by/.
Gaz Md. Khalil.
A Thesis
submitted to the
Department of Mechanical Engineering
in partial fulfilment of
the requirements for the Degree of
. Doctor of Philosophy .

Bangladesh University of Engineering \& Technology, DHAKA

1982
\#55269\#

This is to certify that this work has been done by me and has not been submitted anywhere for the award of any Degree or Diploma or for publication.
nazi Md. Xhialil (GATT MD. KHALID)

A Thesis

by

Gazi Mid. Khalil

Approvec as to style and content

Sm. nazrul istam Dr. 3. $\%$ Nazrul Islam Fember \& Co-supervisor

Q. Le.m. Fazle Atwnain

 Dr. A. K. H. Fazle Hussain External lienberM.A. Henain

Dr. Mu. Anvar hossain Head ar nember.

liember

The interaction of two incompressible turbulent streams was investigated experimentally in the present work. For this purepose a low subsonic wind tunnel of test section, $1.5 \mathrm{ft} \times 1.5 \mathrm{ft} \cdot \mathrm{x}$ 10 ft 8 inches ($45.72 \mathrm{~cm} \times 45.72 \mathrm{~cm} \times 325.12 \mathrm{~cm}$) was designed, constructed, installed and calibrated. Nozzles of aspect ratios 4.5 and 3 were set up within the test section to produce jets. The initial region of the plane turbulent mixing layer was studied indentifying the exit conditions which play a vital role in the development of jets.

Two different turbulent boundary layer velocity profiles at the nozzle exit were generated to investigate the influence of the initial conditions on the flow. The displacement thicknesses of the velocity profile at the exit planes of the two nozzles were $\delta / \delta=0.128$ and 0.137 respectively with corresponding Reynolds numbers, $R e_{D}=1.65 \times 10^{5}$ and 2.27×10^{5}. The measured velocity profile within the boundary layer at the exit plane indicated that the flow at the exit. was turbulent.

For each case the mean axial velocity and the mean static pressure were measured across the jets, and the experimental results were compared with those of other investigators. The mean velocity profile within the mixing region of two streams was found to show a high shear due to the presence of a steep velocity gradient. Iris

velocity gradient gradually decreased with the increase of axial distance. The velocity profile in the mixing region did not show self-preserving characteristics.

The maximum mean axial velocity was observed to decay linearly except close to the outlet for both the lower jet and the upper stream. The rate of decay of the maximum mean axial velocity was higher for the faster moving jet compared to that for the slower moving upper stream.

The pressure distribution was found to be uniform across the streams except for a small suction in the region of wake ah ead of the thin plate which separated the two streams.

The width for the maximum velocity, y_{m}, increased linearly along the axial direction. The wake formed between the two interacting streams disappeared appraximately at the same axial distance, viz $x / D=7$ for both the nozzles.

The centre of the unifarm portion of the velocity profile in the jets deviated from the geometric centre-line of the nozzle. This may be due to the presence of a small step at the bottom of the nozzle.

Experiments were also conducted with a knife edged splitter in the middle of the inlet duct to study the mixing in absence of the wake in the shear layer. Measurements of pressure and velocity were taken. The flow characteristics in the mixing region was found to be similar to those with wakes but the mixing process was comparatively slow. There fore, the mean velocity development was more gradual.

ACKNOWLEDGEMENTS

The author acknowledges profound indebtedness to Professor Dr. Wahiduddin Ahmed, an eminent educationist and the Vice-Chancellor of Bangladesh University of Engineering \& Technology, Dhaka for his constant inspiration and encouragem ent throughout this work.

The author is highly grateful to his supervisor Dr. M.H. Khan, Professor \& Dean, Faculty of Mechanical Engineering, BUET, without whose guidance, encouragement and invaluable suggestions, this work would not have been possible.

The author is also grateful to Dr. SoM.N. Islam who supervised and assisted him in various ways at all phases of the work.

The author also expresses his gratitude to Professor A.K.MoF. Hussain, Director, Turbulence and Aerodynamics Laboratory, University of Houston, Texas, who contributed to the imp: rovement of this work.

He is also indebted to Prof. M.A. Hossain, Prof. A.M. Azizul Huq, Prof. S.A. Afzal, Dr. M.F. Ilah1 for their constructive criticism and invaluable suggestions which have definitely raised the quality of the work.

The author is indebted to Professor A.M. Patwari, the Director, and Professor J.R. Chowdhury, the former Director of the Computer Centre for the permission to use the computer
without which it would have been impossible to process the data. He also appreciates the co-operation obtained from the Computer Centre staff during the entire period of research.

The author gratefully acknowledges the inspiration received from Dr. Mahiuddin Chowdhury, during the lengthy period of this research.

Thanks are also due to many people of the various workshops of BUET for their assistance in constructing the wind tunnel and also fabricating the experimental set-up.

His expression of gratitude is offered to Mr. A.BSiddiqui, the Librarian, BUET Library for supplying numerous technical papers related to the present work.

And finally, the author wishes to thank Messrs. Md. Nizamuddin and Md. Abdullah for typing the thesis, and Md. Rafiqur Rahman for drawing the figures with patience and care.

TABLE OF CONTENTS

Page
ABSTRACT $1: 1$
DEDICATION vi
ACIONOULEDGEMENTS vii
TABLE OF CONTENTS ix
LIST OF FIGURES Xi
IIST OF TABLES xyi
IIST OF APPENDICES xvii
NOMEMCLATURE xviii
CHAPTER. I INTRODUCTION AND LITERATURE REVIEW 1
1.1 Preview 1
1.2 Wall jets - 2
$1.2 a$ Review of Experiniental Investigations 3

1) Wall jet in a Stagnant Environment 3
i1) Wall jet in a Free Stream 4
1ii) Wall jet on a Curved Surface 5
$1.2 b$ Review of Theoretical Investigations 6
2) Wall jet in a Stagnant Environment 6
3) Wall jet in a Free Stream 6
1ii) Wall jet on a Curved Surface 8
1.3 Mixing Layers 9
*.3a Review of Experimental Investigations 10
1.3b Review of Thearetical Investigations 11
1.4 Initial Condition 12

Page

1.5 Coherent Structures 20
1.6 Motivation and Objectives 23
CHAPTER II EXPERIMENTAL SET-UP AND EXPERTMENTS 28
2.1 Design of the Wind Tunnel 28
2.2 Construction of the Wind Tunnel 29
2.3 Calibration of the Wind Tunnel 31
2.4 Experimental Procedure 32
2.4a Mixing of Two Streams in the Presence of a Wake 32
2.4b Mixing of Two Streams in the Absence of a Wake 34
CHAPTER III RESULTS AND DISCUSSION 35
3.1 General 35
3.2 Calibration of the wind Tunnel 35
3.3 Mixing of Two Shear Layers in the Presence of a Wake 38
3.4 Mixing of Two Shear Layers in the Absence of a Wake 49
CHAPTER IV CONCIUSION 53
REFERENCES 57
FIGURES 67
APPENDICES 105

3.3 Reproducibility of Mean Axial Velocity with Time at the Centre of the Test
3.4 Measured Mean Axial Velocity Distribution in the Nozzle at the Exit Plane for $D=4$ in. $(10.16 \mathrm{~cm})$
3.5

Measured Mean Axial Velocity Distribution
In the Nozzle at the Exit Plane for $D=6$ in. $(15.24 \mathrm{~cm}) \quad \ldots$.... 78
3.6 Universal Velocity Profile at the Nozzle Exit 79
3.7 Measured Mean Axial Velocity Distribution in the Superimposing Channel at the Exit Plane for $D=4 \mathrm{in}$. (10.16 cm) .. 80
3.8

Measured Mean Axial Velocity Distribution
in the Superimposing Chamnel at the Exit
Plane for $D=6$ in. $(15.24 \mathrm{~cm}) \ldots$

Figure		Page
3.22	Excess Mean Axial Velocity Distribution in the Jet Along the Axial Direction	95
3.23	variation of the width for Maximum Velocity, y_{m}, Along the Axial Direction	96
3.24	Variation of the Half-width of the J $y_{m / 2}$, Along the Axial Direction..	97
3.25	Measured Mean Axial Velocity Distribution in the Nozzle at the Exit Plane ..	98
3.26	Measured Mean Axial Velocity Distribution in the Superimposing Channel at the Exit Plane	99
3.27	Measured Mean Axial Velocity Distrim bution in the Streams at Different Axial Distances	100
3.28	Maximum Mean Axial Velocity Distribution in the Two Streams Along the Axial Direction	101
3. 29	Excess Mean Axial Velocity Distribum tion in the Streams Along the Axial Direction	102
3.30	Variation of the Width for Maximum Velocity Along the Axial Direction	103
3.31	Distribution of the Pressure Coefficient in the Streams at Different Axial Distances	104

LIST OF TABLES

Table Page
I Relevant Analytical Works on the Wall Jet 13
II Relevant Experimental Works on the
Wall Jet 16
III Velocity Profile. Characteristics in the Test Section 36
IV The Nozzle Exit Conditions 41
V Compilation of Half-width Growths and Maximum Mean Axial Velocity Decay for Wall Jets of Various Geometries 48
VI Exit Conditions of the Velocity Profile for the Knife Edged Splitter 51

LIST OF APPENDICES

APPENDIX Page
I THE PARTICULARS OF THE WIND TUNNEL 106
II UNCERTAINTY ANALYSIS 108
III COMPUTER PROGRAMS USED FOR THE CALCULATION OF EXPERIMENTAL RESULTS 115

NOMENCLATURE

a

A aspect ratio of the rectangular nozzle ($m b / D$)
width of the rectangular nozzle a constant
skin friction coefficient
pressure coefficient
depth of the rectangular nozzle; diameter of the circular nozzle
depth of the upper nozzle
depth of the test section of the wind tunnel
eccentricity of the nozzle ($=\mathrm{D} / \mathrm{b})$
thickness of the splitter
shape factor of the boundary layer velocity profile

L	length scale ($\left.=h+\theta_{N}+\theta_{B}\right)$
Lo	length scale for jets in the normal direction $\left(=y_{m / 2}-y_{m}\right)$
\square_{G}	entrainment function
m_{J}	the total monentum flux
n	exponent for velocity distribution in the boundary layer of a wall jet.
p	static pressure in the wall jet.
$\mathrm{P}_{\mathbf{a}}$	static atmospheric pressure
q	rms value of the turbulent fluctuations $\left.\overline{\left(q^{2}\right.}=\overline{u^{\prime}}+\overline{v^{\prime}}+\bar{w}^{2}\right)$
R	ratio of jet velocity to free-stream velocity $\left(=U_{J_{\max }} / U_{\operatorname{smax}}\right)$
Re	Reynolds number of the flow
$R e_{D}$	Reynolds number based on the mean axial velocity and the depth of the nozzle.
Re_{0}	Reynolds number based on the mean axial velocity and the momentum thickness of the boundary layer at the rozzle exit.
u'	fluctuating component of velocity in the x-direction

w	mean velocity in the z -direction
x	axial distance measured from the nozzle exit
x_{0}	distance of hypothetical origin from slot exit
y	cross stream ordinate measured from the test section floor
y_{m}	minimum value of y where $U_{J} * U_{J \max }$
$y_{m / 2}$	value of y at which $U_{J}=\frac{1}{2} U_{0}$ for a wall jet in still surroundings, or, value of y at which $U_{J}=\frac{1}{2}\left(U_{J \max }+U_{S m a x}\right)$ for a wall jet in streaming flow.
Y	co-ordinate normal to the wall measured from the lower surface of the nozzle.
Y_{s}	cross stream ordinate measured from the top surface of the splitter.
2	transverse comordinate measured normal to the jet axis and parallel to the wall
z_{E}	ratio of the law-of-thewall velocity at the outer edge of the boundary layer to the mainstream velocity

z_{m}	the minimum value of z at which $U_{J}=U_{J \max }$
$z_{m / 2}$	the value of z at which $U_{J} N U_{J_{\max }}=0.5$

Greek Symbols
$\alpha \quad$ the wave number
δ the boundary layer thickness
$\delta^{*} \quad$ the displacement thickness at the nozzle exit
$\Delta U \quad$ difference of mean axial velocity between the jet and the upper stream ($\propto U_{J}-U_{S \max }$)
$\begin{array}{ll}\Delta U_{\max } & \text { maximum local excess mean axial velocity } \\ -\left(: U_{J \max }-U_{S \max }\right)\end{array}$.
$\Delta y_{\text {max }}$ maximum excess mean axial velocity at the nozzle exit ($m U_{N \max }-U_{S N \max }$)

6 eddy viscosity

Q momentum thickness of the boundary layer
$\theta_{\mathrm{N}} \quad$ momentum thickness at the nozzle exit
$\boldsymbol{\theta}_{\mathrm{s}}$ momentum thickness at the exit of the upper channel

Subscripts

Max	maximum value
Mean	average value
RMS	\ddots
root mean square	

CHAPTER - I
 INTRODUCTION AND LITERATURE REVIEW

1.1 Preview

Most flows which occur in practical applications are turbulent. Turbulence is a three-dimensional, time-dependent, vortical motion in which vortex stretching causes velocity fluctuation to spread to all wavelengths between a minimum (ie. Kolmogoroff scale) determined by viscous forces and a maximum (ie. integral scale) determined by the geometry of flow. These motions are so complex that it seems to be inaccessible to mathematical treatment. Despite efforts of many scientists over the decades, turbulence continues to persist as one of the least understood arenas of the natural sciences. The Reynolds decomposition, which treats a turbulent flow as a superposition of a timemean (i.e. constant) component and a time-dependent component, produces the well-known 'turbulence closure problem', arising from the nonlinearrity of the governing (Navier-Stokes) equations, to which no universal solution has either been found or appears likely. The gradient transport hypotheses, which are tolerably acceptable for some crude engineering predictions of simple flows, are both conceptually incorrect and incapable of producing acceptable predictions in complex situations. These serve as reminders of the inherent complexity of turbulent flows even in the simplest possible configurations and emphasize the pressing need for continued and vigorous basic investigations of turbulent flows. Unfortunately, the nonlinearity of the governing partial differential equations have stifled any breakthrough on the theoretical front. In fact, most significant advances in turbulence have been made via experimental investigations, and the primary limitation in the progress of this field continues to be the physics of turbulence. As such, experi-

mental studies will continue to play a pivotal role in the advancement of knowledge in turbulence.

Turbulence research has experienced two revolutions in the past | decade. The first, rather profound, is the discovery of large-scale coherent structures. The second is the integration of the digital computer as an active (even interactive) component of the turbulence research arsenal (1).

A coherent structure is a connected turbulent fluid mass with a phase-correlated vorticity over its spatial extent. That is, underlying the three-dimensional random vorticity fluctuations, there is an organized component of the vorticity which is phase-correlated (i.e. coherent) over the extent of the structure. This is called coherent vorticity (1). The profound impact of the coherent structure approach should be evident from the fact that it is being pursued by essentially every turbulence researcher in one form or another. While rise and fall of ideas is not new to turbulence, it must be admitted that the advancement continues. But the closure problem still persists, and obviously more studies are required for a complete understanding of the problem.

