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ABSTRACT

For joining pipes of unequal diameters, truncated parabolic shells can be used
as pipe reducers instead of the traditional conical frustums, as the doubly
curved parabolic shell elements are superior to the conical shells in withstanding
high pressure. The present investigation analyses the stability and stresses in

the truncated parabolic shells to be used as pipe reducers and also compares the
results with those of conical reducers obtained by Ali.

The analysis is based on the nonlinear governing equations for axisymmetric
deformations of shells of revolution. The multisegment method of integration is
used for obtaining the solutions of the governing nonlinear differential equations.

Numerical solutions. are obtained .by using a modified computer program,
developed by Uddin,for solving the governing equations by the multisegment
method of integration. The interpretation of instability of the parabolic reducers

is based on Thompson's theorems r and II.

Critical pressures for the parabolic reducers are calculated varying the thickness
ratio and the diameter ratio. Critical pressures and the stress distributions are
presented graphically and thei.r dependence on ,different parameters are

discussed.

It is found that long parabolic reducers are prone to local instability near the
larger end of the reducer but this critical zone shifts towards the smaller end
as the two ends of the reducer are brought closer. Comparison between a
parabolic reducer and a conical reducer with identical parameters shows that the
former one develops uniform stresses of lower magnitude. Consequently,' it" is

found that they are much more stable than their counter parts under uniform

external pressure.
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NOTATIONS

a =
bl'bM+I =

C =
C =
D =
D =
E =
F =
H =-
H =
h =
I =
~e,k<: =
ke =
~<: =
L =
M =
m =
ME =
Me =
~<: =
Me =
N<: =
Ne =
~<: =
Ne =
P =-P =
Pv =
PH =
Q =
R =
R, =

distance between the vertex and the focus of the parabola

(m,l) matrices, contain prescribed variables at the boundary, defined

in Eq. (4.l3a)

Eh: extensional rigidity

(1-v2) ~e/R
Eh3/[ l2(1-v2)]: bending rigidity

l![12(1-v2) P 1'2 R]
Young's modulus

a/(R-R,), ratio to define the geometry of the reducer

horizontal stress resultant

H/PR: non dimensional horizontal stress resultaIlt

shell thickness

(m,m) unit matrix

changes of curvature of the middle surface of shell

ke~e: non dimensional value of ke
k<:~e:non dimensional value of k<:

R/P.T
number of segment

order of system of d.ifferential equations

meridional couple resultant

circumferential couple resultant

M<:/PRh: nondimensional value of M<:

Me/PRh: nondimensional value of Me

meridional stress resultant

circumferential stress resultant

N<:/PR: nondimensional value of N<:

Ne/PR: nondimensional value of Ne
outward normal pressure

P/E: non dimensional value of P

vertical component of surface load

horizontal component of surface load

transverse shear stress resultant

larger radius of the reducer

smaller radius of the reducer
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R =
R~,RO=
ro =

r =

ro =
Si =
Tl'TM+1=
T =
u =
u =
V =-v =
w =
w =
x =
Xi =
xl =
y(x) =
Zo =
Z =
a =

ao =
13 =
13 =
EeEo =
EE =
Eo =
C =
~ =
~ =

~e/R
principal radii of curvature of middle surface of shell
radial distance of a point on undeformed middle surface from axis of
symmetry

r 0+u: radial distance of a point on deformed middle surface from axis
of symmetry

ro/~e: nondimensional value of ro
ith segment
(m,m) matrices, given by boundary con<:iitions
R/h:thickness ratio
radial (horizontal) displacement
uEh/PR2: nondimensional horizontal displacement
vertical stress resultant
V/PR: nondimensional vertical stress resultant
axial (vertical) displacement
wEh/PR2: nondimensional axial displacement
independent variable
end point of segment
R1/R:diameter ratio Ii
(m,l) matrix, contains m variables

axial distance of a point on undeformed middle surface of shell
zo+w:axial distance of a point on deformed middle surface
parameter of meridian of deformed shell, defined in Eg. (3.1c), or
semi-apex angle of conical shell
value of a corresponding to undeformed shell
angle of rotation of normal after deformation

middle surface strains
EE Eh ~e/PR2: nondimensional value of .EE
Eo Eh ~e/PR2: nondimensional value of Eo
normal distance of a point in the shell from middle surface

parameter of shell meridian, or distance measured along meridian
~/~.: nondimensional meridional distance between the centre of the
smaller end and the larger end junction

iii



v

( ...)'

=

=

=
=
=
=
=

=
=
=
=
=
=

total meridional length, between the centre of the smaller end and
the larger end junction.

angle between normal and axis of symmetry .before deformation
(meridional angle) .

cjlo-a: angle between normal and axis of symmetry after deformation
Poisson's ratio
Nf/h + 6Mf/hl: meridional stress at the extreme inner fiber
Nf/h + 6Mf/hl: meridional stress at the extreme outer fiber
Ng/h + 6Mg/h2: circumferential stress at the extreme inner fiber
Ng/h + 6Mg/h2: circumferential stress at the extreme outer fiber
0a/E: nondimensional value of Dai
0ao/E: nondimensional value of Dao

Dc/E: nondimensional value of Dci

. Dco/E: nondimensional value of Dco
derivative with respect to ( or (
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CHAPTER 1
INTRODUCTION

1.1 PRELIMINARY

Shell elements, in general, can transmit the surface load primarily through the

uniformly distributed in plane membrane forces by virtue of their curved

surfaces, without the action of bending or twisting. This property makes them,

as a rule, a much more rigid and more economical structure than a plate.

Consequently, shell elements are indispensable parts of almost all engineering

structures. This is specifically true for the aerospace, nuclear, marine, and

petrochemical industries where dramatic and sophisticated uses of shells are

currently being made in missiles and space vehicles, nuclear reactor vessels,

refinery equipment and the like. Tubular shell members are the most important

components in the deep water offshore structures. Also, shell like structures are

extensively used as silos and storage tanks.

As the use of shells gains momentum,more and more sophisticated mathematical

analysis of shells are being sought. Shell structures can undergo a substantial

amount of deformation before failure. This feature of shells submits themselves

to the domainof nonlinear mathematicalanalysis. The nonlinearity is introduced

into the governing equations of elasticity in three ways:

a. through the strain-displacement relations

b. through the equations of equilibrium of a.volumeelement of the body, and

c. through the stress-strain relations•.
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In (a) and (b) the retention of nonlinear terms is conditioned by geometric

considerations, that is, the necessity of taking into account the angles of rotation

in determining the changes of dimension in the line element and in the

formulation of the conditions of equilibrium of a volume element. On the other

hand, the nonlinear terms appear in the third set of equations (c) if the material

does not behave in a linearly elastic fashion.

Hence, there are two types of "nonlinearity:

. i. geometric, and

ii. physical

In the problems of shell structures, the angles of rotation can be large, but the

strains can be quite elastic. An example of this type of 'problem is the bending

of a thin steel strip. It is well known that strips of good steel can be

straightened out without traces of residual deformation after having their ends

brought together. This bears witness to the fact that in these strips, even for

large displacement and angle of rotation, the stresses do not exceed the yield

strength. Thus, many shell structures belong to a class of problems which are

physically linear but geometrically nonHnear... .

1.2 THEPROBLEMOF INSTABILITYORBUCKLING

Through the blessings of the modern science, the strength of the engineering

materials has been increased tremendously. As a result, thinner structures can

carry high intensity external loadings. Consequently, today's structures are more

prone to failure due to instability' than due to strength. The onset of buckling
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invariably results abrupt changes in the shape of the structures which ultimately

leads to failure as enormous deformations take place that shoot everything away

from an initially stable equilibrium position. ,The concept of stability of

equilibrium is thus a strongly intuitive one, and it consequently arises quite

early in the development of classical mechanics. The work of Euler [26] appeared

in 1744,and the contribution of Lagrange [41] in 1788.A century later a general

bifurcation theory was sketched by Poincare [61] in 1885, and the definition of

stability was given mathematical rigor in the treatise of Liapunov [43] in 1892.

If at any level of external cause (in the form of displacement, .velocity, force

etc.), a structure can sustain a small disturbance from its equilibrium condition,

then the structure is said to be in stable equilibrium at that level of external

cause. It should be noted that sustaining the disturbance means the structure

will oscillate with a small amplitude about its equilibrium position. On the other

hand, if the structure does not go back to its original equilibrium position or

vibrate with ever increasing amplitude due to the disturbance, then the structure

is said to be in an unstable equilibrium state at that level of external cause. If

the structure remains in the disturbed state without vibration, then the

equilibrium is referred to as the neutral equilibrium state.

A close assessment of the critical load for simple mechanical stability models

reveals that the system maintains its stable equilibrium states as long as the

work done due to internal resisting forces is greater than that due to the

external load for any disturbance from the equilibrium position. In other words,

it is the balance between the potential energy due to the internal resisting

forces, which ~ill be called internal strain energy or simply strain energy from

now on, and the potential energy due to the external force, which will be called

3



external load potential or simply load potential from nowon, which accounts for

the stability of the system. At a certain level of the external cause, the internal

strain energy becomes equal to or less than the external load potential, and the

system reaches its unstable equilibrium st.ate. Any disturbance to this equilibrium

state will upset equilibrium or bring the system to a new equilibrium state

distinct from the previous one, depending on whether t.he internal strain energy

is equal to or less than the load potential. In fact, these are the alternate

statements of the energy method used to confirm the mechanical stability of a

system.

1.3 RESUME OF NONLINEAR SHELL ANALYSIS

That linear shell analysis fails to give proper information about the shell stresses

and deformation in many problems can be seen in recent papers on the nonlinear

shell analysis [27, 28, 32, 33,.37, 54, 65, 66, 67, 70, 82, 91, 92, 94-98, 103-106]. For

this reason, the use of nonlinear theory has become rather widely accepted as

a plausible basis for predictions of elastic strengths of shells of various

geometries. Most of the papers currently found in the literature are concerned

with the shells of revolution.

The basic concept of finite deflection analysis of Donnel [22] has been employed

by numerous investigators to establish collapse loads of cylindrical shells

subjected to various loadings. Finite deflection analysis has also been successful

in offering reasonable predictions of the elastic buckling loads of shallow

spherical caps subjected to uniformly distributed external pressure. Kaplan and

Fung [38] have presented a perturbation solution to the nonlinear equations that

agrees quite well with the results of their experiments for very shallow clamped
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edged shells. Archer [7] extended their results to a greater range of shells. As

can be seen from recent papers, very extensive work has been done in this field

[32, 33, 37, 38, 66, 91, 92, 105].Ball [9] has considered the problems of arbitrarily

loaded shells of revolution and obtained solution for. a damped shallow spherical

shell uniformly loaded over one-half of its surface. A number of papers based on

the nonlinear analysis of stiffened shells, multilayered shens and sandwich shells

can also be found in the current literature [5, 3D,40, 46, 48, 57, 62, 64, 75, 78,

102]. Based on Reissner's [69] large deflection analysis for general shells of

revolution, Uddin [95] has presented large deflection analysis of composite shells

of revolution and obtained extensive results for various pressure vessel problems

[93-98]. Haque [31] analyzed the stability of ellipsoidal head pressure vessel.

Rahman [63] extended this analysis to include imperfect shell geometry. Ali [6]

analyzed the stability and stresses of conical reducers. In all these cases the

predictions of these theories are in better agreement with experimental evidence

than those of the classical investigations based on infinitesimal deformations.

1.4 OBJECTIVES OF THIS INVESTIGATION

Reducers, used as fittings in between two pipes of unequal diameters, often fail

due to instability although having sufficient material strength, as these shell

elements are often subjected to external pressure 01' internal suction in such

applications. Pointing out that no notable work has been done on the stress and

stability analysis of the above mentioned conical reducers, Ali [6] carried out a

study on the same. Ali [6] found that the critical load for conical reducers

decreases almost linearly as the apex angle of the conical frustums are increased

keeping all other parameters constant .. Motivated by the fact that the doubly

curved parabolic reducers can sustain higher external load by virtue of the•
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membrane forces, the present analysis investigates whether the parabolic

geometry of the shell meridian can improve the stress distribution and as well

as the stability of the reducers.

So, the main objective of the present analysis is to compare a parabolic reducer

with a conical reducer (having the same thickness ratio and diameter ratio)

regarding stability and stress distribution. The set objectives are to be achieved

through the following steps:

1. As the properly fabricated parabolic reducers are expected to deform

axisymmetrically under pressure, Reissner's large deflection equations for

axisymmetric deformations of shells of revolution are to be used as the

governing equations for the reducers.

2. As the parabolic reducers are always to be connected to pipes of unequal

diameters through the flanges, the boundary conditions at the two edges

of the reducers are to be taken as those pertaining to completely fixed

edges. This will also help to compare the results with ref. [6] where

exactly same boundary conditions are considered.

3. As the governing equations to be used here ensure stationary potential

energy (llE, =0), Classical or Bifurcation technique which is based on the

identification of a secondary mode of deformation is used to calculate the

critical pressure. Thompson's [90] theorems I and II are to be used for

ascertaining the critical pressure of the parabolic reducer from the

solutions of large deflection equations of the sante for progressively

increasing pressure.
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4. As the governing nonlinear differential equations are not amenable to

solutions by the method of direct integration because of its inability in

determining the unknown boundary values due to inherent accumulation of

truncation errors in the process of integration of shell equations, and as

the finite-difference technique sometimes fails. to differentiate between. the

instability of the differential equations and that of the solution process of

the resulting algebraic equations, the multisegment method of integration

is to be used for solving the differential equations.

5. As a computer program is already available in the literature, incorporating

the mult.i-segment method of integration of the Heissner's equations for

general shells, the computer program needed for obtaining the numerical

solutions of the present problem is to be adopted from the available one

by carrying out the necessary modifications.

6. The solutions are to be presented in nondimensional form t.o widen the

Usefulness of the results.

7. To keep the volume of results of stresses a minimum,result.s are to be

present.ed for pressure-steps of about 50%of t.he critical pressure and

above.

8. For each set of values of parameters, stresses are to he plotted against

the entire meridional length of t.he parabolic reducer, so t.hat critical zones

in terms of different stresses can be seen readily.
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9. Since, stability analysis is justified for thin shells with large diameters,

the results are to be presented for thinner parabolic reducers with larger

diameters only.

10. Finally, as critical pressure for conical reducers are already available in

ref. [6], the critical pressures for parabolic reducers with the same

diameter ratio and thickness ratio and of course with the same boundary

conditions as those of the conical reducers are to be calculated for

meaningful comparison of results.

1.5 METHODS OF SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

Due to the very nature of the response of shell like structures under loading,

their analyses, specifically their stability analyses, are based on the nonlinear

mathematical analysis. Unfortunately, the majority of such large deflection and

stability problems of practical 'structural components cannot be solved in closed

form. Therefore, one has to resort to approximate analytical and/or numerical

discretization techniques for their solution. Prior to the advent of digital

computers, various approximate analytical techniques were the standard tools for

the nonlinear analysis of structures.

