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ABSTRACT

For joining pives of unequal diameters, truncated parabolic shells can be used
as pipe reducers instead of the traditional conical frustums, as the doubly
curved parabolic shell elements are superior to the conical shells in withstanding
high pressure. The present ir;vesti.gation. analyses the stability and stresses in
the truncated parabolic shells to be used as pipe reducers and also compares the

results with those of conical reducers obtained by AlL

The analysis is based oh the nonlinear governing equations for axisymmetric
deformations of shells of revolution. The multisegment method of integration is
used for obtaining the solutions of the governing nonlinear differential equations.
Numerical golutions . are obtained by using a modified computer program,
developed by Uddin, for solving the governing eguations by the multisegment
method of integration. The in.terpretation of {nstability of the parabolic reducers

is based on Thompson’s theorems I and IL

Critical pressures for the parabolic reducers are calculated varying the thickness
ratio and the diameter ratio. Critical pressures and the stress distributions are
presented graphically and their dependence on .different parameters are

discussed.

It is found that long parabolic reducers are prone to local instability near the
larger end of the reducer but this critical zone shifts towards the smaller end
as the two ends of the reducer are brouglit closer. Comparison between a
parabolic reducer and a conical reducer with identical parameters shows that the
former one develops uniform stresses of lower magnifude. Consequently,,it*is
found that they are much more stable than their counter parts under uniform

external pressure.
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distance between the vertex and the focus of the parabola
{m,1} matrices, contain prescribed variables at the boundary, defined
in Eq. (4.13a)

Eh: extensional rigidity

(1-v?)E./R

Eh3/[12(1-v?}): bending rigidity

1/[12(1~v?) P T? R}

Young's modulus

a/(R-R,), ratio to define the geometry of the reducer
horizontal stress resultant

H/PR: nondimensional horizontal stress resultant

ghell thickness

(m,m) unit matrix

changes rof curvature of the middle surface of shell

kok,: nondimensional value of k,

L x nondimensional value of k,

R/P.T

number of segment

order of system of differential equations

meridional couple resultant

circumferential coﬁple resultant

ME/PRh: nondimensional vahie of M,

Mg/PRh: nondimensional value of M,

meridional stress resultant |

circumferential stress resultant

NE/PR: nondimensional value of Ng

Ng/PR: nondimensional value of Ny

outward normal pressure

P/E: nondimensional value of P

vertical component of surface load

horizontal component of surface load

transverse shear stress resultant ' RSN
larger radius of the reducer ' 'a; c

smaller radius of the reducer
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§/R

principal radii of curvature of middle surface of shell

radial aistance of a point on undeformed middle surface from axis of '
symmetry

r tu: radial distance of a point on deformed middle surface from axis
of symmetry

r /€, nondimensional value of r,

ith segment

{m,m} matrices, given by boundary conditions

R/h:thickness ratio

radial (horizontal) displacement

uEh/PR?% nondimensional horizontal displacement

vertical stress resultant

V/PR: nondimensional vertical stress resultant

axial (vertical) displacement

wEh/PR* nondimensional axial displacement

independent variable

end point of segment '
R,/R:diameter ratio S I
{m,1) matrix, contains m variables

axial distance of a point on undeformed middle surface of shell

z +w: axial distance of a point on deformed middle surface
parameter of meridian of deformed shell, defined in Eq. (3.1c), or
semi-apex angle of conical shell

value of a corresponding to undeformed shell

angle of rotation of normal after deformation

B ’ =X
middle surface strains ' '
€, Eh £./PR% nondimensional value of €

€, Eh Ee/PRzz nondimensional value of €,

normal dist&nce of a point in the shell from middle surface

parameter of shell meridian, or distance measured along meridian

" §/E.: nondimensional meridional distance between the centre of the

smaller end and the larger end junction
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total meridional length, between the centre of the smaller end and
the larger end junction.

angle between normal and axis of symmetry .before deformation
(meridional angle) - ' ‘
¢$,~B: angle between normal and axis of symmetry after deformation
Poisson’s ratio

Ne/h + GME/hZ: meridional siress at the extreme inner fiber

NE/h + BME/hZ: meridional stress at the extreme outer fiber

Ng/h + SMG/hZ: circumferential stress at the extreme inner fiber
Ny/h + GMe/hZ:.circumferential stress at the extreme outer fiber
u,,/E: nondimensional value of o,

0,./E: nondimensional value of o,
o.;/E: nondimensional value of o_;

"'GCD/E: nondimensional value of o,

" derivative with respect to ¥ or E
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CHAPTER 1

INTRODUCTION

1.1 PRELIMINARY

Shell elements, in general, can transmit the surface load primarily through the
uniformly distributed in plane membrane forces by virtue of their curved‘
surféces; without the action of bending or twisting. This property makes them,
as a rule, a much more rigid and more economic:ai. structure than a plate.
Consequently, shell elements are indispensable parts of almost all engineering
stx-ﬁc£ures. This is specifically true for the aerospace, | nuclear, marine, and
petrochemical industries where dramatic and sophisticated uses of shells are
currently being made iﬁ missiles and space vehicles, nuclear reactor \-ressels,
refinery equipment and the like. Tubular shell members are the most important
components in the deep water offshore structures. Also, shell like structures are

extensively used as silos and storage tanks.

As the use of shells gains momenium, more and more sophisticated mathematical
analysis of shells are being sought. Shell structures can undergo a substantial
amount of deformation before failure. This feature of shells submits themselves
to the dmﬂain of rrnonlinear mathematical analysis. The nonlinearity is introduced

into the governing equations of elasticity in three ways:

a. through the strain-displacement relations
b, through the eguations of equilibrium of a volume element of the body, and
C. through the stress-strain relations.,’



In (a) and (b) the retention of nonlinear terms is conditioned by geometric
considerations, that is, the necessity of taking into account the angles of rotation
in determining the changes of dimension in the line element and in the
formulation of the conditions of equilibrium of a volume element. On the other
hand, the nonlinear terms appear in the third set of equations (¢) if the material

does not behave in a linearly elastic fashion.
Hence, there are two types of ‘nonlinearity:

" L geometric, and

ii. physical

In the problems of shell structures, the angles of rofation can be large, but the
strains can be quite elastic. An example of this rtype of problem is the bending
of a thin steel strip. It is well known that strips of good steel can be
straightened out without traces of reéidual deformation after having their ends
brought together, This bears witness to the fact that in these strips, even for
large displacement and a;ngle of rotation, the stresses do not exceed the yield
strength. Thus, many shell structures belong to a class of problems which are

physically linear but geometrically nonlinear.
1.2 THE PROBLEM OF INSTABILITY OR BUCKLING

Through the blessings of the modern science, the strength of the engiﬁeering
materials has been increased tremendously. As a result, thinner structures can
carry high intensity external loadings. Consequently, today's structures are more
prone to failure due o instabiliﬂy-than due to strength. The onset of buckiing

2



invariably resuits abrupt changes in the shape of the structures which ultimately
leads to failure as enormous deformations take place that s_hoot everything away
from an initially stable equilibrium position. .The concept of stability of
equilibrium is thus. a strongly intuitive one, and it consequently arises quite
early in the development of classical mechanics., The work of Euler [26] appeared
in 1744, and the contribution of Lagrange [41] in 1788, A c:entui:‘y iater a general
bifurcation theory was sketched by Poincare [61] in 1885, and the definition of

stability was given mathematical rigor in the treatise of Liapunov {43} in 1892,

If at any level of external cause (in the form of displacement, velocity, force
‘ete.), a structure can sustain a small disturbance from its equilibrium condition,
then the structure is said to be in stable equilibrium at that level of external
cause. It should be noted that sustaining the disturbance means the structure
will oscillate with a small amplitude about its équﬂibrium position. On the other
hand, if the structure does not go back to its original equilibrium ‘pbsition or
vibrate with ever increasing amplitude due to the disturbance, then the structure
is said to be in an unstable equilibrium state at that level of external cause, If
the structgre remains in the disturbed state without vibration, then the

equilibrium is referred to as the neutral equilibrium state.

A close assessment of the critical loa(i for simple mgchanical stability models
reveals that the system maintains its stable equilibrium states as long as the
work done due to internal resisting forces is greater than that due to the
external load for any disturbance from the equilibrium position. In other words,
it is the balance between the potential energy due to the internal resisting
forces, which will be called internal strain energy or simply strain energy from

now on, and the potential energy due to the external force, which will be called

3



externalrload potential or simply load potential from now on, which accounts for
the stability of the system. At a certain level of the external cause, the internal
strain energy becomes equal to or less than the external load potential, and the
system reaches its unsatable equilibrivm state. Any disturbance to this equilibrium
state will upset equilibriﬁm or bring the system to a new equilibrium state
distinct from the ﬁrevious one, depending on whether the internal strain energy
is equal to or less than thé load potential. In fact, these afe the allernate
statements of the energy method used .to confirm the mechanical stability of a

system.
1.3 RESUME OF NONLINEAR SHELI. ANALYSIS

That linear shell analysis fails to give proper information about the shell stresses
and deformation in many problems can be seen in recent papers on the nonlinear
shell analysis (27, 28, 32, 33, 37, 54, 65, 66, 67, 70, 82, 91, 92, 94-98, 103-106], For
this reason, the use of nonlinear t;héory has become rather widely accepted as
a plausii)le basis for predictions of elastic strengths of shells of wvarious
geometries, Most of the papers currently found in the literature are concerned

with the shells of revolution.

The basic concept of finite deflection analysis of Donnel [22] has been employed
by numerous investigators to establish collapse loads of cylindrical shells
subjected to various loadings. Finite deflection analysis has also been successful
in offering reasonable predictions of the elastic buckling loads of shallow
spherical caps subjected to uniformly distributed external pressure. Kaplan and
Fung [38] have presgnted a perturbation Solutioﬁ to the nonlinear equations that

agrees quite well with the results of their experiments for very shallow clamped
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edged shells. Archer [7] extended their results to a greater range of shells. As
can be seen from recent papers, very extensive work has been done in this field
(32, 33, 37, 38, 66, 91, 92, 105]. Ball [9] has considered the problems'of arbitrarily
loaded shells of revolution and obtained solution for a clamped shallow spherical
shell uniformly loaded over oﬁe-hallf of its surface., A number of papers based on
the nonlinear analysis of stiffened shells, multilayered shells and sandwich shells
can also be found in the current literature [5, 30, 40, 46, 48, 57, 62, 64, 75, 78,
102]. Based on Reissner’s [69] large deflection analysis for general shells of
revolution, Uddin [95] has presented large defi,ection analysis of composile shells
of revolution and obtained extensive resulis for various pressure vessel problems
[93-98]. Haque [31} analyzed the stability of ellipsoidal head pressure vessel
Rahman [63] extended this analysis to include imperfect sheli geometry. Ali [6]
analyzed the stability and stresses of conical reducers. In all these cases the

predictions of these theories are in hetter agreement with .experim'ental evidence

than those of the classical investigations based on infinitesimal deformations.
1.4 OBJECTIVES OF THIS INVESTIGATION

Reducers, used as fittings in between two pipes of unequal diameters, often fail
due to instability although having sufficient material strength, as these shell
elements are often subjected to externa;l pressure or internal suction in such
applications. Pointing out that no notable work has been done on the stress and
stability analysis of the above mentioned conical reducers, Ali [6] cafried out a
study on the same. Ali [6] found that the critical load for conical reducers
decreases almost linearly as the apex angle of the conical frustums are increased
keeping all other parameters constant. Motivated by the fact that the doubly

curved parabolic reducers can sustain higher external load by virtue of the



membrane forces, the present aﬁalysis investigates whether the parabolic

geometry of the shell meridian can improve the stress distribution and as well

as the stability of the reducers.

So, the main objective of the present analysis is to compare a parabolic reducer

with a conical reducer (having the same thickness ratio and diameter ratio)

regarding stability and stress distribution. The set objectives are to be achieved

through the following steps:

As the properly fabricated parabolic reducers are expected to deform
axisymmetrically under pressure, Reissner’s large deflection equations for
axisymmetric deformations of shells of revolution are to be used as the

governing equations for the reducers.

As the parabolic reducers are always to be connected to pipes of unequal
diameters through the flanges, the boundary conditions at the two edges
of the reducers are to be taken as those pertaining to completely f]:X(:!d
edges. This will also help to compare the results. with ref. |6] where

exactly same boundary conditions are considered.

As the governing equations to be uséd here ensure stationary 'potential
enerdy (8E, =0), Claésical or Bifurcation technique which is- based on the
identification of a secondary mode of deformation is used to calculate the
critical pressure.Thompson’s [90] theorems I and II are to be used for
ascertaining the critical pressure of the | parabolic reducer from the
solutions of large deflection equations of the same for progressively

increasing pressure.
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5,

As the govgrni.ng nonlinear differential equations are not amenable to
solutions by the method of direct integrafion because of its inability in
deterrﬁining the unknown boundary values due to inherent accumulation of
truncation errors in the process of integration of shell equations, and as
the finite-difference technique sometimes fails to differentiate between the
instability of the differential equations and that of the solution process of
the resulting algebraic equations, the multisegxﬁent method of integratiofi

iz to be used for solving the differential equations.

As a computer program is already available in the literature, incorporating
the mwulti-segment method of integration of the Reissner’s equations for
general shells, the computer program needed for obtaining the numerical

solutions of the present problem is to be adopted from the available one

by carrying out the necessary modifications.

The solutions are to be presented in nondimensional form to widen the

usefulness of the results.

To keep the volume of results of stresses a minimum, results are to be
presented for pressure-steps of about 50% of the critical pressure and

above,

For each set of values of parameters, strésses are to be plotted against
the entire meridional length of the parabolic reducer, so that critical zones

in terms of different stresses can be seen readily.




-9, Since, stability analysis is justified for thin shells with large diameters,
the results are to be presented for thinner parabolic reducers with larger

diameters only.

10. Finally, as critical pressure for conical reducers are already available in
ref. {61, the critical pressures for parabolic reducers with the same
diameter ratio and thickness. ratio and of course with the same boundary
condit.ions as those of the conical fedu.cers are to be calculated for

meaningful comparison of results.
1.5 METHODS OF SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

Due to the very nature of the response of shell like structures under loading,
their analyses, specifically their stability analyses, are based on the nonlinear
mathematical analysis. Unfortunately, the majority of such large deflection and
stability problems of practical structural components cannot be solved in closed
form. Therefore, one has Lo resort to approximate analytical and/of numerical
discretization techniques for their ‘so}utian. Prior to the advent of digital
computers, varioﬁs ép?roximate analytical techniques were the standard tools for

the nonlinear analysis of structures.

The widesprgad availability of high speed computing machines, the fascination
with numerical techniques due to their versatility in handling complex structures
('e.g' shells with cutouts and stiffeners), and the simplicity of computer
implementation have resulféd in a relative stagnation in the developmént of

effective analytical techniques. Analytiqal techniques have the major advantages

over numerical discretization techniques in providing physical insight into the

8



nature of response. Moreover, analytical techniques can be used in conjunction
with partitioning schemes for nonlinear analysis of individual components of

practical {complex) structures.

The most frequently used approximate analytical and numerical techniques in

golving nonlinear differential equations are :

1. asymptﬁtio integration [50, 53, 68, 70}
2. perturi:)ation techniques

3. Newton’s method

4, method of power series expansion

5. hybrid analytical technique

6.  direct numerical integration [28, 44]
1. finite difference method

8. finite element method

Q. method of multisegment integration

In addition to the above mentioned methods, there are other methods existing in
the literature, namely "Reversion Method" [21, 60], "Variation of Parameter” [21,
45, 53} "Averaging Methods Based on Residuals" - {a) Galerkin's Method [21] and

{(b) Ritz Method [21], and the principle of harmonic balance.

In the perturbation method, the fundamental unknowns are expanded in

perturbation series in terms of unknown functions with preassigned coefficients.

