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ABSTRACT

) This thesis deals with the analytical solutions for the stress and
the displacement components in plane stress and plane strain
elastic bodies under different mixed boundary conditions. Two
dimensional elastic problems are either formulated to solve for two
displacement components from two simultaneous second order partial
differential equations or for a single stress function, known as
Airy stress function, from the biharmonic partial differential
equation. In the first case, solving for two functions
simultaneously is extremely difficult and the method thus has
hardly been used in the stress analysis of elastic bodies. Although
the second formulation provides a better opportunity in seeking
solutions of elastic problems, but it can be used only when the
boundary conditions are known in terms of loadings. Unfortunately,
all problems of elasticity are of mixed boundary conditions
involving known restraints and loading at the boundary and hence
the method of stress function does not provide explicit information
about the stresses near the restrained boundaries.

In this thesis a new formulation for the two dimensional elastic
problems is introduced. The new formulation involves seeking for a
displacement function which satisfies the same blharmonic equation
as that of the stress function but can provide solutions under all
kinds of mixed boundary conditions.

with the help of this new formulation, a number of mixed boundary-
value elastic problems are solved analytically and the solutions
are presented in the form of infinite series forms. The solutions
are also evaluated numerically and the results are presented in the
forms of graphs. The results show that the new approach is sound
and also has opened up a new horizon for seeking solution of mixed
boundary-value elastic problems.
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CHAPTER I
INTRODUCTION

1.1 Preliminary

The theory of elasticity developed into an important branch of

mathematical physics which has found considerable application in

the solution of engineering problems.

In treating statics in theoretical mechanics, it is stated that the

conditions of equilibrium of a body or a system of bodies do not

involve internal forces since they are pairwise mutually

equilibrated on the basis of Newton's third law of equality of

action and counteraction. The theory of elasticity sets forth the

problem of determining internal forces in a solid body. These

forces represent interaction between molecules; they ensure the

existence of a solid body as such, its strength. They also act when

no external forces are applied to the body; these forces are not in

themselves the object of study in the theory of elasticity; under

the action of external forces the body deforms, the mutual position

of molecules changes and so do the distances between them; the

action of external forces that produce deformation gives rise to

additional internal forces.

In many cases, the elementary theories of strength of materials are

not sufficient to describe the stress distribution in engineering

structures. The elementary theory is inadequate to give information

1



regarding local stress near the loads and near the supports of

beams. It fails also in the cases when the stress distribution in

bodies, all the dimensions of which are of the same order, has to

be investigated.

This led to the emergence of a special trend in physics, called

mathematical physics. Among the great number of problems conforming

this new branch of science it is necessary to mention the need for

a profound investigation of the properties of elastic materials and

for the construction of a mathematical theory which would permit

studying as completely as possible the internal forces occuring in

an elastic body under the action of external forces, as well as the

deformation of a body i.e. the change of its shape.

2



1.2 Literature Review

Elementary methods of strength of materials were the primary tools
of the practicing engineers for handling the problems of
engineering structures. However these methods are often found
inadequate to furnish satisfactory information regarding local
stresses near the loads and near the supports of the structures.
The elementary theory gives no means of investigating stresses in
regions of sharp variation in cross section of beams or shafts.
stresses in screw threads, around various shapes of holes in
structures, near contact points on gear teeth, rollers and balls of
bearings, have all remained beyond the scope of elementary
theories. It is thus obvious that, for the designers of modern
machines, recourse to the more powerful methods of the Theory of
Elasticity is an absolute necessity.

Considerable progress has been made in recent year in solving
important practical problems of stress analysis using the methods
of Theory of Elasticity. In cases where a rigorous solution could
not be obtained, approximate methods have been developed. In other
cases, where even approximate methods could not be developed,
solutions have been obtained by using experimental methods.
Photoelastic methods, soap-film methods, application of strain
gages,Moire Fringe are some of these experimental methods applied
in the study of stress concentration at points of sharp variation
of cross-sectional dimensions and at sharp fillets of reentrant
corners. These results have considerably influenced the modern

3
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design of machine parts and helped in many cases to improve the

construction by eliminating weak spots from which crack may start.

The field of elasticity is mainly concerned with the solutions of

two dimensional problems as most of the three dimensional problems

may be resolved into a two dimensional one or remain beyond the

scope of analytical studies and have to be tackled experimentally.

Although the theories of elasticity had long been established, the

solutions of practical problems started mainly after the

introduction of a stress function by G.B. Airr. The Airy stress

function is governed by a fourth order partial differential

equation and the stress components are related to it through its

various second order derivatives. Solutions were initially sought

through various polynomial expressions of the stress function's,U),

but the success of this approach was very limited. Using these

polynomial expressions, an elementary derivation of the effect of

the shearing force on the curvature of the deflection curve of

beams were made by Rankine'.] in England and by Grashof[3] in

Germany. The problem of stress in masonry dams is of great

practical interest and has been attempted by various authors'7."]

using polynomial.expressions for the stress functions. But it

should be noted that the solutions thus obtained do not satisfy the

conditions at the bottom of the dam where it is connected with the

foundation and would predict reasonable values of stress in the

region far away from the foundation on account of Saint-venant's
Principle"].
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The first application of trigonometric series in the solution of

elastic problems using stress function method was given by M.C.

Ribiere in his thesis[4]. Further progress in the application of

these solutions was made by L.N.G. Filon"O]. Several particular

examples were workedby F. Bleich'12]. Using Fourier Series, Beyer[18]

solved the problem of a continuous beam on equidistant supports

under gravity loading. Stress function technique has also been used

by Ribiere"] for analyzing the stress around a circular hole in a

plate, Sadowsky[16]for stresses around a slender hole, Flamant[5]for

stresses around a concentrated load on a straight boundary and

Stokes '19]for stresses around a concentrated load on a beam. For

better understanding of this approach, two examples are cited in

the AppendixA.l and A.2. The first example is the analysis of deep

beams and the second one is a rectangular plate loaded with

parabolic forces.

For complex shapes of boundary and also for restrained boundary,

the difficulties of obtaining analytical solutions become

formidable. These difficulties were partially avoided by resorting

to experimental methods, such as the measurement of extensometers

and strain gages or the photoelastic method. Using photoel.astici ty ,

Hetenyi'21] investigated the stresses in the threads of a bolt and

nut fastening. Most of the experimental investigations of elastic

problems are reported in the "Handbook of Experimental Stress

Analysis", 1950[26]and by Frocht'24] in "Photoelasticity".

5



Numerical methods could not gain much popularity in the field of

elastici ty. This is mainly because, as pointed out by Uddin".], the

boundary conditions in terms of restraints can not be discretized

in term of the stress function. Of course when two dimensional

elastic problems are formulated in terms of displacement components

u and v, the problem of discretization of the conditions at the

restrained boundaries are removed, but the resulting algebraic

equations become ill-conditioned and often diverge in the iterative

method of solutions. Uddin".] numerically solved two of the mixed

boundary-value problems using the displacement formulation and

found that the algebraic equations resulting from

discretization can only be solved if the restraint at the boundary

is specified on more than 25% of the boundary-perimeter. It should

also be pointed out that numerical method is unattractive when the

effect of discontinuity is of major interest in the investigation

which is always the case of mixed boundary-value problems.

6



1.3 Objective of the Thesis

a. Finding a new approach for solving mixed boundary-value plane

stress and plane strain elastic problems through the

introduction of a displacement potential function.

b. Establishing the reliability and suitability of this new

approach through its analytical application.

c. Solutions of specific problems of mixed boundary conditions

for which no exact solution is available at present in the

literature.

1.4 Practical Applications

Although the analytical method developed here is applicable for the

solution of stresses in a plate loaded in its own plane with all

possible boundary conditions, its range of application is fairly

wide.

Though a body has always three dimensions and stresses develop in

three perpendicular planes, two different simplifications may be

made for a wide range of problems. In one class, the body is loaded

by forces applied at the boundary, parallel to the plane of the

body and distributed uniformly over the thickness and the dimension

of the body perpendicular to the plane of loading is small enough

7



to permit the free expansion of the elements of the body in that

direction. This class of problem is known as plane stress problem.

In other class, a similar simplification is possible at the other

extreme when the dimension of the body in the z-direction is very

large or when the two opposite ends of the body are conf ined
between fixed smooth rigid planes, so that displacement in the

axial direction is prevented. Under these circumstances the

problems may be solved for stress in a plane region and they are
called plane-strain problems.

There are many important problems of this kind. For example, a

retaining wall with lateral pressure, a culvert or tunnel, a

cylindrical tube with internal pressure, a cylindrical roller

compressed by forces in a diametral plane as in a roller bearing.

In each case, of course, the loading must not vary along the

length. For better understanding of two types of problems, let us

consider an. example as shown in fig.1. In this figure, if the

thickness b is small enough to

•
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permit free lateral expansion, then it constitutes a plane stress

problem. On the other hand, if the thickness b is very large and

the loading does not vary appreciably along the thickness, then

the expansion in the z-direction is completely prevented and the

problem becomes a plane strain problem.

