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ABS TRACT

Theoretical investigation hds been carried out for flows

in the developing region of coflowing axisymmetric turbulent

jets. The surrounding fluid was taken to be moving at various

speeds. The equations for mass, momentum and energy conser-

vation for turbulent flow were solved numerically by using

appropriate boundary conditions. DuFort-Frankel type explicit

finite difference scheme was used to obtain the finite

difference form of the. above equations. The calculations were

performed for veloci:ty ratios of A= 0.0, 0.1 and 0.25. A

temperature ratio of 0.3 was taken for each value of A • The

exit velocity and temperature profiles were assumed to be flat

for each case. Prandtl's mixing length was expressed as

a function of shear layer thickness and it was used for

modelling turbulent shear stress. But this turbulent shear

stress model was not applicable to the transition region.

So Schetz model with intermittency was used for this region

to express the turbulent shear stress.

A length scale, b, was identified to be.an appropriate scale

to express the mean velocity in a self-preserving plot for
the initial region. But t~is scale was not applicable for

!
the transition region for ithis purpose. Similarly a length

scale, bt, was defined to Istudy the self-preserving nature

of mean temperature both in the initial and transition

•
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regions. But the temperature profile was not self-preserv~ng

both for the initial and transition regions.

The calculated results have been compared with the existing

experimental measurements and with the results obtained by

others by integral methods.
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CHAPTER I
IIHHUDUCTION

1.0 General

A jet is formed when a fluid discharges through an opening

or a nozzle from a container under high pressure into a

region of lower pressure. The ambient fluid surrounding the

jet may itself be in motion or at rest. Jets are of three

kinds: 1) bounded, 2) wall, and 3) free jets. Flow of bounded

jets are confined by solid boundaries. Wall jets flow over

solid surfaces. Free jets flow without contacting solid

surfaces. When free jets formed by discharging fluid through

a circular nozzle or an ,orifice are known as axisymmetric

jets.

1.1 Axisymmetric Turbulent Jet

The formation of a boundary layer within the nozzle and its

separation at the exit is the initiation of a shear layer

in the free jet flow. Turbulence originates as instabilities

in laminar flow when the Reynolds number exceeds some critical

value. Using flow' visualization technique' [48]" it has been

shown that these instabilities, due to interaction of viscous

terms and non-linear inertia terms in the equation of motion,
I
Igenerate waves. These waves starting from the nozzle outlet
I

grow with unstable amplitude lithin two to three wave lengths
I

from the exit. The wave crest in contact with the ambient

fluid folds back into the following trough. This folding

engulfs the surrounding fluid and forms a ring vortex core

" Number in the parenthesis indicates reference at p-42.
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which rolls downstream. After one or two revolutions, the

vortices interact strongly with the waves behind and break

down into turbulent eddies. The interactions (like vortex

pai8ing) of turbulent eddies cause large scale vortical

motions. Small scale vortical motions also evolve through

breakdown of large eddies.

A free shear layer resulting from an initially turbulent

boundary layer can also roll up into an organized vortical

stFuoture from which large and small scale motions evolve.

This kind of jet flow is shown in Fig. 1.1 with three dis-

tinguishable layers: 1) Shear, 2) Ambient, and 3) Potential
core.

•

For convenient analysis, the turbulent jet flow is divided'

into three principal regions: 1) Initial region, 2) Transition

region, and 3) Developed region. The initial region of a jet

has a potential core of uniform velocity initiating from the

exit. The transition region starts after the initial region.

Further downstream, the developed region exists where the flow

variables i.e mean velocity, turbulent intensity etc. become

approximately self-preserving. The combined initial and

transition region is called the developing region of the jet.

A continuous transfer of momentum and energy takes place from

the jet fluid to the surrounding fluid. A difference in

velocity between a jet and the region into which it is
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discharged forms a high degree of instability due to inten-

sive shearing astion of the peripheral fluid of jet with the

ambient fluid. The shearing action initially occurs over

a small lateral region and the fluid near the axis remains

unsheared. For turbulent jets, the shearing phenomena

steadily converts kinetic energy of oncoming mean flow into

kinetic energy of turbulence and the latter decays through

viscous shear. Such a conversion of energy occurs throughout

the jet flow. On the other hand, the reduction of kinetic

energy of the mean flow represents a decrease in the flow

velocity. The elementary consideration of continuity inidcates

that the area of flow cross-section must increase in order

to accommodate the flow as the flow velocity, decreases.

This phenomena flattens the velocity profile in the shear

layer and reduces centerline velocity after the potential

core region. Energy transfer in a turbulent flow field

depends on the interaction of eddies, and correlations bet-

ween various quantities of the turbulence and the mean

motion. For simplicity, turbulence may be considered to

consist mainly of eddies~of two kinds, depending on scale:

1) large eddies, and 2) small eddies. The large eddies are

energy containing eddies, and they are strained by both the

mean and the turbulent stresses present in the flow field.

The small eddies contain less energy and they are invariant

to mean and turbulent stresses in the flow field. The small

scale eddies exist in the field of large scale eddies and
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dissip9te turbulent energy to heat. The initial and boundary

conditions play an important role ,and influence the flow,

momentum transfer and energy traRsfer in the initial region.

The boundary conditions are related to the phape of the

nozzle and the space surrounding the shear layer. The initial

conditions for steady jets are the flow properties at the

exit plane of the nozzle which depend on the boundary layer

•

(
\
\

\,
\

thickness inside and outside the nozzle. The flow variables

in the initial region are dominated by the large scale

structure:which can be expected to achieve independence of

the initial conditions in.a finite flow length and the flow

become self-preserving depending; on the boundary conditions.

1.2 Scope of Application
IThe informations of the mean~quantities within a jet is

relevant to many problems of diffusion, discharge of pumps,

aircraft.,design, combusti'on in.a chamber, Oflu.id amplifiers

and driers. The diffusion phenomena in free jets is associated

with flows in the exhausts of rocket engines, atomized fuel

injection sprays and waste disposal plumes. The results of

analysis of discharge from jet is useful in designing the
Idischarge pit of pumps. Free jets in the exhausts of rocket
I

engines create aerodynamic noisJ which in many cases is
. I

objectionable and should be conJrolled. The aerodynamic noise

is generated by Reynolds stresses associated with either

subsonic or supersonic flows. So to design the exhausts of
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rocket engines, a better understanding and detailed knowledge

of the Reynolds stre6ses is necessary. The results of the

present study i~ applicable to the incbmpressible flow cases

and also can be applied to the compressible flow cases as a

first approximation.

1.3 Statement of the Problems

The flow within the Axisymmetric Incompressible Turbulent Jets

•

f..

for initial and transition regions has been studied by deve- ~,

loping computer simulation. Jets studied here were of three

different velocity ratios, A= 0.0,0.1 and 0.25 with a flat

velocity and a flat temperature profiles in each case. The

objectives of the present study are:

.1. Fin~te-difference formulation of the equations, governing

the flow, and development of computer program in order to

solve those equations for mean velocity and mean temperature

with given boundary conditions.

2. Comparison of the results obtained by present calculation

with the existing experimental measurements.

3. Study of the behavior and applicability of a length

scale [171 , b, both for initial and transition regions.

4. Study of the self-preservation of the mean velocity and

mean temperature in the developing region.

"
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CHAPTER II

LITERATURE SURVEY

2.0 .General
•

The increasing availability of faster ~nd more economical

digital computers has st~ulated the development of effective

differential methods. These methods predict quite ac~urately
•the most important features of many turbulent flows. The success

in the case of wall boundary layers is most striking. For this'

case a single mixing length or eddy viscosity model has led

to predictions which agree well with experimental data over

a wide range of conditions.

properties in
The prediction of/free shear flows was for a long time most

commonly done by integral methods. But now the differential

\/

methods have become the center of interest with most researchers.

A comparison of the Pro~eedings of the 1968 Stanford Confere~ce

on Computation of Turbulent Boundary Layeps, the Proceedings

of the 1972 Langley_Working Conference on Free Turbulent Shear

Flows and the Proceedings of the 1979 I~perial College Second

Symposium on Turbulent Shear Flows will provide an indication
of the shift in emphasis.

Turbulent flows can be expressed mathematically by the conser-

vation of mass equation and the Navier,Stokes equations. Since

the Navier-Stokes equations are non-Iii ear, solution for each

individual flow pattern has certain unique characteristics
I

that are associated with its initial and boundary conditions. The

equations have been analysed by researchers for various flow

.~.-...••.
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patterns. But it is still not possible to make quantitative

predi'ctions concerning turbulent quantities without relying

greatly on empirical data. The reason is that in the time-

•

averaged turbulent equations, there are more unknown dependent

variables than there are equations. In order to obtain a

useful set of closed equations, it is necessary to make appro-

I,

priate assumptions concerning the flow. These assumptions

are based on physical concepts developed from experimental

data and experience. In this way, many authors have developed

empirical and semi-empirical equations to obtain a set of

closed equations. Progress in this line of research, as

related to axisymmetric jetsF is presented in this chapter.

