FLOW IN A PARALLEL-PLATE CHANNEL WITH ONE MOVING WALL

A thesis submitted to the Department of Mechanical Engineering for partial fullfilment of the requirements for M.Sc. Engineering (Mechanical) degree.

by
K.B.M.Quamruzzaman

Denartment of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dacca, Bangladesh.

FLOW IN A PARALLEL-PLATE CHANNEL WITH ONE MOVING WALL
by

K.B.M.Quamruzzaman

has been approved.
November 1973

APPROVED :

This is certified that this work was done by me and
it was not submitted anywhere else for the award of any
degree or diploma or fir publication.

Supervisor

K,B,m.Q.2
Signature of the
Candidate

ACKNHOLEDGEMENTS

With deep sense of gratitude, I acknwledge the valuable guidance, advice, encouracement and instructions given by Dr. M.H.Khan, Professor and Head of the Department of Mechanical Engineering, B.U.E.T., who took constant interest in supervising this work.

My grateful acknwiledgements are also due to Dr, Wahhajuddin, Associate Professor, ME Deptt., Dr. Obaidul Islam, Professor, ME Deptt., Dr. Shamsul Alam, Professor, ME Deptt. and Mr. Ali Ashraf, Asstt. Professor, Mathematics Deptt. for their valuable helps and instructions obtained in course of this work.

I would also take this opportunity to thank Professor E.M.Snarrow, Deptt. of Mechanical Engineering, University of Minnesota, U.S.A. for kindly sending some of his papers in the relevant field.

Finally, I would also like to thank the Staff of the Machine Shop of this University who co-onerated and helped me in constructing the experimental set-up.

The problem of flow in a parallel-nate channel having one moving wall was investigated analytically by Soarrow and Yu by linearization technique. They also nerformed an experiment with "air" as the working fluid and the results found thereof showed good agrement with the analytical solutions. In this oroject, exoeriments with water and sucrose solution were carried out to further check the validity of the 1 inearization technique. The exnerimental set-up was a horizontal channel one of whose walls wasran ondless moving belt. The ratio of the moving wall velocity to the man fluif velocity was varied from 0 to 0.3 . Measurements were made for the nressure distribution along the length of the channel. The results obtained in this experiment agraed well with the analytical solutions and as such also combared favourably with the exprimental results of Sparrow. It is therefore establishod that the original assumbtions in linearizing the inertia terms of the momentum equation are justified and the analytical solution worked out thereof for this type of flow is valid and can be applied to fluids in general.

LISTCF SYMBOLS

CHAPTER I

INTRODUCTION

This thesis work was an attempt to investigate some aspects of laminar flow develnoment in a narallel-plate channel having one of its walls minving. This type of flow is gonerally knom as "Couette flow" and it is the result of sunerosition of simole shear flow over parallel flow between two flat walls. For this type of flow with a constant pressure gradient in the axial direction, an exact solution of the Navier Stoke's equation can be found giving the transverse velocity profile. The equation for the axial velocity "u" comes out in terms of the constant nressure gradient "dp/Ax", the transverse co-ordinate "y", the wall velocity " u_{W} " and other fluid characteristics.

The oressure gradient in a channel flow, however, does not remain constant until the velocity mrafile is fully developed. The velocity profile, which is rectangular at the entrance, undergoes changes in subsequent sections and after certain distance, attains a parabolic shape. The flow then becomes "fully developed", and the velocity orofile remains unchanged thenceforth for the rest'of the length of the channel.

The qualitativ? behaviour of the flow in this "hydmdynamic entrance region" of ducts and channels can be explained as follows :

Fluid enters the duct with a velocity orofile that is determined By the unstream conditions. At some distance downsteeam from the inlet section, the fluid velocity nerr the walls has decreased, and to maintain continuity, the velocity in the central portion has increased. After certain section downstream, the fluid velocity no longer change with axial distance and the flow hes become fully develoned. The develonment region or the entrance region encomassas that partion of the duct length which is required for attainment of fully developed conditions. The axial pressure gradient is bighar in the entrance region than at duct sections where the flow is develoned because of the following offects :
a) The increase in momentum of the fluid as the velocity distribution becomes less uniform. It may be mentioned that the rati) of momentum for narabalic orafile to that for rectangular orfile (for equal flow rates) is 1.2.
b) The higher wall shear caused by higher transverse velocity gradients.

Investigations have been carried nut on develooing flows or in other words on flow in the entrance region of ducts of circular crnsssection and ducts with stationery walls. Investigation of flow beyond - the ontrance region i.e. in the develoned r gion dates back to as early as the times of G.Hagen (1) * and J.Poisspuille (2) who in 1839 and 1841 resnectively, seozrately worked out equations for volume flow-rates for laminar flow through circular nioes. Literature on flow-develorm nt

[^0]in the entrance region of tubes and ducts are oresented later in this thesis.

In this thesis, h:wover, flow conditions both in the entrance as well as in the develoned regions in a narallel-nlate channel having one of its walls moving garaliel to th: flow direction were studied. An analytical silution of this narticular problom was worked out by Professor 3.M.Soarrm and H. A.Yu (3) employing a linearized model of the momentum equation.

In the oresent work, the aforesaid analytical solution for axial pressure distribution has been verified in an exerinental set-un with such dimensione and design so as to facilitate the use of different liquids as the working substance.

The objective of this thesis work was exnerimental investigation of the analytical s?lution given by Snarrow and Yu for flow in a narallel - Dlate channel having on? moving wall. The working substances used ware water ant sucrose solution. Thus results if experimonts with three rifferent fluids, with water and sucrose solutinn obtained from this nroject and with air found hy Sparmw and Yu were at hand to study the effect of such fluid pronerties as viscosity ans donsity on the results.

The exnerimonts covered the range ? u_{w} / \bar{u} from 0 to .3 and the Reynol't's number range (based on channel gan) from about 780 to 2030. Static oressure measurements were compared with the nressure-dra? oredictions obtained from the analysis. As will be shown later, very gont agremment was found betwon them, thereby lending suport to the analytical solution.

OHAPTAR IT

REVIEW OF LITERATURE

The study of fluid flow in ducts in th: devel oed region dates back th as early as 1839. G.Hagen (1) in 1839 and J. Poisceuille in 1841, indevendently work out equations for the vilame flow-rates for laminar flow through circular nines. The equation, known as Hagen-Poisseuille equation of laminar flow through a nion, expresses the vilume flow-rete Q in terms of the bine diameter, the oressure gratient "on/dx" and the fluid viscosity "M". Both Hagen and Poissouille arrived at the equation by making the fore balance in the axial direction on a co-axial fluid cylinder in a circular pioe. The equation can also be obtained from the Navier Stoke's equation.

Flow in the inlet lengths of ducts was studied extensively and different anorachas were made. To orovide nerspective to the oresent investigation, a brief discussion of the different approaches to the entrance region nrablem is given.

One method of analysis was to anoly the integral representation of the equation of motion and of continuity to the boundory layers which develoned along the fuct walls. The velocity orofile was written in a polymomial form as in the standard Karman-Pohlhausen method. The initial
anmlication of th's aporoach to tubes and channels was due to Shiller(4) with later modifications and imorovements fue to Camobell and Slattery(5).

The second apornach subdivided the entrance region int, two zones. In the zone near the tube entrance, a biundsry layer model was pronosed. In the next zone beyond the entrance region, solutions were obtainet as nerturiations of the fully develoned velocity distribution. This later solution was first nravosid by Boussinesq (6). Schlicting (7) in 1934 combinod these two solutions th get flow devel oment throughout the entrance region. First, he made the integratinn from the inlet saction in the downstream direction so that the boundary layer growth was calculated for an accelerated external stream. Then the integration was done in the reverse direction from a section in the fully developed zone, analysing the progressive deviation of the velocity profile from its asymptotic distribution of Poisseuille flow. Having obtained both solutions, in the form of series expansions, sufficient number of terms in beth the serias were retained and combined for a section where both the series were still anplicable. In this way expression for flow for the whole inlet length was obtained.

The same "oatching un" method of the two solutions were later amplied by Atkinson and Goldstein(8) for the circular tube.

A third and altogether diffarent annrach of the problom of flow develinment was achieved by linearizing the inertia terms of the equations governing the flow development. With this, a boundary-layer
model need not be postulated. Rather, velocity exoressions which are continunus over the cross-section and aling the length all the way from the duct entrance to the fully develoned reginn, were obtained.

In a paner, "Flow develoment in the hydrodynamic entrance region حf tubes and ducts ${ }^{17}$ by Snarrow, Lin and Lundoren(9), an analysis of the develooing flow in ducts of arbitrary cross-section was marle using the linearizatinn techniqua.

The solution for the velocity field was first found out. With the solution for the velocity field at hand, expression for prossure drop was then found by integrating the momentum equation. Then from the generalized equations, results frr two ducts namely c̣ircular tube and narallel-plate channel, were derived.

Experimental verification of the above analytical model was carried out by Sperrow, Hixon and Shavit and was reported in referencé (10). The axpriments were norformed for rectangular fucts of two asnect ratios, 5:1 and 2:1 with air as the working fluid. Velocity profiles at a large number of stations in the entrance region were measured across the duct cross-section. In adgition, measurements for the axial pressure distribution were also made. The lengths of the hydrodynamic entrance region ware theninferred from the velocity and oressure data.

In another subsequent naper by Soarrow and Flemming (11), a general method of analysis was presented for determining the developing
velocity field and pressure drop for laminar flow in the entrance region of ducts having arbitrary cross~sections. In addition, the general solution was apolied te rectangular and triangular ducts and velocity field and oressure dron results were oresented and cmpared with available informations. Finally analytical results for the develoment of the velncity and nressure fields for several duct,s were combiled together and general trends wers indicated.

In the paner "Flow develnment in a parallel-nlate channel 'aving a longitutinally moving wall" by Soarrow and Yu (3), the above mentioned linearization method was extended to generalize the analytical solution for the developing velocity field in the presence of a moving wall. An exneriment was nerformod in a channel, one of whose walls was the surface of a rotating cylinder functinning as the moving wall. Air was the workingfluid. Measurements were made for the pressure distribution along the length $n f$ th channel. The experimental results found thereof lent good suport to the analytical model.

In this work, the analytical solution given by Solarrow and $Y u$ was used. The salient features of the analytical solution are given in Chapter III.

THEORY

Fig. 1 Schematic of a paralle1-plate channel

Let us consider flow through the parallel-plate channel shown in fig. 1. Distances " x " are measured along the axis of the channel from a section $\mathrm{x}=0$, where the velocity profile is known. Transverse distances " y " are measured from the axis of the channel, the total width of the channel being " 2 h ". Lower wall moves with a velocity u_{w}.

