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Abstract

Power quality has become a major concern recently because of increasing number

of sensitive loads being connected to the power system. Degradation in power qual-

ity is normally caused by power-line disturbances, malfunctions, instabilities, short

lifetime, failure of electrical equipments etc. In order to improve power quality, the

sources and causes of power quality (PQ) disturbance events must be known apri-

ori to take appropriate mitigating actions. However, to determine the causes and

sources of PQ disturbances, it is important to detect, localize and classify them.

For the classification of PQ disturbances, a wide range of signal processing meth-

ods have been reported in the literature. Since, PQ disturbance is a non-stationary

signal, development of a PQ disturbances classification method, which is simple yet

effective in handling practical conditions, such as multiclass PQ disturbances, ran-

dom selection of increased training and testing dataset, and presence of noise, is

still a challenging task. In this thesis, a new method for the classification of PQ

disturbances exploiting higher order statistics in the Empirical mode decomposi-

tion (EMD) domain is proposed. A PQ disturbed signal is first analyzed in terms

of intrinsic mode functions (IMFs) by using EMD operation. The Higher Order

Statistics (HOS), such as variance, skewness and kurtosis of the first three extracted

IMFs are then utilized to form the feature vector. The feature vector thus obtained

when fed to the Probabilistic Neural Network (PNN) and k-Nearest Neighborhood

(kNN) classifiers separately is found to be capable of classifying the multiclass PQ

disturbance signals even in the presence of noise. Moreover, as expected, the clas-

sification accuracy is found to be enhanced using the proposed feature set while

increasing the training and testing dataset. For the characterization of PQ dis-

turbance signals, mathematical models of eleven classes of disturbances are used.

Simulations are carried out to evaluate the performance of the proposed method in

terms of efficiency derived from the confusion matrix and CPU time representing

the computational burden. It is shown that the proposed method outperforms some

of the state-of-the-art methods with superior efficacy in stringent conditions.
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Chapter 1

INTRODUCTION

Power quality (PQ) is a set of electrical boundaries that allows a piece of equipment

to function in its intended manner without significant loss of performance or life

expectancy. The highest power quality is achieved when voltage and current have

purely sinusoidal waveforms containing only the power frequency and when the

voltage magnitude corresponds to its reference value. Any deviation from this may

negatively affect the function and/or life expectancy of equipment connected to the

power system [1–4].

PQ is becoming a mounting concern in the electric power industry. The deregula-

tion of the power industry and the proliferation of sensitive semiconductor equipment

into almost all kinds of industrial machinery and consumer electronics generated the

demand for power quality and techniques for the reduction in PQ disturbances. Most

often a disturbance in voltage also causes a disturbance in the current and hence

the term Power quality is used when referring to both voltage quality or current

quality. These disturbances even though last only a fraction of a second can cause

huge losses and hours of manufacturing downtime in case of industrial applications.

Consequently, monitoring of PQ disturbances is essential to offer solutions to indus-

trial and electrical areas. For this reason, in order to improve power quality, the

interest of the research community in PQ disturbances has dramatically increased

over the past decade.

1.1 Types of Power Quality Disturbance Signals

PQ issues in a power system include different types of electric disturbances, such as

voltage sag, swell, harmonics, fluctuation, interruption, spike, notch, transients, sag
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Figure 1.1: Normal Signal

Figure 1.2: Sag

with harmonics, swell with harmonics etc. There are a number of different types

of PQ disturbances and also a number of different ways to define and categorize

them. Definitions of the different disturbance types as well as their usual causes and

common negative effects of them are described below.

1.1.1 Voltage Sag

It is defined (ANSI std. 1100-1992) as the reduction in the AC RMS voltage, at the

power frequency, for duration from half a cycle to a few seconds.

Main causes of voltage sag include energizing of heavy loads (e. g. arc furnaces),

starting of large induction motors, single line-to-ground (SLG) faults, line-line and

symmetrical faults, transference of load from one power source to another, animal

contact or tree interference.

Effects of voltage sag mainly include voltage instability and malfunctions in
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Figure 1.3: Swell

electrical low-voltage devices, uninterruptible power supplies, measuring and con-

trol equipments. Also, problems in interfacing with communication signals can arise.

Lights may dim briefly and television pictures may, for a moment, shrink slightly.

More sensitive equipment could be more noticeably affected.

1.1.2 Voltage Swell

It is the increase in the AC RMS voltage, at the power frequency, for duration from

a half a cycle to a few seconds.

Main causes of voltage swells include energizing of capacitor banks, shutdown of

large loads, unbalanced faults, transients and power frequency surges.

It causes problems with equipment that require constant steady-state voltage.

Long-duration voltage variations can be seen in this case.

1.1.3 Voltage Interruption

It is the total loss of AC Power for typically a few seconds to as long as one minute.

This could happen as a result of momentary short circuit on the line. This event

could be very momentary or sometimes could be repeatitive for a short duration.

Planned interruptions are usually caused by construction or maintenance in the

power system. Temporary interruptions are usually caused by faults and are gener-

ally unpredictable and random occurrences.
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Figure 1.4: Interruption

Figure 1.5: Flicker

1.1.4 Flicker

Flicker is generated from voltage fluctuations. The general way of describing the

flicker level is the change in RMS voltage divided by the average RMS voltage.

The instantaneous flicker level may vary with time depending on the length of the

measure interval. If the interval is short compared to the flicker wavelength the

flicker level will change periodically. To be able to estimate the flicker situation we

must make a statistical analysis of the flicker level

Main causes of voltage flicker are startup of drives and drives with rapidly chang-

ing load or load impedance, as well as operation of arc furnaces, pulsed-power out-

puts, resistance welders and rolling mills.

This phenomenon can, when it reaches certain amplitudes (different amplitudes

depending on the frequency of the flicker), cause discomfort for people exposed to

the effects. However, flicker does not cause any malfunctions in the power system;

the inducted discomfort is its only negative effect.
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Figure 1.6: Transient

1.1.5 Voltage Transient

Transients, or transient over voltages, are short-duration either oscillating or impul-

sive voltage phenomena with a duration of usually a few milliseconds or shorter and

normally heavily dampened. Though short in duration they often create very high

magnitudes of voltage.

Main causes for transients are switching on secondary systems, Lightning-induced

ringing, Local ferroresonance etc. Transients with high voltage magnitudes cause

insulation breakdown in the power system and transients with high current mag-

nitudes can burn out devices and instruments. Other effects of transients include

mal-operation of relays, mal-tripping of circuit breakers, radiated noise may disrupt

sensitive electronic equipment and Voltage magnification at customer capacitors.

1.1.6 Harmonics

Either voltage or current may be distorted by harmonics. When nonlinear loads are

connected to normal sinusoidal voltage, the current waveform gets distorted. The

distorted current waveform is made up of fundamental sine wave or first order 50

Hz current and multiple frequency currents such as 100 Hz, 150 Hz. The harmonic

current will then travel upstream, away from the nonlinear loads that produced them

and towards the utility source. This will distort the voltage at other nodes separated

by appreciable impedance. If the voltage distortion is high, they may affect other
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Figure 1.7: Harmonics

power consumers. At low voltage distortion, they will still affect other power system

elements and other electrical circuits that are in parallel with the power circuits in

the plant that generated them. Nonlinear loads such as computers, laser printers,

welders, variable frequency drives, UPS systems, fluorescent lighting, etc., usually

have diode-capacitor power supplies at the front end. They draw current in short

pulses during the peak of the line voltage thus introducing harmonics.

Harmonics in general are often caused by operation of rotating machines, arc-

ing devices, semiconductor based power supply systems, converter-fed AC drives,

thyristor controlled reactors, phase controllers, and AC regulators, as well as mag-

netization nonlinearities of transformers.

The general effects of harmonics include increased thermal stress and losses in

capacitors and transformers, as well as poor damping, increased losses, and in other

ways degraded performance of rotating motors. Furthermore, transmission systems

are subject to higher copper losses, corona, skin effect, dielectric stress, interference

with measuring equipment and protection systems. Harmonics also negatively af-

fect consumer equipment such as television receivers, fluorescent and mercury arc

lighting, and the CPUs and monitors of computers.

1.1.7 Sag with Harmonics

Sometimes sag and harmonics both may occur in a power system. This kind of

event can be seen when the problems of sag and harmonics happen simultaneously.

Disruption of operation can be seen for this distortion.
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Figure 1.8: Sag with Harmonics

Figure 1.9: Swell with Harmonics

1.1.8 Swell with Harmonics

Swell and harmonics can be seen in a power system. Widespread use of shunt capac-

itor for the improvement of power factor and stability, solid state power converters

for industrial furnaces etc. are the causes of this type of distortion. This causes

production of heat that may reduce the operating life of equipments.

1.1.9 Spike

Spikes or surges normally are on the line for only 1/1000th of a second or less (less

than 1 millisecond). They can be from a few to 10,000 volts-peak above or below

the voltage sine wave. Voltage spikes normally last only for about 50 microseconds

and current spikes last typically 20 microseconds ANSI C62.41-1991).
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Figure 1.10: Spike

Figure 1.11: Notch

Lightning surges that come into your building by way of the wires power, tele-

phone, cable TV or other; switching surges that occur when electrical loads are

turned on or off either in your home (large motor-driven appliances) or on the elec-

tric system grid are the main causes of spike.

The effects of spike are damage to VCRs, televisions, computers and electroni-

cally controlled appliances. Susceptible appliances can usually be identified if they

have electronic push buttons, electronic clocks, or digital displays.

