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ABSTRACT

This thesis deals with the analytical and experimental studies of the instability of

geometrically composite shells of revolution. Different axisymmetric composite shells under

uniform external pressure are studied analytically for their use as end-closures of submarine

hulls or of pressure vessels. The composite shells studied here are (a) cap:cone end-closures

(b) cup-cylinder end-closures and (c) dome-cylinder end-closures. In the cap-cone end-

closures a spherical cap is attached to the smaller end of a conical frustum in such a way that

the tangent at their junction maintains continuity. In the cup-cylinder end-closure, a spherical

cup is attached at an end of a cylinder and in the dome-cylinder end-closure, a spherical dome

replaces the spherical cup of the cup-cylinder end-closure.

A computer program is developed and enclosed here in the appencjix which can find both

axisymmetric and asymmetric buckling load of shells of revolution under uniform external

pressure. For the study of axisymmetric buckling, the program uses Reissner's theory of large

deflection and interprets instability based on the two criteria of Thompson. The non-linear

axisymmetric solutions of Reissner's theory are considered as prebuckling solution for

asymmetric instability analysis based on eigen-value interpretation.

Axisymmetric analyses of the cap-cone end-closure for varying cone height, cone angle (\II)

and thickness ratio show that increasing the cone angle or thickness ratio leads to decreasing

the buckling load. In the case of varying height, the buckling load remains almost the same

over a wide range of height and starts decreasing at a certain small height reaching a minimum

at zero height when it is a simple spherical cap.

The axisymmetric buckling load for cup-cylinder end-closures is found to be much higher than

that of the dome-cylinder for the same thickness ratio, cylinder height and cup or dome angle.

In the case of dome-cylinder end-closures, it is found that its buckling load is even lower than

that of the cylinder. Circumferential stresses at the junction of a cup-cylinder end-closure at

the axisymmetric critical load is.;so high that the failure of this end-closure would always be

either due to yielding or asymmetric buckling.
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A new experimental technique has also been developed for testing the instability of

axisymmetric shells. Electrodeposited cap-cone model specimens are tested for instability

using this experimental technique. Results of the experiment show that the cap-cone models of

tip ratio, r/R, about 0.80 can sustain the highest load and is least imperfection sensitive. The

conical portion of the cap-cone end-closures were found to buckle asymmetrically with a

number of circumferential lobes.

Comparison of the analytical buckling load for both the axisymmetric as well as the

asymmetric buckling with the experimental results show that the experimental results are in

good agreement with asymmetric buckling load but the axisymmetric buckling loads are found

to be about 10 to 15 times higher than the experimental results. At zero cone height, when it is

a pure spherical.cap with compatible angle (180°-11'),axisymmetric analytical results are found

to agree with the experimental results. It is also found that the spherical cap models are highly

sensitive to imperfections.
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NOTATIONS

bl,bM+I = (m, I) matrices containing prescribed variables at the boundary

C = Eh: extensional rigidity

C (l.v2) ~e/R

D = bending rigidity, Eh3/[l2(l. v 2)]

:,D = 1/[12(1-v2}PT2R]
E = Young's modulus

H radial stress resultant

H nondimensional radial stress resultant, HI PR

h shell thickness

I (m,m) unit matrix

ke,ks changes of curvature of the middle surface of shell

ke = nondimensional value of ke, ke ~ e

kq nondimensional value of k s' k s ~ e
- --

L = R/PT

M = number of segments of shell

m order of the system of differential equations

Ms = meridional couple resultant.

Me = circumferential couple resultant

Mq = nondimensional value of M s ' M s IPRh

Me = nondimensional value of Me' Me/PRh

Mse = Inplane torsional moment

M~B nondimensional value of Mse' Mse/PRh

Ns = meridional stress resultant

Ne = circumferential stress resultant

Nq = nondimensional value ofN s ' N s IPR
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N~e

P

p

Pcr

R

r.
J

r

=

=

=

=

=

=

=

=

=

=

=

=

=

=

nondimensionaJ.value ofNe, Ne/PR

Inplane shear stress resultant

nondimensional value ofN ~e ' N ~e IPR

outward normal pressure

nondimensional value ofP , PIE

critical pressure

nondimensional value ofPcr, PIE

axial component of surface load

radial component of surface load

transverse shear stress resultant

base radius of a shell

radius of the smaller end of a conical frustum

radius of the larger end of a conical frustum

radius of curvature

principal radii of curvature of middle surface of shell

radial distance of a point on undeformed middle surface from the axis

of symmetry

radial distance ro at the junction of cap-cone shell

ro+u: radial distance of a point on the deformed middle surface from

axis of symmetry

r, =

rj =

S. =I

Tl,TM+l
-
T

u

nondimensional value ofro' rol C,e

tip ratio, r/R

ith segment of shell meridian

(m,m) matrices, given by boundary conditions

thickness ratio, R/h

radial displacement of the middle surface of shell

vii



u = nondimensional value ofu, uEh/PR2

Us = displacement of points on the middle surface along the tangent of the

meridian

U~ = nondimensional value of us, usEh/PR
2

Ue = displacement of points on the middle surface along the tangent of the'

circumference

ull nondimensional value ofuo, uoEh/PR
2

u~ = displacement of points on the middle surface along the normal of the

shell surface

u,
= nondimensional value ofu~, u~Eh/PR2

V = axial stress resultant

V = nondimensional value of V, V/PR

w = axial displacement

w nondimensional axial displacement, wEh/PR 2

x = independent variable

x. = end point of segment i1

y(x) (m, I) matrix, contains m dependent variables

Zo axial distance of a point on undeformed middle surface of shell

Z axial distance of a point on deformed middle surface, Zo+w

z nondimensional value of z, zlR

a = parameter of meridian of deformed shell, defined in Eqn. (3.1 c),

or semi-apex angle of conical shell

ao = value of a corresponding to undeformed shell

~ = angle of rotation of normal after deformation
-
j3 = ~

8s,80 = middle surface strains

E:q = nondimensional value of 8 s ' 8 s EhE, e/PR2

E:8 nondimensional value of 88,88 Eh S e/PR 2
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=

parameter of shell meridian, or distance measured along the meridian

nondimensional meridional distance between the center of the

smaller end and the larger end junction, S/ Se

total meridional length of the composite shells

meridional length of the cap-cone shells from the tip to the junction of

the spherical cap and the conical frustum

Sj = nondimensional meridional distance, S/S,

~o = angle between normal and the axis of symmetry before deformation

~ = angle between normal and axis of symmetry after deformation, ~o-~

v = Poisson's ratio

Gai = meridional stress at the inner surface, N c /h + 6M c /h2

Gao meridional stress at the outer surface, N c /h - 6M c /h2

Gci = circumferential stress at the inner surface, Ne/h + 6Me/h2

O"co = circumferential stress at the outer surface, Ne/h - 6Me/h2

O'ai GajlE

"ao Gao/E

cr ci GejlE

" co - GcolE

(Jnai Gajl(PRlh)

(J nao Gao/(PR/h)

Gnci GejI(PR/h)

O'nco = Gco/(PR/h)

(...)' = derivative with respect to S or ~
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CHAPTER 1

INTRODUCTION

1.1 SHELL STRUCTURES

The whole nature may be considered as a museum of shells. Every cell in a biological element is

a shell. Thus structures like bamboos in the bush, eggs on the dining table and snails in the lawn

are all shell structures. Shell elements, in general, can transmit the surface load primarily through

.the in-plane membrane forces by virtue of their curved surfaces, without the action of bending or

twisting. This property makes them, as a rule, a much more rigid and more economical structure

than a plate. Consequently, shell elements are indispensable parts in many engineering structures.

Man-made shell structures are now widely used in many modem industries for these high load

carrying capacity, especially the aerospace, nuclear, marine and petrochemical industries.

Dramatic and sophisticated uses of shells are currently being made in missiles and space vehicles,

submarines, nuclear reactor vessels, refinery equipment, and the like.

1:2 AXISYMMETRIC SHELLS

The load sustaining capacity of a shell-structure is strongly influenced by the shape of the shell.

So scientists worked a lot on different shell geometry. The geometries so far considered are

mainly standard geometric surfaces, developed by the generation of standard geometric curves

around a straight line along a circular contour on a plane perpendicular to the axis of revolution

and these are cylindrical, conical, spherical or ellipsoidal shells. Shells that are symmetric about

their axis of revolution are known as axisymmetric shells and are in wide use as their fabrication

techniques are very simple. Examples of axisymmetric shells are circular cylinder, cone, sphere,

paraboloid, ellipsoid, etc. Shells that are combination of two or more axisymmetric shells having

the same axis of revolution are also axisymmetric.

1.3COMPOSITE SHELLS

Shells in most cases are found to be the combination of two or more simple axisymmetric shells

like cylindrical, conical, spherical, ellipsoidal, etc. These combinations of shells of different

"geometry are termed as composite shells. Even when plates are used at the open ends of a
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cylinder or a cone or a conical frustum to close the openings, the whole shell with its end-plates

becomes a composite shell. Thus the cylindrical boiler drum with its spherical end-caps, the hull

of a submarine, the fuselage of an aeroplane, etc. are all composite shells. A schematic diagram of

a submarine hull, representative of composite shells is shown in Fig. 1.1.

1.4 USE OF COMPOSITE SHELLS

Starting from the small beverage can to the giant sea-going vessels, almost all the practical shells

are composite shells. Fractionating towers in the petrochemical industries, jacketed boiling pans

in the pharmaceutical industries, pipe lines for fluid flow, containers of liquid gaseous products,

rockets, missiles, hulls of submarines are the examples of important practical composite shells.

Compositing of shells either becomes essential to cope with physical situation or is done

intentionally to improve functional capability of shells. The unstiffened sphere is the most

efficient containment structure for high external pressure and is indeed the basic pressure hull

form for submersibles. It can lead to different interior arrangements and incurs large

hydrodynamic drag which can be overcome by elongating the external form, for example, with

fair streamlined outer casing structure.

Speed, noise and draft requirements dictate a cigar hull for naval submarines, incorporating a

cylindrical pressure hull, perhaps with shallow conical transitions, and having tori spherical or

hemispherical ends. Ideally, a submersible that is to be used for dry transfer operations should

have two adjoining pressure hulls -separated by a lock arrangement to avoid loss of the vehicle in

the event of a mating seal failure. One of the pressure hulls is for control systems and pilots and

the other for transfer operations. The transfer hull may in some cases be cylindrical to maximise

the volume for personnel and materials. The US Navy's Deep Submergence Rescue Vehicle

(DSRV) are trispheres. Recent trends show an increase in diver lockout and dry transfer

operations.

1.5 INSTABILITY OR BUCKLING OF SHELLS

Shells are mainly designed on the basis of stress sustaining capacity of the shell materials. In this

type of design approach stress analysis alone guides the dimension of the shell structure. With the

2
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advent of time, newer materials are coming with high strengths. These materials, when used in

shell structures, give thinner shells. But thin shells are found to fail due to instability or buckling.

Buckling, to most laymen, evokes an image of failure of a structure which has been compressed

in some way. In shell structure, membrane stiffness is in general several orders of magnitude

greater than the bending stiffness. So shells can absorb much higher membrane strain energy

without deforming much; and to absorb an equivalent amount of bending strain energy it needs to

deform much more. In thin shells if the load is gradually increased in such a way that most of its

strain energy is stored in the form of membrane compression then at a certain load level situation

may arise when the stored membrane energy gets converted to bending energy, then large

deflection of the shell must take place to accommodate the conversion process. This large

deflection generally takes place suddenly without any notice and the shell fails in a process called

buckling. The concept of stability of equilibrium is thus a strongly intuitive one, and it

consequently arose quite early in the development of classical mechanics. The work of Euler [48]

in this line appeared in 1744, and the contribution of Lagrange [88] in 1788. A century later a

general bifurcation theory was sketched by Poincare [117] in 1885, and the definition of stability

was given mathematical rigor in the treatise of Liapunov [91] in 1892.

If at any level of external cause (in the form of displacement, velocity, force etc.), a structure can

sustain a small disturbance from its equilibrium state, then the structure is said to be in stable

equilibrium at that level of external cause. It should be noted that sustaining the disturbance

means the structure will oscillate with a small amplitude about its equilibrium position. On the

other hand, if the structure does not go back to its original equilibrium position or vibrate with

ever increasing amplitude due to the disturbance, then the structure is said to be in an unstable

equilibrium state at that level of external cause. If the structure remains in the disturbed state

without vibration, then the equilibrium is referred to as the neutral equilibrium state.

A close assessment of the critical load for simple mechanical stability models reveals that the

system maintains its stable equilibrium states as long as the work done due to internal resisting

forces is greater than that due to the external load for any disturbance from the equilibrium

position. In other words, it is the balance between the potential energy due to the internal resisting

forces, which will be called internal strain energy or simply strain energy from now on, and the

potential energy due to the external force, which will be called external load potential or simply

load potential from now on, which accounts for the stability of the system. At a certain level of

3



the external cause, the internal strain energy becomes equal to or less than the external load

potential, and the system reaches its unstable equilibrium state. Any disturbance to this

equilibrium state will upset equilibrium or bring the system to a new equilibrium state distinct

from the previous one, depending on whether the internal strain energy is equal to or less than the

load potential. In fact, these are the alternate statements of the energy method used to confirm the

mechanical stability of a system.

1.6 ANALYSES OF SHELLS

In the earlier section of this chapter it has already been mentioned that buckling commences with

a large deflection of a structural element. Large deflection of structural elements when considered

in the governing equations introduces nonlinearity. As the use of shells gains. momentum, more

and more sophisticated mathematical analysis of shells are being sought. Shell structures can

undergo a substantial amount of deformation before failure. This feature of shells submits them to

the domain of non-linear mathematical analysis. The nonlinearity is introduced into the governing

equations of elasticity in three ways:

a. through the strain-displacement relations

b. through the equations of equilibrium of a volume element of the body, and

c. through the stress-strain relations .

.In (a) and (b) the retention of non-linear terms is conditioned by geometric considerations, that is,

the necessity of taking into account the angles of rotation in determining the changes of

dimension of a line element and in the formulation of the conditions of equilibrium of a volume

element. On the other hand, the non-linear terms appear in the third set of equations (c) if the

material does not behave in a linearly elastic fashion.

Hence, there are two types of nonlinearity:

1. geometric, and

11. material

4
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In the problems of shell structures, the angles of rotation can be large, but the strains can be quite

elastic. An example of this type of problem is the bending of a thin steel strip. It is well known

that strips of high strength steel become straight without traces of residual deformation when

released from a state of deformation with their ends brought together. This bears witness to the

fact that in these strips, even for large displacement and angle of rotation, the stresses do not

exceed the yield strength. Thus, many shell structures belong to a class of problems which are

physically linear but geometrically non-linear.

The fact that linear shell analysis fails to give proper information about the shell stresses and

deformations in many problems can be seen in papers on the non-linear shell analysis [49, 54, 64,

65,72,107,123-125,131,152,167,168,172-176,187-189,191]. For this reason, the use of

non-linear theory has become rather widely accepted as a plausible basis for predictions of elastic

strengths of shells of various geometries. Most of the papers currently found in the literature are

concerned with the shells of revolution.

Numerous investigations have employed the basic concept of finite deflection analysis of Donnel

[41] to establish collapse loads of cylindrical shells subjected to various loadings. Finite

deflection analysis has also been successful in offering reasonable predictions of the elastic

buckling loads of shallow spherical caps subjected to uniformly distributed external pressure.

Kaplan and Fung [74] have presented a perturbation solution to the non-linear equations that

agrees quite well with the results of their experiments for very shallow, clamped edged shells.

Archer [II] extended the results of Kaplan and Fung to a greater range of shells. As can be seen

from recent papers, very' extensive work has been done in this field [64, 65, 72, 74, 125, 167, 168,

189]. Ball [14] has considered the problems of arbitrarily loaded shells of revolution and obtained

solution for a clamped shallow spherical shell, uniformly loaded over one-half of its surface. A

number of papers based on the non-linear analysis of stiffened shells, multilayered shells and

sandwich shells can also be found in the current literature [6, 60, 77, 99,101, III, 118, 122, 134,

139, 183]. Based on Reissner's [126] large deflection analysis for general shells of revolution,

Uddin [171] has presented large deflection analysis of composite shells of revolution and

obtained extensive results for various pressure vessel problems [171-176]. Haque [61] analysed

the stability of semi-ellipsoidal shells under external pressure. Ralunan [119] extended this

analysis to include imperfect shell geometry. Ali [7] analysed the stability and stresses of conical

pipe reducers. Ralunan extended these analysis to include stability of parabolic reducers [120]

5



while Dutta extended it to the case of toroidal reducers [44].In all these cases the predictions of

these theories are in better agreement with experimental evidence than those of the classical

investigations based on infinitesimal deformations.

1.7 PRESENT STATE OF ANALYSES

Due to the very nature of the response of shell like structures under loading, their analyses,

specifically their stability analyses, are based on the non-linear mathematical techniques.

Urifortunately, the majority of such large deflection and stability problems of practical structural

components cannot be solved in closed form. Therefore, one has to resort to approximate

analytical and/or numerical discretization techniques for their solution. Prior to the advent of

digital computers, various approximate analytical techniques were the standard tools for the non-

linear analysis of structures.

The widespread availability of high speed computing machines, the fascination with numerical

techniques due to their versatility in handling complex structures (e.g. shells with cutouts and

stiffeners), and the simplicity of computer implementation have resulted in a relative stagnation

in the development of effective analytical techniques. Analytical techniques have some

advantages in providing physical insight into the nature of response. Moreover, analytical

techniques can be used in conjunction with partitioning schemes for non~linear analysis of

individual components of practical (geometrically composite) structures.

The most frequently used approximate analytical and numerical techniques in solving non-linea,r

differential equations are :

I. asymptotic integration [103,106,126,131]

2. perturbation techniques [108, 179]

3. Newton's method [64, 168]

4. method of power series expansion

5. hybrid analytical technique [3]

6. direct numerical integration [54, 92]

7. finite difference method [20, 192 ]

8. finite element method [16, 20, 155, 194 ]
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9. method of multisegment integration [71,72]

In addition to the methods mentioned above, there are some others, namely, "Reversion Method"

[39,116], "Variation of Parameter" [39,98, 106], "Averaging Methods Based on Residuals" - (a)

Galerkin's Method [39] and (b) Ritz Method [39], and the principle of harmonic balance.

Asymptotic integration is not a general method and its scope of application is very limited as can

be seen from Refs. [106, 126, 131]. Reissner discusses some of the solutions and limitations of

this method in Ref. [126]. In the application of this method, the solution is expressed in the form

of a series where the terms of the series are the inverse powers of the largest parameter in the

differential equations [126]. Determination of the terms of the series becomes extremely difficult

and the solutions generally contain only the first term approximation.

In the perturbation method, the fundamental unknowns are expanded in perturbation series in

terms of unknown functions with preassigned coefficients. The unknown functions are obtained

by solving a recursive set of differential equations which are generally simpler than the original

governing equations of the problem [108, 179]. In contrast, in the Bubnov-Galerkin and

Rayleigh-Ritz techniques, the fundamental unknowns are sought in the form of series of a priorly

chosen co-ordinate functions (or modes) with known coefficients. Reviews of the many

applications of these techniques are given in Ref. [156].

The perturbation method has two drawbacks. The first one stems from the fact that as the number

of terms in the perturbation series increases, the mathematical -complexity of the differential

equations builds up rapidly. Therefore, for practical applications, the perturbation series has to be

restricted to a few terms. The second drawback is the need to restrict the perturbation parameter

to small values in order to obtain solutions of acceptable accuracy. The main difficulty of both the

Bubnov-Galerkin and Rayleigh-Ritz techniques, from a practical view point, is the difficulty of

selecting good co-ordinate functions (or modes) for structures with complicated geometry and/or

complex response.

Newton's method for solving non-linear differential equations is the extension of Newton's

method for calculating roots of algebraic equations. The approach is to express the solution as the

sum of two parts; the first part is a known function and the second is a correction to the known

7



function. A governing equation for the correction is obtained by substituting the assumed

function into the governing equations and neglecting terms which are non-linear [64]. This

method does not require the perturbation parameter to be small as is necessary in the perturbation

technique, but it involves the solution of a sequence of linear differential equations as in the latter.

These linear equations have variable coefficients and generally cannot be solved in closed form. It

is paradoxical that the greatest obstacle in solving non-linear problems is the inability to solve

linear differential equations in closed form.

The hybrid analytical technique combines both the standard regular perturbation method and the

classical Bubnov-Galerkin technique. The technique was shown to overcome the major

drawbacks of the two parent techniques and to provide a more effective approximate analysis

than either of the two techniques. Ref.[3] demonstrates the effectiveness of this technique by

means of numerical examples.

The hybrid analytical technique is particularly useful for predicting non-linear response of

structures with simple geometry but complex construction. Examples of such structures are ring

and stringer-stiffened closed cylindrical shells and shell panels with discrete stiffener and

rectangular or circular platform.

Though the direct integration approach has certain advantages, it has also a serious disadvantage,

that is, when the length of the shell is large, a loss of accuracy invariably occurs. This

phenomenon is clearly pointed out in Ref. [144]. The loss of accuracy does not occur from

accumulative errors in integration, but it is caused by the subtraction of almost equal numbers in

.the process of determining the unknown boundary values. It follows that for every set of

geometric and material parameters ofthe shell there is a critical length beyond which the solution

loses allaccuracy.

Finite difference methods are the most widely used techniques for solving non-linear differential

equations. The advantage of the finite difference technique over direct integration is that it can

avoid the above mentioned loss of accuracy. But it also has some drawbacks. Firstly, it ultimately

leads to the solution of a large number of non-linear algebraic equations which have to be solved

by iterative techniques and often the solution fails due to nonconvergence. Secondly, bound by

the requirement of using regular mesh. spacings or the condition that the' grid lines must be

8



-,

parallel to the co-ordinate axeS, it is very much restricted to domains of .regular geometry.

However, curvilinear finite difference (CFD) technique, as proposed in Refs. [82-85], now

relaxes these restrictions. Irregular meshes can now.be employed in the analysis of shells with

irregular boundary geometry.

In the literature, the structural analysis of general thin shells is one of the areas dominated by the

finite element methods. One of the main advantages of using finite element methods is the

flexibility in making discrete any unusual domain. However, in the course of extending the finite

element methods to accommodate geometric nonlinearities, two different algorithms are

generally adopted. They are namely: the linearized incremental approach and the Newton-

Raphson iterative approach. The linearized incremental approach simplifies. the programming

works involved, but it has its own drawbacks. As linearized incremental equations are used, it is

impossible to obtain the "exact" non-linear solution for a particular load level. On the other hand,

the Newton-Raphson method always converges to "true numerical solutions". However, it

requires numerical integration techniques [83], and the use of full Newton-Raphson procedures.

As a result, various modified versions ofNewton-Raphson methods appeared in the literature [16,

155].

The multisegment method of integration is the most recent method developed and used by

Kalnins and Lestingi [72] to solve non-linear differential equations. This method involves:

a. division of the total interval into a number of segments

b. initial value integration of a system of first order differential equation over each segment

c. solution of a system of matrix equations which ensures the continuity of the variables at

the ends of the segments

d. repetition of (b) and (c) till convergence is achieved

e. integration of an initial value problem to obtain answers at any desired point within each

segment

The main advantage of this method over the finite difference method is that the solution is

obtained everywhere with uniform accuracy, and the iteration process with re~pect to mesh size,

which is required with the finite difference approach, is eliminated. But the feature which makes

this method most attractive is that any discontinuity, either in geometry or in loading, can be

9
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easily handled by requiring that the end point of a segment coincides with the location of the

discontinuity. As the integration is restricted at the beginning of each segment, the precise effect

of the discontinuity is obtained by this method. Moreover, this method is the most accurate of all

the numerical methods because the problem is solved in the form of a system of first order

differential equations in which no derivatives of geometrical or elastic properties appear and no

further numerical derivatives are essential to obtain any desired results in the calculation.

1.8 OBJECTIVES OF THE PRESENT INVESTIGATION

Though instability or buckling is a phenomenon very much related to compressive loading, in

case of thin shell structures, this does not depend on only external pressure loading. There are thin.

shell structures which buckle even under internal pressure. A torispherical shell under internal

hydrostatic pressure buckles at the knuckle of the torisphere [31-34], a thin closed spherical shell

under tension at two points, diametrically opposite, also fails due to buckling. Thus thin

composite shells in addition to stress analysis needs buckling analysis under all.kinds ofloading.

Design of thin shells on the basis of buckling is not new. Practical shells found in use are mostly

composites of segments of two or more geometries. It is a common practice that, in case of shell

structures which are combination of some standard shell elements like sphere, cone, cylinder,

etc., the dimensions of the individual shell elements are determined on the basis of buckling of

the individual segment. In doing so the effect of the junction is avoided which may have positive

or negative influence on the overall buckling of the shell combination.

Uddin [171] pointed out that junctions of composite shells are usually the zones of compression.

This happens even when the shells are under internal pressure. Thus the study. of instability is of

prime importance in case of composite shells.

Deep-sea exploration is getting importance with the advent of time. It is thought today that sea-

'bed is richer than land in resources. Increasing population is acting as a new dimension to sea-bed

exploration. In exploring the sea-bed, composite shells would definitely act as the most ideal

structures of deep-sea crafts. It is thus obvious that the study of instability of composite shell

structures is getting every body's attention. Under these realities, this research program has been

undertaken to study the instability of corriposite shells of revolution with the following objectives.

10



I. To develop a computer program for theoretical investigation of instability of composite

shells, built-up of segment of different geometries, based on the non-linear shell theory of

Reissner. (Example: Cylindrical and Spherical, Biconical, Conical and Cylindrical, etc.)

2. To study the variation of instability pressure against different parameters of shells. (Uke

Thickness ratio, apex angle of cone, etc.)

3', To develop a' set-up for experimental investigation of buckling pressure of composite

shells.

4. To compare theoretical and experimental values of critical pressures for determining the

effect of manufacturing imperfections on the critical pressure.

In achieving these objectives the stability analyses of the following composite shells of revolution

are carried out.

a) Cap-cone composite shells

b) Cup-cylinder composite shells

c) Dome-cylinder composite shells

Geometry of these three types of composite shells are presented in Fig.I.2. The present

theoretical analysis is based on the governing equations of Reissner' s large deflection theory and

the solutions are obtained by using the method of multi segment integration. Experimental

investigation include the study of buckling of the cap-cone composite shells.

11



Fig. 1.2a: Schematic diagram of a cap-cone
composite shell.
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Fig. 1.2b: Schematic diagram of a cup-cylinder
composite shell .
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Fig. l.2c: Schematic diagram of a dome-cylinder

composite shell. .
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CHAPTER 2

LITERATURE REVIEW

2.1 REVIEWING OF SHELL THEORIES

The theory of shell structures his existed as a well-defined branch of structural mechanics for

about a hundred years, and the literature is not only extensive but also rapidly growing. This
•

growth has two main aspects- the first one is the development of shell theories based on various

assumptions and approximations on different geometrical configurations of the shell meridian,

and the second is the development of various exact and approximate analytical and numerical

methods for solving these equations. The present review of literature is kept confined to only the

non-linear theories of thin shells as the problems dealt with in this thesis, the stability of

composite shells, lie entirely in the domain of the large deflection theories, as pointed out by

Uddin [171].

Use of the non-linear strain-displacement equations in the development of shell theories is
,.

motivated by the need for an accurate prediction of load-deflection curves, analysis of stability

and post-buckling behaviour, and natural vibration data for the design of shell structures.

Consideration of geometric nonlinearity in shells is originally due to Donnel [41], ,von Karman

[180,181], Marguerre [100] and Mushtari [105], among others. Following these pioneering works

several generalisations and modifications of the theories appeared in the literature. The geometric

nonlinearity in shells is accounted in three different levels:

1. The von Karman type nonlinearity that accounts only for the products and squares of the "

derivatives of the transverse deflection in the strain displacement equations;

11. The moderate rotation theories that account for moderate rotation terms;

111. The large rotation theories that account for large rotations.

Full non-linear theories are those which do not neglect any non-linear terms in the strain-

displacement equations. However, full non-linear theories are not only complex but not warranted

12
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in the analysis of most shell structures. As a result, several authors attempted to present non-

linear shell theories at different stages of approximations.

The earliest work of some generality is Marguerre's non-linear theory of shallow shells [100].

Donnel [41] developed an approximate theory specially for cylinders and suggested its extension

for a general middle surface. The result, a theory for what might be temied "quasi-shallow

shells", has been worked out by a number of authors, notably Mushtari and Galimov [105].

The earliest work of a completely general nature appears to be the papers by Synge and Chien

[157] followed by the two papers of Chien [37, 38]. The theory of shells developed by Synge and

Chien avoids the use of displacements as unknowns in the equations. The theory is deduced from

the three-dimensional theory of elasticity and then, by means of series expansion in powers of

small thickness parameter, approximate theories of thin shells are derived.

Another general formulation of the problem is worked out by Ericksen and Truesdell [46]. They

developed it as a two dimensional theory instead of attempting to deduce it from three-

dimensional theory of elasticity. They were able to account for transverse shear and normal

strains and the rotations associated with couple stresses. The two-dimensional approach to shell

theory really evades the question of the approximations involved in the descent from three-

dimensional, but this seems to be a virtue rather than a defect. Such questions are effectively

isolated and shown to belong to the part of the theory in which constitutive relations are

established.

Novozhilov [110] has presented an incomplete treatment of the general large deflection theory of

thin shells based on the assumption of small middle surface strains. Peter [liS] presented a quasi-

linear approach to the rotationally symmetric deformations of thin elastic shells of revolution. In .

this approach, the shell strains and rotations are assumed to be small but, contrary to the approach

of linear shell theory, the shell equilibrium conditions are fulfilled on the deformed shell.

Other developments which also employ linear constitutive relations are founded upon the

Kirchhoff hypothesis and often contain other approximations. Among these are Reissner's [126,

127] formulation of axisymmetric deformation of shell of revolution and the more general works

13 .



'l

of Sanders [136] and Leonard [89). Beginning with the three-dimensional field equations Naghdi

and Nordgren deduced an exact, complete, and fully general non-linear theory of elastic shells

founded upon the Kirchhoff hypothesis.

Several non-linear theories for thin shells have been derived in increasing stages of

approximations. In most cases, these are first approximative theories in the sense that transverse

shears and normal strains are neglected. Such approximations and omissions are justified because

the exact and general equations characterising the deformation of an elastic shell, even under the

Kirchhoff hypothesis, are fairly complex and discouraging from the point of view of practical

applications. However, as may be seen in the literature, with the advent of high speed computing

machines and corresponding development and adaptation of' efficient and versatile numerical

techniques, some authors [17, 76,122,137,171,187] are tempted towards the analysis of more

comprehensive and general non-linear shell theories and coming out with useful results.

2.2 REVIEW OF SHELL ANALYSIS

The majority of the large deflection and stability problems of practical structural components

cannot be solved in closed form. Therefore, one has to resort to approximate numerical

discretization techniques for their solution, leaving analytical techniques limited to comparatively

simpler structural elements.

Ahmed [3] presented a two-step hybrid analytical technique for predicting the non-linear response

of structural elements. They also discussed in length the' potential of the proposed hybrid

technique for non-linear analysis of structures.

The effectiveness of this technique was demonstrated by means of three numerical examples:

I.

n.

lll.

non-linear axisymmetric response of clamped shallow spherical cap;

large deflection analysis of laminated anisotropic plate subjected to uniform transverse

loading;

non-linear axisymmetric response of an isotropic circular plate subjected to combined

uniform and concentrated load.
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Based on extended Sander's shell theory, that accounts for the shear deformation and the von

Karman strains, Reddy and Chandrashekhara [123] presented numerical result~ for the laminated

cylindrical and doubly curved shells. Simitses et al. [146] presented a comparison between

analytical results of critical loads and experimental results of buckling loads for imperfect,

laminated cylindrical thin shells. The loading consists of uniform axial compression and torsion,

applied individually and in combination. The theoretical results are obtained from solution

methodology based on non-linear kinematic relations, linearly elastic material behaviour, and the

usual lamination theory.

