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ABSTRACT

Theoretical investigation has been carried out for flows ;
in the developing region of coflowing axisymmetric turbulent
jets, The surrounding fluid was taken to be moving at various
speeds. The equations for mass, momentum and energy conser-
vation for turbulent flow were solved numerically by using
appropriate boundary conditions., DuFort-Frankel type explicit
finite difference scheme was used to obtain the finite
difference form of the, above egquations. The calculations weref
performed for velocity ratios of A= 0.0, 0.1 and 0.25. A
temperature ratio of 6.3 was taken for each value of A . The
exit velocity and temperature profiles were assumed to be flat
for each case. Prandtl's mixing length was expressed as ™
a function of shear layer thickness and it was used for

modelling turbﬁlent shear stress. But this turbulent shear

stress model was not applicable to the transition region.

So Schetz model with intermittency was used for this region

to express the turbulent shear stress.

A length scale, b, was identified to te an appfopriate scale

-

to express the mean velocity in a self-preserving plot for

the initial region. But this scale was not applicable for
!
. ‘

the transition region for [this purpose. Similarly a length

scale, bt’ was cgefined tolstudy the seif-preserving nature

of mean temperature both in the initial and transition



regions. But the temperature profile was not self-preserving

both for the initial and transition regions.

The calculated results have been compared with the existing
experimental measurements and with the results obtained by

others by integral methods.
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1.0 General

A jet is fiormed when a fluid discharges through an opening
or a nozzle from a container uﬁder high pressure in?o a
region of lower pressure. The ambient fluid surrounding the
jet may itself be in motion or at rest., Jets are of three
kinds: 1) bounded, 2) wall,and 3) free jets. Flow of bouﬁded
jets are confined by solid boundaries., Wall jets flow over
s0lid surfaces. free jets flow without contacting solid
surfaces. When free jets formed by discharging fluid through
a circular nozzle or an.orifice are known as axisymmetric

jets.

1.1 Axisymmetric Turbulent Jet

The formation of a bDunaary layer within the nozzle and its
separation at the exit is the initiation of a shear layer

in the free jet flow. Turbulence originates as instabilities
in laminar flow when the Reynolds number exceeds same critical
value, Using flow visualization tta*r:hraique']:48]-;2 it has besen
shouwn fhat theée instabilities, due to interaction of viscous
terms and non-linear inertia %erms in the eguation of motion,
generate waves. These waves s&arting from the nozzle outlet
grow with unstable amplitude lithin two to three wave lengths
from the exit. The wave crest!in contact with the ambient

fluid folds back ‘into the following trough. This folgding

engulfs the surrounding fluid and forms a ring vortex core

# Number in the parenthesis indicates reference at p-42.

L]



which rolls downstream. After one or tworreudlutions, the

"vortices interact strongly with the waves behind ahd break

down into turbulent eddies, The interactions (like vortex
pairiing) of turbulent eddies cause large scale vortical
motions. Small scale vortical motions also evolve through

breakdown of large eddies.

A free shear layer resulting from an initially turbulent
boundary layer can also roll up into an organized vortical
st;umturé from which large and small scale motions evolve.
This kind of jet flowris shown in Fig. 1.1 with three dis-
tinguishable layers: 1) Shear, 2) Ambient, and 3} Potential

core.,

For conuenﬁent analysis, the.turbulent jet flowris diuided'
into three principal regions: 1) Initial region, 2} Transitiocn
region, and 3) Developed region. fThe initial region of a jet
has a potential core of uniform velbcity initiating from the
exit. The transition region starts after the initial region.
Further downstream, the developed region existsuwhere the flouw
variables i.e mean velocity, turbulent intensity etc. became
approximately self-preserving. The combined initial and

transition region is called the developing region of the jet.

A continuous transfer of momentum and energy takes place from
the jet fluid to the surrounding fluid. A& difference in

velocity between a jet and theiregion into which it is



N

discharged forms a high degree of instability due to inten-
sive shearing astion of the peripheral fluid ﬁf jet with the
ambient fluid. The shearlng action 1n1t1ally OCCcurs ouer

a small lateral region and the fluid near the axis remains
unsheared. For turbulent jets, the shearing phenomena
steadily conuertslkinetic energy of oncoming mean flow into
kinetic energy of turbulence and the latter decays through
viscous shear. Such a conversion of energy occurs throughout
the jet flow. 9n the other hand, the reduction of kinetic
energy of the mean flouw represents a decrease in the flow
velocity. The elementary consideration of continuity inidcates
_that the area of flow cross-section must increase in order
to accommodate the flow as the flow velocity. decreases.
This phenomena. flattens the velocity p;dfile in the sheax
layer and redg;es centerline velocity after the potential
core region. Energy transfer in a turbulent flow field
depends on the interaction of eddies, and correlations bet-
ween various guantities of the turbulence and the mear
motion, For simplicity, turbulence may be considered to
consist malnly of eddies of two klnds; dEpEﬂdlng on scale:

1) large eddiesy and 2) small eddies. The large eddies are
energy containing eddies, and they are strained by both the
mean and the turbulent stresses present in the flow field.
The small eddigs contain less energy and ‘they are invariant
to mean and turbulent stresses in the flow field. The small

scale eddies exist im the field of large scale eddies and



dissipate turbulent energy to heat. The initial and boundary
conditions play an important role .and influence the flow,

momentum transfer and energy tramsfer in the initial region. - g

—

The boundary conditions are related to the shape of the

nozzle and the space surrounding the shear layer. The initial

—— e b

conditions for steady jets are the flow properties at the

—

exit plane of the nozzle which depend on the boundary iayer

o—

thickness inside and outside the nozzle. The flow variables

in the initial region are dominated by the large scale
i
structure:-which can be expected to achieve independence of
. . \ !
the initial conditions in .a finite flow length and the fiow \\J/

become self-preserving depending: on the boundary conditions.

1.2 Scope of Application

The informations of the mgan:quantities within a jet is
relevant to many problems of diffusion, dischasge of pumps,
aircraft.design, combustion in a chamber , gquid amplifiers
and driers. The diffusion phenomena in free jets is associatéd
with flows in the exhausés of rocket engines, atomized Fuei
injection sprays and waste disposal plumes. The results of
analysis of discharge from jet is useful in designing the
discharge pit of pumps. Free iets in the exhausts of rocket
engines create aerodgnamic nois% which in many cases is
objectionable and should be congrolled. The aerodynamic noise
is geﬁerated by Reynolds stresses associated with.either

subsonic or supersonic flows. So to design the exhausts of



a better understanding and detailed knowledge

rocket engines,
of the Reynolds stresses is necessary. The results of the

present study 1is applicable to the incodmpressible flow cases

and also can be applied to the compressible flow cases as a

first approximation.

1.3 Statement of the Protlems
The flow within the Axisymmetric Incompressible Turbulent Jets

for initial and transition regions has been studied by deve-
loping computer simulation. Jets studied here were of three
and 0.25 with a flat

A= 0.0, 0.1
The

different velocity ratios,
velocity and a flat temperature profiles in each case.

Dbjectiues of the present study are:
governing

1. Finite-difference formulation of the equations,

and development of computer program 1in order to

the flow,
solve those eguations for mean velocity and mean temperature

with given boundary conditions.

2.
with the existing experimental measurements.

3. Study of the behavior and applicability of a length

scale [17] , b, both for initial and tramsition regions.

N

Camparison of the results obtained by present calculeation

4. Study of the self-preservation of the mean velocity and

mean temperature in the developing region.
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CHAPTER II
-
LITERATURE SURVEY
2.0 General :
. . L }]
The increasing availability of faster and more economical ;
i
digital computers has stimulated the development of effective i
differential methods. These methods predict quite acpurately' {

€

the most important features of many turbulent flows., The success
in the caée of wall boundary layers is most striking. For this '
case a single mixing length or eddy viscosity model has led

to predictions which agree well with experimental data over

a8 wide range of conditions.

properties in ‘

The prediction of /free shear flouws was for a long time most
commonly done by integral methods. But now the differential
methods have become fhe center of interest with most researchers.
A comparison of the Proceedings QF the 1968 Stanford Eonfereﬁce
Dn-Computation'Df Turbulent Baundary Layers, the Proceedings

of the 19?2.Langiey-working Eonférence on fFree Turbulent Shear
Flows and the Proceedings of the 1979 Imperial College Second
Symposium on Turbulent Shear Flows will provide an indication

of the shift in emphasis.

