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ABS'I'R...';'CII

The present investi~ation was on the mean flow
parameters of the wake, identifying the initial conditions
and a suitable turbulent Shta.r stress model.'rhe equations
for mass and momentum conservation for turbulent flow were
solved numerically by using appropriate boundary conditions.
Finite difference scheme was used to solve the above
equations. The calculations were perfoTIned for ReJ~olds, -
number, Re e e=2. 18X103, 2.01X103, 1.9X103 and 1.7A103

.for which the' flovi may be8s.5U1Ded: to be turbulent. !1ean
/properties of the flow at the trailing edge were expres~d

by a empirical relation using the e~~erimental values of
Faruque [8J. Prandtl's mixing length was expressed as a
function of shear layer thickness and it was used in ehe

turbulent shear stress moga!. '",

within the wake near the trailing edge of the plate
the transverse velocity gradient was high. The velocity
gradient decreases with increse of axial distance from
the trailing edge of the plate. The momen~um thickness
increased with the increase 9f Reynolds number. The center-
line velocity increased 1'li1;h.the increase of axial distance.
The rES deviation of me&~ flow from self-preserving flow,
decreased gradually with ohe increase of axial distance. The, ~

rms deviation became less and the velocity profile became
self~preseriing earlier for hiGh Re:711oldsnumber •

. '~!
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Drag Co-efficient increased with the increase of HeJ~olds
number.

The calculated results h8ve also beenco~pared with
the available experimental resul~s. ~ost of them are in
close agreer::ent with experimental results.
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CHAFfER - I
IN'l'RODUCTION

1.1 General

A wake is formed behind a solid boqy which is being
towed through a fluid at rest or behind a solid body which
has been immersed in a stream of a fluid. The velocities in
a wake are lower than those in the main stream. A continuous
exchange of momentum takes place in the wake from the high
velocity region to the low velocity region. 'l'he chanr;e of
velocity in a wake for incompressible flow is due to the,
loss of momentum caused by theA'ras;' oil, the bolly. The magnitude

of difference of momentum between the wake and free-stream
region determines the level of exchanGe of momentum. Typically
high level of momentum exchange together with the fluid
properties makes the flow to be turbulent. The "ake generated
with such turbulent flow is said to be turbulent wake.
The spread of the turbulent wake increases and the difference
between the momentum in the wake and that out side becomes
smaller with the axial distance from the body. The
characteristic features of such wake flow are important for
IDfu"ypractical applications. Such turbulent wakes are simple
in nature but contain many features of turbulent shear flow.
'Theresearchers are being more attracted to -"orkin this area.
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1.2 Formation and Degeneration of Wake

When a fluid in motion separates from a surface and
shears with another fluid having lower velocity forms two
layers of different momentum. Such difference causes an'
exchange of momentum to form a shear layer. The geometry
of the shear layer and the flow characteristics of the
shear layer determine the loss of momentum and energy due
to wake. The flow in the shear layer may be \oJi.thor without
pressure gradient. The shear layer is said to be free shear
layer if it is not obstructed by boundaries. In case of
free shear layer the fluid in contact with the outer bounJ~hry

;
• c., ..•of the w'ikefold'sback into the surroundings, after

separating from the surface. This folding engulfs the
surrounding fluid and forms a ring vortex core ,"hichrolls

,
downstream. After one or two revolutions, the vortices
interact strongly with ~he other vortices and break down
into turbulent eddies,[j]* if.they originate from turbulent
boundary layers. The interactions of turbulent eddies cause
large scale vortical.motion ; small scale vort.icalmotions
also evolve through break d:.o\-Ill of the large eddies.

The general character of the turbulent wake with shear
layer is depicted inl]'ig.1.1 ,'litha dip in the velocity
profile. The width of the wake increases and the dip in the

\veloci':;yprofile gradually ~evels off with distance from the
body.

• Number in the parentheses indicate references.
I
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Self-Preservation of Wakes

A large scale vortical motion is formed in the
near region and a small scale vortical motion is evolved
through breakd'CDwn of the large eddies in the far region
of.the wake. The small eddies'contain less energy ,and they
are invariant to mean and turbulent stress in the field.
From the physical view point, the flow is said to be
self-preserving when the eddies are invariant. The eddies-
are invariant when it has the capability to readjust with
its surrounding eddies if it is subjected to any change
in any property. For self-preserving flow field, the
velocity scale, (u""- uc) and length scale, !1 for h10-

dimenSional wake, may be expressed as follows [11J ;
_ 1~

(u~- uc)= A1x1/2 ; £1= B1 x'

where, A1 andB1 are constants.

An analytical solution of the governing equations
may be obtained by using self~preserving laws. It is
identified _by' Keffer [11 Jand keffer {:12J that the
mean quantities achieve self-preservation earlier in the
flow than the turbulent quantities. Experimental results
of Keffer [1,2J shoeTsthat all measured turbulent and mean
quantities within wake are fully self-preserving beyond
x/D=500.
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1.4 Scope of Application

The flow ne.arthe trailing edge of an airfoil 1S

considerably interesting from the view point of its design
and application. The ,.akebehind a flat plate is a limiting
case of an airfoil. \lakes behind any obstacle are common
in many engineeringapplicationsrequ~ing special attention.
The "lakes in fluid loachineries, motor vehicle~ drilling
.technology, heat exchangers, cooling towers, cooling devices,
control devices etc. are common features. A maneuvering
air craft or submarine which is accelerating or decelerating
leaves behind it a momentum defect in the form of jet 'or

/wake when it changes speed. All such wakes are turbulent
in character and those n~ed to be 'studied for drag and other
parameters. Some eA~erimental as well as theoretical works
are available in this area.

1.5 Statement of the Problem

The flow development.within the turbulent wake behind
a flat plate has been studied numerically by developing
computer program. The objectives of the present study are:

1. Identification of the initial condition of the wake.
l'heinitial velocity profile Hill be taken either
from empirical formula or from any integral solution.

I



5

2. Finite difference formulation of the continuity
and momentum equations. Development of.computer
program in order to solve those equations for
mean velocity, momentum thickness, drag'
Co-efficient etc.

3. Identification of a suitable shear stress model
for turbulent flow to fit the solution.

4. Comparison of the results to be obtained by
calculation with the existing experimental
results.

5. Study of the variation of drag coefficient and
wake geometry for different Reynolds number.

6. Study of the self-preservation of the mean
velocity in the developing region.

.,,
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CHAPTER - II
LITERATURE SURVEY

2.1 General

The increasing availability of faster and more
economical digital computers has stimulated the development
of effective differential calculation methods. Thes~ methods
predi~t quite accurately the most important features of
many turbulent flm'ls.l'he success in case of lvallboundary.
layers is most striking. E'or this case the Prandtl J!lixing-
length has led to predictions which agree well with
e}~erimental data over a wide range of conditions.

The prediction of properties in free shear flows
was most commonly done by integral methods. But now the
differential methods have become the center of interest
with most resear'chers. A study of the proceedings of the
1968 Stanford 00nference on computation of turbulent
boundary layers, the proceedings of the 1972.Langlely
working conference on free turbulent shear flows and the
proceedings o'fthe 1978 Imperial College second symposium

~r on turbulent shear flows will provide~an indication of the
shift in the emphasis on differential method.

Turbulent flows can be expressed mathematically by
\the conservation of mass equation and the Navier-Stokes

equations. Since the Navier - .Stokes equations are
non-linear, solution for each individual flow pattern has,

certain unique'characteristics that are associated with its
I
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initial and boundary conditions. lhe equations have been
analysed by researchers for various flow pattern. But it
is still not possible to make quantitative prediction
concerning turbulent quantities without relying :-greatly
on empirical data because in the time - averaged turbulent
equations, there are more unknovmdependentvariables than
the number of equations. In order to obtain the solution,
it is necessary to make appropriate assumptions concerning
the flow. These assumptions are based on physical concepts
developed from experimental data and experience. In this
way, many authors have developed empirical and semi-empirical

,equations to obtain a set of clos'ed equations. Progress
in this line of re.search (both theoretical and experimental)
as related to turbulent wakes by various authors is presented
in this chapter with their findings and conclusions. The
term wake is commonly applied to the region of non-zero
vorticity on the down stream side of a b0>~Y immersed in
a flow. In the turbulent wake the effects of the molecular
viscosity is negligible, and it is turbulent from the
trailing edge of the wake if it is generated by turbulent
boundary layer at the beginning of the wake.

