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APPENDIX A 

PROGRAMMING   

 

A.1 Introduction  

 

A general computer program has been developed to obtain the analytical solution of 

the cracked stiffened panels. The computational algorithm has been developed based 

on the displacement potential function formulation. The computer code has been 

developed based on the C programming language.  

 

The program named file1.cpp reads the input data from the input files input.txt. This 

file reads the modulus of elasticity, maximum intensity of the load and Poisson’s 

ratio. The output file inputtestt.txt checks the validity of our input value. There are 

five output files such as outputuresult.txt, outputvresult.txt, outputsigxxresult.txt, 

outputsigyyresult.txt and outputsigxyresult.txt. Those files are used to write results of 

the displacment components and stress components after running the program. The 

cramer rule has been used to solve the four simultanous equation. 

 

 

A.2 Description of the Program Variables 

 

Notation  Definition  

u[ ][ ] Displacement in X-direction 

v[ ] [ ] Displacement in Y-direction  

sigx[ ] [ ] Stress in X- direction 

sigy[ ] [ ] Stress in Y- direction 

sigxy[ ] [ ] Shear stress in XY-plane 

nsigx[ ] [ ] Normalized axial stress 

nsigy[ ] [ ] Normalized lateral stress 

nsigxy[ ] [ ] Normalized shear stress 

Pi Constant (3.1416) 
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E Modulus of Elasticity 

Nu Poisson’s ration 

L Constant, α =(mπ/a) 

O Maximum intensity of the load 

d1,d2,d3,d4 

f1,f2,f3,f4 

h1,h2,h3,h4 

k1,k2,k3,k4 

Coefficient matrix of the four simultaneous 

equations. 

ac[ ], bc[ ], a0, w Constants of the curved fitted equation. 

A Width of the Panel 

B Length of the Panel 

R Aspect ratio (b/a) 

c1 αx 

c2 αy 

c3 αb 

i,j,k Loop Variables 

n1, n5 No. of nodes in x- and y-direction respectively. 

M Indicates the no. of terms in Fourier series. 

U11,V11,X11,Y11,XY11 
Displacement and Stress components at a 

particular point of the panel. 

 



 

195 

 

A3. Code of the Program. 

 

/*Problem: Analysis of stiffened isotropic Panel with cracks length h/a = 0.2 a=1 

fixed */ 

 

#include<stdio.h> 

#include<math.h> 

 

void main() 

{ 

 double u[51][101],v[51][101],sigx[51][101],sigy[51][101],sigxy[51][101]; 

 double nsigx[51][101],nsigy[51][101],nsigxy[51][101]; 

 double pi,e,nu,L,o,d1,d2,d3,d4,f1,f2,f3,f4,h1,h2,h3,h4,k1,k2,k3,k4,z11; 

 double a0 = -7.341e-005; 

 double ac[3] = {-0.000117 ,-4.87e-005,-9.434e-006}; 

 double bc[3] = {-1.524e-005,-1.528e-005,-4.429e-006}; 

 double w = 10.47; 

 double A1,A2,A3,A4,eq1,eq2,eq3,eq4,A11,B11,r,a,b,c1,c2,c3,Em,Im; 

 double x1,u1,y1,xy1,v1,U11,V11,X11,Y11,XY11,sum; 

 double m1,m2,m3,m4,det,ams,bms,cms,dms,aa,bb,cc; 

 int n1,n5,m,i,j,k; 

 

FILE *input1, *inputtest, *outputu, *outputv, *outputsigxx, *outputsigyy, 

*outputsigxy,*outputtest; 

     input1 = fopen("input.txt","r"); 

 inputtest = fopen("inputtestt.txt","w"); 

 outputu = fopen("outputuresult.txt","w"); 

 outputv = fopen("outputvresult.txt","w"); 

 outputsigxx = fopen("outputsigxxresult.txt","w"); 

 outputsigyy = fopen("outputsigyyresult.txt","w"); 

 outputsigxy = fopen("outputsigxyresult.txt","w"); 

 outputtest = fopen("outputtestt.txt","w"); 
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 fscanf(input1,"%lf %lf %lf",&e,&o,&nu); 

 fprintf(inputtest,"%18.3lf %18.3lf %18.3lf",e,o,nu); 

 n1 = 51; 

 n5 = 101; 

 pi = 3.141592654; 

     r = 1.0;  

 a = 1.0;     

 b = a * r;   

     bb = (-2*o*(1+nu)*(1+nu))/(e*(9-(3*nu))); 

 aa = -1.5*bb*(1-nu); 

 

 for (i = 0;i < n1;i++) 

 { for(j = 0;j < n5;j++) 

   { A11 = (i/50.0); 

   B11 = (j/100.0); 

   U11 = 0.0; 

   V11 = 0.0; 

   X11 = 0.0; 

   Y11 = 0.0; 

   XY11 = 0.0; 

    

   for(m = 1;m<=109;m++) 

   { 

    c1 = m*pi*A11*r;          

c2 = m*pi*B11;        

    c3 = m*pi*r;          

    L = (m*pi)/a;        

    z11 = ((-e)*L*L)/((1+nu)*(1+nu)); 

    h1 = -L*L; 

    h2 = -L; 

    h3 = L*L; 
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    h4 = -L; 

 

    k1 = z11*(1+nu)*L*exp(c3); 

    k2 = z11*((c3*(1+nu))+2)*exp(c3); 

    k3 = z11*(1+nu)*L*exp(-c3); 

    k4 = z11*((c3*(1+nu))-2)*exp(-c3); 

    d1 = (1+nu)*L; 

    d2 = (nu+3); 

    d3 = -(1+nu)*L; 

    d4 = (nu+3.0); 

    f1 = (1+nu)*L*exp(c3); 

    f2 = ((c3*(1+nu))+nu+3.0)*exp(c3); 

    f3 = -(1+nu)*L*exp(-c3); 

    f4 = -((c3*(1+nu))-nu-3.0)*exp(-c3); 

           

    Em = ((2*o)/(m*pi))*(1-cos(m*pi)); 

     

    sum = ((2*a0)/(m*pi))*(cos((8*m*pi)/10)-cos(m*pi));     

    for(k = 0;k<3;k++) 

    { 

sum = sum +(ac[k]*(((1/((m*pi)+((k+1)*w*a)))*cos(((m*pi)+((k+1)*w*a))*0.8))+ 

((1/((m*pi)-((k+1)*w*a)))*cos(((m*pi)-((k+1)*w*a))*0.8))\((1/((m*pi)+((k+1) 

*w*a)))*cos((m*pi)+((k+1)*w*a)))-((1/((m*pi)-((k+1)*w*a)))*cos((m*pi)-((k+1)* 

w*a)))))+(bc[k]*(-((1/((m*pi)+((k+1)*w*a)))*sin((m*pi)+((k+1)*w*a))) 

+((1/((m*pi)-((k+1)*w*a)))*sin((m*pi)-((k+1)*w*a)))+((1/((m*pi)+((k+1)*w*a))) 

*sin(((m*pi)+((k+1)*w*a))*0.8))-((1/((m*pi)-((k+1)*w*a)))*sin(((m*pi)-

((k+1)*w*a))*0.8)))); 

    } 

    Im = sum; 

    m1= 0; 

    m2= 0; 

    m3 = Im; 
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    m4 = Em; 

 

    det = (d1*((f2*((h3*k4)-(h4*k3)))-(f3*((h2*k4)-

(h4*k2)))+(f4*((h2*k3)-(h3*k2)))))+(-d2*((f1*((h3*k4)-(h4*k3)))-(f3*((h1*k4)-

(h4*k1)))+(f4*((h1*k3)-(h3*k1)))))+(d3*((f1*((h2*k4)-(h4*k2)))-(f2*((h1*k4)-

(h4*k1)))+(f4*((h1*k2)-(h2*k1)))))+(-d4*((f1*((h2*k3)-(h3*k2)))-(f2*((h1*k3)-

(h3*k1)))+(f3*((h1*k2)-(h2*k1))))); 

 

    ams = (m1*((f2*((h3*k4)-(h4*k3)))-(f3*((h2*k4)-

(h4*k2)))+(f4*((h2*k3)-(h3*k2)))))+(-d2*((m2*((h3*k4)-(h4*k3)))-(f3*((m3*k4)-

(h4*m4)))+(f4*((m3*k3)-(h3*m4)))))+(d3*((m2*((h2*k4)-(h4*k2)))-(f2*((m3*k4)-

(h4*m4)))+(f4*((m3*k2)-(h2*m4)))))+(-d4*((m2*((h2*k3)-(h3*k2)))-(f2*((m3*k3)-

(h3*m4)))+(f3*((m3*k2)-(h2*m4))))); 

    bms = (d1*((m2*((h3*k4)-(h4*k3)))-(f3*((m3*k4)-

(h4*m4)))+(f4*((m3*k3)-(h3*m4)))))+(-m1*((f1*((h3*k4)-(h4*k3)))-(f3*((h1*k4)-

(h4*k1)))+(f4*((h1*k3)-(h3*k1)))))+(d3*((f1*((m3*k4)-(h4*m4)))-(m2*((h1*k4)-

(h4*k1)))+(f4*((h1*m4)-(m3*k1)))))+(-d4*((f1*((m3*k3)-(h3*m4)))-(m2*((h1*k3)-

(h3*k1)))+(f3*((h1*m4)-(m3*k1))))); 

    cms = (d1*((f2*((m3*k4)-(h4*m4)))-(m2*((h2*k4)-

(h4*k2)))+(f4*((h2*m4)-(m3*k2)))))+(-d2*((f1*((m3*k4)-(h4*m4)))-(m2*((h1*k4)-

(h4*k1)))+(f4*((h1*m4)-(m3*k1)))))+(m1*((f1*((h2*k4)-(h4*k2)))-(f2*((h1*k4)-

(h4*k1)))+(f4*((h1*k2)-(h2*k1)))))+(-d4*((f1*((h2*m4)-(m3*k2)))-(f2*((h1*m4)-

(m3*k1)))+(m2*((h1*k2)-(h2*k1))))); 

    dms = (d1*((f2*((h3*m4)-(m3*k3)))-(f3*((h2*m4)-

(m3*k2)))+(m2*((h2*k3)-(h3*k2)))))+(-d2*((f1*((h3*m4)-(m3*k3)))-(f3*((h1*m4)-

(m3*k1)))+(m2*((h1*k3)-(h3*k1)))))+(d3*((f1*((h2*m4)-(m3*k2)))-(f2*((h1*m4)-

(m3*k1)))+(m2*((h1*k2)-(h2*k1)))))+(-m1*((f1*((h2*k3)-(h3*k2)))-(f2*((h1*k3)-

(h3*k1)))+(f3*((h1*k2)-(h2*k1))))); 

 

    A1 = ams/det; 

    A2 = bms/det; 

    A3 = cms/det; 
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    A4 = dms/det; 

    eq1 = ((A1*k1)+(A2*k2)+(A3*k3)+(A4*k4)); 

    eq2 = ((A1*f1)+(A2*f2)+(A3*f3)+(A4*f4)); 

    eq3 = ((A1*h1)+(A2*h2)+(A3*h3)+(A4*h4)); 

    eq4 = ((A1*d1)+(A2*d2)+(A3*d3)+(A4*d4)); 

 fprintf(outputtest,"%18.8e %18.8e %18.8e %18.8e\n",eq1,eq2,eq3,eq4); 

 

u1 = ((A1*L*exp(c1))+(A2*(c1+1)*exp(c1))-(A3*L*exp(-c1))-(A4*(c1-1)*exp(-

c1)))*(-L)*sin(c2); 

 

v1 = (((A1*(1+nu)*L*L*exp(c1))+(A2*(c1+(nu*c1)+4)*L*exp(c1)) +(A3*(1+nu) * 

L * L*exp(-c1))+(A4*(c1+(nu*c1)-4)*L*exp(-c1)))*cos(c2))/(-(1+nu)); 

 

x1 = (z11)*((A1*(1+nu)*L*exp(c1))+(A2*(c1+(nu*c1)+2)*exp(c1))+(A3*(1+ nu)* 

L*exp(-c1))+(A4*(c1+(nu*c1)-2)* exp(-c1)))*sin(c2); 

 

y1 = (z11)*((A1*(-1-nu)*L*exp(c1))+(A2*(-c1*(1+nu)-2*nu-4)* exp(c1))+(A3*(-1-

nu)*L*exp(-c1))+(A4*(-c1*(1+nu)+2*nu+4)* exp(-c1)))*sin(c2); 

 

xy1 = (z11)*((A1*(1+nu)*L*exp(c1))+(A2*(c1*(1+nu)+nu+3)*exp(c1))-(A3*(1+ 

nu)  *L*exp(-c1))-(A4*(c1*(1+nu)-nu-3)* exp(-c1)))*cos(c2);/ 

 

    U11 = U11 + u1; 

    V11 = V11 + v1; 

    X11 = X11 + x1; 

    Y11 = Y11 + y1; 

    XY11 = XY11 + xy1; 

   } 

   u[i][j] = U11/b; 

   v[i][j] = V11/a; 

   nsigx[i][j] = X11; 

   nsigy[i][j] = Y11; 
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   nsigxy[i][j] = XY11; 

 

   sigx[i][j] = nsigx[i][j]/abs(o); 

   sigy[i][j] = nsigy[i][j]/abs(o); 

   sigxy[i][j] = nsigxy[i][j]/abs(o); 

  } 

 } 

 fprintf(outputu,"Displacement UU\n"); 

 for (i = 0;i < n1;i++) 

 { 

  for(j = 0;j < n5;j++) 

  { 

   fprintf(outputu,"%18.8e",u[i][j]); 

  } 

  fprintf(outputu,"\n"); 

 } 

 fprintf(outputv,"Displacement VV\n"); 

 for (i = 0;i < n1;i++) 

 { 

  for(j = 0;j < n5;j++) 

  { 

   fprintf(outputv,"%18.8e",v[i][j]); 

  } 

  fprintf(outputv,"\n"); 

 } 

 fprintf(outputsigxx,"Stress SigmaXX\n"); 

 for (i = 0;i < n1;i++) 

 { 

  for(j = 0;j < n5;j++) 

  { 

   fprintf(outputsigxx,"%18.8Lf",sigx[i][j]); 

  } 
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  fprintf(outputsigxx,"\n"); 

 } 

 fprintf(outputsigyy,"Stress SigmaYY\n"); 

 for (i = 0;i < n1;i++) 

 { 

  for(j = 0;j < n5;j++) 

  { 

   fprintf(outputsigyy,"%18.8Lf",sigy[i][j]); 

  } 

  fprintf(outputsigyy,"\n"); 

 } 

 fprintf(outputsigxy,"Stress SigmaXY\n"); 

 for (i = 0;i < n1;i++) 

 { 

  for(j = 0;j < n5;j++) 

  { 

   fprintf(outputsigxy,"%18.8Lf",sigxy[i][j]); 

  } 

  fprintf(outputsigxy,"\n"); 

 }  

 fclose(input1); 

 fclose(inputtest); 

 fclose(outputu); 

 fclose(outputv); 

 fclose(outputsigxx); 

 fclose(outputsigyy); 

 fclose(outputsigxy); 

 fclose(outputtest); 

} 
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Abstract 

 

This thesis deals with an efficient analytical scheme for the analysis of stress and 

displacement fields of boundary-value problems of plane elasticity with mixed 

boundary conditions and material discontinuity. More specifically, the mechanical 

behavior of a stiffened panel with an edge crack is analyzed under the influence of 

flexural and axial loadings, using a new analytical scheme.  

 

Earlier mathematical models of elasticity were very deficient in handling the practical 

stress problems of solid mechanics. Analytical methods of solution have not gained 

that much popularity in the field of stress analysis, mainly because of the inability of 

dealing with mixed boundary conditions, irregular boundary shapes, and material 

discontinuity.  

 

In this approach, the displacement components of plane elasticity are replaced by a 

single potential function and the two-dimensional elasticity problem is reduced to the 

solution of the potential function from a single partial differential equation of 

equilibrium, in which all the parameters of interest, namely stress, strain and 

displacements are expressed in terms of the same potential function. The solution of 

the differential equation is obtained in the form of infinite series, the coefficients of 

which are determined by satisfying the boundary conditions appropriately. The 

application of the method is then demonstrated through the analysis of the elastic 

field of a stiffened panel with an edge crack subjected to axial and flexural loadings. 

Some of the relevant issues of practical interest are also discussed in relation to the 

cracked stiffened panel. The analytical scheme is then extended to the case of 

composite materials, in which the effect of fiber orientation on the elastic filed of the 

cracked stiffened panel is investigated in details. It would be worth mentioning here 

that the analytical solutions of the present cracked stiffened panels even with 

isotropic materials are beyond the scope of the standard methods of the literature. 

 

In an attempt to verify the reliability and accuracy of the analytical scheme 

developed, the present potential function solutions are compared with the 



 xi 

corresponding solution obtained by two standard computational methods. The three 

solutions are found to be in excellent agreement with each other for all the cases of 

stiffeners and loadings considered, which eventually establishes the soundness and 

appropriateness of the analytical scheme developed. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

A crack is the most dangerous defect in structural components. The presence of a 

crack not only causes a local variation in the stiffness, but also affects the global 

mechanical behavior of the structure to a considerable extent. Among the cracks, the 

surface connected ones are most commonly encountered in practice as, most of the 

cases, critical stresses are found to occur at the surfaces of engineering structures. On 

the other hand, the use of stiffeners, especially in the construction of marine and 

aerospace structures is quite extensive. Stiffeners are usually attached along the 

boundaries of structural components mainly to increase the stiffness of the 

components, which, in turn, reduces the level of deformation as well as weight of the 

structure. As a result, the subject of analyzing the mechanical behavior of stiffened 

structures containing edge cracks has received widespread attention. In particular, 

reliable and accurate analysis of stresses in these structures is of great practical 

importance as far as the modern damage tolerant design philosophy is concerned.   