The case being that of a steady, incompressible, 2-dimensional motion, the differential equations governing the flow are :

$$
\begin{gather*}
u \frac{\partial u}{\partial z}+\frac{v u}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{d x}+\lambda \frac{\partial^{2} u}{\partial y^{2}} \tag{1}\\
\text { and } \quad \frac{\partial u}{\partial x}+\frac{\partial y}{\partial y}=0
\end{gather*}
$$

Professor Sparrow and coworker used a linearized model to solve for the flow development in this particular case. Thus equation (1) in the linearized form was rewritten as :

$$
\begin{equation*}
\epsilon(x) \bar{u} \frac{\partial u}{\partial x}=\Lambda(x)+\nu \frac{\partial^{2} u}{\partial y^{2}} \tag{3}
\end{equation*}
$$

Where $f(x)$ is a function weighting the mean velocity " $\bar{u} "$ to compensate for the velocity component " u " $n(x)$ is another function accounting for the pressure gradieant and the residual of the inertia terms.

Now combining (2) and (3) we have :

$$
\begin{equation*}
-\epsilon(x) \bar{u} \frac{\partial u}{\partial y}=\Lambda(x)+\nu \frac{\partial^{2} u}{\partial y^{2}} \tag{4}
\end{equation*}
$$

Integration of (4) within the limits $-h \leqslant y \leqslant h$ gives :

$$
\left.\left.-\in(x) \bar{u} \cdot v]_{y=-h}^{y=+h}=\Lambda(x) y\right]_{-h}^{+h}+\nu \frac{\partial u}{\partial y}\right]_{-h}^{+h}
$$

six, $\quad \wedge(x)=-\frac{\nu}{2 h}\left[\left(\frac{\partial u}{\partial y}\right)_{h}-\left(\frac{\partial u}{\partial y}\right)_{-h}\right]$
[v is zero on the walls]

A stretched axial coordinate x^{*} is now introduced with the definition:

$$
\begin{equation*}
d x=\epsilon(x) d x^{*} \tag{6}
\end{equation*}
$$

Also the following dimensionless variables are introduced : $\omega=\frac{u}{u} ; \eta=\frac{y}{h} ; \quad x=\frac{x \nu}{\bar{u}} \quad$ h h^{2} and $x^{*}=\frac{x^{*} \nu}{\bar{u} h^{2}}$

Equations (4) and (5) gives :

$$
\begin{equation*}
\epsilon(x) \bar{u} \frac{\partial u}{\partial x}=-\frac{\nu}{2 h}\left[\left(\frac{\partial u}{\partial y}\right)_{h}-\left(\frac{\partial u}{\partial y}\right)_{-h}\right]+\nu \frac{\partial^{2} u}{\partial y^{2}} \tag{7}
\end{equation*}
$$

Using the dimensionless variables as stated above, Equation (7) reduces to (shown in Appendix III (1)) :

$$
\begin{equation*}
\frac{\partial \omega}{\partial x^{*}}+\frac{1}{2}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{+1}-\left(\frac{\partial \omega}{\partial r_{l}}\right)_{-1}\right]=\frac{\partial^{2} \omega}{\partial \eta^{2}} \tag{8}
\end{equation*}
$$

Equation (8) is a linear equation governing the flow development in terms of the dimensionless variables explained earlier. It provides a means for determining the velocity distribution as a function of the stretched axial coordinate x^{*} and the transverse coordinate η.

Let us seek the solution of equation (8) in the form of :

$$
\begin{equation*}
\omega\left(x^{*}, r\right)=\omega_{f d}(n)+\omega^{*}\left(x^{*}, n\right) \tag{9}
\end{equation*}
$$

where $w_{f d}$ is the fully developed velocity distribution, independent of the axial coordinate and a function of the transverse coordinate only. ω^{*} is a difference velocity which embodies the developmental component of the velocity field.

Now, en. (8) with the term $\frac{\partial \omega}{\partial x^{*}}$ deleted is an exact representation of momentum equation for fully developed flow. Hence the solution of the eau.,

$$
\begin{equation*}
\frac{\partial^{2} \omega}{\partial \eta^{2}}=\frac{1}{z}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \tag{10}
\end{equation*}
$$

yields $\omega_{f e d}$

Integrating eqn. (10) and using the boundary condition $\omega=0$ at $\eta=+1$ one gets (App. III (2)) :
$\omega=\frac{1}{4}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \eta^{2}+\frac{q}{2}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \eta$

$$
\begin{equation*}
-\left[\frac{3}{4}\left(\frac{\partial \omega}{\partial n}\right)_{1}+\frac{1}{4}\left(\frac{\partial \omega}{\partial n}\right)_{-1}\right] \tag{11}
\end{equation*}
$$

Condition $\omega=\omega_{i s}$ at $n=-1$ gives:

$$
\begin{equation*}
\omega_{\omega \omega}=-\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \tag{12}
\end{equation*}
$$

Again writing expression for \bar{u} we have the relation :

$$
\bar{u}=\frac{1}{2 h} \int_{-h}^{+h} u d y
$$

fig. 2 velocity profile in corvette flow.
or, $\frac{1}{2} \int_{-1}^{+1} \omega d \eta=1$
Eqns. (11) + (13) gives (App- III (3)) :

$$
\begin{equation*}
2\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}=-3 \tag{14}
\end{equation*}
$$

combining (12) $\&(14)$ one gets:

$$
\begin{aligned}
& \left(\frac{\partial \omega}{\partial \eta}\right)_{1}=\omega \omega-3-15(a)+ \\
& \left(\frac{\partial \omega}{\partial \eta}\right)_{-1}=-2 \omega_{\omega}+3
\end{aligned}
$$

Ens. (15(a)), (15(b)) with eqn.(11) gives solution for $\omega_{\text {fed }}$ as

$$
\begin{equation*}
\omega_{f d}=\frac{3}{4}\left(\omega_{\omega}-2\right) \eta^{2}+\frac{1}{2} \omega_{\omega} \eta+\frac{3}{2}-\frac{1}{4} \omega_{\omega} \tag{16}
\end{equation*}
$$

The difference velocity fr. $\omega^{\text {th }}$ obeys eqn. (8). A seperable solution for it is sought in the form:

$$
\begin{equation*}
\omega^{*}\left(x^{*}, \eta\right)=f\left(x^{*}\right) g(\eta) \tag{17}
\end{equation*}
$$

Substituting in eq. (8) one gets:

$$
\begin{align*}
& f^{\prime}+\lambda^{2} f=0 \quad(18) \text { and } \tag{18}\\
& g^{\prime \prime}+\lambda^{2} g=\frac{1}{2}\left[g^{\prime}(1)-g^{\prime}(-1)\right] \tag{19}
\end{align*}
$$

- Eqn. (18) has the solution:

$$
f=c_{1} e^{-x^{2} x^{*}} \quad \cdots(20)
$$

Now, at $\eta= \pm 1$ we have $\omega^{*}=0$
Therefore, $g(-1)=g(1)=0$

This implies that g equation (en. 19) and its boundary conditions constitute an eigen-value problem.

General solution of eqn. 19 is (App. III (4)) :

$$
\begin{equation*}
g=A \cos \lambda \eta+B \sin \lambda \eta+\frac{1}{2 \lambda^{2}}\left[g^{\prime}(1)-g^{\prime}(-1)\right] . \tag{21}
\end{equation*}
$$

Differentiating eqn. 21 and arranging one gets:

$$
g^{\prime}(1)-g^{\prime}(-1)=-2 A \lambda \sin \lambda
$$

Son. 21 can now be reduced to :

$$
g=B \sin \lambda \eta+A\left[\cos \lambda \eta-\frac{\sin \lambda}{\lambda}\right] \ldots(22)
$$

Boundary conditions $g(1)=g(-1)=0$ gives :

$$
2 B \sin \lambda=0, \quad \therefore \lambda=n r e, n=1,2,3 \ldots
$$

$$
\text { and } 2 A\left[\cos \lambda-\frac{\sin \lambda}{\lambda}\right]=0 \text { whence, }-(23)
$$

$$
\begin{equation*}
\tan \lambda=\lambda \cdot \text { implying that } \lambda \rightarrow 0 \tag{24}
\end{equation*}
$$

Using eqn. 24 we can write eqn. 22 as :

$$
\begin{equation*}
g=B \sin \lambda \eta+A[\cos \lambda \eta-\cos \lambda] \tag{25}
\end{equation*}
$$

The flow model dies not possess centre-1 ind symmetry. Therefore consideration must be given to both the symmetric and the antisymmetric eigen-functions. From eqn. 25 it is obvious that the antisymmetric eigen-functions and eigen -values are :

$$
G_{n}=\sin n \pi \eta, \quad \lambda_{n}=n \pi \quad(n=1,2,3, \ldots .(26)
$$

Th. symmetric eigen-functions and the corresponding eigen-values include the cosine terms. After rearraging (App. III (5)) and multiplying by $\frac{1}{\alpha_{m}}$ in order to normalize, this can be written as :

$$
\begin{aligned}
& g_{m}=\frac{1}{\alpha_{m}}\left[1-\frac{c_{0 \leq} \alpha_{m} 2}{c_{0} \leq \alpha_{m}}\right], \begin{array}{l}
\lambda_{m}
\end{array}=\alpha_{m} \text { and } \\
& \lambda_{m}=\tan \lambda_{m} \\
& {[m=1,2,3 \ldots]-(27) }
\end{aligned}
$$

Both sets of eigen-functions are normalized so that (App. III (6)(a) and (b)),

$$
\begin{equation*}
\int_{-1}^{+1} g_{m}^{2} d \eta=\int_{-1}^{+1} G_{n}^{2} d \eta=1 \tag{a}
\end{equation*}
$$

Also it may be readily verified that the eigen-functions possess the following orthogonality oronarties (App. III(7)(a)).

$$
\begin{aligned}
& \quad \int_{-1}^{+1} g_{m} G_{n} d \eta=0 \quad \text { for all values of } m \& n \quad \ldots .(28(b)) . \\
& \text { and }(\operatorname{Anp} . \operatorname{III}(7)(b) \&(c)),
\end{aligned}
$$

$$
\int_{-1}^{1} g_{m} g_{i} d r_{2}=\int_{-1}^{1} G_{n} G_{j} d \eta=0 \quad m \neq i, n \neq j \ldots(28(c))
$$