The unknown functions are ébtain‘ed by solving a recursive set of‘ differential

equations which are generally simpler than the original governing equations of

the i)roblem [55, 991. By contrast, in the Bubnov-Galerkin and Rayleigh-Ritz
9



techniques, the fundamental unknowns are sought in the form of series of a
priorly chosen coordinate functions (c_)r modes) with known coefficients. Reviews

of the many applicationé of these techniques are given in Ref. [85].

The perturbation method has two drawbacks. The first one stems from the fact
that as the number of terms in the perturbation series increases, the
mathemaﬁ.cal complexity of the differential equations builds up rapidly. Therefore,
for practical applications, the perturbation series has Lo be restricted to a few
terms'. The second drawback is the need to restrict the perturbation parameter
to small values in order to obtain solutions of acceptable accuracy. The main
difficuilty of both the B.ubnm{-Ga.lerkin a.nd Rayleigh-Ritz techniques, from a
pracfical view point, is the difficulty of selecting good coordinate functions {or

modes) for structures with complicated geometry and/or complex response.

The hybrid analytical technique combines both the standard regular perturbation
method and the classical Bubnov-Galerkin technigue. The technique was shown
to overcome the major drawbacks of the two parent techniques and to provide

a more effective approximate analysis than either of the two techniques. Ref. 1

demonstrates the effectiveness of this technique by means of numerical examples.

The hybrid analytical technique is particularly useful for prédicting nonlinear
response of structures with simple geometry but complex construction. Examples
of such structures are ring-and stringer-stiffened closed ‘cylindrical shells and

shell panels with discrete stiffener and rectangular or circular platform.

Asymptotic integration is not a general method and its scope of application is

very limited as can be seen from Refs. [53, 69, 70]. Reissner discusses some of

10
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the solutions and limitations of this method in Ref. [69]. In the application of this
method,' the solution is expressed in the form of a series where the terms of the
serieé are the inverse powers of the 1arge.'st parameter in the differential
equations [69]. Determination of the terms of the series becomes extremely

difficult and the solutions generally contain only th.e:first‘té‘rm approximation.
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" Though the direct integration approach has certain advantages, it has also a
serious disadvantage, that is, when the length of the shell is large, a loss of
accuracy invariably occurs. This phenomenon is clearly ‘péinted out in Ref. [80].
The loss of accuracy does not occur from accumulative errors in integration, but
it is caused by the subtraction of almost equal numbers in the process of
determining the unknown boundary values. It follows that for every set of
geometric and material pararﬁeters of tﬁe shell there is A critipal length beyond
which the solution loses all accuracy. - v

;-1(i:eiy used techniques for solving

Fim’.te difference methods aremjihe most .
nonlinear differential equations. The advantage of 'th.e finite difference technique
over direct integration is that it can avoid the above mentioned loss of accuracy.
But it also has some drawbacks. Firstly, it ultimately leads to the solution of a
large number of nonlinear algebraic equations which have to be solved by
iterative technigues axlld often the solution fails due to nonconvergence. Secondly,
bound by the requirement of using regular mesh spacings or the condition that
the grid lines must be parallel to the coordinate axes, it was very much
restricted to domains of regular geo.metry.- However, curvilinear finite difference
{(CFD) technique, as p‘xroposed.' in Refs. {71-74], now relaxes these restrictions.
Irregular méshes' can now be eniployed in the analysis of shells with irregular

boundary geometry.
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In the literature, the structural analysis of general thin shells is one of the
areas dominated by the finitel element methods. One of the main advantages of
using finite element methods is the flexibility in making discrete any unusual
domain. However, in the course of extending the finite element methods to
accommodate geometric nonlinearities, two different algorithms are generally
adopted. They are namely: the linearized i_ncrelmental approach and the Newton-
Raphson iterative approach., The linearized incremental approach simplifies the
programming works involved, but it has its own drawbacks. As .I.ineari,zed
incremental equations are used, it is impossible to obtfain the "exact" nonlinear
solution for a particular load level. On the other hand, the Newton-—Raph%;on
method always converges to "true numerical solutions”. However, it requires
expensive numerical integration techniques [71], and the use of full Newton-
Raphson procedures would be very costly, As a result, various modified versions

of Newton-Raphson methods appeared in the literature [10, 84}

Newton’s method for solving nonlinear differential equations is the extension of
Newton’s method for calculating roots of algebtaic equations. The approach is to
express thé solution as Ehe sum of two parts: the fi‘r-st-part is a knm'nm function.
and the second one is a correction lo the kr_mwn function. A géverning equation
for the correction is obtained by substituting. the assumed function into the
governing equations and neglecting terms which are nonlinear {32]. This method
does not require the perturbation parameter to be small as is nec'.es-sary in the
" perturbation technique, but il involves the solution of a sequence of linear-
differential equations as in the latter. These linear eguations have ‘variab_le
coefficients and- generally cannot be solved in c¢losed form. It is paradoxical that
the greatest;, obstacle in solving nonlinear problems is the inability to solve linear

differential equations in closed form.

12
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The multisegment method of integration is a very powerful method developed and
used by Kalnins and Lestingi [37] to solve nonlinear differential equations. This

method involves:

a. division of the total interval into a number of segments

b. initial value integration of a system of first order differential equations
over each segment

c. solution of a system of matrix equations which ensures the continuity qf
thé variables at the ends of the segments

d. repetition of {b) and (c) until convergence is achieved

e. integration of an initial value problem to obtain answers at any desired

point within each segment

The main édvantage of this method over the finite difference method is that the .
solution is cbtaiz'}ed everywhere with uniform accuracy, and the iteration process
with réspect to mesh size, which is required with the finite difference approach,
is eliminated. But the feature which makes this method Jnost attractive is that any
discontinuity, either. in geometry or in loading, can be easily handled by
requiring that the end point of a segmeni coincides with the location of the
discontinuity. As the integration .is restricted at the beginning of each segment,
‘ the preciée effect of the discontinuity is obtaiﬁed. by this method. Moreover, this
method is the most accurate of all the numerical methods becuusé the problem is.
solved in the form of a system of first order differential equations in which no
derivatives of geometrical or elastic properties appear and no further numerical

derivalives are essential to obtain any desired results in the calculation.
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CHAPTER 2

LYTTERATURE REVIEW
2.1 GENERAL

The theory of shell structures haé existed as a well-defined branch of structural
mechanics for about a hundred years, and the literature is not only extensive
but also rapidly growing. This érowth has two main aspects- the first one is the
development of shell theories based on various assumptions and approxi.mation.s,
and on different geometrical config_urations of the shell meridian, and the second
is the development of various exact and approximate analytical and numerical

methods for solving these equations.

Use of the nonlinear strain-displacement equations in the development of shell
theories is motivated by the need for an accurate prediction of load-deflection
curves, analysis of stability' and post-buckling behavior, and natural vibration

data for the design of shell structures.

Consideration of geometric nonlinearity in shells is originally due to Donnel {22],
Vo.n Karman {100, 101], Marguerre [47] and Mushtari [52], among others. Following
these pioneering works several generalizations and modifications of the theories
appeared in the literature, The geometric nonlinearity in shells is accounted for

in three different levels:

i The Von Karman type nonlinearity that aceounts only for the products and
squares of the derivatives of the transverse deflection in the strain
displacement equations;

14



ii. The moderate rotation theories that account for moderate rotation terms;

iii. The large rotation theories that account for large rotations.

Full nonlinear theories are those which do not neglect any nonlinear terms in the
strain~displacement equations. However, full nonlinear theories are not only
complex but not warranted in the analysis of most shell structures.- Aé a result,
several authors attempted to presént nonlinear shell theories at different stages

of approximations.

The earliest work of some generality is Marguerre’s nonlinear theory of shallow
shells [47]. Donnel [22] developed an approximate theory specially for cylinders
and suggesfed its extension for a general middle surface. The resulf, a theory
for what might be termed "quasi-shallow shells", has been worked out by a

number of authors, notably Mushtari and Galimov [52].

The earliest work of a completely general nature appears to be the papers by
Synge and Chien [86] followed by a seriés of paper by Chien {19, 201. The theory
of shells developed by Synge and Chien avoids the use of displacementsl as
unknowns in the equations. The theory is deduced from the three-dimensional
theory of elasticity and then, by means of series expansion in powers of small

thickness parameter, approximate theories of thin shells are derived.

Ancther general formulation of the problem is worked out by Ericksen and
Truesdell [25]. They developed it as a two dimensional theory instead of
attemptiﬁg to deduce it from three-dimensional theory of elasticity, They were
able to account for transverse shear and normal sirains and the rotations

associated with couple stresses. The two-dimensional approach to shell theory
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really evades the question of the approximations involved in the descent from
three-dimensional, but this seems to be a virtue rather than a defect. Such
questions are effectively isolated and shown to belong to the part of the theory

in which constitutive relations are established.

Novozhilov [56] has presented an incomplete treatment of the general large
deflection theory of thin shells based on the assumption of small middle surface

strains.

F. Jordan Peter [59] presented a quasi-linear approach to the rotationally
symmetric deformations of thin elastic shells of revolution. In this approach, the
shell strains and rotations are assumed to be small, but, contrary to the
approach of linear shell theory, the shél] equilibrium conditions are fulfilled on

the deformed shell.

Other developments which also employ linear constitutive relations are founded
upon the Kirchhoff hypothesis and often contain other approximations. Among
these are Reissner’s [68, 69] formulation of axisymmetric deformation of shell of
revolution and the more general works of Sanders {76}7 and Leonard [421.
Beginning with the three-dimensional field equations Naghdi and Nordgren
deduced an exact, complete, aind fully general nonlinear theory of elastic shells

founded upon the Kirchhoff hypothesis.

Several nonlinear theories for thin shells have been derived in increasing stages
of approximations. In most cases, theories are first approximative theories in the
sense that transverse shears and normal strains are neglected. Such

approximations and omissions are justified because the exact and general
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eqliatipns .characterizing the deformation of an elastic shell, even under the
Kirchhoff hypothesis, are fairly complex and discouraging from the point of view
of ‘practica]. applications. However, as may be seen in the literature, with the
advent of high speed computing machines and corres;.ponding development and
adaptation of efficient and versatile numerical techniques, some authors {11, 39,
64, 65, 77, 95, 103] are tempted towards the analysis of more comprehensive and

general nonlinear shell theories and coming out with useful results.

2.2 SOME ANALYTICAL, NUMERICAI. AND EXPERIMENTAL INVESTIGATIONS OF

SHELL PROBLEMS

The majority of the large deflection and stability problems of practical structural
components cannot be solved in closed form. Therefore, one has to resort to
approximate and numerical discretization techniques for their solution, leaving

analytical techniques limited to comparatively simpler structural elements.

Ahmed and Noor [1] presented a two-step hybrid analytical technigque for
predicting the nonlinear response of structural elements. They also discussed in
length the potential of the proposed hybrid technigue for nonlinear analysis of

structures.

The effectiveness of this technique was demonstrated by means of three
numerical examples :

i nonlinear axisymmetric response of clamped shallow spherical cap;

ii. large deflection analysis of laminated anisotropic plate subjected to uniform

transverse loading;
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iii. nonlinear axisymmetric response of an isotropic circular plate subjected to

combined uniform and concentrated load.

Based on extended Sander's shell theory, that accounts for the shear déformation
and the Von Karman strains, J. N. Red&y and K Chandrashekhra [65] presented
numerical results for the laminated cylindrical and doubly curved shells. George
J. Simitses, Dein Sinaw and Izhak Sheinman [29] presented a comparison between
analytical results (critical loads) and experimental results (buckling loads) for
imperfect, laminated cylindrical thin shells. The loading consisls of uniform axial
compression ana torsion, applied individually and in combination. The theoretical
results are obtained from solution methodolo‘gy'based on nonlinear kinematic

relations, linearly elastic material behavior, and the usual lamination theory.

In Ref. 88 an analytical formulation is made extending Rei.ssnef-Naghdi theory
and numerical solutions are obtained for the elasto/visco~plastic deformation of

multilayered cylindrical shells subjected to asymmetrical loading,

In Ref. 83 a modifi‘ed mixed wvariational principle is established for a class of
problems with one spatial as the independent variable.The specific applications
are on three- dimensional deformations of elastic bodies and the nonsymmetric
deformation of shells of revolution. The feature is the elimination in the
variational formulation of the stress components which can not be prescribed

on the boundaries,

Among the numerical techniques used in nonlinear shell analysis, the finite
element method is used rather extensively due to the flexibility in mwaking

discrete any unusual irregular domain. J. G. Teng and J. M. Rotter [89] developed
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a finite element formulation for elastic-plastic large deflection analysis of shells
of revolution. Here, in place of widely. used relations of Donnel, Novozhilov or
Sanders, more comprehensive nonlinear thin shell strain-displacement relations
are used, which account for the nonlinearity caused by in-plane displacements.
tInlike most other nonlinear shell formulations, the i.n—plaﬁe éhearing is included
throughoult this treatmenf. As asserted by the authors, this formulation contains
most of the best features of nonlinear finite element anﬁlysis currently available
in the literature, together with some new numerical schemes to improve the
capability, accuracy and speed of the computation.

In Ref. 58 the occurrence of dynamic buckling of thric:k rings responding to an
impulse load is investigated using both analytical and finite element method
using the computer code ADINA, The results show that the nonlinear solutions by
the finite element method predici a éignificant reduction in the amplitude of
buckling response and an increase in the ~predominant wavelength response

with time in comparison to the linear analytical solution.

S. K. Kwok [71-74] presented a curvilinear finite difference energy approach to
the geomeirically nonlinear analysis of general l:hi'n shells. This approach relaxes
the requirement of usual finite difference method of using regular mesh spacings
or the requirement that the grid lines must be parallel to the coordinate axes.
Irregular meshes can now be rempluyed in the analysis of shell with an irregular
boundary geometry without any difficulty. The author developed a software
named NAOSIS (Nonlinear' Analysis of Shallow Shells) based on this method. As
asserted by the author, the main aspecls of this present finite difference
formulation are firstly, ils ability to implement the most general nonlinear strain-

displacement relationship directly in a tensor code; secondly, its ability to model
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any arbitrary shell geometry; and thirdly, its capability to use irregular

computational meshes in a finite difference sense,

Recent efforts include the ('ievelopm‘ent of a number of general purpose computer
programs {8, 12, 13, 51} for ther linear and nonlinear analysis of general shells
of revolution. These programs are based either on finite element or on finite
difference method ‘of analyses. An overview of the current capabilities of some
computer programs that can be used for the solution of nonlinear structural and
solid mechanics problems is available in Refs. (2, 10; 801. A critical review of two
such programs, namely, BOSOR4 {13] and BOSOR5 {12], is presented in Ref, {97,
98]. Here the author has discussed precisely the causes of their disagreements

with experimental evidences.

Some experimental investigations on the shell analysis are reported in the ref.

[14-18, 48].

A few of the latest investigations of the instability of strucrtures are reported in

ref [6, 58, 79, 81, 981,

‘Based on Reissner’s [69] large deflection theory of shells of revolution, and using

multisegmentl method of integration, Uddin {95] has developed a computer program
for the analysis of -composite shells of revolution. He has found ext_ensi've
numerical results on spherical, ellipsoidal, conical and composite head pressure
vessels based on both ‘the linear and nonlinear theories and also obtained
buckling pressure of general spherical shells and semi-ellipscidal shells [93-98).
In all those investigations, he has exposed thel conservativeness of linear theory

and demonstrated the superiority of nonlinear analysis over linear analysis., Later
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on, using the same program, Haque [31,98) has made buckling analysis of
ellipsoidal shells of revolution under external pressure and Rahman [63] has

extended it to the case of imperfection in geometry.

Later on, Ali [6] carried out the stability and stress analysis of general
truncated conical shells to be used as pipe reducers modifying Uddin’s original

program,

In his research, Ali [6] pointed out that the critical load for a conical reducer
decreases almost linearly as the apex angle of the conical frustums are. gradually

increased keeping all other parameters constant.