 

Now-a-days, the theory of elasticity has found considerable application in the 

solution of engineering problems. There are many cases where elementary theory is 

inadequate to give accurate results. The elementary theory is insufficient to give the 

information regarding local stresses near the load and near the supports of beams as 

well as in regions of sharp variation of structure. This led to the emergence of a 

special trend of physics, i.e., the Theory of Elasticity to apply to elastic solids. The 

equations of theory of elasticity are a system of partial differential equations. 
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In cases where a rigorous solution can not be readily obtained, approximate method, 

such as, numerical methods have been developed. Numerical methods give 

approximate results instead of exact solution that can be obtained from analytical 

method. That is, analytical method is always preferable because results obtained by 

approximate method are not always reliable and acceptable for some applications 

where accuracy is important. These are sometimes expensive. Sometimes analytical 

method is not independently adequate to solve a practical problem and it needs some 

help from numerical methods.  

 

Due to outstanding advantages of composite materials, they are being increasingly 

used as structural elements in various problems. The response of cracked composite 

panels to mechanical loadings largely depends on the fiber orientation. Therefore, the 

effect of fiber orientation on the distribution of stresses and displacements are 

required to be analyzed to ensure proper and safe application. 

 

1.2  Literature Review 

 

The analysis of mechanical behavior of structural components containing cracks 

drew the attention of researchers since late 1890s. The view of crack analysis from 

mechanics view point was stated by Love[1] in his authoritative work on Theory of 

Elasticity in the 1890s by “The conditions of rupture are but vaguely understood,…” 

At that time Coulomb and Mohr’s theories were followed by many without 

considering the effects of flaws or cracks in materials. Most often structural failures 

were analyzed by metallurgists who knew little about the mechanics of the effects of 

flaws. In the early 1950s, there were studies of failure due to excessive deformations 

and various forms of instability but virtually nothing on crack. Love’s statement was 

still the case.  

 

Historically, some attempts were tried in the early 1900s but here only those 

connected to and leading directly to current methods will be mentioned. The first was 

that of Inglis [1] in 1913. He used elliptical-hyperbolic coordinates to solve the 
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elastic stress problem of an elliptical hole in a plate. Then he tried to degenerate the 

ellipse into a crack and his stress solution near the crack tip became unresolved.  

 

Griffith [2] made use of the stress solution provided by Inglis for a plate under 

uniform tension with an elliptical hole which could be degenerated into a crack. 

However, neither Griffin nor his predecessors had the knowledge of stress fields near 

cracks which is now available. Sneddon [2] was the first to give stress-field 

expansions for crack tips for two individual examples. 

 

As far as the earlier researches are concerned, the attempts of Williams [3] and Irwin 

[4-5] for finding analytical solutions for the stress and displacement fields near the 

crack tip are noticeable. In these analyses, an Airy stress function [6] has been 

suggested to derive a general governing equation for predicting the state of stress 

near the tip of a part-through crack in an infinite thin plate. Later Sedov[7] presented 

the general solution for an internal crack in an infinite plate using plane stress 

assumption. On the other hand, these solutions for stress distribution near the crack 

tip allowed the researchers to analyze the cracked structures from the stand-point of 

fracture mechanics. As a result, a number of successful attempts have been made to 

determine stress intensity factors based on the elastic stress distribution near the 

crack tip [8-10].   

 

Even though several attempts have been made to obtain analytical solutions for the 

stress state in cracked bodies, closed form analytical solutions are only found for 

cracks in semi-infinite or infinitely large bodies under pure tension. It is worth 

mentioning that most of the solutions so obtained are only valid in the vicinity of the 

crack tip, which, in turn, identifies them to be inadequate for regions away from the 

crack tip. However, engineering structures in practice are of boundary value types 

and, usually encounter different types of physical conditions and shapes as well as 

cracks tend to occur in regions of high stress concentration. It is, therefore, important 

to take into account the effect of nearby boundaries appropriately. In fact, the 

necessity of finding stresses and displacements in cracked bodies in real cases 
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persuades the researchers to develop numerical and empirical methods. The most 

important and useful forms of such studies has been collected by Tada et. al. [11]. 

 

In cases where no analytical and numerical methods could be developed, solutions 

have been obtained by using experimental methods. Photoelastic methods, soap-film 

methods, application of strain gages, moiré fringe etc. are some of these experimental 

methods applied in the study of stress concentration at points of sharp variation of 

cross-sectional dimension and at sharp fillets of re-entrant corners. These results 

have considerably influenced the modern design of machine parts and helped in 

many cases to improve the construction by eliminating weak spots through which 

crack may switch on and hereby propagate. 

 

The crack problem in finite bodies becomes more complex for the case of stiffened 

structures.  As a result, serious attempts have hardly been made so far in the literature 

that can provide exact analytical solutions for the stresses in cracked stiffened 

structures with finite dimensions. Even successful attempts for analyzing edge cracks 

in semi-infinite stiffened structures are very few; the work of Shkarayev and Moyer 

can be cited as an example [12]. These analyses are mainly handled by approximate 

numerical techniques, as in most cases the available mathematical models are 

inadequate to provide exact analytical solutions to them. As a result, several 

numerical techniques, such as, matrix force method, finite element method, dual 

boundary element method, etc. have been found to apply extensively for the solution 

of crack problems in stiffened structures [13-15]. Ratwani and Wilham studied the 

influence of biaxial loading in stiffened panels using the FEM [14]. 

 

Composite materials have played a leading role over the past three decades in the 

advancement of different structures like aerospace, marine and automobile 

technology. Development of lighter, more efficient load carrying structures can be 

attributed to the inherent advantages that composite materials have over conventional 

metallic materials. However, behavior of these structures in the presence of various 

discontinuities, in particular, cracks could be very complicated. An accurate stress 

analysis for these structures can be performed using a detailed finite element method, 
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but this approach is not very efficient and convenient. Such an approach would not 

be very adequate to the cases where a large number of analyses are needed to study 

the effect of crack sizes, their location and also to study the design changes on the 

response. A simple global-local method was introduced by Haryadi et. al [27] for the 

analysis of simply supported composite panels with small cracks. This paper 

evaluated stresses and displacements around cracks in thin, composite plated under 

uniform transverse loading. S. Tang [28] introduced hybrid technique that is, 

coupling of finite element and boundary layer method to study the stress field of 

laminated composites.  

 

Since the exact analytical solution of mixed boundary-value elastic problems with 

geometrical discontinuity is beyond the scope of existing mathematical models of 

elasticity, the use of a new analytical scheme is investigated here to analyze the 

elastic behavior of cracked stiffened panels of finite dimensions under different types 

of loading. Displacement potential formulation is used to solve these problems. The 

present modelling approach reduces the two dimensional problem to the solution of a 

single differential equations of equilibrium and also enables the mixed mode of the 

boundary conditions to be managed appropriately. It is worth mentioning that a 

number of researchers worked on the advancement of displacement potential 

approach to handle the beam and column like structures with different loading and 

supporting conditions. Ahmed et. al. have developed numerical solution of both ends 

fixed deep beams based on displacement potential formulation [18]. Ahmed et. al. 

[16] have carried out an investigation of stresses at the fixed end of deep cantilever 

beams. Akanda et. al. have carried out stress analysis of gear teeth using 

displacement potential function and finite differences [19]. The potential of the 

formulation has also been investigated by Ahmed et. al. [17] to design optimum 

shapes of tire-treads for avoiding lateral slippage between tires and roads. Recently, 

Ahmed et. al. [20] have proposed a general mathematical formulation for finite-

difference solution of mixed-boundary-value problems of anisotropic materials. 

Further, Debnath et. al. have carried  out analytical solution of short stiffened flat 

composite bars under axial loadings [21], and stiffened orthotropic composite panels 

under uniaxial tensile load [22]. All these solutions are mainly applicable for those 
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structures with no singularity; none of them is applicable to panel with crack present 

in them. As such the solution for edge-cracked stiffened panel is yet to be developed.  

 

1.3  Objectives 

 

The present study is on the displacement potential formulation in order to address the 

structural analysis of edge-cracked stiffened panel of orthotropic and isotropic 

materials having mixed boundary conditions which it is hoped will aid in the further 

understanding of the elastic-stress distribution due to presence of stationary crack. 

The main objectives of the present research work are summarized as follows: 

  

(a) Mathematical modeling of a cracked stiffened panel considering it as a mixed-

boundary-value stress problem of elasticity in terms of a single potential 

function of space variables 

 

(b) Development of a suitable analytical scheme to obtain solutions for the elastic 

field of finite stiffened panels with an edge crack under flexural and axial 

loading 

 

(c) Analysis of deformed shapes as well as the distributions of different stress 

components of interest in the perspective of both the axial and lateral 

directions of the panel 

 

(d) Analysis of the corresponding elastic field caused by attaching axial and 

lateral stiffeners along the opposing longitudinal edges of a cracked panel 

 

(e) Extension of the modeling scheme for the analysis of cracked stiffened panels 

of fiber reinforced composite materials 

 

(f) Establishment of credibility of the analytical scheme for the analysis of 

cracked stiffened panels with finite dimensions by comparing with those of 

standard computational techniques 

 



7 
 

Results of the present analysis provide a reliable design guide for cracked stiffened 

panels with finite dimensions, which is expected to be of significant help for their 

improved and economic design. In addition, the present analytical solutions would be 

considered as a standard guide for checking reliability and accuracy of numerical and 

approximate solutions to be developed in future.  

 

1.4  Study Procedure 

 

In the present study, the elastic behavior of cracked stiffened panels of finite 

dimensions is investigated under flexural and axial loading through a new analytical 

scheme based on a single scalar potential [16-17]. In the potential function boundary 

modeling approach, the elastic problem is formulated in terms of a single scalar 

potential of space variables, defined in terms of the displacement components of 

plane elasticity, which has to satisfy a single fourth-order partial differential equation 

of equilibrium. Real boundary condition has been imitated in the form of Fourier 

series. Special cares are taken to model the physical conditions at different segments 

of the bounding surface of the panel in a reasonable and justifiable manner. The 

panel is assumed to be stiffened along the two opposing longitudinal edges, in which 

use of both the axial and lateral stiffeners is investigated separately. The edge crack 

of zero-degree notch angle is considered to be located at mid-length position of the 

panel. For checking the reliability as well as appropriateness of the present solution, 

numerical solutions of cracked stiffened panels are obtained by finite element 

method with the help of standard commercial software. 

 

1.5  Importance of Present Study 

 

The present study has the significance in regard to academic concept, design 

reference and manufacturing engineering. The study is going to present the 

application of a new concept, i.e., displacement potential approach for the analysis of 

stress and displacement in edge –cracked panels for both isotropic and orthotropic 

materials under mixed mode of boundary conditions. It is expected to find out some 

additional aspects to the theory of elasticity, which in turn may encourage 
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academicians and researchers to explore the concept further and eliminate the lack of 

suitable method for dealing with mixed boundary value problems of complex 

geometries.  In this study a number of problems of edge-cracked stiffened panel 

problems are solved by using the present analytical scheme and results are presented 

in the form of graphs. The results may be used as a database and may be helpful to 

the designers working in the industries of aerospace, shipbuilding and automobile to 

verify the conventional numerical methods, where numerous composite structures 

are used and analyzed by numerical methods. The study of edge-cracked stiffened 

panel analysis on structural point of view is very pertinent for those machine parts 

where machine have to run with the presence of crack or structure remain safe 

without failure. 
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CHAPTER 2 

 

THEORETICAL OUTLINE AND FORMULATION 

 

2.1 Introduction  
 

To determine the internal forces in a solid body, the theory of elasticity sets forth the 

solution of problem. Under the action of external forces the body deforms, the 

mutual position of molecules changes and so do the distance between them. The 

action of external forces that produce deformation gives rise to additional internal 

forces causing the stress of the body.  

 

The requirement of the structural analysis is to investigate the state of stresses, 

strains and displacements at any point due to given body forces and given conditions 

at the boundary of the body. In most of the cases the requirement is to find the stress 

distribution in an elastic body. In some cases, it is also required to find the strain 

distribution of the body. The state of stress, strains and displacement are termed 

within the elastic limit. A complete description of the elastic field requires 

specification of forces acting on the elementary body and its surface orientation.  

 

2.2   Equilibrium and Compatibility Conditions 

 

Let us consider an infinitesimal cubic element from an elastic body with sides 

parallel to the coordinate axes. Six forces will act on the six different faces of the 

element to ensure the equilibrium of the element. The forces acting on each face may 

be resolved into two types i.e. one perpendicular to the plane of the face known as 

normal stress and the other parallel to the face known as shear stress as illustrated in 

Fig. 2.1.  
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Fig. 2.1 Elementary Cubic Body. 

 

It is necessary to determine nine stress components ( xzzyyzyxxyzzyy  ,,,,,, , zx  

and xx ) and six strain components ( yzxrzzyyxx  ,,,,  and zx ) in order to provide 

complete information of an elastic field. Instead of strain components, sometimes the 

displacement components ( yx uu ,  and uz) are determined. It is worthy to mention that 

the components of strain and displacement can be determined from each other and 

each set provide the similar information. Therefore, either the components of strain 

or displacement are sufficient for a particular purpose.  

 

By a simple consideration of the equilibrium of the element shown in fig. 2.1, it can 

be shown that xzzxyxxy     ,  and zyyz    Thus, the nine components of 

stress are reduced to six yzxyzzyyxx    ,  ,  ,  ,  and zx  [23-24]. 
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From the consideration of an infinitesimal cubic element surrounding a given point 

in a body, it is found that the static equilibrium of forces requires at this point is to 

satisfy the followings equations: 
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These equations are known as the equations of equilibrium, where Fx, Fy and Fz are 

the components of the body force in x, y and z directions respectively [24].  

 

The above mentioned three equations of equilibrium are satisfied by the six stress 

components; but it is not practicable to obtain six stress components solving three 

equations. In this regard, following six relations are defining the three strain 

components in terms of the three displacement components through partial 

differentiation [24].  
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In addition, the six stress-strain relations are also there. Thus one can have altogether 

15 unknowns and 15 equations. This system of equations is generally sufficient for 

the solution of an elasticity problem.  

 

By differentiation and simple manipulation of Eq. (2.2), the following set of 

differential equations can be obtained.  
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These differential relations are known as the conditions of compatibility. The 

solution of an elasticity problem must satisfy the equilibrium i.e. Eq (2.1) and the 

compatibility conditions i.e. Eq (2.3) along with the boundary conditions. 

 

2.3   Hooke’s Law 

 

Hooke’s law named after the 17
th

 century British physicist Robert Hooke states that 

the relation between stress and strain is linear. The most general form of linear stress-

strain relationship for anisotropic material is given by the following expression [25]. 
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Where the 81 coefficients 
11c ,………, 99c  are called elastic coefficients or stiffness. 

For the equilibrium condition it is found that jiij    jiij   . As such  

xzzxyxxy     , , zyyz   , zzzxyxxy     ,  and zyyz   .  

Therefore, the stress–strain relation becomes as follows 
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From the consideration of strain energy density, it can be shown that jiij cc   

[22]. Therefore,  

,,, 411431132112 cccccc   61165115 , cccc   

,,, 522542243223 cccccc   43346226 , cccc   

65566446544563365335 ,,,, cccccccccc   

 

Thus, the 36 unknown coefficients of the stiffness matrix in Eq. (2.5) come down to 

21 unknown and the stiffness matrix turns to a symmetric matrix as follows. 
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Cij               (2.6) 

 

Materials having symmetry with respect to one plane is referred to as monoclinic 

materials. For such case of material, transformation of axis can be done and found 

that  05644353425241514  cccccccc  and then the 

number of elastic coefficient becomes 13 only.  

Thus, the stiffness matrix of Eq. (2.6) further reduces to  
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Now an orthotropic material has two orthogonal planes of symmetry, where material 

properties are independent of direction within each plane. Normally the reference 

system of coordinates is selected along the principal planes of material symmetry. 

Examples of an orthogonal material include a single lamina of continuous fibre 

composite arranged in a rectangular array, a wooden bar and rolled steel. For such 
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cases 045362616  cccc  and then this type of materials require 9 independent 

variables as elastic constants in their stiffness matrix as follows. 
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The reciprocal relations are given by.  
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Most metallic alloys are considered isotropic material, where by definition the 

mechanical properties are independent of direction. In this case there are infinite 

planes of symmetry. Such materials have only two independent variables i.e. elastic 

constants in their stiffness matrix as  
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The constants are given by  
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The summarised form of independent elastic constants for general anisotropic, 

anisotropic with symmetric stress and strain components or with energy 

consideration, orthotropic and isotropic materials can be thus presented in Table 2.1 

as follows. 

 

Table 2.1 Number of Elastic Constants 

 

Serial Material Condition No of constant 

1 Anisotropic General form 81 

2 Anisotropic Equilibrium condition 36 

3 Anisotropic Strain energy consideration 21 

4 Monoclinic Symmetric to a plane 13 

5 Orthotropic Having mutually perpendicular 

planes of symmetry 
 

09 

6 Isotropic Same elastic properties in all 

directions (having infinite 

perpendicular planes of symmetry) 

02 
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2.4 Two-Dimensionalization of the Problem 

 

Orthotropic and isotropic materials can be analyzed using two dimensions on the 

consideration of symmetry of planes, though the elastic analysis in general form is of 

three dimensional. For such simplification there are two options i.e. (i) plane strain 

condition and (ii) plane stress condition.  

