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Abstract

Load transfer between components in engineering assemblies often causes very high

localized stresses generally called contact stresses. The contact stresses are highly

concentrated close to the contact region and decrease rapidly in intensity with distance

from the point of contact, so that the region of practical interest lies close to the

contact interface. The nature of stresses arising from the contact between two bodies

is of great importance and attracted the attention of many researchers. But most of

them were analyzed using simple geometries i.e. sphere on plane, sphere on sphere,

and cylinder on cylinder. This work has focused on complicated geometries rather

than simple geometries by considering conical rollers in contact. When two

geometrical and materially identical conical rollers come into contact with each other

under the application of a uniform compressive load in rolling, the contact patch

appears in the form of a trapezoid, in contrast with two cylinders where the contact

area is rectangle. The trapezoid shape of the contact area arises because the radius of

curvature of either cone varies along the axial direction and contact length. So, radius

of curvature will be a function of vertex angle as well as length of the contact, where

in the case of cylindrical contact it is same through out the cross. section of the

contact. The work has also considered tangential loading along with normal loading.

The stress functions have been solved numerically to find stress distribution with

variation of contact geometries. Stress components in different axes have been

investigated with variation of contact geometries for both normal and tangential

loading. Half width distribution, pressure distribution and stress distribution along the

length have been also investigated for different vertex angle as well as for different

materials. The validity of numerical results has been done using a commercial finite

element simulating software, Ansys. The results of the numerical technique are found

to be consistent with the finite element simulations in predicting pressure, its

distribution and the contact stresses in conical rollers.



CHAPTER ONE

INTRODUCTION

1.1 General

Mechanical design is one of the most important problems which can confront a

practicing engineer. The critical task of synthesis can be both distasteful and elusive

because of the complex relationship existing among factors associated with the

definition of design itself Mechanical design can be defined as the selection of

material and geometry which satisfies specified and implied functional requirements

while remaining within the confmes of inherently unavoidable limitations. Hence the

basic problem of mechanical design is considerably more difficult that the problem of

mechanical analysis, since generally for the later both geometry and materials are

assumed to be constants and limitations such space restrictions are of no significance.

The problem is much more difficult if there is any stress raiser or crack propagation

parameters. The mechanical design as stated above may need specify its utilization.

So for mechanical design objectives and justification is important issues.

This chapter includes overview of the thesis work, objectives of the thesis work,

justification of the work as well as outline of the thesis paper.

1.2 Introduction

Load transfer between components in engineering assemblies often causes very high

localized stresses, generally called contact stresses, which lead to component failure

by different forms of surface contact futigue. Consequently, the evaluation of contact

area geometries, pressure distribution, stresses is imperative to prevent premature

failure such as pitting, spalling, false brinelling.

The analysis of contact stresses between cylindrical elements or spherical elements

has attracted the attention of many researchers. There are lots of works on these

simple geometries. However with advent of more intricate components in machines,

I
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the importance of understanding the contact problems for complex geometries

evolved. This thesis work is based on more complex geometries rather than simple

geometries by considering conical rollers are in contact. The shape of deformed

contact area has been in trapezoid form which is in contrast with cylindrical contact

where deformed shape is rectangular. For this reason, the radius of curvature is a

function of vertex angle and length from tip, where it has been considered. So,

equations used for cylindrical contact are not sufficient to describe the stresses raised

from contact of conical rollers. There is variable half width and radius of curvature in

this case. On the hand, in case of contact there is always some sliding which leads to

tangential traction between interfaces of conical rollers. So the system has become

more complex with both normal and tangential loading. In this work, the stresses due

to conical rollers in contact with application of both normal and tangential loading

have been solved using numerical technique. The results obtained from numerical

technique has been verified a commercially available finite element simulating

software ANSYS. The distribution of stresses has been observed for different contact

geometrical parameters, materials and loading conditions.

1.3 Objectives Of The Thesis Work

The main objectives behind this thesis paper are listed below:

1) To develop a mathematical model@?s0!3>contact problems between two

conical rollers under normal and tangential loads to obtain maximum contact

pressure, contact stresses and their distribution along different axes.

2) To solve the above mentioned analytical models, a numerical method will be

used.

3) The above mentioned results will be verified using a commercial finite

element simulating software, ANSYS for similar loading conditions.

4) The above mentioned methods will be used for different vertex angle and for

different materials.

1.4 Justification Of The Thesis Work

Contact problems are very common in engineering application. As a result, there is a

lot of researches available on this. Most of them are based on approximation of simple

geometries like sphere to sphere contact, cylinder to cylinder contact, and cylinder to

2



plane contact. But there are very Jew researches available on complex geometries like

conical rollers. The previous researches only consider normal loading for their

analysis, no tangential traction has been considered yet. This paper mainly focused on

stress fields those obtained from combination of normal and tangential loading. On

the hand, this work has also considered [mite element simulation, which is also new.

Another fundamental reason for studying 'conical member in contact' is to address

the contact problems in various applications such as rolling mills, gears, and tapered

rollers bearings and in particular, traction drives. Earlier researches on these were

based on simple geometries, though these are not. So, more accurate results will be if

this work is being put into implementation.

1.5 Previous Works on Conical Contact Rollers

'We can confine our attention to that part of each body which is very close to the point

of contact, since here the stresses are extremely great compared with those occurring

elsewhere, and consequently depend only to the smallest extent on the forces applied

to other parts of the bodies.' - Heinrich Hertz [1], the leading researcher in the field of

contact mechanics. The subject of contact mechanics may be said to have started in

1882 with the publication by Hertz of his classic paper "On the contact of elastic

solids". His interest in the problem was aroused by experiments on optical

interference between glass lenses. The question arose whether elastic deformation of

the lenses under the action of the force holding them in contact could have a

significant influence on the pattern of interference fringes. He computed the load

distribution over the contact area and provided the mathematical models for the stress

field using a potential function for the case of spherical contact. He deduced that an

ellipsoidal distribution of pressure would satisfY the boundary conditions of the

problem for the case of spherical contact. He verified his analytical results by running

a series of experiments.

However, Hertz only considered spherical contact for his analysis. And for a long

time there was no research on contact problems. Every contact problems were solved

on Hertz spherical contact theory. In 1936, Lundberg [2] analyzed the problem when

two bodies of different geometries come in contact. He calculated the stresses for the

3



case of a cylinder and a spherical ball pressed on a flat plate and verified his [mdings

by photo elastic technique.

Hertz and Lundberg considered only normal loading for their analysis. But for case of

contact between two rotating elements, there is always tangential traction except pure

rolling. So in that case there exist some tangential loading. Mindlin [3] investigated

the stress distribution due to tangential load when one elastic body slides over the

other across the contact area for the case of cylindrical contact. Mindlin found that the

stresses on the bounding curve of the contact area due to bounding curve are infinite

and consequently a state of impending slipping prevails.

In 1953 Smith and Liu [4] studied the contact between parallel rollers in combined

rolling and sliding for spherical contact only. Though there are lots of works on gear

contact, cam - follower contacts and so on, but all of theses were based on 'simple

contact geometries. With advent of time more complex geometries evolved and hence

researches were needed on complex geometries. Al In 2004 Al Zain [5] analyzed the

contact problem between two conical rollers under the normal load for first time In

2006 Shakoor [6] also agreed with Zain's proposal while he was doing research on

special cam follower contact problems. Later Litvin [7Jhas used Zain's proposal for

his research of bevel gear.

1.6 Outline Of Thesis Work

The thesis paper essentially consists of a brief introduction of contact, elasticity and

stress distribution and maximum pressure distribution due to contact.

In chapter two some literature background are included in regard to contact

mechanics. Necessary theories have been discussed and also useful mathematical

relations have been derived for using in numerical techniques.

In chapter three Numerical technique and Finite Element Simulation have been

discussed involving geometrical models, loading conditions and boundary conditions.

For FE analysis

In chapter four, results obtained from numerical and FE analysis have been included

with discussions. The results have been shown graphically, including stress

4



distribution vs. contact geometries for numerical solution. The validity of the

numerical results also has been shown in compare with results from ANSYS.

In chapter five a conclusion was drawn in regard to whole thesis work. In this chapter

there have been some further recommendations for rcsearch on same in futurc.

5
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CHAPTER TWO

THEORETICAL BACKGROUND

2.1 General

This chapter is concerned with the some theoretical aspects which have been used for

this thesis work. Derivations of the formulas, definition of some basic concepts have

been described in this chapter. All of these have been concerned with the stresses

which arise when the surface of two bodies are brought into contact.

2.2 Elasticity

Almost all engineering materials possess to a certain extent the property of elasticity.

If the external forces producing deformation do not exceed a certain limit, the

deformation disappears with the removal of the forces. Throughout the present work it

has been assumed that the bodies undergoing the action of external forces are

perfectly elastic i.e. that they resume their initial form completely after removal of the

forces.

Atomic structure will not be considered here. It will be assumed that the matter of an

elastic body is homogenous and continuously distributed over its volume so that the

smallest element cut from the body possesses the same s

the body. It has also been assumed that materials ic, i.e. that the 'elastic

properties are same in all directions.

2.3 Components of Stress and Strains

In discussing the deformation of an elastic body it wil.l be assumed that there are

enough constraints to prevent the body from moving as a rigid body so that so

displacements of the particles of the body are possible without a deformation of it.

The small displacement of a particles of a deformed body will first resolve into

components u, v, w parallel to the coordinate axes x, y, z respectively. It has been

assumed that the components are very small quantities varying continuously over the

6



volume of the body. Consider a small element dx dy dz of an elastic body (Figure

2.1).

y

o

z

x

Figure 2.1: Components of stress

If the body undergoes a deformation and u, v, ware the component of the point P, the

displacement in the x direction f an adjacent point A on the axis is to the first order in

dx,

1511
u+-dx

Cix

due to increase (oul ox)dx of the function u with increase of the coordinate x. The

increase in length of the element PA due to deformation is therefore (au! ox)dx.