Flow of axisymmetric jets is free shear flow. In the far

.downstream of developed region of axisymmetric jets, initial

conditions influence the flow pattern insignificantly. It

may be thought that different natumes of disturbances whi6h

are introduced by initial conditions try to achieve the

characteristics of small scale flow at the initiation. of

developed region and in the further downstream. Much work

has been done both theoretically and experimentally in this

j ,
I.

region by.Wygnanski[4~

Townsend [43J Rotta
Heskesta d [13J

[36J ' Launder [24J

Newman [3oJ

Roshko [35J and
others. On the other hand, much less work is available in

initial and transition regions except lately in relation to

noise by Bradshaw et al b J , Ko and Davies :[19J , Lau [23J

. ,
i
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and others. In the tecent years, some investigations have

been done on the Large-scale Coherent Structures of free
•

shear flows. In 1977, Chassing [7J in a detailed literature

review stated that the free turbulent jet has been investi-

gated extensively by several experimentalists and it is

well known for a long time that some region of 'universal'

self preserving profiles can be reached at a typical distance

from the exit. This review reveals that the influence of the

inlet conditions does not .emerge after t.hat tjpical distance.

So it is not worth to investigate in that universal self-
I

preserving region to get some numer{cal information regarding

the influence of initial conditions.

2.1 Developed Region

In 1925, Prandtl [33J enunciated the concept of mixing length

•

for free shear flow. It was used by Tollmien [42J in 1926

to calculate mean velocities in an 8xisymmetric jet~ In this

calculation he did not consider the region of the jet close

to the nozzle. The investigation was based on the assumptions

thati (a) the effective force was the tangential shear expressed

in termsof the lateral momentum transport and mixing length,

(b) the mixing length varied as the first power of the axial

distance from the efflux section, (c) turbulence velocity was
I .

I

proportional to the mixing length and mea1 velocity gradient.

Tollmien [42J established a series solutidn for mean velocity

with variable,nt= r/(atx) and the Prandtl's mixing length

£ = Ctx where at and Ct are empirical constants. The series
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solution agreed fairly well with his measurements for the

developed region of jets. In 1930, Schlichting (39) used

Prandtr's hypothesis to express turbulent shear stress,

rip = c 6 (u _ u.)( ~u) where C is an empirical
max mln '"r 5s

constant and 6 is the width of shear layer, and solved the

same problem as Tollmien [42J did in 1926 making similar

assumptions. The solution shows satisfactory agreement with

measurements except in the region of low velocity near the

jet boundary. The local turbulence level at the edges of

jet flow are high that makes the measurements extremely

difficult.

2.2 Initial and Transition Regions

In the initial reQion of a jet issuing from a nozzle, the

solution given-by Tollmien [42J-aRd Schlichting [39J are not

applicable. This is due to the presence_of the_potential

core and -the effects of initial conditions; although Prandtl's

mixing length is approximately linear for this region.

Kuethe [21J , in 1935, applied Prandtl t s mixing length to

the initial and transition regions and worked out an approxi~

mate method for computing the mean velocity for a round jet.

He assumed Prandtl's mixing length to be proportional to the

width of sh'ear layer and expressed shear stress as:

~ = £21~~1 -~~,-
~herei= C16 and C1 is an empirical constant determined by

experiment. The theoretical calculations

•

\,
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of the mean velocity for both initial and transition regions

showed agreement with experimental results from pitot tube

measurements.

In 1944, Squire and Trouncer [41J developed a mean velocity

model for the initial and transition regions of coflowing

jets with assumptions similar to those that Kuethe [21J used

for jets in still air. The Reynolds shear stress was expressed

by Prandtl's mixing length hypothesis given by equation 2.1

The empirical constant, C1 used to determine the mixing

length was found to be different from that predicted by

Kuethe [21J . As a special.case, the length of the potential

core was calculated to be x/ro ~ 7.75 for jets in still air

This value does not agree with that of Kuethe [21] •

Albertson et al [2J in 1948, measured mean axial velocities

for both axisymmetric and two-dimensional jets, and their

measurements of mean velocity in the initial and transition

regions were found to follow the normal probability function;
2 2

u/u ~ e-(r /20 ), where 0 ~ C x; C~ is an empirical constantc a 0

which has two values, one for the initial region and the

other for the transition region. This model of mean axial

velocity showed satisfactory agreement for the two dimensional

case,
case.

but somewhat in less agreement for the axisymmetric

I
I

Landis and Shapiro [22J in 1951 investigated CD-flowing Gas

Jets experimentally and found the initial region to be

,".-
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extended upto x/r = 12 for velocity ratio A _ 0.25 ando
x/ro = 16 for A = 0.46.

In 1957, Miller and Comings [27J used Prandtl's mixing

length hypothesis for a two-dimensional jet flow and deve-

loped a self-preserving empirical model for mean axial

velocity in the transition region after x/r = 10:
o

/ '\
~- -.".

r

•

u/u c

=

= exp [ - (IT/Ej)(r/bm)2Jwhere bm was defined by

J.lu/uc)dr. The measured values of bm showed a linear
relationship with axial distance.

Many experimentalists, without identifying initial conditions,

showed self-preservation of the mean velocity in the initial

and ,transition regions of the turbulent jets. Some empirical

equations for the initial region are:

Abramovich [1] in 1963

Simson' [40J in 1964

u/u =(1 -c

u!u =(1-c

3/2 2n )

7/4 2
n )

where n = r/b1 and b1
Nayer et al [29J

was choosen in between u/uc=1 and
. 1969' / _ -1.415(n +0.7)In . _ u u - e

c

u/u =0.c

wheren= (r-r~)/b1
and u/u =0.01.c

and b1 was choosen in between u/Uc=0.99

Nay~r's definition is realistic, but this model does not
I
I

apPlY to the initial region. Though these models are developed

from similar experimental data, they do not agree with each,

other, probably because cif different initial conditions.
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In 1968, Kirshner [18J used a constant viscosity model for

the transition region and solved the momentum integral

equationcin the same way as for laminar flow. The expression

for the mean axial velocity of the turbulent jet was the

same as that for the laminar jet with the moiecular diffu-

sivity replaced by constant eddy diffusivity. The constant

eddy diffusivity was defined by: vT= Ckb1uc' where Ck is an

empirical constant. The result of the solution agreed with

the measurements of Kirshner [18} for the transition region.

Though this model is simple to use, the turbulent diffusivi~y

is not constant throughout the jet flow, specially in the

intermittent regions.

Peters [32J in 1972 solved the integral form of equations

using shear stress model C1K where C1 is constant and K
is the turbulent kinetic energy. He assumed a
cosine velocity' profi-le at the inl-et-.In the _same year

Harsha [11J solved the conservation equations using the

same model for transition and developed regions.

Morgenthaler and Zelazny [28J in 1972, presented a

=

model for initial region of coflowing streams in the Langley

Working Conference on Turbulent Free Shear Flows. This model,

infact,is application of transition mode.1 i.e. vT core
0.4 vT transition and was far more successful than anticipated.

Hatta and Nozaki [12J in 1975, developed a model for mean

axial velocity by an approximate solution of the axial
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•

momentum integral equation for the init~al and transition

Turbulent diffusivity, VT was defined by vT'" (rm-r1 )uc,
where rmis the mean radius of the jet expressed by :

2 2 i'2u r = uor1 + 2 urdr. Neglecting the pressure
o m r:

gradient in the momentum equation, a model for the axial

mean velocity was established: u/u = (1- ~)4(1+ 4 ~) wherec

~= r/b1• This investigation also derived expressions for

bm, b1 and r1 as linear functions of axial distance. Though

this approximate model showed agreement with Hatta and

Nozaki's [12J measurements but it is not in complete agreement

with the Bradshaw et al [ 3J, Sami et al [37] and VonFrank ~4 ],,
measurements. This discrepancy likely comes from the initial

conditions which wer~ not documented by the authors.

Madni and Pletcher [26J in 1975 calculated the mean velo-

city of co-flowing jets by an explicit finite difference

method from the differential -forms of mass and- moment.um

conservation. equations derived by usin.g "boundary layer

approximations. Reynolds shear stress was ~efined by

Equation ,3.8 fer the initial region and by Equation 3.10
and 3.11 for the transition region. The calculation started

with uniform exit velocity and showed ag~eement with measure-
ments for the

underpredicts

velocity is low.

.,



1 4

Davies et al IB] measured the axial mean velocity and showed

sel f-preservation against the in dependent variabl e, (r-r 0) Ix
,

in the initial and transition regions. Measurements of

Bradshaw et al [4J, Von-Frank [44J , 5ami et a1 [37J

Laurence [25J , Lau [23J , Kolpin [2DJ and others showed

that the mean axial velocity is self-preserving when it is

plotted against the variable (r-r~Yb1' These measurements

did not show wholly self-preservation against the variable,

(r-r )/x. Yuu et al [47J used a polynomial form as an empiricalo

model for the axial velocity~in the~Ritial and trans~tion

regions with independent variable (r-r1)lx, where r1 is

potential core radius. This model did not show satisfactory

agreement with measurements ih the initial region, but it

was fairly applicable tb the ~eveloped region.

