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Abstract

Retinal blood vessel segmentation is significant in proper detection of vascular

anomalies manifested in different retinal pathologies. Perfect knowledge on blood

vessel location is necessary for automated detection of retinal diseases. However, ac-

curate identification of blood vessel locations by eye inspection is extremely difficult

especially in faded regions or very thin vessel regions. In this thesis, a two-stage au-

tomatic vessel detection algorithm is proposed which involves rule based candidate

vessel selection algorithm at the first stage followed by a post-processing scheme and

a supervised classification algorithm in the second stage. In order to obtain enhanced

vessel region, in the preprocessing scheme, first, spatial adaptive median filtering is

introduced which can reduce noise generated by nonhomogeneous background and

then the morphological Top-Hat transform is used for further background homog-

enization for vessel enhancement. A gradient based k-neighborhood (for k=1, 2,

3)) bidirectional spatial search method is proposed to select vessel candidates from

preprocessed green plane of retinal image. A post-processing scheme based on spa-

tial similarity and connectivity is employed to finalize the vessel candidate selection.

Instead of pixel by pixel classification of the whole retinal image, a supervised clas-

sification scheme is developed where only some critical candidate pixels are tested

using linear discriminant based classifier. The idea of such a selective classification

offers huge computational savings. For feature extraction, both spatial and spectral

features of the subregion centered on test pixel and 8-connected spatially shifted

subregions with respect to the center pixel are considered. Since feature extraction

is carried out on a larger block in comparison to the gradient search operation, in the

preprocessing scheme, sequential morphological opening (filtering) operation in Top-

Hat transform and background homogenization via shade correction are included.

In supervised classification, instead of selecting training pixels by eye inspection,

universal trainer selection algorithm is proposed based on principle of connectivity

which is verified by discriminating feature characteristics obtained by selected pix-

els. Extensive simulation is carried out on some retinal image databases and it is

found that a satisfactory performance is obtained by using the algorithm.
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Chapter 1

Introduction

1.1 Background

The human retina is the innermost layer of eye, which looks like a circular disc with

a diameter between 30 and 40 mm. With the help of an ophthalmoscope, one can

see the retinal image of human eye as shown in Fig. 1.1. The examiner sees the

neurosensory retina against the background orange color of the melanin containing

retinal pigment epithelium and blood-filled choroidal layer of the eye. There are

several blood vessels (arteries and veins) within the retina, which ensure continuous

blood supply. For normal eyes without any eye diseases, retinal blood vessels exhibit

quite regular shape. Different eye diseases cause different types of deformation in

retinal vessels, such as blockage, shrinkage and pigmentation. Retinal blood vessel

detection plays an important role in proper diagnosis of different retinal diseases

caused by extra fluid and blood leakage from damaged vessels. Accurate knowledge

on the location of blood vessels can help in reducing the chances of false detection

of some retinal diseases [1]- [2]. However, it is extremely difficult for physicians to

identify vessel locations from given retinal images by eye inspection, as there are

several vessels which are very thin or not very prominent or do not possess sharp

edges.

1.1.1 Retinal Image of Human Eye

In Fig. 1.2, a typical cross-section of human eye is shown where along with the retina

some major parts are indicated. The eye itself is a mostly hollow organ, roughly

spherical in shape. In adults, the eye measures approximately 22 mm in diameter.

The walls of the eye consist of the firm outermost coat, white sclera and clear cornea.

1
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Fig. 1.1: A view of the retina seen through an opthalmoscope

Fig. 1.2: A section through human eye with a schematic enlargement of the retina

The middle layer consists of the uveal tract which is made up of choroid, ciliary body

and iris. The human retina is located on the inner surface of the posterior two-thirds

to three-quarters of the eye. It is the innermost layer. Assuming that the ocular

media (cornea, anterior chamber, and lens) are not cloudy, the living retina can be

examined using a direct or indirect ophthalmoscope or a retinal lens at the slit lamp.

The retina may also be photographed using a retinal camera. The retina, with the

exception of the blood vessels coursing through it, is transparent to the examiner

up to its outer layer, the retinal pigment epithelium. The transparent portion of the

retina is known as the neurosensory retina.

At the center of the retinal image there is the optic nerve, a circular to oval

white area. From the center of the optic nerve major blood vessels are dispersed all
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around the retina. Retinal nerve fibers exit the eye through the optic nerve. There

is no retinal tissue overlying the optic nerve head or optic disc, which is oval in

shape. Beside the optic disc, there is slightly oval-shaped blood vessel-free reddish

spot, known as the fovea. A circular field of approximately 6 mm around the fovea

is considered the central retina while beyond this is peripheral retina.

1.1.2 Vessels in Retinal Image

The retina at the back of the eye requires a constant blood supply. This blood

supply makes sure that the cells of the retina get all the nutrients they need to

continue working. The blood supply also removes any waste material that the cells

have finished with. Like the rest of the body there are two types of blood vessels

concerned with the blood supply to the retina, arteries and veins. Arteries carry

the fresh blood from the heart and lungs to all the cells in our bodies. Veins take

away the blood that has been used by the cells and return it to the lungs and heart

to be refreshed with oxygen and other nutrients. This process happens every time

our heart beats so there is a constant stream of fresh blood and nutrients reaching

all the cells in our bodies.

Retinal Vessel Occlusion

A blockage in either a retinal vein or artery is known as ‘retinal vessel occlusion’,

which can affect the sight. The main cause of occlusion is atherosclerosis, which

makes the blood vessels thinner and sticky. Thus it becomes harder for the blood

to flow through it and sticky blood vessels may catch debris in the blood, which

in turn can cut off part or all of the blood going to or from the retina. Due to

occlusion in retinal arteries, fresh blood cannot enter and retinal cells quickly suffer

from the lack of fresh oxygen. This stops them working and sight can be affected

quite badly. The amount of sight that is affected varies according to the location

of the blockage. On the other hand, due to occlusion in retinal veins, used blood

cannot be drained away properly. This can cause the area to swell and may also

cause areas of hemorrhage (bleeding). It is to be mentioned that the problem of

thinning arteries and veins can cause other problems like heart attacks and strokes.
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Fig. 1.3: A view of the retina of a patient with advanced Glaucoma

1.1.3 Eye Diseases Causing Retinal Damage

Damages in retina due to some eye diseases may lead to serious damage to the nerve

cells that carry the vital messages about the visual image to the brain. Three such

eye diseases are discussed below.

Glaucoma

Glaucoma is a common problem in aging, which causes rise in pressure within the

eye when anterior chamber of the eye cannot exchange fluid properly. As a result,

some blood vessels of the optic nerve head may be damaged. In Fig. 1.3, a view of

the retina of a patient with advanced Glaucoma is shown.

Retinits pigmentosa

Retinits pigmentosa is a hereditary disease of the retina for which there is no cure at

present. The rods of the peripheral retina begin to degenerate in early stages of this

disease. Patients become night blind gradually and they suffer from tunnel vision.

Characteristic pathologies are the occurrence of black pigment in the peripheral

retina and thinned blood vessels at the optic nerve head. In Fig. 1.4, a view of the

retina of a patient with Retinits pigmentosa is shown.
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Fig. 1.4: A view of the retina of a patient with Retinits pigmentosa

Fig. 1.5: A view of the retina of a patient with advanced diabetic retinopathy

Diabetic retinopathy

Diabetic retinopathy is a side effect of diabetes that affects the retina and can

cause blindness. The vital nourishing blood vessels of the eye become distorted and

multiplied in uncontrollable ways. In Fig. 1.5, a retinal image of a patient with

advanced diabetic retinopathy is shown.

1.1.4 Different Types of Diabetic retinopathy

Diabetic retinopathy is the result of microvascular retinal changes, which makes

the retinal blood vessels become more permeable. There are two types of diabetic

retinopathy:
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Nonproliferative diabetic retinopathy (NPDR)

It is the earliest stage of diabetic retinopathy. With this condition, damaged blood

vessels in the retina begin to leak extra fluids, blood and deposits of cholesterol or

other fats. NPDR can cause following changes in the eye:

1. Microaneurysms: Small bulges are generated in retinal blood vessels that

often leak fluid.

2. Retinal hemorrhages: Tiny spots of blood appear, which leak into the

retina.

3. Hard exudates: Cholesterol or other fats are deposited from the blood that

have leaked into the retina.

4. Macular edema: Fluid that is leaking from the retina’s blood vessels causes

swelling or thickening of the macula. Macular edema is the most common

cause of vision loss in diabetes.

5. Macular ischemia: Small blood vessels become closed, which causes vision

blurrin.

Proliferative diabetic retinopathy (PDR)

It mainly occurs when many of the blood vessels in the retina close, preventing

enough blood flow. In an attempt to supply blood to the area where the original

vessels closed, the retina responds by growing new blood vessels. This is called

neovascularization. However, these new blood vessels are abnormal and do not

supply the retina with proper blood flow. The new vessels are also often accompanied

by scar tissue that may cause the retina to wrinkle or detach. PDR may cause more

severe vision loss than NPDR because it can affect both central and peripheral

vision. PDR affects vision in the following ways:

1. Vitreous hemorrhage: Delicate new blood vessels bleed into the vitreous,

the gel in the center of the eye, preventing light rays from reaching the retina.

2. Traction retinal detachment: Scar tissue from neovascularization shrinks,

causing the retina to wrinkle and pull from its normal position.
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Fig. 1.6: Different types of diabetic retinopathy

3. Neovascular glaucoma: If a number of retinal vessels are closed, new blood

vessels may block the normal flow of fluid out of the eye. Pressure builds up in

the eye, a particularly severe condition that causes damage to the optic nerve.

1.1.5 Literature Review

Several methods have been proposed for automatic vessel detection, which in gen-

eral can be classified into two broad categories, namely rule-based and supervised

classification methods. The rule based methods rely on some specific image process-

ing operations and detect vessels from the processed retinal image based on set of

predefined rules.

On the other hand, supervised methods utilize some classifiers for pixel classifi-

cation based on some extracted features.

Among rule-based methods, there are some vessel tracking algorithms which at-

tempt to obtain the vasculature structure by following vessel center lines [3]- [4].

Starting from an initial set of points selected automatically or by manual labeling,

vessels are traced by utilizing local information which is obtained from the most

appropriate candidate pixel residing in the close neighborhood of the pixel currently

under consideration. There are some vessel detection methods based on mathemati-

cal morphology [5]- [6]. These methods take benefit from a priori-known vasculature
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shape features, such as being piecewise linear and connected. By applying morpho-

logical operators, the vasculature is filtered from the background for final segmenta-

tion. In matched filter based techniques, usually 2-D linear structural element with a

Gaussian cross-profile section, extruded or rotated into three dimensions, is used for

blood vessel cross-profile identification (typically a Gaussian or Gaussian-derivative

profile) [7]- [8]. The kernel is rotated into many different orientations (usually 8 or

12) to fit into vessels of different configuration. The image is then thresholded to

extract the vessel silhouette from the background. There are some model-based ves-

sel detection methods, which employ locally adaptive thresholding. In [9], a general

framework using a verification-based multi-threshold probing scheme is proposed,

where relevant information related to retinal vessels is incorporated into the verifi-

cation process. On the other hand, deformable or snake models have been also used

for vessel detection in [10] and [11]. A snake is an active contour model that, once

placed on the image near the contour of interest, can evolve to fit the shape of the

desired structure by an iterative adaption. In [12], a method based on multi-scale

feature extraction is proposed. In this method, the local maxima over scales of

the gradient magnitude and the maximum principal curvature of the Hessian tensor

were used in a multiple pass region growing procedure. Finally the blood vessels are

segmented by using both the growth feature and spatial information. In [13], blood

vessel-like objects are first extracted by using the Laplacian operator and pruning

the noisy objects according to centerlines. Finally vessels are detected by means of

normalized gradient vector field. In [14], an unsupervised algorithm is described to

detect and measure blood vessels in retinal images. This involves two main steps.

The first is an approach for vessel segmentation by thresholding wavelet coefficients.

The second step consists of a new alternative to the graph-based algorithm to extract

centrelines and localize vessel edges from image profiles, by making use of spline fit-

ting to determine vessel orientations and then searching for the zero-crossings of the

second derivative perpendicular to the vessel.

On the other hand, supervised methods are based on pixel classification into

two classes, vessel and non-vessel by using different types of classifiers. Classifiers

are trained by using supervised learning with data from manually-labeled images.

In [15], a back propagation multilayer neural network (NN) is designed for vascular
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tree segmentation. Prior to classification, histogram equalization, smoothing and

edge detection were carried out on the retinal image and finally dividing the whole

image into some small square regions, values of these pixel windows are fed to NN

classifier. The method proposed in [16] also utilizes small sub-images centered on

the pixel under evaluation in NN classifier. Each pixel in the image is classified

by using the first principal component and the edge strength values obtained from

the sub-images. In [17], 31-component pixel feature vector is constructed with the

Gaussian and its derivatives up to order 2 at 5 different scales and then the k-nearest

neighbor (KNN) classifier is employed. The assumption that vessels are elongated

structures is the basis for the supervised ridge-based vessel detection method re-

ported in [18]. Ridges are extracted from the image and used as primitives to form

line elements. Each pixel is then assigned to its nearest line element, the image

thus being partitioned into patches. For every pixel, 27 features are first computed

and then a set of reduced features, obtained based on class separability, is employed

in KNN classifier. In [19], Gaussian mixture model based Bayesian classifier is

used and for feature extraction multi-scale analysis is performed on the image by

using the Gabor wavelet transform. The gray-level of the inverted green channel

and the maximum Gabor transform response over angles at four different scales are

considered as pixel features. In [20], two orthogonal line detectors along with the

gray-level of the target pixel are used to construct the feature vector and support

vector machine (SVM) classifier is employed for vessel classification. The NN based

classification scheme proposed in [21] incorporates a post-processing stage for filling

pixel gaps in detected blood vessels and removing falsely-detected isolated vessel

pixels. Here for feature extraction the neighborhood of the pixel under considera-

tion from preprocessed retinal images is considered. The preprocessing stage mainly

includes gray-level homogenization and blood vessel enhancement.

