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ABSTRACT 

 

Dynamics of nonlinear self-excited vibrations for  both two degrees of freedom system (2DOFS) 

and three degrees of freedom system (3DOFS) using nonlinear springs and dampers is treated as a 

boundary value problem (BVP) considering the self-exciting force as a function of displacement, 

velocity or combination of both and nonlinear displacement terms. Four different cases have been 

considered for this analysis.  Each case comprises of four different conditions depending on self-

excited force function. For different cases, a comparative study is performed varying the values of 

parameters to find out whether the system is stable or not. Nonlinearity is also considered for both 

springs and dampers to check the effect on the system’s response. A code has been developed to 

determine the response of the system. Some parameters for system’s stability have been 

determined from the system’s response obtained from the results of the developed code. It has 

also been tried to identify some parameters for which the system always tends to be unstable. The 

system’s behavior has also been observed by changing the values of self-excited force 

coefficients. Numerical analysis using multi-segment integration technique also shows the various 

phase planes and limit cycles in case of Van der Pol equation for various values of damping term, 

μ. This validates the developed code in analyzing such problems.  
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CHAPTER 1 

INTRODUCTION 

The force acting on a vibrating object is usually external to the system and independent of the 

motion. However, there are systems in which the exciting force is a function of the motion 

variables (displacement, velocity or acceleration) and thus varies with the motion it produces.  

Friction-induced vibration (in vehicle clutches and brakes, vehicle-bridge interaction) and 

flow-induced vibration (circular wood saws, CDs, DVDs, in machining, fluid-conveying 

pipelines) are examples of self-excited vibration.  

When a mass supported by a spring is carried by a moving belt through friction, the friction 

coefficient at the mass and belt interface is a function of the relative velocity between the 

mass and the belt and hence the moving belt can sustain self-excited vibration. 

Some mechanical systems have frictional joints where one surface slides on another with dry 

friction. Under certain conditions, the steady state sliding motion becomes unstable. The 

instability leads to the occurrence of stable limit-cycle type self-excited vibrations [D'Souza 

and Dweib (1990)]. 

Squeal is a form of self-excited vibrations induced in a structure such as a wheel or violin 

string by the action of a frictional driving force [McMillan (1997)]. Brake squeal noise is still 

an issue since it generates high warranty costs for the automotive industry and irritation for 

customers [Coudeyras et al. (2009)]. 

The conventional cantilever type of aircraft landing gear, when fitted with brakes, can exhibit 

two main forms of friction-induced self-excited vibration [Thorby (2008)]: 

(1) When the brakes are working normally, if the coefficient of friction between the 

rubbing surfaces in the brakes tends to decrease as the velocity increases, negative damping 

may result, producing the vibration known as ‘brake judder’ or ‘brake chatter’, at low 

frequencies, or ‘brake squeal’ at high frequencies. 

(2) When the brakes lock completely, perhaps because the anti-skid device, if fitted, 

does not always operate down to very low speeds, the friction characteristics between the 

tires and the runway can then provide the negative damping instead. Measurements of tire 
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friction show that the negative slope of µ versus v, necessary for instability, tends to occur 

when the runway is wet, and the speed is low. 

In both cases, the oscillations of the gear, in the fore-and-aft direction, can be quite 

pronounced, and lead to possible fatigue damage. 

Self-excited vibrations pervade all areas of design and operations of physical systems 

where motion or time-variant parameters are involved — aeromechanical systems (flutter, 

aircraft flight dynamics), aerodynamics (separation, stall, musical wind instruments, diffuser 

and inlet chugging), aerothermodynamics (flame instability, combustor screech), mechanical 

systems (machine-tool chatter), and feedback networks (pneumatic, hydraulic, and 

electromechanical servomechanisms). 

The  vibration  that  occurs  in  most  machines,  structures  and  dynamic  systems  is 

undesirable, not  only  because  of  the  resulting  unpleasant motions,  the  noise  and  the 

dynamic stresses which may lead to  fatigue and  failure of  the structure or machine, but also 

because of  the energy  losses and  the reduction in  performance that accompany the self-

excited vibrations.  It  is  therefore  essential  to  carry  out  an analysis of self-excited 

vibrations  of  any  proposed system for importance of performance and efficiency. 

There have been many cases of systems failing or not meeting performance targets because of 

resonance, fatigue or excessive vibration of one component or another. Because  of  the  very 

serious  effects  that  unwanted  vibrations  can have  on dynamic systems, it  is essential  that 

vibration analysis be carried out as an inherent part of their design; when necessary 

modifications can most easily be made to eliminate vibration or at least to reduce it as much 

as possible [Beards (1996)]. 

 

All real systems dissipate energy when they vibrate. The energy dissipated is often very 

small, so that an undamped analysis is sometimes realistic; but when the damping is 

significant its effect must be included in the analysis, particularly when the amplitude of 

vibration is required. Energy is dissipated by frictional effects, for example that occurring at 

the connection between elements, internal friction in deformed members, and windage. The 

most common types of damping are viscous, dry friction and hysteretic. Hysteretic damping 

arises in structural elements due to hysteresis losses in the material. The  type  and  amount of  

damping  in  a  structure has  a  large effect on  the  dynamic response levels. 
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The effect of damping is mainly evident in the diminishing of the vibration amplitude with 

time. Normal mode vibrations are free undamped vibrations that depend only on the mass and 

stiffness of the system and how they are distributed. When vibrating at one of these normal 

modes, all points in the system undergo simple harmonic motion that passes through their 

equilibrium positions simultaneously. To initiate a normal mode vibration, the system must 

be given specific initial conditions corresponding to its normal mode. When excitation 

frequency coincides with one of the natural frequencies of the system, a condition of 

resonance is encountered with large amplitudes limited only by the damping. Again damping 

is generally omitted except when its concern is of importance in limiting the amplitude of 

vibration or in examining the rate of decay of the free oscillation. 

 

Self-excited vibration is one of the major problems in the field of aerofoil, jet engines 

as well as modern industrial turbo machines. This type of vibration can occur due to friction 

or within a strong fluid flow. Asfar and Akour (2005) performed a numerical study for the 

suppression of self-excited vibrations using an impact viscous damper. Chatterjee (2007) 

introduced a new method of controlling friction-driven self-excited vibrations.  Plaut and 

Limam (1991) studied a class of self-excited mechanical or structural systems subjected to 

parametric excitation using equations of motion that included weak quadratic and cubic non-

linearities in the stiffness, small negative linear damping terms and small positive cubic 

damping terms and took in account the special cases of Van Der Pol's equation and 

Rayleigh's equation. Dohnal’s (2007) investigations on vibration suppression were performed 

on systems with two and more degrees of freedom with linear spring and damping elements 

that were subjected to self-excitation as well as parametric excitation by simultaneous 

stiffness and damping variation. Pust and Tondl (2008) investigated a two-mass system 

consisting of a self-excited basic system which was mounted on a foundation subsystem 

consisting of a mass on a spring by means of analytical and numerical solution and made a 

comparison between phase plane trajectories gained by numerical solution and analytical 

solution. Tondl and Nabergoj (2004) figured out the effect of parametric excitation on a self-

excited three-mass system and showed that the self-excitation could be fully or partly 

suppressed in a particular frequency interval. Rudowski (1982) applied analytical 

approximate methods to check the possibility of generating stable multi-frequency almost-

periodic limit cycles in n-degree-of-freedom self-excited systems.  
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In previous studies, different mathematical techniques like Runge-Kutta integration 

method, Bifurcation method [Asfar and Akour (2005) and Chatterjee (2007)], Univariate 

search optimization method [Asfar and Akour (2005)], Method of multiple scales [Asfar et al. 

(1982) and Asrar (1991)] and Singular perturbation method of first order [Dohnal (2007)] 

have been used to solve self-excited vibration problems. Any such numerical technique that 

makes the computation faster and yields reliable results under any practically possible 

boundary conditions (in terms of displacement, velocity etc. of the vibrating bodies) would be 

much desirable. Present study aims to develop a new model for studying self-excited 

vibrations especially for a multiple degrees of freedom system (MDOFS). Multi-segment 

method of integration (MSMI) is a powerful scheme originally developed to study the 

response of shells in terms of highly nonlinear boundary value problem (BVP) [Kalnins and 

Lestingi (1967)]. Since the present study also intends to incorporate BVP, MSMI has been 

tried to solve the nonlinear equations of self-excited vibration systems. For this analysis, self-

developed code using programming language C has been used.  

A couple of terms used in vibration problem analysis are discussed below: 

1.1 Degrees of Freedom (DOF): 

 "Degrees of freedom" can be described simply as the number of coordinates that it 

takes to uniquely specify the position of a system. Degrees of freedom (DOF) are the set of 

independent displacements and/or rotations that specify completely the displaced or deformed 

position and orientation of the body or system. A degree-of-freedom for a system is 

analogous to an independent variable for a mathematical function. 

 

The number of independent coordinates required to describe the motion of a system is called 

degrees of freedom of the system. The free particle undergoing general motion in space will 

have three degrees of freedom, and a rigid body will have six degrees of freedom, i.e., three 

components of position and three angles defining its orientation. Furthermore, a continuous 

elastic body will require an infinite number of coordinates (three for each point on the body) 

to describe its motion; hence its degrees of freedom must be infinite. However, in many 

cases, parts of such bodies may be assumed to be rigid, and the system may be considered to 

be dynamically equivalent to one having finite degrees of freedom. In fact, a surprisingly 

large number of vibration problems can be treated with sufficient accuracy by reducing the 

system to one having a few degrees of freedom. 
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1.2 Stability of a System:  

A system is said to maintain stability if it can sustain a small disturbance from its 

equilibrium condition at any level of external cause in any form of displacements, velocity, 

force etc. It should be noted that sustaining the disturbance means the structure would 

oscillate with small amplitude about its equilibrium position. On the other hand, if the 

structure does not go back to its original position or vibrate with ever increasing amplitude 

due to the disturbance, then the structure is said to be in an unstable state at that level of 

external cause. A close assessment of the critical load for simple mechanical stability models 

reveals that the system maintains its state of equilibrium states as long as the work done due 

to internal resisting forces is greater than that due to the external load for any disturbance 

from the equilibrium position. In other words, it is the balance between the potential energy 

due to the internal resisting forces, called internal strain energy or simply strain energy, and 

the potential energy due to the external force. 

 

1.3 Nonlinear Springs and Dampers: 

  In general nonlinear vibrations are not harmonic, and their frequencies vary with 

amplitude. Superposition principle cannot be applied to solve such type of problems. One 

important type of nonlinearity arises when the restoring force of a spring is not proportional 

to its deformation. A spring is called nonlinear when the force exerted by the spring is the 

nonlinear function of the displacement. For nonlinear spring,    

Spring force = 3xkkx ′±                                                        ……………… (1.1) 

Where, k and k' are spring constants, x is the displacement of the spring. If positive 

(+) sign is used the spring is called hard. For soft spring, negative (–) sign is used. 

The static load-displacement curve for hard spring shows the slope increases as the 

load increases. Similarly the load – displacement curve for a soft spring shows that the slope 

decreases as the load increases. Similarly for nonlinear dampers,  

Damper force = 2xxcxc && ′±                                                               ……………. (1.2) 

Where, c and c′are damping constants, x&  is the velocity of the moving body. Hard and soft 

dampers follow similar relations like hard and soft springs respectively [Timoshenko (1974)]. 
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1.4 Van der Pol Equation 

One of the interesting non-linear equations that has been studied extensively is the 

Van der Pol equation. 

 

where x is the position coordinate — which is a function of the time t, and μ is a scalar 

parameter indicating the strength of the damping. 

This equation somewhat resembles that of free vibration of a spring-mass system with 

viscous damping; however, the damping term of this equation is non-linear in that it depends 

on both the velocity and displacement. 

Oscillation of the Van der Pol equation is one of many examples of self-excited 

vibration. In dynamics, the Van der Pol oscillator is a non-conservative oscillator with non-

linear damping. It evolves in time according to the second order Van der Pol differential 

equation. 

Two interesting regimes for the characteristics of the unforced oscillator are:  

• When μ = 0, i.e. there is no damping function, the equation becomes: 

 

 

This is a form of the simple harmonic oscillator and there is always conservation of 

energy. 

• When μ > 0, the system will enter a limit cycle, where energy continues to be 

conserved. Near the origin � ̇  = dx/dt = 0 the system is unstable, and far from the 

origin the system is damped. Energy can be lost or gained, and work is done, if the 

system does not enter a limit cycle immediately. 
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1.5 Phase Plane 

A phase plane is a visual display of certain characteristics of certain kinds of 

differential equations. In an autonomous system, time t does not appear explicitly in the 

differential equation of motion. Thus, only the differential of time, dt appears in such 

equation.  

If the differential equation of an autonomous system be  

� ̈ + � (� , � ̇ ) = 0 

Where � (� , � ̇ ) can be a non-linear function of �  and � ̇ . In the method of state space, the 

differential equation is expressed in terms of two first-order differential equations as follow: 

� ̇ = �    and   � ̇ = −� (� , � ) 

If x and y are Cartesian coordinates, the xy-plane is called the phase plane. The state of the 

system is defined by the coordinate x and � = � ̇  , which represents a point on the phase 

plane. As the state of the system changes, the point on the phase plane moves, thereby 

generating a curve that is called the trajectory. 

Phase planes are useful in visualizing the behavior of physical systems; in particular, 

of oscillatory systems such as Van der Pol oscillator. This "spiral in" towards zero, "spiral 

out" towards infinity, or reach neutrally stable situations called centers where the path traced 

out can be circular, elliptical, or ovoid, or some variant thereof. This is useful in determining 

if the dynamics are stable or not. 

1.6 Isocline  

An Isocline is a series of lines with the same slope. It is often used as a graphical 

method of solving ordinary differential equations. In an equation of the form � ̇ = � (� , � ), the 

isoclines are lines in the (x, y) plane obtained by setting f(x,y) equal to a constant. This gives a 

series of lines (for different constants) along which the solution curves have the same 

gradient. By calculating this gradient for each isocline, the slope field can be visualized; 

making it relatively easy to sketch approximate solution curves as shown in the following 

figure. 
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Figure 1.1 : Isoclines 

 

1.7 Objectives with specific aims and possible outcomes: 

In studies of non-linear self-excited vibrations, usually initial value problems were 

solved. But present work aims to solve both boundary and initial value problems for non-

linear self-excited vibratory systems. Multi-segment integration technique [Kalnins and 

Lestingi (1967)] that helps to directly visualize the system’s response with time would be 

very useful, in particular for the present study, when a boundary value problem is dealt with. 

Very recently Rahman and Ahmed (2009) and Ahmed (2009) used this method for stability 

analysis of vibration absorbers in terms of nonlinear boundary value problem. Therefore, 

objectives of this study can be described as below: 

a) To study the nonlinear dynamic behavior of MDOFS varying the nonlinearity of self-

excited vibrations. Similarly, springs and dampers can also be varied to incorporate 

different types of linear or nonlinear combinations.  

b) To study the effect of changing boundary conditions on the system’s response.  

c) To investigate the deviation of the system from stable to unstable conditions and from 

unstable to stable conditions. 

d) To find the response of the system for different mass ratios and spring constant ratios.  

e) To find out the parameters that would make the self-excited vibrations unbounded and 

those that are beneficial. This will help to visualize the self-excited vibration 

suppression parameters. 
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f) Soundness of the code will be checked by comparing the available exact result for the 

case of self-excited vibrations given by Thomson and Dahleh (2003). 

  

It will be possible to elaborately focus on the strategy to suppress the self-excited 

vibrations. Eventually this will be a handy tool for a self-excited vibration control scheme. 

Additionally, the effect of different types of nonlinearities on the stability of the system can 

be also studied. In future, the developed computer code can be extended to study self-excited 

vibrations of continuous systems.  

1.8 Outline of Methodology: 

 A generalized computer code will be developed for nonlinear self-excited vibration 

analysis of a multiple degrees of freedom system having either linear or nonlinear springs and 

dampers. Computer coding will be done using Turbo C. Multi-segment method of integration 

developed by Kalnins and Lestingi (1967) will be used to solve the coupled nonlinear 

differential equations as boundary value problems.  Specialty of this method is that the given 

interval of the independent variable is divided into finite number of segments. Next, initial 

value integration is performed over each segment followed by a solution of a system of 

matrix equations to ensure continuity of the dependent variables at all the nodal points.  Steps 

are repeated until continuity of the dependent variables at the nodal points is achieved. 

 

 

 

. 

 



10 

 

  CHAPTER 2 

LITERATURE REVIEW 

Self-excited vibrations are often encountered in practice, with detrimental effects such as 

excessive wear of components, surface damage, fatigue failure and noise generation. To 

analyze the self-excited vibrations and to illustrate the effectiveness of the active vibration 

isolation in some linear self-excited systems (such as structures subject to flutter, rotor 

machines and tubes conveying fluid), various scholars tried in various ways. 

Asfar and Akour (2005) presented a numerical study for the suppression of self-excited 

vibrations represented by a Rayleigh oscillator using an impact viscous damper. A systematic 

approach based on a univariate search optimization method was used to determine the best 

design parameters for suppressing self-excited vibrations and thus Optimum parameters for 

complete quenching of such vibrations were obtained. Their suggested system has been found 

to be effective in suppressing this type of vibration. 

Chatterjee (2007) introduced a new method of controlling friction-driven self-excited 

vibration. The control law was primarily derived using the Lyapunov's second method. A 

single degree-of-freedom oscillator on a moving belt represented the primary model of the 

considered system. The control action was achieved by modulating the normal load at the 

frictional interface based on the state of the oscillatory system. The basic mechanism of the 

control action utilized subcritical Hopf bifurcation of the equilibrium followed by cyclic-fold 

bifurcation (of limit cycle oscillations) to globally stabilize the equilibrium.  An approximate 

method for estimating the critical value of the control parameter that ensures global stability 

of the equilibrium was also proposed. 

By using the method of multiple scales, various resonances were analyzed by Plaut and 

Limam (1991) to determine steady state response- amplitudes of a class of self-excited 

mechanical or structural systems having an arbitrary number of generalized co-ordinates and 

subjected to parametric excitation and were plotted as functions of a detuning parameter, 

excitation amplitudes. The equations of motion included weak quadratic and cubic non-

linearities in the stiffness, small “negative” linear damping terms, and small “positive” cubic 

damping terms. Special cases were Van der Pol's equation and Rayleigh's equation. The 

parametric excitation included multiple frequencies 

Stability investigations on vibration suppression employing the concept of actuators with 

variable stiffness and damping elements were presented by Dohnal (2007). Systems subjected 

to self-excitation as well as parametric excitation by simultaneous stiffness and damping 

variation with two and more degrees of freedom with linear spring- and damping-elements 

were considered. 

Expressing the self-excitation in differential equations by a non-linear term of the second 

power, a two-mass system, consisting of a self-excited basic system was analyzed by Pust 
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and  Tondl (2008) to investigate the efficiency of the self-excited vibration suppressing of 

different positive damping components by means of analytical and numerical solution. Zhu et 

al. (2004) extensively studied nonlinear response of two degrees of freedom (2DOF) 

vibration system with nonlinear damping and nonlinear springs. 

Tondl and Nabergoj (2004) examined a three-mass chain system in detail to deal with the 

quenching of self-excited vibrations by means of parametric excitation due to periodic 

variation of spring stiffness. They showed that the self-excitation can be fully or partly 

suppressed in a particular frequency interval. 

A possibility of generating stable multi-frequency almost-periodic limit cycles in n-degree-

of-freedom self-excited systems with non-linear forces was investigated by Rudowski (1982) 

using analytical approximate methods. He analyzed several examples of two-degree-of-

freedom systems with Van der Pol terms in detail. He considered the effect of non-linear 

restoring forces and proved the possibility of occurrence of multi-frequency limit cycles 

through analytical methods and confirmed by analogue computer results. 

Dweib and D'Souza (1990) conducted  an experimental investigation in the laboratory to 

study self-excited vibrations  induced by dry friction. They analyzed the waveforms of the 

self-excited vibrations and proposed a mathematical model of the contact, including non-

linear contact stiffness and damping based on experimental data. This model of contact 

mechanics is necessary for stability analysis. They also conducted a parametric study to 

assess the influence of the system parameters on the stability of the steady state sliding 

motion. The method of triple-input describing functions is used with a non-linear model to 

analyze the resulting self-excited vibrations.  

Dohnal (2007) investigated the stability on vibration suppression employing the concept of 

actuators with variable stiffness and damping elements considering systems with two and 

more degrees of freedom with linear spring and damping elements and systems subjected to 

self-excitation as well as parametric excitation by simultaneous stiffness and damping 

variation. The general conditions for full vibration suppression were also derived analytically.  

Tondl (1975) presented an analysis of the possibility of initiation of two-frequency self-

excited vibrations. 

A novel nonlinear method called the Constrained Harmonic Balance Method (CHBM) was 

presented by Coudeyras et al.  (2009) that works for nonlinear systems subject to flutter 

instability. By an analysis of disc brake squeal, they also performed both stability and non-

linear analysis.  

For the rolling slipping state of a main drive system, Wang and Wang (1998) established the 

nonlinear mechanical model of the main drive system and used the Krilov–Bogolubov 

method to produce the solution of the nonlinear mechanical model and ascertained the 

condition of generating self-excited vibration. 
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Analyzing the dynamic properties of the rotor on which the fluid force and the impact force 

(due to mass variation) act, the conditions of stable rotation were obtained by Cveticanin 

(1998)  applying the direct Lyapunov theorem. The self-excited vibrations were determined 

analytically. Analyzing the amplitude of self-excited vibrations, the conditions of unstable 

motion were also defined. 

Uczko (2002) introduced a geometrically non-linear model of the rotating shaft and this 

model was used to analyze the phenomenon of internal resonance and the influence of some 

of the system's parameters on the amplitude and frequency of self-excited vibration. 

McMillan (1997) attempted to develop a dynamical system considering the phenomenon of 

squeal simplified the vibrating structure to that of a block resting on a moving conveyor belt 

restrained by a simple spring and dashpot to a rigid wall. Asfar et al. (1982) analyzed the 

response to multi-frequency excitation of a two-degree-of-freedom self-excited system by 

using the method of multiple scales. Steady state and stability analyses were carried out for 

each case and numerical results were presented showing the influences of the several 

parameters. 