The general solution for ω^{*} combining the results of (20), (26) and (27) is,

$$
\begin{align*}
\omega^{*}\left(x^{*}, n\right) & =\sum_{m=1}^{\infty} C_{m} g_{m}(n) e^{-\alpha_{m}^{2} x^{*}} \\
& +\sum_{n=1}^{\infty} D_{r_{2}} G_{n}(n) e^{-n^{2} n^{2} x^{*}} \ldots \tag{29}
\end{align*}
$$

Let us now assume that the velocity profile at $x=0$ is know and is,

$$
u=u_{0}(y) \quad \text { or } \quad \omega=\omega_{0}(\eta) \text { at } x^{*}=0
$$

With this information, the coefficients C_{m} and D_{n} can now be. evaluated as follows :

Using eqns (9), (16) and (29) we have,

$$
\begin{equation*}
\omega_{0}(\eta)=\omega_{f d}(\eta)+\sum_{m=1}^{\infty} C_{m} g_{m}(\eta)+\sum_{n=1}^{\infty} D_{n} G_{m}(\eta) \tag{30}
\end{equation*}
$$

Multiplying eqn. (30) by $g_{i}(\underline{n})$ and integrating ovar the range
$-1 \leqslant \eta \leqslant 1$ and upan utilising the orthogonality properties (28(a)), (28(b)) and (28(c)) and the expression for $\omega_{\text {fd }}$ from eqn. (16) we finc that (App.III(8)(0)),
$c_{m}=\int_{-1}^{+1} \frac{\omega_{0}(\eta)}{\alpha_{m}} d \eta-\frac{2}{\alpha_{m}}+\frac{1}{\alpha_{m}}\left[\omega_{\omega}-\int_{-1}^{+1} \omega_{0}(\eta) \frac{\cos \alpha_{m} \eta}{\cos \alpha_{m}} d \eta\right] \ldots$ (31(a); Similarly D_{n} is found by multiplying eqn. (30) by $G_{j}(\eta)$ and integrating (Anp. $\operatorname{III}(8)(b))$,

$$
\begin{equation*}
D_{n}=-\frac{(-1)^{n}}{n \pi} \omega_{w}+\int_{-1}^{+1} \omega_{0}(\eta) \sin n \pi \eta d \eta \tag{b}
\end{equation*}
$$

The complete solution for the velocity field may now be written as :

$$
\begin{array}{r}
\omega=\frac{3}{4}\left(\omega_{\omega}-2\right) \eta^{2}-\frac{1}{2} \omega_{\omega} \eta+\frac{3}{2}-\frac{1}{4} \omega_{\omega}+\sum_{m=1}^{\alpha} \frac{c_{m}}{\alpha_{m}}\left[1-\frac{\cos \alpha_{m} \eta}{\cos \alpha_{m}}\right] \\
\quad \times e^{-\alpha_{m}^{2} x^{*}}+\sum_{n=1}^{\infty} D_{n} \sin n \pi \eta e^{-n^{2} \pi^{2} x^{*}} \quad \ldots \ldots \ldots \text { (32) } \tag{32}
\end{array}
$$

Where the co-2fficients C_{m} and D_{n} are given by
eqns. (31(a)) and (31(b)).

Expression for pressuré distribution :

To find the pressure distribution along the length of the duct, we use the momentum eqn. First the inertia terms in eqn. (1) are re-phrased as :

$$
\frac{\partial}{\partial x}\left(u^{2}\right)+\frac{\partial}{\partial y}(u v)
$$

Then the thus modified eqn.(1) is inteorated across the

$$
\begin{align*}
& \text { section, giving (App III (9)), } \\
& -\frac{1}{\rho_{w^{2}}^{2}} \frac{d p}{d x}=\frac{1}{2} \frac{d}{d x} \int_{-1}^{1} \omega^{2} d^{2}-\frac{1}{2}\left[\left(\frac{\partial w}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \tag{33}
\end{align*}
$$

$$
\begin{equation*}
o r,-\frac{1}{\epsilon \rho r^{2}} \frac{d p}{d x^{*}}=\frac{1}{2 \epsilon} \frac{d}{d x^{*}} \int_{-1}^{1} \omega^{2} d \eta-\frac{1}{2}\left[\left(\frac{\partial w}{\partial \eta}\right)_{1}-\left(\frac{\partial w}{\partial \eta}\right)_{-i}\right] \tag{34}
\end{equation*}
$$

Integration of this eqn. between the sections $x=0$ and $x=x\left[\right.$ ie. $p=p_{0}$ at $x^{*}=0$ \& $p=p$ at $\left.x^{*}=x^{*}\right]$ gives (AFP. III (10)),

Equation (35) gives an expression for pressure difference between the entrance section and any downstream section. The term $\left(P_{0}-P_{f d} / \frac{1}{2} \tilde{u}^{2}\right.$ represents the pressure drop that would be sustained by the flow in it were fully developed right from the duct inlet. The quantity $k(x)$ represents the incremental pressure drop due to flow development.

To facilitate the evaluation of the pressure from eqn. (35), the factor $k(x)$ is expressed in terms of the velocity solution as given in eqn. (32). Thus after substitution and indicated oneration,

$$
\begin{align*}
& \frac{F_{0}-p}{\frac{1}{2} \operatorname{pin}^{2}}=3(z-\omega \omega) x+\int_{-1}^{1} \omega^{2} d \eta-\int_{-1}^{1} \operatorname{sen}^{2} A \eta \\
& \rightarrow \int_{0}^{x^{*}}\left[\left(\frac{\partial \omega^{*}}{\partial_{1}}\right)_{1}-\left(\frac{\partial \omega^{*}}{\partial \eta}\right)_{-1}\right] \in d x^{*} \\
& \text { or, we in write: } \\
& \frac{p_{0}-p}{\frac{1}{2} p^{u^{2}}}=\frac{\left(p_{0}-p\right)_{f d}}{\frac{1}{2} p_{u}^{-2}}+K(x) \tag{35}\\
& \text { where } \frac{\left(p_{0}-p\right)_{t-1}}{\frac{1}{2}-n^{2}}=3\left(z-\omega_{\omega}\right) \frac{x \nu}{\sin ^{2}} \text { and } \\
& K(x)=\int_{-1}^{1} \omega^{2} d \eta-\int_{-1}^{1} \omega_{0}^{2} d \eta-\int_{0}^{x^{*}}\left[\left(\frac{\partial \cdot \omega^{*}}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega^{*}}{\partial \eta}\right)_{-1}\right] \epsilon d x^{*}
\end{align*}
$$

$$
\begin{aligned}
& k(x)= \frac{4}{15} \omega_{w}^{2}-\frac{2}{5} \omega_{n}+\frac{12}{5}+2(2-\omega \omega) \sum_{m=1}^{\infty}\left(c_{m} / \alpha_{m}\right) e^{-\alpha_{m}^{2} x^{*}} \\
&+2 \omega_{\omega} \sum_{n=1}^{\alpha} \frac{(-1)^{n}}{m t} D_{n} e^{-n^{2} t^{2} x^{*}}+\sum_{m=1}^{\infty} c_{m}^{2} e^{-2 \alpha_{m}^{2} x^{*}} \\
&+\sum_{n=1}^{\infty} D_{n}^{2} e^{-2 n^{2} t^{2} x^{*}}-\int_{-1}^{1} \omega_{2}^{2} d \eta-2 \int_{0}^{\sum_{m=1}^{*} c_{m} \alpha_{m} e^{-\alpha_{m}^{2} x^{*}}} \\
& x \in d x^{*} \\
&(36)
\end{aligned}
$$

In their paper, Prof. Sparrow and H.S.Yu evaluated $K(x)$ assuming $\omega_{0}(\eta)=1$ for a wide range of operating conditions and have presented the results in graphical form. For the calculations of the incremental pressure drop $K(x)$ in the development region in our case, we will use this graph.

The pressure gradient in the fully developed region can also be deduced from the basic equations for Couette flow.

The pressure gradient remaining constant, the equation of motion in this case can be written as :

$$
M \frac{d^{2} u}{d y^{2}}=\frac{d P}{d x}=\text { constant } \ldots . . \text { (37) }
$$

Integration of this equation with the boundary conditions,

$$
y=h, u=0 \text { and } y=-h, u=u_{w} \text { yields, }
$$

$$
M(u)=\frac{d p}{d x} \frac{y^{2}}{2}-\frac{M u_{w}}{2 h} y+\frac{1}{2}\left[M u_{w}-\frac{d p}{d x} h^{2}\right]
$$

Writing the expression for \mathbf{u}.

$$
\bar{u}=\frac{1}{2 h} \int_{-h}^{+h} u d y
$$

and putting the expression for u from eqn. (38) one obtains,

$$
\frac{d p}{d x}=\frac{3 M}{2 h^{2}}\left(u_{w}-2 \bar{u}\right)
$$

It is interesting to note that eqn.(39) when converted into an equation of dimensionless quantities becomes,

$$
\frac{\left(p_{0}-p\right)_{f d}}{\frac{1}{2} p_{u^{2}}}=3\left(2-\omega_{\omega}\right) \frac{x \nu}{\bar{u} h^{2}}
$$

which is the same equation for dimensionless pressure and axial distance for fully developed flow as derived earlier in egg. (35) by linearization technique.

CHAPTER IV

THE EXPERIMEMTS

The experimental set-up : A general visw of the exnerimental set-up is given in Plate No. 1. The set-up consisted meinly of a marallel-nlate channel, a means of driving a belt which served as the moving wall and a bank of vertical glass tubes for measuring the static pressures. A schematic diagram of the test section is shown in Fig. 2.

The best section consisted of a horizontal parallel-blate channel made of two teak wood 21 ates with 0.122 inch gad and 4.01 inches width. Along the lower wall of the channel moved an endless polythene-sheat belt, functioning as the moving wall. The upoer plate had the diminsions of $2 \frac{1}{2}^{\prime \prime} \times 5^{\prime \prime} \times \frac{3}{4}^{\prime \prime}$, those of the lower plate being $20 \frac{1_{4}^{\prime \prime}}{}{ }^{\prime \prime} \times 5^{\prime \prime} \times \frac{3^{\prime \prime}}{4}$. The surfaces of the wooden olates were first finished in milling machine and were then wax-palished so that the working liquids may mot sak them.

Along the centre 1 ine of the upper plate, there were drilled, 12 oressure tamings. The first tan was at a distance $\neg 1$ inch from the liquid inl the the rest being spaced $1 \frac{1}{2}$ inches anart with a margin of 3 inches from th. last tap to the exit of the channel.

Each pressure tap, as shown in Fig. 3. consisted of two $3 / 64$ inch
21.

Plate M. 3 Mmoneter beak duriag
experiments.