Recently, Bradshaw_-[€iJ, Crow and Champagne [6J Yule [46J
and Hussain and Zedan -[15J published -some experimental l!Jor_ks

for jet flow, identifying the initial conditions. Bradshaw [4J

stueied the effects of exit boundary layer on turbulence

with boundary layer untripped or tripped by concentric rings.

Experimental results have shown that the shear layer becomes

fully turbulent at an approximate distance x~ = 7x105( ~ )
c U

o
from the exit for any boundary layer thickness used in the
exp erimen t.

In 1977, Yule [46] studied the jet flow for a wide range
3 5of Reynolds numbers (9x10 -10 ) by using flow visualization

/'t .,.,
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.It:.
"Jr.

X
)'i 'fand hot wire techniques. He found the shear layer fully ~I

turbulent at an approximate distance xt = 1.2x105( ~o ) from {~

the nozzle exit which is different from Bradshaw's [4J results.:
fThis work did not specify the exit boundary layer thickness ,

[ ] n,and turbulence level. In the same year Habib & Whitelaw 10 C
(au ) .ar as the shear

and transition

E

fully developed turbulentwas

for both initial
K2

worked on coaxial jets

region. They used K -E model and C~

stress model. The exit condition

profile and obtained numerical solutions that were in close

agreement with the experimental results.

In 1978 Hussain and Zedan [15J measured mean velocity and

determined the jet boundaries, varying both the laminar and

turbulent boundary layer thickness, and controlling the

turbulence at thennozzle exit. Experimental results showed

the mean ve'locity to be self-preserving at a distance;'from

the exit which varies with the initial turbulence level

and the boundary layer thickness. For a turbulent boundary

layer at the nozzle exit the virtual origin was found to be

very close to the geometric origin at the nozzle exit. This

investigation was carried out over a range of Reynolds

numbers (6x104_1.4x105) with maximum momentum thickness

e Ir = 0.011 at the exit plane.o 0

Large-scale coherent structure in turbulent 'shear flows was

apparent for a long time. The current upsurge in research

in this area has been triggered by the recent discovery of

quasi-deterministic structures (Crow and Champange 1971,
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Brown and Roshko 1974, Winant & Browand 1974, Hussain

& Zaman 1975). In 1978, Yule claimed that the axisymmetric-
turbulent mixing-layer structure is three-dimensional, but

the outerside is diffused and disorganised while the inner

side of the eddies possess a.reasonable degree of spatial

and temporal coherence. Another motive for this study stemed

from the recent hypothesis profounded by Lau in the same

year. He stated that the near field of a circular jet consists

of two coaxial streets of toroidal vortex rings bifu.rcating

at x/O ~ 1.5 from a single upstream street; "the main vortex

street accelerating and conve~ing on the jet axis constitutes

the potential core and the branch vortex street decelerating

and diverging from the jet axis". This provo~ativesuggestion,

even though inferred from extensive data, and intended to

explain the large radial variation in structuTe passage

frequency (Kp & Davies 1971, Lau & Fisher 1975, Bruun 1977,

Clark 1979), appeared to be quite unconvincing and in need
of investigation.

Sufficiently close to the jet lip i.e. x/O", 1, the axisymmetric

mixing layer characteristics should not be different from

those of:the plane mixingla~er ptOvided th~t 8 10 ~-,1 , . e is
0.. 0,

the exit shear layer momentum thickness. Thus compairison
I

with the plane mixing layer is strictly meaningful lonly fcir

x/O ~ 1. However, in 19BO, Hussain and Husain [14] ciompared

some integral measures of axisymmetric mixing layer with

0,
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those of thB plane mixing layer. They justified such a

comparison giving two reasons (i) the latter flow has

been-more extensively studied while available data in the

axisymmetric mixing layer are extremely limited and(ii)

there is an amazing similarity between the average measures

of the axisymmetric layer until the end of the potential

core and the plane mixing layer.

2. 3~ Relevant Works

The development of both theoretical and experimental works

on free s~ear flows are detailed chronologically in
,

Table 2.1.



Table 2.1 Relevant Works on Axisymmetric Turbulent Jets

Authors Equations Shear Stress A Remarks
Model

1 Squire f41J Integral Form ,Q,2(.E.!:!. )2 0.0 Assumed a cosine velocity profile and deter-
(1944 a) Ma ss or 0.1 25 mined jets boundary. Shear width, b1, wa s

b) Momentum 0.5 assumed between u/u =0.0 and u/u = 1.0
,Q, = C b ~ - c c

1 1
2 Al bert son Experimental - 0.0 Measured mean axial velociti,es found to follOl"et al \[2J--- ----- .. - the distribution u/u = exp(-r2/2a2). This(1948) model showed satisfagtory agreeme~t for two

dimensional case.

3 Landis & Experimental - 0.25 Found core length to be x/r =8 for A =0.25
Sh(piro) [22J 0.46 an d x I r = 16 for A = O. 46. 01 951 0

4 Simson f4o]. Experimental - 0.0 In the initial region for mean axial velocity(1 964 u/uc=(1. 1l7/4)2

5 NayeT et al Experimental - 0.0 In the initial region for mean axial velocity
[29J (1969) u/u =exp[-1.415(1l +0.7)] where Il =(r-r~)/b1c. an d 01 is the shear width •

6 Harsha [11J Oif f • Form Calculation was performed for the transition
(1 972) a) Mass and developed region.

b) Momentum C1b1 0.0
c) Turbulent

K. E.

7 ~Iorgenthaler Oiff. Form Used a core model similar to transition model
& Zelazny [28J a) Mass C1 b1 as 'lTcore =0.4 VTtransition' more successful

(1972) b) Momentum
c) Turbulent than anticipated.

K. E • ~
co



Table 2.1 (Contd .•) Relevant Works on Axisymmetric Turbulent Jets

Authors Equations Shear Stress ,\ RemarksModel
. ,

8 Launder [24J Oi ff• Form Used two equation model.
(1974,1977) a) Mass 2

b) Momentum C ~(~) 0.0
c) Turbulent ).l E ar

K •E•
d) Dissipation

9 Hatta & Di ff• Form Obtained a polynomial form velocity profile.Nozaki [12]
(1975) a) Mass VT -(rm-r1 )uc 0.0 Linear jet boundaries were calculated.

b) Momentum Length scale is b1•
c) Energy

10 Madni & Oi ff. Form .Q, 2 ( ~) 2 0.0 Used different shear stress modelffor transi'-'.
Pletcher [26] a) 01ass ar 0.25 tion region. Flat mlj\anvelocity ~n~ flat mean
(1975) b) Momentum

.Q, C1 b1 0.5 . temperature profile at the exit.
c) =

. Eneray .
11 Habib & Diff. Form Used fully developed turbulent profile at theWhitelaw [1 ol a) Mass 2 1 • EJ exit. Numerical solution was in close agree=

(1977) b) Momentum C ~(~) 3.0 ment with experimental results.
c) Turbulent ).l E ar

K .E•
d) Dissipation

12 Hussain & For tu"rbulent boundary layer at the nozzle
Zedan [15J Experimental - 0.0 exit the virtual origin was found to be very
(1978) close to the geometric origin at the nozzle

exit.

~
CD



CHAPTER III
THEORY

3.0 General

Turbulent motion is governed by the Navier-Stokes differential•
equations. The mathematics of the non-linear:Navier-Stokes eqns.

has not been developed to a point where general solution can

be obtained. In order to apply Navier-Stokes equations to

practical cases, hypothesis and empirical assumptions have

to be introduced for obtaining a set of closed equations

with time averaged de~endent variables. The early theoretical

work uses Boussinesq's eddy viscosity hypothesis and Prandtl's

mixing length equation as empirical quantities to calculate

mean velocities. The assumptions, necessary to build the

empirical relations depend on the boundary conditions of the

flow field and have to be ireadjusted for each particular

flow case.

,
Theoretical work on Free Shear Flows caR be developed in any

of the following three classes of turbulent model: 1 ) turbulent

viscosity models in whith the length scale of turbulence is

found by way of algebraic formulae, 2) turbulent viscosity

models in which the length scale of turbulence is found from

a partial differential transport equation, and 3) models

in which the shear stress itself is the dependent variable
;

of a partial differential ~onservation equation.
i

IStudies with the models o~ class-2 has commanded the major

part of the group's attention. The models of class-3 have

not yet been refined sufficiently to achieve the level of



21

universality of which they are believed to be capable.

Therefore, engineering calculations of turbulent flows are

confined to models-of class-1 and class-2 for the immediate
future.

Theoretical analyses with models of class-1 and class-2 are

most simply explained as attempts to close the exact Reynolds

stress transport equations for -pu:u:.
1. J

3.1 Governing Equation s

Assuming steady, incompressible flow without contacting any

solid surface, constant flu~d properties and boundary layer

approximation,the equation for mean motion are derived in
Appendix-A.