The widespread availability of high speed computing machines, the fascination

with numerical techniques due to their versatility in handling complexstructures

(e.g. shells with cutouts and stiffeners), and the simplicity of computer

implementation have resulted in a relative stagnation in the development of

effective analytical techniques. Analytical techniques have the major advantages

over numerical discretization techniques in providing physical insight into the
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nature of response. Moreover, analytical techniques can be used in conjunction

with partitioning schemes for nonlinear analysis of individual components of

practical (complex) structures.

The most frequently used approximate analytical and numerical techniques in

solving nonlinear differential equations are

1. asymptotic integration [50, 53, 69, 70]

2. perturbation techniques

3. Newton's method

4. method of power series expansion

5. hybrid analytical technique

6. direct numerical integration [28, 44]

7. finite difference method

8. finite element method

9. method of multisegment integration

In addition to the above mentioned methods, there are other methods existing in

the literature, namely "Reversion Method" [21, 60], "Variation of Parameter" [21,

45, 53] "Averaging Methods Based on Residuals" - (al Galerkin's Method [21) and

(b) Ritz Method [21], and the principle of harmonic balance.

In the perturbation method, the fundamental unknowns are expanded in

perturbation series in terms of unknown functions with preassigned coefficients.

The unknown functions are obtained by solving a recursive set of differential

equations which are generally simpler than the original governing equations of

the problem [55, 99]. By contrast, in the Bubnov-Galerkin and Rayleigh-Ritz
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techniques, the fundamental unknowns are sought in the form of series of a

priorly chosen coordinate functions (or modes) with known coefficients. ,Reviews

of the many applications of these techniques are given in Ref. [85].

The perturbation method has two drawbacks. The first one stems from the fact

that as the number of terms in the perturbation series increases, the

mathematicalcomplexity of the differential equations builds up rapidly. Therefore,

for practical applications, the perturbation series has to be restricted to a few

terms. The second drawback is the need to restrict the perturbation parameter

to small values in order to obtain solutions of acceptable accuracy. The main

difficulty of both the Bubnov-Galerkin and Rayleigh-Ritz' techniques, from a

practical view point, is the difficulty of selecting good coordinate functions (or

modes) for structures with complicated geometry and/or complex response.

The hybrid analytical technique combines both the standard regular perturbation

me~hodand the classical Bubnov-Galerkill technique. The technique was shown

to overcome the major drawbacks of the two parent techniques and' to 'provide

a more effective approximate analysis than either of the two techniques. Ref. 1

demonstrates the' effectiveness of this technique by means of numerical examples.

The hybrid analytical technique is particularly useful for predicting nonlinear

response of structures with simple geometry but complex construction. Examples

of such structures are ring-and stringer-stiffened closed 'cylindrical shells and

shell panels with discrete stiffener and rectangular or circular platform.

Asymptotic integration is not a general method and its scope of application is

very limited as can be seen from Refs. [53, 69, 70]. Reissner discusses some of
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the solutions and limitations of this method in Ref. [69]. In the application of this

method, the solution is expressed in the form of a series where the terms of the

series are the inverse powers of. the largest parameter in the differential

equations [69]. Deterinination of the terms of the series becomes extreIDely

difficult and the solutions generally contain only the;,first term approximation.. ~;;.. .:

. 't d?~~
Though the direct integration approach has certain advantages, it has also a

serious disadvantage, that is, when the length of the shell is large, a loss of

accuracy invariably occurs. This phenomenon is clearly pointed out in Ref. [80].

The loss of accuracy does not occur from accuIDulativeerrors in integration, but

it is caused by the subtraction of almost equal numbers in the process of

determining the unknown boundary values. It follows that for every set of

geometric and materi~l parameters of the shell there is a critical length beyond

which the solution loses all a~curacy.. , t

Finite difference methods are the most~

_,..J: . :.~,
.>~."
'i-"'--~' ,'" -,

_widely used techniques for solving

nonlinear differential equations. The advantage of the finite difference technique

over direct integration is that it can avoid the above mentioned loss of accuracy.

But it also has some drawbacks. Firstly, it ultimately leads to the solution of a

large number of nonlinear algebraic equations which have to be solved by

iterative techniques and often the solution fails due to nonconvergence. Secondly,

bound by the requirement of using regular mesh spacings or the condition that

the grid lines must be parallel to the coordinate axes, it was very much.

restricted to domains of regular geometry. However, curvilinear finite difference

(CFD) techniqufO,as proposed in Refs. [7.1-74], now relaxes these restrictions.

Irregular meshes can now be erriployed in the analysis of shells with irregular

boundary geometry.
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In the literature, the structural analysis of general thin shells is one of the

areas dominated by the finite element methods. One of the main advantages of

using finite element methods is the flexibility in making discrete any unusual

domain. However, in the course of extending the finite element methods to

accommodate geometric nonlinearities, two different algorithms are generally

adopted. They are namely: the linearized incremental approach and the Newton-

Raphson iterative approach. The linearized incremental approach simplifies the

programming works involved, but it has its own drawbacks. As linearized

incremental equations are used, it is impossible to obtain the "exact" nonlinear

solution for a particular load level. On the other. hand, the Newton-Raphson

method always converges to "true numerical solutions". However, it requires

expensive numerical integration techniques [71], and the use of full Newton-

Raphson procedures would be very costly. As a result, various modified versions

of Newton-Raphson methods appeared in the literature [10, 84].

Newton's method for solving nonlinear differential equations is the extension of

Newton's method for calculating roots of algebraic equations. The approach is to

express the solution as the sum of two parts; the first part is a known function.

and the second one is a correction to the known function. A governing equation

for the correction is obtained by substituting the assumed function into the

governing. equations and neglecting terms which are nonlinear [32]. This method

does not require the perturbation parameter to be small as is necessary in the

perturbation technique, but it involves the solution of a sequence of linear.

differential equations as in the latter. These linear equations have variable

coefficients and. generally cannot be solved in closed form. It is paradoxical that

the greatest obstacle in solving nonlinear problems is the inability to solve linear

differential equations in elosed form.
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The multisegment method of integration is a very powerful method developed and

used by Kalnins and Lestingi [37] to solve nonlinear differential equations. This

method involves:

a. division of the total interval into a number of segments

b. initial value integration of a system of first order differential equations

over each segment

c. solution of a system of matrix equations which ensures the continuity of

the variables at the ends of the segments

d. repetition of (b) and (c) until convergence is achieved

e. integration of an initial value problem to obtain answers at any desired

point within each segment

The main advantage of this method over the finite difference method is that the.

solution is obtained everywhere with uniform accuracy, and the iteration process

with respect to mesh size, which is required with the finite difference approach,

is eliminated. But the feature which makes this method .most attractive is that any

discontinuity, either in geometry or in loading, can be easily handled by

requiring that the end point of a segment coincides with the location of the

discontinuity. As the integration. is restricted at the beginning of each segment,

the precise effect of the discontinuity is obtained by this method. Moreover, this

method is the most accurate of all the numerical methods because the problem is

solved in the form of a system of first order differential equations in which no

derivatives of geometrical or elastic properties appear and no further. numerical

derivatives are essential to obtain any desired results in the calculation.
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CHAPTER 2
LITERATURE REVIEW

2.1 GENERAL

The theory of shell structures has existed as a well-defined branch of structural

mechanics for about a hundred years, and the literature is not only extensive

but. also rapidly growing. This growth has two main aspects- the first one is the

development of shell t.heories based on various assumptions and approximations,

and on different geometrical configurations of the shell meridian, and the second

is the development of various exact and approximat.e analytical and numerical

methods for solving these equations.

Use of the nonlinear strain-displacement equations in the development of shell

theories is motivated by the need for an accurate prediction of load-deflection

curves, analysis of stability and post-buckling behavior, and natural vibration

data for the design of shell structures.

Consideration of geometric nonlinearity in shells is originally due to Donnel [22],

VonKarman [100, lOll, Marguerre [47] and Mushtari [52], among others. Following

these pioneering works several generalizations and modifications of the theories

appeared in the literature. The geometric nonlinearity in shells is accounted for

in three different levels:

1. The VonKarman type nonlinearity that accounts only for the products and

squares of the derivatives of the transverse deflection in the strain

displacement equations;
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ii. The moderate rotation theories that account for moderate rotation terms;

iii. The large rotation theories that account for large rotations.

Full nonlinear theories are those which do not neglect any nonlinear terms in"the

strain-displacement equations. However, full nonlinear theories are not only

complexbut not warranted in the analysis of most shell structures. As a result,

several authors attempted" to present nonlinear shell theories at different stages

of approximations.

The earliest work of' some generalit.y is Marguerre's nonlinear t.heory of shallow

shells [47]. Donnel [22] developed an approximate theory specially for cylinders

and suggested its ext.ension for a general middle surface. The result., a theory

for what might be termed "quasi-shallow shells", has been worked out. by a

number of authors, notably"Mushtari and Galimov[52].

The earliest work of a completely general nature appears to be the papers by

Synge and Chien [86] followed by a series of paper by Chien [19, 20]. The theory

of shells developed by Synge and Chien avoids the use of displacements as

unknowns in t.he equat.ions. The t.heory is deduced from t.he t.hree-dimensional

theory of elasticity and then, by"means of series expansion in powers of small

thickness parameter, approximat.e theories of thin shells are derived.

Another general formulation of the problem is worked out. by Ericksen and

Truesdell [25]. They developed it as a two dimensional theory instead of

attempting to deduce it from three-dimensional theory of elasticity. ThE!y"were

able to a(;count for transverse shear and normal strains and t.he rotations

associated with couple stresses. The two-dimensional approach to shell theory
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really evades the question of the approximations involved in the descent from

three-dimensional, but this seems to be a virtue rather than a defect. Such

questions are effectively isolated and shown to belong to the part of the theory

in which constitutive relations are established.

Novozhilov [56] has presented an incomplete treatment of the general large

deflection theory of thin shells based on the assumption of small middle surface

strains.

F. Jordan Peter [59] presented a quasi-linear approach to the rotationally

symmetric deformations of thin elastic shells of revolution. In this approach, the

shell strains and rotations are assumed' to be small, but, contrary to the

approach of linear shell theory, the shell equilibrium conditions are fulfilled on

the deformed shell.

Other developments which also employ linear constitutive relations are founded

upon the Kirchhoff hypothesis and often contain other approximations, Among

these are Reissner's [68, 69] formulation of axisymmetric deformation of shell of

revolution and the more general works of Sanders [76] and Leonard [42].

Beginning with the three-dimensional field equations Naghdi and Nordgren

deduced an exact, complete, and fully general nonlinear theory of elastic shells

founded upon the Kirchhoff hypothesis.

Several nonlinear theories for thin shells have been derived in increasing stages

of approximations. In most cases, th~ories are first approximative theories in the

sense that transverse shears and normal strains are neglected. Such

approximations and omissions are justified because the exact and general
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equations .characterizing the deformation of an elastic shell, even under t.he

Kirchhoff hypothesis, are fairly complex and discouraging from t.he point of view

of practical applications. However, as may be seen in the literature, with t.he

advent of high speed computing machines and corresponding development and

adapt.ation of efficient and versatile numerical techniques, some authors [11, 39,

64, 65, 77, 95, 103] are t.empted towards t.he analysis of more comprehensive and

general nonlinear shell theories and coming out with useful result.s.

2.2 SOMEANALYTICAL,NUMERICALANDEXPERIMENTALINVESTIGATIONSOF

SHELLPROBLEMS

The majorit.y of t.he large deflection and stabilit.y problems of practical struet.ural.

components cannot be solved in dosed form. Therefore, one has t.o resort. t.o

approximat.e and numerical discretization techniques for t.heir solut.ion, leaving

analytical t.echniques limited to comparatively simpler structural elements.

Ahmed and Noor [1.) presented a two-st.ep hybrid analytical technique for

predicting the nonlinear response of struct.ural elements. They also discussed in

length t.he potential of the proposed hybrid technique for nonlinear analysis of

structures.

The effectiveness of this technique was demonstrated by means of three

numerical examples :

i. nonlinear axisymmetric response of damped shallow spherical cap;

ii. large deflection analysis of laminated anisotropic plate subject.ed to uniform

t.ransverse loading;
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iii. nonlinear axisymmetric response of an isotropic circular plate subjected to

combined uniform and concentrated load.

Based on extended Sander's shell theory, that accounts for the shear deformation

and the Von Karman strains, J. N. Reddy and K Chandrashekhra [65] presented

numerical results for the laminated cylindrical and doubly curved shells. George

J. Simitses, Dein Shaw and Izhak Sheinman (29) presented a comparison between

analytical results (critical loads) and experimental results (buckling loads) for

imperfect, laminated cylindrical thin shells. The loading consists of uniform axial

compression and torsion, applied individually and in combination. The theoretical

results are obtained from solution methodology based on nonlinear kinematic

relations, linearly elastic material behavior, and the usual lamination theory.

In Ref. 88 an analytical formulation is made extending Reissner-Naghdi theory

and numerical solutions are obtained for the elasto/visco-plastic deformation of

multilayered cylindrical shells subjected to asymmetrical loading.

In Ref. 83 a modified mixed variational principle is established for a dass of

problems with one spatial as the independent variable. The specific applications

are on three- dimensional deformations of elastic bodies and the nonsymmetric

deformation of shells of revolution. The feature is the elimination in the

variational formulation of the stress components which can not be prescribed

on the boundaries.

Among the numerical techniques used in nonlinear shell analysis, the finite

elelnent method is used rather extensively due to the flexibility in making

discrete any unusual irregular domain. J. G. Teng and J. M. Rotter [89] developed
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a finite element formulation for elastic-plastic large deflection analysis of shells

of revolution. Here, in place of widely used relations of Donnel, Novozhilov or

Sanders, more comprehensive nonlinear thin shell strain-displacement relations

are used, which account for the nonlinearity caused by in-plane displacements.

Unlike most other nonlinear shell formulations, the in-plane shearing is included

throughout this treatment. As asserted by the authors, this formulation contains

most of the best features of nonlinear finite element analysis currently available

in the literature, together with some new numerical schemes to improve the

capability, accuracy and speed of the computation.

In Ref. 58 the occurrence of dynamic buckling of thick rings responding to an

impulse load is investigated using both analytical and finite element method

using the computer code ADINA.The re,mlts show that the nonlinear solutions by

the finite element method predict a significant reduction in the amplitude of

buckling response and an increase in the ..predominant wavelength response

with time in comparison to the linear analytical solution.

S. K. Kwok [71-74] presented a curvilinear finite difference energy approach to

the geometrically nonlinear analysis of general thin shells. This approach relaxes

the requirement of usual finite difference method of using regular mesh spacings

or the requirement that the grid lines must be parallel to the coordinate axes.