1.2 Wall Jets

When a fluid is discharged through a nozzle or an orifice from a container under higher pressure into a region of lower pressure, a jet is formed. When the jet impinges onto a rigid wall, it is called a wall jet. The spread of the wall jet is inhibited on one side by the presence of a solid surface, where the velocity is zero. In most practical examples, the wall jet will be turbulent. The wall jet comprises of a boundary layer flow near the wall and a free mixing flow in the outer part.

1. 2a Review of Experimental Investigations

i). Wall Jet in a Stagmant Environment

The earliest known work on the plane wall jet was by Forthman (2) who observed that the wall jet was selfmpreserving, the boundary layer thickness varied linearly with x, and the maximum velocity, $U_{J m a x}$ varied inversely as the half power of x. The velocity in the inner layer followed the $1 / 7$ th power law, and the angle of the jet spread was 4.7°.

Sigalla (3) studied a tangential plane wall jet and correlated the existing data on wall jets. In the developed part of the wall jet the maximum velocity, $U_{J m a x}$, could be expressed as

$$
U_{J_{\max }} / U_{N_{\max }}=3.45(\mathrm{x} / \mathrm{D})^{-0.5}
$$

Schwarz and Cosart (4) measured the mean velocity distribution of an incompressible, turbulent, plane wall jet with a hot-wire. Over the entire range of the experiment a single velocity scale, $U_{\text {Jmax }}$, and a single length scale, δ, seemed to correlate all the velocity data except very close to the wall. Scatter in the data was appreciable near the wall (a distance of the order of $0.2 \mathrm{~mm}, \eta<0.005$). Hence the flow very close to the wall cannot be treated like a turbulent boundary layer. In fact, there are certain important dissimilarities between the turbulent boundary layer and the inner layer of the wall jet. The most important difference is in the intermittent nature of the outer part of the turbulent boundary layer. Another point of difference lies in the modification of the structure of the inner layer of the wall jet by the turbulence in the outer layer. The square of
the hyperbolic secant, which satisfactorily represents the mean velocity profile of a free mixing layer, does not accurately represent the outer layer of the wall jet.

Myers et al.'s (5) data on a two -dimensional plane tangential wall jet agreed well with the findings of previous investigators ($3,4,6$). The velocity profiles exhibited similarity for $24<x / D<180$, and were independent of the Reynolds number. The maximum mean axial velocity varied as $x^{-0.50}$ as against $x^{-0.555}$ of Schwarz and Cosart (4).

Sforza and Herbst (7) carried out an experimental investigation of the mean properties of turbulent, three-dimensional, incompressible jets of air issuing into a quiescent ambient air tangent to a flat plate. Subsequent mean flow measurements with a constant current hot-wire agreed very well with earlier pitot probe measurements.

ii)
 Wall Jet in a Free Stream

Kruka and Eskinazi (8) conducted experimental investigation in a plane wall jet blowing tangentially to a semi-infinite, rigid wall and under a uniform moving stream with different velocity ratios R. Similam rity was found to exist in both the inner and the outer layers for mean as well as turbulent quantities; however, the same scales do not apply to both the layers. The flow was divided into two regions: at the $U_{J_{\max }}$ rocation for mean measurements and at $\overline{v^{\prime}} u^{\prime}=0$ location for turbulence quantities; separation between these two points is small. In the inner
layer, the maximum velocity and its location were found to reduce the mean velocity to a similarity form independent of x. The width scale was found to vary as x^{1} for all values of R. The corresponding boundary layer width was proportional to $x^{4 / 5}$. In the immediate vicinity of the wall, a universal boundary layer type similarity exists, though the coefficients have different values. In the outer layer a reduced longitudinal distance, X_{s}, was necessary for comparing the results. The characte ristic width is Inear with x_{s} for all values of R. In both the inner and outer layers, the velocity scale varies as x_{s}^{a} where ' a ' is a function of R.

Irwin (9) studied a wall jet in a pressure gradient in the presence of a free stream. The quantities measured with a linearized hotwire anemometer were the mean and turbulent velocities which reached self-preservation. The mean velocity profile close to the wall was found to be similar to those in boundary layers and pipe flows.

1i1) Wall Jet on a Curved Surface

When a wall jet flows over a surface which is curved the rate of entrainment of surrounding fluid is modified by the curvature. The large eddy length scale and the lateral turbulence intensity are increased over a convex surface and thus the entrainment is increased. The reverse applies to a concave surface (10).

1. 2 b Review of Theoretical Investigations

1) Wall Jet in a Stagnant Environment

The first theory of the wall jet was developed by Glauert (11) on the basis of a model of flow (as shown in Figure 1.1) involving two regions divided by the line of maximum velocity. The flow was assumed to behave rather like a boundary layer in the inner region and a free jet in the outer region. He took a constant eddy viscosity, $\in \propto \mathcal{U}_{J} \delta$ In the outer region and a variable eddy viscosity $\in \propto U_{J}^{6}$ in the inner region. It is only the matching of the inner to the outer flows at the point of maximum velocity that gave rise to some difficulty since the appropriate similarity forms were in conflict there.

Integral methods for calculating the growth of a two-dimensional, incompressible, turbulent wall jet in still surroundings have been developed by Myers et al (5). The problem was solved in two parts: (a) the 'starting length' close to the nozzle exit where the maximum jet velocity has not yet begun to decay, and (b) the region downstream where the maximum velocity decays. The solution for the first part was used as the Initial condition for the second part. They followed the two-layer concept of Glauert (11) for analysing each of these two parts, in addition to a potential core for the first part. They assumed that the velocity profile and shear stress in the inner and outer layers, considered sepiarately, are the same for the two parts.
ii)

A theory for wall jets in streaming flow in zero pressure gradient
was developed by Eichelbrenner and Dumargue (12) following Glauert's (11) two-layer concept. The point of matching the two solutions occurred between the maximum velocity and the inflexion point in the outer profile, thereby avoiding Glauert's (11) discontinuity in the eddy viscosity.

Escudier and Nicoll (13) developed integral methods for wall jets in pressure gradients where the mean velocity profile was built up by the superposition of a jet component and the logarithmic law of the wall. The velocity profile at the edge of the flow gave a skin friction law. The integral momentum equation provided a second equation, and the third, required to close the solution, was obtained by relating the non-dimensional rate of entrainment to the profile. The choice of the two-parameter profile was, however, restrictive near separation since it specified that the shape of the profile was the same as that of a boundary layer.

Abstract

A more versatile, but more empirical, method using a fourparameter velocity profile was developed by Gartshore \& Newnan (14) to predict separation. The profile could, therefore, change in a manner which was relatively independent of the outer flow and a realistic prediction of separation could be obtained. The theory was used for non-self-preserving flows by introducing a time delay based on the estimated life time of a large eddy.

Harris (15) reported an entirely different approach to the problem of a wall jet in a moving stream. He used the momentum and energy integral equations and assumed that the velocity profiles in both the inner and outer regions were everywhere similar. For the evaluation of the integral
$\int \mathcal{C}\left(\frac{\partial u}{\partial y}\right) d y$ in the energy equation, a skin-friction formula similar to the Blasius expression was employed. Prandtl's mixing-length theory was applied, and the equations were solved by means of a computer. An interesting feature of Harris's theory was that an attempt was made to make some allowance for the fact that the shear stress was not zero at the velocity maximum in wall jets. This was observed experimentally by Bradshaw \& Gee (6) and Kruka \& Eskinazi (8), and would imply that theories based on the gradient transport of turbulence could not strictly apply. It also suggested that the independence of the inner and outer regions was not a good assumption.

iii) Wall Jet on a Curved Surface

Cooke (16) theoretically investigated two-dimensional wall jets on curved'surfaces. He introduced the simplification originally due to Catherall \& Mangler (17), whereby a 'displacement body' was supposed to be known, but the true body was to be determined from the solution, using the fact that the velocity components vanish on the true body. External vorticity was not considered but could be included in an extension of the method. Similar solutions were obtained, and it turned out that corresponding first order solutions were the series calculated by Falkner \& Skan and Hartree. Earlier calculations by Murphy (18) were shown to be wrong. Cooke found that on convex surfaces the skin friction was reduced and the displacement thickness was increased as compam red with the first order solutions. The reverse was the case for concave surfaces. This implies that a convex curvature encourages separation.

Dvorak (19) developed a calculation method for turbulent boundary layers and wall jets in which the effects of large longitudinal surface curvature and the associated normal pressure gradients were included for the first time. This was achieved by using finite difference techniques to represent the equations of mean motion in a system of curvilinear orthogonal coordinates. The Reynolds stress terms in the equations of motion were approximated using an eddy viscosity approach based on the concept of intermittency. Comparisons between theory and experiment for boundary layers and wall jets developing over flat or curved surfaces for a wide variety of pressure distributions showed encouraging agreement.

1.3 Mixing Layers

Contrary to the classical notions of turbulence, recent experimental observations of Brown \& Roshko (20), Dimotakis and Brown (21), Hussain \& Zaman (22) have revealed that turbulence in two-dimensional mixing layers is far more orderly than previously believed. The turbulence field is found to be dominanted by large vortex-like structures. Motion pictures taken by Brown and Roshko (20) indicate that these large structures are initiated near the trailing edge of the splitter plate which marks the beginning of the mixing layer. These structures grow in size as they are convected downstream. To accommodate this growth the spacings between the neighbouring structures undergo constant changes. Every now and then two (or three) of these vortex-like structures would coalesce to form a single larger structure. This process, which was observed to occur more prominently at low Reynolds number by Winant \& Browand (23), is generally referred to as 'vortex pairing' (or tripling). In high Reynolds number flows the pairing process once started is usually completed in very short intervals
of time. It is believed that the large structures actually constitute the dominant part of the turbulence field in what was previously known as fully random turbulent mixing layérs. Careful flow-visualization studies have subsequently revealed that the mixing layer is progressively less organized at higher Reynolds numbers and the large-scale structure interactions ace considerably more complex, involving tearing and fractional and partial pairings $(24,25)$. Chandrsuda et al. (26) have claimed that the structures in the plane mixing layer are predominantly three-dimensional even though there have been convincing claims that these are indeed two-dimensional $(20,27,28)$. These indicate that many questions remain unanswered in the mixing layers.

1.3a Review of Experimental Investigations

The time-average measures of the axisymmetric mixing layer have been found to be functions of the initial condition, because of the limited extent of the layer (29). Data suggested similar dependence of the plane mixing layer (30-32). Hussain (33) speculated that the persisting influe nce of the initial condition in these data was due to limited streamwise length of the flows investigated. With this in mind, a large plane mixing layer facility was built. It was shown that sufficiently farther downstream from the origin, the mixing layer does achieve a universal state independem nt of the initial condition (34). They also investigated the coherent structure in the self-preserving region of the mixing layer. In order to eliminate any possible effect of the initial instability, the boundary layer was tripped. Care was taken to ensure that the initial boundary layer satisfied all the criteria of a fully-turbulent boundary layer of the coherent structures. The average passage frequency f_{m} at any distance x from the tip
depends on x. These structures are detected for the entire length of measurement i.e. for $x=3 m$ or $5000 \theta_{e}$. The Strouhal number $S t_{\theta}\left(=f_{m} \theta / U_{e}\right)$ remains. constant $(\cong 0.024)$ at all x. Here θ and θ_{e} are the local and exit momentum thicknesses and U_{e} is the free stream velocity ($25 \mathrm{~m} / \mathrm{s}$). The mixing layer coherent structures have been educed at different stages of their development via an optimized conditional sampling triggered on the peaks of a local reference \tilde{u} - signal obtained from the high-speed edge of the mixing layer.
1.3b Review of Theoretical Investigations

Tam \& Chen (35) have proposed a statistical model of turbulence in fully-developed two-dimensional incompressible mixing layers. The statistical model of turbulence consists of representing the turbulent fluctuations by the normal modes of the flow with random amplitudes. The distribution of the amplitudes is determined by the condition that the turbulent wave spectrum at any downstream location could be considered as generated by an initial spectrum whose kinetic energy has no intrinsic length or time scales, namely, a white noise spectrum. The large structures of the mixing layer which are coupled to each other have been represented by linear combination of the hydrodynamic stability modes of the flow, given by the eigensolutions, of the Orr-Sommerfeld equation.

Without taking into account of the internal vortex motion, a quasi-equilibrium statistical model is suggested in a wave representation to predict the second order turbulence statistics, both single-point and two-point space-time correlation functions. It has been found that for a typical mean velocity profile there is only one-family of unstable eigensolutions affecting the flow turbulence. With suitable random amplitude
function the turbulent velocity and pressure fluctuations in the mixing layer have been predicted. This formalism has been subsequantly extended by Plaschko (36).

Some of the important works done on turbulent wall jets and mixing layers by various authors theoretically and experimentally are shown in Table I and Table II respectively.

1.4
 Initial Condition

The initial formation of coherent structures in a shear flow is a function of the initial condition i.e. the state of the flow at its initiation point $(29,42)$. Since the instability and roll up of a shear layer into structures and the subsequent evolutions and interactions must in some way depend on the initial condition, careful documentation of the initial condition is very important. It is very unlikely that two different apparatuses can have identical initial conditions. In most previous investigations, the initial condition was never documented presumably because either its significance was not recognized or the flow was sufficiently downstream such that it was considered to be independent of the intial condition.

While the importance of the intial condition in a turbulent shear flow is well recognized, there is as yet no consensus on the measures necessary to identify the initial condition (42-46). These measures may include the mean velocity profile and its various characteristic thicknesses (like the boundary layer, displacement and momentum thicknesses) and the shape factor, the pdf's of the velocity fluctuation and the moments, the spectra of velocity fluctuations, spectrum and moments of the Reynolds

TABLE I : RGLEVANT ANALYTICAL WORXS ON THE WALL JET.

Authors	Jet Surroundings	Equations	Model	Comment
Glauert (11) 1956	$\begin{gathered} \text { stili } \\ \text { Surroundings } \end{gathered}$	Integral 1) Mass ii) Momentum	$\begin{aligned} & \mathrm{u}_{\max } \infty \mathrm{x}^{\mathrm{a}} \\ & \delta \propto \mathrm{x}^{\mathrm{b}} \\ & \epsilon \propto \mathrm{x}^{\mathrm{c}} \end{aligned}$	Similarity solution achieved. Laminar, turbulent, radial and plane jets are analysed.
Schwarz \& Cosart (4) 1961	Still Surroundings	Integral 1) Mass i1) Momentum	$\begin{aligned} & U_{J \max } \infty \mathrm{x}^{\mathrm{A}} \\ & \delta \propto x \\ & \epsilon=f(y / \delta) \end{aligned}$	Similarity solution achieved. Wall shear stress obtained by momenturn integral equation
Myers et al (5) 1963	Still Surroundings	Integral 1) Mass ii) Momentum	$\mathrm{u}_{\operatorname{J\operatorname {max}}} \propto \mathrm{x}^{\mathrm{a}}$ $\delta \propto x^{b}$ ϵ by Prandtl's hypothesis.	Regionwise analysis carried out.

