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ABSTRACT

The acoustic radiation due to natural vibration of. baffled rectangular
flat plates of constant thickness with three different pure Boundary condi-

tions has been investigated in this thesis.The radiation efficiency of a rec—

tangular flat plate with all four edges simply supported, has also been found -

to check the reliability of the method employed by comparing with the results

available in the literature. Extensive numerical results on the acoustic power

radiation by plates with different aspect ratios, thickness ratios and mode -

" orders have been presented.
The functions developed by Warburton to represent the vibration of

beams, have been used to apply to different cases of vibrating plates. The

method of solution involves the formulation of the expression for the acoustic

power radiation in terms of the farfield acoustic pressure distfibutionQ
Numerical integration of the acoustic intensity have been used to oblain the
total‘éverage acouslic power radiagion from one side of the plate wunder
consideration. The Simpson rule for numerical integralion has been used in Lhe
computer programming.

It has been found that, at low mode numbérs, the power radiation-depends
'upon the boundary conditions, mode numbers, aspect. ratios and thickness
ratios, but at high mode numbers, the effects of boundary conditions and mode

numbers are almost nullified. -
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" CHAPTER -1

INTRODUCTION

1.1. GENERAL:

Withiﬁ the last few years, concern about the protection of environment
has grown rapidly as it has become generally recognized that the steady rise
in pollution of all kinds can not'bé‘aIIOWed to continue indefinitely. With
Ithe growth of mechanization in modern life, the problem of noise is also grow-

ing steadily. The escalation in number, size and complexity of'machines, in-
creasing road traffics etc. are contributing to the higher level of noise and
hence degrading the quality of life. The problem is already recognized as‘one
of considerable importance and demands immediate attention. To combat this
problem, many countries and communities have recently introduced legislations
making it a legal reqdiremént to measure community noise level, to reduce
noiée from vehicles al source and to maintain-acceptablc-noise levels in fac-
tories to prevent hearing loss,

This aclivity has led to a greater appreciation of the benefits of quiet
environment and a preference for quieter domestic.equipments, if these are
available. The quieter ilem thereforé, often has a sales advantage over itsl
more noisy competitor which may be reflected in the command of a higher price.
Economic advantages are also épparent in properly values which are lower in
noisy areas than in quiet areas. |

The cost of insﬁlating against noise must also be ‘considered. The éon—
trol of noise is therefore, of importance not only in the prevention of hear—
”ing damage and in providing an acceptable acoustic environment but also from

economic point of view,



1.2. SOURCES AND MECHANISM OF PRODVUCTION AND FROPAGATION OF SOUND:

To identify the éources of sound and to understand the mechanism by
which it ié produced and how it travels from oné point to another is the firét
prerequisite to the study of acousfics. Noisc is caused by the vibration of
solid, liquid or gaseous medium. When this vibration is within the range of

audible f{requency of the human beings, a human car can perceive Lhe noise,

otherwise, they go unnoticed. When a solid bedy vibrates at a frequency within

the audible frequency range, a part of the energy dissipated is Lransmitied to
the surrounding environment as perceivable sound. Energy is transferred from
one vibrating particle to the next and the acoustic energy travels through the
surrounding medium as longitudinal waves. In the current study, attention is
concentrated to "the amount of acoustic energy dissipated as noise due to

natural vibration of plane rectangular plates of constant thickness.

1.3. MOTIVATION BEHIND THE SELECTION OF THE PROBLEM:

In a solid structure, the dominant sound generating meéhanism is at-
tributed to the mechanical vibration of the system. The structure in this
upalysis is taken to be a simple plane rectangular plate of constant thickness
vibrating in flexure. In everyday life, many,prbblems are encountered with un-—
wanted sound. Many of these ﬁoise sources are in the form of flaf plates. The
windows, walls and floors of buildings, the exposed surfaces .of large
machinés, the walls of air*conditioning ducts, the air plane wings are some of
the examples of such noise radiators. To control noise produced by these
structures, it is always very convenient to becomé femiliar with the idealized
problems.

‘Investigations into the interaction of acoustic field and vibrating
structure havé demonstrated the importance for a greater understanding of

energy radiation from vibrating structures. Numerous attempts are made in the



past to evaluate the noise characteristics of different vibrating sources by
direct measurement. Continued efforts in this direction has also led. to the

development of very sophisticated sound measuring devices. But an exact

analysis of the noise radiation from flexural vibration of a plate vibrating_

in its patural modes under different edge conditions is &et to be achieved.

1.4, OBJECTIVES OF THE STUDY:

In this analysis, attempt is made to study the noise generating charac-
‘teristics of a rectangular flat plate in an infinite béffle. The plate is
studied under three different boundary conditions. These are: (i) all four
edges of the plate are simply supported, (ii) all four edges of the plate are
clamped and (iii) all four edges of the plate are freely suspended. Thesé
three boundary conditions of the plate are herein referred to as pure boundary
conditions in order tordifferentiate them from iarge number of mixed boundary
conditions. The objectives of the cprrent study can be outlined as follows.

(i) The development of appropriate displacement functions that satisfy
the boundary conditions of the rectangular plates vibrating in flexure.

(ii) Derivation of an expression for the natural frequency of the
vibrating plate for different mode shapes.

(iii) Eveluation of the frequency of vibrationrfor a particular case and
study its variation with the mode numberé.

(iv) @erivqtion of an expression for the power radiated due to natﬁral
vibration of the plate under éonsideration.

(v) Evaluation of the magnitﬁde of the average power radiated from one
side of the baffled plates by the nethod of numerical integration of ‘the ex-
pression for the power radiated. For this purpose, a comﬁuter program is torbe

developed.

(vi) To study the variation in the radiated powerrfrom the platq with

~t



the variation of mode numbers, aspect rétio, and thickness ratio pnder dif-
ferent boundary conditi;ns.

(vii) Determination of the radiation efficiency of the simply supported
plate and plotting the same against the wave number ratioc for comparing the
results of the current investigations with those of the previous works in or—
der to verify spuudnesé of the present analysis and to ascertain the absence

_ of any mistake in the numerical procedure employed here.

1.5. DEFINITION OF TERMS:
Some of the terms used in. this thesis are defined here in order to

remove ambiguity in their use and to attach precise meaning to them.

{a) ACOUSTIC PRESSURE:

Sound travels as a wave of' compression and rarefaction withl an as-—
sociated wave of pressure yariatibn. in most practical problems, it is the
pressure variation that is of greater imporﬂance and éreater interest.. The
acoustic pressure at any point is the difference between the actual pressure

at that point in the presence of the sound and the pressure that would exist

at that point under identical conditions in the absence of any sound. This’

acoustic over pressure at any point varies sinuscidally with time exactly as
an electrical current and exactly as in electrical measurements, it is con-

venient to use the r.m.s. value.

{b) ACOUSTIC INTENSITY:
Perhaps the most basic quanlity with which one is closely concerned is
sound 'power. This is associated with the actual source of sound. The source

radiates power which is transmitted in the form of sound. The sound power of a

]

source is the total power coming from it. It is the rate at which energy iﬁ.



the form of sound leaves the source.

For defining acoustic intensity, a point at some distance from a source
of sound and a small area perpendicular to the line Joining the point to the
source has to be considered. Some of the power being generated by the source
will be transmitted through the area; the exact amount depends not only on the
sound bower of the source, but also on its directional properties, thé dis—
tance of the area from the source and the.preseﬁce of sound absorbing and
sound reflecting materials. IT the power passing through the area A is W, then
the acoustic intensity I is the power passing through a unit area or

I=w/A.

(c) RABIATION RESISTANCE:

While calculating the displacement of a solid due to an applied force,
the effects of the presence of fluid must be taken into consideration. This
effect may be represented by introducing the idea of radiation resistance.

The radiation resistance iﬁ the equivalent of the frictional forces
tendiﬁg to damp out the vibrationi It provides one of the means of removing
the energy originally applied to the solid. Some of the applied energy must be
used to overcome the purely mechanical resistance to motion and.in some cases )
electrical resistance. This bortion of the energy is converted into heat. Only
8 proportion of the applied energy is finally radigted as acoustic energy.
This last part is regarded as overcqming the radiation resistance. The advan—
tages of the concept of radiation resistance is that the whole of the applied
energy may be treated as having to overcome a series of resistances,_ namely,
electrical, mechanical and radiation resistance.

The concept of radiation resistance is useful in calculating the acous-
tic efficiency of a source. The efficiency of a source of sound is defined as

the ratio of the energy radiated as sound to the whole of the vibrational
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energy applied to the source. However in this thesis the radiation resistance

of a source is defined as (68),
Ron=Puw/<iumi2?, where, -

Pu is the totlal average acoustic. energy radiated by the solid and <!um!2)> is

the temporal and spatial average of the square of the surface vélocit}.



CHAPTER -2
LITERATURE REVIEW

2.1. INTRODUCTION:

The histary of the study of vibration of flat plates dates
back to as egrly as the thh.century. The first person to begin
the study of the dynamical behavior of. structures was probably
Rayleigh, who, in 1889, developed tﬂé_ fundamental equations
governing the vibration of plates. PBut the problem did not 'get
significant importance wuntil - the middle of thé ZOtﬁ century.
During the middle of ﬁhe 20th century, people began to‘ consider
neise as a source of gnvironmental pollution and conseﬁuently the
étudy of vibration was initiated. Yet, the study of the acoustic
radiation éharacteristics of flat plates has not yet got tHe full

momentum.

2.2. VIBRATION OF PLATES:

Within +the last few decadeé, intensive work ‘has been
reported on vibration analysis of plates. Most of the initiators
confined their ‘study to tﬁe determination o¢f the frequency of
vibrating plates.'

Toshiyuki Sakpta(Sl) derived an approximate formula for thé-
estimation of the-fundamental natural frequency of the simply-
supported orthofropic rectangular plates with thickness varying
linearly in one direction. The accuracy of the formula and the
influence of the flexural rigidity D on the natural frequency was

also discussed. Approximate values of the natural frequency of an



isotropic rectangular plate with thickness varying in one direc—.
tion were reborted by Apple and Byers(l), Gontkevich{(20) and Séni
and Rao{59). Apple and Byers calculated. the’ upper "and lower
bounds for the fundamental nétural frequency of the simply-
supported plates. Gonﬁkevich derived approximate expression for
calculating the natural frequency of the 'plate with various
boundary coﬁditions by use of finite difference method.

John Hunt, Max Knittel and Don Branch{28) jointly reported
an approximate method for solving the equations of motion that
describe thé vibration of an elastic structure immersed in an in-
finite acoustic fluid medium. The mathematical model that was
developed used the finite element method to calculate the vibra-
tiqnal characteristics of the elastic body and the acoustic pres-
sure field of that portion of the fluid thch closely surrounds
the vibrating structure. Analytical methods were used to obtain
the boundary conditions for the mathematical model. Claassen and
Thorne(4) presented four graphs giving the first ten vibration
frequencies of " a clamped rectangular plate as a function of the
ratio of sides and one graph of nodal 1lines to illustrate the
transition from one mode of vibration to another. Similar results
for a rectangular plate.clamped on two opposite edges and free on
the other two edges as well as a table, discussions of conver-
gence and complete mathematical - model in both boundary wvalue
problems were reported by the same authors(5). The results of
these investigations (4 and 5) were Tound to agree upto an ac-
curacy that could be expected with the previous results of
similar investigations (65,71), as checked by the authors.

Dickinson{7) extended the sine series solution, previously



used for the study of the flexural vibration of rectangular
isotrnpic plates, to freely vibrating orthotropic plates. The
author présented tﬁe application of the method to three par-
ticular plates with different support conditions and also the
numerical results of two of these examples. The author used the
gsine series solution developed by Dill ‘and Pister(B)}.
Warburton(TO) derived app;oximute expressions for the frequencies
of all the modes of vibration of isotropic plates subjected to
any coﬁbination of free, simply supported or clamped édges. He
applied the Rayleigh method, assuming that the deflections of the
'plates could be represented bg suitable characteristic functions
satisfying the boundary cbnditions(?Z). In his analysis, the
author first developed a set of beam functions satisfying the
edge conditions of beams and applied those results to the vibra-
tion of plates. He expressed the frequency in terms of a dimen-—
sionless frequenéy factor which in its turn is a function of the
mode shapes. The factors of the fregquency factor for different
cémbinations of simbly supported, clamped or freely suspended
edge conditions are given in the form of a table. He also dis-
cﬁssed the accuracy of{the approximate frequency expression and
the existance of the modes m/n+n/m. Hearmon(23) extended the
treatment presented by Warburton to the orthotropic plates with
any of its'édges either clamped or simply supported, that is to
a plate made of 2 material possessing three mutually perpen-
dicular axes of éymmetry, two of which lie in the plane of the
plate parallel to the respecfive sides, The third symmetry axis
is normal to the other two and is therefore perpendicular tplthe

plane of the plate. The results of his study (23) were found to
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be satisfactory excépt that the exact boundary conditions CAuld
seldoﬁ be renlized in experimental work{(24).

Lin (3B) studied the free vibration - of ﬁlatés, stiffened
with many stihgers. The differential equation was solved for an
individusl plate and the solution for an individual plate were
coupled .with the boundary conditions. Duffield and Hilliems {(9)
anal&zed fhe parametric resonance of a plate using the energy
method. Saito and Suzuki (50) performed an analytical evaluation
of the viscoelastic beam effect on plate vibration
characteristics. Ohtomi (44) reported the analytiqal atudy of the
free ﬁibration of a simply supported rectangular plate, stiffened
with viscoelastic beams. The effects of the volume and number of
stiffening beams were clarified.

Goreman (15) conducted free vibration analysis for all
plates with cpmbinations‘of clamped~simply supported edge, ex—
cepting those with two opposite edges simply supported. He dis-
cussed the vibration of plates with opposite edges simply-
supported in é separate paper {iS). The author also introduced
the analysis of free vibration of rectangular plates in his ear-
iier works.(17)l A thorough analysis.of the cantilever plates by
the method of superposition was also reported by the author {18).
Laura, Ercoli, Cortinez and Padin de JIriso (35) studied the
transverse vibfation of rectangula; plates, continuous in two
'directions.‘ The author wused the Rayleigh—Séhmidt methodology
coupled with the use of polynomial coordinate functions. The
frequency - values obtained by these authors were very close to
those obtained by Leissa (36).

For problems of solid circular plates, analytical solutions
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was presented by Wahr(ST)and the Ritz and Galekin solution have
been obtained by Laura and others (33,34,358) to calculate the
fundamental frequehcy and buckliﬁg loads. Pardoen (45,46)‘dealt
with the problem by finite element aﬁproach. Jain (30) and Gupta
and Lal {(21) analyzed circular plateg of variable thiékncss by
the Frobenius method and- this problem was also solved by the Ritz
methodl(SB). Narita (43) made an attempt to develop a general
solution procedure for the vibration and stability analysis under

arbitrary distribution of inplane forces.

2.3. ACOUSTIC RADIATION FROM PLATES:

Though intensive research works héve been performed to study
the vibration of plates and plate-like structures, the study of
the acoustic radiation due to vibration of flat plates is still
in its infancy. The acoustic radiation from elastic structures
has occupied acousticians interested in radiated poise. Many
structures are either large compared to the wave length or highly
Qamped so that outgoing waves do not reflect.from boundaries, ef-
fectively making the structure infinite in extent.

The first sélutioﬁ to the radiated power from an‘elastic
plate, modeled by classical plate theory, was obtained by
Skudrzyk (56,57) and Heckl (25,256,27) for a time harmonié point
force and by Thompson and Rattaya (63) for time harmonic point
momént. ' The solutions for the acoustic radiated pressure from a
point excited plate using the cléssical theory was given by Gutin
(22), Feit‘(IO) and Skudrzyk (57). The influence of fluid loading
on the radiation from elastic'plate was~investigated by Maidanik

and Kerwin (42). All of these investigations employ classical
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pl@fe theory. Such theory faiis at high frequencies where the
phase and group velocities becone infinite as fhe frequency be-
come "unbounded. Such a plate theory is useful only .for
frequencies-where the ratio of the wavelength to the plate thick-
ness exceeds eight.

To ipprode the high ffequency prediction of elastic plates,
Feit (11) employed the Timoshenko-Miudlin theory for such a
prediction. This theory adds shear deformation and rotary iner—'
tia to.the classical flexural theory.’ There are two. dispersion
curves for this plate. The flexural branch (acoustic) has phase
and group velocities approaching the'Rayleigh velocity of = the
plate material as the frequency increasesp Stuart (60,61,62) ex-—
plored the solutions for the same plate with new insights into
fhe ‘leaky wave émanating from the plale and nbtgined a more ac—
curate solution when the angle of observation approaches the
coincidence ;ngle. This new soiution would be accurate at closer
cbserver distanqe fhan Feit's (11).

Sound radiation from beam reinforéed plate, excited by poipt
or line forces, has been investigated by a few authors. Romanov
{(49) obtained the solution of the radiatéd préssure from a plate
reinforced with beam and excited by a linel force. Feit and
Saurenman (12) analyzed the acoustic radiafion of a point excited
plate reinforced Gith a beam, but confined théir interests to
high frequencies. Gorman (19) obtained the solulion for a plate
reinforced by many beams and excited by a line force paratlel to
the beam. His solutions thus makes the beams'’ reaction on the
plate purely as rotary and tranasverse impedences without flexural

wave travelling in the beams. Garrelick and Lin (13) analyzed the
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radiation ffom'a beam reinforced plate and confined their atten-
tion to an on-axis response, Lin and Hayek (37) obtaiﬁed the ex—
act solution for the radiation }rom a point excited plate rein-
forced by one beam, which is valid in the entire acoustic spaée.
The transient acoustic radiation from a plate under the in-
fluence of time dependent point forces was inv?stigated by Magrab
and Reader (40) and Stuart (60). Magrab and Reader predicted the
time signature . of radiated pressure from a sinusoid phase.
However, the solution was valid only after the acoustical arrival
and there was an analytical error in the choice of the complex
poles of the solution. Stuart predicted the impulse response of
an elastic plate. His formulation accounts for shear and'rotary
ine;tia of the plate as weil as the fluid loading of the écouétic
mediuﬁ. The resulting férfield rpdiated pressure as determined
from the standard saddle point method was obtained for times
before and after the acoustic arrival. However, the origin of the
fifst arrival wag not predictable from his'solution. Furthermore,
he predicts the solutions for the acoustic pressure after the
acéustic arrival time to be a monotonically decaying solution.
However, the author supposed that' it ‘is more physically
reésonable to assume that the plate will vibrate freely, gener—
ating a decaying sinusoid time gignature. Seroj, Mackertich and
Sabih (55) reviewed the acoustic radiation from anrinfinite elas-
tic plate. ' The author considered qnly the infinite elastic plate
due to the’fact that many structures are large compargd to the
wavelength or highly démped so that outgoing waves do not }eflect

Vfrom boundaries effectively making the structure infinite in

extent.
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Wallace (69) found the radiation resistance from the far-
field pressure distribution produced'by a‘haffled beam, vibrating
with simple harmbﬁic motion in one of its natural modes. He con-
sidered beams hinged at each end and clomped at each- end;' The
author derived expressions for the radiation\resistancp which are
aésymptotic "to the exact solution as fhe'frequency approaches
zero, In addition, numerical integration of the farfield acoustic
intensity was used.to obtain graphs covering the enfire frequency
range for the fifst_ten modes of the beam. In another paper (G8)
the same author determined the fadiation resistance cor;esponding
t6 the natural modes of a finite rectangular panel supported in
an infinite baffle, He used the appropriate beam functions given
by' Warburton (70). But his analysis was confined to simply-
supported plates only.

it ié found that not much wor# has been done tolanalyze the
acoustic radiation characteristics of rectangular_flét plates
vibrating in its natural modes. Till now, no deﬁelopment is.
reported in the"literature on thé.determination of the ekact
amount of acoustic radiation due to flexural vibration of rectan-

gglar flat plates.



