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The ﬁresent investimation was onr the mean flow
parameters of the wake, identifying the initial conditions
and a suitable turbulent sheqy stress model. The eguations
for mass and momentum conservation for turbulent flow were
solved numerically by using appropriate boundary conditions.
Fiﬁite difference scheme was used to solve the above
equatiéns. The calculations were performed for Reynolds
number, Re € e=2. 18%¥107, 2.01%10%, 1.9%10° and 1.7%10°

- for which the'flow may be-assumgdl to be turbilent. Mean
properties of the flow at tne trailing edge were expressed
by a empirical relation using the experimental valués cf
Faruque [ 8). Pranitl's mixing length was expressed as a
function of shear layer thickness and it was used in the

turbulent shear stress modal...

Within the wake near the trailing edge of the plate
the transverse velocity gradient was high. The veloclty
gradient decreases with increse of axial distance from
the trailing edge of the plate. The momentum thickness
increased with the increase of Reynolds number. The center-
line velocity increased with the increase of axial distance.
The s deviation-of.mean flow from self-preserving flow,

m

decreased gradually with the increase of axial distance. The
e ion became less and the velocity profile becanme
self-preserving earlier for high Re;molds number.



iv

Drag Co-efficient increased with the increase of Keynolds

number.

The calculated reéults hsave also beencompared with
the avallable experimental resul®s. lMost of them are in

close zgreemsnt with experimental resulis.
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CHAPIER - I

INTRODUCTION

"R-o- LA LT

\
o y,
* \—‘- ~— _ - J*
2 3rany, e

A wake is formed behind a solid body which is being

1.1 General

towed through a fluid at rest or behind a solid body which
_has been immersed in a stfeam of a fluid. The velocities in
a wake are lower than those in the'main stream. A continuous
exchange of momentum takeslplace in the wake from the high
velocity region to the low velocity region, The change of
velocity in a waké.for incompréssible flow is due to the

loss of momentum céused by thgf@rag»oh“tﬁe body.The magnitude
of difference of momentunm between the'wake and free-sfream 5
region determines the ievel of exchange of momentum. Typically
high level of momentum exchange together with the fliuid
properties makes the flow to be turbﬁlent. The wake generated
with such turbulent flow is said to be turbulent wake.

The spread of the turbulent wake increases and the difference
between the-momentum in the wake and that out side becomes
smaller with the axial distanée from'%he body. The
characteristic features of such wake flow are important for
nany practical applications. Such turﬁulent wakes are simple
in nature but contain many features of turbulent shear'flow.

The researchers are being more attracted to work in this area,



1.2 Formation and Degeneration of Wake

-When a fluid in motien separates from a surface and
shears with another fluid having lower velocity forms two
layers of different momentuﬁ. Such difference causes an-
exchange of momentum to form a shear layer. The geometry
of the shear 1eyer and the floﬁ characteristics of the
shear layer determine‘ehe loes of momentum an&lenergy due
to wake. The flow in the shear layer may be with or without
pressure gradient. The shear layer is said to be free shear
layer if it is not obstructed by boundaries. In case of
free shear layer the fluid in contact with the oﬁter boundary
of the wike f&gdﬁ back into the surroundings,after
separating from the surface. This folding engulfs the
suffoending fluid and forms a ring vortex core which rolls
downstream. After one er two revolutions, the vortices
interact strongly with|the other vortices and break down
into turbulent eddies,tﬁj]i if they originate from tﬁrbulent
boundary layers. The interactions of turbulent eddies cause
| large scale vortleal motlon ; small scale vortieal motions

also evolve through breakciown of the large ediles.

The general character of ﬁhe turbulent wake with shear
layer id depicted in pig. 1.1 with a dip in the velocity
profile. The width of the wake increases and the dip in the
velocity profile_gradu;ily ;evels off with distance from the

bodye.

* Number in the parentheses indicate references.
t



1.3 Self-Preservation of Wakes

A large scale vortical motion is formed in the
near region and a small scale vortical motion is evolved
through breakxlowﬁ of the large eddies in the far regioh
of .the wake. The;smail eddies contain less energy and the&,_,
are_invarianf to mean and turbulent stress in the field.
From the:physiéal view point, the flow is said'to be
self-preserving when the eddies are invariant. The eddies -
are invariant when it has the capability t§ readjust with
its surrounding eddies 1f it is subjected to any change
in any property. Fér self-preserving flow field, the
velocity scale, (uy - ué)and length scale, [, for two-

‘dimensional wake, may be expressed as follows [111 H

V - 4
(u- ug) = Ax71/2 3 &y = By X

where, Aq and B1 are constants.

"
LY

An analytical solution éf the governing egquations
may be obtained by using self-preserving laws. It is '
identifiéd .by Keffer [11] and xeffer [12] that the
mean guantities achieve self-preservation earlier in the
flow than the turﬁulent quantities. Experimental résults
of Keffer‘[12]shows that all measured turbulent and mean
quantltles u;thln wéke are fully self-preserving beyond

x/D=500.



1.4 Scope of Application

The flow near the trailing edge of an airfoil is
considerably interesting from the view point of its design
and application. The wake behind a flat plate is a limiting
case of an airfoil. Wakes behind any obstacle are common
in many engineering'applicationsreQﬁring'spgcial attention, .
The wakes in fluid machineries, motor vehicle, drilling
. technology, heat exchangeré, cooling towers, cooling devices,
control devices etc. are common featurés. A maneuvering
air craft or submarine which is accelerating or decelerating
leaves behind it a momentum defect in the form of jet ‘or
wake when it changes speed. A1l such wakes are turbﬁient
in character and those ngéd_to be studied for drag and other
parameters. Somé experiﬁental_as,well as theoretical works

are available in this ares.

1.5 Statement of the Problem

The flow development within the turbulent wake behind
a flat plate has been studied numerically by developing

computer program. The objectives of the present study are:

:

1. Identification of the initial condition of the wake.
The initial velocitj profile will be taken either

from empirical formula or from any integral solution.

]
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S

5.

Co-efficient etc.

Finite difference formulation of the continuity
and momentum equations. Development of.computer
program in order to solve those equations for
mean velocity, momentum thickness, dragf;

R

Identification of arsuitable shear stress model

for turbulent flow to fit the solution.

Compariscn of the results to be obtained by
calculation with the existing experimental

results.

Study of the variation of drag coefficient and

wake geometry for different Reynolds number.

Study of the self-preservation of the mean

velocity in the developing region.



CHAPTER - II

LITERATURE SURVEY

2.1 ' General

The increasing availability of faster and more
economical digital computers has stimulated the development

of effective differential calculation methods. These methods

-predict quite accurately the most important features of

many turbulent flows. The success in case of wall boundary
layers is most striking. For this case the Prandtl mixing-—
length has led to predictions which agree well with -

£

experimental data over -a wide range of conditions.

The prediction of properties in free shear flows
was most commonly done by integral methods. But now the
differential methods have become the center of interest
with most reseafCheré. A gstudy of the proceedings of #he
1968 Stanford Conférence on computation of turbulent
boundary layers, the proceedings of thé 1972 -Langlely
working égnférence on free turbulent shear flows and the
proceedings of the 1978 Impefial College second symposium
on turbulent shear flows wiil providedan indiﬁation of the

shift in the emphasis on differential method.