In Ref. [159] an analytical formulation is made extending Reissner-Naghdi theory and numerical

solutions are obtained for the elasto/visco-plastic deformation of multilayered cylindrical shells

subjected to asymmetrlcalloading.

In Ref. [153] a modified mixed variational principle is established for a class of problems with

one spatial as the independent variable. The specific applications are on three- dimensional

deformations of elastic bodies and the nonsymmetric deformation of shells of revolution. The

feature is the elimination in the variational formulation of the stress components which can not

be prescribed on the boundaries ..

Among the numerical techniques used in non-linear shell analysis, the finite element method is

used rather extensively due to the flexibility in making discrete any unusual irregular dommns.

Teng and Rotter [163] developed a finite element formulation for elastic-plastic large deflection

analysis of shells of revolution. Here, in place of widely used relations of Donnel, Novozhilov or

Sanders, more comprehensive non-linear thin shell strain-displacement relations are used, which

account for the nonlinearity caused by in-plane displacements. Unlike most other non-linear shell

formulations, the in-plane shearing is included throughout this treatment. As asserted by the

authors, this formulation contains most of the best features of non-linear finite element analysis

currently available in the literature, together with some new numerical schemes to improve the

capability, accuracy and speed of the computation .
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In Ref. [113) the occurrence of dynamic buckling of thick rings responding to an impulse load is

investigated using both analytical and finite element methods using the computer code ADINA.

The results show that the non-linear solutions by the finite element method predict a significant

reduction in the amplitude of buckling response and an increase in the predominant wavelength

response with time in comparison to the linear analytical solution.

Kwok [82-85) presented a curvilinear finite difference energy approach to the geometrically non-

linear analysis of general thin shells. This approach relaxes the requirement of usual finite

difference method of using regular mesh spacings or the requirement that the grid lines must be

parallel to the co-ordinate axes. Irregular meshes can now be employed in the analysis of shell

with an irregular boundary geometry without any difficulty. The author developed a software

named NAOSIS (Non-linear Analysis of Shallow Shells) based on this method. As asserted by

the author, the main aspects of this finite difference formulation are firstly, its ability to

implement the most general non-linear strain-displacement relationship directly in a tensor code;

secondly, its ability to model any arbitrary shell geometry; and thirdly, its capability to use

irregular computational meshes in a finite difference sense.

Recent efforts include the development of a number of general purpose computer programs [9,

29,30,104) for the linear and non-linear analysis of general shells of revolution. These programs

are based either on finite element or on finite difference method of analyses. An overview of the

current capabilities of some computer programs that can be used for the solution of non-linear

structural and solid mechanics problems is available in Refs. [2, 16, 144). A critical review of two

such programs, namely, BOSOR4 [30) and BOSOR5 [29), is presented in Refs. [175, 176). Here

the authors have discussed precisely the causes of their disagreements with experimental

evidences.

A few of the latest investigations on the instability of structures are reported in Refs. [7,44,78,

79,113,120,130,141,145,176).

Based on Reissner's [126] large deflection theory of shells of revolution, and using multisegment

method of integration, Uddin [171] has developed a computer program for the analysis or'
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composite shells of revolution. He has found extensive numerical results on spherical, ellipsoidal,

conical and composite head pressure vessels based on both the linear and non-linear theories and

also obtained buckling pressure of general spherical shells and semi-ellipsoidal shells [171-176].

In all those investigations, he has exposed the conservativeness oflinear theory and demonstrated

the superiority of non-linear analysis over linear analysis. Later on, using the same program,

Haque [61, 176] has made buckling analysis of ellipsoidal shells of revolution under external

pressure and Rahman [119] has extended it to the case of imperfection in geometry.

Liter on, Ali [7] carried out the stability and stress analysis of general truncated conical shells

used as pipe reducers, modifying Uddin's original program. In his work, Ali [7] pointed out that

the critical load for a conical reducer decreases almost linearly with increasing apex angle of the

conical frusta.

So far, stability analysis which inherently involves complex non-linear mathematics has been

mostly confined to shallow shells or circular plates. This is due to the fact that the non-linear

equations of shells could be solved only when the simplifications pertaining to the shallowness of

the shell were made, as pointed out by Uddin [171]. The simplified equations are then solved by

different methods mentioned in the introduction. Also, some of the analyses have been made with

the assumptions like the predetermined buckling modes of the structures [42,43] which mayor

may not exist at all.

Literature in the field of shell buckling prior to 1974 was mostly dealing with shells of simple

geometry like sphere or spherical cap, cone and cylinder. These simple shells are widely used in

many industries and still researchers are working with these shells. Recent trend is to improve the

instability load of these shells using latest composite materials. Other than the composite users

some are trying with different stiffeners. Some very important papers related to buckling of

simple and geometrically composite shells are presented in the ensuing sections.

2.3 INSTABILITY OF CYLINDRICAL SHELLS

Among the different shell structures cylindrical shell has received the highest attention of the

researchers because of its simple geometry. Further, its fabrication is very easy, it can
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accommodate more space as pressure hulls of submarines and it is more manoeuvrable than any

other types of shells.

Cylindrical shells in practice are used under different load conditions. Axial compressIve,

external lateral pressure, and torsional loading of cylindrical shells have undergone extensive

investigation, both theoretical and experimental. Buckling of thin cylindrical shells urider axial

compression has received far more attention than most problems in structural mechanics because

of the extraordinary discrepancy between test and theory which remained unexplained for so

many years. Brush and Almroth [20] discussed this discrepancy with reference to Esslinger [47]

and Hoff [62] and concluded that cylindrical shells under axial compression are higWy sensitive

to imperfections which were not accounted by the early investigators like Flugge [53], Lundquist

[94] and Donnell [41]. A similar conclusion was also drawn by Dyme and Hoff [45] from a study

of axially compressed cylindrical shells with small imperfection. Esslinger presented photographs

from high speed movie in connection with a series of experiments with cylindrical shells under

aX'ialcompression. His pictures show that the final shape of the buckles does not resemble the

buckle mode at incipient buckling, the main objective of study in bifurcation buckling analysis.

In Ref. [20] theoretical and experimental buckling loads for four kinds of loading of cylindrical

shells, namely, axial compression, torsion, uniform lateral pressure and hydrostatic pressure have

been compared and conclusion has been made that load reductions for other methods of loading

are somewhat less severe than those for axial compression ..

Imperfection sensitivity of isotropic cylindrical shells forced the scientists to research with

orthotropic, layered composite and stiffener stiffened cylindrical shells. Relev\ll1t literature [I, 6,

13,80, 146, 148, 150, 151, 185] show that these cylinders are less sensitive to imperfections and

theoretical results of these shells are in good agreement with experimental results. Experimental

and theoretical results for buckling of axially compressed cylindrical shells with various wall

construction presented by Bushnell [28] with reference to Almroth et al. [8] gives the picture of

superiority of stiffened shells over monocock shells at a glance.

Other than the above mentioned studies, cylinders with special features [19, 27, 51, 70, 86, 90,

96, 121, 132, 133, 135, 193] like cylinders under wind load, cylinders with different cut-outs or
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holes, cylinder under dynamic or thermal load, etc., have also undergone buckling analysis and

still receiving scientists' interest.

2.4 INSTABILITY OF SPHERE AND SPHERICAL SHELLS

From structural point of view, thin-walled spherical shell can withstand high uniform external

pressure most efficiently, but in practice this is seldom used because of its vivid disadvantages

associated with fabrication and use. Deep-diving bathyspheres or bathyscaphs are generally

constructed with this shape. Kaplan [75] has given a thorough survey of buckling of spherical

shells subjected to uniform external pressure.

Solution based on classical theory for the buckling of complete spherical shells under uniform

external pressure available from different authors [68, 166, 170] are not in good agreement with

the experimental results because of high imperfection sensitivity of the spherical shells. Other

than the external loading of spheres, internal pressure loading also causes buckling. This

generally happens in very large spherical tanks used for transporting liquid natural gas supported

on short cylindrical shells near the equator. Pedersen and Jensen [112] have studied this problem

in 1975. Buckling in this case occurs due to hoop compression that develops near the support.

Part of a spherical shell, known as a spherical cap, is also in wide use. Ends of cylindrical or

truncated conical shells are generally closed with spherical caps in place of flat plates. The reason

for using spherical caps in place of flat plates is that flat plates have no meridional curvature and

that is why they resist the effect of pressure in flexure and in order to have equal strength to that

of the attached cylindrical or conical shell their required thickness may be over ten times that of

the spherical cap which is used as end-closure.

Spherical cap has been drawing much attention ofthe scientists for so many years with almost the
.. ~i

same intensity and frequency as the axially compressed cylinders. In Ref. [20] critical pressure

for a spherical cap under unifortn external pressure has been presented, which is the same as that

given for a complete spherical shell. Like complete spherical shells, spherical caps buckle under

much lower pressure than the theoretical pressure. For practical applications, empirical formula as

developed by Klopel and Jungbluth [81]from extensive experimental results are in common use.
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As isotropic spheres and spherical caps are sensitive to imperfections, these shells have also

undergone extensive research for evaluating the effects of imperfections, stiffeners, composite

materials, etc. [15,23,24,40,58,69,73,163, 169] with various types ofloadings [11, 18,25,26,

36,52,59,93,114,167,178,184,192], relevantto practical uses.

2.5 INSTABILITY OF CONICAL CAPS AND CONICAL FRUSTA

Like the cylindrical and spherical shells, conical shells are also found in wide use. Specially,

conical shell element is used as a transition piece between two cylindrical shells of different

diameter or between a cylindrical shell and a spherical-cap.

Most of the theoretical and experimental works related to conical shells are with truncated conical

shells, known as conical frusta, either under axial compressive load or uniform hydrostatic

pressure [7, 66, 67, 87, 142, 147, 160, 164]. Conical shells have also undergone research related

to buckling with other types of practical loading like torsion, thermal loading, combination of

axial load and lateral pressure, dynamic loading, etc., along with different types of composite

materials [4, 5, 42, 43, 95,143,161,162].

2.6 INSTABILITY OF COMPOSITJ): SHELLS

Shells are mostly designed on the basis of individual shell elements, but in practice, shells are

found to be combinations of two or more different geometries like cylinders with spherical caps,

torispheres, cylinders with conical end-caps, etc.

Available works [22, 63, 154] on shell instability mostly presents buckling behaviour of shells' of

simple geometry like cylindrical, spherical, conical, etc., either with stiffeners or without any

stiffener. Arbocz [10] and Brush [20] presented an extensive literature survey on shells up to

1975 but have not reported any study of buckling of combination of shells. Singer [149]

presented a report of around one hundred pages on buckling experiments on shells in 1982. His

report covers buckling experiments on shells from 1957 to 1'981. Most of the experiments
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presented in his report are on shells of simple geometry with or without stiffener. Only four of his

references [24, 67-69) are related to experiments on buckling of composite shells.

In a recent paper Faulkner [50) showed a few uses of composite shells in different submersibles

with some design guide-line. His design guide line is still based on segments of simple geometry

of the combinations. The design guide-lines presented in BS 5500 [21) are in-line with that of the

Faulkner's. BS 5500 designs torispherical shells only on the basis of the spherical cap of the

combination, disregarding any effect of the knuckle radius of the toroidal section. Galletly [57) in

1987 showed that this sort of design is inefficient and can lead to vulnerable design in case of

shallow torispheres.

During the last two decades, only a few scientists [12, 55-58, 129, 130, 138) have come forward

with the problem of buckling of composite shells as a whole. Mainly two groups of research

workers, the Liverpool group and the Lockheed group, are involved in this field with a

Variationa! Finite Difference (VFD) based computer program called BOSOR, A critical review

of two versions of BOSOR namely, BOSOR4 [30) and BOSOR5 [29) is presented by Uddin in

Ref. [175). Details of some BOSOR analyses along with experimental supports are pres<::nted

below.

Galletly et. al. [55) studied cylinder cone combinations with BOSOR3 and BOSOR5 in 1974.

The study included both analysis and experiment of six different cylinder-cone combinations With

one thickness ratio and three different cone angles of 45°, 60° and 75°. Each of the cones was

combined to two different cylinders oflength to diameter ratio, (LID), of 0.5 and 1.0. Diameters

of all the cylinders are the same. Experimental results are found in good agreement with the

analysis. Some of the experimental results, though very close to the BOSOR5, results, are found

to be higher than the BOSOR5 results. Analytical results for LID = 1.0 and cone angle of 45° and

60° are the same. Also for cone angle of 75° , they found that the results are the same for LID

ratio of 0.5 and 1.0.
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~HAPTER3

THEORETICAL INVESTIGATIONS

3.1 INTRODUCTION

'Classical' or 'bifurcation' technique pertaining to a secondary mode of deformation needs

solution of non-linear governing equations for a structure. In the present analysis geometrically

composite shells of revolutions are studied for critical external pressure. Reissner's [126, 127]

large deflection theory of shells of revolution is employed here for the determination of both

stress and stability of a shell. The governing equations consist of three sets of equations,

namely, the equilibrium equations, the constitutive equations and the kinematic equations. The

equilibrium equations relate the external load with the internally induced stress and bending

moment resultants. The constitutive equations are for linear stress-strain relations of the shell

material. And the kinematic equations relate the internal strains with the physical deflections of

the shell surface. These three sets of equations, together with the appropriate boundary

conditions, constitute the mathematical embodiment of the problem.

3.2 GOVERNING EQUATIONS FOR AXISYMMETRIC ANALYSIS

The external load applied to a shell is resisted by the membrane stress as well as the internal

resisting couples, that is, the shell wall is subjected to the combined action of stretching and

bending. In general, the shell wall is a three dimensional body. But, the use of Kirchoff's

hypothesis reduces the shell analysis to a two dimensional one. Further, in the case of

axisymmetric deformations of shells of revolution, which comprise the majority of shells in

practical use, the analysis becomes a one. dimensional problem. Again, the analysis of the

problem of shell structures is dominated by the geometry of the shell surface through the

kinematic relations and the equilibrium equations. Therefore, as can be seen from the literature,

different authors have attempted to present different shell analyses incl!!ding the purely

stretching 'membrane' theory, linear membrane and bending theory and the finite deflection

'non-linear' shell analyses for shells of varied configurations. But the large deflection theories

can predict stressed states of a shell more realistically. Among the large deflection theories,

Reissner's theory and relevant governing equations are much more involved and
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comprehensive. As such Reissner's large deflection theory has been used in the present analysis

and presented in following section.

3.2.1 Reissner's Theory

The basic equations of Reissner's theory of finite axisymmetric deformations of shells of

revolution which form the basis of this analysis are presented here for ready reference.

The equation of the meridian of the shell is written in the parametric form as (Fig. 3.1),

r = r(~), Z = z(~) (3.la)

where S is the distance measured along the meridian of the axisymmetric shells.

The angle ~ of the tangent to the meridian curve is given by

cost/J = r' / a , sint/J = z' / a
where primes denote differentiation with respect to S and a is given by

a = [(r,)2 + (Z,)2]1/2

The principal radii of curvature of the middle surface of the shell are given by

R~= a / t/J', Re = r / sin t/J

(3.1 b)

(3.1 c)

(3.ld)

With reference to Fig. 3.2, the equation of the deformed middle surface is written in the form,

r = ro + u , Z = Zo + w (3.2a)

where the subscript "0" refers to undeformed middle surface and the quantities u and ware,

respectively, the radial and axial components of displacements.

The angle enclosed by the tangents to the deformed and undeformed meridian, at the same

material point, is given by

(3.2b)

With the above definition of displacements and rotation, the strain components and curvature

changes of the deformed middle surface are given by the following equations

(3.2c)

(3.2d)
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k4 = - (<Ii - <Ii0) / ao = /3' / ao

ke = - (sinq) - sinq)o) / ro

The equation containing the axial displacement component w is introduced as

w' = asinq) - z'o

(3.2e)

(3.2t)

(3.2g)

With the definition of stress resultants and stress couples as shown in Fig. 3.2 and Fig. 3.3, the

three equations of equilibrium are written as

(rY)' + raPv = 0.
(rH)' - aNe + raPH = 0

(rM4)' - a cosq) Me + ra(H sinq) - Y cosq)) = 0

(3.3a)

(3.3b)

(3.3c)

Equation (3.3a) is the condition of force equilibrium in the axial direction, Eqn. (3.3b) the

condition of force equilibrium in the radial direction, while Eqn. (3.3c) is the condition of

moment equilibrium about circumferential tangent.

With the assumption that the behaviour is elastic, the relations between strains and stress

resultants are given by

CE~= N~ - vNe, CEe= Ne - vN~ (3.4a)

M~= D(~+ vke), Me= D(ke + v~) (3.4b)

where C = Eh, D = Eh3/[12(l-i], and h is the thickness of the shell. The radial stress resultant

H and axial stress resultant V are related to N~and transverse shear, Q, as follows:

N4 = Hcosq) + Ysinq), Q = • Hsinq) + Ycosq)

3.2.2 Field Equations

(3.4c)

The order of the system of equations (3.2-3.4) is six with respect to ~, and consequently it is

possible to reduce Eqns. (3.2-3.4) to six first-order differential equations which involve six

unknowns. In the following derivation the six fundamental variables are takel\ as u, p, w, V, H,
M~and the differential equations are expressed in terms of these variables. The independent

.variable ~ is.taken as the distance measured from the apex 'along the meridian of shell so that the

differential equation can be used for all possible geometries ofthe meridian. With this definition

of ~, from equation (3.1c), it is found that
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[
2 2]112a0 = (r' 0) + (Z'0) = 1

The geometry of the meridian is given by

ro = ro (~)

~o = ~o (~)

which is not yet specified.

(3.5a)

(3.5b)

The following equations are written from the previous section in such an order that, when

evaluated serially, .they are in terms of the fundamental variables. This is done in order to keep

the fundamental set of differential equations as simple as possible.

Rewriting Eqns. (3.2d), (3.2a), (3.2b), (3.2f), (3.4c), (3.4b) in that order,

l::e= u/ro

r = ro + u

~= ~o - ~

ke= (sin~o- sin~)/ro

N~ =H cos~ + V sin~

k~= M~/D - vke

Me= D(ke +V~)
Eliminating Ne from Eqns. (3.4a) it follows that

2 .
l::~ = (l-v )/C. N~ - Vl;e

Similarly, eliminating Ni; from Eqns. (3.4a) and rearranging,

No = {(1:y2)} {e8+ y ef}
Rearrangement of Eqn. (3.2c) and substitution of ao = 1 leads to

a=l+l;~

Elimination of z'0 from Eqn. (3.2g) by means of Eqn. (3.1b) gives

dw . fjJ • fjJ- = asm - smde; 0
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(3.5c)

(3.5d)

(3 .5e)

(3.5f)
,.

(3.5g)

(3.5h)

(3.5i)

(3.5j)

(3.5k)

(3.51)

(3.5m)



Substitution of the values ofEl; from Eqn. (3.51) and r'o from Eqn. (3.lb) in the Eqn. (3.2c),

gIves

du
a cos fjJ - cos fjJ0 (3.sn)

From Eqn. (3.2e) an expression for W is obtained in the following form

dfJ
- = k~d; (3.50)

Expansion of the three equations of equilibrium and elimination of Pv, PH and r' from these

equations result in the following expressions for V', H' and M'I;'

dV - a [(V cosfjJ)/ r - PcosfjJ]- =
d;.
dH - a [(HcosfjJ- Nil) / r + PsinfjJ]- =
d;

(3.5p)

(3.5q)

= a cos fjJ(MIl - M~) / r - a(H sin fjJ - V cos fjJ) (3.5r)

where P is the outward normal pressure.

Eqns. (3.5) are the non-linear governing equations of the axisymmetric deformations of shells of

revolution expressed in terms of the fundamental variables. It shouid be noted that this

fundamental set of differential and algebraic equations are expressed in such a manner that all

the quantities of physical importance are evaluated during the process of solution of these

equations.

3.2.3 Equations at the Apex

The fundamental set of equations derived in the previous section is singular at the apex of

axisymmetric shells, (Fig. 3.1). In order to remove this singularity, the condition that all the

physical quantities must be regular at the apex should be imposed. From the symmetry at the

pole, it is found that

u= ~=O,
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lim E' IJ
~-->o

..~

and as there is no concentrated load at the pole, it follows that

v=o.
In the following derivation, it is assumed that E, is measured from the pole of the axisymmetric

shell.

Since ce and c'e must be regular at E, = 0, Eqn. (3.5c) gives

u'
lim EIJ = - (By L' Hospitals' principle)~-->o r'o

u" , -u'r"
and lim

roo
E' IJ

2(r'oi~-->o

From Eqn. (3.1b), it is found that.

r' = cos,ho '1'0

and therefore,

"- ',h,h'r 0 - -sm'l'o''I' 0'

Substitution of the values ofr'o and r"o into the expression of ce and e'e give

u'
lim EIJ =
~-->o cosljJo

= u" cosljJo + u' rjJ'osihrjJo
2 cos2 rjJo

Similarly, the following equations can be deduced from Eqns. (3.la - 3.5r) by taking the limit

asq--+O:

.,'

lim rjJ' = rjJ'0 - /3'
~-->o

lim klJ = /3'
~-->o

lim k' IJ = 21(fJ"_rjJ'/3' tanrjJo)
~-->o
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lim N~ = Hcos~o (3.6e)~-+o
lim N'~ = H'cos~o-H~'sin~ +V' sin~o (3.6f)~-+o 0

lim M'o = lim(D(1-v2)k'o+vM~,) (3.6g)';-+0 ~-+o
lim N'o '= lim(C&'o+ VN~) (3.6h)~-+o ~-+o
. 1- v2 U' vhm a = (1+ (--)H cos~o- (3.6i)
(~O C cos~o

r ' 1- V
- V&'0]1m a = lim[(C) N'~ (3.6j)~-+o ~-+o

'.
. I (l-v)H 2~hm u = -- cos 0 (3.6k)~-+o C

lim fJ' = M~
(3.61)~-+o D(l + v)

lim Wi
1- v .

cos~o= (C) H Slll~o (3.6m)~-+o

Substitution of Eqn. (3.6k) in Eqn. (3.6i) gives

1- v
lim a = 1+'- H cos""

C '1'0~-+o
V V'

Now lim - = ---
~-+o r a cos~o

Substituting Eqn. (3.60) in Eqn. (3.5p) and solving for V' at the apex, it is found that

(3.6n)

(3.60)

lim V'~-+o (3.6p)

By differentiating Eqn. (3.5n) and taking the limit as'; -> 0 , the expression for u" at the pole

can be derived as
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" (2 )(1-;limu = -- --N'~
~->o 2 + v C
hence from Eqn. (3.6h)

1 .
lim N'B = --[(1+2v)N'~+C afJ' tan4Jo]
~o 2+v .

Taking the limit of Eqn. (3.5q) and eliminating N' e, it is found that

lim H'
';->0

1 aC fJ' aP .
= -[(1- v)4J' H+ -~]tan4Jo - -sm4Jo3 cos4Jo 2 .

(3.6q)

lim M'B=
';->0

In order to evaluate M~' at the pole, the expression of Me' in terms of M~'has to be derived first.

Differentiating the Eqn. (3.5q) and taking the limit as'; --t 0 result in

2 M' vR'd.'lim fJ" = -- (-~ + _/'_'1'_ tan 4J )
';->0 2 + v D 2 0

which, when substituted in Eqn. (3.5g), gives

1+2v I-v2
(2+ )M'~-(2+ )4J'fJ'tan4Jo

Taking the limit of Eqn. (3.5r) and eliminating Me', the expression for M~' is found to be

(3.6r)

.f

Thus Eqns. (3.6k), (3.61), (3.6m), (3.6p), (3.6r) form the fundamental set of differential

equations applicable only at the pole, where a and ~' appearing in these equations are given by

Eqns. (3.6n) and (3.6b) respectively. These equations can further be simplified if it is assumed

that the curvature of the undeformed shell is continuous at the pole. In this case, ~ = 0 and, thus,

the fundamental set becomes

-/

u' = (1 - v)H/C

fJ' = M~/[D(1+ v)]

w' = 0
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(3.6.lb)

(3.6.lc)



a = l+(1-v)H/C

V' aP/2

H' = 0

M';= 0

(3.6.ld)

(3.6.le)

(3.6. If)

(3.6.lg)

3.2.4 Linearized Equations

The field equations, which were derived earlier in sections 3.2.2 and 3.2.3, are non-linear. These

non'!inear equations are always solved by the method of iteration in which arbitrary initial

values have to be assigned to .the fundamental dependent variables of these equations. Unless

the initial values assigned to the dependent variables are a good approximation to their actual

values, the iteration process fails to converge. For achieving convergence in the iteration process

of solving non-linear equations, it is usually necessary to solve first the linearized version of the

corresponding non-linear equations. The results of the linear solution are then assigned as the

. initial values to the dependent variables of the non-linear equations. The linear governing

equations of axisymmetric deformation of shells of revolution are thus derived in this section.

(3.7a)

(3.7b)

(3.7c)N, = Hcosrpo + Vsinrpo

ke= pcosi/Jo / fo

The equations of small-deflection theory follow from the foregoing Eqns. (3.5) by referring the

differential equations of equilibrium (3.5p) to (3.5r) together with (3.5g) to the undeformed shell

and by omitting all non-linear terms in the remaining equations of the fundamental set (3.5).

The resulting equations are recorded below for ready reference.

&e=U/fo

1- V
&; = C N;-V&e

M;k; = - - vke
D

Ne = (~) (&e+ VB;)
1- V

(3.7d)

(3. 7e)

(3.7f)
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Me = D(ke + vkq)

w' = &4sin~0 - flcos~o

(3.7g)

(3.7h)

u' (3.7i)

(3' = k; (3.7j)

V' (V COSrPo p d..)
- - - COS'f'o

fo
(3.7k)

M'4

H" = _ [H cos:: - Ne + P Sin~o]

do (M4- Me)
COS '1'0

fo

(3.71)

(3.7m)

The corresponding linearized equations at the pole are obtained in the same manner as Eqns.

(3.7). Expressions for u', po and w' remain the same, whereas, the three equations for equilibrium

reduce to

V' = p cos~o
2

1 C fl' P sin doH' = -[(1- v)~' H+~-]tan~ _ '1'0
3 0 cos~o 0 2

1 . -
M'4= - -[(2+ v) H sin~o +D(l- v) fl'~'0 tan~o]

3

(3.7.1a)

(3.7 ..lb)

(3.7.1c)

In case of continuous curvature of the meridian at the apex, linearized equations applicable at

the apex remain the same as the Eqns. (3.6.1) except that the value of a is to be replaced by

unity in Eqn. (3.6.le).

3.2.5 Nondimensionalized Equations

It is always desirable to solve any engineering problem in terms of non-dimensional quantities

in order to decrease the number of input physical parameters as well as to increase the

applicability of the solution. With this in mind and also to make the variables more or less of the

. same order of magnitude the displacement components and stress resultants are expressed as
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ratios of their actual values to those of the. circumferential displacement and stress resultant of

an unrestrained thin cylindrical shell. The independent variable C,is nondimensionalized in such

a manner that c'e' the total length of the shell meridian, corresponds to unity (Fig. 1.2). The

nondimensionalized quantities are defined mathematically by the following equations:

wEh - uEh-w=-- u=-- H=
PR2' PR2'

H V -
PR' V = PR,jJ = jJ

- _ M; _ Me
M~ - PRh' Me - PRh'

- _ N; Ne
N~ - PR' Ne = PR

SO = coEh;e/(PR2),s; = c;Eh;e1 (PR2),ko = kO';e

_ - - - P- R
k~=k~';e' ; = ;I;e' C=(1-y2);e/R, P=E' T=h

R=;e/R, D=1/[12(1-v)Pr2R], L=R/(P.T), fo=ro/;e.

(3.8 )

where R is the base radius of the shell. With the help of the nondimensionalized quantities,

defined in Eqns. (3.8), the fundamental set of differential Eqns. (3.7) (linear theory) becomes

ke = jJCOSrPo/fo

N~ = HcosrPo + VsinrPo

S~= C N~ - y se
k; = M~/D - Yke

Ne = Ge + Ys~)/C

Me = D(ke + Yk;)

W' = 8;sinrPo ~ jJcosrPo.L

u' = s~cosrPo + jJsinrPo.L

jJ' = k;

V' = - (V cosrPo1 fo - RcosrPo)

H' = {(HcosrPo - No) 1 fo + RsinrPo}
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(3.9a)

(3.9b)

(3.9c)

(3.9d)

(3 .ge)

(3.9f)

(3.9g)

(3.9h)

(3.9i)

(3.9j)

(3.9k)

(3.91)



M'f = COS~o(MCMe) / fo - R.1\Hsin~o - V cos~o)

where ( ... )' = ~ (....)
d~

(3.9m)

The corresponding non-linear Equations of the fundamental set in non-dimensional form are as

follows:

ke = (sin~o - sin~) / fo

Nf = Hcos~ + V sin~

a = L + Sf
- -
r = L.ro + u

W' = asin~ - Lsin~o

u' = acos~ - Lcos~o

13' = kf
V' = - acos~(V / r - P T)

H' = - a(Hcos~-No)/r+PTsin~)

M'f = acos~(Me-Mf)/r
-- 2 - -

- aP T (Hsin~- Vcos~)

(3.IOa)

(3.IOb)

(3.IOc)

(3.1 Od)

(3.1 Oe)

(3.10t)

(3.IOg)

(3.IOh)

(3.IOi)

(3.IOj)

(3.IOk)

(3.1 01)

(3.19m)

(3.IOn)

(3.100)

(3.IOp)

The equations at the pole corresponding to the non-linear set take the following form after

nondimensionalization and simplification:

U' = CH / (1+ v)
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(3.1O.lb)

(3.10.lc)

W'=O

/3'=M~/ {D(l+ v)}

V' = -aP / 2 (3.10.ld)

H'=O (3.l0.le)

M4 = 0 (3.10.11)

It should be noted that some of the nondimensional shell parameters in Eqns. (3.8) are defined

in tyrms of~e which will depend on the geometry of the meridian and thus should be derived for

each individual case. In some cases there is no closed form expression for ~e and, therefore, ~c

has to be evaluated either from a series expression or by numerical integration. In the present

analysis, geometrically composite shells of revolution consisting of spherical cap, conical

frustum, cylindrical shells, etc., are studied. The expressions of ro and $0 in terms of ~e in these

cases are very simple. The meridional length ~ for a spherical cap is simply the product of the

radius of curvature of the cap and the subtended angle $ at the centre of curvature of the cap,

and for a cylindrical segment it is equal to the height of the cylindrical segment. In case of a

conical frustum, the slant height is taken as ~coneand is calculated from the following

expressIOn:

where,

Rj = radius of smaller end of the cone,

R2 = radius of the larger end of the cone, and
$0 = angle between the normal to.the shell surface and the axis of revolution of the shell

3.3 GOVERNING EQUA nONS FOR ASYMMETRIC ANALYSIS

Asymmetric buckling analysis is generally done from the eigen value solution of linearized

goveining equations, derived from general equations with perturbation of variables, generally

known as the stability equations. General equations of shells of revolution contain some more

variables in excess of axisymmetric governing equations like lie, E~e,K~e, N~e, M~e.Description

of the variables used in the general governing equations are defined in Figs. 3.4, 3.5 and 3.6.

The same method of nondimensionalization of variables as that of axisymmetric analysis has
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been adopted in the derivation of nondimensionalized stability equations for asymmetric

analysis and are presented below.

(foN;I)' + N;e! - f~N 81+ __ 1_ {(foM;I)' + M;81 - f~M81}
TRR1 .

- f
o {,B;oN;1 +N;o,B;1 +,BeoN;el +N;eo,B81) =0
R1

N,el +(foN;81)'+f~N;e! +T~z {Mel + (foM;el)' +f~M;el}

- f
o {,BeoN81 + Neo,Bel + ,B;ON;81 + N;oo,B;ll = 0Rz

3.11(a)

3.l1(b)

3.11(c)

Perturbation of variables considered in the derivation of the above governing equations were.

U~= u~o(~)+U~l(~,e)
Uo = uOI (~,e)

u~= u~o(~)+U~I(~,e)

N; = N;o + N;!

