, reduces the amount of

acoustic radiation from the plate and thus brings it to R stable stat.e..



CHAPTER -6

CONCLUSIONS AND RECOMMENDATIONS

6.1. CONCLUSIONS:

The total average acoustic power radiated from one side of a baffled

plate due to its natural vibration with three different pur'e boundary condi-

tions have been investigated in this thesis. The variation of the ~atural

frequency with mode orders have also been investigated. In addition, the

radiation efficiency of a plate with all the four edges simply supported has

been studied in this thesis and 'compared with the results given by

Wallace(68). Warburton's (70) beam functions have been used ,to represent the

wave motion, of the vi,b['ating plate and Simpson rule has been applied for the

numerical integration of the final expression of radiated power with the help

of a computer program.

In this thesis extensive numerical results on plates vibrating with dif-

ferent boundary' conditions,mode shapes, aspect ratios and thickness ratios

have been presented.

Based on the extent of this investigation the following conclusions can

be drawn.,

(i) At low range of the values of mode numbers, the lotal average acous-

tic power radiated from one side of the vibrating plate differs with bounda['y

conditions,mode orders, aspect ratios and thickness ratios. For the same mode

,orders, aspect ratio and thickness ['atio, the simply supported plate ,radintes

the minimum amount of power, the freely-suspended plate r'adiates the maximum

amount. and the radiation from the clamped plates falls in between the simply-

supported and freely-suspended plates. With increasing mode orders, the power
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radiated increases but the rate of increase decreases and asymptotically

I'eaches zero at very high mode numbers. After Ii certain mode ordeI's, the

acoustic power radiation from the plates begin to show a wavy nature.

(ii) At high mode numbem, , the effects of the variation of boundary /

conditions, mode orders and aspect ratios are almost nullified, but the wavi-

ness still remains.

(iii) The natural frequency of vibrating plates varies with boundary

conditions, mode orders, and aspect ratios. For the same mode orders and

aspect ratio the frequency of the simply supported plate is the minimum, that

of the fI'ee1y-suspended plate is the maximum and that of the clamped plates

falls in between the two. For the same boundary condition and mode orders the

frequency of vibration increases with decreasing aspect ratio, except at very

low mode orders, where the frequency, for two aspect ratios may coincide. For

the same boundary condition and aspect ratio, the frequency of vibration in-

creases with increasing mode numbers. The rate of increase in the natural

frequency i,s very high at low mode orders and decreases with increas ing mode

numbers, asymptotically, reaching zero at very high mode orders.

(iv) The radiation efficiency of the simply-supported plate increases for

all mode numbers with increasing wave number ratios upto the critical

frequency. After the critical frequency the radiation efficiency asymptoti-

cally converges to unity and does not show any further variation. For

frequency near the critical frequency the'radiation efficiency also shows a

waviness as in the case of the power radiated, but this waviness does not ex-

ist after the critical frequency.

6.2. RECOMMENDATIONS;
From the experience of the present investigation, the following fields

on plate vibI'ation and acoustics are I'ecommended as the scopes of future
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research.

(i) More appropriate displacement functions, than the ones developed by

Warburton and used in the present investigation, may be developed for more eJ<-

~, act representation. of the plate motion to obtain still more accurate resul ts.

(ii) The boundary conditions studied in this thesis are the most ideal-

ized cases of plate vibration. Plates wil.h more realist.ic boundary conditions

may be studied to suit the practical cases.

(iii) Plates with variable thickness and irregularities may also be

studied.

(iv) Plates, reinforced wi th beams may be studied and the effects of

reinforcement can be investigated.
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Table-I: Radiation Efficiency of Simply-Supported Plate,. For low-low mode orders.
------------------------------------------------------------------------------------------------------
: m : n\ : 0.02 : 0.04 : 0.06 : 0.08 : 0.10 : 0.20 : 0.40 : 0.60 : 0.80 : 1.00 : 2.00 : 3.00 : 4.00 :
-----------------------------------------------------------------------------------------------------
2 2
2 3
2 4
3 2
3 3
3 4

8.0E-4 3.1E-3 7.0E-3 1.3E-2 2.0E-2 7.8E-2 2.9E-l 5.7E-l.8.6E-l 1.lE+0 1.lE+0 1.OE+0 1.OE+0
7.8E-7 1.2E-5 6.3E-5 2.0E-4 4.8E-4 7.3E-3 9.9E-2 3.8E-l 8.5E-l 1.2E+0 2.5E+0 1.OE+0 1.OE+0
4.3E-4 1.7E-3 3.8E-3 6.6E-3 1.OE-2 3.lE-2 5.5E-2. 1.9E-l 6.8E-l .1.3E+0 1.lE+0 1.OE+0 1.OE+0
8.lE-7 1.3E-5 6.5E-5 2.lE-4 5.0E-4 7.7E-3 1.OE-l 4.0E-l 8..4E-l 2.2E+0 1.2E+0 1.lE+0 1.OE+0
8.lE-9 5.2E-8 6.0E-7 3.3E-6 1.2E-5 7.4E-4 3.6E-2 2.7E-l 8.2E-l 2.3E+0 1.2E+0 1.lE+0 1.OE+0
6.1E-7 9.6E-6 4.8E-5 1.5E-4 3.5E-4 4.4E-3 3.2E-2 1.6E-l 7.0E-l 2.4E+0 1.4E+0 1.lE+0 1.OE+0--------------------------------------------------------------------------------------------------
Table-2: Radiation Efficiency of Simply-Supported Plate, For high-high mode orders.---------------------------------------------------------------------------------------------------

: m : n\ : 0.02 : 0.04 : 0.06 : 0.08 : 0.10 : 0.20 : 0.40 : 0.60 : 0.80 : 1.00 : 2.00 : 3.00 : 4.00 :-------------------------------------------------------------------------------------------------
1.OE+0 1.OE+0 1.OE+0.
1.OE+0 1.OE+0 1.OE+0
1.OE+0 1.OE+0 l;OE+O
1.OE+0 1.OE+0 1.OE+0 ~~~

5.0E-7 6.7E-6 2.6E-5 5.5E-5 8.3E-5 3.4E-4 1.8E-3 1.4E-2 2.3E-l 2.6E+0
4.7E-7 6.1E-6 2.2E-5 4.2E-5 5.7E-5 2.5E-4 1.3E-3 1.lE-l 2.2E-l 2.6E+0
5.0E-7 7.lE-6 2.9E-5 6.8E-5 1.lE-4 4.0E-4 2.4E-3 1.9E-2 2.3E-l 2.lE+0
4.8E-7 6.4E-6 2.5E-5 5.3E-5 7.9E-5 3.3E-4 1.7E-3 1.2E-2 2.0E-l 2.2E+0

9 10
10 11
9 .8
10 9

-----------------------------------------------------------------------------------------------------
Table-3: Radiation Efficiency of Simply-Supported Plate, For low-high mode orders.-----------------------------------------------~----------------------------------------------------

: m :n\ : 0.02 : 0.04 : 0.06 : 0.08 : 0.10 :.0.20 : 0.40 : 0.60 : 0.80 : 1.00 : 2.00 : 3.00 : 4.00 :
-----------------------------_._--------------------------------------------------------------------
2 9 8.0E-6 1..2E-5 5.8E-4 1.7E-3 3.5E-3 1.8E-2 4.2E-2 6.6E-2 1.lE-l 1.7E+0 1.OE+0 1.OE+0 1.OE+0
2 10 3.9E-4 1.4E-3 2.7E-3 3.9E-3 4.8E-3 1.2E-2 2.5E-2 4.5E-2 9.9E-2 1.6E+0 1.OE+0 1.OE+0 1.OE+0
3 10 2.8E-6 4.2E-5 1.9E-4 5.0E-4 1.OE-3 6.8E-3 2.7E-2 5.0E-2 1.lE-i 2.0E+0 1.OE+0 1.OE+0 1.OE+0
3 11 7.0E-8 4.2E-6 4.3E-5 2.lE-4 6.7E-4 9.lE-3 2.9E-2 5.5E-2 1.2E-l 2.3E+0 1.lE+0 1.OE+0 1.OE+0-----------------------------------------------------------------------------------------------

Table-4: Radiation Efficiency of Simply-Supported Plate, For high-low mode orders.--------------------------------------------------------------------------------------------
: m :n\ : 0.02 : 0.04 : 0.06 : 0.08 : 0.10 : 0.20 : 0.40 : 0.60 : 0.80 : 1.00 : 2.00 : 3.00 : 4.00 :
--------------------------------------------------------._--_._----_. __ ._-_._--_._-----------_._-