Stability analysis which inherently invo]vés complex nonlinear mathematics has
been mostly confined to shallow shells or circular plates. This is due to the fact
that the nonlinear equations of shells could be solved only when the
simplifications perfaining to the shallowness of the shell were made, as pointed
oul by Uddin {35]. The simplified equations are then solved by different methods

mentioned in the introduction.

Also, some of the analyses have been made with the assumptions like the
predetermined buckling modes of the structures [23, 24] which may or may not

exist at all.

The .present analysis, which deals with the stability and stresses of the general
truncated parabolic shells to be used as pipe reducers, is however free from
those sorts of weaknesges as it is based on large deflection analysis and the

used computer program has established rehliability.
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The present investigation is in fact an extension of Ali's [6] research and to the
author’s knowledge the stability and stress analysis of general truncated

parabolic shells has not been reported so far in an identical way.
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CHAPTER a3
GOVERNING EQUATIONS
3.1 GENERAL

As mentioned earlier, the ‘Classical’ or ‘Bifurcation’ technique pertaining to a
secondary mode of deformation has been used here to calculate the critical
presaure. This is possible, because the equilibrium equations in the governing
equations of parabolic reducers in the' present analysis ensure stationary
potential energy (SEt = 0). In fact the governing equations consists of three sets
of equations, namely the equilibrium equations, the Hook's law equations and the
compatibility equations. The equilibrium eguations relate the external load with
the internally induced stress and bending moment resultants. The Hook's law
equations are for linear stress-strain relations of the shell material. And the
compatibility eguations relate the internal strains with the physical deflections
of the shell wall, These three sets of equations, togelther wilth the appropriate

boundary conditions, constitute the mathematical embodiment of the problem.
3.2 THE SHELL THEORY

The external load a-pplied to a shell is resisted by the membrane stress as well
as the internal resisting couples, thal is, the shell wall is subjected to the
combined action of stretching and bendir;g. In general, the shell wall is a three
dimensional body. Bul, thé use of Kirchoff’s hypolhesis reduces the shell analysis
to a two dimensional problem. Further, in the case of axisymmetric deformations

of shells of revolution, which comprise the majority of shells in practical use, the
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analysis becomes a one dimensional problem. Again, the analysis of the problem -
of shell structures is dominated by the geometry of the shell surface through the
compatibility relations and the equilibrium equatiqns. Therefore, as can be seen
from the literature, different authors have attempted to presenf. different shell
analyses including the purely stretching 'membrane’ theory, linear membrane and
bending theory and the fin.ilte deflection ’nonlinear’ shell analyses for shells of
varied configurations. For the present problem the large deflection theory of

shells of revolution as presented by Reissner [69] will be used.

3.3 REISSNER'S THEORY OF AXISYMMETRIC DEFORMATIONS OF SHELLS OF

REVOLUTION

‘The basic equations of Reissner’s theory of finite axisymmetric deformations of
shells of revolution which form the basis of this analysis are presented here for

ready reference.

The equation of the meridian of the shell is written in the parametric form as
(Fig. 1)
r = r(€), z = z{E) (3.1a}

The angle ¢ of the tangent to the meridian curve is given by

coad = r'/a sing = z'/a {3.1b)

where primes denote differentiation with respect to { and where a is given by

a = [(zV2 + (z)2]1/2 . {3.1c)
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The principal radii of curvature of the middle surface of the shell are given by

R, = a/¢/, Ry = r/sing (3.14)

With reference to Fig. 2a, the equation of the deformed middle surface is written
in the form

r=r, +u, ‘ z =z, +W (3.2a)
where the subscript "o" refers to undeformed middie surface and the quantities

u and w are, respectively, the radial and axial components of displacements.

The angle enclosed by the tangents to the deformed and undeformed meridian,
at the same material point, is given by

B=¢, - ¢ : {3.2b)
With the above definition of displacements and rotation, the strain components

and curvature changes of the deformed middle surface'are given by the following

equations

€ = (.a-ao) /o, = (cosd)o/costb) (1+u’/rl) -1 . | (3.2¢)
€ = _;-1_0 | {3.2d)
ky = (¢/-4) /e =P/, (3.2e)
ke= - (sind - sing,)/r, ' (3.2f)
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The equation containing the axial displacement component w is introduced as

w = gsing - z! (3-28)7

With the definition of stress resultants and stress couples as shown in Fig. 2a

and Fig. 2b, the three equations of equilibrium are written as

(rv)' + raP, = 0 (3.3a)
(rH)! - aN, + raP, = 0 | (3.3b)
L (zM)! - @ cosd M, + re(H sind - V cosd) = 0 (3.3c)

Equation (3.3a) is the condition of force equilibrium in the axial direction, Eq.
{3.3b) is the condition of force equilibrium in the radial direction, while Eq. {3.3c)

iz the condition of moment equilibrium about circumferential tangent.

With the assumption that the behawviour is elastic, the relations between strains
and stress resultants are given by

Cep = Ny = vN,, Cey = Ny = wN (3.4a)

£
Mg = D(k{E + vky), Mg = D(kg + vkE) © (3.4b)
where € = Eh, D = Eh¥/[12(1~v%], and h is the thickness of the shell. .The radial

stress resultant H and axial stress resultant V are related to NE and traﬁsverse

shear @ as follows:

N, = H cosd + V sind, O = -H sind + V cosd {(3.4c)
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3.4 DERIVATION OF THE FIELD EQUATIONS

The order of the system of equations (3.2-3.4) is six with respec;t to £, and
consequently it is possible to reduce Eqgs. (3.2-3.4) to six first—prder differential
egquations which involve six unknowns. In the following derivation the six
fundamental variables are taken as u, B, w, V, H, 'ME and the differential
equations are expresséd in terms of these variables. The independent variable £
is taken as the distance measured along the meridian of shell so that the
differential eguation can be used for all possible geometries of the meridian. With

this definition of §, from equation (3.1¢), .-

@, = [(z)? + (D2 = 1

from the geometry of the meridian, which is not yet specified,
r, = r, {E) _ : ‘ (3.5a)

b, = &, (£} : {3.5b)

n

The following equations are written from the previous section in such an order
" that, when evaluated serially, they are in terms of the fundamental variables.
This is done in order to keep the fundamental set of differential equations as

simple as possible.

Rewriting Eqgs. (3.2d), (3.2a}), (3.2b), {3.2f), (3.4c), (3.4b) in that order,

€g = u/r, (3.5¢)
r=r +u , (3.5d)
®=d -B . | | (3.5¢)
ko = (sing, - sing)/r, | (3.5£)
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Ng = H cosp + V sing

= Me/D - vke

mz Ladl
] '

D(kB + VkE)

Eliminating N, from Egs. (3.4a) it follows that

_ 2
€ = (1-v )/C Ni - vEg
Similarly, eliminating NE from Eqs. (3.4a) and rearranging,

C.
Na = {—(I:—\-’—i—)—} {%"'V EE}

Rearrangement of Eq. (3.2¢c) and substitution of a, = 1 leads to

q=1+E£

Elimination of z' from Eq. (3.2g) by means of Eq. (3.1b) gives

{3.5¢)
{3.5h)

(3.51)

(3.5k)

(3.51)

{3.5m)}

Substituting the wvalues of € from Eq. (3.51) and r ' from Eq. (3.1b) in the Eq.

'(3-2‘3):

— = wacos¢ - sind,
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From Eq. (3.2e) an expression for 8 is obtained in the form

%g = k{ (3.50)

Expansion of the three equations of equilibrium and elimination of P, P, and '

from these equations result in the following expressions for V/, H’ and ME"

_g%/ = - &« [{V cosd)/r-P cosd] (3.5p)
_gg = - « [(Hcos$-N,)/r+Psing] B, | (3.5q)
-%%i- = - o cosd(My-M)/r-«{H sind-V cosd) {(3.5r)

where P is the outward normal pressure.

Egs. (3.5) are the nonlinear governing equations of the axisymmetric deformations
of shells of revolution expressed in terms of the fundamental variables. It should
be noted that this fundamental set of differential and algebraic equations are
expressed in such a manner that all the guantities of physical importance are

evaluated during the process of solution of these equations,
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3.5 LINEARIZED EQUATIONS OF AXISYMMETRIC SHELLS

‘_I‘he equations of small~deflection theory follow from the foregoing Eqs. (3.5) bj
‘referring the differential equations of equilibrium {3.5p) to (3.5r) together with
{3.5g) to the undeformed shell and by omitting all nonlinear terms in the
remaining equations of the fundamental set (3.5). The resulting equations are

recorded below for ready reference.

€ = u/r, {3.6a)
kg = Boosd /z, ) | (3.6b)
N; = Hcos¢, + Vsing, ' {3.6¢)
K 1‘;2 Ny-veg ' , (3.6d)
k = % - vi (3.6e)

= {_C . 3.6f)
Ni,. (1-\:2) (eg+vey) - (3.6F
My = D{Ky + V&) , (3.68)
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= &8ind, - Bcosod, {3.6h)

W =

u’ = gcosd, - Bsing, (3.6i)

B/ = ke | (3.6)

Vo= - (M - P COS%) (3.6k)
rO

B = - [H cosdr’o . I sin(bo] | (3.61)

M o= - cosd)oﬂg-%i—)- - (H sind -V cosd,} (3.6m)

o

3.6 BOUNDARY CONDITIONS OF AXISYMMETRIC SHELLS

The  general boundary conditions of a shell on an edge {, = constant are to

prescribe, in Sander’s [76] notations,

N, or Uy,

Nyt = (3R; 'R M+ 2 My +hip) & 02 U
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-1 OM,

and M, or ¢1,

where §, and §, are the shell coordinates along the principal lines of curvature;
N and M are the stress and couple resultants; ¢'s are the rotations abhout

respective axes; u and w are tangential and normal displacement components.

When the quantities in (3.7a) are specialized for axisymmetric deformations of

shells of revolution they reduce to prescribing

N.ll or  u;,

@ - ¢;N;; or w, . (3.7b)
and M, or é,,

on an edge g, = constant. From (3.7b) it is seen that the boundary conditions
consists of'tﬁe specification -of rotationél, tangential and normal restraints at the
edge. But in most of the practical cases of shell problems the conditions of the
horizoni.:al and vertical restraints are known rather than those of the normal and
tangential restraints. So it is concluded that it will be preferable to specify the

boundary conditions in terms of the horizontal and vertical restraints from the
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point of view of practical application. When this is done, the boundary conditions

in terms of the notations used in the body of this thesis will be to prescribe

H or u '
ME or B s . (3.7¢)
and V or w

on the edge E = constant.
3.7 EQUATIONS IN NON-DIMENSIONAL FORMS

It is always desirable to solve any engineering problem in terms of non-
dimensional quantities in order to decrease the numﬁer of input physical
parameters as well as to increase the applicability of the sclution. With this in
mind and also to make the variables more or less of the same order of magnitude
the displacement components and stress resultants are expressed as ratios of
their actual values to those of the circumferential displacement and stress
resultant of an unrestrained thin cylindrical shell. The independent -variable E
is normalized in such a manner that §_, the total length of the shell meridian
corresponds to unity (Fig. 3b). The normalized quantities are defined

mathematically by the following equations:

- wEh - uEh 5 H o V &
=T ——, = i=u, H= — V = — =
W > | u > DR ’ DR i p ﬂ
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69 = EQE}JE e/(PRz) ’-EE = GEEhf O/I(PRZ} ’ I?e = ke.&, (3-8)

ke = ke-Bo T = E/E,, C=(1-v)E /R, el T

R=E J/R,D=1/[12(1-v?) P T*R} ,L=R/(P.T} , T ~1x/E,
where R is the larger radius, or the base radius of the truncated parabolic
shells. With the help of the normalized quantities defined in Egs. (3.8) the

fundamental set of differential Eqs. {3.6) (linear theory) becomes

g = U/7, (3.9a)
& - Beosé./T, - ~ (3.9b)
N, = Hcost, + Vsing, | | ‘ (3.9¢)
G = C N, - vg, (3.9d)
ky = B/D - vk ' © (3.9e)
N, = (& + v&) /T | _ ,, (3.9¢)
My = Diky + vky) (3.9¢)
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W = €sind, - Fcosdﬁo.f | _ | (3.9h)
i’ = §oosd, + Psind,.L _ ' (3.91)
B = kK | (3.95)
V = - (Vcosd,/T, - Rcosd,) (3.9k)
H = {(Hcos¢, - N)) /T, + Rsind } - ' (3.91)
M, = - cosd)-o(z\-l;-ll\?;)/z_'o-ﬁ T(Hsing - Vcosé ) (3.9m)
where (v o) = ?‘% (cen)

The corresponding nonlinear Equations of the fundamental set in non-dimensional

form are as follows:

Ee = il_/fo , : (3.10a)
¢ =0, - P | (3.10b)
ks = (8in®, - sind) /T, ' {(3.10¢)
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&

|

N

=l

'B'f

= Hcosd + Vsing

&‘A-’E - V-ée

M/D - vk,

It

(€ +vE€)/C

Diky + viy)

1} [}
' =)

]

- acosd(V/r - P 1)

(3.10d)
(3.10e)
(3.106)
(3.10g)
(3.10h)
(3.10i)
(3.10)
(3.10k)
(3.1@)
(3.10m)

(3.10n)



H = - G(Hcos¢-N,) /T+P Tsind) _ {3.100)

=
|

= wcos (- /T

- aP T (Hsind-Vcosd) . (3.10p)

It shouild be nétéd that some of the nondimensional sheﬁ parameters in Eqs. (3.8)
ére defined in terms of‘ £, which will depend on the geometry of the meridian
and thus should be derived for each individgal case., In some cases there is no
closed form expression for {_, and, therefore, {, has to be evaluated either from
a series expression or by numerical integration. The same is true for the
expressions of ;D and ¢, in terms of E There may not be any closed form
expression for ;o and ¢, and thus numericél integration has to be applied. For
the case of a parabolic reducer, there is no closed form expréssions for the
parameters ;D and ¢, Thus numerical integration of the dif_ferential equation,

given below is essential,

- R 3
dE 2F(1-x1) Sin’¢

Once ¢ is known, r_  is given by

[e]

[

- % f1-P(3-x1) Cot2¢}
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where

F =

xl

, a
R(1-x1)

distance between the vertex and the focus of the parabola,

larger radius of the reducer,

diameter ratio, R;/R.
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CHAPTER 4
METHOD OF SOLUTION
4.1 INTROPUCTION TOC MULTISEGMENT INTEGRATION

The fundamental set of linear Egs. (3.9} and nonlinear Egs. (3.10) together with
the boundary conditions (3.7¢) have to be integrated over a finite range of the
indepéndent Variabie :5 But numerical integration of these equations is not
possible beyond a very limited range of E‘ due to the loss of 'accuracir in solving
for the unknown boundary values, as poiﬁted out by Kalnins [36], and thus the
muitisegment method of integration developed by Kalnins and Lestingi [37] will

be used for the pfesent analysis.

The multisegment method of integration of a system of m first order ordinary

~differential equations

djg’(;)*F{x,yl(x) yYEX) o,y ™ (X)) | (4.112)

in the interval (x; £ x £ x,,,) consists of (see Fig. 3d)

a. the division of the given interval into M segments.
b. {m+1)} initial-value integrations over each segment.
c. solution of a system of matrix equations which ensures continuity of the

dependent variables at the nedal points.
d. repetition of (b) and {c) until continuity of the dependent variables at the

nodal peints is achieved.
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In Eqs. (4.11a) the symbol y(x} denotes a column matrix whose elements are m
dependent variables, denoted by y¥(x) (j = 1, 2, ..., m); F represents m functions
arranged in a column matrix form; and x is the independent wvariable. It is
assumed here for convenience that the first m/2 elements of y(x;) and the last

m/2 elements of y(xml) are prescribed by the boundary conditions.