A universal active vibration isolation strategy was presented by Kravchenko (1994). The 

applications of this strategy to linear and parametrically self-excited structures were also 

investigated. Sinou and Jézéquel (2007) investigated qualitative aspects of mode-coupling 

instability of self-excited friction-induced oscillations in the presence of structural damping 

and a cubic nonlinearity examining the influence of structural damping on limit cycle 

amplitudes in order to achieve a complete design including not only the evolution of 

stable/unstable areas but also the evolution of limit cycle amplitudes as functions of the 

structural damping and nonlinear system parameter. 

The time-dependent amplitude response of the self-excited harmonium reed vibrating at finite 

amplitudes was investigated by Hilaire (1976) both analytically and experimentally. Asrar 

(1991) used the method of multiple scales to study the response of two-degree-of-freedom 

systems with quadratic non-linearities under the simultaneous effects of a harmonic 

parametric excitation and self- excitation. The stability of the system was also studied and 

amplitude and frequency response curves were presented for both cases. 

Practically self-excited vibration problems become nonlinear in nature as amplitude of 

oscillation becomes large [Ahmed (2009), Rahman et al. (2009)]. Nonlinear problems, 

usually having no closed form solutions, are always challenges for practicing engineers. Two 

widely used solution techniques are perturbation and iteration methods [Thomson and Dahleh 

(2003) and Zhu et al. (2004)] for the cases of nonlinear vibrations. Superposition principle 

cannot be applied and therefore different mathematical techniques are being tried to solve 

such problems. Any such numerical technique which makes the computation faster and yield 

reliable results under any practically possible boundary conditions (in terms of displacement, 

velocity etc., of the vibrating bodies), especially for MDOFS, would be much desirable.  
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Present work aims to solve both boundary and initial value problems for any system having 

MDOF undergoing self-excited vibration. A simple and direct method, like multi-segment 

integration technique, that helps to directly visualize the system’s response with time, would 

be very useful, in particular for the present study, when a boundary value problem is dealt 

with.  

Present investigation is to study the nonlinear dynamic behavior of self-excited vibration 

system having nonlinear spring with and without nonlinear damping but extensively varying 

the spring type for various values of self-exciting force factors. The solutions must be 

obtained solving highly nonlinear equations that are coupled. The problem is involved as the 

two boundary conditions are specified at two different times. 

With the background of all relevant works as cited in the list of references [1]-[37], the 

present work is likely to yield new and interesting results. 
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CHAPTER 3

GOVERNING EQUATIONS AND METHOD OF SOLUTION

3.1 Governing Equations

Several methods can be used to set up the differential equation of motion for any 

system subjected to vibration. One of the methods is the inspection of the forces involved, 

using Newton’s second law, with D’Alembert’s principle, and the fundamental properties of 

mass, stiffness and damping. For purposes of demonstration and discussion, the necessary 

concepts will be introduced primarily by working through the solution of a 2DOFS. All these 

ideas transfer to larger systems, but with the 2DOF model we can demonstrate the key ideas 

without the complications of the major algebraic and numerical demands made by the larger 

systems.

For the system shown in Figure 3.1, we can derive the coupled equations of motion 

using Newton’s Second Law of motion applied to a free body diagram for each mass, as 

shown in Figure 3.1. Governing equations of the system are derived from the free-body 

diagram [Thomson and Dahleh (2003), De Silva (2005)] given in Figure 3.1, considering 

nonlinear springs, nonlinear dampers and self-exciting forces acting on both masses. After 

rearranging and necessary transformation, 2nd order differential equations are converted to 

first order differential equations. By necessary partial differentiation with respect to initial 

conditions of the transformed variables, field equations for Multi-segment Integration 

Technique are formed.

3.1.1 Mathematical Models and Governing Equations

      Following Fig. 3.1, we get

Spring force for the 1st spring = 3
1111 xkxk                                    ……... (3.1)

Spring force for the 2nd spring=   3
212212 )( xxkxxk                      ………. (3.2)

Damping force for the 1st damper= 2
11111 xxcxc                                   ………. (3.3)

Damping force for the 2nd damper=     2
21212212 xxxxcxxc                       ……… (3.4)
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Fig.3.1 Arrangement of masses, springs and dampers for self-excited vibration of 2DOFS.

The equations of motion are as follows for  m1 and m2 , respectively, 

      
      1

2
21212212

3
212212

2
11111

3
111111 )(

Fxxxxcxxc

xxkxxkxxcxcxkxkxm








                       …..… (3.5)

         2

2

21212212

3

21221222 )( Fxxxxcxxcxxkxxkxm         …..… (3.6)

Here F1 and F2 are the generalized self-excited forces of the considered system.

1
2
1111111 xxxxF          ………… (3.7)

2
2
2222222 xxxxF                      ………….. (3.8)

If only α1 & α2 are nonzero, F1 and F2 are functions of displacements only. If only β1 & β2 are 
nonzero, F1 and F2 are functions of velocity only. If γ1 & γ2 are nonzero, F1 and F2 are 
functions of non-linear displacement term only.

Basic governing equations for 3DOFS are given in Appendix C. The developed code is given 

in Appendix D.

m2

k2, k′2 c2, c′2

x2

F2

F1
m1

k1, k′1 c1, c′1

k2, k′2 c2, c′2

x1

c2, c′2

F2

F1
x1

x2

k2 ,k′2

k1, k′1 c1, c′1

     m1

m2
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For using multi-segment method of integration, similar types of dependent variables 

will be of useful for forming systems of equations. So for transformations, 

let  11 yx  , 21
1 yx

dt

dx
  , 32 yx  , and  42

2 yx
dt

dx
 

With those transformations, Equations 3.5 and 3.6 become, 

        
      2

2
1121111

2
31422422

3
312312

2
12121

3
1111

2
1

yyyyFyyyycyyc

yykyykyycycykyk
dt

dy
m

 


                  ……… 

(3.9)

          
4

2
3242322

2
31422422

3
312312

4
2

yyyyF

yyyycyycyykyyk
dt

dy
m

 


  ……… (3.10) 

Rearrangement of Equation (3.9) & (3.10) gives, 

        
      

















2
31422422

3
312312

2
12121

3
11111

1

2 1

yyyycyyc

yykyykyycycykykF

mdt

dy
               

  ……… (3.11)

           2
31422422

3
3123122

2

4 1
yyyycyycyykyykF

mdt

dy
     …. (3.12)

The governing Equations (3.11) and (3.12) can now be rewritten as a set of four 
nonlinear first order ordinary differential equations (ODE) as follows: 

2
1 y

dt

dy
                  ………. (3.13)

        
      

















2
31422422

3
312312

2
12121

3
11111

1

2 1

yyyycyyc

yykyykyycycykykF

mdt

dy
          ……… (3.14)

4
3 y

dt

dy
       ………. (3.15)
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           2
31422422

3
3123122

2

4 1
yyyycyycyykyykF

mdt

dy
       …. (3.16)

The additional field equations, needed for multi-segment method of integration are derived 
now from Equations 3.13-3.16. This is done by differentiating both sides of Equations 3.13-
3.16, partially w.r.t.  y(a). For example, at first, 

)(1 ay


of Equation (11) gives

 2
1

1

1 )()(
y

aydt

dy

ay 














    or,  
)(

)(

)(

)(

1

2

1

1

ay

ty

ay

ty

dt

d















The symbol Y has been used for the partial derivative term of y (t) w.r.t.  y (a). So in 

general Y can be expressed as

)(

)(

ay

ty
Y

n

m
mn 




Finally we get the additional field equations that are actually the governing differential 

Equations of Y, as follows:

  2111 YY
dt

d


                
……….  (3.17)

Now 
)(1 ay


of Equation (3.14)

   
    
      






















































2
31422422

3
312312

2
12121

3
11111

11

2

1

1

)()(
yyyycyyc

yykyyk

yycycykykF

maydt

dy

ay
          Or,
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3111423124121
2

31241212

3111
2

31231112

1121121
2
1121111

2
111111121121

2
11211111

1

21

2

3

23)2(
1

YYyyyycYYyycYYc

YYyykYYk

YyycYycYcYykYkYyyYyYY

mdt

Yd


.….. (3.18)

Next, 
)(1 ay


of Equation (3.15)

 4
1

3

1 )()(
y

aydt

dy

ay 














or,  
)(

)(

)(

)(

1

4

1

3

ay

ty

ay

ty

dt

d















              

or,

  4131 YY
dt

d
                                                                                                             …….. (3.19)

Finally, 
)(1 ay


of Equation (3.16)

           






















 2

31422422
3

3123122
21

4

1

1

)()(
yyyycyycyykyykF

maydt

dy

ay

Or,

        
           

















3111423124121
2

31241212

3111
2

31231112314341
2
32412312

2

41

2

3)2(1

YYyyyycYYyycYYc

YYyykYYkYyyYyYY

mdt

Yd 

     ..….. (3.20)

Similarly 
)(2 ay


of Equations (3.13), (3.14), (3.15), (3.16) will give

  2212 YY
dt

d
                               ………. (3.21)



19

 
   

      
           


























3212423124222
2

31242222

3212
2

31232122

1221122
2
1122112

2
111211221122

2
11221121

1

22

2

3

23)2(
1

YYyyyycYYyycYYc

YYyykYYk

YyycYycYcYykYkYyyYyYY

mdt

Yd


………….. (3.22)

  4232 YY
dt

d
                          ………….. (3.23)

        
           

















3212423124222
2

31242222

3212
2

31232122324342
2
32422322

2

42

2

3)2(1

YYyyyycYYyycYYc

YYyykYYkYyyYyYY

mdt

Yd 

…………. (3.24)

It can be seen that every column of the governing equations of Y has similar form. 

Thus,  
)(3 ay


of Equations (3.13), (3.14), (3.15), (3.16) will give

  2313 YY
dt

d
                           …………. (3.25)

 
   

      
           


























3313423124323
2

31243232

3313
2

31233132

1321123
2
1123113

2
111311321123

2
11231131

1

23

2

3

23)2(
1

YYyyyycYYyycYYc

YYyykYYk

YyycYycYcYykYkYyyYyYY

mdt

Yd


………… (3.26)

  4333 YY
dt

d
                           …………. (3.27)

        
           

















3313423124323
2

31243232

3313
2

31233132334343
2
32432332

2

43

2

3)2(1

YYyyyycYYyycYYc

YYyykYYkYyyYyYY

mdt

Yd 

    ..…….. (3.28)

Finally, 
)(4 ay


of Equations (3.13), (3.14), (3.15), (3.16) will give

  2414 YY
dt

d
                           …………. (3.29)
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3414423124424
2

31244242

3414
2

31234142

1421124
2
1124114

2
111411421124

2
11241141

1

24

2

3

23)2(
1

YYyyyycYYyycYYc

YYyykYYk

YyycYycYcYykYkYyyYyYY

mdt

Yd


…………… (3.30)

  4434 YY
dt

d
                           …………. (3.31)

        
           

















3414423124424
2

31244242

3414
2

31234142344344
2
32442342

2

44

2

3)2(1

YYyyyycYYyycYYc

YYyykYYkYyyYyYY

mdt

Yd 

………….. (3.32)

These governing Equations (3.13 – 3.32) can be solved when the boundary conditions 
are specified. Equations of boundary conditions are described in the next section.
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3.1.2 Boundary Conditions:

For different cases and chosen parameters, arbitrarily chosen boundary conditions and 
results are given in Tables 1-16. Among those, Tables 3 & 9 (for 2DOFS) and Table 11 (for 
3DOFS) define the specific boundary conditions for BVP.  

According to the multi-segment method of integration (MSMI), the boundary conditions for 
any boundary value problem are arranged in the following matrix form,

CbByaAy  )()(                                                     …… (3.33)

The boundary conditions were chosen arbitrarily for this analysis since the devised program 

is capable to calculate the values of y for any specified boundary condition that is the primary 

objective of this analysis. For demonstrating the method of solution, a set of arbitrarily

chosen data [Table 9] used for the boundary value problem analysis, are as below:

y1 (a)= 0.01m; y3 (a)= 0.02 m; y2 (b)= 0.70 m/s; y4 (b)= 0.80 m/s.

The above boundary conditions are used for both undamped and damped self-excited

vibration analysis. 

           Fig.3.2 Prescribed boundary conditions at t (a) and t (b).

Fig. 3.2 specifies that it leads to a boundary value problem. 

  h=Δt

t
t=b  t=a   

y(t)
y1(a)
y3(a) y2(b)

y4(b)
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So the prescribed boundary conditions are, 
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And, matrices of Equation 19 are then as follows:
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where,  C   determines the arrangements of elements in matrices A and B. After deriving the 

governing Equations and the boundary condition (Equation 3.33) multi-segment integration 

technique is used to solve those equations as a boundary value problem. 

Solutions of the boundary value problem with any arbitrarily chosen boundary conditions are 

possible by the present method. 

Only for case (a) of self-excited vibration of 2DOFS, initial value problem (IVP) analysis has 

been performed. For this analysis, arbitrarily chosen boundary conditions for IVP are given in 

Table 5.

After deriving the governing Equations (3.13 – 3.32) and the boundary condition (Equation 

3.33), multi-segment integration technique is used to solve those equations as a boundary 

value problem.

Multi-segment Method of Integration can also be used as an IVP where the boundary 

conditions are as defined in Table 5.



23

3.2 Method of Solution

Vibration problem would become quite complicated if all the boundary conditions are

not specified at the same time reference. So along with conditions at initial time reference, 

some conditions are also specified at the final time reference. This type of problem needs to 

simultaneously solve a large number of nonlinear equations that depends on the number of 

intermediate grid points in between the two time references. Though, Newton-Raphson 

method can be used to solve that large number of equations, there are chances of non-

convergence of solutions. Therefore Multi-segment Integration Technique developed by 

Kalnins and Lestingi (1967) has been used in the present study to solve the equations derived 

in previous section of this chapter. 

3.2.1 Multi-segment Integration Technique

At first the mth order ordinary differential equation (ODE) is reduced to ‘m’ first order 

ODE. Then the scheme of multi-segment method of integration of a system of m first order 

ordinary differential equations is as follows:

 )(......,),........(),(,
)( 21 xyxyxyxF

dx

xdy m                                          ..……… (3.34)

in the interval (x1<x<xM+1) consists of 

a. the division of the given interval into M segments;

b. (m+1) initial value integrations over each segment by fourth order Runge-Kutta 

method in this study ;

c. solution of a system of matrix equations to ensure continuity of the dependent 

variables at the nodal points;

d. repetition of (b) and (c) until continuity of the independent variables at  the nodal 

points is achieved.

In Eq. (3.34) the symbol y(x) denotes column matrix whose elements are m dependent 

variables, denoted by yj(x)(j=1,2,3 …., m); F represents m functions arranged in a column 

matrix form; and x is the independent variable. Here for convenience the first m/2 elements of 

y(x1) and the last m/2 elements of y(xM+1) are prescribed by the boundary conditions.

If at the initial point xi of the segment Si a set of values y(xi) is prescribed for the variables of 

Eqs. (3.34) then the variables at any x within Si can be expressed as
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)](.......,),........(),([)( 21
j

m
ii xyxyxyTxy                                                       ….……. (3.35)

where the function T is uniquely dependent on x and the system of m first order ordinary 

differential equations. From Eqs. (3.35) the expressions for the small changes δy(x) can be 

expressed, to a first approximation, by the following linear equations:

)()()( ii xyxYxy                                                                                             ………. (3.36)

where,

)(xYi =
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                          …………. (3.37)

Expressing Eqs. (3.36) in finite difference form and evaluating them at x = xi+1, 

)]()()[()()( 111 ii
t

iiii
t xyxyxYxyxy                                                     …………. (3.38)

where yt denotes a trial solution state and y denotes an iterated solution state based on the 

condition of continuity of the variables at the nodal points. Eq. (3.38) is rearranged as

)()()()( 111   iiiiii xZxyxyxY                                                          …………….. (3.39)

where,  )()()()( 111 i
t

iii
t

ii xyxYxyxZ  

In order to determine the coefficients Yi(x) in Eqs. (3.39) in the jth column of Yi(x) can be 

regarded as a set of new variables, which is solution of an initial value problem governed 

within each segment by a linear system of first order differential equations, obtained from 

Eqs. (3.34) by differentiation with respect to yj(xi) in the form
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  )(...,),........(),(,
)()(

)( 21 xyxyxyxF
xyxy

xy

dx

d m

i
j

i
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                           ………… (3.40)

thus the columns of the matrix Yi(x) are defined as the solutions of m initial value problems 

governed in Si by (3.40), with j=1, 2, ……..,m where the initial values, in view of Eqs. (3.36), 

are given by 

IxY ii )(                                                                                                    ………… (3.41)

where I denotes the (m,m) unit matrix. to obtain the iterated solution y(xi) Eqs. (3.39) are 

rewritten as a partitioned matrix product of the form
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so that the known boundary conditions are separated from the unknowns and, therefore, turns 

into a pair of equations given by 

)()()()()()( 1
1

1121
2

11
1

  iiiiiiiii xZxyxyxYxyxY

)()()()()()( 1
1

1121
4

11
3

  iiiiiiiii xZxyxyxYxyxY                           …………. (3.42)

The result is a simultaneous system of 2M linear matrix equations, in which the known 

coefficients Y1
j(xi+1) and Z1

j(xi+1) are (m/2,m/2) and (m/2,1) matrices, respectively, and the 

unknown, yj(xi) are (m/2,1) matrices. Since y1(x1) and y2(xM+1) are known, there are exactly 

2m unknowns: y1(xi), with i= 2,3,…..M+1, and y2(xi), with i=1,2,….,M.

By means of Gaussian elimination, the system of equations (40) is first brought to the form 

iiii AxyxyE   )()( 112

iiii BxyxyC   )()( 1211                                                                        …………… (3.43)

for i=1,2,….,M. Using the notations Z1
j and Y1

j in place of symbols Z1
j(xi+1) and Y1

j(xi+1), the 

(m/2,m/2) matrices Ei and Ci in the Eqs. (41) are defined by

,2
11 YE  12

1
4

11 )(  YYC
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and 1
1

12 
 iiii CYYE 12

1
34 )( 

 iiiii ECYYC

for i=2,3,……,M.

The (m/2, 1) matrices Ai and Bi are given by

),( 11
1

1
1
11 xyYZA 

,)( 1
1

1
4

111
2

1
2

11 AEYxyYZB 

,1
1
1

1
1

1



 iiii BCYZA

,)( 11
1

34
1

1
1

32
iiiiiiiiii AECYYBCYZb 



 

for i=2,3,…..,M.

then the unknowns of (3.42) are obtained by

)],([)( 12111   MMMM xyBCxy

],)([)( 1112 MMMM AxyExy  

and ],)([)( 12
1

11 iMiMiMiM NxyCxy 

 

],)([)( 11
1

2 iMiMiMiM AxyExy 

 

for i=2,3,…….,M-1.

Assuming y(xi) as the next trial solution yt(xi) the process is repeated until the integration 
results of Eqs. (3.34) at xi+1, as obtained from the integrations in segment Si with the initial 
values y(xi), match with the elements of y(xi+1) as obtained from (3.39) and also with the 
boundary conditions at xM+1. But it is worth mentioning that number of segment, that is, M
has been kept to one in this thesis to get the results and these are also reliable.
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CHAPTER 4 

RESULTS AND DISCUSSION 

Self-excited vibration analysis is performed using the results obtained from the developed 

code using Turbo C for different cases considering self-excited force function and various 

combinations of springs and dampers. In section 4.1 soundness of the code is demonstrated by 

comparing the results for Van Der Pol’s equation from Thompson and Dahleh (2003). Boundary 

conditions used for this validation are given in Table 1. 

Sections 4.2-4.3 discuss self-excited linear vibrations while sections 4.4-4.7 & 4.9 discuss the 

effect of non-linearity on self-excited vibrations. 

Three cases (cases (a) - (c) from Table 2) are considered to analyze 2DOFS undamped self-

excited vibration. Using boundary conditions given in Table 3, boundary value problem (BVP) 

analysis method is applied to analyze undamped self-excited vibration taking eight different sets 

of data of various parameters from Table 4. So for every case, eight figures [(i) – (viii)] of the 

response are drawn according to eight sets of data from Table 4.  

Initial value problem (IVP) analysis method is applied for only case (a). Boundary conditions and 

values of various parameters for this analysis are given in Table 5 and Table 6 respectively. For 

case (a), comparison is done between the responses of the system obtained from BVP and IVP 

analysis methods.   

Choosing different combinations of mass, spring constant and self-excited force coefficients, 

figures [figures 4.8(i) - 4.8(viii), 4.9, 4.10(i) - 4.10(viii), 4.11(i) - 4.11(viii) and figures 1-7 of 

Appendix A] of the responses of undamped self-excited vibration of 2DOFS have been drawn for 

100 seconds for ease of comparison. Comparison between various cases has been done by the 

system’s amplitudes of vibration, frequency and phase planes. 

In Table 7, ratios of mass to spring constant are shown for various cases considered for undamped 

self-excited vibration analysis of 2DOFS. This ratio gives an idea of the system’s response for 

undamped case. For lower ratio, the system vibrates with higher amplitude and approaches to the 

more unstable condition. 

Four cases (cases (a) - (d) from Table 2) are considered to analyze damped self-excited 

vibration of both 2DOFS and 3DOFS by only BVP analysis method. For analyzing both linear 

and non-linear damped self-excited vibration, four different combinations of springs and dampers 

depending on nonlinearity are chosen as given in Table 8. Boundary conditions for BVP analysis 

method are given in Table 9 (2DOFS) and Table 11 (3DOFS). Values of various parameters in 

analyzing damped self-excited vibration are given in Table 10 (2DOFS) and Table 12 (3DOFS).   

For different combinations of mass, spring constant, damping constant, spring & damping 

nonlinearity and self-excited force coefficients, figures 4.12(a) – 4.12(d), 4.13(a) – 4.13(d), 

4.14(a)-4.14(b), 4.15(a)-4.15(b), 4.16(a)-4.16(d), 4.17(a)-4.17(d) and figures 1-12 of Appendix B 
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of the responses of self-excited vibration of 2DOFS have been drawn for 100 seconds considering 

two data sets. For data set 2 of Table 10, few curves [figures 4.13(d), 4.14(b), 4.15(b), 4.17(a) - 

4.17(d) and figures 4-6, 8, 10-12 of Appendix B] have been drawn for 40 seconds as the 

developed code can’t show the output due to the limitation of numerical solution through the code 

as only one segment is considered for calculation. For 3DOFS, responses have been drawn for 50 

seconds. Comparison between various cases has been done by the system’s amplitude of 

vibration, frequency and phase planes for various cases. 