Ne =Neo +N81

M; =M;o +M;I
~ ~ ~
Me = Meo+M81
N;e = N;eo +N;el

M;e = M;eo +M;el

where,
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-,

N 1( __ .)
'I == 8 + V8, C "I 81

N 1 (- -)"I == 8 + V8
u C 81 "I

M~I~ D(k"l + vk81)

MOl = D(k + vk )
81 "I

- 1(1- V)_
N~Bl = C -2- 8~B1

- -(1- V)-
M~B1 =D-2- k~B1

- 1[- 1-'- 1 - ]k ' -,-- +- --f~B1- 2 fJ81 - fJ~1 - fJ~l
fo fo

_ 1[ 1.1 R-- R--]8 =- U' +-U --f'U +- +-~B1 2 81 1'0 ~I 1'0 0 01 PT fJ ~ofJ 81 PT fJ o,fJ ~1

UE,1 = UE,1 (~) cos(n8)

USI= US1(~)sin(n8)
U~1= U~I(~) cos(n8)
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The symbols with suffix '0' are variables .obtained from the solution of prebuckling non-linear

governing equations of axisymmetric shells of revolution. Dot and prime superscripted variables

represent'" derivatives with respect to 8 and ~, respectively, and n stands for number of

circumferential waves that form during asymmetric buckling.

3.4 BOUNDARY CONDITIONS

T1)egeneral boundary conditions of a shell on an edge ~I= constant are to prescribe, in Sander's

[136] notations, are

and .Mll or I/JI'

or w, (3.l2a)

where ~l and ~2 are the shell co-ordinates along the principal lines of curvature; N and M are the

stress and couple resultants;fs are the rotations about respective axes; u and w are tangential

and normal displacement components.

When the quantities in (3.12a) are specialised for axisymmetric deformations of shells of

revolution they reduce to prescribing

N]l or ul>

Ql - ~lNll or w,

andM]] or ~l>

on an edge ~I= constant.

(3.l2b)

From (3.12b) it is seen that the boundary conditions consists of the specification of rotational,

tangential and normal .restraints at an edge. But in most of the practical cases of shell problems

the conditions of the horizontal and vertical restraints are known rather than those of the normal

and tangential restraints. So it is concluded that it will be preferable to specify the boundary
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conditions in terms of the horizontal and vertical restraints from the point of view of practical

application. When this is done, the boundary conditions in terms of the notations used in the

body of this thesis will be to prescribe

H or

M~ or

and V or

on an edge, ~ = constant.

3.5 METHOD OF SOLUTION

3.5.1 Axisymmetric Solution

u

w

(3.12c)

The fundamental set of linear Eqns. (3.9) and non-linear Eqns. (3.10) together with the boundary

conditions (3 .12c) on two edges have to be integrated over a finite range of the independent

variable .;. But numerical integration of these equations is not possible beyond a very limited

range of'; due tei the loss of accuracy in solving for the unknown boundary values, as pointed

out by Kalnins [71], and thus the multi segment method of integration developed by Kalnins and

Lestingi [72] is used for the present analysis.

3.5.1.1 Multisegment method ofintegration

The multisegment method of integration of a system of mfirst order ordinary differential

equations of the following form

dy(x) 12m~- ~-F(x,y (X),y (X),... ,y (x)]dx

in the interval (Xl :5x:5 XM+l) consists of

(a) the division of the given interval into M segments (Fig. 3.7),

(b) (m+ 1) initial-value integrations over each segment,
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(c) solution of a system of matrix equations which ensures continuity of the dependent

variables at the nodal points of the segments, and

(d) repetition of (b) and (c) until continuity of the dependent variables at the nodal points is

achieved.

In Eqns. (3.13a), the symbol y(x) represents a column matrix whose elements are m dependent

variables, denoted by y(x) (j = I, 2, ..., m); F represents m functions arranged in a column matrix

form; and x is the independent variable. It is assumed here for convenience that the first m/2

elements OfY(Xl)and the last m/2 elements ofy(xM+') are prescribed by the boundary conditions,

If at the initial point Xi of the segment Si (Fig. 3.7) a set of values y(Xi) is prescribed for the

variables of Eqns. (3. I3a) then the variables at any x within Si can be expressed as

(3.13b)

where the function fis uniquely dependent on x and the system of equations (3.I3a). From Eqns.

(3.I3b), the smaIl changes oy(x) can be expressed to a first order approximation by the following

linear equations:

I,
e

b'y(X) =Yi (X)b'Y(Xi)

where,

=

8yl(X)
....................8

y
m(Xi)

(3.l3c)

(3.I3d)

8ym(x) 8ym(x)
8yJ (Xi) ',' 8ym (Xi)
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Expressing Eqns. (3.13c) in finite difference form and evaluating them at x =Xi+"

(3.l3e)

where yt denotes a trial solution state and y denotes an iterated solution state based on the

condition of continuity of the variables at the nodal points. Eqns. (3.13e) is rearranged as

(3.13t)

where Zi(Xi+l) = yt (Xi+]) - Yi (Xi+') yt (Xi)

In order to determine the coefficients Yi(x) in Eqns. (3.13t), the jth column of Yi(x) can be

'regarded as a set of new variables, which is a solution of an initial value problem governed

within each segment by a linear system of first order differential equations, obtained from Eqns.

(3. 13a) by differentiation with respect to yi(Xj)in the form

(3.13g)

Thus the columns of the matrix Yj(x) are defined as the solutions of m initial value problems

governed in Sj by eqn. (3.l3g) (j = 1,2, ..., m) with the initial values, in view of Eqns. (3.13c),

specified by

Yi(Xi) = I (3.13h)

where I denotes the (m,m) unit matrix. To obtain the iterated solution Y(Xj),Eqns. (3.13t) are

rewritten as a partitioned matrix product ofthe form

Yl(Xj+l)
, 2Yj (Xi+l) Yi (Xi+l)

............. = ............ .............

Y2(Xi+l)
3 4Yj (Xj+l) Yi (Xi+l)

+

so that the known boundary conditions are separated from the unknowns and, therefore, it turns

into a pair of matrix equations given by

YI(xi+')YI(X;)+ Yr(Xi+') Y2(Xi) - y, (Xi+') = -Z! (Xi+l)
Yr(Xi+l)y, (Xi) + yf(Xi+') Y2(Xi) - y, (Xi+') = -Zr(Xi+')
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The result is a simultaneous system of 2M linear matrix equations, in which the known

coefficients Y((Xj+l)and Z((Xj+l) are (m/2, m/2) and (m/2, I) matrices, respectively, and the

unknown, Y/Xj) are (m/2,1) matrices. Since Yl(XI)and YiXM+l)are known, there are exactly 2M

unknowns: YI(Xj), i = 2,3, ..., M + I, and Y2(Xj),i = 1,2 ..., M.

By means of Gaussian elimination, the system of equations (3.13i) is first brought to the form

EiY2(Xi)-YJ(Xi+l) = Ai

Ciy,(Xi+') - Y2(Xi+') = Bi (3.13j)

for i = 1,2, ..., M. Using the notations Z( and Y( in place of the symbols Zi(Xi+l) and Yi(Xj+l),
the (m/2, m/2) matrices Ej and Ci in the Eqns. (3.13j) are defined by

E! = yr, C, = Yt(Yrr'

and Ei = Yr + Y1c;!1

c; (yf + Yrc;!!) E;I
for i = 2, 3, ..., M.

The (m/2, I) matrices Aj and Bj are given by

yIYI(x,)

YrYI(x,) - YtEj'A,

and Ai = - zl - yl C;!JBi-'

Bi = - zr - Yr C;!!Bi-I - (yf + Yr C;!I) Ei! Ai
for i= 2,3, ..., M.

Then the unknowns of Eqns.(3. 13i) are obtained from

Yl(XM+!) = ci.\ [BM - Y2(XM+')]

Y2(XM) = Ei.\ [y, (XM+I) + AM]

and _ -I .
Y,(XM-i+') - CM-i[Y2(XM-i+') + BM-i]

Y2(XM-i) = Ei.\-i[Y, (XM-i+l) + AM-;]
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for i = 1,2, ..., M-l.

Asswning Y(Xj)as the next trial solution Y'(Xj),the process is repeated until the integration results

of Eqns. (3.13a) at Xi+l>as obtained from the integrations in segment Sj with the initial values

Y(Xj),match with the elements of Y(Xi+l)as obtained from Eqns.(3.13f) and also with the

boundary conditions at xM+I'

35.1.2 Derivation of additional equations of multisegment integration

In the multisegment integration technique for a set of ordinary differential equations, it has

already been noted that in addition to the integration of the given set of equations, another m sets

of equations represented by Eqns.(3.13g) has to be integrated. Thus, in order to apply the method

of multisegment integration, differential equations corresponding to Eqns. (3.13g) for the m2

additional variables as represented in Eqns. (3.13d) have to be derived. These differential

equations are obtained by differentiating Eqns. (3.9) for the linear case and Eqns. (3.10) for the

non-linear case with respect to each of the fundamental variables. As the variables in any column

of Eqns.(3.13d) have the same form, the system of Eqns. (3.l3g) is derived here for the

variables of anyone column of Eqns.(3.l3d) where the new variables are identified from the
';,

fundamental variables by the subscript 'a'.

From the non-linear Eqns. (3.10), by dif~erentiation in succession, the equations governing the

new variables are derived as

rjJa = - fJa

kea = fJacosrjJlro

NS'a = (Ha - V fJa)cosrjJ + (H /Ja + Va)sinrjJ

C NS'a - v&ea

. (3.14a)

(3.14b)

(3.14c)

(3.14d)

(3.14e)

k~a MS'a I D V kea (3.14f)
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ra - Ua

U'a = aacosljJ + PaasinljJ

W'a = aasinljJ - aj3cosIjJ

- - - 2
- a cos 1jJ(Ya I r - Y raI r )

- - -- -
H'a = - aa{(HcoSIjJ-No)/r+PTsinljJ}-a{[HacosljJ

+ Pa H sin IjJ - NBa- Ua(H cosljJ- No) I r]1 r - P T Pa cosljJ}

M~ = (aacosljJ+PaasinljJ){(Mo-M;)/r+P T2y}

+ a(cosljJ[P T2Ya + (MBa - M91- Ua(Mo - M;) I r]
- P T2HasinljJ}-P T2H(aasinljJ-aPacosljJ)

(3.14h)

(3.14i)

(3.14j)

(3.14k)

(3.141)

(3.14m)

(3.14n)

(3.140)

(3.14p)

.~.

Eqns. (3.14a - 3.14p) have to be integrated as initial value problems, m times in each segment,

with the initial values given by Eqns. (3.13h). It should be noted here that Eqns. (3.14) contain

not only the variables of Eqns. (3.13d) but also the variables of the fundamental set. Thus, Eqns.

(3.14) can not be integrated unless the fundamental set of equations is integrated first and the

values of the fundamental variables are stored for use in Eqns. (3.14). It'should be further

pointed out that one point integration fonnula can not be used for the integration of Eqns. (3.14)

since this fonnula needs evaluation of the derivatives at intennediate points where the variables

are never evaluated .

The corresponding equations for the linear theory are given by the homogeneous fonn of Eqns.

(3.9) and thus readily obtainable by dropping the load tenns in Eqns. (3.9).

43



3.5.1.3 Treatment of boundary conditions

In the introduction of the multisegment method of integration it was assumed that the first ml2

elements of y(x) at XI and the last ml2 elements of y(x) at XM+Iwere prescribed as boundary

conditions. But, in general, the boundary conditions are given as

and

TI Y(XI) = bl at XI

TM+IY(XM+I) = bM+1 at XM+I (3.15a)

in which any ml2 elements of bl and any ml2 elements of bM+I may be specified as boundary

conditions. The symbols T I and TM+Irepresent non-singular (m,m) matrices which are known

from the specification of the boundary conditions at the ends of the interval.

By rearranging the rows ofTI and TM+Iin a special order, Eqns. (3.15a) can always be stated in a

manner such that the prescribed elements of bl and bM+lbecome respectively the first and the

last ml2 elements ofb1 and bM+l'When this is achieved, evaluation ofEqns. (3.l3t) at i = I and i

=M, and then elimination ofy(xl) and Y(XM+I)by means of Eqns. (3.15a) yield

YI (X2) Til bl - Y(X2) = - ZI (X2)

TM+IYM(XM+I)Y(XM) - bM+1 = - TM+I ZM(XM+I)

(3.15b)

(3.15c)

f,

The form and notation of Eqns. (3.l3t) can now be retained if the coefficient matrices YI(X2),

YM(XM+l),ZM(XM+I),occurring in Eqns. (3.l3t), represent YI(X2)TI.I, TM+lYM(xM+I),and TM+I

ZM(XM+I),respectively. In doing so, the solution of Eqns. (3.l3t) will not yield y(xI) and y(XM+I)

but rather the transformed variables bl and bM+l'When y(xI) and Y(XM+I)are desired, they can be

obtained by the inversion of the matrix equations (3.15a).

It should be noted here that with reference to the boundary conditions (3.12c), stated in terms of

the fundamental variables, the matrices TI and TM+lare both unit matrices of order 6. The

construction of TI and TM+b in accordance with any possible statement of (3.12c) so that

equations (3.15a) are in order, is treated in Appendix A.
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3.6 AXISYMMETRIC BUCKLING

A shell structure under a given level of external loading is in an equilibrium state when its total

potential energy is stationary at that state and that equilibrium state is stable when this potential

energy has got a relatively larger value in the neighbouring states. The governing differential

equations which are solved here always seek for the state of deformation of the shell at which,

for given external pressure, the potential energy in the deformed shape of the shell is stationary.

The critical pressure for a particular shell is interpreted from the fact that any further increase in

pressure above its critical value, no matter how small, will cause the shell to undergo enormous

deformation (linear and rotational) indicating that the state of deformation 9f the shell which

corresponds to the lowest potential energy is' far off from that at the critical pressure. Uddin

[171] has also pointed out that the method of solution of the non-linear governing equations for

any value of the loading parameter will fail when the load exceeds its critical value in the sense

that the shell must deform enormously to assume the configuration which corresponds to this

load or that the shell passes on to a secondary mode of deformation. In both these cases, the shell

is in a state of instability which leads to its buckling.

The steps followed in finding the critical pressure are as follows:

I. First, the linear governing equations of the shell are solved by the mu~tisegment method

of integration as described earlier. With the linear solution providing initial values to the

dependent variables, the non-linear equations are solved by the process of iteration at the

initially assigned load.

II. The non-linear equations are then repeatedly solved for increasing values of the load

parameter while the initial values for iteration process at any step of load parameter are

provided by the solution for immediate previous step of loading.

HI. If at any step of the scheme of increasing loading steps, the iteration process fails to

converge, it first subtracts previous loading increment from the n?ndimensionalized

loading, then halves the load increment and adds it to previous loading to arrive at the
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new nondimensionalized loading. In this way the equilibrium configuration path is traced

against increased loading.

IV. The critical pressure is anticipated from the load-displacement curves, where the

equilibrium configuration path is traced against increasing loading and the appearance of

a secondary mode of deformation is searched. This appearance of a second solution

always corresponds to the bifurcation point as pointed out by Thompson [166] and

consequently, it is always the bifurcation point where the numerical solutions fail to

converge as the shell structures become unstable as pointed out by Uddin [171].

It should be mentioned here that the term .bifurcation point' is used here to refer to the

point of initiation of a secondary mode of deformation, be it a limit point or a branching

point.

3.7 ASYMMETRIC BUCKLING

Axisymmetric composite shells, made-up of axisymmetric segments joined to each other

circumferentially, are observed to buckle either meridionally or circumferentially. These two

modes 'of buckling of composite shells are usually referred to as axisymmetric buckling and

asymmetric buckling. In axisymmetric buckling the fundamental axisymmetric configuration of

the shell is maintained during the buckling process, only the meridional configuration of the

shell changes suddenly. But, in asymmetric buckling, the instantaneous meridional configuration

of the shell is maintained while the circumferential configuration suddenly passes on to new

mode with the formation of a number of lobes around the circumference, all extending

identically along the meridian.

Analysis of axisymmetric buckling is carried out by solving the governing non-linear equations

of axisymmetric deformation for increasing level of loading up to the bifurcation point on the

fundamental path, as stated earlier in this chapter. Asymmetric analysis may also be done from

the solution of general non-linear governing equations containing terms like N ~e,M ~e, etc., but
the method has not gained much popularity due to its complexity in solution. Asymmetric

buckling analysis is generally done from eigen-value solution of linearized general governing
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equations, derived from general governing equations in terms of perturbation of variables,

known as the stability equations. The stability equations for asymmetric buckling of shells are

presented in section 3.3.

The linearized stability equations, derived in section 3.3, are homogeneous. A finite difference

scheme has been employed in the present investigation for the solution of these equations. The

finite difference scheme reduces the governing equations along with the boundary conditions

into a set of finite difference equations by confining the independent variables to a network of

mesh points. The dependent variables have been selected in such a manner that the equations

contain at best second order differential terms only. Thus a three point finite difference scheme is

sufficient to convert the differential governing equations to finite difference equations.

The independent variable is the distance along the meridional length of a shell and its range is

divided into N segments having lengths SI, S2 , ,SN, starting at node point 2 at one

boundary and ending at node point N+2 at the other. Two fictitious node points, 1 and N+3, are

added outside the two boundary points. The difference equations in vector form are,

j = 2,3, N+2 (3.l6a)

where,

u~

Yj - lie

ul;

m~ J

m~= M~ ID and Aj, Bj, Cj are square matrices.

The boundary condition are expressed as

A1Y] + B1Y2 + C}Y} = 0

AN+] YN+] + BN+]YN+2 + CN+]YN+1 = 0

(3.16b)

(3.16c)

Letting Yj = -PjYj+1

Y 1 =-p}yj- j-j

j = 2,3 N+ 1
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Eqns. (3.l6a) becomes

- Alj-lYj + BjYj - Clj-lYj = 0

or Pj = (Bj - Cli-lrl Aj

Elimination ofYI from the equations (3.16a) for j=2 and Eqns. (3.16b) yields

Y2+ (Bl - ClC2-1B2rl (AI - ClC2-
1A2)Y}= 0

Comparing Eqns. (3.16h) with Eqns, (3.16e) gives

P2= (Bl -ClC2-1B2rl (AI - C1C2-
IA2)

(3.16f)

(3.16g)

(3.16h)

(3.16i)

/

Now using the recurrence relation (3.l6g) and the relation (3.16i) all the Pis can be calculated

forj=2toN+2.

Since YN+2= PN+2YN+}

YN+1= - PN+1YN+2= PN+1PN+2YN+}

.Equation (3 .16c) can be written as

RYN+}=O

where R = AN+2+ (CN+}PN+1- BN+})PN+2

(3.16j)

(3.16k)

For nontrivial solution,

:r.

andlRi =0 (3.161)

In general, for a given value of n, the determinant I RI does not vanish if the external load PIE

does not correspond to the buckling load.

To determine the asymmetric buckling load, at every load step the determinant IRI is calculated
for different values of circumferential lobe number n starting from 2, and the load corresponding

to the vanishing determinant is selected as the buckling load, neglecting n = 1, as it corresponds

to the translation of the shell.

3.8 ACCURACY AND RELIABILITY OF THE ANALYSES

In this work, both axisymmetric and asymmetric buckling behaviour of composite shells of

revolution are studied both analytically and experimentally. To ensure the accuracy and

reliability of solution, it is desirable that solutions obtained by any numerical technique be

compared with the corresponding results in the literature, if available. This type of comparison
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also helps to ascertain that no error in logic is committed in formulating the problem and no

mistake has been made in the computer programming.

Multisegment method of integration has been employed here for obtaining the solution of non-

linear governing equations of axisymmetric deformations of shells of revolution. The accuracy .

of the multisegment method of integration is actually self-ascertaining. Once the values of the

fundamental variables at the nodal points are known from the multisegment method of

integration, the fundamental set of differential equations is integrated over each segment of the

meridian as an initial-value integration problem. If the values of the fundamental variables at the

end of the segment Sj, as obtained from the initial-value integration, match up to a certain

number of digits with their respective initial values for the segment Sj+1for i = 1,2, 3 .... M and

also with the given boundary conditions, only then the solution scheme accepts the results. In

other words, the multisegment integration technique not only finds the solutions of a set of

equations but also check that the solutions obtained satisfy the equations along with the

boundary conditions.

Regarding the reliability of formulation of the problem and programming. of computational

technique, Ref. [171] can be referred to. In Ref. [171] solutions were found for uniformly loaded

circular plate with clamped edge using the present formulation and methodology and it was

found that the results are' correct up to eight digits when compared with. the results of the

corresponding analytical solution. In Ref. [171], results were also obtained on the variation of

meridional stress and circumferential stress along the meridian of ellipsoidal head pressure

vessel based on both linear and non-linear theories by the present method of solution and were

compared with previously established results. It was found that there was hardly any difference

between these results. The results obtained for truncated conical shell by Ali [7] shows a fair

agreement with those available in the literature for the identical boundary conditions. The

observed deviations in the results were very much expected as the formulations of the problem

and the criteria for predicting critical pressures are different for the two cases. That the used

computer program can accurately calculate the critical pressure for axisymmetric shells of

revolution of any geometry have been demonstrated by Uddin [171, 175, 176], Haque [61],

Rahman [119], Ali [7], and Khan and Uddin [79].
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For the determination of asymmetric buckling load, eigenvalue solution of the 'stability equations

of general shells are required. The linearized stability equations of general shells contain

prebuckling terms like N,o' N~o ' Neo ,which have been calculated here with the help of

multi segment integration of the non-linear governing equations of axisymmetric shells of

revolution. Tridiagonal matrix algorithm, a widely used solution technique, has been employed

for the determination of the elements of the stability determinant. Some analytical and

experimental problems of cylindrical and conical shells for which solutions are available in the

literature, were tested to verify the code developed for asymmetric analysis here and the results

from the current analysis were found to be around 10%-25% higher. This difference may be

attributed to the reason that the results in the literature were found from the eigenvalue solution

of stability equations with linear prebuckling data, whereas the present analysis uses non-linear

prebuckling values obtained from the solution of governing equations derived considering large

deflection of shells. As the prebuckling solution used in the buckling analysis is highly accurate

the asymmetric results are also accurate and reliable.
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CHAPTER 4

EXPERIMENTAL INVESTIGATION

4.1 LITERATURE REVIEW ON EXPERIMENTAL PROCEDURE ON SHELL

BUCKLING

Experiments on buckling of shells has not yet been standardised. Researchers are continually

developing newer experimental techniques in different ways to bring about a better correlation

between analysis and test. Even when large powerful programs, like STAGS are employed for

analysis, test results still differ considerably from prediction. These differences are partly'due to

the inaccuracies of inputs like shell geometry, boundary condition, imperfect shape, and

amplitude, etc., and partly due to variations in buckling behaviour of the mathematical model

and the shells tested. Experimental results are also found to, depend on shell materials and

manufacturing techniques.

Experiments on buckling of shells are generally done on their models because conduction of

experiments on prototypes require large set-up, which is costly, as well as measurement of shell

geometry becomes a tedious job. Experimental investigation of shells may be divided into two

major steps , the first step is the fabrication of model shells and the second step is the

experimental technique. Isotr0l'ic materials are common in fabricating shell models. Shells

made of isotropic materials are found to be much imperfection sensitive than those of composite

materials. So to achieve better results from isotropic shells, it needs precision manufacturing

technology. Among the different shell fabrication techniques, spin forming, press forming,

electrodepositing, explosive forming and copy milling are in wide use.

Literature on experimental techniques on buckling of shells are limited to only few different

methodologies [10, 12, 13,31,32,35,55,56,97,101,109,114,130,138,140,147, t65, 184,

185]. In most cases of shell buckling experiments very thin shell models are fabricated and,

depending upon the opening of the shells, that is, either one end open or both ends open, the

openings are closed with plates with proper sealing arrangements. Through one of the end-

plates air is sucked out from interior of the shell with a vacuum pump so that atmospheric

pressure outside the shell acts as external pressuring medium. The difference between the
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pressure inside the shell and the atmospheriG pressure outside the shell is considered as the net

external pressure. Evacuation process continues until the buckling of the shell starts. Net

external pressure at the point of buckling is considered as the buckling load. To study load-

displacement behaviour of a shell, strain-gauges or displacement probes are placed at the salient

points of the shell.

In Ref.[J30], Ross and Palmer tested swedged-stiffened cylinders for buckling under uniform

external pressure. The test cylinders were closed at both ends with end-closure plates keeping

atmospheric air inside, and were put in a cylindrical pressure chamber. External pressure was

applied to the shells by pumping in water inside the pressure chamber until the shells buckled

with a fall in external pressure. In Ref.[55], instead of using end-closure plate at the open end of

a cylindrical sh~ll with one toriconical end, another such toriconical shell of same dimension

was glued at the open end in such a manner that the assembly became a cylindrical pressure

vessel with two toriconical ends. The remaining steps of this experiment was similar to that of

Ref. [J30].

New and Spring [109] developed a non-destructive experimental technique for determining

incipient buckling pressures of thin shells subjected to external pressure. The salient feature of

the technique is the filling of the internal volume of the shell with fluid, such as water, to control

the magnitude and rate of shell deformation. The incipient buckling pressure was detected by.

noting the point at which the difference in internal and external pressure becomes constant. In

Ref.[J38] an attempt was made to frod out a new non-destructive buckling test technique. This

technique is based on the concept that natural frequency in the buckle mode shape goes to zero

when the critical buckling load is reached. By measuring the modal parameters at various load

levels below the critical buckling load one should, in principle, be able to predict the buckling

load by extrapolating the load frequency interaction curve to zero frequency intercept. But till to

date neither of the non-destructive tests received interest for some sort of inconveniences

associated with the testing procedure as well as for unconservativeness in results.

In test set-ups, where external atmospheric pressure acts as loading medium, buckling load must

always be less then the atmospheric pressure, which is the major limitation of this technique.

Deflection measurement at predetermined locations is another limitation of this method, since
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fabrication technique may dictate to such sort of imperfection that the shell may not buckle at

the locations where deflections are measured. Keeping these disadvantages in mind, in the

present work a new experimental technique is developed. The new method is very simple and

capable of finding buckling loads for shells both above or below the atmospheric pressure.

Electrodepositing technique has been employed for the fabrication of shell models for test.

Model fabrication and experimental technique used for comparison of theory and test are

described in the following sections.

4.2 PRESENT METHOD OF EXPERIMENTAL INVESTIGATION

4.2.1 Composite Experimental Shells

In the present work three different composite shells are studied namely cap-cone, cup-cylinder

and dome-cylinder composite shells. From the analytical solutions presented in chapter-5 it is

found that the cap-cone composite shells show some favourable buckling results. That is why

experiment is done here only with the cap-cone shells. Geometries of cap-cone shells are shown

in Figs. 4.1. For determining the buckling pressure of cap-cone composite shells, copper shell

models with same apical angle and different tip ratio rj (rj = riR) were fabricated by

electrodepositing process. To keep the cone angle of the conical frustum portion of all the cap-

cone composite shells the same, stainless steel die with the lowest tip ratio was first fabricated

in a copying-lathe and then its corresponding shells were electrodeposited. In the succeeding

steps the die was machined from the tip to conform to the next higher tip ratio, and the relevant

shell models were electrodeposited. The procedure was repeated up to 4 values of tip ratio. The

conical segment of the cap-cone shells, fabricated for experiment, had a semi apex angle of30°.

The die making steps are shown in Fig. 4.2.

A set-up, described below, was used for the evaluation of imperfections in the fabricated shells,

the main purpose of which was to measure the physical dimensions of the shells. The tip ratio rj

r
for each of the four sets of shells were calculated from the geometric data obtained from this set-

'"up and were found to correspond to four values of 1.00, 0.80, 0.60 and 0.30 corresponding \\0 \

the four sets of the shells respectively. The four sets of models are then designated as CS I00\

CS80, CS60 and CS30, corresponding to tip ratio of 1.00, 0.80, 0.60, and 0.30, respectively.

There were no conical segments at the base of the CSIOO shells. From the analysis of geometric
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Fig. 4.1: Geometry of cap-cone shells with different tip ratio, riR.

Fig. 4.2: Schematic diagram of die for electrodeposited test model.



data it was found that the meridian of the CS I00 shells were composites of two circular arcs of

different radii of curvature with the centres of curvature on the axis of the shells. The radius of

curvature of the arc at the tip of the CS I00 shells were larger than that of the other arc which

extends from the junction of the arc at the tip to the base of the shell ..

4.2.2 Experimental Set-Up for Imperfection Evaluation

After the fabrication of the four sets of experimental shells described earlier, the remaining die

corresponded to the shell with the highest tip ratio. The spherical tip of this die was then

removed by machining to fabricate a base for mounting the experimental shells in the test

chamber. A piece of thick copper contour ring, as shown in Fig. 4.3(a), was then

electrodeposited from the base for fixing the base of the experimental shells with the base-plate

firmly. Finally the base of the die was machined to a base-attachment to suit the experiment.

The final base is shown in Fig. 4.3 (b). One mild steel ring shown in Fig. 4.3(c) was also

fabricated for attaching the experimental shell models with the base-plate along with the copper

.contour ring so that the gripping pressure at the base of the shells become uniform ..

The experimental shells and the fabricated base attachments were assembled together and the

assembly was placed on a turn-table with the axis of the shell passing through the centre of the

tum-table. The model-base assembly along with the turn-table was then placed on a level

platform ofax-y-z co-ordinate measuring instrument (made by Mitutoyo, Japan ). The accuracy

of the co-ordinate measuring instrument was oi 0.01 mm. A fine-wire stylus was attached to the

co-ordinate probe with an electric bulb and a battery in series with the shell to ascertain the .

contact of the probe with the shell. Schematic diagram of the geometry measuring set-up is

shown in Fig. 4.4. Radial distances of points on the shells from the axis of the shells were then

measured against axial distances of the shells along eight meridians at 45° intervals.

Geometric data of each shell was then processed with a graphical package to find the geometry

of the shells. Different segmented curves were fitted to each of the meridian of a shell and the

curve set for one of the meridian corresponding to minimum deviation was selected to represent

the geometry of the shell. In the case of the cap-cone composite shells, two geometric curves
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Fig.4.4: Schematic diagram of geometry measuring set-up.
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were fitted to the meridians -a straight line ~othe conical portion of the shell and a circular arc to

the spherical cap of the shell, meeting tangentially with the straight line. For the spherical caps

(rj = 1.0) two circular arcs were fitted to the meridians. To determine the thickness of the shells,

these were cut along three meridians after the experiment, and the thickness along these three

meridians were measured with a precision micrometer. The accuracy of the micrometer was ct. ,

0.001 inch. Description of the geometric parameters obtained from processed data are shown in

Fig. 4.5. Geometric data and average thickness data of the shells are given in Tables 4.1 and 4.2

4.2.3 Experimental Set-Up for Buckling

A 10 inch high and 8 inch diameter triaxial test machine (made by ELE, U.K.) was used as the

pressure chamber for the buckling test of the model shells. The wall of the pressure chamber

was of transparent perspex cylinder of 0.5 inch thickness. The limiting pressure of the chamber

was 250 psi. The top cover and the bottom platform of the pressure chamber were of metallic

plates. The bottom platform could be isolated from the pressure chamber by removing the

fastening bolts so that the experimental models could be firmly secured to it. There were a good

number of ports on the base plate fitted with globe valves through which pumps, manometers,

pressure gauges, volume meters, etc., could be connected. The schematic diagram of the set-up

is shown in Fig. 4.6 .

4.2.4 Experimental Procedure

Schematic diagram of the experimental set-up with a shell-base assembly placed inside the

pressure chamber is shown in Fig. 4.7. The experimental shell was filled with water and then

was attached to the base-attachment along with a rubber ring, a rubber gasket and six 1/4 inch

fastening bolts. Photograph of the elements of the base attachment are shown in Fig.4.8. The

sectional view of the shell-base assembly inside the pressure chamber is shown in Fig. 4.6, and

the relevant photograph of the shell-base assembly keeping the tip side up is shown in Fig. 4.9.

A tripod was placed inside the pressure chamber to support the shell-base assembly keeping the

tip of the model downwards and the base attachment upwards so that water inside the model

could not come out through the hole at the base without the application of pressure external to
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Table 4.1: Geometric data of fabricated spherical cap models CS I00 .