Hence the unit elongation at point 0 in the x direction is oul ox.
o

z

1---dX---'
T P u_T w+(~tof~x)dx1 r~====e-=_

I \
I. \
I. ~\

u+(8ulO")d,,

Figure 2.2: Components of strains

x

In the same manner it can be shown that the unit elongation in z direction is owl oz.

From figure 2.2, it has also been shown that shearing strain in xz plane-
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-------- (2. J)

2.4 Plane Stress and Plane Strain

If a thin plate is loaded by the forces applied at the boundary, parallel to the plane of

the plate and distributed uniformly over the thickness ( Figure 2.3 ), the stress

components ay, 'hy, 'zy are zero on both faces of the plate, and it may be assumed

tentatively, that they are zero also within the plate. The state of stress is then specified

by the ax, az and 'xz only and called Plane Stress.

x

z
z

Figure 2.3: Example of Plane Stress

A similar simplification is possible at the other extreme when the dimension of the

body in 'y' direction is very large. In this case strain in 'y' direction is assumed zero

and following relation can be written -

(Y y = v.((Y x + (Y J --------(22)

The contact stress for conical roller will be solved based on Plane Strain

approximation as the contact length is very large so strain in that direction has not

been considered.

2.5 Hooke's Law

Linear relation between the components of stress and the components of strain are

known generally as Hooke's Law. Imagine an elemental rectangular parallelepiped

with the sides parallel to the coordinate axes and submitted to the action of normal

stress ax uniformly distributed over two opposite sides as in the tensile test. The unit

elongation of the element up to the proportional limit is given by

------- (2.3)

8
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in which E is the modulus of elasticity in tension. This extension of the element in the

x direction is accompanied by lateral strain components (contraction)

---------- (2.4)

in which v is a constant called Poisson's ratio. Now if the above element is submitted

simultaneously to the action of normal stresses Ox and Oz over the sides, the resultant

components of strain can be obtained from equation (2.3) and (2.4) for the case of

plane strain -

8x = ~ [a-x - v(a-y +a-J]
&, = ~ b- z - v6- x +a-J] --------------(2.5)

1r~=GT~
From here we can write -

1
Ex=- {(I-v2)ox -1'(1 + v)Uz}

E

1
Ez = E {(1-v2)oz -v(~ v)ux}

1 2(1 + 1')
'Yxz = -Txz = --- Txz.G E

------- (2 6)

2.6 Equations of Equilibrium

The equilibrium of a small rectangular block edges h, k and unity. The stresses acting

on the faces 1, 2, 3, 4 and their positive directions are indicated in the figure. On

account of the variation of stress throughout the material, the value of, for instance,

Ox, Oz, 'txz refer to the point x, z, the midpoints of the faces are denoted by (ox)J, (Ox)2

etc. Since the faces are very small, the corresponding forces are obtained by

multiplying these values by the areas of the faces on which they act.

9



( )4
x

('xz)4
crz

_ ..-
" --

('xz)3 4 h

(x, y)
3

x)3 I

k
('xz) I

2

('xz)3

(cr

o

z

(crz)2

Figure 4: Derivation for Equations of equilibrium

Neglecting .body force, we can write the equation of .equilibrium for forces in x

direction is

Dividing by bk,

If now the block is taken smaller and smaller, that is h ~ 0, k ~ 0 the limit of

°(j x by the definition of such a derivative. Similarly
Ox

(rXZ)2 - (r xz ). becomes or" .The equation of equilibrium for forces in z direction
k liz

is obtained in the same manner. Thus-

o(jx + or" =0
Ox liz
o(j,+or,,=O
liz Ox

--------- (2.8)
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2.7 Compatibility Equations

The mathematical formulation of the condition for compatibility of stress distribution

with the existence of continuous function u, v, w defining the deformation will be

obtained from Eqs. (2.1). for two dimensional problems we consider three strain

components, namely-

and ------- (2.9)

These three strain components are expressed by two functions 'u' and 'w' hence they

can't be arbitrarily taken, and there exists a certain relation between the strain

components that can be easily obtained from (2.9) . Differentiating the fIrst Eqs (2.9)

twice with respect to z, and third one with respect to x. and once with respect to z we

fmd-

------ (2.10)

This is the compatibility equation.

2.8 Conforming and Non ConformingContact

A contact is said to be conforming if the surfaces of the two bodies 'fIt' exactly or

even closely together without deformation. Flat slider bearings and journal bearings

are examples of conforming contact.

Bodies which have dissimilar profiles are said to be non-conforming. When brought

into contact without deformation they will touch fITst at a point - 'point contact' - or

along a line - 'line contact'. For example, in a ball-bearing the ball makes point contact

with the races, whereas in a roller bearing the roller makes line contact. Line contact

arises when the profIles of the bodies are conforming in one direction and non-

conforming in the perpendicular direction. The contact area between non- conforming

bodies is generally small compared with the dimensions of the bodies themselves; the

stresses are highly concentrated in the region close to the contact zone and are not

greatly influenced by the shape of the bodies at a distance from the contact area.

II



2.9 Elastic Half Space

Non-conforming elastic bodies in contact whose deformation is sufficiently small for

the linear small strain theory of elasticity to be applicable inevitably make contact

over an area whose dimensions are small compared with the radii of curvature of the

undeformed surfaces. The contact stresses are highly concentrated close to the contact

region and decrease rapidly in intensity with distance, from the point of contact, so

that the region of practical interest lies close to the contact interface. Thus, provided

the dimensions of the bodies themselves are large compared with the dimensions of

the contact area, the stresses in this region are not critically dependent upon the shape

ofthe bodies distant from the contact area, nor upon the precise way in which they are

supported. The stresses may be calculated to good approximation by considering each

body as a semi-infinite elastic solid bounded by a plane surfuce: i.e. an elastic half-

space. This idealization, in which bodies of arbitrary surface profile are regarded as

semi-infinite in extent and having a plane surface, is made almost universally in

elastic contact stress theory. It simplifies the boundary conditions and makes available

the large body of elasticity theory which has been developed for the elastic half-space.

In this chapter, therefore, we shall study the stresses and deformations in an elastic

half-space loaded one-dimensionally over a narrow strip ('line loading'). In our frame

of reference the boundary surface is the x-y plane and the z-axis is directed into the

.solid. The loaded strip lies parallel to the y axis and has a width (a + b) in the x-

direction; it carries normal and tangential tractions which are a function of 'x' only.

We shall assume that a state of plane strain (Ey = 0) is produced in the half-space by

the line loading. For the assumption of plane strain to be justified the thickness of the

solid should be large compared with the width of the loaded region, which is usually

the case.

The elastic half-space is shown in cross-section in Figure 2.5. Surface tractions P(x)

and Q(x) act on the surface over the region from x = - b to x = awhile the remainder

of the surface is free from traction. It is required to find the stress components O"x, o"z

and Txz at all points throughout the solid.

12
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b

o

a

x

Figure 2.5: Elastic Half space

The stress component must satisfy the equilibrium equations throughout the solid-

O(Jx+ 0Tu=O
&: i5z

O(J,+OTu=o
i5z &:

The corresponding strains Ex. Ez• Yxz must satisfy the compatibility condition:

Hooke's law relating the stresses to the strain, may be written-

1
fx=- {(1-1'2)ox-I'(I+I')oz}

E

1
fz = - {(I -1'2)oz ~ 1'(1 + I')ox}

E

I 2(1+11)
'Yxz=-Txz= TxzG E

13



If a stress function q> (x,z) is defined by -

------- (2. I 1)

Then Eqs of equilibrium, compatibility and Hooke's law are satisfied provided q>

(x,z) satisfied the biharmonic function

2.9.1 Boundary Conditions

The stress function must be satisfied the boundary condition. The boundary conditions

for the half space in Figure - 2.5 are as follows.

On the boundary z = 0, outside loaded region, the surface is free of stress i.e.

-'T' =r =0v z xz

Within the loaded region -

x<-bandx>+a ------ (2.13a)

a,=-p(x)}
rxz =-q(x)

-b5x5a -----(2.13b)

At x,Z~OC ---- (2.13c)

For this thesis the contact has been considered in corporation with sliding. So

tangential force has been raised which is the result from normal forces and related

with friction. So another boundary condition has been considered -

q(x) = i:.f.IP(X) ------ (2.14)

Stress distribution for concentrated normal. force and for concentrated tangential

traction has been required to develop mathematical model for numerical solution. So,

stress distribution for concentrated normal and tangential force has been discussed in

the following article.

14



2.10.1 Concentrated Normal Force

Stresses produced by a concentrated force of intensity 'P' per unit length distributed

along the y-axis and acting in a direction normal to the surface has been discussed

here. This loading may be visualized as that produced by a knife-edge pressed into

contact with the half-space along the y-axis (Fig. 2.5 absence of tangential load and

distributed load).

Stresses for concentrated normal forces are as follows -

---- (2.l5a)

2.10.2 Conce'ntrated Tangential Force

A concentrated force 'Q' per unit length of the y-axis, which acts tangentially to the

surface at 0 as shown in figure 2.5 produces stress distribution in x and z direction.

Stresses for concentrated tangential forces are as follows -

(Jx =

----- (2.15b)

/
2.10.3 Distributed normal and tangential force

An elastic half surface loaded over the strip (-b < x < a) by a normal pressure p(x) and

tangential force q(x) is distributed is any arbitrary manner shown in figure 2.6. We

wish to find the stress distribution under normal and tangential loading at any point A

in the body of the solid.
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Figure 2.6: Distributed Load over elastic half space

As we have already discussed about stresses due to point loading, so to get stresses for

distributed loading we had to implement superposition approximation and hence

integrated over the entire loaded area.