Turbulent flows can be expressed mathematically by
‘ _ :
the conservation of mass equation and the Navier-S5Stokes

eguations, Since the Navier - S3tokes eguations are

V2

non-linear, solution for each individual flow pattern has
. L

certain unique-characteristics that are associated with its
. i
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initial and boundary conditions. fhe equations have been
analysed by researchers fpr various flow pattern. But it

is still not possible to make quantitative prediction
concerning turbulent quantities without relﬁingj\greatly

on empirical data because‘in the time - averaged turbulent
equations, there are more unknown dependent variables than
the number of equations. in order to obtain the solution,

it is necessary to make appropriate assumptions concerning
the flow.‘These assumptions -are based on physical concepts
developed from expérimental data and experience. In this
way, many authors have developed empirical and semi-empiricsal
equations to obtain a set of closed equations. Progress

in this line of research (both theoretical and experimental)
- as related to turbulent wakes by various authors is presented
in this chapter with their findingsrénd conclusions. The
term wake is commonly applied té the region of non-zero
vorticlty on the down stream sidé of a body ilmmersed in

a flow. Iﬁ the turbulent wake the effects of the molecular
viscosity is negligible, and it is turbulent from the
trailing edge of the wake 1f if is generated by turbulent
boundary layer at the-beginniﬁg of the wake.

2.2 Experimental Investigafion

Chevray and Kovasznay [13] investigated
two-dimensional wake behind a thin flat plate mounted in
the low speed wind tunnel. lMeasurements were takeﬁ with
a single channel constant temperature hot-wire aneﬁometer

both for mean velocity and for turbulence. Rejmolds number

i
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i

- _ .
baged on boundary layer thlckness,é was gu = 1. 5710

for 211 investigations. Ihe boundary layer thickness and
momentun thickness at the exit were 5.5 cm zand 0.58 cn
respecti&ely. Using the experimental values of mean
velocities the authorscalculated the corresponding momentum
thickness and the width of the wake. The flow in the wake
was foundrapproﬁimately similar except close to the

+ trailing edge. It @géshown that the flow achieved approximate

self—preservéﬁ&ﬁat a distance X/6 = 300 and exact self-

o

- 3x
'preSQrvatlon gﬁ occur at a distance where the shape factor
H, tends to un¢ty. It is to be noted here that the trailing

edge turbulence level was not mentioned.

Hiroshi and Kuriki [14) experimentally stﬁdied the
mechanism of transition in the wake of three thin flat
plates of different dimensions. The plates were placed
parallel to a uniform'fldw at subsonic speeds. The maximumnm
thickness of the threeiplates were 0.3 mm and % mm
respectively.and the Reynolds number.based on length of
the plates fanged from 6x’104 to 4x105. For the measurement
of the mean veloc&ty distribution, both gine Pitot -~ tube
and hot-wire anemometer were:used. At théltrailing edge,param—

eters such as boundary layer thlckness, dlsplacement thickness
and shape factor were not caleéulateddby the authoxs [14]
They classified the transition rerion into three subregions
viz.linear, non-linear and three-dimensipnal. In the
two-dimengional (linesr and non-liinsar) ;egion the cenber-
line velocity was found to VEDY exnoneruﬂal¢J. in the

three-dinensional it wss approximately linear.

H
[l
8!
[
(@]
13

From the velocity tribusion curves t

fL
}J'
@2}

he authors showed



that until x=30 to 40 mm, the distribution varied slowly,
while & sharp increase of genter-line velocity was found
from x=40 to 60 mm. The cxperimental values of the mean

velocities were found to fit to the empirical equation

B g 8O exp (a(y/v)7) (2.2.1)
uo

where, a = 0.693%15.

The theoretical mean velocity distribution for a fully
developed laminar wake of the sbove form and the experimental
data were in good agresment with each other. However? they
did not mention veriation of the mémentum thickness and the
width -of the wake in the axial direction. as the exit
condition is laminar the development of the wake 1s not

similar to that obtained by Chevray and Kovasznay [ﬂﬁ] .

Gartshore [17] investigated the two-dimensional wzke
of a square (0.635 cm)&rod at adverse pressure gradients
énd at the pressure grédient fof exact self-preservation.
The velocity ratio (g;ﬁg/qw f'was ﬁaintained approximately
constant after x/d,= 50 , the flow through wake having
Reynolds numbers 6300 and 7560 based on the conditions

at the tralling edge.

Keffer [1%] investigated the wake produced by the
two-dimengional cylinder of diameters 1.27 cm, 0.793 cm
and 0.476 cm with straining the flow. The tunnel speed
was held constant at 5.48m/sec so that the corresponding

Reynolds number based on cylinder diameters were 4630, 2890

=

and 1740 for cylinder diameters 1.27 cum, 0.793 cm and 0.276 ¢

w

respectively. The mean aquantities were measured with a Pit ot

. " [ ..

i3
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static tube. Keffer [11] found that the wake width
increasedexponentially with distance dow.nstream. The
mean velocity distribution of the wake profile: -was in

no way self-preserving.

Schlichting's [ﬁi] work, which 1s mentiohéd in this
section is devoted to an experlmenbal investigation of the
~ flow in the wake of a two dlmen31onal body.l,Theﬁexperlments
were conducted within a wind tunnel at a speed of about
50m/sec,'Reynolds number based on the diameter was Red=
wd,/ ¥ = 5.38x10%, He found that the half-width of the
walke varied.parabolicéléy/fand the center-line velocity
defect varied exponentialiy;Experimental values of mean

velocities were found to fit to the empirical equation
Bl . (1-077% )% - (2.2.2)
c S .

Where, 7 = v/b, b is the width of the wake and ¥y is the
vertical distance from the wake centerline. Schlichting's.
experimental results did not indicate the initial boundary
layer parzmeters. These fesuiés agree satisfacﬁorily with
wake generated With a very uhln boundary 1aver'gﬁ the
‘plate  _. but it may deviete from the results WIuh thick
boundary layer .over the plate.-'

]

Hall and Hislop [16] investigated the velocity and

i

temperature distributions in the turbulent wake behind &

heated body of revolu wion. They found that the experimental

e

values of the mean velocities fitted satisfactorily with



the empiricual ecuation given by Sehlichting [ﬂS]in equation
(2.2.2). Swain [ﬁS] also obtained in a similar manner such
an expression for the veiocity profile in an axially
symmetrical wake., The dimensionless profile ol the velocity
defect was obtained exéeriméntally byﬁRéichardt [ﬂg}in‘the
wake behind a heated wire at a distance of x:ﬂOO.ro(ro is
" the radius of the wire) from it. Similar experimentvs were
élso done by Fage and Falkner [22] in the wake'behind a
heated prismatic rod at a distance of X="72 T, ffom iv.
The attempt of Goldstein [20] and other students of Taylor

to apply the vorticity transfer theory for détermining the

<

elocity profile in an axially symmetric wake did not lead

’

to results which agree with experimental data. ,

Ferugue [8] investigated two-dimensional turbulent
wakes fbrméd behind thin flat plates mounted in a straight
subsonic wind tﬁnnel of suction type. The wind tunnel was
criginally désigned and constructed by'Islam [25)and
installed by Khelil [241 . Two flat plates of different

]