It is found that in rule-based methods, blood vessels are identified after employ-

ing some preprocessing techniques on the retinal image [22]- [23]. Most of these

methods are threshold dependent and face problem in detecting weak vessel regions.

On the other hand, in case of supervised pixel classification methods, features are

extracted from the neighborhood of the desired pixel and different standard clas-

sifiers are employed to classify each pixel [15]- [21]. One major drawback of these
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pixel level classification schemes is the involvement of huge computational burden

since each retinal image under test consists of enormously large number of pixels.

Moreover, in all cases, process of selecting the training pixels from a large number

of pixels available from train images is based on eye inspection. Finally in both

type of vessel detection methods, the preprocessing stage may suffer from provid-

ing locations of weak vessel pixels which exhibit confusing characteristics similar to

non-vessel pixels. Hence, there is still demand to develop a scheme which utilizes

both rule-based and supervised classification methods with necessary modification

to overcome the respective limitations and can provide better accuracy in retinal

blood vessel detection.

Objectives with Specific Aims

The objectives of this thesis are:

1. To develop a preprocessing scheme for spatial domain enhancement of vessel

region.

2. To propose a gradient based method for vessel candidate selection.

3. To design a general rule for selecting train data set consisting of both strong

and weak vessel pixels.

4. To extract efficient features based on spatially shifted masks.

5. To reduce computational complexity in pixel based classification.

6. To verify the detection performance on real retinal images utilizing different

classifiers.

Organization of the Thesis

The proposed method involves two different approaches for vessel detection: (1)

vessel detection based on gradient search on a pre-processed image and (2) pixel

level classification of candidate vessels using some robust features.

In Chapter 2, gradient search based vessel detection method is described. Overall

there are three major steps involved in this method: preprocessing, gradient based

search, and postprocessing. Prior to vessel detection through gradient based search
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method, a preprocessing scheme is presented, which offers spatial domain enhance-

ment of vessel region. Here different types of preprocessing methods are discussed.

In particular, the background subtraction and median filtering based algorithms

are presented in detail. Morphological operators used in the proposed method are

then discussed. Next proposed gradient based vessel search algorithm is presented.

A postprocessing method is discussed which is applied to obtain better vessel de-

tection accuracy. Finally experimental results on two widely used standard retinal

image databases are presented along with comparative performance analysis.

In Chapter 3, the proposed pixel level classification scheme is presented which

involves four major tasks, such as critical vessel selection for classification, fea-

ture extraction, train data selection, classifier design. First, instead of conventional

manual selection approach, a general rule is developed to prepare the train data

set consisting of both strong and weak vessel pixels. Next, additional preprocess-

ing stages required for efficient feature extraction are described. Proposed spatial,

shifted spatial and spectral features along with some statistical characteristics of

extracted features are discussed in detail. Different classifiers tested in the proposed

scheme are then presented. Finally experimental results with comparative analy-

sis are demonstrated considering two standard retinal image databases. Chapter

4 summarizes the outcome this thesis with some concluding remarks and possible

future works.



Chapter 2

Proposed Gradient Search Based
Vessel Detection Method

In this chapter, a gradient search based vessel detection algorithm is proposed,

which consists of three major steps: pre-processing, gradient based search and post-

processing. First the pre-processing stage is demonstrated where we introduce the

adaptive median filtering followed by the top hat transform in view of obtaining

significant vessel pixel enhancement. Apart from these two techniques, a spatial

morphological operation for pre-processing are also described. Next, the proposed

gradient based vessel detection algorithm is described in detail, which can identify

the edges of a vessel and is capable of distinguishing vessel zones from non-vessel

region. Finally a post-processing algorithm is presented, which is incorporated in

order to remove falsely detected isolated vessel pixels.

2.1 Preprocessing

Color fundus images often exhibit lighting variations, poor contrast, and noise cor-

ruption. In order to reduce these imperfections and generate images those are more

suitable for distinguishing between vessel and non-vessel pixels in gradient based

search method or in feature extraction step of classification based approaches, an ef-

ficient preprocessing algorithm is required. In what follows, different steps involved

in the preprocessing scheme are described.

2.1.1 Image Plane Selection

As a colored picture, the retinal image contains three basic color planes, namely

red (R), green (G), and blue (B). One may start processing all three planes for

12
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vessel detection. In Fig. 2.1, RGB retinal image along with images corresponding

to single plane, i.e., red plane image, green plane image, and blue plane image are

shown. The appearance of vessels in these images is not same and the difference

is quite visible by eye inspection. It is well established in literature that when

the RGB components of the colored images are visualized separately, the green

plane shows the best vessel/background contrast, whereas the red and blue planes

show comparatively lower contrast and they are very noisy [24]. Therefore, in the

proposed method, only green plane retinal image is considered, which provides better

representation of blood vessels and thus computational cost, in comparison to the

methods utilizing all three planes, is drastically reduced.

Fig. 2.1: Two examples of RGB retinal images (one on top, another at bottom).
First column: RGB images, Second column: Red plane images, Third column: green
plane images, Fourth column: blue plane images

2.1.2 Region of Interest Computation

In order to remove the strong contrast between the retinal fundus and the region

outside the camera aperture, a region of interest (ROI) is specified based on the

camera’s aperture [19]. Generally, the shape of ROI, like camera’s aperture, is

circular. The intensity variation pattern outside the ROI is completely different

than that of the inner part of the ROI as can be observed from Fig. 2.1 showing a

general retinal fundus. The circular pattern matching provides a set of pixels those

are residing outside the ROI. In order to precisely obtain the radius of the circle,

on the border the neighborhood smoothing is carried out and based on intensity

variation between the region residing inside and outside the ROI, radius is adjusted.
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For neighborhood smoothing each pixel value of a set of pixels in a subregion is

replaced with the mean value of that subregion using eight-neighborhood. Finally,

the radius offering the maximum variation is chosen to extract the desired circular

ROI.

In the proposed method, for an initial estimate of the diameter of the circle a

simple intensity based threshold is used, which helps to discard the region outside

the camera apertures. The reason behind relying on this global threshold lies in

the facilitation of some computational complexities. It avoids manually drawing

the ROI or computationally expensive morphological operations for obtaining the

ROI [19]. Note that this global thresholding is not introduced for detecting the

vessel pixels, it is just employed to select an approximate ROI. Further processing

for ROI detection is explained before. However, such a global threshold is also valid

to detect a portion of nonvessel pixels located in the ROI.

2.1.3 Vessel Enhancement Using Repetitive Median Filter-
ing

Retinal fundus photographs often contain an intensity variation in the background

across the image, namely “vignetting”, the imbalance primarily due to an optical

aberration. Vignetting is the result of an improper focusing of light through an

optical system. The result is that the brightness of the image generally decreases

radially outward from near the center of the image. A retinal image is captured

by viewing the inner rear surface of the eyeball through the pupil. The lens of

the camera works in conjunction with the lens of the eyeball to form the image.

Since the position of the eye relative to the camera varies from image to image, the

exact properties of the vignetting also vary from image to image. Consequently,

background pixels may have different intensity for the same image and although

their gray-levels are usually higher than those of vessel pixels (in relation to green

channel images), the intensity values of some background pixels are comparable to

those of brighter vessel pixels. This effect can deteriorate the performance of the

vessel detection system.

There are several approaches available in literature to perform vessel enhance-

ment [1], [25], [26]. In [1], a shade correction algorithm is used to obtain vessel

enhancement. An estimate of the background image is first computed by median
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filtering the original green plane image. Then the background image is subtracted

from the original green plane image to obtain “shade corrected” image. The size of

the median filter was chosen 25×25 pixel such that it is wider than the widest blood

vessel, generally appear in the dataset of retinal images. To overcome vignetting

and other forms of uneven illumination, in [25], each pixel intensity value is adjusted

by adding an amount which is the difference between the desired average intensity

(128 in an 8-bit grayscale image) and the mean intensity value of the pixels within a

window of size N ×N with N = 40. In [26], on top of such adjustment, an adaptive

histogram equalization (AHE) is employed in order to normalize and enhance the

contrast within fundus images found to be especially effective in detecting small

blood vessels characterized by low contrast levels. The AHE is applied to an inten-

sity adjusted inverted green plane image where each pixel p is adapted using the

following formula

IAHE(p) = (
∑
p′εR(p)

s(I(p)− I(p′))

h2
)r ∗M, (2.1)

where M = 255, R(p) denotes the pixel p’s neighborhood (a square window with

length h), s(d) = 1 if d > 0 , and s(d) = 0 otherwise. The values of h and r where

empirically chosen by [27] to be 81 and 8.

In the proposed vessel detection method, in order to perform vessel enhancement,

median filtering based algorithms are utilized. In this subsection, the repeated

median filtering based vessel enhancement algorithm proposed in this research is

introduced. In the next subsection, we introduce the adaptive median filtering

based vessel enhancement algorithm.

The median filter is normally used to reduce noise in an image, somewhat like the

mean filter. However, it often does a better job than the mean filter by preserving

useful details in the image. The median filter belongs to the class of edge preserving

smoothing filters those are non-linear filters. This filter smooths the data while

keeping the small and sharp details. The median is just the middle value of all the

values of the pixels in the neighborhood. The median is a stronger “central indicator”

than the mean (or average). In particular, the median is hardly affected by a small

number of discrepant values among the pixels in the neighborhood. Consequently,

median filtering is very effective at removing various kinds of noise, in particular

the “salt and pepper” noise, a very common noise corrupting the retinal image. A
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median filter is more effective than convolution when the goal is to simultaneously

reduce noise and preserve edges. In [28], it is shown that initial median filtering

can remove small dark spots, while leaving the rest of the image approximately

unchanged.

Like the mean filter, the median filter considers each pixel in the image in turn

and looks at its nearby neighbors to decide whether or not it is representative of

its surroundings. Instead of simply replacing the pixel value with the mean of

neighboring pixel values, it replaces it with the median of those values. The median

is calculated by first sorting all the pixel values from the surrounding neighborhood

into numerical order and then replacing the pixel being considered with the middle

pixel value. (If the neighborhood under consideration contains an even number of

pixels, the average of the two middle pixel values is used.) The median filter is a

non-linear tool, while the average filter is a linear one. In smooth, uniform areas

of the image, the median and the average will differ by very little. The median

filter removes noise, while the average filter just spreads it around evenly. The

performance of median filter is particularly better for removing impulse noise than

average filter. In this research, median filtering is performed on several retinal images

and the effect is analyzed. It is found that an image after performing the median

filtering may still contain noise. Since median filtering is edge preserving operation

which smooths the data while keeping the small and sharp details, the median

filtering operation is performed again on that image. As expected that a further

noise reduction is achieved resulting in enhanced vessel pixels. One may consider

repeating the median filtering operation several times, which not only increases the

computational burden, but also deteriorates the vessel edge representation because

of over smoothing effect. Hence, performing median filtering operation is restricted

to three times, which is experimentally found to be sufficient to provide acceptable

level of noise reduction.

2.1.4 Vessel Enhancement Using Adaptive Median Filtering

Although median filtering is a useful non-linear image smoothing and enhancement

technique, it may not always precisely discriminate noise and the fine detail of

the image. In many cases, it may remove both the noise and the fine detail of



17

a retinal image, since it is very difficult to differentiate between the two in this

particular application. Anything relatively small in size compared to the size of the

neighborhood will have minimal effect on the value of the median and will be filtered

out. In other words, the median filter may fail to distinguish fine detail from the

noise. As an alternate to the median filtering, in this research, adaptive median

filtering is introduced for obtaining better vessel enhancement through significant

noise reduction. The adaptive median filter performs spatial processing to determine

which pixels in an image have been affected by noise [29]. It classifies pixels as noise

by comparing each pixel in the image to its surrounding neighbor pixels. The size of

the neighborhood is adjustable, as well as the threshold for the comparison. A pixel

that is different from a majority of its neighbors, as well as being not structurally

aligned with those pixels to which it is similar, is labeled as noise pixel. These noise

pixels are then replaced by the median pixel value of the pixels in the neighborhood

that have passed the noise labeling test. The median filter performs well as long as

the spatial density of the noise is not large. However the adaptive median filtering

can handle noise with probabilities even larger than these. An additional benefit of

the adaptive median filter is that it seeks to preserve detail while performing overall

smoothing operation on the image. Considering the high level of noise, the adaptive

algorithm performs quite well.

Purposes of adaptive median filtering are:

• Removal of impulse noise

• Smoothing of other noise

• Reduction in distortion, like excessive thinning or thickening of object bound-

aries

Working Procedure of Adaptive Median Filtering

Adaptive median filter changes size of Sxy (the size of the neighborhood) during

operation. Here,

Zmin = minimum gray level value in Sxy

Zmax = maximum gray level value in Sxy

Zmed = median of gray levels in Sxy
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Zxy = gray level at coordinates (x, y)

Smax = maximum allowed size of Sxy

Algorithm 1 Algorithm of Adaptive Median Filtering
A1 = Zmed − Zmin
A2 = Zmed − Zmax
if A1 > 0 AND A2 < 0 then
B1 = Zxy − Zmin
B2 = Zxy − Zmax
if B1 > 0ANDB2 < 0 then
output = Zxy

else
output = Zmed

end if
else

Increase the windowsize
if windowsize < Smax then

Repeat Level A
else
output = Zxy

end if
end if

Fig. 2.2: Histograms of intensity values of adaptive median filtered image and orig-
inal green plane image for both vessel and non-vessel pixels. (a), (c) Pixel intensity
of green plane image and (b), (d) pixel intensity of adaptive median filtered image.