The traction acting on the surface at B, distance s from 0, on an elemental area of

width 'ds' can be regarded as concentrated forces of magnitude pds acting normal to

the surface and qds tangential to the surface. The stress at A due to these forces are

given by the stress distribution of concentrated normal and tangential forces given by

equations (2.15a) and (2.15b) in which x is replaced by (x-s). Integrating over the the

loaded region gives the stress components at P due to complete distribution of p(x)

and q(x)

The stress distribution hence as follows -

--(2.16)

If the stress distributions ofp(x) and q(x) are known then the stress can be evaluated

although the integration in closed form may be difficult. In this work, the distribution

16



of p(x) has been considered as Hertz Pressure Distribution and to solve these

equations numerical technique has been evolved.

2.11 Hertz Theory

When two non-conforming solids are brought into contact they touch initially at a

single point or along a line. Under the action of the slightest load they deform in the

vicinity of their point of first contact so that they touch over an area which is finite

though small compared with the dimensions of the two bodies. A theory of contact is

required to predict the shape of this area of contact and how it grows in size with

increasing load; the magnitude and distribution of surface tractions, normal and

possibly tangential, transmitted across the interface. Finally it should enable the

components of deformation and stress in both bodies to be calculated in the vicinity of

the contact region.

In this work, pressure distribution has been assumed according to Hertz. He proposed

pressure distribution for any contact region is elliptical while normal loading has been

applied in the contact .region. So, in this work we have been used elliptical pressure

distribution -

x

Figure 2.7: Distribution of Pressure according to Hertz theory

P(X)=~I-~: ---- (2.17)

where 'a' is the half width of the contact region. According to Hertz, this contact

region is very small in compare to overall dimension of the body. The contact region

has shape of rectangular but for the conical roller it has shape of a trapezoid. So, half

17



width is not fixed like cylindrical contact. It. has been changed according to line of

consider ration from tip.

2.12 Relation between Normal and Tangential Traction

As this thesis work has been done considering normal and tangential load. In this

work tangential force is related with normal force according to Amonton's Law. But

this relation is valid only when there is sliding but not larger scale. It is noted that,

there will be no tangential traction if there is absent of normal force. As in this work

pressure distribution has been considered only function of 'x', hence tangential

traction will be function of 'x' only. The relation is

Iq(x)1
--=11
p(x)

where Il is a constant coefficient of kinetic fiiction whose value is determined by the

materials and the physical conditions of the interface. For our approximation we

assume it 0.30. It is also found to be approximately valid when non conforming

sliding surfaces are separated by thin lubricating films. Experimental confirmation

that the tangential traction is distributed in direct proportion to normal pressure is

provided by photo- elastic work of Ollerton and Haines.

2.13 Effect on Normal Pressure Distribution and Half-Width

A question may be raised, in presence of tangential load is there any change in normal

pressure distribution or half width i.e. contact shape? To demonstrate this by

considering figure 2.8, the tangential force Q is proportional to (l-2v)/G.

.1

CD
v

j'
Q. x

Figure 2.8: Combination of Normal and Tangential Load
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The tangential traction acting on each surface at the interface are equal in magnitude

and the opposite in sign,

q, (x, y) = -q2 (x, y)---------(2.18)

Hence normal displacement due to these tractions are proportional to the respective

values of (1-2v)/G of each body and are of opposite sign.

where Uz! and uz2is the normal displacement. If the two solids have the same elastic

constants, any tangential traction transmitted between them gives rise to equal and

opposite normal displacements of any point on the interface. Thus the warping of one

surface conforms exactly with that of the other and does not disturb the distribution of

normal pressure. The shape and size of the contact area are then fixed by the profiles

of the two surfaces and the normal force, and are independent of the tangential force.

2.14 Radius of Curvature

When two geometrically and materially identical conical rollers come into contact

with each other under the application of a uniform compressive normal load in rolling,

the contact patch appears in the form of trapezoid, in contrast with two cylinders

where the contact area is a rectangle. The trapezoid shape of the contact area arises

because the radius of curvature of either cone varies along the axial direction of

contact length.

Unlike cylinders where the radius of curvature is equal to the radius of a cylinder, the

radius of curvature of a conical roller is equal to the radius of curvature of an ellipse

formed by a cut plane normal to the external surface of the conical roller. This radius

of curvature varies as the cut plane moves along the contact length. Figure -2.9 shows

two ellipses in a side view formed by sectioning conical rollers by the cut plane at t.
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Figure 2.9: Side Cross sectional view of two conical rollers in contact

The radius of curvature of the osculating rollers for the section at t is -

o~t~l ----- (2.20a)

Equation (2.20a) is a parametric form of radius R of curvature, where all values of R

along the contact length can be determined as t increases from 0 to l. A and B are the

lengths of the manor and minor axis respectively of the ellipses of osculating rollers 1

and 2 at t, when viewed perpendicular to the section, as shown in figure 2.9. The

lengths of the major and minor axes, which are also function of t, are determined by

visualizing the cone in a three dimensional space. From figure 2.10 the length of the

minor axis of each cone is -

20
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Figure 2.10: Front side view of conical cylinder

Where r is the radius of each cone at t and q>is the vertex angle. The application of the

above equation requires a vertex angle greater than 0° and less than 45° .At 0, the cone

reduces to a line and at-45 the cutting plane t becomes parallel to the side l.

Putting the values of OD, DF and DC in the above equation gives

.,

0<q><45 (2.20c)

where S is the distance from the apex, and f is length of the section, perpendicular to

the cone surface, at t projected on the Y-Z plane passing through the axis of the cone.

The above equation can be written in terms of t as

B=K(-P-+tJsm rp
o So t So I, 0<q><45° ------ (2.20d)
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where K is a constant which is given by

K; [ I, +H' sin' ffJ+ 2H Jtan' ffJ- H' cos' ffJcos ffJ cos ffJ ----- (2.20e)

H - tan(2ffJ) - tan ffJ
2

The length of the major axis of each cone is - .

A; (-P- + t) tan(2q.»
sm q.> 2

05,t5,/ 0<<p<45° ----- (2.20f)

Putting the values of equations (2.20d) and (2.20f) in equation 2.20a gives -

2K
2

( )R;---~+t
tan(2q.» sin tp

05,t5,[ 0<<p<45° ------- (2.20g)

The conical roller geometric constant b that depends only on the radii of curvature of

two cones at t is -

05,t5,/ 0<<p<45° ---(2.20h)

It may be noted that like b, has a unique value for each value of t as long as long

radius of curvature is not infinite or undefined.
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CHAPTER THREE

NUMERICAL SOLUTION AND FINITE ELEMENT

SIMULATION

3.1 General

In the field of engineer.ing sometimes we have to face some sort of problems which is

not possible by analytical methods or equations. In such case we have to use various

Numerical Techniques to fine the results. The numerical technique hence required

validation using another comparison with that finding in the numerical analysis. In

this chapter we have discussed about numerical techniques including governing

equations, boundary conditions, coding used and comparison of the results with a

commercially available software ANSYS.

3.2 Physical Description

The definition sketch of the problem and the boundary conditions are shown in the

figure 3.1. There are two conical rollers in contact. The two rollers have materials

with same elastic constant and poisson's ratio. The boundary surface is X-Y plane and

Z axis is directed into the solid. The loaded strip lies parallel to the Y axis and has a

width of2a in X direction. The length ofthe conical roller has been taken 20 mm. The

vertex angles have been taken as 5°, 20°, 30°, 45°. The material properties have been

taken as Young modulus, E = 200 GPa and Poisson's ration, 1) = 0.3 for steel and for

aluminum it has been taken as 70 GPa and 0.25 respectively. The loading has been

given perpendicular to Z axis and value is 1000 N/mm.
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Figure 3.1: Physical Model for numerical solution

3.3 Mathematical Modeling

The governing equations and boundary conditions of the system to get the stress

distribution are as follows -

Governing Eqnations

q(X) = If.1P(X)
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Radius of Curvature

2K' ( )R=. ~+t
tan(2q» sin q>

.Pressure Distribution

p(x) =~l-~:

Boundary Conditions

On the boundary z = 0, outside loaded region, the surface is free of stress i.e.

(j',=Tu=O

Within the loaded region -

x<-bandx>+a

(j',= -P(X)}
'T" =-q(x)
0u

-b50x50a

At x,z~oc

To solve above integration associated with pressure distribution, half width and

boundary condition a programming has been written in MATLAB.

3.4 Steps Involved in MA TLAB

Step 1: Input Material Properties and Physical Dimension ofthe rollers.

Step 2: Solving of Radius of Curvature

Step 3 : Solving Halfwidth of contact

Step 4: Input Normal Loading F = 1000 N/mm

Step 5: Input Pressure Distribution according to Hertz Contact Stress

Step 6: Input Boundary Conditions

Step 7: Solve Stress Distribution For this Set of value using Integration Technique

Step 8: Solve half width for next iteration and repeat step 4 to 7

Step 9: Output results

25
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3.5 Basic Procedu re for Finite Element Analysis

To solve any problems using ANSYS, there are three steps to proceed. These steps
are-

• Pre-processor: In this pre-processor, the model geometry is defmed (for example,

defining elements along with their real constant values, material properties and

modeling of given specific structure).

• Solution mode: In this solution mode, boundary conditions and loads are applied

to the model and analysis is run for the solution.

• Post processor: In this phase, results are examined.

3.6 Preprocessing Phase

The steps involved in this phase have been discussed from the following articles

3.6.1. Element Description

Tetrahedral lO-Node element (SaUD 187) is used for 3-D modeling of solid

structures. SaUDI 87 element is a higher order 3-D, IO-node element. SOUDI87 has

a quadratic displacement behavior and is well suited to modeling irregular meshes

(such as those produced from various CAD/CAM systems). As the drawing has been

completed in SaUD WORKS and then it has been imported to ANSYS interface, so

this type of element is very useful for such analysis.

The element is defmed by 10 nodes having three degrees of freedom at each node:

translations in the nodal x, y, and z directions. The element has elasticity, plasticity,

hyperelasticity, creep, stress stiffening, large deflection, and large strain capabilities.

