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Abstract

Chest X-rays are commonly used in clinical settings to diagnose thoracic diseases, es-
pecially in low-resource settings. However, interpreting these images can be challeng-
ing, particularly in resource-constrained environment. Current AI-based methods focus
solely on the X-ray images without considering relevant clinical information. To effec-
tively assist with limited resources, it is important for a computerized system to gen-
erate decisions relevant to those of radiologists. This requires incorporating pertinent
clinical details, such as medical history, symptoms, and demographic information, into
image-based computerized systems to enhance their performance. The development of
AI-based systems faces two main challenges: the limited availability of comprehensive
medical image datasets suitable for machine learning and the difficulty in reproducing
the advanced reasoning abilities of experienced radiologists, who have undergone ex-
tensive training and accumulated expertise. In this work, at first an unimodal anatomy
aware network is proposed which provided about 11% relative improvement in mean
square error (MSE) compared to existing methods when evaluated on a dataset for pre-
dicting the severity of COVID-19 pneumonia. This model also exhibits promising re-
sults on an unseen clinical evaluation dataset which provides evidence of the efficacy
of anatomy-aware architecture for predicting the severity of COVID-19 disease. Addi-
tionally, this thesis proposes a multimodal feature fusion framework to improve disease
classification by combining medical data and image information. Existing approaches
rely on textual information, lacking anatomical details. An advanced multimodal fea-
ture fusion-based approach is needed to enhance disease classification accuracy. In this
study, a comparison of incorporating clinical information demonstrates the substantial
value of patient indication data (i.e., medical history, demographics, symptoms) in dis-
ease classification. Incorporating such information enables computer-aided systems to
function more closely to radiologists. The proposed feature fusion-based framework,
ResVCBERT and DenseVCBERT exhibit a significant improvement in accuracy com-
pared to baseline architectures, even when there are errors in the textual information.
The proposed DenseVCBERT provided significant improvement with an accuracy of
about 88.44% using the OpenI dataset of radiological reports and chest X-rays. Includ-
ing anatomical information in deep learning models through feature fusion enhances the
accuracy of AI-based frameworks, as demonstrated in the analysis of COVID-19 pneu-
monia severity prediction. This approach aids disease diagnosis and severity prediction,
benefiting radiologists in developed and underdeveloped nations.
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Chapter 1

Introduction

1.1 Introduction

The advancements achieved in Artificial Intelligence (AI) present a significant oppor-
tunity to revolutionize healthcare, particularly in the field of medical imaging used
for diagnosing, prognosing, and treating diseases. Currently, state-of-the-art radiol-
ogy techniques primarily focus on pixel-level details, neglecting the valuable clinical
data and the patient’s medical history. By incorporating this additional information,
we can greatly improve the interpretation of imaging results, leading to more accurate
diagnoses, better decision-making, and ultimately improved patient outcomes. The rise
of advanced diagnostic tools has given rise to the increasing importance of multimodal
fusion in the medical field. A recent approach in medical informatics involves fusing
visual information from radiological images with associated textual descriptions. How-
ever, effectively handling the complexities of high dimensionality, heterogeneity, and
biases inherent in such systems presents significant technical challenges. Leveraging
multimodal approaches that combine vision and language can offer several benefits, in-
cluding enhanced automated disease classification and support systems for generating
medical reports. In Figure 1.1 a basic multimodal framework is shown. In a clinical set-
ting, there is a growing demand for computer-based support systems capable of utilizing
not only radiology images but also supplementary patient data, enabling the processing
of multimodal information to make informed decisions. When it comes to the semantic
understanding of medical texts, contextual word embeddings, particularly BERT, have
demonstrated exceptional performance. Consequently, combining convolutional neural
networks (CNN) and BERT has become a popular architecture for jointly processing
both images and texts in an integrated manner.



Text Information
DNN
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Figure 1.1: Diagram of a multimodal approach for classification of disease using med-
ical text and image information.

The complete medical background of a patient, encompassing their overall health, past
medical conditions, and prior treatments, provides valuable contextual information.
This data allows physicians to understand the patient’s health journey, identify patterns,
and make well-informed diagnostic decisions. By considering the symptoms reported
by the patient, doctors can utilize the medical history to assess the timeline and pro-
gression of symptoms, narrowing down potential diagnoses and focusing on relevant
areas for further investigation. Moreover, the medical history plays a crucial role in
evaluating the patient’s susceptibility to specific diseases. It provides insights into ge-
netic predispositions, family medical history, lifestyle habits, occupational exposures,
and other relevant factors that contribute to the development of diseases. This valuable
information helps doctors determine the likelihood of certain conditions and guides
them in ordering appropriate diagnostic tests. In terms of differential diagnosis, where
doctors consider various possible causes for the patient’s symptoms, a comprehensive
medical history is instrumental. By analyzing the medical history, doctors can prioritize
potential diagnoses and order targeted tests, thereby saving time and resources. Under-
standing the patient’s medical history allows doctors to tailor treatment plans based on
the patient’s specific circumstances. Previous treatment responses, medication allergies,
and other relevant details inform doctors’ decisions in selecting appropriate therapies
and minimizing potential complications. Furthermore, the medical history establishes
a foundation for long-term disease management. It enables doctors to track the pro-
gression of a disease, evaluate the effectiveness of treatments, and make necessary ad-
justments to optimize patient outcomes. In summary, the medical history is of utmost
importance in disease diagnosis as it provides crucial insights into a patient’s health
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background. It aids doctors in evaluating symptoms, assessing risk factors, conducting
differential diagnosis, planning treatment, and effectively managing diseases.

Chest X-rays provide visual representations of the internal structures of the chest, in-
cluding the heart, lungs, and surrounding tissues. They offer valuable insights into
the presence of abnormalities such as tumors, infections, or lung diseases. As a diag-
nostic tool, they assist healthcare professionals in identifying and categorizing various
diseases, including pneumonia, tuberculosis, lung cancer, congestive heart failure, and
other pulmonary or cardiac disorders. Additionally, chest X-rays are commonly used
for screening purposes, allowing for the early detection of potential abnormalities in
individuals at risk or displaying disease-related symptoms. This early detection leads
to improved treatment outcomes. Serial chest X-rays taken over time enable the moni-
toring of disease progression by comparing current and past images. This facilitates the
evaluation of changes in lung structure size, shape, or density and helps assess disease
advancement and treatment response. The information derived from chest X-rays is cru-
cial in treatment planning, guiding physicians in determining appropriate actions such
as prescribing medications, recommending surgical interventions, or referring patients
for specialized evaluation. Furthermore, chest X-rays are frequently used to assess
treatment effectiveness, monitor patient progress, identify possible complications, and
make necessary adjustments to treatment strategies. Moreover, the findings from chest
X-rays contribute to medical research and data analysis. Aggregating and analyzing
chest X-ray data can lead to advancements in disease classification, prognostication,
and the development of more accurate diagnostic algorithms. Chest X-ray informa-
tion plays a significant role in disease classification. These imaging studies provide
vital visual assessments, aid in diagnosis, serve as screening tools, assist in treatment
planning, enable disease progression monitoring, and contribute to research and data
analysis. They guide healthcare professionals in accurately classifying diseases and
implementing appropriate management strategies to ensure optimal patient care.

Integrating various clinical data, including patient history, laboratory results, and symp-
toms, with the findings from chest X-rays offers a comprehensive understanding of the
patient’s condition. This comprehensive approach allows healthcare professionals to
consider a broader range of factors and achieve more precise disease classifications. By
combining multiple sources of information, the multimodal approach enhances the ac-
curacy of disease classification. Clinical data provides supplementary insights into the
patient’s overall health, existing conditions, and risk factors, complementing the visual
analysis of chest X-rays and leading to more accurate diagnoses. The amalgamation
of clinical data and chest X-ray information enhances the sensitivity and specificity of
disease classification. Clinical data aids in identifying subtle abnormalities or providing
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context for interpreting chest X-ray results, thereby improving overall diagnostic perfor-
mance and reducing the likelihood of misclassification. The multimodal approach em-
powers healthcare professionals to make well-informed decisions regarding treatment
plans and interventions. By considering both clinical data and chest X-ray information,
they can customize treatment strategies to address the patient’s specific needs, consid-
ering factors such as disease severity, comorbidities, and potential complications. The
multimodal approach facilitates early detection and intervention in diseases. By ana-
lyzing both clinical data and chest X-ray findings, healthcare professionals can identify
early indicators of diseases that may not be apparent using either modality alone. This
allows for timely interventions, resulting in better patient outcomes and improved prog-
nosis. Integrating clinical data and chest X-ray information supports the development
of personalized medicine approaches. By taking into account individual patient char-
acteristics and merging modalities, healthcare professionals can create tailored treat-
ment plans that are more effective and minimize the risks of potential adverse events.
The multimodal approach of combining clinical data and chest X-ray information con-
tributes to advancements in medical research. By aggregating and analyzing data from
diverse sources, new insights, patterns, and correlations can be uncovered, leading to
the development of improved disease classification algorithms and decision support
systems.

1.2 Literature Review

1.2.1 Vision Models for Disease Classification

Deep Convolutional Neural Networks (CNNs) have gained popularity for directly ex-
tracting feature representations from CXR images through supervised learning, demon-
strating impressive effectiveness in classifying thoracic diseases [14–16]. Various tech-
niques have been documented for feature learning, utilizing established CNN archi-
tectures such as ResNet [17] and DenseNet [18]. For example, Wang et al. [14] utilize
AlexNet [19], VGG16 [20], ResNet50, and GoogLeNet [21] as backbone networks, pre-
training them on the ImageNet dataset [22] and fine-tuning on specific CXR datasets.
Similarly, Chen et al. [23] combine ResNet and DenseNet to effectively capture various
abnormal features in CXR images. Notably, Chen et al. [23] introduce Graph Convo-
lution Networks (GCNs) [24] for thoracic disease classification, exploring the interplay
among different pathologies.

In recent years, the medical image analysis community has extensively utilized semi-
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supervised learning to tackle the challenge of limited image annotation. Several stud-
ies [25–27] have employed techniques that leverage unlabeled data to improve model
predictions through consistency-enforcing methods. In the domain of thorax disease
classification, various approaches have employed semi-supervised learning to optimize
deep neural networks. For example, Aviles et al. [28] propose a graph-based optimiza-
tion model to enhance collaboration between a small number of labeled samples and
a large amount of unlabeled data. Despite achieving some degree of success, semi-
supervised learning often becomes impractical when additional high-quality labeled
CXR images are difficult to obtain, especially in real-world scenarios where expert ra-
diologists are scarce.

To overcome the time-consuming process of manually labeling domain-specific data
for training, extensive research has been conducted on Unsupervised Domain Adapta-
tion (UDA) [29, 30]. The goal of UDA is to transfer discriminative feature representa-
tions from a labeled source domain to an unlabeled target domain. Current approaches
primarily focus on directing feature learning to minimize the differences between the
distributions of features in the source and target domains.

1.2.2 Language Models for Disease Classification

In the medical domain, BERT [31] and ELMo [32] have been widely employed for
various tasks such as medical image analysis and natural language processing of elec-
tronic health records. The recent advancement in language modeling, ChatGPT [33],
has demonstrated significant progress. While language models have found extensive ap-
plications in processing electronic health records and disease diagnosis [34–36], their
utilization in medical imaging tasks, such as disease diagnosis, remains relatively lim-
ited [37–39].

Language models have gained significant attention and accessibility by surpassing pre-
vious approaches like RNN-based models [40, 41] across various tasks. These models
can be broadly categorized into three types: autoregressive models (e.g., GPT), masked
language models (such as BERT), and encoder-decoder models (e.g., BART [42] and
T5 [43]). Recently, there has been a notable increase in the development of extremely
large language models, including GPT-3 [44], Bloom [45], PaLM [46], and OPT [47].
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1.2.3 Vision-Language Models for Medical Report Generation

The field of automated medical report generation has witnessed several advancements
in order to achieve its intended objective. Initially, methods such as template filling, de-
scription retrieval, and manual construction of natural language generation techniques
were employed. The central challenge can be defined as the transformation of images
into sequences, where the input comprises pixel values arranged in a sequential for-
mat. Through visual encoding, these input patches are converted into feature vectors,
ultimately generating a latent space vector that serves as the input for the subsequent
language generation step. In this phase, the latent vector is decoded using a specific
vocabulary, resulting in the production of a sequence of words or subwords as the final
output.

In [48], a two-part model is proposed, consisting of an Image Encoder and a Cap-
tioning Decoder that does not employ recurrent connections. The KERP (Knowledge-
driven Encode, Retrieve, Paraphrase) approach [49] integrates contemporary learning-
based methodologies for report generation with knowledge and retrieval-based meth-
ods. In [50], a memory-driven transformer is proposed for report generation. This
method incorporates a transformer architecture with a relational memory to store im-
portant information. A deep neural network is employed in [51] to predict tags and
generate reports based on provided chest X-ray images. The tag embeddings are ob-
tained using a convolutional neural network, followed by transformers that facilitate the
learning of self and cross attention mechanisms. In [52], a CNN-based feature with an
attention layer and LSTM are utilized to generate more reliable reports. A novel two-
step model is introduced in [53] that extracts overarching concepts from images and
transforms them into detailed and coherent textual representations using a transformer
architecture. In [54], a deep learning architecture comprising a CNN model as the en-
coder and a Transformer model as the decoder is utilized. Chexnet is employed as the
encoder to predict tags for images and generate a latent space vector.

1.2.4 Vision-Language Models for Disease Classification

Several CNN-RNN-based V-L (Vision-Language) models have been proposed for dis-
ease diagnosis using CXR images. A recent study introduces a novel approach called
TNNT (Text-guided Neural Network Training) [55]. TNNT enhances the efficiency
of training on V-L data by incorporating guidance from text report embeddings into
the CNN model. The evaluation of TNNT on four V-L datasets, including the OpenI
dataset, demonstrates the significance of text reports, as they contain crucial informa-
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tion that can improve the accuracy of diagnosis compared to models relying solely on
visual information. TieNet [56] is another CNN-RNN-based V&L embedding model
that integrates multi-level attention layers into an end-to-end CNN-RNN framework for
disease diagnosis and radiology report generation tasks. In [39], the transferability of
pre-trained V-L models is evaluated through fine-tuning. Additionally, a transformer-
based model called BERTHop [57] is proposed. BERTHop combines PixelHop++ and
VisualBERT to better capture the associations between the two modalities.

1.3 Motivation of the Work

The motivation for integrating a patient’s medical history and symptoms with chest X-
ray image features for thoracic disease classification arises from the understanding that
a comprehensive approach can greatly improve the accuracy and effectiveness of dis-
ease diagnosis. By combining clinical data and symptoms, we can gain a more thorough
comprehension of the patient’s health status, pre-existing conditions, and risk factors,
providing valuable context for interpreting chest X-ray findings. The multimodal ap-
proach, which merges clinical data and chest X-ray information, plays a vital role in
disease classification as it enables a comprehensive assessment, enhances diagnostic
precision, improves decision-making, facilitates early detection and intervention, sup-
ports personalized medicine, and drives research advancements.