So, we can resolve many problems of practical importance under any

one of the above mentioned classes. Although, only rectangular

boundary is considered but still it covers many important problems
of practical interest.

9



CHAPTER. II

FORMULATION OF THE PR.OBLEMS

2.1 Introduction

The solution of a problem in elasticity is usually to find the

stress distribution in an elastic body and, in some cases, to find

the strain at any point due to given body forces and given

conditions at the boundary of the body. To determine the stress at

a point, we must find the six stress components. These six

components satisfy the three equations of equilibrium. Since three

equations are not sufficient, we have to take the six relations

defining the strain components in terms of the three displacement

components and the six stress strain relations. Thus we have.

altogether 15 unknowns and 15 equations. This system of equations

is generally sufficient for the solution of an elasticity problem.

Let us take an infinitesimal cubic element from an elastic body

with sides parallel to the coordinate axes. To ensure the

equilibrium of the element, six forces will act on the six

different faces of the element. The forces acting on a face may be

resolved into two components-one perpendicular to the plane of the

face and the other parallel to the face.. The stress component

acting perpendicular to the face is called the normal stress and

usually denoted by "a" with a subscript to indicate its direction

of action. In the same way, the two stress components acting

10



parallel to the face are known as shearing stresses and indicated

by the same notation with double subscripts- the first indicating

the direction of the normal to the face and the second indicating

the direction of the component of the stress. The notations and

positive directions of the stress components are illustrated in

fig. (2-1). According to general conventions, the normal stress is

taken positive when producing tension and negative when producing

compression. On any side the direction of the positive shearing

stress coincides with the positive direction of the axis if the

outward normal on this side has the positive direction of the

corresponding axis. If the outward normal has a direction opposite

to positive axis the positive shearing stress will also have the

""" 1,
).---

",'

l.,,
)---,

"

opposite direction of the corresponding axis.
z:

t

FIG. (2.1)

To describe the stresses acting on the six sides of the element

three symbols ax' ay, a, are necessary for normal stress, and six

symbols (]~y' uyx1 aut aUf GYZ1 Gzy for shearing stress. A

consideration of the equilibrium of the cubic elemerit shows that,

for two perpendicular sides of the cubic element, the components of

11
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shearing stress perpendicular to the line of intersection of these

sides are equal. Mathematically stated, these conditions are: a
xy

= ayx' au = an and ay, = a,y. Thus the nine components of stress are
reduced to six.

The six quantities a•• ay, a" axy, ay" an are therefore sufficient

to describe the stresses acting on the coordinate planes through a

point; these will be called the components of stress at the point.

In discussing the deformation of an elastic body it is assumed that

there are enough constraints to prevent the body from moving as a

rigid body so that no displacements of particles of the body are

possible without a deformation of it. These deformations of the

body can be uniquely specified by assigning three elongations in

three perpendicular directions and three shear strains related to

the same directions. These directions are taken as the direction of

the co-ordinate axes and the letter € is used to denote the strain

components with the same subscripts to this letter as for the

stress components. If the components of a particle in the body are

specified by u, v and w parallel to the coordinate axes x, y and z,

respectively, then the relations between the components of strain

and the components of displacement are given by

"
au

-x ; ax

"
Bv

-y ay

12



'"
dw

-z oz

au ,
€ ._. ov [2.1]= ay + axAY

'"
ov ow

- yz oz + ay

'"
au dW

- zx = oz + ax

Linear relations between the components of stress and the

components of strain are known generally as Hooke's law. By the

application of Hooke's law and the principle of superposition, the

relations between the components of stress and the components of

strain are given by,

e. = ~ fa - "(Cly + a ) 1~x E- x .' -

I
(0 x ) 1e. = - fa - " + a~y E- y y' -

€z = ~ [0. - " (0 x + oJ) ]
15 -

'"
2(1+") n-xy E .xy

€.,- =
2 (1+\1) 0 .._ and

y. E y.
,

€zx
2(1+")

o zxE

[2 .2 ]

13
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where E is the modulus of elasticity and v the poission's ratio.

In case of plane stress problems, a" aXl, ay, are zero on both the

surfaces of a thin plate and it can further be assumed that they

are zero throughout the thickness of the plate. It can also be

assumed that the other components ax, ay and axy are independent of

z and, hence, are functions of x and y only.

When the body is prevented from elongating or contracting in the z-

direction, then the components u and v of the displacement are

functions of x and y but are independent of the coordinate z. Since

the longitudinal displacement w is zero, Eqs.(2.1) give,
aw = 0az

av= az
aw+ = 0ay

au
az

aw+ ax o

The longitudinal normal stress, a, can be found in terms of ax and,

ay by means of Hooke's law, Eqs.(2.2). Since €, = 0, we find,

These normal stresses act over the cross sections, including the

ends, where they represent forces required to maintain the plane

strain provided by the fixed smooth rigid planes. Thus the plane

strain problem, like plane stress problem, reduces to the

determination of ax, ay and axy as functions. of x and y only.

14



2.2 Differential Equations of Equilibrium

Let us consider the equilibrium of a small rectangular block of

sides h, k and thickness unity as shown in fig. (2.2).

(cr~\
(o'x; •X

Cd. 4

(0'.,\ 3 (o'lt!l

k
2- ~"1l)i

! (<r•..~!",

(j~l.

9 FIG. (2.2)

The stress acting on the faces 1,2,3,4 and their positive

directions are indicated in the figure. The symbols ax, ay, axy refer

to the midpoint x, y of the rectangle in the figure 2.2. If X, Y

denote the components of body force per unit volume, the equation

of equilibrium for forces in the x and y directions are

au x

ax
. aa xv
T --' ay + x o

+ y a [2.3]

If in these equations of equilibrium of plane stress and plane

15
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strain the body forces are assumed, as they will be throughout this

work, to be absent, then the equations (2.3) become,

G

00 xy __ o--ax [ 2 • 4 ]

In a two dimensional problem it is necessary to solve the

differential equations of equilibrium (2.4). These two equations

containing three stress components ax' ay, a"y are not sufficient for

the determination of these components. The problem is a statically

indeterminate one and, in order to obtain the solution, the

elastic deformation of the body must also be considered. For two

dimensional problems, three strain components are considered. These

three strain components are expressed by two functions u and v and

there exists a certain relation between the strain components that

can easily be obtained from equations (2.1). This relationship may

be obtained by eliminating u and v from the equations (2.1) which

give,

[2.5]

Thus, to ensure the existence of continuous functions u and v, the

strain components have to satisfy the equation (2.5) known as the

condition of compatibility. To express the equation of

compatibility in terms of the stress components the strain

16
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components present in equation (2.5) have to be eliminated by their

relations with the stress components. These relations can be

obtained from the first, second and fourth of (2.2) by replacing a,

with zero in case of plane stress and with v(ax + ay) in case of

plane strain. The relations are,

1-rer -va]E. x - y

€y ~[a,,-va)
J:: ~

[2.6]

in case of plane stress and

2 (1 + v)

E
fJxy

+ '1)0)

[2 .7]

€xy :=

in case of plane strain.

2 (1 + v)

E
fJxy

Thus, using the relations of (2.6) for the elimination of strain
components from

equation (2.5), the compatibility condition becomes,

(j2 '(Jax2 \ y
va 'xl

17



Further elimination of the term with the help of equilibrium

equations transforms the conditions of compatibility into its final
form

if-_\ In + (j " = 0aZy' , ...x y [2.8]

"

The equations (2.4) and (2.8) associated with the appropriate

boundary conditions should theoretically be sufficient to determine

the three functions in a plane region. But practically it is

extremely difficult to solve for the three variables simultaneously

even under the simplest boundary conditions. The problem becomes

far more complex when the boundary conditions are mixed. This fact

lead us to seek the existence of another function with which the

desired variables are related in natural way or can be defined in

terms of the required variables so that the determination of that

function will uniquely determine the function sought for. The

necessity of this approach will become evident when the boundary

conditions are discussed in detail in the section dealing with the

feasibility of 'the numerical evaluatiort of the functions in the

light of the b?undary conditions .
•

18



In the analytical approach the usual practice is to introduce a new

function <p(x, y), known as the stress function or Airy's stress

function and defined as,

n = (12<1>Vx oy2

a __= o"<jl [ 2 .9 ]y ox"

n = cf'<I>
Vxy oxoy

The function <p(x,y) defined by the equations (2.9) satisfies the

equilibrium equations (2.4) and must satisfy the compatibility

equation. When the stress components are eliminated from equation

(2 .8) by substituting from equations (2 .9), the condition of

compatibility in terms of <pbecomes,

B"<I> + 2
ox'

[2.10]

Thus the solution of the plane problem in terms of stress is

reduced to the integration of one partial differential equation

(2.10) of the fourth order; if the function <p(x,y) is determined

from this equation, then stresses are easily found at any point of

a body by formulas (2.9). Equation (2.10) is the most promising one

19



for the solution of the stress either analytically or numerically,

provided the boundary conditions are also known in terms of stress.

But the prospects are dimmed both for numerical and analytical

solution when the boundary conditions are mixed. This fact compels

us to look for other suitable avenues. In this respect, the most

natural step would be to investigate the possibility of solving the

problem in terms of the displacement components. This approach

appears favourable for a number of reasons:

1. The stress components can easily be determined if the

displacement components are known, while the reverse is not

true.