It also has mixed formulation capability for simulating deformations of nearly

incompressible elastoplastic materials, and fully incompressible .hyperelastic

materials.
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Figure 3.2: Tet 10 nodes using for meshing

The geometry, node locations, and the coordinate system for this element are shown
in Figure- 3.2

In addition to the nodes, the element input data includes the orthotropic or anisotropic

material properties. Orthotropic and anisotropic material directions correspond to the

element coordinate directions. The element coordinate system orientation is as

described in Linear Material Properties.

Linear material properties that are required for an element, but which are not defined,

use the default values as described below (except that EX and KXX must be input

with a nonzero value where applicable). Any additional material properties are

ignored.

3.6.2 Material Specifications

As material properties are assumed as linear, so in ANSYS there are only two values

for properties has been given as input. These are Young Modulus and Poisson's ratio.

The other values of properties have been adjusted accordingly. No input has been

given for thermal expansion. The material properties, that have been used are-

For steel, Young Modulus = 205 GPa and Poisson's ratio = 0.3

For Aluminum, Young Modulus = 70 GPa, Poisson's ratio = 0.25
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3.6.3 Modeling

Three models are constructed to verify the validity of the mathematical model that has

been solved numerically and to understand the effect of vertex angle, load and

material on the maximum pressure and it's distribution. In order to alleviate the

complexity of the problem each model uses cones of the same dimensions, materia!

and boundary conditions.

Figure 3.3: Model Imported from Solid Works

Model 1 consists of two three dimensional deformable conical rollers of vertex angle

and axial length 20 mm. The model has been shown in figure 3.3. Then it has been

saved in such format that ANSYS supports that.

3.6.4 Meshing

For finite element simulation meshing is the most important task. As in case of

contact problems stress are concentrated close to contact region. So, fine mesh is

required in the contact region. To do so, first all the geometrical models have been

meshed freely. Then the contact surface has been mapped mesh to finer the meshing.

After meshing the conical rollers are shown in figure 3.4-3.7
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Figure 3.4 :Meshing of Single Conical Roller

Figure 3.5: Side view of conical roller with mesh.
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Figure 3.6: Tow conical rollers in mesh

Figure 3.7: Front view of two conical rollers in mesh
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3.6.5 Type of Contact Element

In this analysis, CONTAC175 (Contact, Surface-to-Surface) element is used to

develop a contact pair between the two rollers. CONTAC175 is a surface-to-surface

contact element. It supports small sliding, small deformation, and different meshes

between the contacting components. Contact occurs when the element penetrates the

target segment element (TARGE 169) on a specified target surface. CONTA175 is

used to represent contact and sliding.. The element is applicable to 2-D or 3-D

structural and coupled field contact analyses.

I
• CONTA'i75
targel normal

Figure 3.8: Contact element type with target

3.6.6 ..•..@~hical user interface (GUI)
," ".,._,,-~-_._....•..•••.-.-... . .-.-'

Several GUl aids are avaifiibleto create and manage contact pairs.

3.6.6.1 Contact Manager

The Contact Manager allows to define, view, and edit contact pairs. It provides a

convenient way to manage all contact pairs for entire model. The Contact Manager

Toolbar provides an intuitive interface for the creation and management of contact

pairs. The manager supports surface-ta-surface contact analysis (using CONTA175).

ri1Contftct tv\nnn l!r Ei

1il!51J1l!lcontact& Target tI S~I~81~INo Model Context 81gllChoose a result Uem !::I
Contact Pairs @I

Figure 3.9: Contact Manager Toolbar
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3.6.6.2 The Contact Wizard

This Contact Wizard leads through the process of manually creating contact pairs.

The wizard supports rigid-flexible (with optional pilot node) and flexible-flexible

contact, and supports both surface-to-surface and node-ta-surface configurations. The

wizard does not support rigid target primitives. The Contact Wizard also Supports

surface-based constraint contact pairs.

The Contact Wizard remains unavailable (dimmed) if any portion of the model is not

meshed. To create a rigid-flexible model, only the parts of the model which will be

used as flexible contact surfaces are meshed before launching the wizard (Rigid Target

Surfaces are not meshed) and to create a flexible-flexible model, all parts of the model

which will.be.used as.contact surfaces.(includingtarget surfaces) before launching the

wizard are meshed.

Target and contact surfaces are specified using lines, areas, volumes, selected set of

nodes, or node components. The wizard allows choosing more than one area for the

target and contacting surfaces, thus allowing multiple areas to form a single contact

surface. If a rigid target surface is specified, a pilot node for that contact pair is

defined. After the target and contact surfaces are specified, properties of the contact

pair before creating the contact pair are specified. After all the required data is

specified, the contact and target element types are created

•

A coma.:.t palr con9t;.1s oi a target sUl1ac-eand contact Qlrfac9.
I YOli WIt first define ~ taroe1 surfac/).

T~rg"lSm,l!C" Tl'lrg"lT~

~ ~ ArmiS ': ~ FI~ble

_ Q 81X1v(~'Oll.une; CI Ptgll1
0- N •.xIQS ,e" F'i91dwi Fl101

t'J NOdal COmp.:lMnt Q AI01 !\bce on'~t[x,o __u(A:~..Cod_:,onl_,

~'.' ',. ;W;r ! Pir.kTorge1 ...=_0 _

Figure 3.10: Contact Wizard Tool
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3.6.6.3 Managing contaCt pairs
It is paramount that the contact elements be oriented correctly for proper contact

detection. The contact manager provides to display one or more contact pairs on

which to perform the below listed operations.

(i) To verify that the normal of the contact and target surfaces are in the correct,
direction

(ii) To reverse normal of elements those are not oriented correctly

(iii) To edit the properties of the contact pair(s) as needed. The properties include

real constant values and key option values.

The options that are considered for Contact175 element type are shown in the window

below:-

()pUoM ror CONTAI75, EIeMef'I:T';'l)e~. NO. 3

:;

i
I

~JI
JINc Ali:o. Adjust. ii;lJ

I••••..••••• iElJ
INo predlctlons iElJ
INa iSJ
I•••••• !Elj

~--- -_ .._.- -_!QJ
1_- !iIj
IC<>r<od: ""'" ••••• iElJ
INcnncI to t.eroet SU"fecefmIGID

1Eed11t'en:1tlon (pAIR to besed)

1.- If;!j
I".......... ~ J

ir~~li -••..

Figure 3.11: Managing Contact Pairs Tool

3.7 Solution Phase

In this phase loads and boundary conditions are applied to the system to get the

results. The loads are applied 1000 N/mm in Y direCtionand tangential traction in X

direction has been applied. Boundary conditions have been applied as it has been

assumed. After applying load the figures has been shown from 3.12 to 3.13.
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Figure 3.12: Applying Normal and Tangential Load

Figure 3.13: Applying Boundary Conditions
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After applying loads and boundary conditions the system is then solved for current
load set up.

3.8 Post Processor

In this phase results are plotted for given materials, meshing, applied load and

boundary conditions. Here stress in X, Y, Z direction and Von Mises Shear stress

have been observed at the portion where highest values have been found in numerical

technique.
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 General

In this chapter, results on this thesis work from numerical solution and finite element

analysis have been discussed. The results have been shown graphically relating

contact stresses in different axes with contact geometries. Stress distribution, pressure•
distribution and comparison of results also have been shown.

4.2 Stress in X direction

With application of both normal and tangential load, the elements under the contact

region have been in stressed. The component of stress in X- direction (crx ) varies with

contact geometries as well as length of the conical rollers. On the other hand, this

stress also varies with different vertex angle. The following article .includes the results

from this stresses and discussion on that.

4.2.1 (J. VS. va
Distribution of stresses in X-direction i.e. crx under normal load along x/a varies

according to pressure distribution p(x). The maximum stress has been found when

z=O that is at the surface of contact. It decreases with increasing of distance from

contact surface. In all cases i.e. at any depth from contact surface the variation of

stress is elliptical. And the value of maximum stress is exactly same as the maxmmm

pressure i.e. stress ratio is -I. It is noted that the stress component is compressive.

The maximum pressure has been found at contact surface i.e. z=O and at line of

symmetry i.e. x/a=O.
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Stress Ratio vs. xla (Normal Loading)

. x/a

Figure 4.1: Stress distribution in X axis vs. x1a for normal loading

z

x

Distribution of stresses in X-direction is linear along x1a. The value is zero at the

origin and is in compression at the leading edge of contact. But as the tailing edge the

stress is in tension. In this case, the stress has maximum value at the contact surface

and it is decreasing with increasing from the surface.

Stress Ratio vs xla ( Tangential Loading)

-+-z=Oa
____ z=.125a

.......- z=. 25a

"""""*- z=.375a
__ z=.5a

__ z=.75a

-t-z=1.0a

x/a

Figure 4.2: Stress distribution in X axis vs. x1a for tangential loading

To find the stress distribution for combined loading that is normal and tangential, here

superposition approximation has been used. So, stresses from normal loading and
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tangential loading have been superposed with a kinetic friction factor 0.3. As, the

stress distribution for normal loading is elliptical and that for tangential loading is

linear, so combined stress in X- direction has been skewed to the leading edge. It

means, the maximum value of compressive stress has been found in the leading edge

of roller and its value is higher than that for maximum pressure. As, for both case at

surface (z=0) the stresses are higher, so combination of both also has higher value at

contact surface. The distribution of stress in X direction for combined loading has

been shown from figure 4.3.1 to 4.3.3 in dimensionless form as well as actual form

for both steel and aluminum

Stress Ratio vs. x1a(Combined Loading)

-+-z=Oa
_z=.125a
__ z=.25a

-.<-z=.375a
--ll<- z=. Sa

~z=.75a
-+-z=1.Oa

x/a

Figure 4.3.1: Stress distribution in X axis vs. x/a for combined loading

crxvs. x/a

-2

xla

-+-z=Oa______z=.125a

--.-z=.25a
~z=.375a
~z=.5a
__ z=.75a

-+-z=1.08

Figure 4.3.2: Stress Distribution vs. xla for vertex angle 5° at t = 0/ (steel)
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O'x va. x/a
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--*- z=. 375a
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___ z=.i5a

-+-z=1.0a

Figure 4.3.3: Stress Distribution vs. x/a for vertex angle S° at t = 0/ (aluminum)

4.2.2 cr. vs. z/a

Stress distribution III X- axis along zJa direction for normal loading has

maximum value for x/a = 0 i.e. at the center line of contact region and the value is -1.

