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Abstract

Compositc materials drew attention of researchers from all over the world due to their
outstanding advantages over conventional materials. They are being increasingly used as
structural elements in almost all engineering applications. To take f{ull advantage and
" ensure rcliable performance of these materials in an application, it is indispensable to
analyze various aspects of these materials. However, these are anisotropic and
microscopically nonhmn@eneous materials due to the presence of two phases in them.
This makes the analytical investigation quite complicated due to mathematical
difficultics. Therefore, only numerical and experimental approaches are extensively used
in the ficld of composites, especially in the case of mixed boundary conditions. A reliable

analytical method of analysis of these materials under mixed boundary conditions still

scems to be lacking.

In this study, an analytical method is developed to analyze the elastic field in structural
clements of laminated composite materials under mixed boundary conditions. The two
displacement components of the two-dimensional elasticity problem are expressed in

terms of a single displacement potential function, which satisfies one of the equilibrium

cquations automatically. The other equilibrium equation is transformed into a fourth

order partial differential equation of unknown displacement potential function. Thus, the
two dimensional mixed boundary value elasticity problem is reduced to the solution of a
~ single fourth order partial differential equation. The solution of the fourth order partial
differential cquation is obtained in the form of Fourier series. To demonstrate the method,
it is applicd to a rectangular panel consisting of (i) cross-ply laminated composite and (ii)
angle-ply laminated composite. Analytical solutions of different components of stress and

displacement are presented in the form of graphs. Further, the effects of laminate

thickness, fiber orientation, and panel aspect ratio on the components of stress and

displacement have been discussed in details. The results conform to the intuitively
expected characteristics of the structures which verify that the method developed in the
~ study can be applied reliably to structural elements of laminated composites under mixed

boundary conditions to analyze elastic field.



CHAPTER-1 INTRODUCTION

1.1 Background s
In cases of engincering problems, the elementary methods of strength of materials
are just not enough to provide sufficient and accurate information of elastic ficld in a
body. So, some more powerful methods are needed in the study of elastic field.
Further the elementary methods are insufficient to give information regarding local
stresses near the loads and near the supports of bars. Again for the cases where the
stress distribution in bodies, with all the dimensions of same order, has to be
investigated, these methods are incapable of furnishing satisfactory information. For
cxample, the stress in rollers and in balls of bearings can be found only by using the
methods .of the theory of elasticity [1]. So, to obtain satisfactory and reliable

information of elastic fields in engineering structures of practical applications, it is

mandatory to adobt the theory of elasticity.

To solve any elasticity problem, it is mandatory to satisfy all the boundary conditions
imposed on the boundaries along with the equilibrium and compatibility relations.

All the elasticity problems can be categorized as any of the following three

fundamental boundary value problems:

I. Determination of elastic field in an elastic body, that is in equilibrium, under

prescribed forces on the boundary. _
2. Determination of elastic field in an elastic body, that is in equilibrium, with a
prescribed displacement of the surface.
3. Determination of elastic field in an elastic body, that is in equilibrium, under
prescribed forces on the boundary and with a prescribed displacement of the
surface, where these two parameters denote the bounding surface of the body.

These categories of problems are called mixed mode boundary value

problems.

The problems, which are very simple in terms of geometry and boundary conditions,
can be solved analytically. But the fact is that these problems are of almost no

‘application in the field of engineering and technology. On the other hand the
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approximate methods have received considerable attention in the ficld of clasticity.
These include boundary-element method, finite element method, and finite difference -
method among others. There are some experimental methods of stress anal ysis which
arc employed for bodies with intricate shapes. But these methods are expensive.
Thercfore, despite availability of good numerical and experimental methods,

analytical solution of any elastic field problem is always desirable.

1.2 Literature Review:

In the field of elasticity the stress analysis has now become a classical subject. At
present the stress function approach [2-16] and the displacement formulatioﬁ [17] are
noticeable among the existing mathematical models. Although the theories of
clasticity had long been established, the solutions of practical problems started
mainly after the introduction of a stress function by Airy [2]. The Airy stress function
is governed by a fourth order partial differential