Fig. 2 Schematic diagram

Fig. $3 \frac{\text { Sectional view of }}{\text { a pressure tap }}$ a pressure tap
drills, connected to a brass bush which in turn was connected with the manometer bank. Two drills for each pressure tap, placed at same axial distance, were used to average out any fluctuation in the pressure readings.

The $3 / 64$ inch dia. arills were found th be optimum for the press. tans. These were chosen after experimenting in a chann?1 with similar gap. The smaller size lacked quick resoonse to change in oressures while the larger size drills show? fluctuatinns in roadings.

The liquid inlet was through a $3 / 8$ inch dia. tap, the contre of which was at a distance of $7 / 8$ inch from the leading edge \cap f the channel. The liquid firstentered a casing, formed by a 1 mm thick foil, which was screwed to the unner nlate on three sides. This casing gradually converged upt the leading edge of the channel, where an extension of the fail with a thin layer of songe attached to its lower side, nressed on the moving polythene belt. This arrangement allowed the belt to move freely but made the entrance side of the channel leak-pronf.

As mentioned earlier, the function of the moving wall was nerformed by an endless miythene-sheet belt, 3.9 inches in width. The belt was. made by glueing the two ends of a polythene sheet, 3.9 inches wide and If requisite length, the 1 an being 9.3 inches. The tw ends ware made thinner so that after they were lanped, the thickness did not vary. anneciably from that of the single sheet.

The belt was driven by a motor ($1 / 3 \mathrm{hp} ; 1425 \mathrm{rom}$). The speed was reduced 4 times in the first step by pulleys and a V-belt. Then 24 timas retuction wes notained through a warm gear drive. Step
pullays were used for the final Arive. In the step pulleys, three steps were proviled to give belt spoeds of .1834 fps, .225 fos and .283 fos. While being driven the belt glijed diong the surface of the lower flate. Paralle1 groves were cut cross-wise on the surface of the lower olat: (as shown in Plate No. 2) th avid film shar. With the surface of the lewer piate being plane, the moving belt sheared the film of the working liquid in betwen the low olate and the belt: The film thicknos boing very small, and the surface area of the 1 ower plate being large, the arear force arising out of this film shear become c nsiterable. With the working spes of the belt, this shear force held back the belt and caused it to slio aver the pulleys. The gmoves, cut along the entire length of the lower plate, in effect," cut this film of the working liquid and thereby the adverse shear force was eliminated, allowing the belt to move wer the lower plate smothly without slid.

The whole set-up was installed in a $30^{\prime \prime} \times 20^{\prime \prime}$ wooden board having rubber paddings to damp rut any vibrational effect arising from the retating nerts.

Th: experimental procedure :
In all, 13 sets of readings were taken, 9 with water and 4 with sucrose solution. With weter, three sets of data were taken for zero wall sper while for each wall speeds of .1834 fos, .225 fos and .283 fps, two sets if tata ware recorded. The three observations for zero wall sped were with arbitrary flow-rates. But while taking readings with the wall in motion, the flow -rates, which ware pre-calculated
so that the aramater $u_{v /} / \bar{u}$ had the rund values of $.1, .2, .3$, were attained by trial. Once the fl ow-rate.was so adjusted that $\mathrm{u}_{\mathrm{w}} / \overline{\mathrm{u}}$ reached its value within a toleranco of $\pm .002$, readings for prescure distribution wore taken from the manometer bank.

Flow-rates wre measured ay collecting the liquid at the exit of the channel. Care was teken to arrest any liduid escaning the collecting tray either by droning through the siles or flowing to the rear by adhering t. the meving belt.

The lap-jnint of the moving belt, whil? inside the channel, disturbed the flow ant onsequently the prassure radings were also Aisturbed. Data for pressures were therefore read while the radings in the manomet: bank were steady during the interval the foint came out of the exit and again entered the shannel.

Before taking rentings, the manmeter tubis were flushed to ansure that there was no air-bubble inside tham.

Thile experimenting with water, tap wher from overhe denk was. diroctly introduced in the entrance section casing. But with sucrose solution, the whole set-un was placed in conjunction with a byrandic bench and the same liquid wes recirculated by a nump.

Onerating tomperatures during experiments with water was $81^{\circ} \mathrm{F}$ which orrasonded the ambent temeratura et that time. Whils experimanting with sucrose solution, the temnarature of the liquid was kent at $65^{\circ} \mathrm{F}$ so that the viscosity was more and differed onsinarably from that of water at $81^{\circ} \mathrm{F}$.
CHAPTER V

RESUTS AMD DISCISSIOT

The experimental data shect, the analytical results in tabular form and a samole calculetion for observation fo. 2-2 have ben shown in the Apnendix in sections ($V-2$), $(V-3)$ and (V-3) raspectively.

Discussion on exit errór correction :

In finding the pressures at different sectins, the exnerimental nressure at tap 10 was taken as "p," or in other wards, axial distance was measured from the section where top No. 2 was. This section corresponded the lealing edge of the channel, that is, the channel converged at this secti in to its n ${ }_{n}^{r}$ mal width, $2 h=0.122$ inch.

As indicated in Chapter III, $x=0$ should be reckoned from a section where the relation $u_{0} / \overline{\mathrm{u}}=1$ bolds. In the set-up of this project, liquid was forced through a passage of larger gap which gradually converged at the leading edge to tha normal gap of the channel. This gemetry ensured the flow th attain a nearly rectangular velocity orfile at the leading edge. Hence for the calculations, at first it was assumed that $u_{0} / \bar{u}=1$ holis at the leading edge. However, depending on the channel geometry and flow onditions, the inlet section ($x=0$) may not exactiy coincide with the leading edge. To eliminete any error due to this discrepency, the informations $p_{e x}$ (nressure at
the exit) $=0$, were utilised. Thus for each set of reading, D was calculated. The amount was then subtracted or adjer according as it was positive or negotive, from all the calculated pressure readings. Analytical pressure fir each set of data was thus foind.

Discussion on results :

The experimental results of this oroject and also oxoerimintal date kaken from Sparrow's exneriments with air have been arranged and shown in graphical forms in figures 4 to 15.

Figures 4 to 7 show the distribution of prescure along the channal axis for different values of ω_{ω} and $\mathrm{N}_{\text {Re }}$ for water. Fig. 8 is a similar olot for sucrose solution. The silid 1 ines peoresent the analytical nressure distribution. It is sen that as Me increases, the oressure gradient with respect to x increases for a fixed value of ω_{ω}.

It is evident from these graphs, that the agreement between the analytical results ant the exnerimental values is very good and the deviations are mastly within the limits of accuracy of the experimental fracilities.

The accuracy of the exoerimental results was 1 imited mainly by the minimum interval unta which the oressure could be read in the manomiter tubes. The minimum graduation in the manometer was 0.1 inch and readings unto 0.05 inch were taken by eye estimation. Thus approximately $\pm .025$ inch (of the workingliquid) was the limit
of accuracy of the set-up for pressure readings. This meant, for a small pressure reading of .2 inch, as much as 12.5% error was possible.

In site of this, manometer bank showing the piezometric heads at different tap sections was used for the following considerations :
i) The readings for the oressures for a darticular set of data were to be taken within a short interval of time to avoid other possible errors such as fluctuation of the head of the inlet liquid.
ii) The pressure profile could be directly seen in the manometer bank. In Fig. 9 analytical pressure distribution along the dhannel axis for same and u_{w} are plotted for water and sucrase solution to see the effect of viscosity of the oressure distribution. Sucrose solution with higher viscosity has a stepor reessure gradient than that of water $\left(\omega_{\omega}=.2 ; u_{w}=.225 \mathrm{frs}\right)$. This is expected from Eqn. 39 in Chanter III, since all other terms remaining constant, $d p / d x$ must increase with increase of M.

Fig. 10 is the nlot of the analytical pressure vs. axial distance at same $H_{R e}$ and different $\omega_{\omega}^{\prime} s$. It is sean that at seme $N_{R e}$, the pressure gradient may be different denending on the value of ω_{ω}. Pressure gradient at zero wall spord is steener than that when the wall is in motion at same Reynold's number.

Fig. 11 is the nlot of exnerimental values of $\frac{p_{0}-j}{\frac{1}{2} p_{\bar{u}}{ }^{2}}$ vs $\frac{x \nu}{\bar{u} h^{2}}$ at $\omega_{N}=0$ for Aifferent $N_{R e}$. Data for water and sucrose solution from this whrk and that for air from the experiments of Sparrow (3) are used in this olot.

The exnerimental plots clearly shows good agreement with the
analytical values. It is also clear from this exneriment that this not in timensionless comordinates holds for any fluid as the working substance.

Figs. 12 to 14 are olots of $\frac{1-m}{\frac{1}{2} \operatorname{pin}^{2}}$ vs. $\frac{2 y}{4 h^{2}}$ at different values of ω_{u} with data teken from this experiment with wator and sucrose solution. The agreement of the exnerimental values with analysis at other values of $\omega_{m}(.1, .2$ and .3$)$ is domanstreted in these granhs.

Fig. 15 compores the oresent exnerimental reskits with those of Sparrow. The comnarison is quite favourable although all values of wiw could, not be covered in the oresent work. $\frac{P_{0}-p}{\frac{1}{2} p_{1} 2}$ (through a range of 0-. 4) can be read from this $-1 n t$ for different vilus of $\frac{z \nu}{\left\langle h^{2}\right.}$ (through a range nf 0-. 6) at different ω_{ω} s.It is seen that as w_{i} increases, tho dimensionless pressure grajisnt with resoect to dimensionl iss oxial distance decreases.

Fort $\omega_{\omega}=0$, deta are taken from the experiments with water, sucrose solution and air. Curves for $\omega_{\omega}=.1, .2$ and $\cdot 3$ are plotted from rosults of the experiments perfomed with water and sucrose solution. Curves for $\omega_{\omega}=.5,1.0$ and 1.5 are drawn by taking the experimental data for air (3). This plot in dimensionless quantities holds for any fluid. It can be used for getting information for any fluid flowing through a channel, similar to the one used in this wrk but may be of different dimensions.

Fig. 4

Fig. 5

Fig: 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Eig. 13

Fig. 14 *

Eig. 15

CHAPTER VI

COMCLUSIONS

The findings of this work tend strong support to the analytical model proposed and warked out by Soarrow and c^{\prime}-workers using the linearization technique for flow in a parallel-plate channel with one moving wall. The pressure field predictions stemming from this analysis were well supported by experimental results found in this oroject.

It is evident from the results of this investigation and the experiments done by Sparrow and $Y u$, that the thenry is apolicable for any fluid, liquid or gaseous, flowing through ducts. No deviations or anomalies from the analytical solutions were observed in the results of experiments with different fluids. The slight deviations of the results of the experiments were well within the accuracy of the experimental set-up.