-7 thicknesses ., 1.905 cm and 1.27 cm were used for generating the

s

iﬁakés ﬁﬁét four different exit Reynolds numbers, i.e

ReBe = 2.18x10°, 2.01x107, 1.9x10° and 1.7x10°. The
‘boundary layers were turbulent at the trailing edge of

the platé, and the wakes forﬁ?d with these boundary layers
were assumed to be turbulent from the exit. The initial
boundary layer.was ideniified to be turbulent or the hasis
of the experimental values of velocities, which fith&ko

le of turbulent doundary layer:

the universal velocity profi

u = Blog Y + A ' (2.2.3%)
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The velocity distribution in the neighbourhood of the
flatxpletefﬁgéunstable due to the presence of high.wvelocity
gradient in the axial direction and.instability &ecreaééafé"~’y
-. to make the flow self-préserving. Thé flow was not founa,- .
to be self-preserving within the axigl distance covered

in the present investigation i.e.‘x/D = 56. The éxial
variation of half-width of the wake was approximately linear
- except close to the trailing edge, whichgmas’h~agreemenf'

with the experimental résults obtaiﬁed by many 1lnvestigators.
The flow within the wake did not show complete self-preserving
‘within the axial distance covered in the iﬁvestigation.,But
fér higher Reynolds numbers it tended to become self-preserving
earlier for the same plate thickneésﬁ_in'thekw%ke.; Drag -
co-efficient due to thé wakewas calculated from the momentun
thickness equation (3.2.15) obtéined'by neglecting pressure
.—sgradient. Drag conefficienﬁﬁﬁjiﬁocélculated by applying
-equation (3.2.18) near the trailiﬁg edge of the plate,
,j considering the effect of pressurefgradienthhe Tesults.obtained
by the above two equatibnswere'in gooC agreement at each

poiﬁt with the experimental résﬁits obtained by Faruque [8].
1The_shape factor of the wakefdecreased with‘thg increase

of Reynolds number and with the axial distance from the
trailing edge-and’.id aiso decreased ‘with decféaseiﬁff@late

thickness.

1}

Toyoda and Shirshama [25] investigated experimentally
the turbulent wakes subjected to presure gradients.-The
experiments were ¢onducted in an_open circuit wind tunnel'for

measuring mean velocity and turbulence characteristics,. '



1%

L

f*—:ﬂTye._ air;:,delivered by an axial blower enter., the
test section through a nozzle via a settling chémber. The
turbulence intensity ( VGEZu& ) at the exit of the nozzle

was 0.003, A steel flét plate of 1.0 mm thickness and 1200 mm
léngth was used as a wake gengrator. Mean velocities in

' boundary layers and wakes were determined from the measurements of

: |

toldand static pressures. Turbulence intensities were
measured with a constant temperature hot-wire anemometer.

_, The results of the experimentg@@% summarived a&s follows:

1) The total pressure along a streamline in:the wakeé near
?heitrgiling gﬁgé,withfp;éssure'gra&ien% chaﬁged'at
ﬁppr@@imately'the:samg‘raté as. with' no pressure

gradignt'alpng‘the(samé_streamiinejf_

2) The velocity defect distributions normalized with
local scales and approach to the self-preserving

solution downstream were not Wich: affected by the

A

pressure gradients. .is -
%) The calculated results obtained by Toyoda and ;

Hirayama [40]agreed-well with the experimental

data except for the strong pressure gradient. : i

2.3 Theoretical study

7 \ r e .
To find the Torm of the velocity prefile in a
two-dimensionsl wakes, Schlichting [ﬂilused mComenta

equation of the form given by
. i

)¥= 0 (2.%.1)

il
d 2 f 2, du
uv+—d§/ud:y"+,ﬂ(dy
—ot
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in which the experession for turbulent shear stress ! | Wes

taken from Prandtl's old theowy of turbulence Q:%:=1?[§E

v
Ji#

and pressure gradlent»ms neglected. The Prandtl's mixing

length,,ﬂ was defined in terms of the width of flow,

J=cb R - 2.3.2)

The author defined the velocity profile in a conventional

functional fofm(g;u):(u - ué) f (’? ), where M = y/b. To

determine the velocity profile, Schlichting [15] used,
b=E, VX - (2.3.3a)

<and,(u—ua= q*n/xff , (2.%.3b)

/s

Using the expr9551on forﬁ uﬁ.u in the momentum
equation (2.3.1),an ordinary dlfferentlal _equation was

derived in the following form

ME=yf © AN (2.3.42)
where,fq = 2c2n/‘h:2 | (2.3.4b)

Equation (2.%.4a) is subjected to the following boundary

conditions:

1. At the edge of the wake (M= =y/b =1)

u-u= O and—a§ (u u) 0 i.e.  f= f =0 (2.%.5)

2. On the axis of the wake ( 7 =y/b=0.»)

u-u=u

. i i t
- Zuc,%-&- (u_;u)=0,l.e. £=1, £ =0 (2.%.6)

The solution of the equation(2.3.4a) with boundery

conditions given in ecuations (2.3.5) and (2.3.6) is,

(ypu)/(ugpud=£( 1 )=(1-7/% ) (2.3.7)

du
ay /



15

=€?The constant, gi;involved in the Prandtl's mixing length
expression was determined to be 0.18, (£/b=0.18). The values
of the constants kgland'n'in the equations (2.3.3%a) and
(2.3.3b) can be determined by using Schlichting's [15]
equations in the form, n=1.4 a,L ;ﬁa k2=0.8\f§éL where,
as is ap-. empirical constant. For wake behind a two-dimensional
cylinder, Bchlichting [ﬁE] obtained experimentally the value

of a2 as 1.23.

To find the form of the velocity profile in an
axisymmettic wake Taylor [ﬂd] used momentum equation of

' the form: o
o ’

1 d ‘ 2 du -
'. ..5‘3‘;&(“;“3‘&3@”"1 (&

= 0 (2.3.8)

- Here the expression for shear.strés;?%aken in accordance
with Prandti's old theéfy. The Pfandtl's mixing length,
ﬂ~:was defined in terms of the width ol the wake,jﬂ=cb.
The autheyr used the conventional functionai formiﬁEQO$*“E

velocity profile given by

LA ' ' ‘
-2 )
and u-u_ =n,ux 2/3
“ ¢ 1%
After transformation he obtained for an : :°  axisymmetric
wake, the ssme differential eguation as for a two-dimensional
wake?

2

M= déffa (2.%.10)

where, o, = 511,10 . ' (2.3.11)
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With the same boundary conditions given in equationk2.3.5)
and‘(2.5.6)r’equation(2.5.10) may be integrated to give

the same velocity profile as in a two-dimensional wake:

$

Quru)/Cupu )=£( M )=(A-3/2)? (2.3.12)
o (¢4

Reichardt [ﬁé]used momentum integral equation to
find the form of the velocity'profiie in a two-dimensional
wake. The author used Prandtl's new formula for shear

stress given by:

If Prandtl's new formula for shear is used, the momentum
equation for a two-dimensional wake takes the following

form under constent pressure gradient:

4 ,
d du
2 _E§F£E£qgu)dy".J; iy = O (2.3.13)

The velocity profile in the cross-section of a two-dimensional
turbulent wake accofding to Prandtl's new théory of turbulance

and Reichardt's theory [19]is :
: 2 roe 2§ |
(uzu)/(uzu, )= exp(y /?-GiX) (2.%.14)

The 'constant €4 for a two-dimensional wake was determined
from the experimental results of Schlichting [15] and

Reichardt [19]'

Reichardt [19]&150 obtained the following form of

: o
the velocity profile in sn axially syometric waxke far from

t

-




the body:

(u u)/(u u ) exp(y / 251 ;yg)

(2.3.15)
Hiroshi and Kuriki [14]also obtained the following
form of the velocity profile for two-dimensional wakes
behind flat plates )
- 2 Y
(uzu)/(ugu, Y=exp(-a(y/y1)) - (2.3.16)

where, a =ln2

Some solutions were obtained by using a computer
progra@,éeveloped'by Sinha, Foy .and Winberger [26 27] for
chemlcally non-reactive, ouu51—paralle1 shear flows. Tﬁe

boundary layer equations with suitable boundary condtions

were assumed to describe the motion of free shear flows.

