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ABSTRACT 

 

This research addresses a new method of analysis for the curved structural members under 

various types of loadings and supporting conditions at the boundary surfaces. In this work, 

theory of elasticity, a new potential function, constitutive relations for coordinate 

transformations and finite-difference computational algorithm are integrated to develop a new 

computational method for stress analysis of curved structural elements which include curved 

beams, deep arches, finite rings etc. Specific contributions are follows: 

A new elasticity formulation is developed for stress analysis of mixed boundary-value stress 

problems of curved bodies. A new scheme of reduction of unknowns is used to develop the 

single scalar function formulation. More specifically, the scheme reduces the problem to 

finding a single field variable governed by a single partial differential equation of 

equilibrium. In the present formulation, a potential function is treated as the field variable 

which is defined in terms of radial and circumferential components of displacement, and the 

resulting formulation is called Displacement Potential Field Formulation. The formulation is 

superior to the standard stress function formulation in the sense that it is capable of satisfying 

all modes of physical conditions at the bounding surfaces appropriately, whether they are 

specified in terms of loadings or restraints or any combination of them.  

A finite-difference computational algorithm is developed for obtaining numerical solutions of 

the elastic field of curved structural bodies in terms of the displacement potential. The 

displacement potential computation method finds a single unknown at each nodal point, 

whereas the existing methods find at least two variables at each node of the plane 

computational domain and hence a tremendous saving in computational effort is achieved 

through the proposed approach. The application of the method is demonstrated through the 

numerical solutions of a number of structural problems with curved boundaries. The 

soundness and accuracy of the single variable computational scheme is verified through the 

comparison of results with those obtained by conventional computational and analytical 

approaches where available. 
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NOMENCLATURE 

 

x, y, z rectangular coordinates 

r, θ, z cylindrical coordinates 

E elasticity modulus of the material 

ν Poisson’s ratio 

ur, uθ, uz normal components of displacement along r, θ and z-directions respectively 

𝜀r, 𝜀θ, 𝜀z normal components of strain along r, θ and z-directions respectively 

𝛾rθ, 𝛾θz, 𝛾zr shearing stress components of strain in rθ, θz, zr  planes respectively 

σr, σθ, σz normal components of stress along r, θ and z-directions respectively 

τrθ, τθz, τzr shearing stress components of stress in rθ, θz, zr  planes respectively 

ψ displacement potential function 

ϕ stress function 

un, ut  normal and tangential components of displacement  on the boundary 

σn, σt normal and tangential components of stress  on the boundary 

h, k mesh lengths in r- and θ-direction 

i, j nodal coordinate system in r- and θ-direction 

ri, ro inner and outer radius 
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Chapter 01 

INTRODUCTION 

 

1.1 GENERAL 

The subject matter of this thesis is the stress analysis of mixed-boundary-value elastic plane 

problems of curved geometries- a major branch in the field of applied mechanics. Applied 

mechanics has been developed as a branch of rational thoughts from very early times; it is the 

oldest of the physical sciences and its principles, formulated to describe mechanical behavior 

in nature, from the basis of engineering calculations for a vast range of devices and 

structures. In spite of the advanced stages to which Engineering Science has progressed, it is 

not yet capable of describing the behavior of real engineering systems in every aspect. In the 

design of a given product, one may need to refer to several branches of engineering science. 

The theory of elasticity developed into an important branch of mathematical physics which 

has found considerable applications in the solution of engineering problems. 

The theory of elasticity deals with the systematic study of the stress, strain and displacement 

in an elastic body, under the influence of external forces. It differs with the field of ‘strength 

of materials’ in that the later is more elementary in theory with more emphasis on convenient 

formulas for practical applications. The elementary strength of material treats each problem 

separately – for example, a beam and a shaft are analyzed as separate problems. Although 

they are of practical importance, the formulas derived are applied under very restrictive 

conditions. The theory of elasticity deals with general equations which must be satisfied by 

an elastic body in equilibrium under any external force system. Simplifying assumptions are 

also used in elasticity, but with a better knowledge about the approximation involved.             

The response of a solid body to external forces is influenced by the geometric configuration 

of the body as well as the mechanical properties of the material. Here the interest will be 

restricted to the elastic materials in which the deformation and stress disappears with the 

removal of external forces, provided that the external forces do not exceed a certain limit. In 

fact, almost all engineering materials possess to a certain extent the property of elasticity. It is 

assumed that the matter of an elastic body is homogenous and continuously distributed over 
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its volume so that the smallest element cut from the body posses the same specific physical 

properties as the body. It is also assumed that for the most part the body is isotropic, that’s the 

elastic properties are the same in all directions. 

Curved structural bodies like beams, bars, rings, disks, arches etc. have a numerous important 

applications in the field of mechanical, civil and aeronautical engineering. For example, 

curved beams are used as crane hooks, clampers, frames of presses, chains, links, rings etc. 

Many airplanes have fuselages of approximately circular cross section which are built around 

circular metal bulkhead rings connected by longitudinal metal stringers and covered with a 

thin sheet-metal skin. Circular rings are also used as load transducer and circular cylinders 

are used as pressure vessel for containing pressurized fluid. Arch construction is one of the 

oldest means of spanning rivers and forming the roofs of large buildings. They have been used to 

support bridge decks and roofs, aqueducts, gates etc. for centuries. 

 

 

 

 

 

(a)     (b)    (c) 

 

 

 

 

 

 (d)        (e) 

Figure 1.1: Applications of curved structural bodies: (a) crane hook, (b) clamper, (c) load 

transducer, (d) pressure vessel and (e) arch. 
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In analyzing stresses in bodies like circular rings and disks, curved bars and beams/ arches, 

thick-walled cylindrical pressure vessel etc., it is advantageous to use a curvilinear mesh 

network for their discretization. The position of a point in the body is then defined by the 

distance of the point from the origin, angular position of the point with respect to some fixed 

axis and height of the point with respect to a fixed base plane. Analysis of stresses in a 

material body is basically a three-dimensional problem. However, in most practical cases, the 

problem can reasonably be approximated to either a two-dimensional or a one-dimensional 

one. One-dimensional problems of stress analysis are very straightforward and are included 

in undergraduate curricula. But the problems of two-dimensional stress analysis have a 

different story. In  case of very simple structures like beam, column, circular disk, regular 

shaped plates and thin shells, having simple geometry and boundary conditions, analytical 

methods are used for their stress analysis. However, the application of analytical approaches 

is limited, because general closed form solution can only be obtained for very ideal cases. 

Mixed-boundary-value problems are those in which the boundary conditions are specified as 

a mixture of boundary restraints and boundary loadings. The analytical results obtained for 

the practical problems of elasticity, usually with mixed boundary conditions, are invariably 

approximate as they include various idealizations. With the development of high speed 

computing machines, great attention has been paid to numerical methods in seeking the 

solution to a single, or a system of partial differential equations, which, even now, remain 

beyond the scope of analytical solution. 

 

1.2 LITERATURE REVIEW 

Stress-analysis of structural bodies is of great importance and has now become a classical 

subject in the field of engineering. But, somehow, this subject is still suffering from a lot of 

shortcomings and thus it is constantly coming up in the literature [1-4]. The theory of 

elasticity has found considerable application in the solution of modern engineering problems. 

The elementary formulas of strength of materials are often not accurate enough, and the use 

of the theory of elasticity in solving practical problems has rapidly become more common. 

Elementary methods of strength of materials were the primary tools of the practicing 

engineers for handling the problems of engineering structures. However, these methods are 

often found inadequate to furnish satisfactory information regarding local stresses near the 
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loads and near the supports of the structures. The elementary theory gives no means of 

investigating stresses in regions of sharp variation in cross section of beams or shafts. 

New problems of machine design and theory of structures in the recent years have demanded 

greater accuracy of stress analysis than what was previously the case. Only in simple cases 

were rigorous mathematical solutions of elasticity problems available and the modern trend in 

the theory is toward the use of various approximate methods. In cases where even 

approximate methods could not be developed, solutions have been obtained by using 

experimental methods. Photoelastic methods, soap-film methods, application of strain gages, 

moiré fringes [5] are some of these experimental methods applied in the study of stress 

concentration at points of sharp variation of cross-sectional dimensions and at sharp fillets of 

reentrant corners. These experimental results have considerably influenced the modern design 

of machine parts and helped in many cases to improve the construction by eliminating weak 

spot from which crack may start. 

Among the existing mathematical models for two-dimensional elastic problems, the stress 

function approach introduced by G. B. Airy and the displacement parameter approach [5] are 

noticeable. The Airy stress function is governed by a fourth order partial differential equation 

and the stress components are related to it through various second order derivatives. Solutions 

were initially sought through various polynomial expressions of stress function, but the 

success of this polynomial approach was very limited. Successful application of stress 

function formulation in conjunction with the finite-difference technique has been reported for 

the solution of plane elastic problems where the conditions on the boundary are prescribed in 

terms of stresses only [6-8]. Boundary restraints specified in terms of displacement 

components cannot be satisfactorily imposed on the stress function. The difficulties involved 

in trying to solve practical stress problems using the stress function approach are pointed out 

in our previous researches [9-10], and also by Durelli [3]. Again, the two displacement 

parameter approach involves finding two functions simultaneously from two second order 

partial differential equations. But the simultaneous evaluation of two functions, satisfying 

two differential equations is extremely difficult especially when the boundary conditions are 

specified as a mixture of restraints and stresses. As a result, serious attempts had hardly been 

made in the field of stress analysis using this formulation. 

Prior to the widespread use of computer, the available methods for stress analysis of curved 

beams and bar were Strength of materials based methods and Timoshenko’s elasticity 
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formulation [5]. Two forms of strength of materials solutions are used to determine stress 

distributions in curved beams and they are introduced in Machine Design, Strength of 

Materials, and Elasticity textbooks. One is the ‘Simplified Method’ as seen in Chapter 13.2 of 

[11], Chapters 2.20 of [12, 13]. The second is identified as the ‘Winkler’s Theory’ as seen in 

Chapter 5.12 of [14]. Winkler’s theory mainly gives the analytical expression for the 

circumferential stress and the results from Winkler’s formula, however, are not valid when 

the curved beams are thick, because this theory neglects the effects of transverse shear 

deformation. Winkler’s theory is redeveloped in [15] using linear shape function for 

tangential strain. The normal force equilibrium condition at the cross-section of the curved 

beam in both of these strength of materials based theories, considers no normal force as if 

pure bending occurs. This equilibrium condition also defines the neutral axis location 

incorrectly when forcing occurs. The more refined Timoshenko’s theory relaxes the 

normality assumption of the plane sections which are to remain plane and normal to the 

deformed centerline of the curved beam. By allowing a further rotation of the normal, the 

theory admits a nonzero shearing strain. Timoshenko’s elasticity approach has served as the 

standard of comparison for attempted modifications of Winkler’s theory [16]. However, 

Winkler’s theory is applicable to cross-sections of any shape, whereas the traditional 

elasticity approach is only applicable to rectangular sections. The literature chronicles several 

unique methods of applying and attempts at improving Winkler’s theory [17-21]. A general 

solution involving infinite series to the distribution of stresses in circular ring compressed by 

two forces acting along a diameter was given by Chianese and Erdlac [22]. Bagci [23] 

presented a unified strength of materials solution for stresses in curved beams and rings, 

which consider the curvature effect on both moment and force loadings. It yields more 

precision results than the conventional ‘Simplified’ and ‘Winkler’s’ strength of materials 

solutions as shown in their paper. The elasticity solution for curved beams and rings with 

exponential and ‘T’ cross section was presented by Bagci [24], which is however identified to 

be an approximation because the state of stress is arbitrarily assumed to be plane (see Ref. 

[16]). A plane stress analysis based on stress function formulation [5] was presented by 

Tutuncu [25] for the stress and displacement distributions in polar orthotropic curved beams 

possessing narrow constant cross sections.  Recently, Sloboda and Honarmandi [26] have 

developed an elasticity based method for the analysis of curved beam of non-rectangular 

cross section. This method has the similar characteristic of the stress function approach, that 

is, it accepts boundary conditions only in terms of boundary loadings (stresses). 
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Stress analysis of circular arches is a classical problem of applied mechanics. People are 

investigating different types of arches for decades as these are very important structural 

elements. Makowski and Gogate analyzed the stresses of three-pinned arch-ribbed domes in 

their paper [27].The Paper discusses the principles of the stress analysis of three-pinned 

ribbed domes consisting of any number of three-hinged semi-circular arches, interconnected 

together at the apex. General formulae of reaction components are developed, facilitating the 

determination of influence lines of these functions. Inter-laminar stress of laminated 

composite and sandwich circular arches subjected to thermal/mechanical loading is reported 

by Hiroyuki Matsunaga [28]. In his work, stresses and displacements in cross-ply laminated 

composite and sandwich circular arches subjected to thermal and mechanical loadings have 

been analyzed by a global higher-order arch theory which can take into account the effects of 

both transverse shear and normal stresses. By using the method of power series expansion of 

displacement components, a set of fundamental equilibrium equations of a one-dimensional 

higher-order theory for laminated composite circular arches is derived through the principle 

of virtual work. He has applied several sets of truncated approximate theories to solve the 

boundary value problems of simply supported laminated composite and sandwich circular 

arches. Elmalich and Rabinovitch have analyzed stresses in Monolithic Circular Arches 

Strengthened with Composite Materials [29]. They have presented an analytical approach for 

the elastic stress analysis of monolithic circular arches strengthened with externally bonded 

fiber-reinforced polymer (FRP) strips. In their work they have emphasized on the interfacial 

stresses between the existing structure and the supplemental reinforcement layers. Two 

analytical models have been presented: The first model formulates the governing equations in 

terms of the displacements in the arch and the FRP strip and the tangential distribution of the 

shear stresses in the adhesive layer as unknowns without involving any assumptions on the 

stress and displacement fields in the adhesive layer. The second model uses the functional 

form of the displacement field derived in the first model yielding a formulation in terms of 

displacement unknowns only. Free vibration and stability of laminated composite circular 

arches subjected to initial axial stress are reported to be analyzed by Hiroyuki Matsunaga [30] 

where natural frequencies and buckling stresses of laminated composite circular arches 

subjected to initial axial stress have been analyzed by taking into account the complete effects 

of transverse shear and normal stresses and rotatory inertia.  

A circular ring is often used in engineering applications. There are many applications in the 

tunnels, subways, and down hole. Leon Beskin summarized formulas which are required for 

http://www.sciencedirect.com/science/article/pii/S0263822302003409
http://www.sciencedirect.com/science/article/pii/S0263822302003409
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the analysis of circular rings, under forces in the plane of the ring or out of the plane in his 

paper [31]. Usually, rings which are redundant structures are calculated by considering strain 

due to bending only. In this research it is shown that for the stress distribution in a circular 

ring under given load, the solution introducing strains due to shearing and axial loads is the 

same as the solution conventionally used. The plane elastic problem corresponding to a radial 

crack emanating from the internal boundary of a circular ring is reported by Bowie and 

Freese [32]. For this problem the stress intensity factors at the crack tip has been found by 

using the ‘modified mapping collocation’ technique. Accurate data has been found for 

varying crack depths over a representative range of wall ratios for fracture mechanics 

applications to pressurized hollow circular cylinders. Using a moiré, large-strain analysis 

method, a complete solution is of the fields of strain and stress for a circular ring subjected to 

diametral compression between two flat platens has been reported by  Durelli et al [33]. The 

results were verified with the isochromatics obtained from a large-deformation 

photoelasticity analysis. The ring was made of a polyurethane rubber which exhibits a linear 

relationship between natural strain and a concept of “natural stress”. Deflection of the circular 

ring under a concentrated force has been studied by Xiao Zeng Wang [34]. Adopting the 

method of numerical analysis and Castigliano’s theory, the max deflection and the 4th 

equivalent stress of ring have been developed. The results of the research indicate that the 

deflection of ring is the linear function of the concentrated force which is in accord with the 

elasticity body assumptions, that is Hook’s law. Since the theoretical solution of the 

deflection of ring is found to be almost the same as the numerical one of the ring, it is feasible 

that the numerical model of the ring is used to analyze the deflection of the eccentric ring. 

Analytical methods of solution could not gain that much popularity in the field of stress 

analysis of structural components, mainly because of the inability of dealing with the mixed 

and variable nature of physical conditions as well as complex boundary shapes, which are, 

however, very common in case of actual structures. Stress analysis of structural problems is 

mainly handled by numerical methods. The major numerical methods in use are (a) the finite-

difference method (FDM) and (b) the finite-element method (FEM). The FEM has received 

widespread applications in various aspects of structural analysis, especially for curved shaped 

structures, a few of which are cited in reference [34-36]. However, the uncertainties 

associated with the accurate and reliable prediction of surface stresses by the conventional 

computational approaches have been pointed out by several researches [37-38]. The errors 

arising in the curved finite elements which under goes both flexure and membrane 

http://www.sciencedirect.com/science/article/pii/0013794472900458
http://www.sciencedirect.com/science/article/pii/0013794472900458
http://link.springer.com/search?facet-author=%22A.+J.+Durelli%22
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deformations were pointed out by Gangan [39]. It was there reported that an error of special 

nature would involve if the membrane strain fields are not consistently interpolated with 

terms from the two independent field functions, and the associated physical phenomenon was 

termed as membrane locking.  

