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ABSTRACT

Surfaces covered with rmcropores have recently become a topic of interest as an

effective means for better lubrication and friction reduction in thrust bearings,

mechanical seals, piston rings, and other machine parts. The surface structure of the

sliding faces plays a vital role in their performances.

Surface pores on face seal surfaces are developed during different kinds of

manufacturing operations and surface treatments and their shapes may be different.

Moreover, different kinds of surface textures may be deliberately machined on the seal

surface through modem techniques. It is, therefore, essential to investigate how pores!

asperities of different shapes affect the hydrodynamic behavior of face seal In the

present work, performance of mechanical face seals with pores! asperities of square and

exponential shapes is investigated.

Mathematical models are developed for different pore geometry to allow the

performance prediction of liquid non-contacting face seals with regular microsurface

structure in the forms of rectangular and exponential pores. Seal performance such as

equilibrium face separation, friction torque and leakage across the seal are calculated

and presented for a range of sealed pressure, pore size and pore ratio of the annular ring

surface area. An optimum pore size is found that depend on corresponding to the

maximum axial stiffness and minimum friction torque.
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Chapter 1
INTRODUCTION

"'---:-~

1.1 MECHANICAL FACE SEAL

Mechanical face seals are used to seal a fluid at places where a rotating shaft enters

an enclosure. Figure 1.1 shows schematically the configuration of a mechanical face

seal. The rotating seal is fixed to the shaft and rotates with it, whereas the stationary

seal is mounted on the housing. The secondary seals (O-rings) prevent leakage

between the rotating shaft and the rotating seal, and the housing and the stationary

seal, respectively. The rotating seal is flexibly mounted in order to .accommodate

angular misalignment and is pressed against the stationary seal by means ofthe fluid

pressure and a spring. The primary sealing occurs at the sealing interface of both seal

faces, where the rotating face slides relative to the stationary face. For proper

functioning of a mechanical face seal, a fluid film is maintained between the faces. In

the configuration of Figure 1.1, the sealed fluid may also act as a lubricant.

Applications of mechanical face seals are numerous. The most common example of

application is in pumps for the chemical industry. Also propellor shafts in ships and



Chapter I. Introduction

submarines, compressors for air conditioners of cars and turbo jet engines and liquid

propellant rocket motors in the aerospace industry require mechanical face seals.

Stntiollr~ry ::,(:al

S('iiling int.eri':l.cc

Figure 1.1: Mechanical face seal, schematically [1]

Mechanical face seals have become the first choice for sealing rotating shafts

operating under conditions of high fluid pressures and high speeds, at the expense of

soft-packed glands. The reason for this is lower leakage, less maintenance and longer

life. A disadvantage of face seals is that when they fail, they do so completely,

whereas a soft-packed gland can continue, although less efficiently.

The advent of a range of microfabrication techniques (Galvanoforming Abforming,

Laser Machining) coupled with developments in microscopy (Scanning Electron

Microscope and Atomic Force Microscope) has had a profound effect on the

resurgence of tribological applications at microscopic level. With the help of this

new technology, it is now possible to produce microstructures on bearing seal

surfaces to improve the overall tribological performance including reduction in

friction, wear and interfacial temperatures, improvement in reliability, and in severity

conditions, lowering energy consumption and minimizing maintenance costs.

2



Chapter 1. Introduction

1.2 RELATED AND EARLIER RESEARCH

The problem of parallel surface lubrication has been of considerable interest to

people involved in rotary shaft face seal and thrust bearing technology for many

years. The basic aspect of parallel surface lubrication that distinguishes it from other

areas of lubrication is that classical lubrication theory does not predict the existence

of stable hydrodynamic film for steady state, isothermal incompressible flow

between smooth, parallel surfaces. Hydrodynamic films between apparently parallel

surfaces have been observed in practice and are often essential for the. reliable

performance of seals. However, experience shows that hydrodynamic films do

develop in so called parallel face seals, generally because of some mechanisms

which relaxes one or more ofthe assumptions in the classical theory.

The present effort to determine the effect of pore geometry on the performance of

face seals is a consequence of numerous research works. One of the early works on

thrust bearing and seals was done by Salama [2] who studied the effect of

macroroughness on the performance of parallel thrust bearings. He studied the effect

of a sinusoidal sliding surface on the pressure and friction in a thrust bearing. Similar

studies were carried out for wavy mechanical seals by Pape [3]. He focused on the

effect of waviness in radial face seals. Etsion [4] performed quite similar

investigation in a later time. He studied the effects of combined coning and waviness

on the separating force in mechanical face seals. The load carrying capacity in these

cases is due to an asymmetric hydrodynamic pressure distribution over the wavy

surfaces. The pressure increases in the converging film regions is much larger than

the pressure drop in diverging film regions. This is due to the fact that diverging film

region is bounded from below by cavitation whereas the converging film region has

no upper limit pressure rise.

Apart from the above macro surface structure, micro surface structure in the

mechanical seals was also studied by different researchers. One of the earliest works

in the field of microasperity lubrication was based on the experimental evidence

found at Battelle Memorial Institute by Hamilton et al. [5]. A lapped carbon graphite

3
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stator with 5 micro inch (RMS value) surface roughness was run against an optically

flat transparent rotor. Mineral oil with a kinematic viscosity of 400 centistokes was

used as an interfacial film. Narrow, long discontinuous cavitation streamers were

observed. The interruptions in streamers corresponded with the surface roughness of

the carbon graphite stator.

Subsequent experiments were carried out to find the effect of surface roughness on

cavitation. A smooth, nickel-plated steel stator was run against a pyrex rotor. Initially

it produced high torque but later, with the appearance of a broad band of cavitation

near the inner radius, the torque dropped sharply. Cavitation streamers soon appeared

almost over the entire interface.

The next set of experiments was conducted using a flat, but rough stator surface.

Roughening was done in one case by lapping with 600-grit compound and in the

other by light vapor blasting. Numerous cavitation streamers were found in both

cases. An attempt to relate the topography of lapped carbon graphite to seal

performance was infeasible because of the difficulty in mathematically representing

the surface that is composed of many irregular microscopic pits and asperities of

varying sizes and shapes. Hence, regular patterns were generated on a flat metallic

stator surface to facilitate modeling. With photoetching cylindrical micropore heights

up to 100 micro inches and flatness on the grooves to within +/- 8 micro inches were

achieved. The photoetched copper ring was soft soldered to a steel substrate and run

against smooth pyrex and steel rotors in different experiments. Three different

patterns, one varying in asperity diameter and the other in asperity height, were used

in this study. Load carrying capacity was found to vary linearly with speed in all of

these cases. However, the magnitudes were different. Further experiments conducted

on an identical pattern but with varying heights showed an inverse relationship

between load capacity and asperity height.

The characterization of microasperity lubrication by the combined effect of asperity

dimensions and the association of cavities with each asperity, as pointed out earlier,

have thus formed a basis for theoretical models.

4
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At first, a simple one-dimensional model was used to show the association of cavities

and asperities. Two-dimensional analytical models, with approximations in boundary

conditions, were later used to study the combined effects of asperity geometry and

cavitation. The experimental critical speeds, below which no cavitation occurs and

hence load support is zero, agreed with the theoretical data, within a given

experimental error. However, the model could not reproduce the pattern of cavity

representation. In addition, the experimental values ofload support were higher, 14.2
, ,

psi (0.1 N/mm) instead of 7.2 psi (0.05 N/mm). The reason for this difference was

partially attributed to the assumption of the type of cavities used in theoretical

analysis, in which streamers of cavitation were not accounted for. In conclusion, the

authors have claimed that their theory is in qualitative agreement with experiments.

In an attempt to explain the difference in load support values, the authors assumed

small tilts on asperity tops in a subsequent paper[6]. The tilt was 0.86 microinches

(34.4 micrometers) in a diameter of 0.3048 mm. The theoretical model was

simplified by approximating the solution as a summation of infinite series and then

by truncating the resulting series. The justification of these assumptions was based

on the use of small inclination for the tilt. A good correlation between the

experimental and theoretical results, both for film thickness and for friction

coefficient, was observed. The standard deviation of the experimental data for film

thickness, from the fitted curve was 50 micrometers. Since Talysurf measurements

could not detect the small tilts, the authors were unable to demonstrate their claim on

the tilt theory. Instead, indirect evidence was shown by increased load support values

based on increased tilts.

In a third paper in 1969 [7], authors Anno et aI., compared the load support and

leakage performances of positive and negative asperities using the previously

mentioned small tilt theory of asperity tops. They compared positive square

asperities with negative circular asperities, both distributed in a square array.

Different arrays (patterns) for microasperities were also used in this study such as,

positive circular asperities in a hexagonal array.

5
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Figure 1.2 shows the arrays considered in their study. For all the cases, the

protruding area, other than the asperity area, was taken as the effective area while

comparing positive and negative asperities. The authors have found similar load

support with all of the above shapes. However, experimental leakage rates for

negative asperities were very less when compared to positive ones.

0.0088"

CA.--f.:')
\..1../ \ ..j./

I I

1 I
1 :

(r fT"~~)""""'(:'-j
;1 I I
I . 0.0124"

\ c
Negative Asperilies

b

0.012"0.006B"

(zS "'J'.L. [d 'E]\..t..J ",\ , - _..-•.-.
/ '. 1....... L..~ .

G)C)(D I i
C9--.--c) 19L!J

" /~I-0-;-';'-"~I \ /

Positive Asperities

Asperity Area Fraction: a) 0.052

Projected Area Fraction: a) 0.052

b) 0.36

b) 0.36

c) 0.40

c) 0.60

Figure 1.2: Patterns showed in Anno et al. [7]

Sneak [8-9] showed in his investigation that misalignment and surface waviness are

found to affect face seal performance in the same order the clearance changes affect

the performance of the aligned seal surfaces. It was found in his works that variations

in surface flatness of the magnitude which are likely to occur during manufacturing

process or as a result of thermal distortion can result in increase in leakage rate.

Waviness and misalignment are found to have a negligible effect on separating force

in absence of cavitation.

Findlay [10] in his research showed how the cavitation affect the load on mechanical

face seals operating on a thin hydrodynamic film containing gas cavity. Cheng et

al.[l1] did an extensive research on the behavior of hydrostatic and hydrodynamic

6



Chapter i. introduction

noncontacting face seals. They mentioned in their paper that even unplanned

unevenness such as circumferential waviness or microirregularities help to generate

significant hydrodynamic pressure. It was also found that the shape of film gap has a

very critical influence on film stability, stiffness and leakage rate. Snegovsky et al.

[12] and Lai [13] showed that microcavities or grooves with small depth may also

keep the parallel faces apart.

The early findings on negative asperities have lately revived interest among the

researchers, partly due to the developments in microfabrication techniques such as

laser ablation. The studies are also influenced by increasingly stricter environmental

controls on permissible emissions. Most noticeable contribution on analysis and

expetimental work on laser-textured surfaces is done by Etsion, I. and his group.

In one of their earlier papers in 1996 [14], Etsion and Burstein developed a

mathematical model for hemispherical pores arranged in a rectangular array.