2. In some problems the direct determination of displacements

might be the more required one.

3. The problem is solved in terms of physical quantities which

provide a ready check on the solution.

According to the above mentioned approach, the problem is to be

formulated in terms of displacement components. And to accomplish

that, the stress components should first be expressed as functions

of strain components. solving the equations (2.6) for the stress

20
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components, we get

CJx

E
2 (1+v)

[2.11]

CJy

Eliminating the strain components from equations (2.11) by

substituting from equations (2.1), the expressions for the stress

components in terms of the displacement components are obtained as,

Ox = (~, (au + v av)
\ l-v2 ' ax ay

" (~\ (av + v au) [2.12]-y , 1-v2' ,ay ax

"
E (au av)= +-XY 2(1+v) ,ay ax

substituting the stress components in the equations (2.4) from the

expressions (2.12) and simplifying these equations, we obtain the

21



equilibrium equations in the following forms;

eJ2u ( i-V) eJ2u ( l+v \ eJ2v 0-- + + '-2-' axay ;=

ax2 2 ay2

crv ~o ~o

+ ( i-v) G"V + ( i+v) ?"u 0ay2 2 ax2 .2.dxay [2.13]

These two homogeneous elliptic partial differential equations with

the appropriate boundary conditions should be sufficient for the

evaluation of the two functions u and v, and the knowledge of these

functions over the region concerned will uniquely determine the

stress components which can be evaluated with the help of the

system of equations (2.12). Therefore the problem is simultaneously

solved for all the required quantities.

22



Although the two homogeneous elliptic partial differential
equations in terms of u and v (2.13) are sufficient to solve mixed
boundary value elastic problems but in reality it is difficult to
solve for two functions simultaneously. So, to overcome this
difficulty, investigations are necessary to convert the above two
equations into a single equation of a single function. If that
function is defined in terms of the displacement functions u and v,
then the determination of that function uniquely determines the
stress functions sought for.

In this approach, the possibility of the existence of a potential
function defined in terms of the displacement components, is
investigated. By this approach, as in the case of Airy stress
function, the problem is reduced to the determination of one
function only. If a new function ~(x,y) is defined as,

v [2.14]

and the displacement components in the equations (2.13) are

23



replaced by the equations (2.14), then the first equation is,

( I-V) iPu+ ----+
2 ay'

d'1\I + ( I-v \ a4lJr
ax3By ., 2 'ay3ax

( I-V) d'1\I _ d'1\I ~o
2 Bxay3 ax3By

Therefore, ~ has only to satisfy the second equation. Expressing

this equation in terms of ~, the condition that ~ has to satisfy is

or,

or,

= O.

or,

I-v d'1\I _ ( _2_ ) d'lJr
I+v By4 I+v ax'ay2

( I-V) d'1\I + (1 +v \
I+v ax4 2 '

(I-v) ,
2(1+v)

B41\1
Bx2ay2

+ 2 o.

24



Therefore, the problem is again reduced to the evaluation of only
one function ~ of x and y from the biharmonic partial differential
equation. If this approach is feasible then the amount of
computational time might be expected to be less than the other
approach of solving for two functions as in (2.13).
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CHAPTER III

BOUNDARY. CONDITIONS

3.1 General Consideration of the Boundary Conditions:

Equations (2.3) must be satisfied at all points throughout the

volume of the body. The stress components vary over the volume of

the plates; and at the boundary they must be such as to be in

equilibrium with the external forces on the boundary of the plate,

so that external forces may be regarded as a continuation of the

internal stress distribution.

In practical cases, along the edge of a plate, two things may be

known:

a. displacements

b. loading or stress

Both the displacements and stress are defined by their respective

components. These components are:

1. normal displacement

2. tangential displacement

3. normal stress

4. tangential stress
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At any point on the boundary, out of these four quantities two are

known at a time. Therefore, four quantities taken two at a time

will create six different boundary conditions. These six boundary

conditions are given by

i. normal displacement
tangential displacement

ii. normal displacement
tangential stress

iii. tangential displacement
normal stress

iv. normal stress
tangential stress

v. normal displacement
normal stress

vi. tangential stress
tangential displacement

Out of these six possible combinations the last two combinations,

namely (v) and (vi), do not generally exist in physical problems.

Therefore, at any point on the boundary, the first four possible

boundary conditions are concerned with. As the shape of the

boundary to be considered is rectangular, the plate may be oriented

so that its edges are parallel to the co-ordinate axes ..In that

case, the normal and the tangential stress and displacements at the

boundary are the co-ordinate components of stress and displacement

inside the plate. Therefore, when the four boundary conditions 'are

stated mathematically and in terms of the functions to be

determined, then,
27



(1) u = f, (X,y)
v = f, (x,y)

(2) u = f, (x,y)
axy = f3 (x,y)

(3) v = f, (x,y)
ax = f, (x,y)

(4) ax = f, (x,y)
axy = f3 (x,y)

for x,y on the boundary [3.1]

on an edge parallel to y-axis and

(1) u = fs (x,y)
v = f6 (x,y)

(2) u = f6 (x,y)
axy = f7 (x,y)

(3) v = fs (x,y)
ay = fs (x,y)

(4) ay = fa (x,y)
axy = f7 (x,y)

for x,y on the boundary [3.1]

on an edge parallel to x-axis.

3.2 Boundary Conditions for the system of
Equations in Terms of the stress Components:

Considering the system of equations in terms of the stress

components, given by the equations (2.4) and (2.8), in conjunction

with boundary conditions of (3.1) it is seen that those boundary

conditions known in terms of displacement have to be expressed in

terms of the unknown functions. In this respect, the necessary

equations are given by (2.12). In these equations the individual

stress components are expressed as functions of the normal and

tangential derivatives of the displacement components. To evaluate

these functions the knowledge of the displacement components only

on the boundary is not sufficient. More precisely the normal
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derivative present here can only be evaluated if the displacement

component concerned is also known within the boundary. The only

imaginable way to overcome this difficulty is to evaluate the

displacement components simultaneously with the stress components.

But the complexity involved in that approach is so enormous that it

would be far better to look for an alternate method.

3.3 Boundary Conditions for the
stress Function ~:

The relation between stress components and the unknown function ~
are given by,

u =x
( au
ax + v

cry E av--(-
1-v' oy + v au)ox [3.2]

uxy

From these equations it is found that, if the boundary conditions

are given in terms of the stress components, the deri vati ves of the

unknown function ~ present in (3.2) can be evaluated on the

boundary. But the evaluation of these deri vati ves of ~ is not

possible if the boundary conditions are given in anyone of the

forms (1), (2) and (3) of (3.1). The impossibility is, as before,

due to the presence of normal derivatives of the displacements in

the equations (3.2). Therefore the function ~ can be solved only if

the boundary conditions are known in the form (4) of (3.1).
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3.4 Boundary Conditions for the System of Equations
in Terms of Displacement components:

For the system of equations (2.13) the boundary conditions have to

be entirely expressed in terms of the displacement components. An

examination of the boundary conditions (3.1) shows that the

boundary conditions are available either directly in terms of the

unknown functions concerned or indirectly, in terms of the stress

components. In the latter case the necessary relations between the

stress components and the unknown functions are given by (3.2).

From these equations it is seen that these functions u and v can be

determined without the knowledge of the stress components anywhere

except on the boundary - which is exactly the given boundary

conditions. Therefore, the boundary conditions do not present any

serious difficulty in this case.

3.5 Boundary Conditions for
the Function '1':

In order to solve the problem by solving the function '1' of the

biharmonic equation, defined by the relations (2.14), the boundary

conditions (3.1) should be expressed in '1'. These conditions are

given by

u = <J21jr
axay

[ ( I-V) <J21jr 2 ~v = - + - ]l+v ay2 l+v ax2

Ox = (~) (au + v av)
I-v2 ax ay
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(~) ( a31J1 v aJ 1J1~ - __ I

i-v2 ax2ay ay3 '

0y (~) (aV + v aU)
i-v2 ay ax

- [ E] [.E:1 + Cy +2) cJ31J1 1
(1+v)2 ay3 ax2ay

,

E ( au + av)
0xy 2(1+v) ay ax

~ E [v cJ31J1 cJ31J1 ]
(1+v)2 axay2 ax3

From these expressions it is found that, as far as boundary
conditions are concerned, there is no technical difficulty in this
approach. No knowledge of the displacement and the stress
components away from the boundary is needed to evaluate the
function 'l.' at the boundary. Moreover, when compared with the
approach of solving the problem in terms of displacement
components, it has the advantage that, the evaluation of only one
function at a time, .are concerned. Whereas, in the other case, two
functions have to be evaluated simultaneously.
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CHAPTER IV

SOLUTIONS OF PROBLEMS

4.1 General Considerations

The concept of an engineering differential system consists of four
essential and equally important parts:

1. Proper understanding of physical phenomena and fundamental
principles.

2. Derivation of governing equation (mathematical models) for
given physical situations.

3. Development of routines, both classical and numerical, for
solution of governing equations.

4. Proper application. of boundary and initial conditions and
evaluation and interpretation of solutions.

Until all four parts are knit together through a rational
engineering mathematical analysis, including a "statical" check of
the tentative solution and the appropriate boundary and initial
conditions, we do not have a "complete" solution to a given
engineering differential system.