It is decreasing with increasing distance from the origin. Another matter is that at a

large distance from contact surface as well as form center line the stress ratio has very

low value, which satisfies the boundary conditions.

Stress RatiO vSzla (Normal Loading)

0
0.5 1 5

-0.2
__ x/a~1
__ x/a~.5

.2 -0.4

~
__ x/a~.25

OIl -0.6 --*-x/a=O
OIl
l!! __ x/a=.25- -0.8til ___ x/a=.5

-1 -+-x/a=1

-1.2

zla

Figure 4.4: Stress distribution in X axis vs. zJa for normal loading

Stress distribution along zJa direction shows that the stresses are symmetrical about

x/a =0 line i.e. center line. It has been shown that the maximum value has been found
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at xia = -1 which is 0.6 i.e. tension. On the other hand maximum value in compression

has been found at xia=1 which is 0.6.

Stress Ratio vs z/a (Tangential Loading)
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0.6

o 0.4
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-+-x/a=.5

-t-x/a=1

zla

Figure 4.5: Stress distribution in X axis vs. va Tangential Loading

Stress distribution in X-direction for combined loading shows that the maximum

value of compressive stress has been found at xia = 0.5 i.e. some value tilted from the

origin toward the leading edge. The reaSon behind this is, as the stresses are

superposed to find the combined stresses. The stress for normal loading is always

compressive on the other hand the stress for tangential loading is compressive only on

the leading edge side. So combining these two stresses gives higher stress at xla=0.5.

The stress distribution in X direction vS va have been shown from figure 4.6.1 to

4.6.3 in case of both dimensionless form and different materials.

Stress Ratio vS z/a (COmbined Loading)

1
-.-x/a=-1

0.5 ____x/a=-.5
0
i a --.-xia=-.25
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•• ~ 1 2 -*-x/a=O

!-0.5 --- .~ __ x/a=.25
til ,""-:: -+-x/a=.5

-1
---<-x/a=1

-1.5

z/a

Figure 4.6.1: Stress distribution in X axis vs. va for combined loading
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all. VS. z/a
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Figure 4.6.2: Stress Distribution vs. zJa for vertex angle 5° at t = Of (Steel)
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Figure 4.6.3: Stress Distribution vS.zJa for vertex angle 5° at t = 01 (Aluminum)

4.2.3. Distribution G, at different length

In the above paragraphs and graphs we have seen the variation of stress ratio at any

cross section of the contact. As this thesis is based on contact in conical rollers, so it's

cross section is not same at all section, hence there are different values for Gx at

different section and it varies along with length of the contact. As maximum contact

pressure is higher at the tip of the conical roller, so stress will be high at the tip. It
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decreases in value with the increases the length from the tip. In the following figure

these has been shown for four different cross sections with different angles. As stress

is higher at the surface so the distribution has been shown for va=D. The distributions

of stresses for different length for combined loading have been shown from figure

4.7.1 to 4.7.10 for combined loading. The stress distributions vs. va have been shown

from figure 4.8.1 to 4.8.9 for combined loading.

crx vs. x/a

-+-z=Oa
-ll-z=.125a
---6- z=.25a
__ z=.375a
__ z=;5a

-+-z=.75a
---+--z=1.0a

xla

Figure 4.7.1: Stress Distribution vs. x1a for vertex angle 5° at t = OT (Steel)

crx vS.x/a

-+-z=Oa
-ll-z=.125a
---6- 2:=.25a
__ z=.375a
__ "=.5a

-+-z=;75a
---+--z=1:0a

xla

Figure 4.7.2: Stress Distribution vs. x1a for vertex angle 5° at t = O.25T (Steel)
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crx vs. x/a

__ z=Oa

__ z=.125a

---Ir- z=.25a
-*-z=.375a
_z=.5a
__ z=.75a

--+-z=1.0a

xla

Figure 4.7.3: Stress Distribution vs. xla for vertex angle 5° at t = O.sl (Steel)

crx vs. x/a

__ z=Oa

__ z=.125a

---Ir- z=.25a
-*-z=.375a
_z":5a
__ z=.75a

--+-z=1.0a

xla

Figure 4.7.4: Stress Distribution vs. xla for vertex angle 5° at t = 0.75/ (Steel)
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crx vs. x/a

-+--z"lla
__ z=.125a

-tr-z=.25a
-:*-z=.375a
__ z=.5a

-+--z=.75a
--I-z=1.0a

xla

Figure 4.7.5: Stress Distribution vs. xJa for vertex angle 5° at t =11 (Steel)

crx vs. x/a

-+--z=Oa
__ z=.125a

-tr-z=.25a
-:*-z=.375a
__ z=.5a

-+--z=.75a
--I-z=1.0a

-300-
---.---- ~ -200-

--100-

xla

Figure 4.7.6: Stress Distribution vs. xJa for vertex angle 5° at t =0/ (Aluminum)
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ax vs. x/a

-+-z=Oa
__ z=.125a

--tr-z=.25a
---*-z=.375a
---*-z=.5a
__ z=.75a

-+--z=1.0a

Xla

Figure 4.7.7: Stress Distribution vs. xJa for vertex angle 5° at t =0.5/ (Aluminum)

ax vs. x/a

-+-z=Oa
__ z=.125a

--tr- z=.25a
---*- z=.375a
---*-z=.5a
-+-z=.75a
-+--z=1.0a

Xla

Figure 4.7.8: Stress Distribution vs. xJa for vertex angle 5° att =11 (Aluminum)
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Stress in X-direction vs. xla at different length
(Combined Loading)

-2 -1

xla

--.-1=0
---1=5
-+-1=10
___ 1=15

__ 1=20

Figure 4.7.9: Stress distribution in X direction at different length at zJa=Owith vertex
angle 5° (Steel)

O"xvs.xla for different materials

-Clla..
:!i:-

- -400-
200-

-2--

x/a

--Aluminum
--Steel

Figure 4.7.10: Stress Distribution vs. x/a at t = O.Slfor vertex angle OOfordifferent
materials
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ax vs'. z/a
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--+-x/a=-1

0 _x/a=-.5
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=~
400 ~x/a=.25

-.-x/a=.5
--+-x/a=1

-1000

-1200
zJ.

Figure 4.8.1 Stress Distribution vs. zJa for vertex angle 5° at t = 0/ (steel)

ax vs. z/a
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--+-x/a=-1

0 --.-x/a=~.5•• 0.2
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;;.
•• ~x/a=O
•• -400l!! .....-x/a"'.25
0 ....•....x/a=.5

-+-x/a=1

-800

-1000

-1200
zl.

Figure 4.8.2 Stress Distribution vs. zJa for vertex angle 5° at t = 0.25/ (steel)
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Figure 4.8.3: Stress Distribution vs. z/a for vertex angle 5° at t = 0.5/ (steel)

Figure 4.8.4: Stress Distribution vs. z/a for vertex angle 5° at t = 0.75/ (steel)
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Figure 4.8.5: Stress Distribution vs. zJa for vertex angle 5° at t = 11 (steel)

OX VS. z/a
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100
-+--- x/a=-1

0 ____ x/a=-.5

I 0.2 0.6
-100

___ x/a=-.25

~
-,*-x/a'=O

~ -200 .......- x/a=.25
III _4_x/a=,5

--t-x/a=1

-500

-600

-700

z/a

Figure 4.8.6: Stress Distribution vs. zJa for vertex angle 5° at t = 01 (Aluminum)
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0"•• vs. z/a

400

300

200

100 ---+-- x/a=-1

0
.....-....-x/a=- _5

I 0.2 0.6 ----..- x/a=-.25

-100 ~x/a=O

~
~x/a=.'25

-200 _____ x/a=.5

--+-- x/a=1

-600

zla

Figure 4.8.7: Stress Distribution vs. zJa for vertex angle 5° at t = 0.5/ (Aluminum)

6" vs. z/a
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~x/a""()

~
-200 -'-x/a"'.25
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Figure 4.8.8: Stress Distributionvs. zJa for vertex angle 5° at t = 11 (Aluminum)
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stress vs. z/a

0
0.2 0.4 0.6

-200 ----
tU
ll. -400~ -Aluminum
VI -Steelen -000!
III

-aOO ----

-1000
z/a

Figure 4.8.8: Stress Distribution vs. zJa for vertex angle 5° at t = 0.51 for different

materials

4.2.4 Distribution 6, at different vertex angle

The distribution of stress in X- direction also varies in value for different vertex

angles. The variations of values depend on maximum pressure and half width length.

As with increasing of vertex angle the half width length increase, hence maximum .

pressure decreases. So, the value of maximum stress decreases with increasing vertex

angle, but the distribution is same according to approximation of Hertz theory. Here

variations have shown for four different angles. Stress distributions along x/a for

different vertex angle have been shown from figure 4.9.1 to 4.9.5.

(Jx vs. x/a

__ z"Oa

--a-z=.125a

---0- z=.25a
__ z=.375a
__ z=.5a

__ z=.75a

-i-z=1.0a

xla

Figure 4.9.1: Stress Distribution vs. x/a for vertex angle 5° (Steel)
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ax vs. x/a

••••l!!
iii

-+-z=Oa
_z=.125a
---b-z=.25a
~z=.375a
---'JIE-- z=.sa
_z=.75a
-+-z=1.0a

xla

Figure 4.9.2: Stress Distribution vs. xla for vertex angle 20° (Steel)

Ox vs. x/a

-+-z=Oa
_z=.125a
---b-z=.25a
~z=.375a
---'JIE-- z=.5a
_z=.75a
-+-z=1.0a

xla

Figure 4.9.3: Stress Distribution vs. xla for vertex angle 30° (Steel)
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Ox vs. x/a

-+-z=Oa
_z=.125a

-.!l-- z=.25a
~z=.375a
__ z=.5a

_z=.75a
-I--2=1.0a

x/a

Figure 4.9.4: Stress Distribution vs. xla for vertex angle 45° (Steel)

Stress in X direction vs. x/a for different angles
(Combined Loading)

~
~ --

-+-5 Degree
__ 20 Degree

-6- 30 Degree

---*- 45 Degree

x/a

Figure 4.9.5: Stress distribution at in X axis at xla=O for different vertex angle at t=O

Combined loading
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4.3 Stress in Z direction

Stress components in Z direction have been discussed from the following articles

with variation of different contact geometries and vertex angle.

