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ABSTRACT

Cantilever beams, made of shape memory alloy (SMA), undergo much larger

deflection in comparison to those made of other materials. Again, cantilever beams with

reducing cross-section along the span show larger deflections compared to those of

constant cross-section beams. Furthermore, the degree of variability/complexity will

further increase if the material or physical nonlinearity is involved, typically for an

SMA beam. That takes such a study in the domain of geometric nonlinearity together

with material nonlinearity. Problems of physical and geometric nonlinearities are always

challenges for the engineers. Analysis was conducted for such a canti lever beam with

reducing cross-sectional area, made of SMA with highly nonlinear stress-strain curves.

Initially, experiments were conducted for stainless steel cantilever beams theoretically

of uniform strenb'lh, with nonlinear stress-strain curves. In addition to the experiment, a

computer code in 'C++' has been developed using the Runge-Kulla technique for the

purpose of simulation. Et1ective modulus-curvature relations obtained from the

nonlinear stress-strain relations for dit1erent sections of the beam that are used j()r the

analysis. Nonlinear analysis shows the stresses are not that high as predicted by ideal

theories. Moreover, the tensile and compressive stresses are slightly different in.

magnitude and both decrease along the span. Experimental load-deflection curves are

found to be initially linear but, nonlinear and convex upward at a high load. Comparison

of the numerical results with the available experimental results and theory shows"

excellent agreement verifying the soundness of the entire numerical simulation scheme.

Next the same computer code has been used for the purpose of simulation for SMA

beam but with SMA's stress-strain data. Moment-curvature and effective modulus-

curvature relations are obtained from the highly nonlinear stress-strain relations for

different sections of the beam .. For rigorous analysis, the true stress-strain curves in

tension as well as in compression have been used for the study. It is seen that nonlinear

stress-strain curve governs the response of the beam. Moreover, load-deflection curves

are initially linear but, nonlinear and convex upward at a high load. It is found that more

material can be removed from an SMA beam of uniform strength, originaily designed

without considering geometric nonlinearity and the effect of end-shortening.

xii



Furthermore, the compressive stress IS significantly higher than the tensile stress

because of asymmetry in stress-strain relations. If 'end-shortening' is considered, stress

falls along the span. Interestingly, for different cases considered, it is found that the

beam material may remain in the parent austenite phase, mixed phase or in the stress

induced martensitic phase.
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CHAPTER I

INTRODUCTION

1.1 Introduction to Smart/Functional materials

Smart materials are the new emerging materials system that combines contemporary

materials science with information science. The smart system is composed of sensing.

processing, actuating, providing feedback, self-diagnosing, and self-recovering sub

systems. The system uses the functional properties of advanced materials to achieve

high performances with capabilities of recognition, discrimination, and adjustification in

response to a change of its environment. Each component of this system must have

functionality, and the entire system is integrated to perform a self~controlled smart

action, similar to a living creature that can think. judge. and act. A smart system can bc

considered as a design philosophy that emphasized predictivity, adaptivity, and

repetition (Zhong, Wang and Kang (1998».

A smart system or smart structure is defined to be a nonbiological physical structure

with (i) a definite purpose, (Ii) means and imperative to achieve that purpose, and (iii) a

biological pattern of functioning.

Four of the most widely used smart materials nowadays are: (i) piezoelectric Pb (Zr,

Ti)03 (PZT) (ii) magnetostrictive (Tb, Dy) Fe2 (iii) electrostrictive Pb (Mg Nb)03 and

(iv) shape memory alloy NiTi. These materials can be taken as typical examples to

briefly illustrate the structural characters of the smart materials. Pb(Zr, Ti)03 is a

ferroelectric ceramics which is bcc at a mediate temperature range and becomes

ferroelectric on cooling through the Curie temperature (Te). At room temperature (RT).

it is poised on a rhom bohedral-tetragonal phase boundary that enhances the piezoelectric

coefficients. Terfeno, (Tb, Dy)Fe2, experiences a rhombohedral-tetragonal transition at

RT, which enhances its magneto-striction coefficient. Pb(Mg, Nb)O, and NiTi are cubic

at high temperatures and, on annealing, transform to a partially ordered state. On further

cooling, Pb(Mg, Nb)03 passes through a diffuse phase transformation at RT, forming a

mixture of ordered and disordered phase domains that exhibits large dielectric and
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electrostrictive coefficients under certain conditions. Just below RT, it transforms to a

ferroelectric rhombohedral phase. The partially ordered shape memory alloy NiTi

undergoes an austenitic (bee) to martensitic (monoclinic) phase change just abovc RT. It

is easily deformed in the martensitic state but recovers its original shape when reheated

to austenite. The structural and phase transformation similarities of these four actuator

materials are remarkable and could be a key in developing new smart materials.

Science and technology in the twenty-first century will rely heavily on the

development of new materials that are expected to respond to the environmental

changes and manifest their own functions according to optimum conditions. The

development of smart materials will undoubtedly be an essential task in many fields of

science and technology such as information science, energy, transportation, safety

engineering, and military technologies. Materials development in the future, therefore,

should be directed toward creation of hyperfunctional materials that surpass even

biological organs in some aspects. The current materials research is to develop various

pathways that will lead modern technology toward the smart system.

Functional materials (commercially termed as smart materials) are distinctly

different from structural materials, and their physical and chemical properties are

sensitive to a change in the environment such as temperature, pressure, electric field,

magnetic field, optical wavelength, adsorbed gas molecules, and pH. Functional

materials utilize their native properties and functions to achieve intelligent action.

Functional materials cover a broader range of materials than smart materials. Any

materials with functionality are attributed to functional materials, such as ferroelectricic

BaTi03, the magnetic field sensor of Lal_xCaxMn03, surface acoustic wave sensor of

Linb03, liquid petroleum gas sensor of Pd-dopped Sn02, semiconductor light detectors

(CdS, CdTe), high-temperature piezoelectric Ta,Os, fast-ion conductor Y,(Sn,Ti1_,), 0,

(pyrochlore structure), electric-voltage-induced reversible coloring of W03. and high-

temperature superconductors, etc.
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1.2 Shape memory alloy (SMA)

Shape memory alloys (SMAs) alter in response to changes in temperature. At a

low temperature, the material is in its martensitic state. When heated, it will regain its

original or memory shape. Most other materials undergo drastic material property

changes upon heating; materials may become brittle or stiff and can thus be prone to

breaking. Shape-Memory alloys can tolerate strain 3 to 25 times higher than

piezoelectrics can.

Some Shape-Memory alloys:

(i) nickel-titanium (Nitinol)

(ii) gold-cadmium

(iii) brass

(iv) ferromagnetic (a thin film, low bandwidth alloy)

SMAs are thermoresponsive smart materials that change shape in response to

heat or cold. They are most commonly Nitinol, or nickel and titanium combined. Less

popular but still possessing the shape memory effect are gold cadmium, silver cad-

mium, copper-aluminum-nickel, copper tin, copper zinc, and copper zinc aluminum.

They are useful in couplers, thermostats, automobile, plane and helicopter parts .

. SMAs are metals that, after being strained at a certain temperature, revert back to

their original shape by shape memory effect (changing temperature) or by

superelasticity (withdrawing the load). A change in their crystal structure above their

transformation temperature causes them to return to their original shape.

SMA's enable large forces (generated when encountering any resistance during their

transformation) and large movements actuation, as they can recover large strains.

In actual practice, the SMA, that inherently possesses a highly nonlinear stress-

strain (<1-c) behavior or characteristic, is frequently stressed beyond the proportional

limit.
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Shape memory alloys are called functional materials because of their two unique

capabilities, namely, the shape memory effect (SME) and superelasticity (SE). Both

SME and SE mainly depend on the solid-solid, diffusion-less phase transformation

process known as martensitic transformation (MT) from a crystallographically

more ordered parent phase (austenite) to a crystallographically less ordered product

phase (martensite).

The phase transformation (from austenite to martensite or vice versa) is typically

marked by four transition temperatures, namely martensite finish (Mf), martensite start

(M,), austenite finish (Ar), and austenite start (As). For the SMA used in this study, Mr <

Ms <As <At. For T> At, the SMA exists in the parent austenite phase. Under mechanical

loading stress induced martensitic transformation (SlMT) starts when a critical stress is

exceeded. When SIMT is over the SMA exists in the martensite phase. This SIM phase

is, however, unstable in the absence of stress at this temperature. Consequently, during

unloading the initiation of reverse phase transformation is marked by another critical

stress. When this reverse SIMT is complete the SMA returns to its parent austenite
,

phase. The complete loading-unloading cycle shows a typical. hysteresis loop (Figure

1.1) known as pseudo-elasticity. 1t can be noted that the SIMT and the reverse SIMT are

marked by a reduction ofthe material stiffness (Figure 1.1).

At this point, it is interesting to know that the local strain is remarkably different

from the total strain during this forward and reverse SIMT (Rahman and Khan (2006);

Rahman et al. (2002); Rahman and Tani (200Sb)). In their first study, Rahman et al.

(2002) dealt with the local strain-overall strain relationship of the supcrelastie shape

memory alloy (SMA) rods for consecutive tensile loading-unloading cycles. The local

strains were measured by an extensometer and also by the strain gages. On the other

hand, the total strains of the specimens were measured from displacements of the

loading machine's fixture. Test results show that during the stress induced martensite

transformation (SIMT), the local strains of the mid portion is significantly different from

that of the overall strains of the specimen. This phenomenon is so distinct that it appears

the start and finish points of the forward SlMT, as well as the reverse SIMT, can be

identified by simply plotting midpoint local strain against over all strain of the
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specimens. This unique local deformation pattern is explained elaborately in references

(Rahman and Khan (2006); Rahman et al. (2002); Rahman and Tani (2005b)) in terms

of the critical stress barrier. The critical stress necessary to initiate SIMT is found to be

higher for the mid portion of the specimen than for any other portion. It was pointed out

that local stress concentration is mainly responsible for the above-mentioned unique

phenomena that arc independent of thc specimen size and gage length. The local strain,

however, should he measurcd hy the highly scnsitive strain gages to observc the abovc ..

mentioned phenomena (Rahman and Khan (2006); Rahman et al. (2002); Rahman and

Tani (2005b )).

That this excellent functional material can exhibit peculiar mechanical behavior

under different loading conditions can be further verified from the literature; a few of

those studies are listed in the references by Funakubo et al. (1987); Gadaj et aI., (1999,

2002); Gong et al. (2000); Hutchinson (2000); Leo et al. (1993); Pieezyska et al. (2002,

2004); Shae et al. (1995); Tobushi et al. (1999); Sun et al. (2000). For example, recently

Rahman and Khan (2006) demonstrated that during stress relaxation tests the so-called

'inertia driven SIMT' occurs as local strain increases significantly at constant overall

deformation. That study dealt with Ihe mcchanieal hehavior of the supcrclastic SMA

rods in terms of local dcllmnations and time via tensile loading-unloading cycles for

both ends fixed constraints. The so-called stress-relaxation tests have been performed to

demonstrate and investigate the local strains-total strains relationships with time

particularly during the forward SIMT. A 5000N capacity tensile testing machine

(Tin ius Olsen 1000) was used to conduct the test. The machine is actuated by an

electric motor. For measuring the local strain, a mechanical extensometer was

used in the experiment. It can measure up to 5% of strain with a constant of

0.005mm over a 50mm gauge length.

The specimens used in the experiment were superelastic SMA rods (Ti 49.3 at %,

Ni 50.2 at %, V 0.5 at':!c,).and Mild slecl (MS) strips. The length and diametcr of Ihe

SMA (NiTi) spccimcn was 445 mm and 2 mm respectively. SMA's transformation

temperatures are -590e, _34oe, _27oe and _30e for Mr, Ms, As and Ar, respectively

(Rahman and Khan (2006)).
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It was demonstrated that some remarkable phenomena occur pertaining to SIMT

that are absent in the traditional materials like mild steel. For example, at the stopped

loading condition the two ends (fixed end and moving end of the tensile testing

machine) were in fixed positions. So that there was no axial overall deformation of the

specimen but some notable increase in the axial local deformation was shown by the

extensometer placed at the middle position of the SMA specimen. It should be noted

that this peculiar behavior termed as 'inertia driven SIMT' occurs when the loading was

stopped at mixed phase condition (Rahman and Khan (2006)).

In terms of tension-compression asymmetry of the SMA's (J-C curves, interested

readers may refer to Rahman (2001); Raniecki and Lexcellent (1998). In all of these

studies, it was demonstrated through rigorous proofs that SMA behaves asymmetrically

under tension and compression particularly for large strains.

1.3 Motivation for the present stndy

Studies of modern adaptive structural elements are challenging as they often involve

nonlinear (both geometric and material) analysis. This is because such elements (for

example, beam or, column specially in adaptive structures) often undergo very large

deflections during their applications. Again, cantilever beams are often made Iight by

removing extra materials from it, mainly for economy and space constraints. Most

common example is the classical leaf springs that are designed for uniform strength.

Moreover, slots/openings are also made by removing materials from it by Rahman et al.

(2005; 2006a). The present study concentrates on the response of such a cantilever beam

made of SMA with variable cross-sectional area under a tip load. This study for the

superelastic SMA beams would be especially important since SMA itself is one of the

most widely used functional materials in many adaptive structures. Superelastic SMAs

can recover extremely large strains when they are unloaded. They, however, posses a
"

highly nonlinear stress-strain relations, with inherent asymmetry in tension and

compression by Rahman (200 I).

The present study is based on simultaneous use ofthe tension-compression curves of

the SMA, as found by Rahman (2001) and reproduced in Figure 1.2. The composition of
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superelastic SMA rods is as follows: Ti 49.3 at%, Ni 50.2 at%, V 0.5 at%. The diameter

of the SMA rod is 2 mm and SMA's transformation temperatures are -59°C, _34°C, -

27°C and _3°C for the martensite finish, martensite start, austenite start and austenite

finish, respectively. Average measured Young's Modulus for the parent phase was 65

GPa by Rahman (200 I).