Turbulent flows can be expressed mathematically by the conser-
vation of mass eguation and the Navier-5tokes eguations. Since
the Navier-Stokes eguations are non-liéear, solution for each
individual flow pattern has certain un%que characteristics

that are associated with its initial aéd boundary conditions., The

equations have peen analysed by researchers for various flow



patterns. But it is still not possible tormake‘quanﬁiﬁa?iué
predictions concerning turbulent guantities withouf'relying

- greatly on empirical data., The reason is that in the time-
averaged turbulent equations, there are more unkﬁown'dépéndent
variables than there are equations. In order to obtain.ar
useful set of closed equations, it is necessary to make appro-
priate assumptions cancerning the flow. These aséumptions

are based on physical concepts developed from ekperimental
data and experience. In this way, many authors have deueloﬁed
. empirical and semi-empirical eguafiohs to obfaih a set QF
closed equations. Progress in this line of researcﬁ; as

related to axisymmetric jetsy is presented in this chapter. -

Flow of axisymmetric jets is free shear flow. In the fa:l
‘downstream of deuelmped.region of axisymmetric jéts; inifiéi:
éonditions influence the flow pattern insignificahtly. It -
may be thought that different natuces of aisturbances thbh'
are introduced by initial conditions try to achieve the
characteristics of small scale flow at the initiation of
developed region and in the further douwnstream. Much work
has been done both theoretically and éxpefimentally in this
region by-mygnanski[ASJ , Heskestad [13]1, Newman [30] s
Towunsend {43] , Rotta [36] , Launder [24] , Roshko [35] and
others. On the other hand, much less work is available in
initial and transition regions except lately in relation to

noise by Bradshaw et al [3] , Ko and Davies 18] , Lau [23]



and others, In'the Tecent years, some investigations have
been domne on fhe'Large—scale Coherent Struc%ures of free
shear flows. In 197?; Chassing [?J in a detailed literature
review stated that the free turbulent jet has been investi-
gated extensiuély by several experimentalists and it is
well known for a long time fhat some region of 'unjversal'
self preserving profiles can be reached at a typical distance
from the exit. This review reveals that the influence of the
inlet conditidns does not .emerge after that typical distance,
S0 it is.not worth to investigate iﬁ that universal self-

i
preserving region to get some numerical information regarding

the influence of initial conditions.

2.1 Developed Region

i .
:

In 1925, Prandtl [33] enunciated thé concept of mixing length
for free shear flow. It was used by Tollmien [42] in 1926

to calculate mean velocities in an axisymmetric jets In this
calculation he did not consider the région of the jet close
to the nozzle. The investigation was based on the assumptions
thatt (a) the effective force was the tangential shear expressed
in termsof the lateral momentum transport and mixing lenoth,
(bd the mixing length varied as the first ﬁomer of the axial
distance from the efflux section, {(c) turﬁulence uelocity was
proportional to the mixing length and mea% ueiocity gradient.
Tollmien [42] established a series solutidn for mean velocity
with uarﬁable,nt: r/(atx) and the Prandtl's mixing length

L = Ctx where a; and Ct are empirical constants. The series



solution agreed fairly well with his measurements for the
developed region of jets. In 1930, Schlichting [39] used

Prandtl's hypothesis to express turbulent shear stress,

/60 = ¢ & (U ) ( %%-) where C_ is an empirical
5

constant and &8 is the width of shear layer, and solved the

max min

same problem as Tollmien [42] did in 1926 making similar
assumptions, The solution shows satisfactory agreement witﬁ
measurements excepf in thg region of low velocity near the
jet boundary. The local turbulence level at the edges of
jet flow are high that makes the measurements e%treﬁely

difficult.

2.2 Initial and Transition Regions

In the initial region of a jet issuing from a nozzle, the
solution given by Tolimien.[42]maﬂd Schlichting [39] are not
applicable. This is due to thé presenceibf the.potential .
core and the effects of initial conditions, although Prandtl's
mixing length is approximately linear for this region}
Kuethe [21] , im 1835, applied Prandtl's mixing length to
the initial and transition regions and worked out an approxi-
mate method for computing the mean velocity for a round jet.
He assumed Pranﬁtl's mixing iength to be proportional to the
width of shear layver and expressed shear stress as:
Ty A | 2.1
where '£='C1é and 81 is an empiricalrconstant determined by

experiment, The theoretical calculations



of the mean velocity for both initial and transition regions
showed agreement with experimental results from pitot tube

measuUrements,

In 1944, Squire and Trouncer [ﬂ1] developed a mean velocity
model for the initial and transition regions of coflowing
Jets with assumptions similar to those that Kuethe [21] used
for jets in still air. The Reynolds shear stress was expressed
by Prandtl's mixing length hypothesis given by equation 2.7
The empirical constant, 81 used to determine the mixing
length was found to be different %rom that predicted by
Kuethe [21] . As a special .case, the length of the potential
core was calculated to be x/r_ = 7.75 for jets in still air

This value does not agree with that of Kuesthe[29] .

Albertébn et al [2] , in 1948, measured mean axial velocities
for both axisymmetric and two-dimensional jets, and their
measurements of mean uelocify in the initial.and transition
regions were found £D follow the normal probability function;
(x%/26°) . . .
u/uC e y where ¢ = Eax; Ea is an empirical constant
which has two values, one for the initial region and the
ther for the transition region. This model of mean axial
velocity showed satisfactory agreement far the two dimensional

case, but somewhat in less agreement for the axisvmmetric
gTE r y

case. i
- ;

Landis and Shapiro [22] in 185% investigated Co-flowing Gas

Jets experimentally and found the initial region to be
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extended upto x/r0 = 12 for velocity ratie A = 0.25 and

x/rD = 16 for X = 0,46,

In 1857, Miller and Comings [27] used Prandtl's ﬁixing
length hypothesis for a two-dimensional jet flow and deve-
loped a self-preserving empirical model for mean axial
velocity in the transition region after-x/rD = 10:

u/uC = exp| —(ﬂ/@(r/bm)zj where b_ was defined by

b = ,f?u/uc)dr. The measured values of b, showed 2 linear

m Yo

relationship with axial distance.

Many experimentalists, without identifying initial conditions,
showed self-preservation of the mean velocity in the initial
and transition regions of the turbulent jeté. Some empirical

equations for the initial region are:

vﬂb aﬁou'ch'[1] in 196% tu/u_=(1 3/2)2
r i 1 . . -0
: 2
. _ N e 7/4
Simson- [40] in 1964 pufu =(1- ")

wheren = r/bT and b1 was choosen in between u/uC=1 and u/uczﬂ.

Nayer et al [28] in 1969.: U/uc: 9_1'415(n +0.7)

wheren = (rQri)/b1 and I::1 was choosen in between u/uC=D.99
2

and u/u =0.01.
c

Nayer's definition is realistic, but this model does not

]
appﬁy to the initial region. Though these models are developed
from similar experimental data, they do not agree with each

other, probably because. 6f different initial conditions.

.
B |
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In 1968, Kirshner [ﬁa] used a constant viscosity model for
the transition region and solued the momentum integral
equation:in thé same way aé'for laminar flow. The expressiop
for the mean axial velocity of the turbuleht iet was the
same as that for the laminar jet witH the motecular diffu-
sivity replaced by constant eddy diffusivity. The constant
eddy diffusivity was defined by: V= Ckb1uc, where C, is an
empirical constant. The result of the solution agreed with

the measurements of Kirshner [18] for the transition region.

Though this model is simple to use, the turbulent diffusivity

is not constant throughout the jet flow, specially in the

intermittent regions.

Peters [32] in 18972 sclved the integral form of equations
using shear stress model C1K wheig C, is constant and K
is the turbuleht-kinetic_ energy.'].r__" He assumed a
cosine uelocity'profiié at the inlet. In the .same year
Harsﬁa [11] solved the conservation equations using the

same model for transition and developed regions.

Morgenthaler and Zelazny [2B] in 1972, presented a

model for initial region of coflowing streams in the Langley
lorking Conference on Turbulent Free Shear Flows. This model,
infact,is application of transition modgl 1.8+ V7 gre
0.4 vy transition
Hatta and Nezaki [12] in 1975, developed a mcdel for mean

axial velocity by an approximate solution of the axial

and was far more successful than anticipated.

r\.

TN T e e g e
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momentum integral equation for the initial and transition

regions. Turbulent diffusivity, v, was defined by v = (rm-r1)uc
2

where rm.is the mean radius of the jet expressed by :

Uori': u0r12 + 2 j:trdr. Neglecting the pressure
gradient in the momentum equation, a model for the axial

mean velocity was established: u/ucz (- Mm%+ 4 n) where

n= r/b1. This inuestigation also derived expressions for

bm, b1'and r, as linear functions of axial distance. Though
this approximate model showed agreement with Hatta and
Nozaki's ﬁZ] measurements Sut it is not in complete agreement
with the Bradshaw et al [ 3],Sami et al [37] and vonfFrank [44]

measurements., THis discrepancy likely comes from the initial

conditiens whi@h were not documented by the authors.,

Madni and Pletcher [25] in 1975 calculated the mean velo-
city of co-flouing jets by an explicit finite difference
method from the differential forms of mass and momentum
conservation equations derived by using -boundary layer
approximations. Reynolds shear stress was defined by

Eguation :3.8 fer the initial region and by Eguation 3.10
and 3.11 for the transition region. The calculation started
with uniform exit Qelocity and shéwed agreement with measure-
ments for the main po%tion of the shear layef. Thisrmodel
underpredicté the=mea# velocity of the outer region where

velocity is low. |

S
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Dauieé et al [8] measured the éxial mean velocity and showed
self-preseruation against the independent uariable,(r-ro)/x

in the initial and traﬁsitibn r;gions. Measurements EF
Bradshaw et al [4], Von-Frank [44] , Sami et al [37] ,
Laurence [25] , Lau [23] , Kolpin [20] and others showed

that the mean axial velocity is self-preserving when it is
plotted against the variable (r-r%yET. These measurements

did not show wholly self-preservation against the variable,
(r-rDVx. Yuu et al [47] used a polynomial form as an empirical
model for the axial uelﬁcityiin the 'initial and transition
regions with independen£ variable (r-r1)/x, vhere r, is
polential core radius. This model did not shouw satisfactory
agreement with measuremgnts in the initial region, but it

was fairly applicable t% the ﬁeuelOped region.