2.2 Experimental Investigation

Chevray and Kovasznay (13] investigated
two-dimensional wake behind a thin flat plate mouqted in
the low speed wind tumlel. Measurements were taken with
a single channel con~tant temper~ture hot-wire anemometer
both for mean velocity and for turbulence. Reyno~ds number



( 4based on b,'undary lGyer thickness, 0 \.;as ~ u = 1.5:;::10
'iT

for all investisations. 1.'heboundary layer thickness imd
momentum thickness at the exit were 5.5 em fu~d 0.58 em
respectively. UsinG the experimental values of mean
veloc""ities the authors culculated the corresponding momentum
thickness and the width of the wake. The flow in the wake
was found approximately similar except close to the
trailing edge. It i;;j~shown that the flow achieved approximate
self-preserv~~~~at a distance x/eo = 300 and exact self-

.preservati~nl;lih~'occur at a distance where the shape factor
H, tenqs to unity. It is to be noted here that the trailing
edge turbulence level was not mentioned.

Hiroshi and Kuriki [14J experimentally studied the
mechanism of transition in the wake of three thin flat
plates of different dimensions. The plates were placed
parallel to a uniform flow at subsonic speeds. Thefuaximum
thickness of the three. plates Ivere 0.3 mm and 3 rom
respectively and the Reynolds number based on length of

. 4;the plates ranged from 6x10 to 4x10 • For the 'measurement
of the mean velocity distribution, both fine Piiot - tube
and hot-wire anemometer were used. At the trailingedge,param~

eters such as boundary layer thickness, displacement thickness
and shape factor were not calculatedby the authors [ 14 J .
They classified ~hetransition reGion into three subregions
viz. linear, non-linear and three-dimensipnal. In the
two-dimensional (linesr and TIon-lineAr) ~egion the center-

line velocity was i'ound to v~;.ry exponentially. In ~he

three-dinensional rezion it \.;35 aDDroximatelv linear.~ ~ u

From the veloci T.-V rl-; --+-,..,~-.....-'-l. on ~UT' ~ I -1-] •. ~"'~, u ..•...::<-IJ __ oJ\..ol..J 1 .•..• _\les L.1e autnors sho\"oled
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that until x=30 to 40 mo, the distribution varied slowly,
while a sharp increase of center-line velocity was found
fr~~ x=40 to 60 m!,. The oxperiDental values of the mean
velocities were found to fit to the empirical equation

~o =1- '_uo_-_u_cexp (a(y/y-'h)2)
uo

\fhere, a = 0.69315.

(2.2.1)

The theoretical mean velocity distribution for a fully
developed laminar wake of the above form and the eAyerimental
data were ,in Good a6reement with each other. However, they
did not mention variation of the momentum thickness andt~e
v!id,th /of -the wake in the axial direction. AS the exit

/condition is laminar the development of the wake is not
similar to that obtained by Chevray and Kovasznay [13] •

G:artshore [17J investigated the tl'lO-dimensionalwake
of a square (0.635 cm),rod at adverse pressure gradients
and at the pressure gradient for exact self-preservation.

\ .

The velocity ratio (u-u)fuJ../ was maintained approximately
. dOC""

constant after x/d1= 50 ,the flow through 1'lakehaving
Reynolds numbers 6300 and 7300 based on the conditions.
at the trailing edge.

Keffer [111 investigated the 1"1akeproduced by the
two-dimensional cylinder of diailleters1.27 cm, 0.793 cm
and 0.476 cm with straining the flow. The tQ~nel speed
was held consta.nt at 5.48m/sec so that the correspondinr;
Reynolds number based on cylinder di@neters were 4630, 2890

and 1740 for cylinder diameters 1.27 cm,0.793 cm and 0.476 cm
respectively. The mean quanti:ies ~ere measured with a Piiot
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static tube. Keffer [11J found that the \-lake \-lidth

increas€ll.lexponentially with distance dOW~T\.5.tream.The

mean velocity distribution of the I-Iake profile: .was in

no way self-preserving.

Schlichting's [15J work, which is mentioned in this

section is devoted to an experimental investif,ation of the

fluw in the wake of a two-dimensional body. The experiments

were conducted \'1ithin a. wind tunnel at a speed of about

50m/sec, Reynolds number based on the diameter was Red=

ud
1
/ ~ = 2.38x104• He found that the half-width of the

wake varied parabolically .',and the center-line velocity
/

def~ct varied exponentially. Experimental values of mean

velocities \-Iere found to fit to the empirical equation

(2.2.2)

Where, L = y/b, b is the width, of the \-lake and y is the

vertical distance from the wake cente~line. Schlichting's

experimental results did not indicate the initial boundary

layer parameters. These results agree satisfactorily with
. I '.J.' !

wake generated w:i,.th a "very\thin boundary layer on the

-~'Plate.' ...:,.but it may deviate from the results with thick

boundary layer -over the plate.. .

Hall and Hislop [16J investigated the velocity and

temperature distributions in the turbulent Wilke behind a

heated body of revolu '..tion. J'hey iound that the ex-perimental

values of the mean velocities filt;ed satisfactorily \-lith
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.
the empiric"l eouation [;iven by Schlichting [15J in equation
(2.2.2). -i..,ain[18J also obtained in a similar maImer such
an expression for the velocity profile in an axially
symmetrical wake. The dimensionless profile of the velocity
defect was obtained experimentally by R.'eichardt [191 in the
wake behind a heated wire at a distance of x=100 I' (I' lS,0 0

the radius of the wire) from it. Similar experiments were
also done by Fage and Falkner [22J in the wake behi.nd a
heated prismatic rod at a distance of x=72 r from it., . 0

The attempt of Goldstein [201 and other students of Taylor
to apply the vorticity transfer theory for determining the
veloci~y profile in an axially syrnrnetricwake did not lead
to results which ar;ree with e).'1lerimentaldata. /

FE.ruque [8J investigated two-dimensional turbulent
wakes formed behind thin flat plates mounted in a straight
subsonic wind tunnel of suction type. The wind tunnel was
origina:lly designed and constructed by Islan [2:51and
installed by Khalil [241 • Two flat plates of different

-'l'thielillesi;es,1.905 em ani 1.27 em I,ere used for generating the
I.,;

. '.'wakes ,:at four different exit Reynolds numbers, i. e
.,'

boundary layers were turbulent at the trailing edge of
.

the plate, and the wakes form~d with these boundary layers
were assumffd to be turbulent from the eiit. The ini~ial
boundary layer was identified to be turbulent on Ghe hasis

\

of the experimental values of velocities, which fitt~o
the illlivc::::-salvelocity profile", of turbulent boundary la:Ter;

+ -+ ,u = Blog Y + A' (2.2.3)
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~he velocity distribution in the neighbourhood of the
- jJf"r ~flat 'pI2tei'>i0:~'unstabledue to the presence of high.velocity

'.:,.-'"

gradient in the axial direction and instability decreasedfr'",";L,"
, 'c '--, ""/1

to make the flow self-preserving. The flow was not found
to be self-preserving within the axial distance covered
in the present investigation i.e. x/D = 56. The axial
variation of half-width of the wake was approximately.linear
except close to the trailing edge, which J.f~-in' agreement
with the experimental results obtained by many investigators.
The flow within the wake did not show ~omplete self-preserving,

within the axial distance covered in the investigation. But
for higher Reynolds numbers it tended to become self-preserving
earlier for the same plate thickness -I- in the,wake.,..~rag '~
co-efficient due to the wake was calculHted from the momentum

, , ,

thickness equation (3.2;15) obtained by neglecting pressure
,_")gradient. Drag co-efficient~"',,:,,:l~ilcalculated by applying

equation (3.2.18) near the trailing edge of the plate,
o ~ considering the effect of pressure ,gradient,The iiesultLobtained,

by the above two equationswer~ in gooc agreement at each
point with the experimental r~sults obtained by Faruque [8J.
The shape factor of the wake 'decreased'with the increase
of Reynolds number and with the axial distance from the
trailing edge ,and", ,H also decreased :with decreas('; 'Qfjplate
thickness.

Toyoda and Shirahama [25J investigated exnerimentally
the turbulent wakes subjected to presure gradients.;The
e:li.periJIlentswerecQnd.ucted 'in.an_open circuit wind tunnel'for
measuring mean velocity and turbulence characteristics. '
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air' : delivered by an axial blower enter ..the
test section through a nozzle via a settling chamber. The
turbulence intensity (~u2/u~) at the exit of the nozzle

was 0.003. A steel flat plate of 1.0 = thicknessand 1200 =
length was used as a wake generator. Mean velocities in
boundary layers and wakes were determined from the measurements~
t~and static pressures. Turbulence intensities were
measured with a constant temperature hot-wire anemometer.

_, 'The results of the experiment ,~etUgi sUIDlnari'f'gdas follO\.ls:
", L.~/

1) 'rhetotal pressure along a streamline in\.t'hevake near
the;tr~i~inB ~dge with'pressuregradient chan~ed' at
_approxima~ely the. same'rate as with:no pressure
gradient alona:'the,same streamliIie'."

, - -. . - ," '. \ . - ' . " , .