The governing equationsuere as follows:

Conservetion of mass:

%X( fuyg) + %—3; (Fvya ) = 0_ ' (2.3%.17)

Conservation of streamyige | momentum:

@ T m e ke o) (2.3.19)

where, Jj=0 and 1 for two-dimensionﬁl and axisymmetric flow,
; I : . o e
respectively. The associated boundary conditiont; was

du
dy

= 0
at the center line when y=0, for &1l wvalues of x.
The result was compubted by using an implicit finite difference
N L
4 3 2 A= - Lo . S HLYE B . o - f]
=mrechnloue the details of which are described in refs.|2

and [2?]. The results obtained were in close agreement with

the avellable experimental daba.
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2.4 Kecent approach

The shear layers are recently investigated from the
view point of its structure and eddy sizes. Such flow is
identified to be irregular type with its structure in fhe
coherent form. 4 coherent structure is a connected, large
scaie turbulent fluid mass with a phaée-correiated vorticity
over its spatial extent [283 . The presencé of large-scale
organized motions in the turbulent shear flows,
apparent for a long time and impliéd by the mixing length
hypothesis was suggested firét by Townsend [2§]and investigated
in detall by Meller and others’[Bo;Bﬂj . Hear field coherent
structure in wake was observéd by flow visualization oy ’
the authors [32, 55] . 4 coherent structure is responsible
for transports of significantlmass, héaﬁ and momentun
without necessariiwabéing_highly energetic itsél}.
Sophiysticated experimeﬁtatién nés been developed to

investigate the coherent structure.
Differential methods of calculation is also an

useful tool for predicting the turbﬁlent flows in shear
layers. The Turbulent model of semi-empirical equations
developed by Launder, et.al [34] and others [55,55] are

very powerful method for predicting flow.



CHaPY LR - III
THEORY

ot et

5.1 General

Turbulent motion is governed by the continuity and
the Navier-Stokes differential equations. Since the Navier-
Stokes equations are non linear, exact analytical solutions
to these eguations have not yet been obtained. In order to
_apply Navier-Stokes 3quafions to practical cases, hypothesis
~and empirical assumptions have to be introduced for obtaining
a2 set of closed equations with time-averaged dependent
variables. Here the conventional ‘order of maggitude’principle
is ap?lied to the general/ﬂbmentum equation to obtalin the
equation in a éimpler form. Later these equations are used

for evaluating the wake properties.

Theoretical work on free ghear flows can be developed
in any of the following three clésses of turbulent model:
Ciass-1=— turbulent viscosity models in which the length~scale
of turbulence is found by way of algebraic formulae, Classs-2-
turbulent viscosity models in which the length scale of
turbulence is found from a partial differential transport
equavions, and Class—B—modelé in which the shear stress
itself is the dependent variable of a partial differential

conservation equation.

‘ The Clags-2 models have attracted the attention of

+the most of the researchers in this field. The models of

bR

Class-3 have not yet been refined sufficiently to achieve
L he level of universality of which they are belived IO

" be capable. Therefore, enginesriny calculations of
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turbulent flows have been confined to models of Class~1

and Class-=2.

2.2, Governing LEquations

Assuming steady, incompressible flow, constant

- fluid properties, boundary layer approximations and
applying the ‘order of magni%ude’principle, the mass and
momentum conservation equations in two-dimensional flow

can be written in the following form:

o

d dv
du du 1 47 '
ugEt v e =3F-7i; | (3.2.2)

where,"risrthe shear 'stress and £is the density of the
fluid..The flow configuration -and co-ordinate system are
shown in fig. 32.1. Thelshear stress 1includes both viscous
and turbulent cont:ibuﬁions end it is written as

;

T -du —— '

f: gj-’ »-‘u v ) (5.2.5)
where,)[is the molecular diffusivity. The turbulent part
of shear stress is —F u'v’ and it is expressed by

Boussinesq's hypothesis:

_?'*a-";- =F7€r_§_u -' | (3.2.4)
7

where'ﬁ s the fturbulent diffusivity. For the turbulent
y T

wake, the diffusivity,}(

+ 1s expressed in terms of Prandtl's

. : . . du
oixing 1ength,,@ and mean velccity gradient, v

ice. o - f7U ., (3.2.5)
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where,dﬂ is Prandtl's mixing length. According to Pyandtl's
velocity distribution principle the relation between mixing

length and vertical distance, y is

Lafy; ¥= 0.4 . (3.2.8)
Where,75= dimensionless eﬁpimical constant. Which must
be obtaihed from experiments. Hence, according to Prandtl's
,aséumption, ¥ neglecting molecular diffusivity term the

tqrbulent shear stress beconmes.
2 2 ,du 42 '
Te=)py” (g5 ) (3.2.7)

5o the final differential form of momentwur egquation for

turbulerit wake 1is

ol 2 2 2 d
e -2 (g )+ u)(_)]

(5.2.8)

where, all variables are dimensionless quantities.

By using the von Edrmén shear stress ecuatlon(D 10)
(which is discussed in Appendix—D), the momentum equation

1
can be expressed as

du du

“F‘*"a'fz)‘g[uw ? du) 2 (g2
' dy
L (Lddu ) ( ¢%u) (3.2.10)
ay’ J/ ay®

bgailn applying the order of msgnitude principle and

using equstion' (3.2.1), the momentum eaquztion may be written

1



as [ 37]
g_ ﬁ(u—g£)¥ %

o y vumug) + § TV = 0 (3.2.9)

dy

The pressure gradient and the effect of molecular viscosity
are neglected in the above equation. In wake, u-ug vanishes
at sufficiently large values of y, and it does so for u'v'.
Integrating equation (3.2.9) with respect to y over the

entire flow, we obtain

d Ju(u—ud,) dy = O ' _ (%3.2.10)
dx <

The total momentum defect in 2 wake 1is constant,

S0y }’u(a-uo& )dy =] ' . (%2.2.11)
2o L,

The momentum integral'equation (3.2.11) can be used to
define a length scale for turbulent wakes. Imagining that
the flow past an obstacle produces a completely separated,
stagnant region of width 28, quie represents the net

momentum defect per unit time and depth.

Thus, -2Pus, €=l | - (3.2.12)
Equating equation (3 2. 11) and (3 2. 12),

' —afu&e -_ffﬁ(u—ga dy

or, e }[u (1-u/uﬁ )dy : - (5.2.%5)
u s : )

»

where, € 1s called the momentum thickness of the wake.

The momentum thickness is related to the drag co-efficient
1

of the obstacle that produces the wake. lhe drag co-efficient

Cdm, is defined by,
D= b Sdm p L (3.2.14)

uhere D, is:the dra
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characteristic height of the obstacle. The drag, I,,
produced the momentum flux,M. .So, equating equations

(3.2.12) and (3.2.14.),

S 2.