Numerical methods using finite differences were employed to solve Reynolds

Equation with Half Sommerfeld condition. The range of pore diameters and pore

ratios used were 5IJm to 200IJm and 2.5% to 20% respectively. They found that pore

size and pore ratio influences the seal performance significantly only in a certain

range. An optimum value for a pore size was found to be dependent upon sealed

pressure, viscosity and pore ratio. It decreased with lower viscosities, higher sealed

pressures and lower pore ratios. Subsequently, in 1997, Etsion, I., Halperin, G., and

Greenberg, Y. have presented experimental results to show the enhancement of

mechanical face seal's life with laser textured seal faces [15].

1.3 OBJECTIVE OF THE PRESENT RESEARCH

With the current trend toward higher speed and pressures, any rubbing contacts

between seal faces are no longer tolerable, and more and more seals are designed to

operate with a continuous fluid film at the expense of leakage. The performance

parameter for a mechanical face seals are mainly friction, leakage, wear and its

thermal characteristics. In the present research thermal characteristics are ignored.

7
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The wear is not occurred here as the face seal is assumed non contacting type for the

present case. The surface structure of the sliding faces of sealing rings plays an

important role in the performance of mechanical face seals. Surfaces covered with

micropores have recently become a topic of interest as an effective means for better

lubrication and friction reduction in thrust bearings, mechanical seals, piston rings,

and other machine parts [16-18]. The surface structure of the sliding faces plays a

vital role in their performances. The present research concerns the performance of

the face seals due to different geometries of micropores.

The central objective of the present research is to develop a mathematical model of

face seals having pores of different geometries and to perform a parametric study

using this mathematical model.

The specific objectives of the present research work are as follows:

(a) To develop a mathematical model for the performance prediction of non-

contacting mechanical face seals with regular micro-surface structures.

(b) To develop a suitable numerical scheme for solving the 2-D Reynolds

equation for the hydrodynamic pressure components over a single control

cell with specific pore geometry and boundary conditions.

(c) To conduct a parametric analysis using the developed model. Pores/

asperities of rectangular and exponential shapes will be investigated.

1.4 OUTLINE OF SOLUTION METHODOLOGY

Negative microasperities/pores on sliding surface subject to hydrodynamic

lubrication are considered in this work. Separate mathematical model is developed

for the pore of rectangular shape as well as elliptical shape. It is assumed that the

negative asperities/pores are evenly distributed on the seal surface and each pore is

located in the center of an imaginary control cell. The pressure distribution in the

8



Chapter i. introduction

lubricant film over the control cell is given by Reynolds equation of hydrodynamic

. lubrication [19-22]. Hydrodynamic pressure over a single control cell is determined

numerically by solving Reynolds equation through finite difference method [23-26].

To obtain the hydrodynamic pressure distribution over the control cell, the Reynolds

equation is solved using Successive Over Relaxation (SOR) method. Then total

pressure over the control cell is calculated by adding hydrostatic pressure to it. Once

a control cell with a positive pressure over its entire area is found, the search along a

radial line is ended and the next radial line is examined. By iterative technique, the

seal clearance is found by comparing the closing force and the opening force. Once

the operating clearance is found, the friction torque and the leakage are then

calculated.

9



Chapter 2
HYDRODYNAMIC LUBRICATION

2.1 HYDRODYNAMIC THEORY

The presence of a viscous fluid film such as lubricating oil, in between any two

sliding solid surfaces is known to reduce frictional resistance and wear occurring at

the surfaces. Apart from carrying away a major portion of the heat generated by

friction, it also supports a part of the normal load. Design of hydrodynamic bearings

such as thrust and journal bearings is carried out to ensure the presence of a fluid

film. In non- conformal bearings, for example, gears and rolling bearing elements,

elastic distortion of metal gives rise to the development of a fluid film. In machine

tool slide ways a wedge is produced by the thermal distortion of metals to provide

space for lubricant. In all these cases the fluid film may not carry the full load, but it

relieves the metal of carrying most of it. The rest of the load is carried by the metal-

to-metal asperity contacts. Generally, a convergent wedge along with speed and

viscosity produces fluid film pressure.
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Additives in lubricant, those have high endurance to extreme conditions created by

temperature, help in forming a protective layer of surface-active molecules and thus

prevent the chance of welding of asperities that can lead to the breakdown of the

system. In fluid film lubrication, a very thin layer of fluid separates the two sliding

surfaces completely, preventing the asperity contacts. Therefore, the frictional

resistance to the motion is reduced to the level of shear forces experienced by the

fluid. In order to support a normal load, pressures have to be developed in this fluid

film. In hydrostatic lubrication, the lubricant is pressurized externally to achieve this.

But, in boundary lubrication, the sliding faces are not completely separated and so

wear takes place at the contacting points. An example of such type of lubrication is

the operation of low speed bearings that are small in size. In comparison, with

hydrodynamic or thick film lubrication, pressure is developed internally by the

combined action of speed ofthe moving surfaces and the viscosity of the lubricant. If

the surfaces are smooth and parallel, no pressures are developed and if irregularities

are present on the surfaces, pressures are formed in the fluid film. The mechanism of

this type of lubrication can be better understood by studying the action of a

converging wedge of sliding surfaces on an interfacial fluid film (see figure 2.1).

Convergence of a fluid film is formed either due to natural profile of asperities and

surfaces or due to created profiles, as in the case of thermal distortion. Such

converging wedge occurs in every lubricated pair of materials and produces pressure

proportional to the viscosity and the sliding speed. As a result, the lubricated sliding

pair carries a certain load.

bearing smface

slider u---.-

Figure 2.1: Convergent wedge [20]

11
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2.2 STEADY STATE REYNOLDS EQUATION

The mathematical expressions for hydrodynamic conditions are given by the

Reynolds equation (2.1), as given below. In simplifying the derivation of the

mathematical expression, the following assumptions are made:

• The surfaces are smooth.

• The curvature of the surfaces is large compared to film thickness.

• The fluid flow is laminar.

• There is no slip at the boundaries.

• Body and inertia forces are neglected.

• The lubricant is Newtonian.

• Pressure is constant across the thin film.

Steady state Reynolds equation is developed by applying the continuity of flow and

equilibrium offorces on a representative fluid element. The generalized expression is

presented as,

where Ul and U2 are velocities of the moving surfaces, the first term of the right hand

side indicates wedge term, second term is the stretch term, and the third is the

squeeze term.

The physical significance of Reynolds Equation is that the pressure generation in the

fluid film is given as a composition of the wedge, stretch and squeeze contributions

to the load support. The wedge effect is dependent on the variation of film thickness

in the direction of the velocity. The stretch effect is caused due to the variation in the

velocities of the moving surfaces as in the case of elastomeric surfaces. When rigid

surfaces are considered for lubrication, stretch terms are of no significance. Finally,

the squeeze effect is due to the impact or vibration of the surfaces relative to each

other.

12
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For rigid surfaces, if one of the sliding pairs is considered stationary and the other

moving with a velocity, U and if density (P) and viscosity (J1) variations across the

thin lubricant film are ignored (as a reasonable assumption), the above equation can

be further simplified to

~(~ Up)+~(~ Up) = 6(Udh +2V)
Ox J1 Ox 8z J1 8z dx (2.2)

where V is the vertical velocity of sliding surfaces relative to each other. If squeeze

effects are absent and p "* p(x,z) then the above equation reduces to

~(h3Up)+~(h3Up)=6UJ1dh
Ox Ox 8z 8z dx (2.3)

This is the well-known Reynolds equation In two dimensions that is generally

referred in most literature. Appendix B shows the derivation of equation (2.3).

2.3 MICROASPERITY LUBRICATION

Surfaces in reality are not smooth, as considered in the lubrication theory earlier.

Irregularities are present in the form of surface roughness on the interfacial surfaces

at microscopic levels. The generation of pressure in a fluid film due to the

converging and diverging wedges of micro irregularities is classified as

microasperity lubrication and experimental evidence has been presented in support of

this theory [5].

The theory of microasperity lubrication can be better understood by an idealized one-

dimensional model of a single irregularity. As an example, figure 2.3 shows a

rectangular model paired with a flat slider in one dimension, in the presence of a

fluid film. The moving surface produces antisymmetric pressure distribution around

a single asperity. Positive pressure is developed towards the converging edge and

negative in the diverging region. Since the load support is zero for an antisymmetric

13
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pressure distribution, as is evident by the resulting net area under the graph, there

would be no generation of thrust.

Pressure distribution over a
Single asperity

u •
to::."".,.;, , , , ,; ,;.,', ;., .( ..,.). , , '... . z.p."..z,:,..z,/.,.//.,/,.,j---.-
: fluid f?777~

--;-777 ://~~~7-7-7-

Converging Diverging
wedge wedge

a) Ideal flow condition

Net positive pressure
distribution

u ••
r"~.,,t:;.,::. : , , , , , , :."..(,>..>..,t:/z:..<,...<,..~:, ?,z/:/::.l--..-
:~'~/77777 777

Cavitating
region

b) Flow with cavitation

Figure 2.3: Couette flow over idealized asperity [5]

This contradiction to the experimental evidence is explained by the presence of a

phenomenon known as cavitation, in the negative pressure zone of the lubricant [5].

Two types of cavitation in lubricants are generally observed. The first one, known as

gaseous cavitation (in which gaseous bubbles are emanated by the lubricant when

saturation pressures of dissolved gases are reached) is commonly found in bearings.

The saturation pressures are generally near to the atmospheric pressure. Pure

lubricants are generally free of dissolved gases, but most of the available lubricants

are rarely pure. The second type called as vapor cavitation (in which liquid starts

boiling when the pressure acting on it falls below the vapor pressure) is prevalent in

hydraulic machinery. Due to the inability to withstand tensile forces, lubricant breaks

14
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up into a cavitating region and a fluid flowing path. In the cavitating negative

pressure region, isobaric pressure conditions prevail and thus, the net area under the

graph as shown in figure (2.3-b) is no more zero, but positive. The integrated effect

of the net positive pressure distribution of all the asperities on a sealing surface

explains for the creation of thrust and hence, the otherwise mating surfaces.

2.4 MECHANISMS OF HYDRODYNAMIC LOAD SUPPORT

Load support with hydrodynamic lubrication can be achieved by both smooth and

rough surfaces. Some of the familiar mechanisms ofload support are given below.

2.4.1 Smooth Surfaces

w

Figure 2.4: Squeeze effects [19]

In case of smooth surfaces, the load support mechanism is caused by three different

phenomenon of the wedge, stretch and squeeze effects (as shown in figure 2.4).