The mass conservat{on equation is:

a(ur) + a(vr) 0ax ar ~

The momentum conservation equation is:

au au 1 a (r T/ p)u ax + v ar ~ arr

3.1

3.2

where T is the shear stress and p is the density of the
fluid.

The energy equation is:

ata-r= 1
pr-r

p
3.3
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The flow cbnfiguration. and co-ordinate system are shown in

Fig. 3.1. The shear stress, T includes both viscous and

turbulent contributions and it is written as:

/ V.auTP= ar , ,
u v 3.4

where v is the molecular diffusivity. The turbulent paFt

of shear stress is - pu'v' and it is usually expressed ~y

Boussinesq's hypothesis:

- pLJ ' v ' au= PVT ar 3.5

where vT is the turbulent diffusivityr For the initial

region of turbulent jets, the diffusivity, vT is expressed

in terms of Prandtl's mixing length, ~ and mean velocity
augradient, ar'

Likewise, the heat .flux, q includes both molecular and
turbulent transport and is written as:

= _k at pC v't' = -pC .(0. aT) at 3.6q - + + arar p p .

Turbulent diffusivities for heat and momentum are ass8med

to be related through:

a =
T

;
i

where PrT is the turbulent Prandtl number Whi?h was set
I

equal to a constant value of 0.7 for air by Maoni and

Pletcher [26) .

3.7
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For initial region: ~T = £2 auar £ = 0.07626 3.8

where £ 'is Pandtl's mixing length and 6 is,the width of

the mixiRg'layer. Jhis model is not applicable to the

transition region. 5chetz's [38J and Madni-Pletcher's models

[26Jare combined for calculating mean flow properties in

the transition region.

Madni-Pletcher's model is
""

v 0.03 Jurar=T ro r

5chetz's model is:

""
v = 0.024Yfurar

T ro 0

3.9

3.10

where Y is an intermittency factor and the expression for
, 'y is as follows:

Y = 1.0; o<r/r, < 0.8
2'

sY =(0.5) r/r, > 0.8
'2

3.11

where S = (r/r, _0.8)2.5
'2

A variable 112= (r-r 6 ) /b is used first by Islam [17J as

self preserving variable ,for the initial region, where the
i

scale,i

b =

r:::r!
'2

3.1 2

1
I
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3.2 Boundary Conditions

Basic differential equations 3.1, 3.2 and 3.3 governing

the mean flow were solved nume~ically incorporating the

shear stress equation 3.5. The turbulent diffusivity, vT
was expressed by equation 3.B, for the initial region and

by a combination of equations 3.10 and 3.11, for the

transition region. The appropriate boundary conditions

applicable to equations 3.1, 3.2 and 3.3 are;

\

~~(x,o) =
atar (x,o) = 0, v(x,o) = 0

, r

u(x,r) = ue(x) for r> b2 where b2 is the outer shear

layer distance from center line.

Initial distributions of u and t were flat and the turbulence

level was very low.

3.3 Solution of the Equations

An explicit finite difference scheme of the DuFort-Frankel [9 ]

type was used to solve the conservation equations 3.1,3.2

and 3.3.

3.3.1 DuFort-Frankel Scheme

The DuFort-Frankel Scheme is a three level formula since it

requires information from the first level and the second level

/
I

\ '

•
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to evaluate an unknown at the third level. In this scheme,

truncation error is of the order 1(~x)2+(~r)21 and the
•

central grid point (i,j) is replaced by its average at the

(i-1) and (i+1) levels. The parabolic nature of the conser-

vation equations permits the application of DuFort-Frankel

scheme to solve those equation where the solution marches

in the streamwise direction.

3.3.2 Calculation Technique

The method of approximating the derivatives and their trunca-

tion errors are given in ,Appendix-B. The finite difference

grid used for the calculation are shown in Fig. 3.1. The

computer program develope,d for :this purpose has the capability
,

of handling non-uniform g~id s~acings in both r-and x-direction.

Von Neuman's method of stability analysis [34J with first

order error was applied to the momentum equation. It was

found that a mi~d stability constrain results which is given

in Appendix-C. For calculating the mean flow properties from

the continuity and momentum equations, non-uniform grid

spacings were used in x-direction which was restricted by the

stability constraint. The grid spacings in the r-direction

were choose~ to be uniform, diViding the discharge radius r
I 0

into 50 equal divisions to attJin converqence of the solution., 1-

The calculation with uniform gdid spacings (~x/~r < 0.5) in

both directions also attain convergence but consumes more

computer time.
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At starting, first level informatiTIn is obtained from initial

conditions and second level information by a simple finite

difference explicit scheme. This scheme requires only the

previous step values. Switching of the calculations from

the initial to transition region takes place when center

line velocity in the initial region decreases by 0.1%.

. ,



CHAPTER IV

RESULTS AND DISCUSSION

.-' ..._--
4.0 General,
Mean velocity and mean temperature distributions in the

initial and transition regions of axisymmetric jets were

determined by numerical simulation. The differential eqns.3.1,

3.2 & 3.3 , governing the flow were solved by using boundary

conditions given in Art. 3.2. The investigation was carried

out for three different velocity ratios 0.0, 0.1 and 0.25.

For all three cases, the same computer program was used

•

with different values.of the parameters involved. At the

exit, flat velocity and flat temperature profiles were

considered.

Thi5 chapter presents discussion on the result~ obtained

by pr~sent calcul~tion arid comparisons of t~is results with

existing experimental measurements in the developing region

of the jets.

4.1 Mean Velocity

Mixing length model of shear stress given by Equation 3.8

for initial region and Schetz model [38J with intermittency

given by Equation 3.10 for transition region were applied

to ~he equations governing the flow tocexpress the turbulent

Sherr stress.

I
4.1.1 Initial Region

In Fig. 4.1 (a), the non-dimensional center line velocity,

(u -u )I(u -u ), obtained by present simulation is plottedceo e

•','
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against x/ro for velocity ratios 0.0,0.1 & 0.25. The

[22J for A =0.25

and Albertson et al f2J for A=O.O are incorporated in the

same figure. Experimental results of Landis and 5hapiro [22J

and Albertson et al ~J are in satisfactory agreement with

the calculated results as shown in the Fig. 4.1(a). The

figure shows constant velocity on the center line upto a

certain distance from the exit plane. This distance with

constant center line velocity is called the potential core

of jet. It is: also shown in the figure that the core length ..

found the potential core to be

increases with the increase,
I

Shapiro [22J ~xperimentally

in Landis and

11ro for A=0.25 an8 Albertson et al [2] found it to be

6r for A-=O.O. The values for potential core for A=O.O iso

7ro and for A=0.2S is 14ro obtained by the present calcu-

lation deviate from the results of Landis and Shapiro [22J

and Albertson et al (2). These deviations are likely to be

due to the difference in initial conditions used in the

present simulation with that prevailed in their experimental

investigations.

The integral solution of Squire and Trouncer [411 is also
I

shown in Fig. 4.1 (aj)to show a comparison with the present

results and also wi~h existing experimental measurements.

The results of inte6ral solution do not agree with either

experimental data or the present results obtained by calcu-

lation. This is due to the assumptions used in simplifying

, .
\.'
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the governing equations and the use of different model for

mixing length. It is a clear indication that the integral

method, which is simple in character, is not applicable to

the determination of the flow characteristics within the

axisymmetric turbulent jet. However, the appropriate deter-

mination of empirical velocity profile to be used for such

integral solution can give satisfactory results for jets

as given in ref. [17)

The figure also shows small deviation of measurements [2,22J

with calculated values at the beginning of the transition

region. This may be due to the influence of the initial

conditions. 8utthe main reason of such deviation is due

to the interaction of shear layer from both sides. At down-

stream section the calculated values and experimental values

agree satisfactorily which indicates that the effects from

the interaction of shear layer die down there and the flow

may become self-pr~serving. However, the effects of velocity
ratio exist all the time.

The mean axial velocity calculated by present simulation is
plotted against the

The measurements of
radial distance r/r in Fig. 4.2(a).o

Islam (17) and Sami et al [37J are incor-

porated in the same figure for comparison. The figure shows

that the values obtained by present calculation agree with

measurements [17,37J at x/ro = 4 and 6 but it shows deviation

at x/ro = 2. The deviation is found to follow a particular

•.>
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pattern which can be explained by the early termination of

potential core in the present calculation. In addition, the

experimental results at x/r = 2 can not be obtained witho

much accuracy due to the unstability of the flow close to

the nozzle. This phenomena were observed by Bradshaw [4J

and Islam G 71 • However, except close to the nozzle, present

calculation shows satisfactory agreement with measurements.

It is a common practice to plot velocity against self-

preserving or similarity variable. The self-preserving

independent variable was defined in many different ways by

different authors to express the flow to be self-preserving.

Schlichting [39J , Von Frank [44J and others used,

n1= (r-r~~/x as'the self-preserving variable for expressing
,

the flow to be self-preserving in tha developed region. Many

authors used, (r - r~)/o , as the self-preserving variable
2

to explBin the self-preservation character of theflo~ in the
developed region. Islam [17J defined a variable, (r-r,)/b

:2
and used in the initial region and transition region to

explain the flow to be self-preserving. The present results
are plotted against both the variable,n1=(r-r~)/x and

(r-r~)/b, to identify. the applicability of these variables
2

in the .developihg region. The non-dimensional velocity,
I

(u-u )/(u -u ), I obtained by present calculation are plottede c e I

against n1 and I n2 in Fig. 4.3(a) and Fig. 4.4(a) respectively.