The finite-difference method, on the other hand, is an ideal numerical technique for obtaining 

direct numerical solutions of differential equations. Introducing a new boundary modeling 

approach for finite difference (FD) applications of the displacement formulation of solid 

mechanics, Dow et al. [4] reported that the accuracy of finite difference method (FDM) in 

reproducing the state of stresses along the bounding surfaces was much higher than the 

corresponding accuracy of finite element (FE) analysis. Comparing the performances of 

available modeling approaches for the analysis of composite beams with partial shear 

interactions, the FDM was determined to be an adequate numerical tool for describing the 

composite behavior of beams, and the corresponding FD solutions were shown to be more 

accurate when compared with the usual eight degree-of-freedom finite element method 

(FEM) solutions [40]. Recent research and developments have generated renewed interests in 

using FDM for stress analysis of both two- and three-dimensional structural elements of 

isotropic as well as composite materials [41-42]. Analyzing the results of orthotropic 

composite panels, the superiority of the potential-function based FDM has been verified over 

conventional computational method in predicting stresses, especially at the regions of 

transition of boundary conditions [30]. FDM was also found successful in modeling irregular 

boundary shapes through the displacement-potential based interpolation scheme applied in a 

rectangular mesh network [46-47].  

 

1.3 OBJECTIVES  

The prime objective of this research work is to develop a new elasticity formulation for the 

analysis of mixed-boundary-value plane problems in cylindrical coordinate system and to 

develop an efficient computational scheme for the numerical solution of the elastic field 

using finite difference technique. The present study is an attempt to extend the capability of 

the displacement potential approach in order to address stress analysis of curved bodies with 

mixed-boundary conditions. The specific objectives of the present research work can be 

summarized as follows: 
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1. Development of a new mathematical formulation suitable for mixed boundary-value 

elastic problems of curved bodies. 

2. Development of a scheme for the management of all possible modes of boundary 

conditions associated with the practical stress problems in curvilinear coordinate 

system. 

3. Development of a finite-difference computational scheme based on the new 

formulation to obtain the corresponding numerical solution of the elastic field. 

4. Application of the new computational method to a number of practical problems of 

structural mechanics with curved geometries. 

5. Validation of the computational approach by comparing the results with available 

analytical solution and finite element solution. 

The new formulation as well as the computational method is expected to be a valuable 

addition to the present literature and will provide a reliable design guide for the curved 

structural elements. 

 

1.4. OUTLINE OF METHODOLOGY 

In the proposed research work, a new mathematical formulation is developed for the stress 

analysis of plane elastic problems with curved geometries. A new scheme of reduction of 

unknowns is used to develop the formulation. More specifically, the scheme reduces the 

problem to finding a single potential function, defined in terms of two displacement 

components of plane elasticity in polar coordinate system, whereas the existing finite-element 

and finite-difference methods find at least two variables at each nodal point of the 

computational domain, and hence a tremendous saving in computational effort is achieved 

through the proposed formulation. Finite-difference technique is used for the discretization of 

the governing fourth-order partial differential equation as well as the second and third order 

partial differential equations associated with the boundary conditions. Ultimately the problem 

is solved by finding the solution for the single discretized variable from a system of linear 

algebraic equations resulting from the discretization of the domain in terms of a curvilinear 

mesh-network. 



10 
 

1.5 THE REASON FOR NUMERICAL SOLUTION 

In this thesis, a computational scheme for general two-dimensional stress problems curved 

bodies is developed and numerical solution for several practical problems is obtained through 

a computer code developed in MATLAB. 

With the development of high speed computing machine in the recent years, the practicing 

engineers are now capable of facing new problems of machine design and theory of structures 

demanding greater accuracy of stress analysis and complete design in a very short time. 

However, the reason for resorting to the numerical solution for the stresses in a plane region 

is that it is not possible to solve the problem analytically under all circumstances created by 

the boundary conditions and shapes. It is extremely difficult to find an analytical solution for 

this problem when the boundary conditions are mixed, no matter in what manner they are 

mixed. Again the geometry and the variation of material property also create difficulty in 

finding analytical solution and leave us no other way than to go for numerical solution.    

 

1.6 SCOPE OF APPLICATION  

The mathematical formulation developed in this thesis can be used for plane problems of 

elasticity in cylindrical coordinate system by applying a numerical or analytical technique. 

The numerical scheme developed in this thesis can be applied for the problems subjected to 

all the possible modes of boundary conditions associated with the practical stress problems. 

Stress analysis of curved beams and bars, circular arches, finite rings, stiffened beam/rings 

are considered as examples of application of the present computational method. 

Therefore it may be concluded that a large number of problems of practical importance may 

be considered to be within the scope of the present method.    
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Chapter 02 

MATHEMATICAL FORMULATION 

 

2.1 GENERAL RELATIONS  

The elastic analysis of a body deals with the determination of stress components and 

displacement components at various points within the body due to given body forces and 

given conditions at the boundary surfaces of the body. To achieve this objective, a number of 

functions of space variables are defined in such a manner that the knowledge of these 

functions is sufficient to predict the state of the stress at any point in the body. Of course, 

these functions must satisfy the conditions of equilibrium and the conditions of the 

compatibility of stresses throughout the body. 

If an infinitesimal volume element is cut off from a homogeneous isotropic elastic body, the 

result would be six forces acting on the six different faces of the element. The forces acting 

on a face may be resolved into two components- one perpendicular to the plane of the face 

and the other parallel to the face. The stress component acting perpendicular to the plane of 

the face is called the normal stress and usually denoted by “σ” with a subscript to indicate its 

direction of action. According to the general convention, the normal stresses are taken 

positive when producing tension and negative when producing compression. In the same 

way, the two stress components acting parallel to the face are known as shearing stresses and 

indicated by “τ” with double subscript- the first indicating the direction of the normal to the 

face and the second indicating the direction of the component of the stress. On any side, the 

direction of the positive shearing stress coincides with the positive direction of the axis if the 

outward normal on this side has the positive direction of the corresponding axis. If the 

outward normal has a direction opposite to positive axis, the positive shearing stress will also 

have the opposite direction of the corresponding axis. 
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Figure 2.1: Conventions of stress components of the elementary volume in cylindrical 

coordinate system. 

 

Though, the volume element has six different faces, basically, it has three mutually 

perpendicular faces and the rest of the faces are parallel to these mutually perpendicular faces 

respectively as shown in Fig. 2.1. Thus, considering a volume element with edges parallel to 

the three axes of a cylindrical coordinate system, the state of stress of six sides of the element 

are described by three symbols σr, σθ, σz for normal stress and six symbols τrθ, τθr, τzr, τrz, τθz, 

τzθ for shearing stress. A consideration of the equilibrium of the volume element shows that, 

for two perpendicular sides of the element, the components of shearing stress perpendicular 

to the line of intersection of these sides are equal. Mathematically stated, from consideration 

of equilibrium of moments about three mutually perpendicular axes, it can be shown that 
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   and

rθ θr

rz zr

θz zθ

τ τ

τ τ

τ τ





   

 

 

  

Thus the nine components of stress are reduced to six. These six quantities σr, σθ, σz, τrθ, τθz, 

τzr are therefore sufficient to describe the stresses acting on the coordinate planes through a 

point and these will be called the components of stresses at the point. 

When a body is subjected to external forces, not only are internal stresses generated, but also 

the body itself is deformed. These deformations of the body can be uniquely specified by 

assigning three elongations in three perpendicular directions and three shear strains related to 

the same direction. These directions are taken as the directions of coordinate axes and the 

symbol “ε” is used to denote the normal strain components with the same subscripts to 

this symbol as for the normal stress components. Shear strain components are denoted 

by the symbol “γ” with the same double subscript used for shear stress. If the 

components of displacement of a particle in the body are specified by ur, uθ and uz 

parallel to the coordinate axes r, θ and z respectively, then the relations between the 

components of strain and the components of displacement are given by 
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2.1(f) 

 

By the application of Hooke’s, that is the linear relation between the stress and strain 

components and the principle of superposition, which are both based on experimental 
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observation, the relation between the components of stress and components of strain is 

given by 

1
[ ( )]r r θ zε σ ν σ σ

E
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Now considering the static equilibrium of the volume element and assuming that there are no 

body forces, the following differential equations of equilibrium can be derived [5]: 

1
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2.3(c) 

 

2.2 ANALYSIS OF PLANE PROBLEMS OF ELASTICITY  

Most of the practical problems of stress analysis can reasonably be resolved into two-

dimensional ones following one of the two simplifying assumptions, namely, plane stress and 

plane strain conditions. With reference to the cylindrical coordinate system, in absence of 

body forces, the three governing equations for general isotropic materials, in terms of stress 

variables σr, σθ and τrθ for plane stress and plane strain problems are as follows [5]: 
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(2.4a) 
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The strain components of plane elasticity are defined in terms of displacement components 

by the following relations: 
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Now according to the Hooke’s law, the relationship between stress and strain components, 

under plane stress condition, can be expressed as follows: 

1
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Now by replacing the strain components in Eq. (2.6) by displacement components in Eq. 

(2.5), we can find the relationship between stress components and displacement components 

for plane stress problems, as follows:   

2
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The similar relations under plane strain conditions can be obtained by replacing E and ν by 

Estrain and νstrain respectively which are defined by the following relations: 
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If we replace the stress components in Eq. (2.4) by displacement components ur (r, θ) and uθ 

(r, θ), which are related to stress components through Eqs. (2.7), then Eq. (2.4c) is redundant 

and Eqs. (2.4a) and (2.4b) transform respectively to,  
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(2.9b) 

 

Eq. (2.9) gives the two equilibrium equations in terms of displacement components for the 

plane stress problems in polar coordinate system. Reliable and accurate solution of the 

displacement components satisfying the two simultaneous elliptic partial differential 

equations with variable coefficients, especially with various mixed-modes of boundary 

conditions is not an easy task. A new mathematical model is thus introduced by which the 
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problem can be solved in terms of a single variable with all possible modes of boundary 

conditions. 

 

2.3 STRESS FUNCTION FORMULATION 

To solve the two dimensional governing equations (Eq. 2.4) G. B. Airy introduced a new 

function ϕ(r, θ) which is known as stress function [5]. In this stress function formulation, the 

stress components are defined in terms of ϕ(r, θ) as follows: 
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This definition of stress components satisfies the two equilibrium equations [Eqs. 2.1(a) and 

2.4(b)] automatically. The only equation remains to be satisfied is the compatibility equation 

[Eq. 2.1(c)]. Now by replacing the expressions of stress components in the Eq. 2.4(c) by the 

expressions in Eqs. 2.10, the compatibility equation in terms of stress function ϕ(r, θ) is 

obtained as follows:  
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(2.11) 

 

Thus, the solution of a two-dimensional problem reduces to finding the solution of Ep. (2.11) 

that satisfies the boundary conditions of the problem. But this formulation can only satisfy 

boundary conditions expressed in terms of boundary loadings not in terms of boundary 

restraints as the displacement components cannot be expressed in terms of stress function. 
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Thus, this stress function formulation fails to handle mixed-boundary-value problems of 

elasticity. 

 

2.4 REDUCTION OF UNKNOWNS 

In this section, the plane problem of elasticity in polar coordinate system in terms of two 

displacement functions is reduced to the determination of a single function by introducing a 

new scheme of reduction of unknowns. In order to attain that, the displacement components 

are first expressed in terms of a potential function ψ of space variables as follows: 
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where, α’s are unknown material constants. Here, the displacement components are expressed 

as a summation of different derivatives of the function multiplied by unknown constants. It 

has been found that the derivatives present in the assumed expression of displacement 

components [Eq. 2.12] are governed by the derivatives present in the equilibrium equations in 

terms of displacement components Eq. (2.9) [21, 22]. 

Substituting the above expressions of ur and uθ in Eq. (2.9), we obtain the equilibrium 

equations in terms of the function ψ, which are 
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The unknown α’s are now chosen in such a way that one out of two conditions of equilibrium 

[Eqs. 2.13] is automatically satisfied under all possible circumstances. This will happen only 

when the coefficients of ψ and all its derivatives present in either of the two equations (2.13a) 

and (2.13b) are individually zero. The two equilibrium equations [Eq. 2.13] are treated here 

separately and the resulting formulations are named as Formulation-I and Formulation-II, 

respectively.  

 

2.4.1 Formulation-I 

In this formulation, attempt is made to automatically satisfy the first equilibrium equation 

[Eq. 2.13(a)]. Equating all the coefficients of ψ and all its derivatives present in Eq. (2.13a) to 

zero, the resulting conditions are obtained as follows: 

(2.13 b) 
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Further manipulating the Eqs. 2.14(b)-2.14(g), one can find the following conditions: 
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(2.15c) 

710 3α α     (2.15d) 

712 3α α  (2.15e) 

One can see from Eq. (2.15) that, there are five equations for obtaining six unknowns. One 

can thus assign an arbitrary value to any one of these six unknowns and solve for the 

remaining five α’s from Eq. (2.15). Let us assign an arbitrary value, for example, unity, to the 

unknown α7. That is, let 7 = 1. Then, solving Eq. (2.15), the values of all unknown α’s can 

be expressed as follows: 
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0     (  1,  3,  4,  6,  8,  11)iα i   (2.16g) 

It would be worth mentioning here that, any other value of α7 could have been chosen leaving 

aside the homogeneous solution. Different values of α7 will make the coefficients of the 

unknown ψ different. The values of α7 which will lead to the diagonal dominance of the 

algebraic equations of unknown ψ at the nodal points are desirable in terms of increasing 

accuracy and shorter computational time. 7 = 1 leads to the most simplified differential 

equations and hence well-conditioned algebraic equations. 

The problem has now been reduced to the solution of a single function ψ from a single 

fourth-order partial differential equation (2.13b). As the conditions of Eq. (2.16) identically 

satisfy Eq. (2.13a), substitution of the conditions of Eqs. (2.16) in Eq. (2.13b) gives, 
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(2.17) 

Eq. (2.17) gives the explicit expression of the single governing differential equation of 

equilibrium for the solution of plane elastic problems in polar coordinate system in terms of 

the potential function ψ. 

 

2.4.2 Formulation-II 
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In Formulation- II, equilibrium Eq. (2.13b) is considered so that it can be automatically 

satisfied. Likewise the case of Formulation- I, equating all the coefficients of ψ and its 

derivatives to zero, the following conditions are obtained: 

0     (  2,  5,  7,  9,  10,  12)iα i   (2.18a) 
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One can see from Eq. (2.18b)-(2.18f) that, again there are five equations for obtaining six 

unknowns. One can thus assign an arbitrary value to any one of these six unknowns and solve 

for the remaining five α’s from Eq. (2.18). Taking α11=1, all the values of unknown α’s can 

be determined from Eq. (2.18) which are as follows: 
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11 1α   (2.19f) 

0     (  2,  5,  7,  9,  10,  12)iα i   (2.19g) 

Substitution of the conditions of Eq. (2.19) into Eq. (2.13a) gives the resulting differential 

equation for Formulation-II, which is, 
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(2.20) 

It can be seen that Eq. (2.20) gives the same partial differential equation in terms of the 

potential function ψ as given by Eq. (2.17) of Formulation-I. It is thus verified that both the 

formulations give the same governing differential equation for the function ψ, which, in turn, 

establishes the fact that the present potential function formulation is funded on sound 

philosophy.  

 

2.5 BOUNDARY CONDITIONS 

The physical conditions specified along the edges or boundaries of a body are visualized in 

terms of either known restraints or forces or a combination of the two. Mixed-boundary-value 

problems are those in which the boundary conditions are specified as a mixture of boundary 

restraints and boundary loading, where the combination of boundary conditions may also 

change from point to point. Both the restraints, that is, known displacements, and the 

tractions, that is known forces are defined by their respective components, namely, 

(a) Normal displacement (un) 

(b) Tangential displacement (ut) 

(c) Normal stress (σn) 

(d) Tangential stress (σt) 

Now the solution of the governing equation requires two boundary conditions to be known at 

any point on the boundary. Therefore, the possible boundary conditions created out of the 

four components are,  

(1) (σn, σt),  
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(2) (σn, un), 

 (3) (σn, ut), 

 (4) (σt, ut),  

(5) (un, σt) and  

(6) (un, ut). 

However, the combination (σn, un) and (σt, ut) do not usually occur in practice. The remaining 

four possible boundary conditions with reference to a polar coordinate system (r, θ) are as 

follows: 

For surfaces along radial direction: 

(i) σθ (r, θ) and τrθ (r, θ) 

(ii) σθ (r, θ) and ur (r, θ) 

(iii) uθ (r, θ) and τrθ (r, θ) 

(iv) ur (r, θ) and uθ (r, θ) 

For surfaces along circumferential directions: 

(i) σr (r, θ) and τrθ (r, θ) 

(ii) σr (r, θ) and uθ (r, θ) 

(iii) ur (r, θ) and τrθ (r, θ) 

(iv) ur (r, θ) and uθ (r, θ) 

Therefore, all the possible boundary conditions on different bounding edges of a 2-D curved 

body are basically different combinations of two displacement components (ur, uθ) and three 

stress components (σr, σθ, τrθ). Since our objective is to solve the problem in terms of the 

potential function ψ, all the boundary conditions of interest are required to be expressed in 

terms of the function ψ. 

The components of displacement in terms of ψ are given by Eqs. (2.12a) and (2.12b). General 

expressions for the components of stress in terms of the function ψ are obtained when the 
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displacement components in the stress-displacement relations Eq. (2.7) is replaced by those 

of Eq. (2.12). They are, 
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2.5.1 Displacement and stress components in terms of ψ for Formulation-I 

Substitution of the values of α’s from Eq. (2.16) to Eqs. (2.12) and (2.21) gives the explicit 

expressions of the components of displacement and stress in terms of ψ as follows: 
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(2.26) 

 

2.5.2 Displacement and stress components in terms of ψ for Formulation-II 

In this case the values of α’s are taken from Eq. (2.19) and are substituted in Eqs. (2.12) and 

(2.21) to get the expressions of displacement and stress components as follows:  
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(2.31) 

It can be noted here that the corresponding components of strain can readily be obtained by 

differentiating the displacement components expressed in terms of the function ψ. 
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Chapter 03 

NUMERICAL FORMULATION 

 

3.1 INTRODUCTION TO FINITE DIFFERENCE METHOD 

The method of finite difference is an approximate technique which yields a direct simplified 

solution form, in which the differential equations of equilibrium and the boundary conditions 

are replaced by a set of algebraic equations. The general approach of finite difference 

solution assumes that the function can be represented in a prescribed range with a sufficient 

degree of accuracy either by Taylor’s series with origin at the successive pivotal points of the 

range or the polynomial which passes through a certain number of selected pivotal points. 