By utilizing multiple sources of information, healthcare professionals can achieve more
precise and customized disease classifications, leading to improved patient care and out-
comes. Therefore, there is a need for a state-of-the-art multimodal feature fusion-based
approach that integrates significant clinical information from reports and combines it
with radiological findings to achieve more accurate classification. The current methods
that solely rely on clinical findings for classification may exhibit biases, particularly
when disease information is available. To address this issue, a framework is required
that leverages the patient’s medical history and symptomatic information along with
image features to emulate the decision-making capabilities of a radiologist.

1.4 Objectives of the Thesis

The main objectives of the work are:

1. To propose a state-of-art multimodal feature fusion-based architecture using raw
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medical text data and chest x-ray images for improving thoracic disease classifi-
cation performance.

2. To address the limitations of current multimodal approaches combining patient’s
medical history and image-based significant features.

3. To propose a novel feature extraction framework for Tele-radiology platforms.

4. To compare and evaluate the performance of the proposed method with the base-
line methods.

5. To develop an Artificial Intelligence (AI) based framework for assisting Radiolo-
gists.

1.5 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 begins with a background dis-
cussion of different thoracic diseases and their prevalence in the recent world. Then the
fundamental theory of different machine learning classifiers, natural language process-
ing (NLP) and medical image processing has been explained. The mechanism behind
different existing algorithms is discussed thoroughly in this chapter.

In Chapter 3, different medical data processing is discussed. Two basic NLP-based
techniques used in medical data processing are explained. The overview of convolu-
tional neural networks (CNN) in text processing is discussed. In addition to this, a brief
introduction to the machine learning techniques in text processing is provided.

Chapter 4 is basically on different medical image processing techniques that are used
in this work. At first, different pre-processing techniques are explained. Then NLP
and CNN-based classification procedures are discussed. Finally, the usage of anatomy-
aware neural networks in disease classification and even in severity prediction is dis-
cussed.

Chapter 5 reports the motivation for incorporating anatomical information in the feature
fusion approach. In addition to this, a study of unimodal feature extraction approach
for COVID-19 severity prediction and an experimental study with results is provided in
this section. Performance evaluation and a brief discussion are provided to explain the
performance of this feature fusion-based approach.

Chapter 6 describes the multimodal framework designed for medical data and image
processing. An explanation of baseline architectures and proposed framework is pro-
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vided. In addition to this, dataset description, pre-processing techniques, and feature
extraction techniques are explained in this section.

Chapter 7 reports the evaluation results and comparison study of different frameworks.
First, an analysis of the significance of indication information is provided using dif-
ferent experimental analyses. The robustness of the proposed architecture is explained
and analyzed with examples and experimental results. A comparative analysis with
baselines is provided in this section.

Chapter 8 serves as the concluding section of the thesis, providing a comprehensive
overview of the research conducted. It includes the key findings and emphasizes the
potential influence of this thesis on forthcoming research. Furthermore, it offers a con-
cise overview of the potential route for future experimental and theoretical research in
this specific domain.
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Chapter 2

Background

2.1 Assessment of Different Thoracic Diseases

According to global statistics from 2019, Chronic Respiratory Diseases (CRDs) are
the third leading cause of mortality worldwide, resulting in 4.0 million deaths [58].
The prevalence of CRDs is estimated at 454.6 million cases globally. On the other
hand, Cardiovascular diseases (CVDs) hold the highest position as the primary cause of
mortality, responsible for approximately 17.9 million deaths annually [59].

Computer-aided diagnostic methods are essential in low-income settings to combat the
high mortality rates associated with respiratory and cardiovascular diseases. Different
imaging modalities, including chest X-ray, chest computed tomography (CT), MRI,
positron emission tomography (PET), and others, are available for diagnostic purposes.
Among these options, chest X-ray is the most widely used and cost-effective imaging
technique for diagnosing various thoracic diseases in developing and underdeveloped
countries. Thoracic diseases primarily consist of abnormal lung and heart conditions,
such as Atelectasis, Cardiomegaly, Edema, Pleural effusion, Pneumonia, Pneumotho-
rax, and more. Figure 2.1 provides a visual representation of the anatomical structure
of the thoracic cage. Abnormalities can be observed in the frontal and lateral views of
chest X-rays, providing valuable information for disease classification.

Radiologists employ a systematic approach to analyze chest X-rays and identify tho-
racic disease information. Here’s a general outline of the process:

1. Image Evaluation: Radiologists begin by assessing the technical quality of the
X-ray image, checking for appropriate positioning, exposure, and image clarity.
If the image quality is inadequate, they may request a repeat X-ray.



Figure 2.1: The heart and lungs are located within the thoracic cavity between the lungs
in the mediastinum.

2. Initial Observation: Radiologists conduct a preliminary assessment of the over-
all appearance of the chest X-ray. They evaluate the lung fields, heart, ribs, and
other structures to identify any gross abnormalities or artifacts. Lung Evalua-
tion: Radiologists systematically examine the lung fields, assessing for any signs
of abnormal lung parenchyma (tissue) or lung diseases. They observe the lung
markings, looking for changes in density, nodules, masses, consolidation, or ar-
eas of collapse.

3. Lung Evaluation: Radiologists systematically examine the lung fields, assess-
ing for any signs of abnormal lung parenchyma (tissue) or lung diseases. They
observe the lung markings, looking for changes in density, nodules, masses, con-
solidation, or areas of collapse.

4. Mediastinum and Heart Assessment: Radiologists evaluate the mediastinum,
which includes the heart, great vessels, and other structures in the central chest.
They analyze the size, shape, and position of the heart, as well as the width of
the mediastinum. They also search for signs of enlarged lymph nodes, masses, or
abnormalities in the major blood vessels.

5. Bones and Soft Tissues: Radiologists examine the ribs, clavicles, and other bony
structures for fractures, bone lesions, or evidence of trauma. They also assess the
soft tissues, including the chest wall and subcutaneous tissues, looking for any
abnormalities.
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6. Comparison: If available, radiologists compare the current chest X-ray with any
previous imaging studies to identify changes over time, which can be crucial for
detecting disease progression or improvement.

7. Reporting: After evaluating the chest X-ray thoroughly, radiologists generate a
structured radiology report. This report includes a detailed description of their
findings, impression, and recommendations. The report is then shared with the
referring physician to guide further diagnosis and treatment.

It is essential to acknowledge that the procedure may differ based on the particular
clinical situation and the proficiency of the radiologist. Furthermore, in intricate cases
or when additional investigation is required, supplementary imaging techniques such
as computed tomography (CT) scans or magnetic resonance imaging (MRI) might be
suggested.

The patient’s clinical history and disease symptoms are significant to understand the
state of health of the patient and to determine any acute complaints that can be di-
rected towards diagnosis [60]. In the process of treating a patient, information obtained
through various methods serves as a vital guide for providing appropriate care. Chal-
lenges often arise when patients are hesitant to disclose their complete medical history.
However, for subsequent visits, a review of the medical history and any necessary up-
dates can suffice. The medical history unveils pertinent chronic conditions and past
diseases that may not be currently treated but have a lasting impact on the patient’s
health. Therefore, medical history plays a crucial role in directly formulating differ-
ential diagnoses [61–63]. When it comes to diagnosing heart and lung diseases, the
medical history of patients holds great importance. For instance, individuals with a
history of smoking are more prone to developing lung diseases, as smoking is a ma-
jor contributing factor. Additionally, in cases of internal infections, the presence of
fever may suggest an ongoing infection within the body. Therefore, the significance of
medical history and symptomatic information cannot be overlooked when it comes to
categorizing various thoracic diseases.

2.2 Overview of Machine Learning Classifiers

2.2.1 Naive Bayes (NB)

A simplistic learning technique called Naive Bayes (NB) [64, 65] makes use of Baye’s
rule and the fundamental presumption that the characteristics are conditionally inde-
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pendent given the class. Despite the fact that in real-world situations the assumption of
independence is frequently broken, the Naive Bayes (NB) classifier routinely obtains
equivalent classification accuracy. This, together with other characteristics, makes NB
a well-liked option in real-world applications. NB enables the estimation of the poste-
rior probability P (y|x) for each class y given an object x using the information from
sample data. This type of estimator proves beneficial in classification tasks and other
decision-support applications.

Naı̈ve Bayes is a form of Bayesian Network Classifier based on Bayes’ rule together
with an assumption that the attributes are conditionally independent given the class.

P (y|x) = P (y)
P (x|y)
P (x)

(2.1)

For attribute-value data, this assumption can be represented as:

P (x|y) =
n∏

i=1

P (xi|y) (2.2)

where xi is the value of the ith attribute in x, and n is the number of attributes.

P (x) =
k∏

i=1

P (ci)P (x|ci) (2.3)

where k is the number of classes and ci is the ith class.

Two naive Bayes variations are frequently used in text mining [66]. The multi-variate
Bernoulli model, which represents each document as a vector of binary variables, uses
the naive Bayes algorithm discussed above. These variables show if certain issues are
present or not. However, only the words that are genuinely present in a document are
taken into account for determining its probability.

2.2.2 Stochastic Gradient Descent

Let us consider an information processing system that receives a vector input signal: r
and emits an output signal z. The system includes feed forward-type connections, but
not feedback connections. It defines a mapping from the set X = x of input signals to
the set Z = z of output signals,

z = F (x) (2.4)
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When the system includes a number of modifiable parameters v = (v1, ..., vn), the
input-output function 2.4 is specified by v,

z = F (x; v) (2.5)

Here, we assume that F is differentiable with respect to v. When an input signal x is
processed by a system specified by v, a loss is caused because the system might not
be optimally tuned. The loss is denoted by l(x; v). In some cases, a desired output y
accompanies x. In this case, the loss is written as l(x, y; v), denoting the loss when x

with a desired or teacher signal y is processed by the network specified by v.

Let us assume that the input signal x is generated subject to a fixed but unknown proba-
bility distribution p(x) each time independently. The accompanying desired output y is
usually a function of x called the desired output. It is sometimes disturbed by noise. In
this case, y is generated subject to the conditional probability p(y|x) and the expectation
of y,

yd(x) = E[y|x] =
∫

yp(y|x) dy

where E[y[x]] is the conditional expectation of y under the condition that the input x is
the desired signal [67]. The stochastic Y is its noisy version. In the noiseless ease, y is
written as:

p(y|x) = δ(y − yd(x)) (2.7)

2.2.3 Logistic Regression (LR)

Logistic regression is the most appropriate regression analysis when dealing with a
binary and dichotomous dependent variable [68–72]. It is a predictive analysis method
used to describe data and explain the relationship between a dependent binary variable
and one or more independent nominal, ordinal, interval, or ratio-level variables. The
formula of LR is:

P =
1

1 + e−(β0+β1x)
(2.8)

We all know the equation of the best-fit line in linear regression is:

y = β0 + β1x (2.9)
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where x is the input and y is output. β0 is bias or intercept term and β1 is coefficient
for input x. Given that the outcome is a probability with a range of 0 to 1, logistic

Figure 2.2: Key assumptions for implementing Logistic Regression.

regression’s interpretation of weights is different from that of linear regression. The
weights no longer have a linear effect on the likelihood in logistic regression. Instead,
the weighted sum is converted into a probability by the logistic function. Using prob-
abilities rather than a linear relationship, logistic regression may now represent the re-
lationship between the predictors and the outcome. The key assumptions for Logistic
regression can be observed in Figure 2.2.

2.3 A Brief Introduction to Natural Language Process-
ing (NLP)

In the domain of Natural Language Processing (NLP), text analysis is performed using a
range of theories and tools. It is a dynamic and progressive field of research that lacks a
universally agreed-upon definition that would satisfy all experts. Nonetheless, there are
certain components considered essential and would be included in the understanding of
NLP by any knowledgeable individual.

Natural Language Processing (NLP) refers to a range of computer methods supported
by a theoretical foundation. The historical perspective of NLP can be observed in Figure
2.3. These methods encompass various levels of linguistic analysis and are utilized for
examining and representing naturally occurring texts. The ultimate objective of NLP is
to develop language processing abilities that resemble those of a human. This broadens
its applicability to a wide range of tasks and practical applications [73–75].

The aim of Natural Language Processing (NLP) is to attain language processing ca-
pabilities that closely resemble human abilities. It is important to note that the term
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1930s
Automatic Bilingual Dictionary

1600s
Theoritical Codes in Language

1940s
Break Codes in WW21950s

Turing Test

1957
Syntactic Structures

1968-1970
SHRDLU, early NLP Program

1966
ELIZA, First bot

1970-1980
Augmented Transition Network

1980s
Statistical Machine Translation System

1990-2000
NLP Models

2006
AI Software by IBM

2010-2020
NLP at Home (Siri - 2011, Alexa – 2014, Chatbot - 2017)

2020+
AI Powered Bots

Figure 2.3: A historical perspective on the growth of NLP.

”processing” is deliberately chosen and should not be replaced with ”understanding.”
Although NLP was initially known as Natural Language Understanding (NLU) in the
early days of AI, it is now widely recognized that complete NLU has not yet been
achieved. NLP methodologies can be classified into four primary types: symbolic, sta-
tistical, connectionist, and hybrid approaches.

Symbolic and statistical approaches have coexisted in the field of NLP since its early
days. The emergence of connectionist NLP work dates back to the 1960s. Symbolic
approaches have long dominated the field, involving detailed language analysis through
explicit representations and established algorithms. The description of language analy-
sis levels provided earlier in this text is presented from a symbolic standpoint. Symbolic
systems heavily rely on rules and lexicons created by humans as the primary sources of
evidence.

In contrast, statistical approaches employ a range of mathematical techniques and exten-
sive text collections to construct approximate and generalized language models based
on real-world examples from these collections. Unlike symbolic approaches, statistical
methods primarily rely on observable data as evidence for their models.

Connectionist approaches also construct generalized models based on linguistic exam-
ples. What sets connectionism apart from other statistical methods is its integration of
statistical learning with various representation theories. This integration enables con-
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nectionist models to handle transformations, inferences, and manipulations of logical
formulas. Linguistic models within connectionist systems are more complex to observe
due to the greater flexibility offered by connectionist architectures compared to statisti-
cal approaches.

2.3.1 Integration of Transformer in NLP

A transformer is a type of advanced machine learning model that sets itself apart by
integrating self-attention, a mechanism that assigns different levels of importance to
various elements within the input data, including recursive outputs. This model has
extensive utility in the domains of natural language processing (NLP) and computer
vision (CV).