2) The velocity defect distrillbutionsnormalized with
local scales and approach. to the'self-preserving
solutioIl downst;realllwerenot;iY.O.~h'affected by the

-...... ....-

pressure gradients. 'I.'>"

3) The calculated results obtained by Toyoda and
Hirayama [40]aireed' well with the experimental
data except for the strong pressure gradient.

2.3 -]'heoreticalstudy
,To find therorm of the velocity profile in a

t\'io-dimensionalwakes, Schlichting [15J used J~omentin
equation of

uv +

the form given by,
7f~xju2dy -I-j,2( ~~

-cf;
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in which the experession :or turb'.llentshear stress '::.1-'<>;
taken fromPrandtl's old theovy of turbulence (~=t21~~1 ~~ )

~'#C
j j""1and pressure gradient ':!i~.neglected. The Prandtl' s mixing

lenp;th,t was defined in terms of the width of flow,

(2.3.2)

(2.3.3b)

(2.3.3a)

\ The author defined the velocity profile l~ a conventional
functional form(~u) =(u - uc) f (1 ), where '1= y/b. To
determine the velocity profile, Schlichting [15] used,

b=K2~

.OLTld,(u-ud= u~,n/..rx

Using the expr~ssion fort 'llldtic in the momentum
equation (2.3.1),an ordinary differential equation was
derived in the following form

(2.3.4a)
(2.3.4b)

Equation (2.3.4a) is subjected to the following boundary
conditions:

1. At the edge of
, d

u-u=O and-,- (
(f. ay

the "lake (fl'{ =y/b =1)
l ,

u~u)=O,i.e •. f=f =0

2. On the axis of the wake ( '1 =y/b=O.,)
du-u=u-u ,-- (u~..u)=O,i.e.

<JJ pj c dy -
If=1, f =0 (2.3.6)

rhe solution of the equation(2.3.4a) with boundary
conditions Given in equations (2.3.5) and (2.3.6) is,
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~?'fhe canst ant, c,~;involved in the Prand tl' s mixing length
,/

expression was determined 'to be 0.18" (f/b=0.18). 'fhe values

of the constants k2 and'nrin the equations (2.3.3a) and

(2.3.3b) can be determined by usinG Schlichting's [15J

equations in the form, n=1.4 -JEi21 and k2=0.8va21 where,

a2 is an empirical const3nt. For wake behind a two-dimensional

cylinder, Schlichting [151 obtained experimentally the value

To find the form of ,the velocity profile in an

axisymmetric wake 'l'aylor [1OJ used momentumequation of

the form:
"J ; ,

1 d J' 2 ( du )2= 0 (2.3.8)''-- (u-u)';Jdy+ f- dy,';j dx <f;

'"
~M

Here the expression for shear stress'taken in accordance

with Prandtl's old theory. The Prandtl's mixing length,

t ',was defined in terI:ls of the width of the wake,.£ =cb.

I'he author; used the conventional functional form :)

velocity profile given by

-2/3and u-u =n1ux'" c .0

After transformation be obtained for an

wake, the S';;TJedifferential equacion as

wake:

for

axisy=etric

a two-dimensional

~f= (2.3.10)
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With the S8me boundary conditions given in eguatiorik2.3.5)
and '(2.3.6)"squation(2.3.10) may be integrated to give
the same velocity profile as in a two-dimensional wake:

(2.3.12)

Reichardt [19Jused momentum integral equation to
find the form of the velocity profile in a two-dimensional
wake. The author used Prandtl's new formula for shear
stress given by:

rr' i du
f = 'f dy

where, ,(=rjb(u-uc)

If Prandtl's new formula for shear is used, the momentum
equation for a two-dimensional Hake'takes the following
form under constant pressure gradient:

dJ'D (d2 ---d u(u-u)dy-~+ dU = 0
X <N '" Y~

The velocity profile in the cross-section of a two-dimensional
turbulent wake according to Prandtl's new theory of turbulance
and Reichardt's theory [19Jis

,
(q,ou)/(uZuc );;'exp(y2/2'6ix) S (2.3.14)

The 'constant £1 for a two-dimensional wake was determined
from the experimental results of Schlichting [15J and
Reichardt [19T

Heichardt [19Jalso obtained the following form of
the velocity profile in an axially Sjumetric wake far from

- , , ."



the body:

Hiroshi and Kurilci [14J also obtained the following
form of the velocity profile for two-dimensional wakes
behind flat plates

(~u)/(~uc)~exp(-a(y/~h)2)

where, a '= ln2

(2.3.16)

Some solutions were obtained by uSlng a computer
program developed' by Sinha, :B'Ol(, ,and 'w'inberc;er[26,27 J for
chemically non-reactive, quasi-parallel shear flows. ~he
boundary layer equations with suitable botmdary condtions

We.re assumed to describe the motion of free shear flol'lS.
The governing equationswe.re as follows:

Conservation of mass:
d 2 d .
dx( fuy ) + ,dy (fvyJ ) = 0

Conservation of streamwis~ momentum:
"

(2.3.18)

where, j=O and 1 for two-dimensio;rll1 and axisyr::lmetricflow,
t • :;"".respectively. The associated boundary conditione;: >'JQ$

, .:~'
du
dy = 0

at the center line when y=O, for all values of x.

The result was computed by using an implicit finite difference
w-"" 't'," .~technigue the details of which ~re descrlbed in refs.[26]

and [27J. 'llhe results obtained i.,rere in close agree~cnt ...;i~~

the available experimental . ~Galla.
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2.4 Recent approach

The shear layers are recently investigated from the
view point of its structure and-eddy sizes. Such flow is
identified to be irregular type with its structure in the
coherent forlfi.A coherent structure is a connected, large
scale turbulent fluid mass with a phase-correlated vorticity
over its spatial extent [283 • The presence of large-scale
organized motions in the turbulent shear flows,
apparent for a long time and implied by the mixing length
hypothesis was suggested first by Townsend [29land investigated
in detail by Meller and others'[30,31] • Near field coherent

/structure in wake was observed by flow visualization by
the authors [32, 33J • A coherent structure is responsible
for transports of significant mass, hedt and momentuo
\Vithout necessaI'iiy> b~ing highly energetic itself.

, .
'Soph4~'Sticatedexperimentation has been developed to
investigate the coherent structure.

Differential methods of calculation is also an
useful tool for predicting the turbulent flows in shear
layers. The Turbulent model of semi-empirical equations
developed by Launder, et.al [34J and others [35,36J are
very powerful method for predicting flow.



CHAP~ER - III
~Ilt;()lti'

3.1 General

Turbulent motion is governed by the continuity and
the Navier-Stokes differential equations. Since the Navier-
Stokes equations are non linear, exact analytical solutions
to these equations have not yet been obtained. In order to
apply Navier-Stokes equations to practical cases, hypothesis
and empirical assumptions have to be'introduced for obtaining
a set of closed equations with time-averaged dependent
variables. Here the conventional 'order of magqitude'principle
is applied to the general momentum equation to obtain the

I

equation in a simpler form. Later these equations are used
for evaluating the wake properties.

~heoretical work on free shear flows can be developed
in any of the following three classes of turbulent illodel:
Class-1~ turbulent viscosity models in which the length-scale
of turbulence is found by way of algebraic formulae, Classs-2-
turbulent viscosity models In which the length scale of
turbulence is found from a partial differential transport
equaclons, and Class-3-models in which the shear stress
itself is the dependent variable of a partial differential
conservation equation.

The Glass-2 models h8ve attracted the attention of
the most of the researchers in this ~ield. ~he models of
Glass-3 have not yet been refined sufficiently to achieve
the level 0: universality of which they are belived to

, be cap~'D:e.I'hp~f~ ~ ~~e ore, e~(;ineerin~ealClllations of
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turbulent flows have been contined to models of Class-1
and Class-2.

3.2. Governing Equations

Assuming steady, incompressible flow, const~~t
fluid properties, boundary layer approximations and
applying the 'order of magnitude'principle, the mass and
momentum conservation equations in two-dimensional flow
can be written in the following form:

du dv
dx' dy = 0

du du
u dx + v dy

0.2.1)

0.2.2)

where,'I is the shear 'stress and f is the density of the
fluid. The flow configuration "and co-ordinate system are
shovillin fig. 3.1. The shear stress includes both viscous
and turbulent contributions and it is written as

'/ =J du .- ulV'f dy \

where;~ is the molecular diffusivity. The turbulent part
of shear stress is -F u'v' and it is expressed by
Boussinesq's hypothesis:

-f:u'v' =f-$. du 0.2.4)
T dy

where;~~s the turbulent diffusivity. For the turbulent
vlake,the diffusivitY'-/T is expressed in terms of Prandtl I s

n dumixing length, ~ and mean velocity gradient, ~

",
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where, f is Prand tl 's m1.x1.nglenGth. According to Pt'andtI's
velocity distribution principle the relation between mixing
length and vertical distance, y is

x= 0.4 0.2.6)

Where,1 = dimensionless empirical constant. \fuichmust
be obtained from experiments. Hence, according to Prandtl's
assumption, by neglecting molecular diffusivity term the
turbulent shear stress becomes.