The values of the functions at the nodal points are required to satisfy difference equations 

obtained by replacing the partial derivatives by their difference formulae. All finite difference 

formulae are approximations to infinite series of differences. Therefore, it is necessary that 

the series should converge, or that the error, caused by truncation after a certain number of 

terms should be sufficiently small. In this problem the pivotal points are taken as the regular 

net points of the domain of dependence of the functions obtained y dividing the domain by 

lines parallel to the co-ordinate axes. 

 

3.2 DIFFERENCE FORMULAE OF DERIVATIVES 

It will be appropriate to derive the finite difference formulae of the different derivatives to 

show the underlying principle as well as to obtain the truncation error of these expressions. 

To illustrate the derivation of the difference equations, a general pivotal point of co-ordinates 

(r,θ) is taken and its neighboring points are designed as shown in Fig. (3.1). The neighboring 

points are at distances h (=∆r) and k (=∆θ) in the r and θ directions, respectively. 
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Figure 3.1: Finite difference discretization of the physical domain. 

 

Assuming that a certain function f(r,θ) has continuous partial derivative of considerable 

higher order at (r,θ), the value of the function at point (r+h, θ) can be written by Taylor series 

expansion in terms of the values of the function and its derivatives at (r, θ) as, 
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(3.1) 

The function at (r-h,θ) can be similarly written as 
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(3.2) 

Subtracting these two Eqs. (3.1) and (3.2) we get, 
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(3.3) 

Adding the same equations we get, 
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(3.4) 

Where, h = ∆r and i, j stands for r and θ- directions respectively, in such a way that i+1=r+h 

and i-1 = r-h and so on. The term ‘O(h2)’ indicates that an error of order h2. 

Eqs. (3.3) and (3.4) give the central difference expressions for 1st and 2nd derivatives 

respectively. The two point forward and backward difference equations for 1st derivative can 

be obtained from the Eqs. (3.1) and (3.2) respectively as follows: 

From Eq. (3.1) we get,
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(3.5) 

From Eq. (4.2) we get, 
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(3.6) 

Similarly using the tailor series expansion the three point forward and backward difference 

equations can be obtained. Three point forward and backward difference equations for first 

and second order derivatives are given below. 
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The above two second order derivatives are of accuracy of O(h). For higher order accuracy 

four point expressions are used which are given below. 
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Finite difference expression for higher order derivatives can be obtained by using the above 

expressions. Different combinations of central difference, forward difference and backward 

difference formulae can be used for this purpose. Some of the expressions of higher order 

derivatives and cross derivatives used in this thesis are obtained as shown below.  
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(3.13) 

This expression is formed by combining two central difference expressions. Similarly, 

expression for the same derivative using a central difference and a forward difference and a 

central difference and a backward difference are respectively, 
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The above two expressions are of lower error order (O(h)). To get the equation with error 

order O(h2), higher order (O(h2)) forward and backward expression is needed to be used. 

Using three point (O(h2)) forward and backward Eqs. (3.7) and (3.9) we get, 
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For the case of forth order derivative, the finite difference expression using two central 

difference expressions can be obtained as, 
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(3.18) 

Fourth order derivative with a combination of center difference and four point forward 

expressions of the second order derivative can be obtained as follows: 
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(3.19) 

Similarly using center difference and four point backward expressions, the following 

expression for forth order derivative is found. 
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(3.20) 

The finite difference expressions for cross derivatives can also be obtained in the similar 

manner. Formulas for some of the cross derivatives used in this thesis using forward and 

center differencing are as follows. 
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With these finite difference formulae, the differential equation and the boundary conditions 

can be expressed into their respective analogs of finite difference equations. 

   

3.3 SCHEME OF FINITE DIFFERENCE MODELING 

According to the usual practice, the region in which the dependent function is to be evaluated 

is divided into a desirable number of mesh points and the values of the function are sought 

only at these mesh points. The division into mesh points can be done in any regular or 

irregular manner, but considering the fact of solving the problem by a computer, regularity is 

highly desirable. Even the regularity will have different patterns and, therefore, the question 

is to choose a particular pattern which will serve the purpose in the best possible way. 

Unquestionably, for simplicity, especially where curve boundaries are concerned, the choice 

is that of regular curvilinear mesh points. Having decided upon the pattern and the total 

number of mesh points a sufficient number of equations must be provided to solve for all the 

“discretized variables” (the values of the function at the mesh points) resulting from the 

division of the domain into mesh points. 

It is realized that the governing partial differential equation [Eq. 2.17] in terms of ψ when 

applied to a nodal point will give rise to a single algebraic equation and therefore, the single 

unknown concerning this point has been provided with a single equation for its evaluation. 

Further, this algebraic equation will contain the discretized variable of the thirteen 

neighboring mesh points including 0 marked from 1 to 12 in Fig. (3.2), provided all the 

derivatives present in the governing equation are replaced by their respective central 

difference formulae. This implies that, when 0 becomes an immediate neighbor to the 

boundary mesh points, this equation will contain mesh points exterior to the physical 

boundary as well as on the boundary itself. Thus, it is seen that if the discretization of the   

domain concerned is performed in a fashion as shown in Fig (3.2), the application of the 

finite difference formulae of the governing differential equation imposes limitation to the 

points in the immediate neighborhood of the boundary mesh points. Again, as far as the 

boundary conditions are concerned, the boundary conditions in terms of stress and 

displacement components contain 2nd and 3rd order derivatives of ψ and the application of the 

boundary conditions to an arbitrary nodal point on the boundary would be very difficult 

without the involvement of mesh points exterior to the physical boundary. There are always 



35 
 

two conditions to be satisfied at an arbitrary point on the boundary and these two conditions 

are theoretically sufficient to obtain the two equations at this point. In this respect, if the 

boundary conditions are given either in terms of displacement or stress components, that is, in 

the form of differential equations of unknown function, these differential equations have to be 

expressed into difference equations. 

 

 

 

  

 

 

 

Figure 3.2: Finite difference discretization of the governing differential equation. 

 

 

 

 

 

 

 

 

Figure 3.3: Involvement of imaginary nodal points while applying governing equation to a 

point immediate neighborhood of the physical boundary mesh point. 
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One way of avoiding these difficulties is to consider an imaginary boundary exterior to the 

physical boundary of the domain concerned. With this imaginary boundary, the application of 

the central difference expressions of the governing equation to the points in the immediate 

neighborhood to the physical boundary will cause no problem to the discretization of the 

domain as it will involve no points exterior to the imaginary boundary. The new 

discretization of the domain with the imaginary boundary mesh points is illustrated in Fig. 

(3.3) which illustrate the application of the central difference stencil of the governing 

equation to an arbitrary point in the immediate neighborhood of the physical boundary. 

The same sort of problem can be raised when the finite difference expressions the boundary 

conditions are applied to the boundary mesh points. As the differential equations associated 

with the boundary conditions contain second and third order derivatives of function ψ, the 

application of the central difference expression will not be practical as, most of the time, it 

may lead to the inclusion of points exterior to the imaginary boundary. One of the ways to 

manage the situation is to replace all the first order derivatives of the function present in the 

boundary conditions by their two-point forward or backward difference formulae. The use of 

forward or backward difference formulae is dictated by the position of the mesh point on the 

boundary in order to avoid the occurrence of involving the mesh points external to the 

imaginary boundary. But the local truncation error of this approach would be of order h. A 

second way is to replace the above mentioned derivatives in the boundary conditions by three 

point forward or backward difference formulae. Local truncation error of this approach is of 

order h2. Theoretically, there is no difficulty in using either one of the two methods in 

obtaining the finite difference expressions on the boundary. In this thesis, both of these 

approaches have been investigated and compared to obtain the effect of local truncation error 

on the solution. 

Since there are always two conditions to be satisfied at an arbitrary point on the physical 

boundary of the domain, the finite difference expressions of the differential equations 

associated with the two boundary conditions will be applied to the same point on the 

boundary. It will lead to the fact that two linear algebraic equations will be assigned for a 

single point on the boundary. The computer program is organized in such a fashion that out 

of these two equations, one will be used to evaluate the point on the physical boundary and 

the remaining one for the corresponding point on the imaginary boundary and so on. Thus, 

every mesh point of the domain will have a single algebraic equation and this system of 

equations is solved by either direct or indirect methods of solution. One limitation of this 
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approach over that of having no imaginary boundary is that this approach has to handle 

relatively a large number of algebraic equations than the other one. This is because, this 

approach takes into consideration a large number of extra mesh points associated with the 

imaginary boundary and the number of algebraic equation increases with the increase of 

mesh points.  

Another problem is faced during the numerical modeling of the corner mesh points, which 

are in general the points of singularity. Considering D as a corner mesh point in Fig. (3.3), it 

is seen that D is a common point to both the edges BD and DC, and it will have four 

boundary conditions; two conditions coming from each edge. As there are four boundary 

conditions for a single corner mesh point, there must have four unknowns to be determined 

from these conditions. This will demand the inclusion of mesh points exterior to each of the 

corner points of the physical boundary. This problem can also be handled by adapting 

different schemes of discretization. The discretization scheme applied to the corner points 

with exterior mesh points are illustrated in Fig. (3.4) and indicated as A, B, C and D. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Corner mesh point modeling. 
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For the case B, in Fig. (3.4), it is seen that the unknowns at the four mesh points (3, 4, 5 and 

B) have to be determined from the four conditions available at point B. But in case of A, it is 

seen that the unknowns at three mesh points, 1, A and 2 have to be evaluated from the four 

conditions available at point A. Here the number of unknown is less than the number of 

condition to be satisfied which is theoretically impractical. One way to handle this problem is 

to take one of the four conditions as redundant and thus, three unknowns are determined from 

the remaining three boundary conditions imposed at point A. Again, for the case D, it is seen 

that a single unknown at mesh point D has to be evaluated from the four conditions available 

at D. According to the method mentioned above, this can be handled by taking a single 

boundary condition out of four and the remaining three conditions are left out. Lastly, for the 

case C, the same problem can be avoided by taking only two boundary conditions out of the 

four and thus the problem is reduced to the evaluation of two unknowns at mesh points (C 

and 6) from two conditions available at point C. All of these four approaches were 

investigated by Ahmed [48] over a rectangular mesh network in Cartesian coordinate system. 

But all the approaches were found to fail to produce any satisfactory results for various 

combinations of boundary conditions except that proposed in the case A in Fig. (3.4). Thus, 

in this thesis, the author used the approach illustrated at A for the corner mesh points as it is 

capable to produce promising results. 

From algebra it is known that two common methods of solving simultaneous equations are: 

the direct method of elimination and the method of iteration. In iterative solution, one 

assumes an arbitrary initial approximation to the solution and then improves this 

approximation according to a iterative algorithm. When the system of equations to be solved 

is quite large, where a number of equations of the system have identical coefficients, and 

where the number of unknowns present in individual equation is quite small, the choice of 

iterative method is imperative. But the problem of solving the difference equations by this 

method presents serious difficulty. Though the iterative method of solving the resulting 

algebraic equations produced promising results for certain boundary conditions, it fails 

completely to produce any solution for other boundary conditions. In certain cases the rate of 

convergence of iteration was extremely slow which made it impractical. Since this iterative 

method has the limitation of not always converging to a solution and sometimes converging 

but very slowly, the author thus finally decided to use the direct method of solution. The 

direct method of elimination used here is known as “LU decomposition” method. In this 

method the matrix of coefficients is transformed into product of two matrices L and U, where 
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L is a lower-triangular matrix and U is an upper-triangular matrix with ones on its diagonal. 

This method requires fewer arithmetic operations on computer than either Gaussian or Gauss-

Jordan methods or matrix inversion method, and hence higher accuracy can be achieved. This 

method may also be made economical in terms of storage in computer by overlaying the U 

and L matrices on the coefficient matrix A (in the same storage location). This may be done 

since there is no need to store the zeroes and ones of the U and L matrices. 

 

3.4 FINITE DIFFERENCE EQUATIONS 

Fig. (3.5) shows a general stencil at an internal mesh point, where the locations of the mesh 

points are designated by double subscripts. The distances between pivotal points are h and k 

in r- and θ- direction respectively and they are assumed to be constants all over the 

computational domain. 

Referring to Fig. (3.5), the difference approximation corresponding to the governing equation 

(2.17), namely, 

4 4 4 3 3 2 2

4 4 4 2 2 2 3 3 2 2 2 4 2 3 4

1 2 2 6 5 10 9 9
0

ψ ψ ψ ψ ψ ψ ψ ψ
ψ

r rr r θ r r θ r r r θ r r r θ r r

       
        

        
 

at a general mesh point (i, j) can be obtained by replacing the derivatives with their center 

difference formulae. Assuming ψ to be the continuous function at different mesh points, the 

equation in its difference form becomes, 

1 2 3 2 4 5

6 5 4 7 8 7

9

( 2, ) ( 1, 1) ( 1, ) ( 1, 1) ( , 2) ( , 1)

( , ) ( , 1) ( , 2) ( 1, 1) ( 1, ) ( 1, 1)

( 2, ) 0

ξ ψ i j ξ ψ i j ξ ψ i j ξ ψ i j ξ ψ i j ξ ψ i j

ξ ψ i j ξ ψ i j ξ ψ i j ξ ψ i j ξ ψ i j ξ ψ i j

ξ ψ i j

            

            

  

 

(3.21) 

  

 

(25)  
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where, the coefficients ξi are as follows: 
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Figure 3.5: Finite-difference stencils of an arbitrary differential equation in curvilinear mesh-

network. 

 

Therefore Eqn. (3.21) is the difference approximation to the governing partial differential 

equation (2.11) and valid for all the internal mesh points except for that on boundaries. 
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(a) 

 

 

 

 

 

  

(b) 

Figure 3.6: Finite-difference stencil of governing equation and its application at different 

locations of the discretized body. 

 

Fig. 3.6(a) shows the finite difference stencil of the governing equation [Eq. 2.17]. Fig. 3.6 

(b) shows the application of the governing differential equation at different regions of the 

discretized body. It can be seen that for any interior mesh point stencil never include any 

point beyond the imaginary boundary.  
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3.4.1 Finite difference expressions for different displacement and stress components 

according to the Formulation-I 

As the differential equations associated with the boundary conditions contain second- and 

third-order partial derivatives of the function ψ, the use of central difference expressions 

eventually leads to the inclusion of points exterior to the imaginary boundary. In order to 

avoid the occurrence, different versions of the finite-difference expressions like forward, 

backward and central difference have been adopted in a combined form to generate the 

difference equations for the boundary conditions. It is noted here that the order of local 

truncation error has been kept the same for all the expressions developed, that is, O(h2). As 

previously mentioned, though the expressions of the governing equation obtained from both 

the formulations (Formulation-I and Formulation-II) are same, the expressions of stress and 

displacement components obtained from different formulations are different. As a result, the 

numerical modeling for the two formulations will be different. Finite-difference expressions 

for different displacement and stress components corresponding to Formulation-I and 

Formulation- II are discussed below. 

(a) Formulation-I 

For the radial component of displacement Eq. (2.16), four different versions of finite-

difference expression have been developed for different regions of the boundary. These 

versions of finite difference expressions are obtained by adapting different combinations of 

forward and backward differencing scheme in both r and θ- directions . The finite-difference 

expressions so obtained are as follows: 

a) i- forward, j- forward 

1 1 1 1

1 1 1 1 1 1

1 1

( 2, 2) 4 ( 2, 1) 3 ( 2, ) 4 ( 1, 2)

      16 ( 1, 1) 12 ( 1, ) (3 ) ( , 2) (12 4 ) ( , 1)

      (9 3 ) ( , )

ru a ψ i j a ψ i j a ψ i j a ψ i j

a ψ i j a ψ i j a b ψ i j a b ψ i j

a b ψ i j

          

          

 

 

 

(3.22) 

b) i- forward,  j- backward 

1 1 1 1
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1 1

3 ( 2, ) 4 ( 2, 1) ( 2, 2) 12 ( 1, )
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ru a ψ i j a ψ i j a ψ i j a ψ i j

a ψ i j a ψ i j a b ψ i j a b ψ i j

a b ψ i j

          

          

  

 

 

(3.23) 

c) i- backward, j- forward 
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(3.24) 

d) i- backward, j- backward 
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(3.25) 

where,  
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Figure 3.7: Finite difference stencils for radial component of displacement (ur) (Formulation-

I). 

 

Figure 3.7 illustrates the above mentioned four stencils for normal component of 

displacement (ur). It can be seen that each stencil consists of nine nodal points and when 

applied to the boundary mesh points as shown in the figure includes no point exterior to the 

physical boundary. 
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expression, it can be applied to any region of the boundary without the inclusion of points 

exterior to the imaginary boundary as shown in Fig. 3.8. The expression is written as follows: 

2 2 2 2 2 2 2 2

2

( ) ( 1, ) ( , 1) ( 2 2 ) ( , ) ( , 1) (

      ) ( 1, )

θu a c ψ i j b ψ i j a b d ψ i j b ψ i j a

c ψ i j

           

 
 

 

(3.26) 
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Figure 3.8: Finite difference stencils for tangential components of displacement (uθ) 

(Formulation-I). 