As illustrated in Figure 2.4, the architecture of transformer models consists of encoders
and decoders. BERT [76] exclusively employs encoders, while GPT [44,77] solely uti-
lizes decoders. Both variants possess the ability to comprehend language, including its
syntax and semantics. Particularly, the more recent generation of large-scale language
models like GPT, which comprise billions of parameters, excels in this aspect.

The two models focus on different scenarios. However, since the field of foundation
models is evolving, the differentiation is often fuzzier.

1. BERT (encoder): classification (e.g., sentiment), questions and answers, summa-
rization, named entity recognition.

2. GPT (decoder): translation, generation (e.g., stories).

The outputs of the core models are different:

1. BERT (encoder): Embeddings representing words with attention to the informa-
tion in a certain context.

2. GPT (decoder): Next words with probabilities.

Both models come pre-trained, eliminating the need for extensive training. Some mod-
els are openly accessible through platforms like Hugging Face, while others are com-
mercially available. The ability to reuse pre-trained models is highly valuable, as train-
ing procedures often demand significant resources and expenses, limiting their feasibil-
ity to only a few companies.
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Figure 2.4: Basic architecture of Transformer [1].

The pre-trained models have the flexibility to be extended and tailored to suit various
domains and specific tasks. In some cases, the existing layers can be directly reused,
while additional layers can be added on top. However, if modifications to the layers
are necessary, the process of retraining becomes more costly. This approach, known
as transfer learning, allows the general model to be easily transferred and adapted to
different domains according to specific requirements.

2.3.1.1 BERT Encoder

BERT utilizes the encoder component of the transformer architecture to comprehend
both the semantic and syntactic elements of language. Unlike predicting subsequent
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words, BERT generates embeddings as its output. To make use of these embeddings,
additional layer(s) need to be incorporated, such as for tasks like text classification or
question answering.

BERT applies self-supervised learning, a technique that assigns labels to initially unla-
beled data. This approach is particularly effective when dealing with large datasets. In
Figure 2.5 the basic architecture of BERT encoder is provided.

Figure 2.5: Basic architecture of BERT Encoder [2].

2.3.1.2 GPT Decoder

In language-related situations, decoders are employed to generate consecutive words, as
seen in tasks like text translation or story generation. The decoder produces words along
with their respective probabilities. The fundamental architecture of the GPT decoder is
depicted in Figure 2.6.

Decoders also incorporate attention mechanisms, employing them twice in the process.
During model training, Masked Multi-Head Attention is utilized, where only the initial
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words of the target sentence are provided. This approach ensures that the model learns
without any form of ”cheating” or access to future information. This mechanism shares
similarities with the MASK concept used in BERT.

Afterward, the decoder employs Multi-Head Attention, similar to the encoder. Transformer-
based models that consist of both encoders and decoders utilize an intelligent approach
to enhance efficiency. The output of the encoders, specifically the keys and values, is
passed as input to the decoders. The decoders can generate queries to identify the most
pertinent keys. This allows for tasks such as understanding the essence of the origi-
nal sentence and translating it into different languages, even if the translation differs in
terms of word count and order.

Figure 2.6: Basic architecture of GPT Decoder [1].
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2.4 Medical Image Analysis

2.4.1 Medical Image Pre-processing

There are four fundamental steps involved in digital image pre-processing. These steps
include image acquisition, image resizing, noise removal, and image enhancement. Im-
age acquisition involves obtaining an image from various sources and is typically the
initial step in medical image processing applications. The objective of image acquisi-
tion is to convert the image into numerical values that can be further processed by a
computer system. A basic Chest X-ray processing technique using deep learning archi-
tecture is shown in Figure 2.7.

Image resizing is a crucial procedure in various medical applications. Its primary pur-
pose is to adjust the size of the image, either increasing or decreasing it, for subsequent
processing.

Figure 2.7: Basic Chest X-ray processing using a Deep Learning architecture [3].

Another essential aspect of image pre-processing involves noise removal, which aims
to improve the clarity of acquired images by eliminating irrelevant and unnecessary
information. Medical images often contain noise, which can be unintentionally intro-
duced during the image acquisition process through medical devices or scanners. The
presence of noise can result in distorted images with a grainy, rough, textured, or snowy
appearance. Various types of noise, such as salt-and-pepper noise, Gaussian noise, shot
or Poisson noise, and speckle noise, are commonly observed in medical images. Image
enhancement plays a critical role in image processing applications, and among all the
tasks involved, this step holds significant importance and complexity. Image enhance-
ment techniques are employed to improve the visual quality of input images. These
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methods aim to enhance the image’s clarity, resulting in an improved version that is
more suitable for the specific application compared to the original image.

2.4.2 Deep Learning in Medical Image Processing

Deep learning has emerged as a robust methodology in the field of medical image pro-
cessing. It encompasses the utilization of artificial neural networks, specifically deep
neural networks consisting of multiple layers, to analyze and interpret medical images.
Here are some key aspects of deep learning in medical image processing:

1. Image Classification and Diagnosis: Deep learning models have the capability
to undergo training for the purpose of classifying medical images into various
categories, including the identification of tumors, lesions, or specific diseases.
These models possess the ability to learn intricate patterns and features directly
from the images, facilitating precise diagnosis and automated detection of dis-
eases [78–83].

2. Segmentation: Deep learning techniques can perform image segmentation, which
involves dividing an image into meaningful regions or identifying specific struc-
tures within the image. This is particularly useful for tasks like organ segmenta-
tion, tumor delineation, or extracting anatomical features [84–88].

3. Image Reconstruction: Deep learning-based methods can reconstruct high-quality
medical images from noisy or incomplete data. By leveraging large amounts of
training data, deep learning models can fill in missing information or enhance
low-resolution images, aiding in improved visualization and analysis [89–92].

4. Image Registration: Deep learning algorithms can be employed to align or reg-
ister multiple medical images acquired from different modalities or time points.
This enables precise comparison, fusion, or tracking of anatomical structures or
pathological changes [90, 93–95].

5. Disease Progression Modeling: Deep learning models can learn temporal or se-
quential patterns from longitudinal medical images, facilitating disease progres-
sion modeling and prediction. This can aid in personalized treatment planning
and monitoring the effectiveness of therapies [96–98].

6. Transfer Learning and Pretrained Models: Deep learning frameworks allow
the transfer of knowledge from models pretrained on large-scale datasets to spe-
cific medical image analysis tasks. This helps overcome the challenge of limited
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labeled medical data and improves the performance of models in medical image
processing applications [99–102].

Deep learning in medical image processing has shown promising results and has the
potential to revolutionize healthcare by enabling more accurate diagnoses.
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Chapter 3

Medical Data Processing

3.1 Machine Learning Classifiers for Text Processing

Text classification in machine learning involves the automatic assignment of tags or
categories to text data. To train a classifier using machine learning techniques, it is
necessary to convert the text into a format that can be understood by the algorithm. In
many cases, the text is vectorized, which means it is represented by a numerical vector
that captures the frequency of words from a predefined list.

New Text

Labels

Machine 
Learning 

Algorithm

Training 
Text

Predictive 
Model

Expected Label

Feature Vector

Feature Vector

Figure 3.1: Machine Learning based approach for text processing.

The machine learning based text processing approach is shown in Figure 3.1. Once
the text is vectorized, the text classifier is trained using a dataset that includes feature



vectors for each text sample along with their corresponding tags. By providing enough
training samples, the model can learn patterns and relationships between the text fea-
tures and the assigned tags, enabling it to make accurate predictions on new, unseen
data.

Machine learning algorithms have the capability to undergo training for the purpose of
categorizing text into predefined classes or categories. For instance, sentiment analysis
involves determining the sentiment of a text (positive, negative, or neutral), while spam
detection aims to classify emails or messages as spam or non-spam. Named Entity
Recognition (NER) is another application where machine learning models identify and
classify named entities, such as names, organizations, locations, and dates, within a text.
By training these models, various applications like information retrieval and question-
answering systems can effectively extract and classify these entities. Machine learning
models, particularly sequence models like recurrent neural networks (RNNs) or trans-
formers, can be trained to generate text. This includes applications such as language
modeling, dialogue generation, or text summarization, where the models learn to pro-
duce coherent and contextually relevant text based on training data. Additionally, ma-
chine learning algorithms can group similar documents together through text clustering,
aiding in the organization of large collections of text and the identification of common
themes or topics. Topic modeling algorithms like Latent Dirichlet Allocation (LDA) or
Non-negative Matrix Factorization (NMF) can uncover latent topics within a collection
of documents. By training these models, underlying topics or themes present in the
documents can be revealed, providing insights into the content and facilitating further
analysis. Furthermore, machine learning models can determine the sentiment expressed
in a text, such as positive, negative, or neutral. This is valuable in applications such as
social media analysis, customer feedback analysis, or brand monitoring, where under-
standing the sentiment of the text can provide valuable insights. Concise summaries
of larger texts can be generated using machine learning techniques. These techniques
involve extracting important sentences or phrases that capture the main essence of the
original content, enabling the creation of meaningful and condensed summaries. More-
over, machine learning models, especially neural machine translation models, have rev-
olutionized automated translation systems. These models learn to translate text from
one language to another by training on large parallel corpora, improving the accuracy
and fluency of automated translations.

Machine learning in text processing allows computers to process and understand textual
data more efficiently, making it invaluable for a wide range of applications in natural
language processing, information retrieval, content analysis, and many other fields.
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3.2 NLP Based Techniques for Text Processing

Radiology reports are analyzed using different NLP based techniques to extract clini-
cally significant findings [103–105]. There are different NLP based Methods available
for text feature extraction in different classification, diagnosis, prognosis and even re-
port generation for radiological purpose which is shown in Figure 3.2.

Figure 3.2: Natural Language Processing for radiology text processing [4].

3.2.1 Rule Based Techniques

Rule-based natural language processing methods require substantial manual effort and
are not easily reusable. However, formal rule-based approaches prove valuable in ex-
tracting intricate and structured templates, yielding reliable results. An example of such
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a system is Lexicon Mediated Entropy Reduction (LEXIMER) [106], which employs
lexicon-based hierarchical decision trees to extract and classify phrases. There are also
general natural language processing (NLP) techniques that have been previously used
for classification and information extraction from radiology reports. MedLEE [107], a
rule-based system, utilizes semantic lexicons and the results of basic syntactic analysis.
The automatic learning of complex structures poses challenges, especially when there
is a limited availability of semantically annotated clinical data sources and restricted ac-
cess to clinical data for training and evaluation purposes. Taira and Soderland developed
a system [108, 109] that applies a maximum entropy classifier for sentence boundary
identification, a lexical analyzer based on manually created lexicons with syntactic and
semantic features, a statistical parser for generating dependency structures, two types
of semantic interpreters, and a rule-based frame filler. The most promising approach
involves combining symbolic and machine-learning techniques. MPLUS [110], for in-
stance, integrates semantic analysis based on Bayesian networks and syntactic analysis
based on context-free grammar. This technology has found applications in extracting
medical data from Head CT reports.

3.2.2 Pre-trained NLP Models

Transfer learning [111] was developed to address the challenge of utilizing represen-
tations that were initially trained on extensive unannotated datasets and subsequently
fine-tuning them for specific tasks. A recent trend in transfer learning involves employ-
ing self-supervised learning on large general datasets to create a versatile pre-trained
model that captures the underlying structure of the data [112–116]. Following the initial
pre-training on a diverse dataset, this model can be further customized and fine-tuned
to suit a specific task using a particular dataset. The effectiveness of this pre-training
and fine-tuning approach has been prominently demonstrated in the fields of natural
language processing (NLP) and, more recently, computer vision.

3.2.2.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) [117] is a Machine
Learning (ML) model specifically designed for natural language processing tasks (Fig-
ure 3.3). Developed by researchers at Google AI Language in 2018, BERT stands out
for its ability to pre-train deep bidirectional representations from unlabeled text, tak-
ing into account both left and right context information across all layers. This unique
architecture enables the pre-trained BERT model to be fine-tuned with an additional
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output layer, allowing the creation of state-of-the-art models for various tasks such as
question-answering and language inference. BERT builds upon previous advancements
in pre-training contextual representations, drawing inspiration from works like Semi-
supervised Sequence Learning, Generative Pre-Training, ELMo, and ULMFit. Notably,
these earlier models were either unidirectional or had limited bi-directionality.

For using BERT for pre-training, in this experiment learning rate 2× 10−5, sparse cate-
gorical cross-entropy loss is used. It is fine-tuned for additional tasks with an additional
classification layer on the above encoder.

Figure 3.3: BERT model specialized for pre-training and fine-tuning [5].

3.2.2.2 ClinicalBERT

ClinicalBERT [32] is a customized version of the BERT model (Figure 3.4). It is specif-
ically designed to learn representations from medical notes and utilize them for various
clinical applications. During training, ClinicalBERT utilizes clinical notes and Elec-
tronic Health Records (EHR) data, allowing it to develop a comprehensive understand-
ing of the qualitative relationships among different clinical concepts within a database
of medical terms. This specialized training enables ClinicalBERT to capture the unique
nuances and complexities of medical language, making it a valuable tool in the health-
care domain.

1. Clinical Text Embeddings: Clinical BERT processes clinical notes by taking an
array of tokens as input. These tokens are obtained through a preprocessing step
where the text is segmented into subword units [118]. Within Clinical BERT,
each token in a clinical note is decomposed into three components: segment em-
bedding, location embedding, and token embedding. The segment embedding
indicates the specific sequence that the token belongs to when multiple token
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Figure 3.4: Clinical BERT learns deep representations of clinical text using masked lan-
guage modeling and next-sentence prediction. In masked language modeling, a fraction
of input tokens are held out for prediction; in next sentence prediction, Clinical BERT
predicts whether two input sentences are consecutive.

sequences are inputted into Clinical BERT. The location embedding consists of
learned parameters that encode the token’s position in the input sequence (po-
sition embeddings are shared among all tokens). Furthermore, for classification
tasks, a classification token [CLS] is inserted at the beginning of each input token
sequence.

2. Self-Attention Mechanism: The embeddings corresponding to the input tokens
are employed to compute the attention function on an input sequence. The atten-
tion function takes sets of queries, keys, and values as input. The queries, keys,
and values are generated by multiplying the input embeddings with learned sets
of weights. This type of attention, where the queries, keys, and values are derived
from the same input, is referred to as ”self-attention.” The output of the attention
function is a weighted combination of values for each query. The weight assigned
to a value is determined by the corresponding query and key, enabling the model
to capture relevant relationships and dependencies between different elements of
the input sequence. The Attention function can be denoted such as:

Attention(Q,K, V ) = softmax(
QKT

√
d

V ) (3.1)

where Q = queries, K = keys, V = values and d = dimensionality of the queries,
keys, and values. This function can be computed efficiently and can capture long-
range interactions between any two elements of the input sequence [119].