In Table 13, some particular values of various parameters are given for which the system 

maintains stability. This gives an idea of choosing various parameters to make the system stable 

in case of damped self-excited vibration. Table 14 and Table 15 recapitulate the responses of the 

self-excited vibration of 2DOFS and 3DOFS respectively as described later.  

For damped self-excited vibration of 2DOFS, the system’s instability has also been 

analyzed taking into account the boundary conditions given in Table 9. This has been done 

through trial and error method. Values of various parameters are chosen arbitrarily and then after 

running the code, the responses are drawn and checked from the figures of the responses whether 

the system becomes unstable or not. For the system’s unstable conditions, few determined 

parameters are given in Table 16. This gives an outline of range of values of various parameters 

for system’s design to control vibration. 

  

4.1 Validity of the Code by Non-linear Analysis [Figures 4.1-4.7)] 

To validate the developed code, Van der Pol’s equation has been solved as SDOFS by 

means of non-linear BVP analysis method through the developed computer program written using 

the multi-segment method of integration for arbitrarily chosen boundary conditions given in Table 

1. The time period for this analysis has been chosen to be 100 s from ta = 0 s  to tb = 100 s.  

Figure 4.1 shows the exact solution of Van der Pol’s equation from Thomson and Dahleh (2003) 

when the damping term, µ is considered to be 1.0.  

For different values of damping term μ, six different isoclines curves [figures 4.2-4.7] have been 

plotted and from these curves, limit cycles are found. Values of  µ considered are 0.0, 0.25, 0.5, 

1.0, 2.0 and 3.0. For µ = 0.0, figure 4.3 shows that the isocline curve becomes a circle. 

Comparison between figure 4.1 and figure 4.2 clearly illustrates that multi-segment integration 

technique can present the proper result irrespective of chosen boundary conditions. This confirms 

the validity of the developed code.  

From these isoclines curves it is evident that for small oscillations (x < 1), the damping is negative 

and the amplitude increases with time. For x > 1, the damping is positive and the amplitude 

diminishes with time.   Form the exact result of Van der Pol’s equation given in Thomson and 

Dahleh (2003), it is clear that if the system is initiated with x (0) and � ̇ (0), the amplitude will 

increase or decrease depending on whether x is small or large and it will finally reach a stable 

state known as limit cycle.  
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Fig. 4.1 Exact solution of Van der Pol’s equation for µ= 1.0 given in Thomson and Dahleh (2003) 

 

 
 

 

Fig. 4.2 Solution of Van der Pol’s equation for µ= 1.0 by BVP analysis method 
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Fig. 4.3  Isocline curve for  µ = 0.0 

 

Fig.4.4  Isocline curve for  µ = 0.25 

 

Fig. 4.5 Isocline curve for µ = 0.50 
 

Fig. 4.6  Isocline curve for  µ = 2.0 

 

 

Fig. 4.7  Isocline curve for  µ = 3.0 

 

 

Fig. Solution of Van der Pol’s equation by BVP analysis method [Figs. 4.3- 4.7] 
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4.2 BVP analysis of Undamped Linear Self-excited Vibration of 2DOFS  

4.2.1 Self-excited force is function of only displacement 

         [Figures 4.8(i)-4.8(viii)] 

Figure 4.8(i) for f(d) and data set (i), shows that the system (both m1 and m2) is vibrating 

with almost similar amplitude throughout the entire period and maintaining a regular fashion. 

However, due to the decrement of the value of spring constant in data sets (ii) and (iii), the system 

[figures 4.8(ii) & 4.8(iii)] starts to vibrate with lower amplitude and also with lower frequency. In 

figure 4.8(iii), amplitude decreases more with the decrement of self-excited force coefficients (α1 

& α2) in data set (iii). 

Again with increment of spring constant from 10 (N/m) to 100 (N/m) and lowering values of α1 & 

α2  in data set (iv) of Table 4, both amplitude and frequency increase as shown in figure 4.8(iv). 

After the masses are increased in data sets (v) & (vi), then amplitude and frequency for 

both m1 and m2 again decrease. These are shown in figures 4.8(v) & 4.8(vi). 

Again with higher values of k1 & k2 and lower values of α1 & α2 (as in data sets (vii)) amplitude 

decreases and frequency of vibration increases as shown in figure 4.8(vii). But with the lower 

values of m1 & m2 in data set (viii), figure 4.8(viii) shows that though amplitude decreases but 

frequency drastically increases. 

 

 4.2.2 Self-excited force is function of only velocity [Figure 4.9] 

For this case when self-excited force is function of only velocity, response of the system 

for data set (vii) is given here and for other data sets (i) to (vi) and (viii), the system’s response are 

given in Appendix A ( Figures A(1) – A(7)). 

Figure 4.9 shows that the system continues steady state vibration for this case. So for data 

set (vii), the system does not approach stability. 

 

4.2.3 Self-excited force is function of both displacement and velocity 

         [Figures 4.10(i)-4.10(viii)] 

Figures 4.10(i) – 4.10(iv) for f(dv) and data sets (i) to (iv) show that the system tends to be 

unstable over the period. 

For increased values of m1 and m2 in data sets (v) to (vii), figures 4.10(v)-4.10(vii) illustrate that 

the system vibrates at a stable manner. 

 For data set (viii) with higher values of both m1 and m2 and spring constants k1 and k2, the 

amplitude is much lower but gradually the system goes to unstable condition as shown in figure 

4.10(viii). 
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4.2.4 Comparison of responses of the system for BVP and IVP analysis method    

         for undamped linear self-excited vibration of 2DOFS (considering f(d)). 

The case (a) from Table 2 has been solved considering IVP analysis method. Boundary conditions 

for IVP and BVP are different. But the curves of the system’s responses from IVP analysis 

[figures 4.11(i)-4.11(viii)] and from BVP analysis [figures. 4.8(i)-4.8(viii)] show that both IVP 

and BVP method give the similar result for various cases. There is no major change in output for 

these two methods. This indicates that the response of the vibratory system is independent of the 

chosen boundary conditions.  

 

4.3 Comparison among the responses of undamped linear self-excited vibration of 2DOFS 

for cases (a)-(d)  

4.3.1 Case (a) [Figures 4.8(i)-4.8(viii)]:  

At first variation in vibration pattern is observed for undamped self-excited vibration for 

f(d), that is, self-excited vibration is a function of only displacement for all the different data sets 

from Table 4.  

Figure 4.8(i) for data set (i) shows that both m1 and m2 vibrate with higher frequency as for 

this case the values of spring constants are k1 =100 N/m and k2= 100 N/m. But for data set (ii) of 

Table 4, the masses vibrate with lower frequency as shown in figure 4.8(ii). This implies that 

increment of spring constant without any change in mass decreases frequency of the system. This 

type of vibration with higher frequency is also seen in figures 4.8(iv), 4.8(vii) and 4.8(viii).   

  For both data set (iv) and (v), spring constant is same, but figure 4.8(iv) for data set (iv) 

shows higher frequency of vibration than figure 4.8(v) for data set (v). So pattern of vibration 

mostly depends on the ratio of both mass and spring constant. When the mass to spring constant 

ratio is very low (Table 7), frequency of vibration is much higher. This can be understood from 

figures 4.8(i), 4.8(iv), 4.8(vii) and 4.8(viii). Their phase planes also show the proof of higher 

frequency of vibration. 

For f(d), both m1 and m2 maintain almost steady vibration throughout the entire considered 

period. So without damping, the system maintains steady vibration when the self-excited force is 

considered as of function of only displacement.  

 

4.3.2 Comparison of case (a) [Figures 4.8(i)-4.8(viii)] with case (b)  

          [Figure 4.9 and Figures A(1)- A(7) of Appendix A]: 

When the self-excited force is taken as a function of velocity, the system shows rapid 

occurrence of instability ( Figures A(1) – A(4)).  

             Figures A(1)-A(4) for data set (i) to (iv) and A(8) for data set (viii) from Table 4 show 

that vibration amplitudes of both m1 and m2 increase rapidly and approach to more unstable 

condition. Phase planes of figures A(2) to A(4) proves the system’s greater instability. But figures 
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4.8(v)-4.8(vii), 4.9 and A(5)-A(6) for data sets (v), (vi) and (vii) from Table 4, no significant 

variation of vibration pattern is seen between the two cases (a) and (b). Increase of mass with no 

significant increase of spring constant causes this similar type of vibration for f(d). So if the mass 

to spring constant ratio approaches to unity (Table 7), the system shows steady vibration for the 

whole period.  

            4.3.3 Comparison of case (a), (b) and (c) [Figures 4.10(i)-4.10(viii)]: 

            For eight sets of data from Table 4 and for f(dv), the system shows almost similar type of 

responses as the responses for f(v). So it can be concluded that effect of displacement on self-

excited force is not so dominant over velocity. That’s why, the system presents alike vibration for 

both the cases when self-excited force is function of only velocity and of both displacement and 

velocity. 
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Figures of undamped self-excited vibration of 2DOFS (BVP) 
  Figs. 4.8(i) - 4.8(viii) drawn using data sets (i) - (viii) of Table 4 for f(d) of Table 2 

 
 
 

 

 

 

 
 
 
 

 

 
 
 

 
 

  

  
Fig. 4.8(i)   x vs. t curves for 100 s and phase planes   of m1 and m2   (for data set (i) and for  f(d))  

[m1=10kg, m2= 10kg, k1=100 N/m, k2=100 N/m , α1 = 0.3N/m , α2=0.3N/m] 

 

 
 

                

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120x 1
( 

m
)

t (s)
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 30 60 90 120x 2
(m

)

t ( s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.2 0 0.2 0.4

v 1
(m

/s
)

x1 (m)

-1.5

-1

-0.5

0

0.5

1

1.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

v 2
(m

/s
)

x2 (m)



35 
 

  

  
Fig. 4.8(ii)  x vs. t  curves for 100 s and phase planes   of m1 and m2  (for data set (ii) and for f(d)) 

[m1=10kg, m2= 10kg, k1=10 N/m, k2=10 N/m, α1 = 0.3 N/m ,α2=0.3 N/m]. 

 
 

 
 

Fig. 4.8(iii)  x vs. t curves of m1 and m2   (for data set (iii) and f(d)). 

[m1=10kg, m2= 10kg, k1=10 N/m, k2=10 N/m, α1 = 0.1 N/m ,α2=0.1 N/m] 
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Fig. 4.8(iv)  x vs. t curves of m1 and m2   (for data set (iv) and for f(d)) 

[ m1=10kg, m2= 10kg, k1=100 N/m, k2=100 N/m, α1 = 0.1 N/m ,α2=0.1 N/m] 

              

 

 
Fig. 4.8(v)  x vs. t curves of m1 and m2   (for data set (v) and f(d)) 

[ m1=100kg, m2= 100kg, k1=100 N/m, k2=100 N/m,  α1 = 0.1 N/m ,α2=0.1 N/m] 

                  

  
Fig. 4.8(vi)  x vs. t curves of m1 and m2   (for data set (vi) and for f(d)) 

[ m1=100kg, m2= 100kg, k1=100 N/m, k2=100 N/m,  α1 = 0.3 N/m ,α2=0.3 N/m] 
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Fig. 4.8(vii)  x vs. t curves of m1 and m2   (for data set (vii) and for f(d)) 

[ m1=100kg, m2= 100kg, k1=1000 N/m, k2=1000 N/m, α1 = 0.1 N/m ,α2=0.1 N/m] 

           
 

  

  
Fig. 4.8(viii)  x vs. t curves and phase planes  of m1 and m2    (for data set (viii) and for f(d)).   

[m1=10kg, m2= 10kg, k1=1000 N/m, k2=1000 N/m,  α1 = 0.1 N/m ,α2=0.1 N/m] 
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Figure of undamped self-excited vibration of 2DOFS (BVP) 
Fig. 4.9 drawn using data set (vii) of Table 4 for f(v) of Table 2 

  

 

  

 

Fig. 4.9  x vs. t curves  and phase planes of m1 and m2 (for data set (vii) and for f(v). 

[ m1=100kg, m2= 100kg, k1=1000 N/m, k2=1000 N/m, β1 = 0.1 Ns/m ,β2=0.1 Ns/m] 
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Figures of undamped self-excited vibration of 2DOFS (BVP) 
Figs. 4.10(i) - 4.10(viii) drawn using data sets (i) - (viii) of Table 4 for f(dv) of Table 2 

 
 

 

 

 

 

 

 

   

Fig. 4.10(i)  x vs. t curves and phase planes   of  m1 and m2   (for data set (i) and f(dv)). 

[ m1=10kg, m2= 10kg, k1=100 N/m, k2=100 N/m, α1=0.3 N/m, α2=0.3 N/m, β1 = 0.3 Ns/m , 

β2=0.3 Ns/m]  
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Fig. 4.10(ii)  x vs. t curves and phase planes  of  m1 and m2   (for data set (ii) and for f(dv)). 

[m1=10kg, m2= 10kg, k1=10 N/m, k2=10 N/m,α1=0.3 N/m, α2=0.3 N/m, β1 = 0.3 Ns/m , 

β2=0.3 Ns/m]  

  

Fig. 4.10 (iii)  x vs. t curve for  m1 and m2   (for data set (iii) and for f(dv))  

[m1=10kg, m2= 10kg, k1=10 N/m, k2=10 N/m,α1=0.1 N/m, α2=0.1 N/m,  β1 = 0.1 Ns/m , 

β2=0.1 Ns/m] 
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Fig. 4.10(iv)  x vs. t curves of  m1 and m2   (for data set (iv) and for f(dv)) [m1=10kg, m2= 10kg, 

k1=100 N/m, k2=100 N/m,α1=0.1 N/m, α2=0.1 N/m,    β1 = 0.1 Ns/m ,β2=0.1 Ns/m] 

  

Fig. 4.10(v)  x vs. t curves of  m1 and m2   (for data set (v) and for f(dv)) [m1=100kg, m2= 100kg, 

k1=100 N/m,k2=100 N/m,α1=0.1 N/m, α2=0.1 N/m, β1 = 0.1 Ns/m ,β2=0.1 Ns/m] 

  

Fig. 4.10(vi)  x vs. t curve for  m1 and m2   (for data set (vi) and for f(dv)) [ m1=100kg, m2= 100kg, 

k1=100 N/m, k2=100 N/m, α1=0.3 N/m, α2=0.3 N/m,    β1 = 0.3 Ns/m ,β2=0.3 Ns/m]  
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Fig. 4.10(vii)  x vs. t curve for  m1 and m2   (for data set (vii) and for f(dv)) [m1=100kg, m2= 

100kg, k1=1000 N/m, k2=1000 N/m, α1=0.1 N/m, α2=0.1 N/m, β1 = 0.1 Ns/m ,β2=0.1 Ns/m] 

 

  

Fig. 4.10(viii)  x vs. t curve and phase planes   for  m1 and m2 (for data set (viii)   

     and  for f(dv)) [m1=10kg, m2= 10kg, k1=1000 N/m, k2=1000 N/m,α1=0.1 N/m, α2=0.1 N/m, 

  β1 = 0.1 Ns/m ,β2=0.1 Ns/m] 

. 
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Figures of undamped self-excited vibration of 2DOFS (IVP) 
Figs. 4.11(i) - 4.11(viii) drawn using data sets (i) - (viii) of Table 6 for f(d) of Table 2 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.11(i)  x vs. t  curves  and phase planes   of  m1 and m2   (for data set (i) and for f(d)).  

[ m1=10kg, m2= 10kg, k1=100 N/m, k2=100 N/m, α1=0.3 N/m, α2=0.3 N/m] 
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Fig. 4.11(ii)  x vs. t curve  and phase planes   for  m1 and m2   (for data set (ii) and for f(d)).  

[ m1=10kg, m2= 10kg, k1=10 N/m, k2=10 N/m, α1=0.3 N/m, α2=0.3 N/m] 

  

Fig. 4.11(iii)  x vs. t curve for  m1 and m2   (for data set (iii) and for f(d))  

[ m1=10kg, m2= 10kg, k1=10 N/m, k2=10 N/m, α1=0.1 N/m, α2=0.1 N/m] 
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Fig. 4.11(iv)  x vs. t curves of  m1 and m2    (for data set (iv) and  for f(d))  

[ m1=10kg, m2= 10kg, k1=100 N/m, k2=100 N/m, α1=0.1 N/m, α2=0.1 N/m] 

  

Fig. 4.11(v)  x vs. t curves of  m1 and m2   (for data set (v) and  for f(d))  

[ m1=100kg, m2= 100kg, k1=100 N/m, k2=100 N/m,α1=0.1 N/m, α2=0.1 N/m] 

 

  

Fig. 4.11(vi)  x vs. t curves of  m1 and m2    (for data set (vi) and for f(d))  

[ m1=100kg, m2= 100kg, k1=100 N/m, k2=100 N/m, α1=0.3 N/m, α2=0.3 N/m] 
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Fig. 4.11(vii)  x vs. t  curves of  m1 and m2   (for data set (vii) and for f(d)) 

[ m1=100kg, m2= 100kg, k1=1000 N/m, k2=1000 N/m, α1=0.1 N/m, α2=0.1 N/m]  

 

  

  

Fig. 4.11(viii)  x vs. t curves  and phase planes   of  m1 and m2   (for data set (viii) and for f(d)). 

[ m1=10kg, m2= 10kg, k1=1000 N/m, k2=1000 N/m,  α1=0.1 N/m, α2=0.1 N/m] 
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4.4 Analysis of Damped Self-excited Vibration of 2DOFS 

This section includes effect of non-linearity on the system’s response. For analyzing the 

damped self-excited vibration of 2DOFS, BVP method has been used to determine the responses 

for self-excited vibration of 2DOFS.  Four different combinations (1-4) from Table 8 of both 

linear and nonlinear springs and dampers have been considered for analysis.  For each 

combination, four different cases ((a)-(d)) from Table 2 are incorporated into calculation. 

Calculations have been performed using two sets of data for various parameters (Table 10).  

 

  4.4.1 Response of 2DOFS for the combination of linear springs and linear dampers 

[Figures 4.12(a)-4.12(d) and Figures 4.13(a)-4.13(d)] 

For data set 1 of Table 10 and cases (a) – (d) from Table 2, the response of damped self-

excited vibration of 2DOFS has been shown through amplitude of vibration with time in figures 

4.12(a) to 4.12(d) and phase planes for cases (a), (c) and (d) are also drawn.     

Figure 4.12(a) for f(d) shows that m1 vibrates with smaller amplitude and gradually approaches to 

stability. Within the time span of 100 seconds, x1 finally reaches to 0.00289 m and in this way, the 

system’s amplitude tends to zero after certain time. So for this condition,  

the system becomes stable. On the other hand, m2 in figure 4.12(a) vibrates at higher amplitude 

than m1. However, the amplitude gradually decreases and hence the system approaches to stability 

although more time is required to be stable.  

Similar types of response are found for all other three cases [(b) – (d) of Table 2] when 

combination of linear springs and linear dampers are used.  Figures from 4.12(b) to 4.12(d) show 

the x-t curves for these three cases.  

For data set 2 of Table 10, the responses of damped self-excited vibration of 2DOFS for 

four cases [(a) - (d) from Table 2] are shown in figures. 4.13(a) to 4.13(d) through x vs. t curves 

and phase planes for both m1 and m2. In figure 4.13(a) for f(d), the amplitude of m1 is very high 

initially but gradually it decreases and after 40 seconds, the system finally reaches to stability. 

Although the m1 is same here, but due to increase of spring constant in data set 2 of Table 10, the 

system approaches to stability very soon. The amplitude of vibration is noticed to be high for data 

set 2. From figure 4.13(a), it is clear that although amplitude is higher at first, but within small 

time, the system approaches stability. But figure 4.12(a) for data set 1 reveals that the system 

takes much time to be stable. For data set 2, similar response for other three cases [(b),(c) & (d)] 

are observed for m1 as shown in figures 4.13(b) and 4.13(c).  

But for data set 2 for this combination of linear springs and linear dampers, m2 shows an 

irregular behavior as seen from figure 4.13(a). From figure 4.13(a) for m2 For first 20 seconds, m2 

vibrates with high frequency. However, later m2 starts to vibrate at relatively lower amplitude and 

with lower frequency and then gradually reaches stable condition. 
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Figure 4.13(b) for f(v) indicates that the amplitude of m2 is quite low relative to other cases. 

Response of m2 is similar to other two cases as shown in figures 4.13(c) and 4.13(d).  In figure 

4.13(d), m2 vibrates in an irregular fashion for first 20 seconds. After 20 seconds, m2 maintains 

stable amplitude of vibration and up to 40 seconds, the system maintains steady vibration.  

For f(n), the responses of damped self-excited vibration of m1 and m2 are shown only for 

40 seconds as the developed computer code for the chosen conditions does not give the regular 

values after more than 40 seconds. This is due to that fact that considered numerical technique 

can’t solve after that period of time and hence abnormal results are shown. Therefore, figure 

4.13(d) for f(n) are drawn for only 40 seconds. That means the system’s response for f(n) can be 

drawn for only 40 seconds with the results obtained from developed computer code for considered 

values of parameters.  

Having analyzed x-t curves for this combination of linear springs and linear dampers, it would be 

easy to comprehend the effect of spring nonlinearity on the system’s response by comparing with 

the result for the combination of non-linear spring and linear dampers.  

 

4.4.2 Response of 2DOFS for the combination of linear springs and non-linear 

dampers.  [Figures 4.14(a) and 4.14(b)] 

  Only for f(n) and data set 1of Table 10, the response of the system is shown in figure 

4.14(a). Again for f(n) and data set 2 of Table 10, the response is shown in figure 4.14(b). For 

other three cases (a - c), figures [B(1) –B(3) for data set 1 and B(4)-B(6) for data set 2]  are given 

in Appendix B. 

In figure 4.14(a) for f(n), the amplitude of vibration of m1 varies from 0.5 m to .008 m. Initially 

amplitude is high, but after 5 seconds, it decreases to around 0.2 m and gradually reaches to very 

low amplitude. This implies that the system approaches to stability after the period of 100 

seconds. On the other hand, m2 vibrates with relatively higher amplitude ranging from 0.5m to 

0.05 m. This implies that m2 takes much time to be stable.  

Figure 4.14(b) for data set 2 and f(n) shows the responses of the system for the combination of 

linear springs and non-linear dampers. Here the figures are drawn with the results of computer 

program for 40 seconds. 