2pu e =% Cdn u/L
or Cdm= 48/4 (3.2.15)
The momentum integral equation for drag on the
obstacle having pressure gradient is given by

o« o~
2 2
D= L[&PO +f>u_o_) dy -J;(’p + fu )d;J (%3.2.16)

But according to the definition of drag coefficient

2 - |
D, HhCd u L : (%.2.17)

Equating equations (3.2.16) and (3.2.17), we huve,
s 52 < 2 A 2
'}iudfuoImL (p+uof)dy.,.- (p+JDu )iy
15 24

o2 (Y s (Y22
or, Gd:i;ﬂyu (p=pldy+2 | (1=u”/ul)dy (3.2.18)
7./ © 0 0
/ 24 & .

The displacement thickness,o is that distance by.which
external potential field of fiow is displaced outwards

as a consequence of ‘the decréase in velocity in the
boundary layer. The decrease in volume flow due to the

influence of friction is

o«
jkg;u)dy
Y=0
y=0
30 tvhat
* e
uootg= /(u;u)dy
Y=o
or, &= JRSEA (3.2.19)

y=o
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2.3 Initisl Condition

The 1nitial velocity distribution for wake is given

by the semi - empirical equation
o
uw/ug = (3/8) - (3.3.1)

where,é is the initial boundary layer thickness, which is
found from experimental results and 'n' is theipower index
which is found from limiting case of the equatién (3.2.13).

Calculation of'n’is shown in the Appendix-C.

3.4,  Boundary Conditions .
Basic differential equations{3.2.1) and (3.2.9) and
other empirical equations governing the mean flow were

solved numerically. The appropriate boundary conditions

applicable to equations (3.2.1) and (3.2.9) are:

-8 (5,120, v(x,1) =0 u(x,8)=u, (3.4.1)
2.5 Self-Preservation Eauation

The mean velocity disﬁ:ibution for selffpreserv;ng
wake is given by the following semi-empirical eguation \
 (agu)/(uga)menp (—a(3/y9)%) (3.5.1)
ghere, a=Ln2 '
A seml-empiriceal relation:for‘half width of <The wake follows

from the measurements of Schlichting and Reichardt [19]

¥1e=0,35 Jx ~JCaml (3.5.2)
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3.6 Solution of the Equations

JR 1)
e L.

e
-

An explicit finite difference scheme was used” to

solve the conservation and other equations.

%07 Calculation Technigue

The method of approximating the derivatives is

. a _
gfven in Appendix-3. The finite difference grid used for
the calculation is shown in Fig.3.1. The computer program
developed for this purpose has the capability of handling
non-uniform grid spacings in both x- and y- directions.
Fd;‘éalculating mean flow properties frdm continuity and
momentum equations, non-uniform grid spacings were used m
)(j—directioﬁ which were restfictéd by the stability
conditions. At starting, first level information is
obtained from initial conditions and second level informa-
tion is obtained-frdﬁ the finite difference solutions.

This scheme requires only the previous step values.

The other flow characteristics were calculated by
usihg the different empirical relations and mean flow

! ' .
properties found from continuity and momentum equatlons.



CHAPTER - IV

RESULTS AND DISCUSSION

4.1 General

Empiricél formulae and experimental values of flow
paraméters_at the trailing édge were used for calculating
the flow proﬁerties in the wake at the downstream of the
trailing edge. The differential mass and momentumﬂequafions
were solved by using boundary conditions given in Art.3.4.
The investigation was carried out for four Reynolds numbers,
ReGe=2.18x10, 2.01x10°, 2.01%10%, 1.9x10° and 1.7x10°.

For all the four cases, the same computer program was

used with dffferent values of‘the parameters involved.

The computer program 1s givenrin Appendix-E. ‘The computa-
tional analysté were performed by using the IBM-4331 computer
of the BULT ComputerVCenter,

This chapter presents discussions on the results
obtained by the present study and comparisoné.of these
results with the experimental méasurements of Taruque [8}

and other predicted results.

4.2 Trailing Edge Conditions

From the trailing edge the wake,origlnates and
spreads downstream. The character of the wake depends upon
the trailing edge condition$ Near the trailing edge the

-7 2

. . . . [ - A ,
velocity increases in the transverse direction and follows

'



the boundary layer velocity-profile. a8 the boundary

layer is thin, the velocity gradient in the transverse

direction is high. Fig.4.1 shows velocity distributions

for the Reynolds numbers 2.18x10, 2.07x102, 1.9x10° and

1.7X105 the experimental data being taken from Farugue [8] .

The Heynolds number was defined on the basis of momentum

thickness and fﬁee—stream'average velocity. The experimental

values of the mé&n veloﬁities shown in Fig. 4.1 were fitted
s to the empirical equation (3.3%.1). It Tg’observed from
wlig.4.1 that the empirical equation (3.3.1) figgaclosely

with existing experimental results. The rms deviation did

not exceed 0.11257 for any case. The experimental values‘

of the mean velocity at the trailing edge were also plotted

in the universal coordinate system in Fig.4.2. The nature

of the'curvés in jEﬁg{EAWE-implies that the flow over the

trailing edge was fullj develped turbulent flow. Islam fﬂ]

.has identified thagitheiinitial conditions have a significant

influence on the development qf shear.: layer of jets. As

the development of Qake 1S siﬁilar to that of jet fqus,

it is likely that the initial conditions will influence

the wake flows. The characteristacs of the turbulent

boundary layer at the trailiﬁgﬂedge of The plate.for

different flow parameters are shown in Table-4.7
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TAasLs =4.1

CHARACTERIDTICS OF [HE VELCCITY PROFILE
T THE TRAILIKG EDGE OF THE PLATE (Ref.8)

Average free- lMomentum Reynolds | Boundary Friction
stream velocity| thickness| Number Layer velocity
thickness

Uév(m/sec) 1 © (em) ReBe S (cm) u* (m/sec)

18.10 0.0894 2.18x10° | 0.762 0.832

1% .49 1 0.1107 2.01:10° | 0.985 0.68%
"9.99 0.1422 1.9%10° | 1.39 0.509
7.65 0.165 1.7x10° | 1.6 0.418

4,%  Shear Btress model

Different shear stress médels given by Bquations(D.4),
(D.6) and (P.10) were applied to the equations governing the
fiow to express the turbulent shear stress. It is seen that
the Boussinesq &q{D.4) model is suitable for only fully
developed turbulent flow at the.trailing edge. The von Edrmén
'Eq,@.ﬂO) model is suitable where mixzing length is dependent
on space Co-ordinates but it does not seem suitable for present
turbulent wake for both developing and developed residns. With
the Prandtl's model, ;Eq,@.E) the results obtained by Iinite

difference method were in close asreecent with the experimentzal

ki

ts oI Faruque [8].