CHAPTER -3
FORMULATION OF THE PROBLEM

3.1. INTRODUCTION;

1n this analysis, a uniform, elastic, - plane rectangular plute of size
2ax?b is assumed to be contained in an infinite baffle. The baffle prevents
the movement of air around the edges of the plate and pérmits radiation inlo
the half spaces in front of either of the surfaces'of the plate. The plate may
have any combination of simply supported, clamped or freely suspended condi-
tions at the edges. This analysis will be confined only to the pure boundary
conditions. The pure.boundary conditions are: (i) all four edges of the plate
-simply supported, (ii) all four edges of the plate clamped and (iii) all four
edges of the plate freely suspended. The plate, along with the coordinate sys-—
tems used in the analysis js shown in figure 1. Each of the boundary condi-
tions will be dealt with in separate sections. But only a general mathematical

model will be presented in this chapter.

3.2. ASSUMPTIONS:

The analysis that follows in the subsequent sections 1is based on the
following assumptions:

(1) The plate is thin and of uniform thickness h; thus the free surfaces
of the plate are the planes z=+(h/2).

(i1) The direct stress in the transverse direction is zero. This stress
must be zero at the free surfaces and provided that the plate is thin, it is
reasonable to assume that it is zero at any section z.

(1i1) The ' stresses in the middle plane of the plate (membrane stress)

are neglected, that is, transverse forces are supported by bending stresses,
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as in flexure of a beam. For membrane action not to occur, the displagemenf
must be small compared with the thickness of the plate.

(iy) Plane sections.that are ipitially plane and normal to the middle
plane remain plane and normal to it. |

(v} Only the transverse displacement has to be considered.
3.3. MATHEMATICAL MODELING:

(A). DETERMINATION OF THE POWER RADTATED:

When excited, the plate will vibrate with simple harmonic motion in one
of its natural modes. The instantanecus transverse displacement at a point
(x,y) on .the surface of the plate, corresponding to the (m,n)th'mode of
vibration, is given by (70)

won=Wmn O(x)0(y)e! ©mnt
where,' Wnn is the amplitude of transverse displacement.and tJ. is the
natural angular frequency of vibraiion of thé plate corresponding to the
(m,n)th mode and t is the time. ©€(x) and ©(y) are.the displacement functions
describing the wave form of the vibrating plate and satisfying the conditions
at the edges. |
| The motion of the plate surface which generates the acoustic -radietion

is given by the normal velocity distributicn,

V tlwmn iwmnt '
Uz ?i(')mnwmn a(x) 6(y)e e e (3.2)

cccccccccccc

The approximate expression for the velocity potential, d % of the
elemental area dA, radiating in only one direction is given by,
U ikr

dd= ——— e dA =000 sereasisesan @t ettt eae e e (3.3)
2Mr ; '
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where U is the nofmal‘vibrational velocity of the element dA, r is the
distance of the receiving point (R,8 , ) of‘sound wave from the elément and k
ié the acoustic wave number, 2r/» , where X is the wave length df the sound
emmitted.

The elemental acoustic pressﬁré, dp at the receiving point (R,0,o¢ ) due

to the elemental area dA is given by the relation

dp=ikp cdg e e i e ettt (3.4)
] P .

where, p is the density of the mediumlsurrounding the plate.

Substitution of equation (3.3) into equation (3.4) gives,

_where,' é is the velocity of sound waves in the medium surrounding the
plate.

If the receiving point (R, , =) is located in the farfield, then the dis-—
tance r of the receiving point from the elemental area dA can 'be expressed

with first approximation as,
r~R—{xCos e 4+ySina )Sind

The  second term [xCosaL+ySind.)Sin6].in equatién {(3.8) is very small compared
to the first and its effect cen be neglected in the amplitude factor of equa-

tion (3.5). However, both terms are equally significant as far as the phose

factor of equation (3.5) is concerned.

Substituting equations (3.2) and (3.6) in equation (3.5) and negleéting'
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the second term in the expression of r in the amplitude factor of equation

{(3.5), it can be shown that,

—pckennWon i{Wmnt+kR-k(xCosc +ySinot }§ind}
dp=————==m—mm o(x)8(y)e dA.

“Thus the net acoustic pressure at the point (R,0,2¢) due to the (m,n)th mode of

vibration of the plate is given by,

-~ pckmnWan i(tomnt+kR) a b -ik(xCosa+ySinc)Sin®
TpE e - J fe(x)e(y)e ' dxdy.
2TR -a-b

Suhstitutihg 1=2akcoscc sin® and s=2bksinocsin® , into equation (3.8), it is

found that the equation takes the form,

"kaC\)mnWmn i(comnt+kR) a b
p= e 5 o(x) o(y)el-il1x/2a)e(-15v/2b) dxdy.
2TTR -a~

The total average power radiated from one =side of the baffled
pléfe,found by integrating the farfield acoustic intensity ‘over the hemis~

pherical surface is,

2 w2 ip:2
Pz ) | —— RZSind d6 dot  rieieeiiininnan. (3.10)
0 . .

where ipi? is the square of ithe root mean square value of the net acous-

tic pressure.

(B).. DETERMINATION OF NATURAL FREQUENCY:

The natural frequency of the plate wmn that corresponds to the
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transverse mode of vibration {m,n) can be_determined in terms of the boundary 1
conditions, the nodal patterns, the dimensions of the plate ahd the constants

of the‘plate material. Warburton (70) derived the expressioﬁ for the natﬁral
frequency from the energy equation, He expressed the natural frequency in

terms of a dimensionless frequency factor,;, given by,
Af? = Gx+Gy 4 (a/b)942(a/b)2 { HxBy +(1- ™) IxJy}  viiieiineans (3.11)
and the relation between ¢omn ahd."hﬁ is given by,

Pmatcd212(1-02) ‘
Af25  mmmmmmm et eaes P, ...(3.12)
m?Eh g

where, On is the density of the plate material, a,b are the dimensions of
the plate, ¢ is the Poisson’s ratio and E is the modulus of elasticity of the
plate material, h is the thickness of the plate and g is the acceleration due
to gravity. The quantities Gx,Gy,Hx,Hy,Jx and Jy are the functiohs of boundary
conditions and mode shapes; The vajﬁes of these quantities are given by War-
burtoﬁ (70) in the form of a table. In this thesis, the éxpression for natural
frequency given by Warburton (70) will be used. The values of these quantities
for the boundary conditions under consideratién, afe given in the form of a

tahlé in the following page as a ready reference.
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Table giving the values of the terms of the frequency factor expression.
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(C). DETERMINATION OF RADIATION RESISTANCE:

The concept of radiation resistance is very useful in ca]culating‘ the
radiation efficiency of a vibrating system. Though the main objective of the
present investigation is to determine the actual amount of acoustic energy
radiated from one side of the plate, the radiation efficieﬁcy of. a plate with
simply supported boundary condition is determined hére for the purpose of com-
paring thé results of the present study with those of the previous 'works
‘(68,69). For this purpose, it is required to formulate the expression for
radiation resistance,

The radiation resistance is defined by C.E.Wallace (68,69) as,
Rw:ow<:U\¢:2> : R R (3.13)

where Pw is the total average power radiated from one side of the
baffled plate and <!uwx:!2> is the average of the temporal and spatial factor of

the square of the surface velocily, given by,

{iue12>=(1/4ab) ?

-a—

X .
g(lf2)Uw2dxdy ............. P (3.14)

The expression for us can be obtained from equation (3.2) as,

U =i Won¥Wmn O(x) €(y) e i et ey (3.15)

(D). DETERMINATION OF RADIATION EFFICIENCY:
C.E.Wallace, in his paper (68,89) introduced the concept of radlatidn
efficiency with a view to simplify the matters. The main idea behind the in-

troduction of the concept of radiation efficiency was to eliminate the depen-—
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-dence on the impédénce of the acoustic medium and the plate size while. cal-

qulafing the acoustic radiation from vibrating plafes. The radiation ef-

ficiency is defined as,
Smn:Rm'n/4 Pr:ab

Combining equations (3.15) and (3.16) the expression for radiation efficieﬁcy

becomes,

Smn=Pu/4 Pcab{ i 12> : e (3.17)

3.4. DISPLACEMENT FUNCTIONS:

“Warburton (70) found a number of beam functions for describing the dis;
ﬁlacement of a vibrating beam under different combinations of end conditions.
He also used the ‘functions to represent the vibration of rectangular flal
plates., 1In this solufion, the same beam functions, slightly modified to
satisfy the boﬁnaary conditions, are used. The modified beam functions, which

are henceforth referred to as displacement functions, for different boundary

conditions are:

{1) Simply supported Plates:

{(m~1) T {x+a)
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(ii) Clamped Plates:

0(x)=Cos( ¥mx/2a)+RnCosh( ¥wx/2a), m=2,4,6,... —agxgé
where, Rn=8in(3x/2)/8inh(#m/2) and 4mn are the roots of the

equation tan( 3/2)+Laph( 3/2)=0

6(x)=Sin( ¥mx/2a)+RaSinh( ¥nx/2a), m=3,5,7.. -agx<a
where R;=—Sin(3;/2)/8inh(8;/2) and  ¥m are the roots of the

equation tan( 3/2)-tanh( 3/2)=0

8(y)=Cos(¥ ny/2b)+RnCosh( #ny/2b), n=2,4,6,... -b{ysb
where, Rn=Sin(¥n/2)/S5inh{%a/2) and %n are the roots of the

equation tan( 3/2)+tanh( 4/2)=0

8(y)=Sin( ¥ ny/2b)+RaSinh( ny/2b), n=3,5,7.. -b<yb
where, Rn=— Sin(G;/Z)/Sinh(66/2)'land ¥ are the roots of the

equation tan( &/2)-tanh( ¥/2)=0
(iii) Freely Suspended Plates:

6(x)=Cos{ Fmx/2a)+RmCosh( ¥mx/2a), wm=2,4,6,... -agx<a
where, Rn=— Sin(¥m/2)/Sinh(¥n/2) and ¥n are the roots of the

" equation tan( ¥/2)+tan( 3/2)=0

0(x)=Sin( ¥nx/2a)+RiCosh( ¥ux/2a) m=3,5,7, .... -a{x{a
where, Ra=Sin(%n/2)/Sinh(¥%/2) and 5m are the roots of the

equation tan( ¥/2)-tanh( 572)?0
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O(y}=Cos( Xny/2b}+RnCosh( ¥ ny/2b), n=2,4,6,.... -bgly<b
where, Rn=— Sin(dn/2)}/5inh{#n/2) and Jn are the roots of the

equation tan( ¥/2)+tanh{ %/2)=0

©(y)=8in( Xhy/2b)+RnSinh( ¥ny/2b), n=3,5,7,. -b<y¢b
where, Ra=Sin{(dn/2)/8inh(3n/2) and ¥n are the roots of the

equation tan{ ¥/2)-tanh( &/2)=0



CHAPTER -4

SOLUTION OF THE PROBLEM

4.1. INTRODUCTION:
The solution of the problemrcomprises two parts, namely, analyticel and
numerical. In the ahalytical part, integration of the‘expression for_the
lelemental pressure is performed to obtain the farfield pressure distribﬁtion.
In the second part, numerical integration of the'expressioh for the acoustic
intensity-is performed in order to get the total average power radiated from
one sidé of the baffled plate. For ihe plate with simply-supported edge
conditions, the values of the radiation efficienc& is also found by the method
of numerical integration. In the subsequent sections, the method of integra-

tion for each set of boundarylconditions will be treated individually.

4.2. SIMPLY-SUPPORTED PLATE:

(a) POWER RADIATED:

From equation (3.9), given in chapter -3, the acoustic pressdre dis~

tribution is given by,

~ PckomnWan i(umnt‘f‘kn) a - -
pE—————————— @ : S_ 0(x)0(y) el-ilx/2adg(-tsy/2p) dx dy
2TR —a-

The displacement functions for the simply-supported plate are,

(m-1)rt (x+a)
O(x)= - , m=2,3,4,....... -agxg{a
2a

and :
(n-Lre(y+b)
6(y)=Sin——~~———-— y 0=2,3,4,...... . —bgygb
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Substituting in the expression for pressure distribution,

~pPck@nnWon i(Want+kR) a b (m—l)ﬁ(x+a) _(n-l)rt(w'b)

p= —mmmmee— e S Sip-———-- I B X
2ITR -a— 2a 2b
e<‘11*f23>e(“'5;/2b> X Ay o i e e e e e (4.1)
where, 1=2skCosce Sin@ and s=2bkSinc Sin@.
Integration of equation (4.1) gives,
—pckompWon 1(Wmnt+kR) {2a/(m-1) H(=-1)m-1e(-i1/2)_g(-f1/2)}
p=—————m——— e [ P
2N R {12/(m-1)2rc 2}~1
{2b/(n-1) H(-1)n-1el-is/2)-a(-15/2)}
[ I
{s2/(n-1)2rr 2}-1
Further simplification gives, '
I - Cos (_1_) .Cos (5_
—kaﬁJmHWmn i{®mn t+kR) 16ab Sin\2 Sin\2
pr-—m————ve [ ] -]
2R {(m-1){(n-1)712 12 -1 g2 -1
' : (m-1)2rr 2 {n-1)21r 2
................................... {4.2)

where Cos(1/2) is used when m is an even integer and Sin(1/2) is used

when m is an odd integer.
The farfield acoustic intensity is given by,
I=1pi2fpc

Substituting p from equation (4.2) it is found that,



27

) Cosl 1 Cos §]
pCk22W2 256a% b2 . Sinq(z ) Sin (2
I= [ -2 [—- 12 ool et (4.3)
BrzR2 (m-1)2 (n-1)2nr4 12 -1 A | . -
' (m-1)Z g 2 (n-1)2rc 2

Néw k=2T/~, where N is the wave length. As A=c¢/f, so k=2Tf/c=w/c, where c is
the wvelocity of sound, f is the frequency and ¢ is the circular

frequency.Substituting in equation (4.3),

‘ Cos (l . Cos §)
P caAW? 256a2h2 S8in\2 Sini2/
I= [ 121 -]
B8.0c2n2R2 (m-1)2 (n-1)2p4 12 -1 82 -1
(m-1)2n2 (n—1)2n2
_ Cos l) Cos [s
L OIW=32a2b2 Sin |2 Sin \2
- - =] [ J2
MéRZc(m-1)2(n~1)2 12 -1 s2 -1
(n-1)2(2 (n-1)2r2

and 1 and s become,

1=2akCosc. S_inez(Zaco/c)Cosoc Sine

s=2bkSinw $in@=(2bw/c)Sinx Sind

From equation (3.12) the dimeqsionless frequehcy factor ; is given by,
Praty212(1-02) . ApriEheg

AE = , S0 (yZ=— .
niEh?g Pnatl2(1l-ce)

Therefore,
AATBEZ ha g2

a? (12911(1-02 ))2
where 2;is given by,

AP =Gx1+(a/b)1Gy9+2(a/b)2 P Hx Hy +(1-) Jx Jy |
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Substituting forw? in the expression for I,

. Cos(l)
pW232a2b2nMIN8E2 hd g2 Sin\2
1= —— - [— ]12x
cR2(m-1)2(n-1)2n®P2ad 144102 )2 12 -1
' ' (m-1)3 2
Cos(g)
Sin\2
e ik
s? -1
{n-1)212
Cos (_L) _ Cos (g)
2pWer2 b2 hnd E2 g2 Sin\2 Sin\2
= | 12{ - -12
9cR2 (m—-1)2a2a'Pm2(1-,2)2 _ 12 -1 32 -1
. . (m—l_)2n2 _ (n_1)2n2
Cos (l Cos (g
] 2pWeTI2A E2 g2 Sin 2) ’ Sin 2)
= - —=~~~— Ra2Rt? [ ]2 [ e ]2
9cR2 (m~1)2(n-1)2pn2(1-02)2 12 -1 s2 -1
(m—1)2n2 {n-1)2r2

where Ra is defined as aspect ratio, b/a, and Rt is defined as thickness
ratio, h/a.

-1 and s in terms of Ra and Rt are given by,

2ant2hvEg Rm2/Eg
1={2acw/c)Cosc. Sing= Cos( 51in@==~wwweinw~Coge, SinO
ca2/12pn (1-02) V3 (1-02)
and ,
RaRt)SfT[zl/E—g‘
s=(2bw/c)Cosct 8ing = Sinct Sind

c3fh (1-02) -
'Ihe total average power radiated from one side of the baffled plate
is given by,

2K

J

W2 ipi2
f-—— R?sine de do =
0 o

C

2

y
Pu [ 1Resine do dx
0

i

3
S5

Substituting the value of T from equatiou (4.4), Pw» takes the form,
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. COS(%
BPW2rT 2 B2 g2p /272 Sin\Z/
Pu= - - Ra?Red | § [ 12x
Ye(m-1)2 (n-1)2pm2 (1-02)2 g 0 12 -1
. (m-1)2n2
Cos (g
Sin(é) ,
| ]2 8in® d6 det e (4.5)
52 - -1 '
(n-1)?r2

The examination of equation (4.5) shows that Py is independent pf R.
This should be so as the total average power radisted from one side of the
‘plate is not a function of R. Only the acoustic intensity varies inverscly as

the square of R as depicted by equaticn (4.4).

(b) RADIATION EFFICIENCY:

The objective here is to determine the radiétion efficiency of the
gsimply~-supported plates in order to compare the resulls of this study with
those by the previous.workers {68,69).

Radiation efficiency of a vibrating plate is given in equation (3.17) by,

Smn"—'Pw/PCﬂb( Tuw 12>

where Pw.is,the total average power radiated from one side of the
baffled plate. But here the ofiginal expression has to be used in_order to get
the radiation efficiency. This is so¢ because, the radiation efficienc¢y ob-—
tained by.other authors (68,69) are in terms of the parameters other than

those used ip the determination of Pw.