Stretch effects are found in the case of sliding tires. In case of a plain slider bearing

with at least one elastomer surface, wedge and stretch effects are observed. In a

journal bearing, wedge and squeeze effects are found

2.4.2 Rough Surfaces

There are four different phenomenon of load support mechanisms associated with

rough surfaces [19]. In one of the mechanisms, roughness aligned in one particular

direction generates more positive pressure zones than the negative ones and as a

15
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result, net load support is observed (figure-2.5). Another mechanism is due to the

combined effects of pressure and temperature. While pressure increases the viscosity

and hence the load support, temperature has a reverse effect. These effects are

assumed to be negligible in the thrust slider system used for this study.

w
u

•

fluid
directional
roughness

pressure

Figure 2.5: Directional roughness [19]

.-- ..•
"\ di$!J;J!'t(t.~1

'<./p!'e:e3ure ~un.•"e

"

Figure 2.6: Elastohydrodynamic effects [19]
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The other two mechanisms of load support due to net positive pressure effects are

those commonly found with cavitation (as explained earlier) and elastohydrodynamic

effects as shown in figure (2.6). Elastohydrodynamic lubrication occurs when at least

one of the surfaces is elastic. Even rigid bodies when subjected to very high

pressures (in order of thousands of psi) as in the case of non conformal bearings

( e.g. roller bearings) undergo plastic deformation. As shown in the figure, due to

deflection of the asperity, a shift in the pressure profile occur leading to the

formation of a net positive pressure.

2.5 BOUNDARY CONDITIONS

2.5.1 Full Sommerfeld Condition

•
L

•

---
(a)

-- ••
U

-----------== •.
L U

(b)

(c) (d)

Figure2.7: Full Sommerfeld pressure distribution.
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,'.,.

By combining a converging wedge back to back with itself a converging-diverging

wedge is formed. Two such examples are shown in figure 2.7. The first is an

extension of a Rayleigh Step bearing and the second is the shape found generally in a

journal bearing. Positive pressures are generated in the converging region and

negative in the diverging region, giving an anti-symmetrical pressure distribution.

Pressure boundary conditions at the entry, exit and the center of the wedge are each

equal to zero and these conditions are known as Full Sommerfeld conditions. The

resulting pressure curve is shown in figure 2.7-c&d. For low supply pressures, P"

Reynolds equation predicts negative pressures that lead to erroneous results in load

capacity.

Load carrying capacity is given as:

x

f+L12w= pdx
-L12

2.5.2 Half Sommerfeld Condition

~L. •
I U
I
I
I

IN'

(24)

-L/2 0" I
r
I
I
I

L/2

Figure 2.8: Half Sommerfeld pressure distribution [26]
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This condition assumes that cavitation occurs over the entire diverging region and

hence pressures are considered to be completely and continuously zero in the

negative zone. However, this condition is rejected based on the continuity of flow. A

typical pressure profile is shown in figure 2.8.

Load Carrying capacity is given as

w=[ pdx
-L/2

2.6 Balance Ratio

(2.5)

An important parameter, well known in the sealing industry, is the balance ratio,

which for an outside pressurized seal is defined as:

B = Hydraulic Loading Area _ Ah = (D; - Di; )
, Sealing InterfaceArea AJ (D; -D,z) (2.6)

For an inside pressurized seal the hydraulic loading area is given by ~71-(Di; - D,2),

thus

B = Ah =, A
J

Di; _D,2
D2 _D2o ,

(2.7)

where, Dj is the seal inner diameter

Do is the seal outer diameter

Db balance diameter

The balance ratio controls the axial load, acting on the seal interface. When Br is

greater than 1, the seal is called unbalanced, whereas a balanced seal has a Br-value

lower than 1. Seals operating at high pressures are mostly of the balanced type, Br <

1, whereas many low-pressure seals operate atB,> 1, the unbalanced type.
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2.7 Arrays

In micropore (microasperity) lubrication, improvement in tribological performance

depends upon the viscosity of the lubricant, the relative velocity of the moving

surfaces and the geometries of both the micro pores and the face seal. Generally, for

a given situation, the applied load, the viscosity (ignoring the temperature effects),

velocity and the dimensions of the face seal are constant. The parameters then

available for a designer to enhance the friction and leakage performance is the micro

pores shape. An array refers to the way micropores are distributed in a layout. The

most common array shapes are square, hexagonal and rectangular as shown in figure

2.9.

1 L •o 0--0, ,, ,o 0--0
000

a) Square

C)L~
0<'0'>0, ,

\_---~

00
b) Hexagon

Figure 2.9: Types of arrays

o
c) Rectangular

2.8 LEAKAGE (BASED ON POISEUILLE FLOW)

Leakage occurs in the radial direction and is governed by the well-known Poiseulle' s

law given as

Q = h3 t:.p(2tr rJ
12.u(ro - rJ

20
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where !¥J is the hydrostatic pressure difference across one unit cell (7]. Though this

formula for leakage is, in its simplified form, since other effects such as rotation and

surface tension are not considered [7], a reasonable estimate of leakage can be

expected, good enough for comparative studies.

Figure 2.10: Leakage in a face seal with pores
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Chapter 3
MATHEMATICAL MODELING

In the present model miCropores are considered to be distributed along the

mechanical face seal following a rectangular grid. Following figure depicts the

distribution of micropores clearly. The pores can be produced by various methods

and may have different geometries. The present work concentrates on rectangular

pores and exponential pores evenly distributed over the surface area of the seal ring.

Figure 3.1: Pore distribution on sliding face of seal ring
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3.1 ASSUMPTIONS FOR THE PRESENT WORK

The derivation of Reynolds equation is being done on the basis of few assumptions.

Here in this work few more additional assumptions are made to facilitate the

construction of the physical model with less complexity. The basic assumptions are:

•

•

•

•

The seal is a all-liquid non contacting seal, with parallel faces separated by a

constant film thickness ho.

Curvature effects of the seal rmgs can be neglected. Hence, a uniform

circumferential velocity U and linear pressure drop from the seal's outer to

inner circumference are assumed.

The sealed fluid is a Newtonian liquid having a constant viscosity, fl .

Half Sommerfeld condition is assumed whenever cavitation occurs .

Although the last assumption introduces a certain error in the flow around the control

cell, it saves computing time without altering the general trend of the solution for

load capacity.

3.2 RECTANGULAR PORE GEOMETRY

The pore geometry is showed in the figure 3.2. Each pore is rectangular shaped with

a pore depth of hp. The pores are evenly distributed with an area ratio, S. the distance

between neighboring pores, 2Rl, is large enough to justify the assumption of

negligible interaction between the pores. Each pore is located in the center of an

imaginary "control cell" of side 2R] x2R1, as shown in the figure 3.2-b. The control

cell is the basic unit for the calculations. The hydrodynamic pressure distribution

over each control cell is exactly the same.
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z

f'
y

hp

2R' 2R'

Figure 3.2(a): Pore geometry

0000
00000
00 00 2R,

o 00
o 0

2R,

Figure 3.2(b): Control cell with coordinate system

The Reynolds equation (obtained from equation 2.3) for the hydrodynamic pressure

component over a single control cell is:
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~(h3 iJp)+~(h3 iJp)=6IlU ahax ax az az ax

The local film thickness h in the region 2R1 x 2R1 of a control cell is:

h=ho

at outside the pore where, (x2 + Z2 't >Ra
Over the pore area the film thickness is:

(2.3)

(3.11)

h=ho+h'

h =ho+hp [h' = hp , for rectangular profile] (3.1.2)

The boundary conditions of Reynolds equation (2.3) are p = 0 at x = "= RI and

z ~ 0, RI. After using the dimensionless variables in the following form

The equation (2.3) becomes

~(H3 ap)+~(H3ap)= aH
ax ax az az ax

where, H = I; at out side the pore

and, H = 1+ If/ , over the pore where (X2 + Z2 t $1
The dimensionless boundary conditions are:

p=o atX=i:.4
P=O at Z =i:.4

(3.2)

(3.3.1)

(3.3.2)

The dimensionless size of the control cell can be found from the pore ratio S. For a

particular control cell of size 2Rl x 2R1, if the pore size is S portion of 4R1
2 then it

can be written as,
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4R2 S = Jd?21 0 [Ro is the pore radius 1

or,

or,

The total dimensionless local pressure at each of the control cell is

P,=P+P, (3.4)

where, Psis the dimensionless local hydrostatic pressure component. The hydrostatic

pressure component over each control cell can be found from the following equation

(3.5)

where, Pi is the pressure at the seal inner radius

Po is the pressure at the seal outer radius

Po> Pi

The dimensionless local hydrostatic pressure that is obtained from the equation (3.5)

is

[A is bearing number 1 (3.5.1)

The hydrodynamic load support provided by the cavitating n-th control cell or the

average load per unit area of control cell can be calculated from

Wn = r< f< PdXdZ1< _< (3.6)

Equation (3.6) will be evaluated numerically using Simpson's 1/3 rd rule in order to

calculate the non-dimensional hydrodynamic load support over a control cell.
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Now the dimensional load support over the n-th cell is given by

The total dimensional opening force tending to separate the seal ring is

W = 1r~o2- r;' 'XPo - p,)+ tWn
n=l

(3.7)

(3.8)

The Wn and hence the W is found for a given 'JI which depends on the seal clearance

ho that is actually unknown a priory. This clearance is the result of a balance between

the opening force Wand the closing force Fe given by

where, Pf is the spring force

B, is the balance ratio

3.2.1 Friction Torque Calculation

The total friction over area A of the sealing dam is:

F= fr.dA

(3.9)

(3.1 0)

Neglecting the effect of pressure gradient the above equation can be written as

F=f,u~.dA

or,

or,

27
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Using Equation (3.1.1) the first integral equation can be written as

rZ"I" ( ) U11 = J, 1- S p-r.dr.dB
o rj ho

(311.1)

or, (3.11.2)

The second integral of equation (3.10.2) can be written using the equation (3.1.2)

iZ"iR, UIz = Np R.dR.dB
o 0 h +ho p

r2 _r2
where, N is the total number of pores, N = 0 Z ' S

Ro

R is the seal radial coordinate

(3.12.1)

or,
( Z -rz)S

1- Uro ,
Z - JrP ( )

ho 1+11'
(3.12.2)

The friction force can be obtained by substituting II and hof equation (3.10.2) by the

equations (3.11.2) and (3.12.2) respectively. Thus the friction force is

(z z{I-S S]F = JrPU ro - r, - + ( )
ho ho 1+ II'

We can write the dimensionless friction force in the form

(3.13)

(3.14.1)

or, - SII'F =(I-S)II'+-
1+11'

28
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So the friction torque of the seal is

T=Fr 'm

ro+r.where r =--'
'm 2

3.2.2 Leakage

(3.15)

Leakage loss is obtained usmg the leakage formula based on Poiseuille's law

(equation 2.8 of chapter 2). The dimensional leakage across the seal is

Q = 7lh~rmPo - Pi
6j.1 ro - ri

29
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3.3 EXPONENTIAL PORE GEOMETRY

The pore geometry is shown in figure 3.3-a. Each pore has exponential shaped cross

section with a pore depth of hp. The pores are evenly distributed with an area ratio,

S. The distance between neighboring pores, 2RJ, is large enough to justify the

assumption of negligible interaction among the pores. Each pore is located at the

center of an imaginary "control cell" of side 2R] x2RJ, as shown in figure 3.3-b. The

control cell is the basic unit for the calculations. The hydrodynamic pressure

distribution over each control cell is exactly the same.

y

Figure 3.3(a): Pore geometry

0000
00000
00 00 2R1

o 00
o 0

Figure 3.3(b): Control cell with coordinate system
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~" '." .C' .