3. Pre-training ClinicalBERT: The quality of learned text representations is heav-
ily influenced by the nature of the text data used to train the model. BERT, as
an example, is trained on BooksCorpus and Wikipedia, which differ significantly
from clinical notes in terms of content and language style. In contrast, under-
standing clinical notes can be challenging without domain-specific knowledge
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and expertise in the medical field. The specialized terminology, complex medical
concepts, and unique linguistic patterns present in clinical notes require tailored
approaches to effectively comprehend and process this type of text data.

Clinical BERT adopts the same pre-training tasks as described in Devlin et al.
(2018) [5]. One of these tasks is masked language modeling, where certain tokens
in the input are randomly masked, and the model is trained to predict the masked
tokens based on the context provided by the surrounding tokens. Another task
is next sentence prediction, where the model is presented with pairs of sentences
and learns to predict whether they are consecutive in the original text. During
pre-training, the objective function consists of the sum of the log-likelihood of the
predicted masked tokens and the log-likelihood of a binary variable indicating the
consecutiveness of the sentences. Specific parameters are used for pre-training,
including a batch size of 32, a maximum sequence length of 256, and a learning
rate of 5× 10−5.

4. Fine-Tuning ClinicalBERT: During the fine-tuning process, ClinicalBert is specif-
ically adapted for the task of thoracic disease classification. The model param-
eters are adjusted to optimize the log-likelihood of the multiclass classification,
aiming to accurately assign the input samples to their corresponding disease cat-
egories. In the classification output layer, there are 14 nodes, each representing a
specific disease class, and the sigmoid activation function is applied to the outputs
of these nodes. This allows for the prediction of the probability of each disease
class independently, enabling the model to make predictions for multiple diseases
simultaneously.

σ(x) =
1

1 + e−x
(3.2)

Here, σ is the activation function of the output layer.

3.2.2.3 Med-BERT

Med-BERT [120] is like BERT which has multi-level embeddings and bidirectional
transformers (Figure 3.5). In [120] they have mentioned the adaptation of similar pre-
training techniques using EHR. The original BERT model was designed to process a
1-D sequence of words as input. However, Electronic Health Records (EHR) used for
pre-training contain complex multilayered and multi-relational information. Convert-
ing such structured EHR data into a flattened 1-D sequence and encoding the inherent
”structures” within the BERT transformer architecture poses challenges, as there are no
established guidelines or rules for this process.
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Med-BERT utilizes three distinct types of embeddings extracted from the Electronic
Health Record (EHR) dataset as input features. These embeddings include code embed-
dings, serialization embeddings, and visit embeddings. Code embeddings are generated
based on diagnosis codes found within the EHR, capturing the specific representation
of each code. Serialization embeddings, on the other hand, encode the sequential or-
der of codes within each visit, providing information about the temporal sequence of
medical events. Lastly, visit embeddings represent the position of each visit within the
dataset, allowing the model to understand the relative significance and context of each
visit in relation to the entire dataset. By incorporating these three types of embeddings,
Med-BERT captures both the diagnostic codes and the temporal structure of the EHR
data, enabling comprehensive analysis and interpretation of patient records.

Figure 3.5: Med-BERT structure details.

3.3 Convolutional Neural Network (CNN) for Text Pro-
cessing

Convolutional Neural Networks (CNNs) have primarily been utilized in the field of
image processing, but they can also be applied to text processing tasks, such as text
classification and sentiment analysis. When employed in text processing, CNNs oper-
ate on one-dimensional input instead of two-dimensional images. In text applications,
each word or token is typically represented as a vector, such as word embeddings like
Word2Vec or GloVe, which capture the semantic relationships between words. These
vectors form the input sequence for the CNN.

In the text-based CNN architecture, convolutional operations are applied to the input
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sequence to extract local patterns or features. The convolutional layer employs mul-
tiple filters of fixed sizes that slide over the input sequence, performing element-wise
multiplications and summations to generate feature maps. To introduce non-linearity,
activation functions like ReLU (Rectified Linear Unit) are applied to the extracted fea-
tures. Max pooling is commonly employed to reduce the dimensionality of the feature
maps while preserving the most important information.

The resulting pooled feature maps are then flattened and passed through one or more
fully connected layers, also known as dense layers. These layers learn higher-level
representations by combining the extracted features. Finally, a softmax layer is typically
used as the output layer, producing a probability distribution over pre-defined classes
or labels in text classification tasks. The predicted label is determined by selecting the
class with the highest probability.

By adapting CNNs to text processing, researchers have extended the capabilities of
these models beyond image analysis, enabling them to effectively handle various natural
language processing tasks.

CNNs for text processing offer several advantages. They can effectively capture lo-
cal patterns and dependencies within the input sequence, allowing them to model text
structures and identify important features. Additionally, by utilizing pre-trained word
embeddings, they can leverage semantic information encoded in the word vectors.

However, it’s worth noting that CNNs might not capture long-range dependencies or se-
quential information as effectively as recurrent neural networks (RNNs) or transformer-
based models. Therefore, CNNs are often employed for tasks that primarily rely on
local context and surface-level features.

To utilize text as input in a CNN architecture, it is necessary to treat the text data as
sequential data, similar to time series data, forming a one-dimensional matrix. In such
cases, a one-dimensional convolutional layer is employed. To effectively process text, a
word embedding layer is utilized in conjunction with the one-dimensional convolutional
neural network.

Word embeddings serve as representations of word density and can be generated us-
ing the Keras TensorFlow module. These embeddings are then used as input in the
CNN architecture. Within the CNN architecture, the convolutional process involves ex-
tracting patches of input features with the size of the filter kernel. The dot product is
computed between the weights of the filter and the multiplied values of the patch. The
one-dimensional convnet layer exhibits invariance to translations, meaning that certain
sequences can be recognized regardless of their position. This property can be advan-
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Figure 3.6: Convolutional Neural Network (CNN) architecture for text classification
purpose.

tageous for identifying specific patterns within the text. The CNN structure that is used
in experiments is showed in Figure 3.6.
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Chapter 4

Medical Image Processing for Disease
Classification

4.1 Medical Image Pre-processing

The initial phase of image analysis, known as the pre-processing step, holds significance
in the overall scheme. Its purpose is to improve the original image by minimizing
noise and eliminating undesired elements. To achieve this, histogram equalization is
employed to expand the pixel’s intensity range from its initial scale to a new scale
ranging from 0 to 255. This expansion results in an enhanced image that exhibits a
broader range of intensity and slightly increased contrast. Additionally, the images
undergo cropping and resizing to dimensions of 224× 224.

4.2 Natural Language Processing (NLP) Based Techniques
for Image Classification

There are some transformer based architectures for medical image calssification. The
Vision Transformer (ViT) [121] framework, introduced by Dosovitskiy et al. in 2020,
represents a pioneering approach in utilizing Transformer architecture for achieving
outstanding results in medical image classification tasks. Inspired by the BERT ar-
chitecture initially designed for language understanding, ViT adapts this Transformer-
based approach to the context of image classification. In ViT, images are segmented
into rectangular patches, treating each patch as a token. Subsequently, embeddings are
computed for these patches. To capture the spatial structure of the image, positional



embeddings are introduced, encoding the relative positions of the patches. The patch
embeddings, along with the positional embeddings, are then processed through a se-
ries of Transformer layers, ultimately generating the final output feature map. A basic
diagram of vision transformer is provided in Figure 4.1.

IEViT [122] is an architecture for chest x-ray classification that is motivated by the
ResNet [17] architecture. This variant of the ViT architecture presents a unique mod-
ification aimed at improving the representation of the original input image. In each
Transformer encoder layer, an additional step is introduced to enhance this represen-
tation. This is accomplished by incorporating a parallel convolutional block alongside
the ViT network. By taking the entire input image as input, the convolutional block
generates an embedding that captures the entirety of the image. This embedding is then
concatenated with the output of each Transformer encoder layer. Through this modifi-
cation, the network is able to preserve a comprehensive understanding of the complete
image at the conclusion of each transformer block output. Another transformer architec-
ture similar to ViT is the Swin Transformer introduced by Taslimi et al. in 2022 [123].
Similar to the ViT architecture, the Swin Transformer adopts a strategy of dividing the
input RGB image into non-overlapping patches. These patches are treated as individual
tokens, allowing for independent processing and analysis of each patch. This approach
enables the model to capture local details and features within the image, facilitating
comprehensive image understanding and analysis.

Figure 4.1: Basic diagram of a vision transformer architecture [6].

The Medical Transformer, introduced by Jun et al. [124], is a transfer learning frame-
work specifically designed for modeling 3D volumetric images as a sequence of 2D
image slices. It leverages the power of transformers to capture meaningful relationships
within the image slices and extract valuable information.

Another architecture, TransUNet, proposed by Chen et al. [125], combines the U-Net
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architecture with transformers. By incorporating transformers, TransUNet improves
modeling capabilities by effectively capturing long-range dependencies in the image. It
combines the strengths of both convolutional neural networks (CNNs) and transformers
to achieve enhanced performance.

TransFuse, presented by Zhang et al. [126], adopts a parallel approach by utilizing both
transformers and CNNs for medical image segmentation. This architecture leverages
the unique abilities of transformers to capture global context information, while also
benefiting from the feature extraction capabilities of CNNs.

Segtran, described by Li et al. [127], is a medical image segmentation system that har-
nesses the power of transformers. By incorporating transformers into the architecture,
Segtran is able to capture both the global context and fine-grained details within medical
images. This comprehensive approach leads to superior segmentation performance.

In the field of image denoising, Zhang et al. [128] proposed Transct, a neural network
architecture based on transformers. Specifically designed for low dose computed to-
mography (LDCT) images, Transct utilizes transformers to explore and address the
long-range dependencies between pixels. By leveraging the capabilities of transform-
ers, Transct aims to achieve effective denoising by effectively capturing the relation-
ships and dependencies within the image.

4.3 Convolutional Neural Network (CNN) Based Tech-
niques for Image Classification

4.3.1 ResNet-50

ResNet-50, introduced by Koonce et al. [129], is a convolutional neural network (CNN)
architecture that consists of 34 weighted layers. It addresses the issue of vanishing
gradients in deep CNNs by incorporating shortcut connections, which are based on
two core principles. First, the number of filters within each layer remains constant,
determined by the size of the output feature map. Second, when the dimensions of the
feature map are reduced by half, the number of filters is doubled to maintain the time
complexity of individual layers. These shortcut connections allow for the efficient flow
of gradients during training, enabling the successful training of deep networks.

ResNet-50 is widely recognized as one of the most commonly used pre-trained mod-
els in computer vision tasks. It is frequently employed for feature extraction and fine-
tuning purposes. Specifically, the pre-trained ResNet-50 model trained on the ImageNet
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dataset [22] is commonly utilized. The ImageNet dataset is a large-scale collection of
14,197,122 images with annotations and serves as a benchmark for image classifica-
tion and object detection tasks, including the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC).

Figure 4.2: Basic architecture of ResNet-50 [7].

4.3.2 DenseNet-121

DenseNet-121, proposed by Rochmawanti et al. [8], is a convolutional neural network
(CNN) architecture consisting of a total of 120 convolutional layers and 4 average pool-
ing layers (Figure 4.3). The unique characteristic of DenseNet is the incorporation of
DenseBlocks, which connect each layer to every other layer in a feed-forward man-
ner. This dense connectivity pattern enables feature reuse and facilitates gradient flow,
mitigating the vanishing gradient problem often encountered in deep neural networks.

Within the DenseNet architecture, the number of filters between feature maps is ad-
justed while maintaining consistent dimensions. Transition Layers are introduced to re-
duce the number of channels by half between these DenseBlocks. Specifically, DenseNet-
121 comprises one 7× 7 Convolution layer, fifty-eight 3× 3 Convolution layers, sixty-
one 1× 1 Convolution layers, 4 Average pooling layers, and one fully connected layer.

By simplifying the connectivity pattern and promoting feature reuse, DenseNet-121
addresses the vanishing gradient problem and facilitates effective gradient flow during
training.

4.4 Anatomy Aware Neural Networks for Image Classi-
fication

In the field of medical practice, the accurate interpretation of chest X-rays and other
medical imaging modalities requires a comprehensive understanding of the underlying
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Figure 4.3: Basic architecture of DenseNet-121 [8].

human anatomy being captured. For instance, when analyzing chest X-rays, radiol-
ogists examine various anatomical structures such as the position of the trachea, the
expansion of the lungs, the clarity of the lung fields, and the size of the heart. These
observations form the foundation of chest X-ray interpretation based on human visual
perception, emphasizing the significance of anatomical knowledge. However, previous
research in automated chest X-ray analysis often overlooks this aspect and treats the
problem as a standard computer vision task. Most existing studies adopt a global learn-
ing strategy or employ attention mechanisms to identify spatial regions that contribute
more to the model’s predictions.

To the best of our knowledge, there has been limited exploration of integrating anatomy
information into automated chest X-ray analysis models. Unlike generic image classifi-
cation, the problem of thoracic disease classification involves identifying lesion regions
that are often associated with important anatomical structures. It is therefore desirable
for the model to discover and focus on these salient lesion regions by leveraging prior
knowledge of anatomy when making predictions.

For successful integration of deep learning techniques in the classification of thoracic
diseases, it is imperative to achieve not only higher accuracy but also ensure inter-
pretability. In real-world scenarios, radiologists typically identify and prioritize essen-
tial anatomical regions before assessing them for any abnormalities. While extensive
research has been conducted in this area, most studies have focused on determining the
spatial regions that contribute to the model’s predictions. However, the scarcity of accu-
rately annotated anatomical regions at a contour-level for large-scale datasets presents
a significant challenge. The currently available annotated segmentation datasets are
relatively small, limiting the generalizability of models trained using supervised learn-
ing approaches. To address these limitations, a novel architecture called Anatomy X-
Net [9], which incorporates anatomical segmentation knowledge into different stages
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of the network, has been proposed. By utilizing information from anatomical segmen-
tation, this architecture effectively prioritizes the spatial regions that are commonly
associated with various pathologies. Additionally, the hierarchical feature-fusion-based
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network, guided by the anatomical segmentation information, learns to leverage both
coarse-grained and fine-grained features, resulting in improved classification perfor-
mance.