Taking the expression for p from equation (4.2),
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' Cos (1! ' Cos (g
~pckeW  i(6t+kR) 16ab Sini2 Sin\2.
pr——— e el e | ]
2TLR {m-1)(n-1)r? 12 -1 82 -1
{(m-1)32. (n-1)2r2
Now the acoustic inlensity I. is given by, I=:p:2/pc
So that,
Cos (1 Cos (s
32pcoP W2 k2 aZb2 Sin\2 Sin 2)
1= . [ -12[— L e ]2
n2R2 (m-1)2 (n—1)2m* 12 -1 s2 -1
o (m-1)72 (n-1)2n2

where 1=2akCose SinG_ and s=2bkSincc Sin®

The total average power radiated from one side of the plate becomes,

’ Cos(l Cos (s
12Bpcw? k2W2a2b2  T/2. 72 Sin 2) : - - S8in (2)
P = —— - j [~ ]12x{-————- ———=}2x
16 (m-1)2(n-1)2 0 1 -y s -1
' (m—1)32 . (n-1)2x?
-8in® dé dot °

---------------------------------------------

The average of the temporal and spatial factor of the square of the surface

velocity, <luwi?> is given by,

ab
Cueiz>=(1/4ab) | [(1/2)ue? dx dy
-a-b

T {(m—1)1(x+a) (n=1)rr(y+b)
But we=icWO(x)O(y)=iWSin

Substituting in equation (4.7) and carrying out the integration,

<luw 12>=(1/8)uPw?
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Substitution in the expression for the radiation efficiency gives,

o Cos |1 Cos s
256k2ab w2 /2 Sin 2) : Sin 2)
Smn = ' ( 12{ —12x
ne(m1)2(n-1)2 0 O 12 -1 82 -1
(m—1)2n2 {n-1)?n2
Sin0 dB dot e IEEEEEREEREE (4.8)

The plate wave number, kp is now-defined as,
kp=[{(m—-I)TL/Za}2+{(n—l.)rt,’Zb}z}0-5, and the wave number ratio w as,
V=k/kp. ‘
Thus, k=y¥kp or k2=p2 kp2,
Substituting in equation (4.8) the e#éression for the radiatioﬁ efficiency is
cbtained as,
Cos (1
64{ {(m-1)2Ra }+{(n-1)2/Ra} Iy? m/Jz /2 Sin(ZJ

Smn= e [ 12x
4 (m-1)2{n-1)2 0 0 12 -1

Cos §)
Sin (2 :
[ ]2 Sin® do dot e eiseeeeianes e (4.9)
s -1

Making the same substitution, the expressions for 1 and s become,
1=[(m-1)2+{(n-1)2/Ra2}]° 5y Coscc 8in®  and

$=[Ra2 (m~1)2+(n-1)2]°- 54T Sinx Sin@.
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4.3.CLAMPED PLATE:
For a plate with all four edges fixed, only the amount of acoustic power
radiation from one side of the plate has to be calculated, The farfield pres-

sure distribution is given by equation (3.9),

~pckwiW i(ct+kR) a b
CpE ——mmm—— e J’{ 0(x)0(y)el-11x/2a)e(~16y/2b) dx dy
—a-

The displacement functions for the clamped ﬁlates are,

O{x)=GCos (3nx/2a)+RnCosh{zux/2a), m=2,4,6,...... —a{x€a
where Rm=Sin(5m/2)/Sihh(§m/2) and ¥m are the roots of the equation,

tan{(3/2)+tanh(4/2)=0

8(x)=8in(dmx/2a)+RnCosh(dmx/2a), m=3,5,7,... —asx<a
where'Ré=—Sin(5;/2)/Sinh(6;/2) and ¥m are the roots of the equation,

tan(8/2)~tanh( &/2)=0

8(y)=Cos (¥ny/2b)+RnCosh(Zny/2b), n=2,4,6,..... ~bgy<b

where Rn=Sin(Zn/2)/Sinh(dn/2) and &n are the roots of the equation,

tan{3/2)+tanh(4/2)=0

6(y)=Sin(6;y/2b)+R£Sinh(Bﬁy/Zb), n=3,5,7,.... ~-bgy¢b
where Rn=8in(%n/2)/Sinh(%,/2) and Zn are the roots of the equation,

tan( 3/2)~tanh( 4/2)=0

It is npnow required to consider each of the combhinations of odd and

even values of m and n separately.
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CASE-I: EVEN VALUES OF m AND n.
Substituting the displacement functions 6(x) and €(y) the acoustic

pressure distribution p becomes,

—-pcke  i{wt+kR) a b

p=—-———— e S é[Cos(ﬁmx/2a)+RmCosh(8mx/2a)]x
2TLR - -a-
[Cos{(dny/2b)RnCosh(Zny/2b)] el-i1x/2a)p(-isy/2b)dy dy _ ....l...;(4.10)

Integrétion'of equation (4.10) gives,

—pchkaW i{wt+kR) 16ab 1Cos(¥n/2)8in(1/2)¥mSin(8n/2)Cos(1/2)

p=-—=——- e mmmees 1 }
2rR %m?2 ¥n? (12 /gm? )1
1Cosh(¥n/2)Sin{1/2)+3mSinh(4m/2)Cos(1/2)
+Rm { e -—}1x
(12 /gm2+1) .
8Cos(3n/2)8in(s/2)4n8in(%n/2)Cos(s/2) sCosh(¥n /2)S1in(s/2)
( e R
(s2/¥n2)-1 . (s2/¢n2)+1
¥nSinh(%n/2)Cos(s/2) ,
+ ) 2 AN (4.11)
(82 /4n%)+1 '
N EhZ g

Here k=0¥c and 2=——————e——e
Enad12(1-02)

1=2akCosx SinB=(2acy/:)Cosx Sind and,

s=2bkSince S1in6=(2bw/c)Sinx Sind.

After making all necessary substitutions and simplifications the amount of

power radiated comes out to be,
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BWeAATIBE2 g2p W2 /2 1Cos(¥m/2)Sin(1/2)
Pu= RazRed §  fi{ -
Yc¥miEnd 2 (102 )2 0 0 (12 /8m2)-1
¥mSin(¥m/2)Cos(1/2) 1c°shesm/2)31n(1/2)+sms15h(xm/2)005(1/2
: : ~}+Bm { -—- e - }32
(12/3m2)-1 (12 /8m?)+1 .
sCos{(3n/2)85in(s/2)~¥nSin(dn/2)Cos{s/2) sCosh(¥n/2)81n{s/2)
x{{ s }Rn { - -——-
(S‘—‘!/dnz)—l]. (82 /¢n?)+1
¥nSinh{(§n/2)Cos(s/2)
+ — }12 Sin® dB dt e e {4.12)
(s2/8n2)+1 :
RT3/ Eg Ru RT3/ BE
where l=——-————no Cosot Sin® and s=———————————— Sinco 5in®
/3 (1-07) o/3fa (1-02)

Equation (4.12) gives the total average power radiated from one side of a

clamped plate vibrating with even values of m and n.

CASE-II: EVEN VALIUES OF m AND ODD VALUES OF n.
For this case,* the expression for the farfield pressu-re, after

substitution of the appropriate displacement function, becomes,

—pchuW  1i(t+kR) a
p=——————— e ,( ?[Cos(Smx/2a)+RmCosh( fmx/2a) I1x
2ItR —a-b

[Sin(Xny/2b)+RnSinh(¥ny/2b) Je(-i1x/2a) e~ 15¥/2p) 4y dy
Integration of Lhe expression for p gives.,
PchoW i(wWt+kR) 16ab 1Cos (Im/2)Sin(1/2)

p=————=——= e : [
2 TR ¥n2 ¥n2

(12 /4m2)-1
&Sin(ﬁm./Z)Cos(1/2) 1Cosh(gn /2)8in{1/2)+¥nSinh{¥n/2)Cos(1/2)
(12 /&n?)-1 (12 /ym2)+1

' sSin(%n/2)Cos(s/2)~%nCos (8 /2)Sin(s/2)
x[{

—- -= }+Rn x
(82 /gn2)-1
sSinh (8 /2)Cos(s/2)-nCosh(¥n/2)Sin(s/2)

----------------------------- )1 .. (4.13)
(s?/¥n2)+1

pam A0
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Proceeding in the same way as in the case of even values of m and n, the total
average power radiated from one side of a clamped plate vibrating with even

values of m and odd values of n comes out to be,

BWATSAFE2 g2 p /2 W2  1Cos(¥m/2)Sin(1/2)

‘Pu= - RaZ2Ru4 - rg [{ -
IcYnT¥n ' Pn2 (1-007 )2 i) (12 /¥a2)~1

SnSin(¥m/2)Cos(1/2) 1Cosh{n/2)8in(1/2)+¥nSinh(¥n/2)Cos(1/2)

E }+Ri {—mmm e )12
(12 /¥m2)-1 (12 /¥n2)+1
8Sin(¥n /2)Cos(8/2)~¥nCos (¥n/2)Sin(s/2) .

x{{ - -} + .

(s2/8n2)-1 ' '

sSinh(&n/2)Cos(s/2)-8nCosh(¥n/2)Sin{s/2)

R { &= mm e e . -})28ine de dcx .

(82 /4n?)+1 i, (4.14)

where 1 and s are the same as defined earlier.
CASE-I111: ODD VALUES OF m AND EVEN VALUES OF m.

For this case, when the displacement functions are substituted into
the expression for the farfield pressure distribution, the eipression takes
the form, “ |

—pckoW  i(Wt+kR) a b , , -
pE——————— e {J (sin@nx/2a)+RaSinh(3n/2a)] x
2TLR -a-b
[Cos(3ny/2b)+RnCosh(Xny/2b) el -ilx/2a)el~isy/2b) dx dy.
After integration it becomes,

-pckoW  i(wt+kR) 16ab 1Sin(¥mn/2)Cos(1/2)
Pmn © g G T
¥mCos(¥m/2)Sin(1/2) 1Sinh(3m/2)Cos(1/2)
—————————————————————— }+Rm {(~——~——~ — -

(12 jgw?)~1 (12 /802 )+1
¥mCosh(§n/2)Sin(1/2) sCos (¥n/2)Sin(s/2)

(12 /6n2)+1 W e
¥nSin(¥n/2)Cos(s/2) sbosh(an/Z)Sin(s/z)

T

- (32/¥n2)+1

J
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Following the same procedure as in CASE-1,the {inal expression for the

acoustic power radiation becomes,

BMQKEEZgZp
Py s e e Ra2Ri9x
Scém’ 1 ¥n 12 (102 )2 '

2 /2 . 18in(¥m/2)Cos(1/2)—KmCos(¥m/2)Sin(1/2) )
Tf ({ }J4Rm x
0 0 (12 /gm2)-1

1Sinh(Xn/2)Cos(1/2)~¥nCosh(¥m/2)Sin(1/2)
- 112 x
(12 fym?)+1
8Cos(¥n/2)8in(s/2)-¥nSin(¥n/2)Cos(s/2)
[{ ————— ]+Rn X
(s2/¥n2)~1 -
sCosh(¥n/2)Sin(s/2)+¥nSinh(¥n/2)Cos(&/2)
{ — ————— e }}128in® d6 dox. .....,. .. (2.16)

(s2/gn2)+1
where 1 and s are the same as given in CASE-T.
Equation‘ (4.16)‘gives tﬁe total averége power radiated from one side of
the baffled plate with clamped edges vibrating in #ts’(m,n)th mode with odd

values of m and even values of n.

CASE~IV: ODD VALUES OF m AND n.

In this case when the appropriate displaéement functions are substituted

in the expression for the farfield pressure distribution, the'expression takes

the form,

—cpkoW i(@t+kR) a b

L . 1 ‘[ (Sin(3ax/2a)+ReSinh(Fnx/2a) %
2TCR —a-

(Sin(¥ny/2b)+RnSinh(¥ny/2b) Jel-11x/2a)e(-15v/2b) dx dy.
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After integration it becomes,

—pclW  i(wt+kR)  16ab 1Sin{¥m/2)Cos{1/2}
pr——————— e - ({- - Rttt

2TR b2 ¥n 2 (12 /¥p2)-1
¥mCos(¥n/2)8in(1/2) - 1Sinh(¥n/2)Cos(1/2)

— }"’Rm{ - - . —_

(12 Zm2)-1 (12 /8m?)+1
¥mCosh(¥m/2)Sin(1/2 sSin(%n/2)Cos(s/2)
Bt B Kl IR -

(12/¥n2)+1 | (s2/8n2)~1 '
¥nCos(3n/2)8in(s/2) _ sSinh(¥n/2)Cos(s/2)
}4+Bn { —— -
(82 /502)-1 (s2/5n2)+1
KQCOSh(H;/Z)Sin(s/Z) ,
112 Sin® dO dot. e, (4.17)

(s2/¥n2)+1
Following Lhe sume procedure as in CASE-I,

8“2“4,‘[‘8 E2 gZ P
Pw= - -—- RaZ2Rt%x
ScEn? 8n1Pu2 (1-0° )2

W2 /2 18in(gm/2)Cos(1/2)-KnCos(¥a/2)Sin(1/2)

O i }4Ra X
0 © (12 /¥n2)-1
18inh& n/2)Cos{1/2)~¥nCosh(¥m/2)Sin(1/2)
{ , - e 112
(12 /xm2)+1

sSin(aé/2)00s(s/2)~gACos(g372)Sin(s/2)

(s2/8n2)-1

sSinh(¥s/2)Cos(s/2) -xhCosh(¥n /2)Sin(s/2)

{ }1125in® do do

(s2/gnZ)+1 ’ :
where 1 and s are the same as given in CASE-I.

Equation (4.18) gives the total average acoustic power radiated from one

side of baffled plate with all four edges clamped and vibrating with odd

values of m and n. ey
" :
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4.4. FREELY-SUSPENDED PLATE:-

For a plate with all four edges freely-suspended, the total average
power radiated from one side ;f the plate is required to be calculated. The
total average power radiated from one sjde of the plale is given by equation
(3.10). The analytical intégration of equation (3.10) is very difficult and
thus numeriéal integration is performed as discussed in the section of numefiﬁ
cal solution. But to obtain the expression for acoustic pressure distribution
as used in equation (3.10), equation (3.9) is required to be integrated over
therentiré surface of the plate Qith displacement functions satisfying the
edge conditions of the freely;suspended plate. This iniegration is presented
here, leading finally to the equation for the total average power radiated from

one 'side of the plate,

The displacemeni functions satisfying the conditions at the edges of a.

fpeely—suspended plate are;

0(x)=Cos(¥nx/2a)+RmCosh(xnx/2a), 1=2,4,6,.... ~agx{a
where RBn=—Sin(¥m/2)/Sinh{¥r/2), and ¥m are the roots of the equation,

tan{3/2)+tanh(3/2)=0

6(x)=Sin(66x/2a)+RﬁSinh(5;x/Za), m=3,5,7,... —a¢{xga
where, R£=Sin(5£/2)/Sinh(8;/2), and ¥n are the roots of the equation,

tan(¥/2)-tanh(%/2)=0

0(y)=Cos(dny/2b)+RnCosh(¥ny/2b), n=2,4,6, ~bgy¢b
where, Rn=-85in{%n/2)/Sinh®n/2), and ¥n are the rools of Lhe cquation,

tan(&/2)+tanh(¥/2)=0

Y
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0(y)=Sin(&ny/2b)+RnSinh(8ny/2b), n=3,5,7,.... —bg{ydb
where, Rn=Sin(s,/2)/8inh(%n/2), and 5n are the roots of the equation,

tan(¥/2)~tanh{3/2)=0

Now each of the combinations of even and odd values of m and n will be con-

sidered separately,

CASE-1: EVEN VAILUES OF m AND n.
"For this combipation of mode orders, the expression for the farfield
acoustic pressure distribution, after making the necessary substitution,comes

out to be,

—pchkoW -i(wt+kR) a b
pE——e— e f lL[COS(amX/28)+RmCOSh(5mX/28)]X
2TR -a -

¥ : .
[Cos(¥ny/2b)+RnCosh{¥ny/2b)]el-i1x/22)al~isy/2b)dy dy
After integration it becomes,

—pckaW i{ot+kR) 16ub 1Cos(¥n/2)8in{1/2)-¥mSin(%n/2)Cos(1/2)

pF=—— e T e e
2R ¥m?¥n? (12 /w2 )-1

1Cosh(¥n/2)sin(1/2)+¥nSinh(§m/2)Cos(1/2)
+Ra { e -—————}1x
(12 /gm?2)+1 :

sCos{gn/2)Sin(s/2)—%¥n8in(%¥n/2)Cos(1/2) sCosh{¥n/2)8in{(s/2)
[~ ——omeee- , e
{s2/¢n?)-1 <~ (s2/gn2)+1

%nSinh(¥n/2)Cos(s/2)

e — F1 e (4.19)
(82 /8n23+])

Following the same procedure as followed in the cases of the clamped

plates, the expression for the acoustic power radiation becomes,
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sz)\fqmsgz gzp
Pw= - ~-= RaZRu4x
9C8m45nqpmz (1-02)2

ﬂfz /2 ICos(zsm/Z)Sln(1/2)—‘5mS1n(8m/2)Cos(1/2)

({— }+Bn x
0 . (12/z§m2)—1
1Cosh(6m/2)91n(1/2)+5m31nh(5m/2)003(1/2)
{ R N .
(12 /gm2)+1 '
sCos(&n/2)Siﬁ(s/2)~&nSin(Un/Z)Cos(s/Z)
[{-~mmm J+Rn x
(s?fgn2)-1
sCosh{gn/2)8in(s/2)}+4nSinh{&n/2)Cos(s/2)
{ . }12 Sin® de do
(s2/¥n2)1 et er et e (4.20)

where 1 and & are the same as given in the cases of the clamped plates.
Equation (4.20) gives the total average acoustic power radiated from one

side of a freely-suspended plate vibrating with even values of m and n.

CASE-II:EVEN VALUES OF m AND ODD VALUES OF n.
For this particular combination of mode orders, the expression for the

farfield acoustic pressure distribution becomes,

~pchoW i{wt+kR) ? b

[Cos{8mx/2a)+AnCosh{snx/2a) }x
2Tk - ~a -b

(Sin(3ny/2b)+Rn Sinh(¥ny/2b) Je(-11x/2a)e(~11x/2b)
After integration it becomes,
—pckwW  i(wt+kR) 16ab 1Cos(¥n/2)Sin(1/2)
picnrmm e el € -
2R Y¥m?¥n? (12/¢m?2)-1

SmSin(ﬁm/Z)Cos(i/Z) ICosh(ESm/Z)Sln(]/2)+a’m51nh(dm/2)Cos(1/2)
Y4Rm {(—- }1x
(12/¥m2)-1 - (12/8m2)+1,

sSln(zsn/Z)Cos(s/Z) JnCOS(&/Z)Sln(s/Z)

(s /8n2)-1

sSinh(xn/2)Cos(s/2)-¥nCosh(8n/2)Sin(s/2)

{- _ - ——)1 (4.21)
B (s2/8n2)+1 -
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Foi]owing the same- procedure as followed in the previous cases, the expression
for the power radiated finally becomes,
BWEAAREE2 g2 o

Puz —- RaZRt% x
QCXmQIS;:quz (1-02)2

| n/2 n/2 ICOS(dm/E)Sin(1/2)—8mSin(3m/2)Cns(l/2]
15 e
0 é (12 /gm2)-1

}4+im x

ICosh(Em/2)Sin(1/2)+3hSinh(5m/2)Cos(1/2)
{=mmmm e . ————= )2 %
(12 /)41 |

sSin(xﬁ/2)005(3/2)—53005(6;/2)Sin(s/2) ,
[{ }+Ra x
‘ (82 /5n2)-1 '

sSinh(¥n/2)Cos (5/2)—¥nCosh(Bn/2)Sin(s/2)

- Ut }128in6de dct.
(s2/5n2)+1 '

where 1 and s are the same as defined in the earlier cases.

Equation (4.22) gives the totsl average power radiated from one side of a

freely-suspended plate vibrating with even values of m and odd values of_m._

CASE-111: ODD VALUES OF m AND EVEN VALUES OF n.