If at the initial point x, of the segment S, (see Fig. 3d) a set of values y(x;) is
prescribed for the variables of Eqgs. (4.11a} then the variables at any x within

3, can be expressed as

V(X)) =EIy (%), y2 (%), oo y™Mx)] ' (4.11b)

where the function f is uniquely dependent on x and the system of equations
{4.11a). From Eds. {4.11b) the expressions for the small changes 6y(x) can be

expressed to a first approximation by the following linear equations:

B8y (X) =Y, (x)8y(x,) (4.11c)
where
(e arfeo e
Ayt (x;) Iy {xy) dy "{x;)
OvEex) Oyilx) (4.11d)
vt (x,) oy "(x,)
Y, (x} =
OV X e oy % (x)
| ytixy) 9y "(x4)
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Expressing Egs. (4.1lc) in finite difference form and evaluating them at

X=X,

V() -V (X y) =Y (Xy0) [V 6(X,) -y (x,) ] (4.11e)

where y' denotes a trial solution state and y denotes an iterated solution state
based on the condition of continuity of the variables at the nodal points. Egs.

(4.11e) is rearranged as

‘ Yi (X3,) ¥ (X;) Y (Kyy) ==2;(Xy,5) ' {4.11£)

where 2,000, ) =y S (xy,,) - Y, (x,,,) ¥ £ {x,)

In order to determine the coefficieﬁts Y,(x} in Eqgs. (4.11f) the jth column of Y, (x)
can be regarded as a set of new. variables, which is a solution of an initial value
problem governed within each segment Iby a linear system of first order
differential equations, which is obtained from Eqs. {4.11a) by differentiation with

respect to y'j(xi) in the form

dl ovlx) | _ __ & 1 2 m 4.11
dx{ay’j(xi}] 3y 7 () {Flx,y¥{x), ¥ (;),...,y (x)1} (4.11g)

Thus the columns of the matrix Yi(x) are defined as the solutions of m initial
value problems governed in S, by (4.11g) {(with j = 1, 2, ..., m) with the ‘initial

values, in view of Egs. (4.1ic), specified by

Y (x) = I | - (4.11h)
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where I denotes the (m,m) unit matrix. To obtain the iterated solution y{x;) Eqs.

{4.11f) are rewritten as a partitioned matrix product.of the form

so that the known boundary conditions are separated from the unknowns and,

therefore, turns into a pair of equations given by

Yi(x,,) ¥y (X)) + Y] (X, Vo (X)) -y (Xy,,) = -Z3 (%5,,)

Y3 (X)) ¥y (3 Y1 (Xg,0) ¥, () -9 (%) = -z} (x4,,) - (4.114)

The result is a simultaneocus system of 2M linear matrix equations, in which the

known coefficients Y (x,,,) and 2,){(x,,)) are (m/2, m/2) and (m/2, 1) matrices,

i+l
respectively, and the unknown, yj(xi) are (m/2,1) matrices. Since y,{x,} and
yz(xml) are known, there are exactly 2M unknowns: yl(xi), with i = 2,3, ..., M +

1, and y,(x,), with i = 1,2 ..., M,

By means of Gaussian elimination, the system of equations (4.11i) is first brought

to the form

Eiyz(xi)_yl(x.iu) = Ay

- Cin (Xiél) —¥, (xin,} = Bi | (4.11])
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for 1 = 1, 2, ..., M. Using the notations Zij and Yi"i in place of the symbols _
Z,%(x;,,) and Y, ¥x,,,), the m/2, m/2) matrices E; and C, in the Egs. (4.11j) are

defined by

E, = Y, ¢ = Y (¥

for i= 2, 3, ..., M.

The (m/2, 1) matrices A, and B, are given by

A =~ Zj - iy, (x)
B, = -~ 2 - Y2y, (x,) - YIE'A,
and a; = -z - Yici-IBi—l

B, = -2} - YIC[NB,, - (Vi + YICIL)EPA,
for i = 2, 3, ..., M.

Then the unknowns of (4.11i) are obtained by

.V1 (XM+1) = CM [BM - _‘Vz (Xml)]
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Valxy) = Ef vy, (%,,) + &,
and yl (xbf-ii-l-) = Cl\;}i [yz (x}f_jg.l) + BM—J.]

Y2 (XM—_{) = Eb;fi [YJ. (xﬂ-hl) + AM-i]

Assuming y(x,) as the next trial solution y*(x,} the process is repeated until the
integration results of Egs. (4.11a) at X,,p» as obtained from the integrations in
segment S, with the initial values y({x,), match with the elements of y(xﬁl} as

obtained from {(4.11f} and alsc with the boundary conditions at b P

4.2 DERIVATION OF ADDITIONAL EQUATIONS

In the multisegment integration technique for .a set of ordinary differential
eguations it ilas already been noted.that in addition tc; the integration of the
given set of equationé another m sets of equations represented by (4.11g) has
to be integrated. Thus, in order to apé]y the method of multisegment integration,
differential equations corresponding to Eqgs. (4.11g) for the m? additional
variables as represented in Egs. (4.11d) have to be derived. Thege differential
equations are obtained by differentiating Egs. (3.9) for the linear case and Egs. _
(3.10) for the nonlinear case with respect to each of the fundamental variables.
As the variables in any column of (4.11d) have the same fr__arm, the system of
equations (4.11g) is derived here for the variables of any one column of (4.11d)
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where the new wvariables are identified from the fundamental wvariables by the

subscript a.

From the nonlinear equations (3.10), by differentiation in succession,

€ = U/T, (4.12a)
¢, = -B. | (4.12b)
koo = B.cosd/T, | (4.126)
N, = (A,-VB.cosp + (B, + V,)sind (4.124)
o = o AT | o (4.12e)
ki, = M;,/D - vk, ' , (4.12f)
R - @ou + VEA/E | 12¢)
- B + VR - iz
T, - T, | (4.12i)
T, = &, ' (4.123)
u, = «,cosd + P, asind ' (4.12k)
W, =@ ;sind) ~ @ Bcosd | : (4.121)
‘B-fal= ke, | (4.12m)
V. = - (o cosd+a P sind) (V/T-F T) .
~ gcos®(V,/T-V I,/ | - i(4]2n)
Ff; = - @ l(Hcosd-N,) /T+P Tsind)-al{H,cosd

{4.120)

+B Hsing-Ny,- i, (Hcosd-Ny) /T) /T-P T P ,cosd)

M, = (@ ,cosd+P esing} {{M-1f) /T+P TV }

a2
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+ w(cosh[P 5’717’;+ (I\?;Q-l\?u-ﬁ;(f!;-ﬁt)/F] '
_ - . _ _ ’ _ (4.12p)
- P T*H.sing}-P T*H(® ,sin¢-&P ,cosd)

Equations (4.12a - 4.12p) have to be integrated as initial value problems m times
in each segment with the initial values given by (4.11h). It should lbe noted that
the equations {4.12) contain not only the variables {4.11d) but also the variables
of the fundamental set. Thus, Egs. (4.12) can not be integrated unless the
fundamental set of egquations is integrated first and the wvalues of _thé
fundamental variables are stored for use in Egs. (4.12). It should be further
peinted out that one point integrétion formula can not be used for the
integration of Eqs. (4.12) since this formula needs evaluation of the derivatives

at intermediate points where the variables are never evaluated.

The .corresponding equations for the linear theory are given by the homogeneous
form of Eqs. (3.9) and thus readily obtainable by dropping the load terms in Egs.

(3.9).
4.3 TREATMENT OF BOUNDARY CONDITIONS

In the introduction of the multisegment method of integration it was assumed that
the first m/2 elements of y(x) at x, and the last m/2 elements of y(x) at x,,,
were prescribed as boundary conditions. But, in general, the boundary conditions

are given as

TWyix) = b  at x,

and TwiV (Kpy) = By at X, (4.13a)

46



in which any m/2 elements of b, and any m/2 elements of b,,; may be specified
as boundary conditions. The symbols T, and T,,, represent nonsingular (m,m)
matrices which are known from the specification of the boundary conditions at

the ends of the interval.

By rearranging the rows of T, and T,,, in a special order, equations (4.13a) can
_alWays be stated in a manner such that the prescribed elements of b, and by,
become respectively the first and the last m/é elements of b, and by, ,. When this
is achieved, evaluation of (4.11f) at i = 1 and i = M, and then elimination .Of y(x,)

and y(x,,,) by means of (4.13a) yield

Y, (x,) Tith -y (%) = - Z,(x,) (4.13b)

Ti1 Yl K ) V(X = Doy = = Tir Zae{ Xy {4.13c)

The form and notation of (4.11f) can now be retained if th;e coefficient matrices
Y, (%) Yylxy,1)s Zylxy,,)s occurring in (4.11f), represent Yl(xz)Tl"l, Tuer YulEge b
and T,,, ZM(xn;l) respectively. In doing sc:;, the solution of (4.11f) will not yield
y{x,) and Y(xml) but rather the transformed variables b, and b,,;,. When vix,)
and y(xml) ai*e desired they can be obtained by the inversion of the matrix

equations (4.13a).

It should be noted here that with reference to the boundary conditions (3.7¢)
stated in terms of the fundamental variables the matrices T, and Ty, are both

unit matrices of order 6. The construction of T, and T,,, in accordance with any

M+ 1
possible statement of (3.7c} so that equations {4.13a) are in order, is treated in

Appendix A.
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4.4 DETERMINATION OF CRITICAL LOAD

it is obvious that a shell structure is at equilibrium condition when its total
potential energy, at that level of loading, is stationary and that equilibrium
condition is stable when this potential energy has got a relatively larger value
in the neighboring disturbed conditions. The governing differential equations
which are solved here always seek for the state of deformation of the shell at
which, for given external pressure, the potential energy in the deformed shape
of the shell is stationary. The (:].:'i.tica]. pressure for a particular shellr is
interpreted from the fact that any further increase in pressure above its critical
value, no matiter how small, -will cause the shell to und.ergo.ehormous deformation
(linear énd rotational) indicating that the state of deformation of the shell which
corresponds to the lowest potential energy is far off from that at the critical
pressure. Uddin [95] has also pointed out that the method o.f solution of the
nonlinear governing equalions for any value of loading parameter will fail when
the load exceeds ils critical value in the sense that the shell must deform
enormously té assume the configuration which corresponds to this load or that
the shell passes on to a secondary mode of deformalion. In both these cages, the

shell is in a state of instability which leads to its buckling.
The steps followed in finding the critical pressure are as follows:

i First the linear governing equations of the shell are solved by the
multisegment method of .integration as described earlier. With the linear
solution providing initial values o the dependent variables, the nonlinear
equations are solved by the process of iteration at the initially assigned

load.
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ii.

iii.

iv.

The nonlinear equations are then repeatedly solved for increasging values
of the load. parameter while the initial values for iteration process at any
step of load parameter are provided by the solution for immediate previcus

step of loading.

If at any step of the scheme of increasing loading steps, the iteration
process failé to converge, it first subtracts previous loading increment
from the normalized loading, then halves the load increment and adds it to
previous loading to arrive at the .new normalized loading. In this way the

equilibrium configuration path is traced against increased loading.

The critical presshré is anticipated from the load;diSplacement curves,
where the equilibrium configuration path is traced against increasing
loading and the appearance of a secondary mode of deformation 'is.
searched. This .appearance of a second solution always corresponds to the
bifurcation point as pointed out by Thompson [90} and consequently, it is
always the bifurcation point where the numerical solutions fail to converge

as the shell structures become unstable as pointed cut by Uddin [95].
It should be mentioned here that the term 'Bifurcation point’ is used here

to refer to the point of initiation of a secondary mode of deformation, be

a limit point or branching point.
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CHAPTER . 5
RESULTS AND DISCUSSIONS
51 ACCURACY AND RELIABILITY OF THE ANALYSIS

It is always desirable that the solutions obtained by a numerical technique be
compared with the corresponding results in the literature, if available, in order
to check the accuracy and reliability of the numerical method employed. It also
helps to ascertain that no error in logic is committed in formulating the problem

and no mistake has been made in the computer programming.

Actually the accurécy of the multisegment method of integration is self-
_ascertaining. Once the values of the fundamental \}ariables at the nodal points are
known from the multisegment method of integration, the fundamental set of
differential eciuations is integrated over each segment of the meridian as initial-
value integration of the fundamental set of different equations. If the values of
the funda.mental variables at the end of the segment S,, as obtained from the
initial~value integration, match up to a certain number of digits with their
respective initial values for the segment S,,; for .i =1 2,3 .... M and also with

the given boundary conditions, only then the solution scheme accepts the results.

As regard to the reliability of the problem formu]zition and computer
programming, Ref. .95 can be referred. In Ref; 95 solutions were found for
uniformly loaded circular plate with clamped edge by the present methodology
and it was found that the results are correct up to eight digits when compared

with the resulls of the corresponding analytical solution. In Ref. 95, results were
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also obtained on the variation of meridional stress and circumferential stress
along the meridian of ellipsoidal head pressure vessel based on both linear and
nonlinear theories by the present method of solution and were ‘compared with
previously eétablished results. It was found that there was hardly any difference
between these results. That the used computer program can accurately calculate
the critical pressure for axisymmetric shells of revolution of any geometry have

been demonstrated by Uddin [95, 97, 98], Haque [31,98], Rahman [63} and Ali [6].
5.2 GENERAL DISCUSSION ON RESULTS

The nonlinear differential equations of shellg, which embody the principle of
minimum potential energy, are solved for increasing values of load pafameter till
the first unstable state of équi]ibrium is reached. The onset of the first
bifurcation point is hinted by a substantial increase in the displacements and
stresses of the shell for very small increase in the load parameter. Right at the
bifurcation point, in the case of limit-point buckling, any increase of load
parameter, however. small, produces enormous deformations and, thus, the

numerical technique used here fails to converge to any solution.

That the present analysis based on axisymmetric deformations can predict the
critical condition is justified by the following two theorems, delineated by

Thompson [90].
Theorem 1: An initially-stable (Primary) equilibrium path rising monotonically with

the loading parameter can nol become unstable without intersecting a further

distinct (secondary) equilibrium path [80].
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Theorem 2: An initially-stable equilibrium path rising with the loading parameter
cannot approach an unstable equilibrium state from which the system would
exhibit a finite dynamic snap without the approach of an equilibrium path {which
may or may not be an extension of the original path) at values of the loading

parameter less than that of the unstable state [90].

Therefore, it is the initiation of the secondary path which the scheme of schution
predicts, and up to this peint, it is quite fair to assume that the deformations
were axisymmetric. After the initiation of the secondary path the system assumes

its buckled mode which can be non-axisymmetric.

The critical pressure for a parabolic reducer was calculated for different
diameter ratios (R,/R) and thickness ratios (R/h). It shouid be mentioned here,
tﬁat stability analysis is justified for thin shells with large diameters. This is
why the presented results are for thinner parabolic reducers with larger
diameters only. The investigated values of R/h and R,/R are: R/h = 500, 750,
1000, 1250, 1500, 1750, 2000 and R,/R = 0.5, 0.6, 0.7, 0.8, 0.9. Results beyond this
range of values of R,/R'and R/h can be readily obtained by using the computer
program presented in Appendix B of this thesis, if Lhey are of any importance

o the practicing engineers.

The summary of the analysis is presented in Figs.4, 5, 6, 7 and 8 and in Table-1.
Thompson’s theorem [90] is used to find out the limit point or the branching

point which corresponds to the critical load.

Table~1 gives a comparison of criltical pressures between a parabolic and a

conical reducer with identical parameters (that is, with the same diameter ratio
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and thickness ratio}, It should be wmentioned here- that same boundary
conditions, that is, clamped edges are assuméd for the comparison. It is seen that
the critical load is always higher for a parabolic reducer. For a diameter ratio
of 0.5 and thickness ratio of 500, the critical load for a barabulic reducer is 1.8
times greater than that of a conical reducer with an apex angle of 60°, 2 times
for an apex angle of 90° and 3.5 times for an apex angle of 120° This superiority
of the parabolic reducer regarding stability becomes more prominent with
increasing thinn;ess and decreasing d'iamet.er‘ratio as can be seen from Table-1,
For R,/R = 0.3 and R/h = 1500, the ecritical load for a parabolic reducer is 2.2
times greater than that for an identical conical reducer of an apex angle of 60°,
3.3 times greater for an apex angle of 90° and 6 times greater for an apex angle
of 120°. It was shown in ref. [8] that the critical pressure for a conical reducer
decreases almost linearly if the apéx angle is increased. The highest critiéa.] load
is thus for the minimum apex angle which was 60° in ref. [6]. But it is seen in
Table-1 that the critical pressure for a parabolic reducer is almost double of the
critical pressure for the conical reducer with an Qpex angle of 60° for the same

diameter ratio and thickness ratio.