The figures show that the mean axial velocity has an approximate
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self-preserving distribution when plotted against the

variable, n2 but it does not show self-preservation when

plotted against the variable n1• Islam's D 7J data for 1.=0.0

are incorporated in Fig. 4.3(a) and Fig. 4.4(a) to study

the self-preserving behavior against TJ, and n2 respectively.

The data in case of Fig. 4.3(a) do not show self-preservation

but in case of Fig. 4.4(a) found to collapse almost •on a

line showing the self-preservation. This is a clear indication

that scale, b is non-linear function of x.

A third order polynomial profile for mean axial velocity in

the initial region, except close to the nozzle, with inde-

pendent variab~e nz' was obtained by curve fitting, based

on least square ~ethod, as follows.

(u-u )/(u -u ),= 0.5-0.1e c e
2 3n2+ 0.0024 n2 + 0.00045 n2 4.1

RMS error for ~his profile is 0;00528.

Mean radial velocity obtained by present simulation for 1.=0.0

is plotted against radial distance r/r in Fig. 4.5. Resultso
from the measurements of Sami et al D7J and solution obtained

by integral method [17J are presented in the same figure.

The results obtained by present calculat~on are in good

agreement with the experimental results [37J • But integral

solut~on [17J has got slight deviation with both experimental

data and present results. This is due~to the velocity profile

assumed in obtaining the integral solution.
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4.1.2 Transition Region

Different empirical turbulent diffusivity models were applied

by many authors to express the turbulent shear stress in the

governing equations for the transition region. Mixing length

model is only applicable to initial region where large scale

motion exists and it is associated with a major drawback

which is the prediction of zero viscosity on the center line.

Small scale motion together with the interaction of shear

layer dominates in the transition region. Madni-Pletcher

model, Schetz [38J constant viscosity model and Schetz

model with intermittency were applied to express turbulent

shear stress at different time by different authors. In the

present calculation, Schetz [38} model with intermittency

is used for transition region.

Trapezoidal rule is used to evaluate the inte~ral Equation

3.10 for turbulent diffusivity, vT' The switching to calculation

with Schetz model from the calculation with mixing length

model takes place when central line velocity in the initial

region decreases by 0.1%.

The mean axial velocity, (u-u )/(u -u ) for A = 0.0 obtainede c e
by present calculation is plotted against the radial distance

r/ro in Fig. 4.7(a). The experimental measurements of Islam [17J

for A=D.O are incorporated in the same figure for compa~ison.

Slight deviation of measurements [17J with the calculated

values is shown in the figure. This deviation can be attributed
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to the early occurrence of transition region in the present

calculation. Because, early occurrence of trarisition region
, .

makes the spread of jet higher than the measurements (17J

at the same axial~distance.

Mean axial velocity for transition region obtained by present

calculation are plotted against the variable n1 and n2 in

Fig. 4.8(a) and Fig. 4.9(a) respectively as done in case of

initial region. Experimental results [17J for A =0.0 are

also presented in Fig. 4.9(a). From figures it is found that

neither the variable, n1 nor the variable, n2 is a good

self-preserving variable for the transition region. The
,

experimental results [17J showed self-preservation in the

central part of the shear layer. The ~eviations from self-

preservation likely to come from at inner side due to inter-
,

action of shear layers from both sides of center line and.

at outer side due to intermitte~c~. Fig. A.9(a) also indicates

that the band of experimental values of mean axial velocity

is wider at the outer edge than that of at the inner side.

4.2 Jet Geometry and Scale for Velocity

4.2.1 Jet Geometry
i
I

In early time, Prandtl's mixing length was expressed as,

£ =Ct x, a linear function of axial dkstance. But it has been
Ifound through intensive investigations by different authors

at different time that this mixing length model used to express
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turbulent shear stress predicts flow properties within the

initial region of the jet very poorly. Now it is understood

that this mixing length is not a linear function of axial

distance. From this understanding, study of jet geometry

stemed which is not a linear function of axial distance

rather depends on structure of flow, initial conditions and

boundary conditions. The growth of jet boundary and the

growth of half-radii along axial distance are important

jet or flow geometries. It was found by many researchers

that the experimental error is highest at the jet boundary

and least at the half-radii. These are due to highest inter-

mittency at the outer edge and least intermittency at the

half-radii. The jet gometry ~n the present investigation
Iis shown in Fig. 4.6(a), and 4.10(a) •.

Iso-velocity lines with A =0.0 for three different velocities,

(u-u)/(u -u ) = 0.01, 0.5 and 0.99 are I"lotted in Fig. 4.6(a)
10 c 10

in r/ro v.s. x/ro plane. Experimental measurements of

Islam [17J for A =0.0 are also presented in this figure for

the same iso-velocity lines. It is found in the figure that

measurement? [17J along iso~velocity line, (u'-u l/(u ~u )=0.99
10 c 10

are higher than that of the present calculation near the
Itermination of the core. Thisl is an indication that core

length obtained by measuremen~s[17J is higher than that obtained

in the present simulation teclhnique. The deviation may be

attributed to the use of value of constant in mixing length

model. The figure also shows that iso-velocity lines are not
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perfectly linear in the initial region and jet "spreads at

an angle of 120 approximately. Some authors identified the

iso-velocity line (u-u )/(u -u ) = 0.5 as central region. e c e

of the mixing zone. But this figure shows that the mixing

zone is not symmetric about the iso-velocity line,(u-ue)/

(u -u ) = 0.5 at least for A=O.Oc e

Growth of half radii for velocity for three different velocity

ratios 0.0, 0.1 and 0.25 are presented in Fig. 4.10(a) in

r~/ro v.s. x/ro plane. Experimental measurements of Landis

"and Shapiro [22J for A =0.25 and Albertson et al [2J for

A =0.0 are incorporated in this figure. The values obtained

by present calculation for A=O.O and 0.25 are found to be

in slight disagreement with the corresponding values of

meas~rements [22,2J • The figure also indicates the effects

of velocity ratio on the jet geometry. The effect is that

growth of half-radii for lower veloci"ty.ratio is higher

than that for high velocity ratio which subsequently indicates

that spreading of jet is mainly dominated by the boundary

conditions imposed by velocity ratio on the flow of jet.

4.2.2 Scale

Turbulent flow is characterized by the existence of .several

length scales, some of which play very specific roles in the

description and analysis of the flow. Shear stress involved

in the equations governing the flow is expressed by a length

!
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scale. The concept of the fundamental diffusive length

scale stemed from the existence of large size eddies in
•

the initial region. This large size eddies are as big as

the width of the flow which is the relevant length scale

in the analysis of the interaction of the turbulence with

the mean flow. The inherent difficulty in the determination

of the width of the flow propelled the investigators in.

seeking new length scale.

In Fig. 4.11 (a) a new diffusive length scale [17J b for

initial region for three different velocity ratios 0.0, 0.1

and 0.25 are plotted in biro v.s. x/ro plane. The length

scale b is defined by Equation 3.12. The backward difference

formula has been used to determine the m~an axial velocity,
! I

gradient at the half-width. Experimental measurements of

Islam [17J for A =0.0 are presented in the same figure.

The slight disagreement of the values calculated by present

simulation with the measurements [17J is due to the early

occurrence of tran sition region in the present calculation.

The figure indicates that slope of the scale b against

axial distance decreases with increased velocity ratio.

In order to find out the relation between the new length
i

scale, b and the diffusive .length scale Igiven by Equation
I

3.8; the rati~ of £/b is plotted in Fi9.14.12 against x/rD.

It is worth mentioning that in the prese1nt calculation

both the scales £ and b are considered as function of axial

distance only. The figure shows that the ratio £/b is a

t,,

"
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function of A and is constant along axial distance in the

initial region for a particular value of A. The constant
•

values of the ratio, £/b are 0.957 for A =0.0, 0.907 for

A =0.1 ~nd 0.703 for A=0.25. This is a clear indication

from the figure that the scale, bs is quite applicable

to the initial region of axisymmetric jet flow. 50 the

difficulty in determining the width o~,'the flow may be

overcome by using length scale, b.

4.3 Mean Temperature

lhermal energy equation 3.3 comes into play, in addition

to the equations 3.1 and 3.2, governing the flow of non-

isothermal axisymmet~ic jet. The relation given by Equation

3.7 i~ applied to the therm~l energy equation to express

the turbulent thermal diff0sivity.