For this case of odd values of m and even values of n, the expression
for the farfield acouslic pressure distribution, afier necessary substitution
becomes,

—pckoW 1(1+kR) b

_ a
3

[Cos(¥ny/2b)+RnCosh(gny/2b)]el-1)x/2a)pl-isy/2D) dx dy

(Sin(¥mx/2a)+RaSinh(gmx/2a)] x
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After integration it becomes,

~pckeW 1(wt+kR) 16ab ISin(BE/2)605(1/2)—65005(6;/2)Sin(]/2)

pr————- e j‘*“‘"[{-"—‘*—‘—“‘——“‘j """"""""""""""""""""" }
2R ¥mZ¥ne {12 /6m2 )1
 1Sinh(da/2)Cos(1/2)+4mCosh( s /2)Sin(1/2)
*+Rm { === ' 11 x
(12/6m2)+1 '
sCos(Xn/2)Sin(8/2)— & Sin{dn/2)Cos(s/2)
f({———— e S e }J+Rn x
(s2/6n2)~1
sCosh(Xn/Z)Sin(é/Z)—XnSinh(Sn/2)Cos(s/2)
{ )] e ieeeaea (4.23)
(s2/¢n2)+1

Following the same procedure as in the previous cases, it is found that .

the expression for the power radiated comes out to be,

BWPAPM B2 g2p
Puz —mmmm e Ra?Re* x
IeEn? ¥n? Po? (1-0€ )7

Y2 W2 18in(¥m/2)Cos(1/2)~¥nCos(¥m/2)Sin(1/2)

é ({ - e }+R; X
0 (12 /8m2)-1

1Sinh(§n/2)Cos(1/2)-¥mCosh(¥n/2)Sin(1/2)

{ VS S 112 x

. ' (12 fg w2 )+1 '
sCo3(4n/2)8in{s/2)-¥nSin{¥n/2)Cos(s/2)

[{~————- e e ~S)4Rn %

(82/4n2)-1

sCosh(¥n/2)Sin(s/2)+8nSinh(¥n/2)Cos(s/2)
&

(s2/gn2)+1

where 1 and s are the same as defined in the earlier cases.
Equation (4.24) gives the fotal average acoustic power radiated from one
side of a freely suspended plate in an infinite baffle and vibrating in its

{m,n)th mode with odd values of m and even values of n.
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[}

CASE-1V: ODD VALUES OF m ANﬁ m,

For the case of odd values of m and n, the expression for the farfield
préssure distribution after substituting the appropriate displacement

functions, becomes,,

—pcloi  i(@t+kR) a b , _
p=————— e [ J[8in(8nx/2a)+MaSinh(gnx/28)]x
2TR -a -b '
[Sin{8ny/2b)+RnSinh @ ny/2b) el -11%x/2a)e(~18y/2b) dx dy

After integratidn it becomes,

_PckoW i(wt+kR) 16ab  1Sin{8m/2)Cos(1/2)

P e e O e R
2TLR arnzb’n2 (12 /¢n?)-1
¥mCos (4 /2)8in(1/2) _ 1Sinh(¥m/2)Cos(1/2)
- - et { = e -
(12 /¥m2)-1 « {12 /8m2)+1
xmCosh(¥m/2)Sin(1/2) © §Sin(xn/2)Cos(s/2)
—eie}] K [ -
(12 /4n2)+1 (s /6n2)-1
'K;Cos(Ké/Z)Sin(s/2) , sSinth;/?)Cos(s/Z)
- , } + Hn{ P -
(s2/¥n2)-1 (s2/¥52)+1
¥nCosh(¥n/2)Sin(s/2)
————— 1 e .. (4.25)

(s2/4n2 )41

Following the same procedure as followed in the previous cases, it is found

that the expression for the acoustic power radiation becomes,
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BWBAI'I rLIS EZ g?. P -
Pvw = ; . Ra? Rt? x
Oc¥n 1 ¥nPm2 (1o2)2

2 1Sin(¥e/2)Cos(1/2)~8uCos (Sm/2)Sin(1/2)
S e e ) + B x
0 (12 /¥m? )-1

2

1Sinh(@ n/2)Cos(1/2)~¥nCosh(¥n/2)Sin(1/2)
{ - 112 x
(12 /8m2)+1

{-———— P } + B ox.
(SZ/BnZ)“l

sSinh(¥n/2)Cos(s/2)~¥nCosh(Zn/2)8in(s/2)
{ N

}12 Sin® d& dot.
(s2/8n2)+1
where- 1 and s are the same as defined in the previous cases.
Equation (4.26) gives the total average acoustic power radiated from one
side of a plate freely suspended in an infinite baffle and vibrating in its

(m,nyth mode with odd values of m and ﬁ;;:::;::::;::i::}

4.5, NUMERICAL SOLUTION:

It has becn mentioned earlier that the analytical solution of equation
{3.10) for calculating the totél average ;coustic power radiation, after the
necessary substitution, is very cumbersome. Considering the fact that in
modern times; the tools and techniques of numericai solution are highly
developed, the numerical method of solution has been gseﬂ to solve equation
“(3.10) with the help of a computer . -The equations tan(E/Z)itanh(&/2)=0 were
solved by the method of bisection and the integration was performed by the ap-
plication of the Simpson Rule. The method involved the preparation of a com-

puter program. The results of integration are presented in tabular as well as

in graphical forms.
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THE METHOD OF BISECTION:

The' methéd 'of bisection has been a very efficient méthod forjsolving
nonlinear as well as complicated linear equations.r In fact the méthod can be
app}ied to solve any kind of equations. The méthod of bisection is presented
here in brief for ready reference.

In this method, the equation to be solved is expressed in the form
f(x)=0. Then an approximate root is determined, may be by observétion or by
gfaphical presentation of the equation. The value of the function is ' then
determined for sucéessive regular intervals. If xo be the approximate value of
one of the roots of the equation f(x)ZO, then, .
f(xc),f(xo+h),f(xc+2h) ....... , where h is the successive increament in the
value of x, are determined. If the product of two consecutivé values of the
function becomeé negative, it can be concluded that at least one root of the
equation lies in that interval. Then the average(arithmatic mean) éf those two
successive-valuesr of x ¢gives one of the roots of the equation under
consideration. The. accuracy 6f the result can be increased to any degree by
taking smaller values of h or by making successive iteratiﬁns. In a part of
the compufer program developed for the solution of the whole ppoblem, this
method has been introduced to find the values by solving_the equations tan(

¥2)+tanh(¥/2)=0.

THE SIMPSON FORMULA:

The Simpson Formula is an extensively used multisegment formula
for integration. The accuracy of the results obtained ‘is principally
determined by the nﬁmber of segments taken in the calculatien. In this
method, the whole range of integration is divided into a number of equal
segments and the sum of the valués of the function obtained by successive

increment of the independent wvariable with certain weightage, gives the
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results of integration. If the range (b-a) of the integral f(x)dx is divided
into n equal divisions, so that h=(b—a)/n,‘ then by Simpson Formula, the in-

tegrated result is given by,
I=(h/3){f(a)+4f(a+h)+2f(a+2h)+.......... +4f{a+(n-1)Yh}+f(b)].

This method can be employed to calculate the integral of any order.

In the present solution, thelrange 0 to TY2 was divided into 35 equal
intervals for applyiﬁg the Simpson formu]a. The nunber 35 was tahlen because of
the fact that the accuracy of the result with.f;rthef increése in the number
" of divisions incréases only slightly, but the computer time required increases
proportionately. When highly aécurate results are desired, the number of divif
sions can be further increased or the method of Romberg integration can bé

used to improve the accuracy of the results.



CHAPTER -5
RESULTS AND DISCUSSIONS

5.1.RELIABILITY OF THE METHOD:

It is always expected that the efficiency and reliabilit& of any new
technique is established first, prior to its -acceptance as a genuine tool, by
applying the technique to problems for which solutions are already available
in the literature. AIn other words, it should be ascertained that no error due
to logic is committed in formulating the problem and no misteke is made in the
computer programming. Keeping all these in mind, a number of standard problems
are solved with the present method of solution and the results are compared
with those of others, obtained analytically or by some other method. On the
basis of this comparison, the reliability and efficiency of the method
employed here are determined. -

Wallace (69) found the radiation resistance and radiation cfficiency of
a baffled beam from the farfield pressure distribution produced by the beam,
vibrating in simple harmonic molion in one of its natural bending modes. e
analyzed ihe beams with hinged ends as wéll as clamped ends. Wallace derived
an expression for the radiation resistance which is assymptotic to the exact
solution as the frequency approaches zero. In addition to that, he found the
radiation efficiency by numerical integration of the farfield acoustic inten-
gity prpduced by the vibrating beam, cbvering the entire frequency range for
the fi;st ten modes of vibration of the beam.

Waliace also studied 'fhe vibration characteristics of a rectangular
plate of uniform thickness (68}. He used the sume method of solution as of the

beam, but confined his attention only to the plates with all the four edges

" simply-supported. As in the case of the beam, the expression for the radiation
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resistance proved to be assymptotic to the exact solution. The results of the
numerical integration of the farfield acoustic intensity were used to obtain

graphs representiné the radiation efficiency of the simply-supported plate at

different mode orders. When compared, it is observed that these graphs are

identical to the radiation efficiency graphs oblained ip the present study.
The a8sbove developments prove that the method of solution employed here
is extremely accurate and no error is committed either in formulating the

problem or in the computer prograﬁming.

5.2.VALIDITY OF THE BEAM FUNdTIONS:

Warburton (70) developed a npumber of functions to satisfy the
conditions at the ends of a vibrating beam. The.fuuctions were designed to
represent accurately the wave form of a beam vibrating in its natural modes.
Wallace {(69) used Warburton’s beam functionsrin his analysis of the acoustics
of beams with hinged and clamped ends. The results of the-investiggtions by
Wallacé proved to be satisfactory as the_expressiop for the ;adiation resis-
tance aséymptotically approached the exact solution as the frequency
decreases. The results of the numerical integratién of farfield acoustic in-
tenéity presented in the form of graphs also proved to be satisfactory. 1n
another investigation (68) Wallace applied the Beam functions develobed by

Warburton to the case of vibration of plates. He studied the éase of a siﬁplyﬁ

- supported plate in an infinite baffle vibrating.in its natural modes. He

derived the expression for the radiation resistance using the beam funétions.
The expression for the radiation resistance was asgymptotic to the exact solu-
tion at low frequencies. The results of the numerical iﬁtegration of the far-—
field acoustic intensity were presented in the form of graphs. The graphs for
different modé orders of a simply-supported rectangular plate proved to be

satisfactory when compared with the results of beam investigations.
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in the present analysis, -the beam functions by Wafburton have.been used
to represent' the motions of surfaces of the vibrafing plates with different
boundary conditions. The functions usea are slightly 'modified to meet the
requirements éf the different boundary coﬁditions-_at the edges of simply
supported, clamped and freely suspended plates in infinite baffles. Tﬂe exaét
representations lof ‘the beam mode shapes presented by Lhe modified beam func-—
tions are given in figures 2, 3 and 4, _respectively, for simply-supported,
clamped and freely suspended plates. It is observed from these figures that,
fhé beam mode shapes aré satisfactorily able to represent the mode shapes of a
vibrating plale with different boundary conditions: Moreover, before attempt-
ing the solutions of the actual problem,- the expression for the radiatioﬁ
resistance for a vibrating plate with. all the four edges simply supported are
derived usiné the modified beam funcfions. This expression proved to be of the
same nature as derived by Wallace (68) using the original beam functions of
Warburton. Further, for comparison, the farfield acoustic intensity in the
form of radiation gfficiency is obtained by integration and plotted in the
éame way as by Wallace (68). The graphs thus obtained (Figures-5,6,7 and B)
are identica% to those of Wallace (68) obtained by using the origiuél beam
functions applied.to rectgngular panel with simply-supported edges.

The abov¢ verifications not only prove the validity of the modified beam
functions, but also prové that the modified beam functions truly represent the

vibration characteristics of a baffled plate,

5.3.RESULTS AND DISCUSSIONS:

The method of investigation employed here is . a versatile method for
Qolving an& problem of vibrating plates. fhe input variables for any reclan—
gular flat plate with uniform thickness are the aspect ratios, (b/a) and thel

thickness ratios, (h/a). In addition, the appropriate beam functions satisfy-
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ing the conditions at the edges of the plate problem to be solved has to be
used. In this analysis, plates with three pure bﬁundary conditions are
considered. The boﬁndary conditions are; (i) all four edges of the plate are
simply—suppurted; (ii) all four edges 6f the plate are clamped and (iii) all
four edges of the plate are freely suspended. The results a;e found for threg
values of the aspect ratios and three values of Lhe thickness ratios in each
case of the three boundary conditions. The resulté are presented here ih the
form of graphs. The computer outputs used in plotting thg graphs are given in

tabular form in therappendix. In the following sections, the results of each

" of the three boundary conditions are discussed separately. At the end, the

results for the three boundary conditions are compared for aspect ratio=1.00
and thickness ratio=0.002. The other aspect ratios considered are, 0.50 and
2.00 and thickness ratios are, 0.001 and 0.004. The values of the différent
parameters used in the numerical evaluations are:Density'of the surrouﬂding
medium ( P)=1.21 kg/m?. Velocity of sound in the surrounding. medium
(c)=341 m/sec., density of the plale material (F%)=7700.0 kg/m?, modulus of
elasticity of the plate material (E)=206x10° N/w? and the amplitude of vibra-

tion (W)=0.0001.

{I). PLATES WITH ALL FOUR EDGES SIMPLY-SUPPORTED:

Figureé 9 t0716 represent the total average acoustic power radfgted from
one side of the baffled plate, plotted against th number of nodal lines in
the y-direction. The figures compare the ipfluence of different parameters
used in the analysis on the power radiated. In figurés 9 and 10, the values of
the aspect ratio and thickﬁess ratio are kept constant and the variation of'
the power radiated with the variation of the number of nodal lines in. the x-
direction are presented. From figure 9, it is seen that, for low values of

m, the amounlt of power radiated increases more or less regularly with the in-
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crease of n. This is expected as the power radiated should increase with the
incréase of the frequency of vibration which, in its turn, increases with tﬁe
increase in the values of n. It is also ébserved that, the value of the power
radiated is higher for higher values of m following the same logic as above.
From figure 10 it is seen that, . the power radiated does not show significant
rise with the increase in the values of n.  Moreover, the graphs show a wavi-
ness after certain wvalues of n. With the incréase in the mode orders, the
frequency of vibration and consequently the frequéncy of the sound radiated
increases. at the same time, the total number of’waves in the plate also in-
creases with the increase in the mode ordérs. At this condition, the effect of
the mode orders over the amount of power radiated become insignificant and as
such the power radiated does not show significant rise with further increase
in the mode orders. But it should be noted thét, with the increase in the
mode orders, the frequency of vibration still increases making the power
radiated to rise slightly. The WaQiness of the graphs are dﬁe to the inter—
ference of tﬁe waves from the x and y-directions. At high mode orders, the
roots and crests of thé-plate waves from the two directioné' interfere each
other makiné the acoustic power radiation to fluctuate. When two crests from
the two directions superimpose one another, the total avernge agoustié _power
radiation increases giving rise to a crest of the wavy graphs. On the other
hand, when the crests fromlthe two directions oppose one another, the total
acoustic power radiaiion .decreases as depiclted by the roots of the graphs.
The frequency of this waviness dependérupon the number of interferehces in
the .plate. 1t caﬁ be generally concluded that, the number of interferences
increases with the increase in the .mode orders. Thus, the frequency. and
amplitude of the waviness increases with increasing mode numbers as shown
in Tigures 11 and 12.

Figures 11 and 12 show the -acousltic power radiation with increasing
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values of n. Il is observed from thesé figurés that, the rate of increase iﬁ
the acoustic power radiation‘assymptotically reaches zero at vefy high mode
numbers, with waviness still existing. The variation of the acoustic power
radiation can be explained with the help of the variation of acoustic pressure
in the surrounding medium due to the vibration of the plate. The thréé major
factors are the frequency, éffective radinting surface and the effective
acoustic pressure. At lower mode orders, the effective radiating surface is
high, virtually, the whole of the surface radiates energy, but this is not the
case at high mode orders. With increasing mode orders, the regions of zero
displacement of the plate increases. These points of zero displacement do not
have any role in radiating acoustic'power as they can not produce compression
or rarefact;on in the surroundipg medium. Thus, with increasing mode orders,
the effective radiating surface of the plate decreases. But the frequency of
the vibrating plate increases with ihcreasing mode orders as shown in figures
37 and 38. The rate of increase in the frequency is very high at low mode or-
ders and decreases with increasing mode orders. These effects increases the
acoustic power radiation with mpde orders but with a decreasing rafe. Bul as
can be observed from figures 11 and 12, at véry high mode numbers, the ab-
solute amount of acoustic radiation does not show any further increase with
mode numbers, rather, it atteins a stable magnitude. At very high mode orders,
the plate wave numbers become very high and as such the alternate crests and
roots of the plate waves come very close to each other. At any instant of
time, a particular crest produces a compression -in the surrounding medium
while the neighboufing root produces a raréfactiun. These ﬁlternate compres-
sion and rarefaction causes the acoustic energy to travel —through tﬁe sur-—
rounding medium. When the plate wave number becomes very high, the neighbour-
ing roots and crests come so close to each otherllthat, the rurefaction by the

root partially neutralizes the compression produced by the crest. This
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neutraliiation,in its turn, reduces the amount of acoustic power radiation.
All these effects, the effective radiating surface, the frequency of vibration
and tﬁe interference of compressions and rarefactions, when combined at high
mode orders, results in the stable magnitude of the acoustic power radiation.
Tﬁough‘ the power radiated displays | a fluctuating characteristic at high
modes, the radiation efficiency converges to unity and does not show any
change with further increase in the mode numbers, as shown in figures 5,6,7
and 8. This is because of the féct that, radiation efficiency preéents the
power radiated from a plate due to its vibration at certain mode orders in
comparison to the péwer radiated by the same plate vibratiog ps' a solid
without forhing waves, with a velocity equal to the root mean square value of
the surface velocity distribution of the plate under consideration. At high
mode orders, the interferences of the compressions and rarefactions produced
by alternate roots and crests of the "plate waves tends to reduce the rate of
increase in the total acoustic power radiation. Above the critical frequency
of the plate, the acoustic radiation from the plate become stable and does nol
‘increase with increasing mode orders. This stable acoustic radiation is equiv-
alent to the acoustic radiation from a plate vibrating, as a solid body
without forming waves, with a velocity equai to'the root mean square value of
the surface velocity distribution of the plate. The effect of this stable mag-
‘nitude of the acoustic radiation from a plate' converges the radiation ef-
ficiency to uni£y above the critical frequency of the plate.

Figures 13 and 14 show the effect of the thickness ratio over the power
radiated. The examination of the expression for the power radiated would
reveal that the total power radiated must increase with- the increase in tﬁe
valﬁes of the thickness ratios. This fact is reflected in figures 13 and 14
showing an increase in the power radialed with increase in the values of the

thickness ratio. Figure 13 shows this variation for low values of m and figure
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14 for high values of m.’
Figures 15 and 16 are plotted with the view to present the varintion’ of

the total power radiated due to the variation of the aspect ratio of the

'plate. The effect of the variation of the aspect ratio over thg total power

radiated can not be straight way predicted, as in the case of the thiékness
ratio, from the expression of bower. This is clear from the observation of
the graphs given in figures 15 and 16. Figure 15 shows the variation of power

with aspect ratio at lower values of m aond figure 16 shows the same for

.higher values of m. It can be seen from figure 15 that the value of the tolal

- acoustic power radiated increases with the decrease in the values of the

aspect ratio. But this is not the case when vibration with higher values of m

is considered, as shown in figure 16. From figure 16 it is found that the

total acoustic power radiated increases with the increase of the aspect ratio

for high values of m and for lower range of the values of n.. But the trend is

gradually reversed with ‘the increase in the values of n. This variation in

‘the acoustic power radiamtion is due to the change in the frequency "of vibra-

tion of the pléte at different aspect ratios. Figures 37 énd 38-show the
variation of the frequency with moaé numbers at different aspect ratios ﬁf a
sinply supported plate. It is observed that at all mode orders, the frequency
shows an increase with the decreasiﬁg aspect ratios. The change of the
frequency due to the change of the aspect ratio from 2.00 to 1.00 is smaller
than that due to change from 1.00 to 0.50. Moreover, the frequency cﬁrve for
an aspect ratio of 0.50 is steeper than those for the dther-two aspect ratios
studied. At lower mode orders, ihe influence of freguency over the amount of‘
acoustic power radiated is insigﬁificant.'hln this range, the amount of power
radiated depends.on the effective%rédiating surface, which is more in the

case of a plate with an aspect, ratio of 0.50 than those with 1.00 and 2.00.