9 2 8.5E-6 1.3E-4 6.0E-4 3.7E-3 3.7E-3 1.8E-2 4.5E-2 7.4E-2 1.2E-l 2.2E+0 1.lE+0 1.OE+0 1.OE+0
9 3 3.lE-8 1.8E-6 2.0E-5 1.OE-4 3.5E-4 8.2E-3 3.7E-2 6.6E-2 1.3E-l 2.0E+0 1.0E+0 1.OE+0 1.OE+0
10 2 3.9E-4 1.4E-3 2.7E-3 3.9E-3 4.7E-3 1.2E-2 2.7E-2 4.9E-2 1.lE-l 2.lE+0 1.OE+0 1.OE+0 1.OE+0
10 3 2.7E-6 4.0E-5 1.8E-4 4.9E-4 1.OE-3 6.3E-3'2.7E-2 5.0E-2 1.lE-l 2.0E+0 1.lE+0 1.OE+0 1.OE+0

--------------------------------------------------------------------------------------------------

•
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Table-5: Power Radiated by a Simply-Supported Plate, For Low values of m, Ra=l.OO and Rt=0.002.
--------------------------------------------------------------------------------------------------------------
:m\n: ' 2 3 4 5 6 7 8 9 : 10 :11 : 12 13 14 15 16
--------------------------------------------------------------------------------------------------------------

2 4.7E-9 5.0E-6 1.3E-2 1.5E-l 5.0E-l 2.3E+0 3.6E+l 1.OE+2 1.4E+2 1.7E+2 2.4E+2 3.2E+2 4.5E+2 5.5E+2 7.5E+2
3 5.5E-6 5.5E-6 5.5E-3 1.lE-1'6.5E-l 2.6E+0 4.1E+l 1.2E+2 1.6E+2 2.0E+2 2.8E+2 3.7E+2 6.0E+2 7.0E+2 1.OE+3
4 1.3E-2 5.0E-3 8.0E-3 1.3E-l 9.5E-l 5.5E+0 6.5E+1 1.4E+2 1.5E+2 2.0E+2 2.6E+2 3.8E+2 6.0E+2 6.5E+2 1.OE+3
5 1.5E-l 1.lE-1 1.3E-l 4.7E-l 2.7E+0 1.9E+1 1.lE+2 1.3E+2 1.6E+2 2.3E+2 2.5E+2 6.0E+2 5.5E+2 6.5E+2 1.1E+3------------------------------------------------------------------------------------------------------------------

Tab1e-6: Power Radiated by a Simply-Supported Plate, For High values of m,Ra=l.OO and Rt=0.002.
----------------------_._---_._---------,_._--_._----_._---------_._-----_._--_._._--------_._--_._--------------------
:m\n: 2 3 4 5 6 7 8 9 10 11

.
12 13 14 15 16-------------------------------------------------------------------------------------_._--_. __._-----------

12 3.0E+2 2.9E+2 2.7E+2 3.0E+2 3.5E+2 3.7E+2 4.4E+2 4.6E+2 6.7E+2 7.0E+2 8.7E+2 1.4E+3 1.2E+3 1.3E+3 1.3E+3
13 3.7E+2 3.7E+2 3.9E+2 4.0E+2 4.4E+2 5.0E+2 6.5E+2 6.5E+2 6.5E+2 1.7E+3 1.4E+3 1.3E+3 1.2E+3 1.5E+3 2.0E+3
14 5.5E+2 5.5E+2 6.5E+2 6.0E+2 6.0E+2 6.5E+2 6.0E+2 2.4E+3 1.2E+3 1.6E+3 1.2E+3 1.0E+3 2.8E+3 1.8E+3 5.0E+3
Hi 6.0E+2 6.0E+2 6.0E+2 6.5E+2 6.5E+2 8.0E+2 1.1E+3 1.3E+3 1.4E+3 1.1E+3 8.0E+3 1.5E+3 1.8E+3 2.0E+3 4.4E+3--------------------~-----------------------------------------------------------------------------------------

Table-7: Power Radiated by a Simply-Supported Plate For low values of m and very high range of
the values of n, Ra=1.00 and Rt=0.002.

--0'
:m\n: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 4.7E-8 1.3E-2 5.0E-1 3.6E+1 1.4E+2 2.4E+2 4.5E+2 7.5E+2 9.2E+2 3.2E+3 1.OE+3 2.6E+3 6.2E+3 8.4E+3 1.7E+3'1.2E+3
4 1.3E-2 8.0E-3 9.5E-1 6.5E+l 1.5E+2 2.6E+2 6.0E+2 1.0E+3 1.5E+3 4.4E+3 6.1E+3 3.4E+3 8.7E+3 1.3E+4 2.6E+3 2.2E+4
6 5.2E-1 9.~E-l 1.2E+1 1.2E+2' 1.8E+2 3.5E+2 6.6E+2 6.1E+3 1.4E+3 5.1E+3 2.6E+32.2E+3 1.4E+4 8 ..6E+3 2.3E+3 2.5E+3
8 3.9E+l 6.5E+l 1.2E+2 2.9E+2 2.7E+2 4.3E+2 8.2E+2 1.6E+3 1.3E+3 4.0E+3 4.8E+3 1.lE+3 2.5E+4 2.5E+3 2.3E+3 3.8E+3

Table-8: Power Radiated From a Simply-Supported Plate, For high values of m and very high range of
the values of n, With Ra=1.00 and Rt=0.002.

----------------------------------------------------------------
:m\n: 2 4 : .6 8 10 12 14 16 18 20 22 24 26 28 30 32

" \

-----------------------------------------------------------------_._--_._-----_. __ ._-_._-------------_._---_.--_._-------
10 1.7E+2 1.5E+2 1.8E+2 2.6E+2 4.0E+2 7.0E+2 r.3E+3 1.2E+3 2.7E+3 1.6E+3 5.0E+3 2.2E+3 3.5E+4 2.2E+3 2.6E+3 1.7E+5
12 3.0E+2 2.7E+2 .3.5E+2 4.4E+2 6.7E+2 8.7E+2 1.2E+3 1.3E+3 .4.6E+3 3.1E+3 2.8E+3 7.4E+3 1.5E+4 2.8E+3 1.OE+5 4.3E+4
14 5.3E+2 6.7E+2 5.9E+2 6.0E+2 1.2E+3 1.2E+3 2.7E+3 5.2E+3 2.0E+4 6.1E+3 2.5E+3 3.5E+4 3.3E+3 3.5E+3 2.4E+4 1.3E+4
16 9.5E+2 1.0E+3 1.6E+4 5.0E+3 1.1E+3 1.2E+3 4.7E+3 1.5E+3 6.8E+3 1.6E+3 1.lE+4 1.6E+4 4.lE+3 1.2E+4 5.0E+4 3.lE+3

--------------------------------------------------------------------------------------------------------------------

-- :.
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Table-9: Power Radiated by a Simply-Supported Plate, With Ra=l.OO and Different Values of Rt.
---------------------------------------------------------------------------------------------------------------------
: Rt :m\n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16--------------------------------------------------------------------------------------------------------------------
0.001 2 3.2E-9 8.0E-B 1.2E-3 7.5E-3 3.4E-2 1.lE-l 2.7E-l 6.5E-l 2.0E+0 4.5E+0 6.0E+0 6.5E+l 2.7E+2 2.8E+2 3.0E+2
0.002 2 4.7E-8 5.0E-6 1.3E-2 1.5E-l 5.0E-l 2.3E+0 3.6E+l 1.OE+2 1.4E+2 1.7E+2 2.4E+2 3.2E+2 4.5E+2 5.5E+2 7.5E+2
0.004 2 4.8E-6 3.2E-4 1.lE-l 4.3E+0' 3.8E+l 6.5E+l 1.5E+2 2.1E+2 3.2E+2 5.0E+2 8.5E+2 6.5E+2 1.2E+3 5.5E+3 1.4E+3
0.001 12 6.5E+0 6.7E+0 8.5E+0 1.6E+l 3.1E+l 7.9E+l 2.0E+2 3.3E+2 3.7E+2 3.2E+2 8.0E+3 5.0E+2 4.9E+2 5.0E+2 6.0E+2
0.002 12 3.0E+2 2.9E+2 2.7E+2 3.0E+2 3.5E+2 3.7E+2 4.4E+2 4.6E+2 6.7E+2 7.0E+2 8.7E+2 1.4E+3 1.2E+3 1.3E+3 1.3E+3
0.004 12 9.7E+2 1.OE+3 1.OE+3 1.OE+3 1.9E+3 1.2E+3 1.3E+3 1.3E+3 3.4E+3 5.5E+3 2.6E+3 1.6E+3 4.7E+3 7.5E+3 4.1E+3
---------------------------------_._--_._--_._----._------_._---_._----------_. __ ._-------_._------------------------------------

Table-10: Power Radiated by a Simply-Supported Plate, With Rt=.0002 and Different Values of Ra.
----------------------_. __ ._---_._--_._---_._-----_._-----------------------------------------------------------------
: Ra :m\n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-------------------------------------------------------------------------------------------------------------
0.50
1.00
2.00
0.50
1.00
2.00