Anatomy-XNet [9] is a thoracic disease classification network that incorporates anatom-
ical awareness and attention-based mechanisms (Figure 4.5). It gives importance to spa-
tial characteristics by utilizing pre-identified regions of anatomy. To address the lack
of organ-level annotations in extensive datasets, a semi-supervised learning method is
utilized. This approach leverages limited organ-level annotations available to localize
the anatomy regions. The network architecture incorporates a pre-trained DenseNet-
121 as its foundation, alongside two structured modules: Anatomy Aware Attention
(AAA) and Probabilistic Weighted Average Pooling (PWAP). These modules synergis-
tically work together within a unified framework to facilitate the learning of anatomical
attention. Through its implementation, Anatomy-XNet achieves impressive accuracy in
classifying thoracic diseases using chest X-ray images.
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Chapter 5

Anatomy Aware Feature Fusion Based
Framework

5.1 Motivation of Incorporating Anatomical Informa-
tion

A deep learning model with an anatomy-aware (AA) approach is employed to extract
generic features from x-ray images, taking into account the anatomical information
present. By utilizing a pre-trained model and lung segmentation masks, the model
generates a feature vector that encompasses features related to diseases and scores indi-
cating the extent of lung involvement.

COVID-19 pneumonia primarily affects the density of the lungs, resulting in areas of
increased whiteness in radiography images, which varies depending on the severity of
the pneumonia. When hazy gray areas partially obscure the dark lung markings in
chest X-rays (CXR), this is known as ”ground-glass opacity”. Ground-glass opacity
refers to a hazy increase in attenuation in the interstitial and alveolar processes of the
lungs. Additionally, linear opacities, such as peripheral, coarse, horizontal white lines,
bands, or reticular changes, may be present alongside ground-glass opacity. In severe
cases, the lung markings may be completely obscured, leading to a condition known
as consolidation, characterized by a complete whiteness. These changes are typically
observed in the peripheral and lower zones of the lungs, although the entire lung can be
affected. Bilateral lung involvement is commonly observed in COVID-19 cases. The
presence of nodules, pneumothorax, or pleural effusion may be incidental findings in
COVID-19 cases.



Given that COVID-19 infection primarily affects the lungs, a trained radiologist natu-
rally approaches the interpretation of a COVID-19 CXR image by first identifying the
anatomical structure of the lung. Similarly, an algorithm informed by lung anatomy
can analyze CXR images for more accurate analysis and subsequent prediction of dis-
ease severity. For instance, if the lung regions are pre-identified, deep learning models
can be trained using higher-resolution images specific to the relevant portion of the im-
ages. This type of approach is referred to as ”anatomy-aware,” where the algorithm
takes into account the anatomical context of the lungs to enhance the analysis of CXR
images [130].

5.2 Data Resources and Organization

Four different datasets are used for the training and evaluation of the proposed anatomy-
aware framework. These include chest x-ray image datasets including anatomy segmen-
tation masks and disease labels. The datasets as follows:

5.2.1 JSRT dataset

The JSRT dataset consists of 247 images (154 nodule and 93 non-nodule images), with
a resolution of 2048 × 2048. This dataset also includes patients information such as:
age, gender, diagnosis (malignant or benign), X and Y coordinates of nodule, simple
diagram of nodule location.

5.2.2 SCR dataset

SCR dataset is a database of posterior-anterior chest radiographs where the manual
segmentation of lungs, heart, and clavicles are provided. This dataset includes chest ra-
diographs of 247 subjects where annotations of the anatomical structures of the images
of the JSRT database, e.g., left lung, right lung, heart, left clavicle, right clavicle are
included.

5.2.3 Stanford Chexpert dataset

The Chexpert dataset [131] is a large public dataset for chest x-ray interpretation. This
dataset contains 224, 316 radio-graphic images of 65, 240 patients labeled with 14 ob-
servations such as: Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion,
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Pneumonia, Pneumothorax, Enlarged Cardiom., Lung Lesion, Lung Opacity, Pleural
Other, Fracture, Support Devices, No Finding.

Table 5.1: Datasets required for the training and evaluation of the proposed framework.

Dataset Number of CXRs
JSRT Dataset [132] 247 CXRs
SCR Dataset [133] 247 annotated CXRs

Stanford Chexpert Dataset [131] 224,316 CXRs
COVID-19 Pneumonia Severity Dataset [13] 94 images with scores

In-house Dataset 12 independent annotated CXRs
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Figure 5.1: Dataset organization and overall flow diagram in the feature extractor train-
ing and regression training/testing phases.

5.3 Anatomy Aware Network for Severity Prediction

The proposed anatomy-aware (AA) model comprises two main components: the pre-
processing model and the backbone model. The pre-processing model, called the Anatomy
Annotation model, incorporates the anatomical structure information from chest X-rays
(CXRs), while the backbone model is responsible for dense pooling. Subsequently, the
feature map undergoes a gating system that consists of two paths.

One path utilizes the Feature Pyramid Attention (FPA) [134] module to enhance pixel-
level attention and extract features. This processed feature map is then pooled to obtain
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disease-level features (feat 1). The other path employs Probabilistic Class Activation
Map (P-CAM) pooling [135] which has proven to possess excellent localization capa-
bility. With P-CAM pooling, disease-specific heatmaps are generated, and the degree
of lung involvement for each disease is calculated as a decimal value. These disease-
level features and the lung coverage percentages obtained from the heatmaps are used
as feature vectors and concatenated to form the final feature vector. Finally, a linear
regression model is applied to this feature vector to derive COVID-19 severity scores.
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Figure 5.2: The proposed Anatomically-Aware Network for COVID-19 severity predic-
tion can be summarized in this figure. In path 1, Feature Pyramid Attention is employed
to improve pixel-level attention, resulting in the generation of disease-level features for
five specific diseases (Atelectasis, Consolidation, Edema, Pleural Effusion, and Consol-
idation). On the other hand, path 2 is utilized for generating class-wise heatmaps using
PCAM pooling. These heatmaps, along with the lung masks, are used to calculate the
lung involvement score. Finally, the disease-level features and lung involvement scores
are utilized for regression analysis.

Anatomy Annotation block

To incorporate the anatomical features in the AA model it is important to emphasize
on different anatomical structures, e.g., lungs, heart, ribs, clavicles, diaphragm, etc.
In this work, we present a novel pre-processing method termed as Anatomy Informed

Annotation.

To perform lung segmentation, we employ a Cycle-GAN-based semi-supervised method
that has shown superior performance compared to current methods for this task [136].
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Let x be a chest X-ray image and y be the generated segmentation mask. The output of
the neural network, which performs anatomy-informed segmentation, can be expressed
as a function:

yi,j =
∏
i,j

fks((x(s)i+(δ)i,(s)j+(δ)j)0≤(δ)i,(δ)j≤k) (5.1)

where k is the kernel size, s is the stride or subsampling factor, and fks is the layers of the
neural network which is determined by the layer type. The output y is used for merging
anatomy information in the original CXR image, x. We can denote the RGB vector
image as three separate column vectors, like, x=[x0 x1 x2]. These column vectors can
be denoted as three RGB channel column matrices. We can write as, [x0 x1 x2] =

[XR XG XB]. Then this data vector is infiltrated by a gray-scale segmentation mask,
Y=[yij], which is composed of column vectors generated by the neural network shown
in Eqn. 5.1.

X̃ = X+ I ·PT ·Y (5.2)

We can find the anatomy-informed image using Eqn. 5.2 where, I is the identity matrix,
P is a hyper-parameter matrix for controlling the measures of infiltration in a specific
RGB channel. In order to keep the actual information of the chest radiographs as much
as possible, only the Blue channel has been infiltrated with the anatomical information
in a small amount, so the hyper-parameter matrix, P can be written as P = [1 1 p], 0 <

p < 1. This anatomy informed image, x̃ = [X̃R X̃G X̃B], is then fed into the backbone
model.

Backbone Model

The backbone model is a traditional deep-learning classification network used in trans-
fer learning. In this case, we use Densenet-121 as its dense block has been well-known
for its feature-reuse capability during feature extraction. Training this model using the
Anatomy-annotated images, x̃, ensures that the model is aware of the chest radiograph
anatomy.

Feature Pyramid Attention

To produce improved pixel-level attention, we incorporate a Feature Pyramid Attention
(FPA) module [137] into the system. The Pyramid Attention module first fuses feature
from two different branches: three n × n pyramid scales convolution (n=3,5,7) and
origin features from CNNs going through a 1 × 1 convolution. Then, a global aver-
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age pooling branch feature is added with the output features to select the discriminative
multi-resolution feature representation. When these features overlap significantly, fi-
nal pooling is applied to extract the disease-level features (pre-softmax or pre-sigmoid
output).

P-CAM Pooling

We use P-CAM pooling for improved heatmap generation. P-CAM pooling explicitly
leverages the excellent localization ability of CAM during training in a probabilistic
fashion. The backbone network first processes the input CXR image and generates a
feature map. Then, for a particular disease label, such as ’Consolidation,’ each fea-
ture embedding within the feature map goes through a fully connected (FC) layer im-
plemented as a 1 × 1 convolutional layer and generates the class activation score that
monotonically measures the disease likelihood of each embedding. It is further bounded
with the sigmoid function and interpreted as the disease probability of each embedding.
Finally, the output probability map is normalized to the attention weights of each em-
bedding, following the multiple-instance learning (MIL) framework, which is used to
pool the original feature map by weighted average pooling. The pooled embedding
goes through the same FC layer introduced above and generates the image-level disease
probability for training. During inference time, the probability map is directly used
for localization. Then, we apply simple hyperparameter thresholding to obtain disease
regions. Finally, for the disease d, we define its activation score as follows:

Ad =

∑h,w
0,0 [Li,j

⋂
Rd

i,j]∑h,w
0,0 Li,j

(5.3)

where Li,j is the lung segment (right and left both stacked), Rd
i,j is the d region of the

disease created from heatmap. The summation is across the segment and region’s height
and width. According to Eq. (5.3), disease activation will be between 0 to 1.

5.4 Evaluate the Performance of Anatomy Aware Deep
Learning Framework

Our baseline model using Densenet121-FPA without the proposed anatomy-aware (AA)
block provides very similar results as reported in [13]. In terms of geographical extent
score, Densenet121-FPA and [13] provide MSE scores of 1.93± 0.63 and 2.06± 0.34,
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respectively (p-value = 0.001 < 0.01). In the case of lung opacity score, Densenet121-
FPA and [13] provide MSE scores of 1.08 ± 0.22 and 0.86 ± 0.11 (p-value = 0.0 <

0.01), respectively. Thus, we can conclude that the baseline model consisting of the
Densenet121-FPA pipeline is equivalent to [13] in terms of performance and statistical
significance. Table 5.2 also shows that the overall performance improves after including
the anatomy-aware block. The best-performing model is Densenet121-FPA, with the

Table 5.2: Performance evaluation of the proposed COVID-19 severity prediction archi-
tecture compared to existing models. These results are also compared with the baseline
scores from Cohen et al. [13].)

Task Method Features MSE MAE R2

Geographical
Extent Score

Densenet-FPA without AA
3 diseases 2.25± 0.62 1.22± 0.12 0.59± 0.10

4 diseases 1.93± 0.63 1.16± 0.15 0.63± 0.11

single disease 3.16± 0.72 1.45± 0.18 0.41± 0.04

Densenet-FPA with AA
3 diseases 1.90± 0.45 1.14± 0.12 0.64± 0.05

4 diseases 1.85± 0.29 1.21± 0.16 0.63± 0.10

single disease 3.45± 1.56 1.34± 0.20 0.38± 0.15

Densenet-FPA with AA and
Disease Activation features

3 diseases 1.87± 0.51 1.15± 0.09 0.63± 0.10

4 diseases 1.90± 0.39 1.12± 0.11 0.63± 0.05

single disease 3.52± 1.24 1.34± 0.20 0.35± 0.10

Cohen et al. [13] lung opacity 2.06± 0.34 1.14± 0.10 0.60± 0.09

Opacity Score

Densenet-FPA without AA
3 diseases 1.20± 0.14 0.76± 0.04 0.57± 0.09

4 diseases 1.08± 0.22 0.80± 0.10 0.61± 0.07

single disease 1.37± 0.47 0.94± 0.16 0.39± 0.10

Densenet-FPA with AA
3 diseases 0.94± 0.20 0.82± 0.04 0.55± 0.09

4 diseases 0.97± 0.23 0.85± 0.11 0.56± 0.11

single disease 1.54± 0.47 1.10± 0.12 0.32± 0.08

Densenet-FPA with AA and
Disease Activation features

3 diseases 0.94± 0.21 0.81± 0.05 0.46± 0.20

4 diseases 0.96± 0.24 1.15± 0.31 0.45± 0.20

single disease 1.45± 0.50 1.52± 0.21 0.20± 0.36

Cohen et al. [13] lung opacity 0.86± 0.11 0.78± 0.05 0.58± 0.09

AA block included in geographic extent and opacity scores. In terms of geographical
extent score, the MSE improves from 1.93± 0.63 to 1.85± 0.29 after including the AA
block over the baseline architecture. On the other hand, for the lung opacity score, the
MSE improves from 1.08±0.22 to 0.97±0.23 after including the AA block along with
the baseline model. However, Table 5.2 also shows that including the disease activation
score does not provide the best result for the prediction of lung opacity score.

Overall, analyzing the results of Table 5.2 implies that including additional anatomical
information to the competitive baseline model further increases the ability of the system
for disease severity prediction.
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Table 5.3: Evalution of the proposed COVID-19 severity prediction model on Selected
Chest X-ray images annotated by an In-house experienced radiologist

Scoring Method MAE MSE
Geographical Extent Score 1.55±0.98 3.35±3.51

Opacity Score 0.62±0.48 0.59±0.89

[a]

[b]
Figure 5.3: (a) Predicted value and ground truth of geographical extent score of selected
chest X-ray images annotated by an In-house experienced radiologist, and (b) Predicted
value and ground truth of opacity score of selected chest X-ray images annotated by an
In-house experienced radiologist.

5.5 Discussion

Previous research on chest X-ray image analysis has primarily focused on traditional
deep-learning architectures commonly used for image classification. However, there
have been limited studies specifically addressing COVID-19 severity prediction. These
studies typically employ pre-trained models without considering anatomical informa-
tion [13]. Furthermore, there is a requirement for case-by-case comparisons to identify
potential sources of error and enhance the image analysis architecture. Additionally,
there is a scarcity of chest X-rays available for segmentation tasks, which can some-
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times make it challenging, and anomalies may exist in the findings.

However, the existing models lack specific awareness of the anatomical structure present
in typical chest X-ray images. In contrast, experienced radiologists first identify the tho-
racic organs before examining disease markers. Consequently, incorporating anatom-
ical information into existing models could enhance their performance in predicting
disease severity. Furthermore, anatomical information can reduce computational com-
plexity by introducing disease-specific features, enabling the model to learn more pre-
cisely.