So the final differential form of moment~~ ~quation for
turbulent wake is

u du + v~dx'\, dy = 2f 2[Y(dU )2
dy

+ l(du )(d2u)l
dy d)' 21J

0.2.8)

where, all variables are dimensionless quantities.

by using the von K£rm~n shear stress eauation(D.10)
(which is discussed in Appendix-D), the momentum equation
can be expressed as

2 [ .3 2=)(. 4(~) (d U )2
dy.' 2

. dy

( .,.,3
.0 U
'dy3

)] / ( 0.2.10)

hgain applying the order of maGnitude princ~ple and
US1.n; equation'(3.2.1), the mOT:lentumen.uationmay be written



as [37J
d d du(u-u~)+ dy v(u-u~) + dy u'v' = 0dx

~!'! ..

The pressure gradient and the effect of molecular viscosity
are neglected in the above equation. In wake, u-~ vanishes
at sufficiently l~rge v~lues of y, and it does so ~or u'v'.
Integrating equation (3.2.9) with respect to y over the
entire flow, we obtain

dJ

d fU(U-u"v) dy = 0
dx-,:.

~he total mOIilentum defect in a \'!ake is constant,

sOl; Ff:C u-u,4 )dy =1'1
-i1J

0.2.10)

(3.2.11)

The momentlliliintegral equation (3.2.11) can be used to
define a length scale for turbulent wakes. Imagining that
the flow past an obstacle produces a completely separated,
stagnant region of width 28, 2fu~8 represents the net
momentum defect per unit time and depth.

Thus, -2fu~ &=11
Equating equation (3.2.11) and (3.2.12),

. rIv
-2fu~e = f fu( u-u;) dy

oV -,IJ
or, e -iu (1-u/u,IJ)dy

uciVo•

0.2.12)

(3.2.13)

where, 8 is called the momentum thickness of the wake.
The momentum thickness is related to the drag co-efficient
of the obstacle 'that,produces the wake. rhe drag co-efficien::,
Cdm, is defined by,

(3.2.14)

where, D1 is/the drag.; per unit depth and L 18 the
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characteristic heiGht of the obstacle. fhe drag, D1,
produced the momentum flux,,",.i~SO, equating equations
(3.2.12) and (3.2.14.),

or

. 2
2 f u,,(, e = "p. Cdm

Cdm= 48/4 0.2.15)
The momentum inte~ral equation for drag on the
obstacle having pressure gradient is given by

0.2.16)

But according to the definition of drag coefficient
2D1=j2.Cd uo L

Equating equations (3.2.16) and (3.2.17), we h~ve,

0.2.18)or,

~Cd fU;L=L[l~~U;f)dY.:- J<lJW(P+ fu2)dY]
, 2 jN .' f"" 2 2Cd=~:fuo (pop)dy+2 (1-u /uo)dy

1/,- _,,(, -..c.
The displacement thickness,'~*i~that distance by.which
external potential field of flow is displaced outwards
as a consequence of the decrease in velocity in the

,boundary layer. The decrease in volumefiow due to the
influence of friction is

oV

j(U~U)dY
'f~o
y=o

so that

or,
jCu,zU)dY
,/:01"'( 1-u/u.,(,)dy
y=o
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3.3 Initial Condition

The initial velocity distribution for wake is given
by the semi - e'llpiricalequation

J..
u/u~ = (y/ h t

where,h is the initial boundary layer thickness, which is
found from experimental results and 'n' is the power index
which is found from limiting case of the equation 0.2.13).
Calculation of'n'is shown in the Appendix-C.

3.4. Boundary Conditions'

Basic differential equations(3.2.1) and (3.2.9) and
other empirical equations (';overningthe mean flol'J\-Jere
solved numerically. The appropriate boundary conditions
applicable to equations 0.2.1) and 0.2.9) are:

du' _- dy (x,1)=O, v(x,1) =O,U(X,c5J=u"" 0.4.1)

3.5 Self-Preservation Equation

The mean velocity distribution for self-preserving
wake is given by the following semi-empirical equation

where,

2(u~u)/(u~q)=exp (-a(y/~~) )
a=Ln2

A semi-empirical relation'for,half width of the wake follows
;~romthe measurements of SchlichtinG and Heichardt (19J

0.5.2)

-'
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' ...
". ~~;..•~.'.

iill explicit finit'edifference scheme was used'to
solve the conservation and other equations.

3.7. Calculation Technique

The method of approximating the derivatives is
given in Appendix-B. The finite difference grid used for
the calculation is shown in Fig.3.1. The cOQputer proGram
developed for this purpose has the capability of handling
non-uniform grid spacings in both x- and y- directions.
For calculating mean flow properties from continuity and,
momentum equations, non-uniform Grid spacings were used IYl

.X7-direction which were restricted by the stability
conditions. At starting, first level information is
obtained from initial conditions and second level informa-
tion is obtained from the finite difference solutions.
This scheme requires only the previous step values.

The other flow characteristics were calculated by
using the different empiricai relations and mean flow

lproperties found from continuity and momentum equations.



CHAPTER - IV

RESULTS AND DISCUSSION

4.1 General

Empirical formulae and experimental values of flow
parameters at the trailing edge were used for calculating
the flow properties in the wake at the downstream of the
trailing edge. The differential mass and momentUID'equations
were solved by using boundary conditions given in Art.3.4.

The investigation was carried out for four Reynolds numbers,
Re6e=2.1Sx103, 2.01x103, 2.01x103, 1.9x103 and 1.7x103•
For all the four cases, the same computer program was
used with different values of the parameters involved.
The computer program is given in Appendix-E. fhe computa-

"tional analysi;s were performed by using the IBM-4331 computer
of the BUET Computer Center.

This chapter presents discussions on the results
obtained by the present study and comparisons of these
results with the experimental measurements of Faruque [sJ
and other predicted results.

4.2 Trailing EdFoeConditions

From the trailing edge the wake ,originates and
spreads dOwTIstream. fhe character of the wake depends upon

~the trailing edge condition? Near the trailing edge the
velocity inoreases in the transverse d.irection and follo,.'s
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the boundary layer velocity profile. ~s the boundary
layer is thin, the velocity gradient in the transverse
direction is high. Fig.4.1 shows velocity distributions
for the Reynolds numbers 2.1Sx103, 2.01x103, 1.9x103 arid
1.7x103 the experimental data being taken from Faruque [SJ •
~he Heynolds number was defined on the basis of momentum
thickness and free-stream average velocity. l'heexperimental
values of the mean velocities shown in Fi5. 4.1 were fitted

;P'l~to the empirical equation (3.3.1). It is observed from
~Fig.4.1 that the empirical equation (3.3.1) fi(~closely

,"ithexisting expeJ;'imentalresults. The rms deviation did
not exceed 0.112,7 for any case. The experimental values
of the mean velocity at the trailing edge were also plotted
in the universal coordinate system in Fig.4.2. The nature
of the curves in _Fil).\ 4.2 implies that the flow over the
trailingeage was fully develped turbulent flow. Islam [1J
has identified that the-initial conditions have a significant
influence on the development o,fshear-.,'layer of jets. As
the deve19pment of wake is similar to that of jet flows,
it is likely that the initial conditions will influence,
the wake flows. The characteristics of the turbulent
boundary layer at the trailing edge of the plate for

'1
different flow parameters are shO~TIin 1rable-4.1
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T..i.13Li:: -4. 1

CHARACT£ilIGTICS OF THE VELOCITY PROFILE
AT I'HE TRAILING EDGE OF THE PLidE (Ref. 8)

Average free- Momentum Reynolds Boundary Friction
stream velocity thickness Number Layer v'elocity

thickness
U. (m/sec) 8 (em) Re8e .5 (em) u* (m/sec)2.V

18.10 0.0894 2.18x103 0.762 ,0.832

13.49 0.1107 3 0.'985 0.6832.01x10

'9.99 0.1422 1.9x103 1.39 0.509

7.65 0.1651 1.7x103 1.6 0.418

4.3 Shear Stress model

Different shear stress models given by 6quations(D.4),
(D.6) and (D.10) were applied to the equations governing the
flow to express the turqulent shear stress. It is 'seen that
the Boussinesq :eqjp.4) model is suitable for only fully,

- . , ,developed turbulent flow at the trailing edse. The von Karman
'~q.~.10) model is suitable where mixing length is dependent
on space Co-ordin~tes but it does not seem suitable for present
turbulent \.;akefor both developing and develpped regions. ihth
the Prandtl's model,)::q.(P.6) the results obtained by .iinite
difference method were in c19se a~reeLent with the exyeri~ental
~P.SU'J..TS OJ..~~~ruaue [8J~_ u ~.~" •



4.4 Free-3tream Flow.

The free-stream velocity, u~, represents the uniform
flat part of the velocity profile outside the shear or
boundary layer and it is parallel to the x-ax:i,s,'rhe free-
stream velocity in the wake drops instanDaneously when the
boundary layer separates from the plate. Such drop is
observed up to .the axial distance x/6=55,(Fig.4.3), after
which it achieves a constflnt value. From the consideration
of potential flow theory, there exists adverse axial pressure
gradient at the beGinning of the Hake sild it achieves
zero axial pressure gradient after x/6=55. :;'hedrop of the
uniform free-stream velocity is due to the increase of flow
area as the profile s~parates .frem the plate. rne finite
difference results are similar to those given in Fig.4.3.
The calculated results of free-stream velocity for
different Reynolds nw~ber are in clos8 agreement with the
existing experimental results shown in Fig.4.3. The rms
value for deviation of the theoretical and experimental
results are found within the range of 0.0 to 0.03j94.