1.1.10 Notch

Notching disturbances are non-sinusoidal, periodic waveform distortions and, as the

name suggests, consist of notches in the fundamental sine wave component. This

is caused by the commutation of current from one phase to another during the

continuous operation of power electronic devices. Normal operation of electronic
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equipment may cause notch sometimes.

This event causes negative operational effects, such as signal interference intro-

duced into logic and communication circuits. Also, when of sufficient power, the

voltage notching effect may overload electromagnetic interference filters, and other

similar high-frequency sensitive capacitive circuits.

1.2 Importance of the classification of Power Qual-

ity Disturbances

In early days, power quality issues were concerned with the power system transient

arising due to switching and lightning surges, induction furnace and other cyclic

loads. Increased interconnection, widespread use of power electronics devices with

sensitive and fast control schemes in electrical power networks have brought many

technical and economic advantages, but these have also caused degradation in power

quality. Therefore, power quality may deteriorate due to a variety of reasons. There-

fore, new challenges are introduced for the power engineer and they become more

interested in PQ disturbances.

The main reasons for the increased interest in PQ disturbances can be summa-

rized as follows:

• Modern electric appliances are equipped with power electronics devices utiliz-

ing microprocessor/microcontroller. These appliances introduce various types

of PQ disturbances and moreover, these are very sensitive to the PQ distur-

bances.

• Industrial equipments such as high-efficiency, adjustable speed motor drives

and shunt capacitors are now extensively used. The complexity of industrial

processes results in huge economic losses if equipment fails or malfunctions.

• The complex interconnection of systems, resulting in more severe consequences

if any one component fails. Moreover, various sophisticated power electronics

equipments, which are very sensitive to the PQ disturbances, are used for

improving system stability, operation and efficiency.
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• There has been a significant increase in embedded generation and renewable

energy sources which create new PQ disturbances, such as voltage variations,

flicker and waveform distortions.

• In new electricity market scenarios, now electricity consumers can shift to

the new service providers, if power quality is not good. Moreover, introduc-

tion of competitive electricity market gives right to the customers to demand

high quality of power supply. The utilities or other electric power providers

have to ensure a high quality of their service to remain competitive and to

retain/attract the customers.

In order to maintain a reasonable level of quality, it is necessary to identify and

classify the disturbance causing a particular type of power quality problem and to

locate the sources of that disturbance in the power system so that corrective action

can be taken.

1.3 Difficulties in classification of Power Quality

Disturbances

Existing methods of analyzing and classifying power disturbances are laborious and

time consuming since they are based on visual inspection of disturbance waveforms.

Moreover, it is not always possible to extract important information from simple

visual inspection. Due to the complexity of power quality problems and the lack of

reliable techniques to analyze these problems, power utilities are unable to ensure

the required level of power quality without a considerable increase in cost.

Accurate PQ disturbance classification, which depends on the several factors, is

a difficult task. The following are the some of the major issues and challenges in

classification of PQ disturbances.

• Performance of a classifier is highly dependent on the input extracted features.

Deriving an effective feature for classifying PQ disturbances is a difficult task.

• The majority of classification techniques proposed is for single disturbance.

Therefore, efforts need to be done for multiple disturbance classification like-

sag with harmonics, swell with harmonics etc.
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• Another issue of concern is the number of decomposition level required to avoid

possible loss of some important information and to have accurate classifier since

PQ disturbances cover a wide range of frequency.

• Effort should be aimed at incorporating knowledge and expertise of power

system engineers in statistical classifiers also.

• To properly monitor the PQ events, the power quality monitors are installed in

the system. Since, it is not possible to install the PQ monitor at all the nodes

in the system due to technical and economical reasons, the optimal number of

monitoring devices are to be placed in the system to get complete information

about the PQ events.

• Most of the studies have done training and testing on synthetic data. There-

fore, accumulation of a comprehensive standard PQ database similar to that

of many other signal processing fields, for testing and comparisons of the state

of the art techniques are also needed.

• Noise present in the signal has been a major hurdle in the accurate feature

extraction and classification of PQ events.

1.4 Problem Definition

The increasing pollution of power signals and its impact on the power quality sup-

plied by power plants to customers are pushing forward the development of signal

processing tools to monitor and control of PQ disturbances.Recently, for the detec-

tion, localization and classification of PQ disturbances, researchers become inter-

ested to use efficient and appropriate signal processing methods that always try to

model all information into a set of features from where decision making becomes

easier and more accurate than the conventional methods of visual inspection [5–10].

Most of the signal processing techniques reported in the literature use time, fre-

quency and time-frequency domain representation of the PQ disturbance waveforms,

on the basis of which many specific features are derived in order to classify differ-

ent types of PQ disturbances. The most difficult problem faced by today’s PQ

disturbances classification method is the large variation in the morphologies of PQ
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disturbance waveforms. It is to be noted that methods capable of classifying PQ dis-

turbances in stringent conditions, such as multiclass PQ disturbances, and presence

of noise have been limitedly reported. Thus, in order to handle the practical situ-

ations of real life applications as mentioned above, development of a method with

an effective feature set for multiclass PQ disturbances classification that is capable

of providing performance with greater accuracy with simplicity in computation is

indeed a difficult problem.

1.5 Objective of the thesis

The objectives of this thesis are:

• To analyze the Intrinsic Mode Functions (IMFs) obtained by transforming the

PQ disturbance signals in the Empirical Mode Decomposition (EMD) domain.

• To investigate the appropriateness of higher order statistics (HOS) of the ex-

tracted IMFs in distinguishing the multi class PQ disturbance signals through

an extensive analysis.

• To develop a multi featured set using the HOS of the extracted IMFs for

classifying PQ disturbance signals using different classifiers.

• To investigate the performance of the proposed feature set and that of different

classifiers for the classification of multiclass PQ disturbance signals constructed

from their corresponding model equations.

• To analyze the effectiveness of the proposed feature set and that of different

classifiers for the classification of multiclass PQ disturbance signals in the

presence of noise.

The outcome of this thesis is the development of an EMD based method ex-

ploiting a feature set derived from the HOS of the IMFs, which is able to classify

multiclass PQ disturbance signals with greater accuracy in clean conditions, even in

case of random selection of increased training and testing dataset as well as in noisy

conditions.
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1.6 Organization of the Thesis

This thesis is organized as follows:

• Different types of PQ disturbances, iimportance of the classification of PQ

Disturbances, difficulties in classification of PQ Disturbances, objective of the

thesis are introduced in Chapter 1.

• Chapter 2 provides a comprehensive review for the state-of-the-art methods

for PQ Disturbances classification.

• Chapter 3 describes the proposed method of extracting features from the

Higher Order Statistics (HOS) in the empirical mode decomposition (EMD)

domain and that of using Probabilistic Neural Network (PNN) and k Nearest

Neighborhood (kNN) classifiers for PQ disturbances classification.

• Simulation results and quantitative performance comparison of the proposed

method are shown in detail in Chapter 4.

• Finally, concluding remarks, contribution and suggestions for future works of

the thesis are highlighted in Chapter 5.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

Degradation in quality of electric power due to various disturbances has become a

major concern in recent times. There are many references which dealt with the var-

ious guidelines regarding monitoring power quality disturbances [11–17]. The basic

introduction to all the various power quality disturbances possible in power distri-

bution scenario is provided in [13]. A survey of various distribution sites concluded

various interesting observations about the various disturbance occurrence statistics

which includes that the majority of the voltage sags have a magnitude of around

80% and a duration of around 4 to 10 cycles and that the total harmonic distortion

on harmonic disturbances is around 1.5 times the normal value [11] . These surveys

provide basic introductory information about the occurrence and cause of the dis-

turbances. However, for improving power quality by taking appropriate mitigating

actions, it is essential to determine the causes and sources of disturbances. For this

purpose, it is important to detect, localize and classify them.

It is a very time consuming to analyze PQ disturbance waveforms based on visual

inspection. Moreover, it is not always possible to extract important information from

simple visual inspection due to large variation in morphologies of PQ disturbance

waveforms. Since PQ disturbance signals are non-stationary, the general methods of

frequency analysis are not satisfactory for classification purposes. Therefore, many

signal processing techniques have been utilized that try to extract feature from a

PQ disturbance signal based on time or frequency or time-frequency domain and

then use different classifiers for classification. The main principles of such methods

are based on pattern recognition techniques that involve:



15

• signal processing methods for feature selection

• signal processing methods for disturbance classification.

This Chapter presents review on the literature survey of the different PQ distur-

bances classification methods.

2.2 Signal Processing Methods for Feature Ex-

traction

More frequently, features extracted from the signals are used as the input of a clas-

sification system instead of the signal waveform itself, as this usually leads to a

much smaller system input. Selecting a proper set of features is thus an important

step toward successful classification. It is desirable that the selected set of features

may characterize and distinguish different classes of PQ disturbances. This can

roughly be described as selecting features with a large interclass (or between-class)

mean distance and a small intraclass (or within-class) distance. Furthermore, it

is desirable that the selected features are uncorrelated and that the total number

of features is small. Other issues that could be taken into account include mathe-

matical definability, numerical stability, insensitivity to noise, invariability to affine

transformations, and physical interpretability. In signal decomposition using various

parametric models of signals, the extraction of signal characteristics (or features, at-

tributes) becomes easier in some Transform domain as compared with directly using

signal waveforms in the time domain. The conventional signal processing methods

for feature extraction of PQ disturbance signals use the following transform domains:

• Fourier Transform

• Short time Fourier Transform

• Wavelet Transform

• Hilbert Transform

• Hilbert-Huang Transform

• S Transform
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2.2.1 Fourier Transform based Methods

Power system disturbance data is often available as a sampled time function which is

represented by a time series of amplitudes. To deal with such data, among different

signal processing approaches, Fourier transform (FT) is commonly used [18]. But

the effectiveness of FT is limited to stationary signals only.