Shell '1'/2' '1'1' '1',' R r,1 r" hi h, 6z

No. mm mm mm mm mm mm

1 31.887 12.315 8.498 58.175 68.39 98.71 .102 .089 .49

2 31.365 13.127 ~.678 58.14 68.09 91.98 .102 .076 .47

3 31.125 12.699 9.651 58.014 67.77 88.82 .108 .094 .40

4 31.92 11.565 9.087 58.256 68.63 87.12 .132 .109 .30

5 31.67 12.409 8.493 58.18 68.36 100.10 .109 .\02 .421

Table 4.2: Geometric data of fabricated cap-cone models.

~I

./

J

End-closure Model '1'/2' L R r,1 hi h,rj
type No. mm mm mm mm mm mm

1 29.886 81.413 58.046 20.16 17.479 0.089 0.127

CS30 2 30.174 82.391 57.900 19.08 16.494 0.089 0.101

3 30.029 81.486 57.800 19.66 17.185 0.089 0.114

1 30.174 46.436 58.139 40.06 34.639 0.109 0.0889

CS60 2 30.029 45.700 58.381 40.44 35.014 0.132 0.088

3 29.887 45.884 58.045 40.41 35.036 0.140 0.102

4 30.029 46.395 57.803 40.\0 34.713 0.135 0.102

1 30.174 15.987 57.965 57.78 49.890 0.102 0.097

CS80 2 30.D3 16.170 58.380 57.67 49.930 0.084 0.084

3 30.174 16.090 57.965 57.59 49.530 . 0.094 0.076

..
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the model. One end of a flexible tube that <:ould sustain high external pressure without

appreciable deformation was then connected with an adapter to the hole of the stainless-steel

base. The other end of the flexible tube was connected to a double tube volume-meter through

the base of the pressure chamber. The volume-meter was capable of measuring a change in

volume of 0.1 ml. A mercury manometer was connected to the pressure chamber through the

base of the pressure chamber. The pressure chamber was then filled with water through a hole at

its top cover. Photograph of the experimental set-up is shown in Fig. 4.10.

Necessary leak test was done at every stage of the experiment. External pressure was applied to

the shell by pumping in water by a screw type hand pump attached to the pressure chamber. The

external pressure applied was gradually increased by steps and, at every step, the pressure was

recorded. At every step of external pressure, the internal volume change of the model was

recorded by the volume meter by measuring the amount of water coming out from inside of the

model. The pressure was increased up to a limit when either the manometer reading remained

constant or dropped suddenly with a large change in volume. The limiting pressure was

observed to correspond either to a large deformation of the cap of the shells or of the conical

base of the end-closure. This limiting pressure was considered to be the buckling load for the

corresponding end-closure.
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Fig.4.! 0: Photograph of experimental set-up.
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CHAPTER-5

RESULTS AND DISCUSSIONS

5.1 RESULTS OF THEORETICAL INVESTIGATION

5.1.1 Axisymmetric Analysis

Pressure vessels used in different pharmaceutical or petrochemical industries, or as hulls of

submarines are generally constructed from combination of different geometries such as cylinders,

cones, hemispheres, spherical caps, ellipsoids or some other exotic form. In majority of shell

structures the main portion of the structure is cylindrical. The instability load under external pressure

for a cylindrical shell becomes lower as the length of the cylinder increases. To improve the

instability behaviour of long cylinders, number of ring stiffeners or bulk heads (in case of (: "

submarines) are provided in between the ends of the cylinder, where the segments of the cylinder

between two consecutive rings or bulk heads act as short cylinders whose instability load is higher.

But the pressure vessels of cylindrical shape need some other geometry like cone, spherical cap,

hemisphere, etc., to close the ends. Among the end-closing shells, hemispherical, ellipsoidal or

spherical caps are in wide use and the design of the whole pressure vessel which is a combination of.

different geometries is done on the basis of the buckling load sustaining capacity of the individual

shell elements.

End-closures of the type mentioned above are very much sensitive to imperfections and thus the

results of buckling load from analytical study are in wide disagreement with experiments.

Experimental results of these shells are found to be about v.th to I/gth ofthe analytical results. In

contrast to the sphericaI or ellipsoidal end-closures, a conical end-closure may provide a better

solution because its external pressure sustaining capacity is about 20% higher than the relevant

cylindrical body. The sharp tip of a conical end-closure makes the space inside it useless as well

as vulnerable to eccentric loading that may lead to failure either by yielding or by buckling in a

translation mode and thus such conical shell has received less attention as end-closures of

pressure vessels.

To find out a suitable end-closure of pressure vessels, different combination of shells of simple
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geometry have been studied in this work, namely,

I) Cap-Cone composite shell [Fig.I.2(a)],

2) Cup-Cylinder composite shell [Fig.I.2(b )], and

3) Dome-Cylinder composite shell [Fig.1.2(c)].
" "

Axisymmetric buckling of these end-closures with varying geometric parameters are discussed.

in the ensuing sections.

The non-linear differential equations of axisymmetric shells, which embody the principle of

minimum potential energy, are solved for increasing values of load parameter till the first

unstable state of equilibrium is reached. The onset of the first bifurcation point is hinted by a

substantial increase in the displacements and stresses of the shell for very small increase in the

load parameter. Right at the bifurcation point any increase of load parameter, however small,

produces enormous deformations and, thus the numerical technique used here fails to converge

to any solution.

That the present analysis based on axisymmetric deformations can predict the critical condition

is justified by the following two theorems presented by Thompson [166].

Theorem-I: An initially stable (primary) equilibrium path rising monotonically with the

loading parameter can not become unstable without intersecting a further

distinct (secondary) equilibrium path.

Theorem-II: An initially-stable equilibrium path rising with the loading parameter cannot .

approach an unstable equilibrium state from which the system would exhibit a

finite dynamic snap without the approach of an equilibrium path (which may

or may not be an extension of the original path) at values of the loading

parameter less than that of the unstable state.

Therefore, it is the initiation of the secondary path which the scheme of solution predicts, and up

to this point, it is quite fair to assume that the deformations are axisymmetric. .
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5.1.1.1 Cap-cone composite shell

Earlier, it has been mentioned that though conical shells can sustain high external pressure, they

are not used as end-closures to pressure vessels because of their problems associated with the

sharp tip. The problems relating to the tip of the conical shell may be eliminated by using, a

spherical cap assumed to be attached to the conical frustum in such a way that continuity of the

slope at the cone-sphere junction is maintained [Fig.I.2( a)]' In this cap-cone composite shell, the

radius of curvature of the spherical tip becomes smaller with the increase of slant height of the

attached cone and is able to sustain higher buckling load if considered as an individual spherical

cap shell. The geometric parameters of this cap-cone composite shell are the tip ratio, rj'

(rj = r/R) the apex angle '¥ of the conical frustum, and the thickness ratio R1h, where rj and R

are respectively the radii of the cone at the sphere-cone and vessel-cone junctions and h is the

thickness of the shell. Geometry of such combinations have already been defined in Fig. 4.5.

Critical pressures for cap-cone composite shells of three different apical angles of the conical

frustum with different values of rj and RIh ratios were determined for axisymmetric buckling

and are discussed here. It should be mentioned here that stability analysis is justified for thinner

shells and thus the results presented are for higher RIh values like 100, 500, 1000 and 1500. For

each value of the apical angle and the thiclmess ratio R1h, about 10 values of rj were studied and

the results are presented in Table 5.1. Results of instability for values of parameters beyond this

range can readily be obtained by using the computer program presented in Appendix-B of this

thesis, if those are of any importance to the practising engineers. Critical pressure for all the

shells of same apical angle and same thickness ratio, as presented in Table 5.1, are almost the

same upto a certain range of rj' then decreases gradually to a minimum value~trj =1.00

Swnmary of the results of the theoretical analysis for three sets of cap-cone end-closures of

apical angle, '¥ '" 60°, 120°, 150°, fordifferent RIh are presented in Figs.5.l-5.9. The results in

these figures show that, for each apical angle, instability load is almost constant for a wide range

. of rj' From about rj= 0.75, for all the cases, buckling load decreases and is minimum at rj = 1.0

which corresponds to a pure spherical cap fitted to a cylinder of radius R. With the increase of

either the cone angle or the thickness ratio, the buckling load is found to decrease. The constant.
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Table 5.1: Theoretical axisymmetric buckling pressure of cap-cone composite shells

Apex angle Shell No riR P,/E

'P' R1h-IOO R1h-500 R1h-IOOO R1h-1500

I 0.25 1.29xl0 4.5IxI0'"

2 0.35 1.29x10- 4.5IxI0"

3 0.50 1.29xl0 4.5lxI0"

4 0.60 1.29xI0" 4.51xI0"

60 5 0.75 1.29x10' 4.51x10

6 0.80 1.30xlO 4.5IxI0"

7 0.85 1.10xl0 4.49xI0"

8 0.90 9.75xI0" 4.38xI0"

9 0.95 9.3IxI0" 3.86xI0'b-

10 1.00 9.03xI0' 3.63xI0"

II 0.25 4.35xI0' 1.70xlO" 4.07xlO" 1.74xI0"

12 0.35 4.35xI0' 1.70xlO' 4.07xlO' 1.75xI0"

13 0.50 4.36xI0' l.70xlO' 4.03xlO' l.75xlO"

14 0.60 4.34xI0' l.70xlO' 4.07xI0' 1.75xlO'

120 15 0.75 4.26xI0' l.71xlO 4.07xI0' 1.74xlO"

16 0.80 3.97xlO' l.72xIO' 4.03xI0" 1.74xI0"

17 0.85 3.77xlO' 1.59x10' 4.07xI0' 1.73xlO"

18 0.90 - 1.44x10' 3.64xlO' 1.59x10'

19 0.95 3.28xlO' 1.32x10' 3.00xI0' 1.44x10'

20 1.00 2.94xlO" 1.15xlO" 2.94xI0' l.34x10'

21 0.25 1.18xlO" 4.62xI0' 1.15x10' 4.35xlO'

22 0.35 1.16x 10" 4.62xI0' 1.15x IO' 4.59x IO'

23 0.50 1.16x 10" 4.62xI0~ 1.15x IO' 5.02xlO'

24 0.60 1.16x 10" 4.62xlO" 1.13xlO~ 4.82xlO'

150 25 0.75 1.00x10' 4.58xI0" 1.15xlO" 4.87xI0"

26 0.80 9.27x10 4.33x IO' 1.14xlO" 5.07xI0"

27 0.85 8.63x10 3.9IxlO' 1.06x I0" 3.9IxI0"

28 0.90 8.04xI0' 3.60x IO' 7.75xlO" 4.32xlO"

29 0.95 7.49xI0' 3.4lxI0' 8.07x I0" . 3.9IxlO"

30 1.00 6.99x10 3.22xI0' 7.68xI0" 3.46x I0"
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value of buckling pressure is around 40%, 50% and 70% greater than their lowest value that

occurs at rj = 1.0 and R/h = 100 for apex angle 60°,120° and 150°, respectively. For the other

higher R/h ratio, the trend is similar. Thus it seems that the addition of a conical extension to a

spherical-cap end-closure may improve the external pressure sustaining capacity of the end-

closure.

In Figs.5.10-5.B, the deformed configurations of four shells of rj = 0.25, 0.50, 0.75 and 1.00,

having R/h = 100 and apex angle IjI = 1200, are shown schematically when loaded critically. The

shells in Figs.5.1 0, 5.11 and 5.12, having conical base, deform severely near the base but the

spherical tip remains almost unaffected. The deformation pattern of these three shells have close

similarity. Such similarity is also observed in the case of the other cap-cone combinations of

different apical angles and thickness ratios. The similarity in buckling load for these cap-cone

combinations may be attributed to their similar deflection pattern. Fig.5.13 shows that the simple

spherical cap with no conical base deforms severely throughout the shell meridian. All other

spherical caps with different cap angles and thickness ratios also undergo severe deformation

throughout their shell meridians.

The behaviour of the nondimensional axial and radial displacements agains~ load for 'l'= 1200,

R/h=IOO, and rj = 0.25, 0.50, 0.75 and 1.00 are shown in Figs.5.14-5.17 and in Figs.5.18-5.21,

respectively. In Figs.5.14-5.16, irrespective of the values of rj' almost all the points on these

shells maintain a common trend of inward deflection. In Fig.5.17, for rj=1.00, meaning a pure

spherical cap without any conical extension at the base, it is found that most of the points along

the meridian of the cap move inward with the increase of load except that near the middle of the

meridian, which move inward initially with the increase of load and then outward at a very high

rate near the critical load. Irrespective of the values of rj the load versus radial displacement

behaviour of these shells shown in Figs.5.18-5.21, is similar to that of a pure spherical-cap

The meridional distribution of the nondimensional stress resultants N, and No, and the moment

resultants Mig and Mo are shown in Figs.5.22, 5.23, 5.24 and 5.25, respectively. Each one of

60
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these four figures has components (a), (b), and (c) referring respectively to the values of 0.50,

0.75 and 1.00 of the tip ratio, i'j' of the cap-cone end-closure.

It should be mentioned here that the magnitude of stress, strain, and displacement parameters at

any point in an elastic body is a linear function of the load parameter in the case of linear theory,:

As the nondimensional values of stress and moment resultants are the ratios of their actual values

to the values of the load parameters, the results of these stress and moment resultants of the

linear theory remain constant irrespective of the values of the load. But the results of these stress

and moment resultants are non-linear functions of the load parameter in the case of non-linear

theory and hence their nondimensional values are variable with respect to loading. Further, when

the value of the load parameter is very small, the results of the linear and non-linear theories are

the same because the geometrical parameters which cause them to differ from'i::ach other, that is,

the change in the shape of the body and the displacements (both rotational and linear) are

negligibly small at the lower value of the load. Thus, the solid curves in Figs.5.22-5.25 represent

the distribution of the linear result of concerned variable for all the values of the load and also

that of the non-linear results at a very low value of the load. The non-linear results for a very

high value of the load, near the critical values, are also given in these figures in broken lines for

full comprehension of change taking place in the distribution of these stress and moment

resultants up to and just prior to buckling.

Figure 5.22 shows the meridional distribution of 11,. 11, = 0.5 in cylindrical and spherical

shells. As seen in Fig.5.22, at low value of load, although 11, varies along the meridian, it does

not exceed 1.0. However, at the tip of the cap-cone end-closure, 11, increase with increasing

values of rj' but remains more or less the same at the base end of the end-closure. Near the

critical load, the distribution of 11< becomes wavy with respect to meridional distance. It is also

noted in Fig.5.22 that the maximum value of 11, in the cap-cone composite end-closure

increases with increasing load, specially near the critical load, and remembering that increasing

11, indicates increasing sensitivity of stress in the structure to loading, it can be concluded that

the sensitivity of stress to loading increases as the structure loses its stability. The term

"sensitivity of stress" is used here to signify higher rate of increase of stress with respect to

loading.
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Figure 5.23 shows the distribution of the nondimensional circumferential stress resultant Fie in

the cap-cone composite end-closure. Fie is 1.0 in a cylindrical shell and here its maximum value

is observed to be about 3.8. It is also observed that Ne becomes wavy with respect to c; and the
'..

stress becomes more sensitive to loading with increasing loss of stability of the composite end-

closure.

The distribution of the meridional moment resultant M, in the cap-cone end-closure with

respect to the meridional distance is shown in Fig.5.24. Remembering that moments are zero in

the membrane state of shells, it is seen here that the membrane state of the end-closure is

disturbed towards its base junction. It is also noted that there is no moment in the end-closure at

the cap-cone junction. This is because of the fact that the cap-cone junction has no discontinuity

of slope. Like the stresses, the distribution of moment resultants also become wavy with respect

to the meridional distance and the stress resulting from the moment becomes more sensitive as

the state of instability of the end-closure is increased .The distribution of the circumferential

moment resultant Me is shown in Fig.5.25. The behaviour of Me is observed to be similar to

Figures 5.26 and 5.27 show, respectively, the meridional variation of the nondimensional

meridional and circumferential stresses in, the cap-cone composite shell. Like the stress and

moment resultants, the solid curves in these figures represent the results of linear theory which

remain constant for all values of loading because of the method of nondimensionalization of

these stresses. The solid curves also represent the non-linear results at very low values of load

parameter for the same reason mentioned above in connection with stress resultants. The

components (a), (b), and (c) of figures 5.26 and 5.27 correspond to the values of 0.50, 0.75, and

1.00 of tip ratio, rj, of the composite shell.

It should be recalled here that thenondimensional meridional stress in figures 5.26 and

circumferential stress of figures 5.27 have values of 0.5 and 1.0 respectively in a cylindrical

shell at places far away from the edges and junctions. Further, the difference between the inner

and outer surface stresses is entirely due to the presence of bending moments in the shell. So, the
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difference between the inner and outer fibre stresses in these figures is a measure of the deviation

of the shells from their membrane state. Additionally, the wavy nature in the distribution of

stresses arises out of the effect of junctions in the composite shells. The waviness reduces for

point away from the junction. From figures 5.26 and 5.27, the following observations are made,:

(I) The greater is the value of Tj, the longer is the region over which the effect of the junction,

. that is, the wavy nature of stress distribution, propagates.

(2) There is no difference between the linear and non-linear results in the region far off from

junctions.

(3) The difference between the inner and the outer fibre stresses is the greatest near the vessel

end junction at about ~ = 0.8 and decreases towards the tip of the shell meridional except

for shells of Tj = 1.00. For shells of Tj = 1.0 , the distribution of stresses are severe

throughout the meridian.

(4) The effect of junction of cap-cone shell on the magnitude of stresses is not too severe as

observed from the magnitude of stresses here in comparison to their corresponding

magnitude in a spherical cap end-closure.

(5) The most noticeable fact from figures 5.26 and 5.27 is that the sensitivity of stress to the

loading, as seen from the increasing difference between the linear and non-linear results,

increases rapidly as the critical loading is approached.

(6) In contrast to the shells with Tj=1.00 the other shells, that is, the cap-cone shells are found to

be always highly stressed around the base irrespective of tip ratio, Tj' Thus it is clear that

the cap-cone shells will fail at the base either due to instability or due to yielding whereas

spherical caps have the scope to fail either at the tip or at the base.
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5.1.1.2 Cup-cylinder and dome-cylinder composite shells

Hulls of submarines are generally constructed from combination of cylinders, cones, and domes,

as shown in Fig.I.I. The ends of conventional submarine hulls are convex domes and are often

the zone of danger under external pressure loading. This is because the pressure sustainiflg

capacity of these shells is limited by the buckling strength of the dome end instead of the

yielding strength of the dome material. Ross in one of his papers on the design of dome ends

[128] introduced a new idea of using inverted spherical domes, shown in Fig.5.28, as ends of

s'ubmarine hulls. He argued that as the inverted dome. end, concave to external pressure, will be

in tension, the possibility of dome buckling will thus be virtually eliminated. 1n the absence of

the possibility of failure due to instability, the pressure sustaining capacity of the hull will be

enormously increased as now it will fail due to yielding. In his paper [128] Ross analysed the

stresses in the cup-cylinder composite shell shown in Fig.5.29 by finite-element method and

made conclusions in support of his new idea.

To investigate the suitability and the superiority of the cup-cylinder composite shells over the

conventional dome-cylinder ones under uniform external pressure, as proposed by Ross [128],

four shells of each group were studied. The geometry of the cup-cylinder and dome-cylinder

shells are shown in Figs.5.30 and 5.31, respectively. Particulars of the cup-cylinder and dome-

cylinder composite shells, studied in this present work, are given in Table 5.2.

As the maximum membrane stress for a thin-walled sphere is half the maximum membrane

stress for a thin-walled cylinder ofthe same radius, it was decided to make the radius of the cup-

end or dome-end twice the radius of the cylinder. With such a combination the inverted spherical

cap of the cup-end composite shell extends 0.27 times the radius of the cylinder into the

cylindrical space, reducing the total internal space of the submarine. The lost space may be

compensated by lengthening the pressure hull. As the space available inside the spherical dome

is only a fraction of the volume provided by the cylindrical segment of the pressure hull, the loss

of buoyancy is not significant. Submarine hulls are strengthened by bulkheads at reasonably

close intervals. As the end-closures are the vulnerable zones for instability, it is wise to use

bulkheads near the cup-cylinder junction. In the present case, use of bulkhead very near the

junction may help increase the critical pressure. In the case of the cup-cylinder shell, setting of
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an internal bulkhead at cylinder length to radius ratio, I/R= 0.3, that is, near the tip of the inverted

cup, may make the whole space between the cup and the bulkhead useless; thus I/R = 0.4 may be

assumed to be more reasonable.

In the present analysis, the boundary conditions at the centre of the spherical cup or the spherical
" "

dome become

u 0, fJ = O,and V = 0

~d those at a point in the cylinder far from the cup-cylinder or dome-cylinder junction become

H = 0, p = O,Md w = 0

but, in order to keep the analysis parallel to that of Ross, the boundary conditions in the

. cylindrical portion are taken as

u = 0, p = O,and w = 0

Results of the investigation for the meridional mode of buckling of the cup-cylinder and dome- .

cylinder shells are presented in Table 5.3.

Instability pressures for the ~ylindrical portion of the shell, considering simple supports at the

ends and subjected to combined action of uniform lateral and axial pressure, calculated from the

Windenburg [190] formula,

Pcr =
E

(t) 5/2
2.6 -

d

I (t)1I2--0.45 -d d.

are given in column 3 of Table 5.3.

The Windenburg equation is the modified version of the Von Mises [182] equation,

~, (Ia {I (' [' ( II)']'}- = ---- .x ------+ ---- n + Tea
E [n' + O.5(7raI I)'] [n'(l/ 7ra)' + I)]' 12a'(I- v')

The Windenburg equation is an approximation that minimises the circumferential wave

number 'n'. Therefore the wave number n is considered here in the Windenburg formula even

though it does not appear in the equation.
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Table 5.2: Particulars of Cup-Cylinder and Dome-Cylinder shells. C and D in shell numbers

stand for Cup-Cylinder and Dome-Cylinder Composite shells respectively.

Shell No. RJh LIR rslR Type of junction

IC,1D 100 0.40 2.0 No'ring

2C,2D
.

100 0.40 2.0 With ring

3C,3D 250 0.40 2.0 No ring

4C,4D 250 0.40 2.0 With ring

Table 5.3: Critical loads of different shells. (I C), (1D) etc. indicate shell numbers.

Pc/E X 106

Present Analysis Windenburg Equation for Von Mises

Cylinder Equation for

Cylinder

Cup-Cylinder Dome-Cylinder ,
.

,

86.6 (1C) 17.35 (1D) 27.3 27.3 (12)

103.3 (2C) 17.5 (2D)

8.56 (3C) 2.63 (3D) 2.59 2.59 (16)

9.46 (4C) 2.98 (4D)
.



Critical loads of composite shells in Table 5.3 show that the cup-cylinder composite shells are

superior to the dome-cylinder shells of the same physical parameters and that the critical load for

the former is a few times greater than that for the latter. Results for the dome-cylinder and pure

cylinder given in columns 2, 3 and 4 of Table 5.3 show that the instability load for the dome-

cylinder is dependent on the radius to thickness ratio. Considering thicker shells, dome-cylinders

are found to buckle axisymmetrically at loads much lower than that for the asymmetric

instability of a pure cylinder. The load-displacement curves for such a dome-cylinder shown in

F'ig.5.32(b) show that buckling takes place both in the cylinder and the dome portion of the end-

closure. From this discussion it is seen that the dome-cylinder combination may even reduce the

instability load of the attached cylinder. In the case of the cup-cylinder shells, only the

cylindrical portion of the shell buckles. Fig.5.32(a) shows load versus radial deflection of the

cylinder of the cup-cylinder shell (1C). In Figs.5.33(a) and 5.33(b), the buckled modes of shells

(lC) and (lD) are shown.

In Figs.5.34(a) and 5.34(b), the circumferential stresses in the shells (lC) and (2C) of Table 5.2,

corresponding to the critical load of shell (I C) are plotted against the meridional distance, and in

Fig.5.35 the circumferential stresses in the cup end of the cup-cylinder shell with clamped

boundary (shown in the inset of Fig.5.35) and at a pressure equal to the critical load of (I C) are

plotted. From Table 5.2 it is seen that the critical load of shell (I C) is lower than that of shell

(2C). Figures 5.34(a) and 5.34(b) show that, at the junction of cup and cylinder, stresses are

maximum and compressive at both the inner and outer surfaces. The maximum stresses in

Figs.5.34(a) and 5.34(b) are around 40 and 25 times greater than that developed in the simple

cup of Fig.5.35. These high compressive stresses around the junction may lead to local

circumferential instability and either one of the two shell components may buckle

asymmetrically before the initiation of axisymmetric buckling.

5.1.1.3 Theoretical analysis of the experimental models of composite shells

The geometry of the fabricated shells deviated slightly from the assumed geometry and, from the

measured data, it was found that the CS I00 shells, described in chapter-4, can be considered as
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composite of two axisymmetric segmepts of two different radii of curvature. The geometric

parameters described in FigA.5(a) of the measured CSIOO shells, and thickness variations along

the meridian of these shells are presented in Table 4.1 .

Axisymmetric buckling loads for the different CS 100 shells are presented in column 3 and 4 of

Table 504. In column 3 the results are the axisymmetric buckling loads of imperfect experimental

models, generated from measured geometric data and in.column 4 the results are the buckling

loads for perfect spherical caps with thickness equal to the minimum thickness of the

corresponding imperfect models.

The theoretical results obtained for the CS 100 models without considering their geometric

imperfection are found to be higher than the results obtained with geometric imperfections. The

geometric imperfection, in the form of depression of the crown of the shell, when measured in

terms of height variation of the shell, is quiet negligible but the results of ~nalysis' show that

slight deviation of height at the crown of these shells drastically changes the buckling load. Thus

it may be concluded from the above observations that the spherical-caps are very much sensitive

to geometric imperfections.

During the experiment, the CSIOOmodels were found to buckle axisymmetrically at the tip. For

the comparison of experimental deformation pattern with the analytical deformation pattern,

axisymmetric prebucklirig shape of these shells were calculated. The computational deformation

pattern for these shells are shown in Figs.5.36-5AO. The computational patterns are the

prebuckling shapes of the shells, and the magnitude of the displacements are very small. Only

exaggerated patterns are shown here for better perception of the geometry ~t the inception of

buckling.

The axisymmetric buckling loads of experimental models CS30, CS60 and CS80 are presei1ted

in column 6 of Table 5.5. Comparison of axisymmetric buckling results of CS 100 models from

Table 504 with other cap-cone composite models from Table 5.5 show that cap-cone models of

higher slant height buckles at higher loads.

67



Table 5.4: Experimental and analytical ~uckling loads of spherical cap end-closure CSIOO.

E for copper is 97.86 Gpa

Model Experimental Critical Axisymmetric Critical Load with Axisymmetric CritiCal Load for Perfect

No. Load PIE Experimental Geometry PIE Geometry with Lowest Thickness PIE

1 2.934 x 10" 7.25 X 10" 10.15 X 10"

2 3.211 X 10" 6.04 X 10" 8.456 X
"

.3 5.299 x 10" 8.11 X 10" 11.354 X 10"

4 5.212x 10" 15.5 x 10" 21.7 x 10"

5 5.524 x 10" 8.99 X 10" 12.586 X 10"

Table 5.5: Experimental and analytical buckling loads of spherical tip conical end.closures.

E for copper is 97.86 Gpa

End. Model Experimental Critical Asymmetric Critical Load for Cone PIE Axisymmetric Critical

closure No. Load PIE Load for Experimental

type Geometry PIE

Ends Hinged Ends Fixed

I - 1.666 x 10" (7) . 1.94 x 10"(8) 1.94 x 10''(8) 26.2 x 10"

CS30 2 1.577 x 10"(7) 1.91 x 10''(8) 1.91 x 10"(8) 26.2 x 10"

3 1.666 x 10"(6) 2.03 x 10''(8) 2.04 x 10"(8) 26.3 x 10"

I 2.036 x 10"(8) 5.085 x 10"(11) 5.195 x 10"(11) 18.7 x 10" -
CS60 2 3.711 x 10"(9) 5.082 x 10"(14) 5.199 x 10"(14) 27.0 x 10"

3 3.711 x 10"(9) 5.928 x 10''(14) 6.071 x 10"(14) 31.6x1O"

4 3.728 x 10''(8) 5.461 x 10"(14) 5.88 x 10"(14) 20.0 x 10"

I 5.457 x 10''(13) 6.784x 10"(25) 7.340xlO''(26) 15.9 x 10"

CS80 2 3.970 x 10"(13) 4.142x 10"(27) 4.445xlO''(27) . 10.5 x 10"

3 4.800 x 10"(13) 5.513x 10"(26) 5.937xlO''(26) 13.0 x 10"
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The meridional stresses in the imperfect experimental models, CS I00, at their theoretical critical

loads are shown in Figs.5.4l(a) to 5.45(a) corresponding to their model numbers 1,2,3,4 and 5,

respectively as presented in Table 4.1, and the circumferential stresses in them are shown

respectively in Figs.5.4l(b) to 5.45(b). Earlier comments about the nature of distribution and

magnitude of stresses in cap-cone end-closure also hold true here. But here the junction near the

crown of the end-closures as created by the imperfection, is causing far larger perturbation in the

membrane state of the end-closures than the junction at the base. In between these two junctions,

the membrane state of stress prevails. The junction in the crown due to imperfection has caused

high compression in the crown which has ultimately enhanced the instability of the crown. The

effect of geometrical imperfection on the development of stresses explain to a large extent the

difference in the theoretical and experimental critical pressure of spherical shells.

Non-linear axisymmetric stress analysis of the cap-cone models CS30, CS60 and CS80 at the

analytical asymmetric critical load of the conical frusta are presented in Figs.5.46 to 5.50.

Comparison of stresses in the cap-cone end-closures and the corresponding conical frustum

show that both the axial and circumferential stresses in the composite shells are smoother than

those in the conical frustum with fixed edges.

5.1.2 Asymmetric Buckling Analysis of Experimental Models

Buckling tests were performed on four different sets of shells, described earlier. Photograph of

the electrodeposited models are shown in Fig.5.5l. It has already been described in chapter-4

that the stainless steel base was fabricated by removing the spherical tip of the die of the

composite cap-cone shell of the highest fj (fj = riR), so the shells with the highest fj, when

attached to this plate, practically became a simple spherical cap with fj = 1.00, where the conical

portion of these shells worked as the base fixing element. For the other three sets, the same

portion of the conical segment from the bottom of the shell base worked as base fixing element.

Thus practically R is the radius at the junction of the shell and the stainless steel base-plate and rj

is the radius at the junction of the spherical tip and the conical frustum of the end-closure.

While performing experiment on the cap-cone models, it was observed that buckling occurs

within the individual shell elements and not in regions across the junctions. Buckling occurred in
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the conical frustums asymmetrically with different number of circumferenti,!l lobes depending

on the value of rj' To make comparison between the experimental and theoretical buckling loads

of these models, eigenvalue solution of the stability equations described in chapter-3, was

obtained. The asymmetric buckling load for the conical frusta of the CS30, CS60 and CS80

models with both edges fixed (u = v = w = ~= 0) and both edges hinged (u = v = w = M~ = (J)
were computed using the geometric data of these shells presented in Table 4.2. The computed

asymmetric buckling loads are given in column 4 and 50f Table 5.5. The results show that,

f~r cones of longer slant height, the buckling loads are independent of edge conditions, and for

smaller slant height, they are around 5% to 10% higher than those for hinged edges. It is also

found that asymmetric buckling loads of shorter cones are higher than that of the longer ones.

5.2 RESULTS OF EXPERIMENTAL INVESTIGATION

Experimental results of the four sets of cap-cone composite shells, whose theoretical results are

presented above, are discussed here.

5.2.1 CSI00 Models

The CS 100 models are simple spherical caps of 1200 angle. The geometry of the fabricated

models deviated slightly from the assumed geometry. From the measured data, it was found to

be a combination of two axisymmetric shells of revolution of two circular arcs of two different

radii of curvature. Experimental buckling loads for different models of this group are presented

in column 2 of Table 5.4.