4.3.1 Gz vs. xla
Stress distribution in Z axis i.e. axis directed to solid vs. x/a shows that there is same

distribution as pressure distribution for normal loading. The maximum stress ratio that

is stress to maximum pressure has been found at x/a=O and at the surface. With

increasing of the distance from the surface it decreases. The maximum value of stress

ratio is -1 that is exactly same what the value for maximum normal pressure.

The stress distribution (for tangential loading) vs. x/a shows linear relation. The stress

ratio has very negligible value. It means by applying tangential load in X direction,

stress components in Z axis don't vary so much. So, for combined loading the stress

distribution has shown same like for normal distribution. The stress distribution in Z

axis has been shown from figure 4.10 to 4.11. From figure 4.12.1 to 4.12.3 the stress

distribution has been shown both in dimensionless form and for different materials.

Stress Ratio vs. Xla (Normal loading)

-3 3
-+-z=Oa
___ z=.125a

-'-z=.258
"""*""" z=,375a
~z=.5a
____ z=,75a

-l-z=1.Oa

xla

Figure 4.10: Stress distribution in Z axis vs. x/a for Normal loading
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Stress RatiO Vs. x/a (TangemtUII LOading)

--+--z=Oa
__ z=.125a

-'-z~.258
--*-z=.3758
--Jl(--z=.58
~z=.75a
-l-z=1.Oa

xla

Figure 4.11: Stress distribution in Z direction vs. x/a for Tangential loading

stress Ratio vs. xla (Combined Loading)

-3 -2 3

-+-z=Oa
--Z=.125.
-..-z=.25a
--*-Z=.375.
~Z=.5a

~Z=.75a
-+-z=1.0.

xla

Figure 4.12.1: Stress distribution in Z direction vs. x/a for Combined loading
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tJ. vs. va

--z=Oa
--Z=.125a
-l!r- Z=.25a

~Z=.375a
~Z=.5a
---Z=.75a
--+-- z=1.0a

x/a

Figure 4.12.2: Stress distribution in Z direction vs. x1a for 5° vertex angle (Steel)

tJ. vs. x/a

-2

xla

--z=Oa
~Z=.125a
-l!r- Z=.25a
~Z=.375a
~Z=.5a
---Z=.75a
--+-- z= LOa

Figure 4.12.2: Stress distribution in Z direction vs. x1a for 5° vertex angle (Aluminum)
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4.3.2 Gz vs. z/a

From the stress distribution along va (for normal loading), it has been shown that the

maximum stress has been found for xla = 0 and it has a value of -1. For tangential

loading it shows symmetricnature with respect to xla = 0 line. For combined loading

it has been found that maximum stress has been found for xla=O.25. It means that, the

maximum pressure will be found some value tilted. towards leading edge of the

conical rollers. The stress distribution vs. va for different loading conditions has been

shown from figure 4.13-4.14. From figure 4.15.1 to 4.15.3 stress distribution vs. va

has been shown both in dimensionless form and for different materials for combined

loading.

Stress Ratio vs. z/a (Nol"mal Loading)

0

~
0.2 0.4 0.6 0.8 1 , 2

.Q.2
-+--xJa-1

.Q4 ___a__xfa=-.5

.2 ----,-x/a=-.25
l -0.6 ~xfa=O

j .- ~x/a=.25

-08 --....- x/a=.5

-+--x/a=1-, .
-1_2

>fa

Figure 4.13: Stress distribution in Z axis vs. va for Normal loading

Stress Ratio vs. zla (Tangential Loading)
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0.04 -+-x/a=-1
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.!!
1i ---t-- xla=-.25

'" 0VI
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I!! 0.6 0.8 1 2 __ xla".25
Iii -0.02 _______x/a=.5

-0.04 ---+-xla=1

-0.06

-0.08

zla

Figure 4.14: Stress distribution in Z axis vs. va for Tangential loading
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Stress Ratio vs. Zla (Combined Loading)

0

-0.2

-0.4
0
'iiia: -0.6VI
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-+--xla~1
___ x/a=-.5

-+--xla~25
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-+-x/a=.5
-I-xla=1

Figure 4. I5. I: Stress distribution in Z axis vs. va for Combined loading

G, vs. z/a

0

-200
a;-
n. -400~~
fII
fII -600CD•..-U)

-800

-1000

~n"
, ,

0.4 0.6 0.8'I--..

....---: -

-+-X1a"'-1
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,",*-X1a=O

-.-X1a=.25

-4-X1a=.5

--+-X1a=1
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Figure 4.15.2: Stress Distribution vs. va for vertex angle 5° at t = 01(Steel)
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G. vS.z1a

o
-100

~ -200
::;:
-; -300

~-4()()
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.~AA 0.4 0.6 0.8
~

~,.

z/a

-+-x/a=-l
-Ill- x/a=-.5
-ir- x/a=-.25
~x/a=O
~x/a=.25
-+-x/a=.5
-+-x/a=l

Figure 4.15.3: Stress Distribution vs. z/a for vertex angle 5° at t = 01 (Aluminum)

4.3.3 Stress Distribution along with different length

Like stress distribution in X axis, stress in Z axis also varies with varying distance

from tip. At the tip i.e. at t=O, the stress is maximum and its value decreases with

increasing the distance from tip. The distribution does not vary except the value. The

distribution has been shown in figure 4.16.1 to 4.6.10

G. VS. xla

III
III
l!!
OJ

-+-z=Oa
-Ill- Z=.125a
-ir-Z=.25a
~Z=.375a
~Z=.5a
-+-Z=.75a
-+-z=1.0a

xla

Figure 4.16.1: Stress Distribution vs. xla for vertex angle 5° at t = 01 (Steel)
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(Jz vs. x/a

..100- ~--

200- ~_.

300- ---

0- ~--

xla

___+_z=Oa
--<a- Z=.125a
--lr- Z=.25a
__ Z=.375a
___ Z=.5a

---Z=.75a
--<-z=1,Oa

Figure 4. I6.2: Stress Distribution vs. x/a for vertex angle 5° at t = 0.25l'(Steel)

(Jz vs. xla

••••l!!en

x/a

___+_z=Oa
--Z=.125a
--lr- z=.25a
__ Z=.375a
___ Z=.5a

---Z=.75a
--<-z=1.0a

Figure 4.163: Stress Distribution vs. x/a for vertex angle 5° at t = 0.5/ (Steel)
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Gz vs. xJa

x/a

-+-z=Oa
---z=.125a
-<>-z=.25a
__ z=.375a
__ z=.5a

--z=.75a
-+-z=1.0a

Figure 4.16.4: Stress Distribution vs. x/a for vertex angle 5° at t = O.751 (Steel)

CJz vs. xJa
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-+-z=Oa
---z=.125a
-<>-z=.25a
--z=.375a
__ z=.5a

--z=.75a
-+-z=1.0a

Figure 4.16.5: Stress Distribution vs. x/a for vertex angle 5° at t = 11(Steel)
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Stress VS. xla at different length (Combined Loading)

-2 2

'ii'
.....-1=0

ll. --1=5
!. __ 1=10
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"""*"-1=15e-Ul -..-1=20
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Figure 4.16.6: Stress distribution in Z axis at different length at zJa=Owith vertex

angle 5° for combined loading

G. vs. xia
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~Z=.375a
___ Z=.5a

----z=.75a
-+-z=1,Oa

Figure 4.16.6: Stress Distribution vs. x/a for vertex angle 5° at t = 01 (Aluminum)
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Figure 4.16.7: Stress Distribution vs. x/a for vertex angle 5° att = 0.5/ (Aluminum)
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Figure 4.16.8: Stress Distribution vs. x/a for vertex angle 5° at t = II (Aluminum)
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crz vs. x1a
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Figure 4.16.9: Stress Distribution vs. x/a for vertex angle 5° for different materials

(Jz vs. zla
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Figure 4.17.1: Stress Distribution vs. zJa for vertex angle 5° at t = 0/ (Steel)
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CIz VS. zla
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Figure 4.17.2: Stress Distribution vs. zJa for vertex angle 5° at t = 0.25/ (Steel)
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Figure 4.17.3: Stress Distribution vs. zJa for vertex angle 5° at t = 0.5/ (Steel)
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Figure 4. I7.4: Stress Distribution vs. zla for vertex angle 5° at t = 0.75/ (Steel)

Gz vs. z/a
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Figure 4. 17.5: Stress Distribution vs. zla for vertex angle 5° at t = II (Steel)

Gz vs. z/a
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Figure 4. 17.6: Stress Distribution vs. zla for vertex angle 5° at t = 0/ (Aluminum)
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Gz vs. zla
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Figure 4.17.7: Stress Distribution vs. zJa for vertex angle 5° at t = 0.5/ (Aluminum)

Gz vs. zla
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Figure 4.17.8 Stress Distribution vs. zJa for vertex angle 5° at t = 1/ (Aluminum)
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cr. vs z/a
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Figure 4.17.9 Stress Distribution vs. zJa for vertex angle 5° for different materials

4.3.4 Stress Distribution for different Vertex angles

From stress distribution with different vertex angle or vertex angle we have seen that,

with increasing vertex angle the maximum value for stress decreases though

distribution are same for all vertex angle. Here only stress at surface i.e. z=0 has been

shown as it has higher value. The distribution has been shown from figure 4.18.1 to

4.18.9.