2.2.2 Short Time Fourier Transform based Methods

Brief time frequency information related to disturbance waveforms can be obtained

by using the Short Time Fourier Transform (STFT) [19].The STFT as time-frequency

analysis technique depends critically on the choice of the window. When a window

has been selected for the STFT, the frequency resolution is unique at all frequency.

However, the transient signals cannot be adequately described using STFT due to

a fixed window size.

In [5], the spectral content as a function of time by using discrete STFT is ob-

tained. Discrete STFT detects and analysis transients in the voltage disturbances

by suitable selection of window size. Since the STFT has a fixed resolution at all

frequency the interpretation of it terms of harmonics are easier. The band-pass filter

outputs from discrete STFT are well associated with harmonics and are suitable for

power system analysis. Also the STFT method is compared to wavelet in [5]. The

Authors of [5] believes that the choice of these methods depends heavily on par-

ticular applications. Overall it appears more favorable to use discrete STFT than

dyadic wavelet and Binary-Tree Wavelet Filters (BT-WF) for voltage disturbance

analysis.

2.2.3 Wavelet Transform based Methods

The main advantages of wavelets is that they have a varying window size, being

wide for slow frequencies and narrow for the fast ones, thus leading to an optimal

timefrequency resolution in all the frequency ranges. Wavelet transform (WT) is

widely being used for disturbance detection in PQ recently [20–24]. Wavelets can

provide accurate frequency resolution and poor time localization at low frequencies
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and the vice versa at high frequencies. The property that the wavelets integrate

to zero shows the ability of the standard deviation of different resolution levels to

represent the distribution of the distorted signals. This capacity is used to classify

and quantify the short duration variations within the power signals.

Olivier Poisson, Pascal Rioual, and M.Meunier [25], proposed a method of using

continuous WTs to detect and analyze voltage sags and transients. The charac-

teristics of the analyzed signals are measured on a time-frequency plane and are

compared with the standard benchmark values. Any inconstancy will imply that

there is a disturbance in the signal. This algorithm enabled accurate time localiza-

tion, magnitude measurement of voltage sags and transient identification. Papers

in [6, 25–30] present the properties of WTs and their use to scenarios similar to

power quality disturbance classification. Most of them are based on WT, wavelet

packet transform and wavelet multi resolution analysis, but these methods tend to

be over sensitive to noise signals. Also, proper selection of mother wavelet and the

level of decomposition are crucial for effective recognition of disturbance signals in

the wavelet domain. Approaches like combining FT with various WT functions and

similar methods depending on the type of disturbances can also be investigated [31].

Multi-resolved analysis (MRA) is based on Wavelet. The signal being analysed

is first decomposed into distinct representations: one rich in high frequencies and

the other in low frequencies, by processing the signal through high- and low-pass

filters. This process is repeated as the signal is filtered at succeeding levels of

detail; the filtering is accompanied by a down-sampling operator, which reduces the

amount of information passed to subsequent levels [32]. This type of methodology

MRA is widely used in various non-stationary signal analyses for different electrical

problems such as rotating machines [33]. Sometimes a filter is applied to remove

the fundamental frequency component so that the remaining signal, attributed to

disturbance events, can be analyzed. In [34], this methodology is used to detect PQ

disturbance and evaluate PQ disturbances.

Similar to the MRA, band-pass filters will be able to extract the high-frequency

signals representing sudden changes in power systems as: transients caused by power

system faults or power system switching operations, as well as the rapid rises or

falls of the system voltage [35]. On the other hand, low-pass filters can extract
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Figure 2.1: Block diagram of PQ disturbance detection based on a multi-channel
filter system

slower signals, such as steady-state distortions like power system harmonics [36].

Therefore an appropriate combination of several bandpass filters will be able to

obtain the necessary information to identify the PQ problems. To illustrate the

general concept of a filter bank, the diagram in Fig. 2.1 shows a block diagram,

where the signal under analysis x(t) is divided into frequency bands. These bands are

determined by the coefficients of each filter for being evaluated afterwards. In [37],

a self-organizing learning array based on wavelet transform is introduced for power

quality classification.

2.2.4 S Transform based Methods

STFT is commonly used in time-frequency signal processing. However, one of its

drawbacks is the fixed width and height of the analyzing window. This causes

misinterpretation of signal components with period longer than the window width;

also the finite width limits time resolution of high-frequency signal components.

One solution is to scale the dimensions of the analyzing window to accommodate a

similar number of cycles for each spectral component, as in wavelets. This leads to

the S-transform introduced by Stockwell, Mansinha and Lowe [38]. Like the STFT,

it is a time-localized Fourier spectrum which maintains the absolute phase of each

localized frequency component. Unlike the STFT, though, the S-transform has a

window whose height and width frequency varying.



19

The S-transform was originally defined with a Gaussian window whose standard

deviation is scaled to be equal to one wavelength of the complex Fourier spec-

trum. It can be considered as an extension of WT [39–41]. The Stockwel transform

produces a time-frequency representation of a signal that uniquely combines a fre-

quency dependent resolution and simultaneously localizes the real and imaginary

spectra. Here, the modulating sinusoids are fixed with respect to time axis while

the Gaussian window scales and moves. The S-transform has an advantage that

it provides multi-resolution analysis while retaining the absolute phase of each fre-

quency [9, 42–45]. But it requires the selection of a suitable window to match with

the specific frequency content of the signal. Standard S Transform suffers from poor

energy concentration in the time-frequency domain. It gives degradation in time

resolution at lower frequency and poor frequency resolution at higher frequency.

The output of S Transform is a N×M matrix with complex values and is called the

S-Matrix whose rows pertain to frequency and whose columns pertain to time.Important

information in terms of magnitude, phase and frequency can be extracted from the

S-matrix. Feature extraction is done by applying standard statistical techniques to

the S-matrix. Many features such as amplitude, slope (or gradient) of amplitude,

time of occurrence, mean, standard deviation and energy of the transformed signal

are widely used for proper classification [42].

2.2.5 Hilbert Transform based Methods

A pattern recognition system has been proposed based on Hilbert Transform (HT).

The output of the Hilbert Transform is 90 degree phase shift of the original signal.

The envelope of the power quality disturbances are calculated by using Hilbert

Transform. The type of the power quality events is detected by the shape of the

envelope. In [43] and [46], authors have used Hilbert transform for feature extraction

of distorted waveform that generates a quadrature signal and thereby an analytical

signal. From these signals, the instantaneous amplitude and phase can be easily

evaluated.

Some statistical information from the coefficients of Hilbert Transform are used

for the formation of feature vector. Mean, standard deviation, peak value and en-

ergy of the Hilbert Transform coefficient are employed as input vector of the neural
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network classifier. The method in [47], shows that the Hilbert Transform features

are less sensitive to noise level. But Hilbert Transformer gives a better approximate

of a quadrature signal only if the signal approaches a narrow band condition. A

combination of Prony analysis and Hilbert transform is also performed, where a sig-

nal is reconstructed using linear combination of damped complex exponential [48].

A prediction model is developed in this case which estimates the different modes of

a signal and hence the signal as combination of these modes. The estimated signal

best fits with the original signal only if condition of minimization of least square

error between the original signal and estimated signal is satisfied. The Hilbert trans-

form applied on the estimated signal then gives the envelope of the voltage waveform

which is informative about the severity of voltage flicker. The technique employed is

well capable of detecting a voltage envelope of distorted waveform. One limitation

that the Prony technique suffers is the selection of number of modes. The accuracy

of the estimation depends upon the number of modes, based on which a prediction

model is developed. There are no rules which can guide in the selection of this

number and generally it is chosen randomly.

2.2.6 Empirical Mode Decomposition based Methods

As a multi-resolution signal decomposition technique, Empirical Mode Decomposi-

tion (EMD) has the ability to detect some features of PQ disturbances [49]. The

key task here is to identify the intrinsic oscillatory modes by their characteristic

time scales in the signal empirically, and accordingly, decompose the signal into in-

trinsic mode functions (IMFs). Feature selection is always the key element among

the process. Previous studies may have overlooked some essential features and some

nonessential features may be inappropriately regarded [50], [51]. Any resulting com-

bination of inappropriate attributes would add to the difficulty of classification.

Since, PQ disturbance is a non-stationary signal, EMD can perform better than

the conventional S-transform analysis methods for the classification of PQ distur-

bances. But, the use of a feature set comprising of standard deviation, norm, max-

imum and minimum of instantaneous frequency and instantaneous amplitude of

Intrinsic Mode Functions (IMFs) resulting from the EMD operation shows less effi-
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ciency while classifying multiclass PQ disturbances.

The combination of Empirical Mode Decomposition (EMD) and HT are sug-

gested in [52]. The HT is applied to first three IMF extracted from EMD to assess

instantaneous amplitude and phase which are then employed for feature vector for-

mation. The pattern recognition system used Probabilistic Neural Network (PNN)

classifier for classifying the various PQ events.