For this reason, al low mode numbers, the plate with an aspect ratio of 0.50

‘ 1
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radiates the highest amount of ﬁower.' The plate with an aspect ratio of 2.00
radiates the lowest amount and t%e radiation from the plate with an aspect
ratio of 1.00 falls in betweén the two. This is presentéd in figure 15. At
high values of m and lower range of the values of n, as’shown in figure 16,
the plate with an aspect ratio of 2.00 radiates the highest amount of power,
~ the plate with an aspect ;atio of 0.50 radiates the lowest amount and that
with 1.00 radiates power falling in between the two. This trend can be ex-
plained by considerihg the fact that, at these mode orders, the effective
radiation surface is more in the case of a plate with an aspect ratio of 2.00
as the_longer side of the plate ig divided into fewer waves, With the
increase in tﬂe imode orders, the effective radiating surface decreases and
the frequency of vibration increases. But the increase_in the frequency of
vibration far exceeds the reduction in the effective radiating surface. As
such, at high mode orders, the frequency of vibration Ibegins to play a
dominating role over the acoﬁstic radiation from the plate. Since the
increase in the frequency of-vibration with the increase in the mode numbers
is more 1in the case of a plate with an aspect ratio of 0.50, the amoupt of
acoustic power radiation show a steeper rise as shown in figure 16. The power
-radiation from the plateé with the other two aspect ratios also‘increéses but

the increase is only small.

(11). PLATES WITH ALL FOUR EDGES CLAMPED:

Figures 17 to 24 present the total average acoustic power radiated from
one side of the.p]ate clamped in an infinite baffle, plotted against the num-
ber of nodal lines in the y-direction. Figures 17,18,19 and 20 compare the
amount of acoustic power radiated {rom a clamped plate at different modes of
vibrétion. figures 21 and 22 present the variation of the power radiated with.

the variation of the thickness ratio, (h/a), of the plate and figures 23 and
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24 give_the variation of the power with the aspect rafio of the plate. From
figures 17 to 20, it is observed that upto a certain mode brders, the powér
radiated from a plate increases with the increase in the mode numbers. After
that with the increase in the mode numbers the acoustic power radiation does
increuse significantly, rather, it attains a stable statg. The power
rédiated due to vibration of a plate is largely dependent upon the frequency
of vibration and Fhe effective radiating surface of the plate. With increasing
mode numbers, the effective radiating surface decreases and the frequency
increases. The increase in the frequency associated with thg ’ increase in
the mode numbers is shown in figures 39 and 40 for different aspect ratios of
a clamped plate. It is observed from these figures Lhat the change in the
frequency with the change of the mode numbers is more_in the rlower range of
the mode orders than the change in the higher range. In the lower range of the
mode orders, the increase in the frequency of vibration,exceeds the reduétion
in the effective radiating surface associated with the increase in the mode
numbers.This results in an increase in the amount of acoustic power radiated
with the increasing mode orders. This is shown in figure 17. With further in—
érease in the mode numbers, the amount of power radiated still increases but
with a reduced rate and shows a waviness after certain mode orders. At high
moderorders, the waviness of Lhe acoustic powerrradiation is caused by the in-
terference of the plate waves from the two directions. Al times, one wave peak
coincides with the other, increasing the total average acoustic power
radiation. On the other hand, for certain mode ofders, the wave penks from the
two directions cancel one another, tending to decrease the total average
acoustic power radiation. This fluctuatioﬁ in the acoustic power radiation
constitutes the waviness in the total average acoustic power radiation. The-
interference of the plate waves become more frequent and prominent at higher

1

modes the waviness increases in amplitude and frequency. This wavy charac—
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teristic of the acoustic power radiation is shown'in figures 18,19 and 20.
Though the average acoustic power radiated increases with increasing mode
numbers, the rate of increase gradually deéreases and ultimately reaches a
stable state showing no further increase in the absolute value. With the ip-
crease :of mode npumbers, the effective radiating surface decreases and the
frequency inéreases. As discussed earlier, the rate of increase ijn thg
frequency of vibration exceeds the rate of decrease in the effective radiating
surfacé, causing the amount of power radiated to increase. But with further
increage‘in the mode numbers, the rate of increase in the frequency of vibra-
tion decrcases resul%ing in a decreases in the rate of increase of the average
acoustic power radiation. This trend continues and ultimetely comes down to
zero, bringing the acoustic power radiatioh to a stable state. This trend can
be explained if the factors influencing the acoustic radiation from the plate
are taken inlo conéiﬁeration. In addition to the effective radiating surface
and frequency of vibration, there is another factor coming to influence the
acoustic power radiation only at very high mode orde;s. This is the inter-
ference of the rarefactions and compressions of the surroundingv medium
produced by the roots and crests of the plate waves. At any instant of time,
a crest of the plate wave produces a compresgion in the surrounding mediﬁm,
whereas, at the same time, the neighbouring ropts produce rarefactions. This
alternate compressions and rarefactions causes the acoustic energy to travel
through the.surrounding medium. At high mode pumbers, the plate wave numbers
become very high bringing the adjacent roots and crests very close to each
other. As the mode numﬁer ig kept on increasing, the neighbouring'roots and

crests come so close toreacﬁ qther that, the compression produced by one crest
is partially neutralized by the rarefaction® produced by the neighbouring
;oots. This neutralizatlion, in its turn, reduces the acoustic power radiatién

from the plate. This effect, combined with the effects of the effective
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radiating surface and the frequency of vibralion, brings the acoustic power
radiation to a stable state at very high mode numbers. This is shown in
figures 19 and 20. Though the absolule value of the amount of acoustic power
radiated dees not increase with ipcreasing mode numbers after a certaip‘ modg
orders, the waviness of the'poﬁer radiatéd still remains. This is caused by.
the fact that, the interference of thg plate waves ffom the two directions
still exists even if the mode numbers are very high.

Figures 21 and 22 show the variation of the power radiated at different
thickness ratios of Lhe plate for constant values of the other parameters,
respectively, for lower and higher values of m. The dependence of the acoustic
power radiation from a clamped plate ﬁpon the the thickness ratio can be pre-—
dicted by examining the expression for the radiated power. The examination of
the expression for the acoustic power radiation from a clamped plate, given
"in equations (32), (34), (36) and {38) for different combinations of even and
odd values of m and n, reveals that the average acoustic power radiation from
clamped plate will increase with the increase in its thickness ratio. The in-
crease in the thickness ratio increases the st%ffness of the plate making it
to require more energy for vibration. As a result, plates with higher thick-
ness ratio radiates more acoustic power than those with 10Qer thickness
ratios, as shown in figures 21 and 22Z.

Figures 23 and 24 present the variation of the acoustic power radiation
at different'aspect ratiog with constant values of the other parameters fo; a
plate with all four edges clamped. The two major factors influencing the
acoustic power radiation from a plate are the effective radiating surfacé and
the frequency of vibration of the plate. Since both of these factors .wvary
with varying aspect ratios of a plate, the dependence of the acoustic power
radiation upon the aspect ratio of thg plate can not be straight way predicled

as in the case of the thickness ratio. At lower values of m, the effective
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surface radiating acoustic power 13 1less in the case of a plate wilh an
aspect ratio of 0.50 than the other two aspect ratios cﬁnsidered.- At low mode
orders, the effective radiating sﬁrface pla&s a dominating role over thg
acoustic power radiation and, as such, the plate with an aspect ratio of 0.50
radiates the minimum amount of acoustic powef at a particular mode order
amongst the three aspect rafios under consideration. The plate with én aspect
ratio of 2.00 radiates the maximum amount of energy and the radiation from the
plate with an aspeét ratio of 1.00 falls in between'the two extremg cases.
This is shown in figure 23 and partly in figure 24. With .increasing mode
numbers, The frequency of wvibration increases and the effective radiating sur-
face decreases. The result being the increase in the power upto a certain mode
numbers and ultimately the effects are nullified with no further rise in the
power.output. For the plate with an aspect ratio of 2.00, the decrease in the
effective radiating surface with increasing mode numbers in the y-direction is
less than the lower aspect ratios. Whereas, the increase in the frequency of
vibration is more in the case of the plate with an aspect ratio of 0.50 as
shown in figure 20. These two effects, when combined, makes the power radiated
to vary as shown figure 24, It is seen that the radiation from the plate with
an aspect rétio of 2.00 is always higher thun the radiation from the plates
with the other two aspect ratios. However, With still increasing mode numbers,

the difference gradually decreases.

(I11). PLATES WITH ALi FOUR EDGES FREELY SUSPENDED:

Figures 25 to 32 present the total average acoustic power radiated from

~one side of the plate, freely suspended in infinite baffle, plotted against

the number of nodal lines in the y-direction. Figures 25,26 27 and 2B compare
the amount of acoustic radiation at different mode orders with fixed values of

the other parameters. Figures 29 and 30 show the variation of acoustic radia-
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tion at different thickness ratios (h/a), at low and high mode orders respec—

tively and figures 31 and 32 show the acoustic radiation at _different aspect
ratios (b/a), for low and high mode orders respectively, for a plate with all
four edges freely suspended. At low mode orders, the amount of acoustic power
radigted increases with the increase in the mode numbers. The frequency of
vibration of the plate increases with increasing mode numbers, but the effec—
tive radiating surface decreases. Since, at low mode orders, the increasc in
the frequency of vibration is more than the decrease in the effective radiat-
ing surface, the amount of acouétic radiation from the plate increases as
shown in figure 25. At high mode orders, the rate of increase in the frequency
of vibration and the rate of decrease in the effective radiating surface
decreases making the rise in the écoustic radiation to be insignificant.But at
these conditions, the acoustic radiation shows a waviness due to the inter-
ference of the waves from the two directions as shown in figures 26,27 and 28.
At still higher mddes, the acoustic radiation from the .plate does not increase
any more with the ihcreasing mode numbers, rather, it attains a stable state.
At these higher modes the neighbouripg of the compressions and rarefactions
of the surrounding medium pr;duced by the crests and roots of the plate waves
partialiy neutralize each other; This neutralizetion, in its turn, reduces the
acoustic power radiation from the plate. This efﬁecy at very high mode orders,‘
when combined with the effects of the frequency of vibration and the effective
radiating surfaée, brings the radiation of the acoustic power from the plate
to a stable state. Though thg radiation of the acoustic power attains a stéble
state in i1ts magnitude, the‘waviness, which began earlierrstill remains with
higher amplitude and frequency. At very ﬁighrmode orders, the interference of
the plate waves from the two directions become all ‘the, more prominent and
frequent. This effect increases the amplitude and frequency of the waviness of

the power radiated at very high mode orders.
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Figures 29 and 30 show the power radiated from u fregly'suspended plate
at different thickness ratios. As in the other two cases discussed earlier,
the amount of acoustic radiation increases with the increase in the.value of
the thickness ratio of the plate.

In figures 31 and 32, the amount of acoustic radiation from a fregly
suspended ﬁlate at different aspect ratios have been compared. In the lower
range 6f mode orders, the plate with an aspect ;atio of - 0.50 - radiates more
power than those with higher values of the aspeét ratio. For a plate with an
aspect ratio of 0.50, the effective radiating surface is less than the plate

with higher aspect ratios, but the frequency of vibration in this case is much

" higher, as shown in figures 41 and 42. This makes the acoustié radiation to be

more with an aspect ratio of 0.50 than the other two. As shown in figure 32,
at ‘high values. of m and low range of the values of n, the plate with an aspect
ratio of 2.00 radiates more power than the plates with lower values of the
aspect ratio. With increasing values of m, the effective radiating surface
decreaées. This decrease is more in the case of a pIate with an aspect ratio
of 0.50, making the_power radiated to be less than those with higher aspect
ratios. With increaée in tbe values of n, the. increase in f;equcncy of vibra-
fion takes care of the decrease in the effeé#ive ;adiating surface and the ef-
fects of the aspect ratio of the plate upon the acoustic power radiatioﬁ from

it is almost nullified as shown in figure 3Z2.

(IV); COMPARISON OF BOUNDARY CONDITIONS:

Figures 33 to 36 compare the average acoustic power radiation Trom
plates with three different pure boundary conditions. The boundary éonditions
being; (i) alllfour edges simply-supported, (ii)} all four edges clamped and
(iii) all four edges freély—suspended. In figure 33, the power radiated by

plates with different boundary conditions have been presented for -~ lower mode
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.orders. It is observed that, tﬁe simply-supported plate radiates the minimum
power of the three, the freely—suspended plate radiates the maximum power and
-the radiation from the clamped plate falls in between the two extremes. As cank
be obserﬁed from the frequency curves given in figures 37 to 42, the frequency
of wvibration of the simply supported plate is very iow as compéred with those
of clamped and freely-suspended plates. This makes the amount of acoustic
radiation ‘to be the minimum in case of a simply-supporlted plate. Comparing
figures 39 and 41[' it can be concluded that, the frequency of vibration of a
clamped plate énd a freely—suspended plate nearly equal over the range of the
mode orders. But due to clamping at the edges, the effective radiating surface
is less in the case of é clamped plate than that of a freely-suspended plate.
As such, the acoustic radiation from a ffeely—suspended plate is the maximum.
Observation of figures 35 and 36 reveal that, at high mode orders, the effects
Qf the edge conditions on the amount of acoustic power radiation are virtually
nullified as in these cases, the alternate compressions and rarefactions of
the surrounding medium of the vibratiﬁg plate, produced by the neighbouring
crests and roots of the plate waves, begin to partially neutralize each other.
This neutralization, as have been mentioned earlier, reduces the amount of

acoustic radiation from the plate and thus brings it to a stable state..
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CHAPTER -6
CONCLUSIONS AND RECOMMENDATIONS

6.1. CONCLUSIONS:

The total average acoustic power radiated from one side of a baffled
plate due to its patural vibration with three different pure buundary condi-
tions have been investigatéd in this thesis. The wvariation of the natural
frequency with mode orders ‘have also been investigaLed. - In addition,' the
radiation efficiency of a plate with all the fouf edges simply supported has
been studied in this thesis and -compared with the results given by
Wallace{6B). ‘Warburton’s {(70) beam functions have been used to represent the
wave molion. of the vibrating plate and Simpson rule has been applied for the
numerical integration of the final expression of radiated power with the help
of a computer program.

In tﬁis thesis extensive numerical results on plates vibrating with dif-
ferent 'boundary: conditions,mode shapes, aspect ratios and thickness ratios
have been presented.

Based on the extent of this investigation the following conclusions can
be drawn..

(ij At low range of the values of mode numbers, the total average‘acous—

tic pbwer radiated from one side of the vibrating plate differs with boundary

. conditions,mode orders, aspect ratios and thickness ratios.For the same mode

_orders, aspect ralio and thickness ratio, the simply supported plate.radiates

the minimun amount of power, the freely-suspended plate radiates the maximum
amount and the radiation from the clamped plates falls in between the simply-

supported and freely-suspended plates. With increasing mode orders, the power
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radiated increases but the rate of increase decreases and -asymptotically
reaches zero at wvery high mode.numbers. After a certain mode orders, the
acouslic power radiation from the plates begin to show a wavy nature.

{(ii) At high mode numbers,- the effects of the variation of boundary‘
conditions, mode orders and aspect ratios are almost nullified, but the wavi- .
néss still remains.

(iii) Thg natural frequency of vibrating plates varies with boundary
conditions, mode orders, and aspect ratios. For the same mode ordérs and

aspect ratio the frequency of the simply supported plate is the mipimum, that

of the freely-suspended plate is the maximum and that of the clamped plates

falls in between the two. For the same boundar§ condition and mode orders the -
frequency of vibration increases with decreasihglaspect ratio, except at very
low mwode orders, where the frequency. for two aspecl ratios may coincide. For
the same boundary condition and aspect ratio, the frequency of vibration in-—
creases with increasing mode numbers. The rate of increase iﬁ the natural
frequency 1is very high at low mode orders and decreases with increasing mode
numbers, asymptotically, reaching zero at very high mode ordérs.

{iv) The radiation efficiency of the simply-supported plate increases for
all mode numbers with increasing wave number ralios upto the eritical
freﬁuency. After the critical frequency the rqdiatiou efficiency asymptoti-
caliy.converges to unity and does not show any further variation. For
frequency near the critical frequency the radiation effic;ency also shows a
waviness as in the case of the power radiated, but this waviness does not ex-

ist after the critical frequency.

6.2. RECOMMENDATIONS:

From the experience of the present investigation, the following fields

on plate vibration and acoustics are tecommended as the scopes of future



65

research.

(i) More.appropriate displacement functions, than the anes developed by
Warburton and used in the present investigation, may be developed for more ex-
act representation of the plate motion to obtain stil] more accurate results.

(ii) The boundary conditions studied in this thesis are the most ideal-

ized cases of plate vibration. Plates with more realistic boundary conditions

may be studied to suit the practical cases.

(iii) Plates with variable thickness and irregularities may also be -

studied.