32



Attention devoted at times to the understanding of phenomena; at

other times to the formulation of models and to the establishment

of solutions to equations pertaining to certain boundary value

problems. In obtaining a solution to an engineering differential

system, a thorough understanding of the underlying phenomena of the

problem as well as a complete engineering mathematical analysis,

must be found out. The mathematical model is then extremely useful

for gaining an insight and understanding of the real physical

world. The procedure is, in short, the uniting of pure physics and

mathematics with a view to possible usefulness.

The equilibrium problem is essentially one of describing the

steady-state configuration of a physical system. This can usually

be achieved by specifying the magnitudes of state variables like

stresses, displacements, pressures, velocities, temperatures, etc.

at a finite number of points. In numerical methods this is

accomplished by transforming the differential system into a set of

simultaneous algebraic equations by the usual finite difference

techniques and then solving the algebraic set. The solution can not

be found at one point until it is known at all points.

In this thesis work, equilibrium problems are dealt with, which are

also boundary-value problems. The boundary conditions are

prescribed around an entire closed boundary, in contrast to the

propagation problem, where all or most of the condition may be

prescribed at one portion of an open boundary. In equilibrium

problems the differential operators are of the elliptic type. The
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operators of the biharmonic equation are of the elliptic type,

which occur most frequently in engineering differential systems.

4.2 Solution Procedure

A very powerful method of solving boundary value problems is the

so-called trial function or trial solution method. Attempt made

here to solve the fourth order homogeneous partial differential

equation

+ 2

for ~ with different trial functions.

This differential equation is solved by assuming a solution of a

particular form involving a number of arbitrary constants and

functions and then by determining the nature of these constants and

functions by proper application of the boundary conditions.

It is seen that various combinations of trigonometric and

hyperbolic functions offer suitable choices for analytic functions

and if these functions can be expressed as an infinite series, then

construction of solutions of differential equations becomes more

accurate. In the light of the ubiquitous problems which display

aspects of a periodic and a discontinuous nature, those infinite

series known as Fourier series attain a place of special

importance.
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The Fourier series is probably the most commonly used of all the

series for the solution of physical problems. It is a trigonometric

series which can be used for the expansion of an arbitrary

function. A much greater degree of generality is attained by taking

the function as Fourier series. The usefulness of the Fourier

series is due, in part, to the fact that certain functions which

can not be expanded in power series form can still be represented

by Fourier series. The reason for this is that the coefficients of

the power series contain derivatives of the function; hence these

derivatives must exist uniquely in order to obtain the power series

expansion. Many functions which are not differentiable, including

certain types of discontinuous functions, can be expanded in

Fourier series.

4.3 Solutions of Specific Problems

PROBLEM-I: A problem of rectangular plates is considered where
the two opposing edges of the plate are roller
supported while the boundary conditions at the
other two edges are unspecified at the moment.

8

t

I rI

I b
I

1I
I

I • • x
a. I

FIG. (4.1)
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The plate is considered to be of unit thickness and its
configuration with respect to co-ordinate axes is shown in fig.
(4.1). In this case if the function' is assumed to be,

Where Ym is a function of y only, then Ym has to satisfy the
ordinary differential equation.

vi'" _ 2 m21t2 yll + m41t4 y ~ a
.Lm a2 m a4 m

The general solution of this differential equation is given by,

where Am, Bm, em and Dm are constants and a = m~/a.

The stress and displacement components are given by,

w

U ~ - L y;,aSinax.
m"'l

'r' f I i-v \ T,JI- , ,\--" -4 l+v m
m"'.l.

( 2a
2

) Y'cosaxl+v nI
6 (l-v)
(l+v) Ay

E [i: la2y;, + vy';'}cosax+ 6vA]
(1+V)2 m=l.

(J' xy =

where the prime (')indicates differentiation with respect to y.
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It is seen that the boundary conditions,
u = 0 at x = 0 and x = a
aq = 0 at x = 0 and x = a

are satisfied automatically.
Substituting the different derivatives of Ym in the expressions of
the stress and displacement components we get,

a y = (1 ~ v) [~0:3SinhO:Y(Am t Em)

+ 0:3 cosho:y(Cm - t Dm) + 0:4ycosho:y Em

+ Dm 0:4ysinho:ylcoso:l- 6EA
(1 + V)2

where, t
1 - v
1 + v

a =-xy

+ o:ysinho:yE",(1+ v) + Dm(1 + v) o:ycosho:y}sino:x]

u = - L 0:2{ (Am + Em)sinho:y + (Cm + Dm)cosho:y
m=1

v = L 0:2{ (Am - 2 tEm) cosho:y + (Cm - 2 tDm) sinho:y
m=l

+ Bmo:ysinho:y + Dmaycoshaylacosax - 6 (1 - v) i!y
(1 + v)

Now, we are in a position to apply any feasible boundary conditions
on the edges y = 0 and y = b and thereby determine the values of
the constants Am, Bm, Cm and Om. For example, if we consider that the
edge y = 0 is on roller support, then the boundary conditions at
this edge become,

v] y.o = 0
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and, a xyl y.o = 0

For the boundary y = b, let it be assumed that it is loaded with an

arbitrary normal load given by a yJ y=b = f (x)

Then the boundary conditions at y = b become,

a xyJ y=b = 0

a yJ y=b = fix) =Eo +L Em cos
m=l

ITI1tX

a

Applying the boundary conditions at y = 0, then,

as cosh(O) = 1 and sinh(O) = 0,

vJ y=o = E 1X2(Am - 2 tEm) coshlXX = 0

As this condition should be satisfied for all values of x,
therefore, '

Am - 2tBm = 0 •••••••••••••••••••••••••••••••••••••

Also,

~
E [E 1X3(Am(1 + v) + 2v B)] sinlXx =.0

(1 + v) 2 m=l

Therefore,

Am(1 + v) + 2 V Bm = 0 •••••••••••••••••••••••••••••••

From (1) and (2),
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Therefore,

6EA
(1 + V)2

0xy =
E

(1 + V)2
c~::a3{(Cm(1 + v) + 2\1Dm) sinhay
m=l

+ Dm (1 + v)aycosbay}sinax]

From the boundary conditions at y = b,

0) y=b = --E--[E a3( (Cm - t Dm) casbab + Dmo:bsinhablcaso:x
1 + V m=l

6EA
(1 + V)2

= Eo + E E.~cos
m=l

IlJ1tX

a

Equating co-efficients,

6EA
(1 + V)2

and,

Eo or 1 A ;::

E
(1 + v)

•..• [3]

Also from,

(J 10'] y=b =

+ Dm(l + v)o:bcosbab]sinax = 0
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it is found that

(Cm(l + v) + 2vD~sinhab + Dm(l +vlabcoshab = a

From equations [3] and [4]

Em(l+v)

Ea3coshabNm

and

••.. [4]

+ t - abtanhab]

Where, Nm = ab (tanhab - cothabl - 1

The solutions are,

ax + t - abtanhab + til coshay

+ aysinhayl] cosax where tl = 1 + 3v
1 + v

ay Lm=l
Em 1(0'
h b l "'m

~lPOS a
- abtanhablcoshay + aysinhaylcosax + Eo

E
a xy = - L _-_m

h
--
b

((Hm - abtanhab + 1)sinhay + aycos11aylsinax
1lI=1 ~lIcos it

U :;;; L
Ill=!

Em(l+vl
aE~ncoshab

((t - abcothab) coshay + aysinhaylsinax

+ 1 + abcothab) sinhay

+ aycoshayl cosax +

40
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In the above expressions Eo and Em are the coefficients of Fourier

series representation of the loading. To take a specific example,

the problem shown in fig. (4.2), is considered,

. I

IAf ~ .. p
, 1::-'-
i ", .
,
; ,,, .,,,,,
,, •

]
b

J
1---0.

FIG. (4.2)

Let the loading be given by a yl y=b as shown in

figure (4.2).

lfdThen, Eo =- a 0

a3] =
2

4P
6

2P
3

a

= 8PJ(X2_ax)cos~xdx
a3 o
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= 8P. ~ (coslta + 1)
a3 1t2

(coslta + 1)

for m = 2,4,6, .

= 0, for m = 1,3,5; .

The solution for this particular problem is,

.rrm;b tanh .rrm;h )
a a

cos .rrm;y +' .rrm;ysinh .rrm;Y}cos.rrm;x _ 2P
a a a a 3

0xy=
16P ~

2 LJ
1t m=2,4,6, ...

16P ~
1t2 m=2,k, ...

{ 1 }
m2N cosh .rrm;b

m a

{ 1 }
m2N cosh .rrm;h

m a

{(N - .rrm;b tanh .rrm;b + 1) sinh .rrm;y
m a a a

+ m1tycosh .rrm;Y}sin .rrm;x
a a a

{(N + t-lXbtanh .rrm;b + ti) cosh .rrm;
m a a

u = 16Pa t
7t3E m=2,4,6, ...