The stresses developed under uniform external pressure for a parabolic reducer
and an identical conical reducer (ti‘;aiﬁ ig, with fhe same thickness ratioc and
diameter ratio) are presented iﬁ the figures 6, 7 and 8. It should be mentioned
here that same boundary conditions, thatl is, clamped edges are considered for
the comparison. From the above mentioned figures it is obvious that at the same
level of external loading, parabolic reducers develop uniform stresses of much
lower magnilude than compared to its counter parts. Fig. 6b, 7b and 8b show
that for a parabolic reducer there is no perturbations in the membrane solutions

except near the two ends. Whereas, at the same level of -loadings, the conical



reducers show perturbation;s all along the sheil mefidian, the severe ones being
near the larger end as depi.cted_ in the figures 6a, 7a aﬁd 8a. It is because of the
fact that a parabolic reducer having sufficient mémbrane stiffness can sustain
the external loa_ding without the action of the bending moments except near the
two ends at such a low level of loading. For the same reason, the solutions
predicted by the linear and the nonlinear theories are identical for a parabolic
reducer if the loading is very low (Figures 6b, 7b and 8b). It bas been found
that under external pressﬁre the meridional stress at the inner fibre (o,,) is of
the highest magnitude among the four components of stresses (g, 0., O, Ta0)
for both the reducers. It is seen from figure 6a that at a load of (P/E)= 4.21 x
1077, which is the buckliné load for that particuiar conical reducer the maximum
meridional stress at the inner fibre(o_,/E) is - 0.0015 which occurs at the larger
end. But for an identical parabolic reducer the same stress (dai/E) st the same
load is only- 0.000262 (almost six times lower than that developed in a conical
reducer) at the smaller end. That parabolic reducers are far superior to conical
ones in deve]o'_ping uniform stresses of much lower magnitude is also true for the

case of circumferential stresses (o

.1+ U.,) 48 seen frpm the Figures 6c and 6d.

Figures 7a to 7d show the stresses developed in three times thinner reducers
{R/h =1500) than the previouély discussed ones. Here also the parabolic reducers
are found to develop much more uniform stresses of lower magnitude (almost six

times lower) than by its counter parts.

Ali [6] showed that the load carrying capacity of a conical reducer decreases
almost linearly with the increase of the hpex angle keeping all other parameters
constant. Thus the reducer with the least apex angle {which was 60° in Ali's
research} has the highest load carrying capacity. But as depicted in the Figures

- 8a to 8d, the stresses developed in a conical reducer with an apex angle of 60°
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is always higher than those developed in a parabolic reducer. The highest
meridional stress (o_,/E)} for a parabolic reducer is 1.5 times lower than that

developed in an identical conical reducer with an apex angle of 60°.

Thus it is seen that under the same level of external loading, étresses are more
uniform and of much lower magnitudes in a parabolic reducer than in an identical
conical reducer in all the cases. Consequently, it is quite logical that the
buckling loads will be always higher for a parabolic reducer, that is, a parabolic
reducer will be much more stable than a conical reducer under uniform external

- pressure.

Figures 4 and 5 show the effect of thickness ratio (R/h) and dié,meter ratio
(R;/R) on the critical load, réspectively. Figure 4 is the evidence of the common
truth that, ‘thinner the 'structure, lower the critical lﬁad’, while figure & shows
" that, ‘higher the diameter ratio, higher the critical load’. Figure 5 shows that the
critical load increases slowly upto diameter ratio of 0.8 but increases at a faster
rate if the diasmeter ratio is further increased. Of course, the effect of the

diameter ratio on the critical load diminishes as the structures are made thinner.
5.3 DISCUSSIONS ON THE PATTERN OF STRESSES

The non-dimensional stresses, stress resultants and the bénding moments for
parabolic reducers with different diameter ratio and thickness ratio are presented
in the Figures 9-12, 13d4-13f, ‘14d-14f, 154-15f, 164-16f, 174-17f and 18d4-18f

considering both the linear and the non-linear theories.
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Tt should be mentioned here that the above mentioned parameters are normalized
in terms of the loading parameter. As a result, there is no variation of the
normalized parameters with the loading for linear theory. It should also be
pointed out that because of normalizing, the actual signs (positive or negative)

of the normalized parameter will be the opposite of those in the graphs.

Figures 9a-9f and 10a-10f show the wvariation of the bending momentis along t;.he
shell meridian. The presence of bending moment in effect ShUV\T-S verturbations in
the membrane solutions as seen in the Figures 13d, 14d, 15d, 164, 17d and 18d.
The presence of positive bending moments causes inward convex bending of the
shell meridian and vice versa. This will be evident from the buckled
configurations of the reducer, presented in the Figures 13c, l4¢, 15¢, 16¢, 17c
and 18c . The discrepancy between the linear and the n.onlinear' theories in
predicting the solﬁtions increases with increasing loading and decreasing
thickness, At higher loading, the linear solutions fail to predict the perturbations
in the bending mo.ments. It is also seen in Figures 8e and 9f, 10e and 10f that
for long reducers {lower diameter ratios) there is hardly any difference Between
the soh_itions predicted by the two theories except in a narrow zone near the
lérger end of the reducer, where the nonlinear solutions show sharp

perturbations in the bending moments.

The meridional stress resu}tants‘are presented in the Figures 1la-11f., Thalt linear
theory fails to provide necessary information especially at higher loadings are
evident from the above mentioned figures. The nonlinear theory on the other
hand, can me&surel the profound change in curvature and predicts stress
resultants with perturbations. It is also seen that the perturbations increases
with increasing loading and decreasing thickness. It is also notable that
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perturbations become sharper with decreasing diameter ratic and for very long
reducer it is prominent only near the larger end of the reducers as seen in the

Figures 1le and 11f.

The circumferential stress resultants are presented in the Figures 1Z2a to 12f.
Here, the effect of change in radii outweighs the effect of change in curvature.
As a regult the nonlinear theory ﬁredicts lower Val'uesr of the stress resultants
than that pl.;edicted by the linear theory. That long reducers fail due to
meridional buckling without_.appreciablel change in radil is evident from the
Figures 12e and 12f. For Lhese particular reducers the solutions predicted by the

two theories merge together as there is no change in radii.

The membrane solutions are predominant in the long reducers as seen in the
Figures 17d and 18d of meridional stresses at the inner and the outer fibres. Of
course, the presence of bending moments at the two ends, specially near the
larger end of the reaucer causes sharp perturbations in the membrane solutions
resulting in crocked deformation of the shell meridian near the largér end

(Figures 17c and 18c).

An interesting observation from the Figures 17d-17f, :18d-18f is that long
parabo}.ic'reducers are critically stt'essed near the larger end due to the
combined action of meridional and circumferential stresses but for short reducers,
this critical zone shi.ftg towards the smaller end of the reducer {Figures 13d-13f,
14d-14f). This results in local instabilﬁty near the larger end for long reducer
and near the smaller end for a shorter one, as evident from the load-

displacement curves and the buckled states of the reducers are discussed later.
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5.4 DISCUSSIONS ON THE MODES OF BUCKLING

An interesting observation from the present investigation is that long parabolic
reducers {lower diameter ratiog) are prone to local instability at the larger end
as shown in the buckled configurations of the reducers in the Figures 17c¢ and
18c where the adjacent material points on the shell meridian are severely
displaced in opposite directions resulting in crooked deformation of the reducers
near the larger end. On the other hand, short parabolic reducers ( higher
diameter ratios) are most critically stressed near the smaller end and thus short
reducers are prone to local instability away from the larger end. For ready
reference Figures 13c, 14c¢ are presented, where the waviness in the buckled
shell meridian are seen near the smaller end. Tt should be mentioned here that
waviness in the shell meridian, whether sharper (in long reducer near the larger
end) or flatter (in short reducer near the smaller end), is produced by sinusoidal

variation of bending moments which weaken the reducers.

The critical load which corresponds to the first bifu?cation point is anticipated
from the load-displacement curve [equilibrium path) by noling the initiation of
a distinct secondary mode of deformation, Qhether the bifurcation point is a
limit point or a branching point. The critical pressure of the shell is interpreted
from the fact that the mode of primary deformation along the fundamental
equilibrium path of a structure can not change without a change in its status of
stability as pointed out by Thompson [90]. The load-displacement curves are
presented in the Figures 13 to 18. Tl’;e total meridional distance in between the
two ends of the reducer is equally divided into :four parts and the load-
displacement curves are plotted for three equidistant material points along the

shell meridian. Thus the points are at a distance of 25%, 50% and 75% of the
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m‘eridional length of the reducer from either df the fwo ends. This is done to
 anticipate which portion of the shell méridian is most severely displaced under
loading. As for example, it has been observed that for long parabolic .reducers
{(lower diamete;r ratios} the material points at a distance of 25% from the larger
end ( E =0.83 } are most severely displaced both radially and axially, during
buckling (Figures 17a, 17b, 18a, 18b), indicating local instability near the larger
end. On the other hand, a short parabolic reducer (higher diameter ratios} is
prone to local instability near the smaller end, as (:hé material points at a

distance of 25% from the smaller end { § =0.85 ) are most severely displaced

during buckling {Figs. 13a, 13b, 14a, 14b).

The stress variations along the shell meridian (Figs., 13d-13f, 14d-14f, 15d-15f,
-16d4-16f, 174-17f, 18d-18f) are in complete harmony with the failure pattern of the
particular type of reducer as indicated by the load-displacement curves. It has
béen observed that for a long reducer, the material points along .thé shell
meridian near the larger end are most critically stressed by the combined effect
of the meridional and the circumferential stresses (Figs. 17d-17{, 18d-18f) which
in turn causes the severe displacements of those points near the larger end.
.Conversely, for a short parabolic reducer the portion near the smaller end is
most critically 'stressed (Figs. 13d-13f, 14d-14f) indicating that local instability

is likely near the smaller end.

Thus from the above discussions it can be concluded that longer the reducer
{that is lower the diameter ratio) higher is the buckling tendency near the larger
end and vice versa. However, we have already seen that increasing the diameter

ratio increases the buckling load {Figs. 4 and 5.
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It should be mentioned here that the present anhalysis is based on the elastic
deformations of the shell material. The following discussions, therefore, point out
whether or not the maximum stress in the shell material remains within the elastic

limit of the material at the critical load,

For ready identification, each parabolic reducer has been diven a four digit
number. The first two digits represent the radius thickness. ratio {(R/h} in

hundreds and the last two digits represent diameter ratio (R,/R) in hundredths.

To show the effect of diameter ratio and thickness ratio on the stress
distributions and critical loads, two sets of representati.ve shell elements are
chosen. The chosen diameter ratios (RI/R) are 0.5, 0.7 and 0.9 for each of the

thickness ratios (R/h) 1000 and 1500.

SHELL-1090: Shell parameters are radius thickness ratio (R/h} = 1000, diameter
ratio {R,/R) = 0.90. The critical pressure (P, /E) for this shell element was found

to be -1.93 x 107C.

From the detail cutput of the results, for this very short reducer, it is found
that the maximum non-dimensional stress [o/(PR/h)] is the meridional stress of
the inner fibre at the smaller end (-é = 0.796) and its value is 1.43. Assuming the
shell material to be steel, the actual value of this stress comes out to be =580
MPa. The wyield strength of high qﬁali_ty steel is as high as 1800 MPa. Therefore,
the induced maximum stress is well below f;he yvield strength and it is concluded
that the deformations are elastic. The bifurcation point (which . mmay be a limit

point or a branching point) is anticipated from the load-displacement curves by

noting the initiation of a distinct secondary mode of deformation.
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Figures 13a and 13b show the load-displacement curves for this short reduc.er‘.
It is seen that the material poinfs at a melé‘idional distance of 25% (E = L.85) from
the smaller end are most severely'displaced during buckling as buckling initiates
in that region. It is also seen from Figures 13d-13f that this particular region
is most critically stressea prior to buckling. So we can c;:mc],ude that this very
short parabolic reducer (R,/R = 0.90) is préne to local instability near the smaller

end,.

SHELL-15390: Shell parameters are radi{;s thickness ratio (R/h) = 1500, diameter
ratio (RI/R) = 0.90. This shell element is 1.5 times thinner than the previously
discussed shell element (SHELL-1090). The critical pressure (P_ /E) for this shell

element was found to be -9.6 x 107,

From the detail output of the results, for this very short reducer, it is found
that the maximum non-~dimensional stress [o/(PR/h)] is: the meridional stress of
the inner fibre at the smaller end (-é = 0.796) and its value is 1.56. Assuming the
shell materi_atl to be steel, the actual value of this stress comes out to be -472
MPa, The yield strength of high quality steel is as high as 1800 MPa. Therefore,
the.induced maxi.iﬁum stress is weH helow the yield strerigth. and it is concluded
that the deformations are elastic, The bifurcation point {which may be a limit
point or a branching point) is anticipated fré:m the load-displacement curves,

indicated by the initiation of a distinct secondary mode of deformation.
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Figures 14a and 14b show the loéd-displacement curves for this short reducer.
It is seen thatl the material points at a meridional distance of 25% (§{ = 0.85) from
the smaller end are most severely displaced during buckling as buckling initiates
in that region. It is also seen frorﬁ Figures 14d-14f that this particular region
is most critically stressed prior to buckling. So wé can conchude that this short
parabolic reducer (RI/R = 0.90) like SHELL-1080 is prone to local instability near

the smaller end.

SHELL-1070: Shell parameters are tradius thickness ratio (R/h) = 1000, diametelj
ratio (R,/R) =l0.70. The critical pressure (P_/E) for this shell element was found

" to be -1.23 x 1075,

From the detail output of the .resu}ts, for this short reducer, it is found that the
maximum non-dimensional stress [o6/(PR/h)} is the meridional stress of the inner
fibre at the smaller end {E = 0.50) and its value is 1.53. Assuming -the shell
material to be steel, the actual value of this stress comes out to be -395 MPa,
well below the yield strength of good quality steel. So it is concluded that the

deformations are elastic,

The load-displacement curves for this short reducer show that the material points
from the smaller end up to half of the meridional di-stan_ce.are nost severely
displaced during buckling (Figures 15a and 15b). The stress curves (Figures
15d-156f) show that the above mentioned portion is critically stressed prior to
buckling, indicating that buckling initiates in this region for this particular

reducer.
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SHELL-1570: Shell parameters are radius thickness ratio (R/h} = 1500, diameter

ratio (R;/R) = 0.70. The critical pressure (P_/E) for this shell element was found

to be -5.63 x 10°7,

This shell element is 1.5 times thinner. i‘;han SHELL-1070. From the detail output
of.the results, for this short reducer, it is found that. the maximum non-
dimensional stress [o/(PR/h)}] is the meridional stress of the inner fibre at the
smaller end (E = L.50) and ité value is 1.21. Assuming the shell material to be
steel, the actual value of this stress comes out to be ~218 MPa, well below the

vield strength of steel. So it is concluded that the deformations are elastic.

The load-displacement curves for this short reducer show that thg material points
from the smaller end up to half of the meridional distance are most, severely
digplaced during buckling {Figures 16a and 16b). The stress curves (Figures
16d-161) é.how that the above mentioned portion is critically stressed prior to
buckling, indicating that buckling initiates in this region for this particular

reducer.