It is therefore established that the original assumptions in 1inearizing the inertia terms of the mornentum equation and the subsequent developments of the theory are justified. It has also been demonstrated that the equations $\cap f$ pressure vs. axial distance in the developed region derived by the linearization technique is exactly same as that obtsined from basic equations of motion for couette flow. The analytical method oroposed and worked out by Sparrow and Yu covers both the develnoing and the developed regions and it can be concluded that it is a nice
topl far oredicting th: velocity and oressure in the entirs length of a channel flow.

The piot of dimensiontess pressure vs. dimensinnliss axial distance at different values of the varametor " u_{w} / \bar{u} " holds good for any fluid and it can be used to predict pressure iistribution in flow through a similar configuration.

Ferther works in the field may be done for experimenting at very high and very low values of " $u_{w} / \bar{u} "$ which needs to design a different set-up for thet purpose. It would also be interesting to carry out exneriments in a inclined channel to include the effect of gravitation. Experiments for finding the entrance region langths from the leading edge of ducts at different flow conditions may also be carried out. Determination of such lengths may be helpful for many practical purposes.

Detailed mathematical steps of the theory in Chapter III

App. III (1) $\quad \frac{\partial u}{\partial x}=\frac{\partial \omega}{\partial x} \cdot \frac{\partial u}{\partial \omega}=\frac{\partial \omega}{\partial x^{*}} \frac{\partial x^{*}}{\partial x^{*}} \frac{\partial u}{\partial \omega}$

$$
\begin{aligned}
& =\frac{\partial \omega}{\partial x} \frac{1}{\epsilon} \frac{\nu}{\bar{u} h^{2}} \bar{u}=\frac{x}{\epsilon h^{2}} \frac{\partial \omega}{\partial x *} \\
& \frac{\partial u}{\partial y}=\frac{\partial \omega}{\partial \eta} \frac{\partial \eta}{\partial y} \frac{\partial u}{\partial \omega}=\frac{\bar{u}}{h} \frac{\partial \omega}{\partial \eta} \\
& \frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)=\frac{u}{h} \frac{\partial^{\prime}}{\partial y} \frac{\partial}{\partial \eta}\left(\frac{\partial \omega}{\partial \eta}\right)=\frac{u}{h^{2}} \frac{\partial^{2} \omega}{\partial \eta^{2}} \\
& \operatorname{agin}, \text { at } y=h, \eta=+1 \text { and } y=-h, r=-1
\end{aligned}
$$

Substitution of these values in ama. 7 yields ear. 8 .
ADp. III (2)
Integrating once, eqn. 10 yields,

$$
\begin{aligned}
& \frac{\partial \omega}{\partial \eta}=\frac{1}{2}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \eta+c_{1} \\
& \therefore c_{1}=\frac{1}{2}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \\
& \frac{\partial \omega}{\partial \eta}=\frac{1}{2}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \eta+\frac{1}{2}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right]
\end{aligned}
$$

Integrating again with respect to η,

$$
\omega=\frac{1}{4}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \eta^{2}+\frac{1}{2}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \eta+c_{2}
$$

$\omega=0$ at $\eta=+1$ gives,

$$
\begin{gathered}
c_{2}=-\left[\frac{3}{4}\left(\frac{\partial \omega}{\partial r}\right)_{1}+\frac{1}{4}\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \\
\therefore \omega=\frac{1}{4}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \eta^{2}+\frac{1}{2}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \eta \\
-\left[\frac{3}{4}\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\frac{1}{4}\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right]
\end{gathered}
$$

App. III (3)

$$
\frac{1}{2} \int_{-1}^{1} \omega d 2=1
$$

$$
\begin{aligned}
\therefore & \frac{1}{2}\left\{\frac{1}{12}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] r^{3}+\frac{1}{4}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] \eta\right. \\
& \left.-\left[\frac{3}{4}\left(\frac{\partial \omega}{\partial \eta}\right)_{1}+\frac{1}{4}\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right]\right\}_{-1}^{+1}=1
\end{aligned}
$$

or, $\quad 2\left(\frac{\partial \omega}{\partial \eta_{1}}\right)_{1}+\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}=-3$.
ADD. III (4)

$$
g^{\prime \prime}+\lambda^{2} g=\frac{1}{2}\left[g^{\prime}(1)-g^{\prime}(-1)\right]
$$

For complimentary solution we put,

$$
\begin{aligned}
& g^{\prime \prime}+\lambda^{2} g=0 \quad \text { whence, } \\
& g=A \cos \lambda \eta+B \sin \lambda \eta
\end{aligned}
$$

For particular solution we use operator "D" and write the " g " eqn. as

$$
\begin{aligned}
& D^{2} g+\lambda^{2} g=\frac{1}{2} k \quad\left\{k=\left[g^{\prime}(1)-g^{\prime}(-1)\right]\right. \\
& \therefore g=\frac{1}{2} k \frac{1}{\lambda^{2}}\left[1-\frac{D^{2}}{\lambda^{2}}\right]^{-1}=\frac{k}{2 \lambda^{2}}\left[1-\frac{D^{2}}{\lambda^{2}}+\cdots .\right] \\
& =\frac{k}{2 \lambda^{2}}
\end{aligned}
$$

Therefore General solution is,

$$
g=A \cos \lambda \eta+B \sin \lambda \eta+\frac{1}{2 \cdot \lambda^{2}}\left[g^{\prime}(1)-g^{\prime}(-1)\right]
$$

App. $\operatorname{III}(5)$

$$
\begin{aligned}
g & =A[\cos \lambda \eta-\cos \lambda]=-A \cos \lambda\left[1-\frac{\cos \lambda \eta}{\cos \lambda}\right] \\
& =-A\left[1-\frac{\cos \lambda \eta}{\cos \lambda}\right] \quad[\operatorname{since} \lambda \rightarrow 0]
\end{aligned}
$$

Writing eqn. of g for all values of λ and replacing α for λ and inserting $\frac{1}{\alpha_{m}}$ for a constant in order to normalize g, one gets,

$$
g_{m}=\frac{1}{\alpha_{m}}\left[1-\frac{\cos \alpha_{m} \eta}{\cos \alpha m}\right], \quad m=1,2,3 \ldots
$$

App. III (6) (a)

$$
\begin{aligned}
\int_{-1}^{1} G_{n}^{2} d \eta & =\int_{-1}^{1} \sin ^{2} n \pi \eta d \eta=\frac{1}{2} \int_{-1}^{1}[1-\cos 2 n \pi \eta] d \eta \\
& =\frac{1}{2}\left[\eta-\frac{\sin 2 n r \pi}{2 n r}\right]_{-1}^{+1}=\frac{1}{2} \times 2=1
\end{aligned}
$$

App. III(6) (b)

$$
\begin{aligned}
& \int_{-1}^{1} g_{m}^{2} d \eta=\frac{1}{\alpha_{m}^{2}} \int_{-1}^{+1}\left[1-\frac{\cos \alpha_{m} \eta}{\cos \alpha_{m}}\right]^{2} d \eta \\
= & \frac{1}{\alpha_{m}^{2}} \int\left[1-2 \frac{\cos \alpha_{m} \eta}{\cos \alpha_{m}}+\frac{\frac{1}{2}\left\{1+\cos 2 \alpha_{m} \eta\right\}}{\cos ^{2} \alpha_{m}}\right] d \eta \\
= & \frac{1}{\alpha_{m}^{2}}\left[\eta-2 \frac{\sin \alpha_{m} \eta}{\alpha_{m} \cos \alpha_{m}}+\frac{\eta+\frac{\sin 2 \alpha_{m} \eta}{2 \alpha_{m}}}{2 \cos ^{2} \alpha_{m}}\right]_{-1}^{+1} \\
= & \frac{1}{\alpha_{m}^{2}}\left[2-4 \frac{\tan \alpha_{m}}{\alpha_{m}}+\frac{2}{2 \cos ^{2} \alpha_{m}}+\frac{4 \sin \alpha_{m} \cos _{m}}{4 \alpha_{m} \cos ^{2} \alpha_{m}}\right] \\
= & \frac{1}{\alpha_{m}^{2}}\left[2-4+\frac{1}{\cos ^{2} \alpha_{m}}+\frac{\tan \alpha_{m}}{\alpha_{m}}\right]=\frac{1}{\alpha_{m}^{2}}\left[-1+\frac{1}{\cos ^{2} \alpha_{m}}\right] \\
= & \frac{1-\cos ^{2} \alpha_{m}}{\cos ^{2} \alpha_{m}} \times \frac{1}{\alpha_{m}^{2}}=\frac{\tan ^{2} \alpha_{m}}{\alpha_{m}^{2}}=1
\end{aligned}
$$

App. III(7)(a)

$$
\begin{array}{r}
\int_{-1}^{1} g_{m} G_{n} d \eta=\int_{-1}^{1} \frac{1}{\alpha_{m}}\left[1-\frac{\cos \alpha_{m} \eta}{\cos \alpha_{m}}\right] \sin n \pi \eta d \eta \\
=\int_{-1}^{1} \frac{1}{\alpha_{m}}\left[\sin n \pi \eta-\frac{\sin n r_{\eta} \cos \alpha_{n} \eta}{\cos \alpha_{m}}\right] d \eta
\end{array}
$$

$$
\begin{aligned}
& =\frac{1}{\alpha_{m}}\left[-\frac{\cos n+2}{n \cdot t}\right]_{-1}^{1}-\frac{1}{\cos \alpha_{m}} \int_{-1}^{1} \frac{1}{2}\left[\sin \left(n c+\alpha_{m}\right) \eta+\sin \left(n \cdot-\alpha_{m}\right) \eta\right] d z \\
& =0-\frac{1}{2 \cos \alpha_{m}}\left[-\frac{\cos \left(n \cdot x+\alpha_{m}\right) \eta}{\left(n+\alpha+\alpha_{m}\right)}-\frac{\cos \left(n+-\alpha_{m}\right) \eta}{(n i-\alpha m)}\right]_{-1}^{+1} \\
& =0
\end{aligned}
$$