PABLE I: (Contimued)

Authors	Jet Surrounding	Equations	Model	Corment
Kruka and Eskinazi (8) 1964	Parallel flow	Integral i) Mass ii) Momentum	$\begin{aligned} & U_{J \max } \infty_{x^{a}} \\ & a_{\infty}{ }^{\left(U_{s m e a n} / U_{J m e a n}\right)^{b}} \\ & \delta \propto x^{c} \\ & \epsilon \text { by Prandtl's } \\ & \text { hypothesis. } \end{aligned}$	Similarity solution achieved. Two-layer concept introduced.
Escudier and Nicoll (13) 1966	Parallel flow	Integral i) Mass ii) Momentum	$-m_{G}=0.075\left(1-z_{E}\right)$	Prediction equation for shape factor, drag coefficient and momentum thickness are given in terms of entrainment function.
Gartshore and Newman (14) 1969	$\begin{gathered} \text { Parallel } \\ \text { flow } \end{gathered}$	Integral 1) Mass ii) Momentum	$U_{J} / U_{J \max }=\left(y / y_{m}\right)^{n}$ ϵ by Prandtl's hypothesis.	Used four momentum integral equations taken from the wall to various points in the flow. Wall jet in an arbitrary pressure gradient analysed.

TABLE I: (Continued)

Authors	Jet Surroundings	Equations	Model	Comment
$\begin{gathered} \text { Patel (37) } \\ 1971 \end{gathered}$	$\begin{gathered} \text { Parallel } \\ \text { flow } \end{gathered}$	Integral 1) Continuity ii) Momentum	$\begin{aligned} & \left(\frac{U_{\text {smean }}}{U_{\text {Jmax }} U_{\text {smean }}}\right)^{2} \propto\left(x-x_{0}\right) \\ & 10 \propto\left(x-x_{0}\right)^{3 / 2} \\ & \epsilon=f(x) \end{aligned}$	zero pressure gradient. Predicted eddy viscosity Reynolds number.
Newman et al (38) 1972	Still Surroundings	Integral i) Continuity ii) Momentum	$\begin{aligned} & u_{J_{\max }} \propto x^{-1} \\ & \delta \propto x \\ & \epsilon=f(y / \delta) \end{aligned}$	Three dimensional wall jet originating from a circular orifice
Narayan and Narasimha (39) 1973	$\begin{gathered} \text { Parallel } \\ \text { flow } \end{gathered}$	Dimensional analysis	$M_{J}=U_{J}^{2} D$	Incompressible jet in still air and in parallel flow. Total momentum flux was used as scale.

TABLE II : RELEVANT EXPERIMENTAL WORKS ON THE WALL JET.

Authors	Nozzle Geometry and Jet	Jet Surroundings	Reynolds Number	Variables Measured	Axial distance covered. (x/D)
$\begin{gathered} \text { Sigalla (3) } \\ 1958 \end{gathered}$	Rectangular nozzle. Plane tangential jet.	Still air	$\begin{aligned} & 0.23 \times 10^{5} \text { to } \\ & 0.52 \times 10^{5} \end{aligned}$	u_{J}, δ, τ_{w}	65
Schwarz and Cosart (4) 1961	24"x1" outlet. Plane tangential jet	Still air	$\begin{aligned} & 0.22 \times 10^{5} \text { to } \\ & 1.06 \times 10^{5} \end{aligned}$	$\mathrm{u}_{\mathrm{J}}, \delta, \tau_{w}$	84
$\begin{gathered} \text { Myers et al(5) } \\ 1963 \end{gathered}$	```60" x 0.5" outlet. Plane tangential jet```	Still air	$\begin{aligned} & 0.71 \times 10^{4} \text { to } \\ & 5.65 \times 10^{4} \end{aligned}$	$\mathrm{U}_{J}, \delta, \tau_{w}$	180
Kruka and Eskinazi (8) 1964	$56^{\prime \prime} \times 0.131^{\text {m }} \text { outlet. }$ Plane tangential jet	Parallel air flow	1.3×10^{4}	v_{J}, δ, τ_{w}	305

TABLE II (Continued)

Authors	Nozzle Geometry and jet	Jet Surroundings	Reynolds Number	Variables Measured	Axial Distance covered (x / D)
Newman et al(38) 1972	Circular orifice of diameter 3.175 mm for air, 2 mm for water.	Still air Still water	16400 for air 2800 for water	$U_{J}, \delta, p, u^{\prime}$	328 for air 760 for water
$\begin{gathered} \text { Irwin (9) } \\ 1973 \end{gathered}$	Rectangular nozzle of depth 6.73 mm 。 Plane wall jet	Parallel air flow	2.8×10^{4}	$U_{J}, p, \tau_{w, u}$	260
Bajura and Catalano (40) 1975	Rectangular nozzle of depth $0.0635 \mathrm{~cm}$ Plane wall jet	Still water	100 to 600	Visual observation, u^{\prime}	960
Rajaratnam and $\begin{aligned} & \text { Stalker (41) } \\ & 1982 \end{aligned}$	Circular nozzle of diameter 0.25 n and 0.75 m .	Parallel water flow	$3000 \text { to } 25000$	$\mathrm{U}_{\mathrm{J}}, \mathrm{U}_{\mathrm{s}}$	$64 \text { and } 21$

stress, etc. (29). In view of the sensor resolution problem, one has to be mostly content with the measurement of the longitudinal velocity only. However, care needs to be taken in these measurements to eliminate the probe-induced shear-layer tone (22).

For the sake of simplicity, the initial condition can be divided into four groups: laminar, nominally laminar, highly disturbed and fully turbulent; the first and the last are the two asymptotic limiting states (1). In the first case, the profile is identical with the Blasius profile and the rms longitudinal velocity fluctuation u ' decreases monotonically from the 'free-stream' value to zero at the wall. In the nominally laminar case, the mean velocity profile agrees with the Blasius profile but the fluctuation level is comparatively high, typically reaching a peak value (at $y \approx \delta^{\bullet}$) significantly higher than the free-stream value. The disturbed case has a profile significantly different from the Blasius profile, and typically it denotes a transitional case. The last case represents a fully-developed turbulent boundary layer and is characterised by logarithmic and wake regions in the $\left(\mathrm{u}^{+}, \mathrm{y}^{+}\right)$coorclinates with the wake strength and the extent of logarithmic region appropriate for the value of $\mathrm{Re}_{\theta}(47)$, a profile of u^{\prime} / v_{0} with its peak value in the rance $2.54 \pm$ 10% and located at $y^{+} \approx 15$ and monotonically decreasing to the freestream (48) and a broadband continuous spectrum $\phi_{u}(f)$ of $u(t)$. It should be emphasized that the initial condition data are measured at the end of a straight (zero pressure gradient) length of about $100 \theta_{\mathrm{e}}$ following the contraction. While the fully-turbulent case is easily obtained with an appropriate trip placed sufficiently upstream, it is especially important
to document the spectral content of the velocity fluctuations in the other three cases. In addition, the spectrum and free-stream turbulence intensity profile at the initial state must also be documented. The free stream turbulence is not normally the decaying turbulence from the upstream screens but is typically caused by fan blade wake and rotating stall, tunnel settling chamber cavity resonance, laboratory standing acoustic waves, feedback from downstream obstructions, shear-layer tone within and outside of the turnel, etc. These various disturbances manifest into a peak in $u^{\prime}(y)$ at $y / \delta^{*} \approx 1(49)$ where δ^{*} is the displacement thickness. If any of these frequencies fall within the unstable band of the shear layer, the shear layer will be driven at this frequency. Unless extreme care is undertaken, these free-stream disturbances will be present and the flow will be driven depending on the frequencies and amplitudes of these modes. Because of these, all free shear flows can be considered to be driven, to some extent (1).

If an adequate straight lip is not added following the contraction, the boundary layer profile can deviate from the Blasius profile even when laminar. The use of an appropriate trip is still in the state of an art. Hussain (33) suggests that the optimum trip is a strip with a linear array of teeth aligned spanwise (prepared by cutting a series of notches) projecting into the flow. These teeth should have their width, spacing, height, length (along flow) of about $100 \theta_{e}$ and placed at least $1000 \theta_{e}$ upstream from the Iip; θ_{e} is the momentum thickness of the exit boundary layer in the absence of the trip.

Hussain \& Clark (49) conducted a number of studies on the effects of the initial condition in a plane jet. They found that evolutions of all time-average measures, including the momentum flux, of a plane jet are strong functions of the initial condition (49). Because of the universal belief in momentum flux invariance of a jet, this result was initially extremely puzzling. Even though complete explanation has not yet been possible because of inherently large uncertainties in hot wire measurements in jets, the excess momentum flux can be attributed primarily to the negative pressure in the jet supported by the transverse fluctuations and also to the pressure field induced by the entrainment flow. The time-average measures of the axisymmetric mixing layer has also been found to be a function of the initial condition (44-46) but not directly of the exit momentum thickness Reynolds number $\operatorname{Re}_{\theta}$ (42). On the other hand, the plane mixing layer has been found to achieve a state independent of the initial condition (34). Controlled excitation can alter the initial region of a mixing layer, but not sufficiently farther downstream (50).

1.5
 Coherent Structures

A coherent structure results from an instability of one kind or another. While the most common kinds are the Kelvin-Helmholtz instability of free shear layers (mixing layers, jets, wakes) and TollmienSchlichting and Gortler instabilities of wall layers, essentially every kind of instability is potentially capable of generating coherent structures (for example, Benard cells due to Benard and Marangoni instabilities). There are, of course, special cases of coherent structure
formation like puffs and slugs $(51,52)$ in pipe and channel flows and spiral turbulence in circular Couette flow (53-55). Perhaps the simplest example of coherent structures are the Taylor cells in the circular Couette flow. Because the structure size can be made to remain invariant with time and unlike in shear flows like jets and wakes, these structures are stationary in the laboratory frame, the Taylor cells are extremely attractive for coherent structure studies $(56,57)$ even though no one has attempted a detailed study from this point of view. The instability from which coherent structures result does not have to be of a laminar flow $(58,59,60)$. Vortex formation from a turbulent wake was demonstrated by Taneda (60). The instability and roll-up of an axisymmetric mixing layer originating from a fully-turbulent boundary layer was first reported by Clark \& Hussain (61) who also claimed that coherent structures in an initially fully-turbulent axisymmetric mixing layer were more organized and more compact than when the mixing layer was initially laminar. For an initially fully-turbulent plane mixing layer, the formation, evolution and the equilibrium state of large-scale coherent structures have been documented by Hussain \& Zaman (33).

In order to either understand the physics of coherent structures or be able to include these explicitly in a new (and hopefully viable) turbulence theory, it is necessary to first experimentally determine the properties of these structures. The coherent structure is quite periodic and repeatable in the early stages of formation when these result from Instability of laminar flows. The periodicity can be enhanced via
controlled excitation. In either case, the structure properties can be determined via phase-locked measurements (62). However, in the fullydeveloped turbulent shear flows, there is a large dispersion in the shape, size, orientation, strength, and convection velocity of the coherent structures, and the structures pass by at random intervals; the dispersion increases with increasing distances from the point of structure formation. These present formidable constraints in the eduction of coherent structures (63-65). Even in periodically induced structures, the constraints become serious with increasing distances from the point of periodic formation of structures.

The understanding of coherent structures in turbulent wall layers and wall jets is considerably much poorer than in free shear flows. Even though the inhibition of transverse wandering of the structures by the presence of the wall is a decided advantage for eduction purposes, the wall itself is the root of the problems. The poorer understanding is due to the fact that the most significant zone of activity, say $y^{+}<100$, is too narrow a slice of the boundary layer and too close to the wall to allow detailed and accurate measurements as well as flow-visualization. Motion in the boundary layer is expected to be complex. Intuitively, unlike the free shear flows, the boundary layer is not characterized by a single length scale and a single time scale. For these very reasons, the motion in the wall jets are far more complex and have escaped any serious investigation so far.

1.6 Motivation and Objectives

a) Motivation

The filow phenomenon which one can observe in a turbulent wall jet is theoretically appealing as well as practically useful. Such a flow is produced by the downwards-directed jet from a vertical-takeoff and landing (VTOL) aircraft spreading out over the ground. The impingement of the jet causes erosion of the ground -- a well known problem in aviation. Another example of the practical application of the wall jet is found in jet-flaps. Initially, the jet flap arrangement consisted of a thin jet sheet ejected at the trailing edge of an aerofoil. This configuration was later modified to include a small trailing-edge flap over which the jet is blown; the basic principle is to energise the boundary layer by blowing a high velocity jet into it and thereby avoid separation. In this way, blowing has been used to reduce the take-off and landing speeds of aircrafts.

Another important application of the wall jet is found in aircushion vehicles. In such vehicles, an annular jet of air is blown inwards around the periphery of the wheel to establish the base pressure which lifts the vehicle off the ground.

Practical cases of turbulent wall jets are often encountered in marine hydrodynamics, specially when the jet-propelled vessel operates in shallow and restricted water where a high-velocity water jet impinging on the canal bed causes erosion.

The flow through a partially opened sluice gate takes the form of a turbulent wall jet and is important for its scouring effect.

Different schemes are adopted for discharging effluents (after some degree of treatment) from pulp mills, mines, and municipal sewage treatment plants into rivers. In one scheme, the effluent.is discharged from a large pipe (buried in the riverbed) through a series of short pipes or nozzles, often as coflowing circular wall jets (66). If the spacing between these jets is small, they merge after some distance, and the effluent discharge behaves like a plane wall jet in a coflowing stream. If, on the other hand, the spacing of the jets is relatively large, in the region before they merge, they can be treated as circular wall jets in a coflowing stream.

The flow of a jet along a curved wall (popularly known as Coanda effect) has a great many applications, mostly in the field of aviation and mechanical engineering. Such a flow :..." sed in fluid logic devices. The general principle is based on the facts that a jet discharged into a diverging channel is free to attach itself to either wall and that it may be forced to separate from one wall and attach to the other. This attachment can be controlled by some auxiliary jets emerging from holes on each sfie acting as activating signals. The system acts as a relay, or an amplifier.

Still another application is found in swirl atomisers (16). Air is blown down in the middle of the nozzle and swirling liquid round the
rounded lip. With a sharpmedged lip, atomization was found to be poor. With a curved lip, the Coanda effect operated, and atomization was very good.

An older technology is the jet pump in which a primary jet, often steam, is used to entrain and, therefore, pump a surrounding secondary flow of air. The existence of the surrounding walls in the region of entrainment characterises it as a wall jet.

The theory of wall jet has been applied for solving the problem of ventilation in auditoria and other buildings to get an optimum air distribution without appreciable draft. The vortex tube refrigeration is being understood in a better way with the help of the wall jet theory.

Since the wall jet flow is used, and can further be used, for a variety of practical applications, a knowledge of the development of flow properties is called for. For example, in some applications the requirement of the wall jet flow may have to be achieved with minimum energy dissipation whereas in some cases the objective may be dissipation of energy itself. Since such extreme demands may be made on the flow, unless a precise knowledge of the flow development in all its aspects is acquired, the design of the wall jet is of a hit and trial type. Although the simple cases of wall jet flows, both laminar and turbulent, have been investigated theoretically as well as experimentally, some of the more complicated cases still remain unexplored.