Recently, BradShaw;f% ]L Crow and Champagne [B] s, Yule [48]
and Hussain and Zedan.[15] published some experimental works -
for jet flow, identify&ng the initial conditions. Bradshauw [4]
studied the effects of exit boundary layer on turbulence

with boundary layer untripped or tripped by concentric rings.
Experimental results have éhown that the shear layer becomes

°(

=)
. (@]
from the exit for any boundary layer thickness used in the

fully turbulent at an approximate distance xy = Tx10

|
experiment. - , l
;

In 1977, Yule [46] studied the jet flow for a wide range

of Reynolds numbers (9x103—105) by using flow visualization

t

N
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B
5
s

and hot wire techniques. He found the shear layer fully

j f-ﬁ—.....-o—-,,,—

- -

turbulent at an approximate distance X, = 1.2x1DS( 5— ) from

C

0
the nozzle exit which is different from Bradshau's [4] resultst
This work did not specify the .exit boundary layer thickness

and turbulence level. In the same year Habib & Whitelaw [%UJ

AT g

worked on coaxial jets for both initial and transition

2 3
region. They used K -& model and QH KZ ( 3% ) as the shear
£

stress model, The exit condition was fully developed turbulent
profile and obtained numerical solutions that were in close

agreement with the experimental results.

In 1978 Hussain and Zedan [15] measured mean ueludity and
determined the jet boundaries, Uar;ing both the laminar and
turbulent boundary layer thickness, and controlling the
turbulence at thennozzle exit. Experimental resuits showed
the mean uélééity to-be self-preserving at a distanceffrom
the exit which varies with the initial turbulence level

and the boﬁndary layer thickness., For a turbulent boundary
layer at the nozzle exit the virtual origin was found to be
very close to the geometric origin at the nozzle exit. This
investigation was carried out over a range ﬁf Reynolds
numbers (6x1Da—1.4x105) with maximum momentum thickness

¥ /r, = 0.011 at the exit plane.

Large-scale coherent structure in turbulent ‘shear flows was
apparent for a long time., The current upsurge in research
in this area has been trigge;ed by the recent discovery of

quasi-deterministic structures (Crow and Champange 1871,

&
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Brown and Roshko 1874, Winant & Browand 1974, Hussain

& Zaman 19#5). In 1978, Yule claimed that the axisymmetric
lturbulent mixing-layerrstructure is three-dimensional, but

the outerside is diffused and disorganised while the inner
side of the eddies possess a reasonable degree of spatial

and temporal coherence., Another motive for this study stemed
from the recent hypothesis profounded by Lau in the same

year. He stated that the near field of a circular jet consists
'ﬁf two coaxial streets of toroidal vortex rings bifurcating

at x/D £ 1.5 from a single upstream street; "the maim vortex
street accelerating and canueé&ng on the jetiaxis constitutes
the potential core and the branch vortex street decelerating
and diverging from the jet axis". This prouoﬁatiuejsuggestion,
even though inferred from extensive data,—anﬁ intended to
explain the large radial variatien in structuﬁe passage
frequency. (Ko & Davies 1971, Lau & Fisher 1975, Bruun 1977,
Clark 1979), appeared to be quite unconvincing and in need

of investigation.

sufficiently close to the jet 1ip i.e. x/Dg1, the axisymmetric
mixing layer'characteristics should not be different from

those of the plane mixing .layer provided that GOZDSHT,'GO is

!
the exit shear layer momentum thickness. Thus comp%risan

with the plane mixing layer is strictly meaningfullonly for

x/D §£1. However, in 1980, Hussain and Husain D4] chpared

some integral measures of axisymmetric mixing layer with
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thnsé of thg plane mixing layer. They justified such a
comparison giuihg two reasons (i)lthe latter flouw has
been -more. extensively 'studied whiile auaiiable'daté in the
axisymmetric mixing layer are extremely limited and (ii)
there is an amazing similarity between the average measures
of the axisymmetric layer until the end of the potential

core and the plane mixing layer.

Z.SEReleuant Works

The development of both theoretical and experimental works

on free shear flows are detailed chronologically in

Table 2.1.



Table 2.1 Relevant Works an HxiSymmetric Turbulent Jets

. Shear Stress A , Remarks
Authors Equations Model
1 |Sguire }41J Iintegral Form Q2( au )2 0.0 Assumed a cosine velocity profile and deter-
(1944 a) Mass oT 0.125 [mined jets boundary. Shear width, b,, was
b) Momentum 0.5 assumed between u/u_=0.0 and u/u_ ='1.0
L. b . T c c
171
2 |Albertson Experimental - 0.0 Measured mean axial velocities found to follow
et al Jf2] [~ ~ {the distribution u/uC= exp(-r2/202). This
(1848) model showed satisfactory agreemert for two
dimensional case.
3 J|Landis & Experimental - 0.25 Found core length to be x/rD=8 for A =0.25
Shagpiro, [22] |- 0.46 land x/r_ = 16 for X = 0.4B.
?1951) - o
4 |Simsan }QD] Experimental - 0.4 In the initial region for mean axial velocity
(1964 u/u_=(1. n7/4)2
S |Nayer et al Experimental - 0.0 In the initial region for mean axial velocity
[23] (1969) - u/u_=exp[-1.415(n +0.7)] where n =(r-r )/b,
and 61 is the shear width, ‘
6 |Harsha [11] Diff. Form ' | Calculation was performed for the transition
(1972) a) Mass and developed region.
b) Momentum C1b1 0.0
c) Turbulent
,KIEI
7 Morgenthaler |[Diff. Form Used a core model similar to transition model
& Zelazny [28] |a) Mass C,b as =0.4 v ... __, more successful
(| Tcore Ttransition
(1972) k) Momentum th ticioated
- c) Turbulent an anticipated.
K.k

gl




Table 2.1 (Contd..) Relevant Works on Axisymmetric Turbulent Jets

Shear Stress

- Authors| Equations Model A Remarks
8 |Launder [?4J Diff. Form Used two equation model.
(1874,1977) |a) Mass K2 '
b) Momentum o 2( 2 0.0
c) Turbulent | H & 3T
K.E. '
d) Dissipation
J Hatta'& Diff., Form Obtained a polynomial form velocity profile.
ozaki [12] ) M ( )l 0.0 . ot b ; lated
(1975) a ass- Ve ~lr =T, )U . Linear je ogndarles were calculated.
b) Momentum Length scale is b,.
c) Energy '

10 |Madni & Diff. Form 22( QH)Z Used different shear stress modelffor transi=’.
Pletcher {26]|a) Mass AT 0.25 {tion region. Flat mgan velocity and flat mean
{(1875) b) Momentum [ o e temperature profile at the exit.

c) Emergy’ T :

11 |Habib & , DifFf. Form Used fully developed turbulent profile at the
Uhitelaw [10]]a) Mass (2 1.0 exit. Numerical solution was in close agree=
{1977) b) Momentum c == ) )| 3.0 ment with experimental results.

c) Turbulent | # or
K.E.
d) Dissipatian

12 |Hussain & For turbulent boundary layer at the nozzle
Zedan [15] Experimental - 0.0 exit the virtual origin was found to be very
(1978) close to the geometric origin at the nozzle

exit.

61l



CHAPTER 111
THEORY

3.0 General
Turbulent motion is gougrheq by the Navier-5tokes differential
equations.The'mathematics.éf the non-linear:-Navier-Stokes egns.
has not been develcpéd to a point where general solution can
be obtained. In order to apply Navier-5tokes eguations to
practical cases, hypothesis and empirical_assumptions have
to be introduced for obtaining a set of closed equations
with time averaged dependent variables. The early thecretical
work uses Boussinesg's eddy viscosity hypothesis and Prandtl's
mixing length equatibﬁ as empirical qguantities to calculate
mean velocities, Theiassumptions; necessary to build the
empirical relations ﬁepend on the boundary conditions of the
flow field and have to-beéreadjusted foer each particular

flow case.

Theoretical work on Ffee Shear fFlows can be_deueloped in any

of the following three classes of turbulent model: 1) turbulent
viscosity models in which the length scale of turbulence is
found by way of algebraic formulae, 2) turbulent. viscosity
models in which the length scale of turbulence is found from

a partial differential transport eguation, and 3) models

in which the shear stress itself is the dependent variable

of a partial differential lconservation eguation.
. !

-

Studies with the models Dflclass—Z has commanded the major
part of the group's attention. The models of class-3 have

not yet been refined sufficiently to achieve the level of
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universality of which they are believed to be capable.
Therefore, engineering'calculations of turbulent flows are
confined to models-of class-1 and class-2 for the immediate

future,

Theoretical analyses with models of class-1 and class-2 are
most simply explained as attempts to close the exact Reynolds
stress transport equations for -puiuf.

J

3.1 Governing Equations

Assuming steady, incompressible flow without contacting any
solid surface, constant fluid properties and boundary layer
approximation,the eguation for mean motion are derived in

Appendix-A.