2 5.6E-2 1.3E-1 2.3E-l 9.5E+0 7.0E+l 1.2E+2 2.1E+2 3.7E+2 5.5E+2 9.0E+2 1.3E+3 6.0E+2 2.1E+3 4.9E+3 2.1E+3
2 4.7E-8 5.0E-6 1.3E-2 1.5E-l 5.0E-l 2.3E+0 3.6E+l 1.OE+2 1.4E+2 1.7E+2 2.4E+2 3.2E+2 4.5E+2 5.5E+2 7.5E+2
2 3.6E-9 2.1E-8 3.0E-4 2.0E-3 1.lE-2 4.8E-2 1.4E-1 3.2E-l 8.5E-l 2.4E+0 3.2E+0 3.0E+l 1.5E+2 1.7E+2 1.8E+2
12 6.8E+2 1.4E+2 1.8E+2 2.4E+2 3.1E+2 4.5E+2 2.0E+3 8.6E+2 1.7E+3 2.0E+3 2.3E+3 2.9E+3 8.6E+3 5.0E+3 3.8E+3
12 3.0E+2 2.9E+2 2.7E+2 3.0E+2 3.5E+2 3.7E+2 4.4E+2 4.6E+2 6.7E+2 7.0E+2 8.7E+2 1.4E+3 1.2E+3 1.3E+3 1.3E+3
12 6.0E+2 7.0E+2 6.3E+2 5.0E+2 5.3E+2 5.7E+2 6.2E+2 7.5E+2 7.7E+2 8.1E+2 7.1E+2 1.lE+3 8.4E+2 1.lE+3 7.0E+2

--"""
------------------------------------------------------------------------------------------------------------------

Table-II: Power Radiated by a Clamped Plate, For Low Modes, With Ra=l.OO and Rt=0.002.
---------------------------------------------------------------------------------------------------------------
:m\n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16--------------------------------------------------------------------------------------------------------------
2 9.0E-2 3.2E-l 1.8E+0 9.5E+0 3.8E+l 6.5E+l 9.0E+l 1.3E+2 1.9E+2 2:7E+2 3.7E+2 4.8E+2 8.0E+2 8.0E+2 8.5F.+2
4 1.8E+0 3.9E+0 1.2E+l 3.4E+1 6.5E+1 8.0E+l 1.2E+2 1.7E+2 2.4E+2 3.4E+2 4.4E+2 6.0E+2 9.5E+2 8.0E+2 1.lE+3
6 4.0E+l 5.0E+l 6.5E+l 7.5E+l 9.5E+1 1.3E+2 1.8E+2 2.4E+2 3.3E+2 4.4E+2 5.5E+2 8.5E+2 9.5E+2 9.0E+2 1.5E+3
8 1.OE+2 1.lE+2 1.2E+2 1.4E+2 1.8E+2 2.2E+2 2.8E+2 3.7E+2 4.7E+2 5.5E+2 8.5E+2 1.OE+3 1.OE+3 1.3E+3 2.7E+3

-------------------------------------------------------------------------------------------------------------
Table-12: Power Radiated by a Clamped Plate, For High Modes, With Ra=l.OO and Rt=0.002.

----------------------------------------------- _._----------------------------------------------:m\n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 :. 16
----------------------------------_._----------_._--_._--.---------------------------------_._------------- .
10 2.1E+2 2.2E+2 2.5E+2 2.8E+2 3.3E+2 4.0E+2 4.7E+2 5.0E+2 7.5E+2 9.5E+2 9.5E+2 1.lE+3 1.3E+3 2.8E+3 2.9E+3
12 4.1E+2 4.3E+2 4.5E+2 4.9E+2 5.5E+2 6.5E+2 8.5E+2 1.OE+3 9.5E+2 1.OE+3 1.lE+3 1.9E+3 3.4E+3 2.3E+3 1.6E+3
14 9.0E+2 9.5E+2 9.5E+29.5E+2 9.5E+2 9.5E+2 1.OE+3 1.lE+3 1.3E+3 2.2E+3 3.4E+3 2.7E+3 1.4E+3 2.7E+3 4.4E+3
16 1.OE+3 1.OE+3 1.lE+3 1.3E+3 1.6E+3 2.0E+3 2.7E+3 3_3E+3 2.9E+3 1.7E+3 1.5E+3 3.2E+3 4.3E+3 3.5E+3 2.0E+3

-------------------------------------------------------------------------------------------------------------



- ,

Table-13: Power Radiated by a Clamped Plate, For Low Values of m and Very High Range of the Values of n,
Ra=1.00 and Rt =0.002.

-----------------------------------------------------------------------------------------------
:m\n: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 ,.
-------------------------------------------_._------------------------_._._---------_._--_._--_._----_._--------

2 9.0E-2 1.8E+0 3.8E+l 9.0£+1 1.9E+2 3.7E+2 8.0E+2 8.5E+2 2.8E+3 2.4E+3 6.6E+2 1.3E+4 1.9E+3 6.9E+2 2.5E+4 3.0E+3
4 1.8E+0 1.2£+1 6.5£+1 1.2E+2 2.4E+2 4.4£+2 9.5E+2 1.1E+3 3.0£+3 3.5£+3 4..1£+2 1.9E+4 1.4E+3 7.3£+2 4.0E+4 2.3E+3
6 4.0E+1 6.5E+l 9.5E+l 1.8E+2 3.3E+2 5.5E+2 9.5E+2 1.5E+3 2.1E+3 4.3£+3 7.8E+2 2.2£+4 1.4E+3 1.8E+3 4.7E+4 1.7£+3
8 1.0£+2 1.2£+2 1.8E+2 2.8E+2 4.7E+2 8.5E+2 1.0E+3 2.7E+3 1.4£+3 3.7£+3 3.9E+3 1.9E+4 2.5E+3 5.8E+3 3.8E+4 3.2E+3

----------------------------------------------------------~-------------------------------------------------------
Tab1e-14: Power Radiated by a Clamped Plate, For High Values of m and Very High Range of the Values of n,

Ra=1.00 and Rt=0.002.

:m\n: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

10 2.1E+2 2.5E+2 3.3E+2 4.7E+2 7.5£+2 9.5E+2 1.3E+3 2.9E+3 3.2E+3 2.1E+3 1.lE+4 8.3E+3 2.5E+3 1.4E+4 2.0E+4 3.9E+3
12 4.1E+2 4.5E+2 5.5E+2 8.5E+2 9.5E+2 1.1E+3 3.4E+3 1.6E+3 4.1E+3 2.6E+3 2.1E+4 2.0£+3 3.5£+3 3.0£+4 7.3£+3 1.5£+3
14 9.0£+2 9.5£+2 9.5£+2 1.0£+3 1.3£+3 3.4£+3 1.4E+3 4.4£+3 1.7E+3 1.3E+4 1.0E+4 3.1E+3 6.0£+3 4.3E+4 4.0E+3 4.5£+3
16 1.0E+3 1.1E+3 1.6E+3 2.7E+3 2.9£+3 1.5£+34.3£+3 2.0E+3 7.5E+3 1.8£+4 3.1E+3 2.8E+3 3.6E+4 9.6E+3 3.2£+3 6.8£+3

Table-15: Power Radiated by a Clamped Plate, With Ra=l.OO and Different Values of Rt.

~~
'"

: Rt. :m\n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.001 2 6.0£-3 8.0E-3 8.5£-2 3.5E-l 9.0E-l 1.8E+0 2.8£+0 4.9E+0 2.7£+1 1.2E+2 2.2E+2 2.2£+2 2.5£+2 3.0E+2 3.6E+2
0.002 2 9.0E-2 3.2£-1 1.8£+0 9.5£+0 3.8E+l 6.5E+l 9.0E+1 1.3£+2 1.9E+2 2.7E+2 3.7E+2 4.8£+2 8.0£+2 8.0E+2 8.5E+2
0.004 2 1.1£+0 6.5E+0 2.2£+1 4.6E+1 9:0E+l 1.6E+2 2.8E+2 4.8£+2 6.0E+2 8.5E+2 2.0E+3 2.4£+3 9.0£+2 3.8E+3 4.6E+3
0.001 12 2.5E+2 2.5£+2 2.5£+2 2.5E+2 2.5E+2 2.7E+2 2.9E+2 3.2E+2 3.6E+2 4.1E+2 4.6E+2 5.5E+2 6.5E+2 6.6E+2 9.0E+2
0.002 12 4.1E+2 4.3E+2 4.5E+2 4.9E+2 5.5E+2 6.5E+2 8.5E+2 1.0E+3 9.5E+2 1.0E+3 1.lE+3 1.9E+3 3.4E+3 2.3E+3 1.6E+3
0.004 12 2.3E+3 2.5E+3 2.8E+3 3.0E+3 2.8E+3 2.0E+3 1.3E+3 2.1E+3 4.4E+3 6.0E+3 3.9E+3 2.3E+3 3.2E+3 5.0E+3 2.0E+4