4.3.1 Initial Region

In Fig. 4.1 (b), the non-dimensional center line temperature,

(t -t )/(t -t ), obtained by present calculation is shownceo 8

against x/ro for velocity ratios 0.0, 0.1 and 0.25 with

a temperature ratio of 0.3 for each case. The experimental
i

resul tisof Landis and Shapiro [22J for A =0.25 are incorporated
I

in th~ same figure. Close agreement is found at the downstream

sectio~. The disagreement of the calculated values with

measurements (22) in the transition r~gion is due to the
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sever interaction of two thermal shear layer, converging

on the center line from two sides •
•

The figure shows that center line temperature remains

constant upto a certain distance axially which increases

with the increase of velocity ratio. This distance obtained

by present calculation is 7ro aAd that obtained in measure-

ments [22J is Bro' The deviation is due value of the

constant used in mixing length model.

The mean axial temperature calculated by present simulation

is plotted against the radial distance rlr in the Fig. 4.2(b), o'

Self-preservation of mean axiar temperature are shown in

Fig; 4.3(b) and Fig. 4.4(b) for A =0.0 plotted against

T1t1 = (r-rt~) Ix and T1t2= (r-rH) Ibt respectively. Fig. 4. 3(b)
shows that mean axial temperature is self-preserving only

in the central region of the mixing layer. The picture of

self-preservation is different in Fig. 4.4(b). The non-

self-preservation in the inner paFt shown in the figure is

due to the presence of thermal mixing layer within the
,

velocity ~otential core and in the outer part is due to the

intermittbncy.
i

,
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4.3.2 Transition Region

Schetz [38) model with intermittency for turbulent momentum

diffusivity is used for turbulent thermal ~iffusivity with

a modification. This modification is obtained by using

Equation 3.7.

The mean axial temperature, (t-t )/(t -t ), for A = 0.0e c e

obtained by present finite difference method is plotted

against the radial distance r/ro&n Fig. 4.7(b).

Mean axial temperature for A =0.0 are plotted in Fig. 4.8(b)

and Fig. 4.9(b) against self-preserving variable Tl t 1

,,
and:

Tlt2 respectively. In both of the figures self-preservation was

found only in the central region of mixing layer. Prolonged

~ff~cts Df interaction of thermal shear layerfro~ two sides

make the mean axial temperature non-self-preserving against

Tlt1 in Fig. 4.8(b). It is a clear indication from Fig. 4.9(b)

that the scale bt is not applicable in the transition region

for temperature to be self-preserving against Tlt2•

4.4 Jet Geometry and Scale for Temperature

4.4.1 Jet Geometry

Important jet geometries, the growth of thermal boundary

and the growth of half-radii for temperature are shown in
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Fig. 4.6(b) and Fig. 4.10(b) respectively. Iso-temperature

.•'
f

lines with A=O.O for three different temperatures, (t-t )/e
(t -t ) = 0.01, 0.5 and 0.99 are plotted in Fig. ~.6(b) inc e

r/ro v.s. x/ro plane. The iso-temperature line,(t-te)/

(t -t ) = 0.99 indicates that length of thermal potentialc e

core"is less.than that of velocity potential core for same

value of A • In fact, this is a consequence of higher value

of turbulent thermal diffusivity than .turbulent momentum
diffusivity.

Growth of half-radii for temperature obtained by present

cal2ulation for three different velocity-ratio 0.0, 0.1

and 0.25 are presented in Fig. 4.10(b) in rt,/r v.s. x/r
I '2 0 a

plane. Experimental measurements of Landis and Shapiro 1221

for'A =0.25 are incorporated in"this figure. Slight disagree-
,

ment' of the present calculated values with the measurements

[22J may be due to the late termination of the thermal core

in the present calculation Dr due to the interaction of
thermal shear layer from two sides.

4.4.2 Scale

A s,cale, ~ for temperature analoqous to the scale forit -
i

velocity ijs plotted in Fig. 4.11 (b) in bt/ro v.s. x/ro plane

for A=O.Oi, 0.1 and 0.25. The behavior of the scale, bt is

similar to the scale, b for velocity plotted against x/ro for
each case. Yet mean temperature is not found to be self-
preserving against the variable ~2'



CHAPTER V

CONCLUSION

A fast and .effective computer program. has ...been .developed to

solve the finite-difference equations of conservation.

The same computer program was used for solution of conser-

vation equations for axisymmetric turbulent jets both in

moving and in rest surrounding.

Numerical calculations were performed for mean velocity

and mean temperature in the developing region of jets for

three different velocity ratios 0.0, 0.1 and 0.25 with a

constant temperature ratio 0.3 for each case.

iThe results obtained by present calculation were compared

with existing experimental measurements. Th~ agreement

in the compaFison indicates that Prandtl's mixing length, ~,

expresses the turbulent shear stress approximately in the

initial region. This mixing length, ~ , is a simple algebraic

equation where shear layer thickness appeaFS as a variable.

The thickness of the shear layer is obtained by defining

Ao'
f., ~

".

outer boundary at

at (u-u )/(u -u )e c e

(u-u )/(u -u )=0.01e c e
= 0.999.

and inner boundary

i
. iA self-preserving model with shear layer thlckness as a

length scale is not suitable because the highest ixperimental
I
I

uncertainity occurs near the outer boundarywhere:the mean

velocity is low. In developing self-preserving model, it is
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found most suitable to define length scale on the basis

of measurements along half-radius where experimental

uncertainity is the lowest. Islam, [17J defined a length

scale, b which is inversely proportional to mean velocity

gradient at half-radius.

The dependency of length scale, ~ on radial distance were

considered negligible in the present calculation. The length

scale, b is found to be non-linear in axial distance. A

constant value of the ratio, ~/b in the initial region for

a particular value of A indicates the non-linearity of

scale, ~ and the applicability of scale, b in that region.

In the initial region, mean velocity is found to be self-

preserving against the variable, n2 but mean temperature

does not show self-preservation against the variable, nt2•

The non-self-preservation of mean temperature at the inner

side of mixing layer may be due to the intervening layer

between the velocity potential core and the thermal potential

core which is in need of intensive experimental investigation.

The polynomial form of mean velocity profile developed for

the initial region in the present calculation and given by

Equa~ion 4.1 may be applied to integral method of solution.

i
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APPENDIX-A

DERIVATION OF EQUATIONS

Differential Equations

Non-isothermal Turbulent flow is gove~ned by the Continuity

equation, the Navier-Stokes equation? and the Energy Equation.

In cylindrical-co-ordinates the mass conservation equation

for incompressible flow field with boundary layer assumptions

oj'at +
1
r A.1

The, co-ordinate system is given in Fig. 3.1 :and ou , ov and
wO are instantaneous velocity components in :x, r a~d

I

resF',ectivel y.
directions

Reynolds equation of motion for turbulent flbw, diss8ciates

instantaneous variable~ into mean and fluctuating components:

0
U IU = U +

0
V IV = V +

0 w'w =

0 p'p = p +

to = t + t I

where u,v, p and t
t I are fluctuating
o

P

A.2

i
i

are mean components and u', vl'l w', p' and

components. The instantaneous ~ressure

has a mean and a fluctuatiDg component, p and p' respectively.
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Introducing Equation A.2 in Equation A.1 and considering

steady state:

Taking a time average:

1+ -r
aw I 0as = A.3

A.4

Subtracting Equation A.4 from Equation A.3:

au I 1 a 1~x + - --(rv') + -Ox r ar r ~'= 0ae A.S

Navier-stokes equations in cylindrical co-ordinates for

incompressible flow in absence of body forces and considering

constant viscosity:

x-'component:

r-component:

o
.£E.+ax

o
....£.(r ~)-ar ar A.6

zo~)
r

o
~+i'Jr IJ

2
- 2"
r

oau-- +ae
2 0 Ja v

~
A.7

i
ie-component: (
I
I

Owo 0 0
~ )Dt + r ::;:

1- -r o [ap +aeIJ

E..!!..0ae + A.S

.1."
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Using Equation A.2 in Equation A.6:

\

o(u+u') + (u+u') ~(u+u')+(V+Vl)
Of ax

JL(u+u')+ ~'~(U+Ul)ar r ae .

= 1
P

a [02 . 1 a 1 212--(p+p,)+~ -- (u+u')+ - --(u+u')+ -2 --(u+u')(}x c3r2 r 0 r r ae2

0
2 J+__ (u+u I)

c3x2
A.9

Time Averaging Equation A.9:

OU bu u I a u I OU V I a u' w' "u'af + u ox + + v br + -- + asax or r

1 ~ i>[,,2u 1 0 u 1 ,,2u a2u ]
= F + + - -- + oe2+ ~ax o 2 r 0 r 2r r x

Multiplying Equation A.S by u' and then time averaging:

A.1 0

U'd~~ +~ 0: (ru'v') - v' :~'+ ~ :6 (W'U,) - ~' ~~'=0 A.11

Adding Equation A.1~ and Equation A.10 and rearranging:

+ u
au + v ouox or = (pIP + 12)u -

1
r

a 1 C ----(r u'v,)- - --(w'v,)or r ae

1 <3U+---+r or
1 ;iu---+2 062
r

cluJa 2x
A.1 2

U.,2, u'v' and w'u' are the

Comings [27J experimentally

Reynolds stresses. Miller and
----:z

showed that u' and p/f are

a~proximately equal and opposite for jet flow Le. (p/ ~2),=o.
a iuFor axisymmetry, ~6 (w'u') = 0 and -- = O. Applying boundary
u aB2
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has been neglected. For steaaylayer

flow,

2. t. d uapproXlma lons, ---2
Ox

Equation A.12 becomes:

1
r

a l- (.;>auor r. dr

or, aU
u ax

aU+ v e>r 1 "~
r at

A.1 3

where 'LIp U l V I A.1 4

,
Similar mathematical operations in Equations A.7 and A.8

of magnitude analysis the equationsusing order
i

. Ivanlsh. i
i,, ,

General Energy Equation for! incompressible flow is:

for mean flow

yield that on

o
Dt'

A.1 S

A -2where U is the internal energy,.p is the potential energy, V

is the kinetic energy, ,}tO is heat addition by conduction

and ~ is the dissipation.