In order to demonstrate the effect of adaptive median filtering, in Fig. 2.2,

histograms of intensity values of adaptive median filtered image and original green

plane image for both vessel and non-vessel pixels are shown. It is observed from
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Algorithm 2 Explanation of Algorithm of Adaptive Median Filtering

if Zmin < Zmed < Zmax then
Zmed is not an impulse

if Zmin < Zxy < Zmax then
Zxy is not an impulse

output = Zxy
else

if Zxy = Zmin OR Zxy = Zmax then
output = Zmed

end if
Zmed is not an impulse

end if
else

Zmed is an impulse
(1) the size of the window is increased and
(2) Second condition is repeated until ...
(a) Zmed is not an impulse and go to first condition or
(b) Smax reached: output = Zxy

end if

this figure that the adaptive median filtering preserves the range of intensity values

of non-vessel pixels, but it creates a well dispersion in pixel intensities of vessel

pixels. That is, a good number of vessel pixels attain a higher intensity values after

being passed through the adaptive median filtering operation. Certainly this helps

in making a distinction between thin vessel pixels and non-vessel pixels those were

not easily distinguishable before. This criterion definitely improves the performance

of any kind of vessel detection algorithm. Therefore, in the proposed method of

preprocessing in this chapter, adaptive median filtering is applied with a suitable disk

size appropriated for reduction in noise generated by nonhomogeneous background

and resulting filtered image is denoted as IF .

2.1.5 Vessel Enhancement Using Top-Hat Transform

In view of obtaining further enhancement of vessel pixels in filtered image IF , in this

research, Top-Hat transform based morphological operation is carried out. Subtract-

ing an opened image (i.e. an image being processed using morphological opening

operation) from the original image is called Top-Hat Transform. It is well known that

the morphological opening operation can remove completely regions of an object,

which cannot contain the structuring element, smooth object contours, breaks, thin

connections, and can remove thin protrusions. In the proposed scheme, for visual
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convenience, the Top-Hat transform operation is performed on the complementary

image of IF , i.e., the vessel enhanced image IV E can be expressed as

IV E = ICF − γ(ICF ) (2.2)

where γ is a morphological opening operation using a disc of suitable size. Thus,

while bright retinal structures are removed (i.e., optic disc, possible presence of

exudates or reflection artifacts), the darker structures remaining after the opening

operation become enhanced (i.e., blood vessels, fovea, possible presence of microa-

neurysms or hemorrhages). Next with the filtered image IF , we propose to employ

the Top-Hat transformation on ICF .

In this research, different types of preprocessing methods described above have

been extensively tested on green plane image. However, it is already explained that

adaptive median filtering based preprocessing offers advantages over the repetitive

median filtering. Thus, in the proposed vessel detection algorithm, adaptive median

filtering along with the Top-Hat transform operation is used for vessel enhancement.

The key steps involved in this scheme are summarized below.

1. Adaptive median filtering.

2. Central light reflex removal by applying a morphological opening operation

using a three-pixel diameter disc, defined in a square grid by using eight-

connectivity, as structuring element.

3. Top-Hat transform with morphological opening operation.

In Fig. 2.3, resultant images obtained by using the above steps are shown.

For the purpose of comparison, effect of using repetitive median filtering based

vessel enhancement scheme is shown in Fig. 2.4. In this case, repetitive median

filtering operation is performed on green plane image.

The effect of vessel enhancement in these figures may not be visible by eye inspec-

tion. In the result section of this chapter, results obtained from images preprocessed

in both methods are shown and their efficiencies are compared, which clearly demon-

strate the advantage of using the adaptive median filtering based method and the

reasons behind have already explained.
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Fig. 2.3: Vessel enhancement obtained by using the proposed preprocessing method
based on adaptive median filtering and Top-Hat transform. Top Left: Original
green plane image, Top Right: image obtained after adaptive median filtering, Bot-
tom Left: image with central light reflex removal, and Bottom Right: Top-Hat
transformed image

Fig. 2.4: Two examples of repetitive median filtering of green plane retinal images
(one on top, another at bottom). First Column: Green plane image, Second Column:
images obtained after first time median filtering, Third Column: images obtained
after second time median filtering, and Fourth Column: images obtained after third
time median filtering,

2.2 Proposed Gradient Based Search for Vessel

Pixel Detection

From the preprocessed image the objective is now to extract the vessel pixels. It

is quite similar to the task of image segmentation which is an important and fun-
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damental task in many digital image processing systems. One simple but widely

used approach is to perform image segmentation by thresholding, which involves

the basic assumption that the foreground (object) of interest and the background in

the digital image have distinct intensity distributions. If this assumption holds, the

histogram of intensity levels of the image under consideration will contain two or

more distinct peaks and a suitable threshold value can be obtained to separate the

desired object from the background. The regions (or pixels) having intensity levels

below the threshold are assigned to the background and those having the intensity

levels above the threshold are assigned to the objects, or vice versa. Threshold

selection methods can be classified into two groups, namely, global methods and

local methods. A global thresholding technique thresholds the entire image with

a single threshold value obtained by using the gray level histogram (which is an

approximation of the gray level probability density function) of the image. Local

thresholding methods partition the given image into a number of subimages and

determine a threshold for each of the subimages. Global thresholding methods are

easy to implement and are computationally less involved. Depending on the ap-

plication, threshold may be adaptively change in different spatial blocks or some

knowledge-guided adaptive thresholding can be used [9].

In order to classify the retinal pixels into two class: vessel and non-vessel, in

this section, a gradient based neighborhood intensity search algorithm is developed,

which is performed on the complementary image of the green plane image prepro-

cessed according to the methods discussed in previous section. For strong and wide

vessels, even by eye inspection the variation in the pixel intensity with respect to

the background can easily be identified from the enhanced retinal images. How-

ever, this is not always true for vessels those are thin and not very prominent. The

identification is extremely difficult in vessel edges and tiny vessel branches. The

neighborhood intensity gradient of the image matrix is calculated in two mutually

orthogonal directions: horizontal and vertical. However for each of these two cases,

a bidirectional operation is performed, i.e., for horizontal gradients, row-wise both

from left to right and right to left and for vertical gradients, both from top to bot-

tom and from bottom to top are considered. Each of these four directional gradient

calculation is performed independently with respect to each other.
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It is obvious that the computational burden will be increased due to the com-

putation of these four four directional gradient. However, considering the various

possible directional patterns of retinal vessels, these operations are extremely useful

to precisely capture all possible vessel pixels. Moreover, as the gradient calculation

in row wise (or column wise) data can simply be performed by using sample value

differences, the computation would not be very high. The intensity value of the

pixel under consideration, is compared with those of k (k=1,2,3) neighborhood con-

secutive pixels along with the previous pixel, and if the difference exceeds a definite

threshold in each case, depending on the polarity of the difference, the pixel as well

as the neighboring pixel, is declared as vessel or nonvessel. This parameter strongly

depends on the width of the vessel on the search path and the maximum number of

k is found to be optimum at 3. The gradient at the edge of a vessel, Np is also varied

to investigate the performance variation in terms of vessel detection. Considering a

very small value of Np, say Np = 1 or Np = 2 will unnecessarily select large number

of pixels and large value of Np, say Np > 5 may not be appropriate considering

the common width of vessels appearing on the search path. Hence, in the proposed

method, Np is restricted between 3 to 5. Instead of considering a single row (or

column), multiple rows (or columns) are also considered to analyze subregion based

variation for vessel detection. However, considering the thin vessels and vessel edges,

it is critical to ascertain the width of the subregion and it is observed that in differ-

ent portions of the image different widths provide satisfactory performance. Hence,

in the proposed scheme single row or column is considered in gradient search, which

ensures capturing the variation even for thin vessels of vessel edges.

The gradient based search algorithm can be summarized as follows (considering

the case of horizontal left to right search).

diff = fig(i, j)− fig(i, j +m)

diff1 = fig(i, j − 1)− fig(i, j) (2.3)

Here, θ = Threshold and (i, j) and (i, j +m) are the coordinates of the pixel to

be labeled and the neighboring pixel respectively and m = pixel difference = 1, 2, 3.

The outcome of the gradient based scheme is a binary image ascribing ‘0’ to nonvessel

pixels and ‘255’ to vessel ones. Similar algorithm is followed in each case of vertical

top to bottom and bottom to top search as well as horizontal right to left search.
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Algorithm 3 Condition of declaring a pixel as vessel or nonvessel

if diff > θ+ then
fig(i, j +m) = V esselP ixel
fig(i, j) = NonvesselP ixel

else if diff < θ− then
fig(i, j) = V esselP ixel

else if diff1 > θ+ then
fig(i, j +m) = V esselP ixel
fig(i, j) = V esselP ixel

else if diff1 < θ− then
fig(i, j) = NonvesselP ixel

end if

A combined binary image found from four searches is declared as the final outcome

with marked vessel pixels.

2.3 Postprocessing

Gradient based vessel detection algorithm described in the previous subsection, pro-

vides a black and white image which, apart from the desired vessel pixels, may

contain some isolate single or group of vessel pixels. It is most likely that small iso-

lated regions are misclassified as blood vessel pixels. However some of them could be

original vessel pixels appearing as isolated pixels because of wrong detection of some

vessels (located in between that isolated zone and correctly identified neighboring

vessel zone) as non-vessels. In order to remove these artifacts, the pixel area in

each connected region is measured. In artifact removal, each region connected to an

area below 50 is reclassified as nonvessel. Apart from this, following morphological

operations are carried out to eliminate falsely identified vessel as well as non-vessel

pixels:

1. Adjusting the isolated interior pixels of a square block. For example, a single

non-vessel pixel residing within a three-by-three block of vessel pixels or a

single vessel pixel residing within a three-by-three block of non-vessel pixels.

2. Defining a pixel to vessel if majority (five or more) of the pixels in its three-

by-three neighborhood are vessel, otherwise defining it as non-vessel.

It is observed that there is a tendency of exhibiting white thin discontinuous white

pixel boundary on the edge of the resulting image received after the gradient based
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search. However, complications generally arouse from different retinal diseases may

not found on the boundary. Hence, depending on the neighborhood intensity gradi-

ent, some primarily detected vessel pixels on the boundary (but inside the ROI) are

readjusted.

2.4 Database Description

To evaluate the vessel segmentation methodology described in the next section, pub-

licly available databases containing retinal images, the DRIVE database (Available:

http://www.isi.uu.nl/Re-search/Databases/DRIVE), was used. This database have

been widely used by other researchers to test their vessel segmentation methodologies

since, apart from being public, it provides manual segmentations for performance

evaluation. The DRIVE database comprises 40 eye-fundus color images (seven of

which present pathology) taken with a Canon CR5 nonmydriatic 3CCD camera with

a 45o field-of-view (FOV). Each image was captured at 768× 584 pixels, 8 bits per

color plane and, in spite of being offered in LZW compressed TIFF format, they

were originally saved in JPEG format. The database is divided into two sets: a test

set and a training set, each of them containing 20 images. The test set provides

the corresponding FOV masks for the images, which are circular (approximated

diameter of 540 pixels) and two manual segmentations generated by two different

specialists for each image. The selection of the first observer is accepted as ground

truth and used for algorithm performance evaluation in literature. The training set

also includes the FOV masks for the images and a set of manual segmentations made

by the first observer.

The STARE database (Available: http://www.ces.clemson.edu/), originally col-

lected by Hoover et al. [23], comprises 20 eye-fundus color images (ten of them

contain pathology) captured with a TopCon TRV-50 fundus camera at 35o FOV.

The images were digitalized to 700 × 605 pixels, 8 bits per color channel and are

available in PPM format. The database contains two sets of manual segmentations

made by two different observers. Performance is computed with the segmentations

of the first observer as ground truth.
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Table 2.1: Definition of some parameters to be used in performance metrics

Vessel Present Vessel Absent
Vessel detected True Positive (TP) False Positive (FP)

Vessel not detected False Negative (FN) True Negative (TN)

2.5 Results and Analysis

In order to quantify the algorithmic performance of the proposed method on a fundus

image, the resulting vessel detection is compared to its corresponding gold-standard

image. This image is obtained by manual creation of a vessel mask in which all vessel

pixels are set to one and all non-vessel pixels are set to zero. Thus, automated

vessel segmentation performance can be assessed. In view of demonstrating the

performance of the proposed vessel detection scheme, five conventional performance

metrics are utilized, namely sensitivity Se, specificity Sp, positive predictive value

Ppv, negative predictive value Npv, and overall accuracy Acc. In Table 2.1, four

terms are defined in a convincing way, which are necessary to define the metrics.

True positive (TP) is the number of vessel pixels detected correctly, that is the

pixel detected as vessel is also labeled as vessel in the ground truth. Similarly, true

negative (TN) is the number of no-vessel pixels detected correctly, that is the pixel

detected as non-vessel is also labeled as non-vessel in the ground truth. On the

other hand, false positive (FP) is the number of pixels detected as vessel, which are

labeled as non-vessel in the ground truth, i.e., the number of incorrectly detected

vessel. Similarly, false negative (FN) is the number of pixels detected as non-vessel,

which are labeled as vessel in the ground truth, i.e., the number of incorrectly

detected non-vessel. Taking into account the above definitions, the performance

metrics can be defined as

Se =
TP

TP + FN
(2.4)

Sp =
TN

TN + FP
(2.5)

Ppv =
TP

TP + FP
(2.6)

Npv =
TN

TN + FN
(2.7)
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Acc =
TP + TN

TP + FN + TN + FP
(2.8)

The metric sensitivity Se is the rate of correct vessel declaration among all vessel

pixels (no matter correctly identified as vessel or wrongly identified as non-vessel,

i.e. TP+FN). Similarly the metric specificity Sp is the rate of correct non-vessel

declaration among all non-vessel pixels (TN+FP). The metric positive predictive

value Ppv is the ratio of pixels declared as vessel pixel that are correctly declared.

The metric negative predictive value Npv is the ratio of pixels declared as background

pixel that are correctly declared. Finally, overall accuracy Acc is a global measure

providing the ratio of total well-declared pixels. Since the dark background outside

the FOV can easily detected and there is no use of considering the outside region in

performance evaluation, the performance metrics are thus conventionally computed

for pixels within the FOV only, which is the ROI. For DRIVE database, the necessary

masks for FOV are given. However, for the STARE database circular disc is first

approximated depending on the average size of the given images and ROI detection

scheme explain in this chapter is employed.