. + .rrm;ysinh .rrm;Y}cos.rrm;x. _
a a a

+ .rrm;ysinh.rrm;Y}sin .rrm;x
a a a

2Pv
3

v = (1+v) {

m3 Nmcosh .rrm;b
a

(1+ t+ .rrm;bcoth .rrm;b) sinh~ Y
a a a

+ .rrm;ycosh .rrm;h }COSlXX _
a a
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PROBLEM-2:

For the problems where the edge y = 0 is fixed as shown in fig.

(4.3), the boundary conditions are,

u ] y=o =. 0 and v] y=o = 0

'::l

t
!,,

,,
,

• x

FIG. (4.3)

Tnerefore, from the expressions of u and v as derived in problem-l,
we have,

C. + Dm = 0

Am - 2tBm o or, Am = 2tBui.

The expressions for stresses and displacements become:

E [ L {a'tBmsinhay - a' (1 + t) Dmcoshay
(1 + v) m=1,2, ..•

6EA
(1 + V)2
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[L (<<3Bm (tsinh«y + «ycosh«y) + «3Dm («ysinh<<y
m = 1

- (1 + t) cosh«y) lcos«x] - 6EA
(1 + v) 2

E L «3 [12tBm + t'B",lsinh«y + (- Dm + t'Dm) coshay
1 + v m = 1

6EvA
(1 + V)2

E----L a3 [I (2 t+ til sinhay + aycoshay}Bm + I( t'-l) coshay
(1 + v) m=l

+ lXysinhaY}Dm] COSIXX- 6EvA
(1 + V)2

CJ xy ;;;;

~ .

E [E «31Bm(2coshay + (1 + v) «ysinh«y)
(1 + v) 2 m=l

+ D)(v - l)sinh«y + (1 + v) «ycosh«yl]sin«x

U = - [E 1X2iBm{(1+2t)sinhalphay + aycosh«yl + DmlXysinh«y] sinax
m=l

v = E a2<Dm(«ycosh<<y - (1+2 t) sinh«y) + Bm«ysinh«y] cosax
m=l

- 6 ( 1-V) Ay
l+v

Now, suppose the boundary conditions at y = bare,

a y] y=b = f (x) = Eo + E Emcosax
111'"1

a xy] y = b = O.

From the above conditions,
6EA

(1 + v)

and,
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E
{a'Bm( tsinhab + abcoshab) + a'Dm(absinhab - (1 + t) coshab

1 + v

...................... [5]

Ea'--------[Bm(2coshab + (1 + v)absinhab) + Dm(v - l)sinhab
(1 + V)2

+ (1 + v) abcoshab] = 0 [6]

From equation (6)

(v-1)sinhab + (1 + v)abcoshab =
2coshab + (1 + v)absinhab

ab - t tanhab

abtanha + 2
1 + v

Substituting in [5], we get,
_ Dm{ ab - t tanhab } {tsinhab + abcoshab}

abtaD...L~o:b + 2
1 +v

+ Dm[absinhab- (1 + t) cashab} =

abcoshab - tsinhab 1
1 + a2b2 + (1 + 2 t) cosh2ab

Em(l + v) {absinhab + (1 + t)coshabl
E~ 1 + a2b2 + (1 +2 t) cosh2ab

The solution is,

Em [{ (2 t + t') sinl1a:y
(1 + 2 t) cosh2ab

+ aycoshay! {abcoshab - tsinhabl

- « t/ - 1) coshay + o:ysinho:y! (o:bsinhab

+ (1 + t) coshab!] cosax - Eov.

E_____________m [(abcoshab - tsinhab)
1+o:2b2 + (1+2t)cosh2o:b-

(tsinhay+aycoshay) - {absinhab + (1 + t) coshab! {aysinhay

- (1 + t) coshay!] cosax + Eo'
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0xy = - L
m=l

Em [{«bcosh«b - tsinh«b)
(1 + 2 t) cosh2«b

{(1+t)cosh«y + «ysinh«y) - {«bsinh«b + (l+t)cosh«b)

{«ycosh«y - tsinh«yJ] sin«x

u = - (1 + V)
E Em=l

Em/«
1 + «2b2 + (1 + 2t)cosh2«b

[(«bcosh«b-tsinh«b){«ycosh<<y + (1+2t) sinh«y)

- {«bsinh«b + (1+t) cosh«bl«ysinh«y] sin«x

v = 1 + V

E E
nr-1

«ysinh«y - \«bsinh«b + (1 + t) cosh«bl \«ycosh«y

- (1 + 2t)sinh«yl]cos« +
(1 - v2)EoY

E

Therefore, the problem is solved with arbitrary loading at y = b

and the other boundaries are as shown in fig. [4.4]

[(xl = Eo +

I

FIG. (4.4)
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As an example, the solution for the problem of Fig. [4.4] with the
loading of Fig. [4.5] is considered.

'1--%

Here, f(x) 2Px when 0 ,; ,; a= - -- x -
a 2

p 2Px 2P when ~ ,; ,; a= -- - x
a

b

I 1 • ';t
I- a. . I

FIG., (4.5)
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Here, Eo
o

= ..!{..!ff(x) dxl
2 a -a

o

= ~ff(x) dx
o

0/2

= ~ f f(x) dx +
o

o

~f f(x) dx
03./2 .

0/2

= ~ f
o

_ 2Pxdx +
a

o
..! f ( 2Px
a 0/2 a

- 2P) dx = P
2

0/2

Em = : f f(x) cosct.xdx +
o

o

: f fIx) cosct.xdx
a/2

0/2

= : f
o

2Px- --cosct.xdx +a

o~ f ( 2Px
a / aa 2

- 2P) dx

= - 4P sin rrm _ ~ (cos rrm _ 1) + 4P sin Iml
rrm 2 m21t2 2 rrm 2

4P ( ~)+ -- cosrrm - cosm21t2 2

= fOT, m = 2,6,10,14, .....
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PROBLEM-3:

In this class of mixed boundary-value problems, it is assumed that
at the edges x = 0 and x = a, the normal stress is zero and the
tangential displacement is zero. Such a problem can be visualized
by assuming that these two edges are stiffened by adding additional
stiffener as shown in fig. (4.6).

8

t

I-

1
b

1
a.

FIG. (4.6)

• ?C

In this case let the solution for ~ is assumed to be,

. Il1ltX
Sln--a

As before, in order to satisfy the biharmonic equations,

Ym ; Amcosh Il1lty + B Il1lty sinh llnty + C sin Il1lty + D llnty cosh llnty
a ma a mama a
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The corresponding expressions for the stress and displacement

components are given by,

U = L a:2 [(Am + Bm)sinha:y + (Cm + Dm)cosha:y + Bma:ycosha:y
m=1

v = L a:2 [(Am - 2 tBm) cosha:y + (Cm - 2 tDm) sinha:y
m=l

~
Ea:3

ay = L [(A - t Bm)sinha:y + (C - tDm) cosha:y(1 + V m m
m=l

+ Bma:ycosha:y + Dma:ysinha:y]sina:x

L Ea:3 [{Am(1 V) 2VB)Cosha:y (Cm(l+V) 2VD)axy = + + + +
Ill=! (1 + V)2

sinha:y + Bm(l+v)a:ysinha:y + Dm(l+v)a:ycosha:y]cosa:X

Ea:' [(A + 1+3v B) sinha:y +
(l+V) m l+v m

I C +\ m 1+3v ~---um) cosha:y
l+v

Thus it is seen that the boundary conditions ax = v = 0 at both x

= 0 and x = a are satisfied. The four constants in the expression

of ~ can be determined from the known. boundary conditions at the

other two opposite edges.
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First suppose that the edge y = 0 is on roller while the edge y =
b is loaded with an arbitrary normal loading as shown in fig.

(4.7).

1
b

1
I-

(Jy=f(x)
~

= L Emsin nmx
m=l a

•..?C
. I

Then, (J xy] y=o = 0

FIG. (4.7)

To satisfy this condition for all values of x,

A", (1 + v) + 2 vB" = O.

Also, from v]y.o= 0, the following is found

Am - 2tBm = °
Therefore,

Am=O,Bm=O
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From the condition that a <y] yeO = 0, the following equation is found,

(Cm(l + v) + 2vD)sinhab + Dm(l + v)abcoshab = 0 •••• [7]

Also, from

The following relation is found,

=f(x) =E Emsinax
m=l

Em (1 + v)
= -----

Ea3
••••... [8]

From equations [7] and [8],

abcoshab + ~sinhab
{ l+V}

ab + .sinhabcoshab

Em(l+v) sinhab
Ea3(ab + sinhabcoshab)

For a particular loading, say a yJ y=b = - P, ,

E = 2f a (- PsinImtx) dx
mao a

2 [pa cos
a Imt

ImtX a
-]
a 0

= 2P (COSImt- 1)
I1l1t

= 4P
11m

for m = 1, 3, .

= 0, for m = 2,4, .
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The solution for this particular problem is,
4P ~

'It LJrn=l,3,5, ...