The experimental load versus changes in volume of these shells are given in Fig.5.52. The

experimental load-volume curves are almost linear in their initial stages and the change in

volume is very small upto a certain load level where from the change iIi volume increases with a

high rate up to the critical point where it suddenly turns either downward or becomes flat. As the

wall of the pressure chamber was transparent, during the experiment, at every load step, the

shape of the shell was also visually monitored. No visible deformation was found to appear

before the critical load, when, all on a sudden, large deformation took place. at the tip of each

shell of this group. The deformation pattern as photographed after the experiment is shown in
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Fig.5.53. Though the shells were slightly imperfect (geometric) at the tip, the deformation were

not limited in the imperfect zone, rather it extended far beyond the imperfect zone.

5.2.2 CS30 Models

Submarines and many other pressure-sustaining systems often use a hemispherical or spherical

cap as the end-closure of cylindrical shells. Spherical caps, when combined with cylindrical

shells, develop sharp geometric discontinuity which in turn develop high discontinuity stress and

makes the junction vulnerable. Moreover spherical cap of same thickness but of higher radius of

curvature are generally very weak instability in comparison to a spherical cap of smaller radius

of curvature. A conical frustum of smaller slant height are found to be stronger against external

loading than that of a frustum of longer slant height. Considering these facts, it is expected that a

conical frustum with a spherical tip would prove to be a superior end-closure for pressure

vessels. With this in mind a group of cap-cone combinations were studied analytically and

discussed earlier in this chapter. Theoretical study of axisymmetric buckling load for such

combinations show that cap-cone composite end-closures are superior to spherical end-closure

under uniform external pressure (Ref.7S). To ascertain the validity of this study, three sets of

cap-cone combinations were fabricated and tested under uniform external pressure. CS30 is one

of these combinations. Geometric data and thickness of these shells are presented in Table 4.2.

Results of the experiment are discussed below.

Experimental results of the CS30 shells are presented in column 3 of Table 5.5. All the CS30

shells are found to buckle asymmetrically with about 6 or 7 number of circumferential lobys

around the circumference. The lobes are found to form only in the conical portion of the shells.

The load versus volume change curves for these shells, presented in Fig.5.54, shows that,

initially, when load is gradually increasing, the change in volume is negligible ujJto a certain

load level and then suddenly become almost flat within a few steps of load with a very high rate

of change in volume with respect to load. The circumferential lobes were found to form within a

few steps of the flat portion of the load versus volume curves. After the initiation of the lobes,

further attempt of increasing the load, made the lobes more prominent with large increase in

volume for a very small increase in the load. At this stage an attempt of load release made the

lobes disappear. This indicates that the buckling phenomena of these shells are elastic even in
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the post buckling region. To develop permanent deformation pattern in these shells, load was

increased until the shells collapsed suddenly. In this last attempt, the load remained almost

unchanged and the deformation pattern got distorted.

5.2.3 CS60 Models

The CS60 models were the experimental shells with rj about 0.60. Geometric data and

thickness of these shells are given in Table 4.2. Experimental buckling loads of these cap-cone

shells are given in Table 5.5. As seen in this table, all the shells of these group buckle

asymmetrically with about 80r 9 circumferential lobes. Similar to the CS30 shells, lobes

formed only in the conical pprtion of these models. The load versus volume change curves for

these models shown in Fig.5.55, are straight lines at the beginning of loading and gradually

become non-linear at higher loads. Near the critical load the change of volume is very high

with respect to the increase of load. Circumferential lobes are found to form near the critical

load. When load was released most of the circumferential lobes disappeared, keeping about

. two or three lobes permanent. An attempt was made to increase load above its critical value,

but that did not succeed, rather the volume change increased further making the

circumferential lobes more prominent with the valleys of the lobes deflected further inward

and. finally it collapsed leaving two or three lobes permanent and the remaining lobes

distorted. The photograph. of the collapsed shape of the shells are shown in Fig.5.56.

5.2.4 CS80 Models

In these group of composite cap-cone models, the conical portion is very small. Here the tip

ratio rj, of the models are about 0.80. Thickness and geometric data of these models are given

in Table 4.2. Experimental results of these shells, presented in Table 5.5, show that all of the

shells buckled asymmetrically with 13 circumferential lobes. During the experiment, near the

critical load, the lobes were found to form around the circumference of the conical frustum of

. the models. When load was released from a state at which all the circumferential lobes were

visible, all the lobes disappeared. An attempt to increase load further above that at which the

lobes were all visible was made and it was found that all the shells of these group suddenly,

collapsed with one large lobe at one side extending from the base up to the tip of the shells
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keeping the remaining surface of the sheUs slightly distorted with no appreciable change in

load. The load versus volume change curves for these models are shown in Fig.5.5? and the

photograph of the collapsed shape of these models are shown in Fig.5.58. This exceptional

phenomenon may be due to the reason that these shells are stressed throug~out with stresses

that corresponds to the buckling state of both portions of the shells.

Comparison of the load versus volume change curves of these shells shown in Fig.5.5? with

those of the CSIOO shells shown in Fig. 5.52 show that these two sets of curves are similar in

nature though the buckling pattern is quite different.

5.3 COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The buckling loads found both from the theoretical analysis and the experiment on the

experimental models are presented in Fig.5.59 against rj for all the four ~ets of shells. The

analytical results for the cap-cone composite shells are the asymmetric buckling loads of the

attached cones. In the case of the pure spherical caps the analytical results are the

axisymmetric buckling loads of the experimental models. From column 6 of Table 5.5 it is

seen that the axisymmetric analytical results of the experimental models CS30, CS60 and

CS80 are always much higher than the experimental results, and these are shown in Fig.5.59.

The buckling loads of CSIOO, presented in Table 5.4, show that the experimental results are

always lower than the corresponding theoretical results of the experimental models. The

theoretical results obtained for these shells without geometric imperfection are found even higher

than the results obtained with geometric imperfections. Comparison of loa4 versus axial and

radial displacement curves for these experimental models, presented in Figs.5.60-5.64. and 5.65'~

5.69, respectively, with the load versus volumetric change curves presented in Fig.5.52 show

that, the load versus change in volume curves are more or less similar to the load versus tip

displacement curves.

The theoretical deformation pattern of these shells are shown earlier in Figs.5.36-5.40. The

theoretical patterns are the prebuckling shapes of the shells where the magnitude of the

displacements are very small. On the other hand, the photographs of the deformed shells shown
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in Fig.5.53 are the post-buckling patterns. In the case of the CSIOO shells the prebuckling

theoretical deformed shapes and post-buckling experimental shapes are in good agreement.

Comparison of the experimental and the theoretical results of other cap-cone shells, presented

in Table 5.5, show that, the analytical axisymmetric buckling results for the cap-cone shell~

are always higher than the experimental results, and the theoretical results of asymmetric

buckling of the attached cones are close to the experimental results. Fig.5.59 also shows that,

with the increase of rj' both the theoretical (asymmetric) and the experimental buckling loads

increase. For the longer (CS30) and shorter (CS80) cap-cone composite shells the

experimental and analytical asymmetric results are in very good agreement. For the cap-cone

shell models of intermediate height (CS60) and for pure spherical cap models (CS I 00), the

difference between the experimental and analytical results are relatively higher than the other

two cap-cone shells (CS30, CS80). Though analytical axisymmetric results of the spherical-

cap models are higher than all other cap-cone models, the experimental results of spherical cap

models are found either equal to or less than the experimental results of CS80 models.

Comparison of the experimental results of the CS30 models with the theoretical results oLthe

asymmetric mode of buckling of the attached conical frustum show that experimental results

are about fifteen percent lower than the asymmetric results of the relevant conical frustum.

Circumferential lobe numbers for both the experimental and analytical results are given with

the buckling loads in parenthesis. Analytical axisymmetric buckling loads for all these shells

given in column 6 of Table 5.5 show that axisymmetric buckling results of the CS30 shells are

about fifteen times higher than the experimental results.

Asymmetric analysis of the conical frustum of the CS60 cap-cone models was also done with

two edge conditions. Experimental and analytical results of these shells, given in Table 5.5;

show that the experimental results are lower than the asymmetric analytical results of the

relevant cone by some factors ranging from 1.5 to 2. The number of ciroumferential lobes

from the analysis are found to be almost twice of that found from experiment. This

discrepancy may be due to the reason that observed lobes in the experiment are in the post

buckling state whereas the numbers found from analysis are corresponding to the state when
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buckling just starts with an infinitesimal displacement which may be apprehended with a very

high speed camera along with proper magnification facilities ..

Comparison of the computed axisymmetric buckling loads of the CS60 models corresponding

to geometric and thickness data presented in column 6 of Table 5.5 with their experimental,

buckling loads show that theoretical axisymmetric buckling loads are around 8 to 10 times the

experimental loads.

Comparison of the experimental results of the CS80 models and analytical asymmetric

buckling results of relevant conical frustum, presented in Table 5.5, show that, the analytical

buckling loads are very close to the experimental results. Theoretical axisymmetric buckling

results of these shells with geometric imperfection, given in column 6 of Table 5.5, are about

twice the experimental results.

Whatever may be the fabrication technique, the tips of the spherical caps are always found to

be imperfect, both in terms of the geometry and the thickness. The geometric imperfections

that mostly occur at the tip is flat-spot type, that is the tip is generally a cap of higher radius,.of

curvature. The present analysis shows that this type of imperfection is very much sensitive to

buckling load, and even the analytical solution of this type of imperfect shells gives buckling

load 1.25 to 1.5 times lower than that obtained with perfect geometry. The scatter of analytical

and experimental results of spherical caps (CS100), shown in Fig.5.59,are quite wide.

Inclusion of both the geometric and the thickness imperfection in the analysis improved the

predictability of the buckling load. With very small deviation in geometry of the spherical-cap

models, the loads (Table 5.4 shell no 4 and 5) are found widely scattered, which reveals that,

not only the tip geometric imperfection, but even the geometric variation at any point on the

meridian of spherical-cap models are also sensitive to external pressure loading.

The analytical and experimental results of the CS80 models show that, these are quite

insensitive to both geometric and thickness imperfections. None of the CS80 shells initiated

buckling at the tip, the zone of all sorts of imperfections. Further, their experimental buckling

loads were found to be the highest among all other composite end-closures studied in this
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work. Thus it may be inferred that a spherical cap with a slight tangential conical extension

may serve as a better end-closure under uniform external pressure.

The stresses in the experimental cap-cone models at their analytical asymmetric critical load

and the corresponding stresses of the conical frusta, presented in Figs.5.4<;i-5.50, show that,

both the axial and the circumferential stresses in them are smoother than those of the conical

frustum with edges fixed. The axial stresses in the conical frustum with fixed edges are lower

than that in the composite models, which might be the cause of higher buckling loads of the

conical frustum with fixed edges.

Photograph of the collapse modes of the four different cap-cone model shells are shown in

Fig.5.70. Comparison of these collapse modes shows that the deformation of the CS80 shells

extends from the base upto the tip of these models, whereas in case of the other cap-cone

shells (CS30, CS60 and CSIOO) either the shells deform at the tip (CSIOO) or along the

conical portion of the shells (CS30 and CS60). From these deformation pattern it may be

concluded that the CS80 shells are efficiently stressed throughout the meridian, which makes

these shells strong against extemalload.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The objectives of this research work ultimately lead to the searching of an axisymmetric sh~il,

suitable as an end-closure for pressure vessels under uniform external pressure. In line with

these objectives, the following conclusions have been drawn from the investigation carried out

in this thesis.

I. The buckling of spherical-cap end-closures are highly sensitive to imperfections in

geometry as well as in thickness.

2. Spherical-cap end-closures buckle axisymmetrically.

3. The tip of the spherical-cap end-closure buckles inward under external pressure.

4. Cap-cone composite end-closures buckle asymmetrically.

5. The asymmetric buckling of cap-cone end-closure takes place in its conical frustum.

6. Buckling loads of cap-cone composite end-closures can be predicted with an

asymmetric analysis of the relevant conical frustum with both edges clamped.

7. Imperfection sensitivity of cap-cone end-closures is much less in comparison to that of

spherical-cap end-closures.

8. . Imperfection sensitivity of cap-cone composite end-closures of rj around 0.8 is

negligible and fails at about 2.5 times the loads of the other cap-cone end-closures

investigated here. Thus a cap-cone end-closure of rj about 0.8 may be recommended

as the most suitable end-closure of pressure vessel under uniform external pressure. As

these end-closures are less imperfection sensitive, lower safety factor can thus be used

in their design.
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9. The present technique of experimental determination of critical load from the tracing

of fundamental path in terms of volume change is found to be highly reliable and very

sharply defined. Earlier techniques of detection of critical load from the measurement

of geometrical displacement not only required very precise instrumentations but also

lead to controversial conclusions as discussed in Ref. 177.

10. Axisymmetric buckling of the cup-cylinder end-closures as proposed by Ross [128] and

the conventional dome-cylinder end-closures under external pressure show that cup-

cylinder end-closures are superior to dome-cylinder end-closures as pressure hulls of

submarines.

II. In case of cup-cylinder composite end-closure, within the limited ranges of parameters

studied here, axisymmetric buckling takes place only in the cylinder portion, and the

buckling load is around 4 times higher than that of the dome-cylinder end-closures of the

same physical parameters.

12. Both the dome and the cylinder of a dome-cylinder end-closure buckle almost

simultaneously. Sometimes the cylinder portion of a dome-cylinder shell is found to

buckle axisymmetrically even at loads lower than the axisymmetric buckling pressure of

a cylinder.

6.2 RECOMMENDATIONS FOR FUTURE WORK

In the light of experiences gained during this research work, the author feels that the follo\\iing

further investigations will enrich and enhance the comprehensibility of the field of the present

work.

1. The present experimental work on only one apical angle of the cap-cone composite

end-closures should be extended to include other apical angles in both the analytical

and experimental studies.

2. In case of cap-cone end-closure, maximum stress develops at the vessel and end-

closure junction due to sharp geometric discontinuity. This may be eliminated by

adding a suitable toroidal knuckle at this junction, which may further improve the
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buckling load capability of the c.ap-cone composite end-closures. Thus, the effect of

using toroidal knuckle at vessel and end-closure junction should be studied.

3. Axial loading in shell structures is a very common phenomenon. Rockets and under-

water vessels are under high axial compression while accelerating. Thus instability of
....

composite shells under axial compression and axial tension along with external

pressure may be undertaken for stability analysis.

4', Circumferential stresses at the junction of the cup-cylinder composite end-closures are

compressive both at the inner and outer surfaces, which may lead to asymmetric buckling

prior to meridional buckling, Thus, asymmetric analysis should be undertaken for

ultimate conclusion on the suitability of cup-cylinder pressure hulls,

5. In composite shells with sharp geometric discontinuity at the junction of different

segments, compressive stress develops at the junctions even under the action of

internal pressure. So buckling analysis of composite shells under internal pressure

should be undertaken to add to the comprehensibility of the stability problems of

composite end-closure of vessels.

6. Buckling analysis of imperfect composite shells may also be undertaken for

understanding imperfeCtion sensitivity of these shells. It IS a fact that shells are

generally very imperfection sensitive with respect to stability and all the shells in use

are imperfect.

7. In pharmaceutical and petrochemical industries composite shells are used in high

temperature environment. Thermal stressing may lead these shells to buckling failure

near the junctions of geometrically dissimilar segments. Buckling analysis of

composite shells under thermal stressing is also an area of exploration.
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APPENDIX-A

PROGRAMMING FEATURES

A.I GENERAL FEATURES

The computer program used in the present investigation is adopted from that of Uddin ["l60]

with necessary modifications to suit the requirements of solving stability problems of

composite shells of revolution under uniform external pressure. The program is based on

Reissner's non-linear theory of axisymmetric deformation of shells of revolution [120]. The

multi segment method of solution, developed by Kalnins and Lestingi [69], takes care of

solving the governing equations and the integration in it is carried out by a predictor-corrector

method. The predictor and corrector are given, respectively, by formulas (19.16) a~d (19.17)

of Ref. [97]. To secure the six starting values necessary for the application' of this pair of

predictor and corrector, the six-point formulas, (19.10-19.14), of Ref. [97] are being used. lt

should be noted here that all these formulas contain an error of the order of H7 where H is the

distance between two consecutive computational points and, thus, they are highly

sophisticated.

In solving the governing equations, the shell meridian is divided into slJitable number of

segments depending upon the length of the meridian and the thickness ratio, RIh, of the shell.

The program first prints out the nondimensional values of the fundamental variables (u, ~, w,

V, H, M~) based on linear theory which is followed by the print-out of non-linear results at the

same value of the loading parameter. From here on, the program will produce non-linear

results for increasing loading steps.

The program also prints out the detail results in terms of radial displacement U, axial

, displacement W, circumferential moment Me, meridional moment M;, circumferential

stress resultant Ne ' meridional stress resultant N;, circumferential stress at the inner surface

Gc/(PRIh), circumferential stress at the outer surface Gci(PR/h), meridional stress at the inner

surface Ga/(PR/h), and meridional stress at the outer surface Gao/(PR/h), in that order,

columnwise.
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A.2 TREATMENT OF BOUNDARY CONDITIONS

Equations (3.153a), written in terms of normalised fundamental variables and in accordance

with the statement of Eqns. (3.l2c), appear as

I 0

o I

o 0
o 0
o 0
o 0

0 0 0 0 u u

0 0 0 0 ~ ~

0 0 0 w = w (A-I)

0 I 0 0 V V

0 0 I 0 H H

0 0 0 Mi; Mi;

In the matrix Eqns. (A-I), the elements of the column matrix on the left hand side remain in

the same order, whereas, those on the right hand side should be arranged in such a manner that

the three prescribed elements at the boundary become the first three elements of this column

matrix. According to Eqns. (3.12c), ifu is specified at the'boundary, the first and the 5th rows

of the unit-matrix of (A-I) remain the same, while specification of H at the boundary will

require t~e interchange of these two rows which will interchange u and H in the column

matrix on the right hand side. Similarly, if ~ is specified at the boundary, the second and the

last rows remain as they are, and interchanged when Mi; is specified. Lastly, the third and the

fourth rows of the unit-matrix are kept the same or interchanged depending on whether w or V

is specified at the boundary. The same operation is carried out for both the boundary points.

The transformed unit matrices of (A-I) are then designated by TI at the starting boundary and

by TM+ I at the finishing boundary.
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A.3 ON THE USE OF THE PROGRAM

In order to use the program for obtaining' solutions of different problems the knowledge of the

definitions of input and output variables is essential. Therefore these variables with their

definitions are given in the table at the end of Appendix A.

In part A of the program the necessary information required for the solution of a problem is

read in. The first READ statement here is for 'CLS', is the nondimensional distance of the top

bOJ.!ndaryof a shell from its axis. For shells closed at the tip, 'CLS' is zero. The subsequent

READ statements are for the initial value of the loading parameter 'EM', the value of

incremental step of the loading parameter 'EMI', the number of segments 'M' into which the

shell meridian is divided for solution, Poisson ratio of the shell material 'AN', the number of

loading steps 'SOBI', radius to thickness ratio T, type of shell 'IZ', type of shell segments in

case of composite shells 'IG(I)', and the representative values for different shell segments

'CIND(I)', The value ofIZ from I to 5 represents different types of shells. IZ=I stands for

cylindrical shell, IZ=2 for spherical shell, IZ=3 for conical shell, IZ=4 for ellipsoidal shell and

IZ=5 for composite shell. For composite shell 'IG(I)' and 'CIND(I)" are read from the input

data file for each segment of the composite shell. If the value of IG is I at any node then the

shell element from that node to the next node is a line element and if it is 2 then it is a circular

arc element CIND at any node against IG value of I is the nondimensional distance of the line

element and against the IG value of 2 is the nondimensional radius of curvature (r/R) of the

circular arc element The 'READ' statement for the variable APHH(I) reads angular position'

of a shell segment with reference to the axis of the shell. The variable X(J, I) reads arbitrary

given values of the independent variable for shells other then the composite shells . For

composite shells X(J,I) is calculated by the program itself from given data, The initial values

of the six fundamental variables are read by the variable X(J,I), (I=2,7), for nodal points J, (J =

. I, M+ I). The boundary values for any three of the six fundamental variables at the starting

boundary are accepted by the variable XX(I, I), where XX(I, I) stands for u or H, XX(2, I) for

~ or M and XX(3,1) for w or V, In the present analysis for clamped boundary the prescribed

boundary conditions are:

XX (1,1) u = 0.0
XX (2,1) = ~ = 0,0
XX (3,1) = w = 0.0
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and for hinged boundary, these become

XX (1,1) = u = 0.0
XX (2,1) = M = 0.0
XX (3,1) = w = 0.0

The 'READ' statement next to the above statement reads in the three prescribed boundary
, .

conditions at the final boundary. For the present analysis, for a shell open at the tip with

clamped boundary these three boundary conditions are:

XY (1,1) = u = 0.0
XY (2,1) = ~ = 0.0
XY (3,1) = w = 0.0

and for a shell open at the tip with hinged boundary, these are

XY (1,1)

XY (2,1)

XY (3,1)

=
=

u

M

w

=

0.0

0.0

0.0

In case of closed boundary at the tip, the final boundary XY(I,I) become

XY (1,1) = u 0.0
XY (2,1) = ~ = 0.0
XY(3,1) = V = 0.0

The values of the boundary condition indicators at the starting are read in by the variables

'lSI', 'IS2', 'IS3'. The appropriate values of the indicators 'lSI', 'IS2', and 'IS3' are given in

the following table:
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Specified quantity Indicator and its value

u IS I = 0
.

~ IS2 - 0

w IS3 = 0

V IS3 - I -, '.

H IS I = I

M~ IS2 - I

The values of the boundary condition indicators at the final boundary are read in by the

variables 'IFI', 'IF2', 'IF3'. Their appropriate value are given in the above table where the

quantities 'lSI', 'IS2', and 'IS3' should be replaced by 'IFI', 'IF2', and 'IF3', respectively. The

variable 'MX(I)' reads segment type of a composite shell similar to 'IG(I)', and 'MXN(I)'

reads the location of junction of dissimilar segment in a composite shell. As for example if

there are junctions at node 3 and node 5 then MXN(3)=3 and MXN(5)=5 and the rest MXN

are zero.

The variables 'NNNI' and 'NNN2' read the range of values of circumferential lobes for the

determination of the stability determinant in case of asymmetric buckling. Asymmetric

analysis of shells need specification of four fundamental variables at each boundary of a shell

and these are read in by the variables 'ITP' and '!BT' at the final boundary and starting

boundary, respectively. ITP=!BT=I.O stands for clamped boundary and ITP=!BT=2.0 for

hinged boundary.

In the initialisation block of part A of the program, certain quantities are initialised and certain

fixed parameters of the shell are calculated. Part B of the program deals with the problem of

adjusting the given boundary conditions to the solutions of the matrix equations. Part C of the

program concerns with the calculation of normalised constants involving shell parameters,

material constants, and loading. Under part D of the. program the output of the results is

handled. The remaining portion of the program deals with the integration of different systems

of differential equations and the solution of matrix equations.
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A.4 OUTPUT OF THE PROGRAM

The first output is the given initial nodal values of the independent variable C,and the six

fundamental variables u, ~, w, V, H and Mi;' in their written order, columnwise, and in tabular

form. The first output is accompanied the various input parameters and indices. The second,

output gives the value of number of pass, residue, that is, the sum of the differences of the

absolute values of the fundamental variables at the nodal points of the two recent consecutive

passes, and the current value of the normalised load.

The first output is then repeated for solution based on linear theory. The next output presents

the details of the solution based on the linear theory. Here the following quantities are printed

out in tabular form and in the order of c" u, w, Me, Mc' Ne, Nc' Gc/(PRIh), Gci(PR/h),

Ga/(PR/h), Gao/(PR/h) columnwise. For each segment, these quantities are printed out at six

equidistant points. This can be changed to twenty-one or eleven points by simply changing the

increment of the loop parameter of part D of the program that handles the output of results.

With the results of first linear output, the linear solution is repeated once again to get better

solution. After the print-out of the second linear solution, there will be repetition of the second

and first out-put (now based on non-linear theory) for a number of times 'until the solution

converges. When convergence is attained the details of the non-linear solution will be printed

out. The solution at the nodal points are printed out twice, first, based on the initial value

integration and second, based on the solution of matrix equations, to check the accuracy of the

results. From this point onward the non-linear solutions will be repeatedly printed out for

increasing loadings.

The output files 'AX', 'RD' and 'SHAPE' are opened additionally for the convemence of

plotting the load-deflection curves and the deformed shell meridian. The first column of the

output file 'AX' prints out the absolute value of the loading parameter, (P/E), while the rest of

the columns print out the axial displacements, (wh/R\ for the nodal points. Similarly, the

output file,'RD', prints out the radial displacements, (uh/R2). In the output file, 'SHAPE', the

first and the third columns print out the points along the shell axis while the second and the

fourth columns print out the corresponding points along the shell meridian, before and after

deformation, for the increasing values of the loading parameter.
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A.S TABLE OF INPUT-OUTPUT VARIABLES OF THE PROGRAM

Variable Definition

CLS Meridian length of a shell at the open tip

EM PIE, Normalised load

EMI Increasing step of EM

SOBI Number of desired loading step

M Number of segments

APHH(I) Meridional angle at the nodal point I

RC Constant, R = c,e/R

AN Poisson's ratio, v

TK R/h, thickness ratio

IO(I) Segment type in a composite shell
~,

CIND(I) Segment length or radius of curvature of segments
-

X(1,I) c; at the nodal point I
X(2,I) Uat the nodal point I

X(3,I) j3 at the nodal point I
X(4,I) w at the nodal point I

X(S,I) . V at the nodal point I

X(6,I) Hat the nodal point I

X(7,I) M~at the nodal point I

XX(1,I) value of U or H at the starting boundary

XX(2,I) value of j3 or M~at the starting boundary
~. ,

value of W or V at the starting boundary
r:~""""XX(3,I) \, .....•,.

XY(I,I) value of U or H at the finishing boundary

XY(2,I) value of j3 or M~at the finishing boundary

XY(3,I) value of w or V at the finishing boundary
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N~ = N~/(PR)

Ne Ne/ (PR)

Me = Me / (PRh)

w = wEh / (P R2)

V = V / (PR)

H = H/(PR)

M~ = M~ / (PRh)

fJ=fJ

-
~ = ~ / ~e

U = uEh / (PR2)

O"ci = O"ci / E , normalised circumferential stress at the inner surface of

the shell

ISl,IS2,IS3 indicators of boundary conditions at the starting boundary

IFI,IF2,IF3 indicators of boundary conditions at the finishing boundary

. IBT indicator of boundary condition at the starting boundary

for asymmetric analysis

ITP indicator of boundary condition at the final boundary

for asymmetric analysis

Number of Pass; NP = I indicates linear solutionNP

T22(N)'

T7(N)

T9(N)

Y(l,N)

Y(2,N)

Y(3,N)

-, Y(4,N)

Y(5,N)

Y(6,N)

Y(7,N)

STI

ST2 O"co = O"co / E, normalised circumferential stress at the outer surface of

the shell

ST3

ST4

0"ai = 0"ai / E , normalised axial stress at the inner surface

0"ao = 0"ao / E , normalised axial stress at the outer surface

* N denotes points in a segment at which the variables are evaluated.
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APPENDIX-B

PROGRAM FOR SHELL ANALYSIS

* ---.---.---.-.--.--.-------------.---------
C IMPLICIT REAL *8 (A-H,O-Z)

REAL *8 ZXX(31 ),ZZXX(2l),ZZNN(21), YYN(21 ),PPH(21 ),ROO(21)
REAL *8 X(31,7),Y(7,21),Z(7,6),Yl(7,21),Y2(31 ,3),Y3(31 ,3),F(7,21)
REAL *8 FK(21)
REAL *8 H(30),IG(30),APHH(31),TK(30),X7(31 ,7),AK(4),T22(21),Z2(3,I)
REAL*8 AY(3,1),BY(3,1),APH(30)
REAL *8 TS 1(3,3), TS2(3,3),TS3(3,3), TS4(3,3),TFI (3,3), TF2(3,3)
REAL *8 TF3(3,3),TF4(3,3),AI4(3,1),AI5(3,1),AI6(3,1),AI7(3, 1)
REAL *8 AI8(3,3),C(31,3,3),A(31,3),E(31 ,3,3),B(31 ,3),Xl(3, 1)
REAL *8 X2(3,1),Cl(21),C2(21),T7(21),T9(21),TlO(21),R(21),PH(21)
REAL *8 RO(21 ),Z 1(3, 1),Al (3,3),A2(3,3),A3(3,3),A4(3,3),A6(3,3)
REAL *8 A7(3,3),A8(3,3),A9(3,1),AI0(3,1),All(3,1),AI2(3,1)
REAL *8 XX(3,1),XY(3,1),U(6,6),XYX4(31),XYX2(31)
REAL *8 PB2,RC,AKL,EL,FL,DR,TO, TL,ZZ,FF,P3,DP ,PHI,ALP,T3,T,T21 ,TM
REAL *8 CIND(30),S(30)
REAL *8 SUMM(30),FFI ,FF2,FF3,FF4,FF5,FF6,FF7,FF8,FF9
REAL *8 Yll(21),Y33(21),HS(30),DXDl(30)
REAL*8 EM,EMl,DXD,XNN
REAL *8 Pll(4,4),P22(4,4),P33(4,4),P44(4,4),P55(4,4),
+ XAl(4,4),XB 1(4,4),XCl(4,4),XDl(4,4)
REAL*8 XA(4,4),XB(4,4),XC(4,4),SSI
REAL*8 ABl(4,4),ACl(4,4),ADl(4,4)
REAL*8 BBl(4,4),BCl(4,4),BD1(4,4)
REAL*8 CBl(4,4),CCl(4,4),CDl(4,4)
REAL*8 DB 1(4,4),DCl (4,4),DDI (4,4)
REAL *8 EB 1(4,4),ECI (4,4),EDI (4,4)
DIMENSION MX(30),MXN(30)
CHARACTER INP * 9,OUTP * 9,OUTP2 * 9,OUTP3 *9,OUTP4 *9

PRINT '(IX,A,$)', 'ENTER NAME OF THE INPUT DATA FILE: '
READ*,INP

PRINT '(lX,A,$)','ENTER NAME OF THE OUTPUT FILE: '
READ*,OUTP

PRINT '(IX,A,$)','ENTER NAME OF THE 2ND. OUTPUT FILE: '
READ *,OUTP2

PRINT '(lX,A,$)','ENTER NAME OF THE 3RD. OUTPUT FILE: '
READ* ,OUTP3

PRINT '(lX,A,$)','ENTER NAME OF THE 4TH. OUTPUT FILE: '
READ* ,OUTP4
OPEN(l,FILE=INP, STATUS='OLD')
OPEN(3,FILE=OUTP, STATUS='NEW',RECL=1400)
OPEN(4,FILE=OUTP2, STATUS='NEW',RECL= 1400)
OPEN(5,FILE=OUTP3, STATUS='NEW' ,RECL= 1400)
OPEN(7,FILE=OUTP4, STATUS='NEW',RECL= 1400)
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NP=O
IN=I
SOB2=0.
SS=1.
N2=6
N3=3
PB2= 1.5707963268

(;-------------------------------------------------------------
(;========= PART A. (READING IN INFORMATION)=================
(;-------------------------------------------------------------

READ(I,*)(;LS
IF«;LS.EQ.O.O)THEN

WRITE(3,2200)
ELSE
WRITE(3,2201)
ENDIF
READ(l,IIO)EMI,SOBI
WRITE(3,110)EMI,SOBI

25 . READ(l,59)M,IZ
WRITE(3,59)M,IZ
IF(IZ-5)515,516,516

516 READ(l,590)(IG(I),I=I,M)
WRITE(3,590)(IG(I),I= I,M)
READ( I, II 0)(GND(I),I = I,M)
WRITE(3,110)«;IND(I),I=I,M)

590 FORMAT(30F3.1)
READ(l,IIO)(APHH(I),I=I,M+ I)
WRITE(3,110)(APHH(I),I=I,M+I)

2100 FORMAT(3IF5.2)
2200 FORMA TCTHE TOP IS (;LOSE ')
2201 FORMATC========== OPEN TOP ========')

SUM=O.O
DO 100 I=I,M
IF (IG(I).EQ. 1) THEN
S(I)=(;IND(I)
ELSE
S(I)=DABS(GND(I) )*DABS(APHH(I+ I )-APHH(I) )*PB2/90.0
ENDIF
SUM=SUM+S(I)
SUMM(I)=SUM

100 (;ONTINUE
R(;=SUMM(M)+<=LS
X(l, 1)=1.00
DO 500 I=I,M
X(r+ I, I )=(SUMM(M)-SUMM(I)+(;LS)/R(;

500 (;ONTINUE
DO 2203 I=I,M
.APH(I)=APHH(I)*PB2/90. 0
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2203 CONTINUE
READ(I,IlO)RC
WRITE(3,II0)RC

515 READ(l ,Il O)AN,EM,PHI,ALP ,ER,XL
WRITE(3, II O)AN,EM,PHI,ALP ,ER,XL
READ(I,IIOO)(TK(I),I=I,M)
WRITE(3,1100)(TK(I),I=I,M)

1100 FORMAT(30F7.2)
MO=M+I
IF(IZ.LE.4)THEN
READ(I ,41)«X(J,I),I= I, 7),J= I ,MO)
ELSE
DO 1301 I=I,MO
DO 1301 J=2,7
X(I,J)=O.O

1301 CONTINUE
ENDIF
WRITE(3,41 )«X(J,I),I= I, 7),J= I ,MO)
READ(I ,41)(XX(I, I),1=1,3)
WRITE(3,4I)(XX(I,I),I=I,3) .
READ( 1,41)(XY(I, 1),1=1,3)
WRITE(3,41 )(XY(I, I),1=I ,3)
READ (I ,59)IS 1,IS2,IS3
WRITE(3,59)IS 1,IS2,IS3

. READ(I,59)IFI,IF2,IF3
WRITE(3 ,59)IF I ,IF2,IF3
READ(I ,59)(MX(I),I= I,M)
WRITE(3,59)(MX(I),I= I,M)
READ(I ,59)(MXN(I),I= I,M)
WRITE(3 ,59)(MXN(I),I = I,M)
READ(I,59) NNNI,NNN2 .
WRITE(3,59) NNNI,NNN2
READ(I,59) ITP,IBT
WRITE(3,59) ITP,IBT
READ(I, Il 00) SINX
WRITE(3,1100) SINX
NNN=NNNI

C===================================================
C PART B.(TREATMENT OF BOUNDARY CONDITION)
C======================================================

DO 21 I=I,N3
DO 21 J=I,N3
TSI(I,J)=O.O
TS2(I,J)=0.0
TS3(I,J)=O.0
TS4(I,J)=0.0
TF4(1,J)=0.0
TF3(1,J)=0.0
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TF2(I,J)=0.0
21 TF 1(I,J)=O.O

IF (lSI .EQ. 00) THEN
23 TS1(1,1)=1.0

TS4(2,2)= 1.0
ELSE

24 TS2(1 ,2)= 1.0
TS3(2,1)=1.0
ENDIF
IF ( IS2 .EQ. 00) THEN

28 TS1(2,2)=1.0
TS4(3,3)=1.0
ELSE

29 TS2(2,3)=1.0
TS3(3,2)=1.0
ENDIF
IF (IS3 .EQ. 00) THEN

33 TS1(3,3)=1.0
TS4(1,1)=1.0
ELSE

34 TS2(3, 1)=1.0
TS3(l,3)=1.0
ENDIF
IF(IF1 .EQ. 00) THEN

36 TF2(l,2)=1.0
TF3(2, 1)=1.0
ELSE

37 TF1(1,1)=1.0
TF4(2,2)= 1.0
ENDIF
IF (IF2 .EQ. 00) THEN

39 TF2(2,3)= 1.0
TF3(3,2)=1.0
ELSE

40 TF1(2,2)=1.0
TF4(3,3)=1.0
ENDIF
IF (IF3 .EQ. 00) THEN

84 TF2(3,1)=1.0
TF3(1,3)=1.0
ELSE

87 TF1(3,3)=1.0
TF4(1,1)=1.0
ENDIF
DO 31 J=l,M
HS(J)=DABS(X(J+ 1,1)-X(J, 1))*RC

31 H(J)=(X(J+ 1,1)-X(J, 1))* .05
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C===============================================
C PART C.(CALCULATION OF RC.,FOR PRESSURE VESSELS ONLY)
C==============================================================

GO TO (401,402,403,404,405),IZ
401 RC=PHI/DSIN(PHI)

GO TO 405
402 RC=1.0

GO TO 405
403 RC=( I.-XL )/DSIN(ALP)+(PB2-ALP)*XL/DCOS(ALP)

GO TO 405
404 1=1

AL=1.
BL=2.
AKL=I.-ER**2.
EL=1.
CL=1.