2.3 Signal Processing Methods for Classification

Classification of disturbance signals requires the use of pattern recognition tech-

niques. Pattern recognition is a process of perceiving a pattern of a given object

based on the knowledge already possessed. It is reported in the literature that for

the classification of PQ disturbance signals, pattern recognition uses various artifi-

cial intelligence techniques, such as artificial neural networks (ANN), Radial Basis

Function (RBF) Neural Network, Probabilistic Neural Network (PNN), fuzzy logic

(FL), Support Vector Machine and Relevance Vector Machine.

2.3.1 Artificial Neural Network Based Classifiers

Neural network is a non-linear, data driven self adaptive method and is a promising

tool for classification. These can adjust themselves to the data without any explicit

specification of functional or distributional form for the underlying model. The

neural network recognizes a given pattern by experience which is acquired during the

learning or training phase when a set of finite examples is presented to the network.

This set of finite examples is called the training set, and it consists of input patterns

(i.e., input vector) along with their label of classes (i.e., output). In this phase,

neurons in the network adjust their weight vectors according to certain learning

rules. After the training process is completed, the knowledge needed to recognize

patterns is stored in the neurons weight vectors. The network is, then, presented to

another set of finite examples, i.e., the testing data set, to assess how well the network

performs the recognition tasks. This process is known as testing or generalization.

ANN is a universal function approximator i.e. this can approximate any function
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with arbitrary accuracy. All the above mentioned attributes make artifical neural

lnetwork (ANN) flexible in modeling real world complex problems [53]. ANNs are

good at pattern-matching and classification, function approximation, optimization

and data clustering [54], [55]. The back-propagation algorithm is the most widely

used algorithm for training multi-layered feed forward networks.

An ANN architecture commonly used for data classification is the multi-layer

perceptron (MLP) [56]. MLP networks are ANN formed up by cells simulating

the low-level functions of neurons [57]. MLP is well known for their learning and

recognition ability where the signals cannot be defined mathematically. However,

MLP has difficulties on determining a proper architecture, such as the number of

hidden layers and nodes. Training an MLP is time consuming and very slow without

guaranteeing a global minimum.

ANNs are the oldest among the pattern recognition tools [58]. They are defined

as software algorithms that can be trained to learn the relationships that exist

between input and output data. The disadvantage of using artificial neural networks

is that they require a lot of time to train them, before they are fully functional.

The advantage of using neural networks is that they do not make any assumptions

regarding the underlying distribution. They recognize the patterns by experience

acquired during the training session. The network adjusts its internal parameters

by prescribed rules during the training session. The main drawbacks of ANN for

PQ classifications are-

• There is no rule to determine the data required for the training of each dis-

turbance types. More data available for training will give better accuracy but

will increase time to train the network. A classifier trained with a small data

set is very accurate in identifying the training data set, but it is potentially

unable to identify other data sets.

• The generalization performance of ANN is not guaranteed and could be poor

on selection of training data. The performance is heavily dependent on the

selection of training data set and the structure (or topologies) of neural net-

works (e.g. the number of hidden layers, neurons, the interconnection of sub

neural networks if employed).
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2.3.2 Radial Basis Function Neural Network

A radial basis function (RBF) neural network is a class of single hidden layer feed

forward Neural Network. The network has an input, a hidden and an output layer

[47]. RBF networks can be viewed as an alternative tool for learning in Neural

Networks. While RBF networks exhibit the same properties as back propagation

networks such as generalization ability and robustness. They also have the additional

advantage of fast learning and the ability to detect outliers during estimation [50].

Choosing the spread of the RBF depends on the pattern to be classified. The

learning process undertaken by a RBF network may be visualized as follows. The

linear weights associated with the output units of the network tend to evolve on

a different time scale compared to the nonlinear activation functions of the hidden

units. Thus, as the hidden layers activation functions evolve slowly in accordance

with some nonlinear optimization strategy, the output layers weights adjust them-

selves rapidly through a linear optimization strategy. The important point to note

is that the different layers of an RBF network perform different tasks, and so it is

reasonable to separate the optimization of the hidden and output layers of the net-

work by using different techniques, and perhaps operating on different time scales.

There are different learning strategies that can be followed in the design of an RBF

network, depending on how the centers of the radial basis functions of the network

are specified. Essentially following three approaches are in use:

• Fixed centers selected at random

• Self-organized selection of centers

• Supervised selection of centers

2.3.3 Probabilistic Neural Network

The Probabilistic neural network (PNN) was first proposed in [59]. The development

of PNN relies on the Parzen window concept of multivariate probability estimates.

The PNN combines the Bayes strategy for decision-making with a non-parametric

estimator for obtaining the Probability Density Function [60]. The PNN architecture

includes four layers; input, pattern, summation, and output layers. The input nodes

are the set of measurements. The second layer consists of the Gaussian functions
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formed using the given set of data points as centers. The third layer performs

an average operation of the outputs from the second layer for each class. The

fourth layer performs a vote, selecting the largest value. The associated class label

is then determined. The input layer unit does not perform any computation and

simply distributes the input to the neurons. The most important advantages of

PNN classifier are as below:

• Training process is very fast

• An inherent parallel structure

• It converges to an optimal classifier as the size of the representative training

set increases

• There are not local minima issues

• Training patterns can be added or removed without extensive retraining

2.3.4 Fuzzy Logic

Fuzzy logic with rule based expert system has emerged as a powerful categorization

tool for PQ events that is computationally simple and fairly accurate [61]. Fuzzy

logic system (FLS) has strong inference capabilities of expert system as well as

power of natural knowledge representation. It was developed from the fact that

human brain does not make decisions based on sharp decision boundaries. Fuzzy

logic uses exactly the same concept. Unlike the classical digital logic which uses

either a 0 or 1, fuzzy logic uses a decision boundary which smoothly transitions

between stages. The membership function sets this smooth transition between the

decision boundaries. Classification of signals is made by using a fixed set of fuzzy

rules which consists of fuzzification, inference, composition and defuzzification. The

basic block diagram of fuzzy logic system is shown in Fig. 2.2.

Approaches which combine both neural networks and fuzzy logic are recently

being published in [62–65]. Liao Y and Lee J.B presented a novel approach of

using a fuzzy-expert system for automated detection and classification of power

quality disturbances [66]. Fuzzy logic is used for the classification of PQ disturbance

signals. A combination of Fourier and wavelet based techniques is used to the
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Figure 2.2: Block diagram of Fuzzy logic system

detection of signals. They compared the classification results with those of using

ANN and proved that fuzzy logic is an efficient tool for the classification of power

signal disturbances in terms of computational efficiency and accuracy.

In [64], the use of a Fourier linear combiner and a fuzzy expert system for the

classification of signals is proposed. A Fourier linear combiner estimates the nor-

malized peak amplitude of the voltage signal and its rate of change. These values

are given as input to the fuzzy expert system which classifies the disturbances based

on the rules formulated. Even though this system seems to be computationally sim-

ple compared with using WTs and ANN or FL, the authors have not provided the

computational error efficiency or other comparison strategies which could prove its

efficiency over the existing methods.

The main disadvantage of fuzzy classifier is that system time response slows

down with the increase in number of rules. If the system does not perform satisfac-

torily, then the rules are reset again to obtain efficient results i.e. it is not adaptable

according to the variation in data. The accuracy of the system is dependent on

the knowledge and experience of human experts. The rules should be updated and

weighting factors in the fuzzy sets should be refined with time. Neural networks,

genetic algorithms, swarm optimization techniques, etc. can be used to for fine tun-

ing of fuzzy logic control systems.
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2.3.5 Support Vector Machine

Support vector machines (SVMs), which are relatively recent development, are a

set of related supervised learning methods, introduced in the last decade, for pat-

tern recognition and regression, and belong to a family of generalized linear classi-

fiers [8, 67–70]. In another terms, SVM is a classification and regression prediction

tool that uses machine learning theory to maximize predictive accuracy while au-

tomatically avoiding over-fit to the data. SVMs are based on minimization of the

misclassification probability of unseen patterns with an unknown probability distri-

bution of data and have solid theoretical foundation rooted in statistical learning

theory. Real world problems often require hypothesis spaces that are more complex

than those using linear discriminants. SVMs are able to find non-linear boundaries

if classes are linearly non-separable.

The main issue of interest in using SVM for classification is its generalization

performance. SVM performs better than neural networks in terms of generaliza-

tion. Applications within power systems using SVM have been reported in [71–74].

In [69], a classifier based on radial basis function (RBF) network and SVM has been

proposed and compared for classification of four classes of PQ disturbances. It is

claimed that the SVM classifier is particularly effective in the automatic classifi-

cation of voltage disturbances. The investigation revealed that the SVM network

has satisfactory generalization ability and is able to recognize sags and other distur-

bances correctly, for the wide range of variable parameters. In another work, SVM

based algorithm has been proposed for classification of common types of voltage sag

disturbances [75]. The results have shown high classification accuracy which implies

that the SVM classification technique is an attractive choice for classification of

voltage sag and other PQ disturbances. It has also been found that the accuracy of

the proposed method is also dependent on the features given to the classifier. The

other advantage of SVM based system is that it is straight forward to extend the

system when new types of disturbances are added to the classifier.