SHELL-1050: Shell parameters are radius thickness ratio (R/h) = 1000, diameter
ratio (R,/R) = 0.50. The critical pressure (P_/E) for this shell element was found

to be -1.14 x 1078

This shell element represents a long parabolic reducer. From the detail output

of t'he results, for this long reducer, it is found that the maximum non-
dimensional stress [o/(PR/h}] is the meridional stress of the inner fibre at the
smaller end (E = 0.30) and its value is 1.32. Assuming the shell material to be

steel, the actual value of this stress comes out to be -316 MPa. Therefore, this
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induced maximum stress is well below the yield strength and it is concluded that

the deformations are elastic.

That long parabolic reducers are prone to local instability near the larger end
{unlike the shorter reducers) are verified from the load-displacement curves
(Figures 17a and 17b) and the stress distribution along the shell meridian

{(Figures 17d-17f). The load displacement curves show how sharply the rate of

deformation of the material points at a distance of 25% of ils length from the

largér end (E = (.83) are changed just after the bifurcation point is exceeded.
The stress curves (Figures 17d-17f} show that this particular portion of the shell
meridian (.:; = 0,80 - 1} is under high meridional and circumferentiai stresses. The
buckled configuration of the reducer (Figure 17¢) is also the evidence of the fact
that longer the reducer (lower the diameter ratio) the higher is the buckling
tendency near the larger end.

SHELL-1550: Shell parameters are radius thickness ratio (R/h) = 1500, diameter
ratio (R,/R) = 0.50. This shell element is 1.5 times thinner than the previously
discussed shell element (SHELL-1050). The critical pressure (Pcr/E) for this shell

element was found to be -5.30 x 1077,

This shell element show iLhe same behavior as shown by shell element 1050 under
load. But the perturbations in the stress curves are sharper resulling in much

lower criticdl load, obviously because of the increasing thinness.

From the detail output of the results, for this long I.'edlij.‘cer, it is found that the
/

maximum non-dimensional stress [o/(PR/h}] is the meridional stress of the inner

fibre at the smaller end {E = 0.30) and its value is 1.3. Assuming the shell
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material to be steel, the.actual value of this stress comes out to be -217 MPa.
Therefore this induced maximum stress is well below the yield strength and it is

concluded that the deformations are elastic. .

That long parabolic reducers are prone to local instability near the larger end
(unlike the. shorter reducers) are verified from the l.oad-disp]‘acement curves
(Figures 18a and 18b} and the stress distribution along the shell meridian
{Figures 18d-18f). The load displacement curves show how sharply the rate of
d(_aforma.tion of the material points a_t a distance of 25% of its length from the
larger end (é = 0.83) are changed just after the bifurcation point is exceeded.
The stress curves .(Figures 18d—18f} show that this particular portion of the shell
meridian {-E = 0.80 - 1) is under high meridional and circumferential stresses.
From the abové discussions and observing the buckled configuration of the

reducer (Figure 18¢c), we can conclude thal unlike shorter parabolic reducers, the

longer ones are prone to local instability near the larger. end.
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CHAPTER &

CONCLUSTONS AND RECOMMENDATTONS

6.1

CONCLUSIONS

The following has been achieved from the present analysis:

Starting with the Reissner’s equations for axisymmetric deformations of
shells of revolution, critical pressures and stress distributions for

parabeolic reducers are obtained.

The parabolic pipe reducers are far superior to conical reducers in

developing uniform st:;esées of lower magnitude under the same level of
external leading., From the stress distribution along thg meridional length,
it has been found that the regions near the fixed edges are most critically
stressed. It has also been observed that long parabolic reducers (lower
diameter ratios) are critically stressed near the larger end of the reducer
but this critical zone shifts away from the larger end as the diameter rati;.n

is gradually increased.

It has been observed that parabolic reducers are much more stable than
the conical reducers under uniform external pressure, The.ratlio of the
critical pressure of a parabolic reducer to that of a c-onical reducer { with
the same diameter ralio and thickness ralic } increases with increasing

thickness ratio and decreasing diameter ratio.
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4, - For a parabolic reducer, the critical load increases with the increasing
diameter ratio but the effect of the diameter ratio diminishes as the

reducers are made thinner,

o For practical uses, specific reducers can be designed using the presented

results.
6.2 RECOMMENDATIONS FOR FUTURE WORK

In the light of the experience gained while achieving the set objectives of this
thesis, the author feels that the following further investigations will enrich the

field of the present work:

1. In the present analysis the edges of the parabolic reducer are taken to be
completely restrained. But, in practice, even with thick-flanged-edges,
there will always be some degree of axial and rotational flexibility. It is
thus felt that the present investigation should be extended to include

various degrees of edge-flexibility of this kind of reducers.

2, It is assumed in this analysis that the parabolic reducers are perfectly
axisymmetric and the thickness of the reducer-wall does not vary either
axially or circumferentially., This kind of idealization can hardly be
attained, no matter how good is the fabrication process. It is thus felt that
the present analysis should be extended to include the investigation of the
effects of different degrees of deviations from a‘x‘isfmme‘try and also the
effects of variations in thickness, axially and circumferentially, separately
as well as combinedly. |
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3.

Thé present investigation haé revealed the fact that the proposed parabolic
reducers are far superior to the traditional conical reducers as far as
uniform distribution of stresses and the buc-kliné loads are concerned. The
author feels that analysis with other geometrical shapes of the pipe
reducers may yield better results. It is thus recommended that the present
investigation can be extended to include reducers of other geometrical

shapes.
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Table-1: Comparison of Critical Pressure Between a Parabolic Reducer and a Conical
Reducer with Clamped Ends. '

P h
R
] T
— t
|
L P
. ; ‘ , o
i Diameter | Thickness | Critical Pressure {Pcr/E} for Conical Critical Pressure
Ratio | Ratio | Reducer [Ref.6] - {Per/E) for
{R,/R} {R/h) | ‘ ' + Parabolic reducer
. | P Aipex. Angle (Z‘T} 7 [Present Analysis]
| l 50° L gpe i 120°
| 3500 | 30 % 107 | 24 x 107 |l 3x107 | 3 x 10
0.5 L1000 | 7% 107 | 5% 107 | 28 % 107 | 114 X 1077
{ I i i - .
L1500 3%107 | 21X 1077 | 1 x 107 , 5.3 X 1077
500 | 25 %107 | 17107 | 54 10°7 50 X 1077
: ] B T - -
0.3 L1000 ; 86X 107 | 3.9 3 107 2°% 1077 11.3 %.1077
1500 ! 2.65 ¥ 10-7 | 1.60 X 1077 | 0.85 X 1077 | 5.02 X 1077
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Fig. 1 Middie surface of shell

Z Side view of element of shell
in defor

o arlow of el _ Fig. 2b Elemetit of shell showing
med an undef_ormgd states stress resultaits drid couples
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vertex of Parabola

R 5 l
i , f Axis of revolution

Fig.3a Geometry of the parabolic reducer

R/h = Thickness ratio

Rf /' R = Diameter ratio

Fig. 3b Parabolic reducer
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2'R1

RADIUS - THCKNESS RATIO = Ry,
RADUS REDUCTION RATIO= Ry,

TAPPER RATIO = 1- Ryq

2R

Fig. 3c Parameters of truncated conical shell element [Ref.6]

Flg 3d  Division for multisegment integration
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Fig.6b Meridional stresses for a Parabolic reducer with thickness ratio
(R/h)= 500 and diameter ratio (R{/R)=0.5 [Present Analysis:l |
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thickness ratio (R/h)= 500 and. diameter ratio (R,/R)=0.5 [Present Analysis]
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Fig.7a Meridional stresses for a 150 apex-angle frustum with
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Fig.Tb Meridional stresses for a Parabolic redﬁé_er with thickness ratio
(R/h)=1500 and diameter ratio, (R;/R)=0.5 [Present Analysis]
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APPENDIX — A

PROGRAMMING FEATURES

A.1  GENERAL FEATURES

The computer program..used in the present investigation is adopted from that of
Uddin [95] with necessary modifications to suit the requirements of solving‘
stability problerﬂs of truncated parabolic shell elements under uniform external
pressure. The program is based on Reissner’s n,onlinear-theory of axisymmetric
deformation of shells of revolution [69] while the multisegment wmethod of
integration developed by Kalnins and Lestingi [37] takes care of soEviﬁg the
governing equations and the integration process is carried out by a predictor-
corrector method. The predictor and corrector are given, respectively, by
formulas (19.16) and {19.17) of Ref. 49. To secure the six starting values
necessary for the application of Lhis pair of‘ 'predi‘ctor and corrector, the six-
point formulas {19.10-19.14} of Ref. 49 are being used. It should be noted here
that all these formulas contain an error of the order of H' where H is the
distance between two consecutive computational points, and, thus, th.ey are highly

sophisticated.

The shell meridian is divided into eleven cdmpﬁtational points. The program first
prints out the values of the fundamental variables (G, _1-3, 1.:', {I, !-i, 1-\-45) based on
linear theory which is followed by the print-out of nonlinear results for the same
loading parameter. From here on, the program will produce nonlinear results for

increasing loading steps;
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The program also prints out detail results in terms of radial displacement {1_, axial
displacement ;v, ci.rcumfereh.tial moment i\-du, meridional moment ;16’ circumferential
stress resultant ]:Is’ meridional stress resultant I\IE,' circumferential stress at the
inner surface o.;/(PR/h), circumferential stress at the outer surface ﬂco)’(PR/h),

meridional stress at inner surface o,;,/{PR/h}, and meridional stress at the outer

surface oao/(PR/h) in that order, columnwise.
A2 TREATMENT OF BOUNDARY CQNDITIONS

Equations {(4.13a) written in terms of normalized fundamental variables and in

aceardance with the statement of Eqs. (3.7¢) appear as

»

o0 0 o o o] [aC (3 ]

0 1 0 0 0 0 B B

0 0 1 0 0 0 W = w (A-1)
0 0 0 1 0 0 v v

0 0 0 0 1 0 H H

0 0 0 0 0 1_1 ] MU | M |

& - . )
In the matrix Egs. (A-1) the elements of the column matrix on the left hand side

remain in the same brder, whereas, those on’ the right hand side should be
arranged in such a manner that the three prescribed eleihents at the boundary
become the first three elements of this column matrix, Accord_ing to Egs. (3.7¢),
if u is specified at the boundary, the first and the 5th rows of the unit-matrix
of (A-1) remain the same, while specification of ;I at the boundary will require

the interchange of these two rows which will interchange u and H in the column

matrix on the right hand side. Similarly, if B is specified at the houndary, the
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second and the last rows remain as they are, and interchanged when Itie is
specified. Lastly, the third and the fourth rows of the unit-matrix are kept the
game or interchanged depending on whether w or ; is specified at the boundary.
The same operation is carried out for both the boundary poinis. The transformed
unit matrices of (A-1) are then designated by T, at the starting boundary and

by Ty,; at the finishing boundary.

A.3 ON THE USE OF THE PROGRAM

In order to use the program for obtaining solutions of different problems the
knowledge of the definitions of input and output variables is essential. Therefore
these wvariables with their definitions are given in the table at the end of

Appendix A,

In part A of the program the necessary information required for the solution of
a problem is read in. The first three 'READ’ statements read the initial values of
the loading parameter ‘EM’, the wvalue of incremental step of the loading
parameter 'EM1’, the number to which the shell meridian will have to be divided
'M’!, Poisson ratio of the shell material ‘AN’, the numbe-r of loading steps 'SOBRI’,
radius~thickness ratio 'T’, and the diameter ratio ‘XL’ The next 'READ’ statemeﬂt
reads the arbitrary given values of the independent wvariable X{(J,1} and the
initial values of the six fundamental variables X{J,I), (I=2,7), for nodal points J,
(J = 1, M+1). The wvalue of the independent variable is later on adjusted based
on the diameter ratio 'XL’. The boundary values for any three of the six

fundamental variables at the starting boundary are accepted by the fifth ‘READ’
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statement. In case of the present analysis of clamped ends parabclic reducers,

the prescribed boundary conditions are:

XX (1,1) = u = 0.0
XX (2,1) = B = 00
XX (3,1) = w = 0.0

The sixth 'READ’ statement. reads in the three prescribed boundary conditions at

the final boundary. For the present analysis, these three boundary conditions

are: S
Xy (4,1 = w o= 0.0
XY (2,1) = u = 0.0
XY (3,1) = B = 0.0

The values of the boundary conditions indicators at the starting are read in by
the seventh 'READ’ statement. The appropriate values of the indicators 'IS1’,

‘IS2’, and 'IS3’ are given in the following table:

Specified quantity Indicator and its value
u IS1 = 0
B 182 = 0
w 1S3 = 0
y 153 = 1
H 1St = 1
M, 182 = 1
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The eighth and the last 'READ’ statement accepts the boundary condition
indicators at the final boundary. Their appropriate value are given in the above
table where the quantities ‘IS1’, ‘IS2’, and ‘IS3’ lshou]d be replaced by ‘IF1’,
‘IF2’, and ‘TF3’, respectively, In the initialization block of part A of the program,
certain quantities are initialized and certain fixed parameter of the shell are

calculated.

Part B of the program deals with the problem of adjusting the given boundary
conditions with regalrd to the solutions of the matrix equations. Part € of the
program concerns with the calcuiation of nomﬁalized congtants involving shell
parameters, material constants, and loading. Under part D of the program the
output of the results is handled. The ﬁmaining portion of the program deals with
the integration of different systems of differential equations and the solution of

matrix equations.
A4  OUTPUT OF THE PROGRAM

The first output will be the given initial nodal values of the independent variable
E and the six fundamental variables ﬁ, é, \:r, 6, ﬁ and I\_/IE, in their written order
column wise, and in tabular form. The first output will also accompany the
various input parameters and indices. The second oﬁtput gives the value of
pumber of pass, I‘ES_idue— the sum of the differences of the absolute values of the
fundamental variables at the nodal points of the two recent consecutivé passes,

and the present value of the normalized load.

The first output is then repeated for solution based on linear theory. The next

output presents the details of the solution based on the linear theory. Here the
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following quantities are printed out in tabular form and in the order of E, f:., ‘:r,
I:ie, 1315, I:TB, I;FE, o ,/(PR/h}, o_/(PR/h), o, ,/(PR/h}, Uao/j{,PR/h} column wise. For
each segment these quantities are printed out at six eéuidistant points. This can
be changed to twenty-one or eleven poinis by simplly changing the increment of
the loop parameter of part D of the program that handles the output of results.
With the resulis of first linear output, the linear solution is repeated once again
£o get better solution. After the print-out of the second linear solution, there will
be repetition of the second and first out-pui (now based on nonlinear theory)
for a number of times until the sq]ution converges, When convergence is attained
the details of the nenlinear solution will be printed out.l The solution at the nodal
points are printed oul twice, first-based on the initial value integratioh and

second-based on the solution of matrix equations, to check the accuracy of the

results.

From this point onward the nonlinear solutions will be repeatedly printed out for

increasing loadings.