The Reynolds equation for the hydrodynamic pressure component over a single

control cell is:

~(h3 fJp)+~(h3 fJp)=6j.iUoh (2.3)
Ox Ox oz oz Ox

The local film thickness h in the region 2R] x 2R] of a control cell is:

h=ho

at outside the pore where, (x2 + Z2 l' >Ro
Over the pore area the film thickness is:

h = h'ekp

where h . and k are two constants, p =.Ii and 0 :SP :S1
Ro

From the geometry of the exponential pore shown in the figure (3.3-b),

(3.17.1)

(3.17.2)

or, (3.18)

atp = 1

h-h- 0

or, (3.19)

Combining equations (3.17.2), (3.18) and (3.19) we get

31

(3.20)



Chapter 3. Mathematical Modeling

or, (3.21 )

where, A=I+lf/ and B=-ln(A)
The non dimensional form of equation (2.3) becomes

~(H3ap)+~(H3ap)=aH
ax ax az az ax

where, H = I; at out side the pore where (X2 +Z2)X > I

and, H = AeBp , over the pore where (X2 + Z2)X S I

The dimensionless boundary conditions are:

p=o atX=:t,;
P=O atZ=:tq

(3.22)

(3.23)

(3.24)

The dimensionless size of the control cell can be found from the pore ratio S. For a

particular control cell of size 2R[ x 2Rt, if the pore size is S portion of 4R[2 then it

can be written as,

4R2S = Jd?21 0 [Ro is the pore radius]

or,

or, _ I (tr)Xq-- -
2 S

The total dimensionless local pressure at each of the control cell is

(3.25)

where, Ps is the dimensionless local hydrostatic pressure component. The hydrostatic

pressure component over each control cell can be found from the following equation
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r-r.
P, = Pi + (Po - Pi)--'

To-ri

where, Pi is the pressure at the seal inner radius

Po is the pressure at the seal outer radius

Po> Pi

(3.26)

The dimensionless local hydrostatic pressure that is obtained from the equation

(3.26) is

(3.26.1)

The hydrodynamic load support provided by the cavitating n-th control cell or

average load per unit area of control cell can be calculated from

Wn = f< f< PdXdZ~< ~< (3.27)

Equation (3.27) will be evaluated numerically using Simpson's 1/3 rd rule in order to

calculate the non-dimensional hydrodynamic load support over a control cell.

Now the dimensional load support over the n-th cell is given by

(3.28)

Similarly we get Wn and hence W is found for a given 'JI which depends on the seal

clearance ho that is actually unknown a priory. This clearance is the result of a

balance between the opening force Wand the closing force Fe given by

(3.29)
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3.3.1 Friction Torque Calculation

The total friction over area A of the sealing dam is:

F=fT.dA

Neglecting the effect of pressure gradient the above equation can be written as

F=f,u~.dA

or,

or,

F = fover nonporeJl Uh dA + 1ver pore Jl UhdAa~a ana
(3.30.1)

(3.30.2)

or,

Using Equation (3.14.11) the first integral equation can be written as

i2"f.'O ( ) UII = 1- S ,u-r.dr.dB
o Tj ho

II =7<,uU~; -r/)(I-S)
ho

(3.31.1)

The second integral of equation (3.30.1) can be written using equation (3.14.2)

i2<iRO U
12 = N,u () R.dR.dB

o 0 ln~~
(h h \. h.+hp Ro
~ 0 + pI'"

r? _r2

where, N is the total number of pores, N = 0 2; S
Ro

R is the pore radial coordinate

Integrating from 0 to 21t and then simplifying the above equation yield

I = 27iN U rRo R.dR
2 ,u Jo heR)

Putting, ~o =R the equation (3.31.2) becomes
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(3.32.1)

or,

or, (3.32.2)

Let's denote the integral part ofthe equation (3.32.2) ash That means we get

i'RdR1 -
3 - 0 H(R) (3.32.3)

The above integration is the function of R. We can write equation (3.32.3) in the

following form

1 = r' RdR
3 Jo [')_(I + If )e In ,+~R

(3.32.4)

or, i'RdR1 -
3 - 0 AeBR (3.32.5)

Putting, BR = t yields, t=OatR=O

t=BatR~1

After substituting and transforming the limit, the equation (3.32.5) becomes

1 _~ rB tdt
3 - A Jo B2e'

Integrating the above equation yield

13 = A~2 [I-A(B+I)]

35
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Combining equations (3.32.2) and (3.32.6), we get

(3.32.7)

The friction force can be obtained by substituting!! and h of equation (3.30.2) by the

equation (3.31.1) and (3.32.7) respectively. Thus the friction force is

(3.33)

We can write the dimensionless friction force in the form

(3.34.1)

or, (3.34.2)

So the friction torque of the seal is

T=Fr m

TO +rwhere r =--', m 2

3.3.2 Leakage

(3.35)

Leakage loss for the present case is obtained using the leakage formula based on

PoiseuiIle's law (equation 2.8 of chapter 2). The formula is same for both cases. The

dimensional leakage across the seal is (using same equation as before) given by

Q = 71h:rm Po - p;
6p ro -r;

36

(3.12)

•



Chapter 4
NUMERICAL SOLUTION

The application of finite differences is commonly found in the numerical solution to

elliptic partial differential equations such as a Laplacian, '11'f = 0 or a Poisson's

equation, '11'f = g(x, z). Finite difference method is preferable to Finite element

method because of the advantages ofless computational time and simplified model.

4.1 FINITE DIFFERENCE EQUATIONS

The hydrodynamic pressure distribution within the lubricated face seal interface can

be determined from the numerical solution of the Reynolds equation. The numerical

analysis starts with the following non dimensional Reynolds equation

~(H3ap)+~(H3ap)=aHax ax az az ax. (3.2)

(4.1)
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a2p a2p' ap ap
-2 +-2 +j,(X,Z)-+ f2(X,Z)-=J;(X,Z)ax az ax az

Here for the rectangular pore,

The value of H outside the pore is

H=I

Over the pore,

H=I+1f/

j,(X Z)= ~ aH
" HaX

f (X z)=~ aH
2' H az

f (X Z)- 1 aH
3 , - H3 ax

For the exponential pore

Outside the pore

H=I

38
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(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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over the pore

};(X,Z)=_3 _aH =31n(l+yr)x~-=X=
Hax .JX2+Z2

,

12(X,Z)=_3 _aH =31n(l+yr)x-==-=Z=
H az .Jx2 +Z2

1 aH 1 -X
13(X,Z)=-3 - =-2 x In(1+yr)x-===

H ax H .Jx2 +Z2

Now equation (4.4) can be written as

Pl,-2P,+Pl' PI-2P+Pl ( )Pl -PI'
1+ ,J I,) 1-,J + I,j+ ',J I,}- + I' X. z. J+ .J J- .J

M2 !'J.2 Jl", 2M

( )Pl-Pl ( )f X Z '.J+ '.J- = f X Z+ 2 I' I 2LlZ 3 I' I

Assuming same step size for both directions, i.e., M ~ ~z~~

P,+l.i- 2P"i +P,-l.i + P"i+l- 2P"i +P,.i-l +}; (Xi' Zi) ~ (P,+l,i- P,-I.J

+ 12(Xi' Zi) ~ (P"i+l- P,.i-J)= 11213(Xi' Zi)

Putting,
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(4.12)

(4.13)

(4.14)

(4.15)
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L'1f,(x"z,).z = a,

Equation (4.17) can be rewritten as

(4.19)

(4.20)

PI 0 -2P 0 +P 10 +P 0+1 -2P 0 +P 0 1 +al(P+1 -P 1 o)+a,(P 0+1 -P 1)=a31+,J I,j 1- ,J ',J I,J I,j- I,J 1- ,J t.] 1,)-

(4.21)

The boundary condition for the above equation is

(4.22)

x=#
z =:1:';

p=o
p=o (423)

4.2 SOLUTION METHOD

Equation (4.21) is a linear system of algebraic equations expressed as

nI a ..x. =b.
j=1 l) } I

i= 1,2,3, n

The coefficient matrix obtained for lubrication applications is not only large and

sparse, but also amenable for iterative methods. It addition, it is computationally

advantageous to solve the set of equations by an iterative method rather than by

direct calculations. The iterative method produces a sequence of solution vectors,

I 2 3 4 k k+l
X,X ,x ,x , x,x , .

The system of equations, given in equation (4.21) above, can be solved by Jacobi

iteration, Gauss-Seidel iteration or by Successive over relaxation methods
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In Jacobi iteration, the values obtained in any iteration are based entirely on the

values of the previous iteration. This is given as:

X;+I = x;'__I_(b; - i>ijx~J ,i = 1,2, n
au }=1

Gauss-Seidel method, on the other hand, uses the most recent computed values in the

iteration. It is expressed as:

,i= 1,2, n

,
The number of iterations in both of these methods is proportional to N , where N is

the number of grid intervals in one dimension. However, with only a fewer iterations,

a faster convergence to the correct solution is obtained by introducing a relaxation

parameter, UJ into the solution set, given as:

If the value of UJ is unity, the above set of equations reduces to the Gauss-Seidel

method. If UJ <1, the method is slower and is called as under relaxation. When

1 :s w :s 2, the method is called successive over relaxation (SOR). For values of

UJ >2, the method proves to be unstable. The optimal choice for UJ, is obtained from

the study of the eigen values of the iterative matrices. For lubrication problems, the

values for w in the range of 1.5 to 1.8 have been found to work well. In the present

work, successive over relaxation method is used for the numerical solution.
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RESULTS AND DISCUSSION

Hydrodynamic pressure components at vanous grid points of a control cell are

computed using the numerical scheme described in the previous chapter. This computed

pressure components are identical for all control cells. Different input parameters for

this computation are shown in table 1.

Table I: Different input parameters

Name of Parameters Symbol Numerical Values Unit

Seal inside radius rj 28.4 mm

Seal outer radius ro 31.1 mm

Spring pressure PI 0.415 MPa

Balance ratio Br 0.79 -
Mean sliding velocity U 9.5 mls
Viscosity II 25 m. Pa-s

Friction coefficient 0.1
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Seals are designed to operate with lubrication oil at a pressure variation from 0.5 MPa to

3.0 MPa. The iterative procedure to balance the opening force to the closing force is

stopped when the seal clearance falls below certain limiting value. In the present work

the limiting seal clearance is O.OI/lm. Partial face contact is assumed when seal

clearance becomes less than this limiting value and the friction force is no longer be

calculated. Though seals are originally designed for water, it was found, however that

because of low viscosity of water, the hydrodynamic effect on the pressure is too weak

[6]. As a result it was impossible to find the clearance, ho, at which the opening force

would balance the closing force. Thus it may be concluded that when sealing water the

designed seal selected here will operate as a contacting seal.

