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Abstract

Nonlinear dynamics of a two degrees-of-freedom (DOF) tuned and damped (untuned)
vibration absorber systems using nonlinear springs and dampers are studied as a boundary
value problem. As far as tuned absorber is concerned, five different combinations of linear
and nonlinear springs have been comprehensively analyzed. For the different cases, a
comparative study is made varying the forcing frequency. Another comparison is for
response versus time for different spring types at three important forcing frequencies: the
tuned frequency and two resonant frequencies. Analysis shows that the response of the
system is changed because of the spring nonlinearity; the change is different for different
cases. Accordingly, an initially stable absdrber may become unstable with time and vice
versa. Similar investigation is made on untuned vibration absorbers, for 16 different cases
varying the spring and damper characteristics. Analysis shows that higher nonlinearity terms
make the system more unstable. Change in response is more evident near the frequency ratio
of unity. Numerical simulation shows that the systems exhibit quasi periodic motion and
instability .as system’s amplitude increases with time in prescribed boundary conditions. After |

analyzing 2 DOF system analysis is then made for a linear 3 DOF system.
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Introduction ~ %
" "\ﬁ:':::,/-’?

All systems possessing mass and elasticity are capable of free vibration, or vibration
that takes place in the absence of external excitation. Of primary interest for such a system is
its nétural frequency of vibration. Damping in moderate amounts has little influence on the
natural frequency and may be neglected in its calculation. The system can then be considered
to be conservative, and the principle of the conservation of encrpy offers another approach to
the calculation of the natural frequency. The effect of damping is mainly evident in the
diminishing of the vibration amplitude with time. Normal mode vibrations are free undamped
vibrations that depend only on the mass and stiffness of the system and how they are
distributed. When vibrating at one of these normal modes, all points in the system undergo
simple harmonic motion that passes through their equilibrium positions simultaneously. To
initiate a normal mode vibration, the system must be given specific initial conditions
corresponding to its normal mode. When excitation frequency coincides with one of the
natural frequencies of the system, a condition of resonance is encountered with large
amplitudes limited only by the damping. Again damping is generally omitted except when its
concern is of importance in limiting the amplitude of vibration or in examining the rate of

decay of the free oscillation.

Practically vibration problems become nonlinear in nature as amplitude of oscillation
becomes large [Kalnins and Dym (1976), Thomson (1981)]. The problem becomes more
involved as springs and dampers do not actually behave linearly in vibration problems
[Mikhlin and Reshetnikova (2005), Thomson (1981) and Zhu et al. (2004)]. But nonlinear
problems, usually having no closed form solutions, are always challenges for practicing
engineers, Superposition princip-le cannot be applied and therefore different mathematical
techniques are still developing and being used to solve such problems. Any such numerical
technique which makes the computatioh faster and yield reliable results under any
circumstance would be much desirable. For example, Mikhl_in and Reshetnikova (2005)
studied the nonlinear two-degrees-of-freedom (2DOF) system under consideration consists of
a linear oscillator with a relatively big mass which is an approximation of somé continuous
elastic system, and an essentially nonlinear oscillator with a relatively small mass which is an
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absorber of the main linear system vibrations. They analyzed the free and forced vibrations of
the system. Zhu et al. (2004) studied nonlinear response of 2DOF vibration system with
nonlinecar damping and nonlinear spring. They showed the phase plane, change of
displacement with forcing frequency. Their study was base on the method of initial value
problem. By numerical integration, periodic motions, quasiperiodic motions and chaotic
motions of the system were discussed by tracing the bifurcation diagram. Natsiavas (1992)
applied the method of averaging to investigate the steady state oscillations and stability of
non-linear dynamic vibration absorbers. He pointed out that proper selection of the system
parameters would result in substantial improvements of non-linear absorbers and avoid
dangerous effects that are likely to occur due to the presence of the non-linearities. Natsiavas
(1993) studied the steady state response for a class of strongly non-linear multiple-degree-of-
freedom oscillators, where the vibration absorber is modelled as a mass with linear damping

and restoring force. A couple of terms used in vibration problems are discussed below:

1.1 Degrees of Freedom (DOF):

A simple definition of "degrees of freedom” is - the number of coordinates that it
takes to uniquely specify the position of a system. It is an independent displacement or
rotation that a system may exhibit. A degree-of-freedom for a system is analogous to an
independent variable for a mathematical function. All system degrees-of-freedom must be

specified to fully characterize the system at any given time.

Degrees of freedom (DOF) are the set of independent displacements and/or rotations
that specify completely the displaced or deformed position and orientation of the body or
system. This is a fundamental’ concept relating to systems of moving bodies in mechanical

engineering, aeronautical engineering, robotics, structural engineering, etc.

~ The free particle undergoing general motion in space will have three degrees of
freedom, and a rigid body will have six degrees of freedom, i.e., three components of position
and three angles defining its orientation. Furthermore, a continuous elastic body will require
an infinite number of coordinates (three for each point on the body) to describe its motion;
hence its degrees of freedom must be infinite. However, in many cases, parts of such bodies
may be assumed to be rigid, and the system may be considered to be dynamically equivalent

to one having finite degrees of freedom. In fact, a surprisingly large number of vibration



problems can be treated with sufficient accuracy by reducing the system to one having a few

degrees of freedom.

1.2 Concept of Stability:

The concept of stability of equilibrium is a strongly intuitive one. If at any level of
external cause (in the form of displacements, velocity, force etc.), a structure can sustain a
small disturbance from its equilibrium condition, then the structure is said to be in stable
equilibrium at that level of external cause. It should be noted that sustaining the disturbance
means the structure would oscillate with small amplitude about its equilibrium position. On
the other hand, if the structure does not go back to its original position or vibrate with ever
increasing amplitude due to the disturbance, then the structure is said to be in an unstable
equilibrium staie at that level of external cause. The energy method, based on the Lagrange-
Dirichlet theorem can be used to anélyze the stability of structures. It states that, the
equilibrium states are defined by the states of minimum potential energy of the structure and
the stability of the equilibriwﬁ states 1s determined by the relative minimum value of its
potential energy. A close assessment of the critical load for simple mechanical stability
models reveals that the system maintains its state of equilibrium states as long as the work
done due to internal resisting forces is greater than that due to the external load for any
disturbance from the equilibrium position. In other words, it is the balance between the
potential energy due to the internal resisting forces, called internal strain energy or simply

strain energy, and the potential energy due to the external force.

1.3 U-ndamped Vibration Absorber:

Vibration absorber system is a spring-body system, which 1s added to the structure;
the parameters of the absorber are chosen so that the amplitude of the vibration of the
structure is greatly reduced, or even eliminated, at a frequency that is usually chosen to be at

the original troublesome resonance.

If a single degree of freedom system or mode of a multi-degree of freedom system 1s
excited into resonance, large amplitudes of vibration result with accompanying high dynamic

stresses and noise and fatigue problems. In most mechanical systems, this is not acceptable.



If neither the excitation frequency nor the natural frequency can conveniently be altered, this
resonance condition can often be successfully controlled by adding a further single degree of

freedom system, which is known as the absorber [Breads (1996)].

Accurate tuning of the frequency of the absorber results in induced inertia forces of
the absorber mass that counteract the forces applied to the primary system and less work is
done on this system. Hence, the normal practical function of the absorber is to reduce
resonant oscillations of the primary systems (even though in theory it could be used as inertia
balancer at any frequency, provided it is tuned with respect to forcing frequency). While the
vibration amplitudes of the primary system can thus be suppressed to a large extent, large

displacement amplitudes must be accepted in absorber system {Bachmann (1995)].
1.4 Shock Absorber (Untuned vibration absorber):

A shock absorber (or damper in technical use) is a mechanical device designed to
smooth out or damp shock impulse, and dissipate kinetic energy. Shock absorbers must
absorb or rdissipate energy. One design consideration, when designing or choosing a shock
absorber is where that energy will go. In most dashpots, energy is converted to heat inside the
viscous fluid. In hydraulic cylinders, the hydraulic fluid will heat up, while in air cylinders,
the hot air is usually exhausted to the atmosphere. In other types of dashpots, such as
electromagnetic ones, the dissipated energy can be stored and used later. In smaller terms

shock absorbers help to cushion cars on uneven roads.

Shock absorbers are important parts of automobile -and motorcycle suspensions,
aircraft landing gear, and the supports for many industrial machines. Large shock absorbers
have also been used in structural engineering to reduce the susceptibility of structures to
carthquake damage and resonance. A transverse mounted shock absorber, called a yaw
damper, helps keep railcars from swaying cxcessively from side to side and are important in
passenger railroads, commuter rail and raioid transit systems because they prevent railcars

from damaging station platforms. .

In a vehicle, it reduces the effect of traveling over rough ground, leading to improved
ride quality. Without shock absorbers, the vehicle would have a bouncing ride, as energy is
stored in the spring and then released to the vehicle, possibly exceeding the allowed range of

suspension movement.



Spring-based shock absorbers commonly use coil springs or leaf springs, though
torsion bars can be used in torsional shocks as well. Ideal springs alone, however, are not

shock absorbers as springs only store and do not dissipate or absorb energy.

Optimum damping ratio is the ratio of damping constant to critical damping, for
which system vibrates with minimum peak. Optimum damping ratio is largely dependent on
the mass ratio of the shock absorber. Optimum damping ratio increases with the increase of
mass ratio of the system. Relation for optimum damping i1s obtained by differentiating the
nondimensional displacement of the system with damping ratio & equating the final equation

o zero,
1.5 Nonlinear Springs and Dampers:

~In general nonlinear vibrations are not harmonic, and their frequencies vary with
amplitude. For example, if the magnitude of the forcing frequency is doubled the response of
a nonlinear System is not necessarily doubled. Superposition principle cannot be applied to
solve such type of problems. One important type of nonlinearity arises when the restoring
force of a spring is not proportional to its deformation. A spring is nonlinear if the force

exerted by the spring is a nonlinear function of the displacement. For nonlinear spring,

Spring force = ko + k%’

Where, k and k' are spring constanfs, x is the displacement of the spring, F(x) 1s the
force from spring. If positive (+) sign is used the spring is called hard. If negative (-) sign is

used the spring is called soft.

The static load—displacement curve Tor hard spring shows the slope increases as the
load increases. Similarly the load — displacement curve for a soft spring shows that the slope

decreases as the load increases. Similarly {or nonlinear dampers,

. .2
Damper force = cx + ¢'xx

Where, ¢ and ¢’ are damping constants, % is the velocity of the moving body. Hard and
soft dampers follbw similar relations like hard and soft springs respectively [Timoshenko

(1974)].



1.6 Objectives of this Investigation:

Most numerical studies regarding nonlinear vibration of structures, particularly
involving multi degrees of freedom system (MDOFS), have been carried out in the form of
initial value problems: all the boundary conditions, termed as system’s responses
(displacement, velocity etc.), were specified at an initial time reference, followed by
numerical integration of the governing differential equation. Such type of analysis involves
simultaneous solution of a system of nonlinear equations where the number of equations to be
solved is determined by order of the governing equations. For example, for a 2™ order
equation, each time a 2x 2 system of equation needs to be solved and the mostly used method
is Newton-Raphson. Obviously, the problem becomes ﬁmch more involved if all the
boundary conditions are not specified at the same initial time reference, that is, some
conditions are also specified at the final time reference. This type of problem needs to
simultaneously solve a large number of nonlinear equations that depends on the number of
intermédiate grid points in between the two time references. Though, Newton-Raphson
method can be used to solve that large number of equations, there are chances of non-

convergence of solutions.

Present work aims to solve both boundary and initial value problems for any vibratory
system. In most of the previous studies of absorbers [Mikhlin and Reshetnikova (2005),
Natsiavas (1992 & 1993), Wang (1985) & Thomson (1981)], stability of the system was
studied by the method of perturbation. But a simple and direct method, like that of
multisegment integration technique [Kalnins and Lestingi (1967)], that helps to directly
visualize the system’s fésmnse with time, would be very useful, in particular for the prese.nt
study, when a boundary value problem is dealt with. Therefore, objectives of this study can

be described as below:

a. At first to develop a generalized computer code for nonlinear vibration analysis of a
multiple degrees of freedom system, and later to use this code for analyzing the
2DOFS having nonlinear springs with and without nonlinear damping specially, tuned
and untuned vibration absorbers. Computer coding will be done using Turbo C.

b. To study the nonlinear dynamic behavior varying the nonlinearity of the springs that
is, separately considering hard and soft springs. Similarly, damping coefficient can

also be varied to incorporate different types of linear or nonlinear damping.
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¢. To study the stability of the tuned and untuned absorber system.

d. To study the effect of changing boundary conditions on the system’s response.

e. To find response of the system for different mass ratio and spring constant ratio for
the 2DOFS. |

f.  Soundness of the code can be checked by comparing the available standard result, for

the case of linear absorber, given in Thomson (1981).

The effect of different types of nonlinearities on the stability of the system can be also
studied for the tuned and untuned vibration absorbers that are both 2DO¥FS. In future, the

developed computer code can be used to study response of the system having higher DOF.

1.7 Qutline of Methodology:

Multisegment method of integration developed by Kalnins and Lestingi (1967) will be
used to solve the coupled nonlinear differential equations as boundary value problems.
Specialty of this method is that the given interval of the independent variable 1s divided into

finite number of segments. Next initial value integrations are performed over each segment

followed by a solution of a system of matrix equations to ensure continuity of the dependent

variables at all the nodal points. Sieps are repeated until continuity of the dependent

variables at the nodal points is achieved. More detail of this method is given in chapter 4.



Chapter 2

Literature Review

In the domain of mechanical vibration research, dynamic absorbers have extensive
applications in reducing vibrations of machinery Thomson (1 981) & Zhu et al (2004). Zhu et
“al. (2004) extensively studied nonlinear response of two degrees of freedom (2DOF)
lvibration system with nonlinear damping ar‘fd nonlinear springs. Recently, Mikhlin and
Reshetnikova (2005) studied the nonlinear 2DOF system having a linear oscillator with a
relatively big mass which is an approximation of some continuous elastic system, and an
essentially nonlinear oscillator with a relatively small mass which is an absorber of the main
linear system vibrations. They analyzed the free and forced vibrations of the system. Vakakis
and Paipetis (1986) investigated the effect of a viscously damped dynamic absorber on an
undamped multiple degrees of freedom system (MDOF'S). Soom (1983) and Jordanov (1988)
studied the optimal parameter design of lincar and non-linear dynamic vibration absorbers for
damped primary systems. The presence of the non-linearities introduces dangerous-
instabilities, which in some cases may result in amplification rather than reduction of the
vibration amplitudes (Rice 1986 and Shaw et al. 1989). Natsiavas (1992) applied the method
of averaging to investigate the steady state oscillations and stability of non-linear dynamic
vibration absorbers. Queint et al. (1998 and 1999) exploited the saturation phenomenon in

devising an active vibration suppression technique.

| Practically vibration problems become nonlinear in nature as amplitude of oscillation
becomes large [Thomson (1981)1. Nonlinear problems, usuall'y having no closed form
solutions, are always challenges for przichicing engineers.. Two widely used techniques are
perturbation. and iteration method [Thomson (1981) and Zhu et al. (2004)] for the cases of
:nonlinear vibrations. Superposition principie cannot be applied and theye‘fore different
mathematical techniques are being tried' to solve such problems. Any such numerical
technique which makes the computation faster and yield reliable resulits under any practically
possible boundary conditions (in terms of disp]aceme'nt, velocity ete:, -of the vibrating

bodies), especially for MDOFS, would be much desirable.



The energy transfer to nonlinear normal mode is caused by sub-harmonic resonance,
which is possible because of the nonlinear oscillator existence. In papers by Manevitch et al.
(2002) and McFarland et al. (2003), thcoretical investigation and some experimental
verification on the use of nonlinear localization for reducing the transmitted vibrations in
structures subjected to transient base motions have been presented. In pél’tiCLl]ﬂf, the
experimental assembly, containing the main lincar subsystem and the nonlinear absorber, is

described by Vakakis et al. (2002).

The simplest type of mount is considered as a single degree of freedom linear spring-
mass dashpot. Nakhaie et al. (2003) used the Root Mean Square of absolute acceleration and
relative displacement to find the optimal damping ratio and natural frequency of the isolator.
They have also obtained the optimal value for damping ratio in order to minimize the

absolute acceleration for a step input.

Roberson (1952) and Arnold (1955) considered vibration absorbers with nonlinear
cubic spring and found that a softening-type nonlinear spring improves the performance of
the absorber. Hunt and Nissen (1982) were the first to implement a practicai -nonlincar
damped absorber, and constructed a softening-type spring device as an assembly of steel
Belleville washers. However, nonlinear absorbers may exhibit undesirable secondary

resonance.

Shekhar et al. (1998) considered a single stage shock isolator comprising a parallel
combination of a cubic nonlinearity in spring and damper. Combining straightforward
perturbation method and Laplace transform they have determined the transient response of
the system. Three types of input base excitations were considered: the rounded step, the
rounded pulse and the oscillatory step. Although the solution is valid for limited range of
nonlinearities, it was shown that the nonlinearity in the damping rather than in the stiffness
has a more pronounced effect on performance of a shock isolator. The presence of a nonlinear
velocity dependent dauﬁping term with a positive coefficient was found to have detrimental
effects on the isolator perfonﬁance. Shekhar et al. (1999) have considered different
alternatives to improve the performance of an isolator having a nonlinear cubic damping over
and above the usual viscous damping. Since they concluded, nonlinearity in the isolator
stiffness does not have any appreciable effect on its performance, the stiffness of the isolator

is assumed to be constant.
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The classical problem of damped vibration absorber that consists of a mass, spring
and a viscous damper attached to an undamped single degree of freedom (DOF) system of
which the mass is sﬁbject to harmonic foreing, has a well-known solution, Den Hartog
(1956). If damping is added to the absorber, the vibration amplitude of the main mass cannot
be made zero at the forcing frequency but the sensitivity of the system to variations in the
forcing frequency decreases. Also the vibration amplitude of the absorber mass decreases

considerably with a damped absorber.

Vibration absorbers for multi degree of freedom systems have also been proposed.
Wang et al. (1985), presented an approach to suppress vibrations in undamped multi DOF
systems. Design of absorbers for beams is discussed in Juang (1984) and Jacquot (1978).

Absorber design for general vibrating systems was considered in Wang et al. (1983).

Alexander et al. (2009) explored the performance of a nonlinear tuned mass damper
(NTMD), which is modeled as a two degree of freedom system with a cubic nonlinearity.
This nonlinearity is physically derived from a geometric configuration of two pairs of
springs. The springs in one pair rotate as they extend, which results in a hardeni-ng spring
stiffness. The other pair provides a linear stiffness term. They discovered a family of
detached resonance curves for vanishing linear spring stiffness, a feature that was missed in
an earlier study. These detached resonance response curves seem to be a weakness of the
nonlinear tuned mass damper (NTMD) when used as a passive device, because they

essentially restore a main resonance peak.

Present work aims to solve both boundary and initial value problems for any
vibratory system having MDOF. A simple and direct method, like that of multisegment
integration technique, that helps to direclly visualize the system’s response with time, would
be very useful, in particular for the preseni study, when a boundary value problem is dealt

with.

Present investigation is to study the nonlinear dynamic behavior of vibration system
absorber system having nonlinear spring with and without nonlinear damping but extensively
varying the spring type (hard and soft) for a wide range of forcing frequency. The solutions
must be obtained solving highly nonlinear equations that are coupled. Both steady and
unsteady state solutions are also incorporated. Above all, the problem can be solved when the
two boundary conditions are specified at two different times.

10



Chapter 3

Governing Equations

Governing equations of the system are derived from the free-body diagram given m
Figure 1, considering nonlinear spring, nonlinear damper and external forces applied on both
the main and absorber masses. After rearranging and necessary transformation 2™ order
differential equations are converted to firsi order differential equations. After necessary
partial differentiation with respect (o initial conditions of the transformed variables, [iéicl

equations for Multisegment Integration Technique are formed.
3.1 Mathematical Models and Governing Equations

Description of the proposed model for the 2DOF absorber system is given below, Fig.
1 shows the 2 DOFS while Tables 1 — 2 show the different cases absorbers and other related
parameters. Fig.1 shows the arrangement of masses, springs and dampers in the vibration

system, and following Fig. 1,

Spring force for the 1% spring= k,x, +kjx} ... (1)

Spring force for the 2™ spring= k, (x, —x, )+ &} (%, = %)  ovovvirn (2)

Damping force for the 1* damper=c,x, +¢/5,x7 ....... (3)

Damping force for the 2™ damper=e¢, (¥, - ¥, )+ ¢ (% —x, )(xj 2 . 4

The equations of motion are as follows for the main mass and the absorber mass,

respectively,

m X, +(k]x] +k{x?)+(clx, +c[xi'xf)+{k2(x, —x2)+ ks (x, —x2)3}+

{Cz(il ”x2)+cé(xi '_JICE)(xI - X )2}2 F

11



myx, "{k:(xl ~x2)+k;(x, 7x2)3}ﬁ {C'z(—\"l _-{_2)+Cr2(’%| _'i-Z)(xl —xz):}:o

. (6)

For transformations, let x, =y, and x, = y,

&y LT
dr | 2 dr 1=V

With those transformations, Equations 5 and 6 become,

n, %Jr(klyl +}’€1rJ_)I3)+ (CIJ’z +c]’-y2y|2)+ {kz (J’] _y3)+k§()ﬁ _}ﬁ)]}"'

{6‘2 (yz —y4)+c;(y2 _y4)(y| _J’3)2}: F

Rearrangement of Equation (7) & (8) gives,

dy, 1 F"(klyl ‘*‘k:y?)_(cnyz +c|'y2)42.)_ {kZ(yl ”J’s)“" ké()ﬁ _J’s)]}

dr & *{Cz(yz _J’4)+C;(y2 _y4)(yl _y})z}

12



The governing Equations (9) and (10) can now be rewritten as a set of four nonlinear

first order ordinary differential équation (ODE) as follows:

dy, 1 F—(klyﬁk.'y?)—(qy;+CI,V2y3)—{ffg(y.—y3)+k£(y1“ys)3} :
di m| - {Cz(yz —y4)+c;(y2 _y4)(y1 _Y3)2}

......... (12)
dy,

—_cf_y'# .......... {(13)

% :ﬁ[{ka SR PIET (Y ) PR Y SV NUET (RS (R o |

The additional fields Equations, needed for multisegment method of integration

(chapter 4), are derived now from Equations 11-14. This is done by differentiating both sides

of Equations 11-14, partially w.r.t. y(a). For example at {irst,
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O of Equation (11) gives
(a)

o Jan|__ @ )
ay.(a){dt} o

or,

d { , m}: s (1)
di a)ﬁ (a) ay1 (a)

And, finally, using the symbol Y for the partial derivative term of y(/) w.r.t. y (a), we

get the additional field equations that are actually the governing differential Equations of ¥,

as fo]]ows:n
d
E(YH ): Vi coriiian (15)
Now of Equation (12}
dvla)

o [d o |1 F (o, + iy J-leyy, veipant)
e s sl

oy, (a) | dt @) | m,

1 l ! ﬁ_{cz(yzmyd)-{*c';(yz “yq)(yi_y.’-)z}
or,
) (6.7, +3k/977,, J+ e Yy + 32V, +2¢(y, 30T, )
—djl = +{k2(}’”—}"31)+3k£(y1—yS)Z(YH—Y]l)}

| + {Cz(Yzl —YAH)+C;(-)J1 —3’3)2(}721 —Y41)+2(;;(y| _3’3)(}"2 _ye;)(yn _Y}I)}

14



Next,

%

Aa

dy,

of Equation (13}

5

(@) {E} = o

or,

d[a0)]_ .0

dl ayl((") a.yL (a)

or,

d

E(Y_“)a 1 e, (17)

Finally, of Equation (14)
Vi ‘

a dyq - a _.L.. N ' _ 3]_ f. . ' . ) o—
ayi(a){ d }— ay;(a){mz [{kz(Jﬁ ys)"“kz(yl .Va) {+ 162(,"2 y4)+C2(y2 J%)(Jl J3)
or,
d(%)___i'ﬁ{kz(yn_};:»1)'*'3’7(;()’1_3’3)2(}/”“}’;1)} :l

dt i +{02(Y2| _}/41)4'0;()’1 _}’3)2(Yzl .—Kll)—i_zcé(yl _J’3)(J’z “J’ez)(Yll _Y3|)}

15
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of Equations (11), (12), (13), (14) will give

Simtlarly
. (a)

d(Y ) 1 (klym +_3k1’3’|2y|2)+(‘71y22 +C{,V|2Y22 +2C1’)’|J)2YIZ)
dtzz = T + {kz (le - Y32)+3k5 (}/| - ¥ )2 (er —}’32)}
l +{62(Y22 “)/42)+C;(J’| %ys)z (Yzz *},42)#‘26;()’\ _yn)(.VZ _yti)(YIE _Ysz)}

d_(Y4_2) 1 {kz(Yl'z“Yzz)"'j’ké(J’]_ya)z(}flz_ysz)}

dl "y +{62(Yzz _Y42)+C;(Y| ._);3)2()/22 -—Y“)-%-ZC‘; (yl _}’3)()’2 _}'4)(};12 _YJZ)}

It can be seen that every column of the governing equations of ¥ has similar form.

Thus, s of Equations (11), (12}, (13}, (14) will give
s\a -
d
E(Y,}): S (23)

d(Y ) | (k]Y!B +316{)’12}13)"' (C] ¥y +C';Y;2}/23 +2¢,’y,y2}’13)
— e — +{k2(Y13_Y33)*3k£(J’|_ys)z(ym_yss)} X
+{62(Y,3 —Y43)+c£(y| “'ys)z (Yzz "'1]43)"'2‘3;()’1 _}’3)(}’2 — Y )(Ym _Yn)}
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d(YM)_ L [{kz(ym)/33)’*‘3;(;(%“)"3)2()13")]33)}
di ., +{CQ(Y23_Y43)"-'C;_(J’|_J’3)2(Y23_Y43)+255(J’i_3’3)(5’3”‘3’4)(}/13“)/33)}

.............. (26)
) J . . . A R
Finally, ( of Equations (11), (12), (13), (14) will give
‘4
d
E(YM Y=Yy (27)
d(Y ) | (kl‘YM +3k1’Y12Y14)+ (CIY24 +c{y|2)’24 +20;J’1}’2Y|4) ~|
TMZ - -5—{:’(2(}",4 _}734)"'3'1‘75( I _}’3)2(}/14 _YM)}
| 2

+{02(Yza _KM)"'CE(}H _J’r.)_ (de _}':44)"'20;(% "yz)(yz ”.)’4)()?14 —}’34)}
..................... (28)
7]
E(YM): Vi oo, (29)

d(YM,) :L{{kz(ym _}/34)"'3;(;(3’1 "yJ)E(YM ”YM)}
di iy +{Cz(}]24 —Y44)+c'2(y} _J’3)2 (de _}/:14)""20; ()’l X3 )(}’z —Ma )(Ym '"}734)}

These governing Equations (11 —30) can be solved when the boundary conditions are

specified. Equations of boundary conditions are described in the next section.
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3.2 Boundary Conditions:

According to the multisegment method of integration, the boundary conditions Tor this

boundary value problem are arranged in the following matrix form,

Ay(e)+ By(h)y=C ...... (31)

The boundary condition were chosen arbitrarily for this analysis since the devised
program is capable to calculate the values of y for any specified boundary condition which is
the primary objective of this analysis. For demonstrating the method of solution, a set of

arbitrarily chosen data, used for the boundary value problem analysis, are as below.

yi(a)= 0.05m; ys(a)=-0.07m; ya(b)= 0.06m/s; yy(b)=-0.06m/s.

The above boundary conditions are used for both tuned and untuned vibration
absorbers. Fig. 2 specifies that it leads to a boundary value problem. Therefore, the matrices

for tuned and untuned absorbers of Equation 31 must be as follows:

_y|(a)
@l 7|

¥y (a)

Yq(a)

y:(b)

y,(D)
=
[v(®)] )

¥4(b)

o O O O
o = D D
o O o ©
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o o O O
[
o o O O
- o o O

0.05
0.06
-0.07
-0.06

Only for untuned absorbers, initial value analysis has been performed. The chosen

boundary conditions for 1nitial value problem:
yi(a)= 0.0m; ya{a)= 0.0m/s; y3(a)y= 0.0m; ya{a)= 0.0m/s.