Gz vs. xla
00

--+-z=Oa

---- z=.125a
~z=.25a
----*- z=.375a
----'*:-- Z=. 5a

-z=.75a
-+-z=1.0a

xla

Figure 4.18.1 Stress Distribution vs. x/a for vertex angle 5° at t=O (Steel)
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crz vs xIa
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--<r- z=.25a
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-+-z=.75a
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Figure 4.18.2 Stress Distribution vs. x/a for vertex angle 20° at t=O (Steel)

crz vs xla

••e-Ul

xla

-+-z=Oa
-Il- z=.125a

--<r- z=.25a
---*-" z=.375a
-lO-z=.5a
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Figure 4.18.3 Stress Distribution vs. x/a for vertex angle 45° at t=O (Steel)
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Stress vs. x/a for different taper angles
(Combined Loading)
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Figure 4.18.4: Distribution of Stress in Z direction (combined loading) vs. x/a for

different vertex angle at t=O
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Figure 4.18.5 Stress Distribution vs. x/a for vertex angle 5° at t=0.51 (Aluminum)
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Gz vs. xla
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-+-z=1.0a

Figure 4.18.6: Stress Distribution vs. x/a for vertex angle 20° at t=0.5l (Aluminum)

Gz vs. xla
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Figure 4.18.7: Stress Distribution vs. x/a for vertex angle 30° at t=0.5l (Aluminum)
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Gz vs. xla
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---z=.75a
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Figure 4.18.8: Stress Distribution vs. xla for vertex angle 45° at t=0.51 (Aluminum)
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Figure 4.19.1: Stress Distribution vs. zJa for vertex angle 20° at t=OI (Steel)
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Figure 4.19.2: Stress Distribution vs. va for vertex angle 30° at t=OI (Steel)
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Figure 4.19.4: Stress Distribution vs. zla for vertex angle 5° at t=0.51 (Aluminum)
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Figure 4.19.6: Stress Distribution vs. zJa for vertex angle 30° at t=0.5l (Aluminum)

CJz VS. z/a

o

-50
~••~ -100-III
III
I!! -150
;;;

-200

-250

~n2 0.4 0.6 0.8-.......:::
-

--
z/a

-+-x1a=.l

-m-x1a=-.5
--ts- x1a=-.25

~x1a=O
-lIE- x1a=.25

--x1a=.5
--+-x1a=l

Figure 4.19.7: Stress Distribution vs. zJa for vertex angle 45° at t=0.51 (Aluminum)

4.4 Stress in Y axis

The stress components in Y axis have been found from plane strain approximation. In

this case all stress components have been shOWllunder combined loads i.e. presence

of both normal and tangential load. We will discuss about stress distribution in this

direction with variation of contact geometries, contact. length and vertex angle for

different materials.
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4.4.1 Gyvs. x/a

For case of plane strain, the third stress component is related with another stress

component and poisson's ratio. As the stress has maximum value for combined

loading, so third stress component are taken for combined loading. From the

distribution of stress in Y axis, we have seen that the distribution is as like as that for

X axis, i.e. maximum value has been found some value tilted towards leading edge.

But value of stress ratio is 0.35 which is much lower than other two components. The

location where maximum stress has been found is at contact surface (z=O) and at a

distance (x/a~0.5) from line of symmetry. The stress distribution has been shown in

figure 4.20.1 to 4.20.3 both in terms of stress ratio and for different materials.

Stress Ratio vs. xla (Combined Loading)
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--.-z=15a
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Figure 4.20.1: Stress distribution in Y axis vs. x/a
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Figure 4.20.2: Stress Distribution vs. x/a for vertex angle 5° at t = 0/ (Steel)
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Figure 4.20.3: Stress Distribution vs. x/a for vertex ang}e5° at t = 0/ (Aluminum)
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Figure 4.20.4: Stress Distribution vs. x/a for vertex angle 5° for different materials

4.4.2 <Syvs. z/a

From stress distribution in Y axis vs. zJa it has been shown that the maximum value of

stress ratio has been found not at x/a ~ O. And the maximum value is found at Z"'Oat

i.e. at surface. Stress distribution for combined loading has been shown in figure

4.21.1 to 4.21.4

Stress Ratio vs. z/a
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Figure 4.21.1: Stress distribution in Y axis vs. zJa

~'l.•.
78 ~•••.•



o

200
100

~
CIS
Q..
:iii
;; -100
en••~ -200
U)

-300

-400

ay vs. z/a

~

~ ,
0.2 0.4 0.6 0.8

-_._-

z/a

-+-xla=-1
-o-x/a=-.5
-fs-x/a=-.25
---*-xla=O
~x/a=.25
-+-x/a=.5
-+-xla=1
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Figure 4.21.3: Stress Distribution vs. x/a for vertex angle SO at t = 0/ (Aluminum)
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Figure 4.21.4: Stress Distribution vs. x/a for vertex angle 5° at t = 0.51 for different
materials

4.4.3 Gy vs. x/a at different length and different vertex angle

From distribution of stress in Y axis vs. x/a at different length it has been shown that

maximum stress has been found at the tip. With increasing of distance from tip, it

decreases like other stress component. It has been shown from figure 4.22.1 to 4.22.9:

With variation of vertex angle the distribution of stress is same though its maximum

value varies. It varies such that with increasing of vertex angle it decreases. The

distribution has been shown in figure 4.23.1 to 4.23.9.
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Figure 4.22.1: Stress Distribution vs. xJa for vertex angle 5° at t = 01(Steel)
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Figure 4.22.2: Stress Distribution vs. xJa for vertex angle 5° at t = 0.251 (Steel)
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Figure 4.22.3: Stress Distribution vs. xla for vertex angle 5° at t = 0.5l (Steel)
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Figure 4.22.4: Stress Distribution vs. xla for vertex angle 5° at t = 0.75l (Steel)
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Figure 4.22.5: Stress Distribution vs. x/a for vertex angle 5° at t = 1/ (Steel)
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Figure 4.22.6: Stress distribution in Y axis at different length at zla=O with vertex

angle 5° (Combined loading)
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Figure 4.22.9: Stress Distribution vs. x/a for vertex angle 5° at t = 1l (Aluminum)
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Figure 4.23.2: Stress Distribution vs. x/a for vertex angle 30° at t = 01 (Steel)
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Figure 4.23.4: Distribution of Stress in Z direction (combined loading) vs. x/a for

different vertex angle at t=O
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Figure 4.23.5: Stress Distribution vs. x/a for vertex angle 5° at t = 0.5/ (Aluminum)
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Figure 4.23.6: Stress Distribution vs. xla for vertex angle 20° at t = 0.5l (Aluminum)
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Figure 4.23.7: Stress Distribution vs. xla for vertex angle 30° at t = 0.5l (Aluminum)
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Figure 4.23.8: Stress Distribution vs. x/a for vertex angle 45° at t = 0.5l (Aluminum)

4.5.1 Shear StressDistribution
The maximum shear stress has been found from Von Mises shear theory. So, it needs

two normal stress components. From stress distribution for shear stress \IS. x/a we

have seen that maximum value for shear stress has been found that for zla=.30 at it

has been found at x/a=O with a stress ratio of 0.4. At surface z=o the value is not as

high as that for zla=0.30, though all other stress components are high at surface. The

distribution of shear stress with variation of x/a and zla have been shown from figure

4.24.1 to 4.24.4 and 4.25.1 to 4.25.4 respectively.
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Figure 4.24.1: Shear Stress ratio VS. xJa
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Figure 4.24.2: Shear Stress vs. xJa for vertex angle 5° at t=OI (Steel)
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Figure 4.24.3: Shear Stress vs. x/a for vertex angle 5° at t=OI (Aluminum)
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Figure 4.25.3: Shear Stress vs. xla for vertex angle 5° at t=OI (Aluminum)
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Figure 4.25.4: Shear Stress vs. va for vertex angle 5° with different materials
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4.5.2 Shear stress at different length

Like other distribution of normal stress, shear stress has maximum value at tip of

conical roller contact and it then decreases with increasing distance from tip. But

distribution of stress remains same. On the other hand, for low vertex angle the shear

stress has maximum value and it decreases in value with increasing vertex angle. The

stress distribution has been shown form figure 4.26.1 to 4.26.9 with variation of x/a

and that has been shown from figure 4.27 ..1 to 4.27.9 with variation ofzla.
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Figure 4.26.1: Shear Stress vs. xla for vertex angle 5° at t=OI (Steel)
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Figure 4.26.2: Shear Stress vs. xla for vertex angle 5° at t=0.25/ (Steel)
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Figure 4.26.3: Shear Stress vs. x/a for vertex angle 5° at t=0.5/ (Steel)
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Figure 4.26.4: Shear Stress vs. x/a for vertex angle 5° at t=0.75/ (Steel)
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Figure 4.26.5: Shear Stress vs. x/a for vertex angle 5° at t=1I (Steel)
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Figure 4.26.6: Shear Stress at different length vs. x/a at zla= .375 for vertex angle 5°
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Figure 4.26.7: Shear Stress vs. x/a for vertex angle 5° at t=OI (Aluminum)
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Figure 4.26.8: Shear Stress vs. x/a for vertex angle 5° at t=0.51 (Aluminum)
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Figure 4.26.8: Shear Stress vs. xla for vertex angle 5° at t=ll (Aluminum)
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Figure 4.27.2: Shear Stress vs. va for vertex angle 5° at t=0.251 (Steel)
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Figure 4.27.4: Shear Stress vs. va for vertex angle 5° at t=0.751 (Steel)
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Figure 4.27.5: Shear Stress vs. zla for vertex angle 5° at t=lI (Steel)
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Figure 4.27.7: Shear Stress vs. va for vertex angle 5° at t=O (Aluminum)
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4.5.2 Shear stress distribution for different vertex angle

Shear stress varies with different vertex angle orientation. With increase of vertex
angle shear stress decreases, but the distribution remain unchanged. The distribution
vs. xla and zla has been shown from figure 4.28.1 to 4.28.7 and from figure 4.29.1 to
4.29.9 respectively.
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Figure 4.28.1: Shear Stress vs. xla for vertex angle 20° at t=O/ (Steel)
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.Figure 4.28.2: Shear Stress vs. xla for vertex angle 30° at t=O/ (Steel)
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'txz VS. xla
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Figure 4.28.3: Shear Stress VS. x/a for vertex angle 45° at t=O/ (Steel)
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txz VS. xla
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Figure 4.28.5: Shear Stress vs. x/a for vertex angle 20° at t=O.5/ (Aluminum)
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Figure 4.28.7: Shear Stress vs. xla for vertex angle 45° at t=0.51 (Aluminum)
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Stress vs. z/a for different taper angles
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4.6 Half width Distribution
In case of conical rollers in contact, the contact area is in form of trapezoid. So half

width is not fixed like cylindrical contacts. The half width has same dimension with

respect to line of symmetry. The variation of half width with respect to length has

been shown in figure 4.31. It shows that, at tip the half width is minimum and it then

increases. This is the reason, that by applying normal load, the half width is minimum

at the tip, so stress component is higher at the tip. On the other hand, with increasing

of vertex angle, half width length also increases. The half width length also varies

with materials. For aluminum with low young modulus, the half width is higher. The

variation of half width has been shown from figure 4.30.1 to 4.30.4.