406 EL=EL *(ALIBL)**2.
FL=EL* AKL **I/AL
CL=CL-FL
AL=AL+2.
BL=BL+2.
1=1+1
IF(DABS(FL)-.IE-08)407,407,406

407 RC=PB2*CL
405 CONTINUE

IF(IZ-5)52I ,522,522
521 DP=PB2

GO TO 523
522 . DP=APH(l)
523 DR=l.IRC

ZZXX(l)=O.O
26 CONTINUE

DO 175 IS=I,4
DO 175 IT=I,4
PII (IS,IT)=O.O
P22(IS,IT)=0.0
P33(IS,IT)=0.0
P44(IS,IT)=0.0
P55(IS,IT)=0.0
XA(IS,IT)=O.O

.XB(IS,IT)=O.O
XC(IS,IT)=O.O
XAI(IS,IT)=O.O
XB I (IS,IT)=O.O
XCI(IS,IT)=O.O
AB I (IS,IT)=O.O
ACI(IS,IT)=O.O
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312
313
308
305

'.

ADI(lS,IT)=O.O
BB 1(IS,IT)=O.O
BCI(lS,IT)=O.O
BD 1(IS,IT)=O.O
CB I(lS,IT)=O.O
CCI(IS,IT)=O.O
CDl(IS,IT)=O.O
DB 1(IS,IT)=O.O
DCI(IS,IT)=O.O
DD 1(IS,IT)=O.O
EB 1(lS,IT)=O.O
ECI(IS,IT)=O.O
EDI(lS,IT)=O.O

175 CONTINUE
DO 1 JI=I,M

C======================================================
C PART D. (CALCULATION OF CONSTANTS)
C====================================================

IF (CIND(JI) .NE. 0.0) THEN
CDS=CIND(JI )/DABS(CIND( J I))
ELSE
CDS=l.O
ENDIF
TZ=l.+AN
Tl =RC*(l.-AN* AN)
T=TK(JI)
T21=EM*T
TO=I.I(l2. *Tl*EM*PT)
TL=RC/T/EM
TM=EM*PT
PR=EM*T
N=I
DO 32 1=1,7

32 Y(l,N)=X(JI,I)
DO 300 1=1,21
IF(I-21 )312,313,313
Y(l,I+ I)=Y(I,I)+H(JI)
IF(Y(l,I)-I.)306,308,305
IF(I-5)306,306,305
PH(I)=PB2
RO(I)= I.lRC
ROO(l)=RO(I)*RC
GO TO 300

306 GO TO (301 ,302,303,304,509),IZ
301 PH(I)=Y(I,I)*PHI

RO(l)=DSIN(PH(l))/PHI
ROO(l)=RO(I)*RC
GO TO 300
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302 PH(l)=O.
RO(I)=Y(l,I)
ROO(I)=RO(I)*RC
GO TO 300

.303 IF(Y(I,I)-X(M,I»307,309,309
309 PH(I)=PB2-ALP

RO(l)= XL/RC+(Y (1,1)-X(M, 1))*DSIN (ALP)
ROO(I)=RO(I)*RC
GO TOJOO

307 PH(l)=Y(I,I)*RC/XL *DCOS(ALP)
RO(l)=XL *DSIN(PH(I»/RC/DCOS(ALP)
ROO(l)=RO(l)*RC .
GO TO 300

304 PH(l)=DP
RO(l)=DR
ROO(I)=RO(l)*RC
ZZ=PH(I)
DO 310 J=I,4
FF=RCIER **2. *(ER **2.+AKL *DSIN(ZZ)*DSIN(ZZ»** 1.5
AK(J)=H(Jl )*FF
GO TO (311 ,311 ,314,31 O),J

. 311 V=.5
GO TO 316

314 V=1.
316 ZZ=PH(I)+V*AK(J)
310 CONTINUE

DP=PH(I)+(AK(I)+ AK( 4)+2. *(AK(3 )+AK(2» )/6.
DR=DSIN(DP)/RC/(ER **2.+AKL *DSIN(DP)*DSIN(DP»* *.5
GO TO 300

509 IJK=IG(Jl)
GO TO (510,511,304),IJK

510 PH(l)=APH(Jl)
RO(I)=DR
ROO(I)=RO(I)*RC
DR=RO(I)+H(Jl )*DCOS(APH(J I»
ZXX(l)=- H(J1 )*RC*DSIN(PH(I)
ZZXX(I + I)=ZZXX(I)+ ZXX(I)
GO TO 300

511 RM=FLOAT(I-l)
IF (CIND(Jl) .NE. 0.0) THEN
PPH(l)=APH(J 1)+RM*H(Jl )/CIND(Jl )*RC
ELSE
PPH(I)=APH(Jl )+RM*H(Jl )*RC
ENDIF
RO(I)=DR +DABS(CIND(J I»*(DSIN(PPH(I»- DSIN (APH( J1» )/RC
ROO(l)=RO(I)*RC
IF (CIND(Jl) .NE. 0.0) THEN
XKX =-(H( Jl )/DABS(CIND( J1))*RC)
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ELSE
XKX=-(H(JI)*RC)
ENDIF
IF (CIND(JI) .NE. 0.0) THEN
ZXX(I)=- RC*H(JI )IXKX* (DCOS(PPH(I)+H(J 1)/CIND( JI )*RC)- DCOS(PPH(I»)
ELSE
ZXX(I)=- RC*H(JI )IXKX*(DCOS(PPH(I)+H( J 1)*RC)- DCOS(PPH(I))
ENDIF
ZZXX(I+ 1)=ZZXX(I)+ ZXX(I)
IF (CDS.EQ.l.O) THEN
PH(I)~PPH(I)
ELSE
PH(I)=PPH(I)-PB2*2.0
ENDIF

300 CONTINUE
DR=RO(21)
IF(IZ-5)512,513,513

512 DP=PH(21)
GO TO 514

513 DP=APH(JI+1)
514 N1=1
C====================================================
C INTEGRATION OF FUNDAMENTAL SET STARTS
C===================================================
60 NO=O
46 CONTINUE
• IF(NP-1)111,111,112
• IF(NP-2)1l1,111,1l2
112 IF(Y(1,N)-.lE-06)198,198,199
198 F(2,N)=Tl *Y(6,N)/TZ

F(3,N)=Y(7,N)/TO/TZ
TQ=TL+F(2,N)
F(5,N)=TQ*PR/2.
F(4,N)=0.
F(6,N)=0.
F(7,N)=0.
GO TO 200

199 T2=Y(2,N)/RO(N)
T3=PH(N)- Y(3,N)
C1(N)=DCOS(T3)
C2(N)=DSIN(T3)
T4=(DSIN (PH(N))- DSIN (T3))/RO(N)
T5=Y(6,N)*C 1(N)+Y(5,N)*C2(N)
T22(N)=T5
T8=Tl *T5-AN*T2
T6=(Y(7 ,N)-AN*TO*T 4)/TO
T7(N)=(T2+AN*T8)/Tl
T9(N)=TO*(T4+AN*T6)
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TlO(N)=TL+T8
R(N)=TL *RO(N)+ Y(2,N)
F(2,N)=Tl O(N)*C 1(N)-DCOS(PH(N) )*TL
F(3,N)=T6
F(4,N)=Tl 0(N)*C2(N)-DSIN (PH(N) )*TL
F(5,N)=- Tl 0(N)*(Y(5,N)*Cl (N)/R(N)-PR *C 1(N»
F(6,N)=- Tl 0(N)*«Y(6,N)*C 1(N)- T7(N»/R(N)+PR *C2(N»
F(7,N)=(Tl O(N)*Cl (N)/R(N»*(T9(N)- Y(7,N»- Tl O(N)
*(Y(6,N)*C2(N)- Y(5,N)*C 1(N»*TM

******* BT,X AND NXO,X ***************************
IF(IG(J1).EQ.I) THEN
XP=O.O
ELSE
XP=RC/CIND(J1)
ENDIF
FK(N)=(F(6,N)*C 1(N)+F(5,N)*C2(N)+(Y(5,N)*C 1(N)

+ -Y(6,N)*C2(N»*(XP-F(3,N»)/RC
GO TO 200

111 Cl(N)=DCOS(PH(N»
C2(N)=DSIN(PH(N»
IF(Y(l,N)-.IE-06)598,598,599

598 F(2,N)=Tl *Y(6,N)/TZ
F(3,N)=Y(7,N)/TO/TZ
F(4,N)=0.
F(5,N)=RC/2.
F(6,N)=0 .

. F(7,N)=O.
GO TO 200

599 T2=Y(2,N)/RO(N)
T4=Y(3,N)*C 1(N)/RO(N)
T5= Y(6,N)* C 1(N)+ Y(5,N)*C2(N)
T22(N)=T5
T8=Tl *T5~AN*T2
T6=Y(7,N)/TO-AN*T4
T7(N)=(T2+AN*T8)/Tl
T9(N)=(T4+AN*T6)*TO
F(2,N)=T8 *C 1(N)+ Y(3,N)*C2(N)*TL
F(3,N)=T6
F(4,N)=T8 *C2(N)- Y(3 ,N)*C 1(N)*TL
F(5 ,N)=-(Y( 5,N)/RO(N)-RC)*C 1(N)
F(6,N)=-(Y(6,N)*C 1(N)- T7(N»/RO(N)-RC*C2(N)
TX=-(Y (7,N)-T9(N) )/RO(N)
F(7,N)=TX*C 1(N)-RC*T*(Y(6,N)*C2(N)- Y(5,N)*C 1(N»

200 IF(N-2)42,43,43
43 IF(N-6)44,47,45
44 N=N+l

GO TO 46
42 DO 81 J=2,6
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P2=FLOAT(J-I)
P3=P2*H(JI)
Y(I,J)=Y(I,I)+P3
DO 81 1=2,7

81 Y(I,J)=Y(I,I)+P3*F(I,I)
N=2
IP=I
GO TO 46

47 DO 481=2,7
Z(I,2)=Y(I, I )+(H(JI )/1440.)*(493. *F(I, 1)+1337.

I *F(I,2)-618. *F(I,3)+ 302. *F(I,4)-83. *F(I,5)+9. *F(I,6))
Z(I,3)=Y(I, I)+(H(JI )/90.)*(28. *F(I, 1)+129.*F(I,2)

1+14.*F(I,3)+ i4. *F(I,4)-6. *F(I,5)+F(I,6))
Z(I,4)=Y(I,1 )+(3. *H(JI )/160.)*(17. *F(I, 1)+73. *F(I,2)

1+38. *(F(I,3)+F(I,4))-7. *F(I,5)+F(I,6))
Z(I,5)=Y(I, I )+(4. *H(JI )/90.)*(7. *(F(I, I)+F(I,5))

1+32. *(F(I,2)+F(I,4))+ 12.*F(I,3))
48 Z(I,6)=Y(I, I)+(5. *H(JI )/288.)*(19. *(F(I, I)+F(I,6))

1+75. *(F(I,2)+F(I,5))+50. *(F(I,4 )+F(I,3)))
RI=O.
IP=IP+I
DO 49 1=2,7
DO 49 J=2,6
RI =DABS(Y(I,J)-Z(I,J))+RI

49 Y(I,J)=Z(I,J)
IF(IP-15) 141,45,45

141 IF(RI-.lE-07)45,45,50
50 N=2

GO TO 46
45 IF(NO-I)53,53,55
53 N=N+I

IF(N-21)61,61,62
61 Y(I,N)=Y(I,N-I)+H(JI)

DO 511=2,7
51 Y(I,N)=Y(I,N-6)+(.3*H(JI))*(II. *(F(I,N-5)+F(I,N-I))

1-14.*(F(I,N-4)+F(I,N-2))+26. *F(I,N-3))
99 NO=2

IP=I
GO TO 46

55 RI=O.
IP=IP+I
DO 56 1=2,7
Z(I, I)=Y(I,N-6)+(J *H(JI ))*(F(I,N-6)+5. *F(I,N-5)+F(I,N-4)+6. *

IF(I,N-3)+F(I,N-2)+5. *F(I,N-I )+F(I,N))
RI =RI +DABS(Y(I,N)-Z(I, I))

56 Y(I,N)=Z(I,I)
IF(IP-I 0) 142,60,60

142 IF(RI-.IE-07)60,46,46
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)
•

'62 IF(NP-I)662,762,912
62 F(NP-2)662,762,912

.912 IF(AA-.10)911,911,914
914 IF(NP-IO)662,911,911
911 IN=2

GO TO 764
762 RRR=O.

DO 763 1=2,7
763 RRR=RRR+DABS(Y(I,21)-X(JI+I,I»)

IF(RRR-.1 )764,764,766
766 WRlTE(3,767)
;767 FORMAT(2X,!,' SEGMENT IS TOO LONG',!)
764 CONTINUE
C==================================================
C PART E. OUTPUT OF RESULTS
C==================================================
••••••••••••••••• WRlTE(3,508)
••••••••••••••••• WRlTE(3,507)
••••••• GOTO 729

DO 793 N=I,21,4
STI =(T7(N)+ T9(N)'6.)'T21
ST2=(T7(N)- T9(N)'6. )'T21
ST3=(T22(N)+ Y(7,N)'6.)'T21
ST4=(T22(N)- Y(7 ,N)' 6.)'T21

C ROO(N)=RC'RO(N)
ZZNN(N)=ZZXX(N)-EM'Y(4,N)'100.0
YYN(N)=ROO(N)+EM'Y(2,N)'100.0
WRlTE(7, 116)ZZXX(N),ROO(N),ZZNN(N), YYN (N)

116 FORMAT (4E13.5) .
793 WRlTE(3, I 05) Y(l ,N), Y(2,N), Y(4,N), T9(N), Y(7,N), T22(N), T7(N),

ISTl,ST2,ST3,ST4
•••••• 729 CONTINUE

IF(AA .LE. 0.1 .AND. SOB2.GT.1.0) THEN
• DO 1575 N=I,21 .

IF (MX(JI) .EQ.50) GOTO 1590
DO 1575 N=I,20
XNN=FLOAT(NNN)
FFI=ROO(N)
FF2= Y(3,N)/(EM'TK(J I)/RC)
FF3=F(3,N)/RC
FF4=T22(N)
FF5=T7(N)
FF6=FK(N)
FF7=PH(N)
IF(N.EQ.20) THEN
FF8=PH(20)
FF9=FK(20) .
ENDIF
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*
IIII FORMAT(4(4D I2.4/)//4(4D I2.4/)//4(4Dl 2.4/))

IF(N.LT.21)THEN
ITC=O
ENDIF
IF(JI.EQ.l .AND. N.EQ.I) THEN

1113 FORMATC JI = ',12,' N = ',12)
ITC=IBT
CALL RAT(FF I ,FF2,FF3,FF4,FF5,FF6,FF7,SS 1,HS,JI,

+EM,TK,CIND,IG,XNN,XAI ,XB I ,XC I ,MXN,1TC)
ITC=O
SSl=O.O
CALL RAT(FF1,FF2,FF3,FF4,FF5,FF6,FF7,SS 1,HS,JI,

+EM,TK,CIND,IG,XNN,XA,XB,XC,MXN,ITC)
CALL PP2(XA1,XB1,XCI,XA,XB,XC,P11)

DO 171 JX=l,4
DO 171 JXI=l,4
P22(JX,JX1)=P11(JX,JX1)

171 CONTINUE
ENDIF
IF(JI.NE.1 .AND. JI.EQ.MX(JI) .AND. N.EQ.1) THEN
CALL JUNC2(FF1 ,FF2,FF3,FF4,FF5,FF6,FF7,FF8,FF9,SS I ,HS,JI,

+ EM,TK,CIND,IG,XNN,MX,MXN,BB 1,BC1,BD1 ,CB 1,CC1 ,CD1,
+DB1,DC1,DD1,EB 1,EC1,EDl)

CALL JUNP(AB1,AC1 ,AD1 ,XA1 ,XB 1,XC1,P55,BDI ,BC1 ,BB 1,
+CD1 ,CC1 ,CB 1,DD1 ,DC1 ,DB 1,ED 1,EC 1,EB 1)

ENDIF
IF(JI.NE.I .AND. JI.NE.MX(JI) .AND. N.EQ.l) THEN
SSI=1.0

CALL JUNC 1(FF1 ,FF2,FF3,FF4,FF5,FF6,FF7,SS 1,HS,JI,
+ EM,TK,CIND,IG,XNN,XA,XB,XC,MXN,ITC)

CALL PP(XA,XB,XC,P22,P33)
DO 192 JX=1,4
DO 192 JX1=1,4
P22(JX,JX1 )=P33(JX,JX1 )

192 CONTINUE
ENDIF

*---------------------------------------
IF(N.GE.2 .AND. N.LE.20) THEN
SSl=O.O
DO 197 JX=1,4
DO 197 JX1=1,4
P55(JX,JX1 )=P22(JX,JX1)

197 CONTINUE
CALL RA T(FF1 ,FF2,FF3,FF4,FF5,FF6,FF7,SS 1,HS,JI,

+EM,TK,CIND,1G,XNN,XA,XB,XC,MXN,ITC)
IF(N.EQ.20) THEN
DO 195 JX=l,4
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*

DO 195 JXI=I,4
AB I (JX,JXI)=XA(JX,JXI)
AC I (JX,JXI )=XB(JX,JXI)
AD I (JX,JXI )=XC(JX,JXI)

195 CONTINUE
ENDIF
IF(JI.EQ.MX(JI) .AND. N.EQ.2) THEN'
CALL PP2(XAI,XBI,XCI,XA,XB,XC,PII)
DO 193 JX=I,4
DO 193 JXI=I,4
P22(JX,JXI)=PII(JX,JXI)

193 CONTINUE
ELSE
CALL PP(XA,XB,XC,P22,P33)
DO 191 JX=I,4
DO 191 JXI=I,4
P22(JX,JXI )=P33(JX,JXI)

191 CONTINUE
ENDIF

ENDIF
1112 FORMAT(4(4DI2.4/)/)
1575 CONTINUE

ENDIF
*1590 CONTINUE

ZZXX( I )=ZZXX(21)
GO TO I

C=========-~===============================================
C INTEGRATION OF DERIVED SET STARTS
C==========================================================
662 Nl=N1+1

N=l
Yl(l,N)=X(JI,l)
DO 63 1=2,7

63 Yl(l,N)=O.
Yl(Nl,N)=l.

90 NO=O
76 CONTINUE

IF(NP-l)I13,113,114
IF(NP-2) 113,1 13,1 14

114 IF(Yl(1,N)-.lE-07)201,201,202
201 F(2,N)=Tl *Yl(6,N)/TZ

F(3,N)=Yl(7,N)/TO/TZ
F(5,N)=F(2,N)*PR/2
F(4,N)=0.
F(6,N)=0.
F(7,N)=0.
GO TO 203

202 T2=Yl(2,N)/R0(N)
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T3=Y1(3,N)*C 1(N)/RO(N)
T4=Yl (6,N)*C 1(N)+Yl (5,N)*C2(N)- Yl (3,N)*(Y(5,N)*C 1(N)
l-Y(6,N)*C2(N»
T5=Tl *T4-AN*T2
T6=Yl(7,N)/TO-AN*T3
Ql =(T2+AN*T5)/Tl
T8=TO*(T3+AN*T6)
F(2,N)=T5 *C1(N)+Tl O(N)*Y1(3,N)*C2(N)
F(4,N)=T5 *C2(N)- Tl O(N)*Yl (3 ,N)*C 1(N)
F(3,N)=T6
TA=(Y(6,N)*Cl (N)-T7(N»/R(N)
F(6,N)=- T5*(T A+PR *C2(N»- Tl O(N)*«YI (6,N)*C 1(N)
1+Yl (3,N)*Y(6,N)*C2(N)-Ql- TA *Yl (2,N»/R(N)-PR *Yl
1(3,N)*Cl(N»
F(5,N)=- F(2,N)*(Y( 5,N)/R(N)-PR)- Tl O(N)*C1(N)* (Y 1(5,N)
1-Y(5,N)*Yl (2,N)/R(N) )/R(N)
TX=(T9(N)- Y(7,N))/R(N)
F(7,N)=F(2,N)*(TX +TM*Y(5,N»+ Tl O(N)*(C 1(N)*(TM*Yl (5,N)
1+(-Yl (7,N)+T8-TX*Yl (2,N»/R(N»- TM*C2(N)*Yl (6,N»
1-TM*F( 4,N)*Y(6,N)
GO TO 203

113 IF(Yl(l,N)-.IE-07)501,501,502
501 F(2,N)=Tl *Yl(6,N)/TZ

.F(3,N)=Yl(7,N)/TO/TZ
F(4,N)=0.
F(5,N)=0.
F(6,N)=0.
F(7,N)=0.
GO TO 203

502 T2=Yl(2,N)/RO(N)
T4=Yl (3,N)*C 1(N)/RO(N)
T5=Yl (6,N)* C1(N)+Yl (5,N)* C2(N)
T8=Tl *T5-AN*T2
T6=Yl(7,N)/T0-AN*T4
T7(N)=(T2+AN*T8)/Tl
T9(N)=(T4+AN*T6)*TO
F(2,N)=T8 *C1(N)+Y1(3,N)*C2(N)*TL
F(3,N)=T6
F(4,N)=T8*C2(N)- Yl (3,N)*Cl(N)*TL
F(5,N)=- Yl(5,N)/R0(N)*C 1(N)
F(6;N)=-(Yl (6,N)*C 1(N)-T7 (N))/RO(N)
IX =-(Yl (7 ,N)-T9(N) )/RO(N)
F(7,N)=TX*Cl (N)-RC*T*(YI (6,N)*C2(N)- Yl (5,N)*C! (N»

203 IF(N-2)72,73,73
73 IF(N-6)74,77,75
74 N=N+!

GO TO 76
72 DO 82 J=2,6
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P2=FLOAT(J-1)
P3=P2*H(Jl)
Y1(1,J)=Y1 (1,1 )+P3
DO 821=2,7

82 Y1(I,J)=Y1(I,1)+P3*F(I,1)
N=2
IP=l
GO TO 76

77 DO 78 1=2,7
Z(I,2)=Y1(I, 1)+(H(Jl )11440.)*(493. *F(I, 1)+1337.*F(I,2)
1-618. *F(I,3)+ 302. *F(I,4)-83. *F(I,5)+9. *F(I,6»
Z(I,3)=Y1 (I, 1)+(H(Jl )/90.)*(28. *F(I, 1)+129.*F(I,2)+ 14.
1*F(I,3)+ 14.*F(I,4)-6. *F(I,5)+F(I,6»
Z(I,4)=Y1 (I, 1)+(3. *H(Jl )/160.)*(17. *F(I, 1)+73.*F(I,2)

1+38. *(F(I,3)+F(I,4»-7. *F(I,5)+F(I,6»
Z(I,5)=Y1 (I,1)+(4. *H(Jl )/90.)*(7. *(F(I, 1)+F(I,5»+ 32.

1*(F(I,2)+F(I,4»+ 12.*F(I,3»
78 Z(I,6)=Y1(I, 1)+(5. *H(Jl )/288.)*(19. *(F(I, 1)+F(I,6»

1+75. *(F(I,2)+F(I,5»+50. *(F(I,4)+F(I,3»)
R1=0.
IP=IP+1
DO 79 1=2,7
DO 79 J=2,6
R1=DABS(Y1 (I,J)-Z(I,J»+R1

79 Y1(I,J)=Z(I,J)
IF(IP-15) 143,75,75

143 IF(R1-.lE-06)75,75,80
80 N=2

GO TO 76
75 IF(NO-1)83,83,85
83 N=N+1

IF(N-21)91,91,92
91 Y1(1,N)=Y1(1,N-1)+H(Jl)

DO 951=2,7
95 Y1(I,N)=Y1(I,N-6)+(.3*H(Jl»*(11. *(F(I,N-5)+F(I,N-1»

1-14.*(F(I,N-4 )+F(I,N-2»+ 26. *F(I,N -3»
101 NO=2

IP=l
GO TO 76

85 R1=0.
IP=IP+1
DO 86 1=2,7
Z(I,l)= Y1(I,N -6)+(.3 *H(Jl»* (F(I,N-6)+5. *F(I,N -5)+F(I,Nc4 )+6. *

1F(I,N -3)+F(I,N-2)+5. *F(I,N -1)+F(I,N»
R1=R1+DABS(Y1 (I,N)-Z(I, 1»

86 Y1(I,N)=Z(I, 1)
IF(IP-1 0) 144,90,90

144 IF(R1-.l E-07)90,76, 76
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92 DO 22 J=1,N2
22 U(Nl-l,J)=YI(J+ 1,21)

IF(N1-7)662,96,96
104 FORMAT (7E14.6)
59 FORMAT (31I2)
508 FORMAT (I,2X,'DISTANCE',3X,' DISPLACEMENTS',9X,'MOMENTS',

19X,'STRESS' " RESULTANTS' ,5X,'CIRCUM. STRESS', 7X,
1'AXIAL STRESS')

507 FORMAT (IX,' FROM APEX',2X,'RADIAL',5X,'AXIAL',3X,
1'CIRCUM.' ,5X,'AXIAL' ,3X,'CIRCUM.' ,5X,'AXIAL',4 X,'INNER' ,5X,
1'OUTER' ,5X,'INNER' ,5X,'OUTER',/)

41 FORMAT (7Ell.5)
110 FORMAT (3IEl1.5)
105 FORMAT (21El1.4)
505 FORMAT (I/,2X,' NO. OF PASS= ',12,' RESIDUE= ',Ell.5,

l' LOAD(P/E)= ',El1.5,' EMI= ',E11.5,/)
C ========= -=================~==========================
C SOLUTION OF MATRIX EQUATIONS STARTS
C==========================================================
96 Nl=J1

DO 4 I=1,N3
DO 4 J=1,N3
Al (J,I)=U(I,J)
A2(J,I)=U(I+3,J)
A3(J,I)=U(I,J+ 3)
A4(J,I)=U(I+ 3,J+3)
Xl(I,l)=X(Nl ,1+1)
X2(I,1)=X(Nl,I+4)
Y3(N1 + l,I)=Y(I+ 1,21)

4 Y2(Nl+l,I)=Y(I+4,2l)
DO 20 I=1,N3
AY(I,1)=Y3(N1+ 1,1)

20 BY(I,1)=Y2(Nl+l,I)
CALL MATM(Al,Xl,A9,N3,N3,1)
CALL MATM(A2,X2,Zl,N3,N3,1)
CALL MATS(A9,ZI,N3,1)
CALL MATSB(Zl,N3,1)
CALL MATS (AY,Zl,N3,1)
CALL MATM(A3,Xl,A9,N3,N3,1)
CALL MATM(A4,X2,Z2,N3,N3,1)
CALL MATS(A9,Z2,N3,1)
CALL MATSB(Z2,N3,1)
CALL MATS(BY,Z2,N3,1)
IF(Nl-l)6,6,7

6 CALL MATM(Al,TS1,A6,N3,N3,N3)
CALL MATM(Al,TS2,A7,N3,N3,N3)
CALL MATM(A2,TS3,AI,N3,N3,N3)
CALL MATS(A6,Al,N3,N3)

116



CALL MATM(A2,TS4,A6,N3,N3,N3)
CALL MATS(A6,A7,N3,N3)
CALL MATM(A3,TS1,A6,N3,N3,N3)
CALL MATM(A3,TS2,A8,N3,N3,N3)
CALL MATM(A4,TS3,A3,N3,N3,N3)
CALL MATS(A6,A3,N3,N3)
CALL MATM(A4,TS4,A6,N3,N3,N3) .
CALL MATS(A6,A8,N3,N3)
DO 2I=1,N3
DO 2 J=1,N3
A4(I,J)=A8(I,J)