Irregular meshes can now be employed in the anah'sis of shell with an irregular

boundary geometry without any difficulty. The author developed a software

named NAOSIS(Nonlinear Analysis of Shallow Shells) based on this method. As

asserted by the author, the main aspects of this present finite difference

formulation are firstly, its ability to implementthe most general nonlinear strain-

displacement relationship directly in a tensor code; secondly, its ability to model
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any arbitrary shell geometry; and thirdly, its capability to use irregular

computational meshes in a finite difference sense.

Recent efforts include the development of a number of general purpose computer

programs [8, 12, 13, 51) for the linear and nonlinear analysis of general shells

of revolution. These programs are based either on finite element or on finite

difference method of analyses. An overview of the current capabilities of some

computer programs that can be used for the solution of nonlinear structural and

solid mechanics problems is available in Refs. [2, 10, 80]. A critical review of two

such programs, namely, BOSOR4[13] and BOSOR5[12], is presented in Ref. [97,

98]. Here the author has discussed precisely the causes of their disagreements

with experimental evidences.

Some experimental investigations on the shell analysis are reported in the ref.

[14-18, 48].

A few of the latest investigations of the instability of structures are reported in

ref [6, 58, 79, 81, 98].

Based on Reissner's [69] large deflection theory of shells of revolution, and using

multisegmenl method of integration, Uddin [95] has developed a computer program

for the analysis of .composite shells of revolution. He has found extensive

numerical results on spherical, ellipsoidal, conical and composite head pressure

vessels based on both the linear and nonlinear theories and also obtained

buckling pressure of general spherical shells and semi-ellipsoidal shells [93-98].

In all those investigations, he has exposed the conservativeness of linear theory

and demonstrated the superiority of nonlinear analysis over linear analysis. Later
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on, using the same program, Haque [31,98] has made buckling analysis of

ellipsoidal shells of revolution under external pressure and Rahman [63] has

extended it to the case of imperfection in geometry.

In his research, Ali [6] pointed out that the critical load for a conical reducer

decreases almost linearly as the apex angle of the conical frustums are. gradually

increased keeping all other parameters constant.

Stability analysis which inherently involves complex nonlinear mathematics has

been mostly confined to shallow shells or circular plates. This is due to the fact

that the nonlinear equations of .shells could be solved only when the

simplifications pertaining to the shallowness of the shell were made, as pointed.

out by Uddin [95]. The simplified equations are then solved by different methods

mentioned in the introduction.

Also, some of the analyses have been made with the .assumptions like the

predetermined buckling modes of the structures [23, 24] which mayor may not

exist at all.

The .present analysis, which deals with the stability and stresses of the general

truncated parabolic shells to be used as pipe reducers, is however free from

those sorts of weaknesses as it is based on large deflection analysis and the

used computer program has established reliability.
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The present investigation is in fact an extension of Ali's (6) research and to the

author's knowledge the stability and stress analysis of general truncated

parabolic shells has not been reported so far in an identical way.
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CHAPTER 3

GOVERNING EQUATIONS

3.1 GENERAL

As mentioned earlier, the 'Classical' or 'Bifurcation' technique pertaining to a.

secondary mode of deformation has been used here to calculate the critical

pressure. This is possible, because the equilibrium equations in the governing

equations of parabolic reducers in the present analysis ensure stationary

potential energy (llEt = 0). In fact the governing equations consists of three sets

of equations, namely the equilibrium equations, the Hook's law equations and the

compatibility equations. The equilibrium equations relate the external load with

the internally induced stress and bending moment resultants. The Hook's law

equations are for linear stress-strain relations of the shell material. And the

compatibility equations relate the internal strains with the physical deflections

of the shell wall. These three sets of equations, together with the appropriate

boundary conditions, constitute the mathematical embodiment of the problem.

3.2 THE SHELL THEORY

The external load applied to a shell is resisted by the membrane stress as well

as the internal resisting couples, that is, the shell wall is subjected to the

combined action of stretching and bending. In general, the shell wall is a three

dimensionalbody. BuL,the use of Kirchoff's hypothesis reduces the shell analysis

to a two dimensional problem. Further, in the case of axisymmetric deformations

of shells of revolution, which comprise the majority of shells in practical use, the
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analysis becomes a one dimensional problem. Again, the analysis of the problem.

of shell structures is dominated by the geometry of the shell surface through the

compatibility relations and the equilibrium equations. Tberefore, as can be seen

froIDthe literature, different authors have attempted to present different shell

analyses including the purely stretching 'membrane' theory, linear membrane and

bending theory and the finite deflection 'nonlinear' shell analyses for shells of

varied configurations. For the present problem the large deflection theory of

shells of revolution as presented by Reissner [69) wiJl be used.

3.3 REISSNER'S THEORY OF AXISYMMETRIC DEFORMATIONS OF SHELLS OF

REVOLUTION

.The basic equations of Reissner's theory of finite axisymmetric deformations of

shells of revolution which form the basis of this analysis are presented here for

ready. reference.

(3.1a)z = z(~)

The equation of the meridian of the shell is written in the parametric form as

(Fig. 1)

I' = r(~),

The angle ell of the tangent to the meridian curve is given by

cosl/! = II/IX (3.1 b)

where primes denote differentiation with respect to ~ and where a is given by

(3.1c)
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The principal radii of curvature of the middle surface of the shell are given by

R~ = «leV, Re = rlsincll (3.1d)

With reference to Fig. 2a, the equation of the deformed middle surface is written

in the form

(3.2a)

where the subscript "0" refers to undeformed middle surface and the quantities

u and ware, respectively, the radial and axial coinponents of displacements.

The angle enclosed by the tangents to the deformed and undeformed meridian,

at the same material point, is given by

f;l = <110 - <II (3.2b)

With the above definition of displacements and rotation, the strain componei1ts

and curvature changes of the deformed middle surface' are given by the following

equations

(3.2c)

(3.2d)
: I

(3.2e)

(3.2f)

25



The equation containing the axial displacement component w is introduced as

wi = «sinl/> - z~ (3.2g)

With the definition of stress resultants .and stress couples as shown in Fig. 2a

and Fig. 2b, the three equations of equilibrium are written as

(IV) I + IIX.Pv = 0

(IMe) I - IX. coscll Me + I« (H sincll - V coscll). = 0

(3.3a)

(3.3b)

(3.3c)

Equation (3.3a) is the condition of force equilibrium in the axial direction, Eq.

(3.3b) is the condition of force equilibrium in the radial direction, while Eq. (3.3c)

is the condition of moment equilibrium about circumferential tangent.

With the assumption that the behaviour is elastic, the relations between strains

and stress resultants are given by

CE, = N, - vNe,

M, = D(k, + vke),

where C = Eh, D =

CEe = Ne - vN,

Me = D(ke+ vkf)

Eh3/[12(1-v2], and h is the thickness

(3.4a)

(3.4b)

of the shell .. The radial

stress resultant H and axial stress resultant V are related to Nf and transverse

shear Q as follows:

N" = H coscll + V sincll, Q = -H sincll + V coscll
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3.4 DERIVATIONOF THE FIELD EQUATIONS

The order of the system of equations (3.2-3.4) is six with respect to ~, and

consequently it is possible to reduce Eqs. (3.2-3.4) to six first-order differential

equations which involve six unknowns. In the following derivation the six

fundamental variables are taken as u, 13, w, V, H, Mf and the differential

equations are expressed in terms of these variables. The independent variable ~

is taken as the distance measured along the meridian of shell so that the

differential equation can be used for all possible geometries of the meridian. With

this definition of ~, from equation (3.1c),

from the geometry of the meridian, which is not yet specified,

(3.5a)

(3.5b)

The following equations are written from the previous section in such an order

that, when evaluated serially, they are in terms of the fundamental variables.

This is done in order to keep the fundamental set of differential equations as

simple as possible.

Rewriting Eqs. (3.2d), (3.2a), (3.2b), (3.2f), (3.4c), (3.4b) in that order,

r=r +uo
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N~= H coS<jl+ V sincjl (3.5g)

k~ = M~/D - vke (3.5h)

Me = D(ke + vk~) (3.5i)

Eliminating Ne from Eqs. (3.4a) it follows that

E~ = (1-v2)/C. N~ - vEe

Similarly, eliminating N~ from Eqs. (3.4a) and rearranging,

(3.5j)

Rearrangement of Eq. (3.2cl and substitution of ao = 1 leads to

a=l+E~ (3.51)

Elimination of zo' from Eq. (3.2g) by means of Eq. (3.tb) gives

dwd~ = asincjl - sincjlo (3.5m)

Substituting the values of E~ from Eq. (3.51) and ro' from Eq. (3.tb) in the Eq.

(3.2c),

du =df acos4> - sin4>o
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From Eq. (3.2e) an expression for 13' is obtained in the form

~=d~ k~
(3.50)

Expansion of the three equations of equilibrium and elimination of'Pv' PHand r'

from these equations result in the following expressions for V', H' and M{

dVd~ = - u [(V cos«/»/x-p cos«/>J

c;:, = - u [(Hcos«/>-Ne) / x+Psin«/>J

dMf. __
d~ - u cost/! (l'fe-Mf) / x-U(H ain«/>-V coa«/»

where 'p is the outward normal pressure.

(3.5p)

(3.5q)

(3.5r)

Eqs. (3.5) are the nonlinear governing equations of the axisymmetric deformations

of shells of revolution expressed in terms of the fundamental variables. It should

be noted that this fundamental set of differential and algebraic equations are

expressed in such a manner that all the quantities of physical importance are

evaluated during the process of solution of these equations.
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3.5 LINEARIZED EQUATIONS OF AXISYMMETRICSHELLS

The equations of small-deflection theory followfrom the foregoing Eqs. (3.5) by

referring the differential equations of equilibrium (3.5p) to (3.51') together with

(3.5g) to the undeformed shell and by omitting all nonlinear terms in the

remaining equations of the fundamental set (3.5). The resulting equations are

recorded below for ready reference.

(3.6al

(3.6b)

(3.6c)

e~ = (3.6d)

M~k = - vlr-~ D "'11
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• .1 ( v cos41" ••• )v. = - ---- - p COS'"
I "o

H' [
H cos41" - Ne i •••J= - . + P s n",,,

Io

3.6 BOUNDARY CONDITIONS OF AXISYMMETRIC SHEJ,LS

(3.6h)

(3.6i)

(3.6j)

(3.6k)

(3.61)

(3.6m)

The. general houndary conditions of a shell on an edge t 1 = constant are to

prescribe, in Sander's [76) notations,
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(3.7a)

and ~1 or 411,

where ~1 and ~2 are the shell coordinates along the principal lines of curvature;

Nand M are the stress and couple resultants; 4>'s are the rotations about

respective axes; u and ware tangential and normal displacement components.

When the quantities in (3.7a) are specialized for axisymmetric deformations of

shells of revolution they reduce to prescribing

or

(3. 7b)

and Ml1 or 4>1'

on an edge ~) = constant. From (3.7b) it is seen that the boundary conditions

consists of.the specification of rotational. tangential and normal restraints at the

edge. But in most of the practical cases of shell problems the conditions of the

horizontal and vertical restraints are known rather than those of the normal and

tangential restraints. So it is concluded that it will be preferable to specify the

boundary conditions in terms of the horizontal and vertical restraints from the
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point of view of practical application. When this is done, the boundary conditions

in terms of the notations used in the body of this thesis will be to prescribe

H

and V

or

or

or

u

l3

w

(3.7c)

on the edge ~ = constant.

3.7 EQUATIONS IN NON-DIMENSIONAL FORMS

It is always desirable to solve any engineering .problem in terms of non-

dimensional quantities in order to decrease the number of input physical

parameters as well as to increase the applicability of the solution. With this in

mind and also to make the variables more or less of the same order of magnitude

the displacement components and stress resultants are expressed as ratios of

their actual values to 'those of the circumferential displacement and stress

resultant of an unrestrained thin cylindrical shell. The independent variable ~

is normalized in such a manner that ~e' the total length of the shell meridian

corresponds to unity (Fig. 3b). The normalized quantities are defined

mathematically by the following equations:

w = wEh--,
PR2

u = uEh--,
PR2

33

No
PR



(3.8) _

where R is the larger radius, or the base radius of the truncated parabolic

shells. With the help of the normalized quantities defined in Eqs. (3.8) the

fundamental set of differential Eqs. (3.6) (linear theory) becomes

(3.9a)

(3.9b)

(3.9c)

€e = C Ne - vee (3.9d)

~$,
ke = MelD - vice (3.ge)

(3.9f)

(3.9g)
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(3.9h)

(3.90

(3.9j)

(3.9k)

(3.91)

(3.9m)

where ( ... )' d= d~ (.... )

The corresponding nonlinear Equations of the fundamental set in non-dimensional

form are as follows:

~ = ~o - if
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N~ = Beos4> + vsin4>

W" = «sin(/> - Lsin4>o

iF = «eos(j) - Leos(j) 0

v = - «cos(j)(Vlr- PT}
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(3.l0e)

(3.lOf)

(3.l0g)

(3.l0h)

(3.lOi)

(3.l0j)

(3.lOk)

(3.101)

(3.lOm)

(3.l0n)



(3.100)

(3.10p)

It should be noted that some of the nondimensional shell parameters in Eqs. (3.8)

are defined in terms of ~. which will depend on the geometry of the meridian

and thus should be derived for each individual case. In some cases there is no

closed form expression for ~. and, therefore, ~e has to be evaluated either from

a series expression or by numerical integration. The same is true for the
-expressions of r0 and 4>0in terms of ~. There may not be any closed form

expression for ro and cjlo and thus numerical integration has to be applied. For

the case of a parabolic reducer, there is no closed form expressions for the

parameters ro and cjlo' Thus numerical integration of the differential equation,

given below is essential,

R
2F(1-xl)

Once 4> is known, ro is given by

= 1 h-F(l-xl) Cot'+}
R
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where

F = a
R(l-xl)

".

a

R

xl

=

=

=

distance between the vertex and. the focus of the parabola,

larger radius of the reducer,

diameter ratio, R/R.
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CHAPTER 4,

METHOD OF SOLUTION

4.1 INTRODUCTION TO MULTISEGMENT INTEGRATION

The fundamental set of linear Eqs. (3.9) and nonlinear Eqs. (3.10) together with

the boundary conditions (3.7c) have to be integrated over a finite range of the

independent variable t. But numerical integration of these equations is not

possible beyond a very limited range of t due to the loss of accuracy in solving

for the unknown boundary values, as pointed out by Kalnins [36], and thus the

multisegment method of integration developed by Kalnins and Lestingi [37] will

be used for the present analysis.

The multisegment method of integration of a system of m first. order ordinary

differential equations

dy(x) 1 -dx =F(x,y (x) ,y"(x), ... ,ym(x»

in the interval (Xl ~ X ~ ",.'1) consists of (see Fig. 3d)

a. the division of the given interval into M segments.

b. (mtl) initial-value integrations over each segment.