The output files 'AX’, 'RD’ and ’SHAPE’ are opened additionally for the
convenience of plotiing the load-deflection curves and the deformed shell
meridian., The first column of the output file ’AX’ prints out the absoclute value
of the loading parameter (P/E} while the rest of the columns print out the axial
displacements { wh/RZ) for the nodal points along the shell meridian., Similarly, the
output file 'RD’ prints out the radial displacements {uh/Rz). In the output file
'SHAPE’ the first anci the third columns print out the points alon.g the shell axis
while the second and the fourth columns print oﬁt the corresponding points
along the shell meridian before and after deformation for the increasing values

of the loading parameter.
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A5  TABLE OF INPUT-QUTPUT VARIABLES OF THE PROGRAM -

- TK

Variable Definition
EM EM = P/E, Normalized load '
EM1 Increasing step of EM
FOC a/(R~R,), FOC=1 for the present analysis
SOB1 Number of desired loading step
M Number of segments
PH(I} Meridional angle at the nodal point 1
RC Constant R = £_/R
AN Poisson’s ratio v
XL R1/R, Diameter ratio
R/h, thickness ratio
X(1,1) £ at the nodal point I
X{2,1) u at the nodal point I
X(3,I) B at the nodal point I
X(4,I) w at the nodal point I
X{5,1) V at the nodal point 1
X(8,1) H at the nodal point I
X(7,1) M, at the nodal point I
XX(1,I) value of u or H at the starting boundary
XxX{2,1} value of f3 or &IE at the starting boundary
XX(3,1) value of w or V at the starting boundary
XyY(1,I} value of 1 or H at the finishing boundary
Xy{(2.I) value of B or 5-45 at the finishing boundary
XY{(3,I) value of w or V at the finishing boundary
ISl,ISZ,IS3 indicators of boundary conditions at the starting boundary
IF1,IF2,IF3 indicators of boundary conditions at the finishing boundary
NP Number of Pass; NP = 1 indicates linear solution
T22(N)* Ny = N/ (P.R)
T7(N) N, = Ny/(P.R.)
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TY(N) M, = My/{P.R.h)

Y(1,N) € = E/E,
Y(2,N) a = uEh/(P.R?)
¥{(3,N) B =5
Y(4,N) @ = wEh/(P.R?)
¥(5,N) V= v/ (P.Rf).
Y(6,N) H = H/(P.R)
Y(.N) M = M/(P.R.h) |
ST1 0,,=0_,/F ; nor@alized circumferential stress at the inner surface

of the shell

ST2 0,,=0.,/E 1 normalized circumferential stress at the outer surface

of the shell

ST3 G,,=0,,/E ,» normalized axial stress at the inner surface
ST4 0,,=0,,/F » normalized axial stress at the outer surface
* N denotes points in a segment at which the variables are evaluated.

135



}kI?I?IE)II)]I}{——IB

PROGRAM LISTING

T T e e e L M e e G R WA SN WE R TR R TR M e ey T e e e b e e U ML G A R TR e

PROGRAM FOR SHELL ANALYSIS

. e B . i i e i L e W P ey e M e e Al M M W M A TR T Y W ey e e e e b -

REAL*8 X(21,7),¥(7,21),2(7,6),Y1(7,21),Y2(21,3),¥Y3(21,3)
REAL*8 H(32),IG(20),APH(20),X7(21,7),AK(4),T22(21),32(3,1)
REAL*8 AY(3,1),BY(3,1),F(7,21),%X2(3,1),R0(21)

REAL*8 TS1(3,3),TS2{(3,3),T83(3,3),TS4(3,3),TF1{3,3),TF2(3,3)
REAL*8 TF3(3,3),TF4(3,3),A14(3,1),215(3,1),A16{(3,1),A17(3,1)
REAL*8 A18(3,3),0(21,3,3),A(21,3),E(21,3,3),B(21,3),X1(3,1)
REAL*8 €1(21),C2(21),T7(21),T9(21),T10(21),R(21),PH({21)
REAL*8 21(3,1),A1(3,3),A2(3,3),A3(3,3),A4(3,3),A6(3,3)
REAL*8 A7(3,3),A8(3,3),A9(3,1),A10(3,1),A11(3,1),A12(3,1)
REAL*8 XX(3,1),XY(3,1),U(6,6),22XX(21),22ZNN(21),X¥YX4(21)
REAL*8 ROO({21),YYN(21),XYX2(21),T3,T,T21,TM

REAL*8 PB2,RC,AKL,EL,FL,DR,TO,TL,ZZ,FF,P3,DP,PHI,ALP
OPEN(1,FILE='INPUT', STATUS='0OLD')

OPEN(3,FILE='0OUT', STATUS='UNKNOWN', RECL=1400)
OPEN{4,FILE='AX', STATUS='UNKNOWN', RECL=1400)
OPEN(5,FILE='RD', STATUS='UNKNOWN',6 RECL=1400)
OPEN(7,FILE='SHAPE', STATUS='UNKNOWN',RECL=1400)

NP=0

IN=1

SOB2=0.

88=1.
N2=6

N3=3
PB2=1.5707963268 : o

FOC=1.

M

",
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" READ(1,110)EM1,808B1,XL

WRITE(3,110)EM1,8081, XL

25 READ(1,59)M
WRITE(3,59)M
READ(1,110)AN,EM
WRITE(3,110)AN,EM
READ(1,1100) T
WRITE(3,1100) T

1100 FORMAT(10F7.2)
MO=M+1
DO 169 I=1,M0O
Do 170 J=1,7

170 X{I,J})=0

169 CONTINUE
READ(1,41){XX(1,1)
WRITE(3,41)(XX(TI,1
READ(1, 41)(XY(I 1)
WRITE(3, 41)(XY(I 1
READ{1,59)181,182,183
WRITE(3 ,59)181 ISZ I83
READ(1,59)IF1,1IF2, IF3
WRITE(3 ,59)IF1 IF2 IF3

3
)

I
I
' )

1=1,3)
y,I=1,3
,I1=1,3)
},I=1,3

FR1=8QRT(FOC)
FR2=SQRT{FOC+1.)
ZFZ=FR2+SQRT(1.)
YFY=FR1
RC=XL+(FR2+FOC*ALOG(ZFZ/YFY) ) *(1.-XL)
P=PB2
ANGB=DP
DR=1. /RC
SEGL=1./REAL(M)*(1.-XL/RC)
X{(1,1)=1.
DO 171 I =1,M

171 X(I+1,1)=X(I,1)-SEGL
WRITE(3,41)((X{J,1),I=1,7),3=1,M0O)
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* PART B.(TREATMENT OF BOUNDARY CONDITION)

DO 21 I=1,N3
DO 21 J=1,N3
TS1(1,J)=0
782(1,J)=0
T83(I,J)=0
TS4(I,J)=0
TF4(I,J)=0.
TF3(I,J)=0
TR2(I,J)=0
21 TF1(1,J)=0
IF(I81)
23 TS1(1,1

24 TS2(1,2

27 IF(IS2)

I couan
[N ]

29 T82(2,3

TS3(3,2
30 IF(IS3)
33 TS1(3,3

Imwhn H
(-

34 TS2(3,1

TS3(1,3
35 IF(IFl)
36 TF2(1,2

i o
L.

37 TP1(1,1

TF4(2,2
38 IF(IFZ)
39 TF2(2,3

OC)\.OOO ODONNDOD O oowcso QOO DoWoooODOCOD

40 TF1(2,2

TF4(3,3
819 IF(IFB)
84 TF2(3,1

H N o#& i1 il kb wH i

87 TF1(3,3)=
TF4(1,1)=
88 CONTINUE

et Pt OO et ot O e et b e v (Y e et QL) e e () e e (T e v (1) et e (D) e S N-.__.,-.._a R P E\)

P
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* PART C. (CALCULATION OF CONSTANTS)

DO 31 J=1,M _
31 H(J)=(X(J+1,1)-X(J,1)}%.05
205 CONTINUE

DP=ANGB

DR=1./RC
26 DO 1 J1=1,M

T%=1.+AN

T1=RC*(1.-AN*AN)

T21=EM*T

TO=1./(12.*TL*EMXTT)

TL=RC/T/EM

TM=EM*T*T

PR=EM*T

N=1

Do 32 I=1,7
32 Y(I,N)=X(J1,1)

DO 300 I=1,21

IF(I-21)312,306,306
312 ¥(1,I+1)=Y(1,I)+H(J1)
306 PH(I)=DP

RO{I)=DR

2ZXX(I1)=2.*FOC*{1.-XL)/DTAN(DP)

 ZZ=PH(I)

DO 310 J=1,4
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FF=0.5%(RC/FOC)/(1.-XL}*(SIN(ZZ) )}**3.
AK(J)=H(J1)*FF

GO TO (311,311,314,310)},J

311 V=.5
GO TO 316
314 v=1.

316 2Z=PH(I)+V*AK(J)

310 CONTINUE
DP=PH(I)+(BAK(1)+AK(4)+2.*x(AK(3)}+AK(2)))/6.
DR=(1.~-FOC*(1.-XL)/TAN(DP)*1./TAN(DP))/RC

300 CONTINUE

DR=RO(21)

DP=PH(21)

N1=1
K e i e A e o = = R e e e W S e -
* INTEGRATION OF FUNDAMENTAL SET STARTS
K e
60  NO=0

46  CONTINUE
IF(NP-1)111,111,199

199  T2=Y(2,N)/RO(N)
T3=PH(N)-Y(3,N)
C1(N)=DCOS(T3)
C2(N)=DSIN(T3)
T4=(DSIN(PH(N))-DSIN(T3))/RO(N)
T5=Y(6,N)*C1(N)+Y(5,N)*C2(N)
T22(N)=T5
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T8=T1*T5-ANT2
T6=(Y(7,N)~ANXTOXT4) /TO
T7(N)=(T2+ANXT8) /T1
T (N)=TOX (T4+ANXT6)
T10(N)=TL+T8
R(N)=TL*RO(N)+¥(2,N)
F(2,N)=T10(N)*C1(N)-DCOS{PH{N))*TL
F(3,N)=T6
F(4,N)=T10(N)*C2(N)-DSIN(PH(N))*TL
F(5,N)=-T10(N)*(Y(5,N)*C1(N) /R(N)-PR*C1(N))
P(6,N)=-T10(N)*((¥(6,N)*C1(N)-T7(N))/R(N)+PR*C2(N))
F(7,N)=(T10(N)*CL(N) /R(N))*(TO(N)=Y(7,N))-T10(N)
1%(Y(6,N)*C2(N)-Y(5,N)*C1(N))*TM
GO TO 200

111 C1(N)=DCOS(PH(N))
C2(N)=DSIN(PH(N))
T2=Y(2,N)/RO(N)
T4=Y(3,N)*C1(N)/RO(N)
T5=Y(6,N)*C1(N)+¥(5,N)*C2(N)
T22(N)=T5
T8=T1%T5-ANXT2
T6=¥(7,N) /TO-ANXT4
T7(N)=(T2+AN*T8) /T1
T (N)=(T4+ANXT6 ) XTO
F(2,N)=T8%C1(N)+Y¥(3,N)*C2(N)*TL
F(3,N)=T6
F(4,N)=T8*C2(N)-Y(3,N)*CL(N)*TL
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200
43
44

42

81

47

P(5,N)==(Y(5,N)/RO(N)-RC)*C1(N)
F(6,N)=-(Y(6,N)*Cl(N)—T?(N)}/RO(N}—RC*CZ(ﬁ)
TX=-(¥(7,N)-T9(N))/RO(N)
F(7,N)=TX*C1(N)-RCXT* (Y (6,N)*C2(N)-¥(5,N)*C1(N))
IF(N-2)42,43,43

IF(N-6)44,47,45

N=N+1

GO TO 46

DO 81 J=2,6

P2=FLOAT (J-1)

P3=P2*H(J1)

Y(1,3)=¥(1,1)+P3

DO 81 1=2,7

Y(I,J)=Y(I,1)+P3*F(I,1)

N=2

IP=1

GO TO 46

DO 48 1=2,7
2(1,2)=Y(T,1)+(H(J1)/1440.)*(493.%F(1,1)+1337.

"1%F(I,2)-618.%F(I,3)+302.%F(1,4)-83.*F(I,5)+3.*%F(I,6})

Z(I,3)=Y(TI,1)+(H(J1)/90.)*(28.%F(I,1)+129.%F(I,2)
1414, %F(T1,3)+14 . %F(I,4)-6.%F(I,5)+F(1,6))
7(1,4)=Y{I,1)+(3.*H(J1)/160.)%(17.*%F(I,1)+73.*%F(I,2)
1+38.%(F(I,3)+F(I,4))-7.%F(I,5)+F(I,6))
3(1,5)=Y(1,1)+(4.*H(31)/90.)*(?.*(F(1,1)+F(1,5))

1+32.%(F(1,2)+F(I,4))+12.%F(1,3))
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48 Z(TI,6)=Y(I,1)+(5.%H(J1)/288.)%(19.*(F(I,1)+F(I,6))
1475, % (F(I,2)+F(I,5))+50.%(F(I,4)+F(I,3)))
R1=0.
IP=IP+1
DO 49 1=2,7
DO 49 J=2,6
R1=DABS(Y(I,J)-2(I,J))+R1
49 Y(I,J3)=2(I,J)
IF(IP-15)141,45,45
141 IF(RL-.1E-07)45,45,50
50  N=2
GO TO 46
45  .IF(NO-1)53,53,55
53 N=N+1
IF(N-21)61,61,62
61 Y(1,N)=Y{1,N-1)+H(J1)
DO 51 I=2,7
51 Y(I,N)=¥(I,N-6)+(.3%H(JL))*(21.%(F(I,N-5)+F(I,N-1))
1-14.%(P(I,N-4)+F(I,N-2))+26.%F(I,N-3)) |
99  NO=2
1P=1
GO TO 46
55  R1=0.
IP=TP+1
DO 56 1=2,7
Z(T,1)=¥(I,N-6)+(.3%H(JL))*(F(I,N-6)+5.%F (I, N=5)+F (I, N-4)+6.%

1F{I,N-3)+F(I N-2)+5.*%F(I,N~-1)+F(I ,N})
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R1=R1+DABS(Y(I,N)-2(I,1))
56 Y(I,N)=2(I,1)
IF(IP-10)142,60,60
142  IF(R1-.1E-07)60,46,46
62 © IF(NP-1)662,762,912
912 IF(AA-.10)911,911,914
914  IF(NP-10)662,911,911

911 IN=2
GO TO 764
762 RRR=0.

DO 763 1=2,7

763  RRR=RRR+DABS(Y(I,21)-X{J1+1,I))
IF(RRR-.1)764,764,766

766  WRITE(3,767)

767  FORMAT(2X,/,' SEGMENT IS TOO LONG',/)

764 CONTINUE

WRITE(3,508)
WRITE(3,507)

DO 793 N=1,21,4

ST1= T7(N)+T9(N)*6.
8T2= T?(N)—Té(N)*ﬁ.
ST3= T22(N)+¥(7,N)*6.
ST4= T22(N)-Y(7,N)*6.
ROO(N)=RC*RO(N)
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ZZNN(N)=ZZXX(N)-EM*Y(4,6N)%*2000.
YYN(N)=ROO(N)+EM*Y(2,N)*2000.
WRITE(7,105) ZZXX(N),ROO(N),2ZNN(N), YYN(N)
793  WRITE(3,105)Y(1,N),¥(2,N),Y(4,N),T9(N),¥(7,N),T22(N),T7{N),
18T1,8T2,8T3,8T4

GO TO 1

Y1(1,N)=X(J1,1)
DO 63 I=2,7
63  Y1(I,N)=0.
Y1(N1,N)=1.
90  NO=0
76  CONTINUE
IF(NP-1)502,502,202
202 T2=Y1(2,N)/RO(N)
T3=Y1(3,N)}*C1(N)/RO(N)
T4=Y1(6,N)*CL(N)+Y1(5,N)*C2(N)~Y1(3,N)*(¥(5,6N)*C1(N)
1-Y(6,N)*C2(N))
T5=T1*T4~ANXT2
T6=Y1(7,N)/TO-ANXT3
Q1=(T2+AN*T5) /T1
T8=TO* (T3 +ANXT6 )
F(2,N)=T5%C1(N)+T10(N)*Y1(3,N)*C2(N)
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502

F(4,N)=T5%C2(N)-TL0{N)*Y1(3,N)*C1(N)

F(3,N)=T6

TA=(Y(6,N)*C1(N)-T7(N))/R(N)
F(6,N)==T5%(TA+PR¥C2(N))~-T10(N)*( (Y1(6,N)*C1(N)
1+Y1(3,N)*Y{6,N)*C2(N)-Q1-TA*Y1(2,N))/R(N)-PR*Y1
1(3,N)*C1(N))
F(5,N)==F(2,N)*(¥(5,N)/R{N)-PR)~-T10(N)*CL{N)*(Y1(5,N)
1-Y(5,N)*Y1(2,N)/R(N))/R(N)