 

Now, for the radial component of stress which is given by Eq. (2.14), two different finite-

difference expressions has been developed using the combination of central, forward and 
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1 1 1 1 1 1
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(3.27) 

b) i- central, j- backward 
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Figure 3.9: Finite difference stencils for radial and tangential components (σr, σθ) of stress 

(Formulation-I) 

 

The corresponding finite difference expressions for σθ which is given by Eq. (2.25) are 

developed following a procedure similar to that used for the case of σr, as the two differential 

equations are identical in terms of derivatives, but the differ only in terms of the coefficients. 
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a) i-central, j- forward 
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(3.29) 

b) i- central, j- backward 
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2 2

(2 )

2 i

G ν
A

r h k


 , 

2 3 32 i

G
B

r k
 , 

2 2

(7 2 )

4 i

ν G
C

r hk


  , 

2 3

(11 2 )

2 i

ν G
D

r k


  

Again, for the shear stress component which is given by Eq. (2.26), two different finite-

difference expressions have been developed using the combination of central, forward and 

backward differencing scheme. Since the stencils have the symmetry about i- axis, two 

versions are sufficient to deal with all the body points involved and are illustrated in Fig. 

3.10. The expressions developed are: 

a) i-forward, j-central  
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b) i- backward, j- central 
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Figure 3.10: Finite difference stencils for shear stress component (τrθ) (Formulation-I) 

 

(b) Formulation-II 

For radial component of displacement, ur given by Eq. (2.27), a single finite-difference 

expression has been developed using central differencing scheme. Due to the symmetry of the 

expression, it can be applied to any region of the boundary without the inclusion of points 

exterior to the imaginary boundary as shown in figure 3.11. The expression is written as 

follows: 
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Figure 3.11: Finite difference stencils for radial component of displacement (ur) 

(Formulation-II). 

 

For the tangential component of displacement Eq. (2.28), four different versions of finite-

difference expression have been developed for different regions of the boundary. These 

versions of finite difference expressions are obtained by adapting different combinations of 

forward and backward differencing scheme in both r and θ- directions and are illustrated in 

figure 3.12. The finite-difference expressions so obtained are as follows: 

a) i- forward, j- forward 
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b) i- forward, j- backward 
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c) i- backward, j- forward 
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d) i- backward, j- backward 
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Figure 3.12: Finite difference stencils for tangential component of displacement (uθ) 

(Formulation-II). 

 

For the radial stress component which is given by Eq. (2.29), two different finite-difference 

expressions have been developed using the combination of central, forward and backward 

differencing scheme. Since the stencils have the symmetry about i- axis, two versions are 

sufficient to deal with all the body points involved which are illustrated in figure 3.13. The 

expressions developed are: 
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uθ: i- backward, j- forward 
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b) i- backward, j- central 
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Figure 3.13: Finite difference stencils for radial and tangential components (σr, σθ) of stress 

(Formulation-II) 

 

The corresponding finite difference expressions for σθ which is given by Eq. (2.30) are 

developed following a procedure similar to that used for the case of σr, as the two differential 

equations are identical in terms of derivatives, but the differ only in terms of the coefficients. 

As a result, the finite difference stencils of σr and σθ become identical in their appearances 

too. The finite difference equations developed for σθ are as follows: 

σr: i- forward, j- central 

 

σr: i- backward, j- central 

 h 

θ r 

k 
i 

j 

i 

j 



51 
 

a) i- forward, j- central  
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b) i- backward, j- central 
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Now, for the shear stress component which is given by Eq. (2.31), two different finite-

difference expressions has been developed using the combination of central, forward and 

backward differencing scheme which are illustrated in Fig. 3.14. Since the stencils have the 

symmetry about j- axis, two versions are sufficient to deal with all the body points involved. 

The expressions developed are: 

a) i- central, j- forward 
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Figure 3.14: Finite difference stencils for shear stress component (τrθ) (Formulation-II). 
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Chapter 04 

VALIDATION OF DISPLACEMENT 

POTENTIAL METHOD 

 

4.1 INTRODUCTION 

This chapter is intended to verify the soundness and appropriateness of the displacement 

potential method developed in this study for the analysis of curved structural elements in 

polar coordinate system. To achieve this goal, two well known problems of stress analysis 

have been solved and the results are compared with the available analytical solution as well 

as the numerical solution. Problem-I is an example of classical stress problem, namely, thick-

walled pressure vessel with outer to inner radius ratio, ro/ ri = 2, under the action of uniform 

internal and external pressure over its whole circumference. Problem-II is an example of 

curved circular beam under pure bending action. Analytical solution is available for both the 

problems from theory of elasticity. Finite element solution is provided for problem-I which 

has been obtained using commercial finite-element package ANSYS 11.0. 

 

4.2 THICK-WALLED PRESSURE VESSEL 

A thick-walled pressure vessel with outer to inner radius ratio, ro/ ri = 2, is considered here. 

The loading and geometry of the stressed body is illustrated in Fig. 4.1(a). The pressure 

vessel is   subjected to uniform pressure at its inner and outer boundaries with the ratio of 

external to internal pressure, Po/Pi = 2, as shown in the figure. In order to obtain results of the 

problem, values for Young’s modulus and Poisson’s ratio of 207 GPa and 0.29, respectively, 

are used.  
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(a) Loading and geometry of pressure vessel 

 

 

 

 

 

 

 

 

(b) Finite-difference discretization of thick-walled pressure vessel 

Figure 4.1: Thick-walled pressure vessel under uniform radial pressure. 

The finite difference mesh network used for the problem of pressure vessel is illustrated in 

Figure 4.1(b), in which two imaginary boundaries, interior to the inner physical boundary and 
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exterior to the outer physical boundary are included for the solution. The nodal points interior 

to the inner and exterior to the outer boundaries are, in fact, selected by the application of the 

governing equation to the internal nodal points at the immediate neighbor to the physical 

boundaries. Finite difference solution for the elastic field of the problem has been obtained 

using relatively small number of mesh points (31 × 43), mesh points along r- and θ- axes, 

respectively. Here, the radial displacement is normalized with respect to the thickness of the 

vessel and stresses are normalized with respect to the intensity of the uniform external 

pressure, Po.  

The present displacement potential solutions are presented in a comparative fashion with 

those of the theory of elasticity as well as finite element method. The boundary conditions 

used to generate the displacement potential solution for the problem are listed in Table 4.1.  

 

Table- 4.1 

Modeling of boundary conditions for the thick-walled pressure vessel 

 Boundary conditions 

Problem Boundary Normal component Tangential 

component 

Cylindrical 

Pressure vessel  

(Fig. 4.1) 

Outer surface (r=ro) σr(ro, θ)=−Po τrθ(ro, θ)=0 

Inner surface (r=ri) σr(ri, θ)=−Pi τrθ(ri, θ)=0 

 

Exact analytical solutions of displacement and stress distributions along the radial direction 

of the vessel are available in the literature. The stress function based elasticity solutions for 

the components of displacement and stress are included here as a ready reference for the 

interested readers [5]. 
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(4.3) 

 

Finite element solutions of the thick-walled pressure vessel problem are also included to 

make the comparison more effective. The FEM solutions are obtained by using the standard 

facility of a commercial FEM software (ANSYS). In obtaining the FEM solutions, 8-noded 

quadratic plane stress elements (PLANE 183) were used to construct element mesh network 

for the cylindrical body in a rectangular coordinate system. The total number of nodal points 

used to construct the mesh network was 18362. 

 

4.2.1 Comparison of solutions by different methods 

Figure 4.2 shows the comparison of three solutions, namely, stress function, displacement 

potential method (DPM) and finite element method (FEM) solutions for the present stress 

problem of thick-walled pressure vessel. Figure 4.2(a) shows the distribution of radial 

displacement along the radial direction of the pressure vessel. The radial displacement is 

found to increase from inner surface to outer surface of the vessel. A comparative analysis 

reveals that the distribution of radial displacement obtained from three different approaches is 

in excellent agreement, as the results are found to be almost identical. Figure 4.2(b1) and (b2) 

show the comparison of corresponding solutions for the radial and tangential stress 

components, respectively.  For both cases of stress distributions, solutions obtained from the 

three different approaches are also found to be almost identical. Moreover, the distribution of 

radial stress verifies the capability of the present displacement potential method in 

reproducing the boundary conditions accurately, as the normalized values of the radial stress 

assume values very close to -0.5 and -1.0, at the inner and outer surface of the vessel 

respectively. From the distributions of stress components, the circumferential (hoop) stress is 

identified to be the most critical stress in the pressure vessel, the value of which at the outer 

surface of the vessel is found to be as high as 1.83 times the applied pressure. The present 

comparison of the results of the cylindrical pressure vessel thus firmly establishes the 

soundness as well as appropriateness of the present displacement potential computational 

approach as the results are found to be in excellent agreement with the corresponding exact 

analytical as well as conventional computational results. 
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Figure 4.2: Comparison of solution for (a) displacement and (b) stresses in a thick-walled pressure 

vessel, ro/ri = 2.  

 

4.3 CURVED BEAM UNDER PURE BENDING 

A curved beam with a constant narrow rectangular cross section and a circular axis is 

considered here. The beam is bent in the plane of curvature by couple M applied at the ends 

as shown in Fig. 4.3. The curved beam considered here has outer to inner radius ratio as, ro/ri 

= 2.0 and the width of the beam cross section is unity. The material properties of the beam are 

considered as, modulus of elasticity, E = 207 GPa and Poisson’s ratio, ν = 0.29. 
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Figure 4.3: Curved beam under pure bending moment. 

 

 

 

 

 

 

 

Figure 4.4: Modeling of end moment in terms of distributed circumferential stress. 

 

A (35 × 45) uniform curvilinear finite-difference mesh network is used to discretize the 

curved beam. The bending moment applied at the beam ends is modeled in terms of a linearly 

varying circumferential stresses as shown in Fig. 4.4. The boundary conditions at different 

surfaces of the beam which are used to generate the present DPM solutions are listed in Table 

4.2. Since the thickness of the beam is unity, the loading intensity w(r), at any point at the left 

or right radial surface actually represents the value of circumferential stress at that point. No 

special care is necessary to model the four corner points of the curved beam as there are only 
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three conditions available at each point due to the common zero shear stress condition from 

each side of the corner points. 

The exact analytical solution of this curved beam problem is available in the literature [5], 

where the bending moment is considered as constant along the length of the beam. As a 

result, the analytical solution considers the stress distribution same in all radial cross sections 

and thus gives the distribution of stress components along the axis of symmetry of the beam. 

 

Table 4.2 

Boundary conditions used for the curved beam under pure bending action 

 Boundary conditions 

Problem Boundary Normal 

component 

Tangential 

component 

 

 

Curved beam 

under pure 

bending  

(Fig. 4.3) 

Right radial surface, θ = 0o σθ(r, 0) = w(r) τrθ(r, 0) = 0 

Left radial surface, θ = θmax σθ(r, θmax) = w(r) τrθ(r, θmax) = 0 

Outer circumferential surface, r 

= ro 

σr(ro, θ) = 0 τrθ(ro, θ) = 0 

Inner circumferential surface, r 

= ri 

σr(ri, θ) =0 τrθ(ri, θ) = 0 

 

where,  
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The exact analytical solutions for different stress components obtained using stress function 

approach is given in the following equations: 
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4.3.1 Comparison of Results 

This section presents the solution of the curved beam under pure bending moment. The 

numerical solution obtained using the present DPM is presented along with the exact 

analytical solution for comparison. To make the results non-dimensional the stress 

components are expressed as the ratio of stresses to the maximum loading intensity, P (Fig. 

4.4), used to model the end moments.  

Figure 4.5(a) describes the distribution of radial stress along the radial position of the beam. 

The radial stress is found to be zero at the inner and outer surface of the beam. Maximum 

radial stress is found to be at a distance of 39% of the beam thickness from the inner surface 

of the beam. Figure 4.5(b) shows the distribution of tangential stress along the radial position 

of the beam. The maximum tangential stress is found to be at the inner surface of the beam 

which decreases along the beam thickness and takes negative value after the neutral axis 

which is found at about 45% of the beam thickness from the inner surface of the beam.  

Moreover the maximum tangential stress is found to be 7.25 times the maximum radial stress 

for the current curved beam (ro/ri = 2). Finally, the excellent agreement between the solutions 

of the analytical and the numerical approaches for both radial and tangential stress 

components as observed from Fig. 4.5 validates the present finite-difference computational 

method based on displacement potential.   
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Figure 4.5: Comparison of solution for stresses in a curved beam under pure bending along 

the line of symmetry, ro/ri = 2. 

 

4.4 VERIFICATION OF CORRESPONDENCE BETWEEN FORMULATION-I AND 

II 

The development of the present displacement potential field formulation eventually leads to 

two different versions of the formulation as mentioned earlier in chapter 2. These 

formulations are denoted by Formulation-I and Formulation-II. The original two variable (ur 

and uθ) equilibrium problem has been reduced to a single variable (potential function ψ) 

problem through the application of a variable reduction scheme, the process of which 

however gives rise to an option to choose one of the equilibrium equations for necessary 

treatments. It has been observed that both the second order elliptic partial differential 

equations of equilibrium are transformed to the same fourth order partial differential equation 

of equilibrium when expressed in terms potential function ψ. As a result, the two 

formulations, namely Formulation-I and Formulation-II are based on the same governing 

differential equation of equilibrium, although the potential function itself is defined in two 

different ways in case of the two formulations. Finally, the relevant displacement and stress 

components become different in terms of both the derivatives and coefficients when 

expressed in terms of the potential function in the two formulations. 
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 (a)        (b) 

Figure 4.6: Comparison of solutions of the thick-walled pressure vessel obtained by Formulation I 

and II: (a) radial displacement, (b) circumferential stress. 

 

In this section an attempt is made to verify the correspondence between the two formulations 

derived. The capability of the original computer program is extended by incorporating the 

provision of solving a problem using either Formulation-I or Formulation-II. The classical 

stress problem of thick-walled pressure vessel is considered for verifying the correspondence 

of the two formulations and the results are compared. The same boundary conditions as well 

as the finite difference computational mesh network are used to solve the problem using the 

two formulations. All the results of displacement and stress components at different radial 

locations of the body are found to be in excellent agreement with each other. Fig. 4.6 

demonstrated the correspondence between the two formulations through the comparison of 

solution for radial displacement and circumferential stress along the radial direction of the 

pressure vessel. The displacement potential computational method is thus once again verified 

to be founded on sound philosophy as the results obtained through the two formulations are 

in excellent agreement with each other. The accuracy of Formulation-I has already been 

checked by comparing the results with the corresponding results of FEM and stress function 

in Fig. 4.2. Both the computer programs based on Formulation-I and Formulation-II are thus 

verified to be reliable and free from errors. 
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Chapter 05 

ANALYSIS OF CURVED BEAMS 

 

5.1 INTRODUCTION 

Stress field of two different types of curved beams are analyzed under the influence of 

different loading conditions. An efficient algorithm is developed, in which the new 

displacement potential is used to model the problem of curved beams with mixed and 

changeable boundary conditions. Problem-I is a both-ends-fixed curved beam under uniform 

radial pressure. Problem-II is a stiffened curved beam which is rigidly fixed at its one end and 

the other end is subjected to uniform shear and tensile loading. The two opposing curved 

edges of the beam are subjected to rigid circumferential stiffeners. Solutions of stresses and 

displacements along different radial and tangential locations are obtained, some of which, 

especially those around the critical regions are presented in a comparative fashion mainly in 

the form of graphs. Comparison has also been made with the available numerical solutions 

obtained using standard methods. 

 

5.2 BOTH-ENDS-FIXED CURVED BEAM  

A beam of narrow rectangular cross section and with a circular axis is constrained at both 

ends and is under the action of uniformly distributed radial loading on its convex surface as 

shown in Fig. 5.1. The beam has an angular span of 90o and outer to inner radius ratio as, ro/ri 

= 1.75.  

A (45 × 55) uniform curvilinear mesh network is used to discretize the curved beam as shown 

in Fig. 5.2. Analytical solution with mixed boundary conditions like this problem has rarely 

been attempted as the boundary conditions of these practical elastic problems pose serious 

difficulty in their solutions. As a result, no satisfactory analytical solution for this problem is 

available in the literature and thus the solutions from ψ-formulation are only compared with 

the solutions from FEM.  

 



64 
 

 

 

 

 

 

 

 

 

Figure 5.1: Both-ends-fixed curved beam under uniform radial pressure at the outer surface. 

 

 

 

 

 

 

 

 

Figure 5.2: Discretization of the both-ends-fixed curved beam. 

 

The boundary conditions at different surfaces of the beam which are used to generate the 

present DPM solutions are listed in Table 5.1. Special cares have been taken to model the 

boundary conditions at the four corner nodes of the beam, the details of which are illustrated 

in Table 5.2.  
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Table 5.1 

Boundary conditions used for the both-ends-fixed beam for obtaining the present 

solution 

 Boundary conditions 

Problem Boundary Normal component Tangential 

component 

 

 

Both-ends-fixed 

beam  

(Fig. 5.1) 

Right radial surface, θ=0o ur(r, 0)=0 uθ(r, 0)=0 

Left radial surface, θ= θmax ur(r, θmax)=0 uθ(r, θmax)=0 

Outer circumferential surface, 

r=ro 

σr(ro, θ)=−w τrθ(ro, θ)=0 

Inner circumferential surface, 

r=ri 

σr(ri, θ)=0 τrθ(ri, θ)=0 

 

 

Table 5.2 

Boundary condition modeling for the corner points of the both-end-fixed beam  

 Correspondence between mesh-

points and given boundary 

conditions  

Corner 

point* 

Given boundary 

conditions 

Used conditions Mesh point on the 

physical boundary 

Mesh point on 

the imaginary 

boundary 

A [(un, ut), (σn, σt)] [un, ut, σt] uθ=0 ur=0, τrθ=0 

B [(un, ut), (σn, σt)] [un, ut, σt] uθ=0 ur=0, τrθ=0 

C [(un, ut), (σn, σt)] [un, ut, σt] uθ=0 ur=0, τrθ=0 

D [(un, ut), (σn, σt)] [un, ut, σt] uθ=0 ur=0, τrθ=0 

* Refer to Fig. 5.1. 