In this section, first, all the performance metrics are evaluated for the proposed

method in its two different variants, one which involves repeated median filtering

and the other one which utilizes adaptive median filtering. The performance of

these two variants of the proposed method for each image of the DRIVE database

is shown in Tables 2.2 and 2.3, respectively. As discussed previously, in this table,

the value of the parameter Np in the proposed gradient search method is set to 5.

It is observed from these tables that among the performance metrics, the value

of Sp and Ppv increases drastically while applying adaptive median filtering instead

of repetitive median filtering for each image. However, in that case, the value of

Se decreases slightly, but the overall accuracy improves. In Fig. 2.5(a), a ground

truth retinal image with manual labeling available in the database is shown. Corre-

sponding vessel detection outcome obtained by using the proposed method with two

different preprocessing techniques, repetitive median filtering and adaptive median

filtering is presented in Figs. 2.5(b) and (c) , respectively. It is found that the vessel

detection achieved by using the adaptive median filtering is better and smooth in

comparison to that utilizes the repeated median filtering. Similar to Table 2.4, the

results obtained with STARE database using the proposed method with adaptive
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Table 2.2: Performance metrics obtained by using the proposed method on DRIVE
database images with repetitive median filtering and Np = 5

Image Se Sp Ppv Npv Acc in percentage
1 0.7766 0.9478 0.6917 0.9657 92.5340
2 0.7609 0.9414 0.6959 0.9572 91.4358
3 0.6508 0.9578 0.7243 0.9415 91.3037
4 0.7175 0.9399 0.6475 0.9558 91.0255
5 0.6391 0.9693 0.7659 0.9448 92.4526
6 0.6364 0.9654 0.7512 0.9417 91.8945
7 0.6974 0.9225 0.5786 0.9523 89.2676
8 0.6299 0.9307 0.5665 0.9459 89.2900
9 0.6308 0.9655 0.7089 0.9516 92.6215
10 0.6810 0.9666 0.7346 0.9572 93.2517
11 0.7013 0.9207 0.5683 0.9539 89.2215
12 0.7067 0.9533 0.6842 0.9578 92.2453
13 0.6694 0.9590 0.7295 0.9461 91.7943
14 0.7482 0.9342 0.6030 0.9652 91.2235
15 0.7539 0.9154 0.5080 0.9698 89.8630
16 0.6837 0.9534 0.6883 0.9524 91.8114
17 0.6819 0.9368 0.6028 0.9544 90.53764
18 0.7495 0.9370 0.6068 0.9665 91.5435
19 0.7963 0.9594 0.7285 0.9718 93.9764
20 0.7129 0.9565 0.6619 0.9654 93.0552

median filtering and Np = 5 is shown in Table 2.4.

Next, the effect of variation of the number of neighboring pixels (Np) considered

in gradient based search algorithm is investigated. In Tables 2.3, 2.5, 2.4, and 2.6,

the results with variable Np are listed for both DRIVE and STARE databases.

Among the performance metrics, the value of Sp and Ppv increases drastically

while increasing threshold from 3 to 5 for each image. Though the value of Se

decreases slightly in case of the proposed method, but the overall accuracy improves

significantly. In Fig. 2.6 and Fig. 2.7 effect of gradient threshold can clearly be

observed on two databases.

In Fig. 2.8, an image from DRIVE database is represented with manual labeling

of blood vessels and labeling through gradient based search method applying differ-

ent values of Np. When Np is set to 3, most of the both thick and thin vessels appear

along with many isolated vessel zones, which using the proposed pro-processing may

or may not be eliminated. Increase in the value of Np gradually decreases the vessel
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Table 2.3: Performance metrics obtained by using the proposed method on DRIVE
database images with adaptive median filtering and Np = 5

Image Se Sp Ppv Npv Acc in percentage
1 0.7638 0.9688 0.7870 0.9645 94.1946
2 0.7747 0.9685 0.8126 0.9606 93.9472
3 0.6174 0.9836 0.8653 0.9378 93.0256
4 0.7123 0.9785 0.8358 0.9567 94.2982
5 0.6168 0.9868 0.8798 0.9425 93.6568
6 0.5994 0.9870 0.8834 0.9375 93.2299
7 0.6633 0.9721 0.7840 0.9498 93.1222
8 0.5820 0.9802 0.8087 0.9422 93.0157
9 0.6656 0.9790 0.8085 0.9565 94.2208
10 0.6567 0.9825 0.8360 0.9548 94.3607
11 0.6942 0.9687 0.7677 0.9551 93.3121
12 0.6697 0.9801 0.8283 0.9540 94.1280
13 0.6521 0.9803 0.8454 0.9446 93.3780
14 0.7476 0.9633 0.7316 0.9662 93.7894
15 0.7475 0.9576 0.6713 0.9704 93.5772
16 0.7042 0.9760 0.8151 0.9564 94.0398
17 0.6585 0.9801 0.8233 0.9533 94.0474
18 0.7218 0.9710 0.7639 0.9642 94.2415
19 0.7668 0.9815 0.8504 0.9685 95.5697
20 0.6876 0.9788 0.7945 0.9633 94.7720
Avg 0.687 0.9759 0.8096 0.9549 93.9073

diameter and makes it smooth as much as it appears in actual image, but most of

the thin vessels disappear (which is obvious in the decrease in Se). Overall perfor-

mance improves with the increase in Np. However, as discussed before, Np is varied

between 3 to 5. In Fig. 2.9 and Fig. 2.10, two images from DRIVE and STARE

databases are shown along with the ground truth (manual labeling of blood vessels

available in the database) and labeled output image obtained by using the proposed

method are shown. It is observed from these figures that the vessels detected by

using the proposed scheme closely map the ground truth vessel location except in

case of very thin vessels and vessel edges.

2.5.1 Comparison to Other Methods

Table 2.7 provides comparison of the performance of the proposed method in terms

of average accuracy to other methods. It is observed that the accuracy of the
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Table 2.4: Performance metrics obtained by using the proposed method on STARE
database images with adaptive median filtering and Np = 5

Image Se Sp Ppv Npv Acc in percentage
1 0.5586 0.9697 0.6919 0.9474 92.4991
2 0.6754 0.9645 0.6692 0.9655 93.6723
3 0.7800 0.9343 0.5156 0.9793 92.1622
4 0.4504 0.9881 0.8158 0.9390 93.1914
5 0.7581 0.9419 0.6509 0.9646 91.8961
6 0.8610 0.9454 0.6065 0.9858 93.7922
7 0.8457 0.9385 0.6297 0.9801 92.8283
8 0.8388 0.9530 0.6722 0.9809 94.1214
9 0.8224 0.9534 0.6807 0.9780 93.9233
10 0.7509 0.9450 0.6300 0.9682 92.3537
11 0.8401 0.9591 0.6931 0.9820 94.7360
12 0.9031 0.9482 0.6760 0.9879 94.3398
13 0.8118 0.9596 0.7374 0.9733 94.1532
14 0.8028 0.9607 0.7457 0.9714 94.0878
15 0.7135 0.9720 0.7744 0.9618 94.1255
16 0.5105 0.9840 0.8414 0.9236 91.6457
17 0.7781 0.9737 0.8069 0.9688 94.9435
18 0.6698 0.9892 0.8251 0.9752 96.6638
19 0.6658 0.9813 0.6886 0.9793 96.2894
20 0.6478 0.9676 0.6714 0.9641 93.7939
Avg 0.7342 0.9614 0.7011 0.9688 93.9109

proposed method is comparable with those of other papers. However, the novelty

and simplicity of the proposed method is quite noticeable. The simple and vastly

competent search algorithm used in the gradient based search method. Accuracy of

the proposed method is higher compared to every rule-based method except [6].

[6] employs a complex and lengthy methodology consisting of three consecutive

phases, preprocessing applying shade correction and thin vessel enhancement with

a set of line detection filters, vessel centerline detection applying Gaussian filters to

obtain four directional difference information and a region growing process to obtain

connection of the candidate points, and vessel segmentation applying a modified top-

hat transform and a binary morphological reconstruction method to obtain binary

maps of the vessels and vessel filling. But the novelty and simplicity of the proposed

method is simply more considerable even negotiating accuracy slightly.
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Table 2.5: Performance metrics obtained by using the proposed method on DRIVE
database images with adaptive median filtering and Np = 3

Image Se Sp Ppv Npv Acc in percentage
1 0.8664 0.9149 0.6058 0.9784 90.8578
2 0.8601 0.8986 0.5992 0.9733 89.2846
3 0.7716 0.9339 0.6655 0.9600 91.0215
4 0.8016 0.9356 0.6569 0.9684 91.7711
5 0.7398 0.9519 0.7072 0.9588 92.3116
6 0.7309 0.9502 0.7068 0.9555 91.9239
7 0.7775 0.9018 0.5471 0.9637 88.5332
8 0.7466 0.9291 0.6023 0.9623 90.6192
9 0.7344 0.9577 0.6982 0.9644 93.1512
10 0.7733 0.9428 0.6471 0.9684 92.2563
11 0.7940 0.8932 0.5255 0.9668 88.0367
12 0.8008 0.9309 0.6237 0.9703 91.4598
13 0.7833 0.9309 0.6520 0.9630 91.0004
14 0.8522 0.8901 0.5089 0.9783 88.5616
15 0.8430 0.8710 0.4308 0.9795 86.8048
16 0.8327 0.9228 0.6188 0.9734 91.0986
17 0.7847 0.9292 0.6092 0.9684 91.1401
18 0.8446 0.9157 0.5654 0.9785 90.7571
19 0.8763 0.9327 0.6406 0.9822 92.5950
20 0.8415 0.9372 0.6152 0.9802 92.6966
Avg 0.8028 0.9235 0.6479 0.9697 90.7941

2.5.2 Processing Times

It is observed that the superiority of the proposed schemes over other algorithms

tested using the DRIVE database is in the time requirement to process an image

with appreciable accuracy. Computational time for the MATLAB implementation

of the proposed gradient based vessel detection algorithm tested on DRIVE database

image requires approximately 1.83 s second to process.

Table 2.8 shows that the proposed gradient based search method requires in

average a time of only 1.83 s which is slightly higher than only one method so far

available in literature [14] but it provides comparatively higher accuracy. Moreover,

[14] employs vessel segmentation by thresholding wavelet coefficients. But in this

thesis, it is observed that spectral domain does not provide satisfactory performance

for vessel segmentation.
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Table 2.6: Performance metrics obtained by using the proposed method on STARE
database images with adaptive median filtering and Np = 3

Image Se Sp Ppv Npv Acc in percentage
1 0.7425 0.9399 0.6011 0.9677 91.8453
2 0.6754 0.9645 0.6692 0.9655 93.6723
3 0.8682 0.8649 0.3656 0.9865 86.5202
4 0.4504 0.9881 0.8158 0.9390 93.1914
5 0.8546 0.8887 0.5229 0.9772 88.4414
6 0.9122 0.9051 0.4843 0.9906 90.5764
7 0.8888 0.8998 0.5231 0.9850 89.8557
8 0.9004 0.9188 0.5602 0.9877 91.6870
9 0.8792 0.9227 0.5790 0.9844 91.8011
10 0.8704 0.8803 0.4753 0.9820 87.9189
11 0.8966 0.9274 0.5755 0.9879 92.4316
12 0.9526 0.9178 0.5811 0.9939 92.1542
13 0.8566 0.9324 0.6389 0.9790 92.3129
14 0.8566 0.9295 0.6356 0.9783 92.0353
15 0.8105 0.9484 0.6791 0.9738 93.1985
16 0.6878 0.9650 0.7656 0.9489 92.5442
17 0.8534 0.9497 0.7058 0.9786 93.7766
18 0.6698 0.9892 0.8251 0.9752 96.6638
19 0.6658 0.9813 0.6886 0.9793 96.2894
20 0.7362 0.9496 0.5988 0.9724 92.9787
Avg 0.8014 0.9332 0.6145 0.9766 91.9945

Table 2.7: Performance Metrics Compared To Other Methods On The Stare And
Drive Databases In Terms Of Average Accuracy

Method Method DRIVE STARE DRIVE+
Type STARE

Chaudhuri et al. [7] 0.8773 − −
Hoover et al. [23] − 0.9275 −
Jiang and Mojon [9] 0.8911 0.9009 0.8960

Ruled-Based Mendonça et al. [6] 0.9463 0.9479 0.9471
Martinez-Perez et al. [12] 0.9344 0.9410 0.9377
Cinsdikici and Aydin [8] 0.9293 − −
Proposed Method 0.9390 0.9391 0.939

2.6 Conclusion

In this chapter, first, some vessel enhancement schemes are proposed, which are

essential prior to vessel pixel detection. It is found that in order to reduce noises
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Table 2.8: Time requirements by different vessel detection algorithms. Here,
Impl=Implementation, M=MATLAB

Method Processor RAM Impl Accuracy Time
Bankhead [14] 2.13 GHz 2 GB M 0.9371 0.093 s

Espona [11] 1.83 GHz 2 GB C++ 0.9352 38.4 s
Mendonca [6] 3.2 GHz 960 MB M 0.9463 < 150 s

Proposed(Search) 2.5 GHz 2 GB M 0.9390 1.830 s
Proposed(Classification) 2.5 GHz 2 GB M 0.9423 13.114 s

from the retinal images, adaptive median filtering technique offers better perfor-

mance in comparison to the repeated median filtering technique. It is shown that,

along with any one of these vessel enhancement techniques, if morphological open-

ing operation can be utilized by employing the Top-Hat transform, a significantly

improvement in the enhancement performance can be obtained. Next, an intensity

gradient based bidirectional search scheme is proposed to extract vessel pixels from

enhanced retinal images. In the search scheme, the effect of variation of the number

of pixels considered within neighborhood on detection accuracy is also investigated.

Finally some morphological operation based post-processing schemes are utilized

to reduce the false vessel detection. Vessel detection performance is evaluated on

two publicly available standard retinal image databases and it is observed that the

proposed scheme provides satisfactory performance in comparison to some of the ex-

isting methods both in terms of vessel detection accuracy as well as computational

complexity.
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(a)

(b)

(c)

Fig. 2.5: Comparison among output binary images obtained by using the proposed
method: (a) ground truth values obtained using the manual labeling by expert,
which is available in database, (b)proposed gradient based vessel segmentation with
repetitive median filtering, and (c) adaptive median filtering.
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Fig. 2.6: Accuracy plot of Comparison between Gradient Threshold 3 and 5 on
DRIVE database. Blue and Green color represent accuracy for Threshold 3 and 5
respectively.