2 A2(1,J)=A7(1,J)
CALL MATI(A2,A6,N3)
CALL MATM(A4,A6,A7,N3,N3,N3)
CALL MATI(A7,A8,N3)
CALL MATM(Al,XX,A9,N3,N3,1)
CALL MATS(Zl,A9,N3,1)
CALL MATSB(A9,N3,1)
CALL MATM(A3,XX,AIO,N3,N3,1)
CALL MATS(Z2,AIO,N3,1)
CALL MATM(A4,A6,A7,N3,N3,N3)
CALL MATM(A7,A9,All,N3,N3,1)
CALL MATS(All,AlO,N3,1)
CALL MATSB(AIO,N3,1)
GOT08

7 IF(NI-M)3,5,5
5 CALL MATM(TF1,Al,A6,N3,N3,N3)

CALL MATM(TF3,Al,A7,N3,N3,N3)
CALL MATM(TF2,A3,Al,N3,N3,N3)
CALL MATS(A6,Al,N3,N3)
CALL MATM(TF4,A3,A6,N3,N3,N3)
CALL MATS(A6,A7,N3,N3)
CALL MATM(TF1,A2,A6,N3,N3,N3)
CALL MATM(TF3,A2,A18,N3,N3,N3)
CALL MATM(TF2,A4,A2,N3,N3,N3)
CALL MATS(A6,A2,N3,N3)
CALL MATM(TF4,A4,A6,N3,N3,N3)
CALL MATS(A6,A18,N3,N3)
CALL MATM(TF1,Zl,A14,N3,N3,1)
CALL MATM(TF3,Zl,A15,N3,N3,1)
CALL MATM(TF2,Z2,Zl,N3,N3,1)
CALL MATS(A14,Zl,N3,1)
CALL MATM(TF4,Z2,A14,N3,N3,1)
CALL MATS(A14,A15,N3,1)
DO 19 I=1,N3
Z2(1,I)=A15(1,1) .
DO 19 J=1,N3
A3(I,J)=A 7(1,1)

117



19 A4(I,J)=AI8(I,J)
3 CALL MATM(AI,A8,A7,N3,N3,N3)

CALL MATS(A2,A7,N3,N3)
CALL MATI(A7,A6,N3)
CALL MATM(AI,A8,A7,N3,N3,N3)
CALL MATM(A7,AIO,A9,N3,N3,1)
CALL MATS(ZI,A9,N3,1)
CALL MATSB(A9,N3,1)
CALL MATM(A3,A8,A7,N3,N3,N3)
CALL MATM(A7,AIO,AII,N3,N3,1)
CALL MATS(A4,A7,N3,N3)
CALL MATM(A6,A9,AI2,N3,N3,1)
CALL MATM(A7,AI2,AIO,N3,N3,1)
CALL MATS(AII,AIO,N3,1)
CALL MATS(Z2,AIO,N3,1)
CALL MATSB(AIO,N3,1)
CALL MATM(A3,A8,A7,N3,N3,N3)
CALL MATS(A4,A7,N3,N3)
CALL MATM(A7,A6,AI,N3,N3,N3)
CALL MATI(AI,A8,N3)
IF(NI-M)8,9,9

9 CALI, MATS(XY,AIO,N3,1)
8 DO 5000 I=I,N3

DO 5000 J=I,N3
E(N I ,I,J)=A6(I,J)
C(NI,I,J)=A8(I,J)
A(N I ,1)=A9(I, I )
B(NI,I)=AIO(I,I)

5000 CONTINUE
I CONTINUE
1590 CONTINUE .

IF(AA.LE.O.I .AND. SOB2.GT.1.0 .AND. NNN.LE.NNN2) THEN
ITC=ITP
MCK=J]-I

CALL RAT(FFI ,FF2,FF3,FF4,FF5,FF6,FF7 ,SS I ,HS,MCK,
+EM,TK,CIND,IG,XNN,XA,XB,XC,MXN,ITC)
CALL XMAT(XA,XB,XC,P55,P22,XDl)
CALL DET4(XDI,DXD)
PRINT*,' DETER = ',DXD,' NNN = ',NNN
DXDl(NNN)=DXD*SINX
NNN=NNN+I
GO TO 405
ENDIF
DO 1015 IJI=NNNI,NNN2
IF(AA.LE.O.I .AND. SOB2.GT.I .AND. DXDl(IJI) .LE. 0.0) THEN
AA=2.0
NNN=NNNI
GO TO 153
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ENDIF
1015 CONTINUE

NNN=NNNI
F(NP-2)II7,II5,117

117 GO TO(718,108),IN
718 AA=O.

DO 15 I1=I,M
Nl=M-I1+1
DO 10 I=I,N3
DO 10 J=I,N3
A6(I,J)=E(N 1,1,1)
A8(I,J)=C(N 1,I,J)
A9(I, 1)=A(N 1,I)

10 AI0(I,I)=B(Nl,I)
IF(NI-M)II,12,I2

12 CALL MATM(A8,AlO,AII,N3,N3,1)
CALL MATS(AII,A9,N3,I)
CALL MATM(A6,A9,AI2,N3,N3,I)
CALL MATM(TFI,AII,AI4,N3,N3,1)
CALL MATM(TF2,XY,AI5,N3,N3,I)
CALL MATM(TF3,AII,AI6,N3,N3,1)
CALL MATM(TF4,XY,AI7,N3,N3,I)
DO 89 I=I,N3
X(MO,I+ 1)=AI5(I, 1)+AI4(1, 1)

89 . X(MO,1+4)=AI7(I,I)+AI6(I,I)
GO TO 16

11 CALL MATS(AI2,AIO,N3,I)
CALL MATM(A8,AI0,AII,N3,N3,I)
CALL MATS(AII,A9,N3,I)
CALL MATM(A6,A9,AI2,N3,N3,I)
DO 17 I=I,N3

17 X(Nl+I,1+I)=All(I,I)
IF(NI-I)93,93,I6

93 CALL MATM(TSl,XX,AI4,N3,N3,1)
CALL MATM(TS2,AI2,AI5,N3,N3,1)
CALL MATM(TS3,XX,AI6,N3,N3,1)
CALL MATM(TS4,AI2,AI7,N3,N3,1)
DO 98 I=I,N3
X(I,1+ 1)=AI5(I, 1)+AI4(I,I)

98 X(I,1+4)=AI7(I,I)+AI6(I,I)
GO TO 18

16 DO 13 I=I,N3
13 X(NI ,I+4)=AI2(I, 1)
18 DO 15 I=I,N3

AA=DABS(Y3(NI + I ,I)-X(NI + 1,1+I»+AA
15 AA=DABS(Y2(NI + I ,I)-X(NI + 1,1+4»+AA
115 NP=NP+l

RES=AA/SS
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SS=AA
WRlTE(3,505)NP ,AA,EM,EM I
WRlTE(6, *)EM,EMI ,AA,SOB2
IF(NP-5) I 51,152,152

152 IF(RES-I.) 151,151,153
153 DO 1541=2,7

DO 154 J=I,MO
154 X(J,I)=X7(J,I)

EM=EM-EMI
EMI=EMI/2.
NP=3

151 WRITE(3, I04)((X(J,I),I=I, 7),J= I ,MO)
IF(AA .LE. 0.1 .AND. SOB2.GT.1.0) THEN

5505 EEM=DABS(EM)
DO 5508 J=I,MO
XYX4(J)=EM*X(J,4)
XYX2(J)=EM*X(J,2)

5508 CONTINUE
WRITE( 4,5507)EEM,(XYX4( J),J= I ,MO)
WRlTE( 5,5507)EEM,(XYX2(J),J= I ,MO)

5507 FORMAT(3IEI2.5)
ENDIF
WRlTE( 6,*)EM,EM I,AA

) GO TO 405
108 DO 1551=2,7

DO 155 J=I,MO
155 X7(J,I)=X(J,I)

IN=I
NP=3 ,
AA=1. ...,....
SOB2=SOB2+ 1. ,..•.•
EM=EM+EMI
IF(DABS(EMI)-.IE-014) 109,109,1011

lOll IF(SOB2-S0B 1)405,405, I09
109 WRlTE(3, 1270)EM,EM I ,SOB2
1270 FORMAT(//'EM"; ',EI4.8,'EMI= ',EI4.8,' SOB2= ',F6.0)

STOP
END.

.0.
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SUBROUTINE RAT(FFI ,FF2,FF3,FF4,FF5,FF6,FF7,SS I ,HS,JI,
+EM,TK,CIND,IG,XNN,AB I ,AC I ,AD I ,MXN,ITC)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 XKI(l2,11),XK2(l2,11),XK3(l2,11),XK4(l2,1I)
REAL*8 XK5(12,11),XK6(12,11)
REAL*8 CCI(l2),CC2(l2),CC3(l2),CC4(l2),

+ AAI(3),AA2(3),AA3(3),AA4(3)
REAL *8 HS(30),TK(30),EM
REAL *8 AB I (4,4),AC I (4,4),AD I (4,4),CIND(30),IG(30)
DIMENSION MXN(30)
DO 300 1=1,3
AAI(I)=O.O
AA2(I)=0.0
AA3(I)=0.0
AA4(I)=0.0

300 CONTINUE
DO 1991=1,4
DO 199J=I,4
AB I (I,J)=O.O
AC I (I,J)=O.O
AD I(I,J)=O.O

199 CONTINUE
DO 200 1=1,12
DO 201 J=I,II
XKI (I,J)=O.O
XK2(I,J)=0.0

. XK3(I,J)=0.0
XK4(I,J)=0.0

20 I CONTINUE
200 CONTINUE

XNU=0.3
BTX=O.O
BTXX=O.O
XXNO=FF6*EM*(1.0-XNU*XNU)*TK(JI )
PHI=FF7

105 FORMAT(2IEI0.4)
UYI=-XNN
UY2=-XNN*XNN
VYI=XNN
VY2=-XNN*XNN
VY3=UY2*VYI
WYI=-XNN
WY2=-XNN*XNN
WY3=WYI *WY2
WY4=WY3*XNN
XNO=FF4*EM* (1.0-XNU*XNU)*TK( J I)
YNO=FF5*EM*(1.0-XNU*XNU)*TK(JI )
B=FFI
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BX=DCOS(PHI)
IF(MXN(JI) .EQ. 2) THEN
RI2=I.O/CIND(JI)
ELSE
RI2=DSIN(PHI)/B
ENDIF
BI=RI2/DSIN(PHI)
BBX=RI2/DTAN(PHI)
IF(IG(JI ).EQ.I) THEN
RII=O.O
ELSE
RI I= I.O/CIND(JI)
ENDIF
BXX=-DSIN(PHI)*RII
BIX=-BBX*BI
RXI=O.O
RIXI=O.O
RII2=RII-RI2
RI21 =RI2-RII
RIX2=RII2*BBX
BIXX =(2.0*BBX*BBX +RI2)*BI
RIXXI=O.O
RIXX2=RI21*(2.0*BBX*BBX+RII*RI2)
BBXX=BI*BXX +BX*BIX
IF(ITC.EQ.O) THEN
CALL BODY(XKI ,XK2,XK3,XK4,TK,BTX,BTXX,XXNO,PHI,UYI ,UY2,

+VYI ,VY2,VY3, WYI, WY2,WY3, WY4,XNO,YNO,B,BX,RI2,BI,BBX,
+RI I ,BXX,BIX,RX I ,RIX I,RI 12,RI21 ,RIX2,BIXX,RIXX I ,RIXX2,
+BBXX,XNU,JI)

ELSE
CALL BOUND(XKI ,XK2,XK3,XK4,TK,BTX,BTXX,XXNO,PHI,UYI ,UY2,

+VYI ,VY2,VY3, WYI, WY2,WY3,WY4,XNO,YNO,B,BX,RI2,BI,BBX,
+RI I ,BXX,BIX,RXI ,RIXI,RI 12,RI21 ,RIX2,BIXX,RIXXI ,RIXX2,
+BBXX,XNU,JI ,ITC,XK5,XK6)

ENDIF
DO 50 L=I,12
CCI(L)=O.O
CC2(L)=0.0
CC3(L)=0.0
CC4(L)=0.0
DO 60 Ll=I,11
IF(ITC.EQ.6) THEN
CC I (L)=CC I (L)+(XK3(L,L I )*DCOS(PHI)+ XK I (L,L I)*DSIN (PHI))
CC2(L )=CC2(L )+(XK2(L,L I )*DCOS(PHI)+ XK4(L,L I )*DSIN (PHI))
CC3(L )=CC3(L)+ XK5(L,Ll)
CC4(L )=CC4(L)+ XK6(L,L I)
ELSE
CCI (L)=CCI (L)+XKI (L,L I)
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CC2(L )=CC2(L)+ XK2(L,L I)
CC3(L)=CC3(L)+ XK3(L,L I)
CC4(L)=CC4(L)+ XK4(L,LI)
ENDIF

60 CONTINUE
50 CONTINUE

.110 FORMAT (31DI1.5)
DO 70 1=1,4
IF (l.EQ.I) THEN
CALL DETCO(CCI,HS,JI ,SSI ,AAI ,AA2,AA3,AA4,0)
ENDIF
IF (l.EQ.2) THEN
CALL DETCO(CC2,HS,JI ,SS.I ,AA I ,AA2,AA3,AA4,0)
ENDIF
IF (l.EQ.3) THEN
CALL DETCO(CC3,HS,JI ,SS I ,AAI ,AA2,AA3,AA4,0)
ENDIF
IF (l.EQA) THEN
CALL DETCO(CC4,HS,JI ,SS I ,AAI ,AA2,AA3,AA4,0)
ENDIF
ABI(I,I)=AAI(l)
ABI(I,2)=AA2(1)
ABI(I,3)=AA3(l)
ABI(I,4)=AA4(1)
AC I (I, I )=AA I (2)
AC I (I,2)=AA2(2)
ACI(I,3)=AA3(2)
ACI(I,4)=AA4(2)
ADI(I,I)=AAI(3)
AD I (I,2)=AA2(3)
ADI(I,3)=AA3(3)
ADI(I,4)=AA4(3)

70 CONTINUE
RETURN
END

*===================================================
SUBROUTINE BODY(XK I ,XK2,XK3,XK4,TK,BTX,BTXX,XXNO,PHI,

+UYI ,UY2,VYI ,VY2,VY3, WYI, WY2, WY3, WY4,XNO,YNO,B,BX,RI2,
+BI,BBX,RI I ,BXX,BIX,RX I ,RIXI ,RI 12,RI21 ,RIX2,BIXX,RIXXI ,RIXX2,
+BBXX,XNU,JI)

IMPLICIT REAL*S (A-H,O-Z)
REAL*S XKI(l2,11),XK2(l2,11),XK3(l2,11),XK4(l2,11),TK(30)
C=l.O
D= I.O/TK(JI )/TK(JI )/12.0

** STABILITY EQN-I
** (dB/dx-B*BTxO/RI)*Nxl
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XKI (5, 1)=C*(BX-B*BTX*RI I)
XKI (7, 1)=-C*(BX-B*BTX*RI 1)*BTX
XK 1(2, 1)=C*(BX -B*BTX*RI 1)*XNU*Bl*VY 1
XKI (1,1 )=C*(BX-B*BTX*RII )*(BTX*RI 1
+ +XNU*BX*Bl)
XKI (3,1 )=C*(BX-B*BTX*RI 1)*(RII +XNU*RI2)

** B*dNxl/dx
XKI(9,1)=C*B
XKI(II,I)=-C*B*BTX
XKI(6,1)=C*XNU*VYI
XK 1(2,2)=C*B *XNU*BlX*VY 1
XKI(5,2)=C*B*(BTX*RII +XNU*BBX)
XK 1(7 ,2)=C*B *(RI I-BTXX +XNU*RI2)
XKI (I ,2)=C*B*(BTXX*RI 1+BTX*RIX 1+XNU*BBXX)
XKI (3,2)=C*B*(RIXI +XNU*RIX2)

** dNxylldy
CNX=C*(I.O-XNU)/2.0
XKI(6,2)=CNX*VYI
XKI(l,3)=CNX*BI*UY2
XK 1(3,3 )=-CNX*BTX*BI* WY2
XK 1(2,3 )=CNX* (-BBX+BTX*RI2)*VY 1

** -dB/dx*Nyl
XKI(5,3)=-C*BX*XNU
XKI (7,3)=+C*BX*XNU*BTX
XKI (2,4)=-C*BX*BI*VY 1
XKI(l,4)=-C*BX*(XNU*BTX*Rll+ BBX)
XKI (3,4 )=-C*BX*(XNU*RI 1+Rl2)

** B/RI *dMxlldx
XKI(8,1)=D*B*RlI

** dB/dx*(l/RI)*Mxl
XKI(4,1)=D*BX*RlI

** IIRI *dMxyll.dy
DN=D*(l.O-XNU)/2.0
XKI(7,4)=-2.0*DN*BI*RI1 *WY2
XKI (I ,5)=DN*RI 1*BI*RlI *UY2
XKI(6,3)=DN*RlI *Rl2*VYI
XKI(3,5)=DN*Rl1 *(-BlX+BBX*BI)*WY2
XKI(2,5)=DN*RlI *(RlX2-BBX*Rl2)*VYI

** -dB/dx*(lIRI)*Myl
XKI(II,2)=+D*BX*RII *XNU
XKI(7,5)=+D*BX*RI1 *BBX
XKI(3,6)=+D*BX*RlI *Bl*BI*WY2
XKI(5,4)=-D*BX*RlI *XNU*RlI
XKI(l ,6)=-D*BX*RlI *(BBX*RlI +XNU*RIXI)
XKI(2,6)=-D*BX*Rl1 *Bl*Rl2*VYI

** -BIRI *NxO*BTxl
B5=-B*RlI *XNO
XKI(7,6)=-B5
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XKI(l,7)=RII*B5
* * ---~------------------------------------
** STABILITY EQN-2
** dNyl/dy

XK2(5,1)=C*XNU*UYI
XK2(7,1 )=-C*XNU*BTX*WYI
XK2(2, 1)=C*BI*VY2
XK2( 1,1)=C*(BBX +XNU*BTX*RI 1)*UYI
XK2(3, 1)=C*(RI2+ XNU*RI 1)*WYI

** B*dNxyl/dx
* CNX=C*(l.O-XNU)/2.0

XK2(lO,I)=CNX*B'
XK2(5,2)=CNX*UYI
XK2(7,2)=-CNX*BTX*WYI
XK2(l,2)=CNX*B*BIX*UYI
XK2( 6,1)=CNX*B *(-BBX +BTX*RI2)
XK2(3,2)=CNX*B *(-BTX*BIX -BTXX*BI)*WY 1
XK2(2,2)=CNX*B *(-BBXX +BTX*RIX2+ BTXX* RI2)

** l/R2*dMyl/dy
XK2(11,1)=-D*RI2*XNU*WYI
XK2(7,3 )=-D*RI2 *BBX* WY 1
XK2(3,3 )=-D*RI2 *BI*BI*WY3
XK2(5,3)=D*RI2*XNU*RII*UYI
XK2(l ,3)=D*RI2*(BBX*RI 1+XNU*RIXI )*UY 1
XK2(2,3 )=D*RI2 *BI*RI2 *VY2

** B/R2*dMxyl/dx
* DN=D*(l.O-XNU)/2.0

XK2(l1,2)=-2.0*DN*RI2*WYI
XK2(5,4)=DN*RI2*RII*UYI
XK2(lO,2)=DN*B*RI2*RI2
XK2(7,4 )=DN*B *RI2 *(-3 .O*BIX+BBX*BI)* WY 1
XK2(1 ,4)=DN*B*RI2*(BI*RIXI +BIX*RI 1)*UYI
XK2( 6,2)=DN*B *RI2 *(2.0*RIX2-BBX*RI2)
XK2(3,4 )=DN*B *RI2*( -BIXX +
+BBX*BIX+BBXX*BI)*WYI
XK2(2,4 )=DN* B*RI2 *(RIXX2-

+ BBXX*RI2-BBX*RIX2)
** 2/R2*dB/dx*Mxyl

XK2(7 ,5)=-4.0*DN*BX*RI2 *BI *WY 1
XK2(l,5)=2.0*DN*BX*RI2*BI*RII*UYI
XK2( 6,3 )=2.0*DN*BX*RI2 *RI2
XK2(3 ,5)=2.0*DN*BX*RI2 *(-BIX+BBX*BI)*WY 1
XK2(2,5)=2.0*DN*BX*RI2 *(RIX2- BBX*RI2)

** (2*dB/dx-B*BTx/R2)*Nxyl
CNXI =CNX*(2.0*BX-B*BTX*RI2)
XK2(6,4)=CNXI
XK2(l,6)=CNXI*BI*UYI
XK2(3,6)=-CNXI*BTX*BI*WYI
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)

XK2(2,6)=CNXI *(-BBX+BTX*R12)
** -B/R2*NyO*BTyl

ABR2=-B*R12*YNO
XK2(3,7)=-ABR2*BI*WYl
XK2(2,7)=ABR2*R12

* * ------------------ ---------------------------- ----
** STABILITY EQN-3
** B*dl\2Mxl/dxl\2

XK3(l2,1)=D*B
** (2*B,x)*dMxl/dx

XK3(8, 1)=2.0*D*BX
** (B,xx)*Mxl

XK3( 4,1 )=D*BXX
** I/B*dl\2Myl/dyl\2

XK3(l1,1)=-D*BI*XNU*WY2
XK3(7, 1)=-D*BI*BBX*WY2
XK3(3, 1)=-D*BI*BI*BI*WY 4
XK3(5,1)=D*BI*XNU*R11 *UY2
XK3(l, 1)=D*BI*(BBX*R11 +XNU*R1Xl )*UY2
XK3(2, 1)=D*BI*BI*R12*VY3

** -B,x*dMyl/dx
XNU2=1.0-XNU*XNU
XK3(8,2)=-D*BX*XNU
XK3(7 ,2)=+D*BX*XNU2 *BI*BI*WY2
XK3(l1,2)=+D*BX*XNU2*BBX
XK3(7 ,3)=+D*BX*XNU2 *BBXX
XK3(3 ,2)=+D*BX*XNU2 *2.0*BI*BIX*WY2
XK3( 6,1 )=-D*BX*XNU2 *BI*R12*VY 1
XK3(2,2)=-D*BX*XNU2 *(BI*R1X2+RI2*BIX)*VY 1
XK3(5 ,2)=-D*BX*XNU2 *BBX*R11
XK3(1,2)=-D*BX*XNU2*(BBX*R1Xl+R11 *BBXX)

** -B,xx*Myl
AB33=-BXX
XK3(l1,3)=-D* AB33*XNU
XK3(7,4)=-D* AB33*BBX
XK3(3,3)=-D* AB33*BI*BI*WY2
XK3(5,3)=D* AB33*XNU*R11
XK3(l ,3)=D* AB33*(BBX*R11 +XNU*R1Xl)
XK3(2,3)=D* AB33*BI*RI2*VYI

** 2*dI\2Mxyl/dxdy.
* DN=D*(1.0-XNU)/2.0

XK3(l1,4)=-4.0*DN*BI*WY2
XK3(5,4)=2.0*DN*BI*R11 *UY2
XK3(l 0, 1)=2.0*DN*R12*VYI
XK3(7 ,5)=2.0*DN* (-3.O*BIX+BBX*BI)* WY2
XK3(l ,4)=2.0*DN*(BI*R1Xl +BIX*R11 )*UY2
XK3( 6,2)=2.0*DN*(2.0*R1X2-BBX*R12)* VY 1
XK3(3,4)=2.0*DN*( -BIXX +
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+ BBX*BIX+BBXX*BI)*WY2
XK3(Z,4 )=Z.O*ON*(RIXXZ-

+ BBX*RIXZ-BBXX*RIZ)*VYI
** Z/B*B,x*dMxylldy
* ON=O*(l.O-XNU)/Z.O

XK3(7,6)=-4.0*ON*BBX*BI*WYZ
XK3(l ,5)=Z.O*ON*BBX*BI*RI l*UYZ
XK3( 6,3)=Z.O*ON*BBX*RIZ *VY 1
XK3(3,5)=Z.O*ON*BBX*( -BIX+BBX*BI)* WY2
XK3(Z,5)=Z.O*ON*BBX*(RIX2- BBX*RI2)*VY 1

** -(B/R1+B,x*BTX+B*BTX,x)*Nxl
AB31 =-(B*RI 1+BX*BTX +B*BTXX)
XK3(5,5)=C* AB31
XK3(7,7)=-C* AB31*BTX
XK3(Z,6)=C* AB31*XNU*BI*VYI
XK3(l ,6)=C* AB31*(BTX*RI 1+XNU*BBX)
XK3(3,6)=C* AB31*(RI 1+XNU*RIZ)

** -B/R2*Nyl
XK3( 5,6)=-C*B *RIZ*XNU
XK3(7 ,8)=+C*B *RI2 *XNU* BTX
XK3(Z,7)=-C*RIZ*VYl'
XK3( 1,7)=-C*B*RIZ*(XNU*BTX*Rll +BBX)
XK3(3, 7)=-C*B*RIZ*(XNU*RI 1+RIZ)

** -B*NxO*dBTxlldx
XK3(l1,5)=+B*XNO
XK3(5,7)=-B*XNO*RII
XK3(1,8)=-B*XNO*RIXl

** -(B,x*NxO+B*NxO,x)*BTxl
BN3=-(BX*XNO+B*XXNO)
XK3(7,9)=-BN3
XK3(l,9)=BN3*RIl

** -B*BTX*dNxlldx
:.. • XK3(9,1)=-C*B*BTX

XK3(l1,6)=+C*B*BTX*BTX
XK3( 6,4 )=-C *BTX*XNU*VY 1
XK3(Z,8)=-C*B *BTX*XNU*BIX*VY 1
XK3( 5,8)=-C*B *BTX*(BTX*RI 1

++XNU*BBX)
XK3(7, 1O)=-C*B*BTX*(RI I-BTXX

+ +XNU*RIZ)
XK3(1, 1O)=-C*B*BTX*(BTX*RIXI +BTXX*RI 1

+ +XNU*BBXX)
XK3(3,8)=-C*B*BTX*(RIXI +XNU*RIXZ)

** -NyO*dBTylldy
XK3(3,9)=+YNO*BI*WYZ
XK3(Z,9)=- YNO*RIZ*VYI

** ~BTX*dNxylldy
* CNX=C*(l.O-XNU)/2.0
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XK3( 6,5)=-CNX*BTX*VY I,
XK3(1,II)=-CNX*BTX*BI*UY2
XK3(3,IO)=+CNX*BTX*BTX*BI*WY2
XK3(2, I O)=-CNX*BTX* (-BBX +BTX*RI2)*VY 1

*------------------------------------------
** EQN-4

XK4(11,1)=-D*LO
XK4(7,1)=-D*XNU*BBX
XK4(3, 1)=-D*XNU*BI *BI*WY2
XK4(5,1)=D*Rll
XK4(1, 1)=D*(RlXI +XNU*BBX*RlI),
XK4(2, 1)=D*XNU*BI*Rl2 *VY 1
XK4(4,1)=-D*LO
RETURN
END

,

*======--================================================
SUBROUTINE DETCO(CCK,HS,Jl ,SS 1,AA 1,AA2,AA3,AA4,IS)

c IMPLICIT REAL *8 (A-H,O-Z)
REAL *8 CCK(12),HS(30),CO(3,3),A 1(3),A2(3 ),A3(3),A4(3)
REAL *8 AAI(3),AA2(3),AA3(3),AA4(3),CO 1(3,3)
REAL*8 SUMI,SUM2,SUM3,SUM4,SSI
DO 5 1=1,3
AAl(I)=O,O
AA2(1)=0.0
AA3(1)=0,0
AA4(1)=0.0

5 CONTINUE
IF(IS,EQ,O) THEN
CALL DFCAL(HS,Jl ,SS 1,CO)
ELSE
CALL DFCALl(HS,Jl,SSI,COI,IS)
ENDIF
Al(1)=CCK(I)
Al (2)=CCK(5)
Al(3)=CCK(9)
A2(1)=CCK(2)
A2(2)=CCK(6)
A2(3 )=CCK(I 0)
A3(1)=CCK(3)
A3(2)=CCK(7)
A3(3)=CCK(ll)
A4(1)=CCK(4)
A4(2)=CCK(8)
A4(3)=CCK(l2)
DO 101=1,3
SUM1=0,0
SUM2=0,0
SUM3=0,0
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SUM4=0.0
IF(IS.EQ.O) THEN
DO 20 J=1,3
SUM1=SUM1 +CO(J,I)* A1(J)
SUM2=SUM2+CO(J,I)* A2(J)
SUM3=SUM3+CO(J,1)* A3(J)
SUM4=SUM4+CO(J,I)* A4(J)

20 CONTINUE
ELSE
DO 30 J=1,3
SUM1=SUM1 +C01(J,I)* A1(J)
SUM2=SUM2+CO 1(J,I)* A2(J)
SUM3=SUM3+C01(J,I)* A3(J)
SUM4=SUM4+CO 1(J,1)*A4(J)

30 CONTINUE
ENDIF
AA1(I)=SUM1
AA2(I)=SUM2
AA3(I)=SUM3
AA4(I)=SUM4

10 CONTINUE
RETURN
END

*~----------------------------------------------------
SUBROUTINE DFCAL(HS,Jl,SSl,CO)
IMPLICIT REAL *8 (A-H,O-Z)
REAL *8 H(2),CO(3,3),HS(30),SSl,SS
1=2
IF(SS 1.EQ.0.0) THEN
H(l )=HS(Jl )/20.0
H(2)=H(l)
ELSE
H(l )=HS(Jl-1 )120.0
H(2)=HS(Jl )/20.0
ENDlF
SS=H(I)+H(I-1)
DD=H(I-1)/H(I)/SS
EE=H(I)/H(I -1)/SS
FF=(DD-EE)
A=2.0/H(I)/SS
B=-2.0/H(I)/H(I-1 )
C=2.0/H(I-1)/SS
CO(l,l)=O.O
CO(l ,2)= 1.0
CO(l,3)=0.0
CO(2,1)=-DD
CO(2,2)=FF.
CO(2,3)=EE
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CO(3,I)=A
CO(3,2)=B
CO(3,3)=C
RETURN
END

*=======================================~============~======
SUBROUTINE MATSI(A5,B5)

c IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 A5(4,4),B5(4,4)
DO 99 Ll=I,4
DO 99 KI=I;4

99 B5(Ll,KI)=A5(LI,KI)+B5(Ll,KI)
RETURN
END

****
SUBROUTINE MATS2 (A5)

c IMPLICIT REAL *8 (A-H,O-Z)
REAL*8 A5(4,4)
DO 98 LI=I,4
DO 98 KI=I,4

98 A5(Ll,KI)=-A5(Ll,KI)
RETURN.
END

****
SUBROUTINE MATMI(A5,B5,C5)

c IMPLICIT REAL *8 (A-H,O-Z)
REAL*8 A5(4,4),B5(4;4),C5(4,4)
DO 97 Ll=I,4
DO 97 KI=I,4.
C5(Ll,KI)=0 ..
DO 97 J1=I;4

97 C5(Ll,KI)=C5(Ll,KI)+A5(LI ,J1)*B5(J1 ,KI)
RETURN
END

*======== SUBROUTINE FOR MATRIX INVERSION ===========
SUBROUTINE MATI 1(B,CI,N)
DOUBLE PRECISION B(4,4),A(4,8),CI(4,4)
DOUBLE PRECISION XMAX,TT,C,D,DIV
L=N+N
DO 200 I=I,N
DO 200 J=I,L
A(I,J)=O.O

200 CONTINUE
DO 11 I=I,N
A(I,N+I)= 1.0
DO 11 J=I,N
CI(I,J)=O.O

11 A(I,J)=B(I,J)

130



DO 10K=I,N
IF(K.EQ.N) GOTO 35
XMAX=DABS(A(K,K»
IC=K
DO 20 IA=K+I,N
IF(XMAX .LT. DABS(A(IA,K») THEN
XMAX=DABS(A(IA,K»
IC=IA
END IF

20 CONTINUE
IF( IC .EQ. K) GOTO 35
DO 30 IB=I,L
TT=A(K,IB)
A(K,IB)=A(IC,IB)
A(IC,IB)=TT

30 CONTINUE
35 IF( DABS(A(K,K» .LE.1E-16) THEN

WRITE(3,99)
99 FORMAT(!//lOX,'BAD SOLUTION'!!)