Table-16: Power Radiated by a Clamped Plate, With Rt=0.002 and Different Values of Ra.
: Ra :m\n: 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16

0.50 2 4.9E-2 4.0E-2 1.7E-l 4.4E-l 5.5E-l 6.0E-l 9.0E-l 1.6E+0 2.6E+0 3.BE+0 5.0E+0 6.5E+0 B.OE+O 1.OE+l 1.BE+l
1.00 2 9.0E-2 3.2E-l 1.BE+0 9.5E+0 3.BE+l 6.5E+l 9.0E+l 1.3E+2 1.9E+2 2.7E+2 3.7E+2 4.8E+2 8.0E+2 8.0E+2 8.5E+2
2.00 2 9.5E-l 9.5E+0 2.9E+l 7.5E+l 1•.6E+2 3.3E+2 4.0E+2 6.0E+2 2.1E+3 4.0E+3 1.lE+3 7.5E+2 2.2E+3 1.3E+4 1.9E+4
0.50 12 2.2E+2 2.5E+2 3.1E+2 4.1E+2 5.5E+2 6.5E+2 8.0E+2 9.5E+2 1.lE+3 1.2E+3 1.3E+3 1.4E+3 1.5E+3 2.0E+3 2.4E+3
1.00 12 4.1E+2 4.3E+2 4.5E+2 4.9E+2 5.5E+2 6.5E+2 8.5E+2 1.OE+3 9.5E+2 1.OE+3 1.lE+3 1.9E+3 3.4E+3 2.3E+3 1.6E+3
2.00 12 8.0E+2 8.5E+2 8.5E+2 9.0E+2 1.lE+3 1.4E+3 1.2E+3 2.3E+3 2.1E+3 2.3E+3 7.0E+3 2.2E+3 8.0E+3 3.2E+3 1.4E+4

Table-17: Power Radiated by a Freely Suspended Plate, For Low Mode Orders With Ra=l.OO and Rt=0.002.
------------------------------_._------_._---_._-_._-----------_._---_._._-----_._--------_._-------------_._-
:m\n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1.lE-3 3.0E-2 4.9E-l 6.4E+0 3.7E+l 6.7E+l 1.OE+2 1.5E+2 2.2E+2 3.2E+2 4.5E+2 5.7E+2 9.0E+2 1.OE+3 1.OE+3
3 3.0E-2 3.8E-l 3.6E+0 2.2E+l 5.3E+l 7.5E+l 1.lE+2 1.7E+2 2.4E+2 3.4E+2 4.7E+2 6.0E+2 9.6E+2 9.5E+2 1.lE+3
4 4.9E-l 3.6E+0 1.8E+l 4.6E+l 6.5E+l 9.5E+l 1.4E+2 2.0E+2 2.7E+2 3.8E+2 4.9E+2 7.4E+2 1.OE+3 9.3E+2 1.3E+3
5 6.4E+0 2.2E+l 4.6E+l 5.8E+l 8.5E+l 1.2E+2 1.7E+2 2.4E+2 3.2E+2 4.3E+2 5.3E+2 8.6E+2 9.5E+2 9.6E+2 1.5E+3

Table-18: Power Radiated by a Freely Suspended Plate, For High Mode Orders With Ra=l.OO and Rt=0.002.

--'-0
:m\n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12 4.5E+2 4.7E+2 4.9E+2 5.3E+2 6.8E+2 8.7E+2 9.2E+2 9.0E+2 1.OE+3 1.2E+3 2.1E+3 3.1E+3 1.9E+3 1.7E+3 3.5E+3
13 5.4E+2 5.9E+2 7.2E+2'8.6E+2 9.4E+2 9.1E+2 8.9E+2 1.lE+3 1.3E+3.2.2E+3 3.1E+3 2.0E+3 1.5E+3 3..3E+3 3.9E+3
14 9.1E+2 9.5E+2 9.8E+2 9.5E+2 8.9E+2 9.5E+2 1.2E+3 1.4E+3 2.5E+3 3.0E+3 1.9E+3 1.6E+3 3.1E+3 4.0E+3 2.4E+3
15 1.OE+3 9.4E+2 9.1E+2 9.6E+2 1.2E+3 1.4E+3 2.0E+3 2.9E+3 2.9E+3 1.7E+3 1.7E+3 3.1E+3 4.0E+3 2.5E+3 1.6E+3

Table-19: Power Radiated by a Freely Suspended Plate, For Low Values of m and Very High Range of
the Values of n, Ra=l.OO and Rt=0.002.

:m\n: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 1.lE-3 4.9E-l 3.7E+l 1.OE+2 2.2E+2 4.5E+2 9.0E+2 1.OE+3 3.4E+3 2.9E+3 1.6E+3 1.6E+4 5.5E+3 1.5E+3 3.3E+4 7.5E+3
4 4.9E-l 1.8E+l 6.0E+l 1.4E+2 2.7E+2 5.0E+2 1.OE+3 1.3E+3 2.9E+3 3.9E+3 1.OE+3 1.9E+4 2.4E+3 2.3E+3 3.1E+4 4.5E+3
6 3.7E+l 6.2E+l 1.2E+2 2.1E+2 3.9E+2 7.0E+2 8.9E+2 1.9E+3 1.6E+3 4.1E+3 2.3E+3 2.1E+4 3.6E+3 4.1E+3 4.4E+4 4.8E+4
8 1.OE+2 1.4Er2 2.1E+2 3.4E+2 5.0E+2 9.2E+2 1.2E+3 3.1E+3 2.5E+3 2.4E+3 7.5E+3 1.2E+4 4.3E+3 1.OE+4 3.4E+4 5.0E+3



Table-20: Power Radiated by a Freely Suspended Plate, For High Values of m and Very High Range of
the Values of n, Ra=l.OO and Rt=0.002. •

------------------------------------------------------------------------------------------------------------------
:m\n: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32-------------------------------------------------------------------------------------------------------------------
10 2.2E+2 2.7E+2 3.9E+2 5.0E+2 9.1E+2 1.OE+3 2.5E+3 1.4E+3 3.9E+3 1.6E+3 1.9E+4 2.7E+3 2.5E+3 2.7E+4 9.2E+3 4.6E+3
12 4.5E+2 5.0E+2 6.9E+2 9.2E+2 1.OE+3 2.1E+3 1.9E+3 3.5E+3 1.6E+3 8.4E+3 1.3E+4 4.0E+3 4.9E+3 3.9E+4 5.9E+3 4.3E+3
14 9.1E+2 1.OE+3 9.1E+2 1.2E+3 2.5E+3 1.9E+3 3.1E+3 2.4E+3 3.7E+3 2.0E+4 2.9E+3 3.2E+3 2.1E+4 2.0E+4 4.3E+3'4.4E+3
16 1.lE+3 1.3E+3 1'-9E+33.2E+3 1.5E+3 3.5E+3 2.3E+3 3.0E+3 2.0E+4 3.7E+3 2.4E+3 7.2E+3 4.1E+4 5.6E+3 4.1E+3 4.5E+3

---------------------------------------------------------------------------------------------------------------------
Tabl~21: Power Radiated by a Freely Suspended Plate For Ra=l.OO and Different Values of Rt.

-----------------------------------------------------------------------------------~--------------------------------
Rt :m\n: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

--------------------------------------------------------------------------------------------------------------------
0.001 2 4.0E-7 4.3E-6 2.0E-5 1.6E-3 1.8E-2 9.5E-2 2.5E-l 9.6E-l 1.5E+l 1.OE+2 2.2E+2 2.6E+2 2.9E+2 3.6E+2 4.3E+2
0.002 2 1.lE-l 3.0E-2 4.9E-l 6.4E+0 3.7E+l 6.7E+l 1.0E+2 1.5E+2 2.2E+2 3.2E+2 4.5E+2 5.7E+2 9.0E+2 1.OE+3 ~1.OE+3
0.004 2 1.lE+0 1.lE+l 2.7E+l 5.7E+l 1.lE+2 2.0E+2 3.3E+2 5.7E+2 7.3E+2 1.OE+3 1.9E+3 3.1E+3 1.4E+3 4.3E+3 5.6E+3
0.001 12 1.OE+2 1.lE+2 1.2E+2 1.4E+2 1.6E+2 1.9E+2 2.2E+2 2.7E+2 3.2E+2 3.8E+2 4.6E+2 5.6E+2 6.7E+2 7.5E+2 7.8E+2
0.002 12 4.5E+2 4.7E+2 4.9E+2 5.3E+2 6.8E+2 8.7E+2 9.2E+2 9.0E+2 1.OE+3 1.2E+3 2.1E+3 3.1E+3 1.9E+3 1.7E+3 3.5E+3
0.004 12 1.6E+3 1.8E+3 1.8E+3 1.6E+3 1.4E+3 1.4E+32.0E+3 2.6E+3 3.3E+3 3.1E+3 3.1E+3 2.7E+3 3.4E+3 4.8E+3 4.1E+3---------------------------------------------------_._._-_.--_._-~---_._----_._----------------------------------------