Fig. 2.7: Accuracy plot of Comparison between Gradient Threshold 3 and 5 on
STARE database images. Blue and Green color represent accuracy for Threshold 3
and 5 respectively.
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(a)

(b)

(c)

(d)

Fig. 2.8: Comparison among output binary images obtained by using the proposed
gradient based search method with different values of neighboring pixel Np. (a) Man-
ual labeling available in the database, and vessel detection outcome with proposed
gradient based threshold for (b) Np = 3, (c) Np = 4, and (d) Np = 5.
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(a)

(b)

(c)

Fig. 2.9: Illustration of the spatial location of classification errors on a DRIVE
image. (a) Green plane image, (b) ground truth blood vessels, and (c) detected
blood vessels using the proposed method.
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(a)

(b)

(c)

Fig. 2.10: Illustration of the spatial location of classification errors on a STARE
image. (a) Green plane image, (b) ground truth blood vessels, and (c) detected
blood vessels using the proposed method.



Chapter 3

Proposed Vessel Pixel Classification
Scheme

The problem of retinal vessel detection can be formulated as pixel by pixel classifica-

tion of the retinal image into two classes, vessel and non-vessel. In that case, for the

purpose of classification, it would be a challenging task to obtain consistent features

from just a given pixel. Moreover, depending on the resolution of the retinal image,

pixel by pixel classification will involve huge computational burden. In this chapter,

an efficient scheme for retinal vessel pixel classification is proposed with two fold

objectives: (1) to extract better vessel pixel characteristics for obtaining high classi-

fication accuracy and (2) to overcome the computational burden generally involved

in classification based methods. It is to be mentioned that pixel feature extraction

strongly depends on vessel pixel enhancement. Unlike the gradient search based

vessel detection, pixel feature extraction involves a neighboring zone centered at the

test pixel, which calls for effective vessel image enhancement technique. During ves-

sel feature extraction from an enhanced image, we propose to utilize shifted spatial

zones apart from the central spatial zone. Moreover both spatial and spectral fea-

tures are taken into consideration. On the other hand to reduce the computational

burden, instead of dealing with all pixels of a retinal image, only some primarily

selected candidate vessel pixels are considered for classification. The gradient search

based vessel detection method proposed in the last chapter is used to obtain vessel

candidate pixels. It is obvious that a significant portion of the candidate pixels,

although detected as vessel in gradient search based method, may not be actually

vessel. That is some non-vessel pixels situated outside the vessel edge generally get

included as vessel pixel in the vessel detection process. In order to overcome this

error and reduce the number of ‘False Positive’, these vessel candidates are then
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classified extracting suitable features and employing a suitable classifier. In order

to obtain better accuracy by using the classifier, one very important aspect is the

development of efficient trainer. To the best of our knowledge, all the retinal pixel

classification methods reported so far rely on manual selection of training pixels.

As a result, the accuracy of pixel classification in testing phase strongly depends

on selected training data. Another objective in this chapter is to develop a scheme

for universal training pixel selection, which will overcome the dependency on man-

ual selection or eye inspection. Pixels declared to be non-vessel by the classifier

are excluded from the binary image obtained in candidate selection process. The

resultant image is compared with the ground truth provided in the database and

accuracy of the whole method, combining candidate selection and classification, is

determined. Therefore, the next method of vessel pixel classification consists of the

following steps:

1. Preprocessing of green plane image

2. Feature Extraction

3. Train formation or trainer pixel selection

4. Classification

3.1 Preprocessing

As discussed in the previous chapter that the preprocessing step is extremely impor-

tant to reduce the effect of lighting variations, poor contrast and noise. Thus, it is

obvious that for efficient feature extraction required by the classification procedure

rely on the quality of preprocessing. It is found in the previous chapter that the

preprocessing technique based on adaptive median filtering or repeated median fil-

tering can provide better intensity variation among the vessel and non-vessel pixels

located on a row (or column) of a retinal image. However, in pixel feature extraction

it is necessary to consider a region centered at the test pixel. In this case, the effect

of background intensity variation due to nonuniform illumination may worsen the

performance of the vessel segmentation methodology.
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3.1.1 Background Homogenization based on Shade Correc-
tion

As discussed in the previous chapter, fundus photos often contain an intensity vari-

ation in the background across the image, called “vignetting”. Vignetting is the

result of an improper focusing of light through an optical system. The result is

that the brightness of the image generally decreases radially outward from near the

center of the image. A retinal image is captured by viewing the inner rear surface

of the eyeball through the pupil. The lens of the camera works in conjunction with

the lens of the eyeball to form the image. Since the position of the eye relative to

the camera varies from image to image, the exact properties of the vignetting also

vary from image to image. With the purpose of removing these background light-

ening variations, a preprocessing method suitable for feature extraction is devised

in this chapter. In this method, a shade-corrected image is accomplished from a

background estimate. This image is the result of a filtering operation with a large

arithmetic mean kernel, as described below.

Firstly, a background image, IB is produced by convolving the green plane image,

IG with a mean kernel of dimensions m×m=69×69 . Then, the difference, known as

shade corrected image, ISC , between main green plane image and background image

is calculated for every pixel. To this respect, literature reports shade-correction

methods based on the subtraction of the background image from the original image

in [1], [2] and [30], or the division of the latter by the former in [31]. Both procedures

rendered similar results upon testing. Moreover, none of them showed to contribute

any appreciable advantage relative to the other. The subtractive approach was used

in the present work.

In Fig. 3.1, an image from DRIVE database has been represented with its green

plane image, nature of the background image formed and resultant shade corrected

image. It is clearly observed that due to shade correction, all the FOV pixels or

in other words, the blood vessel pixels could be brought on the same plane or

homogenized background.
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(a)

(b)

(c)

Fig. 3.1: Shade Corrected Image Formation. (a) Green Plane Image. (b) Back-
ground Image. (c) Shade Corrected Image.

3.1.2 Vessel Enhancement by Sequential Opening Filtering
and Top-Hat Transform

Next in view of obtaining further enhancement of vessel pixels in shade corrected im-

age ISC , in the proposed scheme, Top-Hat transform based morphological operation

is carried out. Subtracting an opened image (i.e. an image being processed using

morphological opening operation) from the original image is called Top-Hat Trans-

form. It is well known that the morphological opening operation can remove com-

pletely regions of an object, which cannot contain the structuring element, smooth
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object contours, breaks, thin connections, and can remove thin protrusions. In Fig.

3.2, effect of opening and closing operation is presented. In the proposed scheme,

for visual convenience, the Top-Hat transform operation is performed on the com-

plementary image of ISC , i.e., the vessel enhanced image IV E can be expressed as

IV E = ICSC − γ(ICSC) (3.1)

where γ is a morphological opening operation using a disc of suitable size. Thus,

while bright retinal structures are removed (i.e., optic disc, possible presence of

exudates or reflection artifacts), the darker structures remaining after the opening

operation become enhanced (i.e., blood vessels, fovea, possible presence of microa-

neurysms or hemorrhages).

Morphological Opening Operation

The operations of dilation and erosion are fundamental image processing. Dilation

is an operation that grows or thickens objects in an image. The specific manner and

extent of this thickening is controlled by a shape referred to as structuring element.

The dilation of A by B denoted as A
⊕

B, is defined as the set operation,

A⊕B = z|(B̂z) ∩ A 6= φ (3.2)

Erosion shrinks or thins objects in a binary image. As in dilation, the manner of

extent of shrinking is controlled by a structuring element. The dilation of A by B

denoted as A
⊕

B, is defined as the set operation,

A	B = z|(Bz) ⊆ A (3.3)

The morphological opening operation of A by B denoted A ◦ B, is defined as the

erosion of A by B, followed by a dilation of the result by B. An equivalent formulation

of opening is

A ◦B = ∪(B)z|(B)z ⊆ A (3.4)

where ∪· denotes the union of all sets inside the braces.

It is to be mentioned that the opening operation suppresses bright details of an

object smaller than the structuring element [29]. One may use sequential opening

operation with a series of structuring elements of increasing size is carried out. In
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Fig. 3.2: Top Left: Original image, Top Right: Opening, Bottom Left: Closing,
Bottom Right: Closing of Bottom Left Figure

case of shade corrected image, we propose to employ the Top-Hat transformation

on repeatedly opened image ICSC . Number of repetition depends on the amount of

increase in the disc radius used for the opening operation. Here the repetition is

performed for seven times as at each stage of morphological opening operation the

disc radius is increased by a very small amount, only single pixel starting from one

pixel.

In the proposed method in this chapter, vessel enhancement is performed by

estimating the complementary image of the shade corrected image, ICSC and subse-

quently applying the morphological Top-Hat transformation on consequently seven

times morphologically opened image ICSC . At each stage of morphological opening

operation, the disc radius is increased by one pixel starting from one pixel. All the

features are then extracted from this final step preprocessed vessel enhanced image

IV E.

Fig. 3.3 shows the sequential steps of the vessel enhancement operation on the

shade corrected image and the resultant enhanced image which evidently demon-

strates the lucid appearance of the blood vessels with respect to the background.

The effect of vessel enhancement in these figures may not be visible by eye inspec-

tion. In the result section of this chapter, results obtained from images preprocessed

in both methods are shown and their efficiencies are compared, which clearly demon-
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Fig. 3.3: Sequential Opening Filtering before Top-Hat Transform. Top Left: Shade
Corrected Image. Top Right: Complementary Image. Following Images: Sequential
Opening Filtering. Bottom Right: Top-Hat Transformed Image

strate the advantage of using the adaptive median filtering based method and the

reasons behind have already explained.
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3.2 Feature Extraction

The major objective of the feature extraction stage is pixel characterization by means

of a feature vector, a pixel representation in terms of some quantifiable measurements

which may be easily used in the classification stage to decide whether pixels belong

to a real blood vessel or not. In gradient based search method for vessel candidate

selection discussed in the previous chapter, only neighboring pixels of the test pixel,

which are located on the same row (or column) where the test pixel is located,

are considered to determine the nature of the pixel. However, in this chapter, a

subregion (or a block) around a test pixel is taken into account and features are

extracted from that subregion (or block). It is expected that the local block based

feature extraction would help in better determination of vessel candidacy. In the

proposed method, the following sets of features are selected:

• Spatial intensity based features: These features are computed based on

the spatial intensity variation of the local block corresponding to the candidate

pixel.

• Spectral features: These features are computed based on the spectral vari-

ation of the local block corresponding to the candidate pixel.

3.2.1 Spatial intensity based features

Spatial intensity based features can be divided into two following categories:

• Spatial statistical features

• Shifted spatial statistical features

Since blood vessels are always darker than their surroundings, features based on

describing intensity-level variation in the surroundings of candidate pixels seem to

be a good choice. Some widely used statistical measures suitable for capturing

spatial intensity variation are chosen to extract features from preprocessed green

plane image [21]. Here, only a small surrounding region centered on the candidate

pixel IV E(x, y) will be considered for feature extraction. Denoting Sωx,y to represent

a set of coordinates in a ω×ω sized square spatial block centered on the point (x, y),

five spatial statistical features can be expressed as shown in Table 3.1.
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Table 3.1: Definition of some spatial features in Mathematical terms

Title Equation
Distance from Block Minima f1(x, y) = IV E(x, y)−min(s,t)εSω

x,y
IV E(s, t)

Distance from Block Maxima f2(x, y) = max(s,t)εSω
x,y
IV E(s, t)− IV E(x, y)

Distance from Block Average f3(x, y) = IV E(x, y)−mean(s,t)εSω
x,y
IV E(s, t)

Standard Deviation of Block f4(x, y) = std(s,t)εSω
x,y
IV E(s, t)

Candidate Pixel Value f5(x, y) = IV E(x, y)

Motivation behind choosing these particular spatial features is their conventional

statistical behavior, which is expected to provide clear separation between spatial

characteristics of two types of pixels, vessel and non-vessel. A histogram based

analysis is carried on to justify the quality of these statistical features. Detailed

description of each of these features is given as follows.

Distance from Block Minima

The feature f1(x, y), described in Table 3.1, extracts the difference between the

intensity value of the candidate pixel IV E(x, y) and minimum intensity value of the

block Sωx,y around it. In the preprocessed green plane of a retinal image, vessel

pixels are brighter than the nonvessel ones. If a subregion centered on a vessel

pixel contains both vessel and nonvessel pixels, obviously one of the nonvessel pixels

will contain minimum intensity. Hence, in order to be a vessel pixel, the center

pixel must have an intensity higher than that particular minimum pixel intensity.

That is, this particular feature must attain a high value for any vessel pixel situated

along the edge of a vessel with the probability of having nonvessel pixels around

it. Histogram of this feature value computed for equal number of randomly chosen

vessel and non-vessel pixels of a retinal image taken from the DRIVE database is

shown in Fig. 3.4. Here we consider a total of 40, 000 pixels and a block size of 5×5.

As expected, the feature values for non-vessel pixels are found very small in almost

all cases. This histogram shows a clear distinction between the characteristics of

vessel and non-vessel pixels based on this feature. Hence, it is expected that this

particular feature can even handle the critical case, that is differentiating the pixels

situated at the vessel edge and just outside the edge.
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Fig. 3.4: Histogram computed for vessel pixels (left figure) and non-vessel pixels
(right figure) corresponding to the first spatial statistical feature (f1): difference
between the intensity value of the central pixel IV E(x, y) and minimum intensity
value of the block Sωx,y.

Distance from Block Maxima

The feature f2(x, y), described in Table 3.1, extracts the difference between the

intensity value of the candidate pixel IV E(x, y) and maximum intensity value of

the block Sωx,yt. If a subregion centered on a vessel pixel contains both vessel and

nonvessel pixels, obviously one of the vessel pixels will contain minimum intensity.