\Jake Development

4.5.1 Velocity and Shape Factor

Fig.4.4~, 4.4b, 4.4c and 4.4d show the variations
3of mean velocity distribution in 'wake for Re 6e=2.18x10 ,

2.01x103, 1.9x103 and 1.7x103 respectively. Because of
high velocity ~radient, the wa]ce n,ear the plate is likely
,~o be complicated. The vortex form f~om the surface of
the ~late is beinG convected into ~he flow direction and
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diffused by viscosity. It follows that convection is
ul timately more important. that the streamwise diffusion ..
and that streamwise velocity gradient is small compared
with that in the lateral direction at the downstream.
As the velocity gradient gradually decreases with the
axial distance, the flow tends to become self-preserving
with the increase of axial ~istance. Fig.; 4.4a, 4.4b, 4.4c
and 4.4d show "the'development of the wake with increasing
width. Such a spread of the wake is logical from the view
point of energy transfer to the vlake from the surroundings.
The velocity distribution curves near the plate shows

/better agreement with-the existing experimental results
than that at the far distance frob the plate. The
rm6-- deviation is within the range from 0.0012 to 0.0321.

The momentum thickness within the wake was
calculated by using equationC3,.2.13) at different axial
distances in the dOhmstream of the wake. The values of
momentum thickness for diffrent Re 6e are shown in Fig.4.5.
The wake mome~tum thickness increases with increase of

Re Be.

The shape factor, H=~. Ie - , is plotted in Fig.4.6

as a fQDction of axial dist~ce~and compared with the
results of Faruque[SJ. The slope of the curve for any
Revnolds number decreases at a hi~her rate In the resion

u ,

close to the trailing edge and at a slower rate with the

J



incr'oase of axial distance. This trend of :he sh"pe factor
curves in Fig.4.6 s11m'lsan indication of self-preservation
of flow. The flow will be absolutely self-preserving when
the shape factor tends to be unity. The shape factor varies
with Reynolds number, Re ee, as shown in Fig.4.6. The results
presented in Fig.4.6 are in satisfactory agreement with
the experioental results of Faruque [8J • The rms deviation
of the present results with the experimental results is
found within the range from 0.002 to 0.066.

4.5.2 Half Width and Center-line Velocity

The!half width is.an/important"geometrical dimension
for length scale, generally used for explaining the
self-preserving characteristics of a flow. Dimensionless
half width ( ~ Y')i/CdmL) ~f the wake IS~:~":jplotted against
axial distance, in Fig.4.7. Half width: of the wake which

, il._W''''calculated from the semi-empirical equation(3.5.2)
I,,_,'\'.,f"

given by Schlichting [15] for two-dimensional wakes are
plotted in Fig.4.7. It is seen that the axial variation
of the present calculated half width of the wake near the
tr~iling edge of the plate deviates from that of existing. ,
experimental resul'ts, but it.,agrees I'lithempirical results
from the trailing edge. Fig.4.7 also presents the fact
that with the decrease of the initial bounda.ry l"yer
thickness for higher rte:.tnolds number, the exis-:inS

ex~eri~ental results approach to~ards present theoretical
results. It is also to be noted tt~t t~e effect of ~he

,
initial conditions exists only U)to a certain axial



distance and then the :'1'o"v.' beco:nesinc:epen(]ent of the state
of origin. i3imil"r case is also eX;Jlained by Islam [11 and
HU0sain and Zedon [3S]for jets. This is also probably due
to the nature of energy transfer from large scale to
small scale eddies which depends on vortex pairing.

l'he spread pClrameter for the wa;,e is shO\m in Fig.4.S
which achieves approximately a constBnt value .of 6=0.675
at x/D=125 for the l{eynolds numbers studied. Hear the
trailing edge of the plate the spread paraoeter decreases
rapidly upto x/D=125. The present results are in close
agreement with existing experimental results of Faruque [S].

Dimensionless center-line velocity defect is plotted
in Fig.4.9 against the dimensionless axial ~istance, x/GdmL.
For the four different Heynolds numbers, the calculated
values of center-line velocity defect falls on the same
line except forRe 6e=2.1Sx103• Velocity defect decreases
sharply at the trailing edge due to high velocity gradient,
but decreases slowly at. axial .distance far <jway ..' from the
plate. The plot in Fig.4.9 also .shows a comparison wich
the experimental results of Faruque [SJ .and Schlichting [15J
Near ~he trailing edge velocity defect is same as that of
Faruque's [sJ ~xperiment8.1 results. But after x/CelL'lL> 40,
the present velocity defect is less than that of Faruque's[S]
e:A'1'erirnentalresults, thou::;hit comes closer to the
Schlichting's [15J values.

4.5.3 Self-Preservation

Dimensionless velocity distribution

. --

for
,

the \-.rakes
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are sho\"lnin Fig.4.10a, 4. 'CJOb,4.10c '-md 4.10d corresponding
to the Heynolds numbers Re ee, 2.18x103, 2.01x103, 1~9x103
and 1.7x103 to examine their self-preservation. The half
width,.yy" is used as length sC81e in the self-presJpation
plot. The velocity distribution in Fig.4.10a, 4.10b, 4.10c
and 4.10d do not show self-preservation, because they
become similar only at large distances downstre~n from the
trailing edge. No similarity of mean velocity profile is
observed near the trailing edge of the plate. The experimental
results of Faruque [8J for similarity profile are also
.shown in }'ig.4.10a, 4.10b,4.10c,and 4.10d. for comparison.
It is seen that after certain axia.l distance, x/D=16, the
present results fall) on the sarne line. Deviation of ehe
existing experimencal results
present computational results

of Faruque (81 from the
'l5may be expressed$rms deviation.

Th~s rillSdeviation was found to decrease gradually with
the axial distance as shown in Table 4.2. The least rillS
d~r~qS~~is an indication of self-preservation. Examining the
rillSdeviation in Table 4.2, it can be concluded that flow
achieves self-preservation earlier in the flow with the
higher Heynolds number, Re ee~ From a comparison of ~ig.4.10a
and Fig.4.10d, it is clear ~hat the flow is nearer to
self-preservation": :in ]i'ig.4.10afor He ee=2.18x103 than
that in Fig.4:10d for Re 6e=1.7x103atx/D=48. The values
of rms devi3~ion for various rteynolds number, Re Be are
plotted in }<'ig.4.11to sho\>!that the rillSdevi,,;;ionis
less for higher Reynolds number at any axial diSoance.
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So the wake velocity p~ofile becomes self-preserving
earlier for higher Reynods number.

Drag Co-efficient due to the wake \'laBcalculated,
from the momentum thickness equation(3.2.15) obtained by
neglecting pressure gradient. The drag Co-efficient j~~~QS

plotted in Fig.4.12 which shows that it increases with
,the Reynolds number~

TA:3LE - 4.2

rms DEVIATIONS AT VARIOUS DIS~_~jC~S FROM
"THE TRAILING EDGE OF THE PL1iI'E

~

16 24 48
Re 6e -,

,

2,18x103 0.066 0.062 0.06

3 0.072 a.069 0.06752.01x10

1.90x103 0.078 0.076 0.075 l

,

1.70x103 0.095 0.0935 0.0925
,-



CO;WLUSI011

The present investigation is on the two-dimensional
tubulent wakes formed behind a flat plate. A compu~ program
has been developed to solve the equations of mass and
momentum conservation using explict finite difference scheme.