The combination flow of two interacting wall jets is one such unexplored area. Formulation of a turbulence model for the initial region of a plane turbulent mixing layer is an extremely difficult task. Existing theoretical methods are not yet powerful enough to give an exact or even an approximate solution to this problem. This is why experimental data must be relied upon to a considerable extent. The present experimental investigation in the initial region of a plane turbulent mixing layer was undertaken keeping the above issues in view.

b) Objectives

The primary objective of the present investigation is to study the initial region of a plane wall jet which is essentially a mixing layer. This includes measurements of mean axial velocity and static pressure at the nozzle exit and also at different axial distances. The exit condition will be identified in terms of the mean and fluctum ating velocity profiles and the Reynolds number, and their effects on the jet development will be studied. The experimental data will be used to compute the various flow properties viz., the boundary layer, displacement and momentum thicknesses, the shape factor, the Reynolds number etc. at the exit plane and the geometry of the jet in its motion. The mean velocity development within the jets along the axial direction will be determined and interpreted. Finally, the experimental results will be compared with the available informations in the existing literature.

In order to perform the experiments, a subsonic wind tunnel will be fabricated, installed, commissioned and calibrated. Then nozzles of different aspect ratios (i.e. width/depth) will be inm stalled in turn in the test section to generate two-dimensional wall jets.

THE EXPERIMENTAL SET-UP AND EXPERIMENTS

2.1 Design of the Wind Tunnel

The basic experimental facility used in this work was a 36 ft (10.973 m) long subsonic wind tunnel with a test section having a cross section $1.5 \mathrm{ft} \times 1.5 \mathrm{ft}(45.72 \mathrm{~cm} \times 45.72 \mathrm{~cm})$. The wind tunnel was originally designed by Islam (67) as a closed-circuit wind tunnel. The basic considerations for the design of the wind tunnel can be summarised as follows.

The design of each component has been carried out keeping in mind that the energy losses in these parts should be minimum. The converging section has been designed as a profile of streamline for a potential flow in the duct. Since air. possesses a low viscosity and its boundary layer thickness is small compared to the duct dimension, the assumption of potential flow is quite justified. The test section has been designed such that a stable, uniform, undisturbed flow is achieved through it. While designing the diverging duct, special care was taken to minimise frictional and expansion losses. The angle of divergence as well as the length of the duct were chosen such that separation never occurs in the duct.

The wind tunnel was redesigned as an open tunnel and necessary modifications were done keeping the test section dimensions the same as in the original design.

The schematic diagram of the wind tunnel is shown in Figure 2.1A. Figures 2.18 and 2.1 C show the different views of the wind tunnel. The principal components of the wind tunnel are the converging section, the flow straighteners, the test section, the diverging section and the fan. The particulars of the components are given in Appendix I.

The wind tunnel has been constructed with locally available materials in the university workshop. The general arrangements of the aforesaid components are shown in Figure 2.1A. The fan is placed at the exit of the diverging duct downstream of the test sect ion to produce a suction flow through the wind tunnel. This arran gement gives a more uniform, stable and undisturbed flow through the test facility. A wire net strainer was fitted at the inlet of the converging section in order to prevent the entrance of foreign solid particles into the wind tunnel. At the exit of the converging section a flow straightener made of wire net was placed in order to produce low turbulence uniform flow.

Four consecutive square sections forming the test section followed the exit of the converging duct. During calibration of the wind tunnel, the first section to follow the converging duct was made of G. I_{0} sheet. The second and the third sections were made of perspex sheet while the fourth one was of wood. The individual sections were connected to each other by nuts and bolts. But at the
time of performing experiments with jets, the G. I section follo wing the converging duct was replaced by a wooden section incorporating the test nozzle and the upper channel for producing two jets. At the exit of the upper channel two flow straighteners were installed to produce a lower flow velocity than that of the nozzle. Eleven circular holes, each of 0.25 inch (0.635 cm) diameter, were made at an interval of 6 inches (15.24 cm) on the central line of the bottom of the perspex sections. These permitted the traversing of the Pitotstatic tube across the duct vertically at different sections of the tunnel.

All the component parts of the wind tunnel have been mounted on fourteen pair of stands made of G. I. pipe. The base plate of each stand was bolted to the floor of the laboratory. Special care was taken to ensure proper alignment of the ducts so that a horizontal flow can be achieved in the test section. The central longitudinal axis of the wind tunnel was maintained at a constant height (viz. 4 ft 2.5 inches) from the floor throughout the length of the tunnel. Duct surfaces were matched properly at the joints so that the streamlines are not disturbed while passing from one duct to another. Rubber pad gaskets were placed between adjacent sections to avoid any leakage of air.

The motor and the fans were installed on a special foundation isolated from the remaining floor by an air gap. This ensures the isolation of mechanical vibration from the remaining components of the wind tunnel.

2.3 Calibration of the Wind Tunnel

The installation of the wind tunnel was followed by its calibration. For this purpose, the Pitot-static tube was traversed vertically up and down by rack and pinion arrangement over a stand with vernier to read upto 0.01 inch (0.0254 cm). The United Sensor Pitot-static tube, one-sixteenth inch (0.159 cm) in outer diameter, was connected to an inclined draft gauge (manufactured by Ellison Draft Gauge Company, Chicago, USA) graduated to read 0.02 inch $(0.0508 \mathrm{~cm})$ of water gauge. The draft gauge was set horizontally by the help of the spirit level fixed to the casing of the gauge. The liquid used in the manometer was petroleum oil of specific gravity 0.834.

In order to prevent undue vibration of the sensor, the Pitot-static tube was supported by a brass rod 0.25 inch (0.635 cm) in diameter. The sensing point was 4 inches (10.16 cm) above the end of the brass rod to avoid any major disturbance in the flow due to the presence of the brass rod. Before taking the Pitot-static tube reading at a station care was taken to align it in the flow direction to give the correct reading. The correct alignment was found out by trial and error with changing of the horizontal orientation of the sensor through a small angle.

In order to determine the velocity profile, the pressure distribution and other related flow properties in the test section, the velocity heads and the pressure heads were recorded at four
stations viz., $x / D_{T}=0,1,2$ and 3 respectively, where x is the. axial distance measured from the inlet of the test section, and D_{T} is the depth of the test section.

Subsequently, the reproducibility of readings was checked. For this purpose, the Pitot-static tube was placed at the centre of the test section at $x / D_{T}=2$ and the manometer reading was recorded at a random interval of time. The duration of each experiment was two hours. Seven such experiments were performed over a period of one month keeping the Pitot-static tube in the same position. The reproducibility of the readings was found to be within $t 1 \%$.

2.4 Experimental Procedure

2.4a Mixing of Two Turbulent Streams in the Presence of a Wake

After the calibration the G.I. duct placed at the exit of the converging section was taken out and replaced by the wooden duct mounted with the nozzle and the upper channel. The main experiments leading to the investigation of confined turbulent wall jets were conducted. The nozzle had an exit area of $18^{\prime \prime} \times 6^{\prime \prime}(45.72 \mathrm{~cm} \times 15.24$ cm). Air was allowed to flow through the nozzle and through the upper portion of the duct. A schematic diagram of the experimental set-up is shown in Figure 2.2A and a pictorial view is shown in Figure 2.2B. At the exit section of the nozzle a 1 inch (2.54 cm) high step was built, and the jet spreaded over the lower plate (i.e. the test section floor).

The jet spread on the upper side in the presence of another jet of air flowing over the nozzle through the upper channel. These twin jets, confined by the wall of the wind tunnel test section, were allowed to grow in the downward direction over a perspex floor.

In order to determine the jet growth along the axial direction, the mean velocity and static pressure were recorded at stations $x / D=0,1,2,3$. . . 10 , where x is the axial distance measured from the nozzle exit, and D is the depth of the nozzle. In the central part of the jet the manometer reading was quite stable, whereas it fluctuated near the wall over a narrow range. However, the values of the velocities or pressures presented in this thesis are the average of atleast three values obtained at a particular point.

Then a second converging nozzle with an exit area $18^{\prime \prime} \times 4^{\prime \prime}$ $(45.72 \mathrm{~cm} \times 10.16 \mathrm{~cm}$) was fitted in the test section replacing the first nozzle. Similar turbulent jet flow was produced in the test section and all relevant measurements as with the first nozzle were again taken.

At the beginning and at the end of each experiment, the room temperature and pressure were taken, and the average of the two was taken as the recorded data for the experiment.

It is a well known fact that a jet must travel some distance from the exit of the nozzle before it attains stability with the surrounding fluid. The flow is quite unstable in the initial region (close to the exit plane) and hence it is difficult to take any measurement with the Pitot-static tube. In the present investigation an attempt was made to determine at what distance from the exit the flow starts stabilising. Three additional circular holes were made in the test section floor at distances of 2,3 and 4.5 inches $(5.08 \mathrm{~cm}$, 7.62 cm and 11.43 cm) from the exit, and measurements were taken at each of these stations. Significant fluctuation was observed in the manometer reading, especially in the region of mixing of the two jets. The fluctuation in reading was 21% at $x / D=0.5$ and 9% at $x / D=0.75$.

2.4b Mixing of Two Streams in the Absence of a Wake

A knife edged splitter was placed at the midsection of the duct. The knife edged splitter was 3 ft . lang and 1.5 ft . wide. The leading edge was given a parabolic shape to maintain a smooth flow. The splitter covered the entire width of the duct and the flow was. assumed to be twomdimensional. For this case the two shear layers from either side mix without any wake between them. The mixing of the two shear layers in the initial region was studied experimentally. Finally, measurements were also taken by traversing the Pitot-static tube horizontally, and the mean velocities were found uniform across the cross section except the boundary layers close to the walls. This proves that the flow within the mixing region is two-dimensional.

CHAPTER - III

RESULTS AND DISCUSSION

3.1 General

As mentioned in the preceding chapter the velocity and the pressure heads have been measured at different points in the flow field with the help of a sensitive Pitot-static tube and an inclined draft gauge. All these experimental data have been analysed to produce information regarding the flow and to determine geometrical characteristics of the jets. All computations and data analyses were performed by using an IBM 370-115/2 computer, and the computer programs are given in Appendix III.

3. 2 Calibration of the Wind Tunnel

For the calibration of the tunnel, the velocity and the pressure in the test section were measured. The purpose was to achieve a uniform velocity and zero pressure gradient in the test section for experiments. The experimental results have been plotted to compare with the expected results for calibration. Figure 3.1 shows the measured mean axial velocity distribution in the test section at four axial distances, i.e., $X / D_{T}=0,1$, 2 and 3, where x is the axial distance measured from the inlet of the test section and D_{T} is the depth of the test section. It is seen that the velocity profiles are similar at all the four stations, and the experimental points for all the stations collapse on a single curve. Therefore, it can be noted that there exists no velocity gradient in the axial direction. The velocity distribution is also found to maintain symmetry about the centm reline as shown in Figure 3.1. The velocity profile is flat across
the test section except for a small boundary layer at the top and bottom walls of the test section. The shape of the velocity profile is similar to a typical profile for a uniform turbulent flow between two parallel plates. The area under the velocity profile was computed by using Simpson's first rule for numerical integration, and therefrom the mean velocity across the test section was determined. Reynolds number of the flow was calculated on the basis of the mean velocity and the test section depth. The boundary layer thickness was obtained by measuring the dis tance, y, from the wall for which $U_{T} / U_{T m a x} * 0.99$. The computed values of different flow parameters for the test section are given in Table III.

TABLE - III : Velocity Profile Characteristics in the Test Section.

Parameters	Values
Centre-line Velocity, $\mathrm{U}_{\mathrm{T} \max }$	$68.155 \mathrm{ft} / \mathrm{sec}(20.774 \mathrm{~m} / \mathrm{sec})$
Mean Velocity, $\mathrm{U}_{\mathrm{T} \text { mean }}$	$67.497 \mathrm{ft} / \mathrm{sec}(20.573 \mathrm{~m} / \mathrm{sec})$
Reynolds Number, Re_{D}	5.832×10^{5}
Boundary Layer Thickness,δ	$0.7997 \mathrm{in} .(2.031 \mathrm{~cm})$
$\delta / \mathrm{D}_{\mathrm{T}}$	0.04412

The boundary layer thickness is less than 4.5% of the depth of the test section which may be assumed to be small to validate the assumption that the velocity profiles in the test section
are uniform. The Reynolds number for this flow is sufficiently high $\left(\operatorname{Re}_{D_{T}}=5.832 \times 10^{5}\right)$ compared to a typical value for which the flow in a duct may be assumed to be turbulent.

Figure 3.2 shows the distribution of the pressure coefficient, C_{p}, in the test section at four axial distances, i.e., $x / D_{T}=0,1,2$ and 3. It is observed that the pressure distribution is similar at all the four axial locations. The four sets of experimental points at the four locations fall on a single curve as shown in Figure 3.2. This implies that there exists no pressure gradient in the axial direction within the test section. The pressure distribution at a particular section is found to be uniform across the depth of the test section. This is justified from the fact that the boundary layer is very thin.

The reproducibility of the data obtained for the calibration of the wind tunnel has also been checked. Figure 3.3 depicts the reproducibility of experimental results for mean axial velocity. The points in Figure 3.3 represent the mean axial velocity measured at a particular point, $x / D_{T}=2$ and $y / D_{T}=0.5$, on the centre-line of the test section. The tip of the Pitot-static tube was placed at the location and readings were taken as per procedure already mentione in Chapter II. Seven sets of experiments were performed and these experimental values are plotted in Figure 3.3. The experimental points are found to be scattered about a mean value line forming a small band of 1% variation. Such deviations in readings may be due to
a variation in voltage, humidity, pressure, temperature and such other environmental factors. The deviation of readings within $\pm 1 \%$ shows a satisfactory reproducibility of the experimental results. Reproducibility was also examined at several other points across the test section depth, and it was never found to exceed $\pm 1.5 \%$ even close to the walls. Reproducibility of the results for pressure was also examined, and its variation was found to be less than $\pm 1 \%$. Such a range of values for reproducibility was also found to be premsent in the jet flows when the nozzles were installed in the test section of the wind tunnel.
3.3 Mixing of Two Shear Layers in the Presence of a Wake

The nozzle exit condition of the jet was identified by the exit mean axial velocity and the displacement thickness of the profile. Measured values of mean axial velocity at the exit of the nozz le are shown in Figures 3.4 and 3.5 for nozzle depths, $D=4$ in. $(10.16 \mathrm{~cm})$ and 6 in. $(15.24 \mathrm{~cm})$ respectively. The velocity profile is found to be symmetrical about the nozzle centreline. The experimental points were fitted to the equation, $U_{N} / U_{N \max }=(Y / \delta)^{1 / n}$, and the value of n was computed by the method of least squares. The curvas corresponding to the equation, $U_{N} U_{N \max }=(Y / \delta)^{1 / n}$ are also given in Figures 3.4 and 3.5. The boundary layer thickness was obtainced by plotting the experimental values of mean axial velocity at different distances from the wall and then measuring the distance for which $U_{N} / U_{N \max }=0.99$. The displacement thickness, δ^{*}, the momentum thickness, θ, and the shape factor, H, of the velocity profile were calculated by using the equations,

$$
\begin{aligned}
\delta * / \delta & =\int_{0}^{1}\left(1-\frac{U_{N}}{U_{N \max }}\right) d(y / \delta) \\
\theta / \delta & =\int_{0}^{1} \frac{U_{N}}{U_{N \max }}\left(1-\frac{U_{N}}{U_{N \max }}\right) d(y / \delta) \\
H & =\delta / \theta
\end{aligned}
$$

respectively. The area under the velocity profile at the exit was integrated by using Simpson's first rule and subsecuently the area-average velocity at the exit was computed.