In this study simulations would be conducted for a cantilever beam with varying

cross-sectional area, made of superelastic shape memory alloy. The varying cross-

section was due to reducing width with constant height along the span, in order to make

the beam theoretically of uniform strength. This point was not considered in the

previous studies by other researchers. Moreover, rigorous stress-strain curves for SMA

obtained by uniaxial tension and compression tests have been used, without any

idealization. Furthermore, since SMA beams can undergo very large deflections, th is

study also incorporates geometric nonlinearity in the analysis.

1.4 Objectives

In this thesis, response of SMA beam with reducing cross-section will be

studied. A computer code based on C/C++ will be developed for the ease of analysis.

The load-deformation curves of the SMA beams will be predicted by using the

developed code exploiting the nonlinear as well as the classical linear theories of the

beams. The available nonlinear stress-strain curves in tension-compression from

Rahman (2001) will be used for calculating the moment-curvature and effective

modulus-curvature relations for given cross-section of the beam. These will be used to

find the deflection and stresses at different segments of the beam.

It is important to verify the soundness of any program by comparing its output

with the available experimental results. But, specimens of SMA with variable cross-

section are not available. However, those can be made according to the requirements of

the design from high quality steel. Spring steel is available in coil form or, in the shape

of thick bar. Since the beam specimen will be thinner than those bars, it would be

difficult and costly to make thin specimens for the present study out of the available

spring steel. On the other hand, specimens can be easily made from the available
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stainless steel (SS) sheet. Stainless steel has quite high strength. The properties of

SUS304 are also available; for example, yield strength of austenitic SUS304 is 30,000

psi (",207MPa), and it can sustain an elongation of 50%. Of course, mild steel is cheaper

than SUS304 but it is oflower yield strength and cannot prevent rust. Therefore, SS has

been selected for the present study. At first, numerical results obtained for cantilever SS

beams. Experiments of the cantilever beam made of SS have been performed to verify

the program. Once the soundness of the code is verified for SS beam, it will be extended

for the SMA beam. For a cantilever beam of uniform strength the cross-section is

certainly rectangular. Beam height is constant but the width varies linearly with span.

the maximum width being at the tixed end. Specimen sizes will be of ditferent

dimensions according to the requirement of the design.

Arrangements will be made to apply dead weight as point load at the tip. The

load will be increased in steps up to the design value. Simultaneously, the tip dellections

will be measured by the height gage.

Finally, integration technique will be used to completely simulate and analyze the

nonlinear response of the superelastic SMA beam with variable cross-sectional area.

As already mentioned, once the soundness of the computer code/simulation

scheme for a beam is verified by experimental results, it can be extended for simulating

mechanical behavior of a beam made of any material. For more details in this regard,

interested readers may refer to comprehensive studies carried out for SMA columns as

well as for SUS304 columns by Rahman (2001) and Rahman et a!. (2005a; 2006).

Therefore, the specific objectives of the present research work are as follows:

(a) To develop a computer program for analyzing the response of a stainless steel

cantilever beam of variable cross-section /uniform strength.

(b) To conduct experiments of the cantilever beam made of stainless steel in order

to verify the developed code.

(c)' To extend the computer code for the case of cantilever SMA beam taking into

account its nonlinear material property and analyze the response/mechanical

behavior of SMA beam under tip load by applying the extended computer code.

8



CHAPTER 2

LITERA TURE REVIEW

In structural engineering, cantilever beams are often made light by removing extra

materials from it, mainly for economy and space constraints (Rahman et al. 2005a,

2006a; Bratus and Posvyanskii 2000; Matulewicz and Szymczak 1985). The present

study, thus, concentrates on the response of such a cantilever beam made of shape

memory alloy (SMA) with variable cross-sectional area under a tip load.

A large number of studies are reported in the literature dealing with the large

deflection analysis of cantilever beams made of conventional engineering materials, out

of which only a few are discussed, followed by the discussions of SMA beams. For

example, very recent study of Bele'ndez et al. (2005) can be discussed first. The authors

carried out numerical simulation using Runge-Kutta-Felhberg method to tind the tip

deflection of a very slender beam under a combined load. The authors studied the large

deflections of a uniform cantilever beam under the action of a combined load consisting

of an external vertical concentrated load at the free end and a uniformly distributed load

and compared the numerical results with the experimental ones. Young's modulus for

the beam material was calculated by comparing the numerical results with the

experimental ones. The present study takes into account the experimental results of

Bele'ndez et al. (2005) to prove the soundness of the numerical results obtained from

the developed numerical scheme.

Deflections of cantilever beam for different cross-sections are studied (Lo and Gupta,

1978; Baker 1993; Lee et al. 1993; Scott et al. 1955)

Lee (2002) dealt with large deflection of cantilever beams made of Ludwick type

material under combined loading. Governing equation was derived from shearing force

formulation, which has computational advantages over the bending moment formulation

for large deflection member. It was pointed out that numerical solution is required to

determine the large deflection because the governing equation is a complex non-linear

deferential equation. Numerical solution was obtained using Butcher's tifth order

Runge-Kutta method.

Lewis and Monasa (1982) studied the large deflections of cantilever beams of non-

linear materials ofthe Ludwick type subjected to an end moment.
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Bratus and Posvyanskii (2000) dealt with the optimum shape of a bending beam. The

problem of minimizing the elastic deflection of an elastic beam of variable cross-section

and fixed volume in the case of free supported and rigidly clamped ends has been

considered. In case of clamped ends, it has been proved that the optimum solutions must

necessarily have points inside the solution range in which the distribution of the beam

thickness degenerates to zero. Qualitative analytical and numerical solutions were given.

Matulewicz and Szymczak (1985) studied the optimum design of thin-walled 1-

beams undergoing torsion. The behaviour ofthe beam was described in accordance with

the theory of thin-walled beams with nondeformable cross-section. The constraints on

normal stress level, the magnitude of rotational displacement at a specified cross-

section, variable along the beam axis, were discussed. An iterative method of solution,

based upon the optimality condition. derived with the aid of Pontrygin's maximum

principle, has also been developed.

Rahman et al. (2006a) carried out extensive numerical simulation for studying the

response of a slender cantilever beam with an opening of different shapes (circle, ellipse

and square slots). It was found that the elliptic holes develop the minimum stresses and

deflections. However, in that study, no experimental results were available to verify the

numerical results. Therefore, Rahman et al. (2005a) in their next study, performed tests

to verify the soundness of the nume'rical results obtained considering varying cross-

section because of a circular hole.

Studies on the bending of the SMA beams of constant cross-section are also

reported in the literature. The investigations of the bending problems of pseudoelastic

beam were initiated by Atanakovic et al. (1989), where the explicit analytical moment

curvature relation was derived for rectangular beams loaded by a single pulse moment.

Raniecki et al. (2000), studied the variation of stress and the phase content

distribution in arbitrary symmetric cross-section of the beam for single bending cycle

and derived the explicit analytical equations for the moment-curvature hysteresis loop.

By numerical simulation, Auricchio and Sacco (1997) demonstrated that for pure

bending of a Nitinol superelastic SMA beam, with different properties in tension and

compression, the axial strain has a non-monotonous response with the bending moment

during loading and unloading. The complicated movement of the neutral axis of the

cross-section of the beam due to SIMT leads to such peculiar response.
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More recent studies regarding the bending of pseudoelelastic SMA beams are

reported by Raniecki et al. (200 I), Rejnar et al. (2002).

As far as the importance of numerical analysis IS concerned, numerical and

experimental studies were carried out for the superelastic shape memory alloy beams

that can recover large deformations upon unloading. Extensive study on slender

cantilever beams' behaviour was carried out considering constant cross-sectional area

and it has been demonstrated that experimental results match with the predictions of

large deflection theory incorporating the geometric nonlinearity (Rahman et al. (2003)).

SMA is widely used/proposed as an actuator for the hybrid composites mainly

for the purpose of active control. Bending/buckling of SMA hybrid composites is also a,
popular topic (Turner 2005; Turner and Patel 2005; Thompson and Loughlan 2001;

Tawfik et al. 2002). It is perhaps important to study the bending of the SMA column

itself, before studying the bending/buckling of SMA hybrid composites. This study,

therefore concentrates on the study of bending of SMA beams with reducing cross-

sections, which was not considered in the previous studies by other researchers.

Moreover, rigorous stress-strain curves for SMA obtained by uniaxial tension

and compression tests have been used, without any idealization. Furthermore, since

SMA beams can undergo very large deflections, this study also incorporates geometric

nonlinearity in the analysis.

The phenomena of buckling ofpsedoelelastic SMA columns and shafts have also

been extensively demonstrated by Rahman et al. (2001, 2005b, 2006b). Furthermore,

Rahman et al. (2006c) also studied the buckling of the stainless steel columns.

Experiments were conducted and later numerical simulation was carried out in order to

analyze the observed buckling and postbuckling behavior for the columns. Precise and

quantitative analyses of the results verify the fact that the material's (J-C properties, both

in tension and compression, attribute to column's buckling behavior. Obviously, elastic

instability analysis (based on Hooke's law) is not sufficient for the SMA beams that has

highly nonlinear 0"-& relations (Figure 1.2). Moreover, for a high intensity load rigorous

0"-& curves in tension and compression should be used for analysis, as pointed by

Rahman (200 I). Consequently, it was concluded that the best results from numerical

simulation would be possible, particularly for the short SMA columns, if both the tensile

and compressive (J-C curves can be considered simultaneously (Rahman et al. 2005, 6).

II



t

Therefore, the present study is based on simultaneous use of the tension-

compression curves of the SMA beams. Following Rahman (2005b, 2006c), very

recently Hossain (2006) investigated the buckling of short SMA columns and compared

the results with those from Timoshenko's method (1981).

For study of tension-compression asymmetry of the SMA's (J-6' curves,

interested readers may refer to Orgeas and Favier (1995), Rahman and Khan (2006),

Rahman and Tani (2006). In all of these studies, it was demonstrated through rigorous

proofs that SMA behaves asymmetrically under tension and compression particularly

for large strains.

12

. :



PL + Px = 0 (3.2)

CHAPTER 3

MATHEMATICAL ANALYSIS

3.1 General

.In this chapter governing differential equations and the additional equations

necessary to obtain the effective modulus at different positions of the beam are

discussed.

3.2 Governing differential equations for the beam

The basic equations for the analysis of beam can be derived by considering the

beam subjected to a tip load P. The Euler-Bernoulli's governing equations are:

d'y
El dx' -PL+Px=O (3.1)

~

E'll+(:]']'
Equations (3.1) and (3.2) are linear and nonlinear Bernoulli-Euler's equation,

respectively.

Boundary Conditions:

y=o

dy =0
dx

at x = 0

at x = 0

Though the boundary conditions remain the same, the governing equation itself

has become much more complicated than that obtained from the linear theory.

Therefore, numerical techniques should be used to get the deflection. As, both the

boundary values are given at the initial point, the solution has been obtained through

initial value integration by Runge-Kulla Method. The design is based on the inelastic

properties of structural materials. The shearing effects have been neglected because it is

a slender beam.
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The load versus deflection curve is obtained by solving the second order

governing equation (3.2) for different modulus of elasticity (E, E') The deflections are

determined with the help of Runge-Kutta method (APPENDIX-A), Knowing the

bending moment (Mb) from the equilibrium condition at different grid points, E"at those

grid points can be calculated as depicted in flow chart (Figure 3,5), Next, using these E"

at different grid points in the governing equation 3.2, P-O curve is plotted, From stress-

strain relations (Figures 1.2, 4.3(b), 4.4(b», stresses are found from corresponding

different strains and stress versus horizontal distance curves are plotted ..

3.3 Large deflection analysis of the beam of uniform strength

A cantilever beam with linearly varying cross-sectional area (Figure 3.1) was

simulated. The varying cross-section was due to reducing width with constant height

along the span in order to make the beam theoretically of uniform strength, assuming the

maximum stress remains within the proportional limit.

Since the beams are slender for the present case, only pure bending is taken into

account ignoring the effect of shearing stresses. When bending is large with respect to

the span of the beam the governing equation of the elastic curve for a cantilever beam

with a point load P (Figures 3.1,3.2), in terms of large deflection formulation is given in

equation (3.2).

Equation (3.2) is neglects the effect of end-shortening of the tip (Oh)' If this end

shortening is considered, only the second term of equation (3.2), is to be changed as

P(L-oh). The above equation is highly nonlinear (geometrically) and has been solved

numerically in the pres~nt study by Runge-Kutta method.

For calculating this end shortening Oh, let us consider a cantilever beam having length

L acted upon by a load P. On the elastic curve, an infinitesimal segment length d~ is

given by

ds = ~dx' + dy'
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Thereforc, the total Icngth of the clastic curvc is given by

s = 'JJdX' + ell"
o

',[ I + ( ~;_~r dx (33)

where, XH =L-o"

With the assumption of inextensible clastic curve, 0" is calculated numerically by trial.

At first the elastic curvc is evaluated from the solutions equation (3.2) without

considering 0". Next, assuming the value of XII =L-o", in such a way that the value of

integration of cquation (3.3) becomcs s"'L, it can be said that end shortening is o,,=L-XII.

In this thesis 0" was calculated with the following convergence criteria, L?s?O.998L.

Then putting the value of 0" in the equation (3.2) of the elastic curve, deflections at

corresponding loads can be found. Alternately, at first a small value of 0" is assumed

and equation (3.2) is solved. Once the elastic curve is known, equation (3.3) is

integrated numerically by Simpson's 3/8th rule to chcck whethcr the assumed value of

0" is accurate or, needs to be improvcd by the next step. Therefore, in order to take into

account the end shortening, equations (3.2) and (3.3) havc to be solved simultaneously.