The mass conservation eguation is:

d(ur) . 3lvr) _

X orT J 31

The momentum conservation eguation is:

Jdu au 1 d '
U§;+U—;—¥§;(I‘T/p) 7 3.2

where T is the shear stress and p is the density of the

fluid,

The energy equation is:

5t ot 1 D
Usx Y 3r c 5o p=(-ra) 3.3

p
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The flow configuration. and co-ordinate system are shown in

Fig. 3.1. The shear stress, T includes both viscous and

Ry

turbulent contributions and it is written as: -

t/p = V%% -u'v’ 3.4

where v is the molecular diffusivity. The turbulent pasrt

of shear stress is - pu’v’” and it is usually expressed by

Boussinesqg's hypothesis:

-ol v’ = PV == 3.5

where Vo is the turbulent diffusivitye For the initial

region of turbulent jets, the diffusivity, V1 is expressed

in terms of Prandtl's mixing length, & and mean velocity
Ju

gradient, 3T°

1

Likewise, the heat flux, g includes both molecular and

turbulent transport and is written as:
-k oF PR X
g =-k 5T pCpu t -—pCp(q +oap) = 3.6

Turbulent diffusivities for heat and momentum are assumed

to be related through:

Vo .
a - -
-_— — 3.7
T Pry ;
i
vhere PrT is the turbulent Prandtl number whi%h was set

. |
equal to a constant value of 0.7 for air by Madni and

?p.f"\
- 1

Pletcher [26] . | ,
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e s . 2 9du . _
For 1n1t;al region: MT = 9 I i 2 = 0,0762¢ 3.8

wﬁere E’is-Pandtl's mixing length and § is - the width of

the miximg-layetr. This model is not applicable to the
transition region. Schetz's [38] and Madni-Pletcher's models
EZB]are combined for calculating mean flow properties in |

the transition region.

Madni-Pletcher's model is :

o

vo2 D03 0 3.9
—

Schetz's model is:

m T
vT = giggﬁY_[urar , 3.10
' I‘ o o

where v is an intermittency'factorland the expression for

. Yis as follows:

y =-1.0; O<r/r, <0.8
L.

(0.5)B ; r/r% > 0.8

-
I

where B (r/r% -0.8)2'5

A variablen,= (r-r,; )/b is used first by Islam [17] as

L
2.

self preserving variable for the initial region, where the .

scale

’|

b - o ‘ 3.12
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5

-
-

J.2 Boundary Conditions

Basic differential equations 3.1, 3.2 and 3.3 governing
the mean flow were solved numerically incorpeorating the
shear stress equation 3.5. The furbulent_diffusiuity, Vo
was expressed by equation 3.8, for tﬁe initial region and
by a combination of equations 3.10 and 3.11, for the

transition region. The appropriate boundary conditions

applicable to equations 3.1, 3.2 and 3.3 are:

%(X,D) = g_i (X,D) = 0, V(X!O) =0

ul{x,r) = ue(x) for r>b, where b, is the outer shear

layer distance from center line.

t{x,r) = te(x), for 1> b2

Initisl distributions of u and t were flat and the turbulence

level was very lou.

3.3 Solution aof the Eguatioens

An explicit finite difference scheme of the Dufort-Frankel [9 ]
tvpe was used to solve the conservation eguations 3.1,3.2

and 3.3,

3.3.1 DuFort-fFrankel Scheme

£
The DuFort-Frankel Scheme is a three level formula since it 1,

-

regquires information from the first level and the second level

—,



to evaluate an .unknown at the third level. In this scheme,
truncétion error is of the order f(Ax)2+(Ar)2] and the
central giid point (i, j) is rEplaLed by its average at the
(i-1) and (i+1) levels, The parabolic nature of the conser-
vation eguations permits the application of DuFort-Frankel

scheme to solve those equation where the solution marches

in the streamwise direction.

3.,3.,2 Calculation Technigue

The method of approximating the derivatives and their trunca-
tion errors are given in Appendix-B, The Finite difference
grid used for the calculafion are shown in Fig. 3.1. The
computer program developed foréthis purpose has the ﬁapability

. 1 -
of handling non-uniform g&id spacings in both r-and x-direction.

Von Neuman's method of stﬁbiiity analysis [34] with first

order error was applied to the momentum equation., It was

found that a midld stability constrain results which is given

in Appendix-C. For calculating the mean flow properties from
the continuity and momentum equations, non-uniferm grid
spacings were used in x-direction which was restricted by the
stability constraint. The grid spacings in the r-direction

were chaosen to .be uniform, di%iding the discharge radius T,
into 50 equal divisions to att%in convergence of the selution.
The calculatign with uniform géid spacings {(Ax/Ar <0.5) in o
both directions also attain convergence but consumes more ]

computer time,
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At starting, first level informatfbn is obtéinéh from iﬁitial
conditions and second level information by a simple finite
difference explicit scheme. This scheme requires only the
previous step values. Switching of the calculations from
the initial to transition region takes place when center

line velocity in the initial region decreases by 0.14%.
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CHAPTER 1V

RESULTS AND DISCUSSION

4,0 General

-

Mean velocity and mean temperature distributions in the
initial and transition regions of axisymmetric jets were
determined by numerical simulation. The differential eqns.3.1,
3.2 & 3.3 , governing the flow were solved by using boundary
conditions given in Art. 3.2. The investigation uwas carried
out for thfee different velocity ratios 0.0, 0.1 and 0.25.

For all three casés, the same computer program was used

with different values of the parameters involved. At the ;ﬁ
exit, flat velocity and flat temperature profiles uwere

considered,

This chapter presents discussion on the results obtained
by présent calculation afd comparisons of this results with

existing experimental measurements in the developing region
of the jets.

4.1 Mean Velocity

Mixing length model of shear stress given by Equation 3.8
for initial region and Schetz model [38] with intermittency
given by Eguation 3.10 for transition region were applied

to #he equations governing the flow tozexpress the turbulent

| .
sherr stress.

4.1.1 Initial Region

In Fig. 4.1(a), the non-dimensional center line velocity,

(uc—ue)/(uo-ue), obtained by present simulation is plotted
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-'against x/rD for velocity ratios 0.0,0.1 & 0,25, The
experimental results of Landis and §hapiro [22] for A =0,25
and Albertson et al [é] for *=0.0 are incorporated in the
same figure. Experimentél results of Landis and Shapiro [22]
and Albertson et al [2] are in satisfactory agreement with
the calculated results as shown in the Fig. d.1(a); The
figure shouws consfant velocity on the center line upto a
certain distance from the exit plane. This distance with
constant centér line velocity is called the potential core
of jet. It iséalso shown in the figure that the core length--
increases with the increase . in . A . Landis and
Shapiro [22] éxperimentally found the potential core to be
11r for A=0.25 and Albertson et al [2] found it to be

br for ArzD,&.The values for potential core for A=0.0 is
7r_ and for }=D.25'is T4r_  obtained by the present calcﬁu
lation deviate from the results of Landis and Shapiro [22]
and Albertson et al [2], These deviations are likely to be
due to the difference in initial conditions used in the
present simulation with that prevailed in their experimental
investigations,

The integral solutipﬁ of Squire and Trouncer [41] is also
shouwn in Fig. 4.1(ab to show a comparison with the present -
results and also wi&h existing experimental measurements.

The results of integral solution do not agree with either
experimental data or the present results obtained by calcu-

lation. This is due to the assumptions used in simplifying

~
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the governing equations and the use of different model for
mixing length. It is a clear indication that the integral
method, which is simple-in character, is not applicable to
the determination of the flow characteristics within the
axisymmetric turbulent jet. However, the appropriate deter-
mination of empirical velocity profile to be used for such
integral solution can give satisfactory results for jets

as given in ref. [17] .

The figure also shows small deviation of measurements [2,22]
with calculated values at the beginning of the transition
region, This may be due to the influence of the initial
conditions. But the main reaéon of such deviation is due

to the interaction of shear layer from both sides. At down-
stream section the calculated values and experimental values
agree satisfaétorily which indicates that the effects from
the interaction of shear layer die down there and the flow
may become self-preserving. Houwever, the effects of velocity

ratio exist all the time.

The mean axial velocity calculated by present simulation is
plotted against the radial distance r/rO in Fig. 4.2(a).

The measurements of Islam [1?] and Sami et al [37] are incor-
porated in the same figure for comparison. The %igure shows
that the values obtained by present calculation agree with
measurements [17,37] at x/rCl = 4 and 6 but it shows deviation

at x/rD = 2. The deviation is found to follow a particular

2
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pattern which can be explained by the early termination of
potential core in the present calculation. In addition, the
experimentai resuits at x/rD = 2 can not be obtaihed with
much accuracy due to the unstability of the flow close to

the nozzle. This phenomena were observed by Bradshaw [4}

and Islam E?l . However, except close to the nozzle, present

caleculation shows satisfactory agreement with measurements.

It is a common practice to pldt velocity against self-
preserving or similarity variable. The self-preserving
independent variable més defined in many different ways by
different .authors to express the flow to be self-preserving.
Schlichting [39] , vonfrank [44] and others used,

Nq= (r-r%%/x asethe self-preserving fariable for expressing
the flow éo be Self-preseruing in the developed region. Many
authors u;ed, (r - r%)/é , as the self-preserving variable

to explaiﬁ the self-preservation character of the flouy in the
developed region, Islam [17] defined a variable, (r—r%)/b

and used in the initial region and transition region to
explain the flow to be self-preserving. The present results
are plotted against both the variable,n1:(r-r%)/x and

Ny= (r—r%)/b, to identify. the applicability of these variables
in the_deuelopi%g region. The non-dimensional velocity,
(u-ue)/(uc-ue),!obtained by present calculation are plotted
against n, and !n2 in Fig. 4.3(a) and Fig. 4.4(a) respeﬁtiuely.