 

Plane strain is said to be a state of strain in which the strain normal to the x-y plane 

εzz and the shear strains γxz and γyz are assumed to be zero. The assumptions of the 

plane strain are realistic for long bodies (saying in the z direction) with constant 

cross-sectional area subjected to loads that act only in the x and/or y directions and 

do not vary in the z direction. 

 

On the other hand Plane stress condition is considered to be a state of stress in which 

the normal stress σzz and the shear stresses σxz  and σyz directed perpendicular to the 

plane are assumed to be zero (but not the strain). Generally, members that are thin 

(those with a small z dimension compared to the in-plane x and y dimensions) and 

whose loads act only in the x-y plane can be considered to be under plane stress. 

Thus, a state of plane stress exists in a thin object loaded in the plane of its largest 

dimensions. The non-zero stresses σxx, σyy, and σxy lie in the x-y plane and do not 

vary in the z direction. 

  

The option (ii) i.e. the plane stress condition has been followed in the present study. 

Thus 

0  ;0  ;0  yzzxzz                (2.10)

  

At this condition, the equilibrium equation (2.1) having no body force reduces to  
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The stresses for a two dimensional element at plane stress condition are shown in 

Fig. 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Stress components on a plane 

 

The two equilibrium equations (2.11) contain three unknown stress components. 

Thus, one more equation is required to obtain the solution of three unknowns. The 

third equation is the mathematical formulation of the condition for compatibility, 

which can be obtained from the strain displacement relations. For two dimensional 

cases, these relations are: 
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Differentiating the first equation of (2.12) twice with respective to y, the second 

twice with respect to x and the third once with respect to x and once with respect to y, 

the expression for condition of compatibility in term of strain then becomes as 

follows: 

yxxy

xyyyxx













 
2

2

2

2

2

                        (2.13) 

 

But there is required one more equation in terms of stresses; which can be obtained 

using stiffness matrix in Eq. (2.13). For orthotropic material, while the stiffness 

matrix is given by Eq (2.8), the stress-strain relations in the case of plane stress can 

be reduced to: 
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It can be noted that the symbols of elastic constants (c) are replaced conveniently by 

the symbols K’s for the case of plane stress condition so that they can be identified 

easily, where  
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From the elastic constant K12 of Eq. (2.15) the reciprocal relations can be reduced as:  
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Making use of Eqs. (2.13), (2.14), (2.15) and (2.16), the differential equation for 

compatibility condition in terms of stresses can be as follows: 
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Now Eq.(2.11) and (2.17) are to be solved to obtain elastic fields satisfying the 

boundary conditions.  

 

2.5 Usual Method of Solution 

 
The analytical solution of three simultaneous partial differential equations given by 

Eq (2.11) and (2.17) is fairly impossible as per existing mathematical methods. 

However, these equations may be solved numerically. The numerical solution 

procedure is even complicated and cumbersome for this type of equations. Moreover, 

it gives only approximate results. As such it continues to remain a challenging job for 

the researchers to obtain the solution of elastic fields analytically for a composite 

structural element under mixed mode boundary conditions using traditional 
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formulation. In this study, attention is paid to the theoretical enhancement of suitable 

and reliable formulation for the solution for elastic fields of orthotropic as well as 

isotropic composite panels under mixed mode of boundary conditions..    

 

By assuming intermediate functions it is possible to reduce the number of unknowns. 

It is noticed that the number of partial differential equations (Eq. 2.11 and 2.17) and 

the unknown terms can be reduced to two when the stress components of these 

equations are replaced by displacement components. Using equations (2.12), (2.14) 

and (2.15) it is possible to get three expressions for three stresses in terms of two 

displacement components as follows: 
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Substituting Eq. (2.16) and (2.18) in to equilibrium equations (2.11) the following 

two elliptical partial differential equations are obtained.  
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2.6  Stress Function Approach 

 

Stress function is being used for long time in the analytical approach, since it 

was introduced by George Biddell Airy, a British astrologer and mathematician, in 

1862. Airy’s stress function Φ(x,y) is defined in terms of stresses as a function of x 

and y for which following conditions are met [23-24]: 
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Stress function satisfies the equilibrium equations and compatibility conditions. After 

applying the above relations of stresses in terms of Φ(x,y) in Eq. (2.17) following 

expression is obtained. 
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This expression is the bi-harmonic partial differential equation for Airy’s stress 

function. Now Eq. (2.21) is to be solved satisfying the boundary conditions to obtain 

stress components using Eq. (2.20) and then  Hooke’s law as well as strain 

displacement relations are used to obtain the displacement components. 

  

For orthotropic case [Fig. 2.3] the young’s moduli Ex and Ey may be replaced by E1 

and E2 where they are used to denote the Young’s modulus in the fibre direction and 

in perpendicular to the fibre direction respectively. Further G
 
xy is replaced by G12 to 

denote the shear modulus for on-axis orientation.   

 
Fig. 2.3 Stress components on a composite plane  

 

 

In such case the bi-harmonic governing differential equation orthotropic composites 

on the basis of stress function Φ(x,y) i.e. Eq. (2.21) becomes:   
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For an isotropic elastic materials under the condition of plane stress Ex= Ey = E, 

  yxxy  and 
 


12

E
GGxy  .  Substituting these relations in Eq. (2.21) 

the mathematical model for the isotropic condition is found as: 
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Eqs. (2.22)  and (2.23) developed basing on Airy’s stress function can handle 

elastic problems of orthotropic and isotropic materials, whose boundary 

conditions are in terms of stress or load only. Thus attention is obviously 

necessary towards the solution of the two elliptical partial differential equations for 

those problems where the boundary restrains are to be satisfied. Again it is not even 

easy task to obtain the values of displacement components by the solution of 

equations (2.19). Consequently, further simplification of the solution method is the 

necessity. 

 

2.7  Displacement Potential Formulation 

 

Since it is difficult to solve the equations (2.19), a single function  yx,  is taken 

into consideration [16] [22], which has to satisfy a single partial differential equation 

of equilibrium, somewhat similar in concept to that of Eq.(2.21). It is named as 

displacement potential function and defined as a function  yx,  of space variables 

x and y, where the displacement components are expressed as follows: 

2

2

3

2

22

2

1
yyxx

ux






















            (2.24a) 

 

2

2

6

2

52

2

4
yyxx

u y






















            (2.24b) 

 



22 
 

Here, s'  are unknown material constants.                                  

 

Using the expressions of Eq. (2.24) in Eq (2.19a) following equation is obtained. 
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The material constants α’s are chosen in such a way that the equation (2.25) is 

automatically satisfied under all circumstances. This will happen when all of its 

coefficients are independently zero. In that situation, 
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Again from the second equation of (2.19) and Eq (2.24 )  it is found that 
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Now using Eqs (2.26) and (2.27) it is found that 
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For non-zero values of 2 ,   
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          (2.28) 

 

The above fourth order differential equation (2.28) is only one governing equation 

for the solution of the displacement potential function . Once the displacement 

potential function   is known, the components of displacement can be readily found 

from Eq. (2.24). Thereafter, using the stress displacement relations of Eq. (2.18) can 

be used for obtaining stress components.  

 

Assuming the value of 2 unity, and taking the values of 1, 3, 4, 5 and 6  from 

Eq.(2.26),  one can obtain the components of displacement and stress using Eqs. 

(2.24) and (2.18) respectively as follows: 
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2.7.1   Displacement Potential Formulation for Orthotropic Materials 

 
Case - A : θ = 0

o 
(Fibers are parallel to the direction of loading) 

 
For orthotropic materials with fibre orientation θ = 0

o
 the young’s moduli Ex and Ey 

would be replaced by E1 and E2. Further G
 
xy is replaced by G12 to denote the shear 

modulus for on-axis orientation.  In such case the governing differential equation 

(2.28) for the solution of two dimensional orthotropic composite structures becomes:   
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Then the components of displacement and stress are: 
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where  2

2

12112211211 EEGEEZ       

 

 
Case - B : θ = 90

o 
(Fibers are perpendicular to the direction of loading) 

 

For orthotropic materials with fibre orientation θ = 90
o
 the young’s moduli Ex and Ey 

would be replaced by E2 and E1. Further µ
 
xy and Gxy are replaced by µ21 and G12 

(Since, G12 = G21) to denote the poisons ratio and shear modulus for on-axis 

orientation.  In such case the governing differential equation for the solution of two 

dimensional orthotropic composite structures becomes:   

  02
4

4

12122

4

1212124

4

122 














y
GE

yx
GEE

x
GE





                (2.32) 

Then the components of displacement and stress are: 
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2.7.2    Displacement Potential Formulation for Isotropic Materials 

   
 

For an isotropic elastic solid under the condition of plane stress Ex= Ey = E, 

  yxxy  and 
 


12

E
GGxy  . Then the values of α’s of Eq. (2.24) are also 

obtained as follows: 
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Then the stress-displacement relations for the plane stress problems are obtained 

from the Hook’s law as follows: 
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When the displacement components in Eq. (2.19) are replaced by Eq. (2.24) having 

values of  as in Eq. (2.32), the single governing equation of equilibrium in partial 

differential form being satisfied by (x, y) is found for isotropic materials as follows: 
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From Eqs. (2.18), (2.33), and (2.34), the expressions of displacement and stress 

components in terms of function (x, y) are obtained as follows: 
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2.8   Consideration of Boundary Conditions 
 
 

In practical situation, along the edge or boundary of a structure, there are two 

parameters to be known, i.e. (i) displacements and (ii) loading or stress. Both the 

displacements and stresses are identified by their respective components as follows: 

 

a. Normal displacement  

b.   Tangential displacement  

c.   Normal stress  

 d.  Tangential stress  

 

The solution of the governing equation requires specification of normal and 

tangential conditions. At any point on the boundary, two components out of four are 

known at a time. Thus there are six possible types of  boundary conditions; which 

are, 

 

i.    Normal displacement and Tangential displacement  

ii.   Normal displacement and Normal stress  

iii.  Normal displacement and Tangential stress  
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iv.  Tangential displacement and Normal stress  

v.   Tangential displacement and Tangential stress  

vi.  Normal stress and Tangential stress  

 

While both the components are normal or tangential, the boundary conditions do not 

practically exist. As such boundary conditions of (ii) and (v) are no longer required 

to be considered and the remaining four boundary conditions would be considered 

for solving the physical problems of elastic body. If the shape of the boundary 

surface is rectangular, the structure may be oriented so that its edges are parallel to 

the co-ordinate axes. In that case, the normal and the tangential components of 

displacement and stress at the boundary are the corresponding coordinate 

components inside the structure. Out of the above mentioned four possible 

boundaries, only the number (vi) is suitable for Airy’s stress function, whereas all 

four boundary conditions can be dealt with displacement potential function (ψ).   
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CHAPTER 3 

 

CRACKED PANEL UNDER AXIAL STIFFENERS 

SUBJECTED TO AXIAL TENSION 

 

The main focus of this chapter is to find the stress and displacement fields of a 

boundary value problem of elasticity using Potential function approach. In this 

chapter, a stiffened panel with an edge crack is considered for the analysis. The panel 

is stiffened by axial stiffeners at its opposing longitudinal edges and is loaded axially 

by uniform tension. The effect of crack length and the panel aspect ratio on the stress 

field are also discussed in this chapter.  

 

3.1 Problem Articulation 

 

A metallic stiffened panel with an edge crack emanating from the upper surface 

subjected to uniform tensile loading 𝜎𝑜  at both lateral ends is considered. The 

analytical model of the panel with a rectangular frame of reference x-y is shown in 

Fig. 4.2a. The geometrical properties of the panel are: length 2b, height a and crack 

length h. Since the structure is symmetric with reference to the y-axis, half of the 

panel may be considered for the analysis, as shown in Fig. 4.2b, i.e., the right half of 

the panel with the crack was analyzed due to symmetry. Since the thickness of such 

structures is very small compared to its other dimensions, the plane stress condition 

is adopted to model the problem for the determination of the corresponding 

displacement and stress fields. There will be no axial displacement along the 

ligament of the full panel due to the symmetry, but the crack surface is free from 

loading and restraints. No axial displacements will be allowed along the ligament 

(x=0) over the length 0 ≤ y ≤ (a-h), but the lateral displacements are free to assume 

any value. 

 



31 
 

 

Fig 3.1: 3-D model of the full panel. 
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Fig 3.2: Geometry and loading of a stiffened cracked panel: (a) Full model of the panel 

(b) symmetric model of the panel. 
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3.2 Boundary Conditions 

 

(i) Stiffened Edge, AB: 

Since it is a longitudinal stiffener, there is no axial displacement and 

lateral stress. Thus, 

0),( axux  and 0),( axyy  [ 0 ≤ x ≤ b] 

(ii) Stiffened Edge, CD: 

There is no axial displacement and lateral stress. Thus, 

0)0,( xux  and 0)0,( xyy  [ 0 ≤ x ≤ b] 

(iii) Ligament, EC: 

Due to symmetry of the full model of the panel, axial displacement and 

shear stresses along this section are assumed to be zero.  

0),0( yux    [0 ≤ y ≤ (a-h)] and 0),0( yxy  [ 0 ≤ y ≤( a-h)] 

Crack surface, AE: 

Since the crack surface is free from loading and restraints, there will be 

no boundary constraints and shear stress.  

0),0( yxy  and 0),0( yxx  [(a-h) ≤ y ≤ a] 

(iv) Loading Edge, BD: 

The axial tension of the panel is realized by assigning a uniform value to 

the axial stress component. The boundary will also be free from shearing 

stress. Thus,  

oxx yb  ),(  and 0),( ybxy  [ 0 ≤ y ≤ a] 

 

3.3 Solution Procedure  

 

Displacement potential approach can easily be applied on to problems where the 

boundary condition at each ends remain the same. But, in this study, for the 

symmetric section of the panel containing crack two sets of boundary conditions are 

required, as shown in Fig 3.1. At the crack surface, shear stress and axial stress are 

zero, whereas at ligament section shear stress and axial displacement are zero. That 
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means, at the same surface there are two possible sets of boundary conditions 

available. To solve the problem using displacement potential approach, one set of 

boundary condition have to be chosen. In this study, shear stress and axial 

displacement have considered as boundary conditions at the left boundary of the 

model. Though shear stress is zero throughout the left boundary but at certain length 

axial displacement is zero and at the remaining length it is not zero. That’s why this 

method needs the value of axial displacement at crack surface to solve it properly i.e. 

it has to depend on other numerical methods to get those data of axial displacement 

at crack surface. In such case, Finite Difference Method has been considered. FDM 

formulation has been used to get a set of value of axial displacement at the crack 

surface. That sets of data can’t be directly used in displacement potential 

formulation. An equation, that will represent the trend of that set of data, can be used 

as boundary condition in Displacement Potential Formulation. In true sense, it may 

be semi-analytical method, the way we formulated the ψ-solution, depending on that 

we considered it as an analytical method. Besides that FDM scheme had been 

developed based on the displacement potential approach. To get such equation, one 

of the curve fitted method have to be followed. To make these computations easier, 

Curve Fitting Tool box in MATLAB has been used. Fourier series have been chosen as 

a type of fit. In this type of fit, value of correlation coefficient R
2
 is almost equal to 1 

which shows the strong strength of the relationship between the dependent variable 

i.e. axial displacement and the independent variable i.e. position on crack surface. 

After performing the curve fitted analysis, the following relation has been found: 





3

1

3

1

0 )**sin()**cos(),0(
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i

i

ix ywibywiaayu

                                                                    

 

Where ia  and ib are constants and i = 1~3. The value of these constants is readily obtained 

from Curve Fit Editor Dialogue box. This way the boundary condition has been set at 

the left end of model. Now, solution procedure of Displacement Potential Approach 

is discussed in the following paragraph. 

 

The concept of structural analysis consists of four essential matters like any 

engineering system, such as, proper understanding of physical phenomena, 

derivation of governing equation, proper application of boundary conditions, and 

(3.1) 
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development of routines for the solution and finally the interpretation of solutions. 

To solve the fourth order elliptical partial differential equation, attempt is made here, 

i.e., Eqs.(2.30 and 2.31) for orthotropic and Eq. (2.36) for isotropic materials through 

utilization of different trial functions for  (x, y). Since the Airy’s stress function of 

similar pattern has been solved using polynomials for quite long time, similar type of 

functions are considered here at first as trial solutions. It is observed that pure 

polynomials do not actually help much in this regard. Rather it is seen that various 

combinations of trigonometric and hyperbolic functions offer suitable choices for 

analytical functions. If these functions can be expressed as an infinite series, then 

construction of solutions of differential equations becomes more accurate. In the 

light of the ubiquitous problems which display aspects of periodic and a 

discontinuous nature, those infinite series known as Fourier series attain a place of 

special importance. 

 

The Fourier series is probably the most commonly used of all the series for the 

solution of physical problems. It is a trigonometric series which can be used for the 

expansion of an arbitrary function. The usefulness of the Fourier series is due to the 

fact that certain functions which can not be expanded in power series form can still 

be represented by Fourier series. The reason for this is that the coefficients of the 

power series contain derivatives of the function; hence these derivatives must exist 

uniquely in order to obtain the power series expansion. Many functions which are not 

differentiable, including certain types of discontinuous function, can be expanded in 

Fourier series. Thus a much greater degree of generality is attained by taking the 

function as Fourier series. 