In figure 4.14(b), m1 vibrates with high frequency for first 10 seconds, then its frequency 

decreases and maintains steady vibration with lower amplitude. On the other hand, m2 vibrates in 

a different way rather than m1. The response of m2 for f(n) is shown in figure 4.14(b).  The 

amplitude of vibration of m2 is quite low for this case.  

However, for f(n), m2 in figure 4.14(b) maintains a steady vibration and with time its amplitude 

does not show the decreasing trend. Therefore, for this case, m2 continues its vibration throughout 

the entire period. 
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4.4.3 Response of 2DOFS for the combination of non-linear springs and linear 

dampers. [Figures 4.15(a) and 4.15(b)] 

Only for f(n) and data set 1of Table 10, the response of the system is shown in figure 

4.15(a). Again for f(n) and data set 2 of Table 10, the response is shown in figure 4.15(b). For 

other three cases (a - c), figures [B(7) –B(9) for data set 1 and B(10)-B(12) for data set 2]  are 

given in Appendix B. 

In figure 4.15(a), m1 starts vibrating with the amplitude of 0.05 m and then finally decreases to 

0.01 m. Finally, the vibration of m1 moves towards stability after the period of 100 seconds. m2 

also vibrates in a similar fashion. But the amplitude of vibration of m2 decreases more slowly than 

that of m1. The response of m2 is just like as in combination of linear springs and linear dampers. 

Amplitude of vibration of m2 also varies from 0.05 m to 0.01 m.   

So for f(n), the responses of both m1 and m2 [figure 4.15(a)] are quite similar. 

For data set 2 and f(n), the responses of both m1 and m2 are shown in figure 4.15(b).  

In figure 4.15(b) , m1 vibrates with higher frequency and amplitude range of 0.07 m to 0.017 m 

for first 15 seconds. Then m1 maintains steady vibration with the reduction of amplitude and 

frequency. On the other hand, m2 continues vibration in steady state mood. m2 maintains almost 

constant amplitude of 0.025 m throughout the entire period. Therefore, for f(n), m2 never reaches 

to stability.  

 

      4.4.4 Response of 2DOFS for the combination of non-linear springs & non-linear    

               dampers. [Figures 4.16(a)-4.16(d) and Figures 4.17(a)-4.17(d)]  

For cases (a) to (d) from Table 2 and data set 1 of Table 10, the responses of the system 

are shown in figures 4.16(a) to 4.16(d).  Figures from 4.17(a) to 4.17(b) show the responses of the 

system for data set 2.  

From figure 4.16(a), it is seen that m1 vibrates with very low amplitude and frequency.  Though 

initially m1 starts to vibrate with amplitude of 0.04 m, but within few seconds, the amplitude of 

vibration suddenly drops to 0.0026 m and moves toward stability. But suddenly becomes unstable 

at t = 100 seconds. 

Similarly in figure 4.16(a), m2 also vibrates with very small amplitude and approaches to stability. 

The amplitude of vibration for m2 is higher than that of m1. This is due to the combination of 

nonlinear springs and nonlinear dampers.  

In figure 4.16(b) for f(v), amplitudes of vibration of both m1 and m2 are higher than in f(d).  But 

for both m1 and m2, the system approaches to stability after a certain period. 

Similar types of response for both m1 and m2 are found in figure 4.16(c) for f(dv) and figure 

4.16(d) for f(n) for data set 1. In every case (a-d) for data set 1, the system reaches to stable 

condition. 
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For data set 2 and all four cases (a - d) for this combination of non-linear springs and non-

linear dampers, different types of responses for both m1 and m2 are found from the figures 4.17(a) 

to 4.17(d). 

From figures 4.17(a) to 4.17(d) , it is clear that for all cases from (a) to (d), m1 vibrates with high 

frequency for first 15 seconds and then gradually its frequency decreases. The amplitude of 

vibration of m1 starts from 0.06 m and gradually it decreases and hence moves toward steady 

vibration. In figure 4.17(d) for f(n), the amplitude of m1 is very small compare to other three 

cases.  

On the other hand, for the combination of non-linear springs and non-linear dampers and for all 

four cases (a – d), m2 maintains a steady vibration throughout the entire period. The amplitude of 

vibration of m2 remains almost fixed at 0.02 m for cases (a) and (b) as shown in figures 4.17(a) 

and 4.17(b). But in figures 4.17(c) and 4.17(d) for cases (c) and (d), amplitude of m2 is much 

lower than in previous two cases (a - b). For cases (c) and (d), amplitude of m2 remains almost 

fixed at 0.002 m for the whole period. So for the combination of non-linear springs and non-linear 

damper and data set 2, the system never reaches to stability rather continues vibration although 

amplitude is very small. 

 

4.5 Comparison among the responses for four combinations (1- 4 of Table 8) of damped    

      self-excited vibration of 2DOFS  

 

For damped self-excited vibration of 2DOFS, four combinations (1- 4 of Table 8) of 

springs and dampers depending on nonlinearity and four cases (a - d from Table 2) depending on 

the type of self-excited vibration function (Table 2) are considered. For two sets of data from 

Table 10, responses of self-excited vibration of 2DOF have been drawn according to the sequence 

of combinations of springs and dampers from Table 8. 

 

   4.5.1 Combination of linear springs and linear dampers [Figures 4.12(a)-4.12(d) and 

4.13(a)-4.13(d)] 

For combination of linear springs and linear dampers, almost similar response is found for 

all four cases (a - d) when data set 1 from Table 10 is used for calculation. Figures 4.12(a) to 

4.12(d) show that the amplitude of vibration is mostly similar for every case for both m1 and m2.  

For data set 1, the system approaches to stability quickly.  

            But for data set 2 from Table 10, the system’s response for this combination is different 

from the response for data set 1. The amplitude of vibration of m1 quickly diminishes. It just takes 

20 seconds to reduce the vibration to almost zero. On the other hand, m2 presents high frequency 

vibration up to 20 seconds and then it maintains steady state vibration of very lower amplitude. So 

after few seconds, the system will become stable. This is due to the use of both linear springs and 
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dampers. With increase of spring constant in data set 2 of Table 10, the amplitude of vibration 

diminishes very quickly. 

  4.5.2 Combination of linear springs and non-linear dampers [Figures 4.14(a) & 4.14(b)   

           and Figures B(1)-B(6) from Appendix B] 

For the combination of linear springs and non-linear dampers and for data set 1 from Table 

10, the amplitudes of vibration of both m1 and m2 in figures B(1)-B(3) and figure 4.14(a) are 

analogous to those for data set 1 and the combination of linear springs and dampers. This implies 

that damper nonlinearity has no such apparent effect on the  response of self-excited vibration of 

the system. But for data set 2 and the combination of linear springs and non-linear dampers, the 

response of the system as shown in figures B(4)-B(6) and figure 4.14(b) is quite similar to that for 

the f(n) for combination of linear springs and linear dampers. Except in the figure 4.14(b) for f(n), 

the system shows very similar type of vibration. This implies that for combination of linear soft 

springs and non-linear soft dampers, the response of the system is independent of the self-excited 

force function whether it is function of displacement, velocity or both of displacement and 

velocity. Figure 4.17(b) for the f(n) shows that the system exhibits steady vibration and hence 

maintains instability. The different phenomenon for f(n) is mainly due to the nonlinear 

displacement term. 

 

4.5.3 Combination of non-linear springs and linear dampers [Figures 4.15(a) & 4.15(b)   

           and Figures B(7)-B(12) from Appendix B] 

For the combination of non-linear springs and linear dampers and data set 1 of Table 10, the 

system, in figures B(7) & B(8) for both f(d) and f(v), shows high frequency vibration for first few 

seconds and then approaches to stability with lower frequency as shown for the combination of 

linear springs and linear dampers or linear springs and non-linear dampers. But for f(dv) and (d) 

and for data set 1, the figures show shooting after the considered period of 100 seconds. The 

numerically developed code does not show the response of the system after that period. But if 

more segments are considered for calculation, then the response will be obtained after this period. 

But for data set 2 for the combination of non-linear springs and linear dampers, the system in 

figures B(10) - B(12) and figure 4.15(b) shows the response just like the f(n) of combination of 

linear springs and non-linear dampers and for data set 2. This implies that soft springs with non-

linearity ( from data set 2 of Table 10) lead to the more unstable state of the system although the 

spring constant is of higher value (k =1000 N/m). Comparison of the system’s response between 

the combination of linear spring and non-linear dampers [figures 4.14(a) & 4.14(b) and figures 

B(1)-B(6) from Appendix B] and non-linear spring and linear dampers [figures 4.15(a) & 4.15(b) 

and figures B(7)-B(12) from Appendix B] shows that spring non-linearity causes more instability 

of the system than the damper non-linearity. 
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4.5.4 Combination of non-linear springs and non-linear dampers [Figures 4.16(a)-4.16(d) & 

4.17(a)-4.17(d)] 

For the combination of non-linear springs and non-linear dampers and for data set 1 from 

Table 10, the vibration of both m1 and m2 in figures 4.16(a) to 4.16(d) follows the similar fashion 

as for the combination of linear springs and linear dampers or combination of linear springs and 

non-linear dampers for data set 1. So the system’s response, for hard springs and hard dampers 

(data set 1 from Table 10), is independent not only of combination of springs and dampers but 

also of the function of self-excited force.  

Again for this combination and for data set 2, pattern and amplitude of vibration in figures 4.17(a) 

to 4.17(d) are exactly same as for the combination of non-linear springs and dampers for data set 

2. This clearly implies that spring non-linearity is dominant over damper non-linearity for soft 

springs and dampers. 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

  

  
 
Fig. 4.12(a)   x vs. t curves  and  phase planes of  m1 and m2 for f(d)  using data set 1 of Table 10 for 

combination of linear springs and linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k2 =100 N/m, 

c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.20 N/m, α2 = 0.25 N/m]                    

  
 
Fig. 4.12(b)   x vs. t curves of  m1 and m2  for f(v) of  Table 2  using data set 1 of Table 10 for combination of 

linear springs and linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k2 =100 N/m, c1= 0.03 Ns/m, c2 

= 30.0 Ns/m, β1 = 0.10  Ns/m, β2 = 0.20 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 
 
 

  

  
 

Fig. 4.12(c)   x vs. t curves  and  phase planes of  m1 and m2 for f(dv) of Table 2 using data set 1 of Table 10 

for  combination of linear springs and linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k2 =100 

N/m, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.20 N/m, α2 = 0.25 N/m, β1 = 0.10  Ns/m, β2 = 0.20 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 
 
 

  

 
 
 
 

  
 
Fig. 4.12(d)   x vs. t curves  and  phase planes of m1 and m2 for f(n) of Table 2 using data set 1 of Table 10 for 

combination of linear springs and linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k2 =100 N/m, 

c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.20 N/m, α2 = 0.25 N/m, β1 = 0.10  Ns/m, β2 = 0.20 Ns/m , γ1 = 

0.001 Ns/m3, γ2 = 0.002 Ns/m3]. 
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Figures of damped self-excited vibration of 2DOFS (BVP) 

 
 

 
 
Fig. 4.13(a)   x vs. t curves and  phase planes of m1 and m2 for f(d)  of Table 2 using data set 2 of Table 

10 for combination of linear springs and linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, 

k2 =1000 N/m, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.15 N/m, α2 = 0.20 N/m] 

  

Fig. 4.13(b)   x vs. t curves of  m1 and m2  for f(v) of  Table 2 using data set 2 of Table 10 for                   
combination of linear springs and linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k2 

=1000 N/m, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m]. 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 
 

  

 
 

 

 
 

 

 
 

 
 
Fig. 4.13(c)   x vs. t curves  and  phase planes of  m1 and m2  for f(dv) of  Table 2 using data set 2 of  Table 10 

for combination of linear springs and linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k2 =1000 

N/m, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.15 N/m, α2 = 0.20 N/m, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 
Fig. 4.13(d)   x vs. t curves  and  phase planes of  m1 and m2for f(n) of  Table 2 using data set 2 of  Table 10 

for combination of linear springs and linear dampers  [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k2 =1000 

N/m, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.15 N/m, α2 = 0.20 N/m, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m, γ1 

= 0.015 Ns/m3, γ2 = 0.025 Ns/m3]. 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 
 
 

 

 
 

 

 
 
 

 

 
 

 

 
 
 

Fig. 4.14(a)   x vs. t curves and  phase planes of m1 and m2for f(n) of  Table 2 using data set 1 of Table 10 for 

combination of linear springs and non-linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k2 =100 

N/m, c1= 0.03 Ns/m, c'1 = 0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = 0.003 Ns/m3, α1 = 0.20 N/m, α2 = 0.25 

N/m, β1 = 0.10  Ns/m, β2 = 0.20 Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 Ns/m3]. 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 
 
 
 
 

 

 
 

 

 
 
 

 

 
 

 

 
 
 

 
                 
Fig. 4.14(b)   x vs. t curves and  phase planes of m1 and m2 for f(n) of  Table 2 using data set 2 of Table 10 for 

combination of linear springs and non-linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k2 

=1000 N/m, c1= 0.03 Ns/m, c'1 = -0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = -0.003 Ns/m3, α1 = 0.15 N/m, α2 = 

0.20 N/m, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m, γ1 = 0.015 Ns/m3, γ2 = 0.025 Ns/m3] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 

 
 

 

 
 
 
 

 

 
 
 

 

 
 

 

 
 
 

 
 
Fig. 4.15(a)   x vs. t curves and  phase planes of m1 and m2 for f(n) of Table 2 using data set 1 of Table 10 for  

combination of non-linear springs and linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k'1= 0.3 

N/m3, k2 =100 N/m, k'2 = 0.3 N/m3, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.20 N/m, α2 = 0.25 N/m, β1 = 

0.10  Ns/m, β2 = 0.20 Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 Ns/m3] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 
 
 
 

 

 
 

 

 
 
 

 

 
 

 

 
 
 

 
 
Fig. 4.15(b)   x vs. t curves and  phase planes of m1 and m2 for f(n) of  Table 2 using data set 2 of Table 10 for 

combination of non-linear springs and linear  dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k'1= -

0.3 N/m3, k2 =1000 N/m, k'2 = -0.3 N/m3, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.15 N/m, α2 = 0.20 N/m, 

β1 = 0.15  Ns/m, β2 = 0.25 Ns/m, γ1 = 0.015 Ns/m3, γ2 = 0.025 Ns/m3]. 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

  

  
Fig. 4.16(a)   x vs. t curves and  phase planes of m1 and m2 for f(d) of Table 2 using data set 1 of Table 10 for 

combination of non-linear springs and non-linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k'1= 

0.3 N/m3, k2 =100 N/m, k'2 = 0.3 N/m3, c1= 0.03 Ns/m, c'1 = 0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = 0.003 

Ns/m3, α1 = 0.20 N/m, α2 = 0.25 N/m] 

 
 

 
 

Fig. 4.16(b)   x vs. t curves of m1 and m2 for f(v) of Table 2 using data set 1 of Table 10 for combination of 

non-linear springs and non-linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k'1= 0.3 N/m3, k2 =100 

N/m, k'2 = 0.3 N/m3, c1= 0.03 Ns/m, c'1 = 0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = 0.003 Ns/m3, β1 = 0.10  

Ns/m, β2 = 0.20 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

 
 

 
 

 

 
 
 

 

 
 
 

 

 
 
 

 
 
Fig. 4.16(c)   x vs. t curves and phase planes of m1 and m2 for f(dv) of Table 2 using data set 1 of Table 

10 for combination of non-linear springs and non-linear dampers [m1=100 kg, m2 =100 kg, k1=100 

N/m, k'1= 0.3 N/m3, k2 =100 N/m, k'2 = 0.3 N/m3, c1= 0.03 Ns/m, c'1 = 0.003 Ns/m3, c2 = 30.0 

Ns/m, c'2 = 0.003 Ns/m3, α1 = 0.20 N/m, α2 = 0.25 N/m, β1 = 0.10  Ns/m, β2 = 0.20 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 

 
 
 
 
 

 
 

 

 
 

 

 
 

 

 
 

 
         
 
Fig. 4.16(d)   x vs. t curves and  phase planes of m1 and m2 for f(n) of Table 2 using data set 1 of Table 

10 for combination of non-linear springs and non-linear dampers [m1=100 kg, m2 =100 kg, k1=100 

N/m, k'1= 0.3 N/m3, k2 =100 N/m, k'2 = 0.3 N/m3, c1= 0.03 Ns/m, c'1 = 0.003 Ns/m3, c2 = 30.0 

Ns/m, c'2 = 0.003 Ns/m3, α1 = 0.20 N/m, α2 = 0.25 N/m, β1 = 0.10  Ns/m, β2 = 0.20 Ns/m, γ1 = 

0.001 Ns/m3, γ2 = 0.002 Ns/m3] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

 
 

 
 

  
Fig. 4.17(a)   x vs. t curves and  phase planes of m1 and m2 for f(d) of Table 2 using data set 2 of Table 10 for 

combination of non-linear springs and non-linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k'1= 

-0.3 N/m3, k2 =1000 N/m, k'2 = -0.3 N/m3, c1= 0.03 Ns/m, c'1 = -0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = -

0.003 Ns/m3, α1 = 0.15 N/m, α2 = 0.20 N/m] 

 
 

 
 

Fig. 4.17(b)   x vs. t curves of m1 and m2 for f(v) of Table 2 using data set 2 of Table 10 for               

combination of non-linear springs and non-linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k'1= 

-0.3 N/m3, k2 =1000 N/m, k'2 = -0.3 N/m3, c1= 0.03 Ns/m, c'1 = -0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = -

0.003 Ns/m3, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 
 
 

 

 
 
 

 

 
 
 
 

 

 
 

 

 
 
 

 
 
Fig. 4.17(c)   x vs. t curves and phase planes of m1 and m2 for f(dv) of Table 2 using data set 2 of Table 10 for                   

combination of non-linear springs and non-linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k'1= 

-0.3 N/m3, k2 =1000 N/m, k'2 = -0.3 N/m3, c1= 0.03 Ns/m, c'1 = -0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = -

0.003 Ns/m3, α1 = 0.15 N/m, α2 = 0.20 N/m, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m]. 
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Figures of damped self-excited vibration of 2DOFS (BVP) 

 
 
 
 

 

 
 
 

 

 
 
 
 

 

 
 

 

 
 
 

 
 
Fig. 4.17(d)   x vs. t curves and  phase planes of m1 and m2 for f(n) of  Table 2 using data set 2 of Table 10 for 

combination of non-linear springs and non-linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k'1= 

-0.3 N/m3, k2 =1000 N/m, k'2 = -0.3 N/m3, c1= 0.03 Ns/m, c'1 = -0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = -

0.003 Ns/m3, α1 = 0.15 N/m, α2 = 0.20 N/m, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m, γ1 = 0.015 Ns/m3, γ2 = 

0.025 Ns/m3] 
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4.6 Damped self-excited vibration for 3DOFS 

For the analysis of damped self-excited vibration of 3DOFS, the responses of the system 

for data from Table 12 and for the combination of non-linear springs and linear dampers and the 

combination of non-linear springs and non-linear dampers are given here in figures 4.18(a) to 

4.18(d) and 4.19(a) to 4.19(d). Figures from C(1) to C(8) for cases ( a - b) are given in Appendix 

C. 

For observing the responses of the system, four different cases (a - d) are chosen 

depending on the self-excited force function. Boundary value problem analysis method has been 

applied to find out the responses of 3DOF system for cases (a) to (d) and four combinations (1-4 

of Table 8) of springs and dampers.. 

In figure 4.18(a) for f(d), the amplitudes of m1, m2 and m3 and trajectory for m1 are given. 

Maximum amplitude of m1 from the figure can be seen   as 0.07 m. From the trend of the curve, it 

can be concluded that the amplitude is gradually decreasing and finally attain stability.  

For m2 and m3, amplitudes of vibration are much higher than that of m1. However, for both 

m2 and m3, amplitude is decreasing and approaching to stability. The system gains stability after a 

certain period. From the trajectory of m1, it is clear that velocity of m1 along with amplitude 

decreasing gradually and finally reaches stability. 

Similar responses of m1, m2 and m3 are also found in figure 4.19(a) for the combination of 

non-linear springs and non-linear dampers in f(d).  So for 3DOF system, the effect of nonlinear 

displacement term upon the response of the system is not so intelligible.  

For the f(v), the response of the system and trajectory for m2 is shown in figures 4.18(b). 

From these curves, it is clear that velocity plays an important role in self-excited force. Due to 

damped condition, the amplitudes of all three masses are very low. Therefore, the system will 

attain stability very quickly if required damping is provided. For other combinations of non-linear 

springs and non-linear dampers and f(v), the response of the system shown in figure 4.19(b) is 

congruent to the response for f(v) and combination of nonlinear springs and linear dampers.  

However, when both displacement and velocity (case c) are taken into consideration for 

self-excited force, the effect of displacement becomes dominant. This is clear from the response 

curves of m1, m2 and m3 and trajectory for m3 shown in figure 4.18(c). It is also true for 

combination of non-linear springs and non-linear dampers as shown in figure 4.19(c). 

In addition, the effect of nonlinear displacement on self-excited force is not so great.  This is 

shown in figures 4.18(d) and 4.19(d). The amplitudes of vibration for all three masses are nearly 

similar to that for cases (a) & (c) of combination 3. 
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4.7 Comparison among the responses for four combinations (1- 4 of Table 8) of damped    

      self-excited vibration of 3DOFS [Figures 4.18(a)-4.18(d) , 4.19(a)-4.19(d) and Figures 

C(1)-C(8) from Appendix C] 

 

For all the combinations of springs and dampers either linear or non-linear and for all 

cases from (a) to (d) of Table 2, 3DOFS shows similar type of response. For every case, the 

system approaches to stability after gradual decrement of amplitude of vibration. It is also 

observed that the amplitude of vibration varies due to variation of the self-excited force function.  

In figures C(1), C(5), 4.18(a) and 4.19(a) for the f(d) and for all combinations of springs 

and dampers, the amplitude of vibration is higher than that for the f(v). So for 3DOFS, damper 

non-linearity affects the amplitude of vibration significantly. For f(d) and all combinations springs 

and dampers, m1 starts vibration with the amplitude of about 0.07m and gradually reduces to be 

stable. m2 and m3 both show the amplitude of around 0.15m. But in figures C(2), C(6), 4.18(b) and 

4.19(b) for f(v) and all combinations of springs and dampers, m1 , m2 and m3 start the vibration 

with the amplitude of 0.04m, 0.07m and 0.08m respectively. This phenomenon is seen for all 

other combinations also. 