(4.11a)

c. solution of a system of matrix equations which ensures continuity of the

dependent variables at the nodal points.

d. repetition of (b) and (c) until continuity of the dependent variables at the

nodal points is achieved.
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In Eqs. (4.11a) the symbol y(x) denotes a column matrix whose elements are. m

dependent variables, denoted by yj(x) (j = 1, 2, ... , m); F represents m functions

arranged in a column matrix form; and x is the independent variable. It is

assumed here for convenience that the first m/2 element.s of y(x1) and the last

m/2 elements of y(XM+1) are prescribed by the boundary conditions.

If at t.he initial point Xi of the segment Si (see Fig. 3d) a set of values y(x,) is

prescribed for the variables of Eqs.. (4.11a) t.hen t.he variables at any x within

Si can be expressed as

(4.11b)

where the function f is uniquely dependent on x and the syst.em of equations

(4.11a). From Eqs. (4.11h) the expressions for the small changes oy(x) can. be

expressed to a first approximation by the following linear equations:

(4.11c)

where

(4.11d)
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Expressing Eqs. (4.llc) in finite difference form and evaluating them at

(4.11e)

where yt denotes a trial solution state and y denotes an iterated solution state

based on the condition of continuity of the variables at the nodal points. Eqs.

(4.11e) is rearranged as

(4.1H)

where

In order to determine the coefficients Yi(x) in Eqs. (4.l1f) the jth column of Yi(x)

can be regarded as a set of new variables, which is a solution of an initial value

problem governed within elj,ch segment by a linear system of first order

differential equations, which is obtained from Eqs. (4.11a) by differentiation with

respect to yj(x) in the form

{F[X,yl(X) ,y2(X), ... ,ym(x)]} (4.llg)

Thus the columns of the. matrix Yi (x) are defined as the solutions of In initial

value problems governed in Si by (4.llg) (with j = 1, 2, ..., m) with the initial

values, in view of Eqs. (4.llc), specified by

(4.llh)

41



where I denotes the (m,m)unit matrix, To obtain the iterated solution y(xJ Eqs,

(4.11f) are rewritten as a partitioned matrix product -of the form

,
I
I-r-
I

so that the known boundary conditions are separated from the unknowns and,

therefore, turns into a pair of equations given by

(4.11i)

The result is a simultaneous system of 2Mlinear matrix equations, in which the

known coefficients Yij(Xi+l) and Zij(xi+l) are (m/2, m/2) and (m/2, 1) matrices,

respectively, and the unknown, yj(xi) are (m/2,1) matrices. Since Yl(xl) and

Y2(xM+l) are known, there are exactly 2Munknowns: yl(Xi), with i = 2,3, ... , M +

I, and y2(Xi),with i = 1,2 ..,' M.

By means of Gaussian elimination, the system of equations (4,l1i) is first brought

to the form

(4.11j)
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for i = 1, 2, ... , M. Using the notations Zi j and Yij in place of the symbols

Zij(xi+l) and Yij(xi+l)' the m/2, m/2) matrices Ei and Ci in the Eqs. (4.11j) are

defined by

c - y' (y')-l1 - 1 1

for i = 2, 3, ... , M.

The (m/2, 1) matrices Ai and Bi are given by

z z () ."'-1B, = - Z, - Y'Yl Xl - :t,E, Al

for i = 2, 3, ..•, M.

Then the unknowns of (4.11i) are obtained by

43



for i = 1, 2, ... , M-l.

Assuming y(xi) as the next trial solution yt(xi) the process is repeated until the

integration results of Eqs. (4.11a) at xH1, as obtained from the integrations in

segment S. with the initial values y(x.),' match with the elements of y(x., 1) as
I. ~ 1. 1.+

obtained from (4.11f) and also with the boundary conditions at XH+1'

4.2 DERIVATIONOF ADDITIONALEQUATIONS

In the multisegment integration technique for. a set of ordinary differential

equations it has already been noted that in addition to the integration of the

given set of equations another m sets of equations represented by (4.11g) has

to be integrated. Thus, in order to apply the method of multisegment integration,

differential equations corresponding to Eqs, (4.11g) for the m2 additional

variables as represented in Eqs. (4.11d) have to be derived. The,:,e differential

equations are obtained by differentiating Eqs. (3.9) for the linear case and Eqs.

(3.1.0)for the nonlinear case with respect to each of the fundamental variables.

As the variables in any' column of (4.11d) have the same form, the system of

equations (4.11g) is derived here for the variables of anyone column of (4.11d)
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where the new variables are identified from the fundamental variables by the

subscript a.

From the nonlinear equations (3.10), by differentiation in succession,

eea = ua/r"

4>. = -if.

ke• = P.costjl/r"

N~a = (H:- Vii al cos4> + (H if. + Val sinet>

e~a = C ~. - vee.

k~a = M~./j) - vka.

Nea (eea + ve~.)/C

Me. = L{kaa + vk(a)

i1,. = CItasin4> - CIt.licoscjl

"if'a = k~a

~ = - (CIt.coscjl+CIt if.sintjll (V/r-P T)

- ii"costjl (V./I- V ra/I2)

H" '" - CIt.( (Hcoscjl-Ne) /r+P Tsincjl)-Clt{ [H.coscjl

+lJ aHsincjl-Ne.-U. (Hcoscjl-Ne) /.F'l /r-P T if .cosell}

~a= (ii acoscjl+"if aCitsincjl){ (Mj,-M~)/r+P ~V}
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(4.12a)

(4.12b)

(4.12c)

(4.12d)

(4.12e)

(4.12f)

(4.12g)

(4.12h)

(4.12i)

(4.12j)

(4.12k)

(4.121)

(4.12m)

!'C

. z~'(4.12n)

(4.12o)



- ~- - - --
+ a (cost/> [P T Va+ (Mea-M~a-Ua(Me-M~)IT 1

- P rHasint/>l-p rH(i" asin4l-«!) acos4l)
(4.12p)

Equations (4.12a - 4.12p) have to be integrated as initial value problems m times

in each segment with the initial values given by (4.11h). It should be noted that

the equations (4.12) contain not only the variables (4.l1d) but also the variables

of the fundamental set. Thus, Eqs. (4.12) can not be integrated unless the

fundamental set of equations is integrated first and the values of the

fundamental variables are stored for use in Eqs. (4.12). It should be further

pointed out that one point integration formula can not be used for the

integration of Eqs. (4.12) since .this formula needs evaluation of the derivatives

at intermediate points where the variables are never evaluated.

The .corresponding equations for the linear theory are given by the homogeneous

form of Eqs. (3.9) and thus readily obtainable by dropping the load terms in Eqs.

(3.9).

4.3 TREATMENT OF BOUNDARY CONDITIONS

In the introduction of the lIIultisegmentmethod of integration it was assumed that

the first m/2 elements of y(x) at Xl and the last m/2 elements of y(x) at xM+l

were prescribed as boundary conditions. But, in general, the boundary conditions

are given as

and at XM>l
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in which any m/2 elements of b1 and any m/2 elements of b"+1 may be specified

as boundary conditions. The symbols T1 and T••+1 represent nonsingular (m,m)

matrices which are known from the specification of the boundary conditions at

the ends of the interval.

By rearranging the rows of T1 and T"+1 in a special order, equations (4.13a) can

.always be stated in a manner such that the prescribed elements of b1 and bM+1

become respectively the first and the last m/2 elements of b1 and b"+1"When this

is achieved, evaluation of (4.11f) at i = 1 and i = M,and t.hen elimination of y(x1)

and y(x••+1) by means of (4.13a) yield

(4.13b)

(4.13c)

The form and notation of (4.11f) can now be retained if the coefficient. matrices

Y1(X2), Y••(x••+1), Z••(x•••1), occurring in (4.11f), represent Y1(x2)T1-t, T••+1 Y••(x••+1),

and T•••1 Z••(x•••1) respectively. In doing so, the solution of (4.11f) will not yield

y(x1) and y(x..+l) but rather the transformed variables b1 and b••+1• When y(x1)

and y(x...l) are desired they can be obtained by the inversion of the matrix

equations (4.13a).

It should be noted here that with reference to the boundary conditions (3.7c)

stated in terms of the fundamental variables the matrices T1 and T•••1 are both

unit matrices of order 6. The construction of T1 and T•••1' in accordance with any

possible statement of (3.7c) so that equations (4.13a) are in order, is treated in

Appendix A.
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4.4 DETERMINATIONOF CRITICAL LOAD

It is obvious that a shell structure is at equilibrium condition when its total

potential energy, at that level of loading, is stationary and that equilibrium

condition is stable when this potential energy has got Ii relatively larger value

in the neighboring disturbed conditions. The governing differential equations

which are solved here always seek for the state of deformation of the shell at

which, for given external pressure, the potential energy in the deformed. shape

of the shell is stationary. The critical pressure for a particular shell is

interpreted from the fact that any further increase in pressure above its critical

value, no matter how small, will cause the shell to undergo enormous deformation

(linear and rotational) indicating that the state of deformation of the shell which

corresponds to the lowest potential energy is far off from that at the critical

pressure. Uddin [95] has also pointed out that the method of solution of the

nonlinear governing equations for any value of loading parameter will fail when

the load exceeds its critical value in the sense that the shell must deform

enormously to assume the configuration which corresponds to this load or that

the shell passes on to a secondary llIodeof deformation. In both these cases, the

shell is in a state of instability which leads to its buckling.

The steps followed in finding the critical pressure are as follows:

i. First the linear governing equations of the shell are solved by the

multisegment method of. integration as described earlier. With the linear

solution providing initial values to the dependent variables, the nonlinear

equations are solved by the process of iteration at the initially assigned

load.
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ii. The nonlinear equations are then repeatedly solved for increasing values

of the load. parameter while the initial values for iteration process at any

step of load parameter are provided by the solution for immediateprevious

step of loading.

iii. If at any step of the scheme of increasing loading steps, the iteration

process fails to converge, it first subtracts previous loading increment

from the normalized loading, then halves the load increment and adds it to

previous loading to arrive at the new normalized loading. In this way the

equilibrium configuration path is traced against increased loading.

iv. The critical pressure is anticipated from the load-displacement curves,

where the equilibrium configuration path is traced against increasing

loading and the appearance of a secondary mode of deformation is

searched. This appearance of a second solution always corresponds to the

bifurcation point as pointed out by Thompson [90] and consequently, it is

always the bifurcation point where the numerical solutions fail to converge

as the shell structures become unstable as pointed out by Uddin [95].

It should be mentioned here that the term 'Bifurcation point' is used here

to refer to the point of initiation of a secondary mode of deformation, be

a limit point or branching point.
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CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 ACCURACY AND REMABILITY OF THE ANALYSIS

It is always desirable that the solutions obtained by a numerical technique be

compared with the corresponding results in the literature, if available, in order

to check the accuracy and reliability of the numerical method employed. It also

helps to ascertain that no error in logic is committed in formulating the problem

and no mistake has been made in the computer programming.

Actually the accuracy of the multisegment method of integration is self-

ascertaining. Once the values of the fundamental variables at the nodal points are

known from the multisegnient method of integration, the fundamental set of

differential equations is integrated over each segment of the meridian as initial-

value integration of the fundamental set of different equations. If the values of

the fundamental variables at the end of the segment S1' as obtained from the

initial-value integration, mateh up to a eertain number of digits with their

respective initial values for the segment S1+1 for i = 1, 2, 3 ..•. M and also with

the given boundary conditions, only then the solution scheme accepts the results.

As regard to the reliability of the problem formulation and computer

programming, Ref. 95 can be referred. In Ref. 95 solutions were found for

uniformly loaded circular plate with clamped edge by the present methodology

and it was found that the results are correct up to eight digits when eompared

with the results of the corresponding analytical solution. In Ref. 95, results were
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also obtained on the variation of meridional stress and circumferential stress

along the meridian of ellipsoidal head pressure vessel based on both linear and

nonlinear theories by the present method of solution and were compared with

previously established results. It was found that there was hardly any difference

between these results. That the used computer program can accurately calculate

the critical pressure for axisymmetric shells of revolution of any geometry have

been demonstrated by Uddin [95, 97, 98], Haque [31,98], Rahman [63] and Ali [6].

5.2 GENERAL DISCUSSION ON RESULTS

The nonlinear differential equations of shells, which embody the principle of

minimumpotential energy, are solved for increasing values of load parameter till

the first unstable state of equilibrium is reached. The onset of the first

bifurcation point is hinted by a substantial increase in the displacements and

stresses of the shell for very small increase in the load parameter. Right at the

bifurcation point, in the case of limit-point buckling, any increase of load

parameter, however small, produces enormous deformations and, thus, the

numerical technique used here fails to converge to any solution.

That the present analysis based on axisymmetric deformations can predict the

critical condition .is justified by the following two theorems, delineated by

Thompson [90].

Theorem1: An initially-stable (Primary) equilibrium path rising monotonicallywith

the loading parameter can not become unstable without intersecting a further

distinct (secondary) equilibrium path [90].
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Theorem 2: An initially-stable equilibrium path rising with the loading parameter

cannot approach an unstable equilibrium state from which the system would

exhibit a finite dynamic snap without the approach of an equilibrium path (which

mayor may not be an extension of the ori.ginal path) at values of the loading

parameter less than that of the unstable state [90].

Therefore, it is the initiation of the secondary path which the scheme of solution

predicts, and up to this point, it is quite fair to assume that the deformations

were axisymmetric. After the initiation of the secondary path the system assumes

its buckled mode which can be non-axisymmetric.

The cri.tical .pressure for a parabolic reducer was calculated for different

diameter ratios (R/R) and thickness ratios (R/h). It should be mentioned here,

that stability analysis is justified for thin shells with large diameters. This is

why the presented results are for thinner parabolic reducers with larger

diameters only. The investigated values 'of Rlh and R/R are: Rlh = 500, 750,

WOO,1250, 1500, 1750, 2000 and R/R = 0.5, 0.6, 0.7,0.8, 0.9. Results beyond this

range of values of R/R' and R./h can be readily obtained by using the computer

program presented in Appendix B of this thesis, if they are of any importance

to the practicing engineers.

The summary of the analysis is presented in Figs.4, 5, 6, 7 and 8 and in Table-I.

Thompson's theorem [90] is used to find out the limit point or the branching

point which corresponds to the critical load.

Table-l gives a comparison of critical pressures between a parabolic and a

conical reducer with identical parameters (that is, with the same diameter ratio
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and thickness ratio). It should be mentioned here. that same boundary

conditions, that is, clamped edges are assumed for the comparison. It is seen that

tbe critical load is always higher for a parabolic reducer. For a diameter ratio

of 0.5 and thickness ratio of 500,.the critical load for a parabolic reducer is 1.8

times greater than that of a conical reducer with an apex angle of 60°, 2 times

for an apex angle of 90° and 3.5 times for an apex angle of 120°.This superiority

of the parabolic reducer regarding stability becomes more prominent with

increasing thinness and decreasing diameter ratio as can be seen from Table-1.