App. III (7)(b)

$$
\int_{-1}^{1} g_{m} g_{i} d i_{2}
$$

$$
=\frac{1}{\alpha m \alpha_{i}} \int_{-i}^{i}\left[\left(1-\frac{\operatorname{cis} \alpha_{m} \eta}{\cos \alpha_{m}}\right)\left(1-\frac{\operatorname{cis} \alpha_{i} \eta}{\cos \alpha_{i}}\right)\right] d \eta
$$

$$
=\frac{1}{\alpha_{m} \alpha_{i}} \int_{-1}^{1}\left[1-\frac{\cos \alpha_{i} \eta}{\cos \alpha_{i}}-\frac{\sin \alpha_{m} \eta_{2}}{\cos \alpha_{m}}+\frac{\frac{1}{2}\left\{\cos \left(\alpha_{m}+\alpha_{i}\right) n_{2}+\cos \left(\alpha_{m}-\alpha_{i}\right) \eta\right\}}{\cos \alpha_{m} \cos \alpha_{i}}\right] d 2
$$

$$
=\frac{1}{\alpha_{\operatorname{m}} \alpha_{i}}\left[\eta-\frac{\sin \alpha_{i}}{\alpha_{1} \cos \alpha_{i}}-\frac{\sin \alpha_{m} 2}{\alpha_{m} \cos \alpha_{m}}+\frac{\left.\frac{\sin (\alpha m+\alpha) 2}{\left(\alpha_{m} \alpha_{i}\right)}+\frac{\sin \left(\alpha_{m}-\alpha_{i}\right)_{2}}{\left(\alpha \cos \alpha_{m} \cos \alpha_{i}\right.}\right]_{-1}^{1}}{1}\right.
$$

$$
=\frac{1}{\alpha m \alpha_{i}}\left[2-2-2+\frac{2+2}{2 \cos \alpha_{m} \cos \alpha_{i}}\right]=\frac{1}{\alpha \operatorname{in} \alpha:}[2-2-2+2]=0
$$

App. III $(7)(c)$

$$
\begin{aligned}
& \int_{-1}^{1} G_{n} G j d \eta=\int_{-1}^{1} \sin n i \eta \sin j \pi \eta d \eta \\
= & \int_{-1}^{1} \frac{1}{2}\left[\sin (n \pi+j r) r_{L}+\sin (n i-j r) n\right] d \eta
\end{aligned}
$$

$$
=\frac{1}{2}\left[-\frac{\cos (n+j) r_{2}}{(n+j) \pi}-\frac{\cos (n-j) r_{2}}{(n-j) r}\right]_{-1}^{+1}=\frac{1}{2} \times[-0-0]=0
$$

App. III (8)(a)

$$
\begin{aligned}
& \omega_{\nu}(\eta)=\omega_{f \alpha}(\eta)+\sum_{m=1}^{\infty} C_{m} g_{m}(\eta)+\sum_{n=1}^{\infty} D_{n} G_{n}(\eta)
\end{aligned}
$$

Now, integration with respect to 2 between the limits -1 to +1 is performed:
(i) $\quad \int_{-1}^{1} D_{n} G_{n}(\eta) g_{i}(2) d \eta=0$ according to $28(0)$
(ii)

$$
\begin{aligned}
& \int_{-1}^{1}\left[\sum_{m=1}^{\alpha} c_{m} g_{m}(\eta) j_{i}(\eta)\right] d \eta_{2} \\
= & \int_{-1}^{1} c_{i} j_{i}^{2}(\eta) d r_{\eta} \quad\left[\begin{array}{l}
\text { all other terms in the } \\
\text { expamion becomes zero } \\
\text { according to } 28(0)]
\end{array}\right.
\end{aligned}
$$

$$
=C_{i}
$$

(iii) $\int_{-1}^{1} \omega+d(n) g_{i}(\eta) d \eta$

$$
\begin{aligned}
& =\int_{1}^{1} \frac{1}{\alpha_{i}}\left[\frac{3}{4}(\omega \omega-2) \eta^{2}-\frac{1}{2} \omega_{1 \lambda} \eta+\frac{3}{2}-\frac{1}{4} \omega_{0}\right]\left[1-\frac{c_{5} \alpha_{i} \eta_{2}}{\cos _{3} \alpha_{i}}\right] d r_{2} \\
& =\frac{1}{\alpha i}\left[\frac{1}{4}\left(\omega_{\omega}-2\right) \eta^{3}-\frac{1}{4} \omega_{\omega} \eta^{2}+\frac{3}{2} \eta_{2}-\frac{1}{4} \omega_{\omega} q\right]_{-1}^{1} \\
& -\frac{1}{\alpha i}\left[\frac{3}{4}(\sin -2) \int_{-1}^{1} \frac{\eta^{2} \cos \alpha i \eta}{\cos _{5} \alpha} d \eta-\frac{1}{2} \int_{-1}^{1} \frac{\eta_{i} \alpha_{i} \eta}{c_{3} \alpha_{i}} d \eta\right. \\
& \left.+\frac{2}{2} \int_{-1}^{1} \frac{\cos \alpha_{i} \eta}{\cos \alpha_{i}} d \eta-\frac{1}{4} \omega \omega \int_{-1}^{1} \frac{\cos \alpha_{i} \eta}{\operatorname{ciz}_{i} \alpha_{i}} d \eta\right] \\
& =\frac{1}{\alpha_{i}}\left[\frac{\omega_{\omega}-2}{2}+3-\frac{1}{2} \omega_{\omega}\right] \\
& -\frac{1}{\alpha i}\left[\frac{3}{4} \frac{(\omega, \omega-2)}{\cos \alpha i} \int_{-1}^{1} \frac{(\alpha: \eta)^{2} \cos \alpha i \eta d(\alpha: \eta)}{\alpha_{i}^{3}}\right. \\
& -\frac{\omega \omega}{2 \cos _{3}{ }^{1}} \int_{-1}^{1} \frac{(\alpha ; n) c(\alpha ; \eta) d(\alpha ; n)}{\alpha_{i}^{2}} \\
& \left.+\frac{3}{2 \cos i} \int_{-1}^{1} \cos \alpha_{i} \eta_{1} d \eta-\frac{\omega_{\omega}}{4 \operatorname{cis} \alpha_{i}} \int_{-1}^{1} \cos _{-1} \alpha_{i} d \eta\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\alpha_{i}}(2)-\frac{1}{\alpha_{i}}\left[\frac{3}{4} \frac{(\omega \omega-2)}{\alpha_{i}{ }^{3} \cos \alpha_{i}}\left\{2 \alpha_{i} \eta \cos \alpha: \eta+\left(\alpha_{i}{ }^{2} \eta^{2}-2\right) \sin \alpha: \eta\right\}\right. \\
& -\frac{\omega_{\omega}}{2 \cos _{i}}\left\{\cos _{i} \eta+\alpha_{i} \eta \alpha_{i} \alpha_{i} \eta\right\}+\frac{3}{2 \cos \alpha_{i}} \frac{\delta_{i} \alpha_{i} \eta}{\alpha_{i}} \\
& \left.-\frac{\omega \omega}{4 \operatorname{\omega iz} \alpha} \frac{\sin \alpha: \eta}{\alpha i}\right]_{-1}^{+1} \quad\left[\begin{array}{c}
\text { c.r.c. Integration } \\
\text { table } i: \text { used }
\end{array}\right] \\
& =\frac{2}{\alpha_{i}^{i}}-\frac{1}{\alpha_{i}}\left[\frac{3}{4} \frac{\omega \omega-2}{\alpha_{i}{ }^{3} G_{i} \alpha_{i}}\left\{4 \alpha_{i} G_{i} \alpha_{i}+\mathcal{L}^{2} \alpha_{i}^{2} \alpha_{i}-4 a_{i} \alpha_{i}\right\}\right. \\
& -\frac{\omega \omega}{2 \cos \alpha_{i}}\left\{0 \dot{\xi}+\frac{3 \leq s_{i}}{\alpha i \cos \alpha_{i}}-\frac{\omega \omega}{2 \alpha_{i} \ell_{3} \alpha_{i}} \leq \alpha_{i}\right] \\
& =\frac{2}{\alpha_{i}}-\frac{1}{\alpha_{i}}\left[\frac{3(\omega, \omega-2)}{\alpha_{i}^{2}}+\frac{3}{2} \frac{(\omega \omega-2)}{\alpha_{i}} \operatorname{inc} \alpha_{i}-\frac{3(\omega,-2)}{\alpha_{i}^{3}} \tan \alpha_{i}\right. \\
& \left.+\frac{3 \tan \alpha_{i}}{\alpha_{i}}-\frac{1}{2} \omega_{\omega} \frac{t_{\pi} \alpha_{i}}{\alpha_{i}}\right] \\
& =\frac{2}{\alpha_{i}}-\frac{1}{\alpha_{i}}\left[\frac{3}{2}\left(\omega_{1,}-2\right)+3-\frac{1}{2} \omega_{\omega}\right] \\
& =\frac{2}{\alpha_{i}}-\frac{1}{\alpha_{i}}\left[\omega_{\omega}\right]
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \int_{-1}^{1} \frac{\omega_{0}(\eta)}{\alpha_{i}}\left(1-\frac{\cos \alpha_{i} \eta}{\cos \alpha_{i}}\right) d \eta \\
= & \int_{-1}^{1} \frac{\omega_{0}(\eta)}{\alpha_{i}} d \eta-\frac{1}{\alpha_{i}} \int_{-1}^{1} \omega_{0}(\eta) \frac{c_{3} \alpha_{i} \eta}{\cos \alpha_{i}} d \eta
\end{aligned}
$$

Now, combining (i), (ii), (ii) ϕ (iv) and writing n for. i. to generalize,

$$
c_{m}=\int_{-1}^{1} \frac{\omega_{0}(\eta)}{\alpha_{m}} d \eta-\frac{q}{x_{m}}+\frac{1}{\alpha_{m}}\left[\omega_{\omega}-\int_{-1}^{1} \omega_{0}(\eta) \frac{c_{0} \alpha_{m} \eta}{c_{2} \alpha_{m}} d \eta\right]
$$

App III $(8)(b)$

$$
\frac{\omega_{0}(\eta) G_{j}(\eta)}{(i v)}=\frac{\omega_{f-\alpha}(\eta) G_{j}(\eta)}{(i i)+\sum_{m=1}^{\alpha} C_{m} g_{m}(\eta) G_{j}(\eta)} D_{n} G_{n}(\eta) G_{j}(\eta) \text { (ii) }
$$