Hence, in order to be a vessel pixel, the center pixel must have an intensity value

very close to that particular minimum pixel intensity. That is, this particular feature

must attain a low value for any pixel situated along the edge of a vessel or along the

midline of a vessel. In a similar fashion as shown in Fig. 3.4, the histogram of this

feature value computed for equal number of randomly chosen vessel and non-vessel

pixels of a retinal image is shown in Fig. 3.5. As expected, the feature values for

vessel pixels are found small in most of the cases. Unlike the histogram obtained

for the first feature, this histogram shows some overlap in the feature value, which

indicates that the classification performance of the previous feature is expected to be

better than this feature. However, it is clearly observed that it has some differences

in case of a number of pixels, which may help in classification.

Distance from Block Average

The feature f3(x, y), described in Table 3.1, extracts the difference between the

intensity value of the candidate pixel IV E(x, y) and average intensity of the pixels
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Fig. 3.5: Histogram computed for vessel pixels (left figure) and non-vessel pixels
(right figure) corresponding to the second spatial statistical feature (f2): difference
between the intensity value of the central pixel IV E(x, y) and maximum intensity
value of the block Sωx,y.

lying inside the block Sωx,y. A vessel pixel is generally surrounded by some other

vessel pixels when a small block is considered. This fact is also true for the non-vessel

pixels. Since the intensity value of a candidate vessel pixel is generally very high in

comparison to the non-vessel pixels, this particular feature value will be positive as

well as high for vessel pixels, while the feature value will be lower or mostly negative

for non-vessel pixels. This is clearly visible in the histogram plots shown in Fig. 3.6.

This histogram plots demonstrate better distinguishable characteristics of vessel

and non-vessel pixels based on this feature. Thus, it is expected to differentiate well

between any pixel located inside or outside a vessel.

Fig. 3.6: Histogram computed for vessel pixels (left figure) and non-vessel pixels
(right figure) corresponding to the third spatial statistical feature (f3): difference
between the intensity value of the central pixel IV E(x, y) and average intensity of
the block Sωx,y.
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Standard Deviation of Block

The feature f4(x, y), described in Table 3.1, extracts the standard deviation of the

pixels lying inside the block Sωx,y. It is well known that the vessel pixel values are

comparatively much higher than those of the non-vessel pixels. It is found that

the standard deviation of pixel intensities inside a vessel is usually higher than

that obtained outside the vessel. Hence, it is expected that the center pixel, if it

is a vessel pixel, generally belong to a block with high standard deviation. That

is, this particular feature will exhibit a high value for a candidate vessel pixel.

This fact is also visible in the histogram plots shown in Fig. 3.7. The histogram

plots demonstrate a clear distinction between the characteristics of vessel and non-

vessel pixels based on this feature, which leads to an expectation of better pixel

classification both inside and outside a vessel.

Fig. 3.7: Histogram computed for vessel pixels (left figure) and non-vessel pixels
(right figure) corresponding to the forth spatial statistical feature (f4): standard
deviation of the pixel intensities of a block Sωx,y.

Candidate Pixel Value

The feature f5(x, y), described in Table 3.1, refers to intensity value of the pixel

under consideration. As stated earlier, in the preprocessed green plane of a retinal

image, the vessel pixel values are comparatively much higher than those of the

non-vessel pixels. This particular feature must attain a high value for any pixel

situated along the edge of a vessel (weak vessel pixels) or along the midline of a

vessel (strong vessel pixels). Histogram plots of this feature are shown in the Fig.

3.8. The histogram plots show a clear distinction between the characteristics of
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vessel and non-vessel pixels based on this feature. Hence, it is expected that this

particular feature can efficiently differentiate the pixels situated both inside and

outside a vessel.

.

Fig. 3.8: Histogram computed for vessel pixels (left figure) and non-vessel pixels
(right figure) corresponding to the fifth spatial statistical feature (f5): intensity of
the candidate pixel.

Shifted Spatial Feature

All spatial statistical features are computed from a small block centered at the

candidate pixel. That is each pixel corresponds to a set of features obtained from a

block. However, it is more likely that a vessel candidate pixel is generally surrounded

by some other vessel pixels. Similarly, a non-vessel pixel is generally surrounded by

some other non-vessel pixels. In order to utilize such a natural phenomenon, it is

more logical that prior to take decision about a candidate pixel, instead of relying

only on a single block that corresponds to it, some neighboring blocks corresponding

to the neighborhood pixels should also be taken in to consideration. Hence in

the proposed method, for a central n × n block, (n2 − 1) number of neighboring

blocks corresponding to the (n2 − 1) neighborhood pixels are considered for feature

extraction. In fact, the neighboring blocks will carry information related to spatially

shifted region. Each of those five spatial statistical features will be computed for each

spatially shifted block. For example, for a 3×3 central block, there will be 8 spatially

shifted blocks. The main concern is to investigate the feature consistency in each

block. Thus, it is sufficient to consider only the mean and median of block features,
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i.e., in the above example, considering the mean and median of eight features. In

Fig. 3.9, the location of shifted blocks from the central block corresponding to the

candidate pixel is shown. Instead of taking all eight set of features, mean and median

of each feature computed from all sets are considered as features. Mean and median

of the block features can provide an overall idea of the neighborhood condition of

the center pixel and help to determine the class of the candidate pixel. It is expected

that these additional spatially shifted statistical features in combination with the

spatial statistical features can provide better feature quality. Similar to the case

of spatial statistical features, the quality of the extracted spatial shifted features is

shown with the help of histograms in Fig. 3.10, Fig. 3.11, Fig. 3.12, Fig. 3.13 and

Fig. 3.14. Here a 3 × 3 central block and 8 spatially shifted blocks are considered

for the same image as shown in 3.4. In these figures, for each feature, mean and

median feature values are plotted. It is clearly observed that the histograms show

well separation between characteristics of vessel and non-vessel pixels.

Fig. 3.9: Location of blocks on which spatially shifted features are computed. Here,
13 no pixel and pink colored block represent pixel to be tested and theblock around
it respectively. Isolated block depicts the position of center pixel of each shifted
block with respect to the test pixel.
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Fig. 3.10: Histograms computed for vessel pixels (left figure) and non-vessel pixels
(right figure) of all shifted blocks. Mean (top figure) and median (bottom figure) of
spatially shifted feature values corresponding to the first feature (f1).

Fig. 3.11: Histograms computed for vessel pixels (left figure) and non-vessel pixels
(right figure) of all shifted blocks. Mean (top figure) and median (bottom figure) of
spatially shifted feature values corresponding to the second feature (f2).

3.2.2 Spectral Features

Apart from the spatial features, in the proposed method, spectral characteristics of

the spatial blocks are also proposed to be used as competitive feature for retinal

pixel classification. A frequency domain feature extraction algorithm using two di-

mensional discrete cosine transform (2D-DCT) is developed, which operates within

the small blocks to extract dominant spectral features. It is to be mentioned that

Fourier transform based feature extraction algorithms involve complex computa-

tions. In contrast, DCT of real data avoids complex arithmetic and offers ease of

implementation in practical applications. Moreover, DCT can efficiently handle the
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Fig. 3.12: Histograms computed for vessel pixels (left figure) and non-vessel pixels
(right figure) of all shifted blocks. Mean (top figure) and median (bottom figure) of
spatially shifted feature values corresponding to the third feature (f3).

Fig. 3.13: Histograms computed for vessel pixels (left figure) and non-vessel pixels
(right figure) of all shifted blocks. Mean (top figure) and median (bottom figure) of
spatially shifted feature values corresponding to the fourth feature (f4).

phase unwrapping problem and exhibits a strong energy compaction property, i.e.,

most of the signal information tends to be concentrated in a few low-frequency com-

ponents of the DCT. Hence, we intend to develop an efficient feature extraction

scheme using 2D-DCT.

For a function f(x, y) with dimension of M × N , the 2D-DCT F (p, q) also has

dimension M ×N and is computed as

F (p, q) = αpαq

M−1∑
x=0

N−1∑
y=0

f(x, y) cos
π(2x+ 1)p

2M
cos

π(2y + 1)q

2N
(3.5)
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Fig. 3.14: Histograms computed for vessel pixels (left figure) and non-vessel pixels
(right figure) of all shifted blocks. Mean (top figure) and median (bottom figure) of
spatially shifted feature values corresponding to the fifth feature (f5).

Here 0 ≤ p ≤M − 1, 0 ≤ q ≤ N − 1 and

αp =


1√
M
, if p = 0.√
2
M
, if 1 ≤ p ≤M − 1.

(3.6)

αq =


1√
N
, if q = 0.√
2
N
, if 1 ≤ q ≤ N − 1.

(3.7)

In the proposed method, instead of taking all the DCT coefficients of a block, few

low frequency coefficients are chosen. It is obvious that if all of the DCT coefficients

were used, it would definitely result in a feature vector with a very large dimension.

As DCT exhibits energy compactness property, first few DCT coefficients carry most

of the energy of the block centered on the candidate pixel (x, y). Hence, first 4 DCT

coefficients are used in the feature vector.

In Fig. 3.15, Fig. 3.16, Fig. 3.17 and Fig. 3.18, histograms computed for

vessel pixels (left figure) and non-vessel pixels (right figure) corresponding to the

first four DCT coefficients of the block are shown, respectively. It is observed from

these figures that there exists significant overlap between the two classes. These

overlapping features affect the proper representation of a pixel, which will increase

the chances of misclassification. Therefore, use of spectral feature alone may not be

a good solution. Rather it may be used along with some other features.
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Fig. 3.15: Histograms computed for vessel pixels (left figure) and non-vessel pixels
(right figure) corresponding to the first DCT coefficient of the block.

Fig. 3.16: Histograms computed for vessel pixels (left figure) and non-vessel pixels
(right figure) corresponding to the second DCT coefficient of the block.

Fig. 3.17: Histograms computed for vessel pixels (left figure) and non-vessel pixels
(right figure) corresponding to the third DCT coefficient of the block.
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Fig. 3.18: Histograms computed for vessel pixels (left figure) and non-vessel pixels
(right figure) corresponding to the first DCT coefficient of the block.

3.2.3 Choice of Spatial Block Size

One major concern in extracting feature from a spatial block is the size of the block.

From statistical point of view, larger the block size better the statistical properties

to be extracted from a block. For example the mean or the min-max operators used

in spatial feature extraction can provide consistent and representative values when

large variations are taken into consideration. However, these facts strongly depend

on the specific application. Since the width of the vessel is very small (generally

3 to 5 pixels) in comparison to the entire retinal image, considering large block

may not represent unique characteristics in this application. Given a pixel (x, y) of

the vessel-enhanced image IV E, a square block Sωx,y centered at (x, y) is considered

for spatial feature extraction, where the block size ω × ω is varied from 3 × 3 to

9× 9. However, it is experimentally found that larger block size not only increases

the computational burden but also provides inconsistent features. In the proposed

method, 5× 5 block size is found to be suitable.

3.2.4 Feature Quality

Fig. 3.19, Fig. 3.20 and Fig. 3.21 indicate within class compactness of the statisti-

cal spatial features proposed. X-axis indicates different features and along Y-axis,

feature value of both vessel and nonvessel pixels have been placed on the same plot.

It is expected that for a good feature, one class will be concentrated in one

height and the other in another height and for each case they are densely placed,
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Fig. 3.19: Within Class Compactness. X-axis Dimension: (1)-(5) Five Spatial Fea-
tures. Blue and green color refer to vessel and nonvessel pixels respectively.

Fig. 3.20: Within Class Compactness. X-axis Dimension: (1)-(5) Average of Five
Spatially Shifted Statistical Features. Blue and green color refer to vessel and non-
vessel pixels respectively.

Fig. 3.21: Within Class Compactness. X-axis Dimension: (1)-(5) Median of Five
Spatially Shifted Statistical Features. Blue and green color refer to vessel and non-
vessel pixels respectively.

but two classes are separated. And each of the figures Fig. 3.19, Fig. 3.20 and Fig.

3.21 depicting feature quality properly follow these criteria. Both their within class

compactness and between class separability are high. It can be assumed that these

particular features are bound to perform well.

In 3.22, Fig. 3.23 and Fig. 3.24, X-axis indicates different features and along
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Fig. 3.22: Between Class Separability. X-axis Dimension: (1)-(5) Centroid of Five
Spatial Features. Blue and green color refer to vessel and nonvessel pixels respec-
tively.

Fig. 3.23: Between Class Separability. X-axis Dimension: (1)-(5) Centroid of Av-
erage of Five Spatially Shifted Statistical Features. Blue and green color refer to
vessel and nonvessel pixels respectively.

Fig. 3.24: Between Class Separability. X-axis Dimension: (1)-(5) Centroid of Median
of Five Spatially Shifted Statistical Features. Blue and green color refer to vessel
and nonvessel pixels respectively.

Y-axis, centroid of each feature of both vessel and nonvessel pixels have been placed

on the same plot. These figures also indicate the high between class separability of

each of the proposed features.
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3.3 Train Formation

One of the major task in supervised classification is to develop a training dataset,

which has direct impact on the classification performance. Training dataset is gen-

erally a representative set of data which helps to take decision about the class label

of a test sample. Hence, designing a training dataset is not a trivial task. Train

formation or trainer pixel selection for vessel pixel classification can be executed in

two different ways:

• Conventional Manual Approach

• Proposed Connectivity Based Approach

3.3.1 Conventional Manual Approach

The most common approach of developing train set is the manual selection based on

previous knowledge and judgment. It is mainly an eye inspection method for training

pixel selection. In this case, during the training data selection process, the objective

is to obtain as much variation as possible. The train dataset can be made more

representative for the unknown test dataset by proper insertion of data that contain

characteristics similar to test samples. In the case of vessel pixel classification,

accuracy can definitely be improved if pixels similar to misclassified confusing test

samples can be trained. If manually this task can be performed and pixels are

picked up carefully so that they are able to represent all the test samples, classifier

will perform well and give excellent results. This manual selection is followed in all

the previously reported retinal pixel classification methods, such as [21]. The major

problem in this method is that, since it is traininig dependent and train is prepared

considering test samples of a particular database, this train data cannot perform well

for all other databases universally. Therefore, in our proposed method, a universal

rule is devised, which is expected to perform well for all standard databases of retinal

images.