Similarly for other two combinations (3 - 4) of springs and dampers, and for f(dv) and (d), 

the system’s response is quite similar to the response for f(d). This indicates that for 3DOFS, the 

system’s response is different for only the case of the self-excited force being function of only 

velocity. For other cases, the system’s response is independent on the chosen cases and 

combinations. Phase planes for various masses also show this phenomenon clearly. 
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Figures of damped self-excited vibration of 3DOFS  

 
 

 
      

 
 
 

    
 

 
     

 
 
 

        
 

 
Fig. 4.18(a)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m1 for f(d) of Table 2 using data of   

Table 12 for combination of non-linear springs and linear dampers [m1 =100 kg, m2 =100 kg, m3 =100 

kg, k1 =100 N/m,  k'1 =0.30 N/m3 , k2 =100 N/m, k'2 =0.30 N/m3 , k3 =100 N/m, k'3 =0.30 N/m3 , c1  

=0.03 Ns/m, c2 =10.0 Ns/m, c3 =30.0 Ns/m , α1 =0.20 N/m , α2 =0.25 N/m , α3 =0.23 N/m] 
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Figures of damped self-excited vibration of 3DOFS  

 
 
                  
      

 
 

               

    
 

         
   

 
 

                

    
 

 
Fig. 4.18(b)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m2 for f(v) of Table 2 using data of   

Table 12 for combination of non-linear springs and linear dampers [m1 =100 kg, m2 =100 kg, m3 

=100 kg, k1 =100 N/m, k'1 =0.30 N/m3 , k2 =100 N/m, k'2 =0.30 N/m3 , k3 =100 N/m, k'3 =0.30 N/m3 

, c1  =0.03 Ns/m, c2 =10.0 Ns/m, c3 =30.0 Ns/m , β1 =0.10 Ns/m , β2 =0.20 Ns/m , β3 =0.15 Ns/m ] 
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Figures of damped self-excited vibration of 3DOFS  
 

 

 
 
 

 
   

 
 
 

 

 
 
 

 

 
 
 
 

Fig. 4.18(c)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m2 for f(dv) of Table 2 using data of   

Table 12 for combination of non-linear springs and linear dampers [m1 =100 kg, m2 =100 kg, m3 

=100 kg, k1 =100 N/m, k'1 =0.30 N/m3 , k2 =100 N/m, k'2 =0.30 N/m3 , k3 =100 N/m, k'3 =0.30 N/m3 

, c1  =0.03 Ns/m, c2 =10.0 Ns/m, c3 =30.0 Ns/m , α1 =0.20 N/m , α2 =0.25 N/m , α3 =0.23 N/m , β1 

=0.10 Ns/m , β2 =0.20 Ns/m , β3 =0.15 Ns/m ]. 
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Figures of damped self-excited vibration of 3DOFS  
 
 

              

 
 

     

 
 

          

 

 
    
  

 
 

 
Fig. 4.18(d)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m3 for f(n) of Table 2 using data of 

Table 12 for combination of non-linear springs and linear dampers [m1 =100 kg, m2 =100 kg, m3 

=100 kg, k1 =100 N/m, k'1 =0.30 N/m3 , k2 =100 N/m, k'2 =0.30 N/m3 , k3 =100 N/m, k'3 =0.30 N/m3 , 

c1  = 0.03 Ns/m, c2 =10.0 Ns/m, c3 =30.0 Ns/m , α1 =0.20 N/m , α2 =0.25 N/m , α3 =0.23 N/m , β1 

=0.10 Ns/m , β2 =0.20 Ns/m , β3 =0.15 Ns/m , γ1 = 0.001Ns/m3 , γ2 =0.002 Ns/m3 , γ3 =0.025 Ns/m3 ]. 
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Figures of damped self-excited vibration of 3DOFS  
 
 

 

 
 
 

 
 

 

 
 

 
 

 
Fig. 4.19(a)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m1 for f(d) of Table 2 using data of 

Table 12 for combination of non-linear springs and non-linear dampers [m1 =100 kg, m2 =100 kg, 

m3 =100 kg, k1 =100 N/m,  k'1 =0.30 N/m3 , k2 =100 N/m, k'2 =0.30 N/m3 , k3 =100 N/m, k'3 

=0.30 N/m3 , c1  =0.03 Ns/m, c'1 =0.003 Ns/m3 , c2 =10.0 Ns/m, c'2 =0.003 Ns/m3 , c3 =30.0 Ns/m , 

c'3 =0.003 Ns/m3 , α1 =0.20 N/m , α2 =0.25 N/m , α3 =0.23 N/m ] 
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Figures of damped self-excited vibration of 3DOFS  
 
 

          
 

 
 

    

            
 

 
 

    

 
Fig. 4.19(b)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m2 for f(v) of Table 2 using  data of Table 12 

for combination of non-linear springs and non-linear dampers [m1 =100 kg, m2 =100 kg, m3 =100 kg, k1 

=100 N/m, k'1 =0.30 N/m3 , k2 =100 N/m, k'2 =0.30 N/m3 , k3 =100 N/m, k'3 =0.30 N/m3 , c1  =0.03 Ns/m, 

c'1 =0.003 Ns/m3 , c2 =10.0 Ns/m, c'2 =0.003 Ns/m3 , c3 =30.0 Ns/m , c'3 =0.003 Ns/m3 , β1 =0.10 Ns/m , β2 

=0.20 Ns/m , β3 =0.15 Ns/m] 
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Figures of damped self-excited vibration of 3DOFS 

 
 
                    
       

 
 

 
 

 

              
       

 
 

 
 

 
Fig. 4.19(c)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m3 for f(dv) of Table 2 using data of Table 

12 for combination of non-linear springs and non-linear dampers [m1 =100 kg, m2 =100 kg, m3 =100 kg, 

k1 =100 N/m, k'1 =0.30 N/m3 , k2 =100 N/m, k'2 =0.30 N/m3 , k3 =100 N/m, k'3 =0.30 N/m3 , c1  =0.03 

Ns/m, c'1 =0.003 Ns/m3 , c2 =10.0 Ns/m, c'2 =0.003 Ns/m3 , c3 =30.0 Ns/m , c'3 =0.003 Ns/m3 , α1 =0.20 

N/m , α2 =0.25 N/m , α3 =0.23 N/m , β1 =0.10 Ns/m , β2 =0.20 Ns/m , β3 =0.15 Ns/m ] 
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Figures of damped self-excited vibration of 3DOFS 
 

                                                                                           

      

 

 
 

 
 

 
 

Fig. 4.19(d)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m3 for f(n) of Table 2 using data of Table 12 

for combination of non-linear springs and non-linear dampers [m1 =100 kg, m2 =100 kg, m3 =100 kg, k1 

=100 N/m, k'1 =0.30 N/m3 , k2 =100 N/m, k'2 =0.30 N/m3 , k3 =100 N/m, k'3 =0.30 N/m3 , c1  =0.03 Ns/m, 

c'1 =0.003 Ns/m3 , c2 =10.0 Ns/m, c'2 =0.003 Ns/m3 , c3 =30.0 Ns/m , c'3 =0.003 Ns/m3 , α1 =0.20 N/m , α2 

=0.25 N/m , α3 =0.23 N/m , β1 =0.10 Ns/m , β2 =0.20 Ns/m , β3 =0.15 Ns/m , γ1 = 0.001Ns/m3 , γ2 =0.002 

Ns/m3 , γ3 =0.025 Ns/m3 ] 
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4.8 System’s Stability for 2DOFS

In Table 13, few values of various parameters are listed for which the system’s stability is 
ensured. This gives an idea of choosing parameters in practical applications. Responses of the 
stable systems are shown in figures 4.20(a) to 4.20(f).



80

Fig. 4.20(a)

Fig. 4.20(b)

Fig. 4.20(c)

x vs. t curves for stability of 2DOFS in case of self-excited vibration
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Fig. 4.20(d)

Fig. 4.20(e)

Fig. 4.20(f)

x vs. t curves for stability of 2DOFS in case of self-excited vibration
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4.9 System’s instability for 2DOFS 

Using the boundary conditions from Table 16 and considering the case (d)[f(n)] from 

Table 2, two sets of values ( given in Table 16) of some parameters are predicted through trial 

and error method after running the program and checking the system’s response after drawing 

the figures for various combinations of springs and dampers. 

For combination of linear springs and linear dampers, unstable response of the system is 

shown in figures 4.21(a) for data set 3 & 4.21(b) for data set 4. 

 Figure 4.22(a) show the unstable response of the system for the combination of linear springs 

and non-linear dampers for data set 3. For data set 4 and same combination, the unstable self-

excited vibration is shown in figures 4.22(b). 

 Similarly figure 4.23(a) for data set 3 and figure 4.23(b) for data set 4 show the unstable 

response for the combination of non-linear springs and linear dampers. 

For the combination of both non-linear springs and non-linear dampers, the responses are 

shown in figures 4.24(a) for data set 3 and figures 4.24(b) for data set 4. 
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Figures of instability for self-excited vibration of 2DOFS ( BVP) 

 

  
 

Fig. 4.21(a)  x vs. t curves for m1 and m2 using data set 3 of Table 16 for combination of 

linear springs and linear dampers (For f(n) of Table 2).[ m1=10 kg, m2 =10 kg, k1=100 N/m, k2 

=100 N/m, c1= 0.03 Ns/m, c2 = 0.03 Ns/m, α1 = 0.30 N/m, α2 = 0.30 N/m, β1 = 0.30  Ns/m, β2 

= 0.30 Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 Ns/m3] 

 
 

 
 

 
 

 

 

 
 

Fig. 4.21(b)  x vs. t curves for m1 and m2 using data set 4 of Table 16 for combination of 
linear springs and linear dampers (For f(n) of Table 2) [m1=10 kg, m2 =10 kg, k1=10 N/m, k2 

=10 N/m, c1= 0.03 Ns/m, c2 = 0.03 Ns/m, α1 = 0.30 N/m, α2 = 0.30 N/m, β1 = 0.30  Ns/m, β2 
= 0.30 Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 Ns/m3] 
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Figures of instability for self-excited vibration of 2DOFS ( BVP) 

 

 

 

 
 
 

Fig. 4.22(a)  x vs. t curves for m1 and m2 using data set 3 of Table 16 for combination of 
linear springs and non-linear dampers (For f(n) of Table 2).[ m1=10 kg, m2 =10 kg, k1=100 
N/m, k2 =100 N/m, c1= 0.003 Ns/m, c'1 = 0.003 Ns/m3, c2 = 0.003 Ns/m, c'2 = 0.003 Ns/m3, α1 
= 0.30 N/m, α2 = 0.30 N/m, β1 = 0.30  Ns/m, β2 = 0.30 Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 
Ns/m3] 

 
 

 

  
 
 

Fig. 4.22(b)  x vs. t curves for m1 and m2 using data set 4 of Table 16 for combination of 
linear springs and non-linear dampers (For f(n) of Table 2) [m1=10 kg, m2 =10 kg, k1=10 N/m, 
k2 =10 N/m, c1= 0.30 Ns/m, c'1 = 0.003 Ns/m3, c2 = 0.30 Ns/m, c'2 = 0.003 Ns/m3, α1 = 0.30 
N/m, α2 = 0.30 N/m, β1 = 0.30  Ns/m, β2 = 0.30 Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 Ns/m3] 
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Figures of instability for self-excited vibration of 2DOFS ( BVP) 
 
 

  
 
 

Fig. 4.23(a)  x vs. t curves for m1 and m2 using data set 3 of Table 16 for combination of  
 non-linear springs and linear dampers (For f(n) of Table 2).[ m1=10 kg, m2 =10 kg, k1=100 
N/m, k'1= 0.30 N/m3, k2 =100 N/m, k'2 = 0.30 N/m3, c1= 0.003 Ns/m, c2 = 0.003 Ns/m, α1 = 
0.30 N/m, α2 = 0.30 N/m, β1 = 0.30  Ns/m, β2 = 0.30 Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 
Ns/m3] 
 

  
 

Fig. 4.23(b)  x vs. t curves for m1 and m2 using data set 4 of Table 16 for combination of  non-
linear springs and linear dampers (For f(n) of Table 2).[ m1=10 kg, m2 =10 kg, k1=10 N/m, 
k'1= 0.30 N/m3, k2 =10 N/m, k'2 = 0.30 N/m3, c1= 0.30 Ns/m, c2 = 0.30 Ns/m, α1 = 0.30 N/m, 
α2 = 0.30 N/m, β1 = 0.30  Ns/m, β2 = 0.30 Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 Ns/m3] 
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Figures of instability for self-excited vibration of 2DOFS ( BVP) 
 

 

 
 

 

 

Fig. 4.24(a)  x vs. t curves for m1 and m2 using data set 3 of Table 16 for combination of  non-
linear springs and non-linear dampers (For f(n) of Table 2).[ m1=10 kg, m2 =10 kg, k1=100 
N/m, k'1= 0.30 N/m3, k2 =100 N/m, k'2 = 0.30 N/m3, c1= 0.003 Ns/m, c'1 = 0.003 Ns/m3, c2 = 
0.003 Ns/m, c'2 = 0.003 Ns/m3, α1 = 0.30 N/m, α2 = 0.30 N/m, β1 = 0.30  Ns/m, β2 = 0.30 
Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 Ns/m3] 

 

 

  

 
Fig. 4.24(b)  x vs. t curves for m1 and m2 using data set 4 of Table 16 for combination of  
non-linear springs and non-linear dampers (For f(n) of Table 2).[ m1=10 kg, m2 =10 kg, 
k1=10 N/m, k'1= 0.30 N/m3, k2 =10 N/m, k'2 = 0.30 N/m3, c1= 0.003 Ns/m, c'1 = 0.30 Ns/m3, 
c2 = 0.30 Ns/m, c'2 = 0.003 Ns/m3, α1 = 0.30 N/m, α2 = 0.30 N/m, β1 = 0.30  Ns/m, β2 = 
0.30 Ns/m, γ1 = 0.001 Ns/m3, γ2 = 0.002 Ns/m3] 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

According to the prearranged targets of the study of self-excited vibrations, analysis 

of both undamped and damped self-excited vibration for 2DOFS and 3DOFS has been 

accomplished with the help of BVP and IVP analysis method considering both spring and 

damper nonlinearities. Soundness of the developed code has been verified through solving 

Van der Pol’s equation and then comparing the obtained results with the available ones. From 

this study of self-excited vibration, it can be concluded as follows:  

5.1 Conclusions for undamped linear self-excited vibration 

• Effect of self-exciting force on the system’s response is independent of chosen 

boundary conditions. This happens for both initial value and boundary value 

problems. For example, the system shows similar deflections for initial value and 

boundary value problems for f(d). 

• Effect of displacement on self-exciting force is not great. When the self-exciting force 

is considered as function of displacement only, then the system maintains stable 

vibration throughout the entire period. 

• When self-exciting force is considered as a function of both velocity and 

displacement, then the system approaches more instability throughout the entire 

period. 

• Mass to spring ratio plays a significant role on the maximum deflection of self-

exciting vibration system. For the same ratio, system shows almost similar peak 

amplitudes for various cases.  

• Increased spring constant makes the system more unstable and the system vibrates 

with higher frequency. For example, system for data set (viii) from Table 4 shows 

more instability than that for data set(iii) of Table 4(having higher value of spring 

constant compared to data set (iii)). 

• From this study, it can be concluded that springs with the higher value of constant 

along with smaller mass approached more instability. 
 

5.2 Conclusions for damped nonlinear self-excited vibration  

• Also for damped condition, effect of self-exciting force on the system’s response is 

independent of chosen boundary conditions.  

• Effect of displacement and velocity on damped self-exciting force is almost similar. 

When the self-exciting force is considered as function of only displacement, then the 
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system maintains vibration throughout the entire period just like when self-exciting 

force is considered as function of only velocity. 

• When damped self-exciting force is considered as function of both velocity and 

displacement, then the system approaches stability throughout the entire period. 

• For 3DOFS, spring and damper nonlinearity and damped self-exciting force function 

have very little effect on the system’s response. 
 

5.3 Recommendation for Future Work 

In future, the developed computer code can be used to study response of similar 

system having higher degrees of freedom. Practically, this method of vibration analysis will 

provide handy information for active/passive vibration control of structures. The following 

recommendations can be made for future works while achieving the set objectives of this 

thesis: 

1. The present analysis should be extended to observe the effect of vibration of the 

system with higher degrees of freedom.  

2. Experimental studies should be carried out to verify the results obtained for the self-

excited vibration in any system. 

3. This study can be helpful in analyzing flutter that is a self-feeding and potentially 

destructive vibration where aerodynamic forces on an object coupled with a 

structure's natural mode of vibration to produce rapid periodic motion. 

4. This study is also useful specially, when a self-excited vibration control scheme 

becomes a boundary value problem and needs to be solved by numerical analysis. 
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x 
 

LIST OF SYMBOLS AND ABBREVIATIONS 

a =   Initial time reference 

b =   Final time reference 

m1, m2, m3 =   Three masses  (kg) 

c =   Damping coefficient (N-s/m) 

c1, c2 , c3 =   Damping coefficients for m1 and  m2  and m3 (N-s/m) 

c′ =   Damping nonlinearity index  (N-s/m3) 

c′1, c′2 , c′3  =   Damping  nonlinearity indexes for m1 and  m2 and m3 (N-s/m3) 

k =   Spring constant (N/m) 

k1, k2 , k3 =   Spring constants for m1 and  m2  and m3 (N/m) 

k′ =   Spring nonlinearity index (N/m3) 

k′1, k′2 , k′3 =   Spring nonlinearity indexes for m1 and  m2 and m3 (N/m3) 

t =   Time (s) 

x1, x2 , x3 =   Deflections for m1 and  m2  and m3 (m) 

y1, y3 , y5  =   x1, x2 , x3 (m) 

1x& , 2x& , 3x&  =   Velocities for m1 and  m2  and m3 (m/s) 

 y2, y4 , y6 =    1x& , 2x& , 3x&  (m/s) 

Spring force    =    3xkkx ′±  

Damping force  =     2xxcxc && ′±  

α  =    Displacement factor for self-excited force. 

β  =    Velocity factor for self-excited force. 

γ  =    Nonlinear displacement factor for self-excited force.    

M =    Number of segments of the chosen interval. 

T =    A function. 

Y =    Partial derivative term of  y (t) with respect to y (a).  
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TABLE 1: Boundary Conditions for solving Van der Pol’s equation 

y1 (a) (m) y2 (b) (m/s) 

0.01 0.70 

 

TABLE 2: Various cases considered for self-excited vibration analysis 

Self-excited force is a function of 

 Displacement Velocity 
Both displacement and 

velocity 

Nonlinear displacement term 

and both displacement velocity 

Cases a b c d 

= f(d) = f(v) =f(dv) =f(n) 

 

TABLE 3: Arbitrarily chosen boundary conditions for undamped self-excited  

 vibration analysis of 2DOFS (BVP) 

 Data Set  i ii iii iv v vi vii viii 

y1(a)  (m) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

y3(a) (m) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

y2(b) (m/s) -0.6113 -0.0477 -0.1875 0.372

1 

0.246

2 

0.165

7 

0.277

8 

-0.5745 

y4(b) (m/s) -0.8557 -0.1780 -0.1999 0.882

8 

0.411

0 

0.290

6 

0.759

1 

-0.605 

 

TABLE 4: Data of parameters for undamped self-excited  vibration analysis of  

                   2DOFS (BVP) 

  Data Set i ii iii iv v vi vii viii 

m1 (kg) 10 10 10 10 100 100 100 10 

m2(kg) 10 10 10 10 100 100 100 10 

k1(N/m) 100 10 10 100 100 100 1000 1000 

k2(N/m) 100 10 10 100 100 100 1000 1000 

α1(N/m) 0.3 0.3 0.1 0.1 0.1 0.3 0.1 0.1 

α2(N/m) 0.3 0.3 0.1 0.1 0.1 0.3 0.1 0.1 

β1(Ns/m) 0.3 0.3 0.1 0.1 0.1 0.3 0.1 0.1 

β2(Ns/m) 0.3 0.3 0.1 0.1 0.1 0.3 0.1 0.1 

 

TABLE 5: Arbitrarily chosen Boundary Conditions for undamped self-excited vibration  

analysis of 2DOFS (IVP) 

y1 (a) (m) y2 (a) (m/s) y3 (a) (m) y4 (a) (m/s) 

0.01 0.70 0.02 0.80 
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TABLE 6: Data of parameters for undamped self-excited vibration analysis of 2DOFS (IVP)  

      Data Set i ii iii iv v vi vii viii 

m1 (kg) 10 10 10 10 100 100 100 10 

m2 (kg) 10 10 10 10 100 100 100 10 

k1 (N/m) 100 10 10 100 100 100 1000 1000 

k2 (N/m) 100 10 10 100 100 100 1000 1000 

α1 (N/m) 0.3 0.3 0.1 0.1 0.1 0.3 0.1 0.1 

α2 (N/m) 0.3 0.3 0.1 0.1 0.1 0.3 0.1 0.1 

 

TABLE 7: Ratios of Mass to spring constant (undamped 2DOFS) 

Conditions i ii iii iv v vi vii viii 

m1/ k1 0.1 1.0 1.0 0.1 1.0 1.0 0.1 0.01 

m2/ k2 0.1 1.0 1.0 0.1 1.0 1.0 0.1 0.01 

 

TABLE 8:  Different combinations of springs and dampers for damped self-excited vibration                

                    analysis of 2DOFS & 3DOFS (BVP) 

Combinations of spring & Damper 

 1 2 3 4 

Springs Linear Linear Nonlinear Non-linear 

Dampers Linear nonlinear linear Non-linear 

 

TABLE 9:  Boundary conditions for damped self-excited vibration analysis of 2DOFS (BVP). 

y1 (a) (m) y2 (b) (m/s) y3 (a)  (m) y4 (b)  (m/s) 

0.01 0.70 0.02 0.80 

 

TABLE 10: Data of parameters for damped self-excited vibration analysis of 2DOFS (BVP) 

Parameters m1(kg) m2(kg) k1(N/m) k'1(N/m3) k2(N/m) k'2(N/m3) 

Data set 1 100 100 100 0.30 100 0.30 

Data set 2 100 1000 1000 -0.30 1000 -0.30 

 

Parameters c1(Ns/m) c'1(Ns/m3) c2(Ns/m) c'2(Ns/m3) α1(N/m) α2(N/m) 

Data set 1 0.03 0.003 30.0 0.003 0.20 0.25 

Data set 2 0.03 -0.003 30.0 -0.003 0.15 0.20 

 

Parameters β1(Ns/m) β2(Ns/m) γ1(Ns/m3) γ2(Ns/m3)   

Data set 1 0.10 0.20 0.001 0.002   

Data set 2 0.15 0.25 0.015 0.025   
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TABLE 11:  Arbitrarily chosen boundary conditions for damped self-excited vibration analysis of    

                      3DOFS (BVP) 

y1 (a)  (m) y2 (b) (m/s) y3 (a) (m) y4 (b) (m/s) y5 (a) (m) y6 (b) (m/s) 

0.01 0.70 0.02 0.80 0.80 0.90 

 

 

TABLE 12: Data of parameters for damped self-excited vibration analysis of 3DOFS (BVP) 

 

Parameters m1(kg) m2(kg) m3(kg) k1(N/m) k'1(N/m3) k2(N/m) 

Data 100 100 100 100 0.30 100 

 

Parameters k'2(N/m3) k3(N/m) k'3(N/m3) c1(Ns/m) c'1(Ns/m3) c2(Ns/m) 

Data 0.30 100 0.30 0.03 0.003 10.0 

 

Parameters c'2(Ns/m3) c3(Ns/m) c'3(Ns/m3) α1(N/m) α2(N/m) α3(N/m) 

Data 0.003 30.0 0.003 0.20 0.25 0.23 

 

Parameters β1(Ns/m) β2(Ns/m) β3(Ns/m) γ1(Ns/m3) γ2(Ns/m3) γ3(Ns/m3) 

Data 0.10 0.20 0.15 0.001 0.002 0.025 

 

 

TABLE 13: Calculated values of parameters for system’s stability of 2DOFS (BVP) 

Figures  
Parameters 

m1(kg) m2(kg) k1(N/m) k2(N/m) c1(Ns/m) 

4.20 (a) 1 1 10 10 0.5 

4.20 (b) 10 10 10 10 0.5 

4.20 (c) 1000 10 1000 10 2.5 

4.20 (d) 100 100 100 100 2.5 

4.20 (e) 100 100 1000 1000 2.5 

4.20 (f) 10 10 100 1000 2.5 
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TABLE 14: Responses of 2DOFS at a glance in case of damped self-excited vibration 

Combinations 

of  

Data 

Set 
Stability / Instability  

Linear springs 
& 

Linear dampers 

1 
[Figures 4.12(a) - 4.12(d)]  The system approaches stability for all 

cases of the self-excited force function (Table 2). 