Integration between the limits -1 ho +1 in now performed:
(i) $\sum_{m=1}^{\infty} \int_{-1}^{1} c_{m} g_{\ldots} G_{j} d_{\eta}=0 \quad$ according $28(b)$
(ii) $\sum_{n=1}^{\infty} \int_{-1}^{1} D_{n} G_{n} G_{j} d_{q}=D_{i} \int_{-1}^{1} G_{i j}^{2} \cdot d_{\eta}=D_{j}$
(iii)

$$
\begin{aligned}
& \int_{-1}^{1}\left[\frac{3}{4}\left(\omega_{1}-2\right) \eta^{2}-\frac{1}{2} \omega_{\omega} \eta+\frac{3}{2}-\frac{1}{4} \omega_{0}\right] \sin j r r_{2} l_{\eta} \\
& =\frac{3}{4}(\omega,-2) \frac{1}{(j+t)^{3}} \int_{-i}^{1}\left(j r r_{i}\right)^{2} \sin (j+r) d(j+\eta) \\
& -\frac{1}{2} w_{w} \frac{1}{(j+)^{2}} \int_{-1}^{1}(j r r) \frac{2}{2}(j r q) d(j n \eta)+\frac{3}{2} \int_{-1}^{1} \sin (j r y) d z \\
& -\frac{1}{4} \omega_{i \omega} \int_{-1}^{1} \sin (\operatorname{gre} \eta) d \eta
\end{aligned}
$$

$=\frac{3}{4} \frac{(\omega \omega-2)}{(j r)^{3}}\left[2 j r \eta \sin j \pi \eta-\left\{(j+r)^{2}-2\right\} \cos j+\eta\right]_{-1}^{1}$

$$
-\frac{\omega \omega}{2(j r)^{2}}[\sin (j r i)-(j r \eta) \cos (j r \eta)]_{-1}^{+1}
$$

$=-\frac{\omega \omega}{2(j r)^{2}}[2 \sin (j t)-2 j r \cos (1 r)]$ $\mathrm{F} 296]$

$$
=\frac{\omega \omega}{j r} \cos (j r)=\frac{(-1)^{j}}{j r} \omega_{\omega}
$$

(iv) $\int_{-1}^{1} \omega_{0}(\eta) G_{j}(\eta) d r_{L}=\int_{-1}^{1} \omega_{0}(\eta) \sin j r_{2} d_{\eta}$

Now combining (i), (ii), (ii) α (iv) and writing n for j to generalize,

$$
D_{n}=-\frac{(-1)^{n}}{n+1} \omega_{i \omega}+\int_{1}^{1} \omega_{0}(\eta) \sin n \pi \eta d \eta
$$

APp. $\overline{\text { AP }}(9) . \quad \frac{\partial}{\partial x}\left(u^{2}\right)+\frac{\partial}{\partial y}(1, s)=-\frac{1}{\rho} \frac{d p}{d x}+\nu \frac{\partial^{2} u}{\partial y^{2}}$
Integrating w.r.t. y between the limits
$-h$ to $+h$,

$$
\left.\frac{d}{d x} \int_{-1}^{h} n^{2} \partial_{y}+n v\right]_{-h}^{+h}=-\frac{1}{\rho} \frac{d p}{d x} 2 h+2\left[\left(\frac{\partial n}{\partial y}\right)_{h}-\left(\frac{\partial u}{\partial y}\right)_{-h}\right]
$$

or, $\frac{d}{d x} \int_{-1}^{1} \omega^{2}+\eta \frac{h \cdot \nu \cdot \bar{u}^{2}}{-h^{2}}=-\frac{i}{\rho} 2 h \frac{\nu}{\bar{h} h^{2}} \frac{d p}{d x}+\nu \frac{\bar{u}}{h}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right]$ or, $-\frac{1}{\rho^{r^{2}}} \frac{d p}{d x}=\frac{1}{2} \frac{d}{d x} \int_{1}^{1} \omega^{2} d \eta-\frac{1}{2}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right]$

App III (10)
Integration of eqn. derived in AppiII (a) w. rit. x (between limits 0 to x) yields,

$$
-\frac{1}{\rho_{w^{2}}}\left(p-p_{0}\right)_{c}=\left[\frac{1}{2} \int_{-1}^{1} \omega^{2} d \eta\right]_{x=0}^{x=x}-\frac{1}{2} \int_{0}^{x}\left[\left(\frac{\partial \omega}{\partial \eta}\right)_{-}-\left(\frac{\partial \omega}{\partial \eta}\right)_{-1}\right] d x
$$

$\infty, \frac{p_{0}-p}{\frac{1}{2} e^{2}}=\int_{-1}^{1} \omega^{2} d \eta-\int_{-1}^{1} \omega_{0}^{2} d \eta-\frac{1}{2} \int_{0}^{x}\left\{\left(\frac{\partial \omega_{8}}{\partial \eta}\right)_{-1}^{+i}+\left(\frac{\partial \omega^{*}}{\partial \eta}\right)_{-1}^{1}\right\}_{d x}$

$$
\left[\omega=\omega_{t+1}+\omega^{*}\right]
$$

or,

$$
\begin{aligned}
& \frac{p_{0}-p}{\frac{1}{2} p u^{-2}}=\int_{-1}^{1} \omega^{2} d \eta-\int_{-1}^{1} \omega_{0}^{2} d \eta-\int_{0}^{x}\left[\left(\frac{\partial \omega^{*}}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega^{*}}{\partial \eta}\right)_{-1}\right] d x \\
&-\int_{0}^{x}\left[\frac{3}{2}\left(\omega_{\omega}-2\right) \eta-\frac{1}{2} \omega_{-1}^{1} d x\right.
\end{aligned}
$$

or, $\quad \frac{p_{0}-p}{\frac{1}{2} \rho^{2}}=3(2-\omega) \times+\int_{-1}^{1} \omega^{2} d \eta-\int_{-1}^{1} \omega_{0}^{2} d \eta$

$$
-\int_{0}^{x^{*}}\left[\left(\frac{\partial \omega^{*}}{\partial \eta}\right)_{i}-\left(\frac{\partial \omega^{*}}{\partial \eta}\right)_{-i}\right] \epsilon d x^{*}
$$

or, wo can write.

$$
\frac{p_{0}-p}{\frac{1}{2} p_{1}^{2}}=\frac{\left(p_{0}-p\right)+p}{\frac{1}{2} p_{u^{2}}^{-2}}+k(x)
$$

where, $\quad \frac{\left(p_{0}-p\right)+x}{\frac{1}{2} \rho \bar{u}^{2}}=3(2-\infty) \frac{x \nu}{\bar{u} h^{2}}$

$$
\therefore \text { and } k(x)=\int_{-1}^{1} \omega^{2} d \eta-\int_{-1}^{1} \omega_{0}^{2} d \eta-\int_{0}^{x^{*}}\left[\left(\frac{\partial \omega^{*}}{\partial \eta}\right)_{1}-\left(\frac{\partial \omega^{*}}{\partial \eta}\right)_{-1}\right]^{\prime} t d x^{*}
$$

App. V-1

$$
\Leftrightarrow \because \because, \because, \quad \therefore \therefore \because(1 \because+2, k \cdot 06)
$$

-49-

App. V-2	No of obs.	Distance of taps from leading edge inches	0	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	13.5	15.0	Flow-rate: Wt. of 1 iq . collected per 20 secs ibs-ozs	Wall Speed fpm.
$\begin{aligned} & \text { Experiments } \\ & \text { with } \\ & \text { WATTR } \end{aligned}$	1-1	Static Pressure	. 5	. 4	.35	. 3	. 3	. 25	. 2	. 2	.15	. 1	. 1	32.0	0
	1-2		. 65	. 5	. 45	. 4	. 35	. 3	. 25	.?	.15	. 15	. 1	4-0	
	1-3		1.1	. 85	. 75	. 65	. 6	. 5	. 4	. 35	. 3	. 2	. 15	6-0	
	2-1		1.4	1.1	. 95		. 75		. 55		. 35		. 2	7-12	11
Operating temp. - $81^{\circ} \mathrm{F}$	2-2	inches of Water.	. 6	. 45	. 4		.35		. 25		. 15		. 1	3-14	
$\begin{aligned} = & 62.2 \mathrm{fts}^{3} / 3 \\ = & .92 \times 1 \mathrm{ft}^{-5} \\ & \mathrm{ft}^{2} / \mathrm{sec} \end{aligned}$	3-1		. 8	. 65	. 6		. 45		. 35		. 25		. 15	4-12	13.5
	3-2		. 5	. 4	. 4		. 3		. 25		. 2		. 1	3-2 $\frac{1}{2}$	
	4-1		1.0	. 8	.7		.5		. 4		. 25		. 1	6-0	17
	4-2		. 6	.5	. 4		. 35		. 25		:2		. 1	$4-0$	
Exoeriments with SUCROSE SOLN	5-1	Static Pressure in inches of Suc. Soln.	1.35	1.15	1.0	. 9	. 75	. 7	. 55	. 45	. 4	. 3	. 2	6-0	0
	5-2		1.8	1.45	1.3		1.0		. 7		.5		. 25	8-0	11
$=850 \mathrm{~F}$	5-3		1.0	. 8	.7		. 6		. 4		. 3		. 15	4-14 $\frac{1}{2}$	13.5
$\mathrm{ft}^{2} / \mathrm{sec} .$	5-4		. 75	. 6	. 55		. 45		. 35		. 25		. 1	4-1.8	17

App. V-3

RESULTS:

Obs No. 1-1	x	Y	Analytical $\frac{p_{0}-p}{\frac{1}{2} p^{2}}$	p	p corrected for exit error.	Experimen -tal $\frac{p_{0}-p}{\frac{1}{1} p^{2}}$
	1.5	. 063	. 918	. 414	- 399	1.070
	3.0	. 126	1.376	- 371	. 356	1.606
$p_{0}=0.5$	4.5	. 189	1.774	. 334	. 319	2.140
	6.0	. 252	2.162	. 298	. 283	2.140
$\overline{\mathrm{u}}=.708$	7.5	. 315	2.540	. 263	. 248	2.680
$\frac{1}{20} \bar{u}^{2}=\mathrm{fps}$	9.0	. 378	2.920	. 227	- 212	3.210
$\frac{1}{2} \rho \bar{u}^{2}=.0934$	10.5	. 4142	3.300	.192	. 177	3.210
in. of	12.0	. 504	3.675	. 157	.142	3.750
\cdots	-13.5	. 567	4.050	. 122	.107	4.290
$\mathrm{N}_{\mathrm{Re}}=782$	15.0	. 630	4.430	${ }_{0} 086$.071	4.290
(Fxit) 18.0		. 756	5.190	. 045	0	.
Obs No. 1-2						
	1.5	. 047	. 774	. 522	. 524	. 903
$p_{0}=.65$	3.0	. 095	1.152	. 459	. 461	1.204
	4.5	. 142	1.482	. 411	. 413	1.505
$\overline{\mathrm{u}}=.94 \mathrm{35}$	6.0	. 189	1.774	. 356	. 358	1.806
$\frac{1}{2} P_{u^{-2}}^{-2}=.166$	7.5	. 236	2.061	. 308	- 310	2.108
	9.0	. 284	2.350	. 260	. 262	2.410
	10.5	. 331	2.636	. 213	. 215	2.710
$N_{\text {Re }}=1042$	12.0	. 378	2.920	.165	. 167	3.010
	13.5	. 425	3.200	. 118	. 120	3.010
(Exit) 18.0		. 473	3.485	. 072	. 074	3.310
		. 567	3.930	. 002	0	-
Obs No. 1-3						
	1.5	. 032	. 639	. 860	. 855	. 666
$D_{0}=1.10$	3.0	. 063	. 98	. 756	. 751	. 933
	4.5	.095	1.15?	. 658	. 663	1.200
$\bar{u}=1.416$	6.0	. 126	1.376	. 584	. 579	1.334
$\frac{1}{2} P \bar{u}^{2}=\cdot 375$	7.5 9.0	. 158	1.575	.510	. 505	1.600
	9.0 10.5	. 189	1.774	. 435	. 430	1.866
	10.5	. 221	1.967	. 363	. 358	2.000
$\mathrm{NRe}=1564$	12.0	. 252	2.162	. 289	. 284	2.135
	13.5	. 284	2.350	. 219	. 214	2.400
	15.0	. 315	2.540	. 148	. 143	2.535
	18.0	. 378	2.920	. 005	0	-