In this study, a semi-supervised model is employed to automatically generate lung seg-
mentation masks, which are then fused with chest X-ray images. Our best-performing
model has shown an 11% relative improvement in mean square error (MSE) compared
to existing methods when evaluated on a dataset for predicting the severity of COVID-
19 pneumonia. Experimental comparisons between systems with and without integrated
anatomy information clearly demonstrate the effectiveness of the proposed method.
Furthermore, this model exhibits promising results on an unseen clinical evaluation
dataset that was annotated by an experienced radiologist. These experimental evalua-
tions provide evidence of the efficacy of our anatomy-aware architecture for predicting
the severity of COVID-19 disease.
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Chapter 6

Effective Multimodal Approaches for
Medical Data and Image Processing

6.1 Dataset Description

6.1.1 OpenI Dataset

OpenI [138] is a publicly available dataset designed to facilitate research and devel-
opment in the field of medical imaging analysis. It offers a comprehensive collection
of medical imaging data, specifically chest X-rays and radiology reports. The dataset
encompasses a diverse range of images accompanied by corresponding textual infor-
mation. This open-access resource enables researchers and developers to explore and
innovate in the domain of medical imaging analysis, fostering advancements in diag-
nostic techniques and healthcare technologies.

The chest X-ray dataset within OpenI comprises a vast collection of radiographs ob-
tained from multiple medical institutions. These images provide visual representations
of the internal structures within the chest, such as the heart, lungs, and adjacent tissues.
The dataset encompasses a diverse range of medical conditions and diseases, offering a
comprehensive resource for studying and analyzing various chest-related abnormalities.

Apart from the chest X-ray images, OpenI also offers access to radiology reports. These
reports consist of written descriptions created by radiologists, offering comprehensive
details regarding the observations made in the corresponding images. The reports en-
compass valuable information regarding any detected abnormalities, diagnoses, rec-
ommended treatment approaches, and other pertinent clinical information that aids in
patient management and care.



The dataset has undergone meticulous curation to guarantee the quality and accuracy
of the data. It includes a substantial collection of images and reports that have been
carefully labeled and annotated, making it well-suited for a wide range of research
endeavors. Researchers can leverage this dataset for tasks such as disease classification,
lesion detection, and medical natural language processing, among others.

The OpenI dataset offers a valuable resource for researchers and developers engaged in
various endeavors, including training and evaluating machine learning models, creating
computer-aided diagnostic systems, and conducting research in medical imaging and
radiology. The dataset’s unique feature of containing both images and textual data
enables multimodal analysis and the exploration of synergistic approaches that leverage
both visual and textual information. This integration enhances disease diagnosis and
treatment planning by leveraging the complementary nature of visual and textual data.

The OpenI dataset comprises chest X-ray images obtained from the Indiana Univer-
sity hospital network. The dataset is organized into two folders, one containing X-ray
images and the other containing XML reports associated with the radiography. Each
report may correspond to multiple images. In total, the dataset consists of 7,470 chest
X-rays and 3,955 radiology reports. It is important to note that the dataset is unlabeled,
and the segmentation ground truth for the images is not provided.

Figure 6.1: OpenI Chest X-ray image with corresponding medical report (XML).

6.1.2 MIMIC-CXR Dataset

The MIMIC-CXR (Medical Information Mart for Intensive Care Chest X-ray) dataset
[139–141] is a component of the larger MIMIC (Medical Information Mart for Inten-
sive Care) database, which is a publicly accessible clinical database extensively used
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Figure 6.2: MIMIC-CXR Chest X-ray image with corresponding medical report
(XML).

for research purposes. The MIMIC-CXR dataset specifically focuses on chest X-ray
images and associated clinical information obtained from critically ill patients admitted
to the intensive care unit (ICU).

Comprising an extensive collection of de-identified chest X-ray images, along with their
corresponding radiology reports and clinical metadata, the MIMIC-CXR dataset en-
compasses a diverse range of imaging findings. It captures various lung pathologies,
abnormalities, and medical conditions observed in critically ill patients. The dataset in-
cludes images of varying complexity, such as those depicting pneumonia, lung nodules,
pleural effusion, pneumothorax, and other thoracic diseases.

In addition to the images, the MIMIC-CXR dataset grants access to the corresponding
radiology reports. These reports, prepared by radiologists or clinicians, provide com-
prehensive narratives describing the observed findings in the chest X-ray images. They
contain detailed information about abnormalities, diagnoses, observations, and other
pertinent clinical details, offering valuable insights into the interpretation of radiologi-
cal findings.

The MIMIC-CXR dataset is meticulously curated and subjected to quality control mea-
sures to ensure the accuracy and reliability of the data. It serves as a valuable resource
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for researchers, clinicians, and data scientists interested in various facets of medical
imaging analysis, including computer-aided diagnosis, image classification, disease de-
tection, and natural language processing of radiology reports.

It is important to note that the MIMIC-CXR dataset adheres to appropriate data usage
agreements and ethical considerations to safeguard patient privacy and comply with
relevant regulations. Access to the dataset necessitates proper approvals and adherence
to specified terms of use to uphold patient confidentiality and ensure data integrity.

The MIMIC-CXR dataset is a vast and publicly accessible collection of chest radio-
graphs accompanied by free-text radiology reports. It comprises 377,110 images repre-
senting 227,835 radiographic studies conducted at the Beth Israel Deaconess Medical
Center in Boston, MA. The radiology reports associated with the images were identified
and extracted from the hospital’s electronic health record (EHR) system. This dataset
provides a valuable resource for studying and developing algorithms and systems in the
field of chest radiography analysis.

6.1.3 CheXpert Labeler

The CheXpert dataset is a extensive collection comprising 224,316 chest radiographs
from 65,240 patients. These radiographs were obtained from the Stanford Hospital
between October 2002 and July 2017, encompassing both inpatient and outpatient set-
tings. In the study by Irvin et al. [131], a labeler was developed to automatically identify
14 specific observations in radiology reports. The authors explored different approaches
to utilize the uncertainty labels generated by the labeler in training convolutional neural
networks, which in turn produced probabilities for these observations. Additionally,
an automated rule-based labeler was developed to extract observations from free-text
radiology reports, enabling the creation of structured labels for the corresponding ra-
diographic images.

6.2 Medical Data Pre-processing

6.2.1 Text Pre-processing

Text preprocessing for radiology reports involves a series of steps to clean and transform
the raw text data before further analysis or natural language processing tasks. The
following are common techniques used in text preprocessing for radiology reports:
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Figure 6.3: The CheXpert predicts the probability of different observations from chest
x-rays.

Table 6.1: An Overview of the Datasets Used in Different Experiments.

Dataset Number of Radiology Reports Number of Chest x-rays

OpenI 3,955 reports in XML format
7,470 chest x-rays in DICOM
format

MIMIC
CXR

227,835 reports in free-text format
377,110 chest x-rays in
JPG/DICOM format

CheXpert No reports available
224,316 chest x-rays in DI-
COM format

1. Tokenization: Breaking the text into individual tokens, such as words or sub-
words, to facilitate further processing. This step helps in splitting sentences and
identifying individual units of meaning.

2. Lowercasing: Converting all text to lowercase to ensure consistency and avoid
duplicate representations of the same word in different cases.

3. Stop word removal: Eliminating common words that do not carry significant
meaning or contribute to the analysis, such as ”a,” ”the,” or ”and.”

4. Punctuation removal: Removing punctuation marks like commas, periods, or
parentheses that are not relevant to the analysis or may interfere with subsequent
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tasks.

5. Numerical value normalization: Standardizing numerical values by replacing
them with placeholders or converting them to a consistent format. For example,
replacing specific lab test values with generic labels or normalizing dates and
times.

6. Spell checking and correction: Identifying and correcting spelling errors to en-
sure accurate analysis and improve the quality of the data.

7. Lemmatization or stemming: Reducing words to their base or root form to
consolidate similar words and reduce dimensionality. Lemmatization considers
the context and part of speech, while stemming applies simple rules to truncate
words.

8. Removal of irrelevant information: Eliminating non-textual information or sec-
tions that are not relevant to the analysis, such as headers, footers, or boilerplate
text.

9. Specialized domain-specific pre-processing: Performing additional steps based
on the specific requirements of radiology reports. This may include handling
abbreviations, acronyms, or medical terminology unique to the field.

10. Normalization: Bringing the text data into a consistent format, such as convert-
ing different date formats to a standardized representation or ensuring consistent
use of terminology and abbreviations.

Text preprocessing for radiology reports aims to clean and standardize the text data,
making it ready for further analysis, information extraction, or machine learning algo-
rithms. The specific preprocessing steps may vary depending on the objectives of the
analysis and the characteristics of the radiology reports being processed.

The OpenI and MIMIC-CXR reports are divided into three segments: Findings, Im-
pression, and Indication, some examples of processing steps of radiology reports are
provided.

1. All values like ”1” and ”2” etc are removed.

2. All special characters except for full stop are removed.

3. Words like ”XXXX” are removed.

4. The words that occur multiple times but not necessary are removed.

5. Unwanted spaces are also removed.
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6.2.2 Word Token Generation

First, the sentences undergo tokenization, which involves breaking them down into
smaller units. BERT utilizes a WordPiece tokenizer that splits words into subwords and
introduces special tokens. To perform tokenization, the Transformers library by Hug-
ging Face is employed in Python. BERT necessitates the inclusion of specific tokens to
indicate the sequence’s beginning and end. At the start, the [CLS] token is appended,
while the [SEP] token is added at the end. Both the [CLS] token and the [SEP] token
are placed at the beginning and end of the sentence, respectively. Additionally, padding
is applied to the sentences using the [PAD] token, ensuring their length matches the
maximum length requirement. Finally, the tokens are converted into token IDs, which
align with the input format expected by the BERT model.

6.3 Chest X-ray Pre-processing and Feature Extraction

For the pre-processing of chest x-rays, at first the images are resized to 224×224 pixels.
Then, histogram equalization is applied on the chest x-rays for image enhancement.

In this method, ResNet-50 [129] and DenseNet-121 [142] architectures are used for
feature extraction. First, the networks, pretrained on ImageNet, are fine tuned to classify
chest x-rays. The outputs of the pre-trained architectures are reshaped to be used as the
input of the VisualClinicalBERT. Image embeddings are generated to give input to the
framework for classification purpose.

Chest X-ray
ResNet-50

Reshape
Image Tokens

FC Layer

Figure 6.4: Chest X-ray pre-processing and feature extraction framework.
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6.4 Baseline Architecture

6.4.1 VisualBERT

VisualBERT is a versatile framework designed to address various vision-and-language
tasks in a straightforward and adaptable manner [10]. The framework utilizes a stack
of Transformer layers, which employ self-attention to establish implicit alignments be-
tween elements in a given input text and regions within an associated input image. The
COCO dataset [143] serves as the pre-training data for VisualBERT, primarily used for
image captioning [144]. In a study by Li et al. [39], the combination of test findings and
image embeddings is utilized for thoracic disease classification. The approach achieves
an average accuracy of 98.7% in identifying seven specific thoracic diseases using the
OpenI dataset [138].

Figure 6.5: Configuration of VisualBERT Baseline Framework [10].

The proposed framework incorporates all the components of BERT and introduces a
new set of visual embeddings, denoted as F , to effectively model an image. Each
embedding f in F corresponds to a specific bounding region in the image, which is
obtained from an object detector. Each embedding in F is computed by summing three
embeddings:

• fo: This represents the visual feature representation of the corresponding bound-
ing region. It is computed using a convolutional neural network.

• fs: This indicates a segment embedding, distinguishing it as an image embedding
rather than a text embedding.
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• fp: This represents a position embedding, which is utilized when alignments be-
tween words and bounding regions are provided as part of the input. It is calcu-
lated as the sum of the position embeddings associated with the aligned words.

Overall, these embeddings collectively contribute to capturing the visual and positional
information within the image, enhancing the multimodal capabilities of the framework.

6.4.2 LXMERT

LXMERT [11] is a large-scale Transformer model that encompasses three distinct en-
coders: an object relationship encoder, a language encoder, and a cross-modality en-
coder. These encoders leverage self-attention and cross-attention layers, drawing in-
spiration from recent advancements in natural language processing models. The model
takes WordPiece Tokenizer as inputs and is fine-tuned using a learning rate of 5×10−5,
a batch size of 32, and parameter fine-tuning for a duration of 4 epochs.

In a related study [39], the combined use of test findings and image embeddings is em-
ployed for thoracic disease classification. The approach achieves an impressive average
accuracy of 98.4% in identifying seven thoracic diseases using the OpenI dataset [138].

Figure 6.6: Configuration of LXMERT Baseline Framework [11].

6.4.3 UNITER

The UNITER [12] model is a large-scale pre-trained model designed for joint multi-
modal embedding, combining images and text. It undergoes pre-training using four
image-text datasets: COCO, Visual Genome, Conceptual Captions, and SBU Captions.
The model is capable of supporting various downstream tasks that involve joint multi-
modal embeddings. It takes both the visual regions of the image and the textual tokens
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of the sentence as inputs. The Image Embedder utilizes a faster R-CNN to extract the
visual features of each region, while the Text Embedder tokenizes the input sentence
into WordPieces.

In a related study [39], the combination of joined test findings and image embeddings
is utilized for thoracic disease classification. The approach achieves an average ac-
curacy of 98.2% in identifying seven thoracic diseases using the OpenI dataset [138].
The model is fine-tuned with a learning rate of 5 × 10−5, a batch size of 32, and the
parameters are fine-tuned for a duration of 4 epochs for the experiments.

Figure 6.7: Configuration of UNITER Baseline Framework [12].

6.5 Proposed System

6.5.1 VisualClinicalBert

6.5.1.1 Backbone Architecture

ClinicalBERT [32] which is a pre-trained transformer encoder stack pre-trained with
MIMIC-III [145], EHR and discharge information, is used as the backbone architec-
ture here. In the classification head a two layered multilayer perceptron [146] with a
dimention of 768 and Gaussian Error Linear Unit (GELU) activations [147] is added
with layer normalisation.

Finally, there are 14 output nodes where sigmoid function is applied for classification.
A binary cross-entropy loss function is used here for loss calculation. For experiment,
the number of epoch is 14 with a batch size of 128. Adam optimiser is used here for
optimisation with a learning rate of 5× 10−5. There are a total of 512 input tokens and
12 layers in the VisualClinicalBERT (VCBERT). Each vector is made up of 768 float
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VCBERT

Indication 
Word Tokens

MLP

ResNet-50
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Thoracic Disease 
Classification

Figure 6.8: Proposed thoracic disease classification framework.

numbers (hidden units). The encoder block here uses the self-attention mechanism to
enrich each token (embedding vector) with information.

6.5.1.2 Classification Head

A multi-layer perceptron has one input layer and for each input, there is one neuron(or
node), it has one output layer with normalization. GELU relates to stochastic regulariz-

Figure 6.9: The diagram is a two-layer MLP. There are three inputs with three input
nodes and the hidden layer has three nodes. The output layer gives two outputs as there
are two output nodes.

ers as it is a modification to Adaptive Dropout. GELU activation function is defined:

GELU(x) = xP (X ≤ x) = xφ(x) (6.1)

It can be approximated through µ and σ which are learnable hyperparameters.