For R1IR = 0.3 and Rlh = 1500, the critical load for a parabolic reducer is 2.2

times greater than that for an identical conical reducer of an apex angle of 600,

3.3 times greater for an apex angle of 900 and 6 times greater for an apex angle

of 120°. It was shown in ref. [6] that the critical pressure for a conical reducer

decreases almost linearly if the apex angle is increased. The highest critical load

is thus for the minimumapex angle which was 60° in ref. [6]. But it is seen in

Table-1 that the critical pressure for a parabolic reducer is almost double of the

critical pressure for the conical reducer with an apex angle of 60° for the same

diameter ratio and thickness ratio.

The stresses developed under uniform external pressure for a parabolic reducer

and an identical conical reducer (that is, with the same thickness ratio and

diameter ratio) are presented in the figures 6, 7 and 8. It should be mentioned

here that same boundary conditions, that is, clamped edges are considered for

the comparison. From the ahove mentioned figures it is obvious that at the same

level of external loading, parabolic reducers develop uniform stresses of much

lower magnitude than compared to its counter parts. Fig. 6b,. 7b and 8b show

that for a parabolic reducer there is no perturbations in tbe membrane solutions

except near the two ends. Whereas, at the same level of loadings, the conical



reducers show perturbations all along the shell meridian, the severe ones being

near the larger end as depicted in the figures 6a, 7a and 8a. It is because of the

fact that a parabolic reducer having sufficient membrane stiffness can sustain

the external loading without the action of the bending moments except near the

two ends at such a low level of loading. For the same reason, the solutions

predicted by the linear and the nonlinear theories are identical for a parabolic

reducer if the loading is very low (Figures 6b, 7b and 8b). It has been found

that under external pressure the meridional stress at the inner fibre «Jai) is of

the highest magnitude among the four components of stresses (creil creo' 0ail Gao)

for both the reducers. It is seen from figure 6a that at a load of (PIE): 4.21 x

10-7, which is the buckling load for that particular conical reducer the maximum

meridional stress at the inner fibre(oa/E) is - 0.0015which occurs at the larger

end. But for Iln identical parabolic reducer the same stress (0ai/E) at the same

load is only- 0.000262 (almost six times lower than that developed in a conical

reducer) at the smaller end. That parabolic reducers are far superior to conical

ones in developing uniform stresses of much lower magnitude is also true for the

case of circumferential stresses (0ei' creo) as seen from the Figures 6c and 6d.

Figures 7a to 7d show the stresses developed in three times thinner reducers

(R/h :1500) than the previously discussed ones. Here also the parabolic reducers

are found to develop much more uniform stresses of lower magnitude (almost six

times lower) than by its counter parts.

Ali [6] showed that the load carrying capacity of a conical reducer decreases

almost linearly with the increase of the apex angle keeping all other parameters

constant. Thus the reducer with the least apex angle (which was 60° in Ali's

research) has the highest load carrying capacity. But as depicted in the Figures

8a to 8d, the stresses developed in a conical reducer with an apex angle of 60°
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is always higher than those developed in a parabolic reducer. The highest

meridional stress (aaJE) for a parabolic reducer is 1.5 times lower than that

developed in an identical conical reducer with an apex angle of 60°.

Thus it is seen that under the same level of external loading, stresses are mor'e

uniform and of much lower .magnitudes in a parabolic reducer than in an identical

conical reducer in all the cases. Consequently, it is quite logical that the

buckling loads will be always higher for a parabolic reducer, that is, a parabolic

reducer will be much more stable than a conical reducer under uniform external

.pressure.

Figures 4 and 5 show the effect of thickness ratio (R/h) and diameter ratio

(R1/R) on the critical load, respectively. Figure 4 is the evidence of the common

truth that,' 'thinner the structure, lower the critical load', while figure 5 shows

that, 'higher the diameter ratio, higher the critical load'. Figure 5 shows that the

critical load increases slowly tipto diameter ratio of 0.8 but increases at a faster

rate if the diameter ratio' is further increased. Of course, the effect of the

diameter ratio on the critical load diminishes as the structures are made thinner.

5.3 DISCUSSIONS ON THE PATTERN OF STRESSES

The non-dimensional stresses, stress resultants and the bending moments for

parabolic reducers with different diameter ratio and thickness ratio are presented

in the Figures 9-12, 13d-13f, 14d-14f, 15d-15f, 16d-16f, 17d-17f and 18d-18f

considering both the linear and the non-linear theories.
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It should be mentioned here that the above mentioned parameters are normalized

in terms of the loading parameter. As a result, there is no variation of the

normalized parameters with the loading for linear theory. It should also be

pointed out that because of normalizing, the actual signs (positive or negative)

of the normalized parameter will be the opposite of those in the graphs.

Figures 9a-9f and 10a-10f show the variation of the bending moments along the

shell meridian. The presence of bending momentin effect shows perturbations in

the membrane solutions as seen in the Figures 13d, 14d, 15d, l6d, l7d and l8d.

The presence of positive bending "momentscauses inward convex bending of the

shell meridian and vice versa. This will he evident from the buckled

configurations of the reducer, presented in the Figures 13c, 14c, 15c, l6c, 17c

and l8c . The discrepancy between the linear and the nonlinear theories in

predicting the solutions increases with increasing loading and decreasing

thickness. At higher loading, the linear solutions fail to predict the perturbations

in the bending moments. It is also seen in Figures ge and 9f, IDe and lOf that

for long reducers (lower diameter ratios) there is hardly any difference between

the solutions predicted by the two theories except in a narrow zone near the

larger end of the reducer, where the nonlinear solutions show sharp

perturbations in the bending moments.

The meridional stress resultants a.re presented in the Figures lla-llf. That linear

theory fails to provide necessary information especially at higher loadings are

evident from the above mentioned figures. The nonlinear theory on the other

hand, can measure the profound change in curvature and predicts stress

resultants with perturbations. It is also Seen that the perturbations increases

with" increasing loading and decreasing thickness. It" is also notable that
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perturbations become sharper with decreasing diameter ratio and for very long

reducer it is prominent only near the larger end of the reducers as seen in the

Figures 11e and 11f.

The circumferential stress resultants are presented in the Figures 12a to 12f.

Here, the effect of change in radii outweighs the effect of change in curvature.

As a result the nonlinear theory predicts lower vaiues of the stress resultants

than that predicted by the linear theory. That long reducers fail due to

mer,idiona! buckling without appreciable change, in radii is evident from the

Figures 12e and 12f. For these particular reducers the solutions predicted by the

two theories merge together as there is no change in radi:i.

The membrane solutions are predominant ill the long reducers as seen in the

Figures 17d and 18d of meridional stresses at the inner and the outer fibres. Of

course, the presence of bending moments at the two ends, specially near the

larger end of the reducer causes sharp perturbations in the membrane solutions

resulting in crooked deformation of the shell meridian near the larger end

(Figures 17c and 18c).

An interesting observation from the Figures 17d-17f, 18d-18f is that long

parabolic reducers are critically stressed near the larger end due to the

combined action of meridional and circumferential stresses but for short reducers,

this eritical zone shifts towards the smaller end of the reducer (Figures 13d-13f,

14d-14f). This results in local instability near the larger end' for long reducer

and near the smaller end, for a shorter one, as evident from the load-

displacement curves and the buckled states of the reducers are discussed later.
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5.4 DISCUSSIONS ON THE MODES OF BUCKLING

An interesting observation from the present investigation is that long parabolic

reducers (lower diameter ratios) are prone to local instability at the larger end

as shown in the buckled configurations of the reducers in the Figures 17c and

18c where the adjacent material points on the shell meridian are severely

displaced in opposite directions resulting in crooked deformation of the reducers

near the larger end. On the other hand, short parabolic reducers ( higher

diameter ratios) are most critically stressed near the smaller end and thus short

reducers are prone to local instability away from the larger end. For ready

reference Figures 13c, 14c are presented, where the waviness in the buckled

shell meridian are seen near the smaller end. It should be mentioned here that

waviness in the shell meridian, whether sharper (in long reducer near the larger

end) or flatter (in short reducer near the smaller end), is produced by sinusoidal

variation of bending moments which weaken the reducers.

The critical load which corresponds to the first bifurcation point is anticipated

from the load-displacement curve (equilibrium path) by noting t.he initiation of

a distinct. secondary mode of deformat.ion, whet.her the bifurcation point is a

limit.point. or a branching point.. The critical pressure of the shell is interpret.ed

from the fad that. t.he mode of primary deformation along the fundament.al

equilibrium pat.h of a structure can not change without a change in its status of

stability as pointed out. by Thompson [90]. The load-displacement curves are

presented in the Figures 13 to 18. The total meridional distance in between the

two ends of the reducer is equally divided int.o:four parts and the load-

displacement curves are plotted for three equidistant material poil'lts along the

shell meridian. Thus the points are at a distance of 25%,50%and 75%of t.he
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meridional length of the reducer from either of the two ends. This is done to

anticipate which portion of the shell meridian is most severely displaced under

loading. As for example, it has been observed that for long parabolic reducers

(lower diameter ratios) the material points at a distance of 25%from the larger

end ( ~ =0.83 1 are most severely displaced both radially and axially, during

buckling (Figures 17a, 17b, 18a, 18b), indicating local instability near the larger

end. On the other hand, a short parabolic reducer (higher diameter ratios) is

prone to local instability near the smaller end, as the material points at a
-

distance of 25%from the smaller end ( ~ =0.85 ) are most severely displaced

during buckling (Figs. 13a, 13b, 14a, 14b).

The stress variations along the shell meridian (Figs. 13d-13f, 14d-14f, 15d-15f,

. 16d-16f, 17d-17f, 18d-18f) are in complete harmony with the failure pattern of the

particular type of reducer as indicated by the load-displacement curves. It has

been observed that for a long reducer, the material points along the shell

meridian near the larger end are most critically stressed by the combined effect

of the meridional and the circumferential stresses (Figs. 17d-17f, 18d-18r) which

in turn causes the severe displacements of those points near the larger .end.

Conversely, for a short parabolic reducer the portion near the smaller end is

most critically stressed (Figs. 13d-13f, 14d-14f) indicating that local instability

is likely near the smaller end.

Thus from the above discussions it can be concluded that longer the reducer

(that is lower the diameter ratio) higher is the buckling tendency near the larger

end and vice versa. However, we have already seen that increasing the diameter

ratio increases the buckling load (Figs. 4 and 5).
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It should be mentioned here that the present analysis is based on the elastic

deformations of the shell material. The following discussions, therefore, point out

whether or not the maximumstress in the shell material remains within the elastic

limit of the material at the critical load.

For ready identification, each parabolic reducer has been given a four digit

number. The first two digits represent the radius thickness ratio (R/h) in

hundreds and the last two digits represent diameter ratio (R/R) in hundredths.

To show the effect of diameter ratio and thickness ratio on the stress

distributions and critical loads, two sets of representative shell elements are

chosen. The chosen diameter ratios (R1/R) are 0.5, 0.7 and 0.9 for each of the

thickness ratios (R/h) 1000and 1500.

SHELL-l090:Shell parameters are radius thickness ratio (R/h) = 1000, diameter

ratio (R/R) = 0.90. The critical pressure (Pc..lE) for this shell element was found

to be -1.93 x 10-6•

From the det.ail output of the results, for this very short reducer, it is found

that the maximumnon-dimensional st.ress (al(PR/h)] is t.he meridional stress of

the inner fibre at. the smaller end (~ = 0.796) and its value is 1.43.Assuming the

shell mat.erial to be steel, the actual value of this stress comes out to be -580

MPa.The yield strength of high quality steel is as high as 1800MPa. Therefore,

t.he induced maximumstress is well below the yield st.rengt.h and it is concluded

that the deformations are elastic. The bifurcat.ion point (which.may be a limit.

point. or a branching point) is anticipated from the load-displacement curves by

noting t.he initiat.ion of a distinct secondary lIIodeof deformation.
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Figures 13a and 13b show the load-displacement curves for this short reducer.

It is seen that the material points at a meridional distance of .25%(~ = 0.85) from

the smaller end are most severely displaced during buckling as buckling initiates

in that region. It is also seen from Figures 13d-13f that this particular region

is most critically stressed prior to buckling. So we can conclude that this very

short parabolic reducer (RI/R = 0.90) is prone to local instability near the smaller

end.

SHELL-1590:Shell parameters are radius thickness ratio (R/b) = 1500, diameter

ratio (HI/R) = 0.90. This shell element is 1.5 times thinner than the previously

discussed shell element (SHELL-l090).The critical pressure (Per/E) for this shell

element was found to be -9.6 x 10-7•

From the detail output of the results, for this very short reducer, it.is found

that the maximumnon-dimensional stress [a/(P.R/h)) is the meridional stress of

the inner fibre at the smaller end (~ = 0.796) and its value is 1.56. Assuming the

shell material to be steel, the actual value of this stress comes out to be -472

MPa.The yield strength of high quality steel is as high as 1800MPa. Therefore,

the induced maximumstress is well below the yield strength and it is concluded

that the deformations are elastic. The bifurcation point (which may be a limit

point or a branching point) is anticipated from the load-displacement curves,

indicated by the initiation of a distinct secondary mode of deformation.
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Figures 14a and 14b show the load-displacement curves for this short reducer.

It is seen that the material points at a meridional distance of 25%(( = 0.85) from

the smaller end are most severely displaced during buckling as buckling initiates

in that region. It is also seen from Figures 14d-14f that this particular region

is most critically stressed prior to buckling. So we can conclude that this short

parabolic reducer (R1/R = 0.90) like SHELL-1090is prone to local instability near

the smaller end.

SHELL-1070:Shell parameters are radius thickness ratio (H/h) = 1000, diameter

ratio (R/R) = 0.70. The critical pressure (PcJE) for this shell element was found

. to be -1.23 x 10-6•

From the detail output of the results, for this short reducer, it is found that the

maximumnon-dimensional stress [a/CPR/h)) is the meridional stress of the inner

fibre al the smaller end (( = 0.50) and its value is 1.53. Assuming the shell

material to be steel, the actual value of this stress comes out to be -395 MPa,

well below the yield strength of good quality steel. So it is concluded that the

deformations are elastic.

The load-displacement curves for this short reducer show that the material points.

from the smaller end up to half of the meridional distance are most severely

displaced during buckling (Figures 15a and 15b). The stress curves (Figures

15d-15f) show that the above mentioned portion is ci'itically stressed prior to

buekling, indicating that buckling initiates in this region for t.his part.icular

reducer.
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SHELL-1570:Shell parameters are radius thickness ratio (R/h) " 1500, diameter

ratio (R/R) " 0.70. The critical pressure (PerlE) for this shell element was found

to he -5.63 x 10-'.

This shell element is 1.5 times thinner, than SHELL-1070.From the detail output

of the results, for this short reducer, it is found that. the maximum non-

dimensional stress (a/(PR/h)] is the meridional stress of the inner fibre at the

smaller end «( " 0.50) and its value is 1.21. Assuming the shell material to be

steel, the actual value of this stress comes out to be -218 MPa, well below the

yield strength of st~el. So it is concluded that the deformations are elastic.