The experimental values of mean axial velocity within the boundary layer at the exit plane were fitted to the universal velocity profile at the wall given by the following equation :

$$
\mathrm{u}^{+}=\frac{1}{\mathrm{k}} \ln \mathrm{y}^{+}+\mathrm{A}
$$

where $U^{+}=U / U^{*}, Y^{+}=Y U^{*} / \mathcal{D}$, and k and A are constants. U^{*} is the shear velocity. In the procedure of fitting by the least square method the values of k and A were obtained for various values of U^{*} starting from $1 \mathrm{ft} / \mathrm{sec}$ to $10 \mathrm{ft} / \mathrm{sec}$, and the corresponding rms errors of the mean axial velocities were computed. The optimum values of A, k and U were selected on the basis of the least rms error which was within $\pm 3 \%$ of the maximum velocity. The best fit line with $k=1 / 2.989$ and $A=4.395$ is shown in Figure 3.6, and the constants found are very close to the values, $k=1 / 2.5$ and $A=4.9$ obtained by Coles (68) in the turbulent wall layer.

The Reynolds number, $R e_{D}$, was calculated on the basis of the area-average axial velocity and the nozzle depth, D. The compum ted values of all the parameters which identify the exit conditions are given in Table IV. Considering these characteristics of the velocity profile, the boundary layer at the nozzle exit was assumed to be turbulent. It is worth mentioning in this context that the growth of the jet investigated here would deviate if the exit conditions are changed. Hussain and Zedan (42,43) investigated the flow through circular jets identifying the exit conditions. The exit conditions were identified to be turbulent by considering turbulence, momentum thickness and the hot-wire signal characteristics at the exit plane. The characteristics of the jet flow were found to vary with the variation of the exit conditions. Here also it is expected that the flow characteristics of the interacting jets would vary with the exit conditions. The study of interacting jets or the plane jets identifying the exit condition practically does not exist in the literature. Table IV shows some characteristics of the velocity profile at the exit plane.

The jet issuing from the nozzle is obstructed by the wind tunnel test section floor on the bottom side and spreads on the top side where another stream with a relatively lower average velocity exists. The velocity profiles of the stream above the jet are presented in Figures 3.7 and 3.8 for jets of depth $4 \mathrm{in}.(10.16 \mathrm{~cm})$ and $6 \mathrm{in} .(15.24 \mathrm{~cm})$ respectively. The velocity profile of the upper stream is approximately flat with a small boundary layer at the top

TABLE IV : The Nozzle Exit Conditions

Parameter	Depth of the nozzle, D	
	4 in. (10.16 cm)	6 in. (15.24 cm)
Mean axial velocity, $\mathrm{U}_{\text {Nmean }}$	$82.70 \mathrm{ft} / \mathrm{sec}$ ($25.21 \mathrm{~m} / \mathrm{sec}$)	$\begin{aligned} & 77.19 \mathrm{ft} / \mathrm{sec} \\ & (23.53 \mathrm{~m} / \mathrm{sec}) \end{aligned}$
Maximum axial velocity, $\mathrm{U}_{\mathrm{Nmax}}$	$\begin{aligned} & 84.16 \mathrm{ft} / \mathrm{sec} \\ & (25.65 \mathrm{~m} / \mathrm{sec}) \end{aligned}$	$\begin{aligned} & 80.58 \mathrm{ft} / \mathrm{sec} \\ & (24.56 \mathrm{~m} / \mathrm{sec}) \end{aligned}$
Power of the velocity profile, n	6.80	6.29
Boundary layer thickness, δ	$0.464 \mathrm{in} .(1.18 \mathrm{~cm})$	$0.618 \mathrm{in}.(1.57 \mathrm{~cm})$
Ratio of displacement thickness to boundary layer thickness, $\delta * / \delta$	0.128	0.137
Ratio of momentum thickness to boundary layer thickness, θ / δ	0.099	0.104
Shape factor, H	1.294	1.318
Reynolds number based on the nozzle depth, Re_{D}	1.65×10^{5}	2.27×10^{5}
Reynolds number based on the momentum thickness, $\mathrm{Re}_{\boldsymbol{e}}$	1912	2410
Maximum velocity in the upper stream, U \qquad	$\begin{aligned} & 55.50 \mathrm{ft} / \mathrm{sec} \\ & (16.92 \mathrm{~m} / \mathrm{sec}) \end{aligned}$	$\begin{aligned} & 55.10 \mathrm{ft} / \mathrm{sec} \\ & (16.79 \mathrm{~m} / \mathrm{sec}) \end{aligned}$
Mean axial velocity in the upper stream, U \qquad	$\begin{aligned} & 54.05 \mathrm{ft} / \mathrm{sec} \\ & (16.47 \mathrm{~m} / \mathrm{sec}) \end{aligned}$	$\begin{aligned} & 52.24 \mathrm{ft} / \mathrm{sec} \\ & (15.92 \mathrm{~m} / \mathrm{sec}) \end{aligned}$
Momentum thickness of the boundary layer in the upper channel, θ_{s}	$0.0067 \mathrm{in} .(0.017 \mathrm{~cm})$	$0.0278 \mathrm{in} .(0.071 \mathrm{~cm})$
Depth of the upper channel, D_{s}	$12.25 \mathrm{in} .(31.11 \mathrm{~cm})$	$10.25 \mathrm{in} .(26.03 \mathrm{~cm})$

and the bottom. The oncoming flow from the nozzle interacts with the upper stream having profiles given in Figures 3.7 and 3.8 .

The mean velocity across the test section has been measured at different axial distances, viz. at an interval of 6 inches (15.24 cm) from the exit plane of the nozzles. This interval corresponds to $\Delta x / D=1$ and 1.5 for $D=6$ inches (15.24 cm) and 4 inches (10.16 cm) respectively, where Δx is the axial distance between the centres of any two consecutive holes. The experimental results have been presented in Figures 3.9 and 3.10 for the nozzle depths, $D=4$ inches (10.16 cm) and 6 inches (15.24 cm) respectively. From the mean velocity profile development in Figures 3.9 and 3.10 , it appears that the small wake between the streams at the start of the jet influences the flow. But this effect decays with the increase of axial distance as the wake disappears gradually. The mixing of the jet with the upper stream is notably slow, as is obvious from the nature of the velocity profile. This may be due to the presence of low monentum gradient between the two streams. The velocity profile in the region of mixing is not self-preserving within the experimental range. But it is expected to become self-preserving far downstream from the exit. The velocity profile in the region of mixing grows monotonously after the decay of the wake. In this investigation the two jets emanate from the nozzle exit with different average axial velocities, i.e., the lower jet having a higher average velocity than the upper one. The excess mean axial velocity is obtained by
subtracting the maximum mean axial velocity of the upper stream, $U_{\text {smax }}$ from the mean axial velocity of the lower jet, U_{J}. Figures 3.11 and 3.12 represent the distribution of the measured excess mean axial velocity at different axial distances for the nozzle depths, $D=4$ inches (10.16 cm) and 6 inches (15.24 cm) respectively. The formation of a wake in the region of mixing of the two streams is very clearly observed in these figures. The wake is formed behind the plate of thiclness 0.75 inch (1.905 cm) and the size of the wake is approximately the same as the plate thickness. The excess velocity in the wake is less than zero which implies that it would absorb energy from both sides. The wake size close to the nozzle exit is sufficiently big to affect the flow but it gradually decreases and then disappears at an axial distance of $x / D=7.5$ for $D=4$ inches $(10.16 \mathrm{~cm})$, and $x / D=7$ for $D=6$ incm hes $(15.24 \mathrm{~cm})$. It is observed that for both the cases the wake disappears at an approximately the same axial distance of $x / D=7$. For both the cases the boundary layer thickness at the nozzle exit is approximately the same as shown in Table IV. It is also observed that the mean excess velocities at the exit for both the cases are approximately the same. So the disappearance of the wakes at the same axial distance, $x / D=7$, seems to be quite reasonable, although the exit Reynolds numbers are different.

The mean static pressure has been measured at different: axial distances, and subsequently the coefficient of pressure, C_{P}, has been computed. The experimental values of the pressure coefficient across the jet are plotted in Figures 3.13 and 3.14 for
nozzle depths, $D=4$ inches $(10.16 \mathrm{~cm})$ and 6 inches $(15.24 \mathrm{~cm})$ respectively. The distribution of the pressure coefficient is found to be approximately uniform across the jets at all axial distances except through the wake but this is not clear from Figures 3.13 and 3.14 which are drawn to a compressed scale. This is, however, clear from Figure 3.15 drawn to an enlarged scale.

The maximum mean axial velocity decays in the downward direction as shown in Figure 3.16. The velocity is found to decay in a innear fashion as shown in Figure 3.16 for both the nozzles. The experimental values are fitted to straight lines by the least square method and the following equations are obtained.

for $D_{S} / D_{T}=0.68$, and

for $D_{s} / D_{T}=0.57$.

It may be noted that equations $[3.1]$ and $[3.2]$ correspond to the experimental values of velocities for nozzle depths, $D=4$ inches $(10.16 \mathrm{~cm})$ and 6 inches $(15.24 \mathrm{~cm})$ respectively.

The decay of the maximum mean axial velocity within the jet observed by various authors is shown in Table V. These results are applicable to the developed region, whereas the present study is in the near region of the jet, and the results differ from those in the aforesaid Table.

Figures 3.17 and 3.18 represent the maximum mean axial velocity distribution in both the lower jet and the upper stream along the axial direction for nozzle depths, $D=4$ inches (10.16 cm) and 6 inches (15.24 cm) respectively. This will help one to get an idea about the actual range of speeds in which the jet behaviour has been investigated. It is seen that the maximum mean axial velocity of the lower and the upper streams decreases linearly excep close to the nozzle. The rate of decay of the lower jet velacity is faster than that of the upper stream. This may be attributed to the fact that the lower jet having higher average velocity imparts momentum to the upper stream having relatively lower average velocity.

A typical sketch of a jet velocity profile in streaming flow is presented in Figure 3.19. Two tangents $A B$ and $C D$ can be drawn to the two flat velocity profiles of the faster and the slower streams respectively. A third line EF is drawn through the experimental points lying in the region of mixing of the two streams. The angle, ϕ, between $A B$ and $E F$ is the slope of the mixing profile. The value of ϕ has been computed at different axial distances and
plotted in Figure 3.19. It is seen that the slope of the mixing profile, ϕ, decreases in a nonlinear fashion along the downward direction. It should be mentioned in this context that as a result of exchange of momentum between the two streams, the slope of the jet boundary decreases along the axial direction. And at some point far away from the nozzle exit it will reduce to zero.

The mid point of the uniform velocity portion of the jet is plotted in Figures 3.20 and 3.21 for nozzie depths, $D=4$ inches $(10.16 \mathrm{~cm})$ and 6 inches (15.24 cm) respectively. The experimental values for the mid points, except those very close to the exit plane, lie on a straight line obtained by the curvefitting principle. These points on the velocity profile fall below the geometric central line close to the nozzle exit and then gradually move up to merge with the geometric central line. This phenomenon indicates that the bottom plate of the nozzle affects the velocity profile close to the nozzle exit. This is probably due to the existence of the stagnant eddies at the step corner beneath the jet. As the eddy growth due to recirculation gradually disappears in the downstream, the velocity profile regains its shape with axial distance. The geometric centre-line and the uniform velocity portion centre-line merge at $x / D=10.5$ and 9 for nozzle depths, $D=4$ inches (10.16 cm) and 6 inches $(15.24 \mathrm{~cm})$ respectively.

A comparison of the present experimental results with the experimental results of Irwin (9) shows that the excess mean axial velocity decay agrees satisfactorily for the nozzle of depth, $D=4$ inches (10.16 cm) but the agreement is not satisfactory for the nozzle of depth, $D=6$ inches $(15.24 \mathrm{~cm})$. Figure 3.22 shows the variation of mean excess velocity along the axial direction. Irwin (9) carried out his experiment at a Reynolds number of 2.80×10^{5}. The depth of the nozzle was 0.265 inch. Actually Irwin's (9) results were for the developed portion of the jet. So the present experimental results are likely to differ from Irwin's (9) resuits.

The minimum distance from the wall at which the maximum velocity is attained is called the width for maximum velocity, y_{m}, of the jet. The experimental values of the width for maximum velocity were plotted in Figure 3.23. It is seen that the width for maximum velocity increases linearly along the axial direction for both the nozzle depth, $D=4$ and 6 inches. A straight line was fitted to the experimental points by the method of least squares and equations $[3.3]$ and $[3.4]$ were obtained for $D=4 \mathrm{in} .(10.16 \mathrm{~cm}$) and $6 \mathrm{in} .(15.24 \mathrm{~cm})$ respectively.
$y_{m} / D=0.0136(x / D)+0.3636$
$y_{m} / D=0.0235(x / D)+0.2107$

The present experimental results are compared with
those of Irwin (9) who has confirmed linear variation of the width for maximum velocity.

TABLE V : Compilation of Half-width Growths and Maximum Mean Axial Velocity Decay for Wall Jets of Various Geometries.

Type of flowfield	Investigators	Streamwise variation of halfwidth growth, $Y_{m / 2}$	Axial decay of maximum mean velocity, $U_{J \max }$
Two - Dimensional wall jet.	Glauert (11)	$x^{1.0}$	$\mathrm{x}^{-0.583}$
	Sigalla (3)	$x^{1.0}$	$x^{-0.50}$
	Bradshaw and Gee (6)	$x^{0.91}$	$x^{-0.53}$
	Schwarz and Cosart (4)	$\mathrm{x}^{1.0}$	$x^{-0.555}$
Radial wall jet	Bakke (69)	$x^{0.94}$	$x^{-1.12}$
	Poreh et al (70)	$x^{0.9}$	$x^{-1.1}$
Three - dimensional wall jet	Sforza and Herbst (7)	$\begin{aligned} & x^{0.78} \pm 0.07 \\ & \text { (for all conventional orifices } \\ & \text { tested, in both Characteristic } \\ & \text { Decay and Radial Type Decay } \\ & \text { regions) } \end{aligned}$	Characteristic Decay region $\begin{aligned} & \mathrm{e}=0.025 \quad: \quad x^{-0.41} \\ & \mathrm{e}=0.05 \quad: \quad x^{-0.43} \\ & \mathrm{e}=0.10 \quad: \quad x^{-0.16} \end{aligned}$ Radial Decay region $x^{-1.1}$ (all conventional orifices tested).