2 

[Figures 4.13(a) - 4.13(d)] m1 quickly becomes stable within 40 

seconds. m2 also reduces its amplitude of vibration greatly within 40 

seconds and continues to vibration with very low amplitude up to 100 

seconds.  For only case (d), m2 maintains higher amplitude steadily.  

Linear springs 
& 

Non-linear 

dampers 

1 
[Fig. 4.14(a) & Appendix A: Figures 1-3] The system illustrates 

stability. 

2 

[Fig. 4.14(b) & Appendix A: Figures 4-6] m1 becomes stable quickly 

just within 40 seconds except case (d). m2 maintains steady vibration up 

to the considered period. Developed code can’t show the response after 

40seconds for data set 2 due to consideration of one segment for 

calculation. But the trend shows that it will be stable after a larger 

period.  

For case (d), though m1 shows high frequency vibration, but it moves 

towards stability. From the steady state trend, it can be said that m2 

maintains instability. 

Non-linear 
springs & 

Linear dampers 

1 

[Fig. 4.15(a) & Appendix A: Figures 7-9] The system approaches to 

stability. But in case (b), the system at first shows higher frequency 

vibration then maintains steady vibration for the considered period of 

time. The progressing reducing trend indicates the attainment of the 

system’s stability. 

2 
[Fig. 4.15(b) & Appendix A: Figures 10-12] Both m1 and m2 continues 

steady vibration during the period for all cases. 

Non-linear 
springs & 
Non-linear 

dampers 

1 [Figures 4.16(a) – 4.16(d)] The system becomes stable for every case. 

2 

[Figures 4.17(a) – 4.17(d)] Both m1 and m2 maintains steady vibration 

just like for the combination of non-linear springs and linear dampers 

for data set 2. 

 

 

 



 

 97 

 

TABLE 15: Responses of 3DOFS at a glance in case of damped self-excited vibration: 

Cases Stability 

f(d) 

 m1 starts vibration with amplitude of 0.07 m for all four combinations of 

springs and dampers. Both m2 and m3 start to vibrate with amplitude of about 

0.15 m for all combinations. For f(d) the system approaching stability 

gradually. 

f(v) 
Both m1 and m2 vibrate with very low amplitude and move towards stability. m3 

also ,starting with amplitude of 0.1 m, approaches stability.  

f(dv) 
The response of the system is quite similar to the response for f(d).  m1, m2 and 

m3 are showing vibration of gradually reducing amplitude. 

f(n) 

For all four combinations of springs and dampers, the system for f(n) shows the 

response quite similar to the responses for both f(d) and f(dv). For this case, the 

system also showing stability. 

 

 

TABLE 16: Data of parameters for unstable conditions of 2DOFS (BVP)  

                      [Only f(n) is considered for calculation] 

Parameters  

Combinations (Table 8) / Data Set 

1 2 3 4 

Set 3 Set 4 Set 3 Set 4 Set 3 Set 4 Set 3 Set 4 

m1 (kg) 10 10 10 10 

m2 (kg) 10 10 10 10 

k1 (N/m) 100 10 100 10 100 10 100 10 

k'1 (N/m3) 0.0 0.0 0.30 0.3 

k2 (N/m) 100 10 100 10 100 10 100 10 

k'2 (N/m3) 0.0 0.0 0.30 0.3 

c1 (Ns/m) .03 0.003 0.3 0.003 0.30 0.003 0.30 

c'1 (Ns/m3) 0.0 0.003 0.0 0.003 

c2 (Ns/m) 0.30 0.003 0.3 0.003 0.30 0.003 0.30 

c'2 (Ns/m3) 0.0 0.003 0.0 0.003 

α1 (N/m) 0.3 0.3 0.3 0.3 

α2 (N/m) 0.3 0.3 0.3 0.3 

β1 (Ns/m) 0.3 0.3 0.3 0.3 

β2 (Ns/m) 0.3 0.3 0.3 0.3 

γ1 (Ns/m3) 0.001 0.001 0.001 0.001 

γ2 (Ns/m3) 0.002 0.002 0.002 0.002 
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Appendix A 

(Figures of undamped self-excited vibration of 2DOFS) 
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BVP analysis of Undamped Self-excited Vibration of 2DOF for f(v) from Table 2 

[Figures A(1) - A(7)] 

 

Figures A(1) – A(7) for f(v) and data sets (i) to (vi) & (viii) from Table 4 show that the system 

tends to be unstable over the period 

But with the higher values of m1 & m2, the system maintains stable amplitude throughout the 

period as shown in figures A(5) & A(6).  

For data set (viii) with higher values of both m1 and m2 and spring constants k1 and k2, the 

amplitude is much lower but gradually the system goes to unstable condition as shown in figure 

A(7). 

. 
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Figures of undamped self-excited vibration of 2DOFS (BVP) 
  Figs. A(1)-A(7) drawn using data sets (i) - (vi) & (viii) of Table 4 for Case. (b) of Table 2 

 

  
Fig. A(1)  x vs. t curves of m1 and m2  (for data set (i) and for  f(v) )  

[ m1=10kg, m2= 10kg, k1=100 N/m, k2=100 N/m, β1 = 0.3 Ns/m ,β2=0.3 Ns/m] 

        

  

  

Fig. A(2)  x vs. t curves and phase planes of m1 and m2 (for data set (ii) and for  f(v )  

[ m1=10kg, m2= 10kg, k1=10 N/m, k2=10 N/m, β1 = 0.3 Ns/m ,β2=0.3 Ns/m] 
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Fig. A(3)  x vs. t curves of m1 and m2 (for data set (iii) and for  f(v))  

[m1=10kg, m2= 10kg, k1=10 N/m, k2=10 N/m, β1 = 0.1 Ns/m ,β2=0.1 Ns/m]  

           

  

  

Fig. A(4)  x vs. t curves and phase planes of m1 and m2 (for data set (iv) and for  f(v))  

[m1=10kg, m2= 10kg, k1=100 N/m, k2=100 N/m, β1 = 0.1 Ns/m ,β2=0.1 Ns/m]. 
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Fig. A(5)  x vs. t curves of m1 and m2 (for data set (v) and for  f(v)) 

[m1=100kg, m2= 100kg, k1=100 N/m, k2=100 N/m, β1 = 0.1 Ns/m ,β2=0.1 Ns/m] 

         

  

Fig. A(6)  x vs. t curves of m1 and m2 (for data set (vi) and  f(v))  

[m1=100kg, m2= 100kg, k1=100 N/m, k2=100 N/m, β1 = 0.3 Ns/m ,β2=0.3 Ns/m] 

 

  

Fig. A(7)  x vs. t curves of m1 and m2 (for data set (viii) and f(v))  

[m1=10kg, m2= 10kg, k1=1000 N/m, k2=1000 N/m, β1 = 0.1 Ns/m ,β2=0.1 Ns/m] 
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APPENDIX B 

(Figures of damped self-excited vibration of 2DOFS) 
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Response of 2DOFS for the combination of linear springs and non-linear dampers  

[Figures B(1) - B(6)] 

For cases (a) to (c) and data set 1 from Table 10, the response of the system is shown in 

figures B(1) to B(3). For data set 2 from Table 10, the response is shown in figures B(4) to B(6). 

In fig. B(1) for f(d), the amplitude of vibration of m1 varies from 0.5 m to .008 m. Initially 

amplitude is high, but after 5 seconds, it decreases to 0.2 m and gradually reaches to very low 

amplitude. This implies that the system approaches to stability. Similar types of response of m1 for 

the same case are seen from figures B(2) and B(3).. All of these figures show that the system is 

going to be stable after this period of 100 seconds. From these figures, it is clear that for this 

combination, vibration of m1 does not differ significantly depending on the values of self-excited 

force.  

On the other hand, m2 vibrates with relatively higher amplitude ranging from 0.6 m to 0.05 m. 

This implies that m2 takes much time to be stable. However, in figure B(2) for  f(v), amplitude of 

m2 is smaller than case (a). This is due to the effect of nonlinear damper and velocity dependent 

self-excited force. From figure B(2), it is clear that velocity plays an important role in self-excited 

vibration.   

 However, when self-excited force is function of both displacement and velocity (case c) then 

amplitude of m2 in figure B(3) becomes similar to that for f(d) for this combination of springs and 

dampers.  

   For data set 2 and cases (a) to (c), the responses of the system are shown in figures B(4) to 

B(6). Here the figures are drawn with the results of computer program for 40 seconds. For this 

combination, m1 vibrates with high frequency and becomes stable quickly. For cases (a) to (c), m1 

starts vibration with the amplitude of about 0.7 m and then gradually reaches to stability. On the 

other hand, m2 vibrates in a different way rather than m1. The response of m2 is shown in figures 

B(4) to B(6).  The amplitude of vibration of m2 is quite low for this combination. m2 vibrates with 

high frequency for first 10 seconds. In figure B(4), the amplitude of m2 varies from 0.045 m to 

0.01 m. Hence, it is clear from the response that the system would eventually maintain steady 

vibration and hence never reaches to stability.  

For f(v), the amplitude of m2 decreases than that for f(d). Due to velocity dependent self-

excited force, amplitude decreases and for damper nonlinearity, the magnitude of vibration is 

quite low. Similar response of m2 is seen in figures B(5) and B(6). 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 
 

  

  
 
Fig. B(1)  x vs. t curves and phase planes of m1 and m2 for f(d) of Table 2 using data set 1of Table 10 for  
combination of linear springs and non-linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k2 =100 
N/m, c1= 0.03 Ns/m, c'1 = 0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = 0.003 Ns/m3, α1 = 0.20 N/m, α2 = 0.25 
N/m]. 

 
 

 
 

Fig. B(2)     x vs. t curves of m1 and m2 for f(v) of Table 2  using data set 1 of Table 10 for 
combination of linear springs and non-linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k2 =100 
N/m, c1= 0.03 Ns/m, c'1 = 0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = 0.003 Ns/m3, β1 = 0.10  Ns/m, β2 = 0.20 
Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 
 

  

  
 
Fig. B(3)  x vs. t curves and phase planes of m1 and m2 for f(dv) of Table 2  using  data set 1 of Table 10 

for  combination of linear springs and non-linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k2 

=100 N/m, c1= 0.03 Ns/m, c'1 = 0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = 0.003 Ns/m3, α1 = 0.20 N/m, α2 

= 0.25 N/m, β1 = 0.10  Ns/m, β2 = 0.20 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 

 
 
 

 
 

  
Fig. B(4) x vs. t curves and phase planes of m1 and m2 for f(d) of Table 2  using data  set 2 of Table 10 for  
combination of linear springs and non-linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k2 

=1000 N/m, c1= 0.03 Ns/m, c'1 = -0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = -0.003 Ns/m3, α1 = 0.15 N/m, α2 = 
0.20 N/m] 

  

Fig. B(5) x vs. t curves of m1 and m2 for f(v) of Table 2  using data set 2 of Table 10 for  combination of 
linear springs and non-linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k2 =1000 N/m, c1= 0.03 
Ns/m, c'1 = -0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = -0.003 Ns/m3, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

 
 

 
 

  
 
Fig.  B(6) x vs. t curves and phase planes of m1 and m2 for f(dv) of Table 2  using data  set 2 of Table 10 for 
combination of linear springs and non-linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k2 

=1000 N/m, c1= 0.03 Ns/m, c'1 = -0.003 Ns/m3, c2 = 30.0 Ns/m, c'2 = -0.003 Ns/m3, α1 = 0.15 N/m, α2 = 
0.20 N/m, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m] 
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Response of 2DOFS for the combination of non-linear springs and linear dampers  

[Figures B(7) - B(12)] 

Figures B(7) to B(9) for cases (a) to (c) and data set 1 from Table 10, show the responses 

of the system. In addition, for data set 2, the response of the system is illustrated in figures B910) 

to B(12).  

In figure B97), m1 vibrates with the amplitude of 0.6 m and then finally decreases to 0.01 m. For 

first 10 seconds, m1 vibrates with higher frequency and then its frequency decreases with time.  

Finally, the vibration of m1 reaches to stability after certain period.  m2 in figure B(7) also vibrates 

in a similar fashion. But the amplitude of vibration of m2 is relatively higher than m1. Amplitude 

of vibration of m2 varies from 0.6 m to 0.01 m.  From the figure B(7),  it is clear that m2 reaches to 

stability after 100 seconds.  

For f(v), the responses of both m1 and m2 shown in figures B(8) and B(9) are quite different from 

other cases. For first 10 seconds, both m1 and m2 vibrates with higher frequencies. Amplitude of 

vibration of both m1 and m2 starts from 2.5 m and then gradually decreases. After 10 seconds, 

frequencies of m1 and m2 decrease drastically. m1 approaches to stability more rapidly. But m2 

continues its vibration with steady condition. So for this case, m2 is unstable. 

For f(dv) and data set 1, the response of both m1 and m2 in figure B(9) is different from the 

response for f(v) due to velocity and displacement dependent self-excited vibration. From figure 

B99), the effect of such self-excited vibration is clear to understand. Both m1 and m2 start 

vibration with amplitude of about 0.01 m. after maintaining steady vibration for the considered 

period, the system gradually approaches to stability. After 100 seconds, shooting is observed. This 

indicates the .limitation of numerical calculation after that period.  

Again figures B(10) to B(12) for data set 2 from Table 10  and case (d) indicate the 

responses of both m1 and m2 . The responses of m1 for all three cases [(a) to (c)] are mostly 

similar. For first 15 seconds, m1 vibrates with higher frequency and amplitude range of 0.07 m to 

0.017 m. Then m1 maintains steady vibration with the reduction of amplitude and frequency. This 

phenomenon is seen in figures B(10) to B(12).  
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

 
 
 

 
 

  
Fig. B(7)   x vs. t curves and phase planes for m1 and m2 for f(d) of Table 2  using data set  1 of Table 10 for  
combination of non-linear springs and linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k'1= 0.3 
N/m3, k2 =100 N/m, k'2 = 0.3 N/m3, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.20 N/m, α2 = 0.25 N/m] 

 

 
 

 
 

Fig. B(8)   x vs. t curves of m1 and m2 for f(v) of Table 2  using data set 1 of Table 10 for  combination of 
non-linear springs and linear dampers [m1=100 kg, m2 =100 kg, k1=100 N/m, k'1= 0.3 N/m3, k2 =100 
N/m, k'2 = 0.3 N/m3, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, β1 = 0.10  Ns/m, β2 = 0.20 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

  

  
Fig. B(9)   x vs. t curves and phase planes of m1 and m2 for f(dv) of Table 2  using data 
set 1 of Table 10 for  combination of non-linear springs and linear dampers [m1=100 kg, m2 =100 kg, 
k1=100 N/m, k'1= 0.3 N/m3, k2 =100 N/m, k'2 = 0.3 N/m3, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.20 N/m, 
α2 = 0.25 N/m, β1 = 0.10  Ns/m, β2 = 0.20 Ns/m] 
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

 
  

  
Fig. B(10) x vs. t curves and phase planes of m1 and m2 for f(d) of Table 2  using data set 2 of Table 10 for  
combination of non-linear springs and linear dampers [m1=100 kg, m2 =1000 kg, k1=1000 N/m, k'1= -0.3 
N/m3, k2 =1000 N/m, k'2 = -0.3 N/m3, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.15 N/m, α2 = 0.20 N/m] 

  
 
Fig. B(11)   x vs. t curves of m1 and m2 for f(v) of Table 2  using data set 2 of Table 10 for combination of 
non-linear springs and linear dampers[m1=100 kg, m2 =1000 kg, k1=1000 N/m, k'1= -0.3 N/m3, k2 =1000 
N/m, k'2 = -0.3 N/m3, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m]  
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Figures of damped self-excited vibration of 2DOFS (BVP) 
 

 
 
 

 
 

  
Fig. B(12)   x vs. t curves and phase planes of m1 and m2 for f(dv) of Table 2  using data 
 set 2 of Table 10 for combination of non-linear springs and linear dampers [m1=100 kg, m2 =1000 kg, 
k1=1000 N/m, k'1= -0.3 N/m3, k2 =1000 N/m, k'2 = -0.3 N/m3, c1= 0.03 Ns/m, c2 = 30.0 Ns/m, α1 = 0.15 
N/m, α2 = 0.20 N/m, β1 = 0.15  Ns/m, β2 = 0.25 Ns/m] 
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APPENDIX C 

(Figures of damped self-excited vibration of 3DOFS) 
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Figure: Arrangement of masses, springs and dampers for self-excited vibration of 3DOF S. 
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Here self-excited forces F1 , F2 and F3 are the generalized self-excited forces of the considered 

system. 
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Damped self-excited vibration for 3DOFS 

For observing the responses of the system, two cases (a - b) are discussed here depending 

on the self-excited force function. 

Figures C(1) for f(d), shows the amplitudes of vibration of m1, m2 and m3 . Trajectory for m1 is 

also shown in this figure. 

Maximum amplitude of m1 from the figure C(1) can be seen   as 0.07 m. From the trend of the 

curve, it can be concluded that the amplitude is gradually decreasing and finally attain stability. 

For m2 and m3  in figure C(1) , amplitude of vibration is much higher than that of m1. However, 

for both m2 and m3, amplitude is decreasing and approaching to stability. Therefore, for damped 

condition, the system gains stability after a certain period. From the trajectory of m1, it is clear 

that velocity of m1 along with amplitude decreasing gradually and finally reaches stability. 

Similar responses are found for other combination of linear springs and non-linear dampers for 

f(v). These responses are shown in figure C(5).  

When self-excited force is function of only velocity (case b), the response of the system is shown 

in figure C(2) and trajectory for m1 is also shown in this figure. From these curves, it is clear that 

velocity plays an important role in self-excited force. Due to damped condition, the amplitudes of 

all three masses are very low. Therefore, the system will attain stability very quickly if required 

damping is provided. For other combination of linear springs and non-linear dampers for f(v), the 

response of the system in figure C(6) is congruent to the response for the combination of linear 

springs and linear dampers for f(v) . 

However, when both displacement and velocity are taken into consideration for self-excited force 

(case c), the effect of displacement becomes dominant. This is clear from the response curves of 

three masses in figure C(3) and trajectory for m2 . It is also true for other combination of linear 

springs and non-linear dampers as shown in figure C(7). 