Table-22: Power Radiated by a Freely Suspended Plate For Rt=0.002 and Different Values of Ra.---------------------------------------------------------------------------------------------------------------

~
N
o

: Ra :m\n: 2 3 4 : 5 6 7 8 9 10 11 12 13 14 15 16
-----------------------------------------------------------------------------------------------------------------------
0.50 2 1.lE-l 5.9E+0 4.3E+l 9.5E+l 1.8E+2 3.5E+2 6.0E+2 1.OE+3 1.4E+3 1.8E+3 3.6E+3 7.6E+3 2.5E+3 8.5E+3 1.lE+4.
1.00 2 1.lE~1 3.0E-2 4.9E-l 6.4E+0 3.7E+l 6.7E+l 1.OE+2 1.5E+2 2.2E+2 3.2E+2 4.5E+2 5.7E+2 9.0E+2 1.OE+3 1.OE+3
2.00 2 8.1E-4 3.1E-4 6.8E-4 2.2E-3 1.3E-2 7.1E-2 4.3E-l 3.4E+0 2.2E+l 7.6E+l 1.OE+2 1.3E+2 1.5E+2 1.9E+2 2.3E+2
0.50 12 2.4E+2 3.0E+2 4.0E+2 5.5E+2 7.8E+2 1.2E+3 1.8E+3 2.5E+3 3.1E+3 2.6E+3 4.6E+3 7.3E+3 5.0E+3 1.5E+3 3.8E+3
1.00 12 4.5E+2 4.7E+2 4.9E+2 5.3E+2 6.8E+2 8.7E+2 9.2E+2 9.0E+2 1.OE+3 1.2E+3 2.1E+3 3.1E+3 1.9E+3 1.7E+3 3.5E+3
2.00 12 7.3E+2 7.1E+2 7.1E+2 7.1E+2 7.2E+2 7.8E+2 8.7E+2 9.7E+2 1.lE+3 1.4E+3 1.7E+3 1.9E+3 2.1E+3 4.1E+3 2.0E+3

-------------------------------------------------------------------------------------------------------------------



Table-23: Frequency of a Simply-Supported Plate.
------------------------------------------------------------------------------ -----------------------------
: Ra :m\n: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
--------------------------------------------------------------------------------------------------------------
0.50 2 1.2E+3 1.OE+4 2.8E+4 5.5E+4 9.lE+4 1.4E+5 1.9E+5 2.5E+5 3.2E+5 4.0E+5 4.9E+5 5.9E+5 7.0E+5 8.2E+5 -9.4E+5 1.OE+6
1.00 2 5.9E+2 2.9E+3 7.3E+3 1.4E+4 2.3E+4 3.lE+4 4.8E+4 6.3E+4 8.lE+4 1.OE+5 1.2E+5 1.5E+5 1.7E+5 2.0E+5 2.4E+5 2.7E+5
2.00 2 5.2E+2 1.5E+3 2.8E+3 4.6E+3 6.9E+3 9.8E+3 1.3E+4 1.7E+4 2.2E+4 2.7E+4 3.2E+4 3.8E+4 4.5E+4 5.2E+4 6.0E+4 6.9E+4
0.50 12 3.4E+4 3.8E+4 5.0E+4 7.3E+4 1.OE+5 1.5E+5 2.0E+5 2.6E+5 3.4E+5 4.2E+5 5.0E+5 6.0E+5 7.lE+5 8.3E+5 9.5E+5 1.lE+6
1.00 12 3.4E+4 3.7E+4 4.2E+4 5.0E+4 6.0E+4 7.2E+4 8.6E+4 1.OE+5 1.2E+5 1.4E+5 1.6E+5 1.9E+5 2.2E+5 2.4E+5 2.8E+5 3.lE+5
2.00 12 3.4E+4 3.7E+4 4.2E+4 4.8E+4 5.5E+4 6.4E+4 7.2E+4 8.2E+4 9.lE+4 1.OE+5 1.lE+5 1.2E+5 1.3E+5 1.4E+5 1.6E+5 1.7E+5

~
N~

-------------------------------------------------------------------------------------------------------------------------
Table-24:Frequency of a Clamped Plate.--------------------------------------------------------------------------------------------- ---------------323028262422201816141210864

0.50 2 7.lE+6 2.0E+8 1.2E+9 4.2E+9 1.OE+IO 2.3E+IO 4.4E+lO 7.7E+lO 1.2E+ll 1.9E+ll 2.8E+ll 4.1E+ll 5.6E+ll 7.6E+ll 1.OE+12 1.3E+12
1.00 2 1.lE+6 2.6E+7 1.5E+8 1.5E+8 1.3E+9 2.8E+9 _5.2E+9 9.lE+9 1.5E+lO 2.3E+lO 3.4E+lO 4.8E+lO 6.6E+lO 9.0E+lO 1.2E+ll 1.5E+ll
2.00 2 7.5E+5 1.5E+7 8.3E+7 2.8E+8 7.0E+8 1.5E+9 2.8E+9 4.8E+9 7.9E+9 1.2E+IO 1.8E+lO 2.5E+lO 3.5E+IO 4.8E+IO 6.3E+10 8.2E+IO
0.50 12 3.8E+7 4.4E+8 1.9E+9 5.4E+9 1.3E+IO 2.6E+IO 4.8E+IO 8.2E+IO 1.3E+ll 2.0E+ll 2.9E+ll 4.2E+ll 5.8E+ll 7.8E+ll 1.OE+12 1.3E+12
1.00 12 3.2E+7 2.7E+8 7.9E+8 1.7E+9 3.3E+9 5.8E+9 9.4E+9 1.5E+IO 2.2E+IO 3.2E+IO 4.4E+IO 6.1E+IO 8.1E+IO 1.OE+ll 1.4E+ll 1.8E+ll
2.00 12 3.2E+7 2.6E+8 7.2E+8 1.5E+9 2.7E+9 4.5E+9 7.0E+9 1.OE+IO 1.5E+IO 2.1E+IO 2.9E+IO 3.8E+IO 5.0E+IO 6.5E+IO 8.4E+IO 1.OE+ll

: Ra :m\n: 2-------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------------------------

Table-25: Frequency of a Freely Suspended Plate.--------------------------------------------------------------------------------------------------------------------------------
323028262422201816141210864

0.50 2 1.OE+7 2.1E+8 1.2E+9 4.3E+9 1.OE+IO 2.3E+IO 4.4E+IO 7.7E+IO 1.3E+ll 1:9E+ll 2.8E+ll 4.1E+ll 5.6E+ll 7.6E+ll 1.OE+12 1.3E+12
1.00 2 4.3E+6 3.7E+7 1.7E+8 5.5E+8 1.3E+9 2.8E+9 5.3E+9 9.2E+9 1.5E+IO 2.3E+IO 3.4E+IO 4.8E+IO 6.7E+IO 9.0E+IO 1.2E+ll 1.5E+ll
2.00 2 4.0E+6 2.6E+7 1.OE+8 3.lE+8 7.5E+8 1.6E+9 2.9E+9 5.0E+9 8.0E+9 1.2E+IO 1.8E+IO 2.6E+IO 3.6E+IO 4.8E+IO 6.4E+10 8.3E+10
0.50 12 1.2E+8 6.6E+8 2.2E+9 6.0E+9 1.4E+IO 2.7E+IO 5.0E+IO 8.4E+IO 1.3E+ll 2.0E+ll 3.0E+ll 4.2E+ll 5.8E+ll 7.8E+ll 1.OE+12 1.3E+12
1.00 12 1.lE+8 4.9E+8 1.2E+9 2.3E+9 4.1E+9 6.8E+9 1.OE+lO 1.6E+IO 2.4E+IO 3.4E+IO 4.7E+IO 6.4E+IO 8.5E+IO 1.lE+ll 1.4E+ll 1.8E+ll
2.00 12 1.lE+8 4.7E+8 1.lE+9 2.1E+9 3.5E+9 5.6E+9 8.3E+9 1.2E+IO 1.7E+IO 2.3E+IO 3.1E+IO 4.2E+IO 5.4E+IO 7.0E+IO 8.8E+IO 1.lE+ll

: Ra :m\n: 2---------------------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------------------------



APPENDIXB

PR09HAMMINGFEATURES

B 1. GENERALFEATURES:

The computer program used in the current investigation has been

developed by .the author at the Computer Center of Bangladesh University of En-

gineering and Technology (B.U.E.T.), Dhaka. The Simpson r'ule for numerical in-

tegration has been used to integrate the farfield acoustic intensity and the

equations tan(-6/2)xtanh(,;/2)=O, have been solved by the method if bisection.