Half width (al vs. t
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Figure 4.30.1: Half width vs. length (vertex angle 5°)
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Figure 4.30.2: Half width vs. length for different vertex angle (Steel)
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Figure 4.30.4: Halfwidth vs. t for different materials (vertex angle 5°)

4.7 Maximum Pressure Distribution

As pressure distribution is assumed as Hertz Pressure distribution. So, it's distribution

is elliptical with a maximum pressure. The distribution of maximum pressure along

with different length has been shown from figure 4.31.1 to 4.31.4. It shows that the

maximum pressure drops with increasing of length. And from distribution of
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maximum pressure for different vertex angle we have seen that for 5° it has maximum

value and it decreases with increasing of vertex angle.
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4.8 Validation of results

To ~eritY numerical results commercially available software has been used. The

results those have been obtained from ANSYS are very close numerical solutions.

Stress components in each direction are almost same with that of numerical results.

The comparison of the results have been shown from figure 4.37 to 4.40.
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Stress in X direction vs x
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Figure 4.32.1: Comparison of stress in x direction vs x at t = 01 and vertex angle =5°
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Figure 4.32.2: Comparison of stress in x direction vs z at t = 01 and vertex angle =5°

113
'/.>".f ...',' .~.



Stress Distribution in Z direction vs. x
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Stress Distribution in Y axis vs. x
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Shear Stress Distribution vs. x
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CHAPTER FIVE

CONCLUSIONS AND FURTHER RECOMMENDATIONS

5.1 General

Contact problems are very common in mechanical engineering design. Research on

complex geometries like conical rollers in contact will offer more accurate results on

stress fields among different engineering assemblies and contact. Through this work,

by considering complex geometries rather than simple geometries, new researches on

these complex geometries will be started. In this chapter, the summary of the present

work with important conclusions have been stated. Also some recommendations have

been passed forward for future works.

5.2 Conclusions
In this article we will discuss about the summary of the overall work in concise form

as well the contribution of the present work

5.2.1 General Conclusions

• For simple geometries like sphere to sphere contact, cylinder to cylinder

contact or cylinder to plane contact, the contact area or deformed area is either

circular or rectangular based on type of contacts. But in present case, where

two conical rollers are in contact, the deformed area is trapezoid. As for a

rectangular half width is constant with respect to line of symmetric over the

entire length. But in case of a trapezoid the half width is not constant over the

entire length. So half width varies with distance (from smaJler end) and vertex

angles.

• In case of simple geometries the radius of curvature is constant through out the

analysis. But for conical rollers in contact, the radius of curvature is not

constant over the entire length. It varies with a function of vertex angle and

distance (from smaller end). For analysis of varying radius of curvature a

numerical technique has been used for iteration at each step of entire length.
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• Stress fields in the contact area have been investigated by numerical

technique. The stress components have been shown with different contact

geometries. The numerical results have also been compared with the results

rromAnsys.

5.2.2 Contribution of this thesis

The results obtained from numerical technique have been considered as the

contribution of this thesis. The numerical results have been also compared with

ANSYS and have found that results from numerical technique are more consistent

with that from ANSYS. The results are summarized below

• Stress distribution for X axis (crx) in case of normal loading has a maximum

stress ratio i.e. crx IPmax is -I. It means the stress is compressive and maximum

stress has a value same as maximum pressure. The maximum stress has been

found at contact surface i.e zJa=O and at x/a = 0 i.e. at line of symmetry. For

the case of tangential loading, the distribution. is linear. In leading edge i.e.

where rolling starts, the stress type is .compressiveand in tailing edge it's type

is tensile. The maximum stress ratio occurs at contact surface i.e. zJa= 0 and a

value of 0.6. In leading edge it has been found compressive at x/a=1 i.e. where

contact begins. In tailing edge it has been found tensile at x/a= -I i.e. where

contact ends. For .combined loading, the maximum stress has been found at

contact sumlCe i.e. zJa=Oand it has been found at x/a=0.5 distance towards the

leading edge with a value of -1.167. So in case of combined loading stress

component in X direction has a value 16.7% higher that for normal loading

and has been found 50% shifted towards the leading edge from symmetry.

• crx varies along the contact length. With increase of the distance from the apex

of the roller crx decreases. The variation of stress between apex and larger end

of the conical roller is. 13.8% i.e. at the apex of the cone the stress is 13.8%

higher than that at the large end. The stresses have been considered for

combined loading. The stresses decrease along the length due to decrease of

maximum pressure along the contact length. As stress components are related

to maximum pressure Pm•x•

• For different vertex angle crx also varies. As there were four models with four

different vertex angle. For vertex angle S°, crx has maximum value among four
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model. The value of stress components (ax) decreases with increase of vertex

angle orientation. Value of ax decreases about 5% with increase of 15° vertex

angle from 5°. But this rate of decrease is higher with high vertex angle. With

variation of 40° vertex angle stresses decreases up to 35% for same value of

load.

• Stress components in Z direction (az) for normal loading have distribution like

the pressure distribution according to Hertz theory. The stress ratio is aPmax

is -1 at z=0 and xla=O i.e. stress is compressive and it has been found at

contact surface (z=0) and axis of symmetry (xla=O). For tangential loading its

distribution is linear along with X axis. For case of tangential loading

compressive stresses have been found in the leading edge of rolling. On the

tailing edge it has been found tensile stress. The maximum value of stress ratio

for the case of tangential loading is .072 i.e. very negligible in compare with

normal loading. So, for combined loading the distribution is almost like stress

distribution for normal loading. In case of combined loading the stress ratio is

-I and it has becn found as likc as normal distribution i.e. at contact surface

and in the line of symmetry of pressure distribution.

• From variation of az vs. length of contact we can conclude that with increase.

of contact length from apex of the cone, value of maximum stress decrease. It

decreases up to 14% (almost same value as that for ax) for combined loading.

• With variation of vertex angle az also varies. For low vertex angle the az is

high. It decreases with increase of the vertex angle. For increasing 15° vertex

angle it's value decrease up to 5% and for vertex angle variation of 40° stress

decreases up to 25% in case of combined loading.

• Stress components in Y axis i.e. ay have been found from plane strain

principle. For this case combined stresses have been considered. The stress

ratio i.e. ay/Pmax has a maximum value of -0.349 and it has been fuund at

contact surface i.e. at z=0 and at a distance of xla = 0.50 towards leading edge 0 .
of the contact.

• From the variation of ay along the contact length we can conclude that like

other two components of stress, this component also decrease with increase of0
"contact length. The variation of stresses for combined loading between tip and

end of the contact is up to 14.4%.
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5.3

•

•

• For the case of contact problems, the mam cause of the initiation and
c

propagation of crack or cracks is the maximum value of shear stress. In this

present work to predict maximum shear stress Von Mises Maximum Shear

Stress principle has been used. The maximum value as well as location of that

peak value is important. From this work, dor the case of combined loading we

have found that the peak value of shear stress ratio i.e. ratio of maximum shear

stress and maximum pressure is 0.39 which is 7.6% higher than that for only

normal loading. For conical roller contact stress, the only researcher Al Zain

has found for normal loading the value of stress ratio is 0.36. The location of

the maximum shear stress has been found at x/a=O i.e the line of symmetry

and at :zJa=0.30. AI Zain has found this value of 0.375. So from this two works

it can be found that for combined loading the location of the maximum shear

stress is 20% less deep from contact surface.

• Shear stress distribution varies along contact length. With increase of contact

length value of maximum shear stress decreases. So, the apex of the cone is

very critical for crack initiation or propagation. Similarly for low vertex angle

shear stress has maximum value. Thus with low vertex angle and at the tip

shear stress has maximum value.

• The stress distribution has higher value fur steel than that for aluminum. The

reason behind this is, the half width has higher value for aluminum. it means

with application of load, the deformation in aluminum is higher that than for

steel. So stress components at the contact surface and underneath of the

contact surface are lower.

• Verification of numerical results has been done by using ANSYS. The results

obtained from ANSYS have been found consistent with that of numerical

results.

Further Recommendations

In this work, only static normal loading has been considered. But fatigue loading

and harmonic loading are sometimes seen in case of contact problems. So in

future work, loads of these types may be in consideration.

During contact there occurs some heat generation. So, contact geometries may be

changed due to this heat generation. At that time the analysis will not be linear. It
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will be non linear and hence non linear material properties should be given as

input. So consideration of heat generation will be a good point for further

research.

• In this work, very low sliding has been considered. lflarge sliding was considered

then the problem would be more difficult, because at that time there was not

simple relationship between normal and tangential loading.

• Both mating materials are same. That's why normal pressure distribution and half

width dimension has not been altered. But if two materials are different then, the

contact geometries will be changed. So, it may be another good point for further

development of this work.
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