ENDIF
40 C=A(K,K)
100 DO 70 IE=I,N

IF( IE .NE. K) THEN
D=A(IE,K)
DO 80 IG=I,L

80 A(IE,IG) = A(IE,IG) -A(K;IG)*(D!C)
ENDIF

70 CONTINUE
._.,' ..JD CONTINUE.... '.__"

DO 90 I=I,N
DIV=A(I,I)
DO 90 IX=I,L
A(I,IX)=A(I,IX)/DIV

90 A(I,I)= 1.0
DO 22 I=I,N
DO 22 J=I,N

22 CI(I,J)=A(I,J+N)
RETURN
END

*==========================================~========
SUBROUTINEPP2(A I,B I,C I ,A2,B2,C2,P2)
REAL *8 Al (4,4),B I (4,4),C I (4,4 ),A2( 4,4),B2( 4,4),C2( 4,4),P2( 4,4)
REAL *8 A3( 4,4),B3( 4,4),C3( 4,4),A4( 4,4),CI( 4,4 ),C3I( 4,4),P22( 4,4)
REAL *8 C22(4,4)
N=4
DO 10I=I,N
DO 13 J=I,N
P2(I,J)=0.0
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)

A3(I,J)=0.0
B3(l,J)=0.0
A4(I,J)=0.0
CI(I,J)=O.O
C3I(I,J)=0.0
P22(l,J)=0.0
C22(I,J)=C2(I,J)

13 CONTINUE
10 CONTINUE

CALL MATIl(C22,CI,N)
CALL MATMI(CI,CI,A3)
CALL MATMI(A3,B2,C3)
CALL MATMI(A3,A2,A4)
CALL MATS2(C3)
CALL MATS2(A4)
CALL MATSI(BI,C3)
CALL MATlI(C3,C3I,N)
CALL MATSI(AI,A4)
CALL MATMI(C3I,A4,P22)
DO 121=1,4
DO II J=I,4
P2(l,J)=P22(l,J)

II CONTINUE
12 CONTINUE

RETURN
END.

*------------------------------------------------------
SUBROUTINE PP(AI,BI,CI,P2,P3)
. REAL *8 Al (4,4),B I (4,4);CI (4;4),P2( 4,4 ),P3( 4;4),A3( 4,4),CI( 4,4)
+,P33(4,4)
N=4
DO 101=1,4
DO II J=I,4
A3(I,J)=0.0
CI(I,J)=O.O
P33(I,J)=0.0
P3(I;J)=0.0

II CONTINUE
10 CONTINUE

CALL MATMI(CI,P2,A3)
CALL MATS2(A3)
CALL MATSI(BI,A3)
CALL MATlI(A3,CI,N)
CALL MATMI(CI,AI,P33)
DO 13 1=1,4
DO 12 J=I,4
P3(l,J)=P33(I,J)

12 CONTINUE
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13 CONTINUE
RETURN
END

*--------------------------------------------
SUBROUTINE XMAT(AI ,BI,CI,P2,P3,XM)
REAL *8 Al (4,4),B I (4,4),C I (4,4),P2( 4,4),P3( 4,4),

+B2( 4,4),XM( 4,4),XMI (4,4)
DO 121=1,4
DO 13 J=I,4
XM(I,J)=O.O
XMI(I,J)=O.O
B2(I,J)=0.0

13 CONTINUE
12 CONTINUE

CALL MATMI(CI,P2,BZ)
CALL MATSZ(B I)
CALL MATS I (B2,B I)
CALL MATMI(BI,P3,XMI)
CALL MATSI(AI,XMI)
DO 101=1,4
DO II J=I,4
XM(I,J)= XM I(I,J)

II CONTINUE
10 CONTINUE

RETURN
END

*-----------------------------------
SUBROUTINE XMATI(BI,CI,PZ,XM)
REAL*8 BI(4,4),CI(4,4),P2(4,4),

+ XM(4,4),XMI(4,4)
DO IZI=I,4
DO 13 J=I,4
XM(I,J)=O.O
XMI(I,J)=O.O

13 CONTINUE
12 CONTINUE

CALL MATMI(CI,PZ,XMI)
CALL MATS2(XMI)
CALL MATSl(BI,XMl)
DO 101=1,4
DO 11 J=I,4
XM(I,J)=XMI(I,J)

II CONTINUE
10 CONTINUE

RETURN
END
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*----------------------------------------
SUBROUTINE JUNCI (FFI ,FF2,FF3,FF4,FF5,FF6,FF7,SS 1,HS,JI,
+EM,TK,CIND,IG,xNN,XA,XB,XC,MXN,ITC)
REAL *8 XA( 4,4),XB( 4,4),XC( 4,4),HS(30),IG(30),CIND(30),TK(30)
REAL *8 FFI ,FF2,FF3,FF4,FF5,FF6,FF7 ,XNN,EM,SS 1
DIMENSION MXN(30)
DO 131=1,4
DO 14J=;I,4
XA(I,J)=O.O
XB(I,J)=O.O
XC(I,J)=O.O

:14 CONTINUE
'13 CONTINUE

CALL RAT(FFI ,FF2,FF3,FF4,FF5,FF6,FF7,SS 1,HS,JI,
+EM,TK,CIND,IG,XNN,XA,XB,XC,MXN,ITC)
RETURN
END

*-----------------------------------
SUBROUTINE BOUND(XKI ;XK2,XK3,XK4,TK,BTX,BTXX,XXNO,
+PHI,UYI ,UY2,VYI ,VY2,VY3, WYI, WY2,WY3,WY4,XNO,YNO,B,
+BX,RI2,BI,BBX,RI 1,BXX,BIX,RX 1,RIX 1,RI 12,RI21 ,RIX2,BIXX,
+RIXXI ,RIXX2,BBXX,XNU,JI ,ITC,XK5,XK6)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 XKI(12,11),XK2(12,11),XK3(12,11),XK4(12,11),TK(30)
REAL *8 XK5(12,11),XK6(12,1I)
C=1.0
D=I.0/TK(JI)/TK(JI)112.0
IF(lTC.EQ.l) THEN

** CLAMPED EDGE ******** U=V=W=BTEA=O
XKI (1,1)= 1.0
XK2(2,1)=1.0
XK3(3,1)= 1.0
XK4(7, 1)=-1.0
XK4(1,I)=RII
ELSEIF(ITC.EQ.2) THEN

** SIMPLY SUPPORTED EDGE, NOT FREE END M=U=V=W=O
XKI(1,I)=1.0
XK2(2,1)= 1.0
XK3(3,1)=1.0
XK4(4,1)=1.0
ELSEIF(ITC.EQ.3) THEN

** Nx=M=V=W=O
XKI(3,1)=1.0
XK2(2, 1)=1.0
XK3(5,1)=1.0
XK3(7,1)=-BTX
XK3(2,1)=XNU*BI*VYI
XK3(1 ,I)=BTX*RII +XNU*BBX
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\

XK3(3,1)=RIl +XNU*RI2
XK4(4,1)=1.0
ELSEIF(ITC.EQ.4) THEN

** FREE EDGE Nx=Vn=Tnt=M=O
XKl(5,1)=1.0
XKl(7,1)=-BTX
XKl(2,1)=XNU*BI*VYl
XKl(l,l)=BTX*RIl +XNU*BBX
XKl (3,1)=RI l+XNU*RI2

** Vn=Qn+ ...
** dMxl/dx

XK3(8,1)=D
** (l/B*B,x)*Mxl

XK3(4,1)=D*BBX
** 2/B*dMxyl/dy

DN=D*(l.0-XNU)I2.0
XK3(7,1 )=-4.0*DN*BI*BI* WY2
XK3(l,1)=2.0*DN*BI*BI*RIl *UY2
XK3( 6,1 )=2.0*DN*BI*RI2 *VY 1
XK3(3, 1)=2.0*DN*BI* (-BIX +BBX*BI)* WY2
XK3(2, 1)=2.0*DN*BI*(RIX2- BBX*RI2)*VY 1

** -l/B*B,x*Myl
DNI =D*(XNU*XNU-1.0)
XK3(4,2)=-D*BBX*XNU
XK3(3,2)=-DNl *BI*BI*BBX*WY2
. XK3(2,2)=+DNl *BI*RI2*BBX*VYl
XK3(7,2)=-DNl *BBX*BBX
XK3(1,2)=+DNl *BBX*BBX*RII .

*------------------------------------------
** Tnt= Nnt+ ...
** Nxyl

CNX=C*(1.0-XNU)/2.0
XK2(6,1)=CNX
XK2(l,1)=CNX*BI*UYl
XK2(3, 1)=-CNX*BTX*BI*WYl
XK2(2, 1)=CNX*(-BBX +BTX*RI2)

** l/R2*Mxyl
XK2(7, 1)=-2.0*DN*lU2 *BI*WY 1
XK2(l,2)=DN*RI2*BI*RIl *UYI
XK2(6,2)=DN*RI2*RI2
XK2(3 ,2)=DN*RI2 *(-BIX+BBX*BI)*WYl
XK2(2,2)=DN*RI2 *(RIX2-BBX*RI2)
XK4(l, 1)=1.0
ELSEIF(ITC.EQ.5) THEN

** SIMPLY SUPPORTED EDGE, FREE TO MOVE IN NORMAL DIRECTION
* M=Vn=U=V=O

XKl(l,1)=1.0
** dMxl/dx
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XK3(8,1)=O
** (lIB*B,x)*Mxl

XK3( 4, I)=O*BBX
** 2/B*dMxy1!dy

ON=O*(l.0-XNU)/2.0
XK3(7, I )=-4.0*ON*BI*BI*WY2
XK3(l,I)=2.0*ON*BI*BI*RII*UY2
XK3( 6, I )=2.0*ON*BI*RI2 *VY I
XK3(3, I )=2.0*ON*BI*( -BIX+BBX*BI)* WY2
XK3 (2, I )=2.0*ON*BI*(RIX2-BBX*RI2)*VYI

** -IIB*B,x*Myl
ONI =O*(XNU*XNU-I.O)
XK3( 4,2)=-O*BBX*XNU
XK3(3,2)=-ONI*BI*BI*BBX*WY2
XK3(2,2)=+ONI*BI*RI2*BBX*VYI
XK3(7,2)=-ONI*BBX*BBX
XK3(l,2)=+ONI*BBX*BBX*RII

*------------------------------------------
** EQN-2
** Nxyl

CNX=C*(1.0-XNU)/2.0
XK2(6,1)=CNX
XK2(I,I)=CNX*BI*UYI
XK2(3, I)=-CNX*BTX*BI*WYI
XK2(2, 1)=CNX*( -BBX +BTX*RI2)

**1!R2*Mxyl
XK2(7, I )=-2.0*ON*RI2 *BI*WYI
XK2(l ,2)=ON*RI2*BI*RI I*UYI
XK2(6,2)=ON*RI2*RI2
XK2(3 ,2)=ON*RI2 *(-BIX+BBX*BI)*WY 1
XK2(2,2)=ON*RI2 *(RIX2- BBX*RI2)

** EQNc4 -
XK4(2,1)=1.0
ELSEIF(ITC.EQ.6) THEN

* RADIAL DISPL = 0.0 , ETC. \\\\\\\
* Nx

XKI(5,1)=1.0
XKI(7,I)=-BTX .
XKI(2,1)=XNU*BI*VYI
XKI(I, I)=BTX*RII +XNU*BBX
XKl(3,1)=RII +XNU*RI2

* Vn
XK3(8,1)=O

** (l/B*B,x)*Mxl
XK3( 4, I)=O*BBX

** 2/B*dMxy1!dy
ON=O*(l.0-XNU)/2.0
XK3 (7, I)=-4.0*ON*BI*BI*WY2
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XK3(1,1)=2.0*DN*BI*BI*RII *UY2
XK3(6, 1)=2.0*DN*BI*RI2*VY 1
XK3(3, 1)=2.0*DN*BI*( -BIX+BBX*BI)* WY2
XK3(2, 1)=2.0*DN*BI*(RIX2- BBX*RI2)*VY 1

** -lIB*B,x*Myl
DN1=D*(XNU*XNU-l.0)
XK3( 4,2)=-D*BBX*XNU
XK3(3,2)=-DNI *BI*BI*BBX*WY2
XK3(2,2)=+DNI *BI*RI2*BBX*VYI
XK3(7,2)=-DNI *BBX*BBX
XK3(1 ,2)=+DNI *BBX*BBX*RI 1
XK2(1,I)=1.0
XK4(3, 1)=1.0
XK5(2, 1)=1.0
XK6(4,1)=1.0
ELSE
. ENDIF
RETURN
END

*-------------------------------------_::
SUBROUTINE DET4(A,DD)

* CALCULATES 4TH ORDER DETERMINANT
REAL *8 A(4,4),B 1(3),B2(3),B3(3 ),B4(3)
REAL *8 DTl ,DT2,DT3,DT4,AA,AB,AC,AD,DD
DO 5 1=1,3
Bl(I)=O.O
B2(I)=0.0
B3(I)=0.0
B4(I)=0.0

5 CONTINUE.
AA=A(1,I)
AB=A(1,2)
AC=A(1,3)
AD=A(I,4)
DO 101=1,3
B 1(I)=A(I+ 1,1)
B2(I)=A(I+ 1,2)
B3(I)=A(I+ 1,3)
B4(I)=A(I+l,4)

10 CONTINUE
CALL DET3(B2,B3,B4,DTl)
CALL DET3(Bl,B3,B4,DT2)
CALL DET3(Bl,B2,B4,DT3)
CALL DET3(Bl,B2,B3,DT4)
DD=(AA *DTl-AB*DT2)+(AC*DT3-AD*DT4)
RETURN
END
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SUBROUTINE DET3(X,Y,Z,DT)
REAL*8 X(3),Y(3),Z(3),DT
DT=(X( 1)*(Y (2)*Z(3 )-Z(2)*Y (3))
+-Y(l )*(X(2)*Z(3)-Z(2)*X(3)))
++Z(l )*(X(2)*Y (3)-X(3)*Y (2))
RETURN
END

(;----------------------------------------------------------
SUBROUTINE MATS (AS,BS,L,K)

c IMPUc;rT REAL*8 (A-H,O-Z)
REAL *8 AS(3,3),BS(3,3)
DO 99 Ll=I,L
DO 99 Kl=I,K

99 BS(Ll,Kl)=AS(Ll,Kl)+BS(Ll,Kl)
RETURN
END

****
SUBROUTINE MATSB (AS,L,K)

c IMPU(;IT REAL*8 (A-H,O-Z)
REAL*8 AS(3,3)
DO 98 Ll=I,L
DO 98 Kl=I,K

98 AS(Ll,Kl)=-AS(Ll,Kl)
RETURN
END

****
SUBROUTINE MATM (AS,BS,(;S,L,K,K2)

c IMPUc;rT REAL *8 (A-H,O-Z)
REAL *8 AS(3,3),BS(3,3),(;S(3,3)
DO 97 Ll=I,L
DO 97 Kl=I,K2
(;S(Ll,Kl)=O.
DO 97 JI=I,K

97 (;S(Ll ,Kl )=(;S(Ll ,Kl )+AS(Ll,JI )*BS(JI ,Kl)
RETURN
END

****
SUBROUTINE MATI (AS,BS,Kl)

c IMPU(;n REAL *8 (A-H,O-Z)
REAL *8 AS(3,3),BS(3,3)
P=O.
DO 9 L=I,3
DO 9 K=I,3
GO TO (2,3,4),L

2 Il=L+l
I2=L+2
GO TO S

3 Il=L+l
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12=1
GO TO 5

4 Il=1
12=2

5 GO TO (6,7,S),K
6 JI=K+I

J2=K+2
GOT09

7 JI=K+I
12=1
GOT09

8 JI=I
J2=2

9 B5(K,L)=A5(I I,JI)* A5(I2,J2)-A5(I2,JI)* A5(11,J2)
DO II L=I,3

II P=P+A5(I,L)*B5(L,I)
DO 12 L=I,3
DO 12 K=I,3

12 B5(L,K)=B5(L,K)/P
RETURN
END

e:-------------------------------------------------------------------------------------
SUBROUTINE JUNe:2(FF I ,FF2,FF3 ,FF4,FF 5,FF6,FF7 ,FFS,FF9,

+SS I ,HS,JI ,EM,TK,e:IND,IG,XNN,MX,MXN,BB I ,Be: I ,BD I ,e:B I,
+e:e:1 ,e:D I ,DB I ,De: I ,DD I ,EB I ,Ee: I ,ED I)
IMPLlGT REAL*S (A-H,O-Z)
REAL *S TK(30),e:IND(30),EM,IG(30)
DIMENSION MX(30),MXN(30)
REAL *S BB I (4,4),Be: I(4,4),BDI (4,4)
REAL *S e:B I (4,4),e:e: I (4,4),e:DI (4,4)
REAL*S DBI(4,4),De:I(4,4),DDI(4,4) .
REAL *S EB I (4,4),Ee:1 (4,4),EDI (4,4)
DO 13 IS=I,4
IF(IS.EQ.l) THEN
e:ALL JUNe:21 (FFI ,FF2,FF3,FF4,FF5,FF6,FF7,FFS,FF9,SS I ,HS,J I,

+EM,TK,e:IND,IG,XNN,BB I ,Be:l ,BD I ,MX,MXN,IS)
ENDIF
IF(IS.EQ.2) THEN
e:ALL JUNe:21(FFI ,FF2,FF3,FF4,FF5,FF6,FF7,FFS,FF9,SS I ,HS,JI, ,
+EM,TK,GND,IG,XNN,e:B I ,e:e: I ,e:D I ,MX,MXN,IS)
ENDIF
IF(IS.EQ.3) THEN
e:ALL JUNe:21 (FFI ,FF2,FF3,FF4,FF5,FF6,FF7,FFS,FF9,SS I ,HS,JI,

+EM,TK,e:IND,IG,XNN,DB I ,De: I ,DD I ,MX,MXN,IS)
ENDIF
IF(IS.EQ.4) THEN
e:ALL JUNe:21 (FFI ,FF2,FF3,FF4,FF5,FF6,FF7 ,FFS,FF9,SS I ,HS,JI,

+EM,TK,e:IND,IG,XNN,EB I;Ee: I ,ED I ,MX,MXN ,IS)
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ENDIF
13 CONTINUE

RETURN
END

*----------------------------------------------------
SUBROUTINE JUNC21 (FFI ,FF2,FF3,FF4,FF5,FF6,FF7 ,FF8,FF9,SS I,
+HS,JI ,EM,TK,CIND,IG,XNN,AB I ,AC I ,AD I ,MX,MXN ,IS)

IMPLICIT REAL *8 (A-H,O-Z)
REAL*8 XKI(l2,11),XK2(l2,11),XK3(l2,11),XK4(l2,1I)
REAL*8 CCI(12),CC2(l2),CC3(12),CC4(l2),

+AA I (3),AA2(3 ),AA3(3 ),AA4(3)
REAL*8 HS(30),TK(30),EM
REAL *8 AB I (4,4),ACI (4,4),AD I (4,4),CIND(30),IG(30)
DIMENSION MXN(30),MX(30)
DO 300 1=1,3
AAI(I)=O.O
AA2(I)=0.0
AA3(I)=0.0
AA4(I)=0.0

300 CONTINUE
DO 1991=1,4
DO 199 J =1,4
AB I (I,J)=O.O
AC I (I,J)=O.O
AD I(I,J)=O.O

199 CONTINUE
DO 200 1=1,12
DO 201 J=I,11
XK1(I,J)=0.0
XK2(I,J)=0.0
XK3(I,J)=0.0
XK4(I,J)=0.0

201 CONTINUE
200 CONTINUE

XNU=O.3
IF(IS.EQ.l .OR.1S.EQ.3) THEN
PHI=FF8
FF66=FF9
ELSE
PHI=FF7
FF66=FF6
ENDIF
BTX=O.O
BTXX=O.O
XXNO=FF66*EM*(l.0-XNU*XNU)*TK(JI )

lOS FORMAT(2IEI0.4)
UYI=-XNN
UY2=-XNN*XNN
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VYl=XNN
VY2=-XNN*XNN
VY3=UY2*VYI
WYl=-XNN
WY2=-XNN*XNN
WY3=WYl *WY2
WY4=WY3*XNN
XNO=FF4*EM*(1.0-XNU*XNU)*TK(J! )
YNO=FF5*EM*(1.0-XNU*XNU)*TK(J! )
B=FFI
BX=DCOS(PHl)
IF(IS.EQ.l .OR. IS.EQ.3) THEN
J!1=J!-1
ELSE
J!1=J!
ENDIF
IF(MXN(J!I) .EQ. 2) THEN
RI2= 1.0/ClND(J!I)
ELSE
RI2=DSIN(PHI)/B
ENDIF
BI=RI2/DSIN(PHI)
BBX=RI2/DTAN(PHI)
IF(IS.EQ.l .OR. IS.EQ.3) THEN
J!2=J!-1
ELSE
J!2=J!
ENDIF
IF(IG(J!2).EQ.l.0) THEN
RIl=O.O
ELSE
RII =1.0/CIND(J!2)
ENDIF
BXX=-DSlN(PHl)*RI 1
BIX=-BBX*BI
RXl=O.O
RIXl=O.O
RI 12=RI 1-RI2
RI21=RI2-RII
RIX2=RII2*BBX
BIXX =(2.0*BBX*BBX +RI2)*BI
RIXXl=O.O
RIXX2=RI21 *(2.0*BBX*BBX+RII *RI2)
BBXX=BI*BXX+BX*BIX
C=1.0
D= 1.0/TK(J! )/TK(J! )/12.0
IF(IS.LE.2) THEN
IF(IS.EQ.2) THEN
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. **

XISl=l.O
XIS2=l.O
XIS3=l.O
XIS4=l.O
ELSE
XISl=-l.O
XIS2=-l.O
XIS3=-l.O
XIS4=-l.O
ENDIF

* * -----------------------------
EQN-l

** Nxl

XKl(5,l)=C
XKl(7,l)=-C*BTX
XKl (2, 1)=C*XNU*BI*VYl
XKl(l,l)=C*(BTX*RIl
++XNU*BX*BI)
XKl(3,l)=C*(RIl +XNU*RI2)

** EQN-3
** dMxl/dx

XK3(8,l)=O
** (I/B*B,x)*Mxl

XK3(4,l)=O*BBX
** 2/B*dMxyl/dy

ON=O*(l.O-XNU)I2.0
XK3 (7, 1)=-4. O*ON*BI*BI* WY2
XK3(l, 1)=2.0*ON*BI*BI*RI 1*UY2
XK3( 6, 1)=2.0*ON*BI*RI2 *VY 1
XK3(3, 1)=2.0*ON*BI*( -BIX+BBX*BI)* WY2
XK3 (2, 1)=2.0*ON*BI*(RIX2-BBX*RI2)*VY 1

** -lIB*B,x*Myl
ONl=O*(XNU*XNU-l.O)
XK3(4,2)=-O*BBX*XNU
XK3(3,2)=-ONl*BI*BI*BBX*WY2
XK3(2,2)=+ONl*BI*RI2*BBX*VYl
XK3(7,2)=-ONl*BBX*BBX
XK3(l,2)=+ONl*BBX*BBX*RIl

*------------------------------------------
** EQN-2
** Nxyl

CNX=C*(l.O-XNU)/2.0
XK2(6,l)=CNX
XK2(l,l)=CNX*BI*UYl
XK2(3, 1)=-CNX*BTX*BI*WY 1
XK2(2, 1)=CNX*( -BBX +BTX*RI2)

** l/R2*Mxyl
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**

*

*
*
*
*
*

XK2(7, 1)=-2.0*DN*RI2 *BI*WY 1
XK2(1,2)=DN*RI2*BI*RII *UYI
XK2(6,2)=DN*RI2*RI2
XK2(3 ,2)=DN*RI2 *(-BIX+BBX*BI)* WYl
XK2(2,2)=DN*RI2 *(RIX2-BBX*RI2)
EQN-4
XK4( 4,1)= 1.0
ELSE
IF(lS.EQA) THEN
XISl=1.0
XIS2=1.0
XIS3=1.0
XIS4=1.0
ELSE
XISl=-1.0
XIS2=-1.0
XIS3=-1.0
XIS4=-1.0
ENDIF
XKl (1,1)= 1.0
XK2(2, 1)=1.0
XK3(3,1)=1.0
XK4(7,1)=-1.0
XK4(1,I)=RIl
ENDIF
DO 50 L=I,12
CCl(L)=O.O
CC2(L)=0.0
CC3(L)=0.0
CC4(L)=0.0
D060Ll=I,11
IF(lS.LE.2) THEN
IF(IS.EQ.l) THEN
CC 1(L)=CC 1(L)+(-XK3(L,L 1)*DSIN(PHI)+ XK 1(L,L I)*DCOS(PHI) )*XIS 1
CC2(L )~CC2(L )+(XK3(L,L 1)*DCOS(PHI)+ XK 1(L,L I)*DSIN(PHI) )*XIS2
ENDIF

IF(IS.EQ.2) THEN
CCl(L)=CC I (L)+(XK3(L,LJ )*DSIN(PHI)+ XKl (L,L I)*DCOS(PHI))*XIS I
CC2(L)=CC2(L)+(XK3(L,L 1)*DCOS(PHI)-XKl (L,L I)*DSIN(PHl))*XIS2

ENDIF
CC3(L )=CC3(L)+ XK2(L,L I)*XIS3
CC4(L )=CC4(L)+ XK4(L,L I)*XIS4
ELSE
CC I(L)=CC 1(L)+(XK3(L,Ll )*DSIN(PHI)+ XKl (L,L I )*DCOS(PHI))*XIS 1
CC2(L )=CC2(L)+ XK2(L,L 1)*XIS2
CC3(L)=CC3(L)+(XK3(L,L I)*DCOS(PHI)-XKl (L,L 1)*DSIN(PHl))*XIS3
CC4(L )=CC4(L)+ XK4(L,L 1)*XIS4
ENDIF
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60 CONTINUE
50 CONTINUE
110 FORMAT (3IDII.5)

DO 70 1=1,4
IF (LEQ.1) THEN
CALL DETCO(CC 1,HS,JI ,SS 1,AAI ,AA2,AA3,AA4,IS)
ENDIF
IF (LEQ.2) THEN
CALL DETCO(CC2,HS,JI ,SS 1,AA 1,AA2,AA3,AA4,IS)
ENDIF
IF (LEQ.3) THEN
CALL DETCO(CC3,HS,JI ,SS 1,AAI ,AA2,AA3,AA4,IS)
ENDIF
IF (LEQ.4) THEN
CALL DETCO(CC4,HS,JI ,SS 1,AAI ,AA2,AA3,AA4,IS)
ENDIF
ABI(I,I)=AAl(1)
ABI(I,2)=AA2(1)
ABI(I,3)=AA3(1)
ABI(I,4)=AA4(1)
ACl(I,I)=AAI(2)
AC 1(I,2)=AA2(2)
ACI(I,3)=AA3(2)
ACI(I,4)=AA4(2)
ADl(I,I)=AAI(3)
ADl(I,2)=AA2(3)
ADI(I,3)=AA3(3)
ADI(I,4)=AA4(3)

70 CONTINUE
RETURN
END

* .. _--------------------------------------------------
SUBROUTINE DFCAL 1(HS,JI ,SS 1,CO 1,IS)
IMPLICIT REAL*S (A-H,O-Z)
REAL *S H(1),C0(3,3),COI(3,3),HS(30),SS 1,SS
IF(IS.EQ.I .OR. IS.EQ.3) THEN
H(1 )=HS(JI-I )/20.0
DLH=2.0*H(I)

* BACKWARD DIFFERENCE
CO(1,l )=0.0
CO(1,2)=0.0
CO(I,3)=1.0
CO(2, 1)=-I.O/DLH
CO(2,2)=4.0/DLH.
CO(2,3)=-3.0/DLH
CO(3,1)=0.0
CO(3,2)=0.0
CO(3,3)=0.0
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COl(l,l)=O.O
COl(l,2)=0.0
COl(l,3)=1.0
COl (2, 1)=0.0
COl(2,2)=1.01H(l)
CO 1(2,3)=-1.01H(1)
COl(3,1)=0.0
COl(3,2)=0.0
COl(3,3)=0.0
ELSE

* FORWARD DIFFERENCE
H(l )=HS(ll )/20.0
DLHI =2.0*H(l)
CO(l, 1)=1.0
CO(l,2)=0.0
CO(l,3)=0.0
CO(2, I)=3.0/DLHl
CO(2,2)=-4.0/DLHI
CO(2,3)=1.0/DLHI
CO(3,1)=0.0
CO(3,2)=0.0
CO(3,3)=0.0
COl(l,I)=1.0
COI(l,2)=0.0
COI(l,3)=0.0
COl (2, 1)=1.01H(l)
CO I (2,2)=-1.0/H(l)
COl (2,3)=0.0
COI(3,1)=0.0
COI(3,2)=0.0
COI(3,3)=0.0
ENDIF
RETURN
END

*===========================================================
SUBROUTINE JUNP(A,B,C,F I ,F2,F3,P22,A I ,B I,C I ,A2,B2,C2,A3,
+B3,C3,A4,B4,C4)
REAL *8 A(4,4),B( 4,4),C( 4,4),AA( 4,4),AB( 4,4 ),AC( 4,4)
REAL *8 A I (4,4),B I (4,4),C I (4,4),A2( 4,4),B2( 4,4),C2( 4,4)
REAL *8 A3(4,4),B3(4,4),C3(4,4),A4( 4,4),B4( 4,4),C4(4,4)
REAL *8 P22( 4,4),P33( 4,4),D I (4,4),D2( 4,4 ),D3( 4,4),D4( 4,4)
REAL *8 E1 (4,4),E2( 4,4),E3( 4,4),E4( 4,4),F I (4,4 ),F2( 4,4),F3( 4,4)
REAL *8 cr( 4,4),C5( 4,4 ),C6( 4,4),C7( 4,4),P44( 4,4)
DO 100 JX=I,4
DO 100 JXI=I,4
P44(JX,JXI)=0.0
P33(JX,JXI)=0.0
cr(Jx,JXI)=O.O
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C5(JX,JXI)=0.0
C6(JX,JXI)=0.0
C7(JX,JXI)=0.0
DI(JX,JXI)=O.O
D2(JX,JXI )=0.0
FI(JX,JXI)=O.O
F2(JX,JXI)=0.0
F3(JX,JXI)=0.0
EI(JX,JXI)=O.O
E2(JX,JXI)=0.0

100 CONTINUE
CALL MATIl(C,CI,4)
CALL MATMI(CI,B,C5)
CALL MATMI(CI,A,C6)
CALL MATMI(CI,C5,DI)
CALL MATMI(C3,C5,EI)
CALL MATMI(CI,C6,D2)
CALL MATMI(C3,C6,E2)
CALL MATS2(D I)
CALL MATS2(D2)
CALL MATS2(E I)
CALL MATS2(E2)
CALL MATSI(BI,DI)
CALL MATSI(AI,D2)
CALL MATSI(B3,EI)
CALL MATS I (A3,E2)
DO 115 JX=I,4
DO 115 JXI=I,4
P44(JX,JXI)=0.0
P33(JX,JXI)=0.0
CI(JX,JXI)=O.O
C5(JX,JXI)=0.0
C6(JX,JXI)=0.0
D3(JX,JXI )=0.0
D4(JX,JX I )=0.0
E3(JX,JXI)=0.0
E4(JX,JXI)=0.0

115 CONTINUE
CALL MATMI(DI,P22,E3)
CALL MATMI(EI,P22,E4)
CALL MATS2(E3)
CALL MATS2(E4)
CALL MATS I (D2,E3)
CALL MATSI(E2,E4)
CALL MATIl(E3,CI,4)
CALL MATMI(CI,A2,C5)
CALL MATMI(CI,B2,C6)
CALL MATMI(CI,C2,C7)
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CALL MATMl(E4,C5,Fl)
CALL MATMl(E4,C6,F2)
CALL MATMl(E4,C7,F3)
CALL MATS2(Fl)
CALL MATS2(F2)
CALL MATS2(F3)
CALL MATSl(A4,Fl)
CALL MATS 1(B4,F2)
CALL MATSl(C4,F3)
RETURN
END
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