At first, the 'program for a certain set of boundary conditions has been

developed and subsequently modified for the others. In the program listing

sect"ion, the computer program for' the clamped piaLe has been presented. This

program, with minor modiqcations, can be applied to. any combination of bound-

ary conditions.

B 2. DEFINITION OF COMPUTERVARIABLES:

Variable Definition

AR Aspect ratio

TR Thickness ratio

AH Divisions of the range of integration

AK Divisions of the range of integration

AMP Amplitude factor of the power' radiated

AL I

AS s

GM ~ro, floots of the equation tan( ~/2)'f t.anh( '1'/2)=0

GPM t~ Roots of the equation tan( ~/2)-tanh(//2)=0



GN
GPN
GR

RM

RPM

RN

RPN

.ROA

RO
SLMB

TH
TK

WNR

123

tn, Roots of the equation tan(~/2)+tanh(l\/2)=O
I

lin, Rools of the equation tan(l\/2)-tanh(~/2)=O

g, Acceleration due to gravity

/Rm

R"
/

Rn

p, Density of the surrowlding medium

~, Density of the plate material

Af2, Dimensionless frequency factor

'1',Wave number ratio

•
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PROGRAM LISTING
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PROGRAM LISTING

* ******************************************************************OPEN(UNIT=5,FILE='OUT',STATUS='NEW')
* ******************************************************************* ************************* INPUT DATA ****************************** ******************************************************************AR=I. 00

TR=0.002
C=343.0
W=O.OOOI
GR=9.81
PI=3.1416
E=206E+9
ROA=I. 21
RO=7700.0
SIG=0.40
HH=0.0025

* ******************************************************************WRITE(5,1001) AR,TR
1001 FORMAT(5X, 'ASPECT RATIO= ',F6.4,5X, 'THICKNESS RATIO= ',F6.4,/)Xll=2.2

DO 1 M=2,16,2
12 XI2=Xll+HH

Yll=(SIN(Xl1)/COS(Xll»+(SINH(Xll)/COSH(Xll»
YI2=(SIN(XI2)/COS(XI2»+(SINH(XI2)/COSH(XI2»Zl1=Yl1*Yl2
IF(ZI1.LT.0.00) GO TO 10
Xl1=X12
GO TO 12

10 GM=Xll+Xl2
X21=2.2
DO 2 N=2,32,2

22 . X22=X21+HH
Y21=(SIN(X21) /COS (X21) )+(SINH(X2l)jCOSH( X2l)
Y22=(SIN(X22)/COS(X22»+(SINH(X22)/COSH(X22»Z21=Y2l*Y22
IF(Z2I.LT.0.00) GO TO 20
X21=X22
GO TO 22

20 GN=X21+X22
HGM=GM/2.0
HGN=GN/2.0
RM=SIN(HGM)/SINH(HGM)
RN=SIN(HGN)/SINH(HGN)
CALL ASOLN(M,N,PI,SIG,AR,SLMB)
AMI=2.*ROA*W*W*AR*AR( PI**6. )*E*E*(TR**4. ) *GR*GR*SIMB*SLMB
AM2=9.*C*(GM**4.)*(GN**4.)*RO*RO*«1.(SIG*SIG»**2.)A~IP=AMI/AM2
AH=PI/70
¥Y=33.0*AH
GSIJM=O.O
TH=O.O
CALI, ONE(C, S.LMB,GM,GN,RM,RN,An,TR, E,PI,RO,SIG,GR, TH,SUM)GSIJM=GSIJM+SUM



125

70 TH~TH+AH
CALL ONE(C,SLMB,GM,GN,RM,RN,AR, TR,E,PI,RO,SIG,GR, 1'11, SUM) •
GSIJM"GSIJM+4.0*SUM
TII=TH+AH
CALI, ONE(C, 51MB,GM,GN, RM,RN,AR,TR,E,PI,RO,SIG,GR, TH,SUM)
GSIJM"GSUM+2.0*SUM
IF(TII.LT.YY) GO TO 70
TH=TH+AH
CALL ONE(C,SLMB,GM,GN,RM,RN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)
GSUM=GSIJM+SUM
GSUM=(AH/3.0)*GSUM
POWER=4.0*GSUM*AMP
WRITE(5,200) M,N,GM,GN,POWER

200 FORMAT(7X,I2,8X,I2,IOX,FIO.4,10X,FIO.4,10X,EIO.4)
X21=X2l+3.1

2 CONTINUE
Xll"Xll+3.1

1 CONTINUE
XU"3,9
DO 3 M=3,16,2

32 X12=Xll+HH
Yll=(SIN(Xll)/COS(Xll)-(SINH(XII)/COSH(XI1»
Y12=(SIN(X12)/COS(X12»-(SINH(X12)/COSH(X12))
Zll+Yll*Y12
,IF(Zll.LT.O.OO) GO TO 30
Xll=X12
GO TO 32

30 GPM"Xll+XI2
X21"3.9
DO 4 N"3,32,2

42 X22=X21+HH
Y21=(SIN(X21)/COS(X21»-(SlNH(X21)/COSH(X21»)
Y22=(SIN(X22)/COS(X22)-(SINH(X22)/COSH(X22))
Z21=Y21*Y22
X21=X22
GO TO 42

40 GPN=X21+X22
HGPM=GPM/2
HGPN=GPN/2
RPM=-SIN(HGPM)/SINH(HGPM)
RPN=-SIN(HGPN)/SINH(HGPN)
CAM, ASOI,N(M,N,PI,SIG, AR,51MB)
AMl=2.*ROA*W*W*AR*AR(PI**6.)*E*E*(TR**4.)*GR*GR*SLMB*SLMB
AM2=9.*C*(GM**4.)*(GN**4.)*RO*RO*«I.(SIG*SIG»**2.)
AMP=AM1/AM2
AH=PI/70.0
YY=33.0*AH
GSUM=O.O
TH=O.O
CALL TIIREE(C,SLMB,GPM,GPN, RPM, IlPN,AR,TR,E,PI,IlO;SIG,GR,TH,SUM),
GSUM=GSIJM+SUM '

170 TH=TH+AJI
CALL THREE(C,SLMIl,GPM,GPN,RPM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)
GSIJM=GSIJM+4.0*SUM
TH=TH+AH
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CALL TIlREE(C,SI.MB,GPM,GPN,RPM,RPN,AR,TR,E,PI,RO,SIG,GR,TR,SUM)GSfJM=GSfJM+2.0*SUM-
IF(TH.I,T.¥Y) GO TO 170
TH=TH+AH
CALI. THREE(C,SIMB,GPM,GPN,RPM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)GSUM=GSUM+SUM
GSf~=(AH/3.0)*GSUM
POWER=4.0*GSl1M*AMP.
WRITE(5,300) M,N,GPM,GPN,POWER

300 FORMAT(7X,I2,8X,I2,lOX,FIO.4,lOX,FIO.4,10X,EIO.4)X21=X21+3.1
4 CONTINUE

Xll=Xll+3.1
3 CONTINUE

Xll=2.2
DO 5 M=2,16,2

52 X12-Xll+HH .
Yll=(SIN(Xll) /COS(Xll) )+(SINII(XIl)/COSII(XIl»
Y12=(SIN(X12)/COS(X12»+(SINH(X12)/CO~H(X12»Zll=Yll*YI2
IF(ZlI.LT.O.OO) GO TO 50
XIl+X12
GO TO 52

50 GM=Xll+XI2
X21=3.9
DO 6 N=3,32,2

62 X22=X2I+HH
Y2l=(SIN(X2l)/COS(X2l»-(SINH(X2l)/COSH(X2l»
Y22=(SIN(X22)/COS(X22»-(SINH(X22)/COSH(X22»Z21=Y2l*Y22
IF(Z2I.LT.0.00) GO TO 60
X2.l=X22
GO TO 62 .