Different pore ratios are considered for the evaluation of the seal performance having

pores of rectangular and exponential shapes. The pore ratios are 2.5%, 11.25%, 15%

and 20%

Rectangular Pore

Figure 5.1 to figure 5.4 show the relation between the pore diameter and the seal

clearance at different sealed pressures ranging from 0.5 MPa to 3.0 MPa for the

rectangular pore geometry. The seal clearance exhibits almost same nature for different

pore ratios. Considering figure 5.1, where pore ratio is S=0.025, the optimum pore size

for the sealed pressure of 0.5 MPa is about 12.5 /lm. At this size the seal clearance is the

maximum and is about 3.3 /lm. This is the point of operation where opening force tends

to balance the closing force and hence the axial stiffness becomes maximum .Beyond

this point, the seal clearance decreases rapidly. The figure further depicts change in seal

clearance with an increase of sealed pressure. As the sealed pressure increases, the seal

clearance decreases. The size of the pore diameter where the maximum seal clearance

occurs reduces with sealed pressure. But as the pore ratio increase from 2.5% to 20%'

the seal clearance and hence the maximum seal clearance also increases.

Figures 5.5 to 5.8 present the relationship between friction torque and pore diameter at

different sealed pressures for the rectangular pore. It is observed that the torque is at its

minimum at the maximum clearance, as expected. The value of minimum friction
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torque reduces with the increase of pore ratio. After the point of minimum friction

torque, it again increases with pore diameter. That means the loss of energy due to

friction increases with the increase of pore diameter after a certain point of pore

diameter.

Figures 5.9 to 5.12 depict the relation between leakage and pore diameter for different

sealed pressures. The leakage loss is of great importance in sealing purposes. The

leakage is maximum while the seal clearance is maximum as well as the friction torque

is minimum. The maximum leakage drops with an in increase of sealed pressure. It is

clearly evident that the amount of leakage increases by a considerable amount for the

pore ratio other than 2.5%. That indicates that the effect of pore ratio plays a vital role

in the face seal performance regarding leakage.

Exponential Pore:

Figures 5.13 to 5.16 describe the relation of seal clearance with pore diameter at

different sealed pressures for the pore of exponential shape. Here we find a similar

behavior as rectangular pore. There is a optimum diameter at which seal clearance is

maximum. Beyond that optimum pore diameter the seal clearance decreases. One

interesting observation is that within a range of 10 micron to 20 micron of pore diameter

maximum seal clearance is exhibited other than the sealed pressure of 0.5 MPa.

Figures 5.17 to 5.20 show the relationship between friction torque and pore diameter.

Here friction torque exhibits minimum value at the point of maximum clearance. One

thing is noticeable from these graphs that with the increase of pore ratio the friction

torque for the sealed pressure of 0.5 MPa remain almost same beyond the optimum pore

diameter. Almost same magnitude of friction torque is observed up to the optimum pore

diameter for the pore ratio other than 2.5%. We can deduce from here that beyond the

optimum pore diameter the friction will increase by a considerable amount while below

that critical value the effect of seal clearance is insignificant for higher pore ratios.
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Figures 5.21 to 5.24 indicate the relationship between leakage vs. pore diameter at

different sealed pressures. Here leakage becomes maximum at the point of maximum

seal clearance. Beyond the critical pore diameter the leakage drops sharply. The

magnitude of leakage increases a considerable amount with the increase of pore ratio.

That actually indicates that leakage will be important when higher pore ratios are

considered.

In the figures 5.1 to 5.4 and figures 5.13 to 5.16, the relationship between seal clearance

and pore diameter at different sealed pressures are shown for rectangular as well as

exponential pores. It is observed in those figures that the seal clearance is higher for the

lower sealed pressure and clearance is lower at higher sealed pressure. The increase of

sealed pressure indicates larger hydrostatic effects at higher pressure. That means at

lower sealed pressure the hydrostatic effect is lower and hydrodynamic effect plays

dominant role That is why in lower sealed pressures higher seal clearances are observed

for both the geometry.

Again in the above mentioned figures it is visible clearly that seal clearances increase

with increase of pore ratio. This is because with the increase of pores on the sealing dam

the effect of cavitation become more prominent and consequently the hydrodynamic

load support becomes more. But this effect is not increasing continuously with the

increasing pore ratio. This is because when number of pores increases the interaction

between pores are more probable and the distinction between converging and diverging

area diminishes which lead lower hydrodynamic effect.

In the figures, which depict the relationship between friction torque and pore diameter,

the friction torque increases sharply after the optimum pore diameter. After the point of

optimum pore size the pore diameter approaches to its critical value at which seal

clearance falls below limiting value. As the film clearance diminishing the fluid film

tends to collapse and consequently friction rises sharply.

Tables 2 to 13 show the three characteristics that have been discussed above. The tables

show comparative results, between rectangular pore and exponential pore, of maximum
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seal clearance, minimum friction torque and maximum leakage for different pore ratios.

The tabular values are summarized and presented graphically in the figure 5.25 to 5.30.

Figures 5.25 to 5.30 describe the relationships of maximum seal clearance, minimum

friction torque, maximum leakage at different pore ratios for rectangular pores. It is

being observed that the rate of performance improvement becomes smaller with the

increased pore ratio. Figures 5.28 to 5.30 describe the same relationships for the

exponential pores. Similar behavior is observed i.e., improvement decreases with the

higher pore ratios.

Overall, in those figures it has been clearly visible that the rate of improvement in terms

of seal clearance, friction torque or leakage decrease with the increasing percentage of

pores. It has been concluded that a pore ratio of 20% is a preferable choice for enhanced

performance of a mechanical face seal.

Table 2: Maximum seal clearance for pore ratio of 2.5%

Pore Geometry 0.5 MPa 1.0 MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 3.36 2.105 1.79 1.58 1.46 1.31

Exponential 5.45 4.67 3.65 3.14 2.83 2.65

Table 3: Maximum seal clearance for pore ratio of 11.25%

Pore Geometry 0.5 MPa 1.0MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 5.11 3.88 2.94 2.48 2.21 1.96

Exponential 5.85 4.92 4.46 4.10 3.72 3.51

Table 4: Maximum seal clearance for pore ratio of 15%

Pore Geometry 0.5 MPa 1.0 MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 5.46 3.98 2.95 2.62 2.36 2.16

Exponential 7.19 6.26 5.53 5.13 4.83 4.51
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Table 5: Maximum seal clearance for pore ratio of20%

Pore Geometry 0.5 MPa 1.0MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 5.51 4.00 2.96 2.63 2.42 2.24

Exponential 7.23 6.40 6.05 5.50 5.00 4.8

Table 6: Minimum friction torque for pore ratio of 2.5%

Pore Geometry 0.5 MPa 1.0MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 1.06 1.67 1.96 2.22 2.40 2.68

Exponential 0.651 0.759 0.972 1.130 1.255 1.340

Table 7: Minimum friction torque for pore ratio of 11.25%

Pore Geometry 0.5 MPa 1.0MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 0.646 0.851 1.127 1.33 1.49 1.705

Exponential 0.596 0.709 0.781 0.852 0.938 0.994

Table 8: Minimum friction torque for pore ratio of 15%

Pore Geometry 0.5 MPa 1.0MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 0.569 0.785 1.057 1.09 1.203 1.29

Exponential 0.471 0.547 0.621 0.668 0.713 0.764

Table 9: Minimum friction torque for pore ratio of20%

Pore Geometry 0.5 MPa 1.0 MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 0.519 0.722 0.978 1.089 1.203 1.293

Exponential 0.458 0.525 0.559 0.619 0.678 0.706

Table 10: Maximum leakage for pore ratio of2.5%

Pore Geometry 0.5 MPa 1.0MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 3.50 1.94 1.85 1.73 1.72 1.50

Exponential 14.94 21.15 15.71 13.57 12.55 12.45
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Table 11: Maximum leakage for pore ratio of 11.25%

Pore Geometry 0.5 MPa 1.0MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 12.31 12.13 8.21 6.69 5.98 5.04

Exponential 18.48 24.74 28.66 30.22 28.51 28.94

Table 12: Maximum leakage for pore ratio of 15%

Pore Geometry 0.5MPa 1.0MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 15.03 13.09 8.29 7.89 7.28 6.74

Exponential 34.45 50.95 54.64 59.20 62.41 61.19

Table 13: Maximum leakage for pore ratio of 20%

Pore Geometry 0.5 MPa 1.0 MPa 1.5 MPa 2.0MPa 2.5 MPa 3.0MPa

Rectangular 15.44 13.29 8.38 7.97 4.57 6.74

Exponential 34.89 54.45 65.54 66.95 69.23 71.07

Considering the figures 5.31 to 5.35, we get some comparative results among pore

geometries of hemispherical pores (delineated by Etsion at al [14]) and rectangular and

exponential pores (present work) Figures 5.31 to 5.33 describe the behavior of

maximum seal clearance with respect to pore ratio at sealed pressures of 1.0,2.0 and 3.0

MPa respectively. The rate of increase of maximum seal clearance decreases with the

increase of pore ratio for different sealed pressures. Its rate becomes narrower after the

pore ratio of 20%. The same behavior we get in the figures 5.34 to 5.35 where the

figures depict the behavior of minimum seal clearance with respect to pore ratio at

sealed pressure of 1.0 and 2.0 MPa. Here we also find the decrease of rate with the

increase of pore ratio and it also becomes narrower at the pore ratio of 20%.

This decrease of rate of performance of different parameters with the increase of pore

ratio is observed because while pore ratio increases the possibilities of interaction

between the pores become more evident. And the assumption of the negligible

interaction between the pores become invalidate. That's why we get the performance

reduction with the increased percentage of pore ratio.
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In this present work, the pore depth to pore radius is taken unity. Average seal clearance

for rectangular pore is:

(5.1)

Average seal clearance for exponential pore is given by

(5.2)

Average seal clearance for the hemispherical pore is given by

(5.3)

Considering the above three equations for average seal, the average seal clearance for a

control cell having pore of any geometry depends on the seal clearance, '¥ value and the

shape of the geometry as well .For a given '¥ the average seal clearance for rectangular

and hemispherical pore exhibit almost same numerical results. But the exponential pore

geometry yields a higher value of hay than the other two as the seal clearance found for

the exponential pore is higher. That's why we get lower friction torque for exponential

pore than the rectangular pore. The figures 5.31 to 5.35 thus depict a closer relation

between the rectangular and hemispherical pores.

Figures 5.36 and 5.37 depict the effect of pore depth to seal clearance. In those figures

maximum seal clearance at different sealed pressures are plotted against pore depth. The

pore depth is made dimensionless by pore radius. The maximum seal clearance here is

made dimensionless by pore depth and turned into 1/'1/ . Here it is observed that the seal

clearance increases with the increase of pore depth. The increment rate of seal clearance

diminishes after a pore depth ratio of 1.5 rectangular as well as exponential pore. That

means the effect of pore depth is ineffectual after certain pore depths.
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Chapter 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Mechanical face seals having pores of different geometries i.e., rectangular and

exponential shape play an important role in the prediction of performance.

Mathematical models are developed to allow the performance prediction of non-

contacting mechanical seals having regular surface structure in the form of

rectangular and exponential pores.