Obs No. 2-1	x	X	Analytical $\frac{r_{0}-P}{\frac{1}{2}+x^{2}}$	D	```p corrected for exit error```	Experinontal $\frac{p_{0}-p}{\frac{1}{2} p^{2} u^{2}}$
	1.5	. 0243	. 408	1.087	1.111	. 478
$\mathrm{p}_{\mathrm{o}}=1.4$	3.0	. 0486	. 737	.938	. 962	. 718
$\bar{i}=1.834$	6.0	. 0972	1.034	. 714	. 738	1.038
$\frac{1}{2} \hat{P} \bar{u}^{2}=.627$	9.0	. 1458	1.411	. 515	. 535	1.356
$\mathbb{N}_{R 2}=2028$	12.0	. 1944	1.698	. 335	. 359	1.675
	15.0	. 243	1.984	. 156	. 180	1.915
(Exit) 18.0		. 2916	2.271	-. 024	0	-
Obs Wo: 2-2	1.5	. 0486	692	. 491	. 473	. 956
	3.0	. 0972	$1.03 L^{4}$. 438	. 420	1.275
	6.0	. 1914	1.600	. 349	- 331	1.600
	9.0	. 2815	2.074	. 275	. 25 ?	2.230
	12.0	. 388	2.660	. 182	. 164	2.870
	15.0	. 486	3.180	. 100	. 082	3.180
Re (\%xit)18.0		. 583	3.710	.018	0	-
Obs No. 3-1	1.5	. 0396	.634	.650	. 591	. 636
	3.0	. 0792	. 918	. 584	. 525	. 848
$\mathrm{p}_{0}=.8$	6.0	. 1585	1.411	. 467	. 408	1.483
	9.0	. 238	1.850	. 363	. 304	1.906
$\begin{aligned} & a^{0} 1=125 \\ & \frac{1}{2} p a^{2}=.236 \end{aligned}$	12.0	. 317	2.280	. 262	. 203	2.330
$\mathrm{N}_{\mathrm{Re}}=1243$	15.0	. 396	2.710	. 160	. 103	2.760
)18.0	. 476	3.140	. 259	0	-
Obs No. 3-2	1.5	.05\%	. 733	. 423	. 35 ?	. 955
	3.0	. 1188	1.091	. 386	. 322	. 955
$\begin{aligned} & p=.5 \\ & \bar{u}_{0}=.75 \end{aligned}$	6.0	. 238	1.724	. 319	. 255	1.91
	9.0	. 3565	2.340	.255	. 191	2.385
	12.0	. 4755	2.945	. 191	. 127	2.862
$\mathrm{N}_{\mathrm{Re}} \cdot 828$	15.0 18.0	.594 .713	3.550 4.160	. 128	$0^{.064}$	3.820
Obs No. 4-1	1.5	. 0314	. 550	. 794	. 769	. 534
	3.0	. 063	. 800	. 700	.675	. 800
$p_{0}=1.0$$\mathrm{a}^{\circ}=1.1416$	6.0	. 126	9.210	. 546	. 52.	1.334
	9.0	. 189	1.575	. 410	. 385	1.600
$\frac{1}{2} p d^{2}=.375$	12.0	. 252	1.920	. 280	. 255	2.000
$N_{R e}=1564_{\text {(Exit }}$	15.0	. 315	2.260	.152	. 127	2.400
	118.0	. 378	2.600	. 025	0	-
Obs No. 4-2	1.5	.2473	. 626	. 496	. 462	. 603
	3.0	. 0.45	. 952	. 442	. 408	1.206
$\begin{aligned} & p_{0}=.6 \\ & \bar{u}^{\frac{1}{2}} \rho \mathrm{a}^{2}=.94 .35 \end{aligned}$	5.0	. 189	1.479	. 355	- 321	1.508
	9.0	.2835	1.966	. 274	. 240	2.110
	12.0	. 378	2.1448	. 193	. 159	2.415
	15.0	. 4725	2.930	. 113	. 079	3.015
$\mathrm{N}_{\mathrm{Re}}=104$ (Exit)	18.0	. 567	3.410	. 034	0	-

App. V-4

Sample calculations for Observation $N: 2-2$

The pertinent data were as follows :

Observation No. 2-2 ; Working liquid : Water.

Flow-rate, $Q=3$ lbs 14 ozs per 20 seconds of collection.
Wa11 speed, $u_{w}=0.1833$ fos.
Channel gap, $2 \mathrm{~h}=0.122$ inches.
Channel width $=4.01$ inches.
Onerating Temperature $=81^{\circ} \mathrm{F}$.

From proverty tables for water,
Density, $P=62,2 \mathrm{lbs} / \mathrm{ft}^{3}$
Kinematic viscosity, $\nu=0.92 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{sec}$.

| Taps | 2 | 3 | 4 | 6 | 8 | 10 | 12 | Exit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Axial distance,
 x in inches. | 0.0 | 1.5 | 3.0 | 6.0 | 9.0 | 12.0 | 15.0 | 18.0 |
| Static pressure in
 inchzs of rater
 at $81^{\circ} \mathrm{F}$. | 0.6 | .45 | .40 | .35 | .25 | .15 | .10 | |

Vall speed, $u_{w}=1.1833$ fps.
$\omega_{\omega}=u_{W} / \overline{\mathrm{u}}=.1833 / .917 \simeq .2$
$\frac{1}{2} \rho \bar{u}^{2} \equiv \bar{u}^{2} / 2 \mathrm{~g} \mathrm{ft}$ of Water $=.157$ inch of water.
For tap No. 3,
Axial distance, $x=1.5^{\prime \prime}$
Dimeisionless axial co-ordinate, $X=\frac{\pi \nu}{\bar{u} h^{2}}=.0486$
$\frac{\left(P_{0}-p\right)+d}{\frac{1}{2} p \bar{L}^{2}}=3\left(2-\omega_{a}\right) X=5 . \quad X=.262$
From graph, $K(x)=.1 / 3$
Therefore, $\frac{p_{0}-p}{\frac{1}{2} p_{\bar{u}}{ }^{2}}=.262+.43=.692$
Tharefore, $p_{C}-p=.692 \times .157=.109$ inch of tater
Therefore, $p=.6-.109=.491$ inch of Water
The rest of the calculations for other tap sections are tabulated in App. V-3.

The exit error for this sot of readings came out to be +.018
inch of Water.
Therefore, amalytical pressure at tap 3 with exit error correction, $p=.491-.018=.473$ inch of fiater.
Similarly other pressures at the other tans are corrected.
The Reyno1d's number, ${ }_{\mathrm{Ne}}=\overline{\mathrm{u}} .2 \mathrm{~h} / \nu=.917 \times .122 / 12 \times .92 \times 10^{-5}$
$=1014$.
Pressure gradient from basic equations :
The slope of the pressure curve in the fully developed region, as derived in Ch.III from basic equations of motion is given by eqn. 39, $d \mathrm{p} / \mathrm{d} \mathrm{x}=3\left(\mathrm{u}_{\mathrm{w}}-\mathrm{Q} \overline{\mathrm{u}}\right)=-.027 \mathrm{~h}_{\mathrm{in}} \mathrm{in}$. of Water per in. of axial distance. $\mathrm{dp} / \mathrm{dx}$ of the analytical prescure curve betwzen last tap and the exit, $=-.082 / 3.0=-.0273 \mathrm{in}$. of Water pér in. of axial distance.

1. Hagen G., Uber die Bewegung des wassers in engen zylindrischen Rohren, Prgg. Ann 46, 423-442 (1839).
2. Poisseuille J., Recherches experimentelles sur le mouvement des liquids dans les tubes de tres petits diametres, Comntes Rendus 11, 961-967 and 1041-1048 (1840) : 12, 112-115 (1841).
3. Sarrow E.M. and Yu H.S., Flow Develooment in a Channel Having a Longitudinally Moving Tall, Trans ASME, J of App. Mech., June 1970.
4. Schiller L., Angew Z., Math. Nech. 2, 96 (1922)
5. Campbell K.D. and Slattery J.C., J if Basic Eng., 85, 41 (1963).
6. Boussinesq J., Comit. Rend.; 113, 9, 49 (1891)
7. Schlicting H., Angew Z., Math. Mech. 14, 368 (1934).
8. Goldstein 5., Modern Developments in Fluid Dynamics (Clarendon Press, Oxf 1 rd, England, 1938) vo1. 1, p 304.
9. Snarrow E.M., Lin H.S. and Lundgran T.S., Flow Jevelopment in thz Hydrodynamic Entrance Region-of Tubes and hucts, The Physics of Fluids, v2. 7, 3 , 3, March 1964.
10. Sarrow E.M., Hixon C.J. and Shavit G., Experiments on Laminar Flow Develoment in Rectangular Ducts, Trans ASME, J of Besic.Engo, . Herch 1967: п 116 -124.
11. Soarriw E.t., Flemming D.P., Flow in the Hydrodynamic intrance Region of Ducts of Arbitrary Cross Section, Trans ASMP, J of Heat Transfer, August 1969, pp 345-354.
12. Schlicting H, Boundary Layer Theory, Translated in English By J.Kestin, Sixth Edition, McGaw Hill Publications.

[^0]: * Numerals in narentheses refer to hibliography. -4-