Next, the design parametcrs bascd on classical lincar thcory for the bearns of

uniform strength are described. From the definition it follows that,

M

Z
6PL

boh2
6P( L-x)=

bh2

in which bo is the width of the beam at the built-in end. Then,
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Since the section modulus (2) and moment of inertia of a beam of triangular

shape changes with x in the same proportion as the bending moment, the maximum

stress and the curvature remain constant along the beam (Figures 3.1, 3.2). Therefore,

the deflection of the beam at the end, without considering the end shortening, is,

<5 = JI2.P(L -,x).x dx = 12.P~ fXdx = .1PL' ... (3.4)
o Ehh E.b(}h () 2 Elo .

where,

end.

boh3I()= -- represents the moment of inertia of the cross section at the built-in
12

It can be noted that the solutions from equations (3.3) and (3.4) are likely to vary

significantly at a high load and that is one of the important points of discussion for the

present study. Moreover, though solution from equation (3.4) is exact and readily

available; a lot of numerical analysis is involved to get the solutions from the highly

nonlinear equations (3.2) and (3.3). In particular, the end shortening calculations takes

considerable time during numerical simulations.

More importantly, since for the present study the stress exceeds far beyond the

proportional limit and also cross-section varies along the span, the stiffness (E1) also

becomes variable at the grid points. The following section describes in detai I the

strategy to tackle the material nonlinearity for pure bending of such a beam.

3.4 Analysis of the inelastic deformation of the beam [Timoshenko's method

(1981)]

The theory is based upon the assumption that cross-section of the beam remains

plane during bending and hence longitudinal strains are prop0l1ional to their distance

from the neutral surface. a-Ii diagram of Figure 3.3 will be referred to during the

deviation.
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Let us begin with a beam of rectangular cross section (Figure 3.4) at the fixed

end and assume that the radius of curvature of the neutral surface produced by the

bending moment M is equal to p. In such a case the.unit elongation of a fiber at distance

y from the neutral surface is

- Y£ - - (3.5)
p

Denoting by hi and h2 the distance from the neutral axis to the lower and upper

surfaces of the beam, respectively, we find that the elongations in the extreme fibers are

h,
£, =-- (3.6)

p

It is seen that the elongation or contraction of any tiber is readily obtained

provided we know the position of the neutral axis and the radius of curvature p. These

two quantities can be found from the following two equations of static equilibrium.

"JudA = b Judy = 0 (3.7)
-111

",JuydA = b J uydy = Mb (3.8)

Equation (3.7) is now used for determining the position of the neutral axis. From

equation (3.5) we have

dy =p d £ (3.9)

Substituting into equation (3.7) we obtain

I~ £1

Judy=p Jud£=O

Hence the position of the neutral axis is such that the integral vanishes. The

integral can be represented by the area under stress-strain diagram (Figure 3.3) from £,

to£,. Now we define L1 as the sum of the absolute values of the maximum elongation

and maximum contraction, which is
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In calculating the radius of curvature p we use equation (3.8) in the following

form

"
br/ f (JEdc = M"

r~

I 1;"1 12 "
b . I'd" ~"f INext, by 0 scrvlIlg t l<1tfJ ::::: - an -- = M" ' we get, E = -1 aEt E

'" P '" ",

The integral ill this expression represents the moment of the area under cr-E

diagram from E? to EJ with respect to the vertical axis as shown in Figure 3.3. Of course,

for numerical simulation we used Figures 4.3(b), 4.4(b) for stainless steel beam and

Figure 1.2 for SMA beam in place of the fictitious Figure 3.3.

True strain in tension (E,) and true strain in compression (E,) are given by the following

equations. Where "0 is original length, " is changed length, ~ is difference between

original and changed lengths and e is engineering strain.

"dh h ho+b'o ( )c, = JdE, = J - = IIl- = IIl---._. = III J + e ...(3.10)"0 h hO hO
. ho ho hO - ()~O ( )
Cc :;;;;:/11.-=/11 --Ill =-/n j-e ....(3 . .ll)

h hO - b' ho .. .
True stresses are obtained from'- eonditio8':'of incompressibility. The true stress in

tension (O,rUlJtensioll and true strain in compression (Olruc)colllprcssion are given by following

equations.

((J,,,,, ),,"'''''' = : = ;; (e'. )
"

or, ((J",,,. ),,"'i"" = (J" (1 + e) (3.12)

or, (a/I"II/: )mUll'rt'.I".liflll ::: ao (1- e) (3.13)"

Where A" is original cross-section, A is changed cross-section and (Jo IS

engine~ring (nominal) stress.

Oncc thc M-LJ and £'~LJcurves are known for diffcrent sections of the beam, the

stresses can bc easily calculated at those sections using equilibrium approach. At first,

governing equation (3.2) has to bc solved replacing the stiffness parameter £1 by its

appropriatc values at different grid points.
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CHAPTER 4

INELASTIC DEFORMATIONS OF CANTILEVER STAINLESS STEEL BEAMS

OF VARIABLE CROSS-SECTION- EXPERIMENT AND NONLINEAR ANALYSIS

4.1 General

Since the stainless steel is one of the most widely used structural materials, elastic-

plastic study of stainless steel beam, originally designed for uniform strength, is

essential. Such study could not be found in the available literatures. Therefore, the

present thesis concentrates on inelastic deformation of a stainless steel beam with

varying cross-section.

Obviously, elastic bending analysis (based on Hooke's law) is not sufficient for the

stainless steel beams that has highly nonlinear (Y-c relations. For simplicity of analysis,

sometimes stress-strain curves are assumed to follow certain material type as already

discussed. But as pointed by Rahman et al. (2006c), for a stainless steel column under a

high intensity load, rigorous (Y'c curves in tension and compression must be used for

numerical analysis. Therefore, stress-strain curves for stainless steel, obtained by

uniaxial tension tests, have been used for simulation purpose without any idealization

(Figures 4.3, 4.4). Furthermore, since stainless steel beams are assumed to undergo very

large deflections, this study also incorporates geometric nonlinearity in the analysis.

4.2 Experiment

Thin stainless steel (SS) sheet with relatively moderate/low yield strength is perfectly

suited for the present study that concerns inelastic deformations of the beams.

Therefore, specimens of the beams of different dimensions were produced from two

commercially available SS sheets. Tensile test specimens were taken from the same

sheets.

Figures. 3.1 to 4.4 and Table 4.1 are presented to clearly explain diffcrent important

physical and geometrical parameters of the beam of variable cross-section studied in this

thesis. The geometrical parameters shown are different dimensions and end shortening
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of the beam (Figures 3.1, 3.2). Figures 4.1 and 4.2 show the experimental setup.

Nominal stress-strain curve is obtained by experiment and then converted to true stress-

strain curves (Figures 4.3(a) to 4.4(b)).

Tensile test results of the four specimens of thickness 1mm, obtained by taking the

load cell reading of the universal testing machine and the corresponding reading of

strain by a mechanical extensometer, show that the stress-strain curves for the

specimens remain linear initially but nonlinear at a high stress (Figure 4.3(a)). These

linear and nonlinear stress-strain relations are the main criteria of selection of the beam

material for this study for performing experiment of the cantilever beams that must

undergo large deflections, as far geometric nonlinearity and material nonlinearity are

concerned. Similar stress-strain relations were obtained for other four specimens of

thickness 2 mm under similar test conditions (Figure 4.4(a)). From those eight stress-

strain curves apparently the best two representative curves (one of thickness Imm and

another of thickness 2mm) are selected for analysis. Next, the true stress-strain relation

is taken for stainless steel from experimental stress-strain relation (Figures 4.3(b),

4.4(b)). By using true stress-strain relation, moment-curvature and modulus of elasticity-

curvature relation are obtained. Those values are essentially used for the purpose of

simulation of beam's response under a tip load. It is important to note that conversion of

nominal (engineering) (J"-E; curves separately into true tensile (J"-& curve and true

compressive (J"-& curve, will automatically induce tension-compression asymmetry for

the beams as will be evident in the results and discussion chapter of the thesis.

A sufficiently rigid structure made of wood, as shown in Figures 4.1, 4.2, was

constructed for conducting the experiment, in order to trace the beam's load-deflection

relation. Dead weight was applied at the tip and the corresponding deflection was

measured by the height gage (one small division of its dial can read O.Olmm). To

eliminate eye estimation errors, a simple circuit (with a DC source and light emitting

diode) was wired between the specimen and height gage pointer. Therefore, whenever

the height gage touched the beam, it was indicated by a flash. The whole process of

experiment is shown in Figures 4.1, 4.2. For each of the four cases described (Table

4.1), three specimens were tested and the average results of tip deflections and end-

shortening are presented for analysis. The end-shortening of the tip was measured by a

digital vernier scale and these values are presented in Table 4.3.
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4.3 Accuracy and reliability of the analysis

A numerical technique, integrated in a computer program written in C++

(APPENDlX-C), has been employed here to solve the problem of deflections and

stresses of stainless steel and superelastic SMA beams at tip load and using different

moduli of elasticity for variable cross-section. Before presenting the analysis of the

results, it is necessary to give an idea about the accuracy of the numerical technique and

the reliability of the program used. Here, ten segments are taken along the beam span,

and 4th order Runge-Kutta method (APPENDIX-A) is used for analysis of the beam. So

that the accuracy of 4th order remains uniform.

4.4 Results and discussion

Soundness of the present numerical scheme can be proved by comparing the

results, taking into account only geometric nonlinearity, for a highly flexible cantilev'er

beam of constant cross-section under a combined load as treated by Bele'ndez et al.

(2005). Table 4.2 shows the comparison of experimental tip deflections with those

obtained using present numerical analyses. The Young's modulus for a particular load

was not explicitly given by Bele'ndez et al. (2005). It was stated to be within 180-

210GPa. We used its value as 200GPa. As may be seen from table 4.2 that the numerical

nonlinear solution matches within an error of only 3.5% at the highest experimental load

found by Bele'ndez et al. (2005). A better match would be possible with the known

correct value E. For example, E=194.5GPA was found to give least error as shown by

Bele'ndez et al. (2005). Therefore, our numerical predictions would match even better

with the experimental results with E=194.5GPa. Anyway, it is now proven that the

present numerical scheme as used here is capable of predicting the elastic curve with

reasonable accuracy by large deflection theory taking into account the associated end-

shortening even under a combined load.

Again as cross-section varies linearly with the span, M-J relation is calculated

for the different segments as shown in Figures. 4.5, 4.6(a), (b). Figures. 4.6(a) and 4.6(b)

present the comparison of bending moment with total strain for different segments
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obtained from experimental (5-£ diagram (Figures 4.3(b), 4.4(b». Since nonlinear (5-£

relation is used, the M-LJ relation also becomes nonlinear.

From Figure 4.7, it is found that the modulus of elasticity is almost constant for

very low strain (L1 ~ 0.202% for 1mm and LI~ 0.1 02% for 2mm) with a value of 181GPa

and 223GPa for specimen thickness of Imm and 2mm, respectively. These values are

actually the Young's modulus of elasticity of the material, which satisfies Hooke's law

for proportional limit. In the nonlinear range of (5-£ curves, the slope significantly

decreases with strain and hence the modulus of elasticity, E, is termed as effective

modulus of elasticity, E'~
From Figure 4.7, it is seen that E"remains the same for all the segments though

M varies for different segments (as shown in Figures 4.6(a), (b» along the span. This is,
because of the fact that b varies along the length, but h remains the same.

All the results (Figures 4.8-4.15) presented in this thesis are based on the M-LJ

and E'~LJrelations of Figures 4.6(a), (b) and Figure 4.7, respectively.

The concept of so-called uniform strength ideal beam has been applied in the

following steps. With the aid of Figures 4.6(a), (b) we can select a value of maximum

design moment (M) that will occur at the fixed end. Assuming linear stress-strain

relation and ignoring end-shortening, corresponding design load P I is known from the

equilibrium condition and consequently, strains (LJ), are known from Figures 4.6(a), (b).

In this way, corresponding to the design load PI, for Imm thick beam a uniform dcsign

stress was set approximately at 200MPa while for 2mm thick beam the uniform design

stress was set approximately at 250MPa. Figures 4.3 and 4.4 show that these stress

values are in the vicinity of the proportional limits. However, since dead weight was

used for loading, the closely possible actual values of the uniform design stresses are as

shown in Table 4.1. Moreover, analysis is also carried out for the same beam but at a

higher load, P2 (Tables I, 3), in order to take the analysis distinctly in the regime of high

geometric and material nonlinearities. The deflections and stresses corresponding to P J

and P2 are presented in Figures 4.8-4.15.

The results for the four designed beams are presented in the following way. At

first, the complete load-deflection curves (both from experiment and simulation) are

discussed for a particular beam. Next, the comprehensive stress analyses (by linear and

22



nonlinear theories and with and without end-shortening) are presented for the same

beam.

Before discussing in detail the numerical results, it is important to give an idea of

accuracy of those results with the aid of Figure 4.8 for case 1. For this purpose, at first.

results predicted from the linear theory and elastic material can be compared with the

exact formula (PL3/2EI) given by equation (3.4), considering the case of a beam of

variable cross-section without end shortening. Therefore, for the dimensions of case 1 as

shown in Table 4.1, for the load of 14.529N, the analytical tip deflection is 35.33mm.

From the data of Figure 4.8, for linear theory, the computer code gives a close value of

35.34mm. Thus, predictions of all other solutions for the beams at different cases

(according to linear/nonlinear theory with and without end-shortening), using the same

code, can also be considered as highly accurate. It is because the numerical scheme is

based on initial value integration technique and easily yields much more accurate and

reliable results than those from other numerical techniques like finite difference or finite

element.