Bollen et al proposed a method based on statistical learning and SVMs for classi-

fication of five common types of voltage disturbances [76]. Here, the SVM classifier

demonstrated high performance even when training data and test data originate

from different networks. Using features from both time domain (RMS signatures)
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and frequency domain (harmonic magnitudes and total harmonic distortions), SVM

can effectively characterize the disturbance classes. SVM has originally designed for

binary classification and effectively extending it for multiclass classification is still

an ongoing research issue. In [77], wavelets and fuzzy support vector machines are

used to automatically and classify power quality (PQ) disturbances.

2.3.6 Relevance Vector Machine

Michael E. Tipping proposed Relevance Vector Machine (RVM) in 2001 [78]. It

assumes knowledge of probability in the areas of Bayes’ theorem and Gaussian dis-

tributions including marginal and conditional Gaussian distributions. RVMs are

established upon a Bayesian formulation of a linear model with an appropriate prior

that cause a sparse representation. Consequently, they can generalize well and

provide inferences at low computational cost. The main formulation of RVMs is

presented in [78]. New combination of WT and RVMs are suggested in employed

the WT techniques to extract the feature from details and approximation waves.

The constructed feature vectors as input of RVM classifier are applied for training

the machines to monitoring the power quality events. The feature extracted from

various PQ signals are as follow:

• Standard deviation of level 2 of detail.

• Minimum value of absolute of level n of approximation. ( n is desirable de-

composition levels)

• Mean of average of absolute of all level of details.

• Mean of disturbances energy.

• Energy of level 3 of detail.

• RMS value of main signal.

In [79], it is seen that RVM offers an excellent compromise between accuracy

and sparsity of the solution, and reveal itself as less sensitive to selection of the free

parameters. Some disadvantages of RVM are also pointed, such as the unintuitive
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confidence intervals provided and the computational cost.

Furthermore in [80], a hidden Markov model (HMM) for classifying disturbances

is presented. The rule based method classifies time-characterized-feature distur-

bances and the wavelet packet-based HMM is used for the frequency-characterized-

feature power disturbances. The optimum way of classifying power disturbance

events using the HMM is the ML method. On the other hand, in [19], the nearest-

neighbour (NN) pattern recognition technique is implemented online to classify dif-

ferent disturbances and evaluate the efficiency of the extracted features. In [27], the

following pattern recognition techniques: minimum Euclidean distance classifier, NN

and ANN are compared. Inductive learning by using decision trees is introduced

in [81]. In [82], dynamic time warping (DTW) algorithm is used and Higher Or-

der Statistics (HOS) based method for PQ disturbance classification is reported in

and [83].

2.4 Conclusion

In this chapter, a brief literature survey of the recent state-of-the-art PQ disturbance

classification methods are presented. All the methods have their pros and cons. In

order to handle the practical situations of real life application, a PQ disturbance

classification method, apart from providing simplicity in computation, is needed to

be capable of producing optimal results with improved overall classification accuracy

for a multi class problem. Thus, the development of an effective feature set capable

of classifying multi class PQ disturbances is still a challenging problem.



Chapter 3

A METHOD FOR CLASSIFICATION
OF POWER QUALITY
DISTURBANCES EXPLOITING
HIGHER ORDER STATISTIC
ANALYSIS IN EMD DOMAIN

Introduction

For the purpose of classifying Different PQ disturbances, a training database is

needed to be prepared consisting of template PQ signals of different classes. The

classification task is based on comparing a test EEG signal with template data. It is

obvious that considering PQ disturbance signals themselves would require extensive

computations for the purpose of comparison. Thus, instead of utilizing the PQ

disturbance signals, some characteristic features are extracted for preparing the

template. It is to be noted that the classification accuracy strongly depends upon

the quality of the extracted features.

In literature, there exist a numerous methods to extract feature vector, such

as Fourier transform, Short time fourier transform, wavelet transform, S transform,

Hilbert transform, Empirical mode decomposition etc. Designing a feature set which

is capable of extracting distinguishable information to detect PQ disturbances data

is not an easy task. Therefore, the main focus of this thesis is to develop an effective

feature extraction algorithm.

Unlike FT or wavelet, EMD is intuitive and adaptive, with basic functions de-

rived fully from the data. The computation of EMD does not require any previously

known value of the signal. As a result, EMD is especially applicable for nonlinear

and non-stationary signals, such as PQ disturbances. In this chapter, we endeavored
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Figure 3.1: Block diagram of the proposed method

to develop the means by which appropriate features can be selected to improve the

efficiency of classification. Higher order statistics (HOS) of the extracted intrinsic

mode functions (IMF), such as variance, skewness and kurtosis are utilized to form

the feature vector. The feature set thus obtained is then fed to the Probabilistic

Neural Network (PNN) and k-Nearest Neighbor (kNN) classifiers for classifying the

multi class PQ disturbance signals [84]. The block diagram of the proposed method

described in this Chapter is shown in Fig. 3.1.

3.1 Proposed Method

Let us consider a pure power system signal represented by

x(t) = E sinωct (3.1)

here, E represents the amplitude and

ωc = 2πf (3.2)

f symbolizes fundamental frequency of 50 Hz. Different types of power quality sig-

nals sag, swell, fluctuation, interruption, transient, harmonics, sag with harmonics,

swell with harmonics, spike and notch are considered in this thesis. The mathemat-

ical models that are used to characterize different types of PQ disturbances to the
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power signal x(t) are presented in Table 3.1. Hereafter, the PQ disturbance signal

is also symbolized as x(t).

The proposed method consists of two major steps, namely, feature extraction

and classification.

3.2 Feature Extraction

3.2.1 Empirical Mode Decomposition

A function is considered to be an IMF if it satisfies two conditions; first, in the whole

data set, the number of local extrema and that of zero crossings must be equal to

each other or different by at most one and second, at any point, the mean value

of the envelope defined by the local maxima and that defined by the local minima

should be zero. The systematic way to decompose the data into IMFs, known as

the as sifting process, is described as follows:

i. All the local maxima of the data are determined and joined by cubic spline line

thus constructing an upper envelope.

ii. All the local minima of the data are found and connected by cubic spline line to

obtain the lower envelope.

iii. The mean m1 of both the envelopes are calculated and the difference between

the PQ disturbed signal x[t] and m1 is computed as h1[t].

h1[t] = x[t]−m1 (3.3)

If h1[t] satisfies the conditions of IMF, then it is the first frequency and am-

plitude modulated oscillatory mode (IMF) of x[t].

iv If h1[t] dissatisfies the conditions to be an IMF, it is treated as the data in the

second sifting process, where steps i, ii and iii are repeated on h1[t] to derive

the second component h2[t] as:

h2[t] = h1[t]−m2 (3.4)

in which m2 is the mean of upper and lower envelopes of h1[t].
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Table 3.1: Models of Power Quality Disturbance Signals
Disturbance Equations Parameters

Normal x(t) = E sinωct u(t) is the unit function

Sag x(t) = E[1− β{u(t− t1)− u(t− t2)}] sinωct 0.1 ≤ β ≤ 0.9,
T ≤ (t2 − t1) ≤ 9T

Swell x(t) = E[1 + β{u(t− t1)− u(t− t2)}] sinωct 0.1 ≤ β ≤ 0.9,
T ≤ (t2 − t1) ≤ 9T

Flicker x(t) = E[1 + β sin(2παt)] sinωct 0.1 ≤ β ≤ 0.2,
5Hz ≤ α ≤ 20Hz

Interruption x(t) = E[1− β{u(t− t1)− u(t− t2)}] sinωct 0.9 ≤ β ≤ 1,
T ≤ (t2 − t1) ≤ 9T

Transient x(t) = E[sinωct + βe(t − t1/τ) sin{2πfn(t −
t1)}{u(t2)− u(t1)}]

0.1 ≤ β ≤ 0.9,

0.5T ≤ (t2 − t1) ≤ 3T ,
300Hz ≤ fn ≤ 900Hz,
8ms ≤ τ ≤ 40ms

Harmonics x(t) = E[sinωct+ β3 sin 3ωct+ β5 sin 5ωct] 0.1 ≤ β ≤ 0.9,
T ≤ (t2 − t1) ≤ 9T ,
0.05 ≤ β3, β5 ≤ 0.15

Sag with Har-
monics

x(t) = E[1 − β{u(t − t1) − u(t − t2)}] ∗ [sinωct +
β3 sin 3ωct+ β5 sin 5ωct]

0.1 ≤ β ≤ 0.9,

T ≤ (t2 − t1) ≤ 9T ,
0.05 ≤ β3, β5 ≤ 0.15

Swell with
Harmonics

x(t) = E[1 + β{u(t − t1) − u(t − t2)}] ∗ [sinωct +
β3 sin 3ωct+ β5 sin 5ωct]

0.1 ≤ β ≤ 0.9,

T ≤ (t2 − t1) ≤ 9T ,
0.05 ≤ β3, β5 ≤ 0.15

Spike x(t) = E[sinωct−sign(sinωct)×{
∑9

n=0 κ×{u(t−
(t1 + 0.02n))− u(t− (t2 + 0.02n))}}]

0.1 ≤ κ ≤ 0.4,

0 ≤ (t2, t1) ≤ 0.5T ,
0.01T ≤ (t2−t1) ≤ 0.05T

Notch x(t) = E[sinωct+sign(sinωct)×{
∑9

n=0 κ×{u(t−
(t1 + 0.02n))− u(t− (t2 + 0.02n))}}]

0.1 ≤ κ ≤ 0.4,

0 ≤ (t2, t1) ≤ 0.5T ,
0.01T ≤ (t2−t1) ≤ 0.05T
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v Let after w cycles of operation, if hw[t], given by

h2[t] = h1[t]−m2 (3.5)

becomes an IMF, it is designated as c1[t] = hw[t], the first IMF component of

the original signal.

vi. Subtracting c1[t] from x[t], r1[t] is calculated as

r1[t] = x[t]− c1[t] (3.6)

which is treated as the original data for the next cycle for calculating the next

IMF.

vii. Repeating the above process for L times, L no. of IMFs is obtained along with

the final residue rL[t]. A popular stopping criteria for the sifting process is to

have the value of standard difference (SD) within a threshold as:

SD =
N∑

n=1

|hw−1[t]− hw[t]|2

hw[t]2
(3.7)

here, w and w1 are index terms indicating two consecutive sifting processes.