3.3.2 Proposed Connectivity Based Train Set Design

Instead of manual selection of trainer pixels by eye inspection as described in the

previous subsection, an automatic train set design procedure is devised based on
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connectivity measurement of a candidate pixel. Connectivity of a candidate pixel is

defined as the number of vessel pixels present in a spatial block. Proposed connec-

tivity based trainer design can be divided into two different approaches:

1. Trainer design for all candidate classification

2. Trainer design for critical candidate classification

Among the two databases (DRIVE and STARE), only DRIVE database provides a

separate train dataset. Hence for train data selection, train images provided by the

DRIVE database are used.

Trainer Design for All Candidate Selection

In this approach, all vessel candidates, selected in the gradient search based vessel

detection method, are classified further as vessel or non-vessel. Vessel candidates

obtained from the gradient based method can be classified into three categories:

• Strong vessel pixels: Located almost along the midline of a vessel

• Weak vessel pixels: Located at the edge of a vessel

• Weak non-vessel pixels: Located at the outside margin of a vessel

Based on this assumption, the output vessel pixels of the search method are further

analyzed on the basis of connectivity. It is curiously observed that these pixels can

be divided into five precise categories:

1. Strong vessel pixels: V25 = 25, 26 ≤ V49 ≤ 49, CP = V esselP ixel

2. Less strong vessel pixels: V9 = 9, 12 ≤ V25 < 25, CP = V esselP ixel

3. Weak vessel pixels: 2 ≤ V9 ≤ 8, CP = V esselP ixel

4. Weak non-vessel pixels: 1 ≤ V9 ≤ 8, CP = NonvesselP ixel

5. Less weak non-vessel pixels: V9 = 9, 12 ≤ V25 < 25, CP = NonvesselP ixel

Here, V49=Connectivity of a pixel inside a 7× 7 window centered on it

V25=Connectivity of a pixel inside a 5× 5 window centered on it

V9=Connectivity of a pixel inside a 3× 3 window centered on it
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For non-vessel pixels defined by third and fourth criteria, connectivity refers to total

number of non-vesel pixels around each of the pixel.

Therefore, in the design of the proposed train set, following five types of vessel

pixels are selected.

1. Strong vessel pixels: V25 = 25, 34 ≤ V49 ≤ 49, CP = V esselP ixel

2. Less strong vessel pixels: V9 = 9, 14 ≤ V25 < 25, CP = V esselP ixel

3. Weak vessel pixels: 5 ≤ V9 ≤ 8, 14 ≤ V25 < 25, CP = V esselP ixel

4. Weak non-vessel pixels: 5 ≤ V9 ≤ 8, 14 ≤ V25 < 25, CP = NonvesselP ixel

5. Less weak non-vessel pixels: V9 = 9, 14 ≤ V25 < 25, CP = NonvesselP ixel

Fig. 3.25 shows the selected pixel types.

Fig. 3.25: Selected pixel types. (a) Strong vessel, (b) less strong vessel, (c) weak
vessel, (d) less weak nonvessel, and (e) weak non-vessel. Pixel selection criteria: blue
and white color indicate vessel and nonvessel pixels respectively. Dark blue and ash
colored pixels indicate vessel and nonvessel center pixel accordingly.

Trainer Design for Critical Candidate Selection

Instead of classifying all candidate pixels selected in search method, based on the

proposed criterion of connectivity of each candidate pixel estimated from the output
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binary image, some candidate pixels are confirmed as vessel pixel and excluded from

classification procedure. Candidate pixels with following characteristics are regarded

as sure to be vessel pixel:

• V25 = 25, 26 ≤ V49 ≤ 49

• V9 = 9, 20 ≤ V25 < 25

• V9 = 8, 19 ≤ V25 < 25

All other candidate pixels without above conditions are then considered as critical

candidate, since they have greatly overlapping characteristics between vessel and

non-vessel categories. Therefore in the second approach, while choosing trainer

pixels, search method is applied on the trainer images and output pixels having a

connectivity estimated from the output binary image below 12 within a 5× 5 block

centered on it with minimum two non-vessel pixel inside 3 × 3 window around it,

are first selected. These pixels have a vessel connectivity ranging from 1 to 7 within

a 3 × 3 block around them. Therefore these pixels can be categorized into seven

classes.

1. V9 = 1

2. V9 = 2

3. V9 = 3

4. V9 = 4

5. V9 = 5

6. V9 = 6

7. V9 = 7

Then based on a ‘score’, the selected pixels are sorted in a descending order and a

definite number of first few pixels are chosen from each connectivity category pro-

portioned by thorough observation of each trainer image as trainer pixels grouping

them with the help of labels acquired from ground truth of those trainer images.

S = 10× C + Pi (3.8)
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Here C=Connectivity of a pixel within a 5 × 5 block centered on it and Pi=pixel

intensity obtained from the preprocessed image and S=Score

3.3.3 Train Image Selection

While selecting train pixels, five train images are considered from the given Train

database of twenty images in the standard DRIVE database. In fact, all given

train images have been tested, but it is found that not all training images are well

represented. Training images are categorized and then one is selected from each

category. Again, one may select training pixels from all images, it is found that

including pixels from many images degrades the distinguishing difference between

two classes, since higher the number of train images may not necessarily enhance

trainer quality, that may provide redundant or biased trainer. Therefore, one train

image is selected from different categories of images and the final number of images

becomes five.

3.4 Classification

The problem of retinal vessel detection is formulated as a supervised classification

problem. In case of supervised classification, generally some training data with

known class index are available. Based on the characteristics of the train data, the

unknown test sample needs to be classified. Here the classification problem deals

with two class problems, vessel and non-vessel. During the test phase, K-fold cross

validation technique is most widely used to analyze the performance of a classifica-

tion scheme. The classification performance is tested by using different classifiers,

such as distance based classifier, k nearest neighborhood classifier (kNN) and linear

discriminant analysis (LDA). However, considering the robustness of classier along

with the computational complexity, LDA is found most suitable in the proposed

vessel classification scheme. Next, basic principle of the LDA classifier is explained.

3.4.1 Linear Discriminant Based Classifier (LDA)

A classifier that is based on maximal separation of centroids, suffers from a draw-

back that it does not take into account the second-order statistics of data distribution

fully. In order to mitigate this problem, a more effective classification algorithm is
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Fisher’s LDA which takes into account the intra-cluster scatter matrix computed

from the training vectors relating to each of the two classes. In LDA, the scatter

matrix is a scaled covariance matrix and defined as (3.9).

S =
N∑
i=1

[xi − µ][xi − µ]T , (3.9)

where µ denotes the global mean of the entire set of the training vector. The

between-class scatter matrix is denoted as (3.10)

Sb = N+[µ+ − µ][µ+ − µ]T +N−[µ− − µ][µ− − µ]T (3.10)

Here the three points, namely µ, µ+ and µ− are collinear, meaning that

[µ+ − µ] =
N−
N

[µ+ − µ−] (3.11)

and

[µ− − µ] = −N+

N
[µ+ − µ−]. (3.12)

Using the values obtained from (3.11) and (3.12) in (3.10), the between class scatter

matrix is obtained as (3.13)

Sb =
N−N+

N
[µ+ − µ−][µ+ − µ−]T . (3.13)

In addition, the within class scatter matrix is defined as (3.14)

Sw =
∑

[xi − µ+][xi − µ+]T +
∑

[xi − µ−][xi − µ−]T . (3.14)

The goal of LDA is to find out the linear projection wopt using these relationships

which maximize a special kind of signal to noise ratio. Here the signal is represented

by the projected inter-cluster distance and the noise by the projected intra-cluster

variance. The objective function is based on determining a projection direction w

to maximize the Fisher’s discriminant defined as (3.15).

J(w) =
wTSbw

wTSww
(3.15)

3.5 Results and Analysis

In order to quantify the algorithmic performance of the proposed method of pixel

classification on a fundus image, the resulting segmentation is compared to its corre-

sponding gold-standard image discussed in the result section of the previous chapter.
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In this chapter, our algorithm of vessel candidate classification is evaluated in terms

of sensitivity Se, specificity Sp, positive predictive value Ppv, negative predictive

value Npv, and accuracy Acc. Taking Table 2.1 into account, these metrics are de-

fined by Eqn. (2.4), Eqn. (2.5), Eqn. (2.6), Eqn. (2.7) and Eqn. (2.8) described

in the previous chapter. The proposed method is evaluated on DRIVE and STARE

database images with available gold-standard images. The retinal pixel classifica-

tion scheme proposed in this chapter consists of two stages: (1) candidate vessel

detection by using the gradient based search method on enhanced retinal image and

(2) supervised classification which involves three major steps: (i) training data set

development, (ii) critical candidate selection, (iii) proposed feature extraction and

(iv) LDA based candidate vessel classification into two class: vessel and non-vessel.

The first stage is exactly the same method described in the last chapter. Different

steps involved in second stage are described in this chapter.

3.5.1 Performance Evaluation

At first, classification is performed on all pixel candidates obtained in gradient based

search method with Np = 5 (since this threshold provides best candidates as com-

pared to any other threshold) on both DRIVE and STARE databases. Results are

shown in Table 3.2 and Table 3.3, respectively.

Next, the classification task is carried out only on critical candidates from both

DRIVE and STARE databases. Results of this action are presented in Table 3.4 and

Table 3.5. It is observed that all candidate classification does not provide accuracy as

good as critical candidate classification does for DRIVE database images, average

accuracy improves significantly from 93.89% to 94.23%. But in case of STARE

database, the consequences are opposite. All candidate classification provides an

average accuracy of 95.16% while the other one cannot give more than 94.95%.

Table 3.6 shows a comparison between gradient based search and vessel candidate

classification. It also provides an opportunity to clearly observe the improvement

of accuracy due to applying classification approach to the candidates selected in

search method. Fig. 3.26 provides the manual labeling and output binary images

for Gradient based search and both classification approaches made to an image from

DRIVE database. It can be concluded from the results given in Table 3.2, Table
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Table 3.2: Performance metrics obtained by using the proposed method on DRIVE
database

Image Se Sp Ppv Npv Acc in percentage
1 0.6558 0.9875 0.8876 0.9500 94.40
2 0.6733 0.9906 0.9265 0.9451 94.30
3 0.4991 0.9952 0.9469 0.9210 92.30
4 0.6133 0.9932 0.9324 0.9435 94.25
5 0.5203 0.9965 0.9587 0.9297 93.19
6 0.4977 0.9968 0.9623 0.9235 92.64
7 0.5614 0.9917 0.9116 0.9368 93.47
8 0.4534 0.9947 0.9247 0.9268 92.6654
9 0.4905 0.9965 0.9486 0.9363 93.70
10 0.5598 0.9935 0.9211 0.9433 94.17
11 0.6009 0.9883 0.8843 0.9433 93.81
12 0.5544 0.9929 0.9179 0.9397 93.80
13 0.5452 0.9940 0.9376 0.9297 93.04
14 0.6358 0.9878 0.8745 0.9530 94.63
15 0.6528 0.9821 0.8083 0.9606 94.79
16 0.5947 0.9922 0.9195 0.9421 94.02
17 0.5385 0.9926 0.9115 0.9386 93.66
18 0.6078 0.9870 0.8583 0.9510 94.34
19 0.6828 0.9951 0.9506 0.9582 95.75
20 0.5750 0.9922 0.8982 0.9514 94.77
Avg 0.5429 0.9920 0.9140 0.9411 93.89

3.3, Table 3.4 and Table 3.5 that only critical candidate classification gives better

accuracy for both DRIVE and STARE databases than that provided by gradient

based search method.

Effect of classifier

Table 3.7 provides performance of other classifiers rather than two-class LDA in case

of three images of DRIVE database where Image 15 is the best case of this database,

Image 3 worst case, and Image 1 is a general case of reflecting the performance

criteria of the proposed method classifier.

Here,

DLDA=Diaglinear Discriminant Analysis Classifier

DQDA=Diagquadratic Discriminant Analysis Classifier

NB=Naive Bayes classifier

KNN=K-Nearest Neighborhood Classifier
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Table 3.3: Performance metrics obtained by using the proposed method on STARE
database

Image Se Sp Ppv Npv Acc in percentage
1 0.4742 0.9876 0.8234 0.9390 93.18
2 0.4703 0.9851 0.7706 0.9459 93.56
3 0.7101 0.9724 0.6974 0.9740 95.08
4 0.2033 0.9993 0.9730 0.9149 91.61
5 0.6548 0.9766 0.7999 0.9519 93.64
6 0.7710 0.9781 0.7751 0.9776 95.97
7 0.8127 0.9692 0.7655 0.9767 95.20
8 0.7897 0.9773 0.7999 0.9759 95.80
9 0.7767 0.9791 0.8180 0.9732 95.73
10 0.6818 0.9804 0.8127 0.9611 94.73
11 0.7803 0.9826 0.8312 0.9760 96.26
12 0.8542 0.9776 0.8203 0.9825 96.44
13 0.7338 0.9822 0.8523 0.9635 95.18
14 0.7214 0.9848 0.8722 0.9610 95.18
15 0.6173 0.9879 0.8732 0.9504 94.39
16 0.4195 0.9944 0.9261 0.9115 91.24
17 0.7016 0.9917 0.9225 0.9592 95.57
18 0.4846 0.9980 0.9497 0.9622 96.18
19 0.4304 0.9965 0.8840 0.9658 96.34
20 0.4240 0.9922 0.8469 0.9440 93.95
Avg 0.6256 0.9847 0.8407 0.9583 95.16

This comparison concludes that LDA is the best classifier showing moderately

good performance in most f the cases.

Effect of feature dimension reduction

Fig. 3.27 shows effect of feature dimension variation for a test image of DRIVE

database. It is observed that with increase in features, accuracy also increases.The

best accuracy occurs when all features are included. For this particular test image,

inclusion of spectral features in creases accuracy, but for most of the test images,

accuracy is decreased resulting in drastic fall in Sensitivity (Se).