Figure 4.8 shows that at a low load of5.004N the value of tip deflection obtained

by experiment is 3.6mm. Corresponding solutions by ideal case is 3.13mm and the tip

deflections for the case of linear and nonlinear analysis together with end-shortening are

2.66mm and 2.74mm, respectively.

At design load (P/~JO.158N) the tip deflection obtained by experiment IS

22.8mm. Corresponding solutions by ideal case is 24.55mm and by linear and nonlinear

theories without end-shortening are 23.04mm and 25.8mm, respectively. But the tip

deflections for the case of linear and nonlinear analysis together with end-shortening are

20.6mm and 21.97mm, respectively.

Finally, the tip deflection at a load of 14.529N, as predicted by the nonlinear

solution taking into account the end-shortening is only 1.37% more than that from

experiment and the linear solution together with end-shortening is 8.80% lcss than that

from experiment. However, the tip deflection obtained by experiment is 7.51 % less than

that from linear solution and 26.7% less than that from nonlinear solution if the effect of .

end shortening is ignored.

As seen from Figure 4.8, the ideal solutions for linearly elastic beam

(E=1810Pa), that can also be obtained using equation 3, are superimposed with the
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more comprehensive and realistic numerical results including that from experiment. As

seen, if the load is not that high, all the solutions merge together, simply verifying the

soundness of the numerical scheme. At higher loads, however, the solutions diverge

because of the fact that the effect of material and geometrical nonlinearities and also end

shortening become important (Figure 4.8).

It should be mentioned here that the terms 'nonlinear' in the captions of Figures

4.8-4.15 refer to the geometrical nonlinearity. Although, except the ideal case as shown

in Figure 4.8 and Figure 4.12 all the solutions (either linear or, nonlinear) take into

account the material nonlinearity. Among the numerical results of tip deflections and

stresses obtained, apparently the best predicted results are that takes into account both

types of nonlinearities together with end shortening from practical point of view (Figure

4.8). It should be mentioned here that the importance of geometric and material

nonlinearities can be clearlyrealized if a comparison is made with ideal case. Therefore,

a few comparisons are given in this regard.

It has already been mentioned that for ideal case, that is for linear theory. elastic

material and ignoring the effect of end-shortening, a beam with linearly reducing cross-

section has its tip deflection given by equation (3.4) and more importantly, it should

develop equal stress all along its span. In order to visualize the real situations, however,

'Figures 4.9(a) and 4.9(b) show the actual stress distributions for variable cross-section

(case I) along the beam-span for the geometrically Iinear and non Iinear cases,

respectively. 1f end-shortening is ignored, both geometrically linear and nonlinear cases

predict constant stresses (either tensile or compressive) along beam span. On the other

hand, stress decreases along the span of the beam because of end-shorten ing together

with material nonlinearity ..

The stress according to ideal case, for case 1 (Me/I) at the design load

(PI=10.l58N)is I98.74MPa, but at a higher'load (P2=14.529N) for the same beam

geometry is 284MPa. Now let us examine theimeal values at the fixed end according to

nonlinear analyses from Figures 4.9.

For the design load, PI, the linear theory together with end-shortening predicts

191.42MPa tensile stress and 192.09MPa compressive stress (Figure 4.9(a)). The

nonlinear theory with end-shortening, on the other hand, predicts 191.14MPa tensile

stress and 191.69MPa compressive stress (Figure 4.9(b)). These stresses are
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significantly lower than their design values of 198.74MPa (both In tension and

compression).

Again, as seen in Figure 4.9(b), for a higher load Pl , the nonlinear theory with

end-shortening, predicts 244.14MPa tensile stress and 244.09MPa compressive stress

(Figure 4.9(b)) that are drastically less than their values of284MPa (same in tension and

compression) according to ideal beam formula (Me/I).

Moreover, an ideal beam of uniform strength should retain uniform stress along

its span. But it is very clear that the stresses do not remain constant but decreases along

the span. For instance, Figure 4.9(b) shows that if end-shortening is taken into account,

at Pl, the tensile and compressive stresses are 234.77MPa and 235.04MPa, respectively,

at the grid point just before the tip. These values are notably less than their

corresponding values at the fixed end. At this point, it can be said that slightly more

material can be removed, in particular near the beam tips, to make the beam of unifonn

strength more economical. Similar pattern of stress distribution can be seen for other

three cases 2-4, as shown in Figures 4.11,4.13 and 4. I5.

Those results can be physically interpreted as below. First of all, in the inelastic

deformation region, stress increases quite insignificantly with strain (Figures 4.3, 4.4).

Thus the effect of considering material nonlinearity results in reduction of stress in

comparison to ideal linear flexural stress (=MelI). The asymmetry in tension-

compression is because of conversion of the nominal stress-strain cur~es into their true

stress-strain values.

Secondly, the effect of end-shortening is to reduce the bending moment and

corresponding stresses at the fixed end. Further, end-shortening causes a continuous

reduction of stress along the span.

Finally, the effect of geometric nonlinearity is an additional (though slight)

reduction of stress in comparison to the linear theory (linear theory is consistently

conservative).

Figure 4.10 shows that the load-deflection curves for case 2 is similar to those in

Figure 4.8. From Figure 4.10, at the load of 14.529N, the tip deflection by nonlinear

solution with end-shortening is .57.8mm and by linear solution with end-shortening is

54.91 mm. The experimental value at the same load is 61.6mm.
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Figures 4.II(a), (b) show the stress distribution along the span of the beam for

case 2 at a design load of P,=IO.lS8N and a higher load of Pl=14.S29N. Since the beam

parameters are same except the load, the corresponding point on the equilibrium

configuration path can be located in Figure 4.10 corresponding to P, and P2• For the

higher load, Pl, the compressive and tensile stresses at the fixed end by nonlinear

theories together with end-shortening are 244.1 OMPa and 243.71 MPa, respectively. The

stresses decrease along the span. The stress values at the grid point just before the tip are

22S.S7MPa (tensile) and 226.42MPa (compressive). It can be noted that the stresses are

28S.82MPa according to ideal beam theory and should remain constant along the span.

As far as prediction of tip deflections and end-shortening are concerned, Case 3

shows the best match between prediction and real values found by experiment as shown

in Figure 4.12 and Table 4.3. The shape of the equilibrium configuration path even in

the highly nonlinear range is quite accurately predicted by the nonlinear theory with

end-shortening (Figure 4.12). 1n Figure 4.12, the tip deflection at design load

. (Pj=20.076N) obtained by experiment is IS.Omm. Corresponding ideal solution (by

equation (3) with E=223GPa) is 12.66mmand by linear theory, solution obtained by

computer code is 12.67mm. The numerical results at the same design load by linear and

nonlinear analysis together with end-shortening are l2.8Smm and 13.43mm,

respectively. At the higher load of 34.5IN tip deflection, as predicted by the nonlinear

solution taking into account the end-shortening, is only 1.74% more than that from

experiment. Similarly, for the same load the linear solution together with end-shortening

is 8.69% less than that from experiment.

Figures 4.13(a), (b) show the stress distribution along the beam span for case 3 at

two. different loads, at the design value P,=20.076N and the higher load P~= 34.S1N.

The effect of high load on the beam's response is very clear. By formula of ideal beam

(Me/I) stresses should be 2S0.9SMPa at (P,=20.076N) and 431.37SMPa at a high load

(P2=34.S1 N). The stress pattern as shown in Figures 4.13 is similar to those of cases 1,2

(Figures 4.9, 4.11). At P2, the compressive and .tensile stresses at the fixed end by

nonlinear theories together with end shortening are 33S.77MPa and 340.84MPa,

respectively. It shows that the stress decreases along the span. Stress pattern is similar at

the design load Pj=20.076N.
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In Figure 4 ..14 the tip deflection for case 4 is sho",n up to a high load of 34.51 N

load. The design load is PJ~20.076N. At the highest load, the tip deflection for

nonlinear solution with end-shortening is 5.980/0 more than that from experiment. In

case of linear solution with. end-shortening, the'iip deflection is 10.34% less than that

from experiment. Of course, the tip deflection is 'found to be unrealistically high if end-

shortening is ignored, though those results are not shown here explicitly.

Stress distributions along the span are shown in Figures 4.15(a), (b) for case 4.

The compressive and tensile stresses at the fixed end by nonlinear theories together with

end shortening are 334.72MPa and 337.6IMPa, respectively (Figure 4.15(b)). The

tension compression asymmetry is also a bit prominent for this high load. Though the

stresses are quite high, both tensile and compressive stresses fall along the span. As

usually, the linear theory (ignoring the geometric nonlinearity) predicts slightly

conservative values of the stresses (Figure 4.15 (a)). The ideal beam theory will predict

a high stress of 429.59MPa at 34.51N.

Modern structures d.emand light structures made of the structural materials like

steel. It in turn, necessitates comprehensivei.stress and deflection analysis of the

beams/columns that are made light removing; any extra, unnecessary material. An

optimum design bf a beam, for example would make sure that all the cross-sections of

the beam utilizes the maximum available safe strength of the beam material. The present

study therefore, shows that the actual stresses are significantly less than their values are

according to ideal theory: Moreover, at the vicinity of tip, stress further decreases from

tlie maximum value at the fixed end.

Correct prediction of end-shortening is important. Effect of end-shortening on

the stress analysis has already been discussed. But, end-shortening effect is found to be

also important for calculating tip deflections at high load. Therefore, before concluding,

a further comparison between the experiment and numerical analysis can be made with

reference to end-shortening as presented in Table 4.3. Normally the nonlinear theory

predicts slightly more end-shortening than that predicted by linear theory. Consequently,

the experimental results match more closely with those of nonlinear theory. The best
L

match is seen for case 3 for end-shortening as well, as it was for the case of tip-

.deflections (Figure 4.12).
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CHAPTERS

NONLINEAR ANALYSIS OF A SUPERELASTIC SHAPE MEMORY ALLOY

CANTILEVER BEAM OF VARIABLE CROSS-SECTION

5.1 General

It has been shown, in the previous chapter, that the soundness of the present

numerical scheme by comparing the results, taking into account only geometric

nonlinearity, for a highly flexible cantilever beam of constant cross-section under a

combined load as treated by Bele'ndez et al. (2005). Also very good match has been

found for experiment and numerical analysis for an stainless steel beam of uniform

strength. Now, response of an SMA beam (theoretically of uniform strength) under a tip

load will be studied.

5.2 Results and discussions

Figure 4.5 shows 10 different segments of the beam that are taken for the

analysis and Figure 5.1 presents the comparison of bending moment for different

segments obtained from experimental a-I' diagram (Figure 1.2). As cross-section varies

linearly with the span, M-LJ relation is calculated for the different segments as shown in

Figure 5.1. In this figure, increase in bending moment is linear in the proportional limit

up to a strain of 1%. But, in the nonlinear range of a-I' curve, it increases nonlinearly

with strain.

From Figure 5.2, it is found that E" is almost constant for very low strain (,.1=

I%) with a value of 65GPa; of course, E" decreases significantly for larger value of ,1.

From Figure 5.2, it is seen that E" remains the same for all the segments though M

varies for different segments (as shown in Figure 5.1) along the length. This is because

of the fact that b varies along the length, but h remains the same.

All other results (Figures 5.3-5.11) presented in this thesis are based on the M-LJ

and.E".LJ relations of Figures 5.1, 5.2, respectively.
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With the aid of Figure 5. I we can select a value of maximum design strain (LI)

that wiJl occur at the fixed end. Corresponding M and consequently, load (P=M/L) are

known from Figures 5.1. Table 5.1 presents the dimensions and maximum design strains

of the beams of variable cross-section analyzed in this study (cascs 1-6). The beams are

designed in such a way that at the applied load it can be either in austenite phase (case

6), mixed phase (cases 2, 4), or in the SIM phase (cases I, 3, 5). The deflections and

stresses corresponding to cases 1-6 are presented in Figures 5.3-5.11.

The results for the six designed beams are prcsented in the following way. At

first, the complete load-deflection curves are discussed 1~)f'a particular beam. Next, the

comprehensive stress analyses (by linear and nonlinear theories and with and without

end-shortening) are presented for the same beam.

In general, equilibrium configuration paths (Figures 5.3. 5.6, 5.9) are initially

linear but convex upward at the higher loads, because of material nonlinearity. The

nonlinear solutions with end-shortening gives the most realistic results from practical

point of view. In comparison, the linear solutions with end-shortening predict slightly

lower tip deflections. But the deflections are too large if the end-shortening is not taken

into account.

On the other hand, comprehensive stress analysis results are presented in Figures

5.4, 5.5, 5.7, 5.8, 5. IO. 5. I 1. GeneraJly, tension-compression asymmetry is prominent

for aJl the cases considered, the higher the design strains, the more prominent is the

asymmetry. Another distinguishing feature is the fall of stress along the beam span, the

highest stress being at the I1xed end; in contrast, a classical leaf spring under ideal

conditions should develop uniform stresses all along its span. Moreover. nonlinear

solutions with end-shortening predict the stresses that are signil1cantly smallcr than

those predicted by neglecting the effect of end-shortening. Linear solutions slightly over

predict the stresses in comparison to the nonlinear solutions. Regarding the presentation

style of the stresses, we prefer to use x on the abscissa for Figures 5.4, 5.5. 5.7. 5.8, 5. I0,

5. I I. x has been dell ned in Figure I as the horizontal distance of a point on the elastic

curve, measured from the I1xed end. For clarity, X~XH corresponds to the projection of

the deflected elastic curve's tip on x axis. The advantage of stress versus x curve is that,

one can get an idea of end-shortening directly.
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Now we shall discuss results cases 1-6 more specifically, giving emphasis on

cases 1 and 5. But, before discussing in detail the numerical results. it is important to

givc an idea of accuracy of those results with the aid of Figure 5.3. For this purpose, at

lirst, results predicted from the linear theory can be compared with the exact formula

(PL '/2EJ) given by equation (3.4). considering the case of a beam of variable eross-

section without end-shortening. Therefore, for the dimensions of ease 1 as shown in

Figure 3.1. at a load of 80 kN, the analytical tip deflection (E=65GPa) is 73.85mm.