Numerical calculations were performed for mean
velocity, half width .and other flow 9'eometry and characterstics
in the wake region for four different exit Reynolds numbers,

3 '3 3 :z,i.e. Re 8e=2.1Sx10 , 2.0x10 , 1.9x10 and 1.7x10/. The
boundary layers were turbulent at the trailing edge of the

.'

plate, ~nd the wake formed with these boundary layers were
assumed to be turbulent at the exit. The initial boundary
layer~~s identified to be turbulent on the basis of the
experimental values of velocities.

I'he results obtained by present calculation were
compared with existin~ exverimental measurements. The
agreement of the present results of most of the parameters
with experimental results of Faruque [SJindicates that
Prandtl's mixing length model is satisfactory to expresses

I

the turbulent shear stress in'thewake. The momentum
thickness increases with the increase of Reynolds number.
The shape factor of the wake decreases with the increase
of ReJ~olds number aTIQ with the axial distance from the
trailing edge. ~he decre2se of the shape factor to ~nity
is an indication of self-~reser-Jation of floH. :rhe velocity

distribution in the neighbourhood of the flat plate lS
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,
unstable d.ueto the pre~,senceof hiZ;hvelocity f,r'ldientin
the axial direction and it decre~3es gradually to become
self-preserving. The axial variation of half width of the
wake is approxim8tely linear except close to the trailin~
edge. 'fhepresent results agree with the existing experimental

results after an ..axial distc;nce x/CdnL=50, where the effect of

/

initial conditions are insignificant. The rate of increase
of the center-line velocity is rapid in the near region of
the wake and it becomes slow with the increase of axial
distance. The flow within, the wake does not show complete
self-preserving within axial distance covered in the
investigation. But at higher Reynolds n~~ber it tends to
become self-preserving earlier for the same plate thickness
at the beginning.
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li.PP';:;LDIX - A

DZ:RIV.t~:'Ion OF EQUATIOnS

A.1 Differential Equations

The continuity and momentum conservation e'luations
In rectangular system of Co-ordinate for a fluid in motion
c"an be 1"Irittenin terms of shear Stress as

duo
+ --dx

dvo
+ --dy + = 0

o
doxy

+ dv
"

o

I
d6zx
dz x-component

o
d6r,f
dx

o
dCvz:.1 '.

dz
y-component (A.2b)

o
f D.\-! - fB"')Dto-z+

o
dCzx--+dx

o
d6yz
dy

o
db"zz
I Jz

z-component (.i>.2c)

where, ou , vO and wO are instantaneous velocity components
in x,y and z direction respectively. And Bx, By ~~d Bz
are the body forces per unit mass along the x,y and z
direction:. respectively.

. "

Reynolds esuation of motion for turbulen~ flow
dissociates instantaneous variables into mean and fluctuatinG
component s:
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o /
6== oxx + 6xx

6~= oxy + b~

6;z= DYz + bYZ

o
\l = U+U'

ow =w+w'

D~:Z,= ozz + 6~z

o ,
oZX= bzx +.6zx

~=p+p'
o .t=t+t'

where, U,V,vl, DXX, 6y-:', ozz, 6xy, bYZ, 6zx, P alld t ere the

I I I I 6' ,mean components and u', v', w', 6xx, 6yy, 6zz, D?-7, yz,oxx,

pi and t1 are the fluctuatin5 components. ~he tine ave~ages

are formed at a fixed point in space and are given, e.g.by

(A.4)

In this' ,connection it is understood that the mean
com;Jonents are taken over a sufficiently'long interval of
.1.. • , -f' th ~ b 1 ~ 1 . d d.1............'~lme, ~1' ~?r Lem ~O e comp_e~e y In epen en~ 01 vlme.
Thus by definition, the time-averaces of all quantities
are equal to zero:

7- ~ ---;:;-]-6' 6' -6' 6-c7 6' 6'i.e. u=v'=pJ = f = xx= 3~= zz= A7= yz= zx=O
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It is useful to li~t here several rules of op~rating
• time- ayerages as they will be required for reference.

If f and g are two dependent variables whose mean values
are to be formed and if s denotes anyone of the independent
variables x,y,z and t then the folloh'ing rules apply:

f=f

2 -2 ,2u =u +u
df dfds -= ds

(A.6)

Introducing eqaCition (.d. 3) in equation (A.1) and

considering steady state

d (u+u') + i- (v+v')+ ddZ(w+w')=Odx dy

Taking time-average

For two-dimensional case dw ..--d = 0, so the mean flowz .
continuity equation for two dimensions is

du dv-+-- =0dx dy

~.
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Again from (A.2a) we get

pDUDt o duo oduo 0 dUO~+u - +v - +w --dx . dy dz
. d 0

=fEx+ . dx6 xx

or, f
du d 0
dt = fBx+ dx (0=-

d,(O d f 0
+ - U xy+ - Ozxdy dz

2+--4 00 °uo) d/ 6XY- fu v )

d 0 00)
I dz (6zx-j''' w (A.10)

Now introducing equation(~.3) into(~.9) we get

f~t (u+u')= fBx+ ~x[c6xx+6~)-(u+u,)2J

+ ~y~XY+ 6~)-(u+u') (v+V' ~

+ ~z~6zx+ 6~x)-(u+u' ) (W+l'/')J (A.11)

Time averaGing e~riation(A.11)

f~~= fBX ~xC6XX-f(u2+u,2 } ~y [C;xy- f(uv+u'v' ~

+ ~z[6zx- P(uw+u'w' ~

or'f[~~+u ~~ +v ducry-+w (6xx-u,2 )

d d ( -+ dy (6xy-pu'v')+ dz 6xz- fu'w')

_______ (A.12)

•. '..J.



APpm;DIX - B

FINI'J'E DIFFERiliCE FORIWL".TluN

B.1 General

R standard explicit finite difference technique
requires very small strecum,ise steps to satisfy the stability
criterion. The finite difference problems domain is made
into a net of points as indicated in Fig.3.~~bylettering
H1 ~~d H2 be small increments of the Co-ordinates x end y.
Here the finite difference equations will be written in
a form that will be applicable for uneven grid spacinGs In
x and y directions. The dependent variables are expand~d
In Taylor series, The basic variables are made non-dimensional
by using the folloHing transformation:

X=XU./~ Y=JU",j..}u=u/u,v .v=v/u,v (B.1'~1)

Replacing shear stress, 0ffby ~y2 ( ~~ )2 , then the
final differential from of the continuity and momentum
equations are

~dx

UdU
dx +

B.2 Finite Difference EGua~ions

dU
dy

).( ~U2 ~
dy

(B.1.2)

Tc.ylor's expansion about grid in x-and y-directions
,X=(I-1 )H1
Y=(J-1)H2

(B.2a)
?- 1 .~

• .!'

(:8.2b)



U=U(I,J)

V=V(I,J)

By forward difference method

~~ =@(I,J+1 )-U(I,J~ /H2

~~ = [U(I+1, J )-U(I, J)] /H1

~; = [V(I,J+1)-V(I,J~ /H2

~~ = [V(I,J+1 )-(I,J)] /H1

d~ ~ 2-:2 = ~(I,J+2)-2U(I,J+1)+U(I,J~/2H2
dy

By backward difference method

dU ~Icr-- = [U(I,J)-U(I,J-1)J H2Y

~~ = riJCI,J)-U(I-1,J~ /H1

dV ;. [V(I,J)-V(I,J-1)J /H2
dy

dV = [V(I,J)-V(I-1 ,J)] /H1
dx

By central difference method

70

(B. 2c)

(B.2d)

(B.2.6)

(B.2.7)

(3.2.8)

(B.2.10)

(3.2.11 )

(B.2.1;3)

dV
dy =

(3.2.14)

~~ = [U(I+1,J)-U(I-1,J)]/2H1

d2~ = [U(I,J+1)-2U(I,J)+U(I,J-1~ /H2dy~ .