 

Taking all this in mind trial and error operations are done to reach to the possible 

best displacement potential function to be assumed. In this assumption process, 

boundary conditions of the two ends should be satisfied automatically. Then the 

solution can be progressed further to make the boundary conditions of remaining two 

ends of the beam satisfied. 
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3.4  Mathematical Formulation 

 

For the plane problems of isotropic material, the governing equilibrium equation 

based on the displacement potential function ψ(x,y)  is obtained from Eq. (2.36) as 

follows:  

02
4

4

22

4

4

4
















yyxx


                                 (3.2) 

The expressions of displacement and stress components in terms of function (x, y) 

are also obtained from Eqs. (2.37) as follows: 
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In the present analytical approach, the potential function (x, y) is first assumed in a 

way so that the physical conditions of the two opposing stiffened edges are 

automatically satisfied. At the same time the solution has to satisfy the governing 

differential equation of equilibrium. Following a series of long trial and error 

processes, the solution of the governing equation (3.2), that is the potential function 

is thus approximated as follows: 

yxXyx
m

m  cos)(),(
1






                        (3.4) 

where, )(xfX m  , )/( am  and m = 1, 2, 3, …….. .  
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Derivatives of equation (3.4) with respect to x  and y are  
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Substituting the expressions of above derivatives in Eq. (3.2) following equation is 

obtained. 
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or, Xm
////

  2α
2
Xm

//
 + α

4
 Xm = 0                                                                            (3.5)      

The solution of the above 4
th
 order ordinary differential equation with constant 

coefficients [Eq. (3.5)] can normally be approximated as follows:  

xr

m

xr

m

xr

m

xr

mm xeDeCxeBeAX 4321                (3.6)

     

But the ordinary differential equation (3.5) has the complementary function of repeated 

roots. Thus   21 rr  and  43 rr   and the general solution of Eq. (3.5) can be 

written as   
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where mA , mB , mC  and mD  are arbitrary constants. 

 

Differentiating equation (3.6) following expressions are found 
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Now substituting the derivatives of  and mX  in the expressions for displacement and 

stresses (3.3), following expressions are found. 
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Now, the axial loading on the right edge of the panel can be taken as Fourier series in 

the following manner: 
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To satisfy the boundary condition and loading distribution, Fourier sine series have 

been considered for the analysis.  
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Due to symmetry, the axial displacement at the left edge from 0 to (a-h) is zero. But 

at the crack surface, the distribution of the axial displacement can be expressed as the 

Fourier series in the following manner: 
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The curve fitted equation as Fourier series up to 7th term have been considered. This 

is because of up to 7
th
 term we always achieve R

2
 value above 0.99. If we increase 

the term it will make the mathematical calculation more complicated. 

Here 

 
 



a

ha i

i

i

im dyyywibywiaa
a

I )sin())**sin()**cos((
2 3

1

3

1

0   

After performing integration of the above equation, the result is obtained as below: 
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Using boundary condition 0),0( yxy  at the edge of 0x , it is found that
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The simultaneous equations (3.11), (3.12), (3.13) and (3.14) can be arranged in a 

simplified matrix form for the solution of unknown terms like Am , Bm , Cm and Dm as 

follows: 
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Solution of the above matrix Eq. (3.14) yields the unknown constants Am , Bm , Cm 

and Dm . Once the value of the unknowns are determined, they are directly 

substituted in Eqs.[3.8(a)-3.8(e)] to obtain the explicit expressions for the different 
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parameters of interest, namely, the two displacement and the three stress components 

at various points. The corresponding code written in C programming language is 

given in Appendix-A. 

 

3.5 Analysis of Elastic Field 

 

The solutions of displacement and stress components using displacement potential 

approach are obtained for steel panel (Poisson ratio µ = 0.3 and Modulus of 

Elasticity E = 209 GPa), aspect ratio b/a = 1.0, crack length ratio h/a = 0.2 and the 

uniform loading parameter, σo = 40 N/mm. The results of the stress field is presented 

in a sequence of axial displacement (ux), lateral displacement (uy), bending stress 

(σxx), normal stress (σyy) and shearing stress (σxy). In order to make the results non-

dimensional, the displacements are expressed as the ratio of actual displacement to 

the actual dimension of the bar, and the stresses are expressed as the ratio of the 

actual stress to the applied loading parameter. Finally the effects of panel aspect ratio 

and crack length ratio on the elastic fields are analyzed. 

 

i. Displacement Field 

 

In Fig. 3.3 the distribution of the normalized distribution component ux/b at different 

sections of panel is illustrated. The distribution of this displacement component is 

parabolic except near the region of the crack edge. Due to symmetry no axial 

displacement happened at mid section along the ligament (at x=0) but at crack 

surface since the panel is free, axial displacement happens and it is almost parabolic. 

Below the region x/b ≤0.4 it is not symmetric but bottom skewed because of the 

presence of the crack. As the axial load is applied on the right lateral edge, the 

displacement will be maximum at section x = 0.5, and it will gradually decrease as 

moving towards the left supporting edge. Zero value of ux at the stiffened edges 

confirms the satisfaction of boundary condition of those ends.  

 

Figure 3.4 presents the normalized displacement component uy/a as a function of y/a 

at different sections of the panel. The displacement component varies almost 
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symmetrically from one stiffener to another with a zero value at y/a =0.5 for x/b 

≥0.1. But at x/b = 0 due to presence of crack some fluctuation of displacement 

happens at y/a = 0.8 that’s why the distribution is anti symmetric. It is observed that 

the displacement component uy varies from a positive value at the lower stiffener to a 

negative value at the upper stiffener and the opposite happens at the other region. 

 

Figure 3.5 shows the deformed shape of the panel under uniform loading at the left 

and right edges with the magnification of 2000 times of displacement. Since the 

panel is subjected to axial loading it must be obvious that it is elongated with the 

reduction of the width due to the effect of Poisson’s ratio. This expectation is found 

to be true over the range 0 ≤ x/b ≤ 0.9. But over the region x/b ≥ 0.9, the panel is 

expanded in the y-direction, which is in contrast to our general intuition and may be 

attributed to the physical conditions of the stiffened under tension. 

 

ii. Stress Field 

 

Fig. 3.6 reveals the distribution of the normalized stress component 𝜎𝑥𝑥 /𝜎𝑜  is also 

found in good agreement with the physical characteristic of the stiffened panel. It is 

maximum at mid section x/b = 0.5. But due to presence of crack a sudden fluctuation 

of stress happens at the crack tip (x = 0 and y = 0.8a) of the panel. Crack tip 

concentrates stresses and strains that approaches singularity. According to linear 

elastic fracture mechanics, the stress near the crack tip merges to infinity. In reality, a 

sudden fluctuation of stress happen but it has some values not infinity. The 

fluctuation decays as moving from the crack tip.  It is observed that the stress 

distribution is symmetric around the mid-longitudinal section y/a = 0.5 for the region 

x/b = 0.5. But for x/b <0.5 it is not symmetric. This is because of the effect of the 

crack. The stress at the stiffened edge is completely zero. As appears from the 

distribution, the present isotropic panel is always in tension in the x-direction as the 

distribution is everywhere positive throughout the panel. At crack surface the stress 

is nearly zero because it is free. But at crack tip the stress becomes almost 0.6 times 

of the applied load.  
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The distribution of the normalized stress 𝜎𝑦𝑦 /𝜎𝑜 at various sections of the panel is 

shown in Fig. 3.7. The lateral stress is zero at the two stiffened edges that satisfies 

our boundary condition. There is a sudden fluctuation of lateral stress at the crack tip 

due to stress concentration. The maximum value of the lateral stress at crack tip is 

almost 0.3 times of the applied load. The overall distribution of the stress component 

reveals that the major portion of the panel is under compression, as the stress 

component is negative for sections 0 ≤ x/b ≤ 0.50.  

 

Fig. 3.8 reveals the distribution of normalized shearing stress 𝜎𝑥𝑦 /𝜎𝑜  at various 

section of the panel. It is observed that there is very little effect of the crack on shear 

stress throughout the whole panel. The shearing stress at the left boundary is found to 

be zero which verifies the physical boundary conditions of the problem. The shearing 

stress varies from a positive value at y =0 to a negative value at y =1.0 with zero 

value at the mid-longitudinal section y/a = 0.5 of the panel. It is noted here that 

unlike the other stress components, shearing stress has a maximum magnitude on the 

stiffened boundaries.  
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Fig 3.3: Distribution of normalized axial displacement at different sections of the 

steel panel. (h/a = 0.2, b/a = 1) 

 

Fig 3.4: Distribution of normalized lateral displacement at different sections of the 

steel panel. (h/a = 0.2, b/a = 1) 
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Fig 3.5: Deformed shape of the cracked steel panel, (h/a = 0.2, b/a = 1) 

(magnification factor×2000). 

 

Fig 3.6: Distribution of normalized axial stress at different sections of the steel panel. 

(h/a = 0.2, b/a = 1) 
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Fig 3.7: Distribution of normalized lateral stress at different sections of the steel 

panel. (h/a = 0.2, b/a = 1) 

 

Fig 3.8: Distribution of normalized shear stress at different sections of the steel 

panel. (h/a = 0.2, b/a = 1) 
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Distribution of normalized maximum principle stress obtained using the results of 

displacement potential approach is presented in Fig. 3.9. The relation used in this 

regard is 𝜎1 =
𝜎𝑥+𝜎𝑦

2
+   

𝜎𝑥−𝜎𝑦

2
 

2

+ 𝜎𝑥𝑦2  , where 𝜎1 is the maximum principle stress. 

No reference of the principle stress distribution for a guided deep beam could be 

found. As such the verification of present results remains to be investigated with the 

availability of any other results. However, the contour pattern of maximum principle 

stress of the current solution seems to be satisfactory in a general sense of visual 

basis. 

 

 

Fig 3.9: Normalized maximum principle stress contour of the cracked stiffened steel 

panel, ( b/a = 1, h/a = 0.2). 
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iii. Effect of Crack Length on the Stress and Displacement Fields 

  

In this section the effect of crack length (h/a = 0.0 ~0.4) on the displacement and 

stress fields of the panel is discussed. The effects are investigated for two sections 

near the crack. This is because; the effect of presence of crack is most prominent in 

the neighborhood of the cracked section. From this analysis, it is possible to 

determine the maximum crack length that can be allowed safely for a particular 

panel. 

 

Figures 3.10(a) and 3.10(b) reveals the distribution of the normalized axial stress 

with the variation of crack length at two different sections of the panel (x/b = 0.0 & 

0.1). With the increase of the crack length, the fluctuation of the stress at the crack 

tip increases. It is observed that the percentage of increase of the stress at crack tip 

increases with crack length. No fluctuation of stress happens if there is no crack 

presence in the panel. For h/a =0.4 it is almost 1.4 times of the applied load. At 

section x/b =0.1 it can be seen that the more the crack length the higher is the effect 

on the stress distribution that is almost parabolic in the case of h/a = 0.0.  

 

The distribution of the normalized lateral stress for different crack length is shown in 

Fig. 3.11(a) and 3.11(b) for two different sections of the panel. The same thing 

happens as mentioned before for normalized axial stress. But the main difference is 

that there is a negative fluctuation of lateral stress happened at crack tip that 

increases with the crack length. For h/a = 0.4 at crack tip the maximum negative and 

positive value of the stress is almost 0.7 and 0.8 times of the applied load 

respectively. The smallest value of the lateral stress is found for higher crack length. 

The graph diverts more for higher crack length from its regular pattern parabolic 

shape that is happened only for panel with no crack. Another observation is that only 

near the crack tip lateral stress is only positive but for other region it shows negative 

value at section x/b = 0.0. 

 

Since at section x/b =0.0 shear stress is zero that’s why a different section x/b = 0.5 

have been chosen with x/b = 0.1 as shown in Fig. 3.12(a) and 3.12(b). Though at 
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section x/b =0.5 it can be seen that there is very little effect on the shear stress of 

crack. But by closer looking it can be found that near the bottom stiffened edge all 

graphs for different crack length merge with each other, but upper stiffened edge 

they all shows different value and for h/a = 0.4 it is lower. The shear stress 

distribution is smooth for no crack but the smoothness disappears with the increase 

of the crack length. The maximum fluctuation happened for highest crack length. 

 

Figs. 3.13(a) and 3.13(b) show the distribution of the normalized axial displacement 

for different crack length at two different sections. The maximum value of the axial 

displacement is obtained for higher crack length that can be easily predicted by only 

viewing the results of the stress that have already been discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

 

 

 

Fig 3.10: Effect of crack length on the axial stress component at (a) x/b = 0.0 and (b) 

x/b = 0.1, (b/a = 1). 

(a) 

(b) 
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Fig 3.11: Effect of crack length on the lateral stress component at (a) x/b = 0.0 and 

(b) x/b = 0.1, (b/a = 1). 

 

(a) 

(b) 
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Fig 3.12: Effect of crack length on the shear stress component at (a) x/b = 0.1 and (b) 

x/b = 0.5, (b/a = 1). 

 

(a) 

(b) 
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Fig 3.13: Effect of crack length on the axial displacement component at (a) x/b = 0.0 

and (b) x/b = 0.1, (b/a = 1). 

 

(a) 

(b) 
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iv. Effect of Panel Aspect Ratio on the Stress and Displacement Fields 

 

The effect of the aspect ratio (b/a) on the displacement and stress components are 

discussed in Figs 3.14 to 3.17. Figure 3.14 shows the effect of the aspect ratio on the 

solution of normal stress. It is observed that stress increases with the decrease of the 

panel length. According to the Saint Venant’s principle, the effect of boundary 

condition is insignificant for long structure that means with the increase of length of 

the panel the effect of load on the crack surface decreases. At section x/b = 0.0 the 

fluctuation of the stress at the crack tip increases for the same reason as shown in 

Fig. 3.14(a). For all aspect ratio of the panel considered, the midsection is found to 

be under tension since the axial tension is considered. However, the magnitude of the 

stress is maximum for the smallest panel (b/a = 0.5) and minimum for the largest one 

(b/a = 2.0).  

 

Figure 3.15 depicts that similar trends will happen for the lateral stress component. 

But for smallest aspect ratio b/a = 0.5 a sudden change is happened at the section x/b 

= 0.5 in Fig. 3.15a. As the length of the panel is increased, the mid-section of the 

panels experiences compressive stress of the lower magnitude in the traverse 

direction. This is true for only b/a = 1.0 ~ 2.0.But for aspect ratio b/a =0.5 the lowest 

absolute value of the compressive stress is found. Another important point is that the 

compressive stress does not increase though it increases for the regions 0 ≤ y/a ≤ 0.2 

and 0.8 ≤ y/a ≤ 1.0. Due to its small length of aspect ratio b/a =0.5, upper and lower 

region of the panel is under higher compression at section x/b = 0.0 compared to the 

middle region for the same section. 

 

The anti-symmetric variation of the shearing stress component at the section, x/b = 

0.1 and 0.5, is presented as a function of the bar aspect ratio in Fig. 3.16a and 3.16b. 

The effect of crack is only visible for section x/b = 0.1.  Due to presence of 

discontinuity there happens a sudden fluctuation near the crack tip. But the value of 

peak point increases with the decrease of aspect ratio. But for section x/b = 0.5 the 

magnitude of shearing stress decreases as the aspect ratio b/a increases. But for lower 

aspect ratio b/a = 0.5, the distribution is different from the distribution for higher 

aspect ratio b/a ≥ 1.0. 
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The displacement ux are found to decrease as the length of the panel is increased as 

can be noted from Figs 3.17a and 3.17b. In Fig. 3.17a, since the crack region is free 

that’s why a distribution of displacement is found at section x/b =0.0 from 0.8 ≤ y/a ≤ 

1.0.It is noted that the effect of load on the crack decreases with the increase of the 

panel length. That’s why maximum displacement is found for aspect ratio b/a = 0.5. 
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Fig 3.14: Effect of panel aspect ratio on the axial stress component at (a) x/b = 0.0 

and (b) x/b = 0.5, (h/a = 0.2) 

(a) 

(b) 
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Fig 3.15: Effect of panel aspect ratio on the lateral stress component at (a) x/b = 0.0 

and (b) x/b = 0.5, (h/a = 0.2). 

 

(a) 

(b) 
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Fig 3.16: Effect of panel aspect ratio on the shear stress component at (a) x/b = 0.1 

and (b) x/b = 0.5, (h/a = 0.2). 

 

(a) 

(b) 
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Fig 3.17: Effect of panel aspect ratio on the axial displacement component at (a) x/b 

= 0.0 and (b) x/b = 0.5, (h/a = 0.2). 

 

(a) 

(b) 
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CHAPTER 4 

 

 CRACKED PANEL UNDER AXIAL STIFFENERS 

SUBJECTED TO BENDING 

 
The main focus of this chapter is to find the stress and displacement fields of a 

problem using potential function approach. In this chapter, a stiffened panel with an 

edge crack is considered for the analysis under the influence of bending moment. 

The panel is stiffened by axial stiffeners at its opposing longitudinal edges and is 

loaded by a bending moment at the opposing lateral ends. The effect of crack length 

and aspect ratio on the stress field are also discussed at the end of this chapter. .   

 

4.1 Problem Articulation 

 

A metallic stiffened panel with an edge crack emanating from the upper surface 

subjected to bending load with maximum intensity o at both lateral ends is 

considered. The model of the panel with a rectangular frame of reference x-y is 

shown in Fig. 4.2a. The geometrical properties of the panel are: length 2b, height a 

and crack length h. Since the structure is symmetric with reference mid of the panel 

along y-axis, half of the panel may be considered for the analysis as shown in Fig. 

4.2b, i.e., the right half of the panel with the crack was analyzed due to symmetry. 