0.5x(1 + tanh[
√
2/π(x+ 0.044715x3]) (6.2)

Sigmoid activation function is applied for the final classification. In this experiment,
binary cross-entropy loss is used as a loss function. The Binary cross-entropy loss
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function actually calculates the average cross-entropy. The formula of this loss function:

Hp(q) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · (log(1− p(yi))) (6.3)

62



Chapter 7

Evaluate the Performance of
Multimodal Approaches

7.1 Evaluation of Indication Information in Disease Clas-
sification

The medical reports provided with chest x-ray consists of three types of information.
The indication is basically the symptoms and patient’s medical history, the findings is
the information of radiological findings provided by the radiologist, and the impression
is the information of the intuition of the radiologists according to the findings. To eval-
uate the significance of the indication as a classification information, at first different
machine learning classifiers are used.

For textual information, Naive Bayes (NB) [148], Stochastic Gradient Descent (SGD)
[149], and Logistic Regression (LR) [150] are mostly used [151–153]. In Table 7.1,
the results of different machine learning classifiers using different textual information
is provided. The performance of NB is higher than the other classifiers. Three classes
of information are pre-processed to be fed into the classifiers. It is obvious that the find-
ings include the disease information which matches with the label and thus the accuracy
with findings is the highest. The impression also includes direct disease selective in-
formation which caused higher accuracy. On the other hand, the indication information
does not contain any direct disease information, only includes patients medical history
and symptoms.

Using indication as a textual feature to the classifiers decreased the accuracy by 14.41%,
precision by 22.49%, and F1-score by 11.35% for NB classifier than findings informa-



Table 7.1: Experimental results on OpenI Medical Reports using Machine Learning
Classifiers

Using Only Findings Information

Machine Learning Classifiers Accuracy (%) Precision (%) F1-Score (%)
Naive Bayes (NB) 71.44 70.1 66.78

Stochastic Gradient Descent (SGD) 70.21 68.35 64.8

Logistic regression (LR) 58.43 60.76 53.9

Using Only Impression Information

Naive Bayes (NB) 71.27 68.54 67.8

Stochastic Gradient Descent (SGD) 69.31 65.42 63.75

Logistic regression (LR) 60.21 58.6 53.9

Using Only Indication Information

Naive Bayes (NB) 61.14 54.33 59.2

Stochastic Gradient Descent (SGD) 56.2 61.55 62.31

Logistic regression (LR) 52.1 55.34 50.4

tion. The accuracy is about 61.14% using NB classifier and indication information
proves that there maybe some significant information in the indication that can be used
for the classification of thoracic diseases.

From Table 7.2, an analysis of different language models using the findings, impression,
and indication information is provided. The CNN model, mentioned in Section 3.3 is
used for classification. The accuracy for CNN architecture using findings is 11.81%
higher than the accuracy using indication information. Whereas, using pre-trained lan-
guage models improved the classification performance. Using ClinicalBERT as a pre-
trained model increased the accuracy by 3.09% as it is pre-trained on clinical text infor-
mation. Only indication information reported about 72.89% accuracy on OpenI dataset
proving the effectiveness of patient’s history and symptoms for disease classification
purpose.

Table 7.2: Experimental results on OpenI Medical Reports using Different Language
Models

Frameworks Accuracy (%) Accuracy (%) Accuracy (%)
(Using Findings) (Using Impression) (Using Indication)

CNN 65.22 61.47 58.33
BERT 78.21 72.32 70.70
ClinicalBert 80.55 75.10 72.89
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To analyze the information in indication, MIMIC-CXR text reports are evaluated using
different machine learning and deep learning frameworks. From Table 7.3, we can
see that Naive Bayes classifier’s performance degraded. On the other hand, with the
increase of number of data, the performance of ClinicalBERT improved. Using only
indication information the accuracy is about 73.96% for the MIMIC-CXR dataset.

Table 7.3: Experimental results on MIMIC-CXR Medical Reports using Different
Frameworks

Framework Accuracy (%) Accuracy (%) Accuracy (%)
(Using Findings) (Using Impression) (Using Indication)

Naive Bayes 65.21 62.35 57.66
BERT 80.23 75.66 72.45
ClinicalBert 83.78 77.24 73.96

7.2 Evaluation of Disease Information in Chest X-ray
Images

To evaluate the significance of image features of chest x-ray images for thoracic disease
classification, ResNet-50, and DenseNet-121 pre-trained architectures are used. These
models are fine-tuned for classification. From Table 7.4, it can be observed that the ac-
curacy with only x-rays is about 82.56% for ResNet-50 and 83.25% for DenseNet-121
architectures. Using the complex DenseNet-121 architecture the accuracy improved.
This proves that the image features can increase the classification performance of tho-
racic diseases.

Table 7.4: Experimental results on OpenI Medical Images

Frameworks Accuracy (%) Precision (%) Recall (%) F1 Score (%)
ResnNet-50 82.56 65.34 71.89 68.57
DenseNet-121 83.25 68.47 73.81 71.17
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7.3 Evaluation of Disease Classification Using Medical
Data and Chest X-ray Images

To evaluate the performance of multimodal approach in thoracic disease classification,
three approaches are tried. Firstly, CNN mentioned in Section 3.3 is used for textual
feature extraction. Pre-trained ResNet-50 is used as an image feature extraction. After
that, the textual and image features are concatenated and classified using Logistic re-
gression. Using this feature extraction scheme and machine learning classifiers about
78.45% accuracy is found which is about 25.64% improvement using only textual indi-
cation features to CNN.

Table 7.5: Experimental results on OpenI (Text-Indication and Image Combined)

Frameworks Accuracy (%) Precision (%) Recall (%) F1 Score (%)
CNN+ResNet-50+LR 78.45 58.23 54.21 55.16
BERT+ResNet-50 84.45 61.56 62.67 62.11
BERT+DenseNet-121 84.99 60.21 62.58 61.37

In the second approach, the pre-trained BERT model is used as the backbone and
ResNet-50 is used as a feature extractor. The accuracy is improved by 7.10% than
the first approach. Similarly, in the third approach DenseNet-121 is used as the image
feature extractor and pre-trained BERT is used as the backbone architecture. This ap-
proach increased the accuracy by about 0.64%. After evaluating these three approaches,
it can be found that multimodal approaches can increase classification performance by
incorporating both textual and image information.

7.4 Evaluation of the Performance of Baseline Systems

The baseline frameworks mentioned in Section 6.4 are evaluated. All of these archi-
tectures are pre-trained and used for thoracic disease classification purpose. From Ta-
ble 7.6, we can notice that the performance of VisualBERT is higher than the other
two baseline architechtures. The performance of LXMERT is the lowest among three
baselines. The performance of LXMERT is decreased than the BERT+ResNET-50 and
BERT+DesneNet-121 frameworks. On the other hand, the performance of UNITER is
about 6.78% higher than LXMERT using both textual and image information.
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Table 7.6: Experimental results on OpenI Dataset of Baseline System (Text-Indication
and Image Combined)

Frameworks Accuracy (%) Precision (%) Recall (%) F1 Score (%)
VisualBERT 85.02 71.67 69.24 70.43
LXMERT 79.34 73.44 67.32 70.24
UNITER 84.72 67.98 70.22 69.08

7.5 Evaluation of Proposed Framework

Table 7.7: Experimental results on OpenI Dataset of Proposed System (Text-Indication
and Image Combined)

Frameworks Accuracy (%) Precision (%) Recall (%) F1 Score (%)
ResVCBERT 88.29 72.12 69.62 70.84
DenseVCBERT 88.44 72.45 71.89 72.18

The proposed framework is experimented with using two image feature extraction schemes.
At first, the image features are extracted using ResNet-50 and modified pre-trained
ClinicalBERT is used as the backbone for thoracic disease classification. In this ap-
proach, the accuracy is about 88.29% (From Table 7.7). In addition to it, about 5% of
text information error is introduced to the indication information, and the performance
is decreased by 6.67%. Proposed DenseVisualClinicalBERT provided significant im-
provement with an accuracy of about 88.44%.

From Table 7.8, we can visualize the classwise performance of different frameworks
using indication as textual information with image features. The performance of the
Support devices class is the highest among all the 14 classes. Also, this framework can
detect Pneumothorax, No Finding with an accuracy above 85%.

7.6 Discussion

7.6.1 Significance of Indication Information in Thoracic Disease
Classification

In Figure 7.1, a comparison of two medical reports of OpenI dataset is provided. Dysp-
nea is a significant symptom of various kinds of lung disease. This indication informa-
tion has high importance in disease diagnosis. When we use only radiology images for
diagnostic purposes, we miss this indication information for diagnosis. While disease
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Table 7.8: Classwise Accuracy (%) Comaparison of Different Frameworks (Text-
Indication and Image Combined)

Thoracic Visual LXMERT UNITER ResVC DenseVC
Diseases BERT BERT BERT
Atelectasis 73.26 71.34 73.44 75.8 76.00
Cardiomegaly 75.33 72.19 73.22 78.6 77.25
Consolidation 75.48 72.29 75.89 77.1 78.40
Edema 79.00 76.44 78.24 81.3 80.34
Enlarged Card. 70.24 68.79 70.56 72.9 74.56
Fracture 73.67 71.24 73.89 75.6 75.78
Lung Lesion 68.78 65.40 67.29 71.5 72.44
Lung Opacity 81.88 80.39 82.34 82.3 84.76
No Finding 85.67 82.34 84.56 87.1 87.29
Ple. Effusion 80.88 78.90 79.65 80.2 81.34
Pleural Other 73.67 71.89 72.88 75.2 76.33
Pneumonia 73.49 72.19 75.38 76.3 77.45
Pneumothorax 88.78 83.29 86.56 88.9 89.80
Support Devices 91.65 88.76 89.34 92.2 92.36

diagnosis, doctors are not only dependent on radiological image information. They are
also concerned about the patient’s medical history and symptoms for better diagnosis.

In this situation, integrating indication information into computer-aided diagnosis sys-
tems can greatly enhance the accuracy of disease diagnosis, improve the ability to pre-
dict disease severity, and even provide insights into prognosis. In Section 7.1, the signif-
icance of various medical text information for thoracic disease classification is proved.
The indication information provided about 61.14% accuracy using the NB classifiers.
Whereas, using ClinicalBERT, the accuracy is increased by about 19.21%. As Clinical-
BERT is pre-trained in medical EHR, it already understands the clinical information.
Thus, in this case, the accuracy is improved. After the analysis and also looking into
the dataset, it is evident that indication information can add significant value in thoracic
disease diagnosis purposes.

7.6.2 Analyzing the Robustness of the Medical Data

To analyze the robustness of medical data, errors are added to text while coding in-
volves introducing intentional errors to the data and then assessing the impact of those
errors on downstream tasks or analyses. In this case, text swap, changing the text adding
numbers, adding additional texts, etc are used to add some noise to the indication in-
formation. After that, this changed indication information is processed and fed into the
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Figure 7.1: OpenI radiological report indication information similarity.

frameworks to analyze the robustness. From Figure 7.3, it is evident that after adding
errors, the performance of the proposed framework degraded but its accuracy is above
80% which is about 83.12%. Although the accuracy decreased by a significant amount,
the accuracy value is greater than the baseline frameworks. Thus, it is proved that the
proposed system will perform well even in noisy text data. In Figure 7.4, we can ob-
serve the comparative result before removing text information and after removing text
information.

Figure 7.2: Accuracy (%) analysis of baselines and proposed systems after adding some
text errors to the indication information.

To make the proposed system more robust, text information was removed from most of
the radiological reports and then the multimodal approach was evaluated. The best per-
forming DenseVCBERT provided accuracy above 75% after removing text information
from the dataset. Thus, it is proved that the framework will perform well even if there
is no text information available in the dataset.
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Figure 7.3: Result analysis of proposed DenseVCBERT after removing indication in-
formation from most of the reports.

Figure 7.4: Result comparison of proposed DenseVCBERT with indication information
and without indication information (Only image).

7.6.3 Analysis Combining Image Feature with Medical Data for
Thoracic Disease Classification

From Figure 7.6, we can observe the improvement of the proposed framework after
combing both image and text features to the architectures. Comparing the accuracy
of different frameworks, we can notice that there is about 4.02% improvement in the
accuracy comparing VisualBERT and DenseVClBERT.

In terms of precision, the proposed ResVCBERT and DenseVCBERT showed higher
performance than the VisualBERT and UNITER. DenseVCBERT provided o.45% im-
provement in the precision than ResVCBERT. UNITER provided the lowest precision
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Figure 7.5: Accuracy (%) analysis of baselines and proposed systems with both indica-
tion text information and medical image features.

score which is about 67.98%.

Figure 7.6: Precision (%) analysis of baselines and proposed systems with both indica-
tion text information and medical image features.

From Figure 7.7 and 7.8 ,the Recall and F1 score is higher for DesneVCBERT than
ResVCBERT and the baselines. DenseVCBERT provided about 71.89% Recall and
72.18% F1 score which is higher and proves the better performance of the framework
in multimodal approach.

Among the baselines, the performance of LXMERT is the lowest. The performance
improvement after using DenseNet-121 instead of ResNet-50 is about 0.16% which is
quite negligible. There are more scopes of improvement in the image feature extrac-
tion procedure for increasing a significant percentage of accuracy. Adding anatomical
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Figure 7.7: Recall(%) analysis of baselines and proposed systems with both indication
text information and medical image features.

significant information to this framework can increase the accuracy of the proposed
framework. Instead of all, the performance with the proposed frameworks has shown
significant improvement over the baseline architectures.

Figure 7.8: F1 Score (%) analysis of baselines and proposed systems with both indica-
tion text information and medical image features.

Comparing the performance of the five frameworks in terms of Accuracy, Precision,
Recall and F1 Score, DenseVCBERT provide the best performing results in the mul-
timodal approach. Due to the inappropriate labeling of some cases and imbalance of
classes, the recall score is about 71.89% and F1 Score is about 72.18% which is much
less than the Accuracy score. Error added performance and removing text information
performance proves the robustness of the proposed DenseVCBERT. This framework
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can be utilized even when there is no text information and only image information is
available for classification.