1

cosh m1tbsinh m1tb)
. a a

a =xy
4P

'It Lm:l, 3,5, ...

1
m1tb . m1tb h m1tb)m(--+slnh--cos --
a a a

ax = 4: L
m=l,3.5 ....

1

+ sinhm1tbcoshm1tb)
a a

u = 4P "
'It L.m=1,3,5

{ =b =b. m1tb =(--cosh-- -slnh--) cosh-y
a a a a

(1 + v) [(ab - tsinhab)coshab
Eam(ab + sinabcoshalphab)

sinhab(ay)sinhay]cosax

l.T = 4P L
1t m=1,3,5

(1 + v) [tab + ~sinhab)sinhay
Eam(ab + sinhabcoshab) v

+ sinhab(ay)coshay]sinax.
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PROBLEM - 4:

'x

1
b

1

If it is assumed that the edge y = 0 is fixed as shown in fig.
(4.8) then the boundary conditions are,
u] y=o = a and v] y=o =

Q. ----- ...•••

-FIG. (4.8)
From u]y=o = 0, = Cm + Dm = 0 Therefore, Cm = - Dm

From v] y=o = a = Am - 2 t Bm = 0 or, Am = 2 t Bm

The expressions for a xy and a y become.

~ Ea3 )a xy = L..J ----- (Bm{2coshay + (1 + v) aysinhay
mol (1 + V)2

+ Dj(v - l)sinhay + (1 + v)aycoshay)] cosax

~ Ea3 ( )(] y = L..J ---- [Bm tsinhay + aycoshay
mol (1 + v)

+ Dm(aysinhay - (1 + t)coshay)] sinax.

If it is assumed that, (]xy]y=b = a and (]Y]Y=b = f(x) = LEmsinax.
llFl

then,
Bm(2coshab+(1+V)absinhab]+Dm[(V-1)sinhab+(l+v)abcoshab]= O.
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Bm [tsinhab + abcoshab] + Dm [absinhab - (1 + t)coshab]

Em(l + V)= -----
Ea.'

Solving these equations, constants are evaluated as follows,

{ abcoshab - tsinhab }
t2 + a2b2 + (1 + 2t)cosh2ab + 2abtsinhabcpshab

absinhab + (1 + t)coshab
t2+ a2b2 + (1 + 2 t) cosh2ab + 2«btcoshabsinha

Em is found out according to the normal loading at y = band

therefore, the problem is solved for all normal loading conditions

at y = b.

For example, the solution for the problem of Fig. [4.9] is

considered,

fix) = Px L Emsin«x
~

- =a m=l

t p

0..-----

b

1 _?C

FIG. (4.9)
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Here,
a

Em = ~J f (x) sinaxdx =
o

a

2 ..£J -a a
o

Px sinaxdx
a

a
2PJ' •••.= - - xs~naxUA
a2 o

a
= _ 2P [_ xcosaxj _ 2PJ cosax dx= 2P [ xcosaxj _ 2P [

a 2 a. 0 a 2 a a 2 a 0 aa
o

2P a 2P 2P 2P
=-- [acosax] =-- [acosax] =--acosmrr:=--cosnm
a2a 0 a2a a2a aa

sinax
a

2P
aa

for m=1,2,3, ....
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The solution for this particular problem is,

u= L
m"'l, 2,3 •...

( 2P(-1) m (l+v) a ]
m2rr;2E,'{a:2b2+(1+2 t) cosh2a:b+ t2+2a:btcosha:bsinha:bl

[a:bcosha:b- tsinha:b) {(1+2t) sinha:y+a:ycosha:yl -

a:ysinha:Y{a:bsinha:b+ (1+ t) cosha:bl] cosa:x

v= L
m=l,2.3, ...

[ 2P(-1) m (l+v) a ]
m2rr;2E,'{a:2b'+ (1+2 t) cosh2a:b+ t2+2a:btcosha:bsinha:bl

({a:bcosha:b-tsinha:b)a:ysinha:y -

{a:ycosha:y-(1+2t)sinha:yyl(a:bsinha:b+(1+t)cosha:b)]sina:x

ay= L
m=1.2,3 ....

( 2P(-1) m ]
mrr;{a:,b'+ (1 +2 t) cosh2a:b+ t'+2 a:btcosha:bsinha:bl

({a:bcosha:b-tsinha:b) (tsinha:y+a:ycosha:y)-

{a:bsinha:b+(l+t)cosha:bHa:ysinha:y-(l+t)cosha:yl]sina:x

2P(-1) m ]

(1+v) mrr; {a:2b' + (1+2 t)cosh 'a:b+ t'+2a:btcosha:bsinha:bl

[{2cosha:y+ (l+V) a:ysinha:y}(a:bcosha:b- tsinha:b)-

{(v-1)sinha:y+ (l+v) a:ycosha:yHa:bsinha:b+ (l+t) cosha:bl] cosa:x

ax= L
m=1.2.3 ....

( 2P(-1) m ]

mrr; {a:,b2+ (1+2 t) cosh2a:b+ t2+2 a:btcosba:bsinha:bl

( 3+v sinha:y+a:ycosha:y) (a:bcosha:b-~sinha:b) -
l+v l+v

(a:ysinha:y-2vcos1:;ta:y) {a:bsinha:b+ (1+ t) cosha:l] sina:x
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PROBLEM - 5:
~

t

.x

-,.-
p

, a. t
,,, ~, ,,
~,, ~
I"~
~
Ii,

, , , , ,

T
b

1
------'0.

FIG. (4.10)

In this problem, the boundary conditions are the same as problem-I,
only difference is the loading.
Here, Eo = - P/2

E = - 2P (-1) m-1 for m
m .mn: 2'

= 0, for m = 2,4,6, .
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The solution for this particular problem is,

u = L
m=1,3,S, ...

m-l
[ 2P(-1) -2- ]

nmEo:cosh nmb Nma

[(t- nmb ) cosh nmy + nmy sinh nmy 1sin nmxa a a a a

v = L
m=1.3,S, ...

m-l
[ 2P( -1) -2- ]

nmEo:cosh nmb Nma

[{_ (l+t)+nm}sinh nmy + nmy cosh nmy] cos nmxa a a a
P(1-v2)y

2E

a xy= L
m=1,3,S, ...

in-1
-2P(-1) -2-

[ . ]
nmNmcosh nm

a

[ ( nmb sinh nmy _ nmy cosh nmy) ] sin nmx
a a a a. a

ay = L
m=1,3,S, ...

m-l
[ -2(-1)-2- ]

nmNmcoshnmb
a

[{(-1- nmb) cosh nmy + nmy sinh nmy}] coso:x _ paa a a 2

ax= L
m=1,J,5, ...

m-l

2P(-1) -: {(Nm+t-o:btanho:b) cosho:y +
nmcosh m1t Nma

ecosho:y+o:ysinho:ylcoso:x _ pv
2
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CHAPTER. V
R.ESULTS AND DISCUSSIONS

I:n.t.:r-c>Ci-u.ct.ic:>:n.

For studying the soundness of the present formulation for two-

dimensional mixed boundary-value elastic problems, the analytical

solutions obtained earlier were evaluated numerically. In obtaining

numerical values, the plates were assumed to be square (ajb = 1)

and made of ordinary steel (E = 2 x 10" Njm', v = 0.3). Numerical

values were obtained at a number of sections of the plates, i.e. at

different constant values of y for varying x. with the numerical

values so obtained, graphs are plotted at each section (at each

constant value of y) for varying x for each of the five quantities

of interest, namely u,v, ax, ay and axy' of plane-stress and plane-

strain problems. In order to make the results nondimensional, the

displacements are expressed as the ratio of actual displacement to

the size of the plate and the stresses are expressed as the ratio

of the actual stress to the applied loading parameter P.

The soundness and accuracy of the formulation and the method of

solutions are judged against the following cirteria:

i. The values of different parameters in a model of structure in

terms of its nature of variation and magnitude for any loading

can be predicted intuitively based on experience.
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ii. the physical symmetry or antisymmetry of the model and that of

loading are always reflected in symmetric or anti symmetric

distribution of the parameters in the body of the structure.
,

iii. The famous saint Venant' s Principle20 must be found true in the

distribution of values of every parameter within the body of

the structure. This principle states that any sharp variation

or abrupt change or concentration in the values of a parameter

on the boundary of a body must gradually be distributed or

smoothened up within the body with increasing distances from

the relevant point of concentration or sharp-change on the

boundary.

It should be pointed out here that in cases where the elastic

problems are solved in terms of the stress function 'P, the

solutions are generally available in terms of stress components a.,

ay and a,y. This is because of the fact that the deformations are to

be obtained by simultaneous integration of 'Pwith respect to x and

Y which bring in additional unkonwn function of x and y in the

expressions of the deformation parameters u and v and require

lengthy and complicated evaluation process. Further, the stresses

obtained from stress function 'P are never valid at the restrained

boundaries.