Since the thickness of such structures is very small compared to its other dimensions, 

the plane stress condition is adopted to model the problem for the determination of 

the corresponding displacement and stress fields. There will be no axial displacement 

along ligament of the full panel due to the symmetry but the crack surface is free 

from loading and restraints. No axial displacements will be allowed along the 

ligament (x=0) over the length 0 ≤ y ≤ (a-h), but the lateral displacements are free to 

assume any value. 
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Fig 4.1: 3-D model of the full panel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.2: Geometry and loading of a stiffened cracked panel: (a) Full model of the 

panel (b) symmetric model of the panel. 
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4.2 Boundary Conditions 

(i) Stiffened Edge, AB: 

Since it is a longitudinal stiffener, there is no axial displacement and 

lateral stress. Thus, 

0),( axux  and 0),( axyy  [ 0 ≤ x ≤ b] 

(ii) Stiffened End, CD: 

There is no axial displacement and lateral stress. Thus, 

0)0,( xux  and 0)0,( xyy  [ 0 ≤ x ≤ b] 

(iii) Ligament, EC: 

Due to symmetry of the full model of the panel, axial displacement and 

shear stresses along this section are assumed to be zero.  

0),0( yux    [ 0 ≤ y ≤ (a-h)] and 0),0( yxy  [ 0 ≤ y ≤(a-h)] 

Crack surface, AE: 

Since the crack surface is free from loading and restraints, there will be no 

boundary constraints and shear stress. A Fourier series is assumed at 

crack surface for the axial displacement distribution. 

0),0( yxy  [(a-h) ≤ y ≤ a] 





3

1

3

1
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where ia  and  ib are constants  and i = 1 to 3. 

(iv) Loading Edge, BD: 

The boundary will also be free from shearing stress.. But flexural stresses 

are there in the regions of the applied bending load, which is the function 

of load intensity. Thus, 
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4.3  Solution Procedure 

For the plane problems of isotropic material, the governing equilibrium equation 

based on the displacement potential function ψ(x,y)  is obtained from Eq. (2.36) as 

follows:  
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The expressions of displacement and stress components in terms of function (x, y) 

are also obtained from Eqs. (2.37) as follows: 
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In the present analytical approach, the potential function (x, y) is first assumed in a 

way so that the physical conditions of the two opposing stiffened edges are 

automatically satisfied. At the same time the solution has to satisfy the governing 

differential equation of equilibrium. Following a series of long trial and error 

processes, the solution of the governing equation (4.1), that is the potential function 

is thus approximated as follows: 

yxXyx
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                      (4.3) 

where, )(xfX m  , )/( am  and m = 1, 2, 3, …….. .  

Derivatives of equation (4.3) with respect to x  and y are  
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Substituting the expressions of above derivatives in Eq. (4.1) following equation is 

obtained. 
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The solution of the above 4
th
 order ordinary differential equation with constant 

coefficients [Eq. (4.4)] can normally be approximated as follows:  

xr
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mm xeDeCxeBeAX 4321               (4.5)

     

But the ordinary differential equation (4.4) has the complementary function of 

repeated roots. Thus   21 rr  and  43 rr   and the general solution of Eq. 

(4.4) can be written as   
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where mA , mB , mC  and mD  are arbitrary constants. 

Differentiating equation (4.6) following expressions are found 
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Now substituting the derivatives of  and mX  in the expressions for displacement 

and stresses (4.2), following expressions are found. 
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Now, the axial loading on the right edge of the panel can be taken as Fourier series in 

the following manner: 







1

sin)2(),(
m

m

o

xx

xx yEay
a

yb 


                                                                 (4.8) 

To satisfy both the boundary condition and the loading distribution, Fourier sine 

series have been considered for the analysis.  
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Due to symmetry, the axial displacement at the left edge from 0 to (a-h) is zero. But 

at the cracked surface, the distribution of the axial displacement can be expressed as 

the Fourier series in the following manner: 
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The curve fitted equation as Fourier series up to 7th term have been considered. This 

is because of up to 7
th
 term we always achieve R

2
 value above 0.99. If we increase 

the term it will make the mathematical calculation more complicated. 

Here 
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After performing integration on the above equation, the result is given below: 
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Using boundary condition 0),0( yxy  at the edge of 0x , it is found that
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Using boundary condition 
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The simultaneous equations (4.10), (4.11), (4.12) and (4.13) can be realized in a 

simplified matrix form for the solution of unknown terms like Am , Bm , Cm and Dm as 

follows: 
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Solution of the above matrix Eq. (4.14) yields the unknown constants Am , Bm , Cm 

and Dm . Once the value of the unknowns are determined, they are directly 

substituted in Eqs.[4.7(a)-4.7(e)] to obtain the explicit expressions for the different 

parameters of interest, namely, the two displacement and the three stress components 

at various points. 

 

3.5 Analysis of Elastic Field 

 

The solutions of displacement and stress components using displacement potential 

approach are obtained for steel panel (Poisson ratio µ = 0.3 and Modulus of 

Elasticity E = 209 GPa), aspect ratio b/a = 1.0, crack length ratio h/a = 0.3 and the 

maximum intensity loading parameter, σo = 40 N/mm. The results is presented in a 

sequence of axial displacement (ux), lateral displacement (uy), bending stress (σxx), 

normal stress (σyy) and shearing stress (σxy). In order to make the results non-

dimensional, the displacements are expressed as the ratio of actual displacement to 

the actual dimension of the bar, and the stresses are expressed as the ratio of the 

actual stress to the applied loading parameter. Finally the effects of panel aspect ratio 

and crack length ratio on the elastic fields are analyzed. 

i. Displacement Field 
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The variation of normalized displacement component 𝑢𝑥/𝑎 with x is shown in Fig. 

4.3. As the symmetric bending loading is applied on the right edge of the panel, the 

displacement 𝑢𝑥  should be negative throughout the bottom half the panel and 

positive throughout the rest of panel. It will be higher at the loaded section which 

will decrease as we move towards the crack surface section of the panel. Due to 

symmetry no axial displacement happened at mid section of full panel (x=0) but axial 

displacement happens due to presence of crack throughout the region of y/a ≥0.7. 

That’s why axial displacement is not symmetric below the region of x/b ≤0.2. This 

phenomenon is totally reflected in Fig. 4.3. It is zero at both the stiffened edges 

which satisfies the physical characteristics of the problem. 

 

The distribution of normalized lateral components 𝑢𝑦/𝑎 with respect to y at different 

sections the panel is shown in Fig. 4.4. From figure 4.3 and 4.5, it is observed that 

contraction of column occurs in the region 0.75 ≤ y/a ≤ 1.0 while expansion occurs in 

the region of 0.0 ≤ y/a ≤ 0.25. Since tensile loading in x direction at upper half of 

panel has normally led to contraction in y direction due to the effect of Possion’s 

ratio, the lateral displacement is positive over the region of  0.5 ≤ y/a ≤ 0.75. The 

lateral displacement is also positive for the region 0.25 ≤ y/a ≤ 0.5 due to the 

compressive loading at lower half of the panel. The effect of crack on lateral 

displacement is only visible below the region of x/b ≤0.2. 

 

Fig 4.5 shows the deformed shape of the bar under bending loading at the left and 

right edges with the magnification of 5000 times of displacement. The displacement 

at the crack surface is found insignificant as compared to the axial loading condition 

that was discussed at the previous chapter. 

 

ii. Stress Field 

 

Fig. 4.6 and 4.7 illustrates the distribution of normalized normal stress components 

𝜎𝑥𝑥 /𝜎𝑜  and 𝜎𝑦𝑦 /𝜎𝑜   at different sections of the panel. As the normal stress 

component 𝜎𝑥𝑥  and 𝜎𝑦𝑦  are functions of the displacement components 𝑢𝑥  and 𝑢𝑦  , 
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both of the stresses will decrease towards the supporting edge because the 

displacement components  𝑢𝑥  and 𝑢𝑦  decrease towards the supporting edge as shown 

in Figs. 4.6 and  4.7. A sudden fluctuation of stress happens near the crack. But the 

influence of crack is noticeable over the region 0.0 ≤ x/b ≤ 0.2. The stress component 

𝜎𝑥𝑥  is almost 0.045 times of the applied load. This fluctuation is much lower than 

considering axial loading at the right end of the beam. It reveals that bending loading 

has lower effect on crack tip of this panel. As appears from the distribution, the 

above half of the present isotropic panel is always in tension in the x-direction 

whereas the lower half is subjected to compression. The stress at the stiffened edge is 

completely zero which is good agreement with boundary condition. 

 

Fig. 4.7 shows that bending load makes the lateral stress component  𝜎𝑦𝑦   lower 

significant over the region of x/b <0.5 because the largest value of  𝜎𝑦𝑦  is only 0.06 

times of the maximum intensity of the applied load. But at crick tip it is almost 0.025 

times of the applied load. 

 

Fig. 4.8 presents the normalized shear stress component 𝜎𝑥𝑦 /𝜎𝑜   at different sections 

of the panel. At the left edge the shear stress is zero, which is in good agreement with 

the physical characteristics of the problem. The maximum shear stress is found at 

sections x/b = 0.5.It concludes from the Fig. 4.8 that the shear stress is maximum 

near the right edge and near the stiffened edges. 
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Fig 4.3: Distribution of normalized axial displacement at different sections of the 

steel panel.  ( b/a =1, h/a =0.3) 

 

Fig 4.4: Distribution of normalized lateral displacement at different sections of the 

steel panel. ( b/a =1, h/a =0.3) 
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Fig 4.5: Deformed shape of the cracked steel panel, ( b/a =1, h/a =0.3) 

(magnification factor×5000). 

 

Fig 4.6: Distribution of normalized axial stress at different sections of the steel panel. 

( b/a =1, h/a =0.3) 
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Fig 4.7: Distribution of normalized lateral stress at different sections of the steel 

panel. ( b/a = 1, h/a = 0.3) 

 

Fig 4.8: Distribution of normalized shear stress at different sections of the steel 

panel. ( b/a = 1, h/a = 0.3) 
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Distribution of normalized maximum principle stress obtained using the results of 

displacement potential approach is presented in Fig. 4.9. The relation used in this 

regard is 𝜎1 =
𝜎𝑥+𝜎𝑦

2
+   

𝜎𝑥−𝜎𝑦

2
 

2

+ 𝜎𝑥𝑦2  , where 𝜎1 is the maximum principle stress. 

No reference of the principle stress distribution for a guided deep beam could be 

found. As such the verification of present results remains to be investigated with the 

availability of any other results. However, the contour pattern of maximum principle 

stress of the current solution seems to be satisfactory in a general sense of visual 

basis. 

 

Fig 4.9: Normalized maximum principle stress contour of cracked stiffened steel 

panel, ( b/a = 1, h/a = 0.3). 

 

iii. Effect of Crack Length on the Stress and Displacement Fields 

 

In this section the effect of crack length ratio (h/a = 0.0 ~0.4) on the isotropic panel 

is discussed. Note that the crack depth ratio is always considered to be less than 0.6 

which is quite reasonable for industrial applications [7].  
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The distribution of normalized axial stress with the variation of crack length is shown 

in Fig. 4.10 for two different sections. Normally with the increase of crack length, 

the fluctuation of the axial stress increases. This happens as our knowledge has up to 

crack length ratio of h/a = 0.3. Then fluctuation decreases that is also reflected at 

sections x/b = 0.1. This phenomenon is in contrast to our general intuition and may 

be attributed to the conditions of bending loading. No fluctuation of stress happens if 

there is no crack presence in the panel. 

 

The distribution of lateral stress for different crack length did not follow the same 

pattern that has been found in case of axial stress. It is observed from Fig. 4.11 that 

the percentage of increase of the stress at crack tip increases with crack length. For 

h/a = 0.4 at crack tip the maximum positive value of the stress is almost 0.025 times 

of the maximum intensity of load. The graph diverts more for higher crack length 

from its regular pattern parabolic shape that is happened only for panel with no 

crack. 

 

Due to zero shear stress at section x/b =0.0 a different section x/b = 0.5 have been 

chosen with x/b = 0.1 as shown in Fig. 4.12(a) and 4.12(b). Though at section x/b 

=0.5 it can be seen that there is very little effect on the shear stress of crack. But 

by\closer looking it can be found that near the bottom stiffened edge all graphs for 

different crack length merge with each other, but upper stiffened edge they all shows 

different value and for h/a = 0.4 it is lower. The shear stress distribution is smooth 

for no crack but the smoothness disappears with the increase of the crack length. The 

maximum fluctuation happens for highest crack length. 

 

Figs. 4.13(a) and 4.13(b) illustrates the distribution of the normalized axial 

displacement for different crack length at two different sections. The maximum value 

of the axial displacement is obtained for higher crack length. 
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Fig 4.10: Effect of crack length on the axial stress component at (a) x/b = 0.0 and (b) 

x/b = 0.1, (b/a = 1). 

(a) 

(b) 
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Fig 4.11: Effect of crack length on the lateral stress component at (a) x/b = 0.0 and 

(b) x/b = 0.1, (b/a = 1). 

(a) 

(b) 
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Fig 4.12: Effect of crack length on the shear stress component at (a) x/b = 0.1 and (b) 

x/b = 0.5, (b/a = 1). 

 

(a) 

(b) 
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Fig 4.13: Effect of crack length on the axial displacement component at (a) x/b = 0.0 

and (b) x/b = 0.1, (b/a = 1). 

 

(a) 

(b) 
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iv. Effect of Panel Aspect Ratio on the Stress and Displacement 

Fields 

 

Figs. 4.14, 4.15 and 4.16 portrait the distribution normalized stress components𝜎𝑥𝑥 /

𝜎𝑜 , 𝜎𝑦𝑦 /𝜎𝑜  and 𝜎𝑥𝑦 /𝜎𝑜  as a function of the aspect ratio of the isotropic panel. As 

seen from the figures, all the stress components vary inversely with the aspect ratio 

b/a, i.e. the magnitude of stress components decreases as the aspect ratio increases. 

Thus, a section whose distance is more from the applied load will have a stress of 

lower magnitude. 

 

From Fig. 4.14, it can be seen that applied load has so lower effect on crack for 

aspect ratio b/a  =1.5 that fluctuation of stress is barely noticeable. The magnitude of 

maximum stress is maximum for the smallest panel and minimum for the largest one. 

 

Similar trends happened for the lateral stress component as shown in the Fig. 4.15. 

Fig. 4.16 represents the variation of shearing stress with aspect ratio. The anti 

symmetric variation of shearing stress is found at lower aspect ratio. The fluctuation 

of shear stress is so high at crack tip for lower aspect ratio that it is very negligible 

for high aspect ratio. The variation of shear stress is almost symmetric in case of 

higher aspect ratio. 

 

Fig. 4.17 exhibits the axial displacement 𝑢𝑥  as a function of aspect ratio. This 

displacement component is influenced by the aspect ratio b/a in the same manner as 

stress components discussed in the preceding paragraph. 
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Fig 4.14: Effect of aspect ratio on the axial stress component at (a) x/b = 0.0 and (b) 

x/b = 0.5, (h/a = 0.3) 

(a) 

(b) 
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Fig 4.15: Effect of aspect ratio on the lateral stress component at (a) x/b = 0.0 and (b) 

x/b = 0.5, (h/a = 0.3). 

(a) 

(b) 
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Fig 4.16: Effect of aspect ratio on the shear stress component at (a) x/b = 0.1 and (b) 

x/b = 0.5, (h/a = 0.3). 

(a) 

(b) 
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Fig 4.17: Effect of aspect ratio on the axial displacement component at (a) x/b = 0.0 

and (b) x/b = 0.5, (h/a = 0.3). 

(a) 

(b) 
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CHAPTER 5 

 

CRACKED PANEL UNDER LATERAL STIFFENERS 

SUBJECTED TO AXIAL TENSION 

 

This chapter discusses the solution of a cracked panel stiffened by lateral stiffeners at 

its opposing longitudinal edges and is loaded axially by a uniform tension. In the 

previous two chapters, axial stiffeners were considered. The main difference between 

the two stiffeners is, lateral stiffener restraints the lateral displacement whereas axial 

stiffener restraints the axial displacement.  

 

5.1 Problem Articulation 

 

A metallic stiffened panel of isotropic material with an edge crack emanating from 

the upper surface subjected to uniform tensile loading o at both lateral ends is 

considered. The analytical model of the panel with a rectangular frame of reference 

x-y is shown in Fig. 5.2a. The geometrical properties of the panel are: length 2b, 

height a and crack length h. Since the structure is symmetric with reference to mid-

section of the panel along y-axis, half of the panel may be considered for the analysis 

as shown in Fig. 5.2b, i.e., the right half of the panel with the crack was analyzed due 

to symmetry. Since the thickness of such structures is very small compared to its 

other dimensions, the plane stress condition is adopted to model the problem for the 

determination of the corresponding displacement and stress fields. There will be no 

axial displacement along the ligament of the full panel due to the symmetry but the 

crack will be free from loading and restraints. No allowance will be allowed for the 

axial displacements along the ligament (x=0) over the length 0 ≤ y ≤ (a-h), but the 

lateral displacements are free to assume any value. 
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Fig 5.1: 3-D model of the full panel. 
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Fig 5.2: Geometry and loading of a stiffened cracked isotropic panel: (a) Full model of the 

panel (b) symmetric model of the panel. 
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5.2 Boundary Conditions 

 

(i) Stiffened Edge, AB: 

Since it is a lateral stiffener, there is no axial displacement and shear 

stress. Thus, 

0),( axu y  and 0),( axxy  [ 0 ≤ x ≤ b] 

(ii) Stiffened Edge, CD: 

There is no lateral displacement and shear stress. Thus, 

0)0,( xu y  and 0)0,( xxy  [ 0 ≤ x ≤ b] 

(iii) Ligament, EC: 

Due to symmetry of the full model of the panel, axial displacement and 

shear stresses along this section are assumed to be zero. 