The figures show that the mean axial velocity has an approximate



30

self-preserving distribution when plotted against the
variable, n2 but it does not show self-preservation when

plotted against the variable n,. Islam's [17] data for A =0.0

i
are incorporated in Fig. 4.3(a) and Fig. 4.4(a) to study
the self-preserving behavior ag.:~1insi;.ﬂ,| and N, respectively.
The data in case of Fig. 4.3(a) do not show self-preservétibn
but in case of Fig. 4.4(a) found to collapse almost on a'

line showing the self-preservation. This is a clear indication

that scale, b is non-linear function of x.

A third order polynomial profile for mean axial velocity in
the initial region, except close to the nozzle, with inde-
pendent variable Ny, was obtained by curve fitting, based
on least sguare method, as follows,

2 3

(u-ue)/(uc-ue) = 0,.5-0.1 + D.DD?& n, + 0.00045 n5 4.1

2
RMS error for this profile is 0,00528.

' Mean radial velocity obtained by present simulation for A=0.0
is plotted against radial distance r/rD in Fig. 4.5. Results
from the measurements of Sami et al [37] and solution obtained
by integral method [j?] are presented in the same figure.

The results obtained by present calculation are in good
agreement with the experimental results [37] + But integrsal
sélution [ﬁ?] has got slight deviation with both experimental
data and present results. This is due“to the velocity profile

assumed in obtaining the integral solution,
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4,1,2 Transition Region

Different empirical turbulent diffusivity models were applied
by many authors to express - -the turﬁulent shear streés in the
governing eguations for the transitiﬁn region. Mixing length
model is only applicable to initial region where large scale
motion exists and it is associated with a major drawback
which is the prediction of zero viscesity on the center line.
Small scale motion together with the interaction of shear
layer dominates in the transition region. Madni-Pletcher [26]
model, Schetz [38] constant viscosity model and Schetz [38]
model with intermittency were applied to express turbulent
shear stress at different time by different authors. In the
present calculafion, Schetz [381 model with intermittency

is used for transition region.

Trapezoidal rule is used to evaluate the integral Equation

3.10 for turbulent diffusivity, v_.. The switching to calculation

T'
with Schetz model from the calculation with mixing length
model takes place when central line velocity in the initial

region decreases by 0.1%.

The mean axial velocity, (u—ue)/(uc-ue) for A = 0,0 obtained

by present calculation is plotted against the radial distance
r/'rD in Fig. 4.7(a). The experimental measurements of Islam [17]
for X=0.0 are incorporated in the éame figure for compazison,
Slight deviation of measurements [17] with the calculated

values is shown in the figure, This deviation can be attributed
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to the early occurrence of transition region in the present

calculation.'Because, early occurrence of transition region
s :

makes the spread of jet higher than the measurements [j?]

at the same axial.idistance.

Mean axial velocity for transition region obtained by present
calculation are plottgd against the variable N1 and P in
Fig. 4.8(a) and Fig. 4.8{a) respectively as done in case of
initial region. Experimental results [1?] for A =0.0 are
also presented in Fig. 4.9{(a). From figures it is found that
neither the variable, n, nor the variable, N5 is a good
self-preserving variable for the transition region. The
experimental results E1?] showed self-preservation in the
central part of the shear layer. The deviations from self-
preservation likely to come from at inner side due to intet-
action of shear layers from botB'sides of center line and.

at outer side due to intermitteﬁcy. Fig. A.Q(aj alsé indicates
that the band of experimental values of mean axial velocity

is wider at the outer edge than that of at the inner side.

4.2 Jet Geometry and Scale for Velocity

4.2.1 Jet Geometry

|
In early time, Prandtl's mixing length was expressed as,
2 =Ct x, & linear function of axial dLstance. But it has been
found through intensive investigations by different authors

at different time that this mixing length model used to express

P
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turbulent shear stress predicts flow properties within the
inifial region of the jet very poorly, Now it is understood
that this mixing length is not’; linear function of axial
distance. From this understanding, study of jét geometry
stemed which is not a linear function of axial distance
rather depends on structure of flow, initial conditions and
boundary conditions. The growth of jet boundary and the
growth of half-radii along axial distance are important

jet or flow geometries. It was found by many researchers
that the experimental error is highest at the jet boundary
and least at the half-radii. These are due to highest inter-
mittency at the outer eﬁge and least intermittency.at the
half-radii. The‘jet_gamétry ﬂn the present investigation

is shown in Fig. 4.B(a);and 4.10(8).‘

1
Iso-velocity lines withik =0.0 for three different velocities,
(u-ué)/(uc-ue) = 0,01, D.5 and 0.98 are plotted in Fig. 4.6(a)
in r/rD VeS. x/rO plane. Experimental measurements of
Islam [17) fer A =0.0 are alsa presented in this figure for
the same iso-velocity lines, It is found in the figure that
measurements 117] along iSowuechityfline;r(uéae)/CuCaue)zﬂ.QQ
are higher than that of the p;esent talculation near the
termination of the core. Thisiis an indication that. core
length obtained by measuremen#s[??] is higher than that obtained
in the present simulation tec%nique. The deviation may be

attributed to the use of value of constant in mixing length

model. The figure also shows that iso-velocity lines are not
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perfectly linear in the initial région and jet 'spreads at
an angle of 129 approximately, Some authors identified the
isa-ueloci%y line (u-ue)/(uc—ue) = 0,5 as central region'
of the mixing.zone. But this figure shows that the mixing
zone is not symmetric about the iso-velocity line,(u—ue)/

(uc-ue) = 0.5 at least for A=0.0

Growth of haif radii Fﬁr velocity for three different velocity
ratios D.ﬁ, 0.7 and 0,25 are presented in Fig. 4.10(a) in
rz./rD V.S, x/rD plane. Experimental measurements of Landis
.and Shapiro [22] for A =0.25 and Albertson et al [2] for

A =0.0 are incorporated in this figure. The values obtained

by present calculation for A=0.0 and 0.25 are found to be

in slight disagreement with the corresponding values of
measQrements [22,2] . The figure also indi¢ates the effects

of velocity ratio on the jet geometry. The effect is that
growth of half-radii for lower velocity ratio is higher

than that for high velocity ratie which subsequently indicates
that spreading of jet is mainly dominated by the boundary

conditions imposed by velocity ratio on the flow of jet.

4,2.2 Srals

Turbulent flow is characterized by the existence of several
-length scales, some of which play very specific roles in the
description and analysis of the flow. Shear stress involved

in the eguations governing the flow is expressed by a length
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scale, The concept ef the fundamental diffusive iength
scale stemed frnm the existence of'large size eddies in

the initial region. This large size eddiesaare as big as
the width of the flow which is the relevant length scale
.in the analysis .of the interaction of the turbulence uwith
the mean flow. The inherent difficulty in fhe determination

of the width of the flow propelled the investigators in.

seeking new length scale.

In Fig. 4.11(a) a new diffusive length scale [17] b for
initial region for three different velocity ratios 0.0, 0.1
and 0.25 are plotted in b/r_ v.s. x/r_ plane. The length
scale b is defined by Eguation 3.12. Thelbackmard difference

formula has been used to determine the'ﬁ

b ]

ean axial velocity
gradient at the haif-width. Experi%ental;measurements of
Islam [17] for A =0.0 are presenten in tne same figure.

The slight disagreement of the values calculated by present
simulation with the measurements [ﬁ?] is due to the early
occurrence of transition region in the present calculation.

The figure indicates that slope of the scale b against

axlial distance decreases with increased velocity ratio.
e,

In order to find out the relation between the new length

i
scale, b and the diffusive .length scale!giuen by -Equation

3.8; the ratio of &/b is plotted in Fig. 4.12 against x/rD.

it is worth mentioning that in the present calculation
both the scales & and b are considered as function of axial

distance only. The figure shows that the ratio &/b is a
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function of A and is constant along axial distance in the
initial reglon for a partlcular value of A ., The constant
values of the ratiao, R/b are 0.857 for X =0.0, 0.907 for

- x =0,1 and 0.703 for A=0,25. This is a clear indication
from the figure that the scale, bé is gquite applicable

to the initial region of axisymmetric jet flow. So the
difficulty in deterﬁining the midth‘oﬁﬁthe flow may be’

overcome by using length scale, b.

4,3 Mean Temperature

Thermal energy equation 3.3 comes into play, in addition

to the equations 3.1 and 3.2, governing the flow of non-
1sothermal axisymmetric JEt The relation given by Eqguation

3 7 is applied to the thermal energy eguation to express r

the turbulent thermal diffasivity.

4.3.,7 Initial Region

In Fig. 4.7(b), the non-dimensional center line temperature,
(tc-te)/(tg—te), obtained by present calculation is shown
against x/rD for velocity ratios 0.0, 0.1 and 0.25 with
a temperature ratio of 0.3 for each case. The experimental
resul%s of Landis and Shapiro [22] for A =0.25 are incorporated’
in th# same figure. Close agreement is found at the downstream

J

section. The disagreement of the calculated values with

measurements [22] in the transition region is due to the
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sever interaction of two thermal shear layer, converging

on the center line from two sides.
»

The figure shows that center line temperature remains
constant upto-a certain distance axially which increases
with the increase of velocity ratio. This distance obtained
by present calculation is 7r0 and that obtained ;n measure-
ments [22] is B r_ . The deviation is due value of the

constant used in mixing length model.