Considering P as constant,
Ao (P U)

Of ~ A.1 6

A aU)Therefore, dU ~ (b\j to

~ [-p

i
I

A

+1 dU dtOdV (--6 .
I

Clt V
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~Taking substantial derivative of U

For incompressible fluid flow, V.V = 0 and then
,

OU
f' ot =

o (.Pp )
of = 0, since t is independent of time.

Now Equation A.15 becomes:

+1' A.1 7

If dissipation by molecular process is slow then ~ can be

neglected and Equation A.15 reduces to

In cylindrical co-ordinate Equation A.18 becomes

A.1 8

atO atO 0 atO atO
f' c' 0 w 0

(at + v or + - -- + u SX)v r ae

H a2to 1 atO 1 (j2to ;ltO

A.1 9= 2 + - - -t 2" -- + -)
or r ar as2 a x2r
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cUsing EquationA.2 in Equatimn A.19:
"I
!

d(t+t') ( ,) 2(t+t')c+(v+v') a(t+t') ,Gl(t+t')at + u+u a x d r + w a e

k=
.fCc

1°(t+t')- -- +
r <> r A.20

Considering steady flow and then time averaging Equation ?20:

at at u ' ot v ' at' f Q t'u- + v- + ox + -- + w aeox or or

k [ o2t 1 at 1 ;it o.2t J=
fCC + - - + 2" -- +

Or2 r or r 062 d x2
A. 21

Multiplyihg Equation A.3by to and then time averaging:

t'
r

t' ow'a(rv')+rde'=Oor . A.22

i
Adding Equation A.21 and Equation A.22 and rearrangihg:

k
= rCv

1+--2
r

A.23

1 at I
r ar J A.24

boun dary
and then

02t--2=0. Applyingoe
has been neglected

For axisymmetry, ~(t'w')=O and
08 C 2 2layer approximations, at/ax

I,

using equation ~.4 in Equation A.23:
I
I

at at .E-.!( t'u ')+ 2. ~(r
Uax + v or + ax r or
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Rearranging Equation A.24:

at Bt
u~ + v Clr = 1-r

A.25

In practice t' and u' are poorly correlated so Equation

A.25 becomes:

';}t 1
u-El + v ~r =dX u r

A.26
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APPENDIX-8

FINITE-DIFFERENCE FDRMULATIDN

A staRdard explicit finite-difference technique requires very

small streamwise steps to satisfy the stability criterion.

The Dufort-Frankel [9J method is~used here. Du£ort-Frankel

Scheme needs information from the two previous stpeamwise ,

stations. For this reason standard explicit scheme is used

as a starting method for Dufort-Frankel procedure.

The finite-difference problem0domain-~s made into a net of

points as indicated in Fig. 3.1 by tatting bX and 6R be

small increments of the coordi~ates X and R. Here the finite

difference equations will be written in a format that will

be applicable for uneveR0grid spacings with x and R directions.

For this purpose, the notation bR, = (R. 1-R.), 4R=(R.-R. 1)'
J+ J - J J-

AX = (x. 1-x.) and 4x = (x. -x. 1) will be introduced. The
"'" 1+.1 - 1 1-

dependent variables are expanded in Taylor series.

The basic variables are made non-dimensional by using the

following transformation:

N - O<+o(T
H- ---

0(

by (Y + -,)T) ~ and heat flux,
introducing transformation 8.1

xu ru
0 R 0

X = -;) = ,;>

N
.,)+ .,)T

T t= = t;J
0

Replacing shear stpess, 't:If

by fC (0( +O<T) at andq - p or
in the continuity

U = uu' V =
o

8.1
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Equation 3.1, the momentum Equation 3.2 and the energy Equation

~.3: the continuity equation:is

O(UR) 3( VR) 0
'0 X . + oR =

the momentum equation is

8.2

1 '2> aU
ROR(RN ;3'R) B.3

and the energy equation is

U aTox B~4

,
Finite Difference Equations for Dufort-Frankel Method

Continuity Equation:
-----------1

I

Taylor's expansions,about half a grid in r-direction and

one grid in x-direction.

U (0 1 ° 1) = U (0 " ,) t LlXU
1+ ,J+ 1.')+2 + x

A R. U+ - +2 r

U U ), U 4R. U
(" 1 ") = (" " , -.,x x + -2 r+l+,J l,J+2 .

B.6

U(o 1 ")= U(" " ,)).- ,J 1.,J+2

i,,
4xARUI +- . rr
-4 XU J LlR-:.U +

- x 2 r

B.7

B.8
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Subtracting B.6 from B.S:

Subtracting B.8 from B.7

U(" 1 ")- U (LiX+4X)U +0(42)1.+ ,J (i-1,j)= •. x

Adding B.9 and B.10:

9.9

B.1 0

aU
(8 X)" " ,l,]+2"

Now

U(" 1 " 1)+U(" 1 ")- U(" 1 " 1)-U(" 1") 2= 1.+ ,J + 1.+ ,J. 1.- ,J + 1.- ,J + 0 (4 )

2(4~ + 4>S)
B.11

v ( ) = v (" . ') +4X V + 42R. V +i+1, j-r1 1., J+2 • x r

8.1 2

V-V + 4X V _ 4R. V(" 1 ")- (0 0 ') 21.+ ,J 1.,J+2 • x r +

Subtracting B.13 from 8.12:

B.1 3

OV
(""R) 0 "+l.u 1,J 2 0(42) 8.1 4

Using Equations 8.11 and B.14 in Equation 8.2:

R" 1 +R"J+ J
4(LlX+4X)• •

[U" 1 0.1 + U0 1 "- U" 1 . 1 - U0 1 "]1.+ ,J+ l+ ,J l- ,J+ l- ,J

R. 1Vo 1 .1 - R"Vo 1 .+ J+ 1.+ ,J+ J 1.+ ,J = 0

(4R +4R) /2
T •

8.1 5



Momentum Equation:

Taylor's.expansion of U about one grid in r-direction:
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8.16

= U(o 0) - AR U~,J r B.1 7

Subtracting B.17 from B.16:

au(aR)o . =: ~,J

U(o 01)- U(o 01)~,J+ ~,J- +

~R +4R)+ -

o (LI 2 ) B.1 8

Simila~ly expanding U about one grid in x-direction,
i
!

U(o 1 0)- U(O 1 0)= ~t, J ~ - ,J + 8.1 9

A X +4X
+

Taylor's expansion of U about half a grid spacing in

r-direction:

U (0 0 ')~+J+2
= U 4R.U + _2,(AR+\2U + 0(A3)(i,j)+ 2 r 2 J rr B.20

U U AR'U+1.(AR_)2U + o (Ll3)(i,j-~) = (i,j) - 2 r.2 2 rr 8.21
r,

SUbtrarting Equation 8.21

~U I 2(aR)o .. = AR AR (Uo . ,-~,J + _ ~,J+2•

from Equation 8.20:

2U 0 0 ,) + 0 (Ll )1,J-2 8.22



Similarly it can be written as:

B1

i,j =
2

AR+4R~ - L
- au . -. au ](RNa-R).. ,-(RN.•..R) .. ,l,j+, u l,j-,

R.+R. 1
j j-

2

N.. +N .. 1 ""u Jl,j l,j- ('-').. ,
2 OR l,j-,

B.23

Now expanding U about half a grid in r-direction

U U ) + Ll R~U +.L (A R.)2U + 0 (A 3)(i,j+1)= (i,j+~ 2 r 22 rr B.24

U(. ") = U( .. ')l,j l,j+, B.25

Subtracting B.25 fromB.24:

(bU) .
"'""'R • " IOH 1, J+2

Similarly

U( .. 1)-U('") 2
= l, j + l , j + 0 (.11 ).