The half-width, $y_{m / 2}$, of a jet is the distance from the wall where half of the maximum velocity is attained in the outer region of the profile. The variation of the half width of the jet in the axial direction is shown in Figure 3.24. The variation is observed to be nonlinear. These resuIts have been compared with those of Irwin (9) who has shown the variation to be linear for the developed region. The present experimental results are applicable to the initial region of the jet where the flow is not self-preserving. The growth of the half-width for wall jets of various geometries observed by different authors is shown in Table V.

3.4 Mixing of Two Shear Layers in the Absence of a Wake

The exit conditions of the streams on either side of the splitter were identified by measuring the exit mean axial velocity and calculating the displacement thickness of the velocity profiles. Measured values of mean axial velocity at the exit of the nozzle are shown in Figure 3.25 and 3.26 for the lower and the upper stream respectively. For each stream the velocity profile is found to be symmetrical about the nozzle centreline. The experimental points were fitted to the equation, $U_{N} / N_{N \max }=(y / \delta)^{1 / n}$, and the values of n were computed by the method of least squares to be 6.47 and 6.57 for the $10 w e r$ and the upper stream respectively. The boundary layer thickness, the momentum thickness, the shape factor, the average axial velocity
and the Reynolds number of the flow were calculated in the manner described earlier, and these values are shown in Table VI. Considering these characteristics of the velocity profile, the boundary layers were assumed to be turbulent for streams on either side of the splitter.

The two shear layers separate from the knife edge of the splitter and mixing starts from the exit. The mean velacity across the test section has been measured at different axial distances, viz at an interval of 6 inches (15.24 cm) from the exit plane of the nozzles. The experimental results are presented in Figure 3.27. From the mean velocity profile daveloment in Figure 3.27, it appears that the mixing of the two streams is slow compared to that in presence of a wake. The velocity is uniform in the central portion of the two streams. The velocity gradients occur at the interacting regions. The gradient becomes more gentle as one moves away from the nozzle to the downstream side. This phenomenon indicates that energy is being trans fared from the lower stream to the upper stream.

Figure 3.28 represents the maximum mean axial velocity distribution in both the lower and the upper streams along the axisal direction. It is seen that the maximum mean axial velocities of both the streams decrease linearly. The rate of decay of the lower stream is faster than that of the upper stream. The reason is that the lower stream having higher average velocity imparts momentum to the upper stream having relatively lower average velocity.

TABLE VI : Exit Conditions of the Velocity Profile for the Knife Edged Splitter

Parameter	Lower Stream	Upper Stream
Depth of the nozzle	9 in (22.86 cm)	$9 \mathrm{in}$. (22.86 cm)
Average axial velocity	$\begin{aligned} & 62.62 \mathrm{ft} / \mathrm{sec} \\ & (19.09 \mathrm{~m} / \mathrm{sec}) \end{aligned}$	$53.99 \mathrm{ft} / \mathrm{sec}$ ($16.46 \mathrm{~m} / \mathrm{sec}$)
Maximum axial velocity	$\begin{aligned} & 64.815 \mathrm{ft} / \mathrm{sec} \\ & (19.76 \mathrm{~m} / \mathrm{sec}) \end{aligned}$	$55.971 \mathrm{ft} / \mathrm{sec}$ ($17.06 \mathrm{~m} / \mathrm{sec}$)
Power of the velocity profile, n	6.47	6.57
Boundary layer thickness, δ	$\begin{aligned} & 0.581 \mathrm{in} . \\ & (1.476 \mathrm{~cm}) \end{aligned}$	$\begin{aligned} & 0.531 \mathrm{in} \\ & (1.349 \mathrm{~cm}) \end{aligned}$
Ratio of displacement thickness to boundary layer thickness, $\delta \cdot / \delta$	0.134	0.132
Ratio of momentum thickness to boundary layer thickness, θ / δ	0.102	0.101
Shape factor, H	1.309	1.304
Reynolds number based on the nozzle depth, Re_{D}	2.74×10^{5}	2.37×10^{5}
Reynolds number based on momentum thickness, $\mathrm{Re}_{\boldsymbol{\theta}}$	1808	1417

The mean axial velocity difference of the two streams at different axial locations are plotted in Figure 3.29. This velocity difference decreases linearly at a slow rate compared to that in presence of a wake.

The width for maximum velocity, Y_{m}, was calculated at different axial distances and plotted in Figure 3.30. The values of y_{m} increase in the axial direction, and fit to a straight line given by the equation:

$$
\frac{Y_{m}}{D}: 0.0074(x / D)+0.0766
$$

The pressure was measured at different axial distances, and was found to be uniform across the streams as shown in Figure 3.31. As this mixing of shear layers takes place in the absence of a wake, there appears no pressure drop in the neighbourhood of the exit although it did exist in case of mixing in the presence of a wake.

The present investigation is on the interaction of two asymmetric confined turbulent streams. Experimental results are obtained primarily from the data of the mixing zone of the two streams and the conclusions drawn are more qualitative than quantitative.

A wind tunnel of test section $1.5 \mathrm{ft} \times 1.5 \mathrm{ft} \times 10 \mathrm{ft}$ 8 inches ($45.72 \mathrm{~cm} \times 45.72 \mathrm{~cm} \times 325.12 \mathrm{~cm}$) has been installed and all its components except the fan have been fabricated with locally available materials. The wind tunnel was calibrated and found to show a uniform velocity distribution in the test section with no pressure gradients, and the flow was found to be twondmensional. Nozzles were set up within the test section to produce jets.

The characteristics of mixing of two shear layers depend upon the exit conditions which were identified here. The displacement thicknesses at the exit planes were $\delta * / \delta=0.128$ and 0.137 corresponding to Reynolds numbers $R e_{D}=1.65 \times 10^{5}$ and 2.27×10^{5} respectively. The boundary layer was turbulent at the beginning of the jet flow, and they formed the mixing layers with a wake between them. A similar flow was generated by using a knife edged splitter to have the mixing layers without wake.

The mean axial velocity and the mean static pressure have been measured across the jets, and the experimental results are compared with those of other investigators, and the results are found to agree satisfactorily except close to the exit. The mean velocity profile within the mixing region of two streams was fom und to show a high shear due to the presence of a high velocity gradient. This velocity gradient gradually decreases in the downward direction, but the rate of decrease is not as high as in the case of free jets. The velocity profile in the mixing region does not show self-preserving character. This is probably due to the presence of large eddies and their coalescence and subsequent break down. The thin plate between the two streams created a wake which may also be a cause for non-self-preservation of the flow.

The maximum mean axial velocity was observed to decay linearly except close to the outlet for both the lower jet and the upper stream. The rate of decay of the mean axial velocity was higher for the faster moving jet compared to that for the slower moving upper stream in both the cases, viz. D a 4 inches (10.16 cm) and 6 inches (15.24 cm).

No potential core was observed for the jet. The process of mixing of the jet with the upper stream was slow for the low momentum gradient across the streams, and it was monotonic.

No pressure gradient was found to exist across the jets except for a small pressure drop in the wake ahead of the thin plate which separates the two streams.

The width for the maximum velocity, y_{m}, increases linearly along the axial direction.

The wake formed between the two interacting streams disappears approximately at the same axial distance, x / D, for both the jets because the excess mean velocity is approximately the same in both the cases.

The slope of the mixing profile decreases alang the axial direction in a nonlinear fashion.

The smail step at the bottom side of the nozzle exit affects the mean flow upto a small distance from the exit plane due to the formation of recirculating flow ahead of the step.

The velocity and pressure distribution in the mixing layer in the absence of wake was found to maintain a trend similar to those with wake. But the velocity in the mixing layer developed at a comparatively slow rate which was probably
due to the absence of wake. The width for maximum velocity, y_{m}, for this case also varied linearly with the axial dis tance. The pressure was found to be uniform across the streams at all axial distances.

REFERENCES

1. Hussain, A.K.M.F., "The Role of Coherent Structures in Turbulent Shear Flows", Proceedings of the Indian Academy of Science (Engr. Sci.) 4, 1981, pp 129 - 175.
2. Forthman, E., " Turbulent Jet Expansion ", Ingenieur Archiv. 1, 1934. Trans: N.A.C.A.T. H . 789, 1936.
3. Sigalla, A., "Experimental Data on Turbulent Wall Jets", Aircraft Engineering, Vol. 30, p 131, 1958.
4. Schwarz, W.H. and Cosart, W.P., " The Two-Dimensional Turbulent Wall Jet ", Journal of Fluid Nechanics, Vol. 10, Part 4, 1961, pp 481-495.
5. Myers, G.E., Schauer, J.J. and Eustis, R.H., " Plane Turbulent Wall Jet Flow Development and Friction Factor ", Journal of Basic Engineering, Transactions of the ASME, Vol. 85(2), p 47, 1963.
6. Bradshaw, P. and Gee, M.T., " Turbulent Wall Jets with and without an External Stream ", AKC 22, 008, FM 2971, 1960.
7. Sforza, P.M. and Herbst, G., " A Study of Three Dimensional Incompressible Turbulent Wall Jets", AIAA Journal, Vol. 8, No. 2, February, 1970, pp 276 - 283.
8. Kruka, V. and Eskinazi, S., " The Wall Jet in a Moving Stream ", Journal of Fluid Mechanics, Vol. 20, Part 4, pp 555-579, 1964.
9. Irwin, H.P.A.H., " Measurements in a Self-Preserving Plane Wall Jet in a Positive Pressure Gradient"; Journal of Fluid Mechanics, Vol. 61, Fart I, 1973, pp 33-63.
10. Sawyer, R.i., "Two-Dimensional Reattaching Jet Flows including the Effects of Curvature on Entrainment ", Journal of Fluid Mechanics, Vol. 17, p 481, 1963.
11. Glauert, $\mathrm{F} . \mathrm{B}$. , "The Wall Jet", Journal of Fluid Miechanics, Vol. 1, 1956, pp 625-643.
12. Eichelbrenner, E.A., and Dumargue, E., " The Froblem of the ? Plane Iurbulent Wall Jet with an External Flow of Constant Velocity", Journal De Mechanique, Vol. 1, p 109, 1962.
13. Escudier, M.P. and Nicoll, W.B., "The Entrainment Function in Turbulent Boundary Layer and Wall Jet Calculations", Journal of Fluid Mechanics, Vol. 25, Part 2, pp 337-366, 1966.
14. Gartshore, I.S. and Newman, B.G., "The Turbulent Wall Jet in an Arbitrary Pressure Gradient", The Aeronautical Quarterly, Vol. 20, p 25, 1969.
15. Harris, G.L., "The Turbulent Wall Jet on Plane and Curved Surfaces Beneath an External Stream ", Von Karman Institute TN 27, 1965.
16. Wille, R. and Fernholz, H., "Report on the First European Mechanics Colloquium on the Coanda Effect ". Journal of Fluid Mechanics, Vol. 23, Fart 4, pp 801-819, 1965.
17. Catherall, D. and Mangler, K.W., " An Indirect Method for the Solution of the Navier - Stokes Equations for Laminar Incompressible Flow at Large Reynolds Numbers", RAE Rep. Aero. 2683, 1963.
18. Murphy, J.S., "Extension of the Falkner-Skan Similar Solution of the Laminar Boundary Layer Equations to Flows with Surface Curvature", Douglas Aircraft Corp. Rep. ES 40487, 1962.
19. Dvorak, F.A., "Calculation of Turbulent Boundary Layers and Wall Jets over Curved Surfaces", AIAA Journal, Vol. 11, No. 4, April, 1973.
20. Brown, G.L. \& Roshko, A., "On Density Effects and Large Structure in Turbulent Mixing Layers", J. Fluid Mechanics, Vol. 64, pp $7.75-816,1974$.
21. Dimotakis, P.E. \& Brown, G.J., "The Mixing Layer at High Reynolds Number: Large-Structure Dynamics and Entrainment", J. Fluid Mechanics, Vol. 78, pp 535-560, 1976.
22. Hussain, A.K.M.F. \& Zaman, K.B.M.Q., " The Free Shear Layer Tone Phenomenon and Probe Interference ", J. Fluid Mechanics, Vol. 87, part 2, 1978, pp 349 - 383.
23. Winant, C.D. \& Browand, F.K., " Vortex Pairing: The Mechanism of Turbulent Mixing Layer Growth at Moderate Reynolds Numbers ", J. Fluid Mechanics, Vol. 63, pp 237-255, 1974.
24. Clark, A.R., Ph.D. Thesis, University of Houston, 1979.
25. Hussain, A.K.M.F. and Clark, A.R., "On the Coherent Structure of the Axisymmetric Mixing Layer: A Flow-Visualization Study", J. Fluid Mechanics, Vol. 104, 1981, pp 263-294.
26. Chandrsuda, C., Fiehta, R.D., Weir, A.D. and Eradshaw, P., " Effect of Free-Stream Turbulence on Large Structures in Turbulent Mixing Layers.", J. Fluid Mechanics, Vol. 85, pp 693 704, 1978.
27. Browand, F.K. and Troutt, T.R., " A Note on Spanwise Structure In the Two-Dimensional Mixing Layer", J. Fluid Mechanics, Vol. 97, 1980, pp $771-781$.
28. Kleis, S.J. and Hussain, A.K.M.F., "The Asymptotic State of the Plane Mixing Layer", 32nd Regular Meeting of the American Physical Society Division of Fluid Dynamics, American Fhysical Society, November 18-20, 1979, University of Notre Dame.
29. Bradshaw, P., " The Effect of Initial Conditions on the Development of a Free Shear Layer", J. Fluid Mechanics, Vol. 26, 1966, pp 225 - 236.
30. Batt, R.G., "Some Measurements on the Effect of Tripping the Two Dimensional Shear Layer", A.I.A.A.J., Vol. 13, 1975, pp 245-247.
31. Liepmann, H. \& Laufer, J., "Investigations of Free Turbulent Mixing.", N.A.C.A. Tech. Note 1257, 1947.
32. Wygnanski, I. \& Fiedler, H.E., " The Two-Dimensional Mixing Region.", J. Fluid Mech., Vol. 41, 1970, pp 327-361.
33. Hussain, A.K.M.F., " Coherent Structures-Reality and Myth", To be published in Physics of Fluids, 1983.
34. Kleis, S.J., and Hussain, A.K.M.F., "The Asymptotic State of the Plane Mixing Layer", Bull. Am. Phys. Soc. Ser. II, Vol. 24, 1132, 1979.
35. Tam, C.K.W. and Chen, K.C., "A Statistical Model of Turbulence in Two-Dimensional Mixing Layers.", J. Fluid Mechanics, Vol. 92, Part 2, 1979, pp 303-326.
36. Plaschko, P., " Stochastic Model Theory for Coherent Turbulent Structures in Circular Jets", Physics of Fluids, Vol. 24(2), February, 1981.
37. Patel, R.P., " Turbulent Jets and Wall Jets in Uniform Streaming Flow ", The Aeronautical Quarterly, Vol. XXII, November, 1971, pp 311 - 326 .
38. Newman, B.G., Patel, R.P., Savage, S.B., and Tjio, Hok., "Three Dimensional Wall Jet Originating from a Circular Orifice.", The Aeronautical Quarterly, Vol. XXIII, 1972, pp $188-200$.
39. Narayan, K.Y., and Narasimha, R., " Parametric Analysis of Turbulent Wall Jets. ", Aeronautical Quarterly, August 1973, pp 207-218.
40. Bajura, R.A. and Catalano, M. K., "Transition in a TwoDimensional Plane Wall Jet. ", Journal of Fluid Mechanics, Vol. 70, Part 4, 1975, pp 773-799.
41. Rajaratnam, N. and Stalker, M.J., " Circular Wall Jets in Coflowing Streams.", Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, Vol. 108, No. HY2, February 1982, pp 187-198.
42. Hussain, A.K.M.F. and Zedan, M.F., "Effects of the Initial Condition on the Axisymmetric Free Shear Layer: Effects of the Initial Momentum Thickness. ", Physics of Fluids, Vol. 21, No. 7, July 1978, pp 1100-1112.
43. Hussain, A.K.M.F. and Zedan, M.F.,"Effects of the Initial Condition on the Axisymmetric Free Shear Layer: Effect of the Initial Fluctuation Level. ", Fhysics of Fluids, Vol. 21, No. 9, September 1978, pp 1475 - 1481.
44. Husain, Z.D. and Hussain, A.K.M.F., " An Experimental Study of Instability and Natural Koll-up of the Free Shear Layer", American Physical Society Division of Fluid Dynamics Meeting, November 18-20, 1979, South Bend, Indiana; Bull. Am. Phys. Soc. Ser. II, 24, 1144, 1979.
45. Hussain, A.K.H.F. and Hussain, Z.D., " The Turbulence Structure in the ixisymmetric Mixing Layer. ", AIAA Journal 18, 1980, pp 1462-1469.
46. Husain, Z.D., Ph.D. Thesis, University of Houston, 1982.
47. Coles, D.E., Rand Corpn. Rept. R - 403FR, 1962.
48. Purtell, L.F., Klebanoff, P.S. and Buckley, F.T., Phys. Fluids, Vol. 24, 1981, p 802.
49. Hussain, A.K.M.F. and Clark, A.R., Physics of Fluids, Vol. 20, 1977, p 1416.
50. Kita, Y., Hussain, A.K.M.F. and Kleis, S.J., "Controlled Perturbation of the Plane Mixing Layer.", American Physical Society Division of Fluid Dynamics lieeting, November $22-24$, 1980, Cornell University. Bull. Am. Phys. Soc., Series II 25, p 1070.
51. Wygnanski, I.J. and Champagne, F.H., "On Transition in a Pipe. Part 1. The Origin of Puffs and Slugs and the Flow in a Turbulent Slug ", J. Fluid Mech., Vol. 59, 1973, pp 281 - 335.
52. Wygnanski, I.J., Sokolov, H. and lriedrnan, D., "On Transition in a Pipe. Fart 2. The Equilibrium Fuff ", J. Fluid Nech., Vol. 69, 1975, p 283 - 304.
53. Coles, D.E., "Transition in Circular Couette Flow", J. Fluid Mech., Vol. 21, 1965, pp 385-425.
54. Van Atta, C.W., "Exploratory Measurements in Spiral Turbulence ${ }^{n}$, J. Fluid Mech., Vol. 25, 1966, pp 495-512.
55. Koschmieder, E.L., "Turbulent Taylor Vortex Flow ", J. Fluid Mech., Vol. 93, 1979, pp 515-527.
56. Batchelor, G.K., Private Communication, 1982.
57. Hunt, J.C.R., Private Commication, 1982.
58. Reynolds, w. C., " Large-scale Instabilities of Turbulent Wakes ", J. Fluid Mech., Vol. 54, 1972, pp 481-488.
59. Bevilaçua, P.M. and Lykoudis, P.S., " Turbulence Menory in Self-preserving wakes ", J. Fluid Mech., Vol. 89, 1978, pp $589-606$.
60. Taneda, S., J. Fhys. Soc., Japan, Vol. 14, 1959, p 843.
61. Clark, A.R. and Hussain, A.K.M.F., in Turb. Shear Flows (London), 1979, p 2.30.
62. Hussain, A.K.M.F. and Zaman, K.B.M.Q., "Vortex Pairing in a Circular Jet under Controlled Excitation. Part 2. Coherent Structure Dynamics.", Journal of Fluid Mechanics, Vol. 101, 1980, pp 493-544.
63. Blackwelder, R.F., Physics of Fluids Suppl., Vol. 20, S232, 1977.
64. Yule, A.J., in Turb. Shear Flows (London), 1979, p 7.1.
65. Sokolov, M., Hussain, A.K.M.F., Kleis, S.J. and Hussain, Z.D., "Turbulent Spot in an Axisymmetric Free Shear Layer, Part 1.", J. Fluid Mechanics, Vol. 98, 1980, pp 65-95.
66. Clay, C.H., and Gordon, R.M., "Experiments with Incustrial Effluent Outfalls on the Pacific Coast of Canada", Eleventh Congress of the International Association of Hydraulic Research, Leningrad, Soviet Union, Vol. 2, 1965.
67. Islam, S.M.N., "Design and Construction of a Closed Circuit Wind Tunnel", M.Sc. Engg. Thesis, Department of Mechanical Engineering, BUET, Dhaka, 1975.
68. Schlichting, H., "Boundary Layer Theory", McGraw Hill Book Company, New York, N.Y., 1968.
69. Bakke, p., "An Experimental Investigation of a Wall Jet", Journal of Fluid Mechanics, Vol. 2, p 467, 1957.
70. Poreh, M., Tsuei, Y. Go, and Cermak, J.E., "Investigation of a Turbulent Radial Wall Jet", Transactions of the ASME, Journal of Applied Mechanics, June 1967, pp 457-463.