It can be seen from Table 5.2 that three out of the available four boundary conditions are 

satisfied at each corner nodes of the domain and the remaining one is taken as redundant. It 

can be mentioned that usual computational approaches use two out of four conditions at each 
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corner nodes to generate the solution and thus the stress obtained, especially around the 

corner regions of the two supporting ends deviate more from the actual state of stresses. 

5.2.1 Distribution of displacement components 
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Fig. 5.3: Distribution of (a1) radial displacement along circumferential position, (b1) radial 

displacement along radial position, (a2) tangential displacement along circumferential 

position and (b2) tangential displacement along radial position. 

 

This section describes the distribution of displacement components at different beam sections 

as obtained from the new displacement potential formulation (Formulation-I). In the case of 

present problem, displacement components are normalized with respect to the beam thickness 

(ro-ri). The distribution is presented along both circumferential and radial position of the 

beam. To identify the results of tangential layers at different radial positions, a radial function 

is defined as, ξ = (r-ri)/(ro-ri); ξ = 0 and 1 refer to the inner and outer edges of the curved 
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beam, respectively. For distributions along radial positions, five different radial layers have 

been considered with angular positions as, θ = 0o, 15o, 45o, 60o and 90o. 

Fig. 5.3(a1) describes the distribution of radial displacement along the circumferential 

position of the beam. Distributions for five different tangential layers have been considered 

with the value of radial function ξ = 0, 0.25, 0.5, 0.75 and 1.0. From the distributions it is 

seen that, at both the fixed ends, the radial displacements are zero (as expected), which are 

found to increase from the ends towards the mid-section, and eventually the maximum radial 

displacement is observed at the mid-span section of the beam. Since two ends of the beam are 

fixed, this satisfies the boundary conditions at these two ends properly. Again, the outer 

circumference (convex circumference) of the beam which is loaded by uniform radial 

pressure is found to have the maximum radial displacement. 

Fig. 5.3(b1) shows the distribution of the radial displacement along radial positions of the 

beam. Both the fixed ends of the beam (θ = 0o, 90o) are found to have zero radial 

displacement and thus conforms to the applied boundary condition appropriately. Maximum 

radial displacement is found to occur at the radial layer with, θ = 45o. Radial displacement is 

found to vary almost linearly along the radial position of the beam. 

 Fig. 5.3(a2) and 5.3(b2) describes the distribution of tangential displacement along 

circumferential position and radial position of the beam respectively. From the figure the 

tangential displacement is found to be anti-symmetric about the mid-span section of the 

beam. Maximum tangential displacement is found at the inner circumference of the beam. 

The ends are found to have zero tangential displacement which satisfies the given boundary 

conditions at these ends.  

 

5.2.2 Distribution of stress components 

This section describes the distribution of stress components at different beam sections as 

obtained from the new displacement potential formulation (Formulation-I). For this purpose, 

the stress components are normalized with respect to the radial loading parameter, w. In this 

case also, the distribution is presented along both circumferential and radial position of the 

beam where, different tangential and radial layers of the beam are expressed by different 

values of ξ and θ respectively. 
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Figure 5.4: Distribution of (a1) radial stress along circumferential position, (b1) radial stress 

along radial position, (a2) tangential stress along circumferential position, (b2) tangential 

stress along radial position, (a3) shear stress along circumferential position, (b3) shear stress 

along radial position. 
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Fig. 5.4(a1) describes the distribution of radial stress component along the beam 

circumference. As expected, the distribution is found to be symmetric about the mid-span of 

the beam. The inner and outer circumference of the beam is found to have zero and unity 

value of normalized radial stress respectively. This is in perfect agreement with the given 

boundary conditions at inner and outer circumference of the curved beam. The radial stress 

for rest of the tangential layers resides in between the inner and outer layer of the beam. Fig. 

5.4(b1) shows the distribution of radial stress along the radial position for five different 

tangential positions (θ = 0o, 15o, 45o, 60o and 90o) of the beam. The value of normalized 

radial stress is found to vary in between zero and unity except the two fixed ends which is 

found to experience a stress concentration just before the inner and outer circumferences of 

the beam. 

Fig. 5.4(a2) illustrates the distribution of tangential stress component along circumferential 

position of the beam. Again in this case also the distribution is found to be symmetrical about 

the mid-span of the beam. The maximum tangential stress occurs at the inner circumference 

of the beam followed by the outer circumference. Fig. 5.4(b2) shows the distribution of 

tangential stress along radial position of the beam. The maximum stress occurs at the fixed 

ends of the beam which is found to be more than 8 times the applied loading. Fig. 5.4(a3) 

depicts the variation of shear stress along the circumference of the beam. The shear stress 

component is found to be anti-symmetric about the mid-span of the beam. The inner and 

outer circumference of the beam is found to have zero shear stress which satisfies the applied 

boundary condition appropriately. Distribution of shear stress along the radial position is 

shown in Fig. 5.4(b3). Shear stress for all the radial layers is found to have zero value at inner 

and outer radius of the beam. Shear stress is found to be zero along the θ = 45o layer which is 

the layer of symmetry. 

 

5.2.3 Effect of curvature 

This section describes the effects of curvature on the distribution of tangential stress and 

shear stress components. Here, the fixed end has been chosen as the section of interest to 

demonstrate the effect as it has been identified as the most critical section of the beam in 

terms of stresses. This effect is realized in terms of a curvature parameter Cr which is defined 

by the following relation [23]: 
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(5.1) 

The results have been shown for five different values of Cr ranging from 0.26 to 1.09. It is 

important to mention here that the thickness of the beam is kept constant for all five cases of 

different curvature values. 
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Figure 5.5: Effect of curvature on the distribution of: (a) tangential stress, (b) shear stress at 

inner fixed end. 

 

Fig. 5.5(a) shows the effect of curvature on the tangential stress component along the radial 

position at the fixed end of the beam. The tangential stress is found to increase with the 

decrease of curvature and the maximum value of stress is observed at the inner radial position 

of the beam. Fig. 5.5(b) demonstrates the effect of curvature on the shear stress component 

along the radial position at the fixed end of the bar. The shear stress is also found to increase 

with the decrease of curvature. A stress concentration is observed at the inner and outer radial 

locations of the beam for Cr ≤ 0.4. 

 

5.2.4 Deformed shape 

Fig. 5.6 describes the original and deformed shapes of the both-ends-fixed beam under 

uniform radial pressure over its convex surface. The deformation is 1000 times magnified to 

make the deformation observable. As expected, no deformation can be observed at the fixed 
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ends of the beam. Deformation increases from zero to maximum value from the fixed end to 

the mid-circumference of the beam. Moreover the deformed shape of the beam is found to be 

symmetrical about the mid-circumference likewise the original shape of the beam. 

 

 

 

 

 

 

 

 

Figure 5.6: Original and deformed shapes of the both-ends-fixed curved beam (ro/ri = 1.75) 

under uniform radial pressure (magnification factor = 1000). 

 

 

5.2.5 Comparison of the present ψ-formulation solution with the FEM solution 

Analytical solutions of stress problem with mixed boundary conditions, like the present beam 

problem have rarely been attempted as the boundary conditions pose serious difficulty in 

their solution process. It is mentioned that exact analytical solution for stresses in the built-in 

beam is not available in the literature, and thus the present ψ- solutions are compared with the 

corresponding solutions obtained by FEM. Finite element solutions were obtained using the 

same PLANE 183 element with a dense element network that comprises of a total 12780 

nodal points. 

 

                        Original Shape 

                        Deformed Shape 

Fixed support 
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Figure 5.7: Comparison of solutions of displacement components at different sections of the both-

ends-fixed curved beam (Problem-II): (a) radial displacement, (b) circumferential displacement. 

 

Fig. 5.7(a) presents the distribution of radial displacement along the inner and outer 

circumferences of the beam. The inner and outer circumferences have been chosen here for 

consideration, because the maximum and minimum radial displacements are found to occur 

at these surfaces. The figure compares the present DPM solutions with the corresponding 

FEM solutions of the beam. From the distributions it is seen that, at both the fixed ends, the 

radial displacements are zero (as expected), which are found to increase from the ends 

towards the mid-section, and eventually the maximum radial displacement is observed at the 

mid-span section of the beam. The distribution of tangential component of displacement for 

two different circumferential sections (θ = 30o, θ = 70o) is shown along the beam depth in 

Fig. 5.7(b). It should be noted here that due to the anti-symmetric nature of distribution of the 

tangential displacement component with respect to mid-span section, the value of tangential 

displacement for θ = 30o changes from negative to positive value at the inner and outer 

circumference, respectively, whereas the displacement for θ = 70o decreases from its 

maximum positive value at the inner surface to a negative value at the outer circumference of 

the beam. From the comparison of two solutions, namely, DPM and FEM for both the 

displacement components at different sections of beam, it is observed that the two solutions 

are in excellent agreement with each other, both in terms of magnitude as well as nature of 

variation. 

 

θ = 30o 

θ = 70o 
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   (a)       (b) 

Figure 5.8: Comparison of solutions of stress components at different sections of the both-ends-fixed 

curved beam (Problem- II): (a) circumferential stress, (b) shear stress. 

 

Fig. 5.8 shows the comparison of solutions of stress components at different sections of the 

beam. Fig 5.8(a) shows the distribution of the normalized bending stress along the beam 

depth for two different circumferential sections of the beam. The distributions are found to 

differ from the standard linear distributions of bending stresses in a straight beam. More 

specifically, the nonlinearity associated with the distributions is prominent particularly for the 

lower half of the beam depth. Bending stress distributions for sections θ = 30o and 45o show 

that the majority portion of the beam is under compression. More specifically, for the mid-

span section (θ = 45o), only 1% of the depth near the inner boundary is under tension. Fig. 

5.8(b) depicts the distribution of shear stress over the beam depth for two different 

circumferential sections, θ = 30o and 70o. Due to anti-symmetric nature of the distribution, 

one of the distributions is concave upward and the other is concave downward. At both the 

inner and outer surface of the beam, the value of shear stress is found to be zero, which, in 

turn, reveals the conformity of the present solutions with the given boundary conditions (τrθ = 

0 at both r = ri and r = ro ). Another interesting thing is that the curvature of the beam causes 

the shear distribution over the beam depth to deviate from the standard parabolic distribution 

obtained for the case of straight slender beams. Likewise the case of displacements, the 

present single function computational solutions for stress at different sections of the beam are 

found to be in excellent agreement with the corresponding solutions of standard 

computational approach.  

 

θ = 30o 

θ = 45o 

θ = 30o 

θ = 70o 
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5.3 STIFFENED CURVED BEAMS 

A curved beam with circular axis is considered, where the inner and outer edges of the beam 

are subjected to circumferential stiffeners. The beam is assumed to have a narrow rectangular 

cross section with an angular span of 90o, and the outer to inner radius ratio (ro/ri) is varied 

over a range from 1.1 to 3.0. One end of the beam is rigidly fixed and the other end is 

subjected to two different loading conditions as illustrated in Fig. 5.9. Material properties of 

the beam, namely, modulus of elasticity and Poisson’s ratio are taken as E = 207 GPa and ν = 

0.29, respectively. A uniform curvilinear mesh network of (61×71) mesh points is used to 

discretize the curved beam.  

The use of stiffeners in the construction of marine and aerospace structure is quite extensive. 

The stiffeners are basically designed to meet the strength or stiffness requirements of a 

particular situation. At the stiffened boundary the stiffness of the material is very high which 

implies a very low strain and thus a very low deformation. Stiffeners are mathematically 

modeled by considering zero strain/displacement at the stiffened region. In case where rigid 

body motion of the structure is allowed the stiffener is mainly modeled by considering zero 

strain at the stiffened region but in case where rigid body motion is not allowed and the 

stiffener is connected to the fixed end zero strain condition and zero displacement condition 

both gives the same effect. 

 

 

 

 

 

   (a)      (b) 

Figure 5.9: Thick stiffened curved beam under (a) shear loading (case- I); (b) tensile loading        

(case- II). 

The boundary conditions at different surfaces of the beam which are used to generate the 

present DPM solutions are listed in Table 5.3 and 5.4. Special cares have been taken to model 
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the boundary conditions at the four corner nodes of the beam, the details of which are 

illustrated in Table 5.5 and 5.6.  

 

Table 5.3 

Boundary conditions used for the curved stiffened beam under shear for obtaining the present 

solution 

 Boundary conditions 

Problem Boundary Normal component Tangential 

component 

 

Curved stiffened 

beam 

(Fig. 5.9(a)) 

Left radial surface, θ=0o ur(r, 0)=0 uθ(r, 0)=0 

Right radial surface, θ= θmax σθ(r, θ)=0 τrθ(ro, θ)=−w 

Outer circumferential surface, 

r=ro 

σr(ro, θ)=0 uθ(ro, θ)=0 

Inner circumferential surface, 

r=ri 

σr(ri, θ)=0 uθ(ri, θ)=0 

 

 

Table 5.4 

Boundary conditions used for the curved stiffened beam under tension for obtaining the 

present solution 

 Boundary conditions 

Problem Boundary Normal component Tangential 

component 

 

Curved stiffened 

beam 

(Fig. 5.9(b)) 

Left radial surface, θ=0o ur(r, 0)=0 uθ(r, 0)=0 

Right radial surface, θ= θmax σθ(r, θ)=w τrθ(ro, θ)=0 

Outer circumferential surface, 

r=ro 

σr(ro, θ)=0 uθ(ro, θ)=0 

Inner circumferential surface, 

r=ri 

σr(ri, θ)=0 uθ(ri, θ)=0 
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Table 5.5 

Boundary condition modeling for the corner points of the curved stiffened beam under shear  

 Correspondence between mesh-

points and given boundary 

conditions  

Corner 

point* 

Given boundary 

conditions 

Used conditions Mesh point on the 

physical boundary 

Mesh point on 

the imaginary 

boundary 

A [(un, ut), (σn, ut)] [un, ut, σn] uθ=0 ur=0, σr=0 

B [(σn, ut), (σn, σt)] [σn, σn, σt] σθ=0 σr=0, τrθ=−w 

C [(σn, ut), (σn, σt)] [σn, σn, σt] σθ=0 σr=0, τrθ=−w 

D [(un, ut), (σn, ut)] [un, ut, σn] uθ=0 ur=0, σr=0 

* Refer to Figure 5.9(a). 

 

Table 5.6 

Boundary condition modeling for the corner points of the curved stiffened beam under 

tension  

 Correspondence between mesh-

points and given boundary 

conditions  

Corner 

point* 

Given boundary 

conditions 

Used conditions Mesh point on the 

physical boundary 

Mesh point on 

the imaginary 

boundary 

A [(un, ut), (σn, ut)] [un, ut, σn] uθ=0 ur=0, σr=0 

B [(σn, ut), (σn, σt)] [σn, σn, σt] σθ=w σr=0, τrθ=0 

C [(σn, ut), (σn, σt)] [σn, σn, σt] σθ=w σr=0, τrθ=0 

D [(un, ut), (σn, ut)] [un, ut, σn] uθ=0 ur=0, σr=0 

* Refer to Figure 5.9(b). 
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5.3.1 Distribution of displacement components 

The solution for the distribution of displacement components of the stiffened curved beam as 

obtained by the present ψ- formulation (Formulation- II) is presented in this section. To make 

the results non-dimensional, the displacements are expressed as the ratio of the actual 

displacement and the thickness of the beam. To identify the results of tangential layers at 

different radial positions, a radial function is defined as, ξ = (r-ri)/(ro-ri); ξ = 0 and 1 refer to 

the inner and outer edges of the curved beam, respectively.  

Fig. 5.10(a.1) and 5.10(b.1) describes the distribution of radial displacement along the length 

of the curved beam for case- I and case- II respectively. In both cases, the radial displacement 

is zero at the fixed end which is in full agreement with the given boundary condition at this 

end. For both shear and tensile loading the radial displacement is found to be dominant near 

the loaded end of the beam. 
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Figure 5.10: Distribution of displacement components along the beam length for (a) shear 

loading (case- I), (b) tensile loading (case- II) 
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Fig. 5.10(a.2) and 5.10(b.2) show the distributions of circumferential displacement along the 

length of the curved beam for case-I and case-II, respectively. In both cases, circumferential 

displacement along the inner and outer circumference is zero. This is in full conformity with 

the given boundary conditions for the circumferential stiffeners. In both cases, 

circumferential displacement becomes dominant for the regions near the loaded end. For the 

two different types of loadings, the distributions as well as the magnitudes of maximum 

circumferential displacements are found to be very similar. 

 

5.3.2 Deformed shape  

 

 

 

 

 

 

 

       (a)        (b) 

Figure 5.11: Original and deformed shapes for (a) case-I (magnification factor = 1000), (b) 

case-II (magnification factor = 5000) 

 

Fig. 5.11(a) and (b) illustrate the original and deformed shapes of the curved beam (ro/ri = 

1.5) for both the cases of shear loading and tensile loading, respectively. The deformed 

shapes are found to assume somewhat similar configuration even though the corresponding 

loadings were different from each other. This is mainly because of the supporting condition 

as well as initial curvature of the bar. 

5.3.3 Distribution of stress components 

Original shape 

Deformed shape 
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This section describes the distribution of stress components at different sections of the beam. 