In addition, the effect of nonlinear displacement term on self-excited force is not so great.  This is 

shown in figures C(4) and C(8). The amplitudes of vibration for all three masses are nearly similar 

to the amplitudes for cases (a) & (c) of combination of linear springs and linear dampers. 
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Figures of damped self-excited vibration of 3DOFS  

 

 
  

 
  

Fig. C(1)  x vs. t curves of m1 , m2 and  m3 and trajecotory for m1 for f(d) of Table 2 using data of  Table 

12 for combination of linear springs and linear dampers [ m1 =100 kg, m2 =100 kg, m3 =100 kg, k1 

=100 N/m, k2 =100 N/m, k3 =100 N/m, c1  =0.03 Ns/m, c2 =10.0 Ns/m, c3 =30.0 Ns/m , α1 =0.20 N/m 

, α2 =0.25 N/m , α3 =0.23 N/m ] 

 

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60x 1
(m

)

t (s)
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 20 40 60x 2
(m

)

t (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60

x 3
(m

)

t (s)
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.1 -0.05 0 0.05 0.1

v 1
(m

/s
)

x1 (m)



118 
 

 

 

 
 
 
 
 
 

Figures of damped self-excited vibration of 3DOFS  
 

 
 

 
 

 

 
 

 
 

Fig. C(2)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m1 for f(v) of Table 2 using data of Table 12 

for combination of linear springs and linear dampers [ m1 =100 kg, m2 =100 kg, m3 =100 kg, k1 =100 

N/m, k2 =100 N/m, k3 =100 N/m, c1  =0.03 Ns/m, c2 =10.0 Ns/m, c3 =30.0 Ns/m , β1 =0.10 Ns/m , β2 

=0.20 Ns/m , β3 =0.15 Ns/m ] 
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Figures of damped self-excited vibration of 3DOFS  

 

 
 

 
 

 
 

 
 

Fig. C(3)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m1 for f(dv) of Table 2 using data of Table 12 for 

combination of linear springs and linear dampers [ m1 =100 kg, m2 =100 kg, m3 =100 kg, k1 =100 N/m, k2 

=100 N/m, k3 =100 N/m, c1  =0.03 Ns/m, c2 =10.0 Ns/m, c3 =30.0 Ns/m , α1 =0.20 N/m , α2 =0.25 N/m , α3 

=0.23 N/m , β1 =0.10 Ns/m , β2 =0.20 Ns/m , β3 =0.15 Ns/m ] 
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Figures of damped self-excited vibration of 3DOFS  

 

 
 

 
 

 
 

 
 

Fig. C(4)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m3 for f(n) of Table 2 using data of Table 12 for 

combination of linear springs and linear dampers [ m1 =100 kg, m2 =100 kg, m3 =100 kg, k1 =100 N/m, k2 

=100 N/m, k3 =100 N/m, c1  =0.03 Ns/m, c2 =10.0 Ns/m, c3 =30.0 Ns/m , α1 =0.20 N/m , α2 =0.25 N/m , α3 

=0.23 N/m , β1 =0.10 Ns/m , β2 =0.20 Ns/m , β3 =0.15 Ns/m , γ1 = 0.001Ns/m3 , γ2 =0.002 Ns/m3 , γ3 =0.025 

Ns/m3] 
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Figures of damped self-excited vibration of 3DOFS  
 

 
 

 
 

 
 

 
 

Fig. C(5)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m1 for f(d) of Table 2 using data of  Table 12 

 for combination of linear springs and non-linear dampers [ m1 =100 kg, m2 =100 kg, m3 =100 kg,  

k1 =100 N/m, k2 =100 N/m, k3 =100 N/m, c1  =0.03 Ns/m, c'1 =0.003 Ns/m3 , c2 =10.0 Ns/m,  

c'2 =0.003 Ns/m3 ,c3 =30.0 Ns/m , c'3 =0.003 Ns/m3 , α1 =0.20 N/m , α2 =0.25 N/m , α3 =0.23 N/m ] 
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Figures of damped self-excited vibration of 3DOFS  
 

 
 

 
 

 
 

 
 

Fig. C(6)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m1 for f(v) of Table 2 using data of   

  Table 12 for combination of linear springs and non-linear dampers [ m1 =100 kg, m2 =100 kg, m3 =100 

kg, k1 =100 N/m, k2 =100 N/m, k3 =100 N/m, c1  =0.03 Ns/m, c'1 =0.003 Ns/m3 , c2 =10.0 Ns/m, c'2 

=0.003 Ns/m3 , c3 =30.0 Ns/m , c'3 =0.003 Ns/m3 , β1 =0.10 Ns/m , β2 =0.20 Ns/m , β3 =0.15 Ns/m ] 
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Figures of damped self-excited vibration of 3DOFS  

 
 

 
 
 

 

 
 
 

 

 
Fig. C(7)   x vs. t curves of m1 , m2 and  m3 and trajecotory for m3 for f(dv) of Table 2 using data   

 of  Table 12 for combination of linear springs and non-linear dampers [ m1 =100 kg, m2 =100 kg, 

m3 =100 kg, k1 =100 N/m, k2 =100 N/m, k3 =100 N/m, c1  =0.03 Ns/m, c'1 =0.003 Ns/m3 , c2 

=10.0 Ns/m, c'2 =0.003 Ns/m3 , c3 =30.0 Ns/m , c'3 =0.003 Ns/m3 , α1 =0.20 N/m , α2 =0.25 N/m , 

α3 =0.23 N/m ,β1 =0.10 Ns/m , β2 =0.20 Ns/m , β3 =0.15 Ns/m ] 
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Figures of damped self-excited vibration of 3DOFS  
 
 

 
 

 
 

 
 

 
 

Fig. C(8)  x vs. t curves of m1 , m2 and  m3 and trajecotory for m1 for f(n) of Table 2 using data of   

 Table 12 for combination of linear springs and non-linear dampers [ m1 =100 kg, m2 =100 kg, m3 =100 kg, 

k1 =100 N/m, k2 =100 N/m, k3 =100 N/m, c1  =0.03 Ns/m, c'1 =0.003 Ns/m3 , c2 =10.0 Ns/m, c'2 =0.003 

Ns/m3 , c3 =30.0 Ns/m , c'3 =0.003 Ns/m3 , α1 =0.20 N/m , α2 =0.25 N/m , α3 =0.23 N/m ,β1 =0.10 Ns/m , β2 

=0.20 Ns/m , β3 =0.15 Ns/m, γ1 = 0.001Ns/m3 , γ2 =0.002 Ns/m3 , γ3 =0.025 Ns/m3 ] 
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APPENDIX D 

(Program Code) 
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/*Code for Self-excited Vibration Analysis*/ 

# include <stdio.h> 

# include <conio.h> 

# include <math.h> 

# include <stdlib.h> 

# define n 4 

# define mass_1 100.0 

# define mass_2 100.0 

# define spring_k_1 100.0 

# define spring_k_1p 0.50 

# define spring_k_2 100.0 

# define spring_k_2p 0.50 

# define damp_c_1 1.5 

# define damp_c_1p 0.20 

# define damp_c_2 1.5 

# define damp_c_2p 0.20 

# define tb 50.01 

# define h 0.02 

# define w 0.0 

# define zero 0.0 

# define alpha_1 0.1 

# define alpha_2 0.1 

# define beta_1 0.1 

# define beta_2 0.1 

double fnction_1(double t ,double y1,double y2, double y3, double y4, double w1) 

{ 

double z=0.0; 
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z= (-(spring_k_1*y1+spring_k_1p*pow(y1,3))-(spring_k_2*(y1-y3)+spring_k_2p*pow((y1-

y3),3)) - (damp_c_1*y2+damp_c_1p*y2*pow(y1,2)) - (damp_c_2*(y2-y4)+damp_c_2p*(y2-

y4)*pow((y1-y3),2))+alpha_1*y1+beta_1*y2 )/mass_1 ; 

return z; 

} 

double fnction_2(double t, double y1,double y2, double y3, double y4, double w1) 

{ 

double z=0.0; 

z= (spring_k_2*(y1-y3)+spring_k_2p*pow((y1-y3),3) + (damp_c_2*(y2-y4)+damp_c_2p*(y2-

y4)*pow((y1-y3),2))+alpha_2*y3+beta_2*y4 )/mass_2 ; 

return z; 

} 

float FUHC_1(float t,float Y0,float R1, float Y2, float Y3, float y1, float y2, float y3, float y4) 

{ 

float z=0.0; 

z= (-spring_k_1*Y0-spring_k_1p*3*pow(y1,2)*Y0-spring_k_2*(Y0-Y2)-

3*spring_k_2p*pow((y1-y3),2)*(Y0-Y2)- damp_c_1*R1- damp_c_1p*R1*pow(y1,2)- 

2*damp_c_1p*y2*y1*Y0- damp_c_2*(R1-Y3)- damp_c_2p*pow((y1-y3),2)*(R1-Y3)- 

2*damp_c_2p*(y1-y3)*(y2-y4)*(Y0-Y2)+alpha_1*Y0+beta_1*R1 )/mass_1; 

return z; 

} 

float FUHC_2(float t,float Y0,float R1, float Y2, float Y3, float y1, float y2, float y3, float y4) 

{ 

float z=0.0; 

 z= (spring_k_2*(Y0-Y2)+spring_k_2p*3*pow((y1-y3),2)*(Y0-Y2)+ damp_c_2*(R1-Y3)+ 

damp_c_2p*pow((y1-y3),2)*(R1-Y3)+ 2*damp_c_2p*(y1-y3)*(y2-y4)*(Y0-

Y2)+alpha_2*Y2+beta_2*Y3)/mass_2; 

return z; 

} 
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void main() 

{ 

int i,j,n1,l,b,k,u,acc,freq; 

double yt[n]; 

float R1[n][n] ={{1.0}, 

   {0.0, 1.0},{0.0,0.0,1.0},{0.0,0.0,0.0,1.0}}; 

float n2,t,y1new=0.0,y1old=1.0, convgndamp_c_1, 

y2new=0.0,y2old=1.0,convgndamp_c_2,y3new=0.0,y3old=1.0,convgnc3,y4new=0.0,y4old=1.0,c

onvgnc4; 

double m1[n][n],E[n][n],F[n][n],G[n][n],H[n][n],Y[n][n]; 

double m2[n][n]={{0.0},{0.0},{0.0},{0.0}}; 

float m_1[n],m_2[n][n],m_3[n]; 

float l1[n],q[n][n],r[n],ya[n],yb[n], Yb[n][n]; 

float 

a[n][n],a1[n][n],a2[n][n],a3[n][n],a4[n][n],m1[n][n],m2[n][n],m3[n][n],m4[n],ab1[n][n],ab2[n][n]

,ab3[n][n],inverse[n][n],test[n][n]; 

float p1,p2,p3,p4,sum,sum_s,freq1; 

float yta[n], ytb[n]; 

float ytini[n]={0.0,0.0,0.0,0.0}; 

float sum4,sum3,sum2,sum1; 

FIFE *fp; 

float I[n][n]= {{1.0,0.0,0.0,0.0}, 

  {0.0,1.0,0.0,0.0}, 

  {0.0,0.0,1.0,0.0}, 

  {0.0,0.0,0.0,1.0}} ; 

float A[n][n]={{1.0,0.0,0.0,0.0}, 

        {0.0,0.0,0.0,0.0}, 

        {0.0,0.0,1.0,0.0}, 
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        {0.0,0.0,0.0,0.0}}; 

 

float B[n][n]={{0.0,0.0,0.0,0.0}, 

        {0.0,1.0,0.0,0.0}, 

        {0.0,0.0,0.0,0.0}, 

        {0.0,0.0,0.0,1.0}}; 

float C[n]={0.01,0.7,0.02,0.8}; 

float 

Gass1,Gass2,Springm1,Springm2,Springm1p,Springm2p,Dampc1,Dampc2,Dampc1p,Dampc2p,

Alpha1,Alpha2,Beta1,Beta2; 

Gass1=mass_1; 

Gass2=mass_2; 

Springm1=spring_k_1; 

Springm2=spring_k_2; 

Springm1p=spring_k_1p; 

Springm2p=spring_k_2p; 

Dampc1=damp_c_1; 

Dampc2=damp_c_2; 

Dampc1p=damp_c_1p; 

Dampc2p=damp_c_2p; 

Alpha1=alpha_1; 

Alpha2=alpha_2; 

Beta1=beta_1; 

Beta2=beta_2; 

 

t= zero; 

n2=((tb-t)/h); 

n1=n2; 
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 fp=fopen("d:\\output\\flutt.xls","w"); 

 clrscr(); 

  for (b=0;b<n;b++) 

  {yt[b]=ytini[b];} 

convgndamp_c_1=fabs(y1new-y1old); 

convgndamp_c_2=fabs(y2new-y2old); 

convgnc3=fabs(y3new-y3old); 

convgnc4=fabs(y4new-y4old); 

  while (0.0001<convgndamp_c_1 && 0.0001<convgndamp_c_2 && 0.0001<convgnc3 && 

0.0001<convgnc4)    /*Starting of checking convergence*/ 

 { 

    yt[0]=0.05;  /*???????*/ 

    yt[2]=0.07;     /*????????*/ 

    for (b=0;b<n;b++) 

  {yta[b]=ytini[b]; 

   ytb[b]=ytini[b]; 

   r[b]=ytini[b]; 

   l1[b]=ytini[b]; 

  } 

  for (k=0;k<n;k++) 

 {  for (b=0;b<n;b++) 

  {Yb[k][b]=m2[k][b]; 

   m2[k][b]=m2[k][b]; 

   q[k][b]=m2[k][b]; 

  }} 

  for (b=0;b<n;b++) 

  {yta[b]=yt[b];} 
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sum1=0.0; 

sum2=0.0; 

sum3=0.0; 

sum4=0.0; 

sum=0.0; 

sum_s=0.0; 

p1=0.0; 

p2=0.0; 

p3=0.0; 

p4=0.0; 

t=0.0; 

for (k=0;k<n;k++) 

 {  for (b=0;b<n;b++) 

  {m1[k][b]=m2[k][b]; 

   E[k][b]=m2[k][b]; 

   F[k][b]=m2[k][b]; 

   G[k][b]=m2[k][b]; 

   H[k][b]=m2[k][b]; 

   Y[k][b]=R1[k][b]; 

  }} 

 

for (i=0;i<n1;i++) 

 { 

m1[0][0]=h * yt[1]; 

m1[0][1]=h * fnction_1(t, yt[0],yt[1], yt[2], yt[3], w); 

m1[0][2]=h * yt[3]; 

m1[0][3]=h * fnction_2(t, yt[0],yt[1], yt[2], yt[3], w); 
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m1[1][0]=h * (yt[1]+m1[0][1]/2.0); 

m1[1][1]=h * fnction_1(t+h/2.0, yt[0]+m1[0][0]/2.0, yt[1]+m1[0][1]/2.0, yt[2]+m1[0][2]/2.0, 

yt[3]+m1[0][3]/2.0, w) ; 

m1[1][2]=h * (yt[3]+m1[0][3]/2.0); 

m1[1][3]=h * fnction_2(t+h/2.0, yt[0]+m1[0][0]/2.0, yt[1]+m1[0][1]/2.0, yt[2]+m1[0][2]/2.0, 

yt[3]+m1[0][3]/2.0, w) ; 

m1[2][0]=h * (yt[1]+m1[1][1]/2.0); 

m1[2][1]=h * fnction_1(t+h/2.0, yt[0]+m1[1][0]/2.0, yt[1]+m1[1][1]/2.0, yt[2]+m1[1][2]/2.0, 

yt[3]+m1[1][3]/2.0, w) ; 

m1[2][2]=h * (yt[3]+m1[1][3]/2.0); 

m1[2][3]=h * fnction_2(t+h/2.0, yt[0]+m1[1][0]/2.0, yt[1]+m1[1][1]/2.0, yt[2]+m1[1][2]/2.0, 

yt[3]+m1[1][3]/2.0, w) ; 

 

m1[3][0]=h * (yt[1]+m1[2][1]); 

m1[3][1]=h * fnction_1(t+h, yt[0]+m1[2][0], yt[1]+m1[2][1], yt[2]+m1[2][2], yt[3]+m1[2][3], w) 

; 

m1[3][2]=h * (yt[3]+m1[2][3]); 

m1[3][3]=h * fnction_2(t+h, yt[0]+m1[2][0], yt[1]+m1[2][1], yt[2]+m1[2][2], yt[3]+m1[2][3], w) 

; 

E[0][0]=h * Y[1][0] ; 

E[0][1]=h * FUHC_1(t, Y[0][0], Y[1][0], Y[2][0], Y[3][0], yt[0], yt[1], yt[2], yt[3] ) ; 

E[0][2]=h * Y[3][0] ; 

E[0][3]=h * FUHC_2(t, Y[0][0], Y[1][0], Y[2][0], Y[3][0], yt[0], yt[1], yt[2], yt[3] ) ; 

E[1][0]=h * (Y[1][0]+E[0][1]/2.0) ; 

E[1][1]=h * FUHC_1(t+h/2.0, Y[0][0]+E[0][0]/2.0, Y[1][0]+E[0][1]/2.0, Y[2][0]+E[0][2]/2.0, 

Y[3][0]+E[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

E[1][2]=h * (Y[3][0]+E[0][3]/2.0) ; 

E[1][3]=h * FUHC_2(t+h/2.0, Y[0][0]+E[0][0]/2.0, Y[1][0]+E[0][1]/2.0, Y[2][0]+E[0][2]/2.0, 

Y[3][0]+E[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

E[2][0]=h * (Y[1][0]+E[1][1]/2.0) ; 
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E[2][1]=h * FUHC_1(t+h/2.0, Y[0][0]+E[1][0]/2.0, Y[1][0]+E[1][1]/2.0, Y[2][0]+E[1][2]/2.0, 

Y[3][0]+E[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

E[2][2]=h * (Y[3][0]+E[1][3]/2.0) ; 

E[2][3]=h * FUHC_2(t+h/2.0, Y[0][0]+E[1][0]/2.0, Y[1][0]+E[1][1]/2.0, Y[2][0]+E[1][2]/2.0, 

Y[3][0]+E[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

 

E[3][0]=h * (Y[1][0]+E[2][1]) ; 

E[3][1]=h * FUHC_1(t+h, Y[0][0]+E[2][0], Y[1][0]+E[2][1], Y[2][0]+E[2][2], Y[3][0]+E[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

E[3][2]=h * (Y[3][0]+E[2][3]) ; 

E[3][3]=h * FUHC_2(t+h, Y[0][0]+E[2][0], Y[1][0]+E[2][1], Y[2][0]+E[2][2], Y[3][0]+E[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

 

for(l=0;l<n;l++) 

{Y[l][0]=Y[l][0]+ (E[0][l]+ 2.0*E[1][l]+ 2.0*E[2][l]+ E[3][l])/6.0 ;} 

F[0][0]=h * Y[1][1]; 

F[0][1]=h * FUHC_1(t, Y[0][1],Y[1][1], Y[2][1], Y[3][1], yt[0], yt[1], yt[2], yt[3] ) ; 

F[0][2]=h * Y[3][1]; 

F[0][3]=h * FUHC_2(t, Y[0][1],Y[1][1], Y[2][1], Y[3][1], yt[0], yt[1], yt[2], yt[3] ) ; 

 

F[1][0]=h * (Y[1][1]+F[0][1]/2.0) ; 

F[1][1]=h * FUHC_1(t+h/2.0, Y[0][1]+F[0][0]/2.0, Y[1][1]+F[0][1]/2.0, Y[2][1]+F[0][2]/2.0, 

Y[3][1]+F[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

F[1][2]=h * (Y[3][1]+F[0][3]/2.0) ; 

F[1][3]=h * FUHC_2(t+h/2.0, Y[0][1]+F[0][0]/2.0, Y[1][1]+F[0][1]/2.0, Y[2][1]+F[0][2]/2.0, 

Y[3][1]+F[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

 

F[2][0]=h * (Y[1][1]+F[1][1]/2.0) ; 

F[2][1]=h * FUHC_1(t+h/2.0, Y[0][1]+F[1][0]/2.0, Y[1][1]+F[1][1]/2.0, Y[2][1]+F[1][2]/2.0, 

Y[3][1]+F[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 
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F[2][2]=h * (Y[3][1]+F[1][3]/2.0) ; 

F[2][3]=h * FUHC_2(t+h/2.0, Y[0][1]+F[1][0]/2.0, Y[1][1]+F[1][1]/2.0, Y[2][1]+F[1][2]/2.0, 

Y[3][1]+F[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

 

F[3][0]=h * (Y[1][1]+F[2][1] ) ; 

F[3][1]=h * FUHC_1(t+h, Y[0][1]+F[2][0], Y[1][1]+F[2][1], Y[2][1]+F[2][2], Y[3][1]+F[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

F[3][2]=h * (Y[3][1]+F[2][3] ) ; 

F[3][3]=h * FUHC_2(t+h, Y[0][1]+F[2][0], Y[1][1]+F[2][1], Y[2][1]+F[2][2], Y[3][1]+F[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

 

for(l=0;l<n;l++) 

{Y[l][1]=Y[l][1]+ (F[0][l]+ 2.0*F[1][l]+ 2.0*F[2][l]+ F[3][l])/6.0 ;} 

 

 

 

 

G[0][0]=h * Y[1][2] ; 

G[0][1]=h * FUHC_1(t, Y[0][2],Y[1][2], Y[2][2], Y[3][2], yt[0], yt[1], yt[2], yt[3] ) ; 

G[0][2]=h * Y[3][2] ; 

G[0][3]=h * FUHC_2(t, Y[0][2],Y[1][2], Y[2][2], Y[3][2], yt[0], yt[1], yt[2], yt[3] ) ; 

G[1][0]=h * (Y[1][2]+G[0][1]/2.0 ) ; 

G[1][1]=h * FUHC_1(t+h/2.0, Y[0][2]+G[0][0]/2.0, Y[1][2]+G[0][1]/2.0, Y[2][2]+G[0][2]/2.0, 

Y[3][2]+G[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

G[1][2]=h * (Y[3][2]+G[0][3]/2.0 ) ; 

G[1][3]=h * FUHC_2(t+h/2.0, Y[0][2]+G[0][0]/2.0, Y[1][2]+G[0][1]/2.0, Y[2][2]+G[0][2]/2.0, 

Y[3][2]+G[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

G[2][0]=h * (Y[1][2]+G[1][1]/2.0) ; 



135 
 

G[2][1]=h * FUHC_1(t+h/2.0, Y[0][2]+G[1][0]/2.0, Y[1][2]+G[1][1]/2.0, Y[2][2]+G[1][2]/2.0, 

Y[3][2]+G[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

G[2][2]=h * (Y[3][2]+G[1][3]/2.0) ; 

G[2][3]=h * FUHC_2(t+h/2.0, Y[0][2]+G[1][0]/2.0, Y[1][2]+G[1][1]/2.0, Y[2][2]+G[1][2]/2.0, 

Y[3][2]+G[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

 

G[3][0]=h * (Y[1][2]+G[2][1] ) ; 

G[3][1]=h * FUHC_1(t+h, Y[0][2]+G[2][0], Y[1][2]+G[2][1], Y[2][2]+G[2][2], Y[3][2]+G[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

G[3][2]=h * (Y[3][2]+G[2][3] ) ; 

G[3][3]=h * FUHC_2(t+h, Y[0][2]+G[2][0], Y[1][2]+G[2][1], Y[2][2]+G[2][2], Y[3][2]+G[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

for(l=0;l<n;l++) 

{Y[l][2]=Y[l][2]+ (G[0][l]+ 2.0*G[1][l]+ 2.0*G[2][l]+ G[3][l])/6.0 ;} 

H[0][0]=h * Y[1][3]; 

H[0][1]=h * FUHC_1(t, Y[0][3], Y[1][3], Y[2][3], Y[3][3], yt[0], yt[1], yt[2], yt[3] ) ; 