Effect of Retraining

It has been mentioned that train images were selected from standard DRIVE database

after rigorous trials and observation such that the selected images provide the best

average accuracy possible for the whole set of test images. During trials, it is ob-
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Table 3.4: Performance metrics obtained by using the proposed method on DRIVE
database for crtical pixel classification

Image Se Sp Ppv Npv Acc in percentage
1 0.7116 0.9825 0.8596 0.9576 94.70
2 0.7297 0.9844 0.8916 0.9539 94.62
3 0.5452 0.9923 0.9232 0.9275 92.71
4 0.6703 0.9891 0.9042 0.9512 94.66
5 0.5688 0.9942 0.9393 0.9363 93.65
6 0.5499 0.9941 0.9385 0.9308 93.14
7 0.6151 0.9872 0.8802 0.9438 93.80
8 0.5099 0.9911 0.8920 0.9336 93.06
9 0.5708 0.9928 0.9131 0.9456 94.32
10 0.6045 0.9907 0.8982 0.9486 94.46
11 0.6573 0.9827 0.8499 0.9506 94.05
12 0.6129 0.9893 0.8915 0.9470 94.22
13 0.5968 0.9900 0.9076 0.9370 93.42
14 0.6924 0.9809 0.8292 0.9598 94.69
15 0.7096 0.9763 0.7762 0.9667 94.86
16 0.6565 0.9881 0.8924 0.9503 94.47
17 0.6034 0.9891 0.8866 0.9466 94.16
18 0.6627 0.9823 0.8296 0.9573 94.56
19 0.7373 0.9915 0.9224 0.9650 96.09
20 0.6254 0.9886 0.8680 0.9567 94.99
Avg 0.6315 0.9879 0.8847 0.9483 94.23

served that if a different set of five train images are selected, that set of train provides

worse result for some images, but much better for others. It is found that such a

set provides an accuracy of 95.11% for a particular test image of DRIVE database

which previously for the selected set of train images was 94.86%. But for another

image, this set provides 92.10% which previously was 92.71%. Therefore it can be

concluded that classification result is mostly train dependent. If manual selection

by eye inspection as done in [21] is performed also in the proposed method in this

chapter, it definitely will increase the vessel detection accuracy. But the target of the

proposed method is to devise a universal rule of train selection which will perform

well independently for any retinal image of any standard database.

Effect of Inclusion of Some Nonvessel Candidates for Classification

Classification method is also observed for some pixels which were not selected as

vessel candidates in the search method, but are in the neighborhood of those selected
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Table 3.5: Performance metrics obtained by using the proposed method on STARE
database for critical pixel classification

Image Se Sp Ppv Npv Acc in percentage
1 0.5000 0.9843 0.7949 0.9417 93.16
2 0.4974 0.9828 0.7541 0.9484 93.61
3 0.7296 0.9678 0.6702 0.9756 94.82
4 0.2441 0.9987 0.9552 0.9188 91.98
5 0.7063 0.9669 0.7529 0.9584 93.43
6 0.8156 0.9691 0.7204 0.9818 95.54
7 0.8292 0.9609 0.7241 0.9785 94.64
8 0.7951 0.9717 0.7635 0.9763 95.35
9 0.7911 0.9726 0.7770 0.9747 95.3
10 0.6939 0.9725 0.7584 0.9623 94.16
11 0.8152 0.9740 0.7751 0.9796 95.83
12 0.8793 0.9686 0.7701 0.9853 95.90
13 0.7610 0.9769 0.8216 0.9670 95.05
14 0.7493 0.9788 0.8353 0.9645 94.99
15 0.6414 0.9836 0.8405 0.9531 94.29
16 0.4302 0.9931 0.9125 0.9129 91.28
17 0.7485 0.9857 0.8811 0.9652 95.63
18 0.5391 0.9968 0.9268 0.9660 96.44
19 0.5108 0.9946 0.8539 0.9704 96.63
20 0.4883 0.9877 0.8020 0.9497 94.14
Avg 0.6583 0.9794 0.8045 0.9615 94.95

candidates. This was done with the hope that it may increase the accuracy by

including some true vessel pixels which were discarded in the search method. But

this inclusion has no effect, for Image 3 of DRIVE database, where number of ‘False

Negative’ is too high, this job is done without resulting in any improvement. This

is because the true vessel pixels discarded as ‘False Negative’ in search method, are

those far from the neighborhood of selected candidates and mostly are thin vessel

pixels. There is no possible way of including them in classification procedure with

search based on mere connectivity measure. Therefore, only vessel candidates are

Table 3.6: Comparison between gradient based search method and vessel pixel clas-
sification

Database Search Classification (All) Classification (Critical)
DRIVE 93.9073 93.89 94.23
STARE 93.9109 95.16 94.95
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Table 3.7: Comparison Among Different Classification Methods In Terms Of Accu-
racy

Classifier Image 1 Image 3 Image 15
LDA 94.70 92.71 94.86

DLDA 94.67 92.58 94.80
DQDA 94.67 92.60 94.79

NB 94.68 92.71 94.73
KNN 94.70 92.96 94.52

further dealt with.

3.5.2 Comparison to Other Methods

Table 3.8 provides comparison of the performance of the proposed method in terms

of average accuracy to other methods. It is observed that the accuracy of the

proposed method is comparable with those of other papers. However, the novelty

and simplicity of both proposed methods are quite noticeable. The simple and

vastly competent search algorithm used in the gradient based search method, easily

formulated and computed features and the universal trainer selection algorithm

employed in the supervised classification method depict the efficiency of them over

the other methods.

Table 3.8: Performance Metrics Compared To Other Methods On The Stare And
Drive Databases In Terms Of Average Accuracy

Method Method DRIVE STARE DRIVE+
Type STARE

Staal et al. [18] 0.9441 − −
Niemeijer et al. [17] 0.9417 − −

Supervised Soares et al. [19] 0.9466 0.9480 0.9473
Ricci and Perfetti [20] 0.9595 0.9646 0.9621
Marin et al. [21] 0.9452 0.9526 0.9489
Proposed Method 0.9423 0.9495 0.9459
Chaudhuri et al. [7] 0.8773 − −
Hoover et al. [23] − 0.9275 −
Jiang and Mojon [9] 0.8911 0.9009 0.8960

Ruled-Based Mendonça et al. [6] 0.9463 0.9479 0.9471
Martinez-Perez et al. [12] 0.9344 0.9410 0.9377
Cinsdikici and Aydin [8] 0.9293 − −
Proposed Method 0.9390 0.9391 0.939
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3.5.3 Processing Times

It is observed that the superiority of the proposed schemes over other algorithms

tested using the DRIVE database is in the time requirement to process an image

with appreciable accuracy. Computational time for the MATLAB implementation of

the proposed gradient based vessel detection algorithm tested on a DRIVE database

image requires approximately 1.83 s second to process. Table 3.9 shows that the

proposed gradient based search method requires in average a time of only 1.83 s

which is slightly higher than only one method so far available in literature [14] but

it provides comparatively higher accuracy.

Proposed classification method provides a very lower computational time at the

cost of slightly lower accuracy as compared to other supervised classification meth-

ods, such as [19] and [18]. Though Table 3.9 does not provide computational time

for [21], it was attempted to make an assumption of timing for the method proposed

here. It is found that in order to extract feature for only 4596 number of pixels, the

method requires 22.819s whereas for pixel by pixel classification, about 3, 30, 000

number of pixels need feature extraction. Therefore only feature extraction requires

a huge computational time according to [21]. These results compare favorably with

timings reported for most of the other algorithms in terms of higher accuracy and

lower computation time.

Table 3.9: Time requirements by different vessel detection algorithms. Here,
Impl=Implementation, M=MATLAB

Method Processor RAM Impl Accuracy Time
Bankhead [14] 2.13 GHz 2 GB M 0.9371 0.093 s

Espona [11] 1.83 GHz 2 GB C++ 0.9352 38.4 s
Mendonca [6] 3.2 GHz 960 MB M 0.9463 < 150 s

Soares [19] 2.1 GHz 1 GB M 0.9466 180 s
Staal [18] 1 GHz 1 GB M 0.9441 900 s

Proposed(Search) 2.5 GHz 2 GB M 0.9390 1.830 s
Proposed(Classification) 2.5 GHz 2 GB M 0.9423 13.114 s

Again, it has been experimented that with reduction in the number of features in

the proposed method of vessel candidate classification, we could drastically reduce

computational time by negotiating accuracy. For example, the processing time for

the first image of the DRIVE database would reduce to 7.051 s from 16.046 s and the
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accuracy would reduce from 94.70% to 94.58%. For the second image, the accuracy

would fall from 94.62% to 94.56% with a drastic fall in processing time from 16.777

s to 5.011 s.

3.6 Conclusion

In this chapter, a supervised classification method is proposed incorporating a pre-

processing algorithm, feature extraction of the preprocessed image, universal train

formation and linear discriminant based classifier. For preprocessing, background

subtraction based shade correction and sequential opening filtering prior to Top-

Hat transform is employed. For pixel representation, statistical spatial features,

shifted statistical spatial features and spectral features are extracted. A novel uni-

versal train selection algorithm is proposed employing separate approaches made to

all vessel candidates obtained in search method and only critical vessel candidates.

Train pixels are selected according to this algorithm from train images provided by

standard DRIVE database. Finally a linear discriminant based classifier is applied

to retinal images of standard databases to classify the vessel candidates of each im-

age those are already extracted by gradient based search method. It is found that

the proposed method requires significantly less computational time to perform the

classification task with a very competitive overall classification accuracy.
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(a)

(b)

(c)

(d)

Fig. 3.26: An example of binary output image of classification. (a) Manual labeling,
(b) search output, (c) all candidate classification output and (d) critical candidate
classification output
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Fig. 3.27: Effect of feature dimension reduction on a Particular Image. X-axis
Dimension: 1) 2-D DCT Coefficients 2) 5 Spatial Features 3) Proposed Spatial and
Shifted Spatial Features 4) All considered Features.



Chapter 4

Conclusion

4.1 Contribution of this Thesis

• The main objective of this thesis work is to develop a fast and efficient blood

vessel detection technique for retinal images. In order to achieve this target,

two different schemes are proposed, one falls in the category of rule based ap-

proach and the other one is the supervised classification approach. The objec-

tive of the first scheme is to provide satisfactory vessel detection performance

with a very low computational cost of processing the whole image. Prior to

vessel detection, preprocessing is required for any RGB retinal image in order

to obtain spatially enhanced image free from background noise and lightning

variations. That is to bring down all the images to be tested on the same

platform. One major contribution is to introduce an efficient preprocessing

scheme consisting of adaptive median filtering and Top-Hat transform. In this

regards, the idea of repeated median filtering is also introduced. Consequently,

an appropriate enhanced image is obtained.

• An intensity gradient based search algorithm is proposed for vessel detection

from enhanced retinal image. The intensity level of the candidate pixel is

compared with those of three consecutive pixels along with the previous pixel,

and if the difference exceeds a definite threshold in each case, depending on the

polarity of the difference, the pixel as well as the neighboring pixel, is declared

as vessel or non-vessel. This method is fast, uncomplicated and competent to

provide itself an acceptable accuracy in blood vessel detection.

• The second scheme proposed in this thesis performs the feature based vessel

76
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classification from a set of given vessel candidates. In order to reduce the num-

ber of ‘False Positive’, vessel candidates selected in the gradient search method

are further classified extracting suitable features and employing a suitable clas-

sifier incorporating efficient trainer pixels. The first task of classification is

extraction of competent features to represent efficiently a particular pixel. In

this purpose, along with some spatial statistical features extracted from the

spatial mask centered on the candidate pixel to be classified, additional spa-

tially shifted masks are utilized to provide a proper gray level description in

the neighborhood of the candidate pixel. These proposed features along with

spatial features of the center mask are observed to represent vessel pixels from

the non-vessel ones with proper distinction, which is actually required for an

efficient classification.

• For efficient feature extraction from retinal image, preprocessing is required.

In the gradient based search method, the nature of the pixel is determined

with the help of a certain neighborhood. But in pixel classification, which is

completely a different method, small spatial block around a pixel is taken into

account for feature extraction. Therefore, preprocessing required here must

be adaptable with this method. Bearing that in mind, an efficient prepro-

cessing scheme is developed incorporating shade correction with background

subtraction and sequential opening operation prior to Top-Hat transform. This

method is found to be very effective to provide a suitably enhanced image.

• In the proposed vessel candidate classification method, a universal train selec-

tion algorithm is proposed. Based on a connectivity measure, train pixels are

selected automatically. While selecting train pixels, pixels with similar con-

nectivity measurement are chosen. In a different approach of train selection,

only critical candidates (candidates having greatly overlapping characteristics

between vessel and non-vessel categories) are considered. In this approach,

instead of classifying all candidates, only some critical candidates situated

along the edge of a vessel are taken into classification process. For them, suit-

able train pixels are chosen through an automated process by applying search

method to train images and accepting pixels as train pixels which fulfill the

connectivity criteria of critical candidates from the output binary image of
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the search method and also get sorted based on a score defined by the pixel

neighborhood along with the intensity value of the pixel itself.

• As an application of the proposed blood vessel detection scheme, vessel recog-

nition scheme is also developed based on linear discriminant analysis. It is

observed that the application of vessel candidate selection reduces the com-

putational cost and processing time in comparison to some of the existing

methods. On the other hand, employment of the classification process on

the selected candidates reduces ‘False Positive’s detected earlier resulting in a

better accuracy.

4.2 Scope and Future Work

• One possible future work could be to make the vessel candidate selection pro-

cess stronger by including more candidates, since classification procedure has

no scope to work on the vessel pixels declared as non-vessel already in the

search method.

• Another future work could be to investigate higher order statistical features

on spatial blocks in order to differentiate between critical vessel and non-vessel

pixels so that some true vessel pixels are not excluded as being misclassified,

which may further increase the vessel detection accuracy to the maximum

possible extent.
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