(==

e5u



4.4 Free—5tream Flow.

The free-stream velocity, w represents the uniform
flat part of the velocity profile outside the shear or
boundary layer and it is parallel to the x-axig. The free-
stream velocity in the wake drops instant@neously when the
boundary layer separates from the plate. Such drop is
observed up to the axial distance x/€=55,(Fig.4.3%), after
which it achieves a constant value. From the considerstion
-of potential flow theory, there exists adverse axial pressure
gradient at the beginning of the wake snd it achieves
ZeT0 axiai pressure gradient after x/€=55. The drop of the
uniform free-strean veloéity is due to the increase of flow
area as the profile separates Irem the plate. Thz finite
difference results are gimilor to those given in Fig.4.3.
The calculated results of free-sirean velocity for
different Reynolds number are in clese agreement with the
existing experimental results shown'in Fig.4.3. The rms
value for deviailion of the theoretical and experimental

results are found within the range of 0.0 to-0.03394.

4,5, Wake Development

4.5.1 Velocity and Shape Factor

Fig.4.4a, 4.4b, 4.4c and 4.4d show the varistions
of mean velocity distribution in wske for Re ee=2.18x105,

2.Oﬁx105, 1.9X405 and 4.7x409 respecvively. Because of

high velocity gradient, the wake near the plate is likely
..o be complicsted, The vortex form from the surface of

the »late is belng convected into “he flow direction &nd
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diffuseﬁ by viscosity. It follows that convection is
ultimately more important that the streamwise diffusion ..
and that streamwise velocity gradient is small compared
with that in the lateral direction at the downstream.

As the velocity gradient gradually decreascs with the

axial distance, the flow tends to become self;preserving
with the increase of axial ﬁistance. Figs, 4.b4a, 4.4b, 4 4c
and 4.4d show the development of the wake with increasing
width. Such a spread of the waké is logical'from the view
point of energy transfer to the wake from the surroundings.
The—velocit& distribution curves near the plate shows ‘
better agreemént with--the eiisting experimental results
than that at the far distance from the plate. The

.rﬁg“.deviatioh is wifhin the range from 0.0012 to 0.0321.

The momentum thickness within the wake was
calculated by usihg eqﬁétion(5:2.15) at different axial
distances in the downs£ream of the wake. The values of
momentum thickness for diffrent Re 6e are shown in Fig.4.5.
The wake momentum thickness inc:égées with inc:ease of
Re Le. o
The shape factor, H=é /8 , is plotted in Fig.4.6
as a function of axial distanée;aﬁd compared with the
.results of Faruque[S]. The slope of the curve Ior any

]

Revnblds number decreases zt a higher ra

ot

& in the rezion

close to the trailing edge and at a slower rate with the



increase of axlal distanée. Ihis trend of the shape factor
curves in Fi@:4.6 shows an indication of self-preservation
of flow. The flow will be absolutely self-preserving when

the shape factor tends to be unity. The shape factor varies
with Reynolds number, Re ©e, as shown in Fig.4.6., The results
presented in Fig.4.6 are in satisfactory agreement with

the experimental results of Faruque [8] « The prmg deviation
of the present results with the experimental results is

found within the range from 0.002 to 0.066. .

4,5.2 Half Width and Center-line Velocity

Thé half width is'an/importantxgeometrical dimension
for length scale, generaliy used for expiaining the
seif-preserving characteristics of a flow. Dimensionless
half width ( %»yﬁ /CanL) of the wakeis'.. plotted against

s
axial distance 1in Fig.4.7. Half width: of the wake which
lq:iﬁcalculated from the semi-empirical equétion(5.5.2)
given by Schlichting [15] for two-dimensional wakes are
plotted in Fig.4.7. It is seen that the axial wvariation
of the present calculated half width of the wake near the
trailing edge of the plate dgviates.from!that of existing
experimental results, but it;agrees with empirical results
from the trailing edge. Fig.4.?7 also presents the fact
that with the-deqrease 0of the initial boundary layer

thickness for higher Reynolds number, the existing

o

! -
experimental results approszch towsrds present theorétical

94

tg., It is z2lisoc to be noted thzt the effect of the

1._1

resu

[0)]

!
initial conditions exists only upto s certain axial



distsance and then the flow becomes independent of ihe state
of origin. Similer case is also exnlained by Iélam [1] and
Hussain and Zedon [58]fdr jets. This 1is also probably due
to the nature of energyltransfer irom large scale to

small scale eddies which depends on vortex pairing.

The spread parameter for the wake is shown in Fig.4.8
which achieves approximétely a constent value of 6=0.675
at x/D=125 for the Reynolds numbers studied. Hear the
tralling edge of the plate the spread parameter decreaéés
rapidly upnto x/D=125. The present results are in close

agreement with existing experimental results of Faruque [8],

Dimensionless center—liné velocity defect 1is plotted
in Fig.&.9 agalnst the dimensionless axial distance, x/Cdcl.
For the four diffefent Keynolds numbers, the calculated
values of center-line velocity defect falls on the same
line except for Re 8e=2.18x105. Velocity defect decreazes
sharply at the trailing edge due to high velocity gradient,
but decreases slowly at axial .distance far away~ from the
plzte. The plot in Fig.4.9 also .shows a comparison with
the experimental results of Faruque [8] and Schliéhting [15]
Near the trailing edge velocity defect is same as that of
Farugue's [8] experimental results. But after X/CdmL:> 40,
the present velocity defect.is less than that of Faruque's[S]
~experimental results, thougzh it comes closer to the

Schlichting's [15] values.

4.5.% Belf-Preservation

L]
the wakes

]
O.
H

Dimensionless velocity distribution

s 1



are shown in Fig.4.,10a, 4.%0b, 4.10c and 4.104 corresponding
to the Reynolds numbers Re e, 2.18x103, 2.01x105, 1.}9}(105
and 1.7x105 to examine their self«preservation. The healf
width,'y% is used 'as lenéth scale in the self—presévation

- plot. The velocity distribution in Fig.4.10a, 4.10b, 4.10c
énd 4,104 do not show self-preservation, because they

become similar only at large distances downstream from the
tr?iling edge. No similarity of mean velocity profile is
ﬁbserved near the trailing'edge-of the plate. The experimental
results of Faruque [8] for similarity profile are also

-shown in Fig.4.10a, 4.46b,_4.10c,and 4,104, for comparison.

It is seen that after certain axisl disténce, %/D=16, the
present results fall ; on the same line. Deviation of the
existing experimental results of Faruque [8] from the

present computational'results may be expressed?;ms deviation.
This rms.deviation waskfound to decrease gradually with

the axial distance as shown in Table 4'2f The least rnms
%ﬁfﬁ?fis an indication of self-preservation. Examining the
rns deviation in Table 4.2, it can be concluded that flow
achieves self—preservatioh earlier in the flow with the
higher Reynolds gumber, Re é?; From a2 comparison of Fig.4.10a

4

and Fig.é.ﬂod, it is clear ﬁhat the flow is nearer to

self-preservation. :in Fi@.#.ﬂOa for e ©e=2.18x10° than
that in Fig.#iﬂOd for He ée:&.?xﬂCBat_x/D=4P. The wvaluss
of rms deviazion for various Reynolds number, Re Se are

plotted in Fig.4.11 to show that the rms deviation 1s

less for higher Reynolds number at any axial distance. Lo
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30 the wake velocity profile becomes self-preserving

earlier for higher Reynods number.

Drag Co-efficient due to the wake was calculated,

from the momentum thickness equation(3.2.15) obtained by

peglecting pressure gradient. The drag Co-efficient ¥ Fuas

plotted in Fig.4.12 which shows that it increases with

. the Reynolds number.