0),0( yux    [ 0 ≤ y ≤ (a-h)] and 0),0( yxy  [ 0 ≤ y ≤ a] 

Crack surface, AE: 

Since the crack surface is free from loading and restraints, there will be 

no boundary constraints and shear stress. A Fourier series is assumed at 

crack surface for the axial displacement distribution. 

0),0( yxy  [(a-h) ≤ y ≤ a] 





3

1

3

1

0 )**sin()**cos(),0(
i

i

i

ix ywibywiaayu    [(a-h) ≤ y ≤ a] 

where ia  and  ib are constants  and i = 1~3. 

(iv) Loading End, BD: 

The axial tension of the panel is realized by assigning a uniform value to 

the axial stress component. The boundary will also be free from shearing 

stress. Thus, 

o

xxxx yb  ),(  and 0),( ybxy  [ 0 ≤ y ≤ a] 
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5.3 Solution Procedure 

 

The analytical solution is employed in this section. For the plane problems of isotropic 

material, the governing equilibrium equation based on the displacement potential 

function ψ(x,y)  is obtained from Eq. (2.36) as follows:  

02
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22
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yyxx


                          (5.1) 

The expressions of displacement and stress components in terms of function (x, y) are also 

obtained from Eq. (2.37) as follows: 
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In the present analytical approach, the potential function (x, y) is first assumed in a 

way so that the physical conditions of the two opposing stiffened edges are 

automatically satisfied. At the same time the solution has to satisfy the governing 

differential equation of equilibrium. Following a series of long trial and error 

process, the solution of the governing equation (5.1), that is the potential function is 

thus approximated as follows: 

CxyyAxByyxXyx
m

m 




23

1

sin)(),(                             (5.3) 

where, )(xfX m  , )/( am  and m = 1, 2, 3, ……..  . And B, C & D are 

arbitrary constants. 
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Derivatives of equation (5.3) with respect to x  and y are  
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Substituting the expressions of above derivatives in Eq. (5.1) following equation is obtained. 
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yX
x m

m 


sin
1

'''

3

3




 





94 
 

The solution of the above 4
th
 order ordinary differential equation with constant coefficients 

[Eq. (5.4)] can normally be approximated as follows:  

xr

m

xr

m

xr

m

xr

mm xeDeCxeBeAX 4321                                         (5.5)

     

But the ordinary differential equation (5.4) has the complementary function of repeated 

roots. Thus   21 rr  and  43 rr   and the general solution of Eq. (5.4) can be 

written as   

    x

mm

x

mmm exDCexBAX                               (5.6) 

where mA , mB , mC  and mD  are arbitrary constants. 

Differentiating equation (5.6) following expressions are found 
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mmmm eDxDCeBxBAX    344344'''' 44  

Now substituting the derivatives of  and mX  in the expressions for displacement and 

stresses (5.2), following expressions are found. 
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Now, the axial loading on the right edge of the panel can be taken as Fourier series in 

the following manner: 

o

m

m

o

xxxx EyEyb  


1

cos),(                                                                         (5.8) 

To satisfy the boundary condition and loading distribution, Fourier cosine series have 

been considered for the analysis.  
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Due to symmetry, the axial displacement at the left edge from 0 to (a-h) is zero. But 

at the cracked edge, the distribution of the axial displacement can be expressed as the 

Fourier series in the following manner: 
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The curve fitted equation as Fourier series up to 7th term have been considered. This 

is because of up to 7
th
 term we always achieve R

2
 value above 0.99. If we increase 

the term it will make the mathematical calculation more complicated. 

Here 
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After performing integration of the above equation, the result is given below: 
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After performing integration, the result is given below: 
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Using boundary condition 0),0( yxy  at the edge of 0x , it is found that
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Using boundary condition 0),( ybxy  at the edge of bx  , it is found that
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The simultaneous equations (5.10), (5.11), (5.12) and (5.13) can be arranged in a 

simplified matrix form for the solution of unknown terms like Am , Bm , Cm and Dm as 

follows: 
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Solution of the above matrix Eq. (5.14) yields the unknown constants Am , Bm , Cm 

and Dm . Once the value of the unknowns are determined, they are directly 

substituted in Eqs.[5.7(a)-5.7(e)] to obtain the explicit expressions for the different 

parameters of interest, namely, the two displacement and the three stress components 

at various points. 

 

5.4 Analysis of Elastic Field  

 

The solutions of displacement and stress components using displacement potential 

approach are obtained for steel beam (Poisson ratio µ = 0.3 and Modulus of 

Elasticity E = 209 GPa), aspect ratio b/a = 1.0, crack length ratio h/a = 0.2 and the 

loading parameter, σo= 40 N/mm. The results is presented in a sequence of axial 

displacement (ux), lateral displacement (uy), bending stress (σxx), normal stress (σyy) 

and shearing stress (σxy). ). In order to make the results non-dimensional, the 

displacements are expressed as the ratio of actual displacement to the actual 

dimension of the bar, and the stresses are expressed as the ratio of the actual stress to 

the applied loading parameter. Finally the effects of panel aspect ratio and crack 

length ratio on the elastic fields are analyzed.  

 

i. Displacement Field 

  

The distribution of normalized displacement components 𝑢𝑥/𝑏  and 𝑢𝑦/𝑎  with 

respect to y at different sections of the panel is shown in Figs 5.3 and 5.4. The lateral 
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displacement 𝑢𝑦  is zero at the two stiffened edges which satisfies the physical 

characteristics of the problem. At the loaded section x/b = 1.0, the axial displacement 

is maximum and towards the supporting edge the displacement decreases. According 

to Saint-Venant’s Principle, towards the supporting edges the effect of load 

decreases. The same thing happens also for crack i.e. the effect of crack decreases 

towards the load. But at section x/b = 1.0, the effect of load is higher. The effect of 

crack on displacement is clearly visible in Fig. 5.3. From fig. 5.4 it can be seen that 

for section x/b = 0.5 and 1.0 the lateral displacement is negative that means since the 

panel is subjected to axial loading the length of the panel increases as a result of 

decreasing area  which refers it is subjected to compressive loading. But for section 

x/b = 0.1 and 0.2 most of the area is under tension though near the crack it is 

compressive. But at section x/L = 0.0, only tension happens. 

 

Fig. 5.5 shows the deformed shape of the panel which is good agreement with the 

loading. Since the panel is subject ted to uniform axial loading, the length of the 

panel will increase. Here another observation is that the opening of the crack 

increases. 

 

 

ii. Stress Field 

 

Fig. 5.6 illustrates the distribution of the normalized stress component 𝜎𝑥𝑥 /𝜎𝑜   at 

different sections of the column. The distribution of normal stress 𝜎𝑥𝑥  at the loaded 

region 𝑥/𝑏 = 1.0is constant which is in good agreement with loading. The effect of 

crack is dominant near the crack surface. Due to presence of discontinuity i.e. crack a 

sudden fluctuation of stress happens at the crack tip(x=0 and y=0.8a) of the panel. 

The effect is noticeable up to the region of x/b ≤ 0.5. As appears from the 

distribution, the normal stress 𝜎𝑥𝑥  is positive throughout the panel which means that 

the panel is under tension. But at crack region the stress is nearly zero because it is 

free. But at crack tip the stress becomes almost 5.2 times of the applied load which is 

much higher than longitudinal stress where it was only 0.6 times of the applied load. 
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It concluded that longitudinal stiffened panel is safer than lateral stiffened panel for 

design purpose.  

 

Fig. 5.7 describes the distribution of the normalized stress distribution 𝜎𝑦𝑦 /𝜎𝑜  at 

different sections of the panel. The lateral stress for the current problem is not zero at 

the two stiffened edges but which it happened in the case of longitudinal stiffened 

edges. The value of the normalized lateral stress is found 0.3 times of the maximum 

intensity of load at the loading edge but it increases when moves toward the crack 

except at the crack surface. There is a sudden fluctuation of lateral stress at the crack 

tip due to stress concentration. But at crack surface it is negative. The maximum 

value of the lateral stress at crack tip is almost 4.4 times of the applied load which 

also reflects the differences between two different types of stiffeners.  

 

The distribution of normalized shearing stress 𝜎𝑥𝑦 /𝜎𝑜  at various section of the panel 

is presented in Fig. 5.8. It is observed that there is very huge effect of the crack near 

the support end which is found less in case of longitudinal stiffened panel. The 

shearing stress at the right, left boundary and two lateral stiffened is found to be zero 

which verifies the physical boundary conditions of the problem. In the region near 

the crack 𝑥/𝑏 = 0.0 the shear stress is maximum gradually decreases as moving 

towards the loading edge at  𝑥/𝑏 = 1.0 
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Fig 5.3: Distribution of normalized axial displacement at different sections of the 

steel panel. (b/a =1, h/a =0.2) 

 

Fig 5.4: Distribution of normalized lateral displacement at different sections of the 

steel panel. (b/a =1, h/a =0.2) 
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Fig 5.5: Deformed shape of the cracked steel panel, b/a = 1 (magnification factor 

×1000). 

 

Fig 5.6: Distribution of normalized axial stress at different sections of the steel panel.             

(b/a =1, h/a =0.2) 
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Fig 5.7: Distribution of normalized lateral stress at different sections of the panel.               

(b/a =1, h/a =0.2) 

 

Fig 5.8: Distribution of normalized shear stress at different sections of the panel.                     

( b/a =1, h/a =0.2) 
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Distribution of normalized maximum principle stress obtained using the results of 

displacement potential approach is presented in Fig. 5.9. The relation used in this 

regard is 𝜎1 =
𝜎𝑥+𝜎𝑦

2
+   

𝜎𝑥−𝜎𝑦

2
 

2

+ 𝜎𝑥𝑦2  , where 𝜎1 is the maximum principle stress. 

No reference of the principle stress distribution for a guided deep beam could be 

found. As such the verification of present results remains to be investigated with the 

availability of any other results. However, the contour pattern of maximum principle 

stress of the current solution seems to be satisfactory in a general sense of visual 

basis. 

  

Fig 5.9: Normalized maximum principle stress contour of the cracked stiffened steel 

panel, ( b/a = 1, h/a = 0.2). 

 

iii. Effect of Crack Length on the Stress and Displacement Fields  

 

The effect of crack length ratio on a structure is now becoming a major concern for 

failure analysis because a structure starts to fail at what crack length, it must be 

considered where a structure could not be thought without a crack. In this section the 

effect of crack length ratio (h/a = 0.0 ~0.4) on the panel is discussed, though only 

two sections near the crack is investigated. 
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The distribution of the normalized axial stress with the variation of crack length at 

two different sections of the panel (x/b = 0.0 & 0.1) is presented in Figures 5.10(a) 

and 5.10(b). These two figures reflected the same phenomena that we have found in 

chapter 3 i.e. with the increase of the crack length, the fluctuation of the stress at the 

crack tip increases. But fluctuation value of the stress is much higher. For h/a =0.4 it 

is almost 7 times of the applied load. At section x/b =0.1 it can be seen that the more 

the crack length the higher is the effect on the stress distribution that is constant 

value one in the case of h/a = 0.0. The highest value of the axial stress increases with 

the increase of the crack length.  

 

The distribution of the normalized lateral stress for different crack length is shown in 

Fig. 5.11(a) and 5.11(b). The normalized lateral is constant in the case of h/a = 0.0 

but at crack surface it represents a value that is negative of the applied load. For h/a 

= 0.4 at crack tip the maximum normalized value of the stress is almost 6.4 times of 

the applied load. At section x/b = 0.1 the distribution pattern is almost similar in case 

of crack length ratio h/a = 0.2 ~0.4 and the normalized lateral stress is negative at the 

upper stiffened edge. The smallest value of the lateral stress is found for higher crack 

length. 

  

Fig. 5.12(a) and 5.12(b) depicts the distribution of normalized shear stress at sections 

(x/b = 0.1 & 0.5). It can be seen that the value of shear stress is zero for two different 

sections in case of zero crack length ratio i.e. there is no crack present in the 

structure. Whenever crack is present crack in structure fluctuation happens. The 

value of that fluctuation increases with increasing the value of the crack length ratio. 

Though the distribution of normalized shear stress is different at two different 

sections but same incidents can be seen from the two figures that we have discussed 

already. 

 

Figs. 5.13(a) and 5.13(b) shows the distribution of the normalized axial displacement 

for different crack length at two different sections. The maximum value of the axial 

displacement happened for higher crack length that can be easily predicted by only 

viewing the results of the stress that have already discussed.  
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Fig 5.10: Effect of crack length on the axial stress component at (a) x/b = 0.0 and (b) 

x/b = 0.1, (b/a = 1.0). 

 

(a) 

(b) 
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Fig 5.11: Effect of crack length on the lateral stress component at (a) x/b = 0.0 and 

(b) x/b = 0.1, (b/a = 1.0). 

 

(a) 

(b) 
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Fig 5.12: Effect of crack length on the shear stress component at (a) x/b = 0.1 and (b) 

x/b = 0.5, (b/a = 1.0). 

(a) 

(b) 
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Fig 5.13: Effect of crack length on the axial displacement component at (a) x/b = 0.0 

and (b) x/b = 0.1, (b/a = 1.0). 

(a) 

(b) 
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iv. Effect of Panel Aspect Ratio on the Stress and Displacement Fields 

 

The displacement and stress components of a structure depend on the aspect ratio b/a 

as a large extent which are shown in Figs 5.14 to 5.17.  With increasing the aspect 

ratio, the distance between the loading edge and crack surface increases. The loading 

has higher effect on crack for lower aspect ratio than higher aspect ratio. All the 

parameters decrease with increasing the aspect ratio b/a. 

 

Figs. 5.14 through 5.16 portrait the stress components 𝜎𝑥𝑥 , 𝜎𝑦𝑦  and 𝜎𝑥𝑦  at sections 

x/b = 0.0, 0.5 and 0.1 for normalized shear stress as a function of the aspect ratio b/a 

of the column. The pattern of normalized axial stress distribution at section x/b = 0.0 

is almost similar for different aspect ratio but peak value of the fluctuation is not 

same as shown in Fig. 5.14(a).But for section x/b = 0.1 the trend of the distribution 

for different aspect ratio is noticeable. Fig. 5.15 reflects the same characteristics in 

case of normalized lateral stress. 

 

For no crack case, shear stress will be zero at section x/b = 0.0 but normalized shear 

stress distribution diverts from its regular pattern if a crack is present in that section. 

From all the previous three chapters stress components would be severe if the upper 

and bottom edges are lateral stiffened. Fig. 5.16 represents the normalized shear 

stress. It has observed that the effect of crack is more severe in case of lower aspect 

ratio. 

 

The normalized axial displacement is shown in Fig. 5.17. The axial displacement 

increases at crack surface with decreasing the aspect ratio that can be easily predicted 

by observing the graph of normalized axial stress. 
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Fig 5.14: Effect of aspect ratio on the axial stress component at (a) x/b = 0.0 and (b) 

x/b = 0.5, (h/a = 0.2). 

(a) 

(b) 
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Fig 5.15: Effect of aspect ratio on the lateral stress component at (a) x/b = 0.0 and (b) 

x/b = 0.5,  (h/a = 0.2). 

(a) 

(b) 
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Fig 5.16: Effect of aspect ratio on the shear stress component at (a) x/b = 0.1 and (b) 

x/b = 0.5, (h/a = 0.2). 

(a) 

(b) 
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Fig 5.17: Effect of aspect ratio on the axial displacement component at (a) x/b = 0.0 

and (b) x/b = 0.5, (h/a = 0.2). 

(a) 

(b) 
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CHAPTER 6 

 

  CRACKED COMPOSITE PANEL UNDER AXIAL 

STIFFENERS SUBJECTED TO AXIAL TENSION 

 
In this chapter, the stress and displacement fields of a stiffened composite panel with 

an edge crack are analyzed under uniform axial tension loading. The effect of fiber 

orientation on the stress and displacements at different sections of the composite 

panel is also analyzed. The solution is obtained using displacement potential 

approach for the two limiting cases of fiber orientations of the panel. It is observed 

that fiber orientation has significant effect on the state of stresses at the crack surface 

as well as other sections of the panel. 

 

6.1 Problem Articulation 

Stiffened panels with symmetric edge-cracked orthotropic panel with reference to a 

two dimensional Cartesian coordinate system x-y are shown in Figs 6.1 and 6.2. The 

fibers are oriented along the x-axis that represent the first case with θ=0
o 
(Case-A) as 

shown in Fig. 6.1. In the second case the fiber are oriented along the y-axis for which 

θ=90
o 
(Case-B) as shown in Fig. 6.2.  

 

6.2 Boundary Conditions 

(i) Stiffened Edge, AB: 

Since it is a longitudinal stiffener, there is no axial displacement and shear 

stress. Thus, 

0),( axux  and 0),( axyy  [ 0 ≤ x ≤ b] 

(ii) Stiffened Edge, CD: 

There is no axial displacement and lateral stress. Thus, 

0)0,( xux  and 0)0,( xyy  [ 0 ≤ x ≤ b] 
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Fig 6.1: Geometry and loading of a cracked stiffened composite panel (Case-A) (a) 

Full model of the panel (b) symmetric model of the panel. 
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Fig 6.2: Geometry and loading of a cracked stiffened composite panel (Case-B) (a) 

Full model of the panel (b) symmetric model of the panel. 
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(iii) Ligament, EC: 

Due to symmetry of the full model of the panel, axial displacement and 

shear stresses along this section  are assumed to be zero.    