1. Seal clearance is higher in exponential pore geometry than that in rectangular

pore geometry for a particular sealed pressure.

2. The optimum pore size decreases as the sealed pressure increases.

3. As the sealed pressure increases the seal clearance tends to decrease in

.accord.

4. Friction torque is minimum at the point of maximum seal clearance.
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5. The friction torque remains almost same in lower sealed pressure (0.5 MPa)

at pore ratio higher than 2.5%.

6. For exponential pore, the friction torque remains almost same up to the

optimum pore diameter while increase a rapidly beyond the optimum value at

pore ratio higher than 2.5%

7. Leakage IS consequently the maximum at the point of minimum friction

torque.

In a nutshell, it is shown that hydrodynamically induced load carrying capacity can

be obtained due to cavitation over portions of the seal face area in and around pores.

It is found that better performance in terms of higher clearance and smaller friction

torque can be achieved with proper selection of pore size and pore ratio. The

preferable percentage of pore ratio is 20 as performance improvement becomes

negligible at higher values of pore ratio. The optimum pore diameter depends on

sealed pressure and pore ratio. It is also concluded that for both geometries the effect

of pore depth is negligible on seal clearance after the ratio of 1.5.

On the whole the hydrodynamic effect for the rectangular pore is weaker than for the

exponential, and it seems more efficacious to use the exponential pore profile in

surface design. The rectangular pore profile model is simpler for calculations and can

be used for fast analysis or evaluation.

6.2 RECOMMENDATION

The research work can further be extended for different pore geometry. The effect of

. higher viscosity can also be another important part for the work which is ignored

here. So the effect of higher viscosity can be another arena to extend this work.

51



Chapter 6
CONCLUSIONS AND RECOMMENDA nONS

6.1 CONCLUSIONS

Mechanical face seals having pores of different geometries i.e., rectangular and

exponential shape play an important role in the prediction of performance.

Mathematical models are developed to allow the performance prediction of non-

contacting mechanical seals having regular surface structure in the form of

rectangular and exponential pores.

1. Seal clearance is higher in exponential pore geometry than that in rectangular

pore geometry for a particular sealed pressure.

2. The optimum pore size decreases as the sealed pressure increases.

3. As the sealed pressure increases the seal clearance tends to decrease in
accord.

4. Friction torque is minimum at the point of maximum seal clearance.



Chapter 6. Conclusions and Recommendations

5. The friction torque remains almost same in lower sealed pressure (0.5 MPa)
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6. For exponential pore, the friction torque remains almost same up to the

optimum pore diameter while increase a rapidly beyond the optimum value at

pore ratio higher than 2.5%

7. Leakage IS consequently the maximum at the point of minimum friction

torque.

In a nutshell, it is shown that hydrodynamically induced load carrying capacity can

be obtained due to cavitation over portions of the seal face area in and around pores.

It is found that better performance in terms of higher clearance and smaller friction

torque can be achieved with proper selection of pore size and pore ratio. The

preferable percentage of pore ratio is 20 as performance improvement becomes

negligible at higher values of pore ratio. The optimum pore diameter depends on

sealed pressure and pore ratio. It is also concluded that for both geometries the effect

of pore depth is negligible on seal clearance after the ratio of 1.5.

On the whole the hydrodynamic effect for the rectangular pore is weaker than for the

exponential, and it seems more efficacious to use the exponential pore profile in

surface design. The rectangular pore profile model is simpler for calculations and can

be used for fast analysis or evaluation.

6.2 RECOMMENDATION

The research work can further be extended for different pore geometry. The effect of

higher viscosity can also be another important part for the work which is ignored

here. So the effect of higher viscosity can be another arena to extend this work.
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Figure 5.1: Seal clearance vs. pore diameter at different sealed pressures.
Rectangular pore, pore ratio 2.5 % and viscosity 25 m.Pa-s
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Figure 5.2: Seal clearance vs. pore diameter for different sealed pressures.
Rectangular pore, pore ratio 11.25 % and viscosity 25 m.Pa-s
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Figure 5.3: Seal clearance vs. pore diameter for different sealed pressures.
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Figure 5.20: Friction torque vs. pore diameter at different sealed pressures.
Exponential pore, pore ratio 20 % and viscosity 25 m.Pa-s

71

o



80
Sealed pressure, p (MPa)

70

60

353025201510
o
5

50,-...
'"--M

8
8'-' 400'.;
OIl
oj
..>0:
oj 30<l)

...l

20

p=0.5

10 1.0

Pore diameter, D (micron)

Figure 5.21: Leakage vs. pore diameter at different sealed pressures.
Exponential pore, pore ratio 2.5 % and viscosity 25 m.Pa-s

•
72



80
Sealed pressure, p (MPa)

70

60

50,......,
CJJ~]

40'--'
C/
oJ'

i 30OJ
>-l

20

10

o
5 10 15 20 25 30 35

Pore diameter, D (micron)

Figure 5.22: Leakage vs. pore diameter at different sealed pressures.
Exponential pore, pore ratio 11.25 % and viscosity 25 m.Pa-s

73



80
Sealed pressure, p (MPa)

70

353025201510
o
5

60

10

50
'""'til---M

S
S
'-' 400'
"f p=O.5bJl
0;

~ 30Q)

...:I

20

Pore diameter, D (micron)

Figure 5.23: Leakage vs. pore diameter at different sealed pressures.
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Appendix A
BASIC CONCEPTS

A.I SURFACE TOPOGRAPHY

Friction is related to the surface topography of interacting surfaces. All real surfaces

are composed of texture and structure at both macroscopic and microscopic levels.

Texture is related to roughness, waviness and lay of a surface, excluding form error,

whereas structure is related to its geometric features. While roughness constitutes

shorter wavelength components of a surface profile, form represents longer

wavelengths. Waviness lies somewhere in between, on this scale. Lay relates to the

directionality in the texture. Surface texture of all manufactured surfaces (also called

as engineered surfaces), is determined by the machining operation that it underwent

before. Essentially, it is the result of a combined effect of the geometry of the tool

and its kinematics during machining. Surface texture can be produced and also

measured. Measurements are done by a variety of methods including profilometry,

cartography, optical interference and field emission microscopy.
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When an apparently smooth machined surface is viewed under a microscope, a

number of randomly distributed peaks and valleys of varying heights are observed.

Each such element is termed as an asperity. Generally the peaks contribute to the

friction whereas the valleys serve as reservoirs for lubricant that is used to reduce

friction

A.2 ACTUAL AND MODEL SURFACES

The geometry of an engineered surface is truly random. To represent it

deterministically, it is customary to consider the actual random asperities as a

selection of different sizes of ideal shapes such as cubes, cones and spheres. A linear

profile idealizes saw tooth and sinusoidal asperity models.

Since the idealized shapes bear little resemblance to the actual surface, a few

techniques could be used to improve the model. One of them is to represent all the

three basic shapes in one model with uniform height. A second method is to consider

one basic shape but, with different heights. And a third method is to maintain the

same height but use randomness of shape and spacing. Though the actual surface is

truly random, the following simplifications are necessary for modeling purposes.

• Instead of an entire length, a representative portion is considered, based on

the assumption that there is repeatability in profile.

• This profile is assumed to the isotropic.

• The size, spacing and shape of an asperity are also assumed to be the same all

over the sample.

These techniques, though used for random surfaces, are particularly well suited for

our patterns of repeated features
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A.3 FRICTION

Friction is a dissipation mechanism in which energy gets converted to heat and

cannot be utilized. It occurs at the interface of any two contacting bodies when

sliding, rolling or separation takes place between them and tends to oppose the very

force that causes the relative motion. Friction is usually accompanied by wear, which

is a material removal process. Similar to wear, friction is aggravated by

contamination, corrosion or environmental degradation. Both friction and wear are

minimized by lubrication.

Based on the nature of contact between two surfaces, two broad distinctions of

friction can be made when hardness of the two contacting surfaces differs widely or

slightly. These are the metal-on-metal and elastomer-on-rigid surface contacts

respectively.

A.4 LUBRICATION

Surface to surface contact can be prevented by a lubricant, a viscous fluid that can

withstand shear loads. Lubrication is the process of introducing such a fluid film to

reduce wear and frictional resistance, and also to carry away the heat produced at the

interface. Viscosity, that represents the internal friction of a fluid, relates the local

stresses in a moving fluid to its strain rate.

When a fluid is sheared, it begins to move at a strain rate inversely proportional to a

property called its coefficient of viscosity, J.!, obtained from the well-known

equation,

du
r = f.J-

dy
(A.1)

where,'t is applied shear stress, dy is the height of the fluid element cube and du is the

relative movement, J.! is known as the modulus of viscosity or simply, viscosity. The.
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term, dy/du, indicates the rate of shear (see figure 2.1 for details). From equation

(A.I), it follows that the shear stress and strain follow a linear relationship.

r

-.--r

du

Figure A.I: Shear force on a fluid element

Fluids that obey this linear law are called as Newtonian fluids. The rest, such as

grease, are called as Non-Newtonian fluids. Viscosity, also referred here as dynamic

viscosity, is given either in terms of poise and the conversion factor is Imicoreyn =

5.14 poise. It is not always possible to keep the rubbing surfaces apart, especially

when speeds are low or the loads are high. This situation is characterized by mixed

lubrication in which both the asperities and the lubricant present in the intervening

space share the load. A much sever~ condition of mixed lubrication is known as

boundary lubrication. Various types of lubrication regimes can be better understood

with the help of a plot of coefficient of friction against generalized Sommerfeld

number. This graph is called Striebek curve and is shown in figure A.2.

Higher values on the abscissa are due to higher film thicknesses and this corresponds

to thick film or full hydrodynamic lubrication regime. In contrast, very low values

indicate solid friction. The transition is represented by boundary and mixed

lubrication regimes. The graph abcde can be fragmented into different regions ab

(hydrodynamic), bcd (boundary or mixed) and de (solid) and the point c gives the

minimum value of friction. In hydrodynamic regime, ad, a fall in the coefficient of

friction is attributed due to a reduction in speed and as speed is further reduced, solid

friction comes into play due to the contact of asperities. Due to heat generation, fluid

viscosity decreases and so does the shear force, resulting in reduction of this
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component. Within the boundary regime, the curve requires explanation from all the

components of friction as given by the equation,

co
ti
'1:
LL.

'0
C••IE
8u

BoundaryJ
Mixed

LubricationOlid~1etion

,

I I

c I
b

Hydrodynamic
lubrication

Generalized Sommerfeld I' N
Number p

Figure A.2: Striebeck curve [19]

(A.2)

The falling slope of bc is explained by a general reduction in fliq, greater than the

increase due to /solid. If speed is further reduced, more contact area is created and

thus, /solid increases rapidly and overcomes the effect of reduction of fliq due to

viscosity. Therefore coefficient of friction rises along cd. The segment, de

corresponds to solid friction where the effect of lubricant is almost negligible. Thus,

the minimum point e indicates the optimum value. However, a slight disturbance in a

system operating at this critical point is likely to destabilize and either a high value of

friction coefficient is registered or seizure takes place. Therefore it is recommended

to operate the system more into the hydrodynamic regime, along the curve bea.