Thus the decomposition process is stopped since rL[t] becomes a monotonic

function from which no more IMF can be extracted. To this end, for L level

of decomposition, the PQ disturbance signal x[t] can be reconstructed by the

following formula,

x[t] =
L∑

k=1

ck[t] + rL[t] (3.8)

3.2.2 IMF Selection

The PQ disturbance signals, namely sag and swell, each results in six IMFs through

EMD analysis, whereas EMD decomposition of the other PQ disturbance signals,

such as harmonics and fluctuation, each provides only one or two IMFs. Figs. 3.2

and 3.3 show sag and swell signals and their empirically decomposed IMFs, respect-

edly. From these two figures, it is seen that as the level of an IMF increases, the

corresponding data becomes smoother. Since, most of the frequency content of al-

most all the PQ disturbance signal x(t)is found to lie in the first three IMFs, in this

work, we are motivated to exploit the first three IMFs for feature extraction. For
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Figure 3.2: Voltage Sag and It’s Intrinsic Mode Functions

the PQ disturbance signals that can be decomposed into one or two IMFs, we will

consider the remaining IMFs as zero

3.2.3 Higher Order Statistics

The use of Higher Order statistics (HOS) is motivated by the fact that distribu-

tion of the samples of a data set is often characterized by its level of dispersion,

asymmetry and concentration around the mean [85], [86]. For an N -point data,

X = x1, x2, ..., xN , the corresponding variance (σ2), skewness (β1) and kurtosis (β2)
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Figure 3.3: Voltage Swell and It’s Intrinsic Mode Functions
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are calculated as

σ2 =
1

N

N∑
n=1

(xi − µ)2;µ =
1

N

N∑
n=1

(xi) (3.9)

β1 =
1

N

N∑
n=1

(
xi − µ
σ

)3 (3.10)

β2 =
1

N

N∑
n=1

(
xi − µ
σ

)4 (3.11)

where, µ denotes the sample mean of the data. If skewness is negative, the data

is spread out more to the left of the mean than to the right, while a positive skew-

ness indicates spreading more to the right. For a perfectly symmetric distribution

about mean, the skewness is zero. The kurtosis of a data with a histogram having

a sharper peak and longer, fatter tails is greater than that for a distribution having

a more rounded peak and shorter thinner tails. Notice that the variance itself is

the 2nd order moment of the data, whereas the skewness and kurtosis are computed

from the 2nd, 3rd and 4th order moments.

3.2.4 Statistical Analysis

The histograms of pure signals and that of third IMF (IMF3) of PQ disturbance

signals are plotted in Figs. 3.4 and 3.5, respectively. Note that the shapes of the PQ

disturbance signals are different from each other. It is expected since the values of

the corresponding variance, skewness and kurtosis are different from each other and

these quantities are representative of the dispersion, asymmetry and peakedness of

a data. The discriminatory attributes of these quantities are more prominent in the

EMD domain as seen from the shape of the corresponding histograms and the values

of the corresponding variance, skewness and kurtosis. Thus, one may expect that

these statistical measures would be more effective if computed in the EMD domain

rather than in spatial domain for classifying the PQ disturbance signals.

For the purpose of analysis, each PQ disturbance signals are decomposed into

IMFs using the algorithm described in Section 3.2.1 and HOS are computed for the

first three IMFs. For the sake of comparison, HOS values are also calculated for the

PQ disturbance signals. Table 3.2 shows the HOS values obtained for the different

PQ disturbance signals. The HOS values for IMF1, IMF2 and IM3, respectively,
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(a) Normal Signal (b) Sag

(c) Swell (d) Interruption

(e) Flicker (f) Transient

(g) Harmonics (h) Sag with Harmonics

(i) Swell with Harmonics (j) Spike

(k) Notch

Figure 3.4: Histograms of Pure of PQ disturbance signals
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(a) Normal Signal (b) Sag

(c) Swell (d) Interruption

(e) Flicker (f) Transient

(g) Harmonics (h) Sag with Harmonics

(i) Swell with Harmonics (j) Spike

(k) Notch

Figure 3.5: Histograms of Third IMF of PQ disturbance signals
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Table 3.2: HOS Values of PQ disturbance Signals
Classes Varience Skewness Kurtosis
Normal Signal 0.5 -2.77E-16 0.375
Sag 0.167 1.11E-18 0.304
Swell 0.6594 8.19E-18 -0.6358
Flicker 0.5147 9.36E-04 -0.7302
Interruption 0.45 -1.78E-17 -0.27
Transient 0.5287 -0.152 -0.3586
Harmonics 0.5 -2.66E-16 0.4453
Sag with Harmonics 0.3734 -7.78E-18 -0.189
Swell with Harmonics 0.6186 -1.61E-16 -0.6304
Spike 0.5114 -0.0027 -0.3997
Notch 0.4781 -0.0059 -0.3391

are summarized in Tables 3.3, 3.4 and 3.5 for all PQ disturbance signals. It is seen

that the values are clearly distinguishable for the different sets of PQ signals. Also,

note that the difference becomes larger in the EMD domain as compared to that of

the pure signal. It is seen that kurtosis gives significant statistical difference among

eleven groups for PQ signals as well as for the first three IMFs. Varience and skew-

ness do the same work.

Therefore, in this work, from the three extracted IMFs, nine features based on

HOS, such as variance, skewness and kurtosis are derived to form the feature vector

for classifying PQ disturbance signals.

3.2.5 Classification

In this thesis, we employ two different classifiers to determine the efficacy of the

feature vector in classifying different PQ disturbance signals.

Probabilistic Neural Network Classifier

Probabilistic neural networks (PNNs) are a kind of radial basis network suitable

for classification problems. The PNN model belongs to the family of supervised

learning networks, but it is distinct from others in the following manner.

1. It is implemented using the probabilistic model with a Gaussian mapping

function.
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Table 3.3: HOS Values of IMF1 of PQ Disturbance Signals
Classes Varience Skewness Kurtosis
Normal Signal 0 0 0.5
Sag 0.0018 3.60E-03 0.148
Swell -0.0025 0.0022 0.66
Flicker -0.0095 -9.93E-04 0.523
Interruption -0.0043 0.011 0.417
Transient -7.26E-04 0.0053 0.8284
Harmonics -4.74E-04 2.25E-04 0.0184
Sag with Harmonics -1.20E-03 -0.0012 7.40E-03
Swell with Harmonics -1.8E-03 -0.0034 0.0187
Spike 3.7E-03 -8.74E-04 0.0174
Notch -3.403E-03 3.23E-05 0.149

Table 3.4: HOS Values of IMF2 of PQ Disturbance Signals
Classes Varience Skewness Kurtosis
Normal Signal 0 -2.78E-16 0
Sag 0.0057 7.80E-03 3.44E-05
Swell 4.58E-04 3.29E-04 1.49E-06
Flicker 9.44E-05 3E-03 1.03E-04
Interruption 0.0176 -8.90E-03 -2.72E-05
Transient 0.2426 0.0369 -0.0011
Harmonics 1.17E-05 2.01E-05 4.20E-04
Sag with Harmonics 8.96E-04 -2.56E-06 2.47E-04
Swell with Harmonics -1.8E-03 -1.82E-05 3.30E-05
Spike 1.92E-04 1.66E-04 -4.04E-04
Notch 5.803E-06 2.92E-04 6.77E-04

Table 3.5: HOS Values of IMF3 of PQ Disturbance Signals
Classes Varience Skewness Kurtosis
Normal Signal -0.375 0 0
Sag 0.0188 -6.54E-05 -1.99E-05
Swell -0.64 -3.97E-07 -2.89E-07
Flicker -0.4085 -1.98E-04 -9.83e-09
Interruption -0.2277 -1.93E-03 -4.61E-04
Transient 0.0767 -0.0013 0.0741
Harmonics -3.89E-04 -0.4124 -1.86E-10
Sag with Harmonics -7.21E-05 -0.1851 -1.06E-06
Swell with Harmonics -4.01E-04 -0.6012 1.28E-06
Spike -4.00E-04 -0.3125 -3.29E-10
Notch -3.38E-04 -0.1807 -4.74E-11
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2. No requirement of setting initial weights of the network. Only the spread of

the Gaussian function needs to be specified.

3. No relationship between learning processes and recalling processes.

4. The difference between the inference vector and the target vector are not used

to modify the weights of the network.

High learning speed of PNN model makes it suitable for diagnosing PQ events.