The mean axial temperature calculated by present simulation

is plotted against the radial distance r/rD in the Fig. 4.2(b),

Self-preservation of mean axial: temperature are shown in

Fig: 4.3(b) and Fig. 4.4(b) for A =0.0 plotted against
Ngq

shows that mean axial temperature is self-preserving only

= (r-rt%)/x and Ny o= {r—rt%)/b£ respectively. Fig. 4.3(b)

in the central region of the mixing layer, The picture of
self-preservation is different in Fig. 4.4(b). The non-
self-preservation in the inner part shown in the figure 1is
due ta the presence of thermal mixing layer within the
velocity %étential core and in ‘the outer part 1s due to the

intermitt%ncy.

|
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4,3.,2 Transition Region

Schetz [38] model with intermittency for turbulent momentum
diffusivity is used for turbulent thermal diffusiuity with
a modification, This modification is obtained by using

Equation 3.7.

The mean axial temperature, (t-te)/(tc-te), for A = 0.0
obtained by present finite difference method is plotted

against the radial distance r/r_ in Fig. 4.7(b).

L
|

Mean axial temperature for A =0.0 are plotted in Fig. 4.8(b)
and Fig. 4.,9(b) against self-preserving variable Niq andz

n,, respectively. In both of the figures self-preseruatidn Was
found only in the central region of mixing layer. Prolonged
effects of interaction of fhermal shear layer from two sides
make the -mean axial temperature non-self-preserving against
Ny, in Fig. 4.8(b). It is a clear indication from Fig. 4.9(b)
that the scale b, 1s not applicable in the transition region

t

for temperature to be Sel?-preseruing against Ngoe

4,4 Jet Geometry and Scale for Temperature

4.4.1 Jet Geometry

Important jet geometries, the growth of thermal boundary

and the growth of half-radii for temperature are shown in

f*ﬂY
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Fig. 4.6(b) and fig. 4.10(b) respectively. Iso-temperature
lines with A=0.0 for three different temperatures, (t-te)/

0.01, 0.5 and 0.89 are plotted in Fig. 4.6(b) in

(t-tg)

r/rD V.S. x/r0 plane. The iso-temperature line,(t-te)/

(tc—te) 0.898 indicates that length of thermal potential
core.is less.than that of velocity potential‘cure for same
value of A . In fact, this is a conseguence of higher value

of turbulent thermal diffusivity than .turbulent momentum

diffusivity.

Growth of half-radii for temperature obtained by present
caléulation for three different velocity-ratio 0.0, 0.1

and 0,25 ére presented in Fig. 4.10(b) in rt%/rD V.S, x/rO
plane. Exéerimental measurements of Landis and Shapiro |22I
for A =0.25 are incorporateﬁ in" this figure. Slight disagree-
mena of the present calculated values with the measurements
[22] may be due to the late‘termination of the thermal core

in the present calculation or due to the interaction of

thermal shear layer from two sides.

4,4,2 Scale

A scale, Ht for temperature analogous to the scale for.

velocity ijs plotted in Fig. 4.11(b) in bt/rD V.S. x/rD plane

for A=U.DL 0.1 and 0.25. The behavior of the scale, bt is

similar to the scale, b for velocity plotted against x/rO for

each case, Yet mean ﬁemperaﬁure is not found to be self-

preserving against the variable Mo
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CHAPTER V

CONCLUSION

A Tfast and effective computer program has been ‘developed to
solve the finite-difference equations of - conservation.
The same computer program was used for solution of conser-
vation equations for axisymmetric'turbulent jets both in

moving and in rest surrounding.

Numerical calculations uwere performed for mean velocity

and mean temperature in the developing regiqn of jets feor
three different velocity ratios 0.0, 0.1 and 0.25 uwith a
constant temperature ratio 0.3 for each casé.

The results obtained by present calculation were éompared
with existing experimental measurements. Thér agféement

in the comparison indicates that Prandtl's ﬁixing.length, L,
expresses the furbulent shéar stress approximately in the.-
initial-region. This mixing length, & , is a simple-algebraic
equation where shear layer thickness appears as a variable.
The thickness of the shear layer is obtained by defining
outer boundary at (u-ue)/(uc-ue)zD.DT and inner boundary

at (u-ue)/(uc-ue) = 0,899,
: i
!
R self-preserving model with shear layer thickness as a

length scale is not suitable because the highest ?xperimental

|
vncertainity occurs near the outer boundary. where ' the mean

velocity is low. In developing self-preserving model, it is
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found most suitable to define length scale.on the basis
of measurements along half-radius where experimental
uncertéinity is the lowest, Islam.[ﬁ?] defined a length
scale, b which 1s inversely proportional to mean velocity

gradient at half-radius.

The dependency of length scale, % on radial distance were
considered negligible in the present calculation. The length
scale, b is found to be non-linear in axial distance. A
constant value of the ratio, 2/b in the initial region for

a particular value of X indicates the non-linearity of

scale, & and the applicability of scale, b in that region.

In tﬁe initial region, mean velocity is found to be self-
preserving against the variable, no but mean temperature
' does not show self-preservation against the variable, ”t2'
The non-self-preseruation of mean temperature at the inner
side of mixing layer may be due to the intervening layer

between the velocity potential core and the thermal potential

core which is in need of intensive experimental investigation.

The polynaomial form of mean velocity profile developed for
the initial region in the present calculation and given by

Equakion 4,1 may be applied to integral method of solution.
i
1}
|
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APPENDIX-A

DERIVATION OF EQUATIONS

Differential Equations

Non-isothermal Turbulent flow is governed by the Continuity
eqguation, the Navier-S5tokes equations and the Energy Eguation.
In cylindrical co-ordinates the mass conservetion equation

for incompressible flow field with bouhdary layer assumptions

ist
- . o o . o :
gg + g%’ + % 5%-(IUD) + %- gﬁ-z:ﬂ AT

The co-ordinate system is given in Fig. 3.1 :and uo, v® and

i

) . . . = . }
w- are instantaneous velocity components in x,r and directions
. : i

1 i
i 1

respgetively.

Reynolds equation of motion for turbulent flow, disseciates

instantaneous variables into mean and fluctuating components:

u = u + u' A

vo = v o+ ov! A, 2
w® = uw' r

o _ 1

B = p +p

t? =t + 1 é

[ .
where u,v, p and t are mean components and u', U'J w'y p!' and

t! are fluctuating components, The instantaneous pressure

pD has a mean and a fluctuating component, p and p' respectively.
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Introducing Equation A.2 in Equation A.1 and considering

steady state:

3 (usur)el 2 , 18wl g |
ax(u+u )+r g;{%(u+u U + < = 0 . A.3

Taking a time average:

1]
am}
-]
.
ey

eI G

Subtracting Egquation A.4 from Equation A.3:

ou' 1 . 1 Jw'
ErR T CAA R v Sl | Aes

Navier-stokes equations in cylindrical co-ordinates for

incompressible flow in absence of body forces and considering
constant viscosity:

x-component:
i .

: ' 2 0
¢ b’ ap” 1 3¢ 3uly .1 3%
BF - Ix T M T EF(I ST )+ 2 2 _ A.B
. T ax
r-component:
o J’ o 2 0
Dv Wiy o o_2p o1 _8..,° 1 3V
(B - %) = - 55 [ar( T Frlry M)
T 29
LG 2 0
_ ;% gg + 2 UZ‘} A7
T 3 x '
|
N o, Dt wBP 1 ap° 3¢ 1 3 o
g-component: ( bT + < ) = -7 36 +u [ 3;(—?_3;(rw D
l 2 0 o 2 0
Ly Byt g_\ei*""awz} A.B
r 26 T ax
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Using Equation A.2 in Equation A.G6:

2(u+u')

1) 2 (uiu D) 2(urut)s B2 (U
Y + (u+u') ax(u+u Y+(v+ut) ar(u+u )+ = ae(ul+u }

2 2
1 2 a° - 1 2 1.0
= - = a(pw')*;[fz(“w')* T 5-;(u+ur)+ =2 3—67(U+U')

r
2
+2—~(u+u')] A.9
2.2
X
Time Averaging Eguation A.S:
ou ou ru’ ou pou' wl oul
e FYS Y SxtVaEatViartT &
2 2 2 ‘
1 2p 2 u 1 du 1 Q°u, du ]
= - = t V| = = =+ = + A.10
£ ox [al_z T2 2 262 3,2 ‘

Multiplying Equation A.5 by u' and then time averaging:

ulou! 1 2 11 rOu' 1 2 w! du'_
5% 't ar (tu'v') - vl sz oogp (i) - g = 0 AL

3]

Adding Equation A.19 and Equation A,10 and rearranging:

gu au -
STt USy tvau . 2 2y 1 8 tut)e L 2 (yryt
ot X or  ~  &x (pfp + u'")- T ar(r utut)- T 86( v')
2 2 2
QI—EE" +1?§_1;_+1_23§L_12+81§-] R.12
E T Ox
u*z, u'v' ancd w'vu' are the Reynolds stresses. Miller and

Comings [27] experimentally showed that u'” and p[p are

approximately equal and o;ﬁpﬁ‘osité for jet flow 1i.e. {(p/ +U'2)?D.