From the data of Figure 5.3, for linear theory, with only 10 segments. the computer code

gives a close value of 73.13mm. Thus, predictions of all other solutions for thc beams at

different eases (according to linear/nonlinear theory with and without end-shortcning).

using the same code. can also be considered as sufficiently accurate. Of course, higher

accuracy is possible by using more number of segments. But it is avoided for the sake of

simplicity in calculations; other wise constructions of Figures 5.1,5.2 would be more

tedious.

As seen from Figure 5.3, the ideal solutions for linearly elastic beam, that can also

be obtained using equation 3, are superimposed with the more comprehensive and

realistic results. As seen, if the load is not that high, all the solutions merge together,

simply verifying the soundness of the numerical scheme. At higher loads, however, the

solutions diverge because of the fact that the effect of material and geometrical

nonlinearities and also end-shortening become important (Figure 5.3).

It should be mentioned here that the terms 'nonlinear' in the captions of Figures

5.3-5.11 refer to the geometrical nonlinearity. Although, except the ideal case as shown

in Figure 5.3, all the solutions (either linear or, nonlinear) take into account the material

nonlinearity. Among the numerical results of tip deflections and stresses obtained,

apparently the best results are that takes into account both types of nonlinearities

together with end-shortening from practical point of view.

Figure 5.3 shows that the tip deflection at the design load of 80kN for case I, as

predicted by the nonlinear solution taking into account the end-shortening is 10.82%

more than that from linear solution with end'shortening. However, the tip deflection is

36.59% less than that from linear solution and 126.5 % less than that from nonlinear

solution if the effect of end-shortening is ignored.
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It has already been mentioned that for ideal case, that is for linear theory, elastic

material and ignoring the effect of end-shortening, a beam with linearly reducing cross-

section has its tip deflection given by equation (3) and more importantly, it should

develop equal stress all along its span. In order to visualize the real situations, however,

Figures 5.4(a) and (b) show the stress distributions for variable cross-section (case I)

along the beam-span for the geometrically linear and nonlinear cases, respectively. First

of all it is clear that the tensile and compressive stresses are highly asymmetric (Figures

5.4). Moreover, if end-shortening is ignored, both geometrically linear and nonlinear

cases predict same solutions of stresses (either tensile or, compressive) for the canti lever

beams. On the other hand, stress decreases along the span ofthe heam mainly hecause

of end-shortening. It is found that compressive stress falls more signiticantly than the

tensile stress because of asymmetry in the stress-strain relation.

In case of linear analysis (Figure 5.4(a)), when material nonlinearity and end-

shortening are considered, the stresses do not remain constant but decreases along the

span. At fixed-end the tensile and compressive stresses without end-shortening are

found to be 601.2 MPa and 947.9MPa, respectively. But, with end-shortening the tensile

and compressive stresses are 558.91 MPa and 854.64MPa, respectively. With end-

shortening, at immediate precedent of the last point (at x=425.34mm) thc tensile and

. compressive stresses are 539.72MPa and 655.2MPa, respectively. Therefore, tensile

stress and compressive stress are 10.23% and 30.84% less, respectively, than the

corresponding stresses found without end-shortening.

Again by nonlinear analysis considering end-shortening, tensile and compressive

stresses at the fixed end are, respectively, 557.12MPa and 847.69MPa as shown in

Figure 5.4(b). At the immediate precedent of the last point (at x=422.19mm) these

tensile and compressive stresses are 543.26MPa and 705. I 8MPa, respectivcly.

Figures 5.5(a), (b) show that for case 2, the stress distribution along the span of

the beam at a load of 75kN. Since the beam parameters are same as those of case I

except the load, the corresponding point (on the equilibrium conilguration path) can be

located in Figure 5.3. The stress pattcrn as shown in Figures 5.5 is similar to but of

lower magnitude than that of case I (Figures 5.4). The compressive and tensile stresses

at the fixed end by nonlinear theories together with end-shortening are 778.19MPa and

549.21 MPa, respectively. As discussed, if end-shortening is ignored, the tensile and
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compressive stresses are still asymmetric but remams constant along the span. The

effect of end-shortening is, therefore, mainly a reduction of the stress values calculated

either by linear or, nonlinear theory.

For case 3 Figure 5.6 shows at the design load IIOkN, the tip deflection

predicted by nonlinear solution with end-shortening is 19.32% more than that found by

linear solution with end-shortening.

Figures 5.7(a), (b) show the stress distribution along the span of the beam for

case 3 at a load of 110 kN. The compressive and tensile stresses at the fixed end by

nonlinear theories together with end-shortening are 978.55MPa and 661.48MPa,

respectively. Because of a higher load than those for cases 1,2, the tension-compression

asymmetry of the stresses are quite prominent. Also stresses decrease quite significantly

along the span.

Figures 5.8(a), (b) show the stress distribution along the beam span for case 4 at

a load of 75kN. The compressive and tensile stresses at the fixed end by nonlinear

theories together with end-shortening are 584.04MPa and 534.31 MPa, respectively. The

fall of stress along the span is less prominent in comparison to case 3.

Figure 5.9 shows that the load-deflection curves obtained for case 5. Since, the

highest strains occur in. the beams for this case, therefore, the tension-compression

asymmetry and also the effect of end-shortening should also be the most prominent. Tip

deflection is found to increase substantially with an insignificant increase ofthc loading

parameter at the higher loads. Because of very large strains, the effective modulus is

small enough, and it appears load-deflcction curves would become almost flat if further

increase is made at the highest load, as predicted by linear as well as nonlinear solutions

with end-shortening. As can be seen. at a design load of 180kN, tip deflection for

nonlinear solution with end-shortening is 12.37% more than that from linear solution

with end-shortening. Of course, this tip deflection is found to be considerably less if

end-shortening is ignored.

For case 5, the effect of high load on the beam's response is very clear in terms

of stress analysis as shown in Figures 5.10. The maximum stresses at the fixed end, by

nonlinear theory, without end-shortening are 1131.7MPa and I389.2MPa in tension and

compression, respectively. But with end-shortening the values are 995MPa and

I I 92.4MPa in tension and compression, respectively. The corresponding tensile and
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compressive strains are 7.47% and 5.85%, respectively, their sum being 13.32%. Upon

unloading, this SMA beam can fully recover its shape by virtue of superelasticity. It is

interesting to note that the maximum design strains for this case, that is the summation

of tensile and compressive strains (but, of course without considering geometric

nonlinearity and end-shortening) was 15.2% as shown in Table 4.2.

Though the fixed end stresses are quite high, both the tensile and compressive

stresses fall remarkably along the span and their values are 539.72MPa and 655.2MPa,

respectively, at immediate precedent of the last point on span. It clearly indicates more

material can be safely removed particularly, near the vicinity of the tip, to make the

SMA beam lighter and more economic.

Figures 5.11 (a) and (b) show the stress distribution for case 6 along the beam

span at a load of 75kN. Since beam parameters are exactly the same as that of case 5

except the small magnitude of load; the corresponding point can be located on the load-

deJlection curve of Figure 5.9. Because of significantly lower load than the previous

case, the effect of end-shortening is less prominent as can be seen in Figures 5.11. The

material's tension compression asymmetry, however, can be clearly visualized. The

compressive and tensile stresses at the fixed end by nonlinear theories together with

end~shortening are 478.18MPa and 486.24MPa, respectively.

Modern adaptive structures demand light structures made of the functional

materials. It in turn, necessitates comprehensive stress and dellection analysis of the

beams/columns that are made light removing any extra, unnecessary material. An

optimum design of a beam, for example, would make sure that all the cross-sections of

the beam utilizes the maximum available safe strength of the beam material. The present

study therefore, shows that more material can be removed trom an SMA beam of

reducing cross-sections.

With the background of the above detail discussions, a further analysis can be

made as far as stress induced martensitic transformations (SIMT) is concerned for the

SMA beams with reference to Figures 1.1,1.2,5.4,5.5,5.7,5.8,5.10,5.11. The highest

stresses occur for case 5 at the fixed end. The compressive and tensile stresses at the

fixed end by nonlinear theories together with end-shortening are I I92.33MPa and

994.96MPa, respectively. Presumably, the SMA should be in SIM phase at this load.

For this case, the stresses that are at the tip, may also be in the SIM phase because of
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high magnitude. On the other extreme end, for case 6, the minimum stresses are

developed at the fixed end (the compressive and tensile stresses at the fixed end by

nonlinear theories together with end-shortening are 478.18MPa and 486.24MPa,

respectively). Obviously, the entire beam material is likely to be in the parent austenite

phase at this load. For all other casel-4, the beam material will be in either of these two

phases or, in the mixed phase (SIMT), at the design load. In all of theses eases, the

beams are likely to return the original straight shape upon unloading because of

superelastieity. A future study should incorporate the unloading issue of these beams.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDA nONS

6.1 Conclusions on stainless steel beam analysis

The etfects of three important factors, namely, the end-shortening, geometric

nonlinearity and material nonlinearity (with associated asymmetric tcnsion-compression

relation) on the response of the beams (of reducing cross-sections along the span) havc

been comprehensively demonstrated by numerical analysis and experiment. Four beams

are designed and made from stainless steel so that they can undergo large deflections

with large inelastic/plastic strains. The choice of stainless steel is based on the fact that

it possesses a highly nonlinear stress-strain curve, can undergo large plastic deformation

before failure and also it is one of the most important structural materials.

Very good agreement has been proven between the numerical results generated

by the present numerical scheme and experimental results obtained by another research

group. Therefore, the numerical scheme adopted here can be reliably used for predicting

nonlinear response of stainless steel beams of any cross-section.

The experimental as well as numerical results show that the load-detlection

curves can be considered concave upward initially, but starts to deviate nonlinearly at

the higher loads. Those experimental as well as numerical curves are found to be convex

upward at higher loads. Case 3 shows excellent match between numerical analysis and

experiment as far as tip deflection and end-shortening etfects are concerned. Even at the

highest load the tip deflection is very accurately predicted by the nonlinear theory with

end-shortening. The corresponding stresses at fixed end are 340.84MPa and 335.77MPa

in tension and compression, respectively. While at the grid point just before the tip, the

corresponding tensile and compressive stresses are 329.86MPa and 330.76MPa,

respectively. The effect of material nonlinearity and end shortening are found to be

important in deciding the response of the beam. Because of the highly nonlinear stress-

strain relation for the stainless steel beams originally designed for uniform strength,

inclusions of material nonlinearity is found to be the most important factor in predicting

the stresses. Moreover, it is seen that if end shortening is ignored, the stress distribution

remains constant along the span. On the other hand, stress along the span of the beam
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decreases because of end shortening. Tension-compression asymmetry imposed by true

a-{i curve is found to be important particularly at a high load. The numerical values

stated above for case 3 typically verify the above mentioned facts. If geometric

nonlinearity is ignored, the stresses are, however, slightly over predicted as shown by

the conservative linear theory.

6.2 Conclusions on SMA beam analysis

The effects of three important factors, namely, the end-shortening, gcometric

nonlinearity and material nonlinearity (with associated tension-compression asymmetry)

on the response of superelastic SMA beams of reducing cross-section have been

demonstrated by numerical analysis. Three beams are designed by superelastic shape

memory alloy in such a way that they all involve nonlinear stress-strain curves at the

maximum design strains.

The effect of material nonlinearity and end-shortening are found to be important

In deciding the response of the beam. The numerical results show that the load-

deflection curves can be considered straight initially, but starts to deviate nonlinearly at

the higher loads. Those curves are found to be convex upward at higher loads mainly

because of the material nonlinearity. Moreover, end-shortening must be taken into

account to correctly predict the tip deflections by nonlinear theory.

The linear theory is conservative in predicting stresses. Moreover, it is seen 'that

if end-shortening is ignored, the stress distribution remains constant along the span,, - ,

though the tensile and compressive stresses are still notably asymmetric/unequal. On the.

other hand, stresses along the span of the beam decrease because of end-shortening.

If end-shortening is ignored, a higher stress is predicted. Therefore, the nonlinear

theory with end-shortening effect being taken into account, predicts 7-20% less tensile

stress and 7-14 % less compressive stress than the stresses found by neglecting the

effect of end-shortening at the fixed end at maximum design strain. Again, stresses fall

significantly along the beam span, in particular for the beams designed for higher loads

(cases 1,3,5).

If the load is small the beam material may exist in the parent phase. For higher

loads, the beam material may be in the SIM phase or in the mixed phase. In all of theses
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cases, the beams are like to return the original straight shape upon unloading because of

superelasticity. A future study should incorporate the unloading issue of these beams.

The main objective of using a beam with variable cross-section is to make the

best use of material in terms of economy. It can be concluded from this study that more

material can be removed from a beam with variable cross-section by taking into account

the geometric nonlinearity, material nonlinearity and the effect of end-shortening. This

is very important for superelastic SMA beams that are likely to fully recover the shapes

upon unloading owing to superelsaticity. A future study can incorporate the unloading

issue of these beams. Of course, attention should be given to the point that deflection

with increase if more material is removed.

It is important to test the beam's response by rigorous experiment.

Unfortunately, SMA's are manufactured mostly'in round wire form; it restricts us only

with present numerical simulations. However, the accuracy of the numerical scheme has

been verified by comparing results with some specific cases.