In this present thesis focus is made on hydrodynamic lubrication as the fabrication of

micropores on face seal surfaces controls their tribological properties and ensures the

provision of lubrication in hydrodynamic region, thus effect the performance of the

face seal.
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REYNOLDS EQUATION

B 1. REYNOLDS EQUATION
The well known Reynolds equation is one of the fundamental equations used in the'

field of fluid mechanics. The differential equation governing the pressure

distribution in fluid film lubrication was first derived by O. Reynolds in 1886, for

incompressible fluid. This was an unnecessary restriction and later the effects of

compressibility were included. The Reynolds equation forms the foundation of fluid

film theory. This equation establishes a relation between the geometry of the

surfaces, relative sliding velocity, the property of the fluid and the magnitude of the

normal load the bearing can support.

Before deriving the full equation the assumptions that are to be made must be

considered. The assumptions are

1. Body forces are neglected, i.e. there are no extra fields of forces acting on the

fluid. This is true except for magnetohydrodynamics.
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2. The pressure is constant through the thickness of the film. As the film is only

one or two thousandths of a millimeter thick it is always true. With elastic

fluids there may be exceptions.

3. Te curvature of surfaces is large compared with film thickness. Surface

velocities need not to be considered as varying direction.

4. There is no slip at the boundaries. The velocity of the oil layer adjacent to the

boundary is the same as that of the boundary. There has been much work on

this and it is universally accepted.

The next assumptions are put in for simplification. They are not necessarily true

but without them the equation get more complex. So the assumptions for further

simplification along with the above the assumptions are:

5. The lubricant is Newtonian, i.e. stress is proportional to rate of shear.

6. Flow is laminar. In big turbine bearing it is not true and the theory is being

slowly developed.

7. Fluid inertia is neglected. Several studies have shown that even if Reynolds

number is 1000 the pressure is only modified by about 5 percent

8. The viscosity is constant through the film thickness. This is certainly not true

but leads the great complexity if it is not assumed.

On the basis of the above assumptions the Reynolds equation is developed.

B 2. CONTINUITY OF FLOW OF A COLUMN

Consider a column of fluid of height h and base dx, dz ( shown in the Figure 2).

Fluid flows into the column from the left at a rate qx per unit width. The volume flow

rate is (qxdz), for the column of dz wide. The rate of flow per unit width is

oqqx +__x dxox
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where, aqxl ax is the rate of change of flow in the x direction, and the. dx is small

enough to aq x Iax as linear.. The actual flow out is

(B.L2) /

Lubricant

I
Moving plate

Figure B.l: Continuity of a flow of a fluid element

In the z direction the same argument applies. The flow rate in is (qxdz) and out is

(B.L3)
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The vertical flow is rather different. If the floor of the column moves upwards at a

velocity Wo and if the floor moves upwards as well at a speed Wh the volume of the

column changes at a rate (wh-wo)dxdz, where (dx dz) is the area both orthe base and

of the roof. Although the base and roof are moving, at the instant considered the

height is h, through a fraction oftime later it will of course have altered.

For the continuity of the flow, the fluid being of constant density, the rate flowing in

must equal the rate flowing out. These can all be added up thus. Flowing into the

column

qxdz+q,dx+wodxdz

Flowing out ofthe column

(B.2)

The equation 2 and equation 3 are equal. So equating the equations and after

cancellations of the same terms we get:

aqx dxdz + aq, dzdx + (wh - wo)dxdz = 0 (B.4.I)
ax az

Now (dxdz) is arbitrary and non zero, so canceling the term from the both side yields

aqx + aq, +(w -w )=0
ax az h 0

(B.4.2)

In unsteady state conditions the density of the column may change with time, and

this must be taken into account. If the density is the same through out the height of

the column the analysis leads to:
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a a a-(uqJ+-(uqJ+-(,uh)= o.
ax az at

where, fl is the density ofthe fluid.

B 3. EQUILIBRIUM OF AN ELEMENT

(B.5)

(P+: dY}ZdZ

dy

pdx
(P+: dx}ZdY

dx

mxdz
dz

Figure B.2: Equilibrium of an element

Take a small element of fluid of sides dxdydz( shown in the figure 2) and consider

first the forces in the x direction only. On the left of the element there is a pressure p

on the face of area dzdy, giving a force, acting on the right, of pdzdy. On the

opposite face the pressure is:

p+ ap dxax
The corresponding force is
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There are shear stress on the top and bottom faces, producing forces. On the bottom

face the shear stress r gives a force (r dx dz) acting on the left and on the top face,

and acting to the right, is force

The shear stress on the top face being (r + (or!Oy)cry).
These forces acting to the left and right must balance each other so

Pdzdy+(r + or dY)dXdZ = p+ op dzdy+rdxdz
Oy ax

(B.6.3)

(B.7.!)

Expanding and canceling the common terms from the right and left sides of the

above equation yield

or,

or op-dydxdz = -dxdzdyoy ax
or op
-=-oy ax

According to Newton's Law of Viscosity

au
r =}J-

Oy

From the equation (7.c) and equation (8) we can write

(B.7.2)

(B.7.3)

(B.7.4)

(B.8)

In the y direction the shear stresses and pressure can be equated and a similar

equation follows
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or op
-=-
Oy oz

Ov
r = f.J-

Oy

From the equation (8.a) and equation (8.b) we get

op =~(f.JOvJ
oz Oy Oy

(B.9.l)

(B.9.2)

(B.9.3)

The pressure gradient in the z direction is zero (by definition), so op/ oz = 0 .

Considering the equation (8) that can be integrated since p is not the function of z.

Integrating the equation (8) we get

au op
f.J-=-y+C1Oy ox

(B.IO)

where Cj is the integration constant.

Now both f1 and u are the function of y but it is too difficult to consider both at once

so f1 is taken as constant with respect to y. It is important to realize that this is a

important assumption and the assumption is made only for the simplicity. The

inclusion of (df.J/ dy) can modify the equation very considerably in certain

circumstances.

However, making the assumption, a further integration is performed to the equation

and yield

(B.lO.l)

According to assumption 4, the boundary conditions are simple as the speed of the

fluid at the surface is the speed of the surface it self,
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y=h, U =U1

y = 0, u = Uz

where UI and U2 are the surface speeds

(B.lO.2)

(B. 10.3)

Substituting the boundary conditions in the equation (lO.a), we get accordingly

Cz =fJ.Uz

C = fJ.(U, - U z) _ op !!..
I h ox 2

(B. 10.4)

(B.lO.5)

Finally we get equation (lO.a) in the following form after substituting the values of

constants into that equation

(B.II)

w~ere op/ ox is the pressure gradient, J1. is the viscosity, UI and U2 are the surface

speeds on y = hand y = 0; and of course from the equation (II) the velocity

gradient is

au = op (y_!!..)+ (UI -Uz)
Oy fJ.OX 2 h

(B.l2)

Now the integrating the above equation from 0 to h will give the flow rate in the x

direction per unit width of z (i.e., qx = rudy). By integrating the equation (12) will

yield

(B. 13)

Putting the limits and simplifying we get
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-hJap h
qx =--+(UI +U2)-

12?0x 2

Following the same procedure we get flow rate in y direction

q .'..._-_hJ~ap~+(~ _ ~ )~
, - 12?0z I 2 2

where V} and Vzcorrespond to U} and Uz

B 4. FULL REYNOLDS EQUATION

(B.14)

(B.15)

Now substituting the expression of qx and qy in the equation (4.b) (i.e., continuity

equation) yield

a { h- (U +U )-ax I 2 2
(B.16)

This can be further tidied up into following form

a (h
J

ap) a (h
J

ap) { a a }- -- +- -- = 6 -(UI -U2)h+-(V; -V2)h+2(wh -wo) (B.17)
ax Ii ax az Ii az ax az

This is Reynolds equation in the three dimensions with everything varying. It is too

massive to handle as it is. So further modification is made to simplify it

B 5. SIMPLIFICATION

To simplify the equation (17), we will put U instead of (U}+Uz) and V instead of

(V} + Vz). These are merely short forms and do not involve any assumptions. Next it is

usually possible to rearrange the axes so that either
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a a-(Uh) or -(Vh) IS zero.
ax az

It is in fact very hard to think of any moving system where there is both a wedge and

a velocity in two perpendicular directions. Incorporating the terms to'simplify the

equation (17) and granting the improbability of having both (a/ax XUh) and

(a/azXVh) non-zero.

a (h
J

ap) a (h
J

ap) { a }- -- +- -- .=6 -(Uh)+2(wh-wO)
ax II ax az II az ax

(B.l8.l)

A further simplification is to realize that the velocity of a surface does not vary from

one point to another point in a bearing. So U is not a function of x and thus

~(Uh) can be written as U dhax dz

Furthermore, if the surfaces are impermeable so no fluid seeps in or out and they are

merely moving relative to each other, and thus

(wh - wo) can be written as dh/ dt

So the equation (18.a) is further reduced to

(B.18.2)

The first term(U dh/dx) of the right hand side of the equation (18.b) describes the

normal wedge action and (dh/ dt) is called the squeeze film term. In steadily running

bearings, of course, dh/ dt is zero, but in many practical journal bearings dh/ dt is of

the same order as U dh/ dx. It is so complex to take into account that it is usually

omitted. Now the equation (l8.b) after omitting the previously mentioned term

becomes
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~(!{OPJ +~(!{OPJ = 6U dh
ox f.J.OX oz f.J.oz dx

(B.18.3)

The next assumption is to take J1 as constant in the z direction. In fact it is considered

to be constant everywhere. So it can be taken from inside the differentials and put

over to the right-hand side to give

(B.19)

This is the usually quoted Reynolds equation on which further derivation will be

continued.
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COMPUTER CODE

C.I PROGRAM I

1* Program by FiniteDifference Technique to Solve 2-D Reynolds Equation *1

#inc1ude<iostream.h>
#inc1ude<stdio.h>
#inc1ude<conio.h>
#inc1ude<stdlib.h>
#inc1ude<math.h>

#define m 9
#define n 9
#define M 81
#define N 81

const float mu=25e-03;
const float vel=9.5;
const float err= Ie-6;

II mls
II Pa-s

void xsolve(float[M] [N]'float[N]);
float inUoad(float [M]);
l/float hydrostatic(float
float fun I(float x,float z);
float fun2(float x,float z);
float fun3(float x,float z);



float RO=5.;
float hO=6.;

Appendix C: Computer Code

1* Gloabal variables used in differnt functions of the program *1

I I Pore radius which will vary
II Minimum seal clearance which will vary depending on
I I converging criteria

float psi=RO/hO;/1value that depends on hO

void mainO
{
FILE *out;
out=fopen(" d:\\january? .out", "w");
clrscrO;
int i,j,k,kk;
float p[M] [N],pn[M][N];
float a I ,a2,a3; l/having function of H
float sdx,sdz,dx,dz,x I,z I;