— 2
For axisymmetry, 2 (w'u') = 0 and 22 - 0. Applying boundary
56 202
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2

2 ; . has been neglected. For steady
I x '
flow, Eguation A.,12 becomes:

layer approximations,

Su 2u 1 2 | Jdu
— = = — > - L |
u ax-+ 2T T LI( 2T v )]

: 2u 2u _ 1 3 [ > J S

or, W3yt V3T T T Br LT o A.13
T oy !

where /P ))ar - u'v! A.14

Similar mathematical Eperations in Equations A.7 and A.B

yield that on using UFder of magnitude analysis the eqguations
|

for mean flow vanish. :
|
‘ v

General Energy Eguation for!incompressible flow is:

5T [P(U +<§+ 3 ¥ )J - kot +lf’ (% ﬁ2)+.¢]' . '. A.15

-

where U is the internal energy,§>is the potential energy, V
is the kinetic energy, g?to is heat addition by conduction

and ¢ is the dissipation.

Considering f as constant, diU) f’%% A.16
Let U = F(U,t") ;
|
Therefore, dU = (aﬂ) o dv +l(é:%A.dt0
’ 7't | BEou
= L-p +£°( éﬂi@)g di + C,dt°
at

3



74

Taking substantial derivative of U

DU _ o, 3p R DY Dt°
PhE = £ et (ato')UJD_t'J’ Pty e

=}

[ 0/ . > Dt
= [—p+t(é~%o)ujlv.\f + PC. &F

<>

For incompressible fluid flow, V.U = 0 and then

b

D Dt
Foe= £ =
(PP ) = 0, since % is independent of time.
ot

Now Equation A.15 becomes:

a]
Prs g = kvl + P | AT

1f dissipation by molecular process is slow then #’can be
neglected and Eguation A.15 reduces to
O

P, Dt _ g 2t© A.18
Dt

In cylindrical co-ordinate Equation A.1B becomes

at® o 2t w ot o dt
Poy, Gerviss ++ S5+ v 55 )
2,0 0 2,0 2,0
s k(E, L L2, et 2t A.19
or T T =] 3 x
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Using Equation A.2 in Equation A.19:

c{t+tt)

a 1
a_%(t+t')+(U+U') Y +(U+V')_a_(tg;§') +ou! (Et;t )
K [52(t+tr)+'la(t+t')_+ 1 2%(tatn), Plast) | .
FT3 5.2 T &r 7 752 52 .

Considering steady flow and then time aueraging Equation A.20:

Ua_t ﬂ + 'a—t:+ U' a._t:. + "B—.E
ax * Uar u ax or w ol
Kk [2%t 1 ot 1 2°t 2%
e e R ) AL 21
£h g a: s r° 2p2 2 x

Multiplying Equation A.3 by t° and then time -averaging:

t

s

2 (rv') +

1
%: 0 A,22
ST

il

t !

—
o ' :

. Adding Equation A.21 and Eguation A.22 and rearranging:

Ty

Q. ! _a_l-r 1_2_ T
{rvt) + ax(t ) ﬁar(ru tr)+ = 5% (tTw')

2 1 o
x(tu) + — 5=

ok 2%t 1ot 1 2% 2%
= —CA —2 + j_l'_‘.é_ + 73 25 > A.23
F6 | ar 7 96° ox
EY >°t
For axisymmetry, 55(t'w')=0 and 535:0. Applying boungdary

layer appreximations, azt/ax2 has beenneglected and then
|

using equation A.4 in Equation A.23:

ot 2t . 2hTiiy. 1 B, e k PPt 1 ot ]
Usx * V3T + §§(t u')+ - 5?(r vitt) = Fﬁ’L_E * T 57 J A,24
vier
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Equation A.24:

] [
at ot 1 & («xr 2k o rttul) - 2(ETuT) A.25
Uu=— + vV == = = ar 2 X
ox aoT T T
In practice t' amd u' are poorly correlated so Eguation
A.25 becomes:
2t 1 > at T
— = — L — ! '
U at + v 5T = ar( - rtlu!) A.26
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APPENDIX-B

FINITE-DIFFERENCE FORMULATION

A stamdard explicit finite-difference techniqué requires very
small streamwise steps to satisfy the stability criterion.
The Dufort-fFrankel [ 9] method is-used here. Dufort-Frankel
Scheme needs information from the two previous stzeamwisé
stations. For this reason standard explicit scheme is used

as a starting method for Dufort-Frankel procedure.

The-finite-differencé problemzZdomain--is made into a net of
points as indicated in Fig. 3.1 by letting ax and AR be
small increments of the coordinates X and R. Here the finite
difference equations will be written in a format that will

be applicable for unevemngrid spacings with x and R directions.

1 i A = - = R o
Forrthls purpose, the notation &R, (Rj+1 Rj), AH_(RJ RJ_1),
ax = (Xi+1—xi) and 4x = (xi_xi—T) will be ;ntraduced. The

dependent variables are expanded in Taylor series.

The basic variables are made non-dimensional by using the

following transformation:

: XUO Y, Y v
X:DsR:_D,UzE"—sU:U_
(o] 0]
B.1
N _9+QT = E N o+ oo
= ) ] "€’H_
o =

Replacing shear stress, T/p by ( +'9T) 5;% and heat flux,

2t . . .
- —— and introducing transformation B.1
g by - PC, (o + o) 55 8 g

in the continuity
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‘Equation 3.1, the momentum Egquation 3.2 and the energy Eguation

3.3: the continuity equation’is

-

"O(UR) . 3(uR)_
ﬂ i S 0 : B.2

the momentum equation is

oUu 2u _ 1 =2 ou
Uf—)-x-+ Ua—HT = ﬁa_ﬁ(ﬂm a—-R-) B.3
and the energy equation is
a7 2T 1 3 arT .
Usx * V&R = ®ar (A &7 8.4

ns for Dufort-Frankel Method

1

Finite Difference Eéuatio

i
Continuity Eguation:
i
1
Taylor's expansions.about half a grid in r-direction and

one grid in x-direction.

_ 4R.
U(i+1,j+1) = U(i,lj+§') + AXU o+ u_+
2 AR, 2 3
A ¥
z[(Ax) U+ AX4R U _+( =) Um} 0(a”) B.B
- _ 4R,
U(i+1,j)_u(i,j+5') ax s g U
| i
N Z _ | é_R__, 2 A3 .
,_[(Ax_) U . A>5AFiU|rr+ (=) urr}r 0(a~) B. 7
i s,
Uio1,5)7 Ui, 5eg) ANV T

’ 2 AR, 2 3
——.
3 (A.x.—) U +t4X4R uxrsr(2 ) Urr] + 0(4a7) ~ B.8
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Subtracting B.B from B.5:
" 2
- = A 3.
Y1, 5407 Yior, jer) = (AXFA0U 0 (A7) 3.9
Subtracting B.8 from B.,7

' 2
- = (4 4 B.10
Yli41,5)7 Yiaar, )T (4RO, 40(4%) 1

Adding B.9 and B.10:

u,. . +U, ., - Uy .. )=U, . .
(g%)i suy © Git,g+1) 7 (341,3)7 “(i-1, 3541777 (5-1,3) g a2y 5.1
’ 2
2(4X + ax)
Now

2N

R
= A et
Va1, 56107 V(a, 54a) ARV LS

_ 2 |

2 AR 2 3y .
iﬁdﬁ) V (FAXAR Y _+(5=) ur4+ o(4a”) ? | B.12

_ o AR.
Vii41, 507 Vi(a, ged) P ARV - TV 4

,“ Z ARy 2 7 3

A - - A

Lkax) Vo m4X4R V4 (57) IJ + 0(a”) B.13
Subtracting B8.13 from B.12:

v -V,
Ay (i+1,5+1) 7 Ci+1,35) 2
—). . = ’ ’ o4 B.
TR 5,544 (4R +4R /2 + 0an) . B.T4

Using Equations B.11 and B.14 in Eguation B.2:

R.,,,+R.

RN TR UL . =U, . =U, .

G(AX+AX) 1+, 341 141,37 Ti-1,3+17 7421, 3
M

. B i, 501 7 RyVis,

(4R +4R) /2



Momentum Eguation:

Taylor's,expansion of U about one grid in r-direction:

ARy 2
(489

) 3
u,. . = U,. . A
(i,3+1) (i,5) F UL+ Uopt 0(a”)

ARL 2 3
= - punbiE Pa
U(l,J—T) U(l;_]) AH__ UI‘ + (2 ) UI‘I‘+ D( )

Subtracting B,17 from B.16:

u,. . - U,. .
Fg%)i,j _ (i,3+1) (l,J—1)+ D(Az)

&R +4R)

:

!

Similarly expanding U about one grid in x-direction,

ax i,

@y o Le1,9)7 Y15), a2y

i A X +4X
| * .

Taylor's expansion of U about half a gricd spacing in

T-direction:

= Uy, AR*Ur + 2( Ry 2y oot n(a®)

U(i+j+§') 3T

2 3
Ym0 TV T T 1 (E 0, - 0ed)

%)

Subtra%tlng Equatlon B.21 from Equation B.20:
> J

( U) (U, . - U ) + 0(a?)