The load-displacement curves for this short reducer show that t.he mat.erialpoint.s

from the smaller end up to half of the meridional distance are most. severely

displaced during buckling (Figures 16a and 16b). The stress curves (Figures

16d-16f) show that the above mentioned portion is critically stressed prior to

buckling, indicating that buckling initiates in this region for this part.icular

reducer.

SHELL-1050:Shell parameters are radius t.hickness ratio (R/h) " 1000, diameter

ratio (R/R) " 0.50. The critical pressure (PerlE) for this shell element.was found

to be -1.14 x 10-6•

This shell element represents a long parabolic reducer. From the detail output

of the results, for t.his long reducer, it is found that the maximum non-

dimensional stress (a/(PR/h)] is the meridional st.ress of t.he inner fibre at t.he

smaller end (~ " 0.30) and it.s value is 1.32. Assuming the shell material t.o be

steel, the actual value of this stress comes out to be -316 'MPa. Therefore, this
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induced maximumstress is well below the yield strength and it is concluded that

the deformations are elastic.

That long parabolic reducers are prone to local instability near the larger end

(unlike the shorter reducers) are verified from the load-displacement curves

(Figures 17a and 17b) and the stress distribution along the shell meridian

(Figures 17d-17f). The load displacement curves show how sharply the rate of

deformation of the material points at a distance of 25%of its length from the

larger end (~ = 0.83) are changed just after the bifurcation point is exceeded.

The stress curves (Figures 17d-17f) show that this particular portion of the shell

meridian (~ :::0.80 - 1) is under high meridional and circumferential stresses. The

buckled configuration of the reducer (Figure 17c) is also the evidence of the fact

that longer the reducer (lower the diameter ratio) the higher is the buckling

tendency near the. larger end.

SHELL-1550:Shell parameters are radius thickness ratio (R/h) = 1500, diameter

ratio (Ri/R) = 0.50. This shell element is 1.5 times thinner than the previously

discussed shell element (SHELL-1050).The critical pressure (Per/E) for this shell

element was found to be -5.30 x 10-7•

This shell element show the same behavior as shown hy shell element 1050 under

load. But the perturbations in the stress curves are sharper resulting in much

lower critical load, obviously because of the increasing thinness.

From tbe detail output of the results, for this long reducer, it is found that the
(

maximumnon-dimensional stress [a/(PR/h)] is the meridional stress of the inner

fibre at the smaller end (~ = 0.30) and its value is 1.3. Assuming the shell
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material to be steel, the. actual value of this stress comes out to be -217 NPa.

Therefore this induced maximumstress is well below the yield strength and it is

concluded that the deformations are elastie.

That long parabolic reducers are prone to local inst.ability near the larger end

(unlike the. shorter reducers) are verified from the load-displacement curves

(Figures 18a and 18b) and the stress distribution along. the shell meridian

(Figures 18d-18f). The load displacement curves show how sharply the rate of

deformation of the material points at a distance of 25%of its length from the

larger end (~ = 0.83) are changed just after the bifurcation point is exceeded.

The stress c'urves (Figures 18d-18f) show that this particular portion of the shell

meridian (~ = 0.80 - 1) is under high meridional and circumferential stresses.

From the above discussions and observing the buckled configuration of the

reducer (Figure 18c), we can conclude that unlike shorter parabolic reducers, the

longer ones are prone to local instability near the larger end.
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CHAPTER 6

CONCLUSIONS

6.1 CONCLUSIONS

AND RECOMMENDATIONS

The following has been achieved from the present analysis:

1. Starting with the Heissner's equations for axisymmetric deformations of

shells of revolution, critical pressures and stress distributions for

parabolic reducers are obtained.

2. The parabolic pipe reducers are far superior to conical reducers in

developing uniform stresses of lower magnitude under the same level of

external loading. From the stress distribution along the meridional length,

it has been found that the regions near the fixed edges are most critically

stressed. It has also been observed that long parabolic redueers (lower

diameter ratios) are critically stressed near the larger end of the reducer

but this critical zone shifts away from the larger end as the diameter ratio

is gradually inereased.

3. It has been observed that parabolic reducers are much more stable than

the conical reducers under uniform external pressure. The ratio of the

critical pressure of a parabolic reducer to that of a conical reducer <. with

the same diameter ratio and thickness ,'atio ) increases with increasing

thickness ratio and decreasing diameter ratio.
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4. For a parabolic reducer, the critical load increases with the increasing

diameter ratio but the effect of the diameter ratio diminishes as the

reducers are made thinner.

5. For practical uses, specific reducers can be designed using the presented

results.

6.2 RECOMMENDATIONS FOR FUTURE WORK

In the light of the experience gained while achieving the set objectives of this

thesis, the author feels that the following further investigations will enrich the

field of the present work:

1. In the present analysis the edges of the parabolic reducer are taken to be

completely restrained. But, in practice,. even with thick-flanged-edges,

there will always be some degree of axial and rotational flexibility. It is

thus felt that the present investigation should be extended to inelude

various degrees of edge-flexibility of this kind of reducers.

2. It is assumed in this analysis that the parabolic reducers are perfectly

axisymmetric and the thickness of the reducer-wall does not vary either

axially or circumferentially.. This kind of idealization can hardly be

attained, no matter how good is the fabrication process. It is thus felt that

the present analysis should be extended to include the investigation of t.he

effect.s of different. degrees of deviat.ions from axisymmetry and also the
,

effects of variat.ions in thickness, axially and circumferentially, separat.ely

as well as combinedly,
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3. The present investigation has revealed the fact that the proposed parabolic

reducers are far superior to the traditional conical reducers as far as

uniform distribution of stresses and the. buckling loads are concerned. The

author feels that analysis with other geometrical shapes of the pipe

reducers may yield better results. It is thus recommendedthat the present

investigation can be extended to include reducers of other geometrical

shapes.
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Table-I:
Comparison of Critical Pressure Between a Parabolic Reducer and a Conical
Reducer with Clamped Ends.

p

R

-L__

h
h

R,
I

l ,....,.- ,
Ii t I ,j Diameter I Thickness I Critical Pressure (Per/E) for Conical I Critical PressureI Ratio Ratio ,

Reducer [Ref.5] ! (Per/E) forI ,
(RI/R) iR/hl ,

Parabolic reducer
I

i Angle (2ai II Apex I [Present Analysis]I I I !i 600 , 900 i 1200 I

I
i 500 i

30 10-7 I 24 10-7 I 13 10-7 I '.
51 10-7I X ! X ! X i X! , i ,

10-7 ! 10-7
1000

,
7 X 10-7 I 5 X 10-7 I 2.8 X 11.4 X

0.5 !I I i
10-7 10-7 i

10-7 i
10-7

I , 1500 I 3 X 2.1 X ! 1 X j 5.3 XI ,
10-7 :

10-7 !
10-7

i 500 I ?- X 10-7 .17 ,- 9 X i 50 X-" .~ i! I ! ,
I1000 6 10-7 3.9 10-7 I

2 10-7 X.1O-7
0.3 i X X I X i 11.3I I 10-7 10-7 I 10-7 i

10-7
1500 2.65 X 1.60 X 0.85 X ! 5.02 X
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RADIUS- THCKNESS RATIO = R/h

RAOUS REDUCTION RA.TIO= R1/R

TAPPER RATIO = 1- R1/R

2R

Fig. 3c Parameters of truncated conical shell element [Ref. 6]

Fig. 3d Division for multisegment integration
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Fig.14c Buckled configuration of SBELL-]590 (R/h=1500, R]/R=0.9)
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APPENDIX A

PROGRAMMING FEATURES

A.l GENERALFEATURES

The computer program used in the present investigation is adopted from that of

Uddin [95] with necessary modifications to suit the requirements of solving

stability problems of truncated parabolic shell elements under uniform external

pressure. The program is based on Reissner's nonlinear theory of axisymmetric

deformation of shells of revolution [69] while the multisegment method of

integration developed by Kalnins and Lestingi [37] takes care of solving the

governing equations and the integration process is carried out by a pl'edi.ctor-

corrector method. The predictor and corrector are given, respectively, by

formulas (19.16) and (19.17) of Ref. 49. To secure the six starting values

necessar~' for the application of this pair of 'predictor and corrector" the six-

point formulas (19.10-19.14)of Ref. 49 are being used. It should be noted here

that all these formulas contai.n an error of the order of H7 where H is the

distance between two consecutive computational points, and, thus, they are highly

sophisticated.

The shell meridian is divided into eleven computational points. The program first

prints out the values of the fundamental variables (u, ,13, w, V, H, M(J based on

linear theory which is followed by the print-out of nonlinear results for t.he same

'loading parameter. From here on, the program will produce nonlinear result.s for

increasing loading steps.
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The program also prints out detail results in terms of radial displacement u, a"ial

displacement w, circumferential moment M., meridional momentM~, circumferential

stress resultant N., meridional stress resultant N~, circumferential stress at the

inner surface Gc/(PR/h), circumferential stress at the outer surface Gco/(PR/h),

meridional stress at inner surface Ga/CPR/h), and meridional stress at the outer

surface Gao/(PR/h) in that order, columnwise.

A.2 TREATMENTOF BOUNDARYCON.DITIONS

Equations (4.13a) written in terms of normalized fundamental variables and in

accordance with the statement of Eqs. (3.7c) appear as

become the first three elements of this column matrix. According to Eqs. (3.7c),

if u is specified at the boundary, the first and the 5th rows of the unit-matrix

of (A-l) remain the same, while specification of H at the boundary will require

the interchange of these two rows which will interchange u and H in the column

matrix on the right hand side. Similarly, if B is spec:ified at the boundary, the

129



second and the last rows remain as they are, and interchanged when M( is

specified. Lastly, the third and the fourth rows of the unit-matrix are kept the

same or interchanged depending on whether w or V is specified at the boundary.

The same operation is carried out for both the boundary points. The transformed

unit matrices of (A-l) are then designated by T1 at the starting boundary and

by TM+1 at the finishing boundary.

A.3 ONTHEUSE OF THEPROGRAM

In order to use the program for obtaining solutions of different problems the

knowledge of the definitions of input and output variables is essential. Therefore

,these variables with their definitions are given in the table at the end of

Appendix A.

In part A of the program the necessary information required for the solution of

a problem is read in. The first three 'READ'statements read the initial values of

the loading parameter 'EM', the value of incremental step of the loading

parameter 'EMl', the number to which the shell meridian will have to be divided

'M', Poisson ratio of the shell material 'AN', the number of loading steps 'SOBI',

radius-thickness ratio 'T', and the diameter ratio 'XL', The next 'READ'statement

reads the arbitrary given values of the independent variable X(J,l} and the

initial values of the six fundamental variables X(J,I), (1=2,7), for nodal points J,

(J = 1, M+ll. The value of the independent variable is later on adjusted based

on the diameter ratio 'XL'. The boundary values for any three of the six

fundamental variables at the starting boundary are accepted by the fifth 'READ'
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statement. In case of the present analysis of clamped ends parabolic reducers,

the prescribed boundary conditions are:

xx (1,l)

XX (2,1)

XX (3,1)

=

=

=

u

w

=

=

=

0.0

0.0

0.0

The sixth 'READ' statement reads in the three prescribed boundary conditions at

the final boundary. For the present analysis, these three boundary conditions

are: (.

XY (1,1) = w = 0.0

XY (2,1) = u = 0.0
-XY (3,1) = 13 = 0.0

The values of the boundary conditions indicators at the starting are read in by

the seventh 'READ' statement. The appropriate values of the indicators 'lSI',

'IS2', and '1S3' are given in the following table:

Specified quantity Indicator and its value
-u lSI = 0
13 IS2 = 0
-w 1S3 = 0-V IS3 = 1-
H lSI = 1

M. IS2 = 1

131



The eighth and the last 'READ' statement accepts the boundary condition

indicators at the final boundary. Their appropriate value are given in the above

table where the quantities '181', '182', and '183' should be replaced by 'IF1',

'IF2', and 'IF3', respectively. In the initialization block of part A of the program,

certain quantities are initialized and certain fixed parameter of the shell are

calculated.

Part B of the program deals with the problem of adjusting the given boundary

conditions with regard to the solutions of the matrix equations. Part C of the

program concerns with the calculation of normalized constants involving shell

parameters, material .constants, and loading. Under part. D of t.he program the

output of the results is handled. The remaining portion of the program deals with

the integration of different systems of differential equations and the solution of

matrix equations.

A.4 OUTPUTOF THEPROGRAM

The first output will be the given initial nodal values of the independent variable
- - - -~ and the six fundamental variables u, 13, w, V, Hand M{,in their written order

column wise, .and in tabular form. The first output will also accompany the

various input parameters and indices. The second output gives the value of

number of pass, residue- the sum of the differenees of the absolute values of the

fundamental variables at the nodal points of the two recent consecutive passes,

and the present value of the normalized load.

The first output is then repeated for solution based on linear theory. The next

output presents the details of the. solution based on the linear t.heory. Here the
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following quantities are printed out in tabular form and in the order of ~, u, w,

Ma, M~,Na, N~, 0c/(PR/h), 0co/(PR/h), 0a/(PR/h), 0ao/(PR./h) column wise. For

each segment these quantities are printed out at six equidistant points. This can

be changed to twenty-one or eleven points by simply changing the increment of

the loop parameter of part D of the program that handles the output of results.

With the results of first lineal' output, the linear solution is repeated once again

to get better solution. After the print-out of the second linear solution, there will

be repetition of the second and first out-put (now based on nonlinear theory)

for a number of times until the solution eonverges. When eonvergence is attained

the details of the nonlinear solution will be printed out. The solution at the nodal

points are printed out twice, first-based on the initial value integration and

second-based on the solution of matrix equations, to check the accuracy of the

results.

From this point onward the nonlinear solutions will be repeatedly printed out for

increasing loadings.