(B.2.15)

(3.2.16)
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B.3 Continuity Egua~ion

Usin~ equatiom'~.2.6) and (B.2.7) in equation(B.1.2 )
finite difference form of continuity equation is

B.4 I1omentuill.equation

Usin[5 equations(:3.2.1), (3.2.2), (B.2. 3), (3.2.L;),

(:3.2.5),(B.2.6),(:3.2.8) and (:3.2.9) in e.quation(B.1.3)
finite diffe,rence f[1rrn of IJ.omentum equstion is

U(I,J) [U(I+1,J )-U(I,J ~ /H1+V(I,J )Q1(I,J +1)-U(I ,J)] /H2

2 2
=21 [(J-1)H2 [(U(I,J+1)~U(I,J)) /H;J

+(J_1)2H~ L(U(I,J)-U(I,J-1) /H~ ~U(I,J+2)-

2U(I ,J+1 )+U(I,J)) /2H~D (3.4.1)



APP:';i'illIX - C

IiEl'HODOLOGY FOR DEJ'.EH.IlIllIHG PDi-lER IliDEX 'n' IN INITIAL

VELOCITY PROFILE

The initial velocity profile

for turbulent flow >e;~~'JS
X

u/u'" =(y/ 6 ) n

given by Prandtl

(0~1)

where, £ = J (x) is the thickness of the boundary layer. '

The empirical integral equation of momentumthickness is:
.cJs= Ju/u", (1-u/u", )dy (C.2)
o

where, e is called the momentumthickness of the wake./

The 'n' can be determined from theequation(C.2) for the

limiting value 0 to~i.e.

e ;S '- = I u ud T-,(1--)dy (0.3)
, 0 0 u"" u"'"

Putting the equation(G.1) in to (C. 3) the equntion(O. 3)

becomes

e
=

cf

,J ' '

1 -LI ' 71""6 ~Y/6) -(y/J.
o

(0.4)

after integrating

or,
6.

where, e lS

CI'able 4.1)

found from sxpe:C'imental results of Ref. [8J



APPEi1Drx - D

ANALYSIS OF DIFFE~NT SHEAR STRESS MODELS

Boussinesq [3Jwas first to work on turbulent flow
shear strel;1S.He introduced a mixing Co-efficient, A'f', for
the Reynolds stress in turbulent flow by putting

'1:. -.-t=fu'v' = Ar( du
dy (D.1)

where, A~is the turbulent mixing Co-efficient. The eddy
kinematic viscosity can be expressed as

(D.2)

So the turbulent shear stress becomes
rrt=ff du

,ydy

The Boussinesq model can not be used in practic~~othing
is lUlO\m abo\).tthe dependence of A", on velocity.

Habib and Whitelaw [7 J worked on turbulent
energy flow and gave the shear stress model

(D.4)

where, c~ is the viscosity constant, K is the kinetic energy
a.nd f. is the turbulent energy .diss~pation rate. 'Thismodel
is applicable only for fully developed turbulent flo\o1.
Numerical results were in close agreement with experimental
results.

Prandtl [4J deduced a kinetc energy model (h)
~ %. du. 1.(-= fCf Ie (dy ) (D.))



\\There,L =ltsy~, /\s is the proportion;Jl ity const ant and
IJ

YG lS the effective width of shear flow. ihis model is
used for turbulent wakes and jets, gives better performance.

In order to develop the preceding method(Initiated
by Bossinesq [3J;, it is necessary to find empirical relations
between the Co-efficients and the mean velocity. In 1925
Prandtl [4Jmade an import~lt advance in this direction.
He introduced the mixing length concept in the shear strees
eClu8tion

~ = -fu'v'
2-

fil~ I du I
dYl (D.G)

where, t= mixing length •

.:rhis lS Prandtl's mixing length hypCYthesis. This model has
been succes'sfully' applied to the study of turbulent motion
along walls (pipe, channel, boundary layer) and to the
problem of so called free turbulent flow. (The later term
refers to flow without solid walls, such as jets and wakes)

This model is used for both developing and developed turbulent
profiles. Numerical solution by finite difference method was
in close agreement with experimental results of Faruque [8J

Prandtl's [4] equation: for shear stress in t)lrbulent
'flow is still unsatisfactory in that the apparent kinematic

c duviscosity vI', vanishes at points where dy is eQual to
zero i.e. at point of maximum or minimum velocity. In order
to counter tnese difficulties Prandtl [9} defined a
considerably sim'Dler equation for the apparent (eddy)

, .
kinem3tic viscosity, given by
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where,jldenotes a dimensionless nUlliberto be determined
experimenta]y and b denotes the width of the mixing zone.
So the turbulent shearing stress lS glven by

rri =fXb( Umax-U min~ ~~ (D.7)

In Prandtl' s theory, the assumption is made that.

(D.8)
IJha:t'e,

as.
motion of a lump of 'fluid

2
r( = IJ, ft Idu I ( $L )

/~ W dy ely
, L= f2l

the ~ean velocity remains constant during the transverse
Taylor [10] gll.veAJtbe'equation o}Sh""" sh<..s~

Toylor [10] concluded that the diffusions of temperature
differences and vorticity in the mixing zone behind a
cylinderical rod occur in conformity with identical laws.

It would be very conveient to possess a rule which
allow to determine the dependence of mixing length on
space Co-ordinetes.

von Karm£r [5Jmade an attempt to establish a relation
between mixing length and mean velocity

By introducing an empirical dimensionless constant
von Karmar [5] gets the final form of the equation
(D.6) as

2rr;: =fX( du
dy

)./(41 dy

(D.10)



APPENDIX-E

COMPUTER PROGRAM

C PRANDTL'S ~IXING LENTH SHEAR STRESS ~ODEL* THE~UVER:~I~~ EQUATIQNS-CONTI~UrTY. AND MOMENTU~ FOR ~C TURBULANT FLOw ~********~:~:*********************~:*************************

C FINITE DIFFERENCE SOLUTION OF A WAKE FOR TURBULENT ~C FLOW DEHI~U A FLAT PLATE C************************~:********************************

- THicKNESS OF THE PLATE=D=I.905C~;E~PIRrCAL CONST=O.04 C- TRAILING EDGE FREE STREAM VEL.=UO;EC=O.04CO.04 C~.KINI~ATIC VISCOSITY=VK=1.33E-05 M2/SEC *
- MOMENTUM THICKNESS=THETA,RENOLD'S NO.BASE eN THETA=RETc- BOUNDARY LAYER THICKNESS=DELTA;AVERAGE VEL.=UAV _- SHEAR VELDCITY=UF _
- DIMENSION LESS COMPONENTS: ~'.''~EM, VELJCITY=U/U&i ".'
- AXIAL DISTA~CE = X= X/J , XT= X/THETA, XC= X/CDML; _
- VERTICAL DISTANCE=Y/THETA ; HALF WIDTH=Y3=Y/Y(1/Z) _******~************~:******~:**********~:~:******~:****************P*******~:**** f'AI~ PRO~~AM **~:******~:***********~:***
D I MEN J 1 0 f~ U ( 5, B5 ) "U 1 I B 0 ) , v {S.'J, g 5 } , x ( Z '=) 0 0 I ,Y { ~ r }• DEL ( :: :J.J c: )

+ , F ( 25 00) , F 1 ( 2500 ) , THE { Z50 a } , Y3 f 6 Q ) ~ U 2 { [;] } , X T ( 25 G:J ) ,
+YC(2500),C~(25JOI,SP'2500),SF(25QG),JS(250C),XC{Z~OOl;";1=0.013
H2=O.07
K= 1
L=1
D=1.905
VK=1.3Z1E-05
EC=0.16cccc~CCCCCTABLE FOR TRALING EDGE CQNDITIO~~cccccccc~cc~ccccc

C I{ET =2180 2013 1900 1700 ~
C DELTA=O.762 0.985 1.39 1.6 CM -C THETA=O.OD94 0.1107 0.1422 0.1651 C~ ~C UAV =18.10 13.49 9.9~ 7.65 M/SEC ~C UF =0.832 0.683 0.509 0.418 M/SEC ~C*****************~*****************************************

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

RET=2180DELTA=0.762THETA=O.0894UAV=lS.10UF=0.83Z
CCCDETERMINATION OF POW~R FACTPR=BT=THETA/DELTA '

A=«-3.0+I/T)+SQRT([3-I/TJC{3-1/T)-8.0)}/Z.O
il= 1/ A

CCCDETERMINATION OF TRAILIN~ EDGE VEL.DIST.
N=45
DO 11 J=I.2411 U(I.JI=[Jc~Z/DELTA)cCB



DO 12 J=l,:,
12 '';( J, 1) =0. J
C RET=21BO-2010-1900-1700C JJ= 10 14 19 22

DO 13 JJ=10,N13 Ul1,JJI=O.99WRITEI3,4) .
4 FOR:1ATl1X,3">1"~$'1/2X"SL.'tlX"I'i3X,'U"

+)X, 'I' ,2X, 'UT' ,ttX,' )' ,2X, 'U"'J' ,6X,' '.,2X, 'UP',+4x,'1 ',4X,'Y',3X,"',2X,'YT',4X,'I',2X,'TH'+/lX,3">( "~$' )/l
DO 14 I=l,l~C ~~AN VELOCITY=UT ~/SEC
UT=IJI 1,1 l';'UAVYT1=H2C(I-l)/TH~TA