After deriving the governing Equations {11 — 30) and the boundary condition
(Equation 31) multisegment integration technique is used to solve those equations as a

boundary value problem.
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Chapter 4
Method of Solution

. As mentioned in chapter 1 vibration problem would become quite involved if all the
boundary conditions are not specified at the same initial time reference, that is, some
conditions are also -specified at the final time reference. This type of problem needs to
simultaneously solve a large number of nonlinear equations that depends on the number of
intermediate grid points in between the two time references. Though, Newton-Raphson -
method can be used to solve that large number of equations, there are chances of non-
convergence of solutions. Therefore Multi-segment Integration Technique developed by
Kalnins and Lestingi (1967) has been used in the present study to solve the equations derived

m chapter 3.
4.1 Multisegment Integration Technique

At first the m"™ order ordinary differential equation (ODE) is reduced to ‘m’ first order
ODE. Then the scheme of multisegment methed of integration of a system of m first order

ordinary differential equations is as follows:

DE) _ plx, 3 G (Do YO (32)
dx

in the interval (v <x<xju() consists of

a. the division of the given interval into M segments;

b. (m+1)initial value integrations over each segment;

c. solution of a system of matrix equations to ensure continuity of the dependent
variables at the nodal points;

d. repetition of (b) and (¢) until continuity of the independent variables at the nodal
points ié achieved.
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In Eq. (32) the symbol y(x) denotes column matrix whose elements are m dependent
variables, denoted by y(x)(/=1,2,3 ...., m); /7 represents m functions arranged in a column
matrix form; and x is the independent variable. Here for convenience the first #1/2 elements of

y(x1) and the last m/2 elements of y(x) are prescribed by the boundary conditions.

If at the initial point x; of the segment S; a set of values y(x;) is prescribed for the

variables of Eqgs. (32) then the variables at any x within S; can be expressed as

Yx) =T (), 7(E Yy 5 G0 )| IR 33

where the function 7 is uniquely dependent on x and the system of equations. From Egs. (33)
the expressions for the small changes Jy(x) can be expressed, to a first approximation, by the

following linear equations:

H(xy=Y.(xyov(x,) oo (34)
where,
e ¥ - ') |
'(x) () ay"(x;)
Y Y0,
y'(x) H(x) " (x,)
Y= ' ' [ O (35)
GO S G
| ov'(x) & (x) ay" (x,)

Expressing Egs. (34) in finite difference form and evaluating them at x = x;.,
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Y 060 = Y5 = KD )= Y] (36)

where ' denotes a trial solution state and y denotes an iterated solution state based on the

condition of continuity of the variables at the nodal points. Eq. (36) is rearranged as
Y P q g

Yix, dy(x)—y(x,)=—Z(x,) o (37

where, Z: (xm) = yl (xm) - Yi (xi+! )y" (xr')

In orderto determiné the coefficients ¥,(x) in Egs. (37) in the jth column of Yi(x) can
be regarded as a set of new variables, which is solution of an initial value problem governed
within each segment by a linear system of first order differential equations, obtained from

Egs. (32) by differentiation with respect to y/(x;) in the form

i ay(x) J—— % ” 1 2,0 i
dxfiayf(x,.)J_ ayf(x,){r[x’y (), 72 (X BT65) SR (38)

thus the columns of the matrix ¥i(x) are defined as the solutions of m initial value problems

governed in §; by (38), withj=1,2, ........ 1 where the initial values, in view of Eqs. (34), are
given by
Y(x)=I ... (39)
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where ] denotes the (m,m) unit matrix. to obtain the iterated solution y(x;} Eqs. (37) are

rewritten as a partitioned matrix product of the form

yi(x) Yfl(xm) },;2 (X ) || yix) Z.'] (X:.1)
B = R | R +0
V2 (%) Y.-] (x.) }1'2 (X)) [ Va2 (X)) Ziz (%)

so that the known boundary conditions are separated from the unknowns and, therefore, turns

into a pair of equations given by
Yfl (x,. )y (x)+ Y.'2 (X, )Y (%) =y (x) = "Zrl (X501

Y (x)p () + Yf L)y ) =2 (x, ) ==2Z] (%) (40)

The result is a simultaneous system of 2M linear matrix equations, in which the
known coefficients Yi(xu1) and Z¢(x=;) are (m/2,m/2) and (m/2,1) matrices, respectively, and
the unknown, y/(x;) are (m/2,1) matrices. Since yi{x1) and ya(xa1) are known, there are

exactly 2m unknowns: y;(x;), with i= 2,3,....M+1, and yo(x), with i=1,2,... WM

By means of Gaussian elimination, the system of equations (40) is first brought to the

form

Ey,(x)=y(x,)=4,

Coy(x)=ra(x.)=8 (41)

for i=1.2,....,M. Using the notations Z¢ and Y{ in place of symbols Z{(xi1) and Y (xs1), the

(m/2,mi2) matrices E; and C; in the Egs. (4]') are defined by
, 23



=
I

st o :},]4(};'2)4

and E, =Y’ +Y'CI\ C =" +Y'CL)HE

fori=23,...... M.

The (m/2, 1) naatriges A;and B; are given by |
A ==2) =Yy (x),

B =-Z] =Ny (x)-H'E 4,

A =-2-Y'C.B_,

by=-Z} -YC B - (¥ +Y C)E 4,

for i=2.3,..... M.

then the unknowns of (40) are obtained by

V(&) = Cort[By = v, (x40)1s

Vo (X ) = B[ () + Ay 1,

and Y (Xprin) = CA-;-; [, (g ) + Ny 1

Yy (X )= EA“A'I—."[yI (o) T Ay )s



fori=23,....... M1

Assuming jz(x,-) as the next tria} solution y'(x;) the process is repeated uritil the
integration results of Eqs. (32) at x,+, as obtained from the integrations in segment S; with the
initial values y(x;), match with the elements of y(x;+() as obtained from (37) and also with the
boundary conditions at x.(. But it is worth mentioning that number of segment, that is, M
has been kept to one to get the results and these are also reliable as discussed in the next

chapter.
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Chapter 5

Results and Discussion

Results are obtained for tuned absorbers (Cases 1 — 5 in Table 1) and untuned
absorbers (Cases 6 — 21 in Table 2). Chosen boundary condition and different parameters of
intereét and chosen boundary conditions are shown in Tables 3 — 5 and Figs. 1 —2.

Solutions of the boundary value problem with any arbitrarily chosen boundary
conditions are possible by the present method. For example, in Table 4 it could be all zeros in
2" _ 4™ ¢olumns. These results ar.e not shown here for brevity. Results of tuned absorbers are
~ obtained only for boundary value problem analysis. But for untuned absorbers both initial
and boundary problems are solved. Moreover, two data sets (set # 1 & set # 2), given in Table
3 are used to generate results for untuned absorbers. These two sets of data are used to see the
effect nonlinearities present in the syslem on its response. Again analysis of stability is made
for different nonlinearities of the system. Characteristics of the responses of untuned
absorbers for data set # 1 and data set # 2 are given in Table 7 — 8. Three different frequency
ratios are considered for the stability analysis of untuned absorbers. These frequency ratios
are r=0.3162, 1.0 and 4.744. r=0.3162 represents the response of the system at lower forcing
frequency where as r=4.744 represents the system response at higher forcing frequency. At
r=1.0 system vibrates with high amplitude. It is found that in some cases system is unstable

at r=1.0. The results are described now sequentially.
5.1 Stability Analysis of Tuned Vibration Absorbers

A few results obtained numerically by the described method in chapter 4, are first
shown in Table 6 for tuned frequency (frequency ratio, r=1). As discussed, Equation 31
defines the boundary conditions while Fig. 2 shows it graphically. Table 6 shows the
unknown responses, that is, final displacements for y; and ys3 and initial velocities for y, and
ya, for the main mass and absorber mass, respectively, for the different cases 1 to 5. As seen,
yi(h) and y(a) are -0.0791m and -0.9944m/s, respectively for case 1. Spring nonlinearity has
little effect on yi(h); with reference to case 1, yi(b) for four other cases does not change

remarkably but ya(a) is 1.408% and 1.407% lower for case 2 and case 4 and 1.458% and

1.489% higher, respectively, for case 3 and case 5.
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For the absorber mass, y3(b) and y4(a) are 0.0222m and -1.6667m/s, respectively for
case 1. Spring nonlinearity has notable effect on both the values of y3(h) and yy{a). For
example, with reference to case I, ya(h) is 15.315% and 14.865% lower for case 2 and case 4;
but 14.865% and 15.315% higher for case 3 and case 5. Again, ya(«) 15 3.216% and 3.084%
higher for case 2 and case 4; but 3.318% and 3.258% lower for case 3 and case 5,

respectively.

Figs. 3(a) and (b), for case 1, show the response of the linear 2 DOFS with the change
of forcing frequency. This analysis was made intentionally to compare the exact results for
tuned absorbers given in fig. 3(c) [Thompson (1981)]. These results of Thompson (1981) are
of course, for.steady state vibrations but present study includes all terms. Figs. 3(a) and 3(b),
for the main mass and the absorber, respectively, prove the reliability of the code as these
give very similar curves given in fig. 3(c) [Thompson (1981)]. As seen i Fig. 3(a-b),
deflection lends to a small value (zero for steady state vibration as in Thompson (1981)) at
the tuned frequency (r=1), while the system response becomes boundless at the two natural

frequencies corresponding to » = 0.8 and 1,=1.25.

Having analyzed ¢ — r curves for a linear absorber ( Figs. 3(a), (b)), it would be now
easy to comprehend the effect of spring nonlinearity on the system’s response from Figs. 4(a)
and (b) that represent the d-r curves for case 2. From Figs. 3 and 4, a general observation that
can be made is that the non-dimensional deflection of absorber mass at r = 0.8 and 1.25 is
always greater than that of main mass. d — » and ¢ — r curves of the 2 DOFS for other
nontinear Cases 3-5 (that are not shown here for the sake of brevity) are similar to that of

Figs. 4.

Fig. 5 allows the comparison of different cases of spring combination from o versus r
curves at /=50s. As seen o is small in the regions 00 < r < 0.65, in the vicinity of the tuned
frequency r=1 and for high frequency for r > 1.4, But d is too high at the two resonant
frequencies. For all the cases 1 — 5, the first resonant frequency 71=0.8 seems 1o be more
dangerous than the second one (r;=1.25), in terms of non-dimensional displacements. It 13
also interesting to see from this figure that absolute non-dimensional displacements at r = 0.8
is the highest for ¢@ise 5. Case 1 and case 2 show the second and third highest displacements,

respectively at 1=0.8. While, d= -200.0152 and -172.433 for Cases 3 and 4, respectively at
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ri=0.8. At r=1.25, case 4 shows the highest deflection. Case 2 and case 5 show second and

third highest displacements respectively at r,=1.25.

Non-dimensional deflections with time at different frequencies are shown in Figs. 6-8,
10-16. To avoid clumsiness, the entire data is sorted; one at the interval of fifty is shown only
out of the entire 2500 data. Therefore, some of these Figures 6-8, 10-16 may have a higher

peak in the interval /=0-50 seconds.

For case 1, Fig. 6 shows non-dimensional deflection of main mass with time at the
tuned frequency. As seen, d is too small at this frequency which will be evident while
discussing d-t curves for other frequencies. Since d changes almost negligibly (range of d
varies from -4.67 to 4.55) during the entire period of analysis, it represents stable solutions.
Stmilar d - ¢ curves are presented for different cases 2-5 in Fig. 7, at the tuned frequency. d
varies from 4.73 to 4.63 during the entire period of analysis. Therefore, like case 1, all other
cases with spring nonlinearity, have similar stable responses at the tuned frequency as shown

by Fig. 7.

Unlike Figs. 6, 7 there is clear increase of amplitude with time when r=0.8,
corresponds to the first natural frequency for case 1 as shown in Fig. 8. d increases gradually
from its initial peak value of 60.08 to -208.4 for the time period. Such boundless increase of d

with time indicates that the system is unstable at this forcing frequency.

As discussed, the vibration absorber system for case 1 with forcing frequency ratio
0.8, shown in Fig. 8, vibrates with ever increasing large amplitudes with time showing
divergence. It is also interesting to see the same instability phenomenon in terms of phase
plane of case 1 in Fig. 9. In Fig. 9, smaller ellipses with solid line represent the change of
velocity with deflection for the first two seconds and the dotted ellipses represent the same
for the tast two seconds of vibration. During the first two seconds of vibration, amplitude of
the system was high (1.32m) with low velocity (15m/s). For the last two seconds, amplitude

and velocity of the system become triple clearly indicating the instability of the system.

As r; =1.25 corresponds to the second natural frequency of the absorber system, the
system vibrates with high amplitudes (first two peaks are d=115.94 and 108.5) showing
instability at the beginning, as shown in Fig. 10, for case 1. Interestingly, with time, the

responses decrease; near =50s, the amplitudes are -48.65 and 43.85, respectively. Though the
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amplitudes are still high, but the trend shows gradual convergence with time. Thus it can be
predicted that this linear system (case 1) approaches stability with time from an initial

unstable state, exactly opposite to that for | =0.8 (Figs. 8-9).

Fig. 11 and Fig. 12 show the vibration for » = (1.8 and 1.25, respectively for case 2.
Fig. 11 shows that for r; = 0.8, .system vibrates with high amplitudes (peaks of d vary from -
252.16 to 258.95) for the entire pcri_od. Similarly, Fig. 12 shows that for r, = 1.25, system
still vibrates with high amplitudes (peaks o vary from -125.79 to 118.62) for the entire period.
Comparing with the previous case of Fig. 8-10, it cén be said that for case 2, the absorber

system remains violent for the entire time period.

All other nonlinear systems (cascs 3-5) give high amplitude of vibration for »= 0.8
and 1.25 and the shape of the graphs differs for different cases. Some representative

characteristics are shown in Figs. 13 — 15 for r=0.8 only.

For case 3, d varies from -166.2 to 171.39 as shown in Fig. 13. Though smaller peaks
are observed within the above range (-166.2 to 171.39), it is obvious that for the entire time

period the system remains resonant.

For case 4, d varies from -159.45 to 155,11 at »=0.8 as shown in Fig. 14. As seen
from the figure, amplitude decreases with time for /= 0 — 25s. Minimum amplitude observed
from the figure is 76.85. From 7= 25 — 50s amplitude of the system increases again, resulting

an unstable system at 7;=0.8.

As seen from Fig. 15, for case 5 that the maximum peak amplitudes vary from -92.38
to 112.26, indicating that for the entire time period this system also remains resonant,
Moreover, there is a sudden divergence trend as ¢ becomes 221.0 when time ( approaches 50
seconds. As the velocity at /= 50s is defined (Table 4), so the system’s deflects with = 221.0

at =30s.

For each particular forcing frequency, absorber mass gives the similar graph to that of
main mass but the important difference is that absorber mass gives larger amplitude vibration
than main mass vibration as shown in Fig. 16 that shows absorber mass defiection at ; =0.8

for case 5.
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5.2 Stability Analysis of Untuned Vibration Absorbers

5.2.1 Stability Analysis of Untuned Vibration Absorber (Case 6) Solved as
Initial & Boundary Value Problems

Case 6 (spring with main mass and damper with absorber mass only), although is a
two degrees of freedom system but it actually responses like a single degrees of freedom

systemn (SDOF) when vibrates [Thomson (1981)]. If {= 0.0 (zero damping) we have an
undamped SDOF with resonant frequency w= ﬁ , (r=r1=1). A plot of d — r will approach
\' m,

infinity at r=1.0. If ¢ is infinitely large, the damper mass and the spring mass will move
together as a single mass, and again we have an undamped SDOF system, but with lower

kl

natural frequency of .
n + n,

5.2.1.1 Stability Analysis of Untuned Vibration Absorber (Case 6) Solved as

Initial Value Problems

Figs. 17 (a), (b) show the absolute non-dimensional displacement (|d]) versus
frequency ratio (r.‘) for case 6. This problem is solved as initial value problem. No
nonlinearity is taken into consideration. As seen from the figures, peak amplitude is lowest
when ¢, = 0.288-which is known as optimum damping ratio of the system. This analysis was
made intentionally to compare the exact results for untuned viscous damper given in fig.
17(c) [Thompson (1981)]. These results of Thompson (1981) are, of course, for steady state
vibrati-ons but present study includes the transient terms. Figs. 17(a-b) for the main mass,
prove the reliability of the code again as these give very similar curves given in Thompson
(1981). For fig. 17 the mass ratio («) is 1.0 and damping ratios ({) are 0.1 and 1.0 for fig.
17(a) and 0.288 and 0.5 for fig. 17(b). From the figures, at fow forcing frequency (r < 0.3747)
all systems (for varying ¢) vibrate with smali amplitude (4 near unity). From 0.3747<r <1.1
amplitude increases to its highest value and again decreases. For ¢=0.1 and 1, peak amplitude
occurs at 7 = 0.95 and 0.73 respectively. Again for (=0.288 and 0.5, peak amplitude occurs at
r = 0.8. Moreover, peak amplitude varies widely with £, At {=0.1 and 1.0 peak values of
amplitude are 4.2 and 5.02, respectively. At {=0.288 and 0.5 peak amplitude are 2.89 and
3.15, respectively.
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5.2.1.2 Stability Analysis of Untuned Vibration Absorber (Case 6) Solved as
Boundary Value Problems

d — r curves for case 6 having x=1.0 but solved as boundary value problem are shown
in fig. 18. The boundary conditions given in Table 4 were used for this observation. As the
boundary conditions were fixing final veiocity of the system and damping force is
proportional to velocity, eventually the damping force became fixed at that particular
boundary (r=b). Damper in this case has little effect on the system’s final displacement unless
optimum ¢ = {, is used. As seen from the figure, for {(=1.0, amplitude (d) range varies from
6.60 - 8.59, for (=0.1 range of d varies from 5.0 - 5.7 and for (=0.5 d varies from 3.295 to
5.28. But, for optimum damping ratio ({=0.288) system shows similar deflection to that of
initial value problém. This also indicates the effect of optimum damping ratio ({;) on the

system’s response is independent of boundary conditions.

dmax —  relation for varying mass ratio is shown in fig. 19. Each curve in this figure
was drawn by taking the peak amplitudes of a particular mass ratio while varying the
damping ratio. From fig. 19 the line of a particular 1 becomes steeper with the decrease of its

value. So system with lower mass ratio but with fixed damping ratio gives larger vibration.

5.2.2 Stability Analysis of Untuned Vibration Absorber Solved as
Boundary Value Problem for Data Set # 1 |

Summary of stability of the system for data set # 1 is given in table 7. Observing the
behavior of case 6 as initial and boundary value problems, analysis is next made on untuned
absorber, comprising springs and dampers with both masses of the absorber. Here, two sets of
data (set # 1 & set # 2) are taken to sce the cffect of nonlinearity indices of springs and
dampers on the system’s response (Table 3). Set # 1 and set # 2 consist of same masses and
main spring stiffness. But the changes are‘ made in damping constants and absorber spring
stiffness. For set # 1, damping constant used is obtained from the relation of optimum
damping ratio (£) and mass ratio () (Table 3). Again for set # 2, chosen damping constant is
larger than that of set # 1. For nonlinearity indices (both springs and dampers), values chosen
for set # 1 are much smaller than that of set #‘2. For data set # 1, system response for cases 7
" — 21 could be seen. Figs. 20 — 29 are the selected figures for untuned absorber parameters of

set # 1.
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Fig. 20 is for absolute non-dimensional displacement versus frequency ratio for case 7
at = 50s. Due to imposed velocity of the system at final condition the damper force also
becomes fixed at the end. As seen from the figure, peak amplitude occurs at frequency ratio

near unity and the peak value 15 3.37. Cases 8 ~ 21 show similar type of deflection at /= 50s.

Fig. 21 shows ¢ — ¢ curve for case 7 having mass ratio, damping ratio and indexes
mentiohed above, at low forcing frequency (#=0.3162). This analysis was made for a time
period of 50s at »=0.3162. Peak values of d range are 4.714 to 3.047. Other linear and
nonltinear combination of springs and dampers (cases 8 — 21) show similar type of deflection

at #=0.3162, but the range of amplitude ¢ varies.

Fig. 22 shows the ¢ — ¢ curve for case 7 at r = 1.0. As seen from the figure, system
vibrates with very high amplitude initially and with time amplitude decreases to a small
value. For the entire 50s period, amplitude () varies from 102.09 to 1.60. As seen from the

figure, although the system is initially unstable but approaches to stability with time.

Fig. 23 shows d — ¢ curve for case 7 at =4, 744, Compared to fig. 22, at high forcing
frequency system vibrates with lower amplitude somewhat similar to response of a vibration
isolator [Thomson (1981)], and the amplitude decreases continuously ranging from 3.955 —
1.866 (farther stability is achieved). Other linear and nonlinear combination of springs and
dampers (cases 8 — 21) show similar type of response at r=4.744 as presented in fig. 23 but

the amplitude range varies with the cases.

In fig. 24, d — ¢ curve is shown for case 8 at = 1.0. With this combination of spring -
damper system vibrates with continuous high amplitude. As seen from the figure, d varies in

the range from 64.04 to 54.9 remaining violent with time.

d — t curve for case 10 at » =1.0 is shown in fig. 25. Here again system vibrates with
decreasing amplitude from an initial unstable state, as in case 7 at »=1.0 (fig. 22) but its
approach to stability is much slower than that of case 7. For the entire 50s period of vibration,

amplitude range of the system is 104.5 — 40.33,

Fig. 26 shows the d — ¢ curves for case 11 at r = 1.012. Case 9 also shows similar type
of response at 7=1.012. Solution for this type of spring and damper combination, does not
converge with time, resulting an unstable system at =1.0. This happens due to soft springs in

absorber side with linear damping (case 9, case 13). The absorber spring force becomes
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negative due to negative index and this force cannot be diminished by the linear or soft
damper. This problem is eliminated when hard damper is used. Another way to solve this
type of problem is to reduce the value of spring index of absorber mass. As seen from figure,

amplitude d ranges from 86.53 — 2.09. Here again system approaches to stability with time.

d — ( curve for case 12 at » =1.0 is shown in fig. 27. From this figure, it can be said
that, although the vibration amplitude is high but it is lower than that of linear damper case.
In case of linear damper, system approaches to stability with time but in hard damper case as
in fig. 27, system never reaches 1o its stability, rather vibrates with high amplitude. Range of

d varies from 49.91 to 30.214. Cases 12 — 16 give similar type of response at » =1.0.

d — t curve for case 16 at 7=1.0 is shown in fig. 28. Amplitude ranges from 52.07 -

32.28. Cases 12 — 16 at r=1.0 show similar response.

Fig 29 shows d — ¢ relation for case 18 at r=1.012. As seen from figure, range of 'd
varies from 86.1 — 2.09 approaching lo stability with time. As solutions of the system
comprising soft dampers (cases 17 — 21) does not converge, system is unstable at »=1.0.
Cases 17, 19 — 21 show similar type of response at »=1.012 but with varying range of

amplitude.

5.2.3 Stability Analysis of Untuned Vibration Absorber Solved as
Boundary Value Problem for Bata Set # 2

Table 8 shows summary of different cases. For Cases 9, 11, 14, 16 & 17 - 21
numerical solution does not converge due to larger spring and damper indices and as a result
these cases do not show any convergence even in lower or higher speed ratio. However,

results of all the cases 7 — 21 with data set # 1 have already been discussed previously.

Figs. 30 — 46 are obtained for the system having untuned absorber parameters of data
set # 2. Dampers, nonlinearity indices of springs and dampers are kept to a high value, given
in Table 3 1o see their effect on the untuned system vibration. Analysis shows that, cases 9,
11, 14 & 16 — 21show instability from the very beginning due to high negative spring and

damper nonlinear indices as numerical solution diverges for these cases.
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Fig. 30 shows non-dimensional displacement versus frequency ratio for both main and
absorber mass at 7 =0.5s (in the transient region) for case 7. From the observation, the
absorber mass deflection is always greater than that of main mass. Again at /=0.5s the
deflection is high for all forcing frequencies. Although in fig. 30, the system comprises linear
spring with linear damper but other cases (8, 10, 12, 13 & 15) show the similar type of
deflection at transient period /=0.5s. In fig. 30, d varies from 368.94 to 536.53 and ¢ from

742.15 to 1078.2 for the entire frequency range of study.

Fig. 31 shows the d — r and ¢ — r curves for case 7 at /=1.0s. d initially increases to a
large value as r approaches to 0.9. Then with r >0.9 system-response decreases and after =
4.0 system vibrates in a steady manner. Again, e increases to maximum amplitude as r
approaches 1.14 and after that e decreases continuously. Cases § - 15 give similar types of d

—rand e —r curves at =1.0s except cases 9, 11, 14.

Fig. 32 again shows the d — r and ¢ — r curves for case 7 at r=50.0s. As seen from the
fipure, both main mass and absorber mass vibrate with decreasing amplitade for gradually
increasing frequency ratio. Cases 8 — 15 (except 9, 11, 14) give similar response with

frequency ratio at r=50.0s.

For case 7, fig. 33 shows the non-dimensional deflection of main mass with time al r
=0.3162. As seen from the graph d varies slightly (d varies from -8.54 to 7.13) during the

entire period of anélysis.

Fig. 34 shows the non-dimensional deflection of absorber mass with time at r =
0.3162 for case 7. From the figure it is observed that, absorber mass shoots to a very high
value (e =862.97) at start and due to the damping effect, the deflection reduces to a lower

value (e varies from 8.43 to 7.41from ¢ =10 — 50s) over the entire period of analysis.

Fig. 35 and fig. 36 show vibration for case 7 at » = 1.0 for main mass and absorber
mass respectively. In fig. 35 main mass of the system Qibrates with high amplitudes (first two
peaks are d= 74.374 and 77.2) showing instability at the beginning. Interestingly, with time,
the response decreases; near ¢ =50s the amplitudes are 4.56 and -5.37 respectively. The
amplitudes have become considerably small and the trend shows a gradual convergence with

time. Thus, it can be predicted that this linear system approaches stability with time from an
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initial unstable state. Again in fig. 36, absorber mass of the system starts from a very high

amplitudes and then the amplitude gradually decreases to small values.

At high forcing frequency (r =4.744), d — { relation for linear springs with linear
damping (case 7) are given in fig. 537. In {ig. 37 amplitude of vibration decreases gradually

(range of d varies from 7.198 to 5.50).

.Fig. 38 shows d — ¢ curve for case 8 at » =0.3162. Here the main mass initially shoots
to a high value (4 = 18.5) and then the amplitude of vibration reduces gradually. After
shooting, ¢ varies from 6.25 to 5.0 during entire 50s vibration showing stability of the

system. Case 10 combination shows similar type of response at ¥=0.3162.

The effect of nonlinearity of springs with linear damper on main mass at r=1.0 is
shown in fig. 39 case 8. Although at start amplitude is quite high (d = 56.84), it decreases
sharply (d becomes 31.82) and then increases with the time; last two amplitudes are 75.34
and -75.44. Thus, it can be predicted that this nonlinear spring and linear damping system

approaches instability with time.

Again the effect of nonlinearity of springs with finear damper on abscrber mass at »
=1.0 is shown in fig. 40, ¢ — ¢ relation {or case 10. Here again system starts vibrating from
high amplitude and drops sharply, and then increases gradually with time approaching

instability.

Fig. 41 shows the simiiar d—rand e — r curves for case 12 at /=0.5s (in the transient
region). The range of deflection for both main mass and absorber mass is same to that of case
7, except in nonlinear case there is a high shooting at start. For nonlinear spring combination
with nonlinear damping (cases 13, 15) d — » and e — r give similar curves to that of case 7 at

t=0.5s. For cases (13 — 16) no shooting occurs initially.

In fig. 42, d — { curve is drawn for case 12 at » =0.3162. The range of d varics from
2.8464 to -2.4881 for total 50s vibration. Again at t=50s a shooting occurs at a comparatively
larger value of d (6.387). Comparing Fig. 42 (d — ¢ for case 12) with d — 1 curve for case 7 at
#=0.3162, we see that the deflection range is smaller for hard damper than that of linear
damping case. Thus, nonlinear damping (hard damping) causes vibration of smaller

amplitude and this is the fact for both linear and nonlinear combination of springs.
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Fig. 43, ¢ — ¢ curve, shows the absorber mass deflection with case 12 of previous
figure at » = 0.3162. Here also figure supports the comparison that is made for the main mass.
Although absorber mass begins vibration with larger value of e (¢=360 at start), the amplitude
of vibration falls to a smaller range and becomes almost stable (¢ varies from 2.602 to 2.589

for t=10-50s).

Fig. 44 and Fig. 45 show the vibration of case 12 for main mass and absorber mass,
respeétively at =1.012. In fig. 43, 1" two amplitudes of vibration are -64.6 and 64.93
respectively. With the passing of time, amplitude decreases and the last two ampiitudes (d)
are to -8.55 and 6.17, approaching to stability from an initial unstable state. Similar trend
ocewrs in fig. 45, where e at start is -136.34 and gradually decreases to -6.9 and 5.94

respectively.

Fig. 46, shows d — ¢ curve for case 12 at high forcing frequency (r =4.744).
Comparing to case 7 at high forcing frequency, amplitude of vibration for this combination
(case 12) is much smaller than that of linear damper combination. Range of d varies from
142 to 1.081. A sudden shooting occurs at the end of the vibration period. Cases 13 and 15
show similar type of displacements as in fig. 46 at r=4.744. Summary of stability of the

system for data set # 2 is given in Table 8.
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untuned vibration absorbers with nonlinearities in springs and dampers has been extensively -

Chapter 6

Conclusions and Recommendations

Following the set objectives of this study, stability in terms of responses of tuned and

studied in the form of boundary value problems. Soundness of the code has been

demonstrated comparing a few results of present analysis with available exact results.

Following conclusions can be drawn from the present study:

6.1 Conclusions for Tuned Vibration Absorbers:

-2

When the unknown boundary values, representing the response of the system at the
two time references f=a and (=b, are numerically calculated, it is found that, spring
nonlinearity has little effect on the main mass. For example, with reference to case 1
(linear case), yi(b) does not change remarkably for nonlinear cases 2-5. Another
boundary value, y»(a) is only 1.408% and 1.407% lower for case 2 and case 4 and

1.458% and 1.489% higher, respectively, for case 3 and case 5.

Spring nonlinearity has an obvious effect on the effect on the absorber mass. For
example, with reference 1o case 1, y3(b) is 15.315% and 14.865% lower for case 2 and
case 4; but, 14.865% and 15.315% higher for case 3 and case 5. Again, y4(a) is

3.216% and 3.084% higher for casc 2 and case 4; but 3.318% and 3.258% lower for

case 3 and case 5, respectively.

Like the linear absorber (case 1), all the nonlinear cases 2-5 show more or less viotent
responses at the two resonant frequencies corresponding to ry = 0.8 and r=1.25.
While at the tuned frequency » =1.0, the responses of the system are stable and very

low for all the cases 1-5.

First resonant frequency is more dangerous than the second one for cases 1 — 5 in
terms of non-dimensional displacements at =50s. Absolute non-dimensional
displacements at » = 0.8 is the highest for case 5. Case 1 and case 2 show the second

and third highest displacements, respectively at =0.8.
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For linear springs (case 1) the tuned absorber system becomes more unstable with the
time when »=0.8 but the same system becomes stable from an unstable state for
r=1.25. The nonlinear systems, however, more or less shows violent response at the
two resonant frequencies and thus can be considered to remain unstable for the entire

time period.

6.2 Cpnclusions for Untuned Vibration Absorbers:

Effect of optimum damping ratio ({) on the system’s response is independent of
boundary conditions. Incase of optimum damping untuned absorber vibrates with
minimum amplitude. This happens for both initial value and boundary value
problems. For example, case 6 with optintum danﬁping ratio {{,=0.288) shows similar

deflections for initial vatue and boundary value problems.

Mass ratio (u) plays a significant role on the maximum deflection of untuned
absorber. For the same damping ratio, system with larger mass ratio shows smallier
peak amplitude. But all the systems with a particular mass ratio show minimum peak

at optimum damping ratio.

Increased nonlinearity in spring and damper makes the system more unstable. For
example, systems with data set # 1 show more stability than that for data set # 2
(having higher nonlinearity indexes compared to data set # 1) for different cases at r

=1.0.

Untuned system with different cases (7 — 21) show similar responses for both lower
and higher forcing frequencies. For example, at forcing frequencies » =0.3162 and
4744 all the system with data set # 1 show similar responses. For data set # 2,

systems that converge at » =0.3162 and 4.744 show similar response also.
From this study we can conclude that practical springs and dampers should contain

smaller nonlinearity indices as  systems with lower nonlinearity index approaches to

more stability.
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¢ Practically no spring or damper remains linear with ever-increasing response.
Therefore this study is particularly useful for cars’ shock absorber design and
application. As stability of a shock absorber (which can be considered an untuned

absorber) can easily change because of damper and spring nonlinearities.

e This study is also useful when specially, when a vibration control scheme becomes a

boundary value problem.

* . Nonlinear vibration analysis of machinery and equipment in power plants can utilize

this study.

* Nonlinear vibration analysis of buildings, bridges and other structures can also utilize

this study.

6.3 Recommendations for Future Works

In future, the developed computer code can be used to study response of the similar
system having higher DOF. Practically, this method of vibration analysis will provide handy
information  for active/passive  vibration control of structures.  The following
recommendations can be made for future works from experience gained while achieving the

set objectives of this thesis:

1. The present analysis should be extended to observe the effect of vibration of the
system with higher degrees of freedom. Nonlinearity in system can also be analyzed
for both spring and damper. In Appendix — A, investigation for 3 DOFS with spring
nonlinearity is presented. Therefore, systems with more degrees of freedom can be

studied.

2. The effect of self-excited force on the system can be studied. Self-excited v1bratlon

forces with and without nonlinearity can be added to this present study.

3. Experimental studies can be carried out to verify the results obtained for the tuned and

untuned vibration absorbers.
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Table 1: Different cases of tuned absorbers

Case Combination of

springs
Case 1 | Both springs linear
Case 2 | Both springs hard
Case 3 | 1% spring: hard

2" spring: soft
Case 4 | 1% spring: soft

| 2" spring; hard

Case 5 | Both springs soft

Table 2: Different cases of untuned vibration absorbers

Case Combination of Combination of | Summary of the
Springs Dampers Systems
Case 6 Linear spring with Linear damper
maiin mass only with absorber 1=0.0, ©=0.0
mass only ,
Case 7 Both springs linear Both finear and
Case 9 1 spring;: hard Linear dampers linear dampers
2" spring: soft Cases 7 - 11 ’
Case 10 | 1™ spring: soft
2" spring: hard
Case 11 Both springs soft
Case 12 Both springs linear Both linear and
Case 13 Both springs hard ngiﬁ;gz?;oii li;li%h
Case 14 | 1% fpring: hard Hard dampers hard dampers
2" spring: soft Cases 12 - Iy
Case 15 | 1™ spring: soft
2" spring: hard
Case 16 | Both springs soft
Case 17 Both springs linear Both linear and
Case 18 | Both springs hard ngﬁiﬁ:;ﬁgiﬁ rii/li%h
Case 19 | 1% j‘.pring: hard Soft dampers soft dampers
27 spring: soft | Cases 1721
Case 20 I¥ spring: soft
2" spring: hard
Case 21 Both springs soft




Table 3: Chosen Parameters of Tuned & Untuned Vibration Absorbers:

44

Parameter | Values for | Values for the Values for the untuned
the Tuned | Untuned absorbers solved as boundary
Absotber Absorber value problem.
Solved as Initial | set # 1 set# 2
Value Problem
my (kg) 5.0 100.0 100.0 100.0
my (kg) 1.0 100.0 1.0 1.0
ki (N/m) 1000.0 1000.0 1000.0 1000.0
Ri(N/m’y | +0.5 0.0 +0.5 +0.5
ky (N/m) 200.0 0.0 10.0 10.0
Ky (N/m?) | £0.5 0.0 +0.005 +0.5
¢y (Ns/m) | 0.0 0.0 0.03139 1.0
¢\(Ns/m”) 1 0.0 0.0 - +0.003 +0.0]
c; (Ns/m) 0.0 63.246, 3.139 10.0
182.174,
316.23, 632.46
¢» (Ns/m”) | 0.0 0.0 +0.03 +0. 1
, 14.14 3.162 3.162 3.162
m,
U 0.2 1.0 0.01 0.01
¢ 0.0 0.1,0,=0.288, | {=0.00496 0.0158
0.5,1.0
J(N) 20.0 20.0 20.0 20.0
w; (rad/s) | 11.132 3.162 3.006 3.006
w; (rad/s) | 16.675 - 3.326 3.326
Damping ratio, = &
pine ’ 2mk,
. . . _ M
Optimum damping ratio g \/2(1 NI




Table 4: Chosen boundary conditions of boundary value problem for tuned & untuned

vibration absorbers

Parameter Values for | Values for Untuned absorbers
Tuned
absorbers | set# 1 set # 2
v1(1=0.0s) (m) 0.05 0.05 0.05
v2(1=50.0s) (m/s) | 0.06 0.06 0.06
y3(r=0.0s) (m) -0.07 -0.07 -0.07
y4(1=50.0s) (m/s) | -0.06 -0.06 -0.06

Table 5: Chosen boundary conditions of initial value problem for untuned vibration absorbers

Parameter Values for
Untuned
absorbers

w(r=0.0s) (m) 0.0

12(=0.0s) (m/s) | 0.0

y3(i=0.0s) {m) . | 0.0

y4(r=0.0s) (m/s) | 0.0
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Table 6: Different cases of absorbers and calculated boundary values at the tuned frequency

(r=1).

[Given boundary conditions: y((=0s) = 0.05 m, »(r=50s) = 0.06 m/s, y3(:=0s) = -0.07 m,
y4(1=50s) = -0.06 ny/s]

Case Combination of Calculated boundary values
springs Main mass absorber mass
yi (b) y2 (a) 3 (b) Ya (2)
() (m/s) (m) (m/s)
Case 1 | Both springs linear -0.0791 -0.9944 0.0222 -1.6667
Case 2 | Both springs hard -0.0793 -0.9804 0.0188 -1.7203
Case3 ! 1% spring: hard -0.0790 -1.0089 | 0.0255 -1.6144
2" spring: soft
Case 4 | 1" spring: soft 20.0792 209806 | 0.0189 17181
2" spring: hard
Case 5 | Both springs soft -0.0790 -1.0092 0.0256 -1.6124
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Table 7: Characteristics of the Responses of Untuned Absorbers for Data Set # 1

Cases

- Characteristics of the Responses at

r="0.3162 =1.0 r=4.744
7 Approaches stability from an
initially unstable state
Remains unstable with
8 " . .
continuous high amplitude
Unstable from the very beginning
9 if »=1.0. But approaches stability
from an initially unstable state at
r=1.012
10 Approaches stability from an
initially unstable state
Unstable from the very beginning L
1 ame?‘.‘?h"f farther | ¢,—1 0. But approaches stability ap?;".i’_"ﬁh‘? farther
. S,‘?blmy rom 4n from an initially unstable state at | . S,t“? tity Irom an
initiatly stable state =1.012 initially stable state
12
13 . e \
a Remains unstablt:: with increasing
s amplitude
16
17 Unstable from the very beginning
18 if =1.0. But approaches stability
19 from an initially unstable state at
20 r=1.012
21
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Table §: Characteristics of the Responses of Untuned Absorbers for Data Set # 2

Cases Characteristics of the Responses at
r=0.3162 r=1.0 r=4.744
7 Approaches stability from an
initially unstable state approaches farther stability
Stable . . o
g Remains unstable with from an initially stable state
increasing amplitude
9 Unstable from the very beginning
Remains unstable with approaches farther stability
10 Stable . . X . o _
increasing amplitude from an initially stable state
11 Unstable from the very beginning B
Unstable from the very
12 R
Stable beginning if 7=1.0. But
approaches stability from an Stable
13 initially unstable state at
=1.012
14 Unstable [rom the very beginning,
Unstable from the very
beginning if ¥=1.0. But
15 Stable approaches stability from an Stable
initially unstable state at
r=1.012
16
17
18 Unstable from the very beginning
19
20
21
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FIGURES FOR
TUNED ABSORBERS
(FIGS. 3 — 16)
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Case 1: Both springs linear |
|

50 -

0] NWVVV\N\/WV\J\N\/VV\JUAUHU Unu“vvvluv vu\fv U"UVVMWMW

a5 O 0.5 1 1.5 2

-100 -~
-125 +
-150 -~
-175 o

-200 -

=225 -

(a)
120

20 A

U v T
1 1.5 2

WAAI\[\A Mhn{\/\f\f'\!\f\ﬂf\f\ﬂ- AAWW

-180

-280 A

-380 A

-480 -

-580 -

)
Fig. 3 Non-dimensional displacement - frequency ratio for case 1 at = 50s : (a) main mass (b)

absorber mass

51
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Casc 1: Both springs linear
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Case 1: Both springs linear 50 1
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Case 5: Both springs soft
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Fig. 16 Non-dimensional displacement of absorber mass - time for case 5 at 1y = 0.8.
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| FIGURES FOR

UNTUNED ABSORBERS (CASE 6)
SOLVED AS INITIAL AND BOUNDARY

VALUE PROBLEMS (FIGS. 17 — 19)
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Sec. 5.8 . Vioralion Damper
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FIGURES FOR
UNTUNED ABSORBERS
USING DATA SET # 1 (FIGS. 20 - 29)
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Fig. 20 |d| — r for case 7 having x¢=0.01and =0.00496 at /=50s and solved as boundary value
problem.
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Fig. 21 d — ¢ for case 7 in the system with z=0.01 and ¢=0.00496 at r=0.3162.
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Case 7: Both springs linear
Both dampers linear

96 -

46 -

-54 -

o)

Fig. 22 d — ¢ for case 7 with £=0.01, ¢=0.00496 and r=1.0.

4 W _ Case 7: Both springs linear
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Fig. 23 d - { for case 7 with z=0.01, { =0.00496 and r=4.744.
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Fig. 25 d — ¢ for case 10 with 4=0.01, {=0.00496 and r=1 0.
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FIGURES FOR
UNTUNED ABSORBERS
USING DATA SET # 2 (FIGS. 30 — 46)
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Fig. 30 Non-dimensional displacement vs. frequency ratio at /=0.5s and {=0.0158 for case 7
(both springs linear & both dampers linear).

34 Case 7: Both springs linear
o Both dampers linear
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\ --- Absorber mass
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Fig. 31 Non-dimensional displacement vs. frequency ratio at /=1.0s and {=0.0158 for case 7.
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Case 7: Both springs linear
Both dampers linear

nondimensional displacement
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Fig.

Fig. 33 d -t at r =0.3162 and {=0.0158 for case 7 (both springs linear & both dampers
linear). '
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Appendix — A
A.1 Extension for 3 DOFS

Analyzing 2 DOF tuned absorber and damped system with nonlinearity, coding was extended
for 3DOFS. Fig. Al shows the arrangements of the system masses. Here also, result is
obtained for non-dimensional displacement with respect to frequency ratio and non-
dimensional displacement with respect to time. For 3DOFS analysis no damping is taken
under consideration. Parameters chosen for this analysis are given in the table Al:

Table Al: Chosen Parameters of 3 DOFS:

Parameter | Values for

tuned
absorber

m (kg) 20

my (kg) 20

ms (kg) 20

ky (N/m) 50

K (N/m?) 1 0.05

ky (N/m) 50

Ky (N/m’) | 0.05

k3 (N/m) 50

k4 (N/m”) | 0.05

c¢; Ns/m) 0.0

¢1(Ns/m”) | 0.0

¢y (Ns/m) 1 0.0

¢'s (Ns/m3) 0.0

c3(Ns/m) | 0.0

¢3 (Ns/m?) 1 0.0

@) (rad/s) | 1.58

SN 20

Again the boundary conditions taken for this analysis are given in Table AZ:

Table A2: Chosen boundary value for 3 DOFS.

Parameters Boundary
Values
yi(a) (m) 0.05
(b} (m/s) 0.06
yi(a) (m) -0.07
y4(b) (m/s) -0.06
ys(a) (m) 0.0
ve(b) (m/s) 0.0
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Non dimensional displacement versus frequency ratio for 1%, 2" and 3 mass of undamped 3

DOFS are shown in fig. A2(a), (b) and (c) respectively. All the springs in the system are
considered linear. As seen from the figure, system shows large amplitude at three forcing
frequency. At frequency ratios () 0.7, 2.08 and 2.97 resonance occurs in the system as a
result of which each mass of the system vibrates with larger amplitude. Highest amplitude
oceurs in first mass is at second resonant frequency amounting o equals to 16.98. Similarly
for second and third mass, highest amplitude occurs at 3 and 2™ resonance frequency
respectively. Again peak amplitudes at these frequencies are 13.84 and 14.97 for 2" and 3"
mass fespectively. Again nonlinearity of the system is analyzed only for the springs. In the
nonlinearity analysis, all three springs are considered either hard or soft at a time. Obtained
figures of the nonlinear system are similar to fig. A2. Resonance occurs in the same r values
as that occurs in linear system. The basic difference is the peak amplitudes of the system. For
soft springs, peak occurs in 1™ mass (duax =15.97) and at second resonance frequency. Again
for hard springs peak occurs in 1st mass (dnw=16.73) and it oceurs also in second resonant
frequency.

Fig A3(a), (b), and (c) show the non-dimensional deflection versus time for 1% 2" and 3™
masses of 3 DOFS, respectively. From the figures, amplitude for all masses of the system
increases continuously with entire 50s time. 1*' mass of the system shows dyy, of 1.264
starting from a very small value. Again 2" and 3" masses also shows similar trend like 1%
mass. In cases of 2" and 3™ masses emax and goas are 1.584 and 0.886 respectively. Again fig,
A3 represents the non-dimensional displacements versus time for nonlinear vibration system.
For hard springs, dmax, €max, and gmay are 0.568, 0.72 and 0.429 respectively and this
maximum amplitude occurs near the end of 50s period. Soft spring’s dmas, Cmax antd gumay are
0.785, 0.876 and 0.55 respectively. Displacement versus time curve shows that the system
tends to vibrate with larger amplitude with time approaching to instability.
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Fig. A1 Arrangement of masses, springs and dampers for 3'DOF vibration system.
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(c)

Fig. A2 Non-dimensional displacements versus frequency ratio for 3 DOF system. (a) 1*
mass displacement (b) 2" mags displacement and (c) 3" mass displacement
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(b)

(c)

Fig. A3 Non-dimensional displacements versus time for 3 DOF system. (a) 1% mass
displacement (b} 2™ mass displacement and (c) 3 mass displacement
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Appendix — B
B.1 Some Results for 20s Vibration

In this chapter some d — r curves for different tuned and untuned absorber system 1s
discussed for /= 20s response. For tuned analysis at 20s, parameters used are given in Table

3. For untuned absorber analysis at 20s, parameters are laken from Table 3 for Data Set # 1.

| Figs. B1(a) and (b), for case 1, show the response of the linear TDOFS with the
change of forcing frequency. This analysis was made intentionally to compare the exact
results for tuned absorbers given in fig. 3(c) [Thompson (1981}]. These results of Thompson
(1981) are of course, for steady state vibrations but present study includes all terms. Figs.
B1(a) and B1(b), for the main mass and the absorber, respectively, prove the reliability of the
code as these give very similar curves given in fig. 3(c) [Thompson (1981)]. As seen in Fig.
B1, deflection tends to a small value (zero for steady state vibration as in Thompson (1981))
at the tuned frequency (#=1), while the system response becomes boundless at the two natural

frequencies corresponding to #; = 0.8 and r,=1.25.

Having analyzing d — r curves for a linear absorber ( Figs. Bl(a), (b)), it would be
now easy to comprehend the effect of spring nonlinearity on the system’s response from Figs.
B2(a) and (b) that represent the & ~ r curves for case 2. From Figs. Bl and B2, a general
observation that can be made is that the non-dimensional deflection of absorber mass at r =
0.8 and 1.25 is always greater than that of main mass. d — r and ¢ — r curves of the 2 DOFS
for other nonlinear Cases 3 — 5 are similar to that of Figs. B2, that are not shown here for the

sake of brevity.

Fig. B3 allows the comparison of different cases of spring combination from d versus
r curves at /=20s. As seen d is small in the regions 0 < r < 0.65, in the vicinity of the tuned
frequency r=1 and for high frequency for r > 1.4. But d is too high at the two resonant
frequencies. For all the cases I, 2 and 4, the second resonant frequency r2=1.25 seems to be
more dangerous than the first one (1=0.8), in terms of non-dimensional displacements. While
the first natural frequency is more dangerous than the second one for cases 3 and 5. It is also
interesting to see from this figure that absolute non-dimensional displacements at | = 0.8 and

#7=1.25 are the highest for case 1. Case 4 and case 2 show the second and third highest
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displacements, respectively at r»=1.25. While, d= -64.96 and -64.9 for Cases 3 and 5,

respectively at ,=0.8.

Fig. B4 is for absolute non-dimensional displacement versus frequency ratio for case
7. Due to imposed velocity of the system at final condition the damper force also become
fixed at the end. As seen from the figure, peak amplitude occurs at frequency ratio near unity

and the peak value is 3.382.
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Fig. B3 Comparison of non-dimensional displacement - frequency ratio for all cases together
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Toj

Fig. B4 |d| — r for case 7 having #=0.01and {=0.00496 at /=20s and solved as boundary value
problem. '
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Appendix — C
Programme Code

C.1 Code for Nondimensional Displacement with Time for 2 DOFS’

# include <stdio.h>
# include <conio.h>
# include <math.h>
# include <stdlib.h>
# define n 4

# define mal 100.0
# define ma2 1.0

# define k_1 1000
# define k_1p 0.0

# definek_210.0
# definek_2p 0.0

# define cl 0.0

# defineclip 0.0

# define c2 0.0

# define c2p 0.0

# define f1 20.0

# define 2 0.0

# define th 50.0

# defineh 0.02

# define w 2.86

# define zero 0.0

/* mass m in kg : spring constant k in N/m : damping constant ¢ in Ns/m : force amplitude fin N: angular frequency
w in rad/s : tb or t in second(s) */

double fnl{double t ,double y|,double y2, double y3, double y4, double wl)

{
double z=0.0;

2= (F1 Fsin(w*t)-(k_1*y1+k_Ip*pow(y1,3))-(k_2*(y1-y3)+k_2p*pow((y1-y3),3)) - (c1*y2+clp*y2*pow(y1,2)) -
(c2*(y2-yd)+c2p*(y2-y4)*pow((y1-y3),2)) ¥Ymal ;
return z;

}
double fn2(double t, double y 1 ,double y2, double y3, double y4, double wi)

{
double z=0.0;

7= (k_2*(yl-y3)+k_2p*pow((y1-y3),3) + (c2*(y2-y4)+c2p*(y2-y4)*pow((y-y3),2)) Ymal ;
return z;

i
_ float FN1{float t,float Y0,float Y1, float Y2, float Y3, float y1, float y2, float y3, float y4)

{ .
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float z=0.0;
7= -(k_1*YO+k_[p*3*pow(y 1,2)*Y0+k_2*(YO-Y2)+3*k_2p*pow((y1-y3),2)*(YO-Y2)+ c1*Y 1+
cIp*Y [¥*pow(y,2)+ 2*clp*y2*y 1¥Y 0+ c2*%(Y 1-Y3)+ cZp*pow((y 1 -y3),2) (Y 1 - Y 3)+ 2¥c2p*(y 1-y3)*(y2-
y4YE(Y0-Y2) Ymal;
return 2
}
float FN2(float t,float YO,float Y1, float Y2, fleat Y3, float y1, float y2, float y3, tioat y4)
{
float z=0.0;
7= (k_2*(YO0-Y2)1+k 2p*3*pow((y1-y3),2Y*(Y0-Y2)+ c2*(Y 1-Y3)+ c2pFpow((y1-y3),2)*(Y 1-Y3)+ 2*c2p*(y!-
y3)*(y2-yaAy*(Y0-Y2)})/maZ;
refurn z;
}
void main{)
{
int i,j,n1,Lb,k,u,ace,freq;
double yt[n];
float Y 1[n][n] ={{1.0},
0.0, 1.0},{0.0,0.0,1.0},{0.0,0.0,0.0,1.0} };
float n2,t,y 1new=0.0,y lold=1.0, convgnel,
y2new=0.0,y20ld=1.0,convgnc2,y3new=0.0,y30ld=1.0,convgne3,ydnew=0.0,y4old=1.0,convgncd;
double kI [n][n],K[n}fn],L[n][nL,Mn][n],N[n][n},¥Y[n]{n];
double k2[n][n]={{0.0},{0.0} ,{0.0},{0.0} };
float m_1[n],m_2[n]{n],m_3[n];
float 11[n],q[n][n],r{n],ya[n].¥yb[n], Yb[n][n];
float
a[n][n],al[n][n],a2[n][n],a3[n][n),a4[n}{n],m1[n]{n],m2[u][n},m3[n}{n],m4[n],abl [n}[n],abZ[n] [n],ab3[n][n],inverse]
n][n],test{n][n];
float p1,p2,p3,p4.5um,sum_s,freql;
float yta[n], ytb[n];
float ytini[n]={0.0,0.0,0.0,0.0};
float suﬁ14,sum3,sum2,suml ;
FILE *fp;
float [[n][n]= {{1.0,0.0,0.0,0.0},
{0.0,1.0,0.0,0.0%,
£0.0,0.0,1.0,0.0%,
£0.0,0.0,0.0,1.0}} ;

float A[n][n]={£01.0,0.0,0.0,0.0},
10.0,0.0,0.0,0.0},

{0.0,0.0,01.0,0.0},

{0.0,0.0,0.0,0.0}};

float B[n][n]={{0.0,0.0,0.0,0.0},
{0.0,01.0,0.0,0.0},
£0.0,0.6,0.0,0.0},
{0.0,0.0,0.0,01.0} };
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float C[n]={0.05,0.06,-0.07,-0.06};

= zero;
n2={(tb-ty/h);
nl=n2;
fp=fopen{"d:\wresultidabsr.xIs"."w");
clrscr();
for (b=0;b<n;b++)
{yt{bl=ytini[b]:}
convgncl=fabs{yInew-ylold);
convgne2=fabs(yZnew-y2old);
convgne3=fabs(y3new-y3old);
convgned=fabs(y4new-y4old);

while (0.0001<con§fgncl && 0.0001<convgnc2 && 0.0001<convgnc3 && 0.0001 <gonvgned)

{
yt[0]=0.05;

yt[2]=0.07,
for (b=0;b<n;b++)
{yta[bJ=ytini[b];}
for (b=0;b<n;b++)
{ytb{b]=ytinifb];}
for (b=0;b<n;b++}
{r[b]=ytini[b];} i
for (b=0;b<n;b++)
{11{b]=vytini[b];}

for (k=0;k<mk++)

{ for (b=0;b<n;b++)
{Yb{k][b]=k2[k][b):}}

for (k=0:k<n;k++)

{ for (b=0;b<n;b++)
{m2[k][b]=k2[k][b];}}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{q[k][b]=k2[k][b};}}
for (b=0;b<n;bt+)
{yta(o}=yt[bl:}

sum1=0.0;

sum2=0.0;

sum3=0.0;

sumd4=0.0;

sum=0.0;

sum_s=0.0;

p1=0.0;

p2=0.0;
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p3=0.0;
pd=0.0;
t=0.0;
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
{k1[k][b]=k2{k}[b]:} }
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
{K[k][b]=k2[k][b];}}
for (k=0;k<n;k++}
{ for (b=0;b<n;b++)
{LIk}[b]=k2[K][b];}}
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
{M[Kk][b]=k2{k][b];}}
for (k=0;k<n;k++})
{ for (b=0;b<n;b++)
{N[k}[b]=k2[K][b];}}
for (k=0;k<n;k++)
{ for (b=0;b<n;b+")
{YKIBI=Y 1K)

for (i=0;i<nl;i++)
{
k1{0][0]=h * yt[1];
K1[0][1]=h * fnl (&, y{[OLyt[1], yt[2}, yt[3], w);
k1[0}[2]=h * yt[3];
k1[0][3]=h * fn2(t, yt[0Lyt[ 1], y¢{2], yt{3] w);
KI[1][0]=h * (yt[1]+k1[0][11/2.0); .
kI[E}[1]=h * fn1(t+h/2.0, yt[0]+k1[0][0]/2.0, yt[ 1]+ 10][1]/2.0, yt[21+k 1[01{2)/2.0, yt[3]+k1[0](3}/2. 0, w);
k1[1][2]=h * (yt[3]+k1[0][3]/2 0y);
k1[1][3]=h * fn2(t+h/2.0, yt[0]+k1{0][0]/2.0, yt[11+k 1[0]{11/2.0, yt[2]+k 1£0][2]/2.0, yt[3]+kt [01{3]/2.0, w) ;
k1[2][0]=h * (yt[1]+kI[1][1]/2.0);
K1[2]{1]=h * fal(t+h/2.0, yt[0}+k1[1][0)/2.0, y1[1]+k] [1]017/2.0, yt[21+k1[11[21/2.0, yt[31+kI[1][31/2.0, w) |
k1[2][2]1=h * (yt[31+k1[1](3)/2.0)
k1[2][3]=h * f2(t+h/2.0, yt[0]+k1[1][0]/2.0, yt[1]+kI [1111772.0, yt[2]+ki[17(2]/2.0, yt[3]+k1{1][3]/2.0,
kt[33[0]=h * {yt[1]+k1[2][1]);
KEE3J[1]=h * fnl(erh, ye[03+ 1[2](0], ye[11+k1[2)[1], yt[2]+k 1[2)[2), y1[3]+k1(2][3}, ) ;
K1[3](2)=h * (yt[3}+k1[2][3]);
k1[3][3]=h * f2(t-+h, yt[0]+k 1[2][0], yt[1}+k1[2][ 1], yi[21+k1{2][2], yt[3]+k112][3], W) ;
K[0]f01=h * Y[1](0];
K[0][1]=h * FN1{t, Y[0][0], Y[11[0], Y[2(0], Y{3](0]. yt[0], yt[1], 12, yt{3]) ;
K[0J[2}=h * Y[3)[0) ;
K[0][3]=h * FN2(t, Y[01{0], Y{1}{0], Y[2][0], Y[3}(0], yt[0], y1[1], y1[2], yt[3] )3
K{1[0}=h * (Y[1I[OH+K[0](1)/2.0) :
K[1][1]=h * FN1(t+h/2.0, Y[0][01+K[0][6}/2.0, Y[[O]FK[0)[11/2.0, Y[2]{0]+K[0]{2)/2.0, Y[3][0 1+K[0]{3]/2.0,
yt[0], yt{i}, ytf2], yt3] )
KU][ J=h * (Y[3][01+K{0](3)/2.0) ;

z
~—
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K[1][3]=h * FN2(t+h/2.0, Y[0][0]+K[0][01/2.0, Y[11[0]+K[0][1]/2.0, Y[2][0]+K[0][2}/2.0, Y[3][0]+K[0][3)/2.0,
yt[0], yt{1], yt[2], y&[3] )

K{2]50]1=h * (Y[1][0]+K{1]{1)/2.0);

K[2][1]=h * FN1(t+h/2.0, Y[OJ[0]+K [1Jf01/2.0, Y[ LJOI+K[1][1}/2.0, Y[2][0]+K[1][2]/2.0, Y [31[0]+K[1][3}/2.0,
yt[0], yi[1}, yt[2], yt[31 )5

K[21[2}=h * (Y[3][O1+K[L][3]/2.0) ;

K[2][3]=h * FN2(t+1/2.0, Y[0][0]+K[1][01/2.0, Y[1][0]+K[1}[11/2.0, Y[2][0}+K[11{2)/2.0, Y[3}{0I+K[1][3]/2.0,
vt[0], yt[ L}, yt[2], yt[3] } 5

K[3][0]=h * (Y[1][0]+K[2][1]) ;

K[3}1]=h * FN1(t+h, Y[0]J[0]+K[2][0], YOUI[0F+K[2](1], Y{2ZI[01+K[2](2], Y3[0]+K[2][3], yt[0], yt[1}, yt[2L,
yii31):

K[3][2]=h * (Y[3)[01+K[2][3]} ;

K[3][3]=h * FN2(t+h, Y[0]J[0]+K[2][0], Y[}}{01+K[2][1], Y [2}[0J+K[2]{2], Y[3][0J+K[2][3], yt[O]. yt[1]. ytI2],
yt[31);

for(1=0;l<n;1++)

{Y[H[0]=Y [1]{0]+ (K[O[1]+ 2.0*K[1][1]+ 2.0*K[2][1]+ K[3][1])}/6.0 :}

LIOJ[0]=h * Y [1]{1];

L[0J[1]=h * FNIt, Y[OJ[1LY[E](E), Y2100, YI3][L), [0, yif 13, yt(23, yt31) 5

L[0)[2]=h * Y[3][1];

L0](3)=h * FN2(t, YOI[1L,Y 11, Y[21[1], Y[31[1]. yt[Oh, yt[1], yt[2L, 131 };

L{t[0]=h* (Y[I][l}+L[0][l]/2 0}

L[1][1}=h * FNI1(t+h/2.0, Y[0][1]+L[0]{0]/2.0, Y[l][l]+L[O][l}/2 0, Y[21[11+L[03[2)/2.0, Y[3][1]+L[0][3)/2.0,
yt{0], yt{1], yt[2], yt(3]) ;

L{1][2]=h * (Y [3][1]+L[0][3)/2.0) ;

L[4][3]=h * FN2(t+h/2.0, Y[0][1]+L{0][0)/2.0, Y[1}[1]+L[0](1}/2.0, Y [2}[1]+L[0][2)/2.0, Y[3][1]+L{0][3¥/2.0,
yt[01, yt[1], yt[2], yt[3]);

L[2][0]=h * (Y[3I[L+L[1][1]/2.0) ;

L{2][1]=h * FN1(t+h/2.0, Y[O]{1]+L1][0}/2.0, Y[I][l‘i-&l [1[1172.0, Y[2)[1]+LI17[2)/2.0, Y{31[1]+L{11[3)/2.0,
yt[0], yt[1], yt[2], y[31) ;

L[2][2]=h * (Y[3][1]+L{1][31/2.0) 5

L[2][3]=h * FN2(t+v2.0, YIOJ[13+L[1][0]/2.0, Y [1}[1]+L[1][1}/2.0, Y[2][1+L[1]§2)/2.0, Y[3][1J+L[}](3]/2.0,
yt{o], yt[1], ytf2], yt[3});

L[3][0]=h * (Y [11011+LL2]00) ) .

L[3}[1]=h * FN1(t+h, Y[01[1]+L{21{0], Y[II[11+L[2](1], Y{2}11+L{2](2], Y3 +L2][3], yt[0], yt[1], yt[2], yt{3]
)

L[3)[2F=h * (Y[3][1}+LI2][3] )

L[3][3]=h * FN2(t+h, Y[O]{1]+L{2][0], Y[$I{1]+L2][1], Y [2]E1+L[2)12], Y [3][1]+L(2)13], yt[0], yi[11], ¥1[2], yt{3]
);

for(1=0zt<n;l4++)

(Y=Y L (LLOJE]+ 2.0* L[] [1)+ 2.0*L[2][1]+ L3}[1))/6.0 3

M[0][01=h * Y[1][(2] ; .
M[Ol[l] h * FNI(t Y[0][2,Y[1](2), Y[21(2], Y3)(2], yt[0], yt[ 1), yil2], yt31) 5
1\/1[0][2]‘h *Y[3][2]; ‘

M{0][3]=h * FN2(t, Y[0][2],Y[11[2], Y[21[2], Y[3][2], yt{0), tl1]. yt[2], yt[31) ;
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M[1]0]=h * (Y[11[2]+M[0][1]/2.0) 5

M[13[1]=h * FN1(t+h/2.0, Y{0}[2]+MI0][0]/2.0, Y[1][2]+M{0][§]/2.0, Y([2] [2]+M[0][2}/2.0, Y[3][2}+M[0][3}/2.0,
yt[0], yt[1], yt[2], yt[3]) ;

M[1]{2)=h * (Y[31{2]+M[0}{3]/2.0 } ;

M[H[3]=h * FN2(t+h/2.0, Y[0][21+M[0][01/2.0, Y [1][2}+M[0][1)/2.0, Y[2]{2]+M[0][2)/2.0, ¥ [3}[2]+M[0][3}/2.0,
yt[0], ytfi], yi{2}, ¥t[3] )5

M[2][0]=h * (Y[1}§2]+M[1][1}/2.0) ;

M{2][1]=h * FN1(t+h/2:0, YIO}2]+M[11[01/2.0, Y [1][2]+M[1]{1/2.0, Y{2][2]+M[1][2)/2.0, Y[3][2]+M[1][3)/2.0,
yt{0], yt[ 1], yt[2], yt[3]);

M{2][2}=h * (Y[3}[2]+M[1][3}/2.0) ;

M[2][3]=h * EN2(t+h/2.0, Y [0)[21+M[11101/2.0, Y1 I[21+M[1][11/2.0, Y[2][2}+M[1]]2)/2.0, ¥ [3][2]+M[1][3)/2.0,
yt[0], yt[1], yt{2], ¥t[31 ) ;

M[3][0]=h * (Y[1IT2]+ME2][1]) :

M[3)[1]=h * FN1(t+h, Y[O}[2]+M[2][0], Y[1][2]+M[2]01], Y{2])[2+M[2][2], YI3][21+M[2])(3], yt[0], yt[1], yt[2],
¥t[31);
M[3][2]=h * (Y [31[21+M[2][3] } ;
M[3][3]=h * FN2(t+h, YIOI2]+M[2][03, Y [11[21+M[2)(1], Y[2][2}+M[2][2], Y [31(2]+M{2]{3], yt[O], yt[i]. y1[2],
yt[31);

for(i=0;1<n;1++)
(Y[[2]=Y[N[2]+ (M[O](1]+ 2.0*M[ L[]+ 2.0*M[2][1]+ M[3][11)/6.0 5}

N[O][0]=h * Y[1][3];
N[0][1}=h * FN1(t, Y[O1[3], Y[1][3], Y[21{3]. Y[3)(3], yt[0], yt{1], ¥t{2], »1{31);
N[0){21=h * Y{3](3];
N[0]{3]=h * EN2(t, Y[0][3], Y[1](3], Y[2](3], Y[3}(3], yt[0], ytI 1], yi[2], ytI31):

N[1][0]=h * (Y[l][3]+N[0}[l]/2 0); :

N[[1]=h * FN1{t+h/2.0, Y[0)[3)+N[0]{0)/2.0, Y[1][3]+N[0][1]/2.0, Y [2)[3}+N[0][2}/2.0, Y [3]]3]+N[0][3}/2.0,
yt[0], yt[1], yti2], yt[31);

N[1]{2]=h * (Y[3][3]+N[0]{3}/2.0);

N[1][3]=h * FN2(t+h/2.0, Y[0][3}+NI0][01/2.0, Y [11[3]+N[0][12.0, Y[2][3]+N[0][2)/2.0, Y [3][3]+N[C[3)/2.0,
yt[0), yt[1], yt{2], yt[3]);

N[2][0]=h * (Y[1][3]+N[1][1]/2.0);

N{2Z][1]=h * FN1(t+h/2.0, Y[0][3]+N[1][01/2.0, Y[1][31+N[t][1]/2.0, Y [2}[3}+N[1][2])/2.0, Y [3](31+N[1][31/2.0,
yt{0], yt{1], yt[2], ¥t[31) ;

N[2]{2)=h * (Y[3][3]+N[1][3)/2.0); '

N[2}(3]=h * FN2(t+h/2.0, Y[0][31+N[13[0)/2.0, Y [\I[31+N[1][1)/2.0, Y[2]031+N1]12)/2.0, Y[3][314+N[1]{3]/2.0,
yt[01, yt[11, yt{2], yt{3]1 )} ;

N[3][0]=h* (Y[L][3]+N[2][1]); :
N[3][1}=h * FN1(e+h, Y[OI[3]1+NI21[01, Y1][3]+N[2][1], Y[2){3]+N{2][2], Y[3]I3+N2]13), yt[0], yt{1], yi[2],
yi[3]); :
N[3][2]=h * (Y[3}[3]+N[2](3] }:
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N[3]3]=h * FN2(t+h, Y{0][3]+N[2}[0}, Y[TI[3I+N[2][1], Y{Z][31+N[2}(2], Y[31[31+N{2][3], yt[0], yt[1], yt[2],
yt[31);

for(i=0;l<n;1++)
£Y[[3)=Y [HI3]+ (N[O][I]+ 2.0*N1]H+ 2.0*NE2][{]+ NE3][I/6.0 5
t=t+h; '
for (=0;j<nj++)
{ ytlj]= yt[3} + (K1[03[j1+ 2.0%Kk 1 [1][5]+ 2.0*k1[2][j]+ k1 [3][{]}/6.0 ; }
} . ,
for (i=0;i<n;i++}
{ytb[i]=yt[il;}
for (i=0;i<n;i++)
{for (j=0;j<njj++)
{YbLIGI=YRIGLY}

for(i=0;i<n;i++)
{ for (j=0y<n;j++)
{sum=0.0;
for (k=0;k<m;k++)
{sum= sum + Yb[i][k]*ytalk];
m_1[i}= sum;

3

for(i=0;i<n;i++)

{ for (j=0y<n;i++)
{sum=0.0;
sum= sum + m_1{i]-ytb[i];
11[i]= sum ;

1

for(i=0;i<n;i++}

{ for =0<ny++)
{sum=0.0;
for (k=0;k<n;k++)
{sum= sum + B[i][k]*Ybik][];
m_2[i][j1= sum ;

13

for(i=0;i<n;i++)

{ for (=0j<nj++)
fsum=0.0; -
for (k=0;k<n;k++)
fsum= sum + B][K]*I1[K];
m_3fi]= sum ;

3%

for(i=0;i<n;i++) |
{ for (j=0<n;j++)
{sum=0.0;
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sum= sum + A[i][j]+m_2[i1[}
q[i]fj}= sum ;
1

for(i=0;i<n;i++)

{ for (j=05i<n;j++)
{sum=0.0;
sum= sum + C[i]+m_3][il;
rli]= sum

i

for(i=0;i<n;it++)
{for(j=0;<n;j++)
{a[i)ii)=qlill];

13

for(i=0;i<n;i++)
{for(j=0;j<nyj++)
{al[i][j]=alill1;
1

for (i=0;i<n;i++)
{sumi=suml+alli][il;

}

pl=suml/1;

for (i=0;i<n;i++)
{ for (=0gj<nij++)
{m1{il(§]=p1*I[11G1:3}

for (i=0;1<n;i++}

{ for (=0<nj+)

{ sum_s=0.0;

sum_s=sum_s+al [iJ{j]-m1[i](i];
abl[i][jl=sum_s;}}

for(i=0;i<n;i++)
{ for (j=0;j<njj++)
{sum_s=0.0;
for (k=0;k<n;k++}
{sum_s= sum_s + a[i}[k]*ab1{k]{];
az[i}j]=sum_s ;
b}

for (i=0;i<n;it+)
{sum2=sum2+a2li]{i);
o}
p2=sum2/2;

for (i=0;i<n;i++)
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{ for (j=03<n;j++)
{m2[il[1=p2*IL]0 1
for (I=0;i<n;i++)
{ for (j=0;<n;i++)
{ sum_s=0.0,
sum_s=sum_s-+a2[1}{j1-m2[i][j];
ab2[i]{jl=sum_s;}}
for(i=0;i<n;i++)
{ for (j=03j<nj++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s= sum_s -+ a[i][k]*ab2[K][]];
ad[i][jl= sum_s; .
38
for (i=0;i<n;i++)
fsum3=sum3+a3[i][i;
h
p3=sum3/3;
for (i=0;i<n;i++)
{ for (=0y<n;jt+)
{m3[i]G1=p3* 11101}
for (i=0;i<n;i++)
{ for (j=0;j<nyj++)
{ sum_s=0.0;
sum_s=sum_s+a3[i][j]-m3[il[i];
ab3[i][j]=sum_s;}}

for(i=0;i<n;i-++)
{ for (j=0j<nyj++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s= sum_s + a[i][k]*ab3[k][j];
adli][j]= sum_s ;
IE
for (i=0;i<n;i++)
{ sumd= sumd4+ ad[i][i};}

pd=sum4/ 4 ;

for (i=0;i<n;i++)
{ for (j=0;j<n;j++)
{inverse[i}[j]=ab3[i][j)/p4:}}

for(i=0;i<n;i++)

{ for (j=0;j<nyj++)
{sum_s=0.0;
for (k=0;k<n;k++)

fsum_s= sumn_s + inverse[i][k]*q[k][j];

103



test[i}{j]= sum_s;

1}

for(i=0;i<n;i-++)
{ for (j=0;j<n;j++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s= sum_s + inverse[i][k]*r[k];
yajil=sum_s;

133

for(i=0;i<n;i++)
{ for (}=0;j<ny++)
{sum_s=0.0,
for (k=0;k<n;k++)
fsum_s=sum_s + Yb[i][k]*ya[k];
mé[i]=sum_s;
138
ylold=yb[0];
y2old=yb[1];
y3old=yb{2],
ydold=yb{[3];
for (i=0;i<n;i++)
{ for (=03<nyj++)
{ sum_s=0.0;
sum_s=sum_s+m4[i)-11[i];
yb[i]=sum_s;}} '

ylnew=yb[0] ;
y2new=yb[1}] ;
y3new=yb[2] ;
y4new=yb[3] ;
for (b=0;b<n;b++)
{yt[b]=yalb]:}

convgnel= fabs(ylnew-ylold) ;
convgnc2= fabs(y2new-y2old) ;
convgnc3= fabs(y3new-y3old) ;
convancd= fabs(ydnew-y4old) ;

} /* for ace loop */ /* while loop end ¥/
for (b=0;b<n;b++)

{yt[b]=ya[b};}
t=0.0;

for (k=0;k<n;k++}
{ for (b=0;b<n;b++)
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{k1[k][b}=k2[k][b]:}}
for (k=0;k<n;k++}

{ for (b=0;b<n;b++)

{K[k]{b}=k2[K][b}}}
for (k=0:k<n;k++)

{ for (b=0;b<n;b++)

{L{k]){b]=k2[K][b]:}}
for (k=0;k<n;k++)

{ for (b=0;b<n;b++})

{M[k][b]=k2[k][b];}}
for (k=0;k<m;k++)

{ for (b=0;b<n;b++)

{N[k}Ib]J=K2[k][b];}}
for (k=0;k<n;k++)

{ for (b=0;b<n;b++)

{Y[K][b]=Y I[k}[b}:} }

fputs (" t{s)\t k_1/FT*y L(x1(mM y2(m/s)\t K_L/A1T*y3(x2)(m)\t y4(m/s) \n",fp);
fprintf{fp,” %t %oft Yefit %efit %f\n "tk L/FI*yt[0]yt[1]k_1/€1*yt[2],yt[3]};
for (i=0;i<(nl-1);i++)

{ .

kHO][O}=h* y[1];

KI[O][1]=h * fni(t, yt{0],yt{1], yt{2], ¥t[3]. w);

kifo][2]=h * yt{3];

K1[0][3¥=h * f2(t, yt[0Lyt{1], yt[2], Yt[ 1, wh

K1[17[0]=h * (yt]1]1+k1{0]{11/2.0);
KI[1[1]=h * fnl(t+h/2.0, y{0]+k1[0][0]/2.0, yi[i1+k ! [0][11/2.0, yt[2]+k1[0][2]/2.0, yt[3]+k1[o1[3]/2 0, w)
KI[1][2]=h * (yt[3]+k1[0][3]/2.0);
KI[1][3]=h * fn2(t+h/2.0, yt[0]+k 1 [0][01/2.0, yt[1]+k 1 [0][1)/2.0, yi[2]+k 1 [0][2)/2.0, yt[3]+k1[0]{31/2.0, w) ;

K1[20[0]=h * (yt[1]+k1[1][1)/2.0);

KE[2][1}=h * fnl (tHh/2.0, yt[0]+k 1 [17[0)/2.0, yi[1]+k1[1][11/2.0, yt[21+k 1 [1}{21/2.0, yt[3)+K1{11[3)/2.0, w} ;
K1[2][2]=h * (y[3]+k1{11[3]/2.09; :

KI[2][3]=h * f2(t+h72.0, yt[0]+k 1 [1][0)/2.0, yt[1]+k [{11[1)/2.0, yt{2]+k1[1][2}/2.0, yt[31+k1[1][3)/2.0, w) ;

k1[3][01=h * ([t +KI[2][1]);
K1[3][1)=h * fnl (t+h, ye[0]+k 1[2][0], yt[1]+k1[2][1], yt[2]+k1[2][2], yt[3]+k1[2][3], w};
kI[3](2]=h * (ye{3]+k1E21E3]);
KI[3](31=h * fn2(t+h, yt{O]+k1[23(0], yt(1]+k1[2][1], yt[20+k1[2](2], yi{3]+Kk1[2)[3], W) ;

K0}[0]=h * Y{1][0] ;
K[0][1]=h * FN1(t, Y[0][0], Y[1][01, Y[2][0], Y[3](0], yt[0], yt{1], yt{2], ¥t[3] } 5
K{0][2}=h * Y[3][0] ;
K[01[3]=h * FN2(t, Y[03[0}, Y{1]{0], Y{2][0], Y [3][0], yt[O], yt[1], yt[2]. t[3] ) ;

K[1]101=h * (Y[11{0]+K[0][1}/2.0) 5
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K[1][1]=h * FN1(t+h/2.0, Y[0][0}+K[0][0}/2.0, Y[1][0]+K[0][1]/2.0, Y[2][0]+K[0][2)/2.0, Y [3][0}+K{0][3]/2.0,
yti0), yt[1], yt[2], yt[3] };

K[1}[2]=h * (Y[3][0]+K[0][3}/2.0) ;

K{1][3]=h * EN2(t+h/2.0, Y [0][0]+K[01[0]/2.0, Y[1][0)+Kf0][11/2.0, Y[2][01+K[0][2)/2.0, Y [3][0]+K[0][3]/2.0,
yt{O%, yt[1], t[2), ¥i[31);

K[2][0]=h * (¥[1][0]+K[1](1}/2.0) ;

K[2][1]=h * FN1(t+1v2.0, Y[O][0]+K{1][0]/2.0, Y[11[01+K[11[11/2.0, Y[2}{0]+K[1][2)/2.0, Y[3][0}+K[1]{3])/2.0,
yt[0, yt[t], ytf2], ytf3] };

K[2][2]=h * (Y{3][0]+K[1][3]/2.0) ;

K[2][3]=h * FN2(t+h/2.0, Y[0][0]+K[1][0]/2.0, Y{l][O]+K[I][1]/’> 0, Y[21[0]+K[1][2]/2.0, Y{3][01+K[1][31/2.0,

yt[0], yt[1], yt[2], yt[3]);

K{31[01=h * (Y[1][0]+K[2][1]) ;

K[31[1]=h * FN1(t+h, Y[0][0]+K[2]50], Y[11[01+K[2][1], Y{2][01+K[2]{2], Y[3][0T+K[2](3], yt[O}. yil1], yt[2],
yi[3]);

K{3][2]=h * (Y{3}[0}-+K{2]{3])

K[31(3)=h * FN2(t+h, Y[0]{0]+K[2][0, Y{IJ[01+K[2][1], Y{2][OI+K[23[2], Y[3][01+K[2]{3], yt[O], yt{1], yt{2],
yt{31);

for(1=0;1<n;1++)

£Y[N{0)=Y [0+ (K[O][1]+ 2.0*K[1][I}+ 2. 0% [2][1]+ K[33(1])/6.0 5}

L{0][0]=h = Y[1][1];

LE0Y[1]=h * FNI(t, YIOIUIL,Y (11T, YI2I01D, Y[33ELD, ytO], ye[3], vt[2) w31 )5
L[0][2]=h * Y[3]{1];

L[0][3)=h * FN2(t, Y[OI[1],Y[1){1}, YT2][1], YI3][1], yt[0], yt{1], yt(2], ¥t[3]) ;

[
[
[

L[1][0]=h * (Y[}1I[1]+L{0]{11/2.0) ;

L[1][1]=h * EN1(t+h/2.0, Y[0][(}+L[0][0]/2.0, ¥ [1][{]+LIO][11/2.0, Y [2][+L[0][2]/2.0, ¥ [3][1]+L[0][3}/2.0,
yUoL yi[1], yt[2], vt[3] )

L{1102)=h * (¥[31[1]+L[0][3)/2.0) ;

L[1]}[3]=h * FN2(t+h/2.0, Y[0][1]+L[0][0}/2.0, Y[11[1]+L{01[1]/2.0, Y[2][1]+L[0}[2)/2.0, Y{3][1]+L[0}[3)/2.0,
yt[0], yil 1}, yi[2], y4(31)

LE2){0)=h * (Y [1}[11+L[1](1)/72.0) 5

L[2][1)=h * FN1(t+h/2.0, Y[0]{11+L[1][02.0, Y1} T+L[1][1]/2.0, YI2][1]+L[1](2)/2.0, Y [3][1J+Li11[3)/2.0,
yt[0], yt[1], yt[2], ¥t[3]) ;

L{2][2]=h * (Y [3]1]+L{1]i3)/2.0) 5

L{Z1[3]=h * FN2(t+/2.0, Y[OI[1+L{11[01/2.0, Y[ T]+L[1]{11/2.0, Y[2)[F1+L[1][2]/2.0, Y[3][1]+L[1][3)/2.0,
yt{0], ytf1], yt[2], y¢{3]) 5

L31[0]=h * (Y[ J+L(2]00) 3
L[3I01I=h * FNI(t+h, Y[OJ[1+L[2][0], YTHU L2301, YE23[1+LE2](2], Y{3HTT-LI2]03), yt(0), yt[171, y12], yt[3]
)
. L[3J[2)=h * (Y[3][1]+L{2][3] ) .
L{3][3]=h * FN2¢t+h, Y[0J[11+L[2][0], Y[I}{1+L2Y[ 1], Y{2][1]+LI21[2]), Y3} ]+LL2] (3], yt[0], yt[1], yt{2], yt[3]
Y :
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for(I=0;l<n;1++)
{Y[MI=Y M+ (LO][1N+ 2.0*LLLH1]+ 2.0%LI2][ 1+ L{3][H)/6.0 ;)

M(0]0]=h * Y[1][2] ; |

MIOT[1]=h * ENI(, YEOIR2L,YT1JE2], YI21[2]. YI31[2]. yt[0], ytl1], 21, vi[3] ) ;
M{0J[2)h * Y[3][2] ;

MIO][31=h * FN2(t, Y[0[2},Y[1}(2], Y[2J[23. YI31(2], yi[0L, yill], yt(2], vt(31 )5

M[H][0]=h * (Y[1][2]+M[0][1]/2.0 }; :

M[i][1]=h * FN1(t+h/2.0, Y [0][2]+M[0][0])/2.0, Y[1T[2}+M[0][1]/2.0, Y[2]{2]+M[0]{2]/2.0, Y [3][21+ M[0][3}/2.0,
yt[0], yt[1], yt(2], yt[31);

M[1][2]=h * (Y[3][2}+M[0][3)/2.0 ) ;

M[1][3]}=h * FN2(t+h/2.0, Y[0)[2]+M[0]{0}/2.0, Y [1][2]+M[0][1]/2.0, Y[2)[2}+M[01[2]/2.0, Y[3][2]+M[0][3)/2.0,
yt[0], yt[1], yt[2], ¥t[3]) ;

M{2][0]=h * (YT1][2]+M[1][1}/2.0) ;

M(2])[1]=h * EN1(1+h/2.0, Y{0][2]+M[13[0)/2.0, Y[1][2}+M[11[1]/2.0, Y[2][2}+M[1][2)/2.0, Y[3][2}+M[1][3}/2.0,
yt[0], ytf1], wi[2], yt{3] };

M[2]f2]=h * (Y[3][2]+M[1][3)/2.0) ;

MI2][3]=h * FN2(t+/2.0, Y[0[2]+M[1][0)/2.0, Y[1][2}+M[1]{1}/2.0, Y [2}[2]+M[1]{2)/2.0, Y [3][2]+M[1][3)/2.9,
yi[0], yt[1], yt[2], ¥t[3] )5

MI[3][0]=h * (Y[IT[2]+M[2][1] } ;

M[3][1]=h * FN1(t+h, Y[0][2]+M[2][0], Y{$1[21+M[2](1], Y[2)[2]+M[2](2], Y[3][2]+MI21{3], yt{0], yt{1], y1[2},
¥i[3});

M[3][2]=h * (Y[3][2]+M[2][3] )

M[3}[3]=h * FN2(t+h, Y[0][2]+M{2)[0], YT11[2]+M[21{1], Y[2][2]+M(2][2]}, Y[3}i2]+M[2]13}, y1[0], yt[1], yt[2].
yt3]);

for(1=0;1<n;1++)
(Y[[21=Y {120+ (M[O][1]+ 2.0*M[1][1]+ 2.0*M[2][1]+ M[3][11¥/6.0 ;}

N[0J{0]=h * Y[1][3};
N{OJ[11=h * ENI(t, Y[0][3], Y[13[3], Yi2](3), Y[3][3]. yt[0], ytf1], y1{2], ¥1[3] )5
N[0]{2]=h * Y[3](3];
N{O][3]=h * FN2(t, Y[0][3], Y[}1[3], Y[2](3], Y[3](3], »t[0], yt[1], yt[2), (31D ;

N[1][0]=h * (Y[1][3]+N[0}{11/2.0);

N[1][1]=h * EN1(t+h/2.0, Y[0]{3[+N[0][0}/2.0, Y[1]{31+N[0}{11/2.0, Y[2][3]+N[0][2)/2.0, Y[3][3]+N[0]{3]/2.0,
yt[0], yti1], ye[2], yt(3] )5

N[1[2]=h * (Y[3)[3]+N[0][3)/2.0);

N[H[3]=h * FN2(t+h/2.0, Y [0][3]+N[0}{0)/2.0, Y[1}{31+N[0][11/2.0, Y [2][3}+N[0]{2]/2.0, Y[3][3]+N[0]{3)/2.0,
ye[0], yt[1], yt[2] yt{3] ) ;

N[2][0]=h * (Y[1][3]+N[1][1]/2.0);
N[2][1]=h * ENT(t+h/2.0, YIOJ{31+N[1][0}/2.0, YOI[3MN[TI{112.0, Y[2](31N[1][2]/2.0, Y[3IB}+N{1][3]2.0,

yt[0], yt[ 11, yt[2], y1[31};
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N[2)[2]=h * (Y{3}[3]+N[1][3}/2.0);
N[2][3}=h * FN2(t+h/2.0, Y[0][3}+N[1][0]/2.0, Y[]] 31+N[13[1]/2.0, Y{2][3]+N{1]{2]/2.0, Y[3)13]+N[1][3}/2.0,
yt{0], yt{1], tf2], yt{3]);

NE33[0]=h * (Y[T][31+N[2][1] }

N[3][1]=h * EN3(t+h, Y{OI3LEN[2](0], YTTIBHNIZ], Y[2](31+N[25[2], Y[3I[3]+N{2][3], yt[0], y[}], yti2],
yi[3}1);

N[3]{2]=h * (Y[3I[3}+N[2}[3]);

N[3][3]=h * FN2(t+h, Y[01[3]+N{2}[0], Y[IT[3]+N[2](1], ¥[2][3]+N[2][2], YI3][3]+N[2][3], yt[O], yt[1], yl[21
yt[31);

for(l==0;1<n; H++)
{Y[Q[31=Y I3+ (N[OIIT+ 2Z.0%NIT{IT+ 2.05N2)[1]+ NE3J[I/6.0 5}

t=t+h;

for (j=0;j<n;j++)
{ ytli}= wtl) + (k1O][]+ 2.0k [1]{j]+ 2.0%ki[2](]+ k1[3]0])/6.0 5 3
printf("w at t=%7% y1=9%M\t y3=2%M\ \n"Lyt[0Lvi{2]);
fprintf(fp," %fit %At %fit %fit Yof \n ",tk_1/F1*yt{0Lyt[ 1] k_1/1*y2],yt[3]);
}
fprintf(fp,” %Mt %At %ht %fit %f\n " t+hk_1/F1*yb[0],yb{1]k_1/f1*yb[2],yb[3])
felose(fp);

getch();
}

108



C. 2 Code for Nondimensional Displacement with Forcing Frequency for 2 DOFS

# include <stdio.h>
# include <conio.h>
# include <math.h>
# definen 4

# define mal 100
# definé maz 1.0

# define k_1 1000
#definek_1p 0.5
#definek 210
#definek 2p 0.5
# define ¢! 0.10

# define clp 0.05

# define c2 0.0

# define c2p 0.5

# define f1 20.0

# define 2 0.0

# define tb 20.0

# define h 0.02

# define wf 30.0 -
# define wi 0

# define dw 0.1

/* mass m in kg ; spring éonstant k in N/m : damping constant ¢ in Ns/m : force amplitude fin N: angular frequency
w in rad/s : th or t in second(s) */

double fnl{double t .double y1,double y2, double 3, double y4, double wl)

{

doubie z=0.0;

7= (F1*sin(w1*0-(k_1*y [+ _1p*pow(y],3))-(k_2*(v1-y3)+k_2Zp*pow((y1-y3),3))- (e *y24+cip®y2*pow(y}.2)} -
(c2*(y2-y4)+e2p*(y2-y4)*pow((y1-y3),2)) Ymal ;3

return z;

}

double fa2(double t, double y1,double y2, double y3, double y4, double wl)

{

double z=0.0;

7= (k_2%(y1-y3)+k_2p*pow((y 1 -y3).3)+ (c2*(y2-y4)+c2p*(y2-y4) *pow((y 1-y3),2)) Yyma2 ;
return z;

}

float FN1{float t,float Y0,float Y1, float Y2, float Y3, float yI, float y2, float y3, float y4)

{

float z=0.0;

z= -(k_1*Y0+k Ip*3*pow(y,2)¥Y0+k_2*(Y0-Y2)+3*k_2p*pow((yI-y3),2)*(YO-Y2)+ cI*Y 1+
clp*Y *pow(y],2)+ 2%c ! p*y2*y | Y0+ c2*(Y 1-Y3)+ c2p*pow((y 1-y3),2)*(Y 1-Y3)+ 2*c2p*(y 1-y3)*(y2-
yH*(Y0-Y2) Ymal ;
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return z;

}

float FN2(float t,float YO,float Y1, float Y2, float Y3, fleat y1, float y2, float y3, float y4)
{ .
fioat z=0.0;

z= (k_2%(Y0-Y2)+k_2p*3*pow((y1-y3),2)¥(Y0-Y2)+ c2*(Y 1-Y 3+ c2p*pow{(y L-y3,2)* (Y 1-Y3)+ 2*c2p*(y1-
y3)*(y2-yA*(Y0-Y2) ¥Yma2 ;

return z;

}

void main{)
{
int i,j,n1,Lbk,u,acc,.freq;
double yt{n];
float Y 1{n][n] ={{1.0},
{0.0, 1.0},{0.0,0.0,1.0},{0.0,0.0,0.0,1.0} };
float n2,nf,t=0.0,w=0.0,y 1new=0.0,y | okd=1.0, convgncl,
y2new=0.0,y2old=1.0,convgnc2,y3new=0.0,y30ld=1.0,convgne3,y4new=0.0,y4cld=1.0,convgnc4;
double k1[n]{n],K[n]{n],L{n][n],M[n][n],N[n][n].Y [n][n];
double k2[n}{n]={{0.0},{0.0},{0.0},{0.0} };
float m_1[n],m_2[n][n],m_3[n];
fleat 11[n],qfn][n],r[n],ya[n],ybln], Yb[n}{n];
float
a[n][n},al [n]fn],a2[n][n],a3[n][n],a4[n][n],m1[n][n],m2[n][n],m3{n][n],m4{n],ab1{n][n],ab2[n][n],ab3[n][n].inverse[
n][n],test{n][n];
float pl,p2,p3,pd,sum,sum_s,freq!;
float yta[n], ytb]n];
float ytini[n}={0.0,0.0,0.0,0.0};
float sumd,sum3,sum2,sumi;
FILE *fp;

float I[n)[n]= {{1.0,0.0,0.0,0.0},
£0.0,1.0,0.0,0.0},
{0.0,0.0,1.0,0.0},
{0.0,0.0,0.0,1.0}} ;

float A{nj[n}={{1.0,0.0,0.0,0.0},
£0.0,0.0,0.0,0.03,
{0.0,0.0,1.0,0.03,
{0.0,0.0,0.0,0.0} };

float B[n][n]={{0.0,0.0,0.0,0.0},

£0.0,01.0,0.0,0.03,
£0.0,0.0,0.0,0.03,
1§0.0,0.0,0.0,01.0}};

float C[n}={0.05,0.06,-0.07,-0.06};

n2={(tb-t)/h);

nl=n2;

wW=wi;
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freql=(wi-w)/dw;

freq=freql; )

nf=pow((k 1/mal},0.5);
fp=fopen("d:\result\\dabsrw.xls","w");

clrser();
fputs ("t{s)\t wiwlst kAT *y e k1/AT*y3(m) \n",1p);

for(u=0;u<=freq;u++}

{ yinew=0.0,

y2new=0.0;

y3new=0.0;

yvédnew=0.0;

ylold=1.0;

yZold=1.0;

y3old=1.0;

ydold=1.0;

convgnel=fabs(ynew-y lold);
convgnc2={abs(y2Znew-y2old);
convgned=fabs{y3new-y3old});
convgncd=fabs(yd4new-ydold);

for (b=0;b<n;b++)
{yt[b]=ytini[b]:}
for (b=0;b<n;b-+)
{ytalb]=ytini[b];}
for (b=0;b<n;b++)
{ytb[bj=ytini[b]:}
for (b=0;b<n;b++}
{rlb]=ytinifb};}
for (b=0;b<nm;b++)
{11 [b]=ytini[b];}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{Yb[k][b]=k2[k][b];}}

for (k=0;k<n;k++)

{ for (b=0;b<n;b+t}
{m2[K][b]=k2[K][b];}}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{qlk)[b]=k2{k][b];}}

while (0.0001 <convgnel && 0.0001<convgne2 && 0.0001<convgne3 && 0.0001 <convgncd)

{
yt[0]=0.05;

% yi1]=-0.724; */
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y1[2]=0.07;
/* yi[3]=0.0183; */

for (b=0;b<n;b++)
{yta[b]=ytini[b]:}
for (b=0;b<n;b++)
{ytb[b]=ytini[b];}
for (b=0;b<n;b++)
{+[b]=ytini[b];}
for (b=0;b<n;b++)
{11{b]=ytini[b];}

for (k=0k<n;k++)

{ for (b=0;b<n;b++)
{Yb[k][bj=k2[k][b]:}}
for (k=0;k<n;k++)

{ for (b=0;b<n;b-++)
{m2[k][b}=k2{k][b];} }
for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{a[k][b)=k2[k][b];}}

for (b=0;b<n;b++)
{yta[b]=yt[b]:}
sumi=0.0;
sum2=0.0;
sum3=0.0;
sum4=0.0;
sum=0.0;
sum_s=0.0;
p1=0.0;
p2=0.0;
p3=0.0;
p4=0.0;
t=0.0;
for (k=0;k<n;k++)
{ for (b=0;b<n;b++}
{kI[k]{b]=k2[k][b];}}
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
{KK{bI=k2[K)[b];})
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
{LIK)[bI=k2[k](b]:} }
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)

{MIK][b]=k2[K][b]:}}.

for (k=0;k<n;k++)
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{ for (b=0;b<n;b++)
IN[K][b]=k2(K][b];}}

for (k=0;k<n;k++}

{ for (b=0ib<n;b++)
{YTK)b]=Y 1 [k][bl;} }

for (i=0;i<nl;i++)

{

k1[O][0]=h * y1[1];

KI[O][1]=h * fnl(t, yt[O],yt[ 1], yt{2], yt[3], w);
k1[0][2]=h * yt[3];

k1[0][3]=h * fn2(t, yt[OLyt[1], yt[2], yt[3], w);

K1[17[0]=h * (yt[1]+k1[0][1}/2.0);
KI{1][1]=h * fal (t+h/2.0, yt[0]+k1[01[0]/2.0, yt[11+k 1 [0][1]/2.0, yt[2]+k 1[0][2)/2.0, yt[3]+k 1 [0][3)/2.0, w) ;
KI[17]2]=h * (yt[3]k 1 [0][3}/2.0);
K1[1][3]=h * f2(t+h/2.0, yt[O]+k1[01[01/2.0, yvi{1]+k 1 [0][11/2.0, yt[2]+k1[0]{2]/2.0, yt{3]+K1[0][3}/2.0, W) ;

K1{2][0]=h * (yt[1]+k1[1][1]/2.0);
K1[2)[1]=h * ] (t+/2.0, yt[0]+k 1{17[01/2.0, ye[11+K 1 [11[11/2.0, yt[2]+k1[1][2}2.0, yt[3]+k1[1][3]/2.0, w) ;
K1[2][2}=h * (A[3]+k1[11[31/2.0);
K1[2][3]=h * 2(t+h/2.0, yt[O}+k I [11[01/2.0, yt[11+k 1 [1I[11/2.0, yt[2]+k1[11[2}/2.0, yt[3]+k1{}][3]/2.0, W) ;

kI[3]J[0]=h * (yt{1]+k1[2][E]);
K1[3][1)%h * fat(t+h, yeO]+k1[2][0], yH{ 1Tk [21 1], yt[2]+k 1 [21[2], yt[3]+k[{2][3], W} ;
K1[3][2]=h * (vt{3]+k1[Z][3]};
K1[3][3]=h * fu2(t+h, ye[0]+k 1[2[0], v¢[1]+k1[2][1], y2]+k1[21[2], ytf3]+k1[2][3], W) ;

K[0][0]=h * Y[1][0]
K[0][1]=h * FN1(t, Y[O](0], Y[1][0], Y[2]{0], Y[3][0], yt{O], yt[1], y1[2], ¥1[33)
K[0][2)=k * Y[31[0];
K[0}(3]=h * FN2(t, Y[0][0], Y[11[0), Y[2][0], Y{3][0]. yt[0], ye[}], yt[2}, yt[3] ) ;

K[1][0]=h * (Y[1][0]+K{0]{1)/2.0} ;

K[11{1]=h * FN1(t+h/2.0, Y[0][0]+K[0]{01/2.0, Y[} ][0]+K[0][11/2.0, Y[2][0]+K[0][2)/2.0, Y [3][0]+K[0][3]/2.0,
- yifOL, wt[1], yt[2], yt[31);

K(1](21=h * (Y[3]{0]+K[0][312.0 ;

K[H][3]=h * FN2(t+h/2.0, Y[0]{0]+K[0][0]/2.0, Y{IT[0]+K[0][1]/2.0, YE2][03+K{01§2]/2.0, Y[3][0]+K[0][31/2.0,
yt[O], yt[1], yt{2], yt[3] )

K[2][0]=h* (Y[1][01+K[1][1)/2.0)

K[2)[1]=h * FNT(t+h/2.0, Y[0][0]+K[11[01/2.0, Y[1]{0]+K[11[1/2.0, Y [2){0]+K[1]{2)/2.0, Y[3][0}+K[1][3)/2.0,
yt[0], yt[17, ¥t[2], yt{3] };

K[2][2]=h * (Y{3](0]+K[1][3]/2.0);

K[2][3]=h * FN2(t+h/2.0, Y{O][0]+K[1]{0)/2.0, Y[1][0]+K{1][1)/2.0, Y[2]{0]+K[(][2)/2.0, Y[3][0]+K[1]{3])/2.0,
yt[0], ye[11, yt[2], v1[3]1) 5

K3][0]=h* (Y[1I[O]+K2](1]) 5
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K[3][1]=h * FNI(t+h, Y[0][0]+K[2][0], Y[1][0]+K[2]{1}, Y[2][0O]+K{Z][2], Y{3][0]+K[2][3]. yt[0]. yt[1], yt{2].
yt[31);

K[3][2]=h * (Y[3][0]+K[2](3]) ;

K[3][31=h * FN2(t+h, Y [0}[0]+K[2][0], Y[13[0]+K[2][1], Y[2][0]+K[2){2], Y[3][0}+K[2][3], yt[0], yt[1], yt[2],
yt31);

for(1=0;1<n;1++) :
{Y[I}O]=Y 0]+ (K[O][1]+ 2.0*K[1}{1]+ 2.0*K[2]{1]+ K[3][1])/6.0 ;}

LIOjlo1=h * Y[}

L{OJ[1]=h = FNI(t, Y{O](1),Y(1](1], Y[2)(1), YI3](1], yt(03, yt[1], ytI2], ytI3] ) 5
L{o)z1=h* Y[3]01];

LIOJ[3)=h * FN2(t, Y[OILELY 1ML, Y200 ), YI3I(LL, vt(0], yt(1], yt[2], yt{3] )5

L{L1[0}=h * (Y[1[11+LI0][1]/2.0) ;

L{1][1]=h * FN1(t+h/2.0, Y[OJ[F]+LL0][01/2.0, Y{I]{1]+L{0][11/2.0, Y[2][1]+L[0](2]/2.0, Y [3}[1]+L{0][3}/2.0,
yt[0], i1, yt[2], yt[3]);

LOE2]=b * (Y[3][1]+L[0][31/2.0) ;

L[1][3]=h * FN2(t+h/2.0, Y[0][1]+L{0][01/2.0, Y[1][1]+L[0][1]/2.0, Y[2][11+L[0][2}/2.0, Y[3][1}+L[0][3]/2.0,
yi[0], yt{1], yt[2], yt[3] };

LE2}o)=h * (YL [1]+L{1][1)/2.0)

L{2}[1]=h * FNI{t+h/2.0, Y[O][1]+L[1][0)/2.0, Y[1][1]+L[F1{11/2.0, Y[21[1]+L[1][2)/2.0, Y{31[1]+L[1][3]/2.0,
yt[0], yt{1], yt[2], yt[3] ) ; :

Li2][2]=h * (Y [3J[ I HL[1][3)/2.0) ;

L{2][3]=h * FN2(t+h/2.0, Y[0][1J+L[1][0}/2.0, Y{IJ[ | ]*L[1][1)/2.0, Y[2][1}+L[11{2]/2.0, Y[3][1}+L[1]{3]/2.0,
ytOL yt[1], yt{2], yt[3] ) ;

L{3][0}=h * (Y111 L[2)11] ) 5

L[3][1]=h * ENI(e+h, Y{OI[1J+LI2][0], YU I+LI2)01 Y] JHLL2)(2), YI3][UHLE2](3], yt{0], vt 1], yt[2], ¥4(3]
)i
LE31[2]=h * (Y[3}[1]+L{2]{3] ) ; .

L[3][3]=h * FN2(t+h, Y[OI[1+L[2][0], YOII[UT+L2]00], Y[2][L]+L2]2), Y[3]{ ]+L[2][3], ¥t[C), yt(1], yt[2], yi(3]
)

for(l=0;1<n;1++)
{Y[NO=YI0+ Lo+ 2.0* L ][]+ 2.0*L[2][1]+ L{3][1])/6.0 ;}

M[0]JI0]=h * Y[L][2] ;

M[0][11=h * FN1(1, Y{O][2]Y[1][2]. Y{2][2], Y[3][2], yt[0], yt{ 1], yt[21, ¥t[3]) ;
M[0}{2]=h * Y[3][2] ;

M[0][3]=h * FN2(t, Y[0]{2],Y[11[2], Y[2][2], Y[3][2], yt[0], yti 1), yt[2], yt(3] ) 5

M[1)[0]=h * (Y[1][2]+M[O][1}/2.0 ) ;

M[1][}=h * FN1(+h/2.0, Y[0}[2]+M[0][0)/2.0, Y[I1[2+M[O][11/2.0, Y[2][2]+M[0][2]/2.0, Y[3}[2]+M[0][3)/2.0,
yt{0], yt{1], yt(2], yt{31);

M[1][2)=h * (Y[31[2]+M[0]{3)/2.0 ) ;
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MI[1][3]=h * #NZ(I+}1/2.0, Y[O][2]+M[0] [0]/'2.0, YH[ZI+M0]f11/2.0, Y[2][2]+M[0][2]/2.0, ¥Y{3][2]+M[0][3]/2.0,
yl[O], yifl ]s yt{Z], yi{3]);

M{2][0]=h * (Y[1][2]+M[1][1]/2.0) ;

M{2]{11=h * EN1(t+h/2.0, Y{0][2]+M[1][0)/2.0, Y{11[2]+M[1][11/2.0, Y[2}[2]+M[1][2)/2.0, YE3][2]+M[1][3]/2.0,
yt[0], yt[ 1], ¥t[2], yt[3] ) ; .
M{2](2]=h * (Y[3][2]+M[1][3])/2.0) ;

MI21[3}=h * FN2(t+h/2.0, Y[0][2]+M[1][0)/2.0, Y1 1[2]+M[1]1[1]/2.0, Y[2][2}+M[1]1[2)/2.0, Y[3][2]+M[1][3]/2.0.
y[O], yt[1], yt[2], yt[3] )5

M[3][0]=h * (Y[1][2]+M[2][1] ) ;

M[3][1]=h * FNI(t+h, Y[0][2]+M[2}{0], Y[1][2}+M[2][1], Y[2][2}+M[2][2], Y{3][2]+M{2][3]. yt[O], yt[1], yt[2],
yt31); -

M{3][2]=h * (Y[3][2]+M[2](3] ) ;

M{3][3]=h * FN2(tth, Y[0][2]+M{2][0], Y[1]E2}+M{2][1], Y[2][2]+-M[2][2], Y[3][2]+M[2][3], yt[0]. yt[1], yt[2],
¥t[31);

for(1=0;l<n;l-++)
{Y[{2]=Y{1[2]+ (M[O][I]+ 2.0*M[1][1]+ 2 O*Ml2][1]+ M[3][1])/6.0 ;}

N[O][0]=h * Y[1][3L

N[O][1]=h * FNI(t, Y[0][3}, Y([1]{3), Y[2]13], Y[3][3]. yt[0], ytt1], yt[2], ytf3] ) :
N[0][2]=h * Y[3][3]; :
NJO]J[3]=h * FN2(t, Y[0J[3}, Y{11E3], Y[21E3], Y[3](3], yt[O, yi[1], yt[2], y4{3]) ;

N[I][0]=h * (Y[1]{3]+N[0]{1]/2.0);

N[1][1]=h * FN1(t+h/2.0, Y[0][3]1+N[0][0)/2.0, Y[1][3]+N[0]1[1]/2.0, Y[2][3]+N[0][2]/2.0, Y[3][3]+N[0]{3]/2.0,
yt[0], yt[1], yt[2], ¥t[3] )

N[1]{Z]=h * (Y[3][3]+N[0][3)/2.0);

N[173]=h * FN2(t+h/2.0, Y[0][3]+N[0]]01/2.0, Y[1][3]+N[0][11/2.0, Y[2][3]+N[0]{2}/2.0, Y [3][3]+N[0][3}/2.0,
yt{0], yt[1], y[2], ¥t{3] };

N[2][0]=h * (Y[1][3]+N{1]]1]/2.0;

NI2][11=h * FN1(t+h/2.0, Y[0][3]+N[1]{0]/2.0, YEI[3]+N[1]{11/2.0, Y[2][3]+N[1][2]/2.0, Y[31{3]+N[1][3}/2.0,
yt{0], w11, vi[2], yt[3] }:

N[2}[2]=h * (Y[3][3}+N[1][3}/2.0; '

N[2][3]=h * EN2(t+h/2.0, Y[OJ{3]-N[1][0}/2.0, Y [1I[3]+N[11[1]/2.0, Y[2I[3}+N[11[2]/2-0, Y{3][3)+N[1][3]/2.0,
yi[0}, ytl1], yt(2], yt[3] ) ;

N[3]{0]=h * (Y[I[3]1+N{2][1] ) ;

NE3][1]=h * FN1(t+h, Y[O][3HN[2](0], Y[ ][3]+N[2][1], Y[2][3]+N[2][2], Y([3]{3]+N[2]{3], ytf0], y1{1], ytf2],
yi[31);

N[3][{2)=h * (Y[3][3]+N{2](31) 5 _

N[3][3]=h * FN2(t+h, Y[0][3]+N[2][0], Y[1][31+N[2][11, Y[2][3]+N[2][2], Y[3][3]+N[2][3], yt[0], yt[1], yt[2],
¥i3]);

for(1=0;1<n;1++)
CY[I3)=Y N3]+ (N[O][]+ 2.0%N[1][1]+ 2.0%NE2][11+ N3][11)/6.0 3}
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t=t+h;
for (j=0yj<nyj++) :
{ yifjl= ytli} + (k1[0101+ 2.0k [1]j]+ 2.0*Kk 1 [2][j]+ K1[3](j])/6.0 ; }
}
for (i=0;i<n;i++)
{ytb[i]=yt[i];}
for (i=0;i<n;i++)
{for (j=0j<n;j++)
{YBOIGI=Y DL}

for(i=0;i<n;i++)
{ for (j=0;j<nj++)
{sum=0.0;
for (k=0;k<n;k++)
{sum= sum + Yb[i][k]*yta[k];
m_t(i]=sum ; '

i

for(i=0;i<n;i++)

{ for (j=0;j<nij++)
{sum=0.0;
sum=sum + m_1[i}-ytb[i};
[L[i]= sum ;

3}

for(i=0;i<n;i++)
{ for (j=0;j<ngj++)
fsum=0.0;
for (k=0;k<n;k++)
{sum= sum + B[i][k]*YbIK][j]:
m_2{i][j}= sum;
P

for(i=0;i<n;i++)

{ for )=0;j<nyi++H)
{sum=0.0;
for (k=0;k<n;k++)
{sum= sum + B[i][k]*11 [k];
m_3[i]=sum; ’

b1}

for(i=0;i<n;i++)
{ for (j=0zj<n;j++)
{sum=0.0;
sum= sum + A[i][j]4m_2[i][§];
gli}fj}=sum;
1
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for(i=0;i<n;i++)

{ for (j=05j<n;j++)
{sum=0.0;
sum= sum + C[i]+m_3[i];
rfij=sum;

1

for(i=0;i<n;i++)
{for(j=0;j<n;j+t)
{a[i}[s}=alill);
13

for(i=0;i<n;i++)
{for(7=0y<n;j++)
{at[i]li]=ali]Gls
1

for (i=0;i<n;i++)
{suml=suml+al[i}[i];

} .
pl=suml/1;

for (i=0;i<n;i++)
{ for (=0;j<njj++)
fmi{ijjl=p 1G]

for (i=0;i<n;i++)

{ for =0;j<n;j++)
{ sum_s=0.0;
sum_s=sum_s+al[il[j]-m1[il[j];
abl[i][j]=sum _s;}}

for(i=0;i<n;i++)
{ for (j=0:j<ngj++)
{sum_s=0.0,
for (k=0;k<n;k++)

{sum_s=sum_s + a[i][k}*ab1[K]{j];

a2[i][j]= sum_s ;

1}

for (i=0;i<n;i++)
{sum2=sum2-+a2{i]fi];

}
p2=sum2/2;

for (i=0;i<n;i++)
{ for (j=0;<nm;j++)




{m2fi][j]=p2*1[i10L:}3

for (i=0;i<n;i-++)
{ for §=03<n;j++)
{ sum_s=0.0;
sum_s=sum_s+a2[i][j}-m2[i}l{j];
ab2[i][j]=sum_s;}}
for(i=0;i<n;i++)
{ for (j=0;<n;j++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s=sum_s + a[i}[k]*ab2[k][j];
a3[i][j]= sum_s ;
3%

for (i=0;i<n;i++)

{sum3=sum3+a3[i]{i};

1
p3=sum3/3;

for (i=0;i<n;i++)
{ for (j=0<n;j++)
{m340]=p3* 101}

for (i=0;i<n;i++)

{ for (=0;j<nij++)

{ sum_s=0.0;
sum_s=sum_s+a3[i][j]-m3[i][j];
ab3[i)[{]=sum_s:;}}

for(i=0;i<n;i++)
{ for =03j<nj++)
{sum_s~0.0;
for (k=0;k<n;k++)
{sum_s=sum_s + afi]fk]*ab3[k]{j];
ad[ilfj]=sum_s;
38
for (i=0;i<n;i++)
{ sumd= sumd-+ ad[i][i];}

p4=sumd/ 4 ;

for (i=0;i<n;i++)
{ for (=0 <n;j++)
{inverse[i][j]=ab3[i]}p4;}}

for(i=0;i<n;i++)
{ for j=0;j<nj++)
{sum_s=0.0;
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for (k=0;k<n;k-++)
{sum_s=sum_s + inverse[i}[k]*q[k|[j};
test{i}[j]= sum_s;
1
for(i=0;i<n;i++)
{ for (j=0j<nj++)
{sum_s=0.0,
for (k=0;k<n;k++)
{sum_s= sum_s + inverse[i][k]*r[k];
ya[i]=sum_s ;
1
for(i=0;i<n;i++)
{ for (j=0;j<n;j++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s=sum_s + Yb][i]|[k]*va[k];
md{i]=sum_s ;
1H
ylold=yb[0];
y2old=yb[1];
y3old=yb[2];
ydold=yb[3];
for (i=0;i<n;i++)
{ for (j=0;j<nij++)
{sum_s=0.0;
sum_s=sum_s+ md4[i]-11[i};
yb[i]=sum_s;}}
ylnew=yb[0] ;
yZnew=yb[1] ;
y3new=yb[2] ;
ydnew=yb[3] ;

for (b=0;b<n;b++)
{yt[bl=ya[b]:}

convgnel= fabs(ylnew-ylold);
convgne2= fabs(y2new-y2old) ;
convgne3= fabs{y3new-y3old) ;
convgned= fabs{ydnew-ydold) ;

} /* for acc loop */

printf{"\n at t=%1 w=%f y1=%f y3=%fn"t,w,yb[0],yb[2]);
fprintf{fp," %ft %6f\t %ofit %f \n “tw/nf kL1 *yb[0},k_1/f1*yb[2});

w=wdw;
}
fclose(fp);
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geteh();
}
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C.3 Code for Nondimensional Displacement with Time for 3 DOFS

# include <stdio.h>
# include <conio.h>
# include <math.h>
# include <stdlib.h>
# definen 6

# define mal 20.0
# define ma2 20.0
# define ma3 20.0
# define k_1 50.0

# definek_ip-0.05
# define k_2 50.0

# define k_2p -0.05
# define k_3 50.0

# define k_3p -0.05 ‘
# define cl 0.0

f# defineclp 0.0

# define ¢2 0.0

# define c2p 0.0

# define ¢3 0.0

# define c3p 0.0

# define f1 20.0

# define 2 0.0

# define f3 0.0

# define tb 50.0

# define h 0.02

# define w 50.0

# define zero 0.0

* mass min kg : spr.ing constant k in N/m : damping constant ¢ in Ns/m : force amplitude in N: angular frequency
w in rad/s : tb or t in second(s) */

double fnl(double t ,double y1,double y2, double y3, double y4, double y5, double y6, double wl)

{

double z=0.0;

z= (-k_1*y1-k_1p*pow(yl,3)-k_2*y1+k_2%y3-k_2p*paw(y1-y3,3)-c1 *y2-clp*y2*pow(y |,2)-c2¥y2+c2*y4-
c2p*(y2-ydY*pow(y1-y3,2)-f1 *¥sin{w*t))/mal ;

return z, '

}

double fn2(double t, double y1,double y2, double ¥3, double y4, double y5, double y6, double wl)

{
double z=0.0:
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2= ((K_3*(y3-yS)+k_3p*pow(y3-y5,2)+c3 *y4-y6)yte3p*(y4-y6)*pow(y2-y5,2)-k_2%(y t-y3)-k_2p*pow(yl-y3,3)-
c2*(y2-y4)-c2p*(y2-y4)*pow(y] -¥3,2)-f2*sin(w*1)) YYma2 ;
return z;

}

daubie fh3(double t, double y1,double y2, double y3, double y4, double y5, double y6, double wl)

{ i

double z=0.0;

z=(-(-k_3*(y3-y5)-k_3p*pow(y3-y5,3)-c3 *(y4-y0)-c3p*(y4-y6y*pow(y3-y5,2)-13*sin(w*t)) ¥ma3 ;
return z;

}

float FN1(float t,float YO,float Y I, float Y2, float Y3, float Y4, float Y5, float y1, float y2, float 3, {loat v4, float
v5, float y6)

{

float 2=0.0;

z= (-k_1*YO0-k_1p*3*pow (y1,2)*Y0-k_2* (YO-Y2)-k 2p* (YO-Y2)*3*pow (y!-y3,2)-cl *Y1-clp*Y] *now
(yL.2)-clp*2*y I*y2*Y0-c2* (Y1-Y 3)-c2p*pow (y 1-y3,2)* (Y 1-Y3)-c2p*2* (y2-yd)* (y1-y3)* (Y0-¥2) ¥mal;
return z;

}

fioat FN2(float t,float YO0,float Y1, float Y2, float Y3, float Y4, float Y3, float y1, float y2, float y3, foat y4, float
v5, float y6) ' ‘ ‘
{

float z=0.0;

2= (-(k_3* (Y2-YA)+k_3p*2* (y3-y5)* (Y2-Y4)}c3* (YI-Y5)+2%c3p* (y2-y5)* (y4-y6)* (Y I-Yd)+c3p*pow (y2-
y5.2)* (Y3-YS)-k_2% (YO0-Y2)-k_2p*3*pow (y1-y3,2)* (YO-Y2)-c2* (Y 1-Y3)-c2p*pow (y1-y3,2)* (Y1-Y3)-
C2p*2* (y2-y4)* (v1-y3)* (Y0-Y2) ) Yma2;

return z;
H

float FN3(float t,float Y0,float Y1, float Y2, float Y3, float Y4, float Y5, float y1, float y2, float y3, {loat y4, floatl
¥5, float y6)

{

float z=0.0;

2= (-(-k_3* (Y2-Y4)-k_3p*3*pow (¥3-y5,2)* (Y2-Y4)-c3* (Y3-Y5)-c3p*pow (¥3-y5,2)% (Y3-Y5)-c3p* (y4-
yOY*2* (y3-y5)* (Y2-Y4) ) ¥ma3;

return z;

}

void main()
{
int ij,nl,l,bk,u,ace,freq,z;
double ytn];
float Y i{nj[n] ={{1.0},
{0.0, 1.0},{0.0,0.0,1.0},{0.0,0.0,0.0,1.0},{0.0,0.0,0.0,0.0,1.0},{0.0,0.0,0.0,0.0,0.0,1.0} };
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float n2,t,yInew=0.0,ylold=1.0, convgnel,
¥2new=0.0,y2old=1.0,convgne2,y3new=0.0,y3old=1.0,convgne3,ydnew=0.0,ydold=1 JO,convgned,ySnew=0.,0,
ySold=1.0, convgnc5, y6new=0.0, y6old=1.0, convgnel;

double k1[n}{n],K[n][n},L[n}[n].M[n][n],N[n][n],Y[r][x];

double k2[n][n]={{0.0}.{0.0},{0.0},{0.0},{0.03,{0.0}};

float m_1{n].m_2[n][n],m_3[n},m_4[u][n];

float 11{n],q[n){n],r[n],ya{n],yb[n}, YbIn][n];

float

a[n}[n],al[n][n].a2[n][n},a3[n}{n],a4{n][n],a5[n][n],a6[n][n],m1[n]{n},m2[n][n],m3[n][n],m4[n],m5 [n]In],abl[n][n].a
b2[n][n],ab3[n]{n],ab4[n][n],ab3[n][n],inverse[n][n],icst[n}[n];

float p1,p2,p3,p4.p5,p6,sum,sum_s,freql;

float yta[n], ytb[n];

float ytini[n]={0.0,0.0,0.0,0.0,0.0,0.0};

float sum6,sum5,sumd,sum3,sum2,suml;

FILE *fp; '

float I[n]{n]= {{1.0,0.0,0.0,0.0,0.0,0.0},
{0.0,1.0,0.0,0.0.0.0,0.0},
{0.0,0.0,1.0,0.0,0.0,0.0},
{0.0,0.0,0.0,1.0,0.0,0.0},
{0.0,0.0,0.0,0.0,1.0,0.0},
{0.0,0.0,0.0,0.0,0.0,1.0}} ;

float A[n][n]={{01.0,0.0,0.0,0.0,0.0,0.0},
{0.0,0.0,0.0,0.0,0.0,0.0},
£0.0,0.0,01.0,0.0,0.0,0.01,
£0.0,0.0,0.0,0.0,0.0,0.0},
{0.0,0.0,0.0,0.0,01.0,0.0},
{0.0,0.0,0.0,0.0,0.0,0.0} }:;

float B[n][n]={{0.0,0:0,0.0,0.0,0.0,0.0},
{0.0,01.0,0.0,0.0,0.0,01.0},
£0.0,0.0,0.0,0.0,0.0,0.0},
{0.0,0.0,0.0,01.0,0.0,0.0},
{0.0,0.0,0.0,0.0,0.0,0.01,
{0.0,0.0,0.0,0.0,0.0,01.0}};

float C[n]={0.05,0.06,-0.07,-0.06,0.0,0.0};

{= zero;
n2=((tb-t)/h);

ni=n2;
H*w=0.0;

freql=(wf-w)/dw;

freq=freql;

*/

fp=fopen{"g:\\result\W3dof xls","w™);
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clrscr();

for (b=0;b<n;b++)

tyt[b]=ytini[b];}
convgnel=fabs{ylnew-ylold);
convgnc2={abs(y2new-y2old};
convgne3=fabs(y3new-y3old);
convgincd=fabs(y4dnew-y4old);
convgnei=fabs(ySnew-ySold);
convgneH=fabs(y6new-y6old);

while {0.0001 <convgnel && 0.0001 <convgne2 && 0.0001<convgned && 0.000 [ <convgncd & &
0.0001 <convgneS && 0.000<convgnct)
{
yt[0]=0.05;

/% yt[1]=-0.724; */
yt[2]=0.07;

/* yt[3]=0.0183; ¥/

/* printf ("\n'n convergence1=%[" convgnel);
printf (Min\n convergence2=%f ", convgnc2);
printf ("in\n convergence3=%{",convgncl);
printf ("\nin convergenced=%f ",convgnc4);

*/

for (b=0:b<n;b++)
{yta[b]=ytini[b];}
for (b=0;b<n;b++)
{ytb[b]=ytini[b];}
for (b=0;b<n;b++)
{r[b]=ytini[b];}
for (b=0;b<n;b++)
{11[b)=ytini[b];}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{Yblki[b]=k2[k][b];}}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{ma[K][b]=k2[k][b]:} }

for (k=0:k<n;k++)

{ for (b=0;b<n;b++)
{alKI[b]=k2[K][b):}}

for (b=0;b<n;b++}

{yta[b]=yt[b];}
¥ printf ("\n\n at acc=Y%d yta= %f\t%M% A% ace,yta[ 03[0),yta[1][0],yta[23[0},yta[31[0]);
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printf{"\n\n value of yt matrix");
for (1=0;l<n;14+)
{printf (" \n %f ", yt[i]);}
*/

sum1=0.0;

sum2=0.0;

sum3=0.0;

sum4=0.0;

sum=0.0;

sum_s=0.0;

pi=0.0;

p2=0.0,

p3=0.0;

p4=0.0;

pS=0.0;

p6=0.0;

t=0.0;

for (k=0:k<n;k++)

{ for (b=0;b<n;b++)
{k1[k][bI=k2{k][b];} }

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{K[K][b]=k2[k]tb];}}

for (k=0;k<n;k++)

{ for (b=0;b<n;b+t+)
{L{K][b]=k2[K][b]:}}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{M[K][b]=K2[K][b};}}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{N[k][b)=k2[k][bL;}}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{YIK][b]=Y1[K][b];}}

for (i=0;i<nt;i++)

{

kI[0][0]=h * yt[1]; :
KI[0][1]=h * fnl(t, yt[0Lyt[1], yt[2], yt[3], yt[4], yt[S} w);
kI[0][2]=h * yt[3];

KU[OJ[3])=h * fn2(t, yt[0],yt[ L], yt[2], y1[3], yt{4], ¥t[5], w);
k1{0][4]=h * yt[5];

k1[0][5]=h * fn3(t, yt[OL¥t[13, yt[2], yt[3], y{4], yt[5], w;

KI[17[0]=h * (yt[1]+k1[0][1]/2.0);
KI[E)(1)=h * fnl (t+h/2.0, yt[0]+k L[O]0/2.0, yt[11+k 1 [03[11/2.0, yt[2]+Kk1[0][2)/2.0, yt[3]+ki [0][3]/2.0,
yU[4]+k L[O][4}/2.0, ytfS]+k [0][5]/2.0, W) ;
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K1{1][2]=h * (yt[3]+k1{0]{3]/2.0); .

KI[1]{3]=h * f2(t+h72.0, yt[0+k 1 [0J[012.0, yt{1]+k 1 [0][1)/2.0, yt[2]+k1{0][2)/2.0, ye[3]+k1{0][3)/2.0,
yt[41+k 1 [01[41/2.0, yt[5]+k 1 [0][5)/2.0, w) ;

KI1[11[4]=h * (yt[5]+k 1 [0][5}/2.0); ,

KITIT[53=h * f3(t+h/2.0, yt[0]+k 1[0][0)/2.0, yt[1]+k 1[0]{13/2.0, yt[2]+k 1[0][2)/2.0, yt[3]+k 1 [01[3]/2.0,
yU[4]+Kk 1[0][4]/2.0, yt[S1+k1[0][5]/2.0, w) ;

k1[2][0]=h * (vt[i ki [1][1]/2.0);
k1[2][1)=h * fl(t+h/2.0, yt{O]+k 1[11[0}/2.0, yt[1]+k1[1](1]/2.0, yt[2]+k 1 [11[2)/2.0, yt{3}+k 1 [}][3}/2.0,
yi[4]+k 1 [1][41/2.0, yt[5)+k 1 [1][5]/2.0, W) ;

K1[2][2)=h * (yt[3]+k 1[1]{3]/2.0); '

k1[2][3]=h * f2(t+h/2.0, yt[0]+k1[11[0]/2.0, yt[1]+k 1 [1][11/2.0, yt[2]+k1[11[2]/2.0, yt[3]+k1[1][3}/2.0,
yU[41+K 1 [1][41/2.0, yt[S]+k1[11[51/2.0, w) ;

k1[21[4}=h * (yt[5]+kI[1][5)/2.0);

kH{2][5]=h * f3(+h/2.0, yt[0]+k 1 [1][0}/2.0, yt[1T+k I [1][11/2.0, yt[2]+k ([1][21/2.0, yt[3]+k 1 [1][3}/2.0,
yU4T+k I [1][41/2.0, yt[STHKI[1][5]/2.0, w) ;

k1[3][0)=h * (yt[1]+k 1 [2][1]/2.0);
KH3I(1]=h * fl (t+h/2.0, yt[0]+k 1[2][0)/2.0, yt[ L]+k I £21[1]/2.0, yt[23+k1[2][21/2.0. yU[3]+k 1 [2][31/2.0,
yi[41+k 1[2][4]/2.0, yt[5)+k 1 [2][51/2.0, w) ;

kE{3][2]=h * (yt[3}+k1[2][3]);

k1[31[31=h * fn2(t+h/2.0, yt[0]+k 1 [2][0/2.0, [ 1]+k 1 [2)[11/2.0, yt[2]-+k 1 [2][2)/2.0, yt[3]+k1[2][3}/2.0,
VU[4]+k 1 [2][4)/2.0, vt[5]+k1[2][5)/2.0, W) ;

k1[3)[4]=h * (yt[S]+k1[2][5]/2.0);

KI[3][5]1=h * f3(t+h/2.0, yt[0}+k 1[2[0]/2.0, yt[1]1+k 1 [2][1]/2.0, yi2]+k [[2][2)/2.0, yt[3]+k I [2][3)/2.0,
yt[41+k 2] [4}/2.0, y[51+k 1 [2}[5]/2.0, w) ;

K1 [4][0]=h * (yt[1]+k1[3][11/2.0):
K1[4)[13=h * f1(+h/2.0, yt{0]+k 1 [3][01/2.0, yt[1]+k {[31[11/2.0, yt[2]+k1[3][2]/2.0, yt[3]+k 1[3][3]/2.0,
yi41+k 1 [3][41/2.0, yt[3]+k1[3][5)/2.0, w) :

kI{4]{2]=h * (yt[3]+kI[3][3]); '

k1[4][3]=h * fh2(1+h/2.0, yt[0]+k 1 [3][01/2.0, yt{ 11+ 1 [3][11/2.0, yt[2]+k1[31[2)/2.0, v[3]+k1[3][3}/2.0,
yi[4]+k 1[3][41/2.0, yt[S]+k1{3][5]/2.0, w) ;

k1[4][4]=h * (yt[S]+k1[3][5)/2.0);

KI[43(5]=h * f3(t+h/2.0, yt{0]+k1[31[0)/2.0, yt[ [ J+k 1[3][1]/2.0, yt[2]+k [{3][2)/2.0, yt[3]+k1[3]{3)/2.0,
yt[41+k 1[3][41/2.0, yt[S]+k1[3][5]/2.0, w) ;

k1ES][0]=h * (yt[1]-+k1[4]{1]); _

KHS)[1]=h * fni(t+h, yt[0]+k 1[4][0], yt[1]+k1[41[1], yt[2]+k 1[4]f2], yt[3]+k1[41[3], yt[4]+k1{4][4], ve[S]+k1[41{5],
w);

KI[S][2)=h * (yt{3]+k 1 (4][3]);

K1[53(3]=h * fn2(t+h, yt[0]+k1[4][0], yt[1]+kt {41003, yt[2]4+k1[43[2), yt[3}+k1[4][3], yt[4]+k1[4][4], yt[5]+k1[4][5],
W) '

k1E53[4]=h * (yt[S]+kE[4][5]);

KL[5][5]=h * fn3(t-+h, yt[0]+k 1[4}[0], yt[1]+k1[4][1], yt]2]+k1[4][2], vi[3]TK1[4][3], ytf41+k1[4][4], yt{5]+k1[4] [5],
w) ; )

for(z=0;z<n;z++)
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{

KOJ{0]=h * Y[1][z} ;

K[OJ{1J=h = EN1(t, Y[0l[z], Y[1](z], Y([2](2), Y[3][z], Y[4][z], Y51(2], yt{O], yt[ 13, yt[2], yt[3], y1{4], yt[5] ) ;
K[0Jf2}=h * Y[3]{z] ;

K{0)(3]=h* FN2(t, Y[0]{z], Y[1]lz], Y{2][2]. Y[31[z]), Y[4][z], Y([5](z]. yt[0, yt[1], yt[2], yt[3], yt[4L, y[5] ) ;
R[0][4}=h* Y[5][z] ;

K[0J{5]=h * FN3(t. Y[O][2], Y[1][z], Y[2)(z}, Y(3]{z], Y[4][z], Y[S][z], yt[0], yt{1], y1[2], yt[3], yU[4], y4iS] ) ;

K[1][0]=h * (Y[11[z]+K[0][1]/2.0) ;

K[1]1[1]=h * FN1(t+h/2.0, Y[0][2]+K[0][0)/2.0, Y[1][z]+K[0][1]/2.0, ¥[2]{z]+K[0][2}/2.0, Y [3][z]+K[0][3)/2.0,
Y[4J{z]+K[0][4)/2.0, Y[5][z]+K[0][5]/2.0, y1[0], yt{ 1], y1[2], y[3], yt[4], yt[5]);

K[1[2)=h * (Y[3][z]+K[0][3)/2.0) ;

K{1][3]=h * EN2(t+h/2.0, Y[0)[z]+K[0][0)/2.0, Y[11[z}+K[0][1]/2.0, Y [2}[z]+K[01[21/2.0, Y[3][z]+K[0]§3)/2.0,
Y[4][z1+K[0]{4)2.0, Y[5][z]+K[0][5]/2.0, y1[0], yt[1], yt[2], y1[3]. yt[4], yt[5] ) ;

K[E[4)=h * (Y[5]{z]+K[0][5}/2.0) ; ‘
K[1][5]=h * FN3(t+h/2.0, Y[0][z]+K{0][0]/2.0, Y [1)[2]+K[0}[1]/2.0, Y[2][z]+K[0]{2]/2.0, Y[3]f2]+K[0]{3]/2.0.
Y[4)[z]+K[0][41/2.0, Y[5]{z]+K[0][5)/2.0, yt[0], yt[13, y1[2], yt[3], y1[4], yt[5] ) ;

K[2][03=h * (Y[1]{z]+K[1][1]/2.0) ;

K{2][11=h * FN1(t+h/2.0, Y[0][2]+K[1]{0)/2.0, Y[1][z]+K[1][1}/2.0, Y[2][2]+K[1][2]/2.0, Y [3][z)+K[1][3]/2.0.
Y[4][z]+K[1}{4)/2.0, Y[5][2]+K[1][5)/2.0, yt[0], yt[1]. yt[2], y1]3], yt[4], yt[5] ) ;

KIZ][2]=h * (Y[3][z]+K{1]{3])/2.0) ;

K[2)(3)=h * FN2(t+1/2.0, Y [0][2}+K[1][0]/2.0, Y[1][z]+K[!1][1]/2.0, YI2)[2]+K[1][2)/2.0, Y{3]{z}+K[1]i3}1/2.0,
Y{[4]{z]+K[1][4)/2.0, Y[5][z]+K[1][5]/2.0, yt[0], yt[ 1], yt[2], ¥t[3], yt[4], ¥t[5] ) ;

K[2){4)=h * (Y[5}[z]+K[1][5)/2.0) ;

- K[2]{5]=h * FN3(t+h/2.0, Y[0)[z]+K[1][0]/2.0, Y[1][2]+K[1][1)/2.0, Y[2[z}+K{11[2}/2.0, Y [3][2]+K[1][3}/2.0,
Y[4][z]+K[1][4]/2.0, Y[5][Z]+K[ 15172.0, y1[0], yt[1], yt[2], yt[3], yt[4], yt[5]);

KI31[01=h* (Y[1]{z]+K[2][1}/2.0) ;

KI3][1]=h * FN1(t+h/2.0, Y[OI[2]+K[2]{0]/2.0, Y[1]iz]+K[2][11/2.0, Y[2}[zFKI2][21/2.0, Y [3][z]+K[2](3)/2.0,
Y[4][z]+K[2][4)/2.0, Y[S][z]+K[2][5]/2.0, y1{0], yt[ (], yt[2], yt[3], yt[4], yt[5] } ;

K{31[2]=h * (Y[3][z]+K]2](3)/2.0) ;

K[3])(3]=h * FN2(t+h/2.0, Y[01[z]+K[2][0]/2.0, Y[1][z]+K[2][11/2.0, Y [2][Z]+K [2]{21/2.0, Y [3][z}+K[2][3)/2. 0,
Y[4][z]+K[2][4)/2.0, Y[S)z1+K[2][5])/2.0, yt[0], yt[1], yt[2], yt[3), yt[4], y[S]);

K[3][4]=h * (Y [5][z]+K[2][5]/2.0) ;

K[3][5]=h * FN3(t+h/2.0, Y[0][z]+K[2][0]/2.0, Y [1][z]+K(2][1]/2.0, Y[2][z]+K[2][2]/2.0, Y[3][z]+K[2]§3)/2.0,
Y{4}[z]+K[2][4)/2.0, Y[5][zHK[2][5)/2.0, yt[0], yt[1], yt[2], y[3], y{4], yt[S]);

K[4][0]=h * (Y[ 1]z} +K[31[1)/2.0) ;

K[4][11=h * FN1(t+h/2.0, Y[0][2]+K[3]{0)/2.0, Y[1][z] K [3][1]/2.0, Y[2][2]+K[3][2]/2.0, Y[3)[z]+K[3][3}/2.0,
Y[4]1z]+K[3][4)/2.0, Y[5][z]+K[3}[5}/2.0, yt[0], yt[!]. yt[2], yt[3], yi[4], v[5] };

K[4][2]=h* (Y[3]}[z]+K[3][3]/2.0) ;

K[4][3]=h * FN2(t+h/2.0, Y[0][z}+K[3]{01/2.0, Y[1}iz]+K[3][11/2.0, Y[2][z]+K[3][2}/2.0, Y[3][Z]+K[3][3)/2.0,
Y[4)[z]+K[3][4)/2.0, Y[S][z]+K[3][53/2.0, yt[0], yt[1], yt[2], yt[3], yt[4], yt{5] ) ;

K[4[4]=h * (Y[S][Z]+KI3][5)/2.0)

K[4][5]=h * FN3(t+h/2.0, Y[0)[z]+K[3]{01/2.0, Y [1][Z]+K[3][1)/2.0, Y[2){z]+K[3][2)/2.0, Y [3][2]+K[3][3}/2.0,
Y[4)(2]+K{3][41/2.0, Y[S)[z]+K[31[5)/2.0, yt{0], yt[1], yt[2], ytI3), yif4], yt(5)) ; .
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K[SI[03=h * (Y{1[z]+K[4][1]) ;

KIS][tI=h * FNVeh, YION[2)+K[41(0], YTI[23+K (41011, Y[2)[2]+K[41[2], Y [3][z]+K[4][3], Yi4)[z]+K{a][4],
Y[S1[zI+K[4][5], yt{0], yt{1], yt[2], yti3], y1[4], y1[5]);

K{31[2)=h * {Y[3][z}+K[3][3]/2.0} ;

K[SI3)=h * FN2(t+h, Y[0)[z]+K[4)[0], Y(1][z+K[4][1), YI21[Z+K{4][2], Y[3][z]+K[4]{3], Y[4][z)+K[4][4],
Y[5][zJ+K[4115], yt[0], ye[1], y1[2}, yt[3], yt[4], yt(5] ) :

K[5][4]=h * {Y[5][z]+K[4][5)/2.0};

KI5][5]=h * FN3(t+h, Y[0][z]+K[4][0]. Y[1][z]+K[4][1], Y[2][2]*+K[4]{2], Y [3)[z]+K[4](3], Y{4][z]+K[4][4],
Y[S1[z]+K[4][5], yt[OL. y1[11, y1[2], yt[3], y1[4], yt[5] ) ;

for(1=0;l<n;l++)
{YUI[z]=Y [N[z]+ (K[0][1]+ 2.0%K[1][]+ 2.0*K[2][1]+ 2.0*K[3][1]+ 2.0*K[4][1]+ K[S][1)/6.0 ;)

}

=t+h;

for (j=0;j<n;j++)
£ ytli]= ytli] + (KO} ]+ 2.0%K 1[I ][j]-+ 2.0*K F[2](jT+ 2.0* K1 [3][j]+ 2.0%k 1 [4][]+ k1 [5]Li})/6.0 ; }
7* printf{("\n at t=2f and h=%F\n y =%\l y2=%f\ y3=0%f\t yA=% 0" L0yt (03, vt 1],y 2],y 3]);
*/
}

for (i=0;i<n;i++)
{ytb[iJ=yt[il;}
M printf("in\n value of ytb matrix");
for (I=0;1<n;1++) .
iprintf (" \n %t Yofit Y%t %F ", ytb[1][0],ytb[13[1],ytb[1][2],ytb[][3]);}
*/
for (i=0;il<n;i-&—k)
{for (j=0g<nyj++)
(YBII=Y

for(i=0;i<n;i++)
{ for §=0;j<n;j++)
{sum=0.0;
for (k=0;k<n;k++)
{sum= sum + Yb[i][k]*vta[k];
m_1[i]=sum ;

i

for(i=0;i<n;i++)

{ for (=05 <nyj++)
{sum=0.0;
sum= sum + m_1{i]-ytb{i};
[i]=sum ;
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i1

£ printf ("\n\n 11 matrix is™);
for (i=0;i<n;i++)

{printf{"\nn %M\ %R %Rt Yo", 1 [TT01,1 (LT, Ti]23, T [3]):)

for(i=0;i<n;i++)
{ for (;=0;j<njj++)
{sum=0.0;
for (k=0;k<n;k++)
{sum= sum + B[i]{k]*Yb[k][j];
m_2[i][j]= sum ; -
H

for(i=0;i<n;i++)

{ for (j=0;j<n;j++)
{sum=0.0;
for (k=0;k<n;k++)
{sum= sum + B[i}[k]*11[k];
m_3[i]= sum ;

1

for(i=0;i<n;i++)

{ for (j=0;j<nyj++)
{sum=0.0;
sum= sum + A[i][j]l+m_2[i][j);
qfil[j]= sum ;

1

for(i=0;i<n;i++)
{ for (j=0;j<n;j++)
{sum=0.0;
sum= sum + Cfi]+m_3[i];
r{i]= sum
1
/* printf{"\n\n g matrix is\n");
for(i=0;i<n;i-++)
{
printf{"\n\n %ofit %fit %t %fit ",qfi][01,q[i1[1 lalit[22,q[i1[3D);
} ‘
printf{"\n\n r matrix is\n");
for(i=0;i<n;i++)
{
printf{"\n\n %t %6fit Yafit %fit " l0L el I ][ 2Lr [11[3]);
poM

for(i=0;i<n;i++)
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{for(i=0<njj++)
{afilljl=qll0)

3

/* printf{"\nvalue of a mat"),
for (i=0;i<n;i++)
{printR™n\n %t %t %t %Rt,alil[0],alil[ 1 ],alil{2).ali[3]); }

*/

for(i=0;i<n;i++)
{for(j=03<n;j++)
{al[ilG}=alil{i);

3

for (i=0;1<n;i++)
{sum!=suml+al[i][i];
R

pl=suml/1;

for (i=0;i<n;i++)
- { for (j=0;j<n;j++)
{m1[i]l]=p1*I[JG]:} }

for (i=0;i<n;i++)

{ for (j=0;j<n;j++)

{ sum_s=0.0;

sum_s=sum_s+al [i][j]-mI[i][j1;
abi[ii[j]=sum_s;}}

for(i=0;i<n;i++)
{ for (j=0;j<nj++)
{sum_s=0.0;
for (k=0;k<nm;k++)"
{sum_s=sum_s + a[i][k]*ab1[k][j];
a2[i][j]= sum_s ;
11
/* printf{ "\nvalue of a2 mat");
for (i=0;i<n;i++)
{printf("Mn\n %\ Sfit Yafit Yef\t",a2[i1[0],a2[i][ 11,a2[i1f2],a2[1]1[3]1);}
*/
for (i=0;i<n;i++)
{sum2=sum2+a2[i][i];
}
p2=sum2/2;

for (i=0;i<n;i++)
{ for (j=0j<n;j++)
{m2[i][=p2*1[i][3};} }

for {i=0;i<n;i++)
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{ for (j=0g<n;j++)

{ sum_s=0.0;
sum_s=sum_s+a2[i][j]-m2[i][];
ab2[i][j]=sum_s;}}

for(i=0;i<n;i++)
{ for (3=0;)<n;j++)
{sum_s=0.0;
for (k=0;k<n;k++)
fsum_s=sum_s -+ a[i]{k]*ab2{k]fj];
a3[i][j]=sum_s
1
£ printf{"\nvalue of a3 mat");
for (i=0;i<n;i++)
{printf("™in\n %A\t %At %6t Yefit",a3[i][0],a3{i][1],a3[i][2],a3[i][3]);}
*/
for (i=0;i<n;i++)
{sum3=sum3+al[i][i];

i
p3=sum3/3;

for (1=0;i<n;i++)
{ for =0 <n;j++)
{m3ij(j]=p3*1[i][1:} }

for (i=0;i<n;i++)

{ for (}=05j<n;j++)

{ sum_s=0.0;
sum_s=sum_s+a3[i]{j]-m3[i][j};
ab3[il[j]=sum_s;}}
/* printf{"\nvalue of ab3 mat"),

for (i=0;i<n:i++) '

{printf{"\n\n %\t 26f\t %\t %61\",ab3[i][0],ab3[i1[1].ab3[i}[2]),ab3[i][3]):}

*/

for(i=0;i<n;i++)
{ for (j=0gj<nij++)
{sum_s=0.0;
for (k=0;k<n;k++})
{sum_s=sum_s + a[i][k]*ab3[k][j];
a4[i]{j]= sum s
1
for (I=0;i<n;i++)
{ sumd= sum4+ a4[i][i];}

p4=sumd/ 4.0 ;
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for (i=0;i<n;i++)
{ for (=0y<nj++)
{ m_4{i](} = p4*1G]0T:3 )

for (i=0;i<n;i++)

{ for (j=0y<n;j++)

{ sum_s=0.0;
sum_s=sum_s+a4[i][j]-m_4[i][];
ab4[i][j]=sum_s;}}

for(i=0;i<n;i++)
{ for (j=0j<nij++)
{sum_s=0.0;
for (k=0;k<n:k++)

{sum_s= sum_s *+ a[i] [k} *ab4[k}[j1;

asfi][j]J=sum_s; -
14

for (i=0;i<n;i++)
{ sum5= sum3+ aS[i][i];}
p5=sum5/5.0;

for (i=0;i<n;i++)
{ for (j=0;j<n;j++)
tmS{0)=pS 013}

for (i=0;i<n;i++)

{ for (=0j<nij++)

{ sum_s=0.0;
©oswm_s=sum_s+as[i][j]-m5[i]{j];
ab3[i][j]=sum_s;}}

for(i=0;i<n;i++)
{ for §=0;j<njj++)
{sum_s=0.0,
for (k=0;k<n;k++)

{sum_s=sum_s + a[i][k]*ab5[k][];

ab[i][j]=sum_ s ;
33

for (i=0;i<n;i++)
{ sum6= sumé6+ a6[i][i};}
p6=sumo6/ 6.0 ;

for (i=0;i<n;i++)
{ for (j=0y<n;j++)
finverss[i][j]=ab5[1][1/po:}}
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for(i=0;i<n;i++)
{ for (j=0<ng++)
{sum_s=0.0;
for (k=0:k<n;k++)
{sum_s= sum_s + inverse[i]{k]*q[k]{j];
testfil{j]=sum s
i3y
for(i=0;i<n;i++)
{ for j=0yj<n;j++)
{sum_s=0.0;
for (k=0;k<n;k-+t)
{sum_s=sum_s + inverse[i]{k]*r[k];
ya[il= sum_s ;

i3

for(i=0;i<n;i++)
{ for (=0;j<n;j++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s=sum_s + Yb[i][k]*ya[k];
mé{i]=sum_s ;
3%
ylold=yb[0];
y2old=yb[1];
y3otd=yb[2];
ydold=yb[3];
y50ld=yb[4];
y6old=yb[5];
for (iI=0;i<n;i++)
{ for (j=0;j<mj++}
{ sum_s=0.0;
sum_s=sum_s+md[i]-11[i];
yb[i]=sum_s;}} '

ylnew=ybl0] ;
y2new=yb{1] ;
y3new=yb[2] ;
ydnew=yb[3] ;
ySnew=yb[4] ;
ybonew=yb[3] ;

for (b=0;b<n;b++)
{yt[b]=ya[b]:}

convgnel= fabs(yInew-ylold) ;
convgnc2= fabs(y2new-y2old} ;
convgne3= fabs(y3new-y3old} ;
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convgncd= fabs(y4new-y4old) ;
convgne3= fabs(y3Snew-y50ld) ;
convgne6= fabs(y6new-y6old) ;

} /¥ for acc loop */ /* while loop end */

for (b=0;b<n;b++)
{yt[b]=ya[b};}

/* yt[0]=0.05;
yt[1]=0.06;

yt[2]=0.07,;

yt[31=0.08;

*/

t=0.0;

for (k=0:k<n;k-++})

{ for {b=0;b<n;b++)
{kI[k][b]=k2[k][b];}}

for (k=0;k<n;k++}

{ for (b=0;b<n;b++)
{K[k][b]=k2[k][b];}}
for (k=0;k<n;k-++)

{ for (b=0;b<n;b++)
{L{k][b]=k2[k]{b];}}
for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{M[k][b]=k2[k][b};}}

for (k=0;k<n;k++)

{ for (b=0;b<n;bt+) .
{N[k]b]=k2[k][b];}}
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
{Y[KIbI=Y 1 [K][b]:} )

fputs (" 1(s)M k_ /1 *y 1(x 1 mu y2(m/s)\t k_1/FL*y3(x23(mMt ya{m/s)it k_E*yS/HT(x3)m)Mt y6(my's) \n",fp);
fprintf{fp," %fvt %f\t %ofit %efit %fit %f\t %\ "Lk 1/FE*t[0],vt[ E]k_1AT*yt[2],y3].k_ AL *yt{4],¥t[3]);
for (i=0;i<(nl-1);i++) '
{
k1[0][0}=h * yt[1];
K1[O](1]=h* fnl(t, yt[OLyt[1], yti2], yt{3], yt[4], y1[S], w);
kl[ 112]=h * y1[3];

k1[0][3]=h * f2(t, yt[O].yt{1], yt[2], yt[3], yt[4], yt{S). wh;
k1[0][4]=h * yt[5];
kI[0][3]=h * fm3(t, yt[0],¥t[1], ¥t[2], yt[g] yt[4], yt{5], wh

KE[1][0]=h * {yt[1]+k §[0][1]/2.0);
KIT1I[1]=h * fal(t+h/2.0, yt[0]+k [O1F01/2.0, yt[1]+k 1[0][11/2.0, y[2]+k 1 [0][2]/2.0, yi[3]+k1[0][3]/2.0,
yH[4)+k 1[01{41/2.0, yt[5}+k1[0][51/2.0, W) ; _
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K1[1][2]=h * (yt{3]+k F[0][3}/2.0);

kL[F][3)=h * fa2(t+h/2.0, yt{0]+k E[0][0]/2.0, yt[1]+k[0][11/2.0, yt[2]+k 1 [0][2)/2.0, yt{3]+k1[01[3]/2.0,
yU[41+k10][41/2.0, yt[5]+k 1 [0][5]/2.0, w) ;

k1[1)[4]1=h * (vifS]+k1[0][5]/2.0);

kI{1](5]=h * fa3(t-+h/2.0, yt[0]+k1[0][0)/2.0, ye[1]+k [[0][1]/2.0, yt]2]+k1[0][2]/2.0, yt[3]+k1[0][3]/2.0,
yU[4]+k1[0][4)/2.0, yt[5]+k I [0][51/2.0, w) :

KI[2][0]=h * (yt[1]+k 1[1][11/2.0);

k1[2]{1]=h * fn1(+h/2.0, y {0}k 1 [1)[0]/2.0, yt[ L]+kI[1]011/2.0, ye[23+k [[11[21/2.0, yi[3]+k1[1][3)/2.0,
y[4)+k1[1][41/2.0, yt[5]+k1[1][5]/2.0, w) ;

k1[2][2]=h * (yt[3]+k I [1][31/2.0);

K1[2][3]=h * fo2(t+h/2.0, yt[0]+k 1{1][01/2.0, yt[11+k 1 [11[£)/2.0. yt[2H& 1 [1][21/2.0, yt[3]+k1[1][3)/2.0,
yt[4]+k 1 [1]{4)/2.0, yi[S}+kI[1][5]/2.0, w) ;

KI[2][4]=h * (ytf5]+k1[1][5]/2.0;

k1[2][5]=h * fa3(t+h/2.0, yt[0]+k 1[1][0]/2.0. yt[1]+k I[1][11/2.0, yi[2]+k1[13[2)/2.0, yt[3]+k 1[1][3)/2.0,
yi[4]+KI[1[4)/2.0, vt[5]+k 1 [1][5]/2.0, w) ;

K1[3][0=h * (yt[1]+k [ [2)[1]/2.0);

K1[3][1]=h * fnl(t+h/2.0, yt[0]+k1[2][0]/2.0, vt[1]+k 1 [2][1)/2.0, y[2)+k | [2}{2)/2.0, yt[3]+k | [2][3]/2.0,
yt[4]+k 1 [21[41/2.0, yt[5)+k 1 [2][5]/2.0, w) ;

kI1[3}[2]=h * (yt[3}+k 123 ]);

K1[3][3]=h * f2(t+h/2.0, yt0]+k 1[2][01/2.0, yt[ 1Tk [2][1]/2.0, yt[2]+k1[2][2]/2.0, vt[3]+k1[2][3]/2.0,
y[A]+k1[2][41/2.0, yt[S]+k 1[2]{5)/2.0, w) ;

K1[3][4]=h * (yt[5]+k1[2][5)/2.0);

KI[3}[5]=h * f3(t+h/2.0, yt[0]+k L{2][01/2.0, yt[1]+k1[21[11/2.0, yt[2]+k1[2][2)/2.0, yt{3]+kt [2}(3)/2.0,
yH4]+k[[2][4]/2.0, yt{5]+k E[2][5]/2.0, w) ;

k1[4][0]=h * (yt[1]+k 1[3][1]/2.0);
KI[4][1]1=h * fnl (t+h/2.0, yt[0}+k1[3][01/2.0, yt[1]+k1[3][}]/2.0, yt[2]+k1[3]]2)/2.0, yt[3]+k {[3]13]/2.0,
yt[4)+k 1[31[4]/2.0, yt[5]+k 1 [3][5]/2.0, w) ;

kU[4][2]=h * (yt[3]+k1{3][3]); :

KI[41[3]=h * f2(t+h/2.0, yt[0]+k1{3][0)/2.0, yt[1]+k1[3}[11/2.0, yt[2]+ki[31§2}/2.0, ve[3]+k [3]§3])/2.0,
yi[4]+k 1 [3][41/2.0, yt[51+k1[3][5]/2.0, w) ; '

K1[4][4]=h * ({S]+k1[3][5)/2.0);

k1[4][5]=h * fn3(t+h/2.0, yt[0}+k1[3][0)/2.0, yt[ 1 1+k1[3][1 /2.0, yt[2)+k 1 [3][2)/2.0, yt3]+k i [3]{3]/2.0,
yt[4]+k1[3][41/2.0, yt[5}+k1[3][5)/2.0, w) ;

kI[51[0}=h * (yt[1]+kI[4][1])

KI[S][1]=h * fol(t-+h, yt[0}+k 1[4][0], ye[ 1] HRU[4][ ], yt[2]+k1[4][2], yt[3]+k1[4]{3], yi{4]+k1[4][4], ¥t{5]+k] [41[5],
w};

KHSI21=h * (3K 14131, .

k1[51[3]=h * fn2(tth, yti{O)HKI[4][0], yt{11+k1[4][1], ytf2]+k1[4][2], yt[31+k1[41[3], yt[4)+k1{4){4], vt[51+k1{4][5],
w);

ki{5][4]=h * {yt[5]+k1[4]{5]);

K1[5][5])=h * fn3(t+h, yt[0)+k1[4][0], »if1]+k1{4][1], ytf2]+k1[4][2], yt[3}+K1[43[3], yt[4]+k 1[4][4], ¥t[5]+k1[4][5],
W) ;

for(z=0;z<n;z++)
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{

K[O][0)=h * Y[1][2] ;

KO][1]=h * FNI(t, Y[O][], Y{1][z], Y[2){z], Y[3]{z], Y{4][z], Y[S}[z], yt[O], yt[ 1], yt{2], yt[3], yt[4], ¥t[5] ) ;
K[0)[2]=h* Y[3][z] ;

K[O][3]=h * FN2(t, Y[0]lz], Y[t][z], Y[2][z], Y([3][z], Y{4][z], Y[3}[z], yt[0], yt[1]. yt[2]. yt{3], yt(4], yt[5] } ;
K[O][4}=h * Y[5][z] ; -

K[O0]{S5]=h * EN3(t, Y[0]iz], Y[1}[z], Y[2][z], Y[3][z]}, Y{4][z}, Y[5][z}, yt[O), yt[}], ¥1[2], yt[3], yt[4], ¥t[5]) 5

K[1][0]=h * (Y{1][z]+K{01{11/2.0) ;

K[11(H=h * FN1(t+h/2.0, Y[0][z]+K[0][0]/2.0, Y{1][z]+K[0][1)/2.0, Y[2][z]+K [0}{2)/2.0, Y[3]{z]+K[0][3]/2.0,
Y[A]+K[0][4172.0, Y[5][2]+K[0][5)/2.0, yt[O. yi[1], yt[2], yt[3), y1[4], t[5]);

K[1{2)=h * (Y[3][2]+K[0][3)/2.0) ;

K[1[3Jh * FN2(t+h/2.0, Y[01[2]+K{0][01/2.0, YEU Iz +K[01[1]/2.0, Y[2][z]+K[0][2)/2.0, Y (3](z]+*K{0}[3)/2.0.

Y[4][2J+K[0][41/2.0, Y[S][2]+K[0][5}/2.0, yt{O], yi[1], yt[2], yt[3], yi[4], yt(5] ) ;
K1 ][4]=h * (Y[5][z]+K[0][5)/2.0) ;

K[}][5)=h * FN3(t+1/2.0, Y[0][]+K[0][0]/2.0, Y[1][z]+K[0][11/2.0, ¥ [2){z}+K[0][2)/2.0, Y [3][z]+K[0}[3]/2.0,
Y[4][z]+K[0][4)/2.0, Y[5][z]+K[0][51/2.0, yt[0], yt[1]. ye[2], yt{3], yt[4]. yt[5] ) :

K[2){01=h * (Y[UHZ+K[1][11/2.0);

K[2][1]=h * FN1(t+h/2.0, Y[0O][z)+K[11[0]/2.0, Y[I[z]+K[1][1]/2.0, Y[2)Z+K[11{2)/2.0, Y[3)iz}+K[1]{3])/2.0,
Y[4])[z}+K[1][4]/2.0, Y[5][z] +K[1][5)72.0, yt{O], yt[1], yt[2], yt[3], yt[4], ¥1[5] };

K[21[21=h * (Y[3][Z1+K[1][3/2.0) ;

K[2][3]=h * FN2(t+h/2:0, Y[01[z]+K[11[0]/2.0, Y[ }[z]+K[1][1)/2.0, Y[2][z]+ K[ ][21/2.0, Y[3][z]+K{11[3]/2.0,
Y([4][z]+K[1][4)/2.0, Y([S][2]+K[1][5]/2.0, yt{O], yt[1]. yt[2], yt[3], y1[4], yt{5] )5

K[2][41=h * (Y{5][z]+K[1][5}/2.0) ;

K[2][5]=h * FN3(t+h/2.0, Y[O)[z]+K[1][0/2.0, Y[11[Z]+K[1][11/2.0, Y[2][]+K[1][2)/2.0, Y [3}[2)+K{1}[3)/2.0,
Y[4]){z]+K[1][4)/2.0, Y [S])[z]+K[1][5]/2.0, y1[0], ytf1], yt[2], yt[3], yt[4], yt[5] ) :

K[31{01=h * (Y[ N[21+K[2][1]/2.0) ;

K[3][1]=h * FNT1(t+h/2.0, Y[O][z}+K[2][01/2.0, Y1 ][] +K[2][11/2.0, Y[21[2]+K[23[21/2.0, Y [3i[z]+K[2][3]/2.0,
Y [4]{z]+K[2][4)/2.0, Y[5][{z]+K[2](5]/2.0, yt[0}, yt[1]. yt[2], yt[3], yt[4], ¥[5] } ;

K[3][2]=h * (Y[3}[z]+K[2][3)/2.0) ;

K[3]{3]=h * FN2(t+h/2.0, Y[0][z]+K[2][0¥/2.0, Y[1][z) +K[2][11/2.0, Y[2][z] +K[2)[2]/2.0, Y[3)[z]+K{2][3]/2.0.
(4][z]+K[2][4)/2.0, Y[5][z]+K[2][5])/2.0, yt[0), 1[1], yt[2], yt[3], yt[4], yt[5]) :

[3]14)=h * (Y [5}Hz]+K[2][5]/2.0) ;

K[3]{5]=h * FN3(t+h/2.0, Y [0][zJ +K[2][01/2.0, Y]i][2]+K [2][11/2.0, Y[2][2]+K[21[2)/2.0, Y[3)[z]+K[2](3}/2.0,
Y[4][z]+K[2][4)/2.0, Y[5][z]+K[2}[5]/2.0, ye[OF, yt[1], yt[2]. yti3], ye[4], y¢[5])

Y
K

Kf41[0]=h * (Y[ 11[z}+K[3][1]/2.0) ;

K[4][1]=h * FNI(t+h/2:0, Y[O][z}+K[3][01/2.0, Y [1][2]+K[3][1]/2.0, Y [2][z]+K[3][2]/2.0, Y [3)[z]+KI3][3]/2.0,
Y[4]{z]+K[3][4)/2.0, Y{5][z]+K[3][51/2.0, yt[O], yt{1], y1[2], ¥t[3], yt[4], ¥t[5]);

K[41[2]=h * (Y[3][2]+K[3}[3]/2.0 ; .

K[4][3]=h * FN2(t+1/2.0, Y{0][z]+K[3][01/2.0, Y[1 [[z+K[3][1 /2.0, Y[21[Z]+K[3][2]/2.0, Y [3][2+K[3}[3]/2.0,
Y{4][z}+K[3][4)/2.0, Y[5][z]+K[3]{5]/2.0, yt[O], yt[1]. yt[2], yt[3], yt[4}, ¥t[5] ) ;

K[4ji4)=h* (Y[5][z]+K[3][5])/2.0) ;

K[4]15)=h * FN3(t+1/2.0, Y [0][2]*+K[3][01/2.0, Y[11[+K[3][11/2.0, Y[2][Z]+K[3][2]/2.0, Y[3[z}+K[3][3]/2.0,
Y[4][2}+K[3)[4)/2.0, Y{5](z]+K[3][5)/2.0, yt[0], ytf1], yt[2}, ¥t[3), ytf4], yt{S]):
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KISJ[0)=h * (Y[1][z]+K[4][1}) ; :

KIS)01]=h * FNI(t+h, Y[O][]+K[43[03, Y[1][z]+K[4){1], Y[2][z]+K[4]{2], Y[3)[2]+K[4][3], Y[4][2]+K[4][4],
Y[S)z]+K[4](5), yt{O], yt[1], yt[2], yt[3], yt[4], y¢[5] ) ;

K[5][2)=h * (Y[3][z]+K[3]}[3]/2.0) ;

K{5][3]=h * EN2(t+h, Y[0)[z]+K[4][0], Y[1){z]+K[4][1], Y[2][2]+K[4][2], Y[3](z)+K[4]{3], Y[4][z]+K[4][4],
YESIZIHKIA1S], yt[0), yt[1], y1[2], yt[3], yt{4], y1(5]) ; '
K[5]){4]=h * (Y[S][z]+K[4][5]/2.0) ;

K[S1[5}=h * FN3(t+h, Y[0][z]+K[4][0], Y[1][z}*+K[4][1], Y[2][zH+K[4][2], Y [3][z] +K{4][3], Y[4][z]+K[4][4],
Y[5){zJ+K41151, yt[0], yi[1], ye[2], yt[3], yt[4] yU[5] )

for(1=0;l<n;1++)
YIN[z=Y [[z]+ (K[03[1]+ 2.0* K[ 1][1]+ 2.0*K{ 2] [1}+ 2.0*K[3][1]+ 20*K[41[1]+ K[5][i1)0/6.0 ;)

}

t=t-+h;
for (j=0<o;j++)
{ vth§= yt0] + (RI[OIG1+ 2.0%K1[1](5]+ 2.0%k 1 [2] 3]+ 2.0%Kk 1 [3][j]+ 2.0%k] [4101+ kHSID/6.0 5}

printf(™n at 1=%f y1=%f\t y3=%f\t y5=%f1\n"1, yt[0], yt[2], y1[4]);
fprintf(fp," %fit %ft %M\t %t %fit %\t %of\n "tk _1/E1*yt[0],ya[11k_1/F1*yt[2],y1[3], k_1/41*yt[4], yt[S]):

}
fprintf(fp,” %fie %Mt %Rt %R %60e % %f \n "trhk L/ *yb[0],yb{11k_1/1 *yb[2],yb[3}, k_I/f1*yb[4],
yb[5]3; ' '

felose(fp);

getch();

}

137



C. 4 Code for Nondimensional Displacement with ¥orcing Frequecy for 3 DOFS

# include <stdio.h>
# include <conio.h>
# include <math.h>
# include <stdlib.h>
# definen 6

# define mal 20.0

# define ma2 20.0

# define ma3 20.0

# define k_1 50

# define k_1p 0.05
# define k_2 50.0

# define k_2p 0.05
# define k 3 50.0

# definek_3p0.05
# define ¢1 0.0

# define clp 0.0

# define ¢2 0.00

# define c2p 0.0

# define ¢3 0.0

# define c3p 0.0

# define f1 20.0

# define f20.0

# define 3 0.0

# define tb 20.0

# define h 0.02

# define zero 0.0

# define wf 10.0

# define wi 0.0

# define dw 0.1

/* mass m in kg : spring constant k in N/m : damping constant ¢ in Ns/m : force amplitude fin N: angular frequency
w in rad/s ; th or t in second(s) */

double fnl(double t ,double y1,double y2, double v3, double y4, double y5, double y6, double wl)

{

double z=0.0:

z= (-k_1*y1-k_Ip*pow(yl,3)-k_2*yl+k_2*y3-k 2p*pow(yl-y3,3)-cl*y2-clp*y2*pow(y1,2)-c2*¥y2+c2*y4-
c2p*(y2-y4)*pow(y1-y3,2)-f1 *sin{w *t))/mal ;

return z;

}

double fn2{double t, double y1,double y2, double ¥3, double y4, double y3, double v6, double wi)

{
double z=0.0;
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z= (-(k_3*(y3-y5)+k_3p*pow(y3-y5,2)+c3*(y4-y6)+cIp* (y4-y6) *pow(y2-y5,2)-k_2*(y1-y3)-k_2p*pow(y1-y3.3)-
c2¥(y2-y)-c2p*(y2-yd Y pow(y1-y3,2}-2*sin{wi*)) Yma2 ;
“return z;

}

double fn3(double t, double y1,double y2, double v3, double y4, double ¥5, double y6, double wl)

{

double z=0.0;
z=(~(-k_3*(y3-y5)-k_3Ip*pow(y3-y5,3)-c3*(y4-y06)-c3p*(y4-y6)*pow(y3-y3,2)-f3*sin(w] *1)) ¥Yma3 ;
return z;

}

float FN1(float t,float Y0,float Y1, float Y2, float Y3,'ﬂoat Y4, float Y5, float y1, float y2, float ¥3, float y4, float
y3, float y6)

{

float z=0.0;

z=(-k_1¥Y0-k_1p*3¥pow (y1,2)*Y0-k_2* (YO-Y2)-k_2p* (Y0-Y2)*3*pow (y1-y3,2)-c1¥Y |-c1p*Y | *pow
(y1,2)-clp*2*y 1 *¥y2¥Y0-c2* (Y 1-Y3}-c2p*pow (y1-¥3,2)* (Y 1-Y3)-c2p*2* (y2-y4)* (y1-y3)}* (Y0-Y2) )/mal;
return z; :

}

float FN2(float t,float Y_O,ﬂoat Y1, float Y2, float Y3, float Y4, float Y5, float y1, float y2, float 3, float y4, float
v5, float y6)

{

float z=0.0; : .

z= (-(k_3* (Y2-Y4)+k_3p*2% (y3-y5)* (Y2-Y4r+c3* (Y3-Y5)+2%c3p* (y2-y5)* (y4-y6)* (Y1-Y4)+c3p*pow (y2-
y5,2)* (Y3-Y5)-k_2* (YO-Y2)-k_2p*3*pow (y1-y3,2)* (YO-Y2)-c2* (Y1-Y3)-c2p*pow (y1-¥3,2)* (Y1-Y3)-
c2p*2* (y2-y4)* (y1-y3)* (YO0-Y2) } ¥ma2;

return z,

b |
float FN3(float t,float Y0,float Y1, float Y2, float ¥ 3, float Y4, float Y3, float y1, float ¥2, float ¥3, float y4, float
v5, float y6)

{ .
float z=0.0; ‘ : .

z= (-(-k_3* (Y2-Y4)-k_3p*3*pow (y3-y5,2)* (Y2-Y4)-c3* (Y3-Y5)-c3p*pow (¥3-y5,2)* (Y3-Y3)-cip* (v4-
Y6)*2* (y3-yS)* (Y2-Y4) ) Yma3;

return z; ‘

}

void main()
{
int i,j,n1,1,bk,u,acc,freq,z;
double yi{n],
float Y 1{n][n] ={{}.0},
{0.0, 1.0},{0.0,0.0,1.0},{0.0,0.0,0.0,1.0},{0.0,6.0,0.0,0.0,1.0},{0.0,0.0,0.0,0.0,0.0,1.0} };
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float n2,nf.t,w,y 1 new=0.0,ylold=1.0, convgnel,
yZnew=0.0,y2o0ld=1.0,convgnc2,y3new=0.0,y30ld=1.0,convgnc3,ydnew=0.0,ydold=1 .0 convgnc4,y5new 0.0,
y5old=1.0, convgne$, yonew=0.0, y6old=1.0, convgnct;

double k1[n][n],K[n][n],L{n]n],M[n}[n],N[n}{n],Y[n][n];

double k2[n][n]={{0.0},{0.0},{0.0},{0.0},{0.0},{0.0}};

float m_1[n],m_2[n}{n],m_3[n],m_4[n][n];

float 11[n],g[n][n],r[n),ya[n),yb{n], Yb[n]{n];

float '
a[n){n],al[n][n],a2{n][n],a3[n] [n],a4[n][r],a5[niakLaé[r][n],m 1 [0][n].m2[n]{n],m3[a] [n],m4[n],m5[n][n],abl [#][n],a
b2[n]{n],ab3[n][n],ab4[n][n],ab5[n][n],inverse[n][n] test[n][n];

float pl,p2,p3,p4,p5,p6,sum,sum_s,freql; - i

float yta[n], ytb[n]; :

float ytini[n]={0.0,0.0,0.0,0.0,0.0,0.0};

float sumb6,sum5,sumd,sum3,sum?2,suml;

FILE *ip;

float I[n][n]= £{1.0,0.0,0.0,0.0,0.0,0.03,
©{0.0,1.0,0.0,0.0,0.0,0.0},
{0.0,0.0,1.0,0.0,0.0,0.0},
£0.0,0.0,0.0,1.0,0.0,0.0},
£0.0,0.0,0.0,0.0,1.0,0.0},
{0.0,0.0,0.0,0.0,0.0,1.0}} ;

float A[n][n]={{01.0,0.0,0.0,0.0,0.0,0.0},
{0.6,0.0,0.0,0.0,0.0,0.0},
{0.0,0.0,01.0,0.0,0.0,0.0},
£0.0,0.0,0.0,0.0,0.0,0.03,
£0.0,0.0,0.0,0.0,01.0,0.0},
{0.0,0.0,0.0,0.0,0.0,0.0}};

float B[n][n]={{0.0,0.0,0.0,0.0,0.0,0.0},
£0.0,01.0,0.0,0.0,0.0,01.0},
{0.0,0.0,0.0,0.0,0.0,0.0},
{0.0,0.0,0.0,01.0,0.0,0.0},
{0.0,0.0,0.0,0.0,0.0,0.0,
{0.0,0.0,0.0,0.0,0.0,01.01};

float C{n]={0.05,0.06,-0.07,-0.06,0.0,0.0};

= zero;

n2={{th-t)/h); -

nl=n2;

W=Wi;

freqi=(wf-wydw; - s

freq=freql;

nf=pow{(k_1/mal),0. 5) 4

fp=fopen("g:\resultW3dofiv.xIs","w"); _
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clrser();
fputs ("t{s)t w/wllt k1/AT*y 1% kAT *y3yw k1781 *y5 \n", fp);

for(u=0;u<=freq;u++)
{ ¥yl new=0.0;
yZnew=0.0;
y3new=0.0;
y4new=0.0;
ySnew=0.0;
yonew=0.0;
ylold=I.0;
y2old=1.0;
¥3o0ld=1.0;
ydold=1.0;
y5old=1.0,
y6old=1.0,

convgne 1=fabs(y Enew-y1old);
"~ convgne2=fabs(y2new-y2old);
convgned=fabs(y3new-y3old);
convgned="fabs(y4new-y4old),
convgneS=fabs{ySnew-ySold);
convgncb=fabs(yonew-y6old);

for (b=0;b<n;b++)
{yt[b]=ytini[b];}
for (b=0;b<n;b++)
{yta[b]=ytini[b];}
for (b=0;b<mb++) ~
{ytb[b]=ytini[b];}
for (b=0;b<in;b++)
{r[b]=ytini[b]:}
for (b=0;b<n;b++)
{1 [b]=ytini[b}];}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{Yb[k][bl=k2[k][b];} }
for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{m2[k][b]=k2[K]{b];}}
for (k=0;k<n;k-++)

{ for (b=0:b<n;b++)
{qlk}[bJ=k2[k][b};}
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while (0.0001<convgne] && 0.0001<convgnc? && 0.0001<convgne3 && 0.0001 <convgned &&
0.0001<convgnes && 0.0001<convencs)

{

yt[0]=0.05;

M yt[1]=-0.724; */
y1[2]=0.07;

/* yi[3]=0.0183; */

#* print{ ("\n\n convergencel=%f ",convgnel);
printf ("\n\n convergence2=%f",convgne2);
printf ("n\n convergence3=%f",convgnec3);
printf ("\n\n convergenced=%f " convgncd);

*/

for (b=0;b<n;b++)
{yta[bj=ytini[b];}
for (b=0;b<n;b++)
{ytb{b}=ytini[b];}
for (b=0;b<n;b++)
{r[b]=ytini[bl;)
for (b=0;b<n;b++)
{i1[b]=ytini[b];}

for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{Yb[K][bJ=k2[K][b];} }
for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{m2lk][b]=k2[k][b];}}
for (k=0;k<n;k++)

{ for (b=0;b<n;b++)
{alk)[bI=k2[KI[b]:}}

for (b=0;b<n;b++)

{yta[b]=yi[b];}
/% printf ("\n\n at acc=%d yta= Yef\t¥efit% MY, ace, y1a[0][0},ytaf 1][0],yta[2]{0],yta[3][0]);

print{{"\n\n value of yt matrix");
for (I=0;1<n;l++)
{printf (" W %f ", yt[1]);}
sumli=0.0;
sum2=0.0;
sum3=0.0;
sumd4=0.0;
sum=0.0;
sum_s=0.0;
pl1=0.0;
p2=0.0;
142

- ooy,



p3=0.0,
p4=0.0;
p5=0.0,
p6=0.0;
1=0.0;
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
{kHIKI[bI=k2[K] (b} }
for (k=0;k<n;k++}
{ for (b=0;b<n;b++)
{KIk][b]=k2[k][b]:} }
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
{L[k]{b]=k2[K][bL;}}
for (k=0:k<n;k++)
{ for (b=0;b<n;b++)
{M[k]{b]=k2[k][b}:} }
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
EN[KIbI=k2[K][b]:) }
for (k=0;k<n;k++)
{ for (b=0;b<n;b++)
{YikHb]=YI[k][b}:}}

for (i=05i<n1;i++)

{

kH[0][0]=h * yt[1};

k1[0][1]=h * fa1(t, ytfO],yt[t], yt{2], yt[3], yt[4]. yt[3]. w);
k1[0][2]=h * yt[3]:

K1[0]{3]=h * fn2(t, yt[01,yt[1], yt[2], yt[3], yt[4}. yt[5], wh;
k1[0][4]=h * yt[5]; ' .
ki1[0][S]=h * f3(t, yt[OLyt[1], yt[2], yt{3], yt{4], yt[5]), w);

K1[1][0]=h * (yt[} 1+ 1[0][11/2.0);

KIFI[1)=h * fink (cHh/2.0, yt[0]+k 1[01[0/2.0, yt[1]+k I [01[1Y/2.0, yt[2)+k1[0][2)/2.0, yt[3}+k 1 [0][3)/2.0,

yi[4]+k1[0]{41/2.0, yt[S)+k1[0][5)/2.0, W) ;

K1[1][2]=h * (yt[3]+k1[0][3]/2.0;

KI{1][3]=h * fn2(+h/2.0, yt[0]-+k1[03[01/2.0, yi 1]+ 1 [03[1/2.0, yt[2}+k1[0][2)/2.0. yt[3}+k1{0][3)/2.0,
yi[4]+k1{0][41/2.0, yt[S]+k 1{0](5)/2.0, W) ;

K1[1]14]=h * (yt[{5]+k1[0]{5)/2.0);

KI[1[5]=h * fn3(t+h72.0, yt{0]+k1[0][0]/2.0, yt[1}+k1[0](11/2.0, yt[2]+k 1 [0][2)/2.0, y1[3}+k1[0][3]/2.0,
4]k 1[01]4]/2.0, yt[51+k1{0][5)/2.0, W) ;

K1[2][0)=h * (yt[ 1]+ 1[1][1]/2.0);

KI[2][1]=h * fil (Ch/2.0, yt[O}HKI [V][OF2.0, ye[1 T+ I[1[11/2.0, yt[2]+k 1{11{21/2.0, y1{31+k1{1]{3)/2.0,
V[ 4]+k 1 [1][41/2.0, y1[5]+k 1 [11{5)/2.0, W) ;

KH2)[2]=h * (yt[3]+k1[1]{3)/2.0);
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K1[2]13]=h * fo2(t+h/2.0, yt[0]+k 1{11001/2.0, yt[1}+k L[1][11/2.0, yt[2]+k 1[1][2)/2.0, yt[3)+k 1[1][3)/2.0,
yt[A]+k 1[17[41/2.0, v1[5)+k1[1](5}/2.0, w) ;

ki[2][4]=h * (yt[3]+k1[1][5]/2.0);

K1[2)[5]=h * f3(t-h/2.0, yt[0]+k1[1][01/2.0, yt[ 1]k 1[13{11/2.0, yt[2]+k1[1][2)/2.0, yt[3}+k1[H][3}/2.0,
yi[4]+k1[1][4)/2.0, yt[SI+XI[1][51/2.0, w) ;

K1[3][0]=h * (yt[1]+k 1 [2][11/2.0);

KIQ[T=h * 1 (t+h/2.0, y[O1+k 1[2]100/2.0, yt[11+k H2I[11/2.0, yt[21+k1[2][2)/2.0, yt[3]+k1[2][3)/2.0,
yH{4]+k H2][4]/2.0, yi[5}+k1[2](51/2.0, w) ;

ki1[3][2]=h * (y»t[3]+K1[2][3])

K1[3][3]=h * fn2(t+h/2.0, yt[01+k1[2][01/2.0, yt{11+k 1 [2][1)/2.0, yt[2}+k 1 [2][2)/2.0, yt[3]+k1 [21{3)/2.0,
yU[4]+K1[2][4]/2.0, yt{5]+kF[2][5)/2.0, w) ;

k1[3]{4)=h * (yt[5]+k1[2][5)/2.0;

K1[3](5]=h * f3(t-h/2.0, yi[0]+k 1 [2][01/2.0, y([1]+k 1 [2][1}/2.0, yt[2}+k 1 [2}{2)/2.0, yt[3]+k 1 [2}[3]/2.0,
yi[4]+k 1 [21[4)/2.0, yt[5]+k1[2][5]/2.0, w) ;

k1[4][0F=h * (yt[1]+k1[3][11/2.0);

K1{4][1]=h * fnl(t+h/2.0, yt[0}+Kk1[3][01/2.0, yt{ 11k 1[3][11/2.0, yt[2]+k 1 [3]{2)/2.0, yt{3] +ki[3][3)/2.0,
yi[41+k1([3][4)/2.0, yt[S]HKI[3][5)/2.0, W} ;

kif4][2k=h * (yt[3)+k1[3][3])

K1[4]§3]=h * f2(t+h/2.0, yt[0)+k1[3][0)/2.0, yt[1]+k L[3][11/2.0, yt[2}+k1[3}[21/2.0, yt[3]+k1[3]{3]/2.0,
yt{4]+k1{31(4/2.0, yt{5]+k![3](51/2.0, w) ;

kL{4][4]=h * (yt[5]+k1[3][5)/2.0); ,

K1[4][5]=h * f3(t+h/2.0, y1[0]+k1[3][0]/2.0, yt[ L3+k1[3][11/2.0, yt[2]+k1{3][2]/2.0, yt[3)-+k 1 {3][3)/2.0,
yi[4]+k1[3]{4]/2.0, yt[S1HKI[3][5])/2.0, w) ;

k1[53[03=h * (yt[1]+k1[4][1]);

K1[S)[1]=h * fnl (t+h, yt[0]+k1[4][0], ytI11+k [ [4][1], yt[2]+K1[4}[2], yt[3]+kE[4][3], yt[4]+k1[4}[4], yt[5]+K1[4][5],
w);

k1[5][2]=h * (yt{3]+k1[4][3]);

K1[5)[3)=h * f2(t+h, yt[0}+k 1[4][0], yt[1]+k1[4][1], yt[2}+K1[4](2], yt{3]1+k1[41[3]. yi[4]+k1[4][4], yt[3]+kU{4](5),
w);

k[[5][4]=h * (yt[S]+k1[4][5]}

k1[5]{5]=h * fa3(t+h, yt[0]+k i [41{0], yt{1]+k1[4][}], yt[2]+k1{4](2], yt[31+k 1 [41[3], yt[41+k | [41£4], y[S]Hk1[4][5],
w); '

for(z=0;z<n;z++)

{

K(0]{0]=h * Y[!][z] ;

K[0)[1]=h * EN1(t, Y{0{z], Y[1][z], Y[2)[z], Y[31[z], Y [41[2), YI51[z], yt[0], yt[1]. ye[2], y1[3], yt[4], yt[5]) 5
Kro(2j=h * Y[3){z] ;

K[0][3]=h * FN2(t, Y[0)[z], Y[1][z}, Y[2](z], Y131[z]. Y{41[2], Y51[z], yt[O}, yt[1], yt{2], yt[3}, ytf4], vt[5})
K[0][4]=h * Y[5][z]; -

K[03[5)=h * FN3(t, Y[01[zl, Y[13{z], Y[21[z}, Y[3]|z}, Y[4]{z], Y[51iz], yt[0], yt[1]. yt[2], yt[3], y#[4], yt[5] )

K[1]{0)=h * (Y[1][z]+K[0][1}2.0) ;
K{1][1]=h * EN1(t+h/2.0, Y[01[zJ+K[0][0}/2.0, YTt }z]+K[0}{1)/2.0, Y[2][z]+K[0][2}/2.0, Y[3](z]+K[0](3}/2.0,
Y[4][2}+K[0][41/2.0, Y[SHzF+K[0151/2.0, yt[0], yt[1], yt[2], y1[3], y1f4], ¥1[51 )
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K[1[2]=h * (Y[3][2]+K{0](3}/2.0)

K[1]{3)=h * FN2(t+h/2.0, Y[0][z] +K[0]f0)/2.0, Y[11[z]+K[01[11/2.0, Y[2}{z]+K[0](2]/2.0, Y{3][z}+K[0](3)/2.0,
Y[4][z]+K[0][41/2.0, Y[5][z]+K[01[51/2.0, y1[0], yt[1], ¥t[2], yt[3]), yt[4], yti5] ) :

K[11{41=h * (Y[S}[z}+K[O][5¥2.0) ;

K[1][5]=h * FN3(t+h/2.0, Y [0](2]+K[01[01/2.0, Y[11{z+K[0][11/2.0, Y12][z]+K[0][21/2.0, Y [3][z]+K [0][3)'2.0,
Y[4)[z]+K[0][4]/2.0, Y[5][2]+K[0][5]1/2.0, yt{0], yt[ 11, yt[2], y1[3], yt[4}, ¥t[5]) ;

K[2](0)=h * (Y[1}[z}+K[1][1}/2.0} ;

K[2){1]=h * FN1(e+h/2.0, Y[O][z)+K[17[01/2.0, Y[1){+K[1I[1]/2.0, Y[2](z]+K[11[2}/2.0, Y [3)[2]+K[1][3)/2.0,
Y41 +K[1][41/2.0, Y [S][Z]+K[1][51/2.0, yt{0], y1{1], y1[2], y1[3], y[43 ¥[51) 5

K2][21=h * (Y[3][2}+K[1}[3)/2.0) 5

K[2)3)=h * FN2(tHh/2.0, Y{0){Z]+K[11[01/2.0, Y[1][z}+K[1][1}/2.0, Y[2][z}+K[1]{2)/2.0, Y[3]{z}+K[1]{32.9,
Y([4){2]+K[1][41/2.0, Y[S)iz]+KI1}[5)/2.0, yt[0], ytl 1], yti2], ytl3] yt[4) yUIS) )5

K[2][4]=h * (Y[S][z]+K[1][51/2.0);

K[2][5]=h * EN3(t+h/2.0, Y[0][z]+K[11{01/2.0, Y{1)[2+K[1]{11/2.0, Y [2}[}+K{1][2}2.0, Y[3][2] K[1]{3)/2.0,
Y{4)Z+K[11[41/2.0, Y[S}HzI+K([1]{51/2.0, yt[0], yt[1]. U2, »t[3}, yt{4]. yU51 ) ;

K[31[0]=h * (Y[1[z]+K[2][1}/2.0) 5

K[3][H]=h * FN1(t+h/2.0, Y[O][z)+K(2][0]/2.0, YT [z}+K[2][1)/2.0, Y[2)[z}+KI2](2)/2.0, Y [3]Ez]+K[2]{3)/2.9,
Y[4)fZ]+K(2][4)/2.0, Y[SHzJ+K[2][51/2.0, yt[0], ytf 1], y[2], y1[31, yt[4), 151D ;

K[3](2]=h * (Y [3][z]+K[2]{3V2.0) ; '

K[3}[3]=h * FN2(t+0/2.0, Y[O]{z]-+K[2)[0]/2.0, Y1 }{z]+K[2][11/2.0, Y [2]{z}+K[2](2]/2.0, Y [3][z]+K[2][3}/2.0,
Y[4][2}+KI2][42.0, Y[S)[z}+K{2][51/2.0, yt[0], yi[11, yt[2], y1[3], yt[4] yto1 )5

K{3][4]=h * (Y[SHzI+K[2][5)2.0); ,

K[3][5]=h * FN3(t+h/2.0, Y[0][z]+KI2][01/2.0, Y [11[z]+K[2){1)/2.0, Y[2][z]+K([2]{2)/2.0, Y [3][2]+K{2](3)/2.0,
Y{41[z]+K[21{4)/2.0, Y[5][2]+K[2}{5}/2.0, yt[0], yt[1], yt[2}, y[3], yt[4], {31 ) 5

K{4)[0]=h * (Y[1][z]+K[3][1}2.0) ;

K[4]{F]=h * FN1(+h72.0, Y[0I[2)+K[3]001/2.0, Y{1}[Z]+K[3]{1)/2.0, Y[2}[z}+K[3][2)/2.0, YE3]{z+K[3](3)/2.0,
YI41[Z1+K(3114)/2.0, Y51[z}+K[3][51/2.0, y1[0], yi[1], yt(2], yt[3}, yt(4]. yt{51 )5

K[41[21=h * (Y[3][z]+K[3](3V2.0) ;

© K[4][3]=h * FN2(t+h/2.0, Y[0][Z]+K[3][0)/2.0, Y[11[z]+K[3][t /2.0, Y[2][Z+K{3](2)/2.0, Y[3][z[+K[3](3}2.6,
Y[41[2+KI3][412.0, YIS)[Z]+K[3}[5}/2.0, yt[0], y[1], yi[2} yt[3} yt[4]. y{5) )5

K[4}{4)=h * (YI5][z]+K[3}[51/2.0) ;

K[4][5]=h * FN3(tHh/2.0, YO)Z]+K[3]{0)/2.0, Y[ [z+K [3][11/2.0, Y[2][Z] *K[3][2/2.0, Y [3]{z]+K [3]13)/2.0,
Y4)[ZHK[31{4)/2.0, Y[SI{z]+K[31[51/2.0, y1{0], y[ 1], yt{2], yt[3], yt[41 yt(51 )3

K[5J[0)=h * (Y{1][z)+K[4][1]) 5

K[S][1]=h * FN1(t+h, Y[0][2[+K{4][0], Y[]lz]+K {41111, YI2][z}+Ki41[2], Y [3][z]+K[4](3], Y {41z + [4](4),
Y[51[z}+K[4][5], ytlO], yt[11, yt[2], yt[3], ytl4}, y{51);

K[5][2]=h * (Y[3]{z]+K{3][3}/2.0} ;

K[5]031=h * FN2(t+h, Y[O[z]+K{4][0], Y[1][z]+K[411], Y[21{z}+K[43(2], Y312 K [4113); Y [4][z)+KL4}(4],
Y[5]1z1+K{41(5], yt[0], yt[1], yt[2}, y1{3L, ytl4], yt[5] )

K[51[41=h * (Y[5][2]+K[4][5}/2.0} ; .

K{5]{5}=h * FN3(cth, YIOJ[Z1HK4)(0%, YINIZ+K[4)(1), YI21[I+K[41[2], YB3 (2 HKI41E3], Y[4][z]+K[4][4),
Y[5][z]+KI4][5], yt[0], yt[1], yt[2}, t{3], ytl4], »t{S1) 5

for(1=0;1<n;l++)
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{Y[[2)=Y [{z}+ (KIOWIT+ 2.0° K] [1+ 20" K{2][1]+ 2.0*K[3][1]+ 2.0*K [4] [t}+ KI5]]1])/6.0 .}

}

t=t+h;

for (j=0y<nyj++)
£ yiG]= iG] + (k1 [OJ[ 1+ 2.0%K I[11[j1+ 2.0%K 1[2][]+ 2.0% kI [3}[]+ 2.0*k L{4] )+ K1 [5][116.0 5 }
/* printf{"n at =%f and h=%f\n y1=%f\t y2=%f\t y3=%f\t y4=%1 \n",t,h,y([O]yt[1],yt[2].¥t[3]);
*/
}

for (i=0;i<n;i++)
{ytb[iJ=yt[i};}
/* printf("\n\n value of yth matrix");
for (1=0;l<n;l++)
{printf (" \n %Rt %6iit %0 fit %f ", ytb[1][0],yth[1[H.ytbl1[ZTytb[1][3D:}
*/
for (i=0;i<n;i++)
{for (j=0;j<nyj++)
{YbOIL1=Y(i)0):3}

/* printf("\nin value of yta matrix");
for {1=0;1<n;l++} : :
{printf (" \n %fit %f\t %Rt %1 ", ytall]{0].yta[1][1 Lyta[1}[2],ytal1}(31);}

printf("\n\n value of ytb matrix™);
for (I=0;1<n;1++)
{printf (" \n %A\ %\ Y6\t Yol " ytb[1]10]ytb[1J[1Lyto[{2],¥tb{I1[3]):}

printf{"\ninvalue of Y matrix ");

for (1=0;1<n;l++) :

fprintf (" \n %0 Yei\t %f\t %6f Y [1[CLY O[] Y (1[2LY 3]}
*/

for(i=0;i<n;i++)
{ for (j=0y<n;j++)
{sum=0.0;
for (k=0;k<n;k++)
{sum=sum + Yb[i][k]*yta[k];
m_I{i]=sum ; .

133

for(i=0;i<n;i++)
{ for (j=0g<n;j++)
{sum=0.0;
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sum= sum + m_1[i}-ytb[i];
I1[i}= sum ;

1

7 printf ("wiwn H matrix is™);
for (i=0;i<n;i++)
{ printf("nin %6\t %t ot Yo", LT[I[0L LT[ ) [E)[2] 1 LE[3D): %/

for(i=0;i<n;i++)
{ for (j=0gj<mj++)
{5um=0.0;
for (k=0;k<n;k++)
{sum= sum + B[i][k]*Yb[k]{j];
m_2[i][j]= sum ;
I3y

for(i=0;i<n;i++)
{ for (j=0<m;j++)
{sum=0.0;
for (k=0;k<n;k++)
{sum= sum -+ B[i][k]*11[k];
.m_3[i}=sum ;

1)

for(i=0;i<n;i++)

{ for (j=0;j<n;j++)
{sum=0.0;
sum= sum + A[1][j]+m_2[i}[j]:
q[i](j}= sum;

1

for(i=0;i<n;i++)
{ for (j=0;<n;j++)
{sum=0.0;
sum= sum + Cli}+m_3[i];
rft]= sum;
13
M printf"\n\n q matrix is\n");
for(i=0;i<n;i++)
{
printf{™n\n Yot %of\t %t %t ".q[i][0],qlil[1T,a[i1{2],4l1[3D):
} .
printf("w\n r matrix is\n"};
for(i=0;i<n;i-++)
{
 printf{("n\n Y%efit %fit %f\t Yofie " r[i1[0], (1L 13 (1[2].r (113 ]);
y

147



for(i=0;i<n;i++)
{for(j=0g<n;j++}
{ali]liT=ali{];

1}

/* printf{™Mnvalue of a mat");
for (i=0;i<n;i++)
{printf{"\n\n %1\t %\t %\t Yo\t ali1[0],a[i}{ 1).afi](2],alil[3]); }

*/

for(i=0;i<n;i++)
{for(j=0y<n;j++)

{al [i][j]=alilLj)
1}

for (i=0;i'<n;i++) _
{suml=suml+al[i][i];

}
pl=suml/t;

for (i=0;i<n;i++)
{ for (j=0;j<n;j++)
{ml[G1=pT¥I[05

for (i=0;i<n;i++)
{ for (=0g<n;j++)
{ sum_s=0.0;
sum_s=sum_s+al{i][j]-m1[i}{il;
ab1{i][j]=sum_s;}}
/% printf{"\nvalue of abl mat");
for (i=0;1<n;i++)
{printf{"in\n %fit %61\ % %0 ",abl [1]10],abl [(][17,abI [i][2]abIL[i][3]); }
*{' . .

for(i=0;i<n;i++)
{ for (j=0;j<n;j++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s=sum_s + a[i][k}*ab1[k][j};
a2[i][j]= sum_s;
11
/* printf{"\nvalue of a2 mat");
for (i=0;i<n;i++)
{printf{"in\n %t %ft Yefit %f\t”,a2{i1[0],a2[i]{ 1],a2(i][2),a2[i1{3]);}
¥
for (i=0;i<n;i++)
{sum2=sum2-+a2[i][i];
}
p2=sum2/Z,
148



for (i=0;i<n;i++)
{ for (j=0y<n;j++)
{m2[il[]1=p2*I0100:} 3

for (iI=0;i<n;i++)

{ for (=0g<n+)

{ sum_s=0.0;
sum_s=sum_s+a2li] GI-m2010):
ab2[i][j]=sum_s;}}

for(i=0;i<n;i++)
{ for (j=0;<n;j++}
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s=sum_s + a[i][k}*ab2{k]{j];
a3[i][j}=sum_s;
1
/* printf{"\nvalue of a3 mat");
for (i=0;i<n;i++) '
{printf{("\n\n %ofit %afit %Mt %oft",a3]i][0],a30][1],a3[1][2),a3[3]1[31):}
*/
for (1=0;i<n;i++)
{sumB:sdm3+a3[i}[i];
}
p3=sum3/3;

for (i=0;i<n;i++)
{ for (j=0g<n;j++)
{m3[aL1=p3*Hil01:}

for (i=0;i<n;i++)

{ for =0;3<nyj++)

{ sum_s=0.0;

sum_s=sum_s+a3{i]j]-m3[i}{i];

ab3[i][j]=sum_s;}}

/* printf{"\nvalue of ab3 mat");

for (i=0;i<n;i++}

{printf{"\n\n %fit %6fit Yo\t Yofit",ab3[i][0],ab3[i]{1],ab3[i}{2]ab3[i]{3]);}
*/

for(i=0;i<n;i++)
{ for (j=0;j<nyj++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s=sum_s + a[i][k]*ab3[k][}];
adfij[i]=sum s ;
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/* printf{"\nvalue of a4 mat");

for (i=0;1<n;i++)
{printf{"wn\n %At Y%t Yof\t %6fM",ad(i][0],04[i][1].24[i][2]),a4{i]1[3]):}
*/

for (i=0;i<n;i++)

{ sumd= sumd+ ad[i}fi];}

/* printf ("i\n value of suméd= % sumd); */

pd=sumd/ 4.0 ;
/% printf ("\n\n value of pd4= %f",pd); */

for (i=0;i<n;i++)
{ for (j=0j<n;j++) -
{m_4[i}[j] = p4*t[i)}:}}

for (i=0;i<n;i++)

{ for (j=0g<n;j++)

{ sum_s=0.0;
sum_s=sum_s+ad[i][j]-m_4[i][j];
ab4a{i][j]=sum_s;} }

for(i=0;i<n;i++)
{ for (=0 <n;j++)
{sum_s=0.0;
for (k=0;k<n;k++}
fsum_s=sum_s + afi}fk]*aba[k][j]1;
a5[i]fj]= sum_s;
13}

for (1=0;i<n;i++)
{ sum5= sum5+ a5[i][i);}
p3=sum5/ 5.0 ;

for {(i=0;i<n;i++)
{ for (j=0;j<n;j++)
{ms[10=ps #6033

for {(i=0;i<n;i++)

{ for (j=05j<n:j++)
{ sum_s=0.0;
sum_s:sum_s+a5[i]ﬁ]—mS[i][}]E
ab5[il{j]=sum_s;}}

4
-

¢

for(i=0;i<n;i++)
A for (j=0y<nj++)
{sum_s=0.0;
for (k=0;k<n;k++)
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{sum_s= sum_s + a[i][k]*ab5[k][j];
ab[i][j]=sum_s;
1

for (i=0;i<n;i++)
{ sumb= sumb+ a6[ili];}
p6=sumé/ 6.0 ;

for (i=0;i<n;i++)
{ for (j=0;j<n;j++)
{inverse[i][i]=ab5[i][Vp6:}}

/* fputs ("\nininverse of g matrix is",fp);

for (i=0;i<n;i++) ‘ ) :

{Tprintf{fp,"n %\ %ofit %66\t Yo", inverse[i}{0],inverse[i][ 1],inverse[i][2],inverse[i]{3]);}
*f
/* printf {""\n\ninverse of g matrix is"); ‘ .

for (i=0;i<n;i++) '

{printf{("\n %At %\t Yo\t %afit" inverse[i][0],inverse{i][ 1 }inverse[i}f2],inverseli]{3]);}

*/‘ !

for(i=0;i<n;i++)
{ for (j=0y<nyj++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s=sum_s + inverse[i][k1*q[k]fj];-
test{i}fj]= sum_s ;

1

/* fputs ("Min\n test for inverse of q matrix.is",ﬁJ);
for (iI=0;i<n;i++) -
{ fprintf(fp,\n %fit Yof\t %6\t %fit” test[i][0], test[i][ 1 1itest[i][2] test[i][3]): }
*f’ '
M printf ("Min\n test for inverse of q matrix is");
for (i=0;i<n;i++)
{printf("™n %ot Yo\t %ofit %f‘\t",lest[i][0],§est[i}[ 1] test[11[2] test[T]{3]);}
*/ ! ’

for(i=0;i<n;i++)
{ for (=0 <nij+t)
{sum_s=0.0;
for (k=0;k<n;k++)
fsum_s=sum_s + inverse[i][k]*r[k];
ya[i]=sum s ;
1
./ fputs ("\n\n ya matrix is",fp);
for (i=0;i<n;i++)
{fprintf{fp, " Yofit %6\t Y6fit %", ya[i][0],ya[i)] L Lya[il[2],yafi][3});}
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printf ("\n\n ya matrix is'");

for (i=0;i<n;i++) \
{printf("\n %\t ",ya[i]);}

*/

for(i=0;i<n;i++}
{ for (j=0;j<nyj++)
{sum_s=0.0;
for (k=0;k<n;k++)
{sum_s=suin_s + Yb[i][k]*ya[k];
m4[i]=sum_s;
i
ylold=yb[0];
y2old=yb[1];
y3old=yb[2];
ydold=yb{3];
y5old=yb[4];
y6old=yb[5]:
for (i=0;i<n;i++}
{ for (j=0;j<ny++) .
{ sum_s=0.0; .
sum_s=sum_s+m4[i]-11[i]; } -
yb[i]=sum_s;}} l

yinew=yb[0] ;
yZnew=yb[1]
y3new=yb[2]
ydnew=yb[3] ;
ySnew=yb{4] ;
yonew=yb[5] ;
/* fputs ("\n\n yb matrix is",fp);
for (i=0;i<n;i++) .
{fprintf(ﬂi,"\n %\t %\t %t %", yb[i][0].yb[i][1],yblil[2],¥b{i[31):}

.
i

printf ("\n\n yb matrix is");

for (i=0;i<n;i++}

{printf{"\n %fit ",yb[i]):}
¥/

for (b=0;b<n;b++} |
ytibi=ya[b}:}

convgnel= fabs(y Inew-ylold} ;
convgne?2= fabs(y2new-yZold) ;
convgne3= fabs(y3new-y3old) ;
convgncd= fabs(y4new-y4old) ;
convgnes= fabs(ySnew-y3old) ;
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convgne6= fabs{yGnew-y6old) ;

} /* for acc loop */ /* while loop end */

printf{"\n at t=%4f w=%f y1=%F y3=%f yS=%f\n",t,w,yb[O],yb{Z],yb[4]);
fprintf{fp,” %fit %M\t %Mt %\t %F ' " twinfk_1/1*yb[0Lk 1/f] *yb[2].k_ /1 *ybf4]);
w=wtdw, B

}

fclose(fp);

getch();
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