0),0( yux    [ 0 ≤ y ≤ (a-h)] and 0),0( yxy  [ 0 ≤ y ≤ (a-h)] 

Crack surface, AE: 

Since the crack surface is free from loading and restraints, there will be no 

boundary constraints and shear stress. A Fourier series is assumed along 

the crack surface for the axial displacement distribution. 

0),0( yxy  [(a-h) ≤ y ≤ a] 





3

1

3

1

0 )**sin()**cos(),0(
i

i

i

ix ywibywiaayu   [(a-h) ≤ y ≤ a] 

where ia  and  ib are constants and i = 1~3. 

(iv) Loading Edge, BD: 

The axial tension of the panel is realized by assigning a uniform value to 

the axial stress component which is the function of load intensity. The 

boundary will also free from shearing stress.  

o

xxxx yb  ),(  and 0),( ybxy  [ 0 ≤ y ≤ a] 

 

6.3 Solution Procedure 

 

Case-A : θ = 0
o 
(Fibers are parallel to the direction of loading) 

 

Mathematical model here is the partial differential equation derived from the 

equations of equilibrium and equations of compatibility based on Displacement 

Potential Function ψ(x,y) obtained from Eq. (2.30) as follows. 
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In this case the displacement and stress components are also obtained from Eq. (2.31) 

as follows:  
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where  2

2

12112211211 EEGEEZ    

The displacement potential trial function is assumed in such a way that the boundary 

conditions at the stiffened edges are satisfied automatically. Actually, the trial 

function should be in terms of cosine function so that its first derivative and third 

derivative with respect to x  can be found in terms of sine function. By this way the 

requirement of physical conditions of the two opposing stiffened ends are 

automatically satisfied, i.e., automatic satisfaction of boundary conditions of (a) and 

(b). At the same time the expression for  should also be compatible to the 

distribution of load on the right boundary and reactions on the supports. Considering 

all these factors the expression for  may be approximated as follows: 
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Using the derivatives of equation (6.3) equation (6.1) yields 
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The general solution to the above ordinary differential equation be  
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Now substituting the derivatives of  and mY using equation (6.3) and (6.5) 

respectively in the expressions for displacement and stresses (6.2a, 6.2b, 6.2c, 6.2d 

and 6.2e). 
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Now, the axial loading on the right edge of the panel can be taken as Fourier series in 

the following manner: 
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To satisfy the boundary condition and the loading distribution, Fourier sine series 

have been considered for the analysis.  
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xx  , where m = 1, 2, 3, 4, 5 ……………….  

 

Due to symmetry, the axial displacement at the left edge from 0 to (a-h) is zero. But 

at the cracked edge, the distribution of the axial displacement can be expressed as the 

Fourier series in the following manner: 
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The curve fitted equation as Fourier series up to 7th term have been considered. This 

is because of up to 7
th
 term we always achieve R

2
 value above 0.99. If we increase 

the term it will make the mathematical calculation more complicated. 

 

Here 
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After performing integration, the result is given below: 
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Using boundary condition 0),0( yxy  at the edge of 0x , it is found that
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Using boundary condition 0),( ybxy  at the edge of bx  , it is found that
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Using boundary condition 
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The simultaneous equations (6.10), (6.11), (6.12) and (6.13) can be realized in a 

simplified matrix form for the solution of unknown terms like Am , Bm , Cm and Dm as 

follows: 
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Solution of the above matrix Eq. (6.14) yields the unknown constants Am , Bm , Cm 

and Dm . Once the value of the unknowns are determined, they are directly 

substituted in Eqs.[6.7(a)-6.7(e)] to obtain the explicit expressions for the different 

parameters of interest, namely, the two displacement and the three stress components 

at various points. 

 

Case-B : θ = 90
o 
(Fibers are perpendicular to the direction of loading) 

  

The governing equation for fiber orientation θ = 90
o
 is derived from the equations of 

equilibrium and equations of compatibility based on Displacement Potential Function 

ψ(x,y) obtained from Eq. (2.32) as follows. 
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In this case the displacement and stress components are also obtained from Eq. (2.33) 

as follows:  
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The expression for  may be approximated as follows: 
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where, )(xfX m  , )/( am  and m = 1, 2, 3, …….. .  

Derivatives of equation (6.17) with respect to x  and y have already mentioned in the first 

case. 

Using the derivatives of equation (6.17) equation (6.15) yields 
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The general solution of ordinary differential equation be  
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Now substituting the derivatives of  and mY using equation (6.17) and (6.19) 

respectively in the expressions for displacement and stresses (6.16a, 6.16b, 6.16c, 

6.16d and 6.16e). 
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Now, the axial loading on the right edge of the panel can be taken as Fourier series in 

the following manner: 
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To satisfy the boundary condition and the loading distribution, Fourier sine series 

have been considered for the analysis. 
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Due to symmetry, the axial displacement at the left edge from 0 to (a-h) is zero. But 

at the cracked edge, the distribution of the axial displacement can be expressed as the 

Fourier series in the following manner: 
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The curve fitted equation as Fourier series up to 7th term have been considered. This 

is because of up to 7
th
 term we always achieve R

2
 value above 0.99. If we increase 

the term it will make the mathematical calculation more complicated. 

Here 
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After performing integration of the above equation, the result is given below:
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Using boundary condition 0),0( yxy  at the edge of 0x , it is found that
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(6.24) 

Using boundary condition 0),( ybxy  at the edge of bx  , it is found that
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Using boundary condition 
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(6.27) 

The simultaneous equations (6.24), (6.25), (6.26) and (6.27) can be realized in a 

simplified matrix form for the solution of unknown terms like Am , Bm , Cm and Dm as 

follows: 
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Solution of the above matrix Eq. (6.28) yields the unknown constants Am , Bm , Cm 

and Dm . Once the value of the unknowns are determined, they are directly 

substituted in Eqs.[6.21(a)-6.21(e)] to obtain the explicit expressions for the different 

parameters of interest, namely, the two displacement and the three stress components 

at various points. 

 

6.4 Analysis of Elastic Field 

 

The stress and displacement fields of the composite panel are discussed in this 

section. For this we have considered on the fiber orientation θ=0
o
. In this case the 

Boron-epoxy has been chosen as the material of the composite panel and its 

properties are given below: 

 

Table 1: Effective properties of boron/epoxy composite 

Young’s modulus (MPa) Shear modulus (MPa) Poisson’s ratio 

E1 E2 G12 µ12 µ21 

204×10
3 

18.5×10
3 

5.59×10
3 

0.23 0.021 

 

It is worthy to mention that although the formulation can be applied to any 

composites, boron/epoxy is chosen merely as an example. As the present study 

primarily focuses on the effect of the fiber orientation on the elastic field of the 

panel, all results are calculated for the constant value of the crack length ratio h/a = 

0.25 and the aspect ratio b/a = 1.0, i.e., the effect of aspect ratio is not analyzed in the 



135 
 

study. Furthermore, all the results presented in the study correspond to the value of 

applied uniform tensile load 𝜎𝑜  = 40 MPa. 

 

Fig. 6.3 illustrates the normalized axial displacement component 𝑢𝑥/𝑏 with respect 

to y at different sections of the panel. The displacement 𝑢𝑥  is zero at both upper and 

bottom stiffened edges. The magnitude of the displacement 𝑢𝑥  is maximum at the 

right lateral edge x/b = 1.0. Here an important observation is that the effect of crack 

is noticeable for all sections of the panel. The effect is higher near the crack surfaces 

than it decreases towards the loading edges. It is shown that displacement is positive 

at all sections that mean the panel is subjected to tension. Fig. 6.4 describes the 

normalized displacement component 𝑢𝑦/𝑎 at different sections of the panel. It can be 

seen that the effect of edge crack is significant up to x/b ≤ 0.2 on the normalized 

lateral displacement component. For sections 0 ≤ y/a ≤ 0.5, the displacement 𝑢𝑦/𝑎  is 

positive and for sections 0.5 ≤ y/a ≤ 1.0, it is negative for all sections except x/b = 

1.0. That indicates that the panel is under contraction along y-axis that complies with 

Poisson’s formula. But at section x/b = 1.0 the reverse is found i.e. the panel is 

expanded in the y-direction, which is in contrast to our general intuition and may be 

attributed to the physical conditions of the stiffened under tension. 

 

The distribution of normalized axial stress component 𝜎𝑥𝑥 /𝜎𝑜at different sections of 

the panel is shown in Fig. 6.5.There is a huge fluctuation of stress due to stress 

concentration near the crack tip at section x/b = 0.0. Then fluctuation diminishes as 

moving towards the loading edges. At the right lateral the normalized value of axial 

stress is constant one that complies with the physical condition of the panel. Fig. 6.6 

presents the distribution of normalized lateral stress component 𝜎𝑦𝑦 /𝜎𝑜  which 

reflects the same incident at the crack tip as discussed earlier. The axial displacement 

at mid region of the panel over the region of 0.25 ≤ y/a ≤ 0.75 is almost equal to one 

but for that region lateral displacement is nearly equal to zero except section of x/b = 

1.0. That’s why the stress component 𝜎𝑥𝑥  is more significant than the stress 𝜎𝑦𝑦 . 

 

Fig. 6.7 reveals the distribution of normalized shear stress component 𝜎𝑥𝑦 /𝜎𝑜 at 

different sections of the panel. The shear stress distribution would be symmetric with 
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respect to y but that did not happened for this panel due to presence of crack. That’s 

why the distribution is not symmetric. Due to singularity effect of crack a fluctuation 

of shear stress happens near the crack tip. Besides that the magnitude of the shear 

stresses increases near the stiffened edges. But that magnitude is higher near the 

upper stiffened edge because of the presence of crack. At the sections x/b = 0.0 and 

x/b = 1.0, the magnitude of the shearing stress is zero which satisfies the physical 

boundary conditions of the problem. Here another observation is that over the region 

0.25 ≤ y/a ≤ 0.65 the normalized shear stress is nearly zero which we have also found 

in case of normalized lateral stress component. 

 

 

 

 

 

 

 

 

 

 

 

 



137 
 

 

Fig 6.3: Distribution of normalized axial displacement at different sections of the 

composite panel. ( θ = 0
o
, b/a =1, h/a =0.25) 

 

Fig 6.4: Distribution of normalized lateral displacement at different sections of the 

composite panel.(θ = 0
o
, b/a =1, h/a =0.25) 
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Fig 6.5: Distribution of normalized axial stress at different sections of the composite 

panel. (θ = 0
o
,  b/a =1, h/a =0.25) 

 

Fig 6.6: Distribution of normalized lateral stress at different sections of the 

composite panel. (θ = 0
o
, b/a =1, h/a =0.25) 
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Fig. 6.7: Distribution of normalized shear stress at different sections of the composite 

panel. (θ = 0
o
,  b/a =1, h/a =0.25) 
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6.5 Effect of Fiber Orientation 

 

Effect of fiber orientation on displacement and stress are analyzed in this article. 

Two different orientations, θ = 0
o
 and 90

o
, are taken into account for the purpose of 

analysis. Fig. 6.8 shows the comparison of the normalized axial stress component 

𝜎𝑥𝑥 /𝜎𝑜  at the sections x/b = 0.0, 0.1, 0.5 and 1.0 for two different fiber orientations. 

At the two stiffened edges, the axial stress 𝜎𝑥𝑥  is zero, which is in good agreement 

with physical conditions applied to the panel. It is noted that the axial stress 𝜎𝑥𝑥  is 

much higher for θ = 0
o
 fiber orientation at all sections except x/b = 1.0. This 

conforms to the fact that the stiffness of the panel is much higher in the fiber 

direction which causes less deformation in that direction. The higher magnitude of 

𝜎𝑥𝑥  is attributed to the higher stiffness in the fiber direction i.e. a small displacement 

causes a higher stress to develop in the fiber direction. At section x/b = 1.0 the 

magnitude of 𝜎𝑥𝑥  is same for both the fiber orientation. But from those figures, 

another important point can be observed that effect of crack on the normalized axial 

stress is noticeable section at sections x/b = 0.0, 0.1 and 1.0 for θ = 0
o
 fiber 

orientation but at section x/b = 0.5 it effects vanishes for θ = 90
o
 fiber orientation. 

The lower stiffness material i,e, softer material absorbs large amount of energy at the 

expense of large deformation as quickly that have been happened in this case due to 

presence of crack. The fluctuation of axial stress near the crack tip is much less for 

90
o
 fiber orientation. 

 

Fig. 6.9 presents the distribution of normalized lateral stress component 𝜎𝑦𝑦 /𝜎𝑜   at 

the sections x/b = 0.0, 0.1, 0.5 and 1.0.  The magnitude of the lateral stress is higher 

for 90
o
 fiber orientation because of the same reason discussed earlier for Fig. 6.8. In 

general, the stress is higher in fiber direction while the displacement is lower in fiber 

direction. It can be seen that the effect of crack on lateral stress is not visible for θ = 

90
o
 fiber orientation at section x/b = 0.5 which is in contrast to what have been 

discussed earlier. This is because of crack surface is parallel to the fiber orientation 

for θ = 90
o
 fiber orientation. At loading edge, the normalized lateral stress is huge 

compared to the axial stress and even that stress induced at the crack tip that is 

almost 3.5 times of the applied load. 
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The magnitude of shear stress at section of x/b = 0.5 is higher for θ = 90
o
 fiber 

orientation as shown in Fig. 6.10(b). But at section of x/b = 0.0 shear stress is higher 

over the region 0.6≤ y/a ≤ 1.0  for 0
o
 fiber orientation but it is less for the rest of 

region at the same section for same fiber orientation. 

 

The normalized displacement component 𝑢𝑥/𝑏 at the sections x/b = 0.0, 0.1, 0.5 and 

1.0 is shown in Fig. 6.11. At the two stiffened edges, the axial displacement 

component is zero, which satisfies the physical boundary conditions of the problem. 

The magnitude of 𝑢𝑥  is much higher for θ = 90
o
 fiber orientation as the fibers are not 

aligned in the displacement direction. At crack surface, the axial displacement is 

same for two different fiber orientations. 

 

Shown in Fig. 6.12 is the normalized displacement component 𝑢𝑦/𝑏  at different 

sections of the panel for two different fiber orientations. The displacement is greater 

for θ = 0
o
 fiber orientation at all sections except x/b = 1.0 because the stiffness in 

perpendicular to fiber direction is lower than that of fiber direction. Thus, the 

displacement in low stiffness direction will be obviously higher. But at sections, the 

graph shows an unlikely phenomenon that is the lateral displacement is higher for 

90
o
 fiber orientation but it reversed. 

 

Figure 6.13 shows the deformed shape of the panel under uniform loading at the left 

and right edges with the magnification of 200 times of displacement. Since the panel 

is subjected to axial loading it must be obvious that it is elongated with the reduction 

of the width due to the effect of Poisson’s ratio. The panel with θ = 90
o
 fiber 

orientation is elongated more in x-direction compared to θ = 0
o
 fiber orientation 

which is significant than the deformation happened in y-direction.  
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(b) 

(a) 
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Fig 6.8: Distribution of Normalized Axial Stress at sections (a) x/b = 0.0, (b) x/b = 

0.1 and (c) x/b = 0.5 of the composite panel (b/a = 1, h/a = 0.25). 

 

 
(a) 

(c) 
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Fig 6.9: Distribution of Normalized Lateral Stress at sections (a) x/b = 0.0, (b) x/b = 

0.1 and (c) x/b = 0.5 of the composite panel (b/a = 1, h/a = 0.25). 

(c) 

(b) 
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Fig 6.10: Distribution of Normalized Shear Stress at sections (a) x/b = 0.1 and (b) x/b 

= 0.5 of the composite panel (b/a = 1, h/a = 0.25). 

 

(b) 

(a) 
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(b) 

(a) 
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Fig 6.11: Distribution of Normalized Axial Displacement at sections (a) x/b = 0.5, (b) 

x/b = 0.5 and (c) x/b = 1.0 of the composite panel (b/a = 1, h/a = 0.25). 

 

(c) 

(a) 



148 
 

 
 

 

 

Fig 6.12: Distribution of Normalized Lateral Displacement at sections (a) x/b = 0.0, 

(b) x/b = 0.1 and (d) x/b = 0.5 of the composite panel (b/a = 1, h/a = 0.25). 

(c) 

(b) 
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. 

Fig 6.13: Deformed shape of the cracked stiffened panel of Boron-epoxy, ( b/a = 1, 

h/a = 0.25) ,(magnification factor × 200). 
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6.6 Effect of Crack Length on the Stress and Displacement Fields 

(Case-A) 

 

The effect of crack length (h/a = 0.0 ~ 0.4) on the displacement and stress fields of 

the panel for fiber orientation (θ = 0
o
) is discussed in this section. As the result have 

found in the previous chapters, the same trends are found in this sections i.e. the 

effect of crack length on displacement and stress fields increases with the increase of 

crack length. 

  

Figs. 6.14 to 6.16 present the distribution of stress with the variation of crack length 

at two different sections of the panel. No fluctuation of stress happens without 

presence of crack. Crack tip induces higher axial stress than the value found in case 

of isotropic material. Because composite material posses higher strength along the 

fiber direction. As a result of this, axial displacement is lower compared to isotropic 

material. 

 

At crack length, h/a = 0.1, its effect on the stress and displacement fields is less 

noticeable and shows a slight deviation from the solution for zero crack length. 

Crack length effect gradually increases with its length. The distribution of 

normalized axial displacement for different crack length is shown in Fig. 6.17. 
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Fig 6.14: Effect of crack length on the axial stress component at (a) x/b = 0.0 and (b) 

x/b = 0.1 (θ=0
o
). 