TX=(T9(N)-Y(7,N))/R(N)
F(7,N)=F(2,N)*(TR+THXY (5 ,N))+T10(N)*(C1(N)*(TM*Y1(5,N)
1+(-Y1(7,N)+T8-TX*Y1(2,N))/R(N))-TM*C2(N)*Y1(6,N))
1-TMXF (4,N)*Y(6,N)

GO TO 203

T2=Y1(2,N)/RO(N)

T4=¥1(3,N)*C1(N)/RO(N)
TE=Y1(6,N)*C1(N)+Y1(5,N)*C2(N)

T8=T1*T5-AN*T2

T6=Y1(7,N)/TO-ANXT4

T7(N)=(T2+ANXT8) /T1

T9(N)=(T4+ANXT6 ) *TO
F(2,N)=T8*C1(N)+¥1(3,N)*C2(N)*TL

F(3,N)=T6

F(4,N)=T8%C2(N)-Y1(3,N)*C1(N)*TL
F(5,N)=-Y1(5,N)/RO(N)*C1(N)
F(6,N)=-(Y1(6,N)*CL(N)-T7(N))/RO(N)
TX=-(Y1(7,N)}-T9(N))/RO(N)
F(7,N)=TX*C1(N)-RCAT*(¥1(6,N)*C2(N)-Y1(5 N)*C1(N))
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203
73
74

72

82

77

78

IF(N-2}72,73,73
IF(N-6)74,77,75
N=N+1

GO TO 76

bO 82 J=2,6

- P2=FLOAT(J-1)

P3=P2¥H(J1)
Y1(1,J)=Y1(1,1)+P3

DO 82 1=2,7

Y1(I,J)=Y1(I,1)+P3*F(I,1)

N=2

IP=1

30 TO 76

DO 78 I=2,7
Z(I,2)=Y1(I,1)+(H(J1)/1440.)%(493.+F(I,1)+1337.*F(I,2)
1-618.%F(I,3)+302.%F(1,4)-83.%F(I,5)+9.%F(I,6))
Z(I,3)=Y1(I,1)+(H(J1)/90.)*(28.*F(I,1)+129.*F(I,2)+14.
1%F(1,3)+14.*F(1,4)-6.%F(I,5)+F(1,6))
Z(I,4)=Y1(T,1)+(3.%H({J1)/160.)%(17.%F(I,1)+73.*F(I, 2)
1438.%(F(I,3)+F(I,4))-7.%F(I,5)+F(1,6))
Z(I,5)=Y1(X,1)+(4.%H(JTL1)/90.)*(7.%(F(I,1)+F(I,5))+32.

C1X(F(I,2)+F(I,4))+12.%F(I,3))

Z(I,6)=Y1(I,1)+(5.%H(J1)/288.)%(19.%(F(I,1)+F(I,6))
1475 %(F(1,2)+F(I,5))+50.%(F(I,4)$F(I,3)))

R1=0.

IP=IP+1

DO 79 I1=2,7
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DO 79 J=2,6
R1=DABS(Y1(I,J)-2(I,J))+R1
79 Y1(I,J)=2(I1,J)
IF(IP-15)143,75,75
143  IF{R1-~.1E-06)75,75,80
80 N=2
GO TO 76
75 IF(NO-1)83,83,85
83 N=N+1
IF(N-21)91,91,92
91 Y1(1,N)=Y1(1,N-1)+H(J1).
DO 95 I=2,7
95 Y1(I,N)=Y1(I,N-6)+(.3*H(J1))*(11.%(F(I,N-5)+F(I, N-1))
1-14 . % (F(I,N-4)+F(I,N-2))+26.%F(I,N-3))
101  NO=2
IP=1
GO TO 76
85 R1=0.
IP=IP+1
DO 86 I=2,7
Z2(1,1)=Y1(I,N-6)+(.3%¥H{J1))*(F(I,N-6)
14+5.*%F(I,N-5)+F (I ,N-4)+6.*F(I N-3)+F(I,N-2)+5. *F(I N-
1 1)4F(I,N))
R1=R1+DABS{Y1(I ,N)-Z(I,1))
86 Y1(I,N)=Z(I,1)
IF(IP-10)144,90,90
144  IF(R1-.1E-07)90,76,76
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92 DO 22 J=1,N2
22 U(N1-1,J)=¥1(J+1,21)
IF(N1-7)662,96,96

104  FORMAT (7E14.8)

59 FORMAT (31I2)

508  FORMAT (/,2X,'DISTANCE',3X,' DISPLACEMENTS',9X,'MOMENTS',
19X, 'STRESS',' RESULTANTS',5X,'CIRCUM. STRESS',7X,
1'AXIAL STRESS')

507  FORMAT (1X,' FROM APEX',2X,'RADIAL',S5X,'AXIAL',3X,
1'CIRCUM.',5X, 'AXIAL',3X, 'CIRCUM.’,5X, 'AXIAL',4X, 'INNER',5X,
1'OUTER', 5X, ' INNER',5X, 'OUTER' /)

41 FORMAT (7E11.5)

110  FORMAT (10E11.5)

105 FORMAT (12E10.4)

505 ~ FORMAT (//,2X,' NO. OF PASS= ',I2,' RESIDUE= ',E11.5,

1' LOAD(P/E)= ',E11.5,' EM1= ', E11.5,/)

DO 4 I=1,N3
DO 4 J=1,N3
AL(J,I)=U(I,J)
A2(J,1)=U(I+3,7)
A3(J,I)=U(T,J+3)
A4(J,1)=U(I+3,J43)

X1(1I,1)=X(N1,I+1)
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20

x2(1,1)=X(Ni,I+4)
Y3(N1+1,I)=Y(I+1,21)
Y2({N1+1,T)=Y{I+4,21)
DO 20 I=1,N3
AY(I,1)=Y3(N1+1,1)
BY(I,1)=Y2(N1+1,T)

CALL MATM(Al,X1,A9,N3,N3,1)

CALL MATM(AZ2,X2,Z1,N3,N3,1)

CALL MATS(A9,%1,N3,1)
CALL MATSB(Z1,N3,1)

CALL MATS(AY,21,N3,1)

CALL MATM(A3,X1,A9,N3,N3,1)

CALIL MATM(A4,X2,2Z2,N3,N3,1)

'CALL MATS(A9,22,N3,1)

CALL MATSB(Z2,N3,1)
CALL MATS(BY,Z2,N3,1)
IF(N1-1)6,6,7

CALL MATM(Al,TS1,A6,N3,N3,N3)

CALL MATM(Al,TS2,A7,N3,N3,N3)

CALL MATM(AZ,TS3,A1,N3,N3,N3)

CALL MATS(A6,A1,N3,N3)

CALL MATM(A2,6TS4,A6,N3,N3,N3)

CALL MATS(A6,A7,N3,N3)

CALL MATM(A3,TS1,A6,N3,N3,N3)

CALL MATM(A3,TS2,A8,N3,N3,N3)

CALL MATM(A4,TS3,A3,N3,N3,N3)

CALL MATS{A6,A3,N3,N3)
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CALL MATM(A4,TS4,A6,N3,N3,N3)
CALL MATS(A6,A8,N3,N3)

DO 2 I=1,N3

DO 2 J=1,N3

A4(I,J)=A8(I,J)
A2(I,J)=A7(I,J)

CALL MATI(A2,A6,N3)

CALL MATM(A4,A6,A§,N3,N3,N3)
CALL MATI(A7,A8,N3)

CALL MATM(A1,XX,A9,N3,N3,1)
CALL MATS(Z1,A%,N3,1)

CALL MATSB(A9,N3,1)

CALL MATM(A3,XX,A10,N3,N3,1)
CALL MATS(Z2,A10,N3,1)

CALL MATM(A4,A6,A7,N3,N3,N3)
CALL MATM{A7,A9,A11,N3,N3,1)
CALL MATS(A11,A10,N3,1)

CALL MATSB(A10,N3,1)

GO TO 8 |

IF{N1-M)3,5,5

CALL MATM(TF1,A1,A6,N3,N3,N3)
CALL MATM(TF3,A1,A7,N3,N3,N3)
CALL MATM(TF2,A3,A1,N3,N3,N3)
CALL MATS({A6,Al,N3,N3)

CALL MATM(TF4,A3,A6,N3,N3,N3)
CALL MATS(A6,A7,N3,N3)

CALL MATM(TF1,A2,A6 ,N3,N3,N3)

151



19

CALL
CALL
CALL
CALIL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

MATM(TF3,A2,A18,N3,N3,N3)
MATM(TF2,Rh4,A2,N3,N3,N3)
MATS(A6,A2,N3,N3)

MATM(TF4,6A4 A6,N3,N3,N3)

MATS(A6,A18,N3,N3)

MATM(TF1,21,A14,N3,N3,1)
MATM(TF3,Z1,A15,N3,N3,1)
MATM(TF2,%2,31,N3,N3,1)

MATS (A14,21,N3,1) |
MATM(TF4,72,A14, N3,N3,1)
MATS (A14,A15,N3,1)

DO 19 I=1,N3

22(1,

1)=A15(I,1)

DO 19 J=1,N3

A3(I,
A4(1,

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

J)=A7(I,J)

J)=A18(1,T)
MATM(A1,A8,A7,N3,N3,N3)
MATS (A2,A7,N3,N3)
MATI(A7,A6,N3)
MATM(A1,A8,A7,N3,N3,N3)
MATM(AT7,A10,A9,N3,N3,1)
MATS (21,A9,N3,1)
MATSB(A9,N3,1)
MATM(A3,A8,A7,N3,N3,N3)
MATM(A7,A10,A11,N3,N3,1)
MATS (Ad,A7,N3,N3)

MATM(A6 ,A9,AY12,N3 ,N3,1)
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CALL MATM(A7,A12,A10,N3,N3,1)
CALL MATS{A11,A10,N3,1)
CALL MATS(Z2,A10,N3,1)
CALL MATSB(A10,N3,1)
CALL MATM(A3,A8,A7,N3,N3,N3)
CALL MATS(A4,A7,N3,N3)
CALL MATM(A7,A6,A1,N3,N3,6N3)
CALL MATI(Al,A8,N3)
IF(N1-M)8,9,9
9 CALL MATS(XY,A10,N3,1)
8 DO 5000 I=1,N3
DO 5000 J=1,N3
E{N1,I,J)=A6(I,J)
C(N1,I,J)=A8(I,J)
A(N1,I)=A9(I,1)
B(N1,I)=A10(T,1)
5000 CONTINUE
1 CONTINUE
WRITE(7,*) '//NC'
WRITE(7,%) EM
IF(NP-1)117,115,117
117 @GO TO(718,108),IN
718  AA=0.
DO 15 Il=1,M
N1=M-T1+1
DO10 I=1,N3

DO 10 J=1,N3
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10

12

89

11

17

93

-

A6(I,J)=E(N1,I,J)
A8(I,J)=C(N1,I,J)
A9(I,1)=A(N1,T)
A10(I,1)=B(N1,I)
IF(N1-M)11,12,12

CALL MATM(AS8,A10,A11,N3,N3,1)
CALL MATS(A11,A9,N3,1)

CALL MATM(A6,A%9,A12,N3,N3,1)
CALL MATM(TF1,A11,A14,N3,N3,1)
CALL MATﬁ(TF2,XY,A15,N3,N3,1)
CALL MATM(TF3,A11,A16,N3,N3,1)
CALL MATM(TF4,XY,A17,N3,N3,1)
DO 89 I=1,N3
X(MO,T+1)=A15(I,1)+A14(I,1)
X(MO,I+4)=A17(I,1)+A16(1,1)
GO TO 16

CALL MATS(A12,A10,N3,1)

CALL MATM(AS8,A10,A11,N3,N3,1)
CALL MATS (A11,A9,N3,1)

CALL MATM(A6,A9,A12,N3,N3,1)
pO 17 I=1,N3
X(N1+1,I+1)=A11(I,1)
IF(N1-1)93,93,16

CALL MATM{TS1,XX,A14,N3,N3,1)

CALL MATM(TS2,A12,A15,N3,N3,1)

CALL MATM(TS3,XX,A16,N3,N3,1)

CALL MATM(TS4,A12,A17,N3,N3,1)
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98
16
13

18

15
115

152
153

154

151

5505

DO 98 I=1,N3 .
X(1,I+41)=A15(I,1)+A14(I,1)
X(1,I+4)=A17(1,1)+A16(I,1)

GO TO 18

DO 13 I=1,N3

X(N1,I+4)=A12(I,1)

DO 15 I=1,N3
AA=DABS(Y3(N1+1,T)-X(N1+1,1+1))+AA
AA=DABS (Y2(N1+1,T)-X(N1+1,I+4))+AA
NP=NP+1

RES=AA/SS

SS=AA

WRITE(3,505)NP,AA,EM,EM1
WRITE(6,*)EM,EM1,AR,SOB2,RC
IF(NP~5)151,152,152 |
IF(RES-1.)151,151,153

DO 154 I=2,7

- DO 154 J=1,MO

X(J,I)=X7(J,1)

EM=EM-EM1

" EM1=EM1/2.

NP=3
WRITE(3,104)((X(J,1),I=1,7),J=1,M0)
IF(AA.LT.o.i) THEN '

EEM=ABS (EM)

DO 5508 J = 1,MO

XYX4(JT) = EM*X(J,4)
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5508 XYX2(J) = EM*X(J,2)
WRITE(4,5507) EEM, (XYX4(J),J =1,MO)
WRITE(5,5507) EEM, (XYX2(J),J =1,M0)
5507 FORMAT (31E12.5)
ELSE
ENDIF
GO TO 405
108 DO 155 I=2,7
DO 155 J=1,MO
155  X7(J,1)=X(J,I)
IN=1
NP=3
AA=1.
SOB2=S0B2+1.
EM=EM+EM1
1F(ABS(EM1)-.1E-103 109,109,1011
1011 IF{SOB2-SOB1)405,405,109
109  WRITE(3,1270)EM,EM1,SOB2
1270 PORMAT{//'EM= ' E14.8,'EM1= ' E14.8,' SOB2= ',F6.0)
STOP |
END

C*********************************k*******************

¢ SUBROUTINES=-nm - o= mmmmmmmmmmmmmmm o m e m o e m
C*****************************************************
SUBROUTINE MATS (A5,BS5,L,K)
REAL*8 BA5(3,3),B5(3,3)
DO 99 Li=1,L
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99

%ok okk

98

ARE X

97

kkkk

DO 99 Ki=1,K
B5(L1,K1)=A5{(L1,K1)+B5{L1,K1)
RETURN -

END

SUBROUTINE MATSB (A5,L,K)
REAL*8 A5(3,3)

DO 98 Li=1,L

DO 98 Ki=1,K
AS(L1,K1)=-A5(L1,K1)
RETURN |

END

SUBROUTINE MATM (A5,B5,C5,L,K,K2)
REAL*8 A5(3,3),B5(3,3),C5(3,3)

DO 97 Li=1,L

DO 97 Ki=1,K2

C5(L1,K1)=0.

‘DO 97 J1=1,K

C5(L1,K1)=C5(L1,K1)+A5(L1,J1)*B5(J1 K1)
RETURN

END

SUBROCUTINE MATI (A5,B5,K1)
REAL*8 A5(3,3),B5(3,3)
P=0.
DO 9 L=1,3
b0 9 K=1,3
GO TO (2,3,4),L
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2 I1=L+1"
I2=L+2
GO TO 5
3 I1=L+1
12=1
GO TO 5
4 I1=1
12=2

5 GO TO (6,7,8),K

6 J1=K+1
J2=K+2
GO TO S
7 J1=K+1
Ji=1
GO TO 9
8 J1=1‘
J2=2
9 | B5(K,L)=A5(Il,Jl)*A5(I2,J2)—A5(12,J1)*AS(Ii,JZ)
DO 11 L=1,3
11 P=P+A5(1,L}*B5(L,1)

DO 12 L=1,3
DO 12 K=1,3 |
12 B5{L,K)=B5(L,K)/P | 'g;:@?‘ _.»&\
~ RETURN o
END

R I T T T T I I I
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