At first, the soundness of the numerical scheme has been comprehensively

proven for the case of stainless steel beams of variable cross-sections. Using the same

scheme, therefore, the results of SMA beam of variable cross-sections can also been

considered as reliable.
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6.3 Recommendations for future work

The following recommendations can be made for future works from experience gained

while achieving the set objectives of this thesis:

(I) The present analysis can be extended to other shapes such as width parabolically

varying along the span.

(2) Experimental studies can be carried out to verify the results obtained from

numerical analysis for the SMA beam.

(3) Finite element method or multisegment method of integration (Uddin, 1969) can

be applied because of variable material property.
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Tables

Table 4.1. Design parameters of stainless steel cantilever beams

(a) Beam of variable cross-section (h=1 mm, Pd ~ 10.158N, 0;, '" 200 MPa)

Case 1:
Width at fixed end: 46mm
Length of beam: 150 mm

(Yd = 198.74 MPa

Case 2:
Width at fixed end: 61mm
Length of beam : 200 mm

(Yd = 199.82 MPa

(b) Beam of variable cross-section (h~2 mm, Pd = 20.076N, 0;, '" 250 MPa)

Case 3:
Width at fixed end: 18mm
Length of beam: 150 mm

0;, = 250.95 M Pa

Case 4:
Width at fixed end: 24.1 mm
Length of beam : 200 mm

(Yd = 249.91 MPa

Table 4.2. Comparison of experimental results by Bele'ndez et al.(2005) with the
numerical results generated by the present study

(Thickness, h=0.0004m; length, L=0.40m; uniform weight, w=O.758 N/m)

Tip detlections(mm) Number of iterations required
Tip

Experiment Numerical solutions with
load

by 0, (present study)
(present study)

(N) Bele'ndez et Linear Nonlinear Linear Nonlinear
al.(2005)

0 89:tl 81.8 84.48 4 4 (first trial 0" =OOmm)
0.098 149:tl 132.5 142.65 4 6 (first trial (~,~OOmm)

0.196 195:tl 166.22 184.71 6 8 (first trial 0, =OOmm)
0.294 227:t I 188.38 210.96 6 12(first trialo" ~OOmm)

0.396 251:t I 211.96 236.28 7 8 (nrst trial(~, ~1 OOmm)

0.490 268:t 1 229.67 254.57 7 8 (tirst triaio" = 117mm)

0.588 281:tl 236.84 271.77 7 9 (first trialo" = 135mm)
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Table 4.3. End-shortening results ofcantilever beam of variable cross-section

Case End-shortening. Oh (mm) No. of iterations
L/bo Load(N)

No. Linear Nonlinear Experimental Linear Nonlinear

1 3.26 14.529 4.1 4.1 4.53clcO.005 4 4
2 3.28 14.529 8.3 11 9.73clcO.005 4 5
3 8.33 34.51 504 6.6 6.88clcO.005 5 7
4 8.3 34.51 lOA 10.6 12.0clcO.005 6 6

Table 5.1. Design parameters of SMA cantilever beams of variable cross-section

(bo=IOOmm, h~50 mm)

NO.of Beam length Maximum Corresponding Corresponding

Case L(m) Design Strain Moment, M load at tip, P~M/L

(%) (kN-m) (kN)

1 0.50 9.52 40 80

2 0.50 7.31 37.5 75

3 0040 11.62 . 44 110

4 0040 3.22 30 75

5 0.30 15.2 54 180
.

6 0.30 1.78 22.5 75 .
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Figure 1.1: Idealized stress-strain diagram ofthe superelastic SMA.
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Figure 3.2: Deflection of beam under load P and corresponding end-shortening.
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Figure 3.5: Flow Chart of Beam analysis (Timoshenko's method).
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Figure 4.2: Experimental apparatus with tip load on beam.
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Figure 5.3: Load-deflection curve of SMA cantilever beam (Cases 1,2: L = 500mm, bo =
lOOmm, h = 50mm, Maximum design strain = 9.52% by linear theory without end-
shortening).
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Figure 5.4(a): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by linear analysis (Case I: L = 500mm, bo = 100mm, h = 50mm, Maximum
design strain = 9.52% by linear theory without end-shortening)
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Figure 5.4(b): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by nonlinear analysis (Case 1: L = 500mm, bo = lOOmm, h = 50mm,
Maximum design strain = 9.52% by linear theory without end-shortening).
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Figure 5.5(a): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by linear analysis (Case 2: L = 500mm, bo = 1OOmm, h = 50mm, Maximum
design strain = 7.31% by linear theory without end-shortening).
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Figure 5.5(b): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by nonlinear analysis (Case 2: L = 500mm, bo = 100mm, h = 50mm,
Maximum design strain = 7.31 % by linear theory without end-shortening).
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Figure 5.7(a): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by linear analysis (Case 3: L = 400mm, bo = IOOmm, h = 50mm, Maximum
design strain = 11.62% by linear theory without end-shortening).
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Figure 5.7(b): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by nonlinear analysis (Case 3: L = 400mm, bo = 100mm, h = 50mm,
Maximum design strain = 11.62% by linear theory without end-shortening).
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Figure 5.8(a): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by linear analysis (Case 4: L = 400mm, bo = 1OOmm, h =.50mm, Maximum
design strain = 3.22% by linear theory without end-shortening).
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Figure 5.8(b): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by nonlinear analysis (Case 4: L ~ 400mm, bo = lOOmm, h = 50mm,
Maximum design strain = 3.22% by linear theory without end-shortening).
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Figure 5.1 O(a): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by linear analysis (Case 5: L = 300mm, bo = 100mm, h = 50mm, Maximum
design strain = 15.20% by linear theory without end-shortening).
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Figure 5.11(a): Stress distribution along the horizontal distance from the fixed end of the
SMA beam by linear analysis (Case 6: L = 300mm, bo = 100mm, h = 50mm, Maximum
design strain = 1.78% by linear theory without end-shortening).
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Figure 5.11(b): Stress distribution along the horizontal distance from the fixed end of
the SMA beam by nonlinear analysis (Case 6: L = 300mm, bo = lOOmm, h = 50mm,
Maximum design strain = 1.78% by linear theory without end-shortening).
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APPENDIX- A

• , .
A 1 Numerical Analysis

The Runge-Kutta solution technique is briefly described below, as it is the tool of the

present analysis. In this solution technique for any first order differential equation, the

unknowns y!, Y2 etc. are successively evaluated at each grid point starting from the initial

boundary as described below.

: =f(x,y)

where, k, = hf(a,yJ

For an m'h order ordinary differential equation (ODE), it is first reduced to m number of

first order ODE. Then the variables are evaluated as described below.

y, y, kll k21 k31 k41
y, y,

I
k12 kn k12 k42

= +- +2 +2 +
6

YIII a+h Ym a kIm k2/11 k}m k4m
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kll .1; (a'Yla'Y2a""Yma)
kl2 f2(a'Yla'Y2a""Yma)

where, . = h ,

k21

k"

k2m

[( h) ( kll ) ( k12
) ( kim )]1; a+"2' Yla +2' Y2a +2'."" Yma +2

1 [( h) ( kll ) ( k12 ) ( kim )]2 a+"2' Yla +2' Y2a +2 '"''Yma +2

= h ,

[( h) ( kll ) ( k12
) ( kim )]J:II a+"2' Yla +2' Y2a +2"'" Y/lla +2

f, [( h) ( k21 ) ( k" ) ( k'm )]
I a+"2' Yla +2' Y2a +2"'" Yma +2

1 [( h) ( k21 ) ( k" ) ( k'm )]2 a+2, Yla +2' Y2a +2"'" Yma +2

=h,

f, [(a + h), (Yla + k31 )'(Y2a + kJ, )"",(Yma + kJm)]

12 [(a + h), (Yla + k31 ),(Y'a + kJ2)"", (Yma + k'm)]
=h,
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APPENDlX- B
Programming Features

B.I Input of the programs
In the sixth program data of experimental (J"-S diagram (figures 1.2, 4.3 (b), 4.4 (b»

are used. The data (e,s,ft) are given in a file name "2.txt" and the programs take the data
itself when run. Upper limit of strain (g) and lower limit of strain (h) of the first two
programs. The data of E"-L1 and M-L1 curves (figure 4.3 and figure 4.4) are used in first

and second programs. The value of E" is obtained from corresponding moment that
. obtained from equilibrium condition of the beam.

B.2 Output of the programs
The sixth program will give the values of e2, delta, E, M, of rectangular cross-section. The
fifth program will give the values of b after end-shortening. The first and second programs
will give the deflections at different grid points for repeated loading at different E" and b.
From the last program stress can be found at corresponding strain.

B.3 TABLE OF INPUT -OUTPUT VARIABLES

Variable

e
s

f
t

e2
delta
E
M
Y

Definition

Strain at upper fiber
Stress at upper fiber
Strain at lower fiber
Stress at lower fiber
Compressive stress
Upper limit of strain
Lower limit of strain
compressive strain
Total strain
Modulus of Elasticity
Bending moment
Deflections at different grid points
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APPENDIX-C
Programme Code

/*******************************************************************/
I*'PROGRAM OF LINEAR EQUA nON BY R-K METHOD FOR SMA BEAM**I
/*******************************************************************/
#include<iostream.h>
#include<conio.h>
#include<fstream.h>
#include<math.h>
#definefl (y2) y2
#define f2(x) lam*(x-L)

void mainO
{
float p=80000,xp,EI [200],E[21 O]'yI [200],lam,L=500;
float y2[200],bO=1 00,b[200],h=50,fl ,f2;
int i,j,x=0,N,H=50;
float y[200],1[200]'Z[21 0],C=25;
float kll,k 12,k21 ,k22,k31 ,k32,k41 ,k42,M[200]'sig[200];

of stream outf ("zeee.xls");
Ilifstream inputf(" IO.txt");llofstream outfl ("out00053 .xls");
Ilifstream infilefl (" IUxt");

clrscrO;

yl [0]=0;
y2[0]=0;
xp=L;
N=((xp-x)/H);

for(i=O;i<N ;i++)
{
E[i]=65000;
l/inputf»E[i];
Ilinfilefl »b[i];
b[i]=bO*(L-x)/L;
I[i]=b[i] *pow(h,3 )/12;
III [i]= I0416.667*b[i];
Z[i]=E[i] *I[i];
lam=p/Z[i];
kll =H*fl (y2[i]);
kI2=H*f2(x);
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k21=y2[i]+(kI2/2);
k22=x+0.5*H;
k21=H*fl (k21);
k22=H*f2(k22);
k31=y2[i]+(k22/2);
k32=x+0.5*H;
k31=H*fl (k31);
k32=H*f2(k32);
k41=y2[i]+(k32);
k42=x+H;
k41=H*fl(k41);
k42=H*f2(k42);
M[i]=p*(L-x);
x+=H;
y I [i+ I ]=yl [i]+(kll +2.0*k21 +2.0*k31 +k41 )/6.0;
y2[i+ 1]=y2[i]+(kI2+ 2.0*k22+ 2.0*k32+k42)16.0;
cout«yl[i+I]«" In";
}

getchO;
}

/*********************************************************************/
I*PROGRAM OF NON LINEAR EUA nON BY R-K METHOD FOR SMA BEAM*I

"/*********************************************************************/

#include<iostream.h>
#include<conio.h>
#include<fstream.h>
#include<math.h>
#define fl (y2) y2
#define f2(y2) pow((l +y2*y2),1.5)*(( -9.6E-7*p*L)/E[iJ)

void mainO
{
double p=80000,xp,E[200],y I [200],lam,L=500,y2[200],fl ,f2,bO=100,b[200];
int ij,x=0,N,H=50;
double y[200],I[200],Z[200],C=25;
double kll,kI2,k21,k22,k31,k32,k41 ,k42,M[200],sig[200];
ofstream outf ("zeee.xls");
ifstream infile(" IO.txt");
ifstream inputfl (" II.txt");

clrscrO;
yl [0]=0;

96



y2[0]=0;
xp=L;
N=((xp-x)/H);

for(i=O;i<N;i++)
{
E[i]=65000;
//infile»E[i];
//inputfl»b[i];
b[i]=(bO* (L-x) )/L;
I[i]=10416.667*b[i];
Z[i]=E[i]*I[i];
kll =H*fl (y2[i]);
kI2=y2[i];
kI2=f2(kI2);
kI2=H*kI2;
k21=y2[i]+(kI2/2.0);
k21=fl(k21);
k21=H*k21;
//k22=x+0.5*H;
k22=y2[i]+(kI2l2.0);
k22=f2(k22);
k22=H*k22;
k31 =y2[i]+(k22/2.0);
k31 =fl(k31);
k31=H*k31;
//k32=x+0.5*H;
k32=y2[i]+(k22l2.0);
k32=f2(k32);
k32=H*k32;
k4Iocy2[i]+(k32);
k41=fl(k41);
k41=H*k41;
//k42=x+H;
k42=y2[i]+k32;
k42=f2(k42);//cout«k 12«" In";
k42=H*k42;
M[i]=p*(L-x);
x+=H;
y I [i+ I ]=y I [i]+(k II +2.0*k21 +2.0*k31 +k41 )/6.0;
y2[i+ I]=y2[i]+(k 12+2.0*k22+ 2.0*k32+k42)/6.0;
cout«yl [i+I]«" In";
}

getchO;
}
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/*********************************************************************/
I*PROGRAM OF LINEAR EQUATION BY R-K METHOD WITH SELF WEIGHT *1
/*********************************************************************/

#include<iostream.h>
#include<conio.h>
#include<fstream.h>
#include<math.h>
#define fI (y2) y2
. #define £1(x) lam*(2*p*(L-x)+w*(pow((L-x),2)))

void mainO
{
float p=0.,xp,E=200000,yl [420],lam,L=389.8,w=0.000758,y2[420],fI ,£1;
int ij,x=O,N,H=I;
float y[400],I=0.1333333,Z,C,kll ,k12,k21 ,k22,k31,k32,k41 ,k42;

ofstream outf ("z.xls");

clrscrO;
yl [0]=0;
y2[0]=0;
xp=L;
N=((xp-x)/H);
Z=E*I;
lam=-0.5/Z;
for(i=O;i<=N;i++)