(iv) Plales, reinforced with beams may be studied and the effects of

reinforcement can be investigated.
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Table-2: Radiation Efficiency of Simply-Supported Plate, For high-high mode orders.
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‘Table-3: Radiation Efficiency of Simply—Suppdrted Plate, For low-high mode orders.
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Table-4: Radiation Efficiency of Simply-Supported Plate, For high—low mode orders.
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Table-5: Power Radiated by a Simply—Supported Plate, For Low values of m, Ra=1.00 and Re=0.002.

m\ni'2 ! 3 {4 {5 1 6 {7 ¢ 8 {9 {10 11 12 13 ! 14 i 15 : 16 !
2 4,7E-9 5.0E-6 1.3E-2 1.5E-1 5.0E-1 2.3E+0 3.6B+1 1.0E+2 1.4E+2 1.7E+2 2.4E+2 3.2E+2 4.5E+2 5.5E+2 7.5E+2
3 5.5E-6 5.5E-6 5.5E-3 1.1E-1'6.5E-1 2.6E+0 4.1E+1 1.2E+2 1.6E+2 2.0E+2 2.8E+2 3.7E+2 6.0E+2 T.QE+2 1,0E+3
4 1,3E-2 5.0E-3 8.0E-3 1.3E-1 9.5E~1 5.5E+0 6.5E+1 1.4E+2 1.5E+2 2.0E+2 2.6E+2 3.8E+2 6.0E+2 6.5E+2 1,0E+3
5 1.5E-1 1.1E-1 1.3E-1 4.7E-1 2.7E+0 1.9E+1 1.1E+2 1.3E+2 1.6E+2 2.3E+2 2.5E+2 6.0E+2 5.5E+2 6.5E+2 1.1E+3
Table-6: Power Radiated by a Simply—Supported Piate, For High values of m, Ra=1.00 and R.=0.002.
m\n! 2 | 3 1 4 5 {6 {7 ¢ 8 9@ ! 10 : 11 : 12 : 13 ! 14 : 15 ! 16 !
12 3.0E+2 2.9E+2 2.7B+2 3.0E+2 3.5E+2 3.7E+2 4.4E+2 4.6E+2 6.7E+2 7.0E+2 B.7E+2 1.4E+3 1.2E+3 1.3E+3 1.3E+3
13 3.7E+2 3.7E+2 3.9E+2 4.0E+2 4.4E+2 5.0E+2 6.5E+2 6.5E+2 6.5E+2 1.7E+3 1.4E+3 1.3E+3 1.2E+3 1.5E+3 2.0E+3
14 5.5E+2 5.5E+2 6.5E+2 6.0E+2 6.0E+2 6.5E+2 6.0E+2 2.4E+3 1.2E+3 1.6E+3 1.2E+3 1.0E+3 2.8E+3 1.BE+3 5.0E+3
15 6.0E+2 6.0E+2 6.0E+2 6.5E+2 6.5E+2 B.0E+2 1.1E+3 1.3E+3 1.4E+3 1.1E+3 B.0E+3 1.5E+3 1.BE+3 2.0E+3 4.4E+3
Table-7: Power Radiated by a Simply-Supported Plate For low-values of m and very high range of
the values of n, Ra=1.00 and Re. =0.002. * '
'm\n! 2 4 N 1 8 »o10 0 12 0 14 16 | 18 P20 1 22 1 24 26 : 28 : 30 : 32
2 4.7E-8 1.3E-2 5.0E-1 3.6E+1 1.4E+2 2.4E+2 4.5E+2 7.5E+2 9.2E+2 3.2E+3 1.0E+3 2.6E+3 6.2E+3 B.4E+3 1.7E+3 1.2E+3
4 1.3E-2 B.0E-3 9.5E~1 6.5E+1 1.5E+2 2.6E+2 6.0E+2 1.0E+3 1.5E+3 4.4E+3 6.1E+3 3.4E+3 B.7E+3 1.3E+4 2.6E+3 2.2E+4
6 5.2E-1 9.3E-1 1.2E+1 1.2E+2 1.8E+2 3.5E+2 6.6E+2 6.1E+3 1.4E+3 5.1E+3 2.6E+3 2.2E+3 1.4E+4 B.6E+3 2.3E+3 Z.5E+3
8 3.9F+1 6.5E+1 1.2E+2 2.9E+2 2.7E+2 4.3E+2 B.2E+2 1.6E+3 1.3E+3 4,.0E+3 4.BE+3 1.1E+3 2.5E+4 2.5E+3 2.3E+3 3.BE+3
Table-B: Power Radiated From a Sihply—Supported Plate, For high values of m and very high range.of
the values of n, With Ra=1.00 and R:=0.002.
‘m\n! 2 4 HIE & I r 10 ¢ 12 : 14 ¢ 16 . 18 ¢ 20 22 ! 24 26 : 28 : 30 . 32 .
10 1.7E+2 1.5E+2 1.BE+2 2.6E+2 4.0E+2 7.0E+2 1.3E+3 1.2E+3 2.7E+3 1.6E+3 5.0E+3 2.2E+3 3.5E+4 2.,2E+3 2.6E+3 1.TE+5
12 3.0E+2 2.7E+2 3.5E+2 4.4E+2 6.TE+2 8.7E+2 1.2E+3 1.3E+3 4.6E+3 3.1E+3 2.8E+3 7.4E+3 1.5E+4 2.BE+3 1.0E+5 4.3E+4
14 5.3E+2 6.7E+2 5.9E+2 6,0E+2 1.2E+3 1.2E+3 2.7E+3 5.2E+3 2.0E+4 6,1E+3 2.5E+3 3.5E+4 3.3E+3 3.5E+3 2.4E+4 1.3E+4
16 9.5E+2 1.0E+3 1.6E+4 5.0E+3 1.1E+3 1.2E+3 4.7E+3 1.5E+3 6.8E+3 1.6E+3 1.1E+4 1.6E+4 4.1E+3 1.2E+4 5.0E+4 3.1E+3

911



Table-9: Power Radiated by a Simply-Supported Plate, With R.=1.00 and Different Values of Rt.

i Rt im\n, 2 P03 P4 {5 B 7 ! B P9 P10 v 11 12 ) 13 14 @ 15 1 16 !
0.001 2 3.2E-9 B.OE-8 1.2E-3 7.5E-3 3.4E-2 l.1E-1 2.7E-1 6.5E-1 2.0E+0 4.5E+0 &.0F+0 8.5E+]1 2.7E+2 2.8E+2 3.0E+2 -
0.002 2 4.7E-8 5.0E-6 1.3E-2 1.5E-1 5.0E-1 2.3E+0 3.6E+1 1,0E+2 1.4E+2 1.7E+2 2.4E+2 3.2E+2 4.5E+2 5.5E+2 7.5E+2
0.004 2 4.8E-6 3.2E-4 1.1E-1 4.3E+0 3.8E+1 6.5E+1 1.5E+2 2.1E+2 3.2E+2 5.0E+2 B8.5E+2 6.5E+2 1.2E+3 5.5E+3 1.4E+3
0.001 12 6.5E+0 6.7E+0 B.5E+0 1.6E+1 3.1E+1 7.9E+1 2.0E+2 3.3E+2 3.7E+2 3.2E+2 8,0E+3 5.0E+2 4.9E+2 5.0E+2 6.0E+2
0.002 12 3.0E+2 2.9E+2 2.7E+2 3.0E+2 3.5E+2 3.7E+2 4.4E+2 4.B6E+2 6.7E+2 T7.0E+2 8.7E+2 1.4E+3 1.2E+3 1.3E+3 1.3E+3
0.004 12 9.7E+2 1.0E+3 1.0E+3 1.0E+3 1.9E+3 1.2E+3 1.3E+3 1.3E+3 3.4E+3 5.5E+3 2.6E+3 1.8E+3 4.7E+3 7.5E+3 4.1E+3
Table-10: Power Radiated by a Simply-Supported Plate, With R:=.0002 and Different Values of Ra.
i Ra im\n; 2 13 4 v 5 i B 7 i B V9 P10 11 ¢ 12 13 + 14 : 15 : 16
0.50 2 5.6E-2 1.3E-1 2.3E-1 9.5E+0 7.0E+1 1.2E+2 2.1E+2 3.7E+2 5.5E+2 9.0E+2 1.3E+3 6.0E+2 2.1E+3 4.9E+3 2.1E+3
1.00 2 4.7E-8 5.0E-6 1.3E-2 1.5E-1 5.0E-1 2.3E+0 3.6E+1 1.0E+2 1.4E+2 1.7E+2 2.4E+2 3.2E+2 4.5E+2 5.5E+2 7.5E+2
2.00 2 3.6E-9 2.1E-B 3.0E-4 2.0E-3 1.1E-2 4.8E-2 1.4E-1 3.2E-1 8.5E~1 2.4E+0 3.2E+0 3.0E+1 1.5E+2 1.7E+2 1.8E+2 .
0.50 12 6.8BE+2 1.4E+2 1.BE+2 2.4E+2 3.1E+2 4.5E+2 2.0E+3 8.6E+2 1.7E+3 2.0E+3 2.3E+3 2.9E+3 8.6E+3 5.0E+3 3.8E+3 -
1.00 12 3.0E+2 2.9E+2 2.7E+2 3.0E+2 3.5E+2 3.7E+2 4.4E+2 4.6E+2 6.7E+2 7.0E+2 8.7E+2 1.4E+3 1.2E+3 1.3E+3 1.3E+3
2.00 12 6.0E+2 7.0E+2 6.3E+2 5.0E+2 5.3E+2 5.7E+2 6.2E+2 7.5E+2 7.7E+2 8.1E+2 7.1E+2 1.1E+3 8.4E+2 1.1E+3 7.0E+2
Table-11: Power Radiated by a Clamped Plate, For Low Modes, With Ra=1.00 and Re=0.002.
im\n: 2 v 3 v 4 15 R ¢ 7 i1 8 P9 ¢ 10 ¢ 11 ¢y 12y 13 14 4+ 15 ¢ 16 |
2 9.0E-2 3.2E-1 1.8E+0 9.5E+0 3.8E+1 6.5E+]1 9.0E+1 1.3E+2 1.9E+2 2.7E+2 3.7E+2 4.8E+2 8.0E+2 8.0E+2 8.5E+2
4 1.8E+0 3.9E+0 1.2E+1 3.4E+1 6.5E+]1 B.0E+1 1.2E+2 1.7E+2 2.4E+2 3.4E+2 4.4E+2 6.0E+2 9.5E+2 8.0E+2 1.1E+3
6 4.0B+1 5.0E+1 6.5E+1 7.5E+1 9.5E+1 1.3E+2 1.8E+2 2.4E+2 3.3E+2 4.4E+2 5.5E+2 8.5E+2 9.5E+2 9.0E+2 1.5E+3
8 1.0E+2 1.1E+2 1.2E+2 1.4E+2 1.8E+2 2.2E+2 2.8E+2 3.7E+2 4.7E+2 5.5E+2 8.5E+2 1.0E+3 1.0E+3 1.3E+3 2.7E+3
Table-12: Power Radiated by a Clamped Plate, For High Modes, With Ra=1.00 and R:=0.002.
rm\n! 2 V3 : 4‘ {5 R R § 7 B P9 10 011 0 12 v 13 0 14 0 15 1 18
10 2.1E+2 2,2E+2 2.5E+2 2.8BE+2 3.3E+2 4.0E+2 4.7E+2 5.0E+2 7.5E+2 9.5E+2 9.5E+2 1.1E+3 1.3E+3 2.BE+3 2.9E+3
12 4.1E+2 4.3E+2 4.5E+2 4.9E+2 5.5E+2 6.5E+2 8.5E+2 1.0E+3 9.5E+2 1.0E+3 1.1E+3 1.9E+3 3.4E+3 2.3E+3 1.6E+3
14 9.0E+2 9.5E+2 9.5E+2 9.5E+2 9.5E+2 9.5E+2 1.0E+3 1.1E+3 1.3E+3 2.2E+3 3.4E+3 2.7E+3 1.4E+3 2.7E+3 4.4E+3
16 1.0E+3 1.0E+3 1.1E+3 1.3E+3 1.6E+3 2.0E+3 2.7E+3 3.3E+3 2.9E+3 1.7E+3 1.5E+3 3.2E+3 4.3E+3 3.5E+3 2.0E+3
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1E+2 2.5E+2 3.3E+2 4.7E+2 7.5E+2 9.5E+2 1,3E+3 2.9E+3 3.2E+3 2.1E+3 1.1E+4 8.3E+3 2.5E+3 1.4E+4 2.0E+4 3.9E+3
1.1E+3 3.4E+3 1.6E+3 4.1E+3 2.6E+3 2.1E+4 2.0E+3 3.5E+3 3.0E+4 7.3E+3 1.5E+3
OE+2 9.5E+2 9.5E+2 1.0E+3 1.3E+3 3.4E+3 1.4E+3 4.4E+3 1.7E+3 1.3E+4 1.0E+4 3.1E+3 6.0E+3 4.3E+4 4.0E+3 4.5E+3
1.5E+3 4.3E+3 2.0E+3 7.5E+3 1.8E+4 3.1E+3 2.BE+3 3.6E+4 9.6E+3 3.2E+3 6.8E+3

1E+2 4.5E+2 5.5E+2 B.5E+2 9.5E+2

0E+3 1.1E+3 1.6E+3 2.7E+3 2.9E+3

Rt

rin\n,

0.001
0.002

0.004

0.001
0.002
0.004

2

2
2
12
12

12

Table-13: Power Radiated by a Clamped Plate, For LowVValués of m and Very High Range of the Values of n,
Ra=1.00 and R:=0,002.

.BE+0 3.BE+1 9.0E+1 1.9E+2 3.7E+Z B.0E+2 8.5E+2 2.8E+3 2.4E+3 6.6E+2 1.3E+4 1.9E+3 6.9E+2 2.5E+4 3,0E+3
.2E+1 6.5E+1 1.2E+2 2.4E+2 4.4E+2 9.5E+2 1.1E+3 3.0E+3 3.5E+3 4.1E+2 1.9E+4 1.4E+3 7.3E+2 4.0E+4 2.3E+3
.5E+1 9.5E+1 1.8E+2 3.3E+2 5.5E+2 9.5E+2 1.5E+3 2.1E+3 4.3E+3 7.8BE+2 2.2E+4 1.4E+3 1.8E+3 4.7E+4 1.7E+3
.2E+2 1.8E+2 2.8E+2 4.7E+2 B.5E+2 1.0E+3 2.7E+3 1.4E+3 3.7E+3 3.9E+3 1.9E+4 2.5E+3 5.8E+3 3.8E+4 3.2E+3

=

Table-14: Power Radiated by a Clamped Plate, For High Values of m and Very High Range of the Values of n,
Ra=1.00 and Rt =

Table—15: Power Radiated by a Clamped Plate, With Ra=1.00 and Different Values of Re.

1Y
“n

8E+0 2.8E+0 4.9E+0 2.7E+1 1.2E+2 2.2E+2 2.2E+2 2.5E+2 3.0E+2 3.6E+2
5E+1 9.0E+1 1.3E+2 1.9E+2Z 2.7E+2 3.7E+2 4.BE+2 8.0E+2 B.0E+2 B.5E+2
6E+2 2.8E+2 4.8E+2 6.0E+2 8.5E+2 2.0E+3 2.4E+3 9.0E+2 3.8E+3 4.6E+3
7E+2 2.9E+2 3,.2E+2 3.BE+2 4.1E+2 4.6E+2 5.5E+2 6.5E+2 6.6E+2 9.0E+2
S5E+2 8.5E+2 1.0E+3 9.5E+2 1.0E+3 1.1E+3 1.9E+3 3.4E+3 2.3E+3 1.6E+3
OE+3 1.3E+3 2.1E+3 4.4E+3 6.0E+3 3.9E+3 2.3E+3 3.2E+3 5.0E+3 2.0E+4

-1 9.0E-1 1.
+0 3.8BE+1 6.
+1 4. 5E+1 9:0E+1 1.
E+2 2.5E+2 2.5E+2 2.
E+2 4.98+2 5.5E+2 6.
E+3 3.0E+3 2.8E+3 Z.

.0E-3 8.0E-3
9.0E-2 3.Z2E-1
.1E+0 6.5E+0
.5E+2 2.5E+2
.1E+2 4.3E+2
.3E+3 2.BE+3

(Dw



Table—16; Power Radiated by a Clamped Plate, With Rt =0.002 and Different Values of Ra.

' Ra im\n: 2 r 3 P4 i1 5 i B N i 8 V9 10 0 11 0y 12 v 13 0 14 V15 0 16
0.50 2 4.9E-2 4,0E-2 1.7E-1 4.4E-1 5.5E-1 6.0E-1 9.0E-1 1.6E+0 2.6E+0 3.8E+0 5.0E+0 6.5E+0 8.0E+0 1.0E+1 1.BE+1
1.00 2 9.0E-2 3.2E-1 1.8E+0 9.5E+0 3.8E+1 6.5E+1 9.0E+1 1.3E+2 1.9E+2 2.7E+2 3.7E+2 4.8E+2 8.0E+2 8.0E+2 8.5E+2
2.00 2 9.5E-1 9.5E+0 2.9E+1 7.5E+]1 1.6E+2 3.3E+2 4.0E+2 6.0E+2 2.1E+3 4.0E+3 1.1E+3 7.5E+2 2.2E+3 1.3E+4 1.9E+4
0.50 12 2.2E+2 2.5E+2 3.1E+2 4.1E+2 5.5E+2 6.5E+2 B8.0E+2 9.5E+2 1.1E+3 1.2E+3 1.3E+3 1.4E+3 1.5E+3 2.0E+3 2.4E+3
1.00 12 4.1E+2 4,.3E+2 4.5E+2 4.9E+2 5.5E+2 6.5E+2 B.5E+2 1.0E+3 9.5E+2 1.0E+3 1.1E+3 1.9E+3 3.4E+3 2.3E+3 1.BE+3
2.00 12 B.0E+2 B.5E+2 8.5E+2 9.0E+2 1.1E+3 1.4E+3 1.2E+3 2.3E+3 2.1E+3 2.3E+3 7.0E+3 2.2E+3 B.0E+3 3.2E+3 1.4E+4
Table-17: Power Radiated by a Freely Suspended Plate, For Low Mode Orders With Ra=1.00 and Rt =0.002.
im\n: 2 v 3 4 i 5 HE & 7 i B V9 v, o110y 12 7 13 7 14 15 1 16 ¢
2 1.1E-3 3.0E-2 4.9E-1 6.4E+0 3.7E+1 6.7E+1 1.0E+2 1.5E+2 2.2E+2 3.2E+2 4.5E+2 5.7E+2 9.0E+2 1.0E+3 1.0E+3
3 3.0E-2 3.8E-1 3.6E+0 2.2E+1 5.3E+1 7.5E+]1 1.1E+2 1.7E+2 2.4E+2 3.4E+2 4.7E+2 6.0E+2 9.6E+2 9.5E+2 1.1E+3
4 4.9E-1 3.6E+0 1.8E+1 4.6E+]1 6.5E+1 9.5E+1 1.4E+2 2.0E+2 2.7E+2 3.8E+2 4.9E+2 7.4E+2 1.0E+3 9.3E+2 1.3E+3
5 6.4E+0 2.2E+1 4.6E+1 5.8BE+1 B.5E+1 1.2E+2 1.7E+2 2.4E+2 3.2E+2 4.3E+2 5.3E+2 B.6E+2 9.5E+2 9.6E+2 1.5E+3

Table~18: Power Radiated by a Freely Suspended Plate, For High Mode Orders With Ra=1.00 and R:=0.002.

m\n: 2 v 3 V4 i 5 N v 7 i 8 ¢ 9 r 10 ¢ 11 ¢+ 12 ¢ 13 14 : 15 : 16

12 4.5E+2 4.7E+2 4.9E+2 5.3E+2 6.8E+2 8.7E+2 9.2E+2 9.0E+2 1.0E+3 1.2E+3 2.1E+3 3.1E+3 1.9E+3 1.7E+3 3.5E+3
13 5.4E+2 5.9E+2 7.2E+2 8.6E+2 9.4E+2 9.1E+2 B8.9E+2 1.1E+3 1.3E+3. 2.2E+3 3.1E+3 2.0E+3 1.5E+3 3.3E+3 3.9E+3
14 9.1E+2 9.5E+2 9.BE+2 9.5E+2 8.9E+2 9.5E+2 1.2E+3 1.4E+3 2.5E+3 3.0E+3 1.9E+3 1.6E+3 3.1E+3 4.0E+3 2.4E+3
15 1.0E+3 9.4E+2 9.1E+2 9.6E+2 1.2E+3 1.4E+3 2.0E+3 2.9E+3 2.9E+3 1.7E+3 1.7E+3 3.1E+3 4.0E+3 2.5E+3 1.6E+3

Table-13: Power Radiated by a Freely Suspended Plafé, For Low Values of m and Very High Range of
the Values of n, Ra=1.00 and Rt =0.002.

ym\n: 2 4 1 B i 8 v 10 ¢ 12 y 14 ¢ 16 1 18 20 22 . 24 | 26 | 28 i 30 . 32 |
2 1.1E-3 4.9E-1 3.7E+1 1.0E+2 2.2E+2 4,5E+2 9.0E+2 1.0E+3 3.4E+3 2.9E+3 1.6E+3 1.6E+4 5.5E+3 1.5E+3 3.3E+4 7.5E+3
4 4.9E-1 1.8E+l1 6.0E+1 1.4E+2 2.7E+2 5.0E+2 1.0E+3 1.3E+3 2.9E+3 3.9E+3 1.0E+3 1.9E+4 2.4E+3 2.3E+3 3.1E+4 4.5E+3
6 3.7E+1 6.2E+]1 1.2E+2 2.1E+2 3.9E+2 7.0E+2 8.9E+2 1.9E+3 1.6E+3 4.1E+3 2.3E+3 2.1E+4 3.6F+3 4.1E+3 4.4F+4 4.8E+4
8 1.0E+2 1.4E+Z 2.1E+2 3.4E+2 5.0E+2 9.2E+2 1.2E+3 3.1E+3 2.5E+3 2.4E+3 7.5E+3 1.2E+4 4.3E+3 1.0E+4 3.4E+4 5.0E+3
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Table—-20: Power Radiated by a Freely Suspended Plate, For High Values of m and Very High Range of
the Values of n, Ra=1.00 and R:=0.002. f '

ym\n: 2 P4 N < b 8 ' 10 @ 12 : 14 ¢ 16 : 18 : 20 1 22 24 ! 26 | 28 . 30 . 32 .