H[0][2]=h * Y[3][3]; 

H[0][3]=h * FUHC_2(t, Y[0][3], Y[1][3], Y[2][3], Y[3][3], yt[0], yt[1], yt[2], yt[3] ) ; 

H[1][0]=h * (Y[1][3]+H[0][1]/2.0); 

H[1][1]=h * FUHC_1(t+h/2.0, Y[0][3]+H[0][0]/2.0, Y[1][3]+H[0][1]/2.0, Y[2][3]+H[0][2]/2.0, 

Y[3][3]+H[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

H[1][2]=h * (Y[3][3]+H[0][3]/2.0); 

H[1][3]=h * FUHC_2(t+h/2.0, Y[0][3]+H[0][0]/2.0, Y[1][3]+H[0][1]/2.0, Y[2][3]+H[0][2]/2.0, 

Y[3][3]+H[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

H[2][0]=h * (Y[1][3]+H[1][1]/2.0); 

H[2][1]=h * FUHC_1(t+h/2.0, Y[0][3]+H[1][0]/2.0, Y[1][3]+H[1][1]/2.0, Y[2][3]+H[1][2]/2.0, 

Y[3][3]+H[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

H[2][2]=h * (Y[3][3]+H[1][3]/2.0); 

H[2][3]=h * FUHC_2(t+h/2.0, Y[0][3]+H[1][0]/2.0, Y[1][3]+H[1][1]/2.0, Y[2][3]+H[1][2]/2.0, 

Y[3][3]+H[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 
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H[3][0]=h * (Y[1][3]+H[2][1] ) ; 

H[3][1]=h * FUHC_1(t+h, Y[0][3]+H[2][0], Y[1][3]+H[2][1], Y[2][3]+H[2][2], Y[3][3]+H[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

H[3][2]=h * (Y[3][3]+H[2][3] ) ; 

H[3][3]=h * FUHC_2(t+h, Y[0][3]+H[2][0], Y[1][3]+H[2][1], Y[2][3]+H[2][2], Y[3][3]+H[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

 

for(l=0;l<n;l++) 

{Y[l][3]=Y[l][3]+ (H[0][l]+ 2.0*H[1][l]+ 2.0*H[2][l]+ H[3][l])/6.0 ;} 

 

   t=t+h; 

 

for (j=0;j<n;j++) 

{ yt[j]= yt[j] + (m1[0][j]+ 2.0*m1[1][j]+ 2.0*m1[2][j]+ m1[3][j])/6.0 ; } 

      } 

 

  for (i=0;i<n;i++) 

 {ytb[i]=yt[i];} 

   for (i=0;i<n;i++) 

  {for (j=0;j<n;j++) 

  {Yb[i][j]=Y[i][j];}} 

 for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum=0.0; 

  for (k=0;k<n;k++) 

  {sum= sum + Yb[i][k]*yta[k]; 

  m_1[i]= sum ; 

}}} 
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for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum=0.0; 

  sum= sum + m_1[i]-ytb[i]; 

  l1[i]= sum ; 

}} 

for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum=0.0; 

  for (k=0;k<n;k++) 

  {sum= sum + B[i][k]*Yb[k][j]; 

  m_2[i][j]= sum ; 

}}} 

 

for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum=0.0; 

  for (k=0;k<n;k++) 

  {sum= sum + B[i][k]*l1[k]; 

  m_3[i]= sum ; 

}}} 

for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum=0.0; 

  sum= sum + A[i][j]+m_2[i][j]; 

  q[i][j]= sum ; 
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}} 

for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum=0.0; 

  sum= sum + C[i]+m_3[i]; 

  r[i]= sum ; 

}} 

for(i=0;i<n;i++) 

 {for(j=0;j<n;j++) 

 {a[i][j]=q[i][j]; 

 }} 

 

for(i=0;i<n;i++) 

 {for(j=0;j<n;j++) 

 {a1[i][j]=a[i][j]; 

 }} 

 

 for (i=0;i<n;i++) 

{sum1=sum1+a1[i][i]; 

} 

p1=sum1/1; 

 for (i=0;i<n;i++) 

 { for (j=0;j<n;j++) 

 {m1[i][j]=p1*I[i][j];}} 

 for (i=0;i<n;i++) 

 { for (j=0;j<n;j++) 

{ sum_s=0.0; 
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sum_s=sum_s+a1[i][j]-m1[i][j]; 

ab1[i][j]=sum_s;}} 

    for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum_s=0.0; 

  for (k=0;k<n;k++) 

  {sum_s= sum_s + a[i][k]*ab1[k][j]; 

  a2[i][j]= sum_s ; 

}}} 

 for (i=0;i<n;i++) 

{sum2=sum2+a2[i][i]; 

} 

p2=sum2/2; 

  for (i=0;i<n;i++) 

 { for (j=0;j<n;j++) 

 {m2[i][j]=p2*I[i][j];}} 

 for (i=0;i<n;i++) 

 { for (j=0;j<n;j++) 

{ sum_s=0.0; 

sum_s=sum_s+a2[i][j]-m2[i][j]; 

ab2[i][j]=sum_s;}} 

    for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum_s=0.0; 

  for (k=0;k<n;k++) 

  {sum_s= sum_s + a[i][k]*ab2[k][j]; 

  a3[i][j]= sum_s ; 
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}}} 

 

 for (i=0;i<n;i++) 

{sum3=sum3+a3[i][i]; 

} 

p3=sum3/3; 

 for (i=0;i<n;i++) 

 { for (j=0;j<n;j++) 

 {m3[i][j]=p3*I[i][j];}} 

 for (i=0;i<n;i++) 

 { for (j=0;j<n;j++) 

{ sum_s=0.0; 

sum_s=sum_s+a3[i][j]-m3[i][j]; 

ab3[i][j]=sum_s;}} 

    for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum_s=0.0; 

  for (k=0;k<n;k++) 

  {sum_s= sum_s + a[i][k]*ab3[k][j]; 

  a4[i][j]= sum_s ; 

}}} 

 for (i=0;i<n;i++) 

{ sum4= sum4+ a4[i][i];} 

 

 

 p4= sum4/ 4 ; 

  for (i=0;i<n;i++) 
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 { for (j=0;j<n;j++) 

 {inverse[i][j]=ab3[i][j]/p4;}} 

  for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum_s=0.0; 

  for (k=0;k<n;k++) 

  {sum_s= sum_s + inverse[i][k]*q[k][j]; 

  test[i][j]= sum_s ; 

}}} 

  for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum_s=0.0; 

  for (k=0;k<n;k++) 

  {sum_s= sum_s + inverse[i][k]*r[k]; 

  ya[i]= sum_s ; 

}}} 

   for(i=0;i<n;i++) 

{ for (j=0;j<n;j++) 

  {sum_s=0.0; 

  for (k=0;k<n;k++) 

  {sum_s= sum_s + Yb[i][k]*ya[k]; 

  m4[i]= sum_s ; 

}}} 

y1old=yb[0]; 

y2old=yb[1]; 

y3old=yb[2]; 

y4old=yb[3]; 
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 for (i=0;i<n;i++) 

 { for (j=0;j<n;j++) 

{ sum_s=0.0; 

sum_s=sum_s+m4[i]-l1[i]; 

 yb[i]=sum_s;}} 

y1new=yb[0]  ; 

y2new=yb[1]  ; 

y3new=yb[2]  ; 

y4new=yb[3]  ; 

 for (b=0;b<n;b++) 

  {yt[b]=ya[b];} 

 convgndamp_c_1= fabs(y1new-y1old) ; 

 convgndamp_c_2= fabs(y2new-y2old) ; 

 convgnc3= fabs(y3new-y3old) ; 

 convgnc4= fabs(y4new-y4old) ; 

 } 

 for (b=0;b<n;b++) 

  {yt[b]=ya[b];} 

t=0.0; 

for (k=0;k<n;k++) 

 {  for (b=0;b<n;b++) 

  {m1[k][b]=m2[k][b];}} 

for (k=0;k<n;k++) 

 {  for (b=0;b<n;b++) 

  {E[k][b]=m2[k][b];}} 

for (k=0;k<n;k++) 

 {  for (b=0;b<n;b++) 
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  {F[k][b]=m2[k][b];}} 

for (k=0;k<n;k++) 

 {  for (b=0;b<n;b++) 

  {G[k][b]=m2[k][b];}} 

for (k=0;k<n;k++) 

 {  for (b=0;b<n;b++) 

  {H[k][b]=m2[k][b];}} 

for (k=0;k<n;k++) 

 {  for (b=0;b<n;b++) 

  {Y[k][b]=R1[k][b];}} 

 

 fputs (" t(s)\t y1(x1)(m)\t y2(m/s)\t y3(x2)(m)\t y4(m/s) \n",fp); 

 fprintf(fp,"  %f\t   %f\t  %f\t %f\t %f \n ",t,yt[0],yt[1],yt[2],yt[3]); 

for (i=0;i<(n1-1);i++) 

 { 

m1[0][0]=h * yt[1]; 

m1[0][1]=h * fnction_1(t, yt[0],yt[1], yt[2], yt[3], w); 

m1[0][2]=h * yt[3]; 

m1[0][3]=h * fnction_2(t, yt[0],yt[1], yt[2], yt[3], w); 

m1[1][0]=h * (yt[1]+m1[0][1]/2.0); 

m1[1][1]=h * fnction_1(t+h/2.0, yt[0]+m1[0][0]/2.0, yt[1]+m1[0][1]/2.0, yt[2]+m1[0][2]/2.0, 

yt[3]+m1[0][3]/2.0, w) ; 

m1[1][2]=h * (yt[3]+m1[0][3]/2.0); 

m1[1][3]=h * fnction_2(t+h/2.0, yt[0]+m1[0][0]/2.0, yt[1]+m1[0][1]/2.0, yt[2]+m1[0][2]/2.0, 

yt[3]+m1[0][3]/2.0, w) ; 

 

m1[2][0]=h * (yt[1]+m1[1][1]/2.0); 
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m1[2][1]=h * fnction_1(t+h/2.0, yt[0]+m1[1][0]/2.0, yt[1]+m1[1][1]/2.0, yt[2]+m1[1][2]/2.0, 

yt[3]+m1[1][3]/2.0, w) ; 

m1[2][2]=h * (yt[3]+m1[1][3]/2.0); 

m1[2][3]=h * fnction_2(t+h/2.0, yt[0]+m1[1][0]/2.0, yt[1]+m1[1][1]/2.0, yt[2]+m1[1][2]/2.0, 

yt[3]+m1[1][3]/2.0, w) ; 

 

m1[3][0]=h * (yt[1]+m1[2][1]); 

m1[3][1]=h * fnction_1(t+h, yt[0]+m1[2][0], yt[1]+m1[2][1], yt[2]+m1[2][2], yt[3]+m1[2][3], w) 

; 

m1[3][2]=h * (yt[3]+m1[2][3]); 

m1[3][3]=h * fnction_2(t+h, yt[0]+m1[2][0], yt[1]+m1[2][1], yt[2]+m1[2][2], yt[3]+m1[2][3], w) 

; 

E[0][0]=h * Y[1][0] ; 

E[0][1]=h * FUHC_1(t, Y[0][0], Y[1][0], Y[2][0], Y[3][0], yt[0], yt[1], yt[2], yt[3] ) ; 

E[0][2]=h * Y[3][0] ; 

E[0][3]=h * FUHC_2(t, Y[0][0], Y[1][0], Y[2][0], Y[3][0], yt[0], yt[1], yt[2], yt[3] ) ; 

 

E[1][0]=h * (Y[1][0]+E[0][1]/2.0) ; 

E[1][1]=h * FUHC_1(t+h/2.0, Y[0][0]+E[0][0]/2.0, Y[1][0]+E[0][1]/2.0, Y[2][0]+E[0][2]/2.0, 

Y[3][0]+E[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

E[1][2]=h * (Y[3][0]+E[0][3]/2.0) ; 

E[1][3]=h * FUHC_2(t+h/2.0, Y[0][0]+E[0][0]/2.0, Y[1][0]+E[0][1]/2.0, Y[2][0]+E[0][2]/2.0, 

Y[3][0]+E[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

E[2][0]=h * (Y[1][0]+E[1][1]/2.0) ; 

E[2][1]=h * FUHC_1(t+h/2.0, Y[0][0]+E[1][0]/2.0, Y[1][0]+E[1][1]/2.0, Y[2][0]+E[1][2]/2.0, 

Y[3][0]+E[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

E[2][2]=h * (Y[3][0]+E[1][3]/2.0) ; 

E[2][3]=h * FUHC_2(t+h/2.0, Y[0][0]+E[1][0]/2.0, Y[1][0]+E[1][1]/2.0, Y[2][0]+E[1][2]/2.0, 

Y[3][0]+E[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 
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E[3][0]=h * (Y[1][0]+E[2][1]) ; 

E[3][1]=h * FUHC_1(t+h, Y[0][0]+E[2][0], Y[1][0]+E[2][1], Y[2][0]+E[2][2], Y[3][0]+E[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

E[3][2]=h * (Y[3][0]+E[2][3]) ; 

E[3][3]=h * FUHC_2(t+h, Y[0][0]+E[2][0], Y[1][0]+E[2][1], Y[2][0]+E[2][2], Y[3][0]+E[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

 

for(l=0;l<n;l++) 

{Y[l][0]=Y[l][0]+ (E[0][l]+ 2.0*E[1][l]+ 2.0*E[2][l]+ E[3][l])/6.0 ;} 

 

F[0][0]=h * Y[1][1]; 

F[0][1]=h * FUHC_1(t, Y[0][1],Y[1][1], Y[2][1], Y[3][1], yt[0], yt[1], yt[2], yt[3] ) ; 

F[0][2]=h * Y[3][1]; 

F[0][3]=h * FUHC_2(t, Y[0][1],Y[1][1], Y[2][1], Y[3][1], yt[0], yt[1], yt[2], yt[3] ) ; 

F[1][0]=h * (Y[1][1]+F[0][1]/2.0) ; 

F[1][1]=h * FUHC_1(t+h/2.0, Y[0][1]+F[0][0]/2.0, Y[1][1]+F[0][1]/2.0, Y[2][1]+F[0][2]/2.0, 

Y[3][1]+F[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

F[1][2]=h * (Y[3][1]+F[0][3]/2.0) ; 

F[1][3]=h * FUHC_2(t+h/2.0, Y[0][1]+F[0][0]/2.0, Y[1][1]+F[0][1]/2.0, Y[2][1]+F[0][2]/2.0, 

Y[3][1]+F[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

F[2][0]=h * (Y[1][1]+F[1][1]/2.0) ; 

F[2][1]=h * FUHC_1(t+h/2.0, Y[0][1]+F[1][0]/2.0, Y[1][1]+F[1][1]/2.0, Y[2][1]+F[1][2]/2.0, 

Y[3][1]+F[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

F[2][2]=h * (Y[3][1]+F[1][3]/2.0) ; 

F[2][3]=h * FUHC_2(t+h/2.0, Y[0][1]+F[1][0]/2.0, Y[1][1]+F[1][1]/2.0, Y[2][1]+F[1][2]/2.0, 

Y[3][1]+F[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

F[3][0]=h * (Y[1][1]+F[2][1] ) ; 

F[3][1]=h * FUHC_1(t+h, Y[0][1]+F[2][0], Y[1][1]+F[2][1], Y[2][1]+F[2][2], Y[3][1]+F[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

F[3][2]=h * (Y[3][1]+F[2][3] ) ; 
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F[3][3]=h * FUHC_2(t+h, Y[0][1]+F[2][0], Y[1][1]+F[2][1], Y[2][1]+F[2][2], Y[3][1]+F[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

for(l=0;l<n;l++) 

{Y[l][1]=Y[l][1]+ (F[0][l]+ 2.0*F[1][l]+ 2.0*F[2][l]+ F[3][l])/6.0 ;} 

G[0][0]=h * Y[1][2] ; 

G[0][1]=h * FUHC_1(t, Y[0][2],Y[1][2], Y[2][2], Y[3][2], yt[0], yt[1], yt[2], yt[3] ) ; 

G[0][2]=h * Y[3][2] ; 

G[0][3]=h * FUHC_2(t, Y[0][2],Y[1][2], Y[2][2], Y[3][2], yt[0], yt[1], yt[2], yt[3] ) ; 

G[1][0]=h * (Y[1][2]+G[0][1]/2.0 ) ; 

G[1][1]=h * FUHC_1(t+h/2.0, Y[0][2]+G[0][0]/2.0, Y[1][2]+G[0][1]/2.0, Y[2][2]+G[0][2]/2.0, 

Y[3][2]+G[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

G[1][2]=h * (Y[3][2]+G[0][3]/2.0 ) ; 

G[1][3]=h * FUHC_2(t+h/2.0, Y[0][2]+G[0][0]/2.0, Y[1][2]+G[0][1]/2.0, Y[2][2]+G[0][2]/2.0, 

Y[3][2]+G[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

G[2][0]=h * (Y[1][2]+G[1][1]/2.0) ; 

G[2][1]=h * FUHC_1(t+h/2.0, Y[0][2]+G[1][0]/2.0, Y[1][2]+G[1][1]/2.0, Y[2][2]+G[1][2]/2.0, 

Y[3][2]+G[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

G[2][2]=h * (Y[3][2]+G[1][3]/2.0) ; 

G[2][3]=h * FUHC_2(t+h/2.0, Y[0][2]+G[1][0]/2.0, Y[1][2]+G[1][1]/2.0, Y[2][2]+G[1][2]/2.0, 

Y[3][2]+G[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

G[3][0]=h * (Y[1][2]+G[2][1] ) ; 

G[3][1]=h * FUHC_1(t+h, Y[0][2]+G[2][0], Y[1][2]+G[2][1], Y[2][2]+G[2][2], Y[3][2]+G[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

G[3][2]=h * (Y[3][2]+G[2][3] ) ; 

G[3][3]=h * FUHC_2(t+h, Y[0][2]+G[2][0], Y[1][2]+G[2][1], Y[2][2]+G[2][2], Y[3][2]+G[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

for(l=0;l<n;l++) 

{Y[l][2]=Y[l][2]+ (G[0][l]+ 2.0*G[1][l]+ 2.0*G[2][l]+ G[3][l])/6.0 ;} 

H[0][0]=h * Y[1][3]; 

H[0][1]=h * FUHC_1(t, Y[0][3], Y[1][3], Y[2][3], Y[3][3], yt[0], yt[1], yt[2], yt[3] ) ; 
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H[0][2]=h * Y[3][3]; 

H[0][3]=h * FUHC_2(t, Y[0][3], Y[1][3], Y[2][3], Y[3][3], yt[0], yt[1], yt[2], yt[3] ) ; 

H[1][0]=h * (Y[1][3]+H[0][1]/2.0); 

H[1][1]=h * FUHC_1(t+h/2.0, Y[0][3]+H[0][0]/2.0, Y[1][3]+H[0][1]/2.0, Y[2][3]+H[0][2]/2.0, 

Y[3][3]+H[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

H[1][2]=h * (Y[3][3]+H[0][3]/2.0); 

H[1][3]=h * FUHC_2(t+h/2.0, Y[0][3]+H[0][0]/2.0, Y[1][3]+H[0][1]/2.0, Y[2][3]+H[0][2]/2.0, 

Y[3][3]+H[0][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

H[2][0]=h * (Y[1][3]+H[1][1]/2.0); 

H[2][1]=h * FUHC_1(t+h/2.0, Y[0][3]+H[1][0]/2.0, Y[1][3]+H[1][1]/2.0, Y[2][3]+H[1][2]/2.0, 

Y[3][3]+H[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

H[2][2]=h * (Y[3][3]+H[1][3]/2.0); 

H[2][3]=h * FUHC_2(t+h/2.0, Y[0][3]+H[1][0]/2.0, Y[1][3]+H[1][1]/2.0, Y[2][3]+H[1][2]/2.0, 

Y[3][3]+H[1][3]/2.0, yt[0], yt[1], yt[2], yt[3] ) ; 

H[3][0]=h * (Y[1][3]+H[2][1] ) ; 

H[3][1]=h * FUHC_1(t+h, Y[0][3]+H[2][0], Y[1][3]+H[2][1], Y[2][3]+H[2][2], Y[3][3]+H[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

H[3][2]=h * (Y[3][3]+H[2][3] ) ; 

H[3][3]=h * FUHC_2(t+h, Y[0][3]+H[2][0], Y[1][3]+H[2][1], Y[2][3]+H[2][2], Y[3][3]+H[2][3], 

yt[0], yt[1], yt[2], yt[3] ) ; 

for(l=0;l<n;l++) 

{Y[l][3]=Y[l][3]+ (H[0][l]+ 2.0*H[1][l]+ 2.0*H[2][l]+ H[3][l])/6.0 ;} 

  t=t+h; 

for (j=0;j<n;j++) 

{ yt[j]= yt[j] + (m1[0][j]+ 2.0*m1[1][j]+ 2.0*m1[2][j]+ m1[3][j])/6.0 ; } 

 printf("\n at t=%f   y1=%f\t  y3=%f\t  \n",t,yt[0],yt[2]); 

   fprintf(fp,"  %f\t   %f\t  %f\t %f\t %f \n ",t,yt[0],yt[1],yt[2],yt[3]); 

 

      } 
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   fprintf(fp,"  %f\t   %f\t  %f\t %f\t %f \n ",t+h,yb[0],yb[1],yb[2],yb[3]); 

 

fputs("\n\n",fp); 

fputs("Gass_1\tGass_2\tSpring_m1\t Spring_m1p\t Spring_m2\t Spring_m2p\t Damp_c1\t 

Damp_c1p\t Damp_c2\t Damp_c2p \n",fp); 

fprintf(fp,"%f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t %f\t 

%f\n",Gass1,Gass2,Springm1,Springm1p,Springm2,Springm2p,Dampc1,Dampc1p,Dampc2,Dam

pc2p); 

fputs("\n\n",fp); 

fputs("alpha1\t alpha2\t beta1\t beta2\n",fp); 

fprintf(fp,"%f\t %f\t %f\t %f\n",Alpha1,Alpha2,Beta1,Beta2); 

fputs("\n\n",fp); 

fputs("Boundary Conditions:\n",fp); 

fputs("y1(a)\t y2(b)\t y3(a)\t y4(b)\n",fp); 

fprintf(fp,"%f\t %f\t %f\t %f\n",C[0],C[1],C[2],C[3]); 

  fclose(fp); 

 

 

getch(); 

 

} 
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