To make the results non-dimensional, the stresses are expressed as the ratio of the stress and 

the applied loading parameter, w. To identify the results of tangential layers at different radial 

positions, a radial function is defined as, ξ = (r-ri)/(ro-ri); ξ = 0 and 1 refer to the inner and 

outer edges of the curved beam, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Distributions of stress components at various radial sections of the curved beam 

(ro/ri = 1.5): (a) shear loading; (b) tensile loading. 

 

Fig. 5.12(a.1) describes the distribution of the tangential stress along the circumferential 

position of the beam for under shear loading case. From the distributions, the maximum 

tangential stress is found to occur at the inner circumference of the beam followed by the 

outer circumference. The maximum stress occurs at a section just before the radial loaded 

end, the value of which is nearly 2.4 times the applied shear loading. The value of tangential 

stress at the loaded end is found to be zero, which satisfies one of the applied boundary 
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conditions at this end. Fig. 5.12 (b.1) shows the similar distributions for case-II. In this case 

the value of tangential stress at the loaded end is unity, which matches exactly with the 

applied loading condition. Fig. 5.12(a.2) and 5.12(b.2) show the distribution of shear stress 

along the circumferential positions of the beam for case-I and case-II, respectively. It is seen 

from the distributions that, for case-I, maximum shear stress occurs at the outer 

circumference of the beam, whereas, for case-II, maximum shear stress occurs at the inner 

circumference of the beam. Shear stress at the upper radial surface is found to be unity and 

zero for case-I and case-II respectively, which is in good agreement with applied loading.  

 

5.3.4 Effect of beam thickness 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Effect of beam thickness on the stress distribution at stiffened sections: (a) shear 

loading (b) tensile loading. 
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The effect of beam thickness on the distribution of circumferential and shear stresses at the 

stiffened sections is described in this section. This effect is realized in terms of a ratio of 

outer radius to inner radius, and the results are shown for five different bar thicknesses 

ranging from 1.1 to 3.0. Here, the inner circumference has been chosen as the section of 

interest to demonstrate the effect for all the thickness ratios, as it has been identified as the 

most critical section of the bar in terms of stresses except for shear stresses in case-I. 

Figure 5.13(a.1) and 5.13(b.1) demonstrate the effect of beam thickness on the distribution of 

circumferential stress for case-I and case-II respectively. From the figures it can be seen that 

the values of tangential stress increase with the increase of the beam thickness for both shear 

and tensile loading conditions. Shear stress distributions are also found to experience the 

similar effect of beam thickness as observed from figures 5.13(a.2) and 5.13(b.2). In this 

case, concentration of stress is observed just before the loaded end of the bar, the intensity of 

which is however found to increase for higher thickness ratios.  

 

5.4 CONCLUSIONS  

Two classical problems of solid mechanics have been analyzed using the present 

displacement potential formulation. In case of the both-ends-fixed beam problem the 

solutions are compared with the available numerical solution. All the comparisons show a 

very good agreement between the present displacement potential method (DPM) solution and 

other available solutions. The effect of beam curvature and the deformed shape of the both-

ends-fixed beam have also been described using the present DPM solution. For the stiffened 

curved beam problem, it is observed that the beam becomes more critical in terms of stresses 

under shear loading compared to that under tensile loading of identical intensity. More 

importantly, both the circumferential and shear stresses are found to be more or less equally 

dominant in defining the overall state of stress at the stiffened edges, which is however not 

the case for straight beams. In that case, shear stress is found to be mainly responsible to 

describe the corresponding stress state. Finally, both the shear and tangential stresses at the 

stiffened edges are found to vary quite significantly by the aspect ratio of the curved beam.  
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Chapter 06 

ANALYSIS OF DEEP ARCHES  

 

6.1 INTRODUCTION 

An arch is a structure that spans a space and supports structure and weight above it. Arches 

have many forms, but all fall into three basic categories: Circular, pointed, and parabolic. The 

semicircular arch is among the most popular arch forms used by designers today. Its smooth, 

continuous curve makes it easily adaptable to various styles and applications. Usually these 

arches carry compressive loads. Today arches are mainly made of steel or of reinforced or 

pre-stressed concrete and can support both tensile as well as compressive loads. In this 

chapter, using the present displacement potential method (DPM), two semi-circular arch 

problems have been solved numerically. In order to obtain the numerical results of the 

problems, values for Young’s modulus and Poisson’s ratio of 207 GPa and 0.29, respectively, 

are used. Problem-I is an example of a deep semi-circular arch problem. The arch considered 

here is simply supported at both ends and is subjected to the action of uniform radial pressure 

over a certain portion (21%) of its angular span at the convex surface of the arch. In this case, 

the ratio of the outer to inner radius is ro/ ri = 1.25. Problem-II is another example of a deep 

semi-circular arch problem, but in this case the arch considered is fixed at both ends and 

under the action of uniform radial pressure over a certain portion of its angular span at the 

convex surface of the arch. In this case, the ratio of the outer to inner radius is ro/ ri = 1.25. 

Solutions of stresses and displacements of both the problems are presented along different 

radial and circumferential sections of the arch. Effect of curvature is also considered for the 

analysis of the problems. 

 

6.2 SEMI-CIRCULAR DEEP ARCH WITH SIMPLE SUPPORTS  

A semi-circular simply supported deep arch is considered as the first problem of this chapter 

to demonstrate the capability of the present mathematical and numerical modeling to solve 

arch problems. The arch considered here has the ratio of the outer to inner radius, ro/ ri = 1.25 

and the angular span 180o. It is simply supported at both ends and under the action of uniform 
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radial pressure over 21% of its angular span applied symmetrically from the mid-span at the 

convex surface of the arch. The geometry and loading condition of the arch are shown in Fig. 

6.1. 

 

 

 

 

 

 

 

Figure 6.1: Geometry and loading of the semi-circular simply supported arch. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Discretization of the semi-circular deep arch. 

A uniform curvilinear finite difference mesh network of (45×55) nodes is used to solve the 

problem (Fig. 6.2). The mathematical conditions used to model the actual physical conditions 

at the two radial and two circumferential surfaces of the arch are described in Table 6.1. In 

this case, no special care is necessary to model the four corner points of the arch as there are 

only three conditions available at each corner point due to the common zero shear stress 

condition from each side of the corner points.  
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Table- 6.1 

Boundary conditions used for the semi-circular simply supported deep arch for obtaining the 

present solution 

 Boundary conditions 

Problem Boundary Normal component Tangential 

component 

 

 

Semi-circular 

simply supported 

deep arch (Fig. 

6.1) 

Right radial surface, θ=0o uθ(r, 0)=0 τrθ(r, 0)=0 

Left radial surface, θ= θmax uθ(r, θmax)=0 τrθ(r, θmax)=0 

Outer circumferential 

surface, r=ro 

0
      (71 109 )

( , )
         (otherwise)

o

r o

w
r

o


 

  
 


 
τrθ (ro, θ)=0 

Inner circumferential 

surface, r=ri 
σr(ri, θ)=0 τrθ (ri, θ)=0 

 

 

6.2.1 Distribution of displacement components  

This section describes the distribution of displacement components at different sections of the 

arch as obtained from the new displacement potential formulation (Formulation-I). In the 

case of present problem, displacement components are normalized with respect to the beam 

thickness (ro-ri). The distribution is presented along both circumferential and radial position 

of the arch. To identify the results of tangential layers at different radial positions, a radial 

function is defined as, ξ = (r-ri)/(ro-ri); ξ = 0 and 1 refer to the inner and outer edges of the 

curved beam, respectively. For distributions along radial positions, five different radial layers 

have been considered with angular positions as, θ = 0o, 45o, 95o, 150o and 180o. 

Fig. 6.3(a1) describes the distribution of radial displacement along the circumferential 

position of the arch. Distributions for five different tangential layers have been considered 

with the value of radial function ξ = 0, 0.25, 0.5, 0.75 and 1.0. From the distribution the radial 

displacement is found to be the maximum at the mid-circumferential position of the arch 

where the radial is applied. The distribution for different tangential layers is found to be very 

similar and in fact no significant difference can be observed in terms of nature of variation 

and value from this graph. This small difference is due to the small thickness of the arch 

compared to its inner and outer radius. Fig. 6.3(b1) shows the distribution of radial 

displacement along radial location of the arch. For all the sections radial displacement is also 
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found to be almost constant throughout the radial location of the arch and the maximum 

radial displacement is observed at mid-circumferential location (θ = 90o) of the arch. 
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Figure 6.3: Distribution of displacement components of the deep simply supported arch 

along (a) circumferential position, (b) radial position.  

 

Fig. 6.3(a2) and (b2) shows the distribution of tangential displacement along the 

circumferential and radial locations respectively. At both the simply supported ends the 

tangential displacement is found to be zero which is in complete agreement with the applied 

boundary condition [Table 6.1]. The distribution is found to be symmetric about the mid-

circumference of the arch with a zero tangential displacement at this position. This is also in a 

good agreement with the expected solution, as the problem is symmetric about the mid-

circumference of the arch both in terms of geometry and boundary conditions.   
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6.2.2 Distribution of stress components  
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Figure 6.4: Distribution of (a1) radial stress along circumferential position, (b1) radial stress 

along radial position, (a2) tangential stress along circumferential position, (b2) tangential 

stress along radial position, (a3) shear stress along circumferential position, (b3) shear stress 

along radial position. 
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This section describes the distribution of stress components at different sections of the arch. 

Here, stress components are normalized with respect to the applied loading parameter, w. The 

distribution is presented along both circumferential and radial position of the arch. Different 

tangential and radial layers are identified in the similar manner as in the case of displacement 

components. 

Fig. 6.4(a1) and (b1) describe the distribution of radial stress along the circumferential and 

radial locations of the simply supported arch respectively.  Both the figures show zero radial 

stress at the inner and outer circumference of the arch except the region under loading where 

the radial stress is equal to the applied loading. This is in perfect match with the applied 

boundary condition [Table 6.1]. It is also observed that radial stress is small compared to the 

applied loading for rest of the regions of the arch. 

Fig. 6.4(a2) describes the distribution of tangential stress along the circumferential position of 

the simply supported arch. For the layers with ξ = 0, 0.25 and 0.5, the arch is found to be 

under compression for the regions near the simple support (almost 32% of the circumference 

from each end) and under tension for the regions near the mid circumference. For rest of the 

tangential layer vice-versa is observed. Maximum stress is found at the inner circumference 

of the arch. 

Fig. 6.4(b2) describes the distribution of tangential stress along the radial position of the arch. 

Tangential stress is found to change from compression to tension from inner to outer radius 

of the arch for all the sections except the section at θ = 90o where the tangential stress is 

found to change from tension to compression from inner to outer radius of the arch. 

Maximum tangential stress is found to occur at the θ = 90o section with a value more than 20 

times of the applied loading at the inner circumference of the arch. 

 Fig. 6.4(a3) and (b3) describes the distribution of shear stress along the circumferential and 

radial position of the simply supported arch. From both the graphs the shear stress is found to 

be zero at the inner and outer circumference of the arch. This is in full conformity with the 

applied boundary condition at these two ends [Table 6.1]. Again the distribution is found to 

be symmetric about the mid-circumference of the arch with zero shear stress at the axis of 

symmetry likewise the case of tangential displacement which is the due to the symmetric 

nature of the problem about the mid-circumference of the arch. Moreover maximum shear 

stress is found to occur at the layer with ξ = 0.5 near the section with θ = 70o and 110o.     
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6.2.3 Effect of curvature 

This section describes the effects of curvature on the distribution of tangential stress 

component. The effect of curvature on the distribution has been shown for both along 

circumferential location and radial location of the arch. For distribution along circumference 

of the arch, inner circumference has been chosen as the section of interest as it has been 

identified as the tangential layer with maximum tangential stress (Fig. 6.3(a2)). For 

distribution along radial position, θ = 90o section has been chosen as the section of interest to 

demonstrate the effect as it has been identified as the most critical section of the beam in 

terms of tangential stress (Fig. 6.3 (b2)). This effect is realized in terms of a curvature 

parameter Cr which is defined by the following relation: 
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The results have been shown for five different values of Cr ranging from 0.26 to 1.09. It is 

important to mention here that the thickness of the arch is kept constant for all five cases of 

different curvature values. 
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Figure 6.5: Effect of curvature on the distribution of tangential stress along (a) 

circumferential position at the inner circumference, (b) radial position at θ = 90o section. 

 

Fig. 6.5(a) describes the effect of curvature on the distribution of tangential stress along the 

circumferential location of the arch at the inner circumference. With a decrease of curvature, 

the tangential stress is found to increase throughout the circumference of the arch for all the 
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Original Shape

Deformed Shape

cases except the one with Cr = 0.095. In this case, tangential stress is found to decrease at the 

mid-circumferential region though significantly increases at both the ends of the arch. 

Finally, maximum value of tangential stress at the mid-circumference is found to be more 

than 20 times the applied loading, whereas more than 40 times the applied loading at the 

simply supported ends of the arch. 

Fig. 6.5(b) describes the effect of curvature on the distribution of tangential stress along the 

radial location at θ = 90o section of the arch. Likewise the previous figure, tangential stress is 

found to increase with decrease in curvature of the arch in all cases except the case with Cr = 

0.095 where the tangential stress is found to decrease with respect to the previous lower 

curvature arch (Cr = 0.223). Finally maximum tangential stress is found to occur at the inner 

circumference of the arch which is more than 20 times the applied loading. 

 

6.2.4 Deformed shape of the semi-circular simply supported deep arch 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Original and deformed shape of the semi-circular simply supported deep arch 

(magnification factor = 1000). 

 

Fig. 6.6 shows the original and deformed shapes of the semi-circular simply supported deep 

arch. The deformation is 1000 times magnified to make the deformation observable. Major 

change in shape is observed at the regions near the mid-circumference of the arch which is 

under the action of uniformly distributed radial pressure. The two roller supported ends are 
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found to move from its original position. Finally, the deformed shape of the beam is found to 

be symmetrical about the mid-circumference likewise the original shape of the beam. 

 

6.3 SEMI-CIRCULAR DEEP ARCH WITH BUILT-IN SUPPORTS  

A semi-circular deep arch with fixed-fixed end condition is considered as the second problem 

of this chapter. The arch considered here has the ratio of the outer to inner radius, ro/ ri = 1.5 

and the angular span 180o. It is rigidly fixed at both ends and under the action of uniform 

radial pressure over 21% of its angular span applied symmetrically from the mid-span at the 

convex surface of the arch. The geometry and loading condition of the arch are shown in 

figure 6.7. 

 

 

 

 

 

 

Figure 6.7: Geometry and loading of the semi-circular both-ends-fixed deep arch. 

 

A uniform curvilinear finite difference mesh network of (45×55) nodes is used to solve the 

problem (Fig. 6.2). The mathematical conditions used to model the actual physical conditions 

at the two radial and two circumferential surfaces of the arch are described in Table 6.2. 

Special cares have been taken to model the boundary conditions at the four corner nodes of 

the beam, the details of which are illustrated in Table 6.3. 
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Table 6.2 

Boundary conditions used for the both-ends-fixed semi-circular deep arch for 

obtaining the present solution 

 Boundary conditions 

Problem Boundary Normal component Tangential 

component 

 

 

Both-ends-fixed 

semi-circular arch  

(Fig. 6.7) 

Right radial surface, θ=0o ur(r, 0)=0 uθ(r, 0)=0 

Left radial surface, θ= θmax ur(r, θmax)=0 uθ(r, θmax)=0 

Outer circumferential 

surface, r=ro 

(i) σr(ro, θ)=‒w; for 
loaded portion, 
(ii) σr(ro, θ)=0; for 
unloaded portion 

 

τrθ(ro, θ)=0 

Inner circumferential 

surface, r=ri 

σr(ri, θ)=0 τrθ(ri, θ)=0 

 

 

Table 6.3 

Boundary condition modeling for the corner points of the both-end-fixed semi-

circular deep arch  

 Correspondence between mesh-

points and given boundary 

conditions  

Corner 

point* 

Given boundary 

conditions 

Used conditions Mesh point on the 

physical 

boundary 

Mesh point on 

the imaginary 

boundary 

A [(un, ut), (σn, σt)] [un, ut, σt] uθ=0 ur=0, τrθ=0 

B [(un, ut), (σn, σt)] [un, ut, σt] uθ=0 ur=0, τrθ=0 

C [(un, ut), (σn, σt)] [un, ut, σt] uθ=0 ur=0, τrθ=0 

D [(un, ut), (σn, σt)] [un, ut, σt] uθ=0 ur=0, τrθ=0 

* Refer to Figure 6.7. 
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6.3.1 Distribution of displacement components  

This section describes the distribution of displacement components at different sections of the 

arch as obtained from the new displacement potential formulation (Formulation-I). In the 

case of present problem, displacement components are normalized with respect to the beam 

thickness (ro-ri). The distribution is presented along both circumferential and radial position 

of the arch. To identify the results of tangential layers at different radial positions, a radial 

function is defined as, ξ = (r-ri)/(ro-ri); ξ = 0 and 1 refer to the inner and outer edges of the 

curved beam, respectively. For distributions along radial positions, five different radial layers 

have been considered with angular positions as, θ = 0o, 45o, 95o, 150o and 180o. 
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Figure 6.8: Distribution of displacement components of the both-ends-fixed deep arch along 

(a) circumferential position, (b) radial position.  
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Fig. 6.8(a1) describes the distribution of radial displacement along the circumferential 

position of the arch. Distributions for five different tangential layers have been considered 

with the value of radial function ξ = 0, 0.25, 0.5, 0.75 and 1.0. From the distribution the radial 

displacement is found to be the maximum at the mid-circumferential position of the arch 

where the radial is applied. The distribution for different tangential layers is found to be very 

similar and in fact no significant difference can be observed in terms of nature of variation 

and value from this graph. This small difference is due to the small thickness of the arch 

compared to its inner and outer radius. Fig. 6.8(b1) shows the distribution of radial 

displacement along radial location of the arch. For all the sections radial displacement is also 

found to be almost constant throughout the radial location of the arch and the maximum 

radial displacement is observed at mid-circumferential location (θ = 90o) of the arch. Finally 

both 6.8(a1) and (b1) shows zero radial displacement at the fixed end of the arch which 

actually proves the conformity of the solution with the given boundary conditions [Table 

6.2]. 