1* dx, dz are the step size of the control cell
sdx, sdz are the mimimum limit of the cell from the center
xl, zl are used for determining a2, a3 at the different point of the
control cell *1

float ssdx[M],ssdz[N],rad[ m][n],crad[M];
1* ssdx[M] & ssdz[N] are the I dimensional matrix that hold the values
of the control cell at different point by adding the step size of the
previous point
rad[m][n] is the 2 dimensional matrix holding the radius of pore in a
control cell
crad[M] is the I dimensional matrix holding the radius of the pore from
2 dimensional matrix rad[m][n] *1

float b[M]; lib is the RHS value ofthe matrix

for(i=O;i<M;i++ )
{
ssdx[i]=O.O;
ssdz[i]=O.O;
b[i]=O.O;
} II data initialization

sdx=-2.64;sdz=-2.64; II here -2.64 is the jita value
dx=fabs((2. *sdx)/(m+ 1));
kk=O;
for(i=O;i<m;i++)
{
sdx+=dx;
sdz=-2.64;
dz=dx;
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forU=O;j<n;j++ )
{
sdz+=dz;
ssdz[kk ]=sdz;
ssdx[kk ]=sdx;
rad [i]0]=sqrt(pow( sdx,2 )+pow( sdz,2));
crad[kk]=rad[iJO];
if(rad[iJO]<= 1.0)
{
a3=( fun3( sdx,sdz) )*(dx*dx);
b[kk]=a3; II Reading b matrix
}

else b[kk]=l.e-13; II Reading b matrix
tprintf( out, "\nrad=%f ssdx=%f, ssdz=%f" ,crad[kk ],ssdx[kk] ,ssdz[kk]);
printf("\ncrad[%d]=%f ssdx=%f, ssdz=%f" ,kk,crad[kk],ssdx[kk ],ssdz[kk]);
kk++;
}llgetchO;

}

for(i=O;i<M;i++ )
{

forU=O;j<N;j++)
{
p[iJO]=O.O;
}

}

1* for(kk= 1;kk<M + I ;kk++){
printf("b[%d]= %t\n ",kk,b[kk]);
if(kk>9&&(kk%9)==0) getchO; }getchO;*1 II no need of this porion

k=O;
kk=O;

for(i=O;i<M;i++ )
{

if(i==O)
{
p[i][i]=-4.;
forU=i+ 1;j<i+4;j++)
{
ifU!=i+2)p[i]OJ=I.;
ifU==i+3)p[i]0]=1.;

}
}

if(i!=0&&i<=2)
{
forU=i-l;j<N;j++)
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{
if(j==i-I )p[iJO]= 1.;
if(j==i) p[iJO]=-4.;
if(j==i+ I&&i==1 )p[i][j]= I.;
if(j==i+3) p[iJO]=1.;

}
}

if(i>2)
{
if(crad[i]<I.O)

{
xl =ssdx[i];
zl =ssdz[i];
al =(funl (xl ,zl ))*( dx/2.0);
a2=(fun2(xl ,zl ))*( dx/2.0);

II printf("\ncrad[%d]=%f, al [%d]=%f,
a2[%d]=%f' ,kk,crad[kk ],kk,al ,kk,a2);
II printf("\ncrad[%d]=%f, al [%d]=%f ,
a2[%d]=%f',(i+ I),crad[i+ I ],(i+ I),al ,(i+ I),a2);
II getchO;

p[i][k]=1.-a2;
for(j=i-I ;j<N;j ++)
{
if(j==i-I&&(i%3)!=O)p[iJO]= I.-al;
if(j==i) p[i][j]=-4.;
if(j==i+ 1&&(j%3)!=O)p[iJO]= I.+al;
if(j==i+3) p[i][j]=1.+a2;
}

}
else

{
p[i][k]=1.;
for(j=i-I ;j<N;j++)
{
if(j==i-I &&(i%3)!=0)p[i] [j]= I.;
if(j==i) p[i] [j]=-4.;
if(j==i+ 1&&(j%3)!=O)p[i][j]= I.;
if(j==i+ 3) p[iJO]= 1.;

}
}

k++;
}

kk++;
}

cout«"\n";
fjJrintf(out, "\n ");
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for(i=O;i<8! ;i++)
{
for(j=O;j<8!;j++ )
{

II cout«p[i][j]«" ";
fprintf( out,"%.t f ",p[im]);
}

Ilcout«end!;
Ilcout«b[i]«end!;
fprintf(out,"%.4f \n\n",b[i]);
1*
if(i==2)
cout< <"-------------------------------------------------------------" «end!;
if(i==5)
cout< <"------------------------------------------------------------- "«end!;
if(i==8)
cout< <"-------------------------------------------------------------" <<endl;
} getchO; *1 II no need of this portion
}
xsolve(p,b); lifunction to solve by iteration technique
getchO;
}

II Function for solving matrix by iteration technique

void xsolve(float p[M][M],float b[N])
{
FILE *out;
FILE *ot;
out=fopen(" d:\\j anuary7 .out"," a");
Ilot=fopen(" graph.out2", "w");
int i,j;
float x[M],xn[M],er[M];
float save,beta;
float sum; II to gte the integrated load
for(i=O;i<M;i++ )
{ xn[i]=O.O;
x[i]=O.O;
er[i]=O.O;}
int iter=!;

loop:
iter++;
for(i=O;i<M;i++)
{ save=p[i][i];
xn[i]=b[i]/save;
for(j=O;j<M;j++ )
{ if(j !=i)
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xn[ij=xn[ij-(p[i][jj*xn[j])/save; II Gauss-Seidel Method
II xn[ij=xn[ij-(p[i][jj*x[j])/save; II Jacobi Method

}
printf("x%d",i+ I);
fprintf( out,"x%d" ,i+ I);
printf(" = %.6f\n",xn[i]);
fprintf(out," = %.6f\n",xn[i]);
}

for(i=O;i<M;i++) {
err ij=fabs( (xn[ ij-x[i])/xn [i]);

1*************** The Relaxation Method *****************1

beta=1.53;
xn[ij=beta *xn[ij+( I-beta)*x[ij;
x[ij=xn[ij;

}
for(i=O;i<M;i++) {
if(iter>200){
cout< <"The system is not converging";
getchO;
abortO;}
if(er[ij>err) goto loop;
}

printf("No of Iteration=%d" ,iter);
II getchO;
sum=inUoad(xn);
printf("The integrated load on the cell is WO= %f', sum);
}

float inUoad(float xn[M])
{
int i,j,k;
float sdxl,sdxh,sdzl,sdzh;
float x[m+2j[n+2j;
float dx,dz; II step size for the integration
float sum,sum I ,sumj;

sdxl=-2.64;sdxh=2.64;sdzl=-2.64;sdzh=2.64; 111:lower and h: upper limits

II step size calculation
dx=(sdxh-sdxl)/(m+ 1);
dz=(sdzh-sdzl)/(n+ 1);

sum=O.O;suml =O.O;sumj=O.O;

for(i=O;i<M;i++)
{
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while( xn[ i]<O)xn [i]=O.0;
printf("%t\n", xn[i]);
}
for(i=O;i<=m+ I ;i++)
{
forG=O;j<=n+ 1;j++)

{
xli] [j]=0.0;
}

}
k=l;
for(i= 1;i<=m;i++)
{
forG=l;j<=n;j++)
{
x[i][j]=xn[k];
k++;
}

}
forG= 1;j<=m+ 2;j++)
{
suml=O.O;
for(k= 1;k<=n+ 2;k++)
{
if(k==I)

suml+=xu-I][k-I];
if(k!=1 && (k%2==0))

sum I+=4.*xU-I][k-I];
else if(k> I && k«n+2))

sum I+=2. *xU-I][k-I];
if(k==n+2)

sum I+=xU-I][k-I];
}
ifG==I)
sumj+=sum I;
ifG!=1 &&j%2==0)
sumj+=4. *sum1;
else ifG>l &&j«m+2))
sumj+=2. *suml;
ifG==m+2)
sumj+=sum1;

}
sum=( dx*dz/9.)*sumj;
return sum;
}

float fun 1(float x,float z)
{
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float n;
n=(-3 In(l+psi)*x)/(pow((x*x +z*z) ,.5»;
return fl;
}

float fun2(float x, float z)
{
float £2;
£2=(-3 In(1+psi)*z)/(pow((x*x +z*z) ,.5»;
return £2;
}

float fun3(float x, float z)
{
float 0;
0= (-In(l +psi)*x)/(pow((x*x +z*z) ,.5»*(1/((1 +psi)*exp( -In(1+psi)*pow((x*x
+z*z),0.5»»;

return 0;
}

C.2 PROGRAM 2

/* Program to find out the integrated hydrodynamic pressure on a control cell */

#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<iostream.h>

#define M 81
#definemm 9
#define nn 9

/* Program Main */

void mainO
{
FILE *in, *out;
in=fopen("d:\ \TC\\Input\ \data3 .txt", "r");
//in=fopen(" d:\\TC\ \Input\\data2. txt", "r");
//out=fopen("result. out", "w");

clrscrO;
int ij,p;
int m,k;
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Appendix C: Computer Code

float a,b,c,d;
float x[mm+2](nn+2], xn[M];
float hl,h2;
float sum,suml,sumj;

m=lO;p=lO; II no. of intervals
a=-2.64;b=2.64;c=-2.64;d=2.64; II lower and upper limits
II step size calculation
hi =(b-a)/m;
h2=( d-c )/p;

sum=O.O;suml =O.O;sumj=O.O;

for(i=O;i<M;i++ ){
fscanf(in, "%f\n" ,&xn[i]);
while( xn [i]<O)xn [i]=0.0;
}

1* for(i=O;i<M;i++){
printf("%f\n" ,xn[i]);
IIfprintf( out, "%f\n" ,xn[i]);
}*I

II getchO;
for(i=O;i<=mm+ 1;i++)
{

forG=O;j<=nn+ I ;j++)
{

}
}
k=l;

for(i= I ;i<=mm;i++)
{

forG=l;j<=nn;j++)
{

x[i]OJ=xn[k];
k++;

}
}

1* for(i= I ;i<=mm;i++){
forG= I ;j<=nn;j ++) {
printf("%f\n",x[iJO]);} }getchO;*1

1* for(i=O;i<=mm+ I ;i++){
forG=O;j<=nn+ 1;j++){
printf("%.6f" ,x[iJO]);}
printf("\n ");getchO;} *1
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forU=1 ;j<=m+ I ;j++)
{
suml=O.O;

for(k= I ;k<=p+ I ;k++)
{
if(k==I)
sum1+=x[j-I][k-I];
if(k!=1 && (k%2==O))
suml +=4. *x[j-I ][k-I];
else if(k> I && k«p+ I))
suml +=2.*x[j-I][k-I];
if(k==p+l)
suml +=x[j-I] [k-I];

}
ifU==I)
sumj+=suml;
ifU!=1 &&j%2==O)
sumj+=4.*suml;
else ifU>1 &&j«m+l))
sumj+=2. *suml;
ifU==m+l)
sumj+=suml; .'

}

sum=(hl *h2/9.)*sumj;
printf("\nThe integrated value = %f',sum);
getchO;
}
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