Fig. 3.6 shows architecture of PNN model composed of radial basis layer and the

competitive layer. For a classification application, the training data is classified

according to their distribution values of probabilistic density function (PDF). A

simple PDF is shown as

fk(x) =
1

Nk

Nk∑
j=1

exp(
−‖X −Xkj‖

2σ2
) (3.12)

Modifying and applying Eqn. 3.12 to the output vector H of the hidden layer in the

PNN is as

Hh = exp(
−
∑

i(Xj −W xh
ih )2

2σ2
) (3.13)

netj =
1

Nk

∑
h

W hy
hj Hh (3.14)

netj = maxk(netk) (3.15)

then yj = 1 or yk = 0, where i = number of input layers;

hj = number of hidden layers;

j = number of output layers;

k = number of training examples;

N = number of classifications (clusters);

σ = smoothing parameter (standard deviation);

X = input vector;

‖X −X
kj
‖ = Euclidean distance between the vectors X and Xkj ;

i. e. ‖X −X
kj
‖=

∑
i(X −Xkj

)2

W xh
ih = connection weight between the input layer X and and the hidden layer H

W hy
hj = connection weight between the hidden layer H and the output layer Y
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Figure 3.6: Architecture of PNN

k-nearest Neighbor Classifier

k-nearest neighbor (k-NN) is the simplest, linear and robust classifier. Usually the

classifier works by comparing a new sample (testing data) with the baseline data

(training data). The classifier finds the k- neighborhood in the training data and

assign class which appear more frequently in the neighborhood of k. The value of k

needs to be varied in order to find the match class between training and testing data.

Therefore, an object is classified by a majority vote of its neighbors, with the object

being assigned to the class most common amongst its k nearest neighbors, where k

is a typically small positive integer. The default value of k is 1. If k = 1, then the

object is simply assigned to the class of its nearest neighbour. In a k-NN classifier,

different types of mathematical distances is used to rate all neighbors. Among

them, k-NN classifier with Euclidian distance is attractive in the sense of reducing

the processing time.The default neighborhood setting is Euclidean and nearest. The

Euclidean distance is used to find the object similarity in the k-neighborhood.

In this thesis, the value of k is varied from 1 to 10. The k-NN classifier is also

evaluated by changing the default setting of distance from Euclidean to cityblock,

cosine and correlation. Meanwhile, the k-NN classifier rule is changed from the

default setting of nearest to random and consensus.
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3.3 Conclusion

PQ disturbance signals are the most important signal which is analyzed for the

diagnosis of any abnormal situation. Since conventional analysis is found inadequate

to describe the characteristics of a non-stationary signal, in this chapter, we propose

to transform the PQ disturbance signals by EMD. The IMFs thus obtained from

the EMD transformed data are exploited to formulate a feature vector consisting of

varience, skewness and kurtosis which can better model detail characteristics of the

PQ disturbance data. The feature vector is fed to Probabilistic Neural Network and

k Nearest Neighbor classifier in order to classify PQ disturbance of ten different types

along with normal pure PQ signal. A number of simulations are carried out using

model equations of each events. It is shown that the proposed method based on HOS

in the EMD domain is capable of producing greater efficiency in comparison to that

obtained by using some state-of-the-art methods of PQ disturbance classification

using the same classifiers and the data set.



Chapter 4

SIMULATION RESULTS AND
PERFORMANCE EVALUATION

Performance evaluation of the proposed method for classifying eleven types of PQ

disturbances is an important task. For this purpose the evaluation criteria taken

into account in this Chapter are clustering analysis, confusion matrix, overall ef-

ficiency calculation, overall efficiency with increased training and testing data set

and required CPU time. State-of- the-art S-transform and Hilbert-Huang trans-

form (HHT) based methods are used for performance comparison with the proposed

method.

4.1 Data set and Simulation Conditions

In the proposed method, PQ disturbance signals are generated using MATLAB

based on the equations in Table 3.1 with a sampling frequency of 2 kHz. Eleven

types of PQ disturbance signals are termed as:

1. C1- Normal,

2. C2- Sag,

3. C3 - Swell,

4. C4- Flicker,

5. C5 - Interruption,

6. C6- Transient,

7. C7- Harmonics,
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8. C8- Sag with harmonics,

9. C9- Swell with harmonics,

10. C10- Spike,

11. C11- Notch.

For each of the above classes, 135 signals are considered, 35 signals are selected

for training and the rest of the signals are left for testing and validation.

4.2 Comparison Methods

For the purpose of comparison, we use state-of-the-art S Transform and HHT based

methods [42], [52]. We have implemented the S transform and HHT based methods

independently using the parameters specified therein.

Extracted features based on S-transform according to [42] are-

• Standard deviation of magnitude contour.

• Energy of the magnitude contour.

• Standard deviation of the frequency contour.

• Energy of the of the frequency contour.

• Standard deviation of phase contour.

In [42], the PNN classifier is employed for classification of the various PQ disturbance

signals.

Combining EMD and HT, HHT is suggested in [52]. The HT is applied to first

three IMF extracted from the EMD to assess instantaneous amplitude and phase

which are then employed for feature vector formulation. The feature vector set is

formed by considering -

• Energy of the elements corresponding to magnitude of the Hilbert array at

each sample .

• Standard deviation of the amplitude contour.

• Standard deviation of phase contour.

PNN classifier is also used for the classification purpose for this method.
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4.3 Performance Evaluation Criteria

For the performance evaluation of the proposed and comparison methods, criteria

considered in our simulation study are:

• clustering analysis

• efficiency derived from confusion matrix

• increased training and testing data set

• required CPU time

Clustering Analysis

Clustering Analysis is performed to determine the goodness of the proposed feature.

The effectiveness of the proposed feature sets in classifying different types of PQ

disturbances in terms of clusters is justified by the inter-class separability and intra

class compactness of the feature. Intra class compactness gives us the idea about

how closely the feature sets of a particular event are related. Interclass separability is

a measure that exhibits how clearly signals of the different classes remain separated

from each other.

Confusion Matrix

Confusion matrix is a form of representing the result from a classification exercise.

The rows in the matrix stand for the actual classes to be tested and columns provide

the class classified by a method. In particular, any [row, column] entry in the

confusion matrix indicates the number of cases from the test database that belongs

to the class corresponding to the row but classified as the class corresponding to the

column. In Fig. 4.1, a general confusion matrix for a two class problem (C1 and C2)

is shown, where TP , FP , FN and TN are represented for class C1.

In general, TPC1, true positive for any class C1, denotes the number of testing

cases, which are correctly classified as class C1.

FPC1, false positive for any class C1, measures the number of testing cases, which

are incorrectly classified as class C1.

FNC1, false negative for any class C1, measures the number of testing cases,

which are incorrectly classified as other than class C1.
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Figure 4.1: Confusion Matrix for two class with respect to C1

TNC1, true negative for any class C1, denotes the number of testing cases, which

are correctly classified as other than class C1.

So,the efficiency for C1 is calculated using the formula given as

EfficiencyC1 =
TPC1

TPC1 + FPC1

(4.1)

Considering efficiency of all classes, overall efficiency for a method is calculated as

OverallEfficiency =
Numberofeventsclassifiedcorrectly

Totalnumberofevents
(4.2)

Increased training and testing dataset

The performance of a classification method in classifying different PQ disturbance

signals can be evaluated in terms overall efficiency with the random selection of

increased training and testing dataset.

Required CPU time

CPU time is an important factor that should be considered for the evaluation of

performance of a method. Method which is faster than the other method, can be

considered as an efficient one.

4.4 Performance Evaluation

This section presents the results of the proposed method and its performance is

compared with the comparison methods on the basis of the following performance

evaluation criteria as described before.
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4.4.1 Clustering Analysis

The proposed feature sets for Sag and Swell events are shown in Figs. 4.2 and 4.3.

In these figures, the feature sets of 10 data of each class are plotted. It is seen from

Figs. 4.2 and 4.3 that among different data of a class, most of the feature elements

show better resembles in terms of their values . It is found from Figs. 4.2 and 4.3

that the feature elements of the proposed feature set provide stronger compactness

as a feature while comparing different data of the same class. In Fig. 4.4, plots of

feature sets consisting of different classes are shown. This figure attests that the

proposed feature set is capable of providing the high separability among different

classes.

4.4.2 Performance Comparison using Confusion Matrix Anal-
ysis

The confusion matrix derived for the S Transform based method using PNN classifier

is represented in Table 4.1. In this table, the diagonal entries stand for the number

of cases when a particular class of PQ disturbance signal is correctly classified. It

can be seen from the diagonal entries of the confusion matrix in Table 4.1 that S

Transform based method is unable to distinguish among PQ disturbance signals and

misclassification occurs in case of swell (C3),flicker (C4), transient (C6), harmonics

(C7), swell with harmonics (C9), spike (C10) and notch (C11).

Table 4.2 represents the confusion matrix derived for the HHT based method

using PNN classifier. It is vivid from Table 4.2 that HHT based method misclassifies

some interruption (C5) and sag with harmonics (C8) signals. It also misclassifies a

small number of sag(C2),harmonics (C7), spike (C10) and notch (C11) data.

Table 4.3 shows the confusion matrix derived for the proposed method using

kNN Classifier. It is demonstrated from Table 4.3 that HOS based EMD domain

features of the proposed method are able to classify all of the PQ disturbance signals

almost perfectly.