Fig. 6.8(a2) and (b2) shows the distribution of tangential displacement along the 

circumferential and radial locations respectively. At both the fixed ends the tangential 

displacement is found to be zero which is in complete agreement with the applied boundary 

condition [Table 6.2]. Moreover the zero tangential displacement is observed at the mid 

circumferential location (θ = 90o) of the arch which represents the axis of symmetry for this 

problem. Finally the distribution of tangential displacement is found to be symmetric about 

this mid-circumferential section (θ = 90o) of the arch which is in a good agreement with the 

expected solution, as the problem is symmetric about the mid-circumference of the arch both 

in terms of geometry and boundary conditions.   

 

6.3.2 Distribution of stress components 

This section describes the distribution of stress components at different sections of the arch. 

Here, stress components are normalized with respect to the applied loading parameter, w. The 

distribution is presented along both circumferential and radial position of the arch. Different 

tangential and radial layers are identified in the similar manner as in the case of displacement 

components. 
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Figure 6.9: Distribution of (a1) radial stress along circumferential position, (b1) radial stress 

along radial position, (a2) tangential stress along circumferential position, (b2) tangential 

stress along radial position, (a3) shear stress along circumferential position, (b3) shear stress 

along radial position. 
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Fig. 6.9(a1) and (b1) describe the distribution of radial stress along the circumferential and 

radial locations of the both-ends-fixed arch respectively.  Both the figures show zero radial 

stress at the inner and outer circumference of the arch except the region under loading where 

the radial stress is equal to the applied loading. This is in perfect match with the applied 

boundary condition [Table 6.2]. It is also observed that radial stress is relatively small 

compared to the applied loading for rest of the regions of the arch. 

Fig. 6.9(a2) describes the distribution of tangential stress along the circumferential position of 

the both-ends-fixed arch. Inner circumferential layer is found to be under maximum 

tangential stress followed by the outer circumferential layer. Rest of the tangential layers lie 

in-between these two layers. Moreover, the maximum value of tangential stress is almost 4.67 

times the applied loading and found at an angular position about 51o from either of the fixed 

ends. Finally the distribution is found to be symmetrical about the mid-circumference as 

expected. 

Fig. 6.9(b2) describes the distribution of tangential stress along the radial position of the arch. 

Tangential stress is found to be compressive stress for all the sections except the section at θ 

= 90o where the tangential stress is found to change from tension to compression from inner 

to outer radius of the arch. Among these five sections maximum tangential stress is found to 

occur at the θ = 45o section with a value just less than 4 times the applied loading at the inner 

circumference of the arch. 

Fig. 6.9(a3) and (b3) describes the distribution of shear stress along the circumferential and 

radial position of the both-ends-fixed deep arch. From both the graphs the shear stress is 

found to be zero at the inner and outer circumference of the arch. This is in full conformity 

with the applied boundary condition at these two ends [Table 6.2]. Again the distribution is 

found to be symmetric about the mid-circumference of the arch with zero shear stress at the 

axis of symmetry likewise the case of tangential displacement which is the due to the 

symmetric nature of the problem about the mid-circumference of the arch. Moreover 

maximum shear stress is found to occur at the layer with ξ = 0.5 near the section with θ = 74o 

from either of the fixed ends. Finally the maximum value of the shear stress found from these 

graph is almost 0.94 times the applied loading parameter, w.      
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6.3.3 Effect of curvature 

This section describes the effects of curvature on the distribution of tangential stress 

component. The effect of curvature on the distribution has been shown for both along 

circumferential location and radial location of the arch. For distribution along circumference 

of the arch, inner circumference has been chosen as the section of interest as it has been 

identified as the tangential layer with maximum tangential stress (Fig. 6.9(a2)). For 

distribution along radial position, θ = 45o section has been chosen as the section of interest to 

demonstrate the effect as it has been identified as the most critical section of the beam in 

terms of tangential stress (Fig. 6.9(b2)). This effect is realized in terms of a curvature 

parameter Cr which is defined by the following relation: 
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The results have been shown for five different values of Cr ranging from 0.26 to 1.09. It is 

important to mention here that the thickness of the arch is kept constant for all five cases of 

different curvature values. 
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Figure 6.10: Effect of curvature on the distribution of tangential stress along (a) 

circumferential position at the inner circumference, (b) radial position at θ = 45o section. 

 

Fig. 6.10(a) describes the effect of curvature on the distribution of tangential stress along the 

circumferential location of the arch at the inner circumference. With a decrease of curvature, 

the tangential stress is found to increase throughout the circumference of the arch for all the 

cases. For the case with Cr = 0.095, tangential stress is found to increase tremendously 
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compared to other cases. Moreover, the maximum value of tangential stress is found to be 

more than 31 times the applied loading at an angular position θ = 58o  form either of the fixed 

ends of the arch. 

Fig. 6.10(b) describes the effect of curvature on the distribution of tangential stress along the 

radial location at θ = 45o section of the arch. Likewise the previous figure, tangential stress is 

found to increase with decrease in curvature of the arch. Again the case with Cr = 0.095 

shows a rapid increase of tangential stress with respect to the previous lower curvature arch 

(Cr = 0.223). Finally the maximum tangential stress is found to occur at the inner 

circumference for all the cases except the case with Cr = 0.095 where the maximum 

tangential is found to occur at the outer circumference of the arch which is almost 12 times 

the applied loading. 

 

6.3.4 Deformed shape 

Original Shape

Deformed Shape

 
Figure 6.11: Original and deformed shape of the both-ends-fixed deep arch (magnification factor = 

3000). 

Fig. 6.11 shows the original and deformed shapes of the semi-circular both-ends-fixed deep 

arch. The deformation is 3000 times magnified to make it observable. Major change in shape 

is observed at the regions near the mid-circumference of the arch which is under the action of 

uniformly distributed radial pressure. The two fixed ends are found to have no deformation. 
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Moreover, the deformations near these fixed ends are found to be insignificant compared to 

the deformation found at the mid-circumference region. Finally, the deformed shape of the 

beam is found to be symmetrical about the mid-circumference likewise the original shape of 

the beam. 

 

6.4 CONCLUSIONS 

Two classical arch problems have been solved using the new displacement potential 

approach. For both the problems the results are found to meet all of the applied boundary 

conditions and symmetric conditions where required. Moreover the deformed shapes reveal a 

good insight about the finial condition of the geometry of the problem. Finally, an important 

effect of curvature is observed in case of both simply supported and both-ends-fixed deep 

arches which will be a very important guide for the design of this kind of structural members. 
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Chapter 07 

ANALYSIS OF CIRCULAR RINGS 

 

7.1 INTRODUCTION 

In large pipelines, tanks, aircraft, and submarines the circular ring is an important structural 

element, and for designing such elements it is often necessary to calculate the stresses and 

deformations produced in such a ring under various conditions of loading and support. In this 

chapter, using the present displacement potential method (DPM), one ring problem has been 

solved numerically. In order to obtain the numerical results of the problem, values for 

Young’s modulus and Poisson’s ratio of 207 GPa and 0.29, respectively, are used. The 

problem analyzed is an example of an open-ended stiffened ring problem. The ring 

considered here has a narrow rectangular cross section with circular axis, and is constrained 

at one end and the other end is under the action of uniformly distributed combined loading of 

shear and compression. The outer and inner circumferences of the ring are subjected to rigid 

circumferential stiffeners. In this case the ratio of the outer to inner radius is ro/ ri = 1.5 and 

the angular span of the ring is 350o.  

 

7.2 OPEN ENDED STIFFENED RING  

An open ended stiffened circular ring has been considered as the example to demonstrate the 

application of the present displacement potential solution in solving circular ring problem. 

The ring considered has a narrow rectangular cross section with the ratio of outer to inner 

radius (ro/ri) as 1.5. One of the ends of the ring is rigidly fixed and the other is subjected to a 

combined loading uniform tension and shear, as shown in Fig. 7.1. The inner and outer 

circumferences of the ring are stiffened by circumferential stiffeners. A uniform curvilinear 

finite difference mesh network of (61×71) nodes is used to solve the problem.  
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Figure 7.1: Geometry and loading of the open ended stiffened circular ring (ro/ri = 1.5). 

 

The mathematical conditions used to model the actual physical conditions at the radial and 

two circumferential surfaces of the ring are described in Table 7.1. The mixed boundary 

conditions associated with the stiffeners are modeled here by resisting the surfaces in terms of 

circumferential displacements and assigning zero value to the radial stress component. 

Special cares have been taken to handle the singularities at the four corner points of the ring, 

the details of which are summarized in Table 7.2.  

Table 7.1 

Boundary conditions used for the open ended stiffened ring for obtaining the present solution 

 Boundary conditions 

Problem Boundary Normal component Tangential 

component 

 

 

Open ended 

stiffened ring 

 (Fig. 7.1) 

Upper radial surface, θ=0o ur(r, 0)=0 uθ(r, 0)=0 

Lower radial surface, θ= θmax σθ(r, θmax)=− σo τrθ(r, θmax)=− σo 

Outer circumferential surface, 

r=ro 
σr(ro, θ)=0 uθ(ro, θ)=0 

Inner circumferential surface, 

r=ri 
σr(ri, θ)=0 uθ(ri, θ)=0 

 

 

 

 

A B 

C 
D 

θ 

Stiffened surfaces 

σθ=  τrθ= σo 

 

ro 

 ri 

 

Rigidly fixed ends 

r 
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Table 7.2 

Boundary condition modeling for the corner points of the open-ended stiffened circular ring 

problem 

 Correspondence between mesh-points 

and given boundary conditions  

Corner 

point* 

Given boundary 

conditions 

Used conditions Mesh point on the 

physical boundary 

Mesh point on 

the imaginary 

boundary 

A [(un, ut), (σn, ut)] [un, ut, σn] uθ=0 ur=0, σr=0 

B [(un, ut), (σn, ut)] [un, ut, σn] uθ=0 ur=0, σr=0 

C [(σn, ut), (σn, σt)] [ut, σn, σt] σθ=− σo uθ =0, τrθ=− σo 

D [(σn, ut), (σn, σt)] [ut, σn, σt] σθ=− σo uθ =0, τrθ= − σo 

* Refer to Fig. 7.1. 

 

7.2.1 Distribution of the displacement components 

This section describes the solution of displacement components obtained from the present 

displacement potential formulation (Formulation- II). Here, displacements are normalized 

with respect to the ring thickness (ro-ri).  

Fig. 7.2(a) shows the distribution of the radial displacement along the circumferential axis of 

the ring. It is evident from the distribution that at the fixed end (θ/θmax = 0), radial 

displacement is zero and it remains nearly constant for more than 50% of its circumference 

for all the three sections considered. But for the last 40% of the circumference the 

displacement increases up to its maximum value at the loaded end (θ/θmax = 1). Moreover, no 

significant difference in the radial displacements at the inner and outer surfaces of the ring is 

observed, which is may be due to the fact that the thickness of the ring is not very high. Fig. 

7.2(b) describes the distribution of the tangential displacement along the circumferential axis 

of the ring. It is observed from the distribution that tangential displacement is zero at both 

inner and outer circumference of the circular ring. This shows excellent agreement between 

the solution and the applied boundary condition as can be seen from Table 7.1.  
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(a)        (b) 

Figure 7.2: Distribution of displacement components of the stiffened circular ring: (a) radial 

displacement, (b) tangential displacement. 

 

7.2.2 Distribution of the stress components 

This section describes the solution of stress components obtained from the present 

displacement potential formulation (Formulation-II). Here, the stresses are normalized with 

respect to the applied loading intensity, σo (see Fig. 7.1).  

Distribution of tangential and shear stresses along the circumferential axis of the ring is 

illustrated for three different radial locations in Fig. 7.3. As appears from Fig. 7.3(a), the 

value of the tangential stress is very small up to almost 60% of the circumference starting 

from the fixed end; after that it starts to increase rapidly for of the ring. As expected, the 

normalized tangential stress at the loaded end (θ/θmax = 1) is found to be unity for all the three 

sections considered, which is in good conformity with one of the applied boundary conditions 

at this end. For any circumferential section especially for θ/θmax > 0.6, the stiffened inner and 

outer circumferences assume the highest and lowest value of tangential stress, respectively. 

This is primarily due to the effect of curvature that decreases from the inner surface to the 

outer surface. A small region of stress concentration is observed at the inner corner region of 

the loaded end if the ring. The maximum value of tangential stress is observed at the inner 

circumference of the ring, which is nearly 1.7 times the applied normal loading. 
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Figure 7.3: Distribution of stress components at different sections of the stiffened ring:  

(a) circumferential stress, (b) shear stress and (c) radial stress. 

 

Fig. 7.3(b) shows the distribution of shear stress along the circumferential axis of the ring for 

the inner, mid-radial and outer surface. Likewise the case of tangential stress, shear stress is 

very small for more than 50% of the circumference starting from the fixed end and then 

increases for the remaining portion of the ring circumference. In case of the outer stiffened 

surface, the shear stress is found to be negligible for almost 80% of its length measured from 

the fixed end and then quickly rises to its highest value within the remaining portion of 

circumference. Again at the inner surface stress concentration occurs just before the loaded 

end and, in this case, the maximum value of shear stress is found to be 1.3 times the applied 

shear loading at the end. It is found that the value of the normalized shear stress at the loaded 

end is unity, which is in agreement with the applied boundary condition at this end. Finally, it 

can be mentioned here that, all the distributions of displacements and stresses are found to be 

in excellent agreement with the applied boundary conditions as well as intuitive predictions 

based on principles of mechanics. Fig. 7.3(c) describes the distribution of the radial stress 
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along the circumferential axis of the ring. It is observed from the distribution that radial stress 

is zero at both inner and outer circumference of the circular ring. This again shows very good 

agreement between the solution and the applied boundary condition as can be seen from 

Table 7.1.  

 

7.2.3 Deformed shape 

This section describes the deformed shape of the circular ring under combined normal and 

shear loading along with the original shape before the loading was applied. 

 

Figure 7.4: Deformed shape of the circular stiffened ring (magnification factor = 10000).   

 

Fig. 7.4 shows the corresponding deformed shape in comparison with the original 

undeformed shape. The deformed shape of the ring verifies appropriate modeling of the 

boundary conditions used. The radial displacement component is found to play the dominant 

role in defining the deformed state of the ring, which is because of the fact that the ring is 

circumferentially stiffened at the two opposing circumferential surfaces. Even though both 

the circumferential and shear stress applied are of identical intensity, the influence of the 

shear loading is verified to be much higher for the present ring than that of circumferential 

loading. 

 

                        Original Shape 

                        Deformed Shape 
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7.3 CONCLUSIONS 

A classical stress problem has been solved using the new displacement potential approach. 

The results are found to meet all of the applied boundary conditions where required. 

Distribution of stress and displacement shows a significant effect of stiffeners on the elastic 

field of the circular ring. Finally the deformed shape reveals a good insight about the finial 

condition of the geometry of the stiffened circular ring. 
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Chapter 08 

EFFECT OF STENCIL SIZE ON THE SOLUTION 

8.1 INTRODUCTION 

To analyze the effect of stencil size on the solution two versions of finite difference 

expression for different displacement and stress components is prepared. In this case smallest 

possible stencil is designed using a combination of finite difference expressions of different 

derivatives of O(h) and O(h2). Both-ends-fixed beam problem solved in chapter 05 is 

considered here again to demonstrate the effect of stencil size on the DPM solution. 

 

8.2 SMALLEST POSSIBLE FINITE DIFFERENCE EXPRESSIONS FOR 

DIFFERENT DISPLACEMENT AND STRESS COMPONENTS  

For the radial component of displacement Eq. (2.23), four different versions of finite-

difference expression have been developed for different regions of the boundary. These 

versions of finite difference expressions are obtained by adapting different combinations of 

forward and backward differencing scheme in both r and θ- directions . The finite-difference 

expressions so obtained are as follows: 

a) i- forward, j- forward 

1 1 1 1 1 1( 1, 1) ( 1, ) ( ) ( , 1) ( ) ( , )ru a ψ i j a ψ i j a b ψ i j a b ψ i j            (8.1) 

b) i- forward,  j- backward 

1 1 1 1 1 1( 1, ) ( 1, 1) ( ) ( , ) ( ) ( , 1)ru a ψ i j a ψ i j a b ψ i j a b ψ i j            (8.2) 

c) i- backward, j- forward 

1 1 1 1 1 1( ) ( , 1) ( ) ( , ) ( 1, 1) ( 1, )ru a b ψ i j a b ψ i j a ψ i j a ψ i j           (8.3) 
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d) i- backward, j- backward 

1 1 1 1 1 1( ) ( , ) ( ) ( , 1) ( 1, ) ( 1, 1)ru a b ψ i j a b ψ i j a ψ i j a ψ i j           (8.4) 

where,  

1

1

2 i

ν
a

r hk


  , 

1 2

5

2 i

ν
b

r k


   

 

 

 

 

 

 

 

Figure 8.1: The smallest finite difference stencil for radial component of displacement (ur) 

(Formulation-I). 

 

Fig. 8.1 illustrates the above mentioned four stencils for normal component of displacement 

(ur). It can be seen that each stencil consists of four nodal points and when applied to the 

boundary mesh points as shown in the figure includes no point exterior to the physical 

boundary. 