10 2.2E+2 2.7E+2 3.9E+2 5,0E+2 9.1E+2 1.0E+3 2.5E+3 1.4E+3 3.9E+3 1.6E+3 1.9E+4 2.7E+3 2.5E+3 2.7E+4 9.2E+3 4.6E+3
12 4.5E+2 5.0E+2 6.9E+2 9.2F+2 1.0E+3 2.1E+3 1.9E+3 3.5E+3 1.6E+3 8.4E+3 1.3E+4 4.0E+3 4.9E+3 3.9E+4 5.9E+3 4, 3E+3
14 9.1E+2 1.0E+3 9.1E+2 1.2E+3 2.5E+3 1.9E+3 3.1E+3 2.4E+3 3.7E+3 2.0E+4 2.9E+3 3.2E+3 2.1E+4 2.0E+4 4.3E+3-4.4E+3
16 1.1E+3 1.3E+3 1.9E+3 3.2E+3 1.5E+3 3.5E+3 2.3E+3 3.0E+3 2.0E+4 3.7E+3 2.4E+3 7.2E+3 4.1E+4 5.6E+3 4.1E+3 4.5E+3

Table-21: Power Radiated by a Freely Suspended Plate For Ra=1.00 and Different Values of Re.

! R im\n: 2 i3 o4 ¢ 5 i B 4 , 8 9 ¢ 10 -f 11 ¢ 12 v 1307 14 ¢ 15 1 16
0.001 2 4.0E~7 4.3E-6 2.0E-5 1.6E-3 1.8E-2 9.5E-2 2.5E-1 9.6E-1 1.5E+l 1.0E+lZ 2.2E+2 2.6E+2 2.9E+2 3.6F+2 4.3E+2
0.002 2 1.1E-1 3.0E-2 4.9E-1 6.4E+0 3.7E+l 6.7E+1 1.0E+2 1.5E+2 2.2E+2 3.2E+2 4.5E+2 5.7E+2 9.0E+2 1,0E+3 1.0E+3
0.004 2 1.1E+0 1.1E+1 2.7E+1 5.7E+1 1.1B+2 2.0E+2 3.3E+2 5.7E+2 7.3E+2 1.0E+3 1.9E+3 3.1E+3 1.4E+3 4.3E+3 5.6E+3
0.001 12 1.0E+2 1.1E+2 1.2E+2 1.4E+2 1.B6E+2 1.9E+2 2.2E+2 2.7E+2 3.2E+2 3.8E+2 4.6E+2 5.6E+2 6.7E+2 7.5E+2 7.8BE+2

0.002 12 4.5E+2 4.7E+2 4.9E+2 5.3E+2 6.8E+2 8.7E+2 9.2E+2 9.0E+2 1.0E+3 1.2E+3 2.1E+3 3.1E+3 1.9E+3 1.7E+3 3.5E+3
0.004 12 1.6E+3 1.8E+3 1.8E+3 1.6E+3 1.4E+3 1.4E+3 2.0E+3 2.6E+3 3.3E+3 3.1E+3 3.1E+3 2.7E+3 3.4E+3 4.8E+3 4.1E+3

Table-22: Power Radiated by.a Freely Suspended Plate For Rt =0.002 and Different Values of Ra.

' Ra im\n: 2 p 3 ¢4 - ' B 7 ¢ 8 P9 10 ;11 ¢ 12 : 13 ¢ 14 15 1 16
0.50 2 1.1E-1 5.9E+0 4.3E+]1 9.5E+1 1.8E+2 3.5E+2 6.0E+2 1.0E+3 1.4E+3 1.8E+3 3.6E+3 7.6E+3 2.5E+3 8.5E+3 1.1E+4.
1.00 2 1.1E-1 3.0E-2 4.9E-1 6.4E+0 3.7E+1 6.7E+1 1.0E+2 1.5E+2 2.2E+2 3.2E+2 4.5E+2 5.7E+2 9.0E+2 1.0E+3 1.0E+3
2.00 2 8.1E-4 3.1E-4 6.8E-4 2.2E-3 1,38-2 7.1E-2 4.3E-1 3.4E+0 2.2E+1 7.6E+1 1,0E+2 1.3E+2 1.5E+2 1.9E+2 2.3E+2
0.50 12 2.4E+2 3.0E+2 4.0E+2 5.5E+2 7.8E+2 1.2E+3 1.8E+3 2.5E+3 3.1E+3 2.6E+3 4.8E+3 7.3E+3 5.0E+3 1.5E+3 3.8E+3
1.00 12 4.5E+2 4.7E+2 4.9E+2 5.3E+2 6.8BE+2 8.7E+2 9.2E+2 9.0E+2 1.0E+3 1.2E+3 2.1E+3 3.1E+3 1.9E+3 1.7E+3 3.5E+3
2.00 12 7.3E+2 7 8.7E+2 9.7E+2 1.1E+3 1.4E+3 1.7E+3 1.9E+3 2.1E+3 4.1E+3 2.0E+3

.1E+2 7.1E+2 7.1E+2 7.2E+2 7.8E+2
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Table-23: Frequency of a Simply-Supported Plate.

4 A '

8 10 v 12 0 14 ¢ 16

i 18

v 20

22

24 26 ! 28 1 30 32

1.2E+3 1.
5.9E+2 2.
5.2E+2 1.
3.4E+4 3.
3.4E+4 3.
3.4E+4 3.

0E+4 2.8E+4 5.
9E+3 7.3E+3 1.
S5E+3 2.8BE+3 4.
BE+4 5.0E+4 7.
TE+4 4.2E+4 5.
7E+4 4.2E+4 4.

5E+4 9.1E+4 1.4E+5 1.9E+5 2.5E+5 3.2E+5 4.0E+5 4.9E+5 5
4F+4 2.3E+4 3.1E+4 4.8E+4 6.3E+4 B.1E+4 1.0E+5 1.2E+5 1

6E+3 6.9E+3 9.8E+3 1.3E+4 1.7E+4 2.2E+4 2.7E+4 3.

3E+4 1.0E+5 1.5E+5 2.0E+5 2.6E+5 3.4E+5 4.2E+5 5.0E+5 6
OE+4 6.0E+4 7.2E+4 8.6E+4 1.0E+5 1.2E+5 1.4E+5 1.6E+5 1
BE+4 5.5E+4 6.4E+4 7.2E+4 B8.2E+4 9.1E+4 1.0BE+5 1.1E+5 1

.9E+5 7.0FE+5 B.2E+5 9.4E+5 1.0E+6
_BE+5 1.7E+5 2.0E+5 2.4E+5 2.TE+5

2E+4 3.8E+4 4.5E+4 5.2E+4 6.0E+4 6.9E+4

.0E+5 7.1E+5 B8.3E+5 9.5E+5 1.1E+6
.9E+5 2.2E+5 2.4E+5 2.8E+5 3.1E+5
.2E+5 1.3E+5 1.4E+5 1.6E+5 1.TE+5

Table—-24:

Frequency of

a Clamped Plate.
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Ra m\n,

2 ;

4 N H

B ¢ 10 12 ¢ 14 '

16 H

18 :

20 '

22 1 24 i 26 1 28 ! 30 !

32 i

0.50 2 7.1E+6 2.

1
2
0
1
2

.00 2
.00 2
.50 12
.00 12
.00 12

1.1E+6 2.
7.5E+5 1.
3.8BE+7 4.
3.2E+7 2.
3.2E+7 2.

0E+8 1.2E+9 4.
6E+7 1.5E+8 1.
BE+7 8.3E+7 2.
4E+8 1.9E+9 5.
7E+8 7.9E+8 1.
6E+8 7.2E+8 1.

2E+9 1.0E+10 2.3E+10 4.4E+10 7.
5E+8 1.3E+9 2.8E+9 5.Z2E+9 9.
8E+8 7.0E+8 1.5E+9 2.BE+9 4.
4E+9 1.3E+10 2.6E+10 4.8BE+10 8.
7E+9 3.3E+9 5.BE+9 9.4E+9 1.
5E+9 2.7E+9 4.5E+9 T7.0E+9 1.

7E+10 1.
1E+9 1.
BE+9 T.
2E+10 1.
S5E+10 2.
QE+10 1.

2E+11 1.,
BE+10 2.
9E+9 1.
3E+11 2.
2E+10 3.
5E+10 2.

gE+11 2.
3E+10 3.
2E+10 1.
OE+11 2.
2E+10 4.
1E+10 2.

8E+11 4.1E+11 5.6E+11 7.6E+11 1.0E+12 1.
4E+10 4.8E+10 6.6E+10 9.0E+10 1.2E+11 1.
BE+10 2.5E+10 3.5E+10 4.8E+10 6.3E+10 8.
9E+11 4.2E+11 5.8E+11 7.8E+11 1.0E+12 1.
4E+10 6.1E+10 8.1E+10 1.0E+11 1.4E+ll 1.
9E+10 3.8E+10 5.0E+10 6.5E+10 B.4E+10 1.

3E+12
5E+11
2E+10
3E+12
BE+11
0E+11

Table-25:

Frequency of

a Freely Suspended Plate.

4 < ;

g8 : 10 : 12 : 14

16 |

18 |

20 '

22 V24 v 28 . 28 . 30 '

32 -

.50 2
.00 2
.00 2
.50 12
.00 12
.00 12

1.0E+7 2.
4,3E+6 3.
4.0E+6 2.
1.2E+8 6.
1.1E+8 4.
1.1E+8 4,

1E+8 1.2E+9 4.
7E+7 1.7E+8 5.
6E+7 1.0E+8 3.
6E+8 2.2E+9 6.
9E+8 1.2E+9 2.
7E+8 1.1E+9 2.

3E+9 1.0E+10 2.3E+10 4.4E+10 7.
5E+8 1.3E+9 2.8E+9 5.3E+9 9.
1E+8 7.5E+8 1.6FE+9 2.9E+9 5,
0F+9 1.4E+10 2.7E+10 5.0E+10 8.
3E+9 4.1E+9 6.8E+9 1.0E+10 1.
1E+9 3.5E+9 5.6E+9 8.3E+9 1.

7E+10 1.
2E+9 1.
0E+9 8.
4E+10 1.
6E+10 2.
2E+10 1.

3E+11 1.
5E+10 2.
OE+9 1.
3E+11 2.
4E+10 3.
TE+10 2.

OE+11 2.
3E+10 3.
2E+10 1.
0E+11 3.
4E+10 4.
3E+10 3.

BE+11 4.1E+11 5.6E+11 7.6E+11 1.0E+12 1.
4E+10 4.8E+10 6.7E+10 9.0E+10 1.2E+11 1.
8E+10 2.6E+10 3.6E+10 4.8E+10 6.4E+10 B.
OE+11 4.2E+1]1 5.8E+11 7.8E+11 1.0E+12 1.
7E+10 6.4E+10 8.5E+10 1.1E+11 1.4E+11 1.
1E+10 4.2E+10 5.4E+10 7.0E+10 8.8E+10 1.

3E+12
5E+11
IE+10
3E+12
BE+11
1E+11




APPEND1X B
PROGRAMMING FEATURES

B 1. GENERAL FEATURES:

The computer program used in the current investigatioh has beoen
developed by .the author at the Computer Center of Bangladesh University of En-
gineefing and Technology (B.U.E.T.), Dhaka. The Simpson rule for numerical in-
tegration has been used to integrate the farfield acoustic intensity and the
equations tan(%/2)+tanh(2/2)=0, have been solvea by the method if bisection.
At first, the program for a certain set of boundary cﬁnditions has Been
developed and subséquently modified for the others. In the program 1isting
section, the computer program for the clamped plate has been presented. This
program, with minor modifications, can be applied to any combination of bound-

ary conditions.

B 2. DEFINITION OF COMPUTER VARIADLES:

Variable Iefinition

AR Aspect ratio

TR Thickness ratio

AH . Divisions of the range of integration

AK , Divisions of the range of inlegration

AMP Amplitgde factor of the power radiated

AL , 1

AS s

GM . im, Hoots of the equation tan(5/2)+tanh(3725:0

GFM im Roots of the equation tan(%/2)~tanh(v/2)}=0
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GN Yn, RHoots df the equation tan_(§/2)+tanh(?5/2):0
GPN - " %h, Roots of the equalion tan(%/2)-tanh(%/2)=0
GR : . g, Acceleration due to gravity
RM R
rd 7 ]

‘RFM . Rm
RN Rn

' ’
RPN Rn
- ROA e Denéity of the surrounding medium
RO fin, Density of the plate material
SIMB Ar2, Dimensionless frequency factor
TH ' o
TK . o

WNR y., Wave number ratio



APFENDIX C

PROGRAM LISTING
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PROGRAM LISTING

******************************************************************
OPEN(UNIT=5, FILE="OUT’ , STATUS= ‘NEW' ) _
**#****************************_***********************************
************************* INPUT DATA *****************************
*****#***************#***#************t*******#*******************
AR=1.00 ' :
TR=0. 002

€=343.0

W=0,0001

GR=9.81

PI=3.1416

E=206E+9

ROA=1.2]

RO=7700.0

S1G=0.40

HH=0. 0025
**#***************************************************************
WRITE(5,1001) AR, TR

FORMAT(5X, “ASPECT RATIO= *,F6.4,5X, ‘THICKNESS RATIO= ’,F6.4,/)
X11=2.2

DO 1 M=2,16,2

X12=X11+HH .
Yllz(SIN(Xll)/COS(Xll))+(SlNH(Xll)/COSH(X11))
Y12=(SIN(x12)/cos(x12))+(SINH(x12)/COSH(x12))

Z11=Y11%Y12 :

IF(Z11.1T.0.00) GO TO 10

X11=X12

GO TO 12

GM=X11+X12

X21=2.2

DO 2. N=2,32,2

X22=X21+HH

Y21=(SIN(x21)/cos(x21))+(s1NH(x21)/COSH(x21))
Y22=(SIN(x22)/cos(x22))+(SINH(x22)/COSH(x22))

221=Y21%Y22

IF(Z21.LT.0.00) GO TO 20

X21=X22 :

GO TO 22

GN=X21+X22

HGM=GM/2. 0

HGN=GN/2.0 .

RM=S IN( HGM) /S INH (HGM) ‘
RN=S1N(HGN) /S INH(HGN)

CALL ASOLN(M,N,PI,SIG, AR, SIMB) '
AM1=2.*HOA*W*W*AR*AR(PI**G.)*E*E*(TH**4.)*GH*GR*SLMB*SLMB
AM2:9.:Ct(GM**4.)*(GN**4.)*Ro*ﬂo*((l.(SIG*SIG))**z.),.

AMP=AM1 /AM2

AH=P1/70

YY=33, O%AH

GSUM=0. 0

TH=0.0

CALIL, ONE(C,SLMB,GM,GN,RM,RN,AR,TR,E,PI,HO,SIG,GR,TH,SUM)
GSUM=GSUM+S UM
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70 TH=TH+AH
CALL ONE(C, SIMB,GM,GN, RM RN, AR, TR, E,P1,R0,51G,GR, TH, SUM)
GSUM=GSTUM+4 ., O*SUM
TH=TH+AH ’
CALJ, ONE(C,SIMB,GM,GN,RM, RN, AR, TR, E,PI,R0,S81G,GR, TH, SUM)
GSUM=GSUM+2Z.0*SUM
IF(TH.LT.YY) GO TO 70
TH=TH+AH _
CALL ONE(C,SLMB,GM,GN,HM,RN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)
GSUM=GSIM+StM
GSUM={AH/3.0)*GSUM
POWER=4, 0%GSUM*AMP
WRITE(5,200) M,N,GM,GN, POWER

200 FORMAT('7X,12,8X,12,10X,F10.4,10X%,F10.4,10X,E10.4)
X21=X21+3.1

2 - CONTINUE
: X11=X11+3.1

1 CONTINUE

X11=3.9

DO 3 M=3,16,2
32 X12=X11+HH
. Y11=(SIN(X11)/COS(X11))~(SINH(X11)/COSH{X11))
Yi2= (SIN(XIZ)/FOS(XlZ)) (SINH(X12) /COSH(X12))
Z11+Y11%Y12
JIF(Z11.1T.0.00) GO TO 30
X11=X12
GO TO 32
30 GPM=X11+X12
X21=3.9
DO 4 N=3,32,2
42 X22=X21+HH
YZ21=(S1IN(X21)/C08(X21))~{(SINH{X21)/COSH(X21))
Y22=(SIN(X22)/COS(X22))~(SINH(X22) /COSH(X22))
221=Y21%Y22
X21=X22
GO TO 42
40 GPN=X21+X22
HGFM=GPM/2
HGPN=GPN/2
RPM=-SIN(HGPM) /SINH(HGPM)
RPN=—~SIN(HGPN) /S INH{HGPN)
CALIL ASOLN{M,N,PI,SIG,AR,SIMB)
AM1=2. ¥ROAXWXWXAR¥AR(PI**6. ) ¥EXE* (TR¥*¥4, ) *GR*GR*S LMB*S IMB
AMZ=9, ¥C¥(GM*X4, ) ¥(GN**4. ) kROXROX{ (1. (SIG*S1G) ) ¥*2, )
AMP=AM] /AM2
AH=P1/70.0
YY=33.0%AH
GSUM=0.0
TH=0.0
CALL THREE(C, SLMB,GPM, GPN, RPM, HPN AR, TR,E,P1,R0,51G,GR, TH, SUM)
GSUM=GSiUM+SUM
170  TH=TH+AH
CALL THREE(C,S1MB,GFM,GPN,RFM, RPN, AR, TR,E,P1,R0,S1G, FR TH, SUM)
GSUM=GSUM+4 . 0%SUM
TH=TH+AH
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CALL THREE(C,SIMB,GPM,GPN,RPM,RPN,AR,TR,E,PI,RO,SIG,GH,TH,SUM)
GSUM=GSIM+2, 0%SUM -
IF(TH.LT. YY) GO TO 170
TH=TH+AH
CALL THREE(C,SLMB,GPM,GPN,RPM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)
GSUM=GSUM+SUM
GSUM=(AH/3.0) *GSUM
POWER=4. 0XGSUM¥AMP -
WRITE(5,300) M,N,GPM,GPN,POWER
300 FORMAT(?H,IZ,BX,IZ,10X,F10.4,10X,FlO.4,10X,E10.4)
X21=X21+3.1

4 CONTINUE
X11=X11+3.1

3 CONTINUE
X11=2.2

DO 5 M=2,18,2

52 X12-X11+HH )

- Y1]=(31N(x11)/005(x11))+(SINH(x11)/cosn(x11))
YIZ:(SIN(XIZ)/COS(X12))+(SINH(X12)/COSH(X12))
Z11=Y11%Y}12
IF(Z11.LT.0.00) GO TO 50
X11+X12
GO 10 52

50 GM=X11+X12
X21=3.9

- DO 6 N=3,32,2

62 X22=X21+HH
Y21:(SIN(x21)/cos(x2]))—(SINH(XZI)/COSH(XZIJ)
Y22:(SIN(222)/COS(222))*(SINH(X22)/COSH(X22))
Z221=Y21%Y22 o
IF(Z21.LT.0.00) GO TO 60
X21=X22
GO TO 62 °

60 GPN=X21+X22
HGM=GM/2.0
HGPN=GPN/2.0
RM=SIN(HGM) /S INH( HGM)
RPN=-SIN(HGPN) /S 1NH(HGPN) ,
CALL ASOLN(M,N,PI,SIG,AR,SIMB)
AM1=2.*ROA*W*W*AR*AR(PI**G.)*E*E*(Tnttd.)*GR*GR*SLMB*SUHB
AMZ:Q.*C*(GM**4.)*(GN**4.)*RO*RO*((I.(SIG*SIG))**Z.)
AMP=AM1 /AM2 .
AH=PI/70.0
YY=33.0%AH
TH=0.0
GSUM=0.0 T
CALI FIVE(C,SHMB,GM,GPN,RM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)
GSUM=GSUM+SUM

270  TH=TH+AH :
CALL FIVE(C,SLMB,GM,GPN,RM,RPN,AR,TR,E,PI,RO.SIG,GR,TH,SUM)
GSUM=GSUM+4 . 0xSUM
TH=TH+AH
CALL FIVE(C,SUMB,GM,GPN,HM,RPN,AR,TR,E,P],RO,SIG,GR,TH,SUM)
GSUM=GSIM+2. 0*SUM , \
IF(TH.LT.YY) GO TO 270
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. TH=TH+AH

CALL FIVE(C,SLMB,GM,GPN,RM,RPN,AR,TR,E.PI,RO,SIG,GR,TH,SUM)
GSUM=GSIM+SUM

GSUM=(AH/3.0) *GSUM

POWER=4 ., 0*GSUMXAMP

WRITE(5,400) M,N,GM,GPN, POWER

FORMAT(7X, 12, BX,12.10X,F10.4,10X,F10.4,10X,E10.4)
X21=X21+3.1 -

CONTINUE

X11=X11+3.1

CONTINUE

X11=3.9

DO 7 M=3,16,2

X12=X11+HH

Y11=(SIN(X11)/COS(X11))~(SINH(X11) /COSH(X11))
Y122(SIN(X12)/COS(X12))-(SINH(X12) /COSH(X12))

Z11=Y11%Y12

IF(Z11.LT.0.00) GO TO 110

X11=X12

GO TO 112

GPM=X11+X12

X21=2.2

DO 8 N=2,32,2

X22=X2])+HH

Y21=(SIN(X21) /COS(X21) )+(SINH(X21) /COSH(X21))
¥22=(SIN(X22)/COS(X22))+(SINH(X22) /COSH(X22))

Z21=Y21%Y22 -

IF(Z221.LT.0.00) GO TO 120

X21=X22

GO TO 122

GN=X21+X22

HGPM=GPM/2,0

HGN=GN/2.0 :

RPM=-SIN(HGPM) /S INH{ HGPM)

RN=SIN(HGN)/SINH(HGN)

CALL ASOLN(M,N,PI,SIG,AR,SiMB) , .