In the present formulation of the problem in terms of the

displacement function'!', all the parameters of interest in the

solution of elastic problems, namely u, v, a" ay and a,y' are
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readily obtained as soon as ~ is known as all of them are expressed

as summation of different derivations of ~. Moreover, the solutions

are always exact anywhere within the body as the function ~ is

obtained by satisfying the governing equations as well as all the

boundary conditions, whether they are specified in terms of loading

or restraints at the boundary.

5.2 Discussion of the Results

Problem No.1:

In this problem, the variation of displacement component u with

respect to x (Figure 6.1) is sinusoidal. At the top edge of the

plate, where the load is applied, its value increases first then

becomes zero, and again it reaches a maximum negative value then

becomes zero at the end. Moving from top edge, the magnitude of

variation decreases and at y = o.927b & o.926b, the values are

negative for a small length of the plate, then it follows the same

variation but. again before becoming zero at the end edge, it

becomes positive for a small portion of plate. For the rest of the

sections beginning from y = o.8b, this phenomena is completely

reversed. At the other sections also it becomes negative first then

becomes positive with a zero value at the middle as before. It

should be noted that the displacement at the ends and the mid

section are zero.

The distribution of displacement component v (Fig. 6.2) is observed

to be in good agreement with the physical model of the plate. As
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the loading is given on the top edge; so the displacement will be

maximum there and it will gradually decrease as we move towards the

bottom edge. This phenomena is readily seen from the graph. Another

thing is to be noted here that at the top edge the distribution is

not linear rather it is curved and maximum at the middle of the

plate. This non-linearity decreases gradually towards the bottom

and becomes almost linear at the bottom edge. So, we see that

according to Saint Venant' s principle, the non-linearity

distribution at the top edge vanishes completely at the bottom

edge. It is always negative as displacement here is opposite to

positive direction of y.

maximum thatknowWeedge.

also non-linear at every

top

is

it is the summation of slope of u

the

Le.

at
(Fig.6.3)

+ vE (au
(1+\1)2 ax

The distribution of ax
~
~ section and
1-0
C1;;, a x =

and v times the slope of v. Therefore, from the distribution of u

at top edge, the slope is negative at x = O.5a and the slope of v

is also negative at that position. As a result of which ax is

maximum at x = O.5a on the top edge. And for any other section

these two slopes are not of the same sign. So the value of ax

decreases from maximum value. From the distribution of ax at top

edge, we see that the plate is in compression for certain portion

then it is in tension for rest of the length of the plate. Here,

also the Saint Venant's principle is applicable, as we see that at

.bottom edge the distribution has slight non-linear characteristic.
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The distribution of ay (Fig. 6.4) is also in good agreement with

physical characteristic of the plate i.e. maximum at the top edge

and minimum at the bottom. Distributions are also not linear and

the non linearity decreases toward the bottom and slightly curved

at the bottom edge. This also conforms to the saint Venant' s

principle. From the distribution, it can be concluded that the

plate is always in compression in vertical direction as the

distribution is always negative throughout the length of the plate.

From the distribution ofaxy (Fig. 6.5), it is seen that its value

is maximum at y = O.8b and zero at the top and bottom, which is

quite obvious as the plate is on roller support. Here, also the

distribution is sinusoidal. For the locations below top edge, the

magnitude of the shear stress increases gradually upto y = O.8b

then the value again decreases gradually and becomes zero at the

bottom edge, as the plate is on roller support.

Problem No.2:

Here the distribution of u (Fig. 6.6) is almost the same as of

prob.l.

Displacement component v (Fig. 6.7) varies slightly in non-linear

way at the top edge, and at y = O.8b, the non-linearity is maximum

but in the opposite direction and for other sections non-linear

phenomena disappears and becomes almost flat as in the problem-I.
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stress component ax (Fig. 6.8) varies from positive value to

negative value, becomes maximum at the half length of the plate.

And for rest of the sections, although they remain within the

negative region, but still they vary from a maximum negative value

to a minimum negative value. B.ut one thing is commori,.--thatis,

either maximum or minimum, all these occur at the half length. The

variation of ay (Fig. 6.9) is the same as problem-I. The

distribution ofaxy (Fig. 6.10) is the same as problem-I.

Problem No.3:

The curves, showing the displacement component u (Fig. 6.11), are

all cosine curves. They vary from positive value to negative value

with zero value at the half length of the plate. The variation of

v (Fig. 6.12) is sinusoidal. It is maximum at the top edge where

the loading is given and minimum at the bottom. From the curves of

ax (Fig. 6.13) it is seen that negative maximum occurs at the top

edge. And for other sections its value is completely positive and. .

becomes maximum for y = 0.25b. For y = O.25b, Y = O.lb and y = 0.0,

the variation of ax is almost same.

The curves for stress component ay (Fig. 6.14) are all sine curves.

And this nature is less evident at the top edge where a uniform

loading P is given. So, at that edge the ratio, ay/P should be 1

for the whole length of the plate. From the curve it is also seen

that the ratio is almost 1 with slight variation and at two

opposite corners at top edge, which are also the point of
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singularity, there this ratio is zero. The shear stress G.y (Fig.

6.15) is maximum at y = 0.8b and minimum i.e. of zero magnitude at

y = b & Y = o.

Problem No.4:

The distribution of displacement component u (Fig. 6.16) is

positive maximum at x = 0, then decreases gradually, becomes zero

at x = 0.7a and reaches a maximum negative value at the other end

of the plate. But the case is reversed for other sections. And also

the transition from positive to negative does not occur at a fixed

point like problems-1,2,3, where the loading is symmetric.

The magnitude of v (Fig. 6.17) is maximum at the top edge and

decreases to a minimum value of zero, at the bottom. But here the

maximum value does not occur at the half length i.e. at x = 0.5a of

the plate; rather it is now shifted rightward. This phenomena is

quite logical as the distribution of loading is triangular and

maximum at right end of the plate and also due to the fact that

v = 0 at the right end because of additional stiffener.

The variation of G. (Fig. 6.18) remains posi tive throughout the

whole length of the plate and reaches a maximum value after x =
0.5a and it is zero at both ends of the plate. The magnitude of G.

at the bottom edge is negligible as compared to other sections. The

distribution of Gy (Fig. 6.19) is similar to other problems i.e.

maximum at top edge and minimum at the bottom but only difference
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is that the maximum value does not occur at half length of

plate. It is now slightly shifted to the right as the

concentration is maximum at right end of the plate.

the

load

The shear stress axy (Fig. 6.20) is maximum at y = 0.8b and minimum

at the top edge. And at the bottom edge, which is fixed the

magnitude ofaxy is of negative value. Also the point of transition

is not located at the half length of the plate. The maximum and

minimum values ofaxy at any particular section occur at the two

opposite edges which are stiffened by stiffener.

Problem No.5:

In this problem, although the loading is not symmetric but still

the variation of displacement component u (Fig. 6.21) is symmetric

around the vertical mid section of the plate. At the top edge, the

variation starts from zero, reaches a maximum value and then

becomes zero at the other end. The maximum value occurs at x =
0.5a. At the mid section of the plate i.e. at y = O,5b, the maximum

negative value occurs.

As the loading is uniform for half of the length of the plate and

it is zero for rest half, the displacement component v (Fig. 6.22)

is maximum at the left top corner point and its magnitude decreases

gradually towards the other end. This is in good agreement with the

physical characteristics of the plate. The influence of loading

becomes zero at the bottom edge and which is evident from the curve
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of zero value at the bottom. And also the decreasing rate decreases
from top edge to bottom edge.

The stress component ax (Fig. 6.23), at the top edge varies from a

negative maximum value at the left end and reaches a maximum value

at the other end with zero value at x = O.8a. And for rest of the

sections, variation remains within the negative region, never

reaches a positive value. The variation is minimum at mid section

i.e. at y = O.5b. The value of ay (Fig. 6.24)is negative maximum

at the top left end as before, then decreases gradually and gains

a positive value at the right end. This characteristic can also be

attributed from the curve for y = O.8b. and for rest of the

sections, ay remains with the negative region.

The case ofaxy (Fig. 6.25) is the same as before i.e. of zero value

at top & bottom edge and maximum at y = O.8b. The maximum value

occurs at the location x = O.5a.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

COTl.c::lu.:sioTl.=

Included in this thesis is a new approach to the solution of mixed
boundary-value elastic problems. In this new approach the elastic
problem is formulated in terms of a displacement function, ~. This
displacement function f may be considered as parallel to Airy's
stress function lp since both of them have to satisfy the same
biharmonic partial differential equation and may be considered as
potential functions- lp being a stress potential while ~ a
displacement potential in the two dimensional stress analysis.

The major difference in the two approaches lie in the fact that
while lp formulations can be used in solving problem in which
boundary conditions are specified in terms of loading only, whereas
~-formulations can be used for all boundary conditions-either in
terms of loading or restraints or any combination of them.

It should be pointed out here that the lp-formulation has been used
in solving mixed boundary problems of two-dimensional elasticity
but the boundary conditions specified as restraints were satisfied
approximately in an over-all nature and the solutions thus obtained
were not satisfactory in predicting stresses in the neighbourhood
of the restrained boundary. However, the ~-formulation does not
suffer from this shortcoming and obtains exact solutions satisfying
all kinds of boundary conditions and valid for the entire region of
interest.