4R~
B.26

au
(aR)' " ,1.,J-2

U( .. )-U( .. 1)= l,j l,j- +
AR_

o (t.. 2 ) B.27

i,Writing the following expansions forU: ,

I

AX2
0(.113 )

I
U(i+1,j) = U (. ")+ AXU + -' U + BhBl,j + x 2 xx i

U(i_1,j) U (. .) <lXU AX2
U o (L13) B.29= - + -:. +l,j - x 2 xx
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Adding 8.28 and 8.29:

Equation B.26 and Equation B.27 can be written as:

B.3o

U( .. 1)- 0,S[U(l'+1,J')+l, J +
4R•

B. 31

Using Equatio~s B.31 and B;32 in Equation B.23:

B.32

o au
ORR(RNFRR) ..1, J

2~.---
4R+4R I

+
[

R.
1
+R.
J + J

2

N. . 1 +N. .1,J+ 1,J

2

U. ':1-0.5 (u. 1 .+ U. 1 .).1 , J +, . l + ,J 1 - ,J

A R•
R. +R. 1
J J-
2

N.. +N.. l' o.s(u. 1 .+U. 1 .)-U .. l'
l,J l,J-. l+ ,J 1- ,J . 1, ]- +0(L\2)

2 4R .

B.33

Using Equations B.18, B.19 and B.33 in Equation B.3, finite-

difference equation for the momentum equation is:

U.. 1-U, . 1
V.. ( l,J+ 1,J-)
1,JU. . (1,J

1
=R'":"

J

,
U. . -ill. .1
l +1 , J l -1 , JI)+

L1X +4X I
•. I

R. 1 +R .
J + J

2

L1R +.4R. -

{
N .. 1+N ..1,J+ 1,J
. 24R. .



U.. 1-0.5(1.,J+ U. 1 .+U. 1 .)]1.+ ,J .1.- ,J

R . +R. 1J J-
2 {

N .. +N .. 11.,J 1.,J-

2AR_

83

0.5(U'"1 .+U. 1 .)-U .. 1 JJ+ 0(A
2
)1.t ,J 1.- ,J 1.,J-

Energy Equation:

By similar treatment energy equation can be written as:

8.34

U. . (
1.,J

T. 1 .-T. 1 .1.+ ,J 1.- ,J)+

AX +.dX. -
v. . (
1.,J

T .. 1-T. . 11.,J+ 1.,J-)

.d R +.dR. -

1
= ff:"

J

:1'
AR +4R• [

R.1+R.]+ ]
2

NH •. 1+NH' .1.,J+ 1.,J
2.LlR•

.....~.
{T. . 1 - 0 • 5 ( T. 1 . +T. 1 .)} "1.,J+ 1.+ ,J 1.- ,J

B.35
R. +R. 1J J-
2

NH. . +NH. . 1 {O. 5 ( T.+ 1 . +T. 1 .1')-T. . 11l]. 1.,J 1.,J- 1. ,J 1.-, 1.,J-J
" 2L1R ",....

The center line derivative boundary cond~tion was implemented

using a Taylor series expansion for the velocity and temperature

about the center line and using a second order approximation

to the zero derivative at the2center line. This permitted the

calculation of the center line values of velocity and

temperature according to:

=
4U. 1 2- U. 1 31.+, 1.+ ,

3

4T. 1 2- T. 1 3= 1+, 1+,

3
B.36

.~-
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Direct Explicit Scheme

The finite-di~ference equations for this scheme were used.,

to start the Dufort-Frankel method. The equations can be

derived by standard method [34j

The continuity equation is:

R. 1 1
4L1J+X (U'1 .-U .. +U. l' 1-U, . 1)+AR(R. 1V, l' 1-R.V. 1.)=0~+ ,J ~,J ~+ ,J+ ~,J+ J+ ~+ ,J+ J ~+ ,J

8.37

The r'lomentu.mequation is:

+ V. . (
~,J

AX

I
U. . -U. I. 1

~:, J ~ ',J - )

'AR
: -t

1
= R.

J

2
LlR+LlR.•. - [

R.. 1+R .
]+ J
2

N. . 1:+N. .~,J+: ~,J
:2

U. . 1-U. .~,J+ ~,J
dR.

R .+R. 1 N. .+N .. 1 U. .-U. . 1 ]J J- ~,J l, J- ~,J l,]-

2 2 A.R

The Energy equation is:

8.38

U. . (
~,J

1
=~

J

Ti+1,j-Ti,j)

6X
I
I,

NH .. 1+NH' j T .. 1-T ..1,J+ l.'-L. 1,J+ 1,J

2 i AR .•.

R.+R'1 NH .. +NH .. 1J J- ~,J ~,J-
2 2

T .. -T. ~ 1 J~,J ~,J-

AR_
8.39

f
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APPENOIX-C

STABILITY ANALYSIS OF THE MOMENTUM EQUATION

The finite difference analogue of the partial differential

equation must satisfy certain conditions:

1) the solution being obtained should correspond the partial

differential equations, at least when grid spacings is

refined in a particular manner.

2) due to the use of particular method of solution, round

of errors or errors from any source are not amplified

or allowed to grow in subsequent steps in the solution.

The first point is called the consistency condition which

can be studied by expanding the dependent variables in Taylor

series expansions. From this-expanded series, the difference
,
between the partial differential equations and the finite

difference representation can be observed[ g-J. This diffe-

rence is known as truncation or discretization error of the

equations. If this error vanishes in the limit as the grid-

spacing is reduced, the finite difference representation is

said to be consistent.

The second point is called the stability condition. Here
i

Von Ne~man [34J -method of stability analysis is used to get

an ins~ght into how a solution of finite difference equation
!

behaves when round off errors effect the calculations.

Unfortunately, this method can only be used to establish
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necessary and. sufficient cDnditiDns fDr stability Df linear

initial value prDblems with cDnstant cDefficients. Due tD the

nDn-linearity Df mDmentum equatiDn VDn Neumann methDd is

applied here IDcally fDr satisfying the cDnditiDns Df the

applicability Df this methDd even thDugh they dD nDt satisfy

Dver the whDle sDlutiDn regiDn.

Let the errDr grDwth in U be ~, and accDrding tD~Neumann

[34J it was expressed as:

With the errDr, the velDcities change tD:

U. '1'-U, '1+a"'1l,J+ l,J+ l,J+

C.1

C.2
U.. 1 ~ U .. 1 + ~ .. 1l,J- l,J+ 'l,J-

U. l' U. 1 . + a. 1 .l+ ,J l+ ,J 'l+ ,J

and

~. '+1
(31 (R+LlR) ip2x

= Ae el,J

b. . 1 Ae
~1 (R- LlR) i~2X

= e
11, J-

~ i +1, j
(31 R i~2 (;dAx)

= Ae e

Substituting EquatiDns C.2 in EquatiDn 8.34 and using

C.3

u sin g .4R
+

= L1R = .4 R :
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b,i+1 ,j-~i-1 ,j 2l<i;j+1- ~i,j-1U. 0 + V. . _
l,J l,J

.d X •.ax 2.1 R
+

T

,..' (.

I,.
!

-(1-
a
2R

R
)(N. o+N. '1){O.S(S,. 1 .+J.. 1 o)-~'i" JJ C.4

o l,J l,J- l+ ,J 'l- ,J ,J-
J

1
=

2 (a R) 2 [
(1+2ARR)(N. 0 1+N. 0)

o l,J+ l,J
J .

{~. 0 1-0.S(~,o 1 .+a. 1 o)}'l,J+ l+ ,J 'l- ,J

. ,.,
~"

Substituting Equations C.3 in Equation C.4 and using

C.S

U . 0 / (4 j( + .AX.)
1, J : of.Where A =o

v 0 •

2..W.
2AR

1; .A R
--2 (1 +2-R ) (N 0 0 1+No 0)

2(LlR) . j l,J+ l,J

I
!

V. 0

1, ]
2.6 R +

1 AR
-- 2(1- -R )(N. o+No 01)
2(4R) j l,J l,J-

V. .
2..W.
2<iR

- _1_ 2 (1 + A2RR) (N 0 . +N. . 1)
2~ R) j l,J l,J+

The roots of Equation C.S are:

fo - ;". J( ;0)2_ Co I

According to Neumann stabillity con dition; I J I ~ 1

C.6
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r

C.8

C.7

For real ro °ts, inequality I r I ~ 1 are:

fJ.
+ j( ;0)2_° 80 ~ 1'2

A
-J(~)2-B0 ::;.-1'2 2 0

. ,,'.,

Rearranging [quation C.8

Using expressions for Ao and Bo in Equation C.9 and rearranging:

-U. .
1.,J ~

./lX+4X• [

V.. 1
.2:..!.J. + ~ (
. AR "AR

N. . 1 +N. . 1)l,J- l,J+ (1
AR

oaR ) J2R .
J

C. 1 0

Since U .. /(.1X+LlX) is always positive,
1, J ...-

V. .
1. , J

• Ll R
+ 1

24R

N.. 1+N .. 1)( 1-( l,J- l,J+

AR
AR )
2R .

J

or,

A X.. +.dX ~

IV. . +l,J

U. . A. R
l , J

N... 1 +N .. 1l,J- l,J+ (1

2.dR

- ~)2R.
J

C.11

The stability constraint given by Equation C.11 determines

the grid. spacings in x-direction with uniform grid spacings

in r-direction. As the radial velocity on the outerside is

Degative, the condition C.11 satisfies automatically but it

is not satisfied in the inner side where instability did not

show at all.
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APPENOIX- 0
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