C VERTlCAL HE1GHT=YT C'.1
Y T= o. H)+ 1';'.-12

C UNIVERSAL lOG VEL.lTRAIL1NG EOGE)UN=UFcY/KVUiJ=UF~'I';'H2/(100 .O';'V!()UP=UT/UF
14 WRITEI3,lS)I,Ull,I],UT,UN,UP,YTl,YT,THETA
15 FOR11Al{2X,IZ,lX,FS.4tlX,~2.4,lXtFlD.3,lX,+F8.4,lX,F3.4,lX,F3.3,lX,F3.31
C:~:~~[;ETER.j"IiJi~TIGi'J 0;: Vi::L.DIST.IN THE w,'KE::::;:::::=:::::16 l=lV(K,L)=Q.OC FINITE DI~FERENCE FJRM OF D~RIVITIVES
17 GUYF= I U ( K, l + 1) - U I K •.t ))/HZ

360N-FO-479 3-D ~~AINPGM D,HE TI ~"'E

OUY3=(UlK,LI-\JlK,L-lll/H2
DUYZ={UIK,L+1)-ZCU{K,Ll+UlK,L-1)l/H2
DY F= DUY F';'DUYFIFIL.GT.1lGO TO 18
JUYZF=(UIK,L+Zl-2CJIK,L+II+!JIK,L))/IZCHZ<'HZlY 1i=L':'H2
Y21=Yll':'Y11C FINITE DIF~ERENCE FORM OF MOMENTU~ EO.{GRlil-l)UIK+l,LI=lll2.0cECC(Y1iCDYF~Y21COUYFcDUY2F)l-V(K,L)+CDUYF1/U(K,lllCHl+UIK,LlDUXF=IUlK+1,Ll-UIK,Ll)/Hl

C FINITE DIFFERENCE FORM OF COMTINUITY =~.IGRID-1)VIK,L+1)=V(K,Ll-DUXF~HZ
:;0 TO 1918 Y1=(L-1PHZY2=Y1~'Y1

C FINITE DIFFERENCE FCJRH OF r.l0i1::'NTUI"1EO.I :;RIO.:;T.1 1U IK+1 ,LJ = I((2 •0':'EC':'(Y 1';'0YF + YZ':'DU Y3':'DUY21'I)-V IK, L )+cOUYF1/UIK,LlICH1+UIK,Ll
DUXB={UIK,L)-UlK-l,Ll)/HI
DUX1'=(UIK+l,LJ-U{K,LI)/HI

C FliHTE DIFFERE'JCE FQRi1 OF CO'HINUITY EQ.(GRTO.GT.1JVlK,L+1)=VIK,LI-DUXFcHZ19 KK=K+I
IFIU(KK,L)-O.9?lZO,Zl,Zl

20 l=L+ 1
GO TO 17

21 U( t(K,L )=c. ...99
C dQU~DARY LAYER THICKNES5=nEL



1700
0.032
0.04 C

170('
O.J3.S5
0.02

1700
0.0366
0.20

19000.032
0.040

1900
0.0366

1900
0.0365
0.02

2010
0.032
0.040

2010
0.D366
0.20

2010
0.0365
0.02

C

C

23

C
_(JEllK)=l':'Y2DETEKMINAJION OF M8ME~TU~ THI[K~ES5 AND SHAPE FACTOR
FIl)=O.O
Fllll=O.ODO 22 M=l,l _22 FIM+ll=FIM)+IUIK+1,;IIC(1-UIK+1,M»)CH2JF 1 I '~+l )= F 1 IM I+ (l-U IK + 1 , "1 ) ) ';''12
MOMENTU~ THICKNESS=THE
THEIKK)=FI Ll
OSIKKJ=FllLlSHAPE FACTOR=SF
SFIKKJ=OSIKKI/THEIKKI00 23 LL=l,'-:
UIKK,LLI=O.9-"DUXlF=IUtKK,Lll-UIK,llll/HlVIK,ll+11=V(K,lL)-OUXlFOH2
DO 24 J= 1,!~JIK,JI=U(K+l,JI24 VIK-1,J+ll=VIK,J+ll
X {K) =( 5. O-+K:::Hl)/0
IF{XlK).GT.2 ...659.AfJD.XIK).LT.2.67);O TO 70
IF{X(K).~T.4.0Z.A~J.X(K).LT.4.04)GO TO 70rF{X{K).GT.6~G~A~D.X{K).LT.6~0172)G0TJ 70
IFIX(KI.GT.lS.05J.A~D.X(KJ.lT.16.07IGO TO 70
IF(X{K).~T.Z3.92cA~J~1X(K).LT~24000};D TO 10IF{X{K}.GT.43.aQ~AND~X(K).LT_4~.05)~Q TO 70
J F (X (K) .'GT"", 64 .•0 • .A~,:D.X {K) .L T ",f.4 •.1 ) GO TO 70
jF(X{K}.GT.71.99.h~0.X{K).LT~72.17'GO TO 70
IF(X(K}.~T.72.17)~QTO 30
IFIXU:I.GT.2.b7.-A'vD.XtKI.LT.4.05JGO TO 25
GO TO 26

C RET=2180
C HI =0.032
C H2 =0.040
25 HI=0.033

H2=0.04
26 IF(X{K).GT.4.G58ANO.X(K)oLT.6~017)GO TJ 27

GO TO 28
C RET=21S0C Hl ::::~.0365
C HZ =0.02Z7 ;;1::::0.0365H2=.U2
28 IFlX(KJ.;T.6.017.ANJ.XIK).LT.16.06J;0 TO 29

GO TO 30
C RET=2UJO
C HI =0.0366
C HZ '=0.20
29 Hl=0.0366

360"l-FO-479 3-8 DATE 05/05/36 TI~~E

17')0
;; ...(~5
Jl> ;:'J

(;.05
n ,} ~
•...• .:...L.

2010
0.05
0 ..20

C
r
<-
C

r-i2=O.2
30 I F-(X { K) .• GT • 16 •.0 S • A;~~ •. X { K } .• L T ,,".24 •.Q } GfJ

(;OT..) 32
;:{i:l=213CJ
HI =0 ..•05
~,2 =0.28



l70n
0.10
0.12

1700
0.10
O.IZ

1700OelO
0.12

1900
GolDO.IZ

2010
0.1,]
O ""'•• L

C
2
C

31 Hl=0.05H2=0.2
3Z IFIXIKI.GT.24.00.AND.XIKI.LT.48.05IGO TO 33GO TU 34 .
C RET=Z130 ZOIO 1900
C Hl=O.lO 0.10 0.10C H2=0.12 0.12 0.12
33 Hl=.l

HZ=O.lZ
34 IFIXlK).~T.48.05.A~D.XIKI.LT.64.11~O TO 35GO TU 3S .
CRfT=2190 ZOIO 1900
C HZ =0.10 0.10 0.10C :HZ =Oo1Z O.lZ 0.12
35 Hl=.lHZ=0.12
36JFIXIKI.GT.64.1.AND.XlKI.LT.7Z.ZIGO TO 37

:;0 TU 3~
C RET=21g0
C HI =0.'10
C HZ =0.1237 i-11=.1

H2=O.lZ
38 l{=?,+l

GO TJ 16
70 1.1RITE{ 3,S}
5 FOR ,'.~AT ( 1 X l' .5 :3 ( 'II ::: S." ) / 3 X"!. S L •• , 4 X , ' 1 • 't Z X t • U' , 5 X ~ C I '

+,4 X, 'U 1 • ,2 X , • 1 ' , LX, l' U2 r f 3 X t • I • ,IX. f X' , 4 X, , I • ,2 X ,
+'Ytv4X,-'f~,2X,~THE~,3Xt'i',3X,'XT',3X,'I',2X,
+ .,Y3' , ZX , c 1 • ,J X, • XC' 'f ZX , • I ' .2 X f • ye-' , 2 X, ' I r ,Z X , ' C}J,'
+, 3X, t I • ,2 X" ' SP I /1 X, 58 ( .:::$ 'f ) / )

XT{K)::::{5.0+y..;:~tn J/THEtKKl
XCIKJ=15.0.K*Hll/14.0*THEIKK) I
UO 71 L=l,NLl=l+l
Kl=K-lCt1(K)=4.0*THEtKK}/bC DIMENSION LESS MEAN VEL.=Ul=(U~-UJ/{U£-UC)UI1LI=le.99-UIK,lIJ/18.99-U(K,I]1[ DIMENSION LESS, ~~LATIVE CENTER LI~EVEL.=U2={1-UC/UQ)UZ ILJ=I.Q-J( K.l 1/0.99 .
IF(lllILI.LE.O.OIGO TO 2
Y3ILI=SDRTIABSI(-I/ALOGIZ.OllcALOGIUlILIIIIC SPREAD PARA~ETER=SPIFIY3ILI.lE.0.OJGO TO 2
SPIKJ=-ALoGIUlllJJ/tY3Il1cC2.0J
DIMENSION lESS. HALF ~IDTH VElOCITY=YC=4YII/21/3CDMLYCILI=0.35*SQRTIXTIK]J
DIMENSION lESS VERTICAL DIST.~Y=Y/THEYlll=H2*ll-II/THEIKI ..
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