The output files 'AX', 'RD' and 'SHAPE' are opened additionally for the

convenience of plotting the load-deflection curves and the deformed shell

meridian. The first column of the output file 'AX' prints out the absolute value

of the loading parameter (PIE) while the rest of the columns print out the axial

displacements (wh/R2) for the nodal points along the shell meridian. Similarly, the

output file 'RD' prints out the radial displacements (uh/R2), In the output file

'SHAPE' the first and the third eolumns print out the points along the shell axis

while the seeond and the fourth eolumns print out the corresponding points

along the shell meridian before and after deformation for the inereasing values

of the loading parameter.
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A.5 TABLE OF INPUT-OUTPUT VARIABLE8 OF THE PROGRAM'

Variable

EM
EMl

FOC

80BI

M

PH(I)

RC
AN

XL
TK
X(I,I)

X(2,I)

X(3,I)

X(4,I)

X(5,I)

X(6,I)

X(7,Il

XX(l,Il

XX(2,I)

XX(3,I)

XY(1,I)

XY(2,I)

XY(3,I)

181,182,183

IFl,I.F2,IF3

NP
T22(N)*

T7(N)

Definition

EM = PIE, Normalized load

Increasing step of EM

a/(R-R1), FOC=l for the present analysis

Number of desired loading step

Number of segments

Meridional angle at the nodal point I

Constant R = EelR
Poisson's ratio v

Rl/R, Diameter ratio

R/h, thickness ratio-E at the nodal point I

ii at the nodal point I

13 at the nodal point I

w at the nodal point I

V at the nodal point I
-
H at the nodal point I

Me at the noda! point I

value of ii or H at the starting boundary
- -

value of ~ or ~e at the starting boundary

value of w or V at the starting boundary

value of ii or if at the finishing boundary
- -

value of 13 or ~e at the finishing boundary

value of iN- or V at the finishing boundar,'

indicators of boundary conditions at the starting boundary

indicators of boundary conditions at the finishing boundary

Number of Pass; NP = I indicates linear solution

.N; = Ne/(P.RJ

Ne = Ne/ (P.R. J
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T9(N)

Y(1,N)

Y(2,N)

Y(3,N)

Y(4,N)

Y(5,N)

Y(6,N)

Y(7,N)

ST1

ST2

Me ~ Mel (P.R.h)

u ~ uEh/(P.R")

w = wEhl (P.R2)

v = vi (P.R)

H = HI (P.R)

Me ~ Mel (P.R.h)

-0 0 IE normalized circumferential stress at the inner surfaceci~ ci '

of the shell

O -0 IE normalized circumferential stress at the outer surfaceco- co '

of the shell

ST3 0ai~Oail E , normalized axial stress at the inner surface

ST4 0ao~OaolE , normalIzed axial stress at the outer surface

* N denotes points in a segment at which the variables are evaluated.
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APPENDIX-B

PROGRAM LISTING

* ----------------------------------------------------------~
* PROGRAM FOR SHELL ANALYSIS

*

REAL*8 X(21,7),Y(7,21),Z(7,6),Y1(7,21),Y2(21,3),Y3(21,3)
REAL*8 H(32),IG(20),APH(20),X7(21,7),AK(4),T22(21),Z2(3,l)
REAL* 8 AY (3,1) ,BY (3 ,1) ,F (7 ,21) ,X2 (3,1) ,RO(21 )
REAL*8 TS1(3,3),TS2(3,3),TS3(3,3),TS4(3,3),TFl(3,3),TF2(3,3)
REAL*8 TF3(3,3),TF4(3,3),A14(3,l),A15(3,l),A16(3,l),A17(3,l)
REAL* 8 A18 (3,3) ,C (21,3,3) ,A(21,3) ,E (21,3,3) ,B (21,3) ,Xl (3,1 )
REAL*8 C1(21),C2(21),T7(21),T9(21),T10(21),R(21),PH(21)
REAL*8 Zl(3,1),A1(3,3),A2(3,3),A3(3,3),A4(3,3),A6(3,3)
REAL*8 A7(3,3),A8(3,3),A9(3,1),A10(3,1),A11(3,1),A12(3,1)
REAL*8 XX(3,l),XY(3,1),U(6,6),ZZXX(21),ZZNN(21),XYX4(21)
REAL*8 ROO(21) ,YYN(21) ,XYX2(21) ,T3,T,T21,TM
REAL*8 PB2,RC,AKL,EL,FL,DR,TO,TL,ZZ,FF,P3,DP,PHI,ALP
OPEN(l,FILE='INPUT', STATUS='OLD')
OPEN(3,FILE='OUT', STATUS='UNKNOWN' ,RECL=1400)
OPEN(4,FILE='AX', STATUS='UNKNOWN' ,RECL=1400)
OPEN(5,FILE='RD', STATUS='UNKNOWN' ,RECL=1400)
OPEN(7,FILE='SHAPE', STATUS='UNKNOWN' ,RECL=1400)
NP=O
IN=l
SOB2=O.
SS=l.
N2=6
N3=3
PB2=1.5707963268
FOC=l.
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*-------------------------------------------------------------
*========= PART A. (READING IN INFORMATION)=================
*-------------------------------------------------------------

.READ(1,1l0)EM1,SOB1,XL
WRITE(3,110)EM1,SOB1,XL

25 READ(1,59)M
WRITE(3,59)M
READ(1,110)AN,EM
WRITE(3,110)AN,EM
READ(1,1100) T
WRITE(3,1100) T

1100 FORMAT(10F7.2)
MO=M+1

,DO 169 I=l,MO
DO 170 J=1,7

170 X(I,J)=O.
169 CONTINUE

READ(1,41)(XX(I,1),I=1,3)
WRITE(3,41)(XX(I,1),I=1,3)
READ (1,41)(XY(I,1) ,1=1,3)
WRITE(3,41)(XY(I,1),1=1,3)
READ(1,59)IS1,IS2,IS3
WRITE(3,59)IS1,IS2,IS3
READ(1,59)IF1,IF2,IF3
WRITE(3,59)IF1,IF2,IF3

* --------_._------------------------------------------------------
** INITIALIZATION BLOCK
** ----------------------~------------------------------------------

FR1=SQRT(FOC)
FR2=SQRT(FOC+1. )
ZFZ=FR2+SQRT(1. )
YFY=FR1
RC=XL+(FR2+FOC*ALOG(ZFZ/YFY»*(1.-XL)
DP=PB2
ANGB=DP
DR=l. /RC
SEGL=l./REAL(M)*(l.-XL/RC)
X(l,l)=l.
DO 171 I =l,M

171 X(I+1,1)=X(I,1)-SEGL
WRITE(3,41)«X(J,I),I=1,7),J=1,MO)

* -----------------------------------------------------------------
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* PART B.(TREATMENT OF BOUNDARY CONDITION)

DO 21 I=1,N3
DO 21 J=1,N3
TS1(I,J)=0.0
TS2(I,J)=0.0
TS3(I,J)=0.0
TS4(I,J)=0.0
TF4(I,J)=0.O
TF3(I,J)=0.0
TF2(I,J)=0.0

21 TF1(I,J)=0.0
IF(IS1)23,23,24

23 TS1(1,1)=1.0
TS4 (2,2) =1. 0
GO TO 27

24 TS2(1,2)=1.0
TS3(2,1)=1.0

27 IF(IS2)28,28,29
28 TS1 (2 ,2 )=1. 0

TS4 (3,3) =1. 0
GO TO 30

29 TS2 (2,3) =1. 0
TS3(3,2)=1.0

30 IF(IS3)33,33,34
33 TS1(3,3)=1.0

TS4(1,1)=1.0
GO TO 35

34 TS2(3,1)=1.0
TS3(1,3)=1.0

35 IF(IF1)36,36,37
36 TF2(1,2)=1.0

TF3(2,1)=1.0
GO TO 38

37 TF1 (1,1) =1. 0
TF4(2,2)=1.0

38 IF(IF2)39,39,40
39 TF2(2,3)=1.0

TF3 (3,2) =1. 0
GO TO 819

40 TF1 (2,2) =1. 0
TF 4 (3 ,3 )=1.0

819 IF(IF3)84,84,87
84 TF2 (3,1) =1. 0

TF3(1,3)=1.0
GO TO 88

87 TF1 (3 ,3 )=1.0
TF4(1,1)=1.0

88 CONTINUE
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* -----------------~---------------------~-------------------------
* PART C. (CALCULATION OF CONSTANTS)
* -----------------------------------------------------------------

DO 31 J=l,M
31 H(J)=(X(J+1,1)-X(J,1»*.05
405 CONTINUE

DP=ANGB
DR=l./RC

26 DO 1 J1=1,M
TZ=l.+AN
T1=RC*(1.-AN*AN)
T21=EM*T
TO=1./(12.*T1*EM*T*T)
TL=RC/T/EM
TM=EM*T*T
PR=EM*T
N=l
DO 32 1=1,7

32 Y(I,N)=X(J1,I)
DO 300 1=1,21
IF(I-21)312,306,306

312 Y(1,I+1)=Y(l,I)+H(J1)
306 PH(I)=DP

RO(I)=DR
ZZXX(I)=2.*FOC*(1.-XL)/DTAN(DP)

.ZZ=PH(I)
DO 310 J=1,4
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FF=0.5*(RC/FOC)/(1.-XL)*(SIN(ZZ»**3.
AK(J)=H(J1)*FF
GO TO (311,311,314,310),J

311 V=.5
GO TO 316

314 V=l.
316 ZZ=PH(I)+V*AK(J)
310 CONTINUE

DP=PH(I)+(AK(1)+AK(4)+2.*(AK(3)+AK(2»)/6.
DR=(l.-FOC*(l.-XL)/TAN(DP)*l./TAN(DP»/RC

300 CONTINUE
DR=RO(21)
DP=PH(21)
Nl=l

* ---------------------------------------------------------------
* INTEGRATION OF FUNDAMENTAL SET STARTS
* ---------------------------------------------------------------
60 NO=O
46 CONTINUE

IF(NP-l)111,111,199
199 T2=Y(2,N)/RO(N)

T3=PH(N)-Y(3,N)
Cl(N)=DCOS(T3)
C2(N)=DSIN(T3)
T4=(DSIN(PH(N»-DSIN(T3»/RO(N)
T5=Y(6,N)*Cl(N)+Y(5,N)*C2(N)
T22(N)=T5
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T8=Tl*T5-AN*TZ
T6=(Y(7,N)-AN*TO*T4)/TO
T7(N)=(TZ+AN*T8)/Tl
T9(N)=TO*(T4+AN*T6)
Tl0(N)=TL+T8
R(N)=TL*RO(N)+Y(Z,N)
F(Z,N)=Tl0(N)*Cl(N)-DCOS(PH(N))*TL
F(3,N)=T6
F(4,N)=Tl0(N)*CZ(N)-DSIN(PH(N))*TL
F(5,N)=-Tl0(N)*(Y(5,N)*Cl(N)/R(N)-PR*Cl(N))
~(6,N)=-Tl0(N)*«Y(6,N)*Cl(N)-T7(N))/R(N)+PR*CZ(N))
F(7,N)=(Tl0(N)*Cl(N)/R(N))*(T9(N)-Y(7,N))-Tl0(N)
1*(Y(6,N)*CZ(N)-Y(5,N)*Cl(N))*TM
GO TO ZOO

111 Cl(N)=DCOS(PH(N))
CZ(N)=DSIN(PH(N))
TZ=Y(Z,N)/RO(N)
T4=Y(3,N)*Cl(N)/RO(N)
T5=Y(6,N)*Cl(N)+Y(5,N)*CZ(N)
T2Z(N)=T5
T8=Tl*T5-AN*TZ
T6=Y(7,N)/TO-AN*T4
T7(N)=(TZ+AN*T8)/Tl
T9(N)=(T4+AN*T6)*TO
F(Z,N)=T8*Cl(N)+Y(3,N)*CZ(N)*TL
F(3,N)=T6
F(4,N)=T8*CZ(NJ-Y(3,N)*Cl(N)*TL
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F(5,N)=-(Y(5,N)/RO(N)-RC)*C1(N)
F(6,N)=-(Y(6,N)*C1(N)-T7(N»/RO(N)-RC*C2(N)
TX=-(Y(7,N)-T9(N»/RO(N)
F(7,N)=TX*C1(N)-RC*T*(Y(6,N)*C2(N)-Y(5,N)*C1(N»

200 1F(N-2)42,43,43
43 1F(N-6)44,47,45
44 N=N+1

GO TO 46
42 DO 81 J=2,6

P2=FLOAT(J-l)
P3=P2*H(J1)
Y(1,J)=Y(1,1)+P3
DO 81 1=2,7

81 Y(1,J)=Y(1,1)+P3*F(1,1)
N=2
1P=l
GO TO 46

47 DO 48 1=2,7
Z(1,2)=Y(1,1)+(H(J1)/1440.)*(493.*F(1,1)+1337 .

.1*F(1,2)-618.*F(1,3)+302.*F(I,4)-83.*F(1,5)+9.*F(1,6»
Z(1,3)=Y(1,1)+(H(J1)/90.)*(28.*F(1,1)+129.*F(1,2)
1+14.*F(1,3)+14.*F(1,4)-6.*F(1,5)+F(1,6»
Z(1,4)=Y(1,1)+(3.*H(J1)/160.)*(17.*F(1,1)+73.*F(1,2)
1+38.*(F(1,3)+F(1,4»-7.*P(1,5)+F(1,6»
Z(1,5)=Y(1,1)+(4.*H(J1)/90. )*(7.*(F(1,1)+F(1,5»
1+32.*(F(1,2)+F(1,4»+12.*F(I,3»
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48 Z(I,6)=Y(I,1)+(5.*H(J1 )/288.)*(19.*(F(I, 1)+F(I,6))
1+75.*(F(I,2)+F(I,5»+50.*(F(I,4)+F(I,3»)
R1=0.
IP=IP+1
DO 49 I=2,7
DO 49 J=2,6
R1=DABS(Y(I,J)-Z(I,J»+R1

49 Y(I,J)=Z(I,J)
IF(IP-15)141,45,45

141 IF(R1-.1E-07)45,45,50
50 N=2

GO TO 46
45 .IF(NO-1)53,53,55
53 N=N+1

IF(N-21)61,61,62
61 Y(1,N)=Y(1,N-1)+H(J1)

DO 51 I=2,7
51 Y(I,N)=Y(I,N-6)+(.3*H(J1»*(11.*(F(I,N-5)+F(I,N-1»

1-14,*(F(I,N-4)+F(I,N-2»+26.*F(I,N-3»
99 NO=2

IP=l
GO TO 46

55 R1=0.
IP=IP+1
DO 56 I=2,7
Z(I,1)=Y(I,N-6)+(.3*H(J1»*(F(I,N-6)+5.*F(I,N-5)+F(I,N-4)+6.*
1F(I,N-3)+F(I,N-2)+5.*F(I,N-1)+F(I,N»
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R1=R1+DABS(Y(I,N)-Z(I,1»
56 Y(I,N)=Z(I,l)

IF(IP-10)142,60,60
142 IF(R1-.1E-07)60,46,46
62 IF(NP-1)662,762,912
912 IF(AA-.10)911,911,914
914 IF(NP-10)662,911,911
911 IN=2

GO TO 764
762 RRR=O.