For tangential component of displacement no new stencil is designed as the finite difference 

expression derived in equation (3.26) gives the smallest possible stencil for formulation-I. 

Now, for the radial component of stress which is given by Eq. (2.24), two different finite-

difference expressions has been developed using the combination of central, forward and 

backward differencing scheme which are illustrated in Fig. 8.2. Since the stencils have the 

symmetry about j- axis, two versions are sufficient to deal with all the body points involved. 

The expressions developed are: 

h 

θ r 

k 

i 

j 

i 

i 
i 

j 

j 

j 

ur: i- backward, j- forward 

 ur: i- forward, j- forward ur: i- forward, j- backward 

ur: i- backward, j- forward 



108 
 

 

a) i- central, j- forward 

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1

( ) ( 1, 1) ( ) ( 1, ) ( , 2)

      ( 2 3 ) ( , 1) (2 3 ) ( , ) ( ) ( , 1)

      ( ) ( 1, 1) ( ) ( 1, )

rσ A C ψ i j A C ψ i j B ψ i j

A B D ψ i j A B ψ i j B D ψ i j

A C ψ i j A C ψ i j

         

          

       

 

 

(8.5) 

b) i- central, j- backward 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

( ) ( 1, ) ( ) ( 1, 1) ( ) ( , 1)

      ( 2 3 ) ( , ) (2 3 ) ( , 1) ( , 2)

      ( ) ( 1, ) ( ) ( 1, 1)

rσ A C ψ i j A C ψ i j B D ψ i j

A B ψ i j A B D ψ i j B ψ i j

A C ψ i j A C ψ i j



  

         

     

       

 

 

(8.6) 

where, 

1 2
i

G
A

r h k
  , 

1 3 3
i

νG
B

r k
 , 

1 2

(6 )

2 i

ν G
C

r hk


 , 

1 3

(10 )

2 i

ν G
D

r k


   

The corresponding finite difference expressions for σθ which is given by Eq. (2.25) are 

developed following a procedure similar to that used for the case of σr, as the two differential 

equations are identical in terms of derivatives, but the differ only in terms of the coefficients. 

As a result, the finite difference stencils of σr and σθ become identical in their appearance as 

shown in figure 8.2. The finite difference equations developed for σθ are as follows: 

a) i- central, j- forward 

2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2

( ) ( 1, 1) ( ) ( 1, ) ( , 2)

      ( 2 3 ) ( , 1) (2 3 ) ( , ) ( ) ( , 1)

      ( ) ( 1, 1) ( ) ( 1, )

θσ A C ψ i j A C ψ i j B ψ i j

A B D ψ i j A B ψ i j B D ψ i j

A C ψ i j A C ψ i j

         

          

       

 

 

(8.7) 

b) i- central, j- backward 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

( ) ( 1, ) ( ) ( 1, 1) ( ) ( , 1)

      ( 2 3 ) ( , ) (2 3 ) ( , 1) ( , 2)

      ( ) ( 1, ) ( ) ( 1, 1)

θσ A C ψ i j A C ψ i j B D ψ i j

A B ψ i j A B D ψ i j B ψ i j

A C ψ i j A C ψ i j

 

  

        

     

       

 

 

(8.8) 

where, 

2 2

(2 )

i

G ν
A

r h k


 , 

2 3 3
i

G
B

r k
 , 

2 2

(7 2 )

2 i

ν G
C

r hk


  , 

2 3

(11 2 )

2 i

ν G
D

r k


  
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Figure 8.2: The smallest finite difference stencil for radial and tangential components (σr, σθ) 

of stress (Formulation-I) 

 

Again, for the shear stress component which is given by Eq. (2.26), two different finite-

difference expressions have been developed using the combination of central, forward and 

backward differencing scheme. Since the stencils have the symmetry about i- axis, two 

versions are sufficient to deal with all the body points involved and are illustrated in figure 

8.3. The expressions developed are: 

a) i- forward, j- central  

3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3

( 2, ) ( 1, 1) ( 3 2 ) ( 1, ) ( 1, 1)

        +( ) ( , 1) (3 2 2 2 ) ( , ) ( ) ( , 1)

       ( ) ( 1, )

rθτ A ψ i j B ψ i j A B C E ψ i j B ψ i j

B D ψ i j A B C D F ψ i j B D ψ i j

A C E ψ i j

             

           

    

 

 

(8.9) 

b) i- backward, j- central 

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3

3 3

( ) ( 1, ) ( ) ( , 1) ( 3 2 2 2 ) ( , )

        +( ) ( , 1) ( 1, 1) (3 2 ) ( 1, )

       ( 1, 1) ( 2, )

rθτ A C E ψ i j B D ψ i j A B C D F ψ i j

B D ψ i j B ψ i j A B C E ψ i j

B ψ i j A ψ i j

            

         

    

 

 

(8.10) 

where, 
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σrr and σθθ: i- central, j- 
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Figure 8.3: The smallest finite difference stencil for shear component (τrθ) of stress 

(Formulation-I) 

 

 

8.3 EXAMPLE OF APPLICATION OF SMALLER FDM STENCILS 

This section describes the effect of stencil size on the present ψ-formulation solution for a 

curved beam. To demonstrate the effect the curved beam considered is a both-ends-fixed 

beam. Both-ends-fixed beam considered here is the same beam considered in the chapter 05. 

Geometrical properties, material properties and mesh network used to solve the problem are 

similar to the both-ends-fixed beam problem solved in chapter 05. Solutions for tangential 

displacement and tangential stress along radial sections are considered to demonstrate the 

effect. FEM solution is also presented along with these two solutions to understand which 

solution is superiority than the other. 

 

τrθ: i- forward, j- central 

 

τrθ: i- backward, j- central 
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Figure 8.4: Comparison of solutions obtained by large stencil DPM and small stencil DPM 

along with the FEM solution for (a) tangential displacement along radial section at an angular 

position of 45o; (b) tangential stress along radial section at an angular position of 40o for the 

both-ends-fixed beam. 

 

Figure 8.4(a) shows the effect of stencil size on the distribution of tangential displacement 

along radial position for θ = 45o radial section. From the distribution the tangential 

displacement obtained using large stencil DPM and FEM solution are found to match each 

other very well where as small stencil DPM solution is found to differ significantly. Same 

observation can be found from figure 8.4(b) which shows the distribution of tangential stress 

along radial location for θ= 40o radial section. In both cases the solutions obtained by large 

stencil DPM and FEM shows very good agreement and differ significantly with the smallest 

stencil DPM solution. This certainly proves that the large stencil DPM produces more reliable 

solution than the small stencil DPM. 

 

8.4 CONCLUSIONS 

A curved beam problem is solved using two different sets of stencils. One set of stencil 

considered here is the smallest possible stencil and the other one is a bigger version of stencil. 

A significant effect of stencil size is observed from the results. Quality of solution decreases 

significantly with smaller version of stencils as seen from the comparison with the FEM 

solution. As a result the bigger version of stencils used in this study is preferred compared to 

the smaller version of stencils. 
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Chapter 09 

CONCLUSIONS AND RECOMMENDATIONS 

 

9.1 CONCLUSIONS 

A new elasticity formulation based on a displacement potential has been developed for the 

analysis of elastic field of curved structural elements. Based on the mathematical model a 

new finite-difference computation scheme has been developed for solving problems of 

curved structural elements with all possible modes of boundary conditions whether they are 

prescribe in terms of either loadings or constraints or any combination of them. The present 

computational method provides a simple but efficient approach of analysis as it reduces the 

two dimensional structural problems in polar coordinate system to finding a single potential 

function satisfying a single differential equation of equilibrium. Finally, the following 

conclusions are drawn in relation to the present research work: 

 

1. A new elasticity formulation for the analysis of stresses and displacements in two-

dimensional isotropic solids in polar coordinate system is presented in this thesis. The 

present formulation reduces the problem to finding a single variable from a single 

governing differential equation and boundary conditions where the boundary 

conditions can be given in terms of either loadings or restraints or any combination of 

them. The present formulation can handle mixed-boundary-value problems of 

elasticity very efficiently. 

2. The development of the present displacement potential field formulation eventually 

leads to two different versions of the formulation, which are denoted by Formulation-I 

and Formulation-II. The original two variable (ur and uθ) equilibrium problem has 

been reduced to a single variable (potential function ψ) problem through the 

application of a variable reduction scheme, the process of which however gives rise to 

an option to choose one of the equilibrium equations for necessary treatments. It has 

been observed that both the second order elliptic partial differential equations of 

equilibrium are transformed to the same fourth order partial differential equation of 
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equilibrium when expressed in terms potential function ψ. As a result, the two 

formulations, namely Formulation-I and Formulation-II are based on the same 

governing differential equation of equilibrium, although the potential function itself is 

defined in two different ways in case of the two formulations. Finally, the expressions 

of relevant displacement and stress components of the two formulations become 

different in terms of both the derivatives and coefficients when expressed in terms of 

the potential function. 

3. A finite-difference computational scheme based on the mathematical formulation is 

developed in this thesis. A number of boundary-value problems of structural 

mechanics have been solved and the results, in each case, are verified to be quite 

reasonable. Moreover, the soundness and suitability of this numerical approach has 

been established by the study of the graphical results of different problems for the 

important parameters namely the relevant stress and displacement components.  

4. Results obtained from the present computational approach are compared with the 

available analytical and numerical results for a number of problems. All the 

comparison shows excellent agreement of the present ψ-formulation with the other 

available analytical and numerical approaches. This validates the mathematical 

formulation as well as numerical modeling of the present displacement potential 

method in polar coordinate system. 

5. The present displacement potential approach (ψ-formulation) differs from the stress 

function approach (ϕ-formulation) in the sense that the problem can be formulated in 

terms of ψ satisfying all modes of boundary conditions exactly. Whereas, the 

boundary conditions specified as restraints were satisfied approximately in an overall 

nature by the ϕ-formulation and the solutions thus obtained were not satisfactory in 

predicting stresses in the regions of supports, stiffeners as well as guided boundaries. 

However, using this present ψ-formulation, the numerical solutions obtained for 

mixed-boundary-value problems are valid for the entire region of interest, and provide 

far better understanding of stress distribution in the critical regions of the boundaries. 

6. As far as time for numerical computation is concerned, earlier, two-dimensional 

mixed-boundary-value stress problems were solved in terms of two variables namely, 

two displacement components ur and uθ, but the time required for the evaluation of 

two functions simultaneously, satisfying two simultaneous partial differential 

equations and the mixed boundary conditions, is extremely large and is very much 

dependent on the nature of the problems. However, the ψ-formulation does not suffer 
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from these shortcomings as in this approach, a single function ψ has to be evaluated 

satisfying a forth order elliptic partial differential equation and the prescribed 

boundary conditions and it is also observed that the computational time is almost 

independent of the nature of problems. 

7. Among various numerical approaches, finite difference and finite element methods 

are the most attractive methods in solving the boundary-value stress problems. In the 

finite element approach, shape functions are assumed in terms of polynomials to 

predict the deformation patterns. Thus, the structure is constrained to deflect in the 

assumed mode, rather than the one it would adopt naturally. Moreover, the constraints 

give rise to artificial stiffening and increased stored energy in the structure. Therefore, 

the method is likely to give poor results if the assumed shape function does not satisfy 

the actual deformation pattern exactly. But the finite difference technique is straight 

forward in its application and thereby producing more attractive results as they are 

free from the shortcomings mentioned above. 

8. The computer program developed here is completely general and it can handle all 

modes of mixed as well as changeable boundary conditions. As far as the computer 

program is concerned, the finite difference method has established its suitability and 

appropriateness in finding solutions for two-dimensional stress problems through its 

application in the field of partial differential equations. 

9. Both the qualitative and quantitative results and moreover, the comparison with the 

available analytical and numerical solutions conform the soundness as well as the 

appropriateness of the computational approach in the field of boundary-value stress 

problems of curved bodies. It is thus expected that, with time, solutions would be 

obtained for various practical problems in order to provide better insight and further 

understanding of the stress distribution in the critical regions of supports, stiffeners 

and guides of curved structural problems. There is no doubt that the present 

displacement potential would be a powerful tool in the field of structural mechanics. 
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9.2 FUTURE RECOMMENDATIONS 

The new displacement potential method (DPM) has been developed to provide a new avenue 

for the investigations of elastic curved structures with various mixed boundary conditions of 

interest. In this connection, it is recommended that the following extensions may be carried 

out for further developments: 

1. The present mathematical formulation in it present form is only applicable for 

isotropic materials. Formulations based on displacement potential in polar coordinate 

system for orthotropic and anisotropic materials can be developed in the same way as 

showed in the present thesis. 

2. The present computer program is based on the plane stress assumption and can be 

extended for plane strain problems in polar coordinate system. The displacement 

potential formulation in polar coordinate system may also be extended for the analysis 

of three-dimensional stress problems in cylindrical coordinate system. 

3. The computer program developed can handle regular geometric shapes of curved 

bodies. Numerical modeling for irregular geometric shapes in polar coordinate system 

may be investigated and thus can be incorporated in the computer program. 

4. Attention may be given to incorporate a better treatment for the various forms of 

singularities in the boundary conditions. The most appropriate method of treating 

these singularity would be to assume some series of ψ satisfying the local conditions, 

and then to use these series in truncated form for the evaluation of the functions at 

these points instead of finite difference expressions. 
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 APPENDIX 

          A 

 
ANSYS model of the  

both-ends-fixed curved beam 
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Figure A.1: Geometry of the curved beam. 

 

 

Figure A.2: Meshed geometry of the curved beam. 
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Figure A.3: ANSYS model of the both-ends-fixed curved beam under radial pressure at the 

convex surface of the beam. 

 

 

Figure A.4: Contour plot for the nodal solution of ux. 
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Figure A.5: Contour plot for the nodal solution of uy. 

 

 

Figure A.6: Deformed shape of the both-ends-fixed curved beam with undeformed edges. 
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Figure A.7: Contour plot for the nodal solution of σx. 

 

 

Figure A.8: Contour plot for the nodal solution of σy. 
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Figure A.9: Contour plot for the nodal solution of τxy. 
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 APPENDIX 

          B 

 

MATLAB code for the conversion of ANSYS 

solution of both-ends-fixed beam from Cartesian 

form to polar form 
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B.1. MATLAB code for the conversion stress and displacement components 

obtained from ANSYS solution along any radial layer of the curved beam. 

 

%%%Program for Cartesian to Polar conversion  

  
close all; clear all; clc; 
format long; 

  
%Extraction of material constants from input file 
P=xlsread('G:\Study\Academic- postgraduate\Thesis\Cartesian-Polar-

Conversion\convt','A2:E60'); 
Q=xlsread('G:\Study\Academic- postgraduate\Thesis\Cartesian-Polar-

Conversion\convt','L2:L4'); 

  
Ux=P(:,1); 
Uy=P(:,2); 
Sx=P(:,3); 
Sy=P(:,4); 
Sxy=P(:,5); 

  
r1=Q(1,1); 
r2=Q(2,1); 
t=Q(3,1); 

  
n=size(Ux,1); 

  
Ur=zeros(n); 
Ut=zeros(n); 
Sr=zeros(n); 
St=zeros(n); 
Srt=zeros(n); 

  
% Conversion Formulas 

  
for i=1:n 
    Ur(i)=Ux(i)*cosd(t)+Uy(i)*sind(t); 
    Ut(i)=-Ux(i)*sind(t)+Uy(i)*cosd(t); 
    Sr(i)=Sx(i)*(cosd(t))^2+Sy(i)*(sind(t))^2+2*Sxy(i)*sind(t)*cosd(t); 
    St(i)=Sx(i)*(sind(t))^2+Sy(i)*(cosd(t))^2-2*Sxy(i)*sind(t)*cosd(t); 
    Srt(i)=(Sy(i)-Sx(i))*sind(t)*cosd(t)+Sxy(i)*((cosd(t))^2-(sind(t))^2); 
end 
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B.2. MATLAB code for the conversion stress and displacement components 

obtained from ANSYS solution along any circumferential layer of the curved 

beam. 

 

%%%Program for Cartesian to Polar conversion  

  
close all; clear all; clc; 
format long; 

  
%Extraction of material constants from input file 
P=xlsread('G:\Study\Academic- postgraduate\Thesis\Cartesian-Polar-

Conversion\convt','A2:E60'); 
Q=xlsread('G:\Study\Academic- postgraduate\Thesis\Cartesian-Polar-

Conversion\convt','L2:L5'); 

  
Ux=P(:,1); 
Uy=P(:,2); 
Sx=P(:,3); 
Sy=P(:,4); 
Sxy=P(:,5); 

  
r1=Q(1,1); 
r2=Q(2,1); 
t1=Q(3,1); 
t2=Q(4,1); 

  
n=size(Ux,1); 
k=(t2-t1)/(n-1); 

  
Ur=zeros(n); 
Ut=zeros(n); 
Sr=zeros(n); 
St=zeros(n); 
Srt=zeros(n); 

  
% Conversion Formulas 
t=t1; 

  
for i=1:n 

        
    Ur(i)=Ux(i)*cosd(t)+Uy(i)*sind(t); 
    Ut(i)=-Ux(i)*sind(t)+Uy(i)*cosd(t); 
    Sr(i)=Sx(i)*(cosd(t))^2+Sy(i)*(sind(t))^2+2*Sxy(i)*sind(t)*cosd(t); 
    St(i)=Sx(i)*(sind(t))^2+Sy(i)*(cosd(t))^2-2*Sxy(i)*sind(t)*cosd(t); 
    Srt(i)=(Sy(i)-Sx(i))*sind(t)*cosd(t)+Sxy(i)*((cosd(t))^2-(sind(t))^2); 

     
    t=t+k; 
end 
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