Earlier, two-dimensional mixed boundary-value stress problems were
solved in terms of the two displacement functions, u and v, but
obtaining two functions simultaneously, satisfying two simultaneous
partial differential equations and the mixed boundary conditions,
is extremely difficult and hence hardly any solution is obtained
for mixed boundary-value problems this way.
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Using the present ~-formulation, a number of mixed boundary-value
elastic problems are solved analytically and the solutions are
presented in this thesis. All these analytical solutions of
different problems are evaluated numerically and then presented
graphically. As the solutions are functions of two independent
variables, the numerical values are obtained at different sections
of the structural body, keeping one of the independent variable
constant. The graphs obtained from this scheme, showing variation
of different solution parameters like various displacement and
stress components with varying x, provide a better comprehension of
the nature of solutions.

The study of the graphical results of different problems for the
important parameters namely the relevant stress and displacement
components, establish the soundness of the formulation as well as
the appropriateness of this new approach.

As established by obtaining solutions of various mixed boundary-
value problems .in this thesis, the new approach has provided a
very bright prospect of investigating stresses in the regions of
boundary restraints. It is thus expected that, with time, solutions
would be obtained for various practical problems in order to
provide better insight and further understanding of the stress
distribution in the critical regions of the restrained boundaries
of structural problems.

70

•



6.2 Recommendations for Further Works

The new approach will provide a great scope for the investigations
of mixed boundary-value elastic problems which hitherto remained
beyond appropriate analysis. In this connection, the following
works are recommended for further investigations.

1. Although the solutions presented in this thesis for various
mixed boundary-value problems of rectangular plates are valid
for all sizes of the plates, the numerical results are
obtained only for square plates. The effect of b/a ratio on
the deformation and the stress distribution should be studied.
It is expected that very interesting results will be revealed
in extreme cases of b/a ratios.

2. Numerical values are obtained only at sections normal to y-
axis. Although this gives a general idea about the stress
distribution in the plate, it would be interesting to study
the stress distribution over sections normal to x-axis.

3. The solutions presented in this thesis are restricted to
particular mixed boundary conditions at x = 0 and x = a, but
not restricted to any particular type at y = 0 and y = b. It
is thus imperative that solutions should be obtained for
various boundary conditions of interest at y = 0 and y = b.

4. Solutions presented here. are only for particular types of
boundary conditions at x = 0 and x = a of a rectangular plate.
Attempt should be made for obtaining analytical solutions for
other types of. boundary conditions at these two opposing
boundaries.
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5. Solutions obtained here are all confined to rectangular
plates. No effort was made to obtain solutions of plates of
arbitrary shapes of boundary. It is very unlikely that
analytical solutions can be found for arbitrary shapes of
boundary. But problems of arbitrary shapes can be solved by
numerical methods using the present formulation of the elastic
problems. It is thus suggested that a computer program should
be developed based on finite-difference scheme to solve
problems of arbitrary boundary shape and arbitrary mixed
boundary conditions.

6. There are various approximate analytical methods like that of
Raleigh-Ritz. Although these approximate methods do not
provide exact solutions but the accuracy provided is good
enough for engineering purpose. Attempt should thus be made to
solve the mixed"boundary-value problems by these approximate
method in terms of the function ~.

7. The present formulation of the problem is presented in
rectangular co-ordinates. It may be transformed into polar
coordinates. This would thus provide scope for" solving
problems of circular plates subjected to mixed boundary
conditions.
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APPENDIX
A.l Analysis of Deep Beams

Conway, Chow and Morgan" analyzed deep Beams, shown in the
following figure and its loading is also shown.

6

b

p
The boundary conditions are,

Ixl <c, y = b, ay = - P/2c
<ixi c I- ec <a, y = b, ay = 0 ~

Ixl <a-c, y = -b, ay = 0 --ra-c < [xl <c, y = -b, ay - P/2c
c

Y = :!: b, axy = 0

x = :!: a, axy = 0 p~

x = :!: a, ax = 0

FIG. 1

It is assumed that conditions are such as to permit a two
dimensional analysis i.e. the problem is considered as one of the
plane stre~s or plane strain. This assumption justified if the
thickness of the block is either very small or very large.

The solutionis obtained by superimposing two stress functions. The
first stress function is chosen in the form,

•.• [1]

•

where, Am' Bm, Cm and Dm are constants.
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Normal stress,

cry

Cmsinh«y+DmYcosh«yjcos«x
[ 2 ]

cr xy L [(Ama'+Bma) sinhay+Bma"ycoshay +
m~l

To satisfy the first four conditions, 0y at the top and bottom

edges are taken in the form of fourier series.

At Y = b,

p

2a
sinexc castcll.:
«c
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At Y = -b,

n-y
p

2a
(_1) m sinac r'nc.('t y.
\~, etC ~~~-~.

Putting, y = :t b in the second of equation (2) and equating

corresponding expressions for ay, then,

Amcoshab + Bmbsinhab + Cmsinhab + Dmbcoshab sinac P- -~-
ac a"a

Amcoshab + Bmbsinhab - Cmsinhab - Dmbcoshab = (-1) m sinac
ac

The condition of zero shearing stress on the sides y = :t b gives,
(Ama + Bm) sinhab + Bmabcoshab 0

(Cma + Dm) coshab + Dmabsinhab = 0

The four constants are thus determined by solving these equations,

r sinac P coshab + absinhab-m ac a2a sinhabcoshab - ab

n sinac P coshab-m ac aa sinhabcoshab - ab

Now, we are able to evaluate ax, ay, axy from the eq~ations (2)

It is evident that the condition of zero shearing stress on the

sides x = :t a is automatically satisfied. Therefore, only the last

one of the boundary conditions remains to be satisfied that of zero

normal stress on the sides x = :t a.
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In order to eliminate the normal stress on the sides x = I a a
second stress function is used.

The second stress function is determined by using strain-energy
method and the function is taken in the form

in which ~o satisfies the boundary conditions for ~ and ~1' ~2' ~3'

do not affect the normal and shearing stress on the sides if the
boundary conditions refer to the stress. Then, n

"
n

2
, n3,

can be found by the principle of least work.
.......

It is SUfficiently accurate to take only five term in the

expression for ~given by equation (5) and we assume a function,

~, = ~o + (x' - a2
)' (y' - a2

)' (n,y + n,x'y + n3y3 + n.x2y3)
In order to satisfy the boundary conditions,

yy

4> Q ~ II (a) x=,a dydy
00

where, (ox)x.,. may be obtained from first of 3 equations of (2).

After some calculation and manipulation, we can obtain the complete

solution for the second stress function ~" and from which we can
easily calculated the values of ax, a

y
, a

xy
accordingly.
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The actual stress can now be calculated by subtracting the values

of ax , ay, axy given by second stress function '1'2 from the

corresponding values, given by first stress function '1'" It is

evident that the normal stress left on the vertical sides from the

first stress functions are neutralized and therefore a solution

satisfying all the boundary condition is obtained.

A.2 Analysis of Rectangular Plate

Gerald pickett" has. solved a problem with different loading as

shown in the following figure.

The boundary conditions are,

nx
35~ - f12 .- ( Y)2], x

b' . :t a

0, :!: b
axy = x = a

_:I:
ay = 0, y = :!: b b

axy = 0, y = :!: b

FIG. 2: Rectangular Plate
Parabolically
Forces.

Loaded with
Distributed

It may be verified by substitution that the following equations for

stress satisfy the appropriate equilibrium equations for all values

of the constants A", Bm, an and 8m,
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a x - s + E
1i""1

- (1 +a ndcotha na) cosha~]

- L

(J ~-y L
11""1

- (1 + f3"pcothp m) coshf3 mY-] •••• [2]

a xy :::.

() -----'-'-A v' [']- p mYt..-U'::'J.l11p mJ J • • •• .J

The stress a~.will be zero at the edges x = !a if 8. = mw/a, and

this stress will also be zero at the edges y = !b, if an = nw/b.

The substitute of a. = 0 and y = !b into equation [2] gives.
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(-1) n A
)' n [a xsinha x + (1 - "nacothana)coshanx]~ ~oRha.a n n
Ji""l JJ

= LBm[j3",b(tanhp"p - cothPmb) - 1]cosp",x..... [4J
m=l

and the substitution of

equation [lJ gives,

0"
.,

= -=-8[1 - (y/b)"]
2 and x = :t a into

3 ~r1 'y'/b\2J +~20...>l-\// L (-1) n Bm r A • A
hL3 ,b l,.,myslnh,.,mY +

COS. n (l-P "pcothf3"p) coshf3myJ

= 8 + ~An[ana(tanhana - cothana) - IJcosany [5J
n=l

From equation [4J and [5J, the values of An and Bm can easily be
evaluated.

Thus, the stresses 0., 0y, 0xy can be calculated from the
corresponding expressions.

Gerald" has also solved an another problem with different loading

at the edges for x = :t a. the mathematical development is just like
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that previously given except that the boundary stress ax
at x = i: a is

S + 2S ')' cos Il1l;y

~ b

b

- -

b p=
a. a.

2.bs

• X

•
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