AM1=2. XROAXWAXWXARXAR (PI*X6. ) KEXEX ( TRA*4 . ) XGRAGRAS LMBXSIMB
AM2=9.*C*(GM**4.)*(GN#*4.)*RO*RO*((1.(SIG*SIG))**Z.)
AMP=AM1 /AM2

AH=PI/70.0

YY=33. 0*%AH

TH=0.0

GSUM=0.0

CALL SEVEN(C,SLMB,GPM,GN,RPM,RN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)
GSUM=GSUM+SIM '

TH=TH+AH . ,

CALL SEVEN(C,SLMB,GPM,GN,HPM,RN,AR,TR,E,PI,RO,SIG,GR,TH,SUM)
GSUM=GSIM+4, 0%SUM

TH=TH+AH

CALL SEVEN(C,SLMB,GPM,GN,HPM,RN,AR,TR,E,PI,RO,SIG,GH,TH,SUM)
GSUM=GSIM+2, 0*SIM '
IF{TH.LT.YY) GO TO 370

TH=TH+AH : ' ' ,
CALL SEVEN(C,SLMB,GPM,GN,HPM,HN,AR,TH,E,PI,RO,SIG,GR,TH,SUM)
GSUM=GSUM+SUM : '
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128

GSUM=(AH/3.0) ¥GSUM

POWER=4 , 0*GSUMX AMP

WRITE(5,500) M,N,GPM,GN, POWER

FORMAT(7X, 12,8X,12,10X,F10.4,10%,F10.4,10X,E10.4)

X21=XK21+3.1 ‘ .

CONTINUE

X11=X11+3.1

CONTINUE

STOP

END ' :
t******t*t*t**t**t*t**t*t*****t*t**t****ttt******t**t*t*******t**t
TRk kkRkkkkkkkkkk END OF MAIN PROGRAM kkkkikkkkkkkkkokkkkkkkkokk
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Bkkkpkkkkkkkkkokkkkk  SUBROUTINE STARTS  kkkkkkkikkkkkkkkkkkkkkkk
RS SRR e RS2 e R B2 SR el ey s g D Y 03 32 sttt r——
SUBROUTINE ASOLN(M,N,PI,SIG,AR,SIMB)

THIS SUBROUTINE EVALUATES THE DIMENSIONLESS FREQUENCY FACTOR.
FM=FLOAT(M) '

GX=FM-0.5

HX=(FM-0.5)%(FM-0.5)*(1.0-(2.0/((FM-0.5)*%P1)))

XJ=(FM-0.5)%(FM-0.5)*(1.0-(2.0/({FM-0.5)%PI)))

FN=FLOAT (N}

GY=FN-.05

HY=(FN-0.5)%{FN~0.5)%(1.0~(2.0/( (FN-0.5)}*PI)))
YJ=(FN-0.5)%(FN-0.5)%(1.0-(2.0/((FN-0.5)%PI)))
ST1=GX*GX*GX*GX

ST2={GY*GYXGY*GY) / { ARKAR¥ARXAR)
ST3=(SIGKHX*HY)+((1.0-SIG)*XJ*YJ)

ST4=(2.0%ST3)/(AR*AR)

SIMB=ST1+STZ2+ST4 '

RETURN

END
KRKRARRKRANKAKAKK AR TK AR KKK KA KA EARK AR AR R K KKk
SUBROUTINE ONE(C,SIMB,GM,GN,RM,RN, AR, TR, E,P1,R0,SIG,GR, TH, SUM)
THIS SUBROUTINE IS USED TO INTEGRATE THE ACOUSTIC INTENSITY FOR
EVEN VALUES OF M AND N.

AK=PI/70.0

XX=33.0%AK

TK=0.0

SUM=0.0

CALL TWO(C,SHHB,GM,GN,RM,RN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)
SUM=SUM+FUNC

TK=TK+AK - .

CALL TWO(C,SLMB,GM,GN,RM,RN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)
SUM=SUM+4 ., 0%FUNC : .
TE=TK+AK .
CALL TWO(C,SIMB,GM,GN,RM,RN, AR, TR, E,PI,RO,SIG,GR, TH, TK, FUNC)
SUM=SUM+2 . O%FUNC -

1IF(TK.LT.XX) GO TO 90

TK=TK+AK ]
CALL TWO(C,SLMB,GM,GN,RM,HN,AR,TR,E,PI,RO,SIG,GR,TH,TK;FUNC)
SUM=SUM+FUNC

SUM=(AK/3.0)%SUM

RETURN

END
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SUBROUTINE TWO(C,SIMB,GM,GN,RM,RN, AR, TR,E,PI,R0,S1G,GR, TH, TK, FIUNC)

* THIS SUBROUTINE IS USED TO DETERMINE THE PHASE FACTOR OF THE

ACQUSTIC INTENSITY FOR EVEN VALUES OF M AND N,
AL1=(SIMBXEXGR)/(3.0*%RO*(1.0-(SIG*SIG)))

AL2=SQRT(AL1)

AL=AL2¥PI*PI*TRXCOS(TH)*SIN({TK) /C

AS1=(SIMBXEXGR) /(3.0%ROX(1.0-(SIG*SIG)))

AS2=SQRT(AS1)

AS= ASZ*PI*PI*TR*AR*SIN(TH)*SIN(TK)/C

HGM=GM/2.0

HGN=GN/2.0

STT=ALXCOS (HGM) *SIN(AL/2.0)

ST8=GM*SIN(HGM) *COS (AL/2.0)

STI=AL*COSH(HGM) *SIN(AL/2.0)

ST10=GM*SINH(HGM) *COS(AL/2.0)

ST11=AS*COS(HGN) *SIN(AS/2.0)

ST12=GN*SIN(HGN)*COS (AS/2.0)

ST13=GNXSINH(HGN) *COS(AS/2.0)

ST14=AS*COSH({HGN)*SIN(AS/2.0)

ST15=( (AL*AL)/(GM*GM) )-1.0

ST16=( (AL¥AL)/(GM*GM))+1.0

ST25=( (AS*AS)/(GNXGN))-1.0

ST26={ (ASXAS)/(GN*GN))+1.0 ,
ST17=((ST7-ST8)/ST15)+RM*( (STI9+ST10) /ST16)
ST27=((ST11-~ST12)/ST25)+RN*( (ST13+ST14) /ST26)
FUNC=STY7*ST17*ST27*ST27*SIN(TK)

RETURN

END
******************************************************************
SUBROUTINE THREE(C,SIMB,GPM,GPN, RPM, RPN, AR, TR, E, PI, RO, SIG,GR, TH,
+SUM)

THIS SUBROUTINE IS USED TO INTEGRATE TIIE ACOUSTIC INTENSITY FOR
EVEN VALUES OF M AND N.

AK=P1/70.0

XX=33.0%AK

TK=0.0

SUM=0.0

CALL FOUR(C,SIMB,GPM, GPN RPM RPN, AR, TR, E,PI,R0,S1G,GR, TH, TK, FUNC)
SIM=SiM+FUNC.

TK=TK+AK

CALL FOUR(C,SIMB,GPM,GPN,RPM, RPN, AR, TR, E,P1,R0, SIG,GR, TH, TK, FUNC)
SUM=SUM+4 , 0%FUNC

TR=TK+AK ' ‘

CALL FOUR(C,S1MB,GPM,GPN,RPM, RPN, AR, TR,E,PI,RO,SIG,GR, TH, TK, FUNC)
SUM=SUM+2. 0*FUNC

IF(TK.LT.XX) GO T0 190

TK=TK+AK

CALI. FOUR(C, SIMB,GPM,GPN, RPM, RPN, AR, TR, E,PI,R0,S1G,GR, TH, TK, FUNC)
SUM=SUM+FUNC

SUM=(AK/3.0)*SUM

RETURN

END
*****************X****************X******X********************X***
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: SUBROUTINE FOUR(C,SHHB,GPM,GPN,RPM,RFN,AR,TR,E,PI,RO,SiG,gR,TH,TK,

© +FUNC)
* . THIS SUBROUTINE IS USED TO EVALUATE THE PHASE FACTOR OF THE
b 3 ACOUSTIC INTENSITY FOR ODD VALUES OF M AND N.

AL1=(SIMBXE*GR)/(3.0%RO*(1.0-(S1G*SIG)))
ALZ=SQRT(AL1) : ,
AL=ALZ2¥PTXPT*TR*COS (TH) *SIN(TK) /C
AS1=(SIMBXEXGR)/(3.0%ROX(1,0-(SIG*SIG)))
AS2=SQRT(AS1)
AS=ASZXPI*PI*TR¥AR¥SIN(TH)*SIN(TK) /C
HGPM=GPM/2.0 .
HGPN=GPN/2.0
ST30=ALXS IN(HGPM)*COS(AL/2.0)
ST31=GPM*COS (HGPM) ¥SIN(AL/2.0)
ST33=AL*S INH{ HGPM) *COS (AL/2.0)
ST34=GPMXCOSH{HGPM)*SIN(AL/2.0)
ST35=ASXSIN(HGPN) ¥COS (AS/2.0)
ST36=GPN*COS (HGPN) *SIN(AS/2.0)
ST37=AS*SINH{HGPN) *COS(AS/2.0)
- ST38=GPN*COSH(HGPN)*STN(AS/2.0)
ST39=( (AL¥AL)/(GPM*GPM) )-1.0
ST40=( (AL¥AL)/ (GPM¥GPM) }+1.0
ST41=( (AS*AS)/(GPN*GPN))-1.0
ST42=( (AS*AS)/(GPNXGPN) )+1.0
ST43=((ST30-5T31)/ST39) +RPM*( (ST33-ST40) /ST40)
ST44=((ST35-ST36) /ST41)+RPN¥( (ST37-ST38) /ST42)
FUNC=ST43%ST43*STA4*ST44*SIN( TK)
RETURN '
END . ,
* FRKIRAARRRIKRRKARKK KA KKK RKK KKK KARRKA KKK AR I KA AR KKK
SUBROUTINE FIVE(C,SIMB,GM,GPN,RM, RPN, AR, TR, E,PI,HO,SIG,GR, TH, SUM)
¥ THIS SUBROUTINE IS USED TO INTEGRATE THE ACOUSTIC INTENSITY FOR
* EVEN VALUES OF M AND ODD VALUES OF N.
AK=P1/70.0 .
XX=33.0%AK
TK=0.0
SUM=0.0 :
CALL SIX(C,SIMB,GM,GPN,RM,RPN, AR, TR,E,P1,R0,SIG,GR, TH, TK, FUNC)
SUM=StM+FUNC :
290  TK=TK+AK
CALL SIX{C,S1MB,GM,GPN,RM,RPN, AR, TR,E, P1,R0,SIG,GR, TH, TK, FUNC)
SUM=SUM+4. 0XFUNC '
TK=TK+AK . : :
CALL SIX(C,SIMB,GM,GPN,RM,RPN,AR,TR,E,PI,RO,SIG,GR,TH,TK,FUNC)'
SUM=SUM+2 . J%FUNC
IF{TK.LT.XX) GO TO 290
TE=TK+AK : o
CALL STX(C,SLMB,GM,GPN, RM, RPN, AR, TR, E, PI, RO, S1G, GR, TH, TK, FUNC)
SUM=S UM+ FUNC :
SUM={AK/3. 0} %SUM
RETURN
END

* ******************************************************************
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SUBROUTINE SIX(C,SIMB,GM,GPN,RM,RPN,AR,TR,E,PI,RO,SIG,GR, TH, TK
+FUNC) ,

THIS SUBROUTINB IS USED TO EVALUATE THE PHASE FACTOR OF THE
ACOUSTIC INTENSITY FOR EVEN VALUES OF M AND ODD VALUES OF N.
ALI=(SIMBXE*GR) /(3.0%RO*(1.0~(SIG*SIG)))

AL2=SQRT(AL1)

AL=ALZ*PIXPT*TR*COS (TH)*SIN(TR)/C
AS1=(SIMB*EXGR)/(3.0%RO*(1.0-(SIG*SIG)))

AS2=SQRT(AS])

AS=ASZ¥PI¥PI*TR¥ARXSIN(TH)*SIN(TK) /C

HGM=GM/2.0

HOPN=GPN/2. 0

ST30= AL*COS(HGM)*SIN(AL/Z 0)

ST31=GM*SIN(HGM)*COS(AL/2.0)

ST33=AL*COSH(HGM)*SIN(AL/2.0)

ST34=GM*SINH{HGM) *COS(AL/2.0)

ST35=AS*SIN(HGPN) *COS (AS/2.0)

ST36=GPN*COS (HGPN) *SIN(AS/2.0)

ST37=AS*SINH(HGPN) *COS(AS/2.0)
ST3B=GPN*COSH{HGPN)*SIN(AS/2.0)

ST39=( (AL¥AL) / (GM*GM) )-1.0

STA0=( (AL*AL)/ (GM*GM) )+1.0

ST41=((AS*AS)/(GPNxGPN))-1.0

ST42=((AS*AS)/(GPN*GPN) }+1.0

ST43=( (ST30-ST31)/ST3Y)+RM* ( (ST33+5T34)/ST40)
ST44=((ST35-8T36)/5T41)+RPNk((ST37-ST38)/5T42)
FUNC=ST43*ST43%ST44*ST44*SIN(TK)

RETURN

END
*t*t*ttt#*#*t*t*t*t*t*t*#t*t*t*t*t*t*t*t*t*t*******t**t***t*t*t**#
SUBROUTINE SEVEN(C,SIMB,GPM,GN,RPM,RN, AR, TR,E,PI,R0,SIG,GR, TH, SUM)
TH1S SUBROUTINE IS USED TO INTEGRATE THE ACOUSTIC INTENSITY FOR
ODD VALUES OF M AND EVEN VALUES OF N.

AK=P1/70.0

XX=33.0%AK

TK=0.0

SUM=0.,

CALL EIGHT(C,SLMB,GPM,GN,RPM,RN, AR, TR, E,P1,R0,SIG,GR, TH, TK, FUNC)
SUM=SUM+FI/NC

TK=TK+AK

CALL EIGHT(C,SIMB,GPM,GN,RPM,RN, AR, TR,E,PI,RO,SIG,GR, TH, TK, FUNC)
SUM=SUM+4 . 0%FUNC

TE=TK+AK )

CALL EIGHT(C,SIMB,GPM,GN,RPM,RN, AR, TR, E,PI, R0, S1G,GR, TH, TK, FUNC)
SUM=SUM+2, 0%FUNC :
IF(TK.LT.XX) GO TO 390

TK=TK+AK

CALL EIGIT(C,SI1MB,GPM,GN, RPM RN, AR, TR, E,PI, RO, SIG,GR, TH, TK, FUNC)
SUM=S{M+FUNC

SUM=(AK/3.0)*SUM

RETURN

END
***ttt**t*t#*t*t*tt*****tt#*t*t***t*t**t*t***********t*tttt*t*****

’
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'SUBROUTINE EIGHT(C,SLMB,GPM,GN,RPM,RN,AR,TR,E,PI,RO,SIG,GR,TH,TK,
+FUNC)

THIS SUBROUTINE 1§ USED TO EVALUATE THR PHASE FACTOR OF THR
ACOUSTIC INTENSITY FOR ODD VALUES OF M AND EVEN VALUES OF N.
ALL=(SIMBXE*GR) /(3. 0%ROX(1.0~(SIGXS1G)))

AL2=SQRT(AL1)

AL=ALZX¥PTXPI*TR*COS (TH) *SIN(TK) /C

AS1=(SIMBXEXGR) /(3.0%RO%(1.0-(SIG*SIG)))

AS2=SQRT(AS]) .

AS=ASZXPI*P1¥TR¥ARXSIN(TH) *SIN(TK) /C

HGPM=GPM/2. 0

HGN=GN/2.0

ST30=ALXSTIN(HGPM) *COS (AL/2.0)

ST31=GPM*COS (HGFM) XSIN(AL/2.0)

ST33=AL*S INH(HGPM) *COS (AL/2.0)

ST34=GPMACOSH(HGPM) *SIN(AL/2.0)

ST35=ASXCOS(HGN) *SIN(AS/2.0)

ST36=GN*SIN(HGN)*COS(AS/2.0)

ST37=AS*COSH(HGN) *SIN(AS/2.0)

ST38=GN*SINH(HGN) *COS (AS/2.0)

ST39=( (AL*AL) / (GPMXGPM) )-1.0

ST40=( (AL*AL)/ (GPMXGPM) )+1.0

ST41=( (AS*AS)/(GN*GN) )-1.0

ST42=( (AS*AS)/(GN*GN))+1.0 .
ST43=((ST31-5T32) /ST39) +RPM* ( (ST33-ST34) /ST40)
ST44=((ST35-ST36) /ST41)+RNX( (STIT+5T38)/5T42)
FUNC=ST43%ST43%ST44*ST44%SIN(TK)

RETURN '

END :
********************:k******:t*****M_(*:t*****************************
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