AR +AR i,5+% i,j-2

°’|

a0
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Similarly it can be written as:

3 ey 2  [od0y 3 A2
SR 5 7 agar | (YaR)s, 50 (GR i,j-%]_+ 0(4%)

4D

AR+4R 2 2 SR, J+2
R.+R
_ j-1 1, i1,3-1,8U B.23
2 2 (ER)i,j'—% ]

= é__}i+ Lé_E,Z Aj

U(i,j+1)_ U(i,j+%) + 7 J_o+ 2(2 ) Urrf 0{ )7 B.24
-y, AR. L(4Ry2 a3

i, 3) T Y, 5es) T TN HEET UL+ 0(8Y) B. 25

Subtracting B.25 from. B.24:

Up, <, . 0-=U,p. . ' : :
ou : (i, 3+1 (i,3) 25
.. = 2 0(a : B.25
BR)1, 544 vy (@) ,
Similarly
Uy, y=U,. .
TN ETE DIl € 55 DNV CY 5. 27
1,_]"2 AR_ :
‘ !
Writing the following expansions for U: |
u,. = U v oaxy 4 A%< U+ o(ad) ' | 5log
(l+133) - (133) * X+ 4 XX .E
ax° 3
. N - U . . - A — A . .
U(l-1yj) (l:J) &Ux * Z Uxx+ o( ) B.28
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Adding 8.28 and B.29:
u,. . =‘é.5 b, . RUSNTI L1+ 0(af) B. 20
(i,3) (1+1,3) (i-1,3)

Equation B.26 and Equation B.Z27 can be written as:

2u o Y, 5400 D‘5[U(i+1,j)+ U(i-T,jﬂ 2
(z7): .1 = : L 0(4°)  B.3
: R'i,j+3 AR
‘ +
: 0.5 | U A+ U VT o-U
oy _ ! [ (i,41,3) (i-1,j)] (i,3-1); 2
B3RV, 5.2 = — . + 0(a%) 8.32
AR

Using Eguations B.31 and B.32 in Eguation B,23:

2 (a2l 2 Rty ATUEPTRLEI
6R*"PR’i,j AR+aR! 5 > :
Us, 501700505 g gt Uy g )
? AR
! +
R.+R. 4N “G.5(U, . .+U, DU, :
RJ+RJ—? N1,3+ s J-1 (U1+1,J+U1-1,J'- i,3-1 2
- 5 > . — +0(A°)
AR
B.33

Using Equations B.18, B.19 and B.33 in Eguation B.J3, finite-
difference equation for the momentum eguation is:

_l i
Yiv1,37%1, 5
u, .(
1]
ax, +ax ]

M7V, 54

L 3 -

)+ Ui’j( )
AR +4R

1 2 Ry * Py M 50,5
AR
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R.+R . .+N. . N
u, . .-0.5( U. U, ) j3-1 i 1,7 l!J"1.
i, j+1 1+1,3 ~i-1,3 - 5 AR
0.5(U. . .+U YU, . + D(a%) B.34
=2 i1, 7001, 5 1,3-1}

Energy Eguation:

By similar treatment energy equation can be written as:

Tie1,37 i1, Ti, 54174, 5m1
u, . s ] 2y v, L ( 2 J 2 J- )

1) Ax +AX Lad AR, +AR
1@ Rior ™R Mhs 541"V, 5 {T o.s(T - )}
Rj AR +4R 2 . ZAR, i, 3+1 7° i+1,3 i-1,3°4
-I.db.‘
_ _ B.35
R.+R. N, LN, 0.5(T. +T. ) -T. .
i

2 . 24R

The center line derivative boundary condition was implemented
using a Taylor series expansion for the velocity and temperature
about the center line and using a second order approximation

to the zero derivative at thezcenter line. This permitted the
calculation of the center line values of velaocity and
temperature ‘according to:

J A5, 27 Yiag s . _ 451,27 Tisr,3
it1,1 = v T34,

3

o
Kl 1’ N
!_ B
A?f
+,
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Direct Explicit Scheme

The finite~difference equations for this scheme were used
to start the Dufort-Frankel method. The eguations can be

derived by standard method [34] .

The continuity equation is:

R.

.—Ji - - ! 1—— - =
2o Wiir, 37Y5, 57501, 541785, 5017 2R Yian, 5017 R V41, 5

B.37
The Momentum eguation is: E
E
U, ., o-U, - ST
U. ( i+1,] l,J) + V. ( 1y 3 l’!J“1)
i3 37 4R, |
AX : ' E T
_ L 2 [ Rur*Ry My a5 Y5407,
'R AR+4AR 2 - 2 4R,
R.+R N +N u, .=-U., .
_ J-1 i,j i,3-1 i, "1.3-1 B.38
2 2 AR

The Energy eguation is:

T'+1 N T. .=-T. - g
U, ( i s J lsJ) + V. ( l,.,] 1y 3- )

1,1 ax 1,3 " AR
A o [ Ry Ry _NHi,j+1+NHi,; Ty, 541784, 5
Rs aR+af 2 2 | AR,
R.+R

-

. N, . .+N,,. . T. .=T. .
J -1 . Hi, j Hi, j-1 1,] 1, -1 B.39
2 2 AR
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APPENDIX-C

STABILITY ANALYSIS OF THE MOMENTUM EQUATION

7

The finite difference analogue of the partial differential

eguation must satisfy certain conditions:

1) the soluiion being obtained should correspond the partial
differential equations, at least when grid spacings is

refined in a particular manner.

2) due to the use of particular method of solution, round
of errors or errors from any source are not amplified

or allowed to grow in subsequent steps in the solution.

Tﬁe first point is called the consistency condition which
Can'beistudied by expanding the dependent variables in Taylor
séries expansions., From this-expanded series, the difference
bgtween the hartial differential equations énd the finite’
difference representation can be Dbserued[ 9"]. This diffe--
rence is known as truncation or discretization error of the
equations. If this error vanishes in the limit as the grid-
spacing is reduced, the finite di%ference representation is

said tolbe consistent.

The second point is called the stability condition. Here
| _

Von Nedyman [24] method of stability analysis is used to get

an ins%ght into how a solution of finite difference equation

behaves when round off errors effect the calculations.

Unfortunately, this method can only be used to establish
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necessary and - sufficient conditions for stability of linear
initial value problems with constant coefficients. Due to the
non-linearity of momentum equation VYon Neumann method is
applied here locally for satisfying the conditions of the
applicability of this method even though they do not satisfy

over the whole solution region.

Let the error growth in U be éq, and according te~Neumann

[}4] it was expressed as:

With the error, the velocities change to:

Ui, 541 Y, 5017 &i,j+1 ;

+4

1i’j—'1 >

9

“i+1,3 )

Ui, 5-1 2 Y1, 349

Uitt, 5~ Y541,

and

B, (R+4R)  ip,x
e =

LBy (R 4R) 1o

A

S

11, j+1

&i,j-1 -
p1ﬁ'<ip2(x+4x)

& Ae e

4i+1sj

11

Substituting Equations C.2 in Equation B.34 and using

using AR+ = AR = 4R :
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i

U é\i+1,J 11'133 + éii;‘]'f‘]_éii,s—‘] aaf
i,3 1,3 i
AX +4X 24R ?

1 AR _ AN

" JaRr)? [ g s, 5en¥0s, ) {%i,j+1“D‘5(éi+1,j+éi—1,j{} L

(1= AR y(n, e, ){0.5(5,. S )-8 1}] c.u

i41,7 1i-1, ] i, Jj-

Substituting Eguations [C.J3 in Equation C.4 and using

AR,
f - P17
2 ?
f + A f+ B =0 i C.5
o o ;
!
- U, L J(ax v 4X)
Where A_= et - i
0 ) :
1:] L (2B N, )
|
_.Yi_’i+ S e 2By, e
- — 28R Z(AF\))Z RJ 1,3 l,J-—1
BD ) Vi, ; 1 R
od (1+ 52 )(N, .+N, .. .)
24R s R)2 2Rj 1,3 1i,J+1
The roots of Eguation C.5 are:
AO Ao 2 | '
f: - T i ( —2-—) - BD } [:.B
According to Neumann stabillity condition; |j]$1
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For real roots, ineguality ’f! <1 are:

_9
T2

/’“, %

Rearranging Equation C.8

(AD—BO) < 1 C.9

Using expressions for AD and B0 in Equation C.S and rearranging:

-uU, . v, . N, . L +N. L)
i,] i,] 1 i,3-1 "1, j+1 _ 4R
Axrax € [AR + 2aR (1 - 35 C.10
PR AR J
Since U, j/(A%ﬁA{) is always positive,
Yiagoy [ ls o, My, 5ot ) (1n AR
Ax+48X AR 24R AR 2R
or,
;3 AR
AXy +4X < :J
N, . L +N. .
Vi3 v 23l 1 0¥Tg 32 ) C.11
2AR i

The stability constraint given by Eguation C.11 determines
the grid. spacings in x-direction with uniform grid spacings
in r-direction. As the radial velocity on the outerside is
negative, the condition C.11 satisfies automatically but it
is not satisfied in the inner side where instability did not

show at all.
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APPENDIX-D o
COMPUTER PROGRAM f
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L re neeg oy
RO peaany
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vy
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