60 GPN=X21+X22
HGM=GM/2.0
HGPN=GPN/2.0
HM=SIN(HGM)/SINH(HGM)
RPN=-SIN(HGPN)/SlNH(HGPN)
CALL ASOLN(M,N,PI,SIG,AR,SLMB)
AMl=2.*ROA*W*W*AR*AR(PI**6.)*E*E*(TR**4.)*GR*GR*SLMB*SIMB
AM2=9.*C*(GM**4.)*(GN**4.)*RO*RO*«1.(SIG*SIG»**2.)AMP=AM1/AM2
AH=PI/70.0
¥Y=33.0*AH
TH=O.O
GSUM=O.O
CAU, FIVE(C, SLMB,GM,GPN, HM,RPN, AR, TR,E,PI, RO,SIG,GR, TH,SUM)GSUM=GSIJM+SUM

270 TH=TH+AH
CALL FIVE(C,SJ.MB,GM,GPN,HM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)GSfJM=GSUM+4.0*SUM
TH=TH+AH
CALI, FIVE(C,SLMB,GM,GPN,HM,RPN, AR,TR,E,PI,RO,SIG,GJI,TH,SUM)GSUM=GSfJM+2.0*SIJM
IF(TH.LT.YY) GO TO 270
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.TH=TH+AH
CALL FIVE(C,SLMB,GM,GPN,RM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)GSUM=GSIJM+SUM
GSUM=(AH/3.0)*GSI~
POWER=4.0*GSIJM*AMP
WRITE(5,400) M,N,GM,GPN,POWER

400 FORMAT(7X,IZ,8X, IZ.lOX,FlO.4,lOX,FlO.4.l0X,ElO.4)XZl=XZl+3.l
6' CONTINUE

Xll=Xll+3.l
5 CONTINUE

Xll=3.9
DO 7 M=3,16.Z

lIZ XlZ=Xll+HH
Yll=(SIN(Xll)/COS(Xll»-(SINH(Xll)/COSH(Xll»
YlZ=(SIN(XlZ)/COS(XlZ»-(SINH(XlZ)/COSH(X12»Zl1=Yl1*YlZ
IF(Zll.LT.O.OO) GO TO 110
Xll=XIZ
GO TO llZ

110 GPM=Xll+XlZ
XZl=2.Z
DO 8 N=Z,32,Z

lZZ XZ2=XZJ+HH
YZl=(SIN(XZl)/COS(XZl»+(SINH(XZl)/COSH(XZl»
Y22=(SIN(XZ2)/COS(XZ2»+(SINH(X2Z)/COSH(X22»ZZl=YZ1*YZZ .
IF(ZZl.LT.O.OO) GO TO 120
XZ1=XZ2
GO TO 12Z .

1Z0 GN=XZl+XZZ
HGPM=GPM/2.0
HGN=GN/Z.O
RPM=-SIN(HGPM)/SINH(HGPM)
RN=SIN(HGN)/SINH(HGN)
CALL ASOLN(M,N,PI,SIG,AR,SIMB)
AM1=2.*ROA*W*W*AR*AR(PI**6.)*E*E*(TR**4.)*GR*GR*SUrn*SLMB
AM2=9.*C*(GM**4.)*(GN**4.)*RO*RO*«1.(SIG*SIG»**Z.)AMP=AMl/AM2 .
AR=PI/70.0
YY=3:~.OMH
TH=O.O
GSUM=O.O
CALL SEVEN(C,Surn,GPM,GN,RPM,RN,AR,TR,E,PI,RO,SIG,GR,TH,SuM)GSUM=GSIJM+SIJM

370 TH=TII+AH
CALL SEVEN(C,SLMB,GAM,GN,RPM,RN,AR,TR,E,PI,RO.SIG.GR,TII,SI~)GSIJM=GSIJM+4.0*SUM
TH=TH+AH
CAI,I.SEVEN(C, SIMB, GPM.GN,RPM,RN.AR,TR,E,PI,RO,SIG,GR, Til,SUM)PSIJM=GSIJM+Z.O*SIJM
IF(TII.LT.YY) GO TO 370
TH=TH+AH
CALI. SEVEN(C, SIMB, GAM,GN, RPM, HN.AR,TR,E,PI ,RO,SIG,GR,Til,SUM)GSUM=GSUM+SUM .
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GSUM=(AH/3.0)*GSUM
POWER=4.0*GSUM*AMP.
WRITE(5,500) M,N,GPM,GN,POWER

500 FORMAT(7X,I2,BX,I2,IOX,FIO.4,IOX,FIO.4,IOX,EIO.4)
X21=X21+3.1

B CONTINUE
Xll=Xll +3.1

7 CONTINUE
STOP
END

* ******************************************************************
* ********************* END OF MAIN PROGRAM ************************
* ******************************************************************
* ********************* SUBROUTINE STARTS ************************
* ******************************************************************SUBROUTINE ASOLN(M, N,PI,SIG,AR,SIMB)
* THIS SUBROUTINE EVALUATES THE DIMENSIONLESS FREQUENCY FACTOR.

FM=FWAT(M)
GX=FM-0.5
.HX=(FM-O.5)*(FM-0.5)*(1.0-(2.0/«~0.5)*PI»)
XJ=(FM-0.5)*(FM-0.5)*(1.0-(2.0/«FM-0.5)*PI»)
FN=FWAT(N)
GY=FN-.05
HY=(FN~0.5)*(FN-0.5)*(1.0-(2.0/«FN-0.5)*PI»)
YJ=(FN-0.5)*(FN-0.5)*(1.0-(~.0/«FN-0.5)*PI»)
STI=GX*GX*GX*GX
ST2=(GY*GY*GY*GY)/(AR*AR*AR*AR)
ST3=(SIG*HX*HY)+«1.0-SIG)*XJ*YJ)
ST4=(2.0*ST3)/(AR*AR)
SLMB=STI +ST2+ST4
RETURN
END

* ******************************************************************SUBROUTINE ONE(C,SLMB,GM,GN,RM,RN,AR,TR,E,PI,RO,SIG,GR,TII,SUM)
* THIS SUBROUTINE IS USED .TO INTEGRATE THE ACOUSTIC INTENSITY FOR
* EVEN VALUES OF M AND N.

AK=PI/70.0
XX=33.0*AK
TK=O.O
SIJM=O.O
CALL TWO(C,SLMB,GM,GN,RM,RN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)SIJr>I=SUM+FUNC

90 TK=TK+AK .
CALL 'fWO(C,SLMB, GM,GN, RM,RN,AR, TR,E ,PI,RO, SIG,GR, TH,TK,FUNC)
SIJM=SUM+4.0*FUNC
TK=TK+AK .
CALL TWO(C,SIMB,GM,GN,RM,RN,AR,TR,E,PI,RO,SIG,GR,TII,TK,FUNC)SIJM=SlJM+2.0*FUNC
IF(TK.LT.XX) GO TO 90
TK=TK+AK
CAtL TWO(C,SIMB,GM,GN,RM,HN,AR,TR,E,PI,HO,SIG,GR,TH,TK;FUNC)SIJM=SIJM+FUNC
SUM=(AK/3.0)*SUM
RETURN
END
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* ******************************************************************SUBROUTINE TWO(C,SLMB,GM,GN,RM,RN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)
* THIS SUBROUTINE IS USED TO DETERMINE THE PHASE FACTOR OF THE
* .ACOUSTIC INTENSITY FOR EVEN .VALUES OF M AND N.

ALI~(SLMB*E*GR)/(3.0*RO*(1.0-(SIG*SIG»)
AJ,2~SQRT (ALL)
AL~AL2*PI*PI*TR*COS(TH)*SIN(TK)/C
ASI~(SLMB*E*GR)/(3.0*RO*(1;O-(SIG*SIG»)
AS2~SQRT(ASI)
AS~AS2*PI*PI*TR*AR*SIN(TH)*SIN(TK)/C
HGM=GM/2.0
HGN~GN/2.0
ST7~AL*COS(HGM)*SIN(AL/2.0)
STB=GM*SIN(HGM)*COS(AL/2.0)
ST9~AL*COSH(HGM)*SIN(AL/2.0)
STI0~GM*SINH(HGM)*COS(AL/2.0)
STII=AS*COS(HGN)*SIN(AS/2.0)
ST12~GN*SIN(fmN)*COS(AS/2.0)
ST13~GN*SINH(HGN)*COS(AS/2.0)
STI4=AS*COSH(HGN)*SIN(AS/2.0)
STI5=«AL*AL)/(GM*GM»-1.0
STI6~«AL*AL)/(GM*GM»+1.0
ST25=«AS*~~)/(GN*GN»~1.0
ST26=( (AS*AS)/(GN*GN»+ 1.0
STI7=«ST7-STB)/STI5)+RM*«ST9+STIO)/ST16)
ST27~«STll-STI2)/ST25)+RN*«STI3+STI4)/ST26)
FUNC~STI7*STI7*ST27*ST27*SIN(TK)
RETURN
END

* ******************************************************************SUBROUTINE THREE(C,SLMB,GPM,GPN,RPM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,+SUM) .
* THIS SUBROUTINE IS USED TO INTEGRATE TilEACOUSTIC INTENSITY FOR
* EVEN VALUES OF M AND N.

AK=PI/70.0
XX=33.0*AK
TK~O.O
SUM=O.O
CALL FOUR(C,SLMB,GPM,GPN,RPM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)
S[JM~SUM+FUNC

190 TK~TK+AK
CALL FOUR(C,SLMR,GPM,GPN,ill'M,RPN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)
S'~=SUM+4.0*FUNC
TK=TK+AK
CALL FOUR(C,SLMB ,GPM,GPN,ill'M,RPN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)
St~~S'~+2. O*FUNC
IF(TK.LT.XX) GO TO 190
TK~TK+AK
CALI, FOUR(C,SLMB,GPM,GPN, ill'M,RPN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)
SI~=SUM+FUNC
SUM~(AK/3.0)*SUM
RETUIlN
END

* ******************************************************************

.-

I
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SUBROUTINE rOUH(C,SLMB,GPM,GrN,HPM,HPN,AR,TH,E,PI,RO,SIG,~R,TH,TK,+FUNC)
* THIS SUBROUTINE IS USED TO EVAWATE THE PHASE F'ACTOHOF THE
* ACOUSTIC INTENSITY rOR ODD VALUES or M AND N.