DO 763 1=2,7
763 RRR=RRR+DABS(Y(I,21)-X(J1+1,I»

IF(RRR-.1)764,764,766
766 WRITE(3,767)
767 FORMAT(2X,I, , SEGMENT IS TOO LONG' ,I)

764 CONTINUE

* -----------------------------------------------------------------
* PART D. OUTPUT OF RESULTS
* - - - --- -------- - - -- --- - -- - - - - -- -- - - -- - - - - --- -- ------ ---- -- --- -- - --

WRITE(3,508)
WRITE(3,507)
DO 793 N=1,21,4
ST1= T7(N)+T9(N)*6.
ST2= T7(N)-T9(N)*6.
ST3= T22(N)+Y(7,N)*6.
ST4= T22(N)-Y(7,N)*6.
ROO(N)=RC*RO(N)
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203 IF(N-2)72,73,73
73 IF(N-6)74,77,75
74 N=Ntl

GO TO 76
72 DO 82 J=2,6

P2=FLOAT(J-l)
P3=P2*H(Jl)
Yl(1,J)=Yl(l,l}tP3
DO 82 I=2,7

82 Yl(I,J)=Yl(I,1)tP3*F(I,1)
N=2
IP=l
GO TO 76

77 DO 78 I=2,7
Z(I,2)=Yl(I,1)t(H(Jl)/1440.)*(493.*F(I,1)t1337.*F(I,2)

1-618.*F(I,3)t302.*F(I,4)-83.*F(I,5)t9.*F(I,6»
Z(I,3)=Yl(I,1)t(H(Jl)/90.)*(28.*F(I,1)t129.*F(I,2)t14.

1*F(I,3)t14.*F(I,4)-6.*F(I,5)tF(I,6»
Z(I,4)=Yl(I,1)t(3.*H(Jl)/160.)*(17.*F(I,1)t73.*F(I,2)

lt38.*(F(I,3)tF(I,4»-7.*F(I,5)tF(I,6»
Z(I,5)=Yl(I,l)t(4.*H(Jl)/90.)*(7.*(F(I,1)+F(I,5»+32.

1*(F(I,2)tF(I,4»t12.*F(I,3»
78 Z(I,6)=Yl(I,l)t(5.*H(Jl)/288.)*(19.*(F(I,l)tF(I,6»

1+75.*(F(I,2)tF(I,5»t50.*(F(I,4)~F(I,3»)
Rl=O.
IP=IPtl
DO 79 I=2,7
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DO 79 J=2,6
R1=DABS(Y1(1,J)-Z(1,J»+R1

79 Y1(1,J)=Z(1,J)
1F(1P-15)143,75,75

143 1F(R1-.1E-06)75,75,80
80 N=2

GO TO 76
75 1F(NO-1)83,83,85
83 N=N+1

1F(N-21)91,91,92
91 Y1(1,N)=Y1(1,N-1)+H(J1)

DO 95 1=2,7
95 Y1(1,N)=Y1(1,N-6)+(.3*H(J1»*(11.*(F(1,N-5)+F(1,N-1»

1-14.*(F(1,N-4)+F(1,N~2»+26.*F(1,N-3»
101 NO=2

1P=l
GO TO 76

85 R1=0.
1P=1P+1
DO 86 1=2,7
Z(1,1)=Y1(1,N-6)+(.3*H(J1»*(F(1,N-6)
1+5.*F(1,N-5)+F(1,N-4)+6.*F(1,N-3)+F(I,N-2)+5.*F(I,N-
1 l)+F(I,N»
R1=R1+DABS(Y1(1,N)-Z(1,1»

86 Y1(I,N)=Z(I,1)
IF(IP-10)144,90,90

144 1F(R1-.1E-07)90,76,76
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92 DO 22 J=l,N2
22 U(Nl-l,J)=Yl(J+l,21)

IF(Nl-7)662,96,96
104 FORMAT (7E14.8)
59 FORMAT (3112)
508 FORMAT (/,2X, 'DISTANCE' ,3X,' DISPLACEMENTS' ,9X,'MOMENTS' ,

19X, 'STRESS',' RESULTANTS' ,5X,'CIRCUM. STRESS' ,7X,
l'AXIAL STRESS')

507 FORMAT (lX,' FROM APEX' ,2X,'RADIAL' ,5X,'AXIAL',3X,
l'CIRCUM. ',5X, 'AXIAL',3X,'CIRCUM. ',5X, 'AXIAL' ,4X,'INNER' ,5X,
l'OUTER' ,5X,'INNER' ,5X,'OUTER',I )

41 FORMAT (7Ell.5)
110 FORMAT (10El1.5)
105 FORMAT (12El0.4)
505 FORMAT (1I,2X,' NO. OF PASS= ',12,' RESIDUE= ',Ell.5,

l' LOAD(P/E)= ',Ell.5,' EM1= ',El1.5,1)

* -----------------------------------------------------------------
* SOLUTION OF MATRIX EQUATIONS STARTS

* -----------------------------------------------------------------
96 Nl=Jl

DO 4 I=l,N3
DO 4 J=l,N3
Al(J,I)=U(I,J)
A2(J,I)=U(I+3,J)
A3(J,I)=U(I,J+3)
A4(J,I)=U(I+3,J+3)
Xl(I,l)=X(Nl,I+l)
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X2(I,1)=X(N1,I+4)
Y3(N1+1,I)=Y(I+1,21)

4 Y2(N1+1,I)=Y(I+4,21)
DO 20 I=1,N3
AY(I,1)=Y3(N1+1,I)

20 BY(I,1)=Y2(N1+1,I)
CALL MATM(A1,X1,A9,N3,N3,1)
CALL MATM(A2,X2,Zl,N3,N3,1)
CALL MATS(A9,Zl,N3,1)
CALL MATSB(Zl,N3,1)
CALL MATS(AY,Zl,N3,1)
CALL MATM(A3,X1,A9,N3,N3,1)
CALL MATM(A4,X2,Z2,N3,N3,1)
CALL MATS(A9,Z2,N3,1)
CALL MATSB(Z2,N3,1)
CALL MATS(BY,Z2,N3,1)
IF(N1-1)G,G,7

G CALL MATM(A1,TS1,AG,N3,N3,N3)
CALL MATM(A1,TS2,A7,N3,N3,N3)
CALL MATM(A2,TS3,A1,N3,N3,N3)
CALL MATS(AG,A1,N3,N3)
CALL MATM(A2,TS4,AG,N3,N3,N3)
CALL MATS(AG,A7,N3,N3)
CALL MATM(A3,TS1,AG,N3,N3,N3)
CALL MATM(A3,TS2,A8,N3,N3,N3)
CALL MATM(A4,TS3,A3,N3,N3,N3)
CALL MATS(AG,A3,N3,N3)
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CALL MATM(A4,TS4,A6,N3,N3,N3)
CALL MATS(A6,A8,N3,N3)
DO 2 I=1,N3
DO 2 J=1,N3
A4(I,J)=A8(I,J)

2 A2(I,J)=A7(I,J)
CALL MATI(A2,A6,N3)
CALL MATM(A4,A6,A7,N3,N3,N3)
CALL MATI(A7,A8,N3)
CALL MATM(Al,XX,A9,N3,N3,1)
CALL MATS(Zl,A9,N3,1)
CALL MATSB(A9,N3,1)
CALL MATM(A3,XX,AIO,N3,N3,1)
CALL MATS(Z2,AIO,N3,1)
CALL MATM(A4,A6,A7,N3,N3,N3)
CALL MATM(A7,A9,All,N3,N3,1)
CALL MATS(All,AlO,N3,1)
CALL MATSB(AIO,N3,1)
GO TO 8

7 IF(Nl-M)3,5,5
5 CALL MATM(TF1,Al,A6,N3,N3,N3)

CALL MATM(TF3,Al,A7,N3,N3,N3)
CALL MATM(TF2,A3,Al,N3,N3,N3)
CALL MATS(A6,Al,N3,N3)
CALL MATM(TF4,A3,A6,N3,N3,N3)
CALL MATS(A6,A7,N3,N3)
CALL MATM(TF1,A2,A6,N3,N3,N3)
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19
3

CALL MATM(TF3,A2,A18,N3,N3,N3)
CALL MATM(TF2,A4,A2,N3,N3,N3)
CALL MATS(AG,A2,N3,N3)
CALL MATM(TF4,A4,AG,N3,N3,N3)
CALLMATS(AG,A18,N3,N3)
CALL MATM(TF1,Zl,A14,N3,N3,1)
CALL MATM(TF3,Zl,A15,N3,N3,1)
CALL MATM(TF2,Z2,Zl,N3,N3,1)
CALL MATS(A14,Zl,N3,1)
CALL MATM(TF4,Z2,A14,N3,N3,1)
CALL MATS(A14,A15,N3,1)
DO 19 I=1,N3
Z2(I,1)=A15(I,1)
DO 19 J=1,N3
A3(I,J)=A7(I,J)
A4(I,J)=A18(I,J)
CALL MATM(A1,A8,A7,N3,N3,N3)
CALL MATS(A2,A7,N3,N3)
CALL MATI(A7,AG,N3)
CALL MATM(A1,A8,A7,N3,N3,N3)
CALL MATM(A7,A10,A9,N3,N3,1)
CALL MATS(Zl,A9(N3,1)
CALL MATSB(A9,N3,1)
CALL MATM(A3,A8,A7,N3,N3,N3)
CALL MATM(A7,A10,A11,N3,N3,1)
CALL MATS(A4.,A7,N3,N3)
CALL MATM(AG,A9,A12,N3,N3,1)
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CALL MATM(A7,A12,A10,N3,N3,1)
CALL MATS(A11,A10,N3,1)
CALL MATS(Z2,A10,N3,1)
CALL MATSB(A10,N3,1)
CALL MATM(A3,AB,A7,N3,N3,N3)
CALL MATS(A4,A7,N3,N3)
CALL MATM(A7,A6,A1,N3,N3,N3)
CALL MATI(A1,AB,N3)
IF(N1-M)B,9,9

9 CALL MATS(XY,A10,N3,1)
B DO 5000 I=1,N3

DO 5000 J=1,N3
E(N1,I,J)=A6(I,J)
C(N1,I,J)=AB(I,J)
A(N1,I)=A9(I,1)
B(N1,I)=A10(I,1)

5000 CONTINUE
1 CONTINUE

WRITE(7,*) 'IINC'

WRITE(7,*) EM
IF(NP-1)117,115,117

117 GO TO(71B,10B),IN
71B AA=O.

DO 15 Il=l,M
N1=M-Il+1
DOlO I=1,N3
DO 10 J=1,N3
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10

12

89

11

17

93

A6(I,J)=E(N1,I,J)
A8(I,J)=C(N1,I,J)
A9(I,1)=A(N1,I)
A10(I,1)=B(N1,I)
IF(N1-M)11,12,12
CALL MATM(A8,A10,A11,N3,N3,1)
CALL MATS(A11,A9,N3,1)
CALL MATM(A6,A9,A12,N3,N3,1)
CALL MATM(TF1,A11,A14,N3,N3,l)
CALL MATM(TF2,XY,A15,N3,N3,l)
CALL MATM(TF3,A11,A16,N3,N3,l)
CALL MATM(TF4,XY,A17,N3,N3,1)
DO 89 I=1,N3
X(MO,I+1)=A15(I,l)+A14(I,l)
X(MO,I+4)=A17(I,l)+A16(I,1)
GO TO 16
CALL MATS(A12,A10,N3,1)
CALL MATM(A8,A10,A11,N3,N3,1)
CALL MATS(A11,A9,N3,l)
CALL MATM(A6,A9,A12,N3,N3,1)
DO 17 I=1,N3
X(N1+1,I+1)=A11(I,l)
IF(N1-1)93,93,16
CALL MATM(TS1,XX,A14,N3,N3,1)
CALL MATM(TS2,A12,A15,N3,N3,1)
CALL MATM(TS3,XX,A16,N3,N3,l)
CALL MATM(TS4,A12,A17,N3,N3,1)
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DO 98 1=1,N3
X(l,1+l)=A15(1,1)+A14(1,l)

98 X(l,1+4)=A17(1,l)+A16(1,1)
GO TO 18

16 DO 13 1=1,N3
13 X(Nl,1+4)=A12(1,l)
18 DO 15 1=l,N3

AA=DABS(Y3(Nl+l,1)-X(Nl+l,1+l))+AA
15 AA=DABS(Y2(Nl+l,1)-X(Nl+l,1+4))+AA
115 NP=NP+l

RES=AA/SS
SS=AA
WR1TE(3,505)NP,AA,EM,EMl
WR1TE(6,*)EM,EM1,AA,SOB2,RC
1F(NP-5)151,152,152

152 1F(RES-l.)151,151,153
153 DO 154 1=2,7

.DO 154 J=l,MO
154 X(J,1)=X7(J,1)

EM=EM-EMl
EM1=EM1/2.
NP=3

151 WR1TE(3,104)«X(J,1),1=1,7),J=1,MO)
1F(AA.LT.O.l) THEN

5505 EEM=ABS(EM)
DO 5508 J = l,MO
XYX4(J) = EM*X(J,4)
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5508 XYX2(J) = EM*X(J,2)
WRITE(4,5507) EEM,(XYX4(J),J =l,MO)
WRITE(5,5507) EEM,(XYX2(J),J =l,MO)

5507 FORMAT (31E12.5)
ELSE
ENDIF
GO TO 405

108 DO 155 1=2,7
DO 155 J=l,MO

155 X7(J,I)=X(J,I)
IN=l
NP=3
AA=l.
SOB2=SOB2+1.
EM=EM+EMl
IF(ABS(EM1)-.lE-I0) 109,109,1011

1011 IF(SOB2-S0Bl)405,405,109
109 WRITE(3,1270)EM,EM1,SOB2
1270 FORMAT(//'EM= ',E14.8, 'EM1= ',E14.8,' SOB2= I,F6.0)

STOP
END

c*****************************************************
C SUBROUTINES--~------------------------------------
c*****************************************************

SUBROUTINE MATS (A5,B5,L,K)
REAL*8 A5(3,3),B5(3,3)
DO 99 Ll=l,L
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DO 99 K1=1,K
99 B5(L1,K1)=A5(L1,K1)+B5(L1,K1)

RETURN
END

**** SUBROUTINE MATSB (A5,L,K)
REAL*8 A5(3,3)
DO 98 L1=1,L
DO 98 K1=1,K

98 A5(L1,K1)=-A5(L1,K1)
RETURN
END

**** SUBROUTINE MATM (A5,B5,C5,L,K,K2)
REAL*8 A5(3,3),B5(3,3),C5(3,3)
DO 97 L1=1,L
DO 97 K1=1,K2
C5(L1,K1)=O.
DO 97 J1=1,K

97 C5(L1,K1)=C5(L1,K1)+A5(L1,J1)*B5(J1,K1)
RETURN
END

****
SUBROUTINE MATI (A5,B5,K1)
REAL*8 A5(3,3),B5(3,3)
p=O.
DO 9 L=1,3.
DO 9 K=1,3
GO TO (2,3,4),L
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"

2 11=L+1'
12=L+2
GO TO 5

3 11=L+1
12=1
GO TO 5

4 11=1
12=2

5 GO TO (6,7,B),K
6 J1=K+1

J2=K+2
GO TO 9

7 J1=K+1
J2=1
GO TO 9

B J1=1

P=P+A5(1,L)*B5(L,1)
DO 12 L=1,3
DO 12 K=1,3

12 B5(L,K)=B5(L,K)/P
RETURN
END

*********************************************
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