{
kll =H*fI (y2[i]);
k 12=H*£1(x);
k21=y2[i]+(k12/2);
k22=x+0.5*H;
k21=H*fI(k2l);
k22=H*£1(k22);
k31 =y2[i]+(k22/2);
k32=x+0.5*H;
k31=H*f1 (k31);
k32=H*£1(k32);
k4 J =y2[i]+(k32);
k42=x+H;
k41=H*f1(k41);
k42=H*£1(k42);
x+=H;
yl [i+ 1]=y 1[i]+(kll +2.0*k21 +2.0*k31 +k41 )/6.0;
y2[i+ 1]=y2[i]+(k12+ 2.0*k22+ 2.0*k32+k42)/6.0;
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outf«yl [i]«" In";
}

cout«yl [389.8]«" In";
getchO;
}

/***********************************************************************/
1* PROGRAM OF NONLINEAR EQUATION BY R-K METHOD WITH SELF WEIGHT*I
1***********************************************************************/

#inc1ude<iostream.h>
#inc1ude<conio.h>
#include<fstream.h>
#include<math.h>
#define f1(y2) y2
#define f2(x,y2) pow((l +y2*y2), 1.5)*lam*(2*p*(L-x)+w*(pow((L-x),2)))

void mainO
{
double p=0.,xp,E=200000,yl [410],lam,L=400,w=0.000758,y2[41 OJ;
double f1,f2,m 12,m22,m32,m42,a,b,c;
int ij,x=O,N,H=l;
double y[41 0],!=0.1333333,Z,C,kll,k12,k21 ,k22,k31 ,k32,k41 ,k42;

ofstream outf ("z.xls");

c1rscrO;
yl [0]=0;
y2[0]=0;
xp=L;
N=((xp-x)/H);
Z=E*!;
lam=-0.5/Z;
for(i=O;i<=N ;i++)

{
kll =H*f1 (y2[i]);
kI2=x;
mI2=y2[i];
k 12=f2(k 12,m J 2);
kI2=H*k12;
k21=y2[i]+(k 12/2.0);
k21=fl(k21);
k21=H*k21;
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k22=x+0.S*H;
m22=y2[i]+(kI2/2.0);
k22=f2(k22,m22);
k22=H*k22;
k31=y2[i]+(k22/2.0);
k31=fl(k31);
k31=H*k31;
k32=x+0.S*H;
m32=y2[i]+(k22/2.0);
k32=f2(k32,m32);
k32=H*k32;
k41=y2[i]+(k32);
k41=fl (k41);
k41=H*k41;
k42=x+H;
m42=y2[i]+k32;
k42=f2(k42,m42);
k42=H*k42;
x+=H;
yl [i+ 1]=y 1[i]+(k 11+2.0*k21 +2.0*k31 +k41 )/6.0;
y2[i+ 1]=y2[i]+(k 12+2.0*k22+ 2.0*k32+k42)/6.0;
outf«yl [i]«" \n";
}

cout«yl [400]«endl;
getchO;
}
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/**************~,***:~*****~'**~,*******************************************/
/*PROGRAM FOR CALCULATING"END-SHORTENING" AND CORRESPONDING
WIDTH "b" AT DIFFERENT POSITION OF X*/
/* **:1::1:**:1::1:**:1:** * ***.**:1:** * * ** ** * * **** ** * *:]:* * * **:1:* * *:1:** **:1:* * * * *:1:***:1::1:* * * **/

#incl ude<iostream.h>
#incI ude<stdio.h>
#include<conio.h>
#i nclude<math. h>
#ineIude<fs tream. h>
#include<dos .h>
#define fez) sqrt(l +(pow((-0.0058*z+0.0929),2)))
//#define fez) sqrt(l +(pow( (-0.0076*z-0.0837),2)))

void main 0
{
elrscrO;
double y[4];
float xo[200], b[200];
int bO=O;
eout«"Enter the value of bat X=O;";
ein»bO;
ofstream outf ("out0551.xIs");
int L=500;
float a;
lexlcolor(3 );
eout«"ltX after bendingltltX before bendingltCorresponding b"«end);
outf«"ltX after bendingltltX before bendingltllCorresponding b"«endl;
for(f1oat xn=O; xn<480; xn++)

(
a=O.O;
float h=xn/3;
forOnt i=0;i<4;i++)

{
y[i]=f(a);
a+=h;
}

xo[xn]=(y[O]+ 3*y[ 1]+3*y[2]+y[3])*(3*h)/8;
b[xn]=-bO*(xo[ xn] -L)/L;
pri ntf("lt% .Ofltltlt%.3fltltltl %.3f1n",xn,xo[ xn] ,b[xn]) ;//delay( 50);
ou tf<<'It'<<xn «"It It"«x 0[xn]<<"Itlt" <<b [xn]<<endl;
}

getehO;
}

101



/**************************************************/
I*PROGRAM FOR CALCULATING 'DELTA' 'E'" AND 'M *1
/**************************************************/
#include<iostream.h>
#include<conio.h>
#include<math.h>
#include<fstream.h>

void mainO
{
int j;
long double sigma _c=0,g,a,h,b,area2,e2,area,Ea;
long double delta,sigma,p,L,r;
long double areal ,nnoel ,rmoe2,b ~h=O.1,h_b=0.05;
long double MO,M,i,el;
long double e(50],s(50],Em(50],Em] (25],f[25],t(25];
ifstream infile("2.txt");
clrscrO;

for( j=l; j<=42; j++)
intile» e(j],s[j];

for( j=22; j<=42; j++)
{
f[j-21]=e(j];
t(j-2] ]=s(j];
}

for( j=l; j<=20; j++)
Em(j]=(s(j+ I]-s(j])/(pow( I0.0,6)*( e(j+ I]-e(j]));

for( j=l; j<=20; j++)
Em] (j]=(t(j+] ]-t(j])/(pow(l 0.0,6)*(f[j+] ]-f(j]));

again2:
cout«" Enter the value of higher limit";
cin»g;
a=O.O;
rmoel=O.O;
areal =0.0;
for( e] =0.0; el <=g; el+=O.OOOOI)

{
if(e]>=e(]]&&el <=e(2])

{
areal =area] +Em(l]*el *0.0000];
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rmoel =nnoel +Em[I]*el *0.00001 *(a+0.00001/2.);
a=a+O.OOOOI;
}

else if(el>e[2]&&el <=e[3])
{
areal =areal +(Em[2] *(e l-e[2])+s[2]/pow( I 0,6))*0.00001;
rmoe I =rmoe I+0.00001 *(a+0.0000I/2.)*(Em[2]*( e l-e[2])+s[2]/pow(l 0,6));
a=a+O.OOOOI;
}

else if(el>e[3]&&el<=e[4])
{
areal =areal +(Em[3]*( e l-e[3])+s[3]/pow(l 0,6))*0.00001;
rmoel =rmoe 1+0.00001 *(a+0.00001/2.)*(Em[3]*(e l-e[3])+s[3]/pow(1 0,6));
a=a+O.OOOOI;
}

else if(el>e[4]&&el<=e[5])
{
areal =area 1+(Em[4]*(el-e[4])+s[4]/pow(l 0,6))*0.00001;
rmoel =rmoe 1+0.00001 *(a+0.0000l/2.)*(Em[4]*(el-e[ 4])+s[ 4]/pow(l 0,6));
a=a+O.OOOO1;
}

else if(el >e[5]&&el <=e[6])
{
areal =areal +(Em[5]*( e l-e[5])+s[5]/pow(l 0,6))*0.0000 I;
rmoel =rmoel +0.00001 *(a+0.00001/2.)*(Em[5]*(el-e[5])+s[5]/pow( 10,6));
a=a+O.OOOOI;
}

else if(el >e[6]&&el <=e[7])
{
areal =areal +(Em[6]*( el-e[6])+s[6]/pow( I 0,6))*0.0000 I;
rmoe I=rmoel +0.0000 1*(a+O.OOOOI /2.)*(Em[6]*( e l-e[6])+s[6]/pow(l 0,6));
a=a+O.OOOOI;
}

else if( e I >e[7]&&e 1<=e[8])
{
areal =areal +(Em[7]*( e l-e[7])+s[7]/pow( 10,6))*0.0000 I;
rmoe I=rmoe I+0.0000 I *(a+O.OOOOl/2. )*(Em[7]*( el-e[7])+s[7]/pow( 10,6));
a=a+O.OOOOI;
}

else if( e I>e[8]&&el <=e[9])
{
areal =area I+(Em[8] *(e l-e[8])+s[8]/pow(l 0,6))*0.0000 I;
rmoe I =rmoe 1+0.00001 *(a+O.OOOO1/2.)*(Em[8]*( e l-e[8])+s[8]/pow( 10,6));
a=a+O.OOOOI;
}
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else if( e I>e[9]&&e 1<=e[1 0])
{
areal =area 1+(Em[9] *(e l-e[9])+s[9]/pow(1 0,6))*0.0000 I;
rmoel =rmoel +0.00001 *(a+0.00001/2.)*(Em[9]*(e l-e[9])+s[9]/pow(1 0,6));
a=a+O.OOOOI;
}

else if( e l>e[1 O]&&e I<=e[ll])
{
area 1=areal +(Em[1 0] *(e 1-e[1 O])+s[l O]/pow(l 0,6))*0.00001 ;
rmoe] =rmoel +0.00001 *(a+0.00001/2.)*(Em[10]*(el-

e[1 O])+s[ IO]/pow(l 0,6));
a=a+O.OOOOI;
}

else if(el>e[ll]&&el <=e[12])
{
areal =areal +(Em[ll] *(e l-e[11 ])+s[ II ]/pow(l 0,6))*0.0000 I;
rmoe I=rmoe I+0.0000 I *(a+O.OOOOI /2. )*(Em[11 ]*( e 1-

e[11])+s(1I]/pow(l0,6));
a=a+O.OOOOI;
}

else if(e1>e[12]&&el <=e[13])
{
areal =area I+(Em[12] *(e l-e[12])+s[ 12]/pow(l 0,6))*0.0000 I;
rmoel =rmoel +0.00001 *(a+0.00001/2.)*(Em[12]*(e1-

e[12])+s[12]/pow( I 0,6));
a=a+O.OOOOI;
}

else if(el>e[13]&&e1<=e[14])
{
areal =areal +(Em[13]*( e I-e[ 13])+s[ 13]/pow(l 0,6))*0.0000 I;
rmoe I=rmoe I+0.0000 1*(a+O.OOOO1/2.)*(Em[13]*( e 1-

e[13])+s[13]/pow( I 0,6));
a=a+O.OOOOI;
}

else if(e1>e[14]&&e1 <=e[15])
{
areal =areal +(Em[14]*( e l-e[14])+s[ 14]/pow(l 0,6))*0.00001 ;
rmoe I=rmoe I+0.0000 I *(a+O.OOOO1/2.)*(Em[14]*( e 1-

e[14])+s[ 14]/pow( I 0,6));
a=a+O.OOOOI;
}

else if(eJ>e[15]&&el<=e[16])
{
areal =areal +(Em[15] *(e l-e[15])+s[15]/pow(l 0,6))*0.0000 I;
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rmoe I=rmoel +0.00001 *(a+O.OOOO1/2.)*(EI11[J 5]*( e 1-
e[15])+s[15]/pow(l0,6)); ,

a=a+0.00001;
}

else if(el>e[16]&&el<=e[17])
{
areal =area1 +(EI11[l 6] *(e I-e[ 16])+s[16]/pow(l 0,6))*0.0000 I;
rmoel =rl11oe1+0.00001 *(a+0.00001/2.)*(Em[16]*(e 1-

e[ 16])+s[16]/pow( I 0,6));
a=a+O.OOOOI;
}

else if( e 1>e[17]&&e I <=e[18])
{
areal =area I+(EI11[17] *(e l-e[17])+s[17]/pow(l 0,6))*0.0000 1;
rmoel =rl11oel +0.00001 *(a+0.00001/2.)*(Em[17]*(e J-

e[ J7])+s[17]/pow(l 0,6));
a=a+O.OOOOI;
}

else if( e I>e[18]&&e I<=e[l 9])
{
areal =area I+(Em[18]*( e l-e[18])+s[18]/pow(1 0,6))*0.00001;
nnoel =rmoel +0.00001 *(a+0.00001/2.)*(Em[18]*(e 1-

e[18])+s[18]/pow(l0,6));
a=a+O.OOOOI;
}

else if(el >e[l 9]&&e J<=e[20])
{
areaJ =areal +(Em[19]*( e l-e[19])+s[19]1pow(l 0,6))*0.0000 1;
rmoe J=rmoel +O.OOOOJ*(a+0.00001/2.)*(Em[19]*(e 1-

e[19])+s[19]/pow(l0,6));
a=a+0.00001;
}

else if( e I>e[20]&&e I<=e[21])
{
areal =areal +(EI11[20]*( e l-e[20])+s[20]/pow(l 0,6))*0.0000 1;
rmoel =rmoel +O.OOOOJ*(a+0.00001/2.)*(Em[20]*(e 1-

e[20])+s[20]/pow(l0,6));
a=a+O.OOOOI;
}

else if( e 1>e[21 ]&&e I<=e[22])
{
areal =areal +(Em[2 J]*( e l-e[21 ])+5[21 ]/pow(l 0,6))*0.0000 I;
rmoel =rmoel +0.00001 *(a+0.00001/2.)*(Em[21]*(e 1-

e[21 ])+s[21 ]/pow(l 0,6));
a=a+O.OOOOI;