(b) 

(a) 
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Fig 6.15: Effect of crack length on the lateral stress component at (a) x/b = 0.0 and 

(b) x/b = 0.1 (θ=0
o
). 

 

(b) 

(a) 
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Fig 6.16: Effect of crack length on the shear stress component at (a) x/b = 0.1 and (b) 

x/b = 0.5 (θ=0
o
). 

 

(b) 

(a) 
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Fig 6.17: Effect of crack length on the axial displacement component at (a) x/b = 0.0 

and (b) x/b = 0.1 (θ=0
o
). 

 

(b) 

(a) 
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CHAPTER 7  

 

COMPARISON OF RESULTS 

 

To verify the accuracy and reliability of the method proposed, a number of problems 

are analyzed. For all the problems the results obtained by Potential Function 

approach are now compared with the corresponding numerical solutions obtained by 

FEM and FDM. Finite difference formulation will be slightly discussed here because 

it is not the major concern in this study that had been already formulated in several 

previous works [22]. Those works of FDM formulation have been used to find the 

solution of elastic field of all problems. 

 

Furthermore, as the analytical results have been discussed in details in the previous 

chapter, this chapter analyses basically the agreement of the results of the 

displacement potential method and numerical methods without paying attention to 

the characteristics of the results. 

 

7.1 Finite Difference Method 

Finite difference solutions are obtained on the basis of present displacement potential 

approach. The region of interest in which the potential function ψ is to be evaluated 

is divided into a desirable number of mesh points and the values of the function are 

sought only at these points. A uniform rectangular mesh network is used to discretize 

the panel domain. The number of meshes used in the x and y directions are 61 and 41 

respectively. An imaginary boundary, exterior to the physical boundary of the panel, 

is considered for the present discretization. The fourth-order partial derivatives of the 

governing differential equation ( Eqns. 2.30, 2.32 and 2.34) are expressed by their 

corresponding central difference formulae whereas, in an attempt to avoid the 

inclusion of points exterior to the imaginary boundary, the second and third-order 

derivatives associated with the boundary expressions are replaced by their 
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corresponding backward or forward difference formulae, keeping the order of local 

truncation error the same. The discrete values of the potential function ψ(x,y) are 

solved from the system of linear algebraic equations by the direct method of solution 

(triangular decomposition method). Since all the components of stress and 

displacements are expressed in terms of function ψ, the parameters of interest are 

readily calculated from the values of ψ obtained at the mesh points of the domain.  

The detailed computational scheme for the discretization of the domain, management 

of boundary conditions, evaluations of the parameters of interest are given in 

references [17-19, 22]. 

7.2 Finite Element Method 

Finite-element method is widely used all over the world for various computational 

purposes in lab and commercial areas. In this study, ANSYS has been used to solve 

several problems in order to compare and verify the analytical results. The relevant 

boundary conditions used are the same as those used in the analytical solution. Four 

noded rectangular plane elements are used to construct the corresponding mesh 

network of the panel. The total number of finite elements used to construct the 

element mesh network for all problems is 10000 (100×100). All the elements are of 

the same size and their distribution is kept uniform all over the domain. The 

convergence and accuracy of the solution has been verified by varying the number of 

finite elements used to model the panel. 

 

7.3 Cracked Panel under Axial Stiffeners Subjected To Axial 

Tension 

      

A steel panel with aspect ratio b/a = 1, crack length ratio h/a =0.2 and the uniform 

loading parameter,𝜎𝑜  = 40 MPa has been chosen for the comparison. As it can be 

seen form Fig. 7.1 the deflection is defined among the results obtained by FEM, 

FDM and those calculated by Displacement Potential Method is small. A good 

agreement between the analytical and numerical results can be realized from Figs. 

7.1-7.5. Those figures show the comparison of normalized displacement components 
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and normalized stress components at four different sections of the panel. One can see 

that even at the crack tip, which is a point of singularity, the results are almost the 

same. Basically the ψ-solution and FEM indicate that the axial and lateral stresses at 

the crack tip fluctuate to highest value. But the effect is less noticeable for the FDM 

solution. These discrepancies are also found at the load termination end even though 

it follows the similar trends of FEM and ψ-solution. Slight discrepancies of the 

results of FEM with those of the present analytical and FEM solution can be 

attributed to the fact that the FDM solutions are obtained using a relatively lower 

mesh density compared to that of FEM solution. The result of the present method 

exactly conforms to the results of FEM. The present ψ-solution is free from the 

limitation and provides reliable and accurate results at any section of the isotropic 

panel. But there is a good agreement found among all the methods for axial and 

lateral displacement, which are shown in Figs. 7.4 and 7.5. 
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Fig. 7.1: Comparison of normalized axial stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, h/a = 0.2). 

(a) (b) 

(d) (c) 
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Fig. 7.2: Comparison of normalized lateral stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, h/a = 0.2). 

(a) (b) 

(d) (c) 
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Fig. 7.3: Comparison of normalized shear stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, h/a = 0.2). 

 

(a) (b) 

(d) (c) 
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Fig. 7.4: Comparison of normalized axial displacement at section (a) x/b = 0.0 (b) x/b 

= 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, h/a = 

0.2). 

 

(a) (b) 

(d) (c) 
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Fig. 7.5: Comparison of normalized lateral displacement at section (a) x/b = 0.0 (b) 

x/b = 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, 

h/a = 0.2). 

 

(a) (b) 

(d) (c) 
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7.4 Cracked Panel under Axial Stiffeners Subjected To Bending  

 

The parameters chosen for the comparison of the results of the present panel are, 

aspect ratio b/a = 1, crack length ratio h/a =0.3 and the maximum intensity of the 

bending load 𝜎𝑜= 40 MPa. It was found that bending loading has less effect on crack 

tip compared to that caused by the axial tension. That’s why, longer crack length has 

been chosen for the current analysis. The comparison of normalized displacement 

components, 𝑢𝑥/𝑏 , 𝑢𝑦/𝑎  and normalized stress components, 𝜎𝑥𝑥 /𝜎𝑜 , 𝜎𝑦𝑦 /𝜎𝑜  and 

𝜎𝑥𝑦/𝜎𝑜  are displayed in Figs. 7.6, 7.7, 7.8,7.9 and 7.10, respectively at four different 

sections of the panel. It is noted that all the results obtained by ψ –solution, FDM and 

FEM agree well within acceptable limit. The slight discrepancy associated with 

FDM, which was discussed in section 7.3, has also found in the current problem. 
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Fig. 7.6: Comparison of normalized axial stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, h/a = 0.3). 

 

 

(a) (b) 

(d) (c) 
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Fig. 7.7: Comparison of normalized lateral stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, h/a = 0.3). 

 

 

(a) (b) 

(d) (c) 
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Fig. 7.8: Comparison of normalized shear stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, h/a = 0.3). 

 

 

(a) (b) 

(d) (c) 
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Fig. 7.9: Comparison of normalized axial displacement at section (a) x/b = 0.0 (b) x/b 

= 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, h/a = 

0.3). 

 

(a) (b) 

(d) (c) 
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Fig. 7.10: Comparison of normalized lateral displacement at section (a) x/b = 0.0 (b) 

x/b = 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (axial) steel panel (b/a = 1, 

h/a = 0.3). 

 

(a) (b) 

(d) (c) 
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7.5 Cracked Panel under Lateral Stiffeners Subjected To Axial 

Tension 

 

The same panel of section 7.3 is considered with different stiffener, i.e., instead of 

axial stiffener, lateral stiffeners are considered at the bottom and upper edges of the 

panel. The comparison of normalized stress components𝜎𝑥𝑥 /𝜎𝑜 , 𝜎𝑦𝑦 /𝜎𝑜  and 𝜎𝑥𝑦 /𝜎𝑜  

are shown in Figs. 7.11, 7.12 and 7.13 which clarify that the results of the present 

method and FEM method are in good agreement with each other at sections x/b = 

0.0, 0.1 and 1.0 with slight deviation from that obtained by FDM at crack surface and 

loading termination end. The deviation from FDM has been discussed earlier. But at 

sections x/b = 0.5, the deviation among all the methods is noticeable in Figs. 7.12 and 

7.13. At that section the shear stress is almost same for all methods. The reason 

behind these is the lateral stiffener that has been chosen for the current analysis. 

Since the lateral stiffener only restricts the lateral displacement and the loading is 

axial, boundary condition for that stiffener is completely immaterial for FEM 

method. But BPA method counts these boundary effect so does the FDM method. 

That’s these discrepancy happens which also be confirmed by observing the Fig. 

7.14 of normalized axial displacement. But in case of normalized lateral 

displacement the results for all method are found to be good agreement with slight 

deviation that obtained by FEM. 
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Fig. 7.11: Comparison of normalized axial stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (lateral) steel panel (b/a = 1, h/a = 0.2). 

 

 

(a) (b) 

(d) (c) 
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Fig. 7.12: Comparison of normalized lateral stress at section (a) x/b = 0.0 (b) x/b = 

0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (lateral) steel panel (b/a = 1, h/a = 

0.2). 

 

(a) (b) 

(d) (c) 
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Fig. 7.13: Comparison of normalized shear stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (lateral) steel panel (b/a = 1, h/a = 0.2). 

 

 

(a) (b) 

(d) (c) 
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Fig. 7.14: Comparison of normalized axial displacement at section (a) x/b = 0.0 (b) 

x/b = 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (lateral) steel panel (b/a = 1, 

h/a = 0.2). 

 

(a) (b) 

(d) (c) 
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Fig. 7.15: Comparison of normalized lateral displacement at section (a) x/b = 0.0 (b) 

x/b = 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffened (lateral) steel panel (b/a = 1, 

h/a = 0.2). 

 

(a) (b) 

(d) (c) 
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7.6 Cracked Composite Panel under Axial Stiffeners Subjected To 

Axial Tension 

 

The previous three problems that have been discussed earlier were analyzed 

considering the material as isotropic (steel). In this case, orthotropic material (boron-

epoxy) has been considered. The parameters for the composite panels are: aspect 

ratio b/a = 1, crack length ratio h/a = 0.2, fiber orientation θ = 0
o
 and the intensity of 

loading 𝜎𝑜= 40 MPa. From observing the normalized displacements   𝑢𝑥/𝑏, 𝑢𝑦/𝑎  

graphs and normalized stresses𝜎𝑥𝑥 /𝜎𝑜 , 𝜎𝑦𝑦 /𝜎𝑜  and 𝜎𝑥𝑦 /𝜎𝑜  graphs, it can be seen that 

three solutions which are obtained based on three philosophies, are very close to each 

other. There is a slight deviation of the results of FDM solution because of local 

effects of crack surface and load termination end. Similar slight discrepancies are 

also observed for FEM solution, especially at the crack tip and the corner points of 

the right loaded boundary. 
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Fig. 7.16: Comparison of normalized axial stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 0
o
) panel (b/a = 

1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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Fig. 7.17: Comparison of normalized lateral stress at section (a) x/b = 0.0 (b) x/b = 

0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 0
o
) panel (b/a 

= 1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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Fig. 7.18: Comparison of normalized shear stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 0
o
) panel (b/a = 

1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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Fig. 7.19: Comparison of normalized axial displacement at section (a) x/b = 0.0 (b) 

x/b = 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 0
o
) 

panel (b/a = 1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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Fig. 7.20: Comparison of normalized lateral displacement at section (a) x/b = 0.0 (b) 

x/b = 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 0
o
) 

panel (b/a = 1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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7.7 Cracked Composite Panel under Axial Stiffeners Subjected To 

Axial Tension 

 

Fiber orientation θ = 90
o
 has been considered for the comparison in this section 

instead of the orientation θ = 0
o
. The parameters are same as the previous problem. 

The results of normalized stress components of all methods shown in Fig. 7.21, 7.22 

and 7.23 are in good agreement with each other. But it can be observed that ψ-

solution is not so much smooth at crack and loading end as found in the previous 

problem. As usual the deviation for FDM solution has also been found at crack 

surface and load termination end. The solution of normalized axial displacement as 

shown in Fig. 7.24 for all methods is exactly the same. But in case of normalized 

lateral displacement as shown in Fig. 7.25, ψ-solution and FDM solution coincides 

with each other, But FEM solution deviates from those. In general, the stress is 

higher in fiber direction while the displacement is lower in fiber direction. That’s 

why, FEM solution has shown some deviation from reliable results that have found 

by ψ-solution. 
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Fig. 7.21: Comparison of normalized axial stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 90
o
) panel (b/a = 

1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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Fig. 7.22: Comparison of normalized lateral stress at section (a) x/b = 0.0 (b) x/b = 

0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 90
o
) panel 

(b/a = 1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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Fig. 7.23: Comparison of normalized shear stress at section (a) x/b = 0.0 (b) x/b = 0.1 

(c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 90
o
) panel (b/a = 

1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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Fig. 7.24: Comparison of normalized axial displacement at section (a) x/b = 0.0 (b) 

x/b = 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 90
o
) 

panel (b/a = 1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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Fig. 7.25: Comparison of normalized lateral displacement at section (a) x/b = 0.0 (b) 

x/b = 0.1 (c) x/b = 0.5 and (d) x/b = 1.0 of the stiffener (axial) composite (θ = 90
o
) 

panel (b/a = 1, h/a = 0.25). 

 

(a) (b) 

(d) (c) 
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CHAPTER 8 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Conclusions 

An analytical method usually provides exact solution whereas any numerical method 

gives approximate solution. Exact analytical solution is always preferable over any 

numerical solution of a particular problem. But the practical fact is that the analytical 

methods of solutions are usually limited to only very ideal cases. That is why the 

analytical methods of solution could not gain popularity in the field of stress analysis 

of actual structures. This limitation of the literature has been removed in the present 

research by developing a new analytical method for stress analysis of cracked 

stiffened panels. 

 

The analytical solution for the elastic field of stiffened panels with an edge crack 

subjected to different kinds of loading has been successfully derived for both 

isotropic and orthotropic composite materials. Appropriate alternative expression for 

one of the boundary conditions at the crack surface has been derived from the 

numerical solution of the problem performed in terms of the same potential function. 

Having appropriate analytical expressions for all the necessary boundary conditions, 

an efficient and accurate analytical scheme has been developed in terms of a 

potential function defined in terms of displacement components for the analysis of 

elastic field of cracked stiffened panels. The analytical scheme developed is not only 

limited to the problems of isotropic materials, but also equally applicable to 

orthotropic composite materials with all possible mixed mode of boundary 

conditions whether they are prescribed in terms of displacements, strains or stresses 

or even any combination thereof. The superiority of the present modeling scheme 

over the existing approaches is that it reduces the solution of a plane problem to the 

determination of a single function satisfying a single differential equation of 

equilibrium. The capability of the method is demonstrated by solving a number of 
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problems of stiffened cracked panels of isotropic and composite materials with 

different types of stiffener subjected to different types of loading. 

The main concluding remarks are summarized as follows 

1) The overall analysis of the results of the cracked stiffened panels under 

different loading as well as different kinds of stiffeners reveals that the 

presence of material discontinuity, that is, the crack has significant influence 

on the overall elastic behavior of the panel. This conclusion has been made 

evident when the results of elastic field are analyzed in the perspective of 

crack length including those of un-cracked panel. Stress concentration is 

found to increase with the increase of crack length for all the panels 

investigated.  

2) The influence of panel aspect ratio plays an important role in defining the 

state of displacement and stress in the panel. The intensity of stress is found 

to decrease with the increase of panel aspect ratio.  

3) From the comparison of results of panels with two different types of 

stiffeners it is revealed that the panel supported by lateral stiffeners at the two 

opposing longitudinal edges is more critical in terms of stresses then the 

panel supported by axial stiffeners.  

4) The results of fiber reinforced composite materials show that the orientation 

of fiber in the panel has quite a substantial influence on the state of stresses as 

well as displacements. The results of the present investigation show that the 

axial and shear stress components assume much higher value for the case of 

fibers oriented parallel to the direction of loading in comparison with the case 

of perpendicular fibers. The lateral stress component however shows 

dominating characteristics for the case of fibers oriented perpendicular to the 

direction of loading. 

5) In order to check the reliability and accuracy of the present analytical scheme, 

solutions are compared with the corresponding solution of approximate 

numerical methods, namely, Finite Element Method and Finite Difference 

Method. This is because of the fact that no other reliable solution is available 

in the literature that can be compared with the present solutions. From 
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comparison of the results of different methods, it is observed that solutions 

are in good agreement with each other. More specifically, the present 

analytical solutions are found to be almost identical to those of the FEM with 

few exceptions only at the point of singularities. Finite Difference solutions 

also compare well with the present solutions, but slight discrepancies are 

observed for some sections, especially at the cracked section and the loaded 

boundary, which is probably because of the low mesh density used to model 

the panel by Finite Difference Method as well as the management procedure 

of singularity, is different in FDM compared to FEM. 

 

8.2 Recommendations 

This is completely a new analytical method to find out the stress and displacement 

filed of edge- crack stiffened panels.  

1) This work can be further extended with opposing edges and internal cracks.  

2) The method has been investigated and instituted as capable to deal isotropic 

and orthotropic stiffened panels effectively for axial and bending loads. It 

also requires to be investigated for a variety of loading configuration in order 

to have its wide range of adoptability and versatility.  

3) The method can effectively and efficiently deal with the structures of 

unidirectional composite lamina. Further, even for a unidirectional lamina, 

the loading should be either in the direction of fibers or perpendicular to the 

fiber. Therefore, the method, at its present states, cannot be directly applied to 

laminated (multilayered) composites with fibers oriented in different 

directions. However, with minor modification in the formulations, the method 

can be made suitable for laminated composites without any limitation of the 

fiber direction. 
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