Classification performance in terms of overall efficiency (%) resulting from the

proposed method and other comparison methods using PNN and k-NN classifiers

are calculated over all classes and are presented in Table 4.4. Compared to the other

methods, the proposed method shows higher overall efficiency (%) while using PNN
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Figure 4.2: Feature sets of different data of the same class (sag)

Figure 4.3: Feature sets of different data of the same class (swell)
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Figure 4.4: Feature sets of different classes (6 classes)

classifier. For each method, overall efficiency (%) increases while using the k-NN

classifier instead of the PNN classifier. However, the proposed method is found

provide the highest overall efficiency (%) using the k-NN classifier.

4.4.3 Performance Comparison with Increased Training and
Testing dataset

Classification accuracy can be further enhanced by using higher number of events

in the training and testing dataset. Table 4.5 shows the testing results in terms of

overall efficiency (%) for the proposed method using k-NN classifier when training

and testing dataset are made double (70 events of each class for training and 200

events of each class for testing). By increasing the training and testing dataset,

classification performance in terms of overall efficiency (%) resulting from the pro-

posed method and other comparison methods using PNN and k-NN classifiers are

calculated over all classes and are presented in Table 4.6. As expected, it is found

from comparing Tables 4.4 and 4.6 that the overall efficiency (%) of each method

increases with the increased training and testing dataset using both PNN and k-NN

classifiers. It is noticeable from Table 4.5 and Table 4.6 that the overall efficiency
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Table 4.1: Confusion Matrix for the S-Transform based Method using PNN Classifier
Input
Classes

Classified Classes

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
C1 100 15 26 2 5
C2 97
C3 58 44
C4 54 1 28
C5 3 100
C6 5 62
C7 71 47
C8 3 97 1
C9 42 51
C10 26 11 72
C11 29 1 52
Classification 100 97 58 54 100 62 71 97 51 72 52
Efficiency(%)
Classification 0 3 42 46 0 38 29 3 49 28 48
Error(%)
Overall 74.0
Efficiency(%)

Table 4.2: Confusion Matrix for the HHT based Method using PNN Classifier
Input
Classes

Classified Classes

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
C1 100 10 2
C2 95 2
C3 100
C4 5 98 4 1
C5 86 1
C6 100
C7 97 2
C8 82
C9 2 100
C10 3 98 4
C11 1 16 96
Classification 100 95 100 98 86 100 97 82 100 98 96
Efficiency(%)
Classification 0 5 0 2 14 0 3 18 0 2 4
Error(%)
Overall 95.6
Efficiency(%)
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Table 4.3: Confusion Matrix derived for the Proposed Method using kNN Classifier
Input
Classes

Classified Classes

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
C1 100 2
C2 97
C3 100
C4 100
C5 3 98 1
C6 99
C7 97 2
C8 3 98
C9 100
C10 100
C11 100
Classification 100 97 100 100 98 99 97 98 100 100 100
Efficiency(%)
Classification 0 3 0 0 0 2 1 3 2 0 0
Error(%)
Overall 99
Efficiency(%)

Table 4.4: Performance Comparison of the Proposed and Other Methods using PNN
and k-NN Classifiers

Method Overall efficiency (%)
PNN Classifier kNN Classifier

S-transform based Method 74.5 81.2
HHT based Method 95.6 96
Proposed Method 98.8 99

(%) enhances to 99.6% for our proposed method using k-NN classifier in such a

condition of training and testing dataset..

4.4.4 Required CPU time

The required CPU time for the proposed and other comparison methods using PNN

and kNN classifiers are summarized in Table 4.7. Although the S-transform based

method shows less CPU time for both the classifiers, this feature is not found attrac-

tive considering its least overall efficiency. However, compared to the HHT based

method, it can be seen that proposed method requires much less time to classify a

particular input data during testing using both PNN and kNN classifiers. Moreover,

it is clearly observable that the proposed feature set resulting from the HOS in the
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Table 4.5: Confusion Matrix derived for the Proposed Method using kNN Classifier
with Increased Training and Testing Dataset
Input
Classes

Classified Classes

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
C1 200
C2 200
C3 200
C4 200
C5 200
C6 200
C7 193 2
C8 7 198
C9 200
C10 200
C11 200
Classification 100 100 100 100 100 100 96.5 99 100 100 100
Efficiency(%)
Classification 0 0 0 0 0 0 3.5 1 0 0 0
Error(%)
Overall 99.6
Efficiency(%)

Table 4.6: Performance Comparison of the Proposed and Other Methods using PNN
and k-NN Classifiers with Increased Training and Testing Dataset

Method Overall efficiency (%)
PNN Classifier kNN Classifier

S-transform based Method 78.6 84.4
HHT based Method 97.2 98.3
Proposed Method 98.5 99.6

EMD domain when fed to kNN classifier can effectively classify eleven kinds of PQ

disturbances not only with the highest overall efficiency but also with the least CPU

time.

Table 4.7: Comparative Analysis of Required CPU time
Method Required CPU time in second

PNN Classifier kNN Classifier
S-transform based Method 0.0114 0.0027
HHT based Method 0.12 0.0013
Proposed Method 0.113 0.00128
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4.5 Performance Comparison under Noisy Con-

ditions

In an electrical power distribution network, the practical data consists of noise;

therefore, the proposed approach has to be analyzed under noisy condition. Gaussian

noise is widely considered in the research of power quality issues.

The white noise is added with pure PQ disturbance signals and noisy signal

is employed for the feature extraction using the proposed and other comparison

methods. In particular, in the proposed method, the HOS based features extracted

from the noisy signal are used with 20, 30 and 40 dB noise levels for training and

subsequently testing for the purpose classification via kNN classifier. The resulting

confusion matrix in such noisy conditions is shown in Table 4.8. Table 4.9 shows the

comparative analysis of overall efficiency of classification of the HHT based method

and our proposed method in noisy condition suing both PNN and kNN classifiers.

It is clear from Table 4.8 and Table 4.9 that the performance of the HHT based

is drastically reduced, whereas the classification results of the proposed method,

particularly using the kNN classifier remain quite satisfactory even if different noise

levels are included during training and testing.

4.6 Conclusion

In this chapter, the performance of the proposed method is evaluated by consider-

ing various criteria. The proposed method is also compared with two other existing

methods, namely S transform and HHT based methods using PNN and kNN classi-

fiers. It is found that the proposed method is superior in performance in classifying

different PQ disturbance signals in terms of good clustering analysis, higher overall

efficiency in percentage, enhanced overall efficiency with increased number of data

set and lesser required CPU time. For noisy condition, we have find out that though

the overall efficiency of proposed method degrades, it continues to show better per-

formance compared to the HHT based method.
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Table 4.8: Classification Results of the Proposed Method using k-NN Classifier in
Noisy Conditions
Input
Classes

Classified Classes

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
C1 87
C2 88
C3 100
C4 97
C5 3 88
C6 98
C7 87
C8 83
C9 88
C10 95
C11 78
Classification 86 88 97 88 98 88 87 83 88 95 78
Efficiency(%)
Classification 14 12 3 12 2 12 13 17 12 5 22
Error(%)
Overall 90
Efficiency(%)

Table 4.9: Performance Comparison using PNN and k-NN Classifiers in Noisy con-
ditions

Method Overall Efficiency(%)
PNN Classifier kNN Classifier

HHT based Method 52.1 54.2
Proposed Method 85.5 90



Chapter 5

CONCLUSION

5.1 Concluding Remarks

In this thesis, an EMD based approach using the higher order statisics has been

presented to solve the classification problem of different PQ disturbances. In this

thesis, IMFs of the PQ disturbance signals are obtained by using EMD operation.

As most frequency content of the PQ disturbance signals lies in the first three IMFs,

they are selected for further analysis. HOS of the extracted IMFs, such as variance,

skewness and kurtosis are utilized to form the feature vector. The feature set thus

obtained is then fed to the Probabilistic Neural Network (PNN) and k Nearest

Neighbor (k NN) classifiers for classifying the multi class PQ disturbance signals.

For the characterization of PQ disturbance signals, mathematical models of eleven

classes of disturbances are used. In comparison to the other methods using k NN

and PNN classifiers, the more effectiveness of the proposed method in classifying

multi-class PQ disturbance signals has been shown through simulation results with

increased trainibg and testing dataset and even in the presence of noise. Detail

simulation results reveal the effectiveness of the proposed method. It is shown that

the proposed method outperforms some of the state-of-the-art methods with superior

efficacy.

5.2 Contributions of this Thesis

The major contribution of the thesis are,

• Introducing EMD that decomposes the signals of PQ disturbances into IMFs.

This decomposed IMFs can be handled more easily for extracting features.
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• Appropriateness of HOS in the EMD domain are shown for feature extraction

in case of multiclass PQ disturbances classification problem.

• Among two types of classifier, we confirmed that the kNN classifier is the most

suitable for PQ disturbance classification using the proposed feature set due

to its faster processing time and the highest overall efficiency.

• Detail simulations have been carried out in order to investigate the perfor-

mance of the proposed feature set for the classification of different types of

PQ disturbance signals. The performance of our proposed method is com-

pared with state-of-the-art S-tranform and HHT based methods. Simulation

results show that the proposed method is able to classify different types of PQ

disturbance signals with greater overall efficiency even in case of noisy con-

ditions. Moreover, the performance is enhanced with increased training and

testing dataset as expected.

5.3 Scopes for Future Work

The prime goal and contribution of the research of this thesis have been focused

above. However, there are still some scopes for future research as mentioned below:

• In this research, we used Table I which gives us the mathematical models of

eleven class PQ disturbance signals. Our proposed method is needed to be

tested for handling data from various practical situations.

• In future, online PQ classification can be performed using different databases.
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