105



}
else if( e I>e[22]&&el <=e[23])

{
area 1=area I+(Em[22] *(e l-e[22])+s[22]/pow(l 0,6))*0.0000 I;
rmoe 1=rmoel +0.00001 *(a+0.00001/2.)*(Em[22]*(e 1-

e[22])+s[22]/pow(lO,6));
a=a+O.OOOO1;
}

else if(el>e[23]&&el <=e[24])
{
areal =area I+(Em[23] *(e l-e[23])+s[23]/pow(1 0,6))*0.00001 ;
rmoe 1=rmoel +0.00001 *(a+0.00001/2.)*(Em[23]*(e 1-

e[23])+s[23]/pow(lO,6));
a=a+O.OOOOI;
}

else if(e 1>e[24]&&e 1<=e[25])
{
area I=areal +(Em[24 ]*( e1-e[24])+s[24]/pow( I 0,6))*0.0000 1;
rmoel =rmoe1 +0.00001 *(a+0.00001/2.)*(Em[24]*(e 1-

e[24])+s[24]/pow(lO,6));
a=a+O.OOOOI;
}

else if( e I>e[25]&&e 1<=e[26])
{
areal =areal +(Em[25]*( el-e[25])+s[25]/pow(l 0,6))*0.0000 I;
rmoel =rmoe1 +0.00001 *(a+0.00001/2.)*(EIll[25]*(el-

e [25])+s[25]/pow( I 0,6));
a=a+O.OOOOI;
}

else if( e 1>e[26]&&e I<=e[27])
{
areal =areal +(EIll[26]*( e l-e[26])+s[26]/pow(l 0,6))*0.0000 I;
rllloe I=rmoel +0.0000 1*(a+0.00001/2.)*(EIll[26]*( el-

e[26])+s[26]/pow(lO,6));
a=a+O.OOOOI;
}

else if( e I>e[27]&&e 1<=e[28])
{
areal =areal +(EIll[27]*( e l-e[27])+s[27]/pow(l 0,6))*0.0000 I;
rmoel =rllloe 1+0.00001 *(a+O.OOOO1/2.)*(EIll[27]*( e 1-

e[27])+s[27]/pow(lO,6));
a=a+O.OOOOI;
}

else if(el>e[28]&&el <=e[29])
{
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areal =areal +(Em[28]*( e l-e[28])+s[28]/pow(l 0,6»*0.0000 I;
rmoel =rmoe I+0.00001 *(a+0.0000Jl2.)*(Em[28]*(e 1-

e[28])+s[28]/pow(lO,6»;
a=a+O.OOOOI;
}

else if( e I>e[29]&&e I <=e[30])
{
areal =area1 +(Em[29]*( e 1-e[29])+s[29]/pow( I 0,6»*0.0000 I;
rmoel =rmoel +0.00001 *(a+0.00001/2.)*(Em[29]*(e 1-

e[29])+s[29]/pow(lO,6»;
a=a+O.OOOOI;
}

else
{
areal =area1 +(Em[30]*( e l-e[30])+s[30]/pow(l 0,6»*0.0000 I;
rmoel =rmoel +0.00001 *(a+0.00001/2.)*(Em[30]*(e 1-

e[30])+s[30]/pow(lO,6»;
a=a+O.OOOO1;
}

}
again:
cout«"lnput the lower limit";
cin»h;.
b=O.O;
area2=0.0;
rmoe2=0.0;
. fore e2=0.0; e2<=h; e2+=0.00001)

{
if (e2>=f11 ]&&e2<=f[2])

{
area2=area2-Eml [I ]*e2*0.00001;
rmoe2=rmoe2-Em I [I ]*e2*0.00001 *(b-0.0000I/2.);
b=b-O.OOOOI;
}

else if( e2>f12]&&e2<=f13])
{
area2=area2-(Eml [2] *(e2-f12])+t[2]1pow(l 0,6»*0.00001;
rmoe2=rmoe2-0.0000 I *(b-O.OOOO1/2.)*(Em 1[2]*( e2-f[2])+t[2]/pow( 10,6»:
b=b-O.OOOOI;
}

else if(e2>f13]&&e2<=f[4])
{
area2=area2-(Eml [3]*(e2-f13])+t[3]1pow(1 0,6»*0.00001;
rmoe2=rmoe2-0.0000 I *(b-O.OOOO1/2.)*(Eml [3]*( e2-f[3])+t[3]/pow( I 0,6»;
b=b-O.OOOOI;
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}
else if(e2>f14]&&e2<=f15])

{
area2=area2-(Eml [4]*(e2-f14])+t[4]/pow(l 0,6))*0.00001;
rmoe2=rmoe2-0.00001*(b-0.00001/2.)*(EmJ [4]*(e2-f[ 4])+t[4]1pow(1 0,6));
b=b-O.OOOOI;
}

else if(e2>f[5]&&e2<=f[6])
{
area2=area2-(Eml [5]*(e2-f[5])+t[5]/pow(1 0,6))*0.00001;
rrnoe2=rmoe2-0.00001 *(b-O.OOOO1/2.)*(Em 1[5]*( e2-f15])+t[5]/pow(l 0,6));
b=b-O.OOOOI;
}

else if(e2>f16]&&e2<=f17])
{
area2=area2-(Eml [6]*(e2-f[6])+t[6]/pow( I 0,6))*0.0000 I;
rmoe2=rmoe2-0.00001 *(b-0.00001l2.)*(Em 1[6] *(e2-f[6])+t[ 6]/pow( 10,6));
b=b-O.OOOOI; .
}

else if{e2>f17]&&e2<=f[S])
{
area2=area2-(Ernl [7]*(e2-f[7])+t[7]/pow(1 0,6))*0.0000 I;
rrnoe2=rmoe2-0.00001 *(b-0.00001/2.)*(Em I [7]*(e2-f17])+t[7]/pow(l 0,6));
b=b-O.OOOOI;
}

else if( e2>f[S]&&e2<=f19])
{
area2=area2-(Em I [S]*( e2-f1S])+t[S]/pow(l 0,6))*0.0000 1;
rmoe2=rmoe2-0.00001 *(b-0.00001/2.)*(Em I [S]*(e2-f[S])+t[S]lpow(1 0,6));
b=b-O.OOOOI;
}

else if(e2>f[9]&&e2<=f[J 0])
{
area2=area2-(Em 1[9]*( e2-f[9])+t[9]/pow(l 0,6))*0.0000 I;
rmoe2=rrnoe2-0.00001 *(b-O.OOOO1/2)*(Ernl [9] *(e2-£19])+t[9]1pow( 10,6));
b=b-O.OOOOI;
}

else if(e2>f110]&&e2<=f1II])
{
area2=area2-(Em I [10]*( e2-£11O])+t[ 1Oj/pow( 10,6))*0.00001 ;
rmoe2=rmoe2-0.00001 *(b-0.00001/2)*(Em1 [1OJ*(e2-

£11 O])+t[l Oj/pow(l 0,6));
b=b-O.OOOOI;
}

else if(e2>f111]&&e2<=f112])
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{
area2=area2-(Eml [II] *(e2-flll ])+t[11 ]/pow(l 0,6))*0.0000 I;
rmoe2=rmoe2-0.00001 *(b-0.00001/2)*(Eml [II ]*(e2-

flll ])+t[11 ]/pow(l 0,6»;
b=b-O.OOOOI;
}

else if(e2>flI2]&&e2<=fl13])
{
area2=area2-(Em 1[12]*( e2-flI2])+t[ 12]/pow(l 0,6))*0.0000 I;
rmoe2=rmoe2-0.0001 *(b-0.00001l2)*(Eml [12]*(e2-

fll 2])+t[12]/pow(l 0,6»;
b=b-O.OOOOI;
}

else if(e2>t113 ]&&e2<=fl14])
{
area2=area2-(Eml [13]*(e2-flI3])+t[13]1 pow(l 0,6»*0.00001;
rmoe2=rmoe2-0.00001*(b-0.00001l2)*(Em I [13]*(e2-flI3])+t[13]!

pow(10,6»;
b=b-O.OOOOI;
}

else if(e2>fl14 ]&&e2<=flI5])
{
area2=area2-(Em 1[14]*( e2-flI4])+t[ 14]/pow(1 0,6»*0.00001;
rmoe2=rmoe2-0.00001 *(b-0.00001/2)*(Eml [14]*(e2-flI4])+t[14]!

pow(lO,6»;
b=b-O.OOOOI;
}

else if(e2>flI5]&&e2<~flI6])
{
area2=area2-(Eml [15]*( e2-flI5])+t[ 15]1 pow(l 0,6»*0.0000 1;
rmoe2=rmoe2-0.00001 *(b-0.00001/2)*(Eml [15]*(e2-flI5])+t[1 5]1

pow(lO,6»;
b=b-O.OOOOI;
}

else if(e2>t116]&&e2<=fll 7])
{
area2=area2-(Em 1[16]*( e2-flI6])+t[16]1 pow(l 0,6»*0.0000 1;
rmoe2=rmoe2-0.0000 I*(b-O.OOOO1/2)*(Em 1[16] *(e2-

t116])+t[16]/pow(lO,6»;
b=b-O.OOOOI;
}

else if(e2>t11 7]&&e2<=t11 8])
{
area2=area2-(Em 1[17] *(e2-flI7])+t[17]! pow(l 0,6»*0.00001;
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else

rmoe2=rmoe2-0,OOOOI *(b-O,OOOOI/2)*(Eml [17]*(e2-
f[17])+t[ 17]/pow(l 0,6));

b=b-O,OOOOI;
}

else if( e2>f[18]&&e2<=f[ 19])
{
area2=area2-(Em 1[18] *(e2-f[ 18])+t[18]/ pow(l 0,6))*0,0000 I;
rmoe2=rmoe2-0,OOOOI *(b-O,OOOOI/2)*(Em 1[18]*(e2-

f[18])+t(18]/pow(lO,6));
b=b-O,OOOOI;
}

else
{
area2=area2-(Em 1[19] *(e2-f[ I 9])+t[19]/pow(l 0,6))*0,0000 1;
rmoe2=rmoe2-0,OOOOI *(b-O,OOOOI/2)*(Em 1[19]*(e2-

f[19])+t(19]/pow(lO,6));
b=b-O,OOOOI;
}

}

area=area I+area2;
MO=rmoel +rmoe2;
delta=a-b;
sigma=-(l,O/delta)*area;
cout«" Lower limit="«b;

if(abs(sigma _ c-sigma» 1,0)
{
cout« "There is no solution";
goto again;
}

{
i=I,0I12,O*(b_h*pow(h_ b,3));
p=h _b/delta;
M=I 2*i*MO/(p*pow(delta,3))*pow(1 0,6);
Ea=M*p/(i*pow(lO,9));
cout«"e2="«b«" delta="«delta«" E="«Ea«" M="«M;
}

. goto again2;
}
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/************************************************/
I*PROGRAM FOR CALCULATING 'STRAIN' AND 'E'" *1
/************************************************/
#include<iostream.h>
#include<conio.h>
#include<fstream.h>
#include<math.h>

void mainO{
int ij,m,n,p,k,kk;
m=2;
n=l1;
k=IO;
ifstream inf ("f.txt");
ifstream infl ("f!.txt");
of stream outf (" 1O.txt");
double xp(20] ,delta( 50],sum,pi,x( 50] (50] '£150],a(50] ,d(50] (50];
clrscrO;
for(i=1 ;i<=m;i++)

{
for (j=1 ;j<=n;j++)
int»x(i][j];
f(i]=x(i](II]; }
for (kk=l;kk<=lO;kk++)
infl»xp(kk];
Ilcout«f(16];
for (k= I ;k<= IO;k++)

{
for(i= I ;i<=m;i++)
d(i](I]=f(iJ;
for(j=2j <=m;j ++)
for(i=1 ;i<=m-j+ I ;i++)
d(i] (j]=(d(i+ 1](j-I ]-d(i](j-l J)/(x(i+j-l] (k]-x(i] (kJ);
for(j=l ;j<=mj++)
a(j]=d(I][i] ;
sum=a(l];
for(i=2;i<=m;i++)

{
pi=I.O;
for(j=1 ;j<=i-l ;j++)
pi=pi*(xp(k ]-x(j](k J);
sum=sum+a(i]*pi;
}

delta(k ]=sum;
outf«delta(k ]«"\n";
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cout< <delta[k]< <"\n";
}

getchO;
}

1**************************************************************/
1* 'PROGRAM FOR CALCULATING STRESS FROM TOTAL STRAIN**I
1*************************************************************/
#include<iostream.h>
#include<conio.h>
#include<fstream.h>
#include<math.h>
void mainO{
int ij ,n,p,k,m;
n=3;
. m=IO;
ifstream inf ("input I .txt");
ifstream infI ("input2.txt");
ofstream outf ("inpuUxt");
double eps[ 50],sigma,sum,pi,x[ 50] ,fl50],a[ 50] ,d[50] [50];

clrscrO;

for(i= I ;i<=n;i++)
{
inf»x[i]»fli];}
for(i=1 ;i<=n;i++)
d[i][ I]=fli];
for(j=2;j<=n;j++)
for(i=1 ;i<=n-j+ I ;i++)
d[i] [j]=o( d[i+ I] [j-1] -d[i] [j-I J)/(x[i +j-1]-xli J);

for(j=I ;j<~n;j++)
a[j]=d[IJO];
for (k= 1;k<=m;k++)

{
infI »eps [k];
sum=a[I ];for(i=2;i<=n;i++)
{
pi=l.O;
for(j=1 ;j<=i-I ;j++)
pi=pi*( eps[k ]-x[jJ);
sum=sum+a[i] 'pi;
}

slgma=sum;
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cout«eps[k]«" \t"«sigma«" \n";
outf«sigma«"\n"; .
}

getchO;
}
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