From the whole analysis and comparison it is evident that among all the frameworks
the proposed ResVCBERT and DenseVCBERT performed well. DenseVCBERT is
the best performing model using this multimodal feature fusion based approach in all
evaluation metrices.
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Chapter 8

Conclusions

8.1 Summary of the Present Work

This work proposed novel feature fusion-based approaches to classify different thoracic
diseases. In the first approach, indication information infusion with image features
provided significant improvement in disease detection. The comparative analysis with
different machine learning classifiers, NLP-based methods, baselines, and proposed
framework proved the importance of clinical information in computer-aided diagnostic
methods for better classification. In general, for the diagnosis of any disease, besides
radiological images, the patient’s clinical information has a higher impact on the final
decision-making by the doctors/radiologists. In this work, the indication information
provided about 61.14% accuracy using the NB classifiers. Whereas, using Clinical-
BERT, the accuracy is increased by about 19.21% as it is pre-trained on medical EHR.
The robustness of the framework is proved by the accuracy above 80% which is about
83.12% after the addition of errors to the clinical indication information. The accu-
racy comparison of different frameworks provides about 4.02% improvement compar-
ing VisualBERT and DenseVisualClinicalBERT. Among the baselines, the performance
of LXMERT is the lowest. The performance improvement after using DenseNet-121
instead of ResNet-50 is about 0.16% which is quite negligible. Finally, the proposed
DenseVisualClinicalBERT provided significant improvement with an accuracy of about
88.44% using the OpenI dataset of radiological reports and chest X-rays.

In this thesis, the novel anatomy-aware deep-learning framework is also proposed for
COVID-19 disease severity prediction from chest X-ray images. While traditional
methods generally do not specifically consider anatomical information for medical im-
age analysis, expert radiologists tend to always consider their human anatomy knowl-



edge before making a diagnostic decision. In this work, a semi-supervised model is uti-
lized for automatically generating lung segmentation masks that are subsequently fused
within the chest X-ray images. Here the best-performing model has provided a rela-
tive improvement of 11% in MSE compared to existing methods when evaluated on a
COVID-19 pneumonia severity prediction dataset. Experimental comparisons between
systems with and without anatomy information integrated clearly show the effective-
ness of the proposed method. This model also shows promising results on an unseen
in-house clinical evaluation dataset that an experienced radiologist has annotated. The
experimental evaluations demonstrate the effectiveness of the proposed anatomy-aware
architecture for COVID-19 disease severity prediction.

To summarize, chest radiography is among the major radiological diagnostic methods
in different low-income regions. Hence, there is a need for computer-aided diagnostic
methods to provide healthcare facilities in under-served communities where the pro-
posed feature fusion-based approach can provide assistance to healthcare professionals.
Thus, the extension of the proposed method with anatomical information with clinical
indications can be used for thoracic disease classification and even severity prediction
in low-resource settings.

8.2 Limitations of the Present Work

Though this work shows promising performance using the feature fusion approaches,
this work also has some limitations. Some of them are:

1. The proposed feature fusion-based approach needs to be validated on real-world
test datasets. In this case, there is a need for data collection and annotation from
expert radiologists.

2. There is a need for a combined framework and analysis using the clinical infor-
mation and anatomical information for specific kinds of diseases.

3. There is a need for annotated dataset to validate the improvement and perfor-
mance of the proposed framework. Currently, the available datasets are labeled
using Chexpert labeler which may not perform well for all the available datasets.
There is a need for cross-matching of the dataset annotation.

4. There is a need for a high-performance GPU and server for doing the computation
works faster. The training of medical images takes a lot of time for computation.
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Thus, high computational devices, servers, and storage systems can increase effi-
ciency.

5. This proposed feature fusion approach separately proves the improvement of
performance using clinical indication information and anatomical information.
There is a need for further analysis of this combined approach using both the
indication information with image features.

6. There is a need for a comparative analysis using different segmentation approaches,
different text and image datasets, and different pre-trained NLP-based approaches
to increase and validate the performance of feature fusion-based approaches.

8.3 Future Prospects of the Present Work

There are lots of opportunities for further research. The considered scopes are:

1. This work claims that clinical indication information and anatomical information
with chest X-rays can be used in computer-aided diagnostic systems. This claim
can be verified in the real world by implementing a software version in an AI-
based disease diagnosis platform.

2. Data collection and data annotation from experts can open pathways to explore
more about thoracic disease diagnosis, severity prediction, and even prognosis.

3. More sophisticated frameworks can be developed using patient’s history, symp-
toms, and anatomical information with radiological image findings. There are
scopes of analyzing other multimodal approaches using different types of imag-
ing modalities and also using physiological signals.

4. There are scopes of analyzing different available frameworks and addressing their
limitations in different disease classification tasks.

5. There are scopes to work with larger datasets with high computational power to
validate the performance of developed frameworks.

6. More hyperparameter tuning on pre-trained models can be analyzed. There are
scopes of generating loss function, and model optimization to find better perfor-
mance of the architectures.

7. Analyze anatomical and clinical information from various imaging modalities
(e.g., CT, MRI, PET, OCT) and explore feature fusion-based approaches to ex-
tract valuable information for AI-based system development.

76



References

[1] Perez, L., Ottens, L. and Viswanathan, S. “Automatic code generation using
pre-trained language models.” arXiv preprint arXiv:2102.10535, 2021

[2] Rahali, A. and Akhloufi, M.A. “Malbert: Using transformers for cybersecurity
and malicious software detection.” arXiv preprint arXiv:2103.03806, 2021

[3] Suganyadevi, S., Seethalakshmi, V. and Balasamy, K. “A review on deep learning
in medical image analysis.” International Journal of Multimedia Information

Retrieval, volume 11, no. 1:pp. 19–38, 2022

[4] Pons, E., Braun, L.M., Hunink, M.M. and Kors, J.A. “Natural language pro-
cessing in radiology: a systematic review.” Radiology, volume 279, no. 2:pp.
329–343, 2016

[5] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K. “Bert: Pre-training of
deep bidirectional transformers for language understanding.” arXiv preprint

arXiv:1810.04805, 2018

[6] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X. and Un-
terthiner, T. “Transformers for image recognition at scale.” arXiv preprint

arXiv:2010.11929, 2020

[7] Theckedath, D. and Sedamkar, R. “Detecting affect states using vgg16, resnet50
and se-resnet50 networks.” SN Computer Science, volume 1:pp. 1–7, 2020

[8] Rochmawanti, O. and Utaminingrum, F. “Chest x-ray image to classify lung
diseases in different resolution size using densenet-121 architectures.” In “6th
International Conference on Sustainable Information Engineering and Technol-
ogy 2021,” pp. 327–331, 2021

[9] Kamal, U., Zunaed, M., Nizam, N.B. and Hasan, T. “Anatomy-xnet: An
anatomy aware convolutional neural network for thoracic disease classification in



chest x-rays.” IEEE Journal of Biomedical and Health Informatics, volume 26,
no. 11:pp. 5518–5528, 2022

[10] Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J. and Chang, K.W. “Visualbert:
A simple and performant baseline for vision and language.” arXiv preprint

arXiv:1908.03557, 2019

[11] Tan, H. and Bansal, M. “Lxmert: Learning cross-modality encoder representa-
tions from transformers.” arXiv preprint arXiv:1908.07490, 2019

[12] Chen, Y.C., Li, L., Yu, L., El Kholy, A., Ahmed, F., Gan, Z., Cheng, Y. and Liu,
J. “Uniter: Universal image-text representation learning.” In “Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXX,” pp. 104–120. Springer, 2020

[13] Cohen, J.P., Dao, L., Roth, K., Morrison, P., Bengio, Y., Abbasi, A.F., Shen,
B., Mahsa, H.K., Ghassemi, M., Li, H. et al. “Predicting covid-19 pneumonia
severity on chest x-ray with deep learning.” Cureus, volume 12, no. 7, 2020

[14] Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M. and Summers, R.M. “Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised
classification and localization of common thorax diseases.” In “Proceedings of
the IEEE conference on computer vision and pattern recognition,” pp. 2097–
2106, 2017

[15] Wang, G., Liu, X., Shen, J., Wang, C., Li, Z., Ye, L., Wu, X., Chen, T., Wang, K.,
Zhang, X. et al. “A deep-learning pipeline for the diagnosis and discrimination
of viral, non-viral and covid-19 pneumonia from chest x-ray images.” Nature

biomedical engineering, volume 5, no. 6:pp. 509–521, 2021

[16] Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul,
A., Langlotz, C., Shpanskaya, K. et al. “Chexnet: Radiologist-level pneumonia
detection on chest x-rays with deep learning.” arXiv preprint arXiv:1711.05225,
2017

[17] He, K., Zhang, X., Ren, S. and Sun, J. “Deep residual learning for image recog-
nition.” In “Proceedings of the IEEE conference on computer vision and pattern
recognition,” pp. 770–778, 2016

[18] Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. “Densely con-
nected convolutional networks.” In “Proceedings of the IEEE conference on
computer vision and pattern recognition,” pp. 4700–4708, 2017

78



[19] Krizhevsky, A., Sutskever, I. and Hinton, G.E. “Imagenet classification with
deep convolutional neural networks.” Communications of the ACM, volume 60,
no. 6:pp. 84–90, 2017

[20] Simonyan, K. and Zisserman, A. “Very deep convolutional networks for large-
scale image recognition.” arXiv preprint arXiv:1409.1556, 2014

[21] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V. and Rabinovich, A. “Going deeper with convolutions.” In “Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,”
pp. 1–9, 2015

[22] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L. “Imagenet: A
large-scale hierarchical image database.” In “2009 IEEE conference on computer
vision and pattern recognition,” pp. 248–255. Ieee, 2009

[23] Chen, B., Li, J., Guo, X. and Lu, G. “Dualchexnet: dual asymmetric feature
learning for thoracic disease classification in chest x-rays.” Biomedical Signal

Processing and Control, volume 53:p. 101554, 2019

[24] Zhang, S., Tong, H., Xu, J. and Maciejewski, R. “Graph convolutional networks:
a comprehensive review.” Computational Social Networks, volume 6, no. 1:pp.
1–23, 2019

[25] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker,
B., King, A., Matthews, P.M. and Rueckert, D. “Semi-supervised learning for
network-based cardiac mr image segmentation.” In “Medical Image Computing
and Computer-Assisted Intervention- MICCAI 2017: 20th International Confer-
ence, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II
20,” pp. 253–260. Springer, 2017

[26] Nie, D., Gao, Y., Wang, L. and Shen, D. “Asdnet: attention based semi-
supervised deep networks for medical image segmentation.” In “Medical Image
Computing and Computer Assisted Intervention–MICCAI 2018: 21st Interna-
tional Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part
IV 11,” pp. 370–378. Springer, 2018

[27] Cheplygina, V., de Bruijne, M. and Pluim, J.P. “Not-so-supervised: a survey of
semi-supervised, multi-instance, and transfer learning in medical image analy-
sis.” Medical image analysis, volume 54:pp. 280–296, 2019

79



[28] Aviles-Rivero, A.I., Papadakis, N., Li, R., Sellars, P., Fan, Q., Tan, R.T. and
Schönlieb, C.B. “Graphxˆ\small net-net-chest x-ray classification under extreme
minimal supervision.” In “Medical Image Computing and Computer Assisted
Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China,
October 13–17, 2019, Proceedings, Part VI 22,” pp. 504–512. Springer, 2019

[29] Perone, C.S., Ballester, P., Barros, R.C. and Cohen-Adad, J. “Unsupervised do-
main adaptation for medical imaging segmentation with self-ensembling.” Neu-

roImage, volume 194:pp. 1–11, 2019

[30] Zhang, Y., Wei, Y., Wu, Q., Zhao, P., Niu, S., Huang, J. and Tan, M. “Col-
laborative unsupervised domain adaptation for medical image diagnosis.” IEEE

Transactions on Image Processing, volume 29:pp. 7834–7844, 2020

[31] Balagopalan, A., Eyre, B., Rudzicz, F. and Novikova, J. “To bert or not to bert:
comparing speech and language-based approaches for alzheimer’s disease detec-
tion.” arXiv preprint arXiv:2008.01551, 2020

[32] Alsentzer, E., Murphy, J.R., Boag, W., Weng, W.H., Jin, D., Naumann, T. and
McDermott, M. “Publicly available clinical bert embeddings.” arXiv preprint

arXiv:1904.03323, 2019

[33] Biswas, S.S. “Role of chat gpt in public health.” Annals of Biomedical Engineer-

ing, volume 51, no. 5:pp. 868–869, 2023

[34] Pan, S., Tian, Z., Lei, Y., Wang, T., Zhou, J., McDonald, M., Bradley, J.D.,
Liu, T. and Yang, X. “Cvt-vnet: convolutional-transformer model for head and
neck multi-organ segmentation.” In “Medical Imaging 2022: Computer-Aided
Diagnosis,” volume 12033, pp. 914–921. SPIE, 2022

[35] Li, W., Song, H., Li, Z., Lin, Y., Shi, J., Yang, J. and Wu, W. “Orbitnet—a
fully automated orbit multi-organ segmentation model based on transformer in
ct images.” Computers in Biology and Medicine, volume 155:p. 106628, 2023

[36] Petit, O., Thome, N., Rambour, C., Themyr, L., Collins, T. and Soler, L. “U-
net transformer: Self and cross attention for medical image segmentation.” In
“Machine Learning in Medical Imaging: 12th International Workshop, MLMI
2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September
27, 2021, Proceedings 12,” pp. 267–276. Springer, 2021

[37] Hu, M., Pan, S., Li, Y. and Yang, X. “Advancing medical imaging with language
models: A journey from n-grams to chatgpt.” arXiv preprint arXiv:2304.04920,
2023

80



[38] Wang, S., Zhao, Z., Ouyang, X., Wang, Q. and Shen, D. “Chatcad: Interactive
computer-aided diagnosis on medical image using large language models.” arXiv

preprint arXiv:2302.07257, 2023

[39] Li, Y., Wang, H. and Luo, Y. “A comparison of pre-trained vision-and-
language models for multimodal representation learning across medical images
and reports.” In “2020 IEEE international conference on bioinformatics and
biomedicine (BIBM),” pp. 1999–2004. IEEE, 2020

[40] Cai, X., Liu, S., Han, J., Yang, L., Liu, Z. and Liu, T. “Chestxraybert: A pre-
trained language model for chest radiology report summarization.” IEEE Trans-

actions on Multimedia, 2021

[41] Bazi, Y., Rahhal, M.M.A., Bashmal, L. and Zuair, M. “Vision–language model
for visual question answering in medical imagery.” Bioengineering, volume 10,
no. 3:p. 380, 2023

[42] Tan, Y.V. and Roy, J. “Bayesian additive regression trees and the general bart
model.” Statistics in medicine, volume 38, no. 25:pp. 5048–5069, 2019

[43] Bird, J.J., Ekárt, A. and Faria, D.R. “Chatbot interaction with artificial intelli-
gence: human data augmentation with t5 and language transformer ensemble for
text classification.” Journal of Ambient Intelligence and Humanized Computing,
volume 14, no. 4:pp. 3129–3144, 2023

[44] Floridi, L. and Chiriatti, M. “Gpt-3: Its nature, scope, limits, and consequences.”
Minds and Machines, volume 30:pp. 681–694, 2020

[45] Scao, T.L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R.,
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