TABLE - 4,2

ros DEVIATIONS AT VARIOUS DISTAHCES FROM

LTHE DPRAILING EDGE OF THE PL4TE

x/D 16 o4 48
Ee &Ge
2.18%10° 0.066 0.062 0.06
2.01%10° 0.072 8.069 0.0675
1.90x10° 0.078 0.076 0.075
1.70x10° 0.095 0.0935 0.0925




CHAPIER -

CCuCLUSION

The present investigation is on the two-dimensional
tubulent wakes formed behind a flat plate. A computst program
has been developed to solve the equations of mass and

momentum conservation using explict finite difference scheme.

Fumerical calculations were performed for mean
velocity, halfl Qidth.and other flow ¢geometry and charactsrstics
in the wake region for four different exit Reynolds numbers,
i.e. Re 8e=2.18x107, 2.0x10°, 1.9x10° and 1.7x10°, The
bocundary 1ayers'weye turbulent at the trailing edge of the
plate, and the wake formed with these boundary layers were
‘assumed to be turbulent at the exit. The initial boundary

laeyeruas identified to be turbulent on the basis of the

experimental values of velocities.

The results obtained by'prenenu calculation were
compared with existing experl enual measurements. The
agreement of the present resuité of most of the varameters
with ekperimental'reSults of Faruocue [8]indicates that
Prandtl's mixing length model is satisfactory to expresses

. !
the turbulent shear stress in the wake. The momentum
thickness increases with the increase of Reynolds number,
The shape factor of the wake decreases with the increase

of Reynolds number and with the awizl distance from the

trailing edge. The decrease of the shape factor © 11T
g P

o]

u

‘:‘5
‘q

ig an indication of locit

glf-preservation of flow. The v

[17]
w
(O]
@]
el

distribution in the neighbourhood of the flat plabte is



unstable due to thepreggence of hich velocity gradient in
the axial direction and it decreases gradually to become
self-preserving. The axial variation of half width of the
wake 1s approximstely linear except close to the trailine
edge. The present results agree with the existing experimental
results after an ,ﬁaxial distunce x/CdmL=50, where the effect of
| initial conditions are insignificant. The rate of increase
of the cenver-line velocity 1s rapid in the near region of
the wake and it becomes slow with the incresse of axial
disfance. The flow within‘ the wake does not show cqmplete
. self-preserving within axial distance covered in the
investigation. But at higher Reynolds number it tends to
become self-preserving earlier for'fhe‘same plate thickness

at the beginning.
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FIG 47 DIMENSIONLESS HALF VELOCITY LINE AT VARIOUS DISTANCES FROM THE PLATE
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sFPPuliDIX - 4

DERIVATION OF EQUATIONS

A1 Differentiazl Zcuations

The continuity and momentum conservation equationsg

in rectangular system of Co-ordinate for a fluid in motion

\

_can be written in terms of shear Stress as

o .0 0
d9° | du d¥ dw> .
120 t& tay t az -t 0 (2.1)
SN o o 0
%%O=f98x + gékx + dégky +d§§x x—component (A.2a)
£ v '
o 0 o o
Dv - PBy+ déxy . d6yy . da6vyz.! y-component (A.2b)
Dto~ ™" ax dy dz
o 0 o 0 | ) _
fggﬂ —fQBh+ d8zx . déyz abzz z-component (ae2c)
to~J 7z

dx dy az

0 . . . .
where, uo, v® and w® are instantaneous velocity components

in x,y and 2z direction - respectively. and Bx, By and 3Bz
are the body forces per unit mass along the x,y and z

direction:, respectively.

Reynolds equation of motion for turbulent flow
dissociates instantaneous variables into mean and fluctuating

conmponents:



(o)
\J?

O a1

W= u+u
vOo=vev!

o_. '
WoSWeW

Gxx= Oxx + Gxx
o] '
Eyy= Cyy + 65y

.6£Z= 5zz

+
1%
|~
[

6%y= 657 + 65y f )

(9,8
o
&3
n
N
g
™
+
o
T ~
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i /
G zx

S
No
n
D
#

+

where, u,v,w, §xx, 8§y¥, 6zz, 6%y, 6¥2z, §z%, D and t are the
- / ’ / i Yy ’

mean components and u', v', w', §xx, 6yv, 62z, €xy, Oyz,6xx,

p' and t' are the fluctuating components. ‘he time averages

are formed at a fixed point in space and are given, e.g.by

to-i-*l:,I
‘L;L=’l/t,i udt , (A.4)
t=to
L
In  this " .connection It is understood that the mean

components are taken over a sufficiently’ long interval of
time, tq, for them to be completely independent ol time.
Thus by definition, the time-averages of all quantities

are egual to zero:

- — =7 = =7 =7 =
ive. UeTept = ¥ =6ix=67v=6z2=0xy=6yz=67x=0
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It is useful to list here several rules of opoerating
. Time- averages as they will be required for reference.
If f and g-are two dépendent variables whose mean values
are to be formed and if s'denotes any bne of the independent

variables x,y,z and t then the following rules apply:

T=F

f+e=T+g

f.e=1.% |

u2=52+u‘2 , (4.6)
ar 4t

ds =~ ds _J

Introducing equation (&.3) in equation (a.1) and
consldering steédy state

d N SR SR oy :

dx(u+u ) o+ 37 (v+y )+ T2 (w+w )=0 (A.7)
Taking time-average

ix "4y *az = © | | (4.8)

. L . dw
For two-d;men51onal case iz

O, so the mean flow \

continuity equation for two dimensions is

—&—3{— + aTUT_T = O (h'g)

£~
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Again from (&.2a) we get

Du _ pfdu 0 du’ ogl_l. o ] 4 &2
e fdt u gx vV gy W FBX—!- ‘.dXGX}:
d 0 d o
+ 'd'—y 6-X§’+ EEGZX
du a0 2. &, % o0 .0 ’
or, el At (xx~ uo )+—d-dy( & xy- pu v )

=L (Bax-pa©) E (£.10)
How introducing equation(®.3) into{a.9) we get
)O%E (usu' )= p o -%{[(6>D:+ 6;@6)—-(11411')2]
| ¥ %K&w 67 )~(usu') (V+V')]
+ g—z{(szx+ &zx)=(u+u’ )(w+w')] (£.11)

Time averaging eouation(ﬁ.’i’l )

du

55 - jOBx I:G}cx—- f(u +u' } i [ny- F(uv+u v )]
| + a‘g[gzx— P(uw+ﬁ_‘?ﬁ

at dx

d du
or,fj S u 24w

du dui] _ d_ Y
7Y I —)OBX+ = ( § o=

+ & (Ey-pitvids —{6wz- puu')

- (a.12)

— -



APPELDIX - B

FINITE DIFFERLENCE FORIMULLTION

B.1  General

A standard explicit finite difference technique
requires very small streamwise steps to satisfy the stability
criterion. The finite difference problems domaln is ﬁade
into a net of points as ihdicatéd in Fig.B.L:by lettering
H1 and Hé' be smell increments of the lo-ordinates x and &.
Here the finite difference equations will be written ig‘

a form thet will be applicable for uneven grid spacings 1n
x and vy directions. The dependent variables are expanded
in Taylor series,‘The basic variables are made non-dimensional

by using the following transformation:

X:xg/& y:yuwﬁg u=u/u,, :v=v/u£, (3.71.1)
Replacing shear stress, 7/Pby 72%2 ( %% )2 , then the

final differential from of the continuity and momenium

equations are

= 2 =0 _ N (B.1.2)

dx dy
2 A ' - |
UaU = VAU o7 v, AU 2.2, dU \ , &U ].
& * ay 2K |:*( o S Oy o 02 ) (B.1.3)
B.2 Finite Difference Louaiions

oylor's expansion about grid in x-and y-directions

K=(I-1)H, £5~23Q

td

¥=(J-1)H, (B.2b)



U=U(I,d)
V=V(I,J)

By forward difference method

é——é =EJ(I,J+’1)-U(I,J)] /H,
L [o@+1,3)-0(T,3)) /8,

LA [V(I,J+4)fV(I,J)] /H

& - [v(z,74 )=(1,3)] /1,

Y - (1,3+2)-20(T,d+1)+0(1,3)) /215

By backward difference method
cu -
o - [U(z,3)-U(T,3-1)} [ 5,

v fu(r,d)-u(1-1,3)) /'H1

dx

av = [v(T,d)-v(1,3-1)) /8,
dy CF
av = [V(1,5)-v(1-1,3)] /K,
ax

By central difference method

-~

av _ j[U(I‘,J+’I )-0(T, 31,

au _ [U(I+’I,J)—U(I-’I,J).J/’BH,1

2.
{—i—% = [U(I,Jm)—2U(I,J)+U(I,J-’1)] /45
- .
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(B.2¢c)
(B.2d)

(B.2.5)

(3.2.6)
(B.2.7)

(B.2.8)

(B.2.9)

(B.2.10)

(3.2.11)

(B.2.12)

(B.2.13)

(B.2.14)
(B.2.15)

(B.2.16)



i

2.3 Continuity Hguation

Using equations{3.2.6) and (B.2.7) in equation(B.1.2 )

finite difference form of continuity equation is

]@(I+1,J)-U(I,Ji}/H4+[§(I;J+1)-V(I,Ji]/H2=o (B.3.1)

B.4 lfomentum. equation

Using equations(B.2.1), (B.2.2),(B.2.3),(B.2.4),
(3.2.5),(B.2.6),(3.2.8) and (3.2.9) in eguation(B.1.3)

finite difference form of momentum equation is

/s

U(z,a) [u(z+1,3)-0(1,7) /H1+V(I,J)EU(I,J+’I)—U(I,J)] /5,
Z 2
=2« [(J—’E)HE [(U(1,3+1)-U(I,3)) /4,
+(J-1)2H§‘[(U(I,J)—U(I,Jwﬂ)) /H%‘éU(I,J+2)—

SU(I,5+1)+U(I,3)) /2}%]—] _ (B.4.1)



APPLNDIX - C

METHCDOLOGY FOR DLTERIINING FPOWER INDEX 'n' IN INITIAL
VELOCITY PROFILE

The initial velocity profile:%;igiven by Prandtl il

-

for turbulent flow.Eiws :
% ' :
u/u, =(y/ & )7 (C.1)

where,c£=<5(x) is the thickness of the boundary layer.:

The empirical integral equation of momentum thickness is:
<
0= fo/ue (1-ufu, )iy - (C.2)
o 7
where, € is called the momentum thicimess of the wake.

The 'n' can be determined from the equation(C.2) for the

limiting value O to(gi.e.
%‘Lfé—-(ﬁ )4 (C.3)
- éou& U, J *

Putting the equation(C.1) in to (C.3) the equation(C.3)

becomes _ s , .
6 (L., ® 5 |
b H(Y/é ) =3/ S ) 1dy o (C.4)
after integrating
) f%c 'n/(n2+5n+2)
or, s [(§ (S 5)28) (S.5)

where,%g is found from &xperimehtal results of Ref. [ 8]

(Table 4.1)



APPENDIX - D

ANALYSIS OF DIFFERENT SHEAR STRIES3 MODELS

Boussinesq EB]'was first to work on turbulent flow
shear streeg¢. He introduced a mixing Co-efficient, Aq, for
the Réynplds stress in turbulent flow by putting

rr/t;zj?u"v' . Arr-g—; (D.1)

where, Aq is the turbulent mixing Co-efficient. The eddy
kinematic viscosity can be expressed as

br=aa|f : (D.2)

7/

30 the turbulent shear stress beconmes

T3 q
t:?gr_g%l; (-‘-)-5)

. . X . 08 .
The Boussinesq model can not be used in practicanothing

is known about the dependence of AT on velocity.

Habib and Whitelaw [;7i]'worked on turbulent
energy flow and gave the shear stress model

T pek/EC T ) o (@)

where, %ﬂ ig the viscosity constant, E is the kinetic energy
and £ is the turbulent'energy'dissipation rate. This model
is-appiicable only fof fully developed turbulent Tlow.
Itumerical results were in close agreement with experimentdl
resuits.

Prandtl [4] deduced a kiretc energy model (&)

1 Y du -
+=f0/¢{k—(a—§—-) (D.D)
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where, L=As YG,AS is the proporticnazlilty constant and
YG is the effective width of shear f{low. This model 1is

used for turbulent wakes and jets, gives better performsnce.

In order to develop the preceding method{Initiated
by Bossinesq [5]),it is ﬂecessary to find empifical relations
between the Co-efficients and the mean velocity. In 1025
Prandtl [4)made an important advance in this direction.
He introduced the mixing length conéept in the shear strees

gguation
—_ 2 .. 2, . .
e opT pl % PR (B oo

where,.ﬂ= mixing length.

This is Prandtl's mixing length hypothesis. This model has
been successfully applied to the study of turbulent motion
along walls (pipe, chénnel,‘boundary layer) and to the

préblem of so called free furbulent flow. (The later term

refers to flow without solid walls, such as jets and wakes)

This model is used for both developing and developed turbulent
profiles. Numerical solution by finite difference method was

in close agreement with experimental results of Farucgue [8]

Prandtl's [4] equation for shear stress in turbulent
"flow is still unsatisfactory in that the apparent kinematic

. . E, . . . du_ . "
viscosity €T, vanishes at points where dy is equal to
zero i.e. 8t point of maximum or minimunm veloclty. In order
to counter tHese difficulties Prandsl [9] defined a

considerably simpler equation for the apparent (eddwy)

{0

kinemstic viscosity, glven DY
1

E;r!= s b(UmaX—U nin )
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where, K denotes a dimensionless number to be determined
- experimentally and b denotes the width of the mixing zone.

S50 the turbulent shearing stress is given by

’Tz=fﬁzb( Upax~V min) %%— (D.7)
In Prandtl's theory, .the assumption is made that .

the mean velocity remains constant during the transverse

motion of a lump of fluid Taylor [10] gdveithe equation of Sheas Stus
. 2
as. du du » -
T %’-fﬂul'ﬁf (&) - (D.8)
Uheve, - f“= Jet

Toylor [ﬂO] concluded that the diffusions of tenperature
differences and vorticity in the mixing zone behind a

cylinderical rod occur in conformity with identical laws.

It would be very conveient to possess a rule which
allow to determine the dependence of mixing length on

space Co-ordinetes.

von Karmdr LS]made an attempt to establish a relation

between mixing length and mean velocity
duy, 42
L~ (a5 ) () . (9.9)
dy~ : o

By introducing an empirical dimensionless constant
von Karmar [5] géts the final form of the equafién
(D.6) as
2 41, .2
N du (d7u
Te=fK dy )/ dy°

32 (D.10)
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