FIGURES

FIG. 1.1. TWO-DIMENSIONAL TURBULENT WALL JET IN STREAMING FLOW.

FIG. 2.1B. A FRONT VIEW OF THE WIND TUNNEL USED FOR THE EXPERIMENT.

FIG. 2.1C. A REAR VIEW OF THE WIND TUNNEL USED FOR THE EXPERTMENT.

FIG. 2.2B. A VIEW OF THE EXPERIMENTAL SET - UP.

fig. 3.1 MEASURED MEAN AXIAL VELOCITY DISTRIBUTION IN THE TEST SECTION AT DIFFERENT AXIAL DISTANCES.

fig. 3.2 DISTRIBUTION OF THE PRESSURE COEFFICIENT IN THE TEST SECTION AT DIFFERENT AXIAL DISTANCES.

- FIG. 3.4 MEASURED MEAN AXIAL VELOCITY dISTRIBUTION IN THE NOZZLE AT thE

FIG. 3.5 MEASURED MEAN AXIAL VELOCITY DISTRIBUTION IN THE NOZZLE AT THE EXIT PLANE.

fig. 3.5 universal velocity profile at the nozzle exit.

FIG.3.7 MEASURED MEAN AXIAL VELOCITY distribution in the superimposing channel at the exit plane.

FIG. 3.8 MEASURED MEAN AXIAL VELOCITY DISTRIBUTION IN THE SUPERIMPOSING CHANNEL at ThE EXIT PLANE

NOZZLE DEPTH, $D=4$ INCHES (10.16 CM)
$D s / D t=0.6805$
EXIT REYNOLDS NO. 1.65×10^{5}

- EXPERIMENTAL

FIG.3.9 MEASURED MEAN AXIAL VELOCITY DISTRIBUTION IN THE JET AT DIFFERENT AXIAL DISTANCES

DISTANCES.

NOZZLE DEPTH. D $=4$ INCHES (10.16 CM.)
EXIT REYNOLDS NO. 1.65×10^{5}

$$
D_{S} / D_{T}=0.6805
$$

- EXPERIMENTAL

ZLE DEPTH. $D=6$ INCHES (15.24 CM)

$$
D_{S} / D_{T}=0.5694
$$

REYNOLDS NO. 2.27×10^{5}
〔experimental

DISTANCES

FIG. 3.! 3 DISTRIBUTION OF THE PRESSURE COEFFICIENT IN THE JET. AT DIFFERENT. AXIAL DISTANCES.

FIG. 3.14 DISTRIBUTION OF THE PRESSURE COEFFICIENT IN THE JET AT DIFFERENT AXIAL DISTANCES

FIG. 3. 15 distribution of the. Pressure. goefficient in the jet.

FIG. 3. 16 MAXIMUM MEAN AXIAL VELOCITY DISTRIBUTION in the JET ALONG the AXIAL - DIRECTION.

FIG. 3.17 MAXIMUM MEAN AXIAL VELOCITY DISIRIBUTION IN THE TWO STREAMS ALONG THE AXIAL DIRECTION:

FIG. 3. 20 DEVIATION OF THE CENTRE OF THE JET VELOCITY PROFILE FROM the geometric centre line of the nozzle along the jet axis.

FIG. 3.21 DEVIATION OF THE CENTRE OF THE JET VELOCITY PROFILE FROM THE geometric centre line of the nozzle along the jet axis.

FIG. 3.22 EXCESS MEAN AXIAL VELOCITY DISTRIBUTION iN THE JET ALONG THE AXIAL DIRECTION.

FIG. 3.23 VARIATION OF THE WIDTH FOR MAXIMUM VELOCITY ALONG THE AXIAL DIRECTION.

FIG. 3. 24 VARIATION OF HALF WIDTH OF THE JET ALONG THE AXIAL DIRECTION

FIG. 3.25 MEASURED MEAN AXIAL VELOCITY DISTRIBUTION IN THE NOZZLE AT THE EXIT PLANE.

FIG. 3.27 MEASURED MEAN AXIAL VELOCITY DISTRIBUTION IN THE STREAMS "at dHFERENT AXIAL

NOZZLE DEPTH $D=9 \mathrm{IN} .(22.86 \mathrm{CM})$
$D_{s} / D_{T}=0.5$
EXIT REYNOLDS NO. 2.74×10^{5}
\odot EXPERIMENTAL

DIFFERENT AXIAL DISTANCES

FIG. 3.29 EXCESS MEAN AXIAL VELOCITY DISTRIBUTION IN THE STREAMS ALONG the AXIAL DIRECTION.

FIG. 3.31 DISTRIBUTION OF THE PRESSURE COEFFICIENT IN THE STREAMS AT DIFFERENT AXIAL DISTANCES.

APPENDICES

The Converging Section :

Length of the duct : $5 \mathrm{ft}(152.4 \mathrm{~cm})$

Ratio of contraction : 5:1

Wide side dimension : $40^{\prime \prime} \times 40^{\prime \prime}(101.6 \mathrm{~cm} \times 101.6 \mathrm{~cm})$

Contraction side dimension : $18^{\prime \prime} \times 18^{\prime \prime}(45.72 \mathrm{~cm} \times 45.72 \mathrm{~cm})$

Material Used : 15 SWG - Black sheet.

The flow Straighteners :

Made of : Iron wire net

Mesh size : 16 holes/inch.

The rest Section:

Length of the duct : 10 ft 8 inches (325.12 cm)

Area of cross section: 18 in. $x 18$ in. ($45.72 \mathrm{~cm} \times 45.72 \mathrm{~cm}$)

Material used : Perspex, Wood and G. I. Sheet.

```
The Diverging Section :
Length of the duct : }15\textrm{ft 6 Inches (472.44 cm}
Angle of divergence of the duct: 6
Material used : }15\mathrm{ SWG - black sheet.
The Fan :
Type : Contra-rotating multistage axial flow fan
Capacity: 30,000 cfm (849.51 m
Head for free delivery: 6 inches (15.24 cm) of water
Two stage L - type aerofoil fan
with pitch angle : 31/27
Diameter : 38 in. (96.52 cm)
Speed of the rotor : . }1475\mathrm{ rpm
Electric supply: 400/50 Hz/3 ph.
Manufacturer : Woods of Colchester Ltd., England.
Code No. : 38J TE
Frame Size : AF 4049.
```


APPENDIX - II

UNCERTAINTY ANALYSIS

1) Uncertainty for Velocity Measurements

Let an air stream of density $P_{a}\left(s l u g / f t^{3}\right)$ flow with a velocity $V(f t / s e c)$. A pitot-static tube is placed parallel to the flow, and the dynamic head is measured by a manometer reading h (ft). Let the density of the liquid used in the manometer be P_{l} (slug/ft t^{3}).

$$
\begin{align*}
& \therefore \quad 3_{2} \rho_{a} v^{2}=n P_{l} g \tag{1}\\
& \text { or, } v^{2}=2\left(P_{l} / \rho_{a}\right) h g \\
& \text { or, } v=\sqrt{2 g\left(P_{l} / P_{a}\right) h} \\
& \text { or, } v=\sqrt{2 g\left(w_{l} / w_{a}\right) h} \tag{2}
\end{align*}
$$

where w_{1} and w_{a} are the specific weights ($1 \mathrm{~b} / \mathrm{ft}^{3}$) of the liquid and air respectively. Suppose the sensing point of the pitotstatic tube is deviated by an angle θ from the direction of flow due to wrong adjustment. Then the measured velocity will be given by

$$
\begin{equation*}
V=\sqrt{2 g\left(w_{1} / w_{a}\right) h} \cos \theta \tag{3}
\end{equation*}
$$

But we know that

$$
\begin{equation*}
\mathrm{Pa}=\mathrm{W}_{\mathrm{a}} \mathrm{RT} \tag{4}
\end{equation*}
$$

where Pa, R and T are the pressure, the gas constant and the absolute temperature of a gas respectively.

From eqns (3) and (4) we get

$$
\begin{equation*}
V=\sqrt{\frac{2 g \times 62.45 \mathrm{sh}}{(\mathrm{~Pa} / \mathrm{RT})}} \cos \theta \tag{5}
\end{equation*}
$$

where s is the specific gravity of the liquid.
or, $V=\sqrt{2 g R \times 62.45} \sqrt{\frac{\operatorname{shT}}{\mathrm{Ra}^{2}}} \cos \theta$
or, $\quad V=\sqrt{\frac{2 g R \times 62.45}{12}} \sqrt{\frac{\operatorname{shT}}{\mathrm{~Pa}}} \cos \theta$ if the manometer reading
is taken in inches.

$$
\begin{equation*}
V=c \sqrt{\frac{\operatorname{shT}}{\mathrm{~Pa}}} \cdot \cos \theta \tag{6}
\end{equation*}
$$

where $C=\sqrt{\frac{2 g R \times 62.45}{12}}$.