ALI=(SI,MB*E*GH)/(3.0*RO*(1.0-(SIG*SIG»)
AL2=SQRT (AL1)
AL=AL2*PI*PI*TR*COS(TH)*SIN(TK)/C
ASI=(SLMB*E*GR) /(3.O*RO*O. O-(SIG*SIG»)
AS2=SQRT(ASI)
AS=AS2*PI*PI*TR*AR*SIN(TH)*SIN(TK)/C
HGPM=GPM/2.0.
HGPN=GPN/2.0
ST30=AL*SIN(HGPM)*COS(AL/2.0)
ST31=GPM*COS(HGPM)*SIN(AL/2.0)
ST33=AL*SINH(HGPM)*COS(AL/2.0)
ST34=GPM*COSH(HGPM)*SIN(AL/2.0)
ST35~AS*SIN(HGPN)*COS(AS/2.0)
ST36=GPN*COS(HGPN)*SIN(AS/2.0)
ST37=AS*SINH(HGPN)*COS(AS/2.0)
ST38=GPN*COSH(HGPN)*SIN(AS/2.0)
ST39=«AL*AL)/(GPM*GPM»-1.0
ST40=«AL*AL)/(GPM*GPM»+1.0
ST41=«AS*AS)/(GPN*GPN»-1.0
ST42=«AS*AS)/(GPN*GPN»+1.0
ST43=«ST30-ST31)/ST39)+RPM*«ST33-ST40)/ST40)
ST44~«ST35-ST36)/ST41)+RPN*«ST37-ST38)/ST42)
FUNC=ST13*ST43*ST44*ST44*SIN(TK)
RETURN
END .

* ******************************************************************SUBROUTINE FIVE(C,SIn, GM,GPN,HM,RPN,All,TR,E,PI,RO,SIG,GR,TH,SUM)
* THIS SUBROUTINE IS USED TO INTEGHATE THE ACOUSTIC INTENSITY FOR
* EVEN VALUES OF M AND ODD VALUES or N.

AK=PI/70.0
XX=33.0*AK
TK=O.O
SUM=o.O
CALL SIX(C,SLMB,GM,GPN,RM,RPN,AR,TR,E,PI,RO,SIG;GH,TH,TK,FUNC)SUM=SIJM+rUNC

290 TK=TK+AK
CALL SIX(C,SLMB,GM,GPN,RM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)
SUM=SUM+4.0*rUNC
TK=TK+AK
CALI. SIX(C,S1MB,GM,GPN,HM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,TK,rUNC)SUM=SUM+2.o*rUNC
IF(TK.LT.XX) GO TO 290
TK=TK+AK
CAM. STX(C,SLMB,GM,GPN, RM,RPN,AR,TR,E,1'1, RO,SIG,GR,TH,TK,FUNC)SIJM=SUM+FUNC
SUM=(AK/3.0)*SUM
RETURN
END

* ***************************************~**************************
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SUBROUTINE SIX(C,SLMB,GM,GPN,RM,RPN,AR,TR,E,PI,RO,SIG,GR,TII,TK,
+FUNC) .

* TillS SUBROUTINR IS USED TO EVAWATE TilE PIIASR.FACTOR OF TilE
* ACOUSTIC INTENSITY FOR EVEN VAWES OF M AND ODD VALUES OF N.

ALl={SLMB*R*GR)/(3.0*RO*(1.0-(SIG*SIG»)
AL2=SQRT(ALI)
AL=AL2*PI*PI:i:TR*COS(TII)*SIN(TK)/C
ASl=(SLMB*E*GIl) /(3.O*RO*( 1.O-(SIG*SIG»)
AS2=SQRT(ASl)
AS=AS2*PI*I'I*'fR*AIl*SIN(Til)*SIN(TK)/C
HGM=GM/2.0
IlGPN"GPN/2.p
ST30=AL*COS(HGM)*SIN(AL/2.0)
ST31=GM*SIN(IIGM)*COS(AL/2.0)
ST33=AL*COSH(HGM)*SIN(AL/2.0)
ST34=GM*SINII(HGM)*COS(AL/2.0)
ST35=AS*SIN(HGPN)*COS(AS/2.0)
ST36=GPN*COS(HGPN)*SIN(AS/2.0)
ST37=AS*SINII(HGPN)*COS(AS/2.0)
ST38=GPN*COSII(IIGPN)*SIN(AS/2.0)
ST39=«AL*AL)/(GM*GM»-1.0
ST10=«AL*AL)/(GM*GM»+1.0
ST41=«AS*AS)/(GPN*GPN»-1.0
ST42=«AS*AS)/(GPN*GPN»+1.0
ST43=«ST30-ST31)/ST39)+RM*«ST33+ST34)/ST40)
ST44=«ST35-ST36)/ST41)+RPN*«ST37-ST38)/ST42)
FliNC=ST43*S T43*ST44*ST44*S IN(TK j
RETURN
END

* ******************************************************************SlffiROUTINRSEVEN(C,SJMB,GPM,GN,RPM,RN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)
* TillS SUBROUTINE IS USED TO INTEGRATE TilE ACOUSTIC INTENSITY FOR
* ODD VALUES OF M AND EVEN VALUES OF N.

AK=PI/70.0
XX=33.0*AK
TK=O.O .
SUM=O.
CALI. EIGIIT(C,SLMB ,GPM,GN,RPM, RN, AR, TR,E,PI, RO, SIG,GR, Til,TK, FUNC)
SUM=SUM+FIJNC

390 TK=TK+AK
CAJ,J,EIGHT(C, SIJllB,GPM,GN,RPM, RN,AR, TR,E,PI, RO, SIG ,GR,'TII,TK, FUNC)
SUM=SUM+4.0*FUNC
TK=TK+AK
CALL EIGIIT(C,SIJIlB,GPM,GN,RPM,RN,AR,TR,E,PI,RO,SIG,GR,TII,TK,FUNC)
SIJM=SUM+2.O*FlINC
IF(TK.LT.XX) GO TO 390
TK=TK+AK
CALL EIGIlT(C,SLMB,GPM,GN, RPM, RN,AR, TR, E,PI, RO, SIG,GR, Til,TK, ~'UNC)
SUM=SIJM+FUNC
SUM=(AK/3.0)*SUM
IlETUIlN
END

* ******************************************************************

[
I

.
r
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SUBROUTINE EIGHT(C,SLMB,GPM,GN,RPM,RN,AR,TR,E,PI,RO,SIG,GR,TH,TK,+FUNC) .
* THIS SUBROUTINE IS USED TO EVAWATE THE PHASE FACTOR OF THE
* ACOUSTIC INTENSITY FOR ODD VALUES OF M AND EVEN VALUES OF N.

ALI=(SLMB*E*GR)/(3.0*RO*(I.O-(SIG*SIG»)AL2=SQRT(AL1)
AL=AL2*PI*PI*TR*COS(TH)*SIN(TK)/C
ASI=(SLMB*E*GR)/(3.0*RO*(l.O-(SIG*SIG»)
AS2=SQRT(ASI)
AS=AS2*PI*PI*TR*AR*SIN(TH)*SIN(TK)/C
HGPM=GPM/2. 0
HGN=GN/2.0
ST30=AI.*SIN(HGPM)*COS(AL/2.0)
ST3I=GPM*COS(HGPM)*SIN(AL/2.0)
ST33=AL*SINH(HGPM)*COS(AL/2.0)
ST34=GPM*COSH(HGPM)*SIN(AL/2.0)
ST35=~~*COS(HGN)*SIN(AS/2.0) .
ST36=GN*SIN(HGN)*COS(AS/2.0)
ST37=AS*COSH(HGN)*SIN(AS/2.0)
ST38=GN*SINH(HGN)*COS(AS/2.0)

••• ST39={(A1*AL) /(GPM*GPM) '> - 1.0
ST40=«AL*AL)/(GPM*GPM»+I.O
ST4I=«AS*AS)/(GN*GN»-I.O
ST42=«AS*AS)/(GN*GN»+1.O
ST43=«ST3I-ST32)/ST39)+RPM*«ST33-ST34)/ST40)
ST44=«ST35-ST36)/ST4I)+RN*«ST37+ST38)/ST42)
FlJNC=ST43*ST43*ST44*ST44*SIN(TK)
RETURN
END

* ******************************************************************

•

/
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