Let us now differentiate both the sides of eqn (6) with respect to $s, \mathbf{R}_{8}, \mathrm{~T}, \mathrm{~h}$ and θ respectively.

$$
\begin{equation*}
\frac{\partial v}{\partial s}=C \cdot \frac{1}{2}\left(\frac{\operatorname{shT}}{\mathrm{~Pa}}\right)^{-\frac{1}{2}} \frac{\mathrm{hT}}{\mathrm{~Pa}} \cos \theta=\frac{C}{2} \sqrt{\frac{h T}{\mathrm{sPa}}} \cos \theta \tag{8}
\end{equation*}
$$

$\frac{\partial V}{\partial P a}=C \cdot 1 / 2\left(\frac{\operatorname{shT}}{\mathrm{~Pa}}\right)^{-\frac{1}{2}} \operatorname{shT}\left(-\frac{1}{\mathrm{~Pa}^{2}}\right) \cos \theta=-\frac{C}{2} \sqrt{\frac{\operatorname{shT}}{\mathrm{~Pa}^{3}}} \cos \theta$
$\frac{\partial V}{\partial T}=\frac{C}{2}\left(\frac{\operatorname{sh} T}{\mathrm{~Pa}}\right)^{-1 / 2} \frac{\mathrm{sh}}{\mathrm{Pa}} \cos \theta=\frac{C}{2} \sqrt{\frac{\mathrm{sh}}{\mathrm{TPa}}} \cos \theta$
$\frac{\partial V}{\partial h}=\frac{C}{2}\left(\frac{\operatorname{shT}}{\mathrm{~Pa}}\right)^{-1 / 2} \frac{\mathrm{sT}}{\mathrm{Pa}} \cos \theta=\frac{C}{2} \sqrt{\frac{\mathrm{sT}}{\mathrm{hPa}}} \cos \theta$
$\frac{\partial V}{\partial \theta}=c \sqrt{\frac{\operatorname{sh} T}{P a}}(-\sin \theta)=-C \sqrt{\frac{\operatorname{sh} T}{P a}} \sin \theta$

Let U_{V} be the uncertainty in the result, and $U_{S}, U_{P a}, U_{T}, U_{h}$ and U_{θ} be the uncertainties in the specific gravity, pressure, temperature, manometer reading and angle of deviation respectively.
$\therefore U_{V}=\left[\left(\frac{\partial V}{\partial s} U_{s}\right)^{2}+\left(\frac{\partial V}{\partial P a} U_{P a}\right)^{2}+\left(\frac{\partial V}{\partial T} U_{T}\right)^{2}+\left(\frac{\partial V}{\partial h} U_{h}\right)^{2}+\left(\frac{\partial V}{\partial \theta} U_{\theta}\right)^{2}\right]^{3 / 2}$

Combining eqns (8) to (13) we get
$U_{V}=\left[\frac{C^{2}}{4} \frac{h T}{P a s} \cos ^{2} \theta U_{s}^{2}+\frac{c^{2}}{4} \frac{s h T}{P a^{3}} \cos ^{2} \theta \cdot U_{P}^{2}+\frac{C^{2}}{4} \frac{s h}{T P a} \cos ^{2} \theta U_{T}^{2}+\right.$
$\left.\frac{C^{2}}{4} \frac{s T}{h P a} \cos ^{2} \theta U_{h}^{2}+c^{2} \frac{s h T}{P a} \sin ^{2} \theta U_{\theta}^{2}\right]^{1 / 2}$
or, $U_{V}=\left[\frac{C^{2}}{4} \cos ^{2} \theta\left\{\left(\frac{h T}{P a s}\right) U_{s}^{2}+\left(\frac{s h T}{P_{a}^{3}}\right) U_{P a}^{2}+\left(\frac{s h}{T P a}\right) U_{T}^{2}+\left(\frac{s T}{h P a}\right) U_{h}^{2} t\right.\right.$
$\left.\left.4\left(\frac{\operatorname{sh} T}{P a}\right) \tan ^{2} \theta U_{\theta}^{2}\right\}\right]^{1 / 2}$
or, $U_{V}=\frac{C \cdot \cos \theta}{2}\left[\left(\frac{h T}{P a}\right) U_{s}^{2}+\left(\frac{\operatorname{shT}}{\mathrm{Pa}^{3}}\right) U_{P a}^{2}+\left(\frac{\mathrm{sh}}{\mathrm{TPa}}\right) U_{T}^{2}+\left(\frac{\mathrm{sT}}{\mathrm{hPa}}\right) U_{h}^{2}+\right.$
$\left.4\left(\frac{\operatorname{sh} T}{P a}\right) U_{\theta}^{2} \tan ^{2} \theta\right]^{3 / 2}$

Combining eqns (6) and (14)

$$
\begin{equation*}
\frac{U_{V}}{V}=\left[\frac{U^{2}}{s^{2}}+\frac{U_{P a}^{2}}{P_{a}^{2}}+\frac{U_{T}^{2}}{T^{2}}+\frac{U_{h}^{2}}{h^{2}}+4 U_{\theta}^{2} \tan ^{2} \theta\right]^{\frac{3}{2}} \tag{15}
\end{equation*}
$$

Putting

$s=0.834 \pm 0.025$
$h=1.48 \mathrm{in} . \pm 0.01 \mathrm{in}$.
$\mathrm{Fa}=29.85 \mathrm{in} . \pm 0.1 \mathrm{in}$. of Hg
$T=28^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
$\theta=0^{\circ} \pm 3^{\circ}$
$\frac{U_{V}}{V}=0.0158$ ie. 1.58%

ii) Uncertainty for Pressure Measurements

Let
Pa = atmospheric static pressure
$P=$ static pressure in the stream
Pr = relative static pressure ($=$ Pa-P)

Now,

$$
P r=W_{1} h-\frac{W_{a} V^{2}}{2 g} \cos ^{2}(90-\theta)
$$

or, $\operatorname{Pr}=W_{1} h-\frac{W_{a} v^{2}}{2 g} \sin ^{2} \theta$
or, $\operatorname{Pr}=62.4 \operatorname{sh}-\frac{P a V^{2}}{2 R T g} \sin ^{2} \theta$
or, $\operatorname{Pr}=\frac{62.4}{12} \operatorname{sh}-\frac{\mathrm{PaV}^{2}}{2 R T g} \sin ^{2} \theta \quad$ if h is measured in inches.
or, $\operatorname{Pr}=C_{1} \operatorname{sh}+C_{2} \frac{\operatorname{PaV}^{2}}{T} \sin ^{2} \theta$
where $C_{1}=\frac{62.4}{12}=5.2$

$$
\begin{equation*}
c_{2}=\frac{1}{-2 R g}=-\frac{1}{2 \times 53.3 \times 32.2}=-2.913 \times 10^{-4} \tag{18}
\end{equation*}
$$

Let $\mathrm{Pr}=\mathrm{P}_{1}+\mathrm{P}_{2}$

Comparing eqns (16) and (19)

$$
\begin{equation*}
P_{1}=C_{1} s h \tag{20}
\end{equation*}
$$

θ

$$
\begin{equation*}
P_{2}=C_{2} \frac{\mathrm{PaV}^{2}}{\mathrm{~T}} \sin ^{2} \theta \tag{21}
\end{equation*}
$$

Let $U_{P_{1}}$ and $U_{P_{2}}$ be the uncertainties in P_{1} and P_{2} respectively.
Therefore,

$$
\begin{align*}
& U_{P_{1}}=\left[\left(\frac{\partial P_{1}}{\partial s} U_{s}\right)^{2}+\left(\frac{\partial P_{1}}{\partial h} U_{h}\right)^{2}\right]^{1 / 2} \\
& \text { or, } U_{P_{1}}=\left[\left(C_{1} h U_{s}\right)^{2}+\left(C_{1} s U_{h}\right)^{2}\right]^{\frac{1}{2}} \\
& \text { or, } \quad U_{P_{1}}=C_{1} h s\left[\left(\frac{U_{s}}{s}\right)^{2}+\left(\frac{U_{h}}{h}\right)^{2}\right]^{3 / 2} \\
& \cdot \quad \frac{U_{P_{1}}}{P_{1}}=\left[\left(\frac{U_{s}}{s}\right)^{2}+\left(\frac{U_{h}}{h}\right)^{2}\right]^{1 / 2} \tag{22}\\
& U_{P_{2}}=\left[\frac{\partial P_{2}}{\left.\left.\frac{P_{a}}{} U_{P a}\right)^{2}+\left(\frac{\partial P_{2}}{\partial V} U_{V}\right)^{2}+\left(\frac{\partial P_{2}}{\partial T} U_{T}\right)^{2}+\left(\frac{\partial P_{2}}{\partial \theta} U_{\theta}\right)^{2}\right]^{1 / 2}}\right.
\end{align*}
$$

$$
\begin{align*}
& \text { or, } U_{p_{2}}=\left[\left(\frac{c_{2} v^{2} \sin ^{2} \theta}{T} U_{P a}\right)^{2}+\left(\frac{c_{2}{ }_{2} 2 v \sin ^{2} \theta}{T} U_{v}\right)^{2}+\left(\frac{-c_{2} F_{a} v^{2} \sin ^{2} \theta U_{T}}{T^{2}}\right)^{2}\right. \\
& \left.+\left(\frac{C_{2}{ }_{2} v^{2}}{T} 2 \sin \theta \cos \theta u_{\theta}\right)^{2}\right]^{\frac{3}{2}} \\
& \text { or, } U_{p_{2}}=\frac{c_{2} p_{a} V^{2}}{T} \sin ^{2} \theta\left[\left(\frac{U_{P_{a}}}{P_{a}}\right)^{2}+\left(\frac{2 U_{V}}{V}\right)^{2}+\left(\frac{U_{T}}{T}\right)^{2}+\left(\frac{2 U_{\theta}}{\tan \theta}\right)^{2}\right]^{3 / 2} \\
& \therefore \frac{U_{P_{2}}}{\mathrm{P}_{2}}=\left[\left(\frac{U_{\mathrm{Pa}}}{\mathrm{~Pa}}\right)^{2}+\left(\frac{2 U_{V}}{V}\right)^{2}+\left(\frac{U_{T}}{T}\right)^{2}+\left(\frac{2 U_{\theta}}{\tan \theta}\right)^{2}\right]^{\frac{1}{2}} \tag{23}
\end{align*}
$$

Now, $\operatorname{Pr}=P_{1}+P_{2}$

$$
\begin{aligned}
\therefore & U_{P r}=\left[\left(\frac{\partial P_{r}}{\partial P_{1}} U_{P_{1}}\right)^{2}+\left(\frac{\partial P_{r}}{\partial P_{2}} U_{P_{2}}\right)^{2}\right]^{1 / 2} \\
& U_{P_{r}=}=\left[U_{P_{1}}^{2}+U_{P_{2}}^{2}\right]^{3 / 2}
\end{aligned}
$$

Putting

$$
\begin{aligned}
& s=0.834 \pm 0.025 \\
& \mathrm{n}=3.07 \mathrm{in} . \pm 0.01 \mathrm{in} \\
& \mathrm{~Pa}=29.9 \mathrm{in} \cdot \pm 0.1 \mathrm{in} . \\
& T=28^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} \\
& \theta=0^{\circ} \pm 3^{\circ} \\
& V=84.16 \mathrm{ft} / \mathrm{sec} . \pm 1.33 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Eqn. (22) gives $\frac{U P_{1}}{E_{1}}=0.03015$

$$
\therefore U P_{1}=0.40145
$$

Eqn. (23) gives $\frac{\mathrm{UP}_{2}}{\mathrm{P}_{2}}=1.4139$

$$
\therefore U P_{2}=4.8919 \times 10^{-4}
$$

Eqn. (24) gives UPr $=0.40145$

$$
P r=P_{1}+P_{2}=13.31399+3.46 \times 10^{-4}=13.3143
$$

$\therefore \frac{U P r}{\text { Pr }}=0.03015$ i.e. 3.01%
i

APNENDI
II

NOTEST $=12$
DO \& 5 L

$\rightarrow 0$ FOKMATilS\} JAT:

* 1 FUFMAr (2) an

+3 Fifinarils

GА
+4 FAITE！

＋ 5 FUhMAT：（j）
REAU（1，＋S）PRESSN，TLAFも：
4 EFJFMAF（：51C．（2）

EASIC IJF IRAAT IUN SUHFLY ZCNE．CCCCCCCCCCECCCCCCLCCCECCCCCCCCCCCCC
EAKFLJ＝J． 30 EAKFL $=3=30$
$E X I T A<=13$
－EXITAK＝13－136
－ЗРGCTK＝ $5 \cdot 314$
SinATrd＝oi．4j
NrEAD1＝2
COFLO．$=$ ご：13
1FしLUCK・シう．！

1F（LUCK・シル・23 CUFLCL＝6•U
1F（LJEK．ミ．3）CUFLLL＝56．Co
IF（LUEK，シン．9）CUFLUL＝47．CO

IF（LJCK•三J．3）\quad UFLLL $=45.33$
IF（LUCK．EU．7）CUFLCL $=44.41$
IF（LUCK．ミ2•3）CUFLLL $=4=.69$

IF（LUCK．
IFALUCK，五J． 111 CUFLUL $=50.04$
CC

G＋REAJ2＝NREAD－（Nr2EAU1－1）

45 FUFMAT（ 2 ）

MANCMETER－STAFIC
A1H

－119－


```
UOS FURTKAN IV 30O&-FO-47G 3-Z A, FAMNO

000
0602
0003
000.4

0005
0402
0007
0003
000
0010
0011
0012
0213
0114
0015
0015
0015
0011
0018
\(001 \%\)
0020
01 21
0022
0023
0024
0024
002
0026
0927
0028
6029
0030
0071
0032
0032
0033
0034
0035
 をEC口iv
THIS SAJGAAA COMPUTEE THE FO मER DF THE VELDCITY PRCFILE AITHIN THE

 FITTIJG IHE EXPERTMENTAL VAL EES IC A NONLIAEAR CURVE TFE NEASUPED VALUES JI AEA AXIAL VLLUCIIY AT UMFERERG HEIGHTS AGE SUPFLIED AS LivPUT TA PESGGAM。



※FUFMAT（\｛3）

\(G\) FURAAT（iK，＂HE TUTAL NL．GF POIITS IS＇．IS：







 1ED DEE 1：＊） ※EAOT OT：OEもFRA
17 FOFMAT（F1）。3）

 DO \(1=1\) ，NPOINT beyv（f）＝joymax（i）／0．cc r（1）＝ugrvit）
YEYUEL（1）＝YすYHT（ \(12 / \mathrm{DLL}\)（RA

15 くOATはいま
SUMXX \(X=6: 0\)
\(S U \forall Y=G: 0\)
EO \(2 \hat{5} \quad i=2\) ，iN3 31 NT

\(<0\) CuATIMU
AN＝SLMXY／SUn XX
POLER＝1． 1 Tiv
WんITE（E，21）PH WER
 STEP
END

\section*{-125}







```

 DLMENSIGN
    ```


```

 | FCFMAF(/2iF!2,3.5X)
 SUNX=3..)
 SUMY=0.%
 SUMXX=0.
 SUMXY=0:j
 CO 15 i=1,N
 SumX=3U4X+X{1}
 SUMY=3U4Y*Y(1)
 Sumx}x=5נ4xx+K(1)*x(i
 SUAXY=\XiJA*Y+X(5)*Y(1)
 |5 CJ^TEVUこ
 AN=N
 DENC:M=AN& jUS&KX-SUNX手*2
    ```




```

 WOITECO,1%)
 FGRAATIAX, THE VALUES &F AI AVO OÖ ARE PESSECTIVELY:)
 *RITE(E.IE)A!,A
 18 FORMAF(/2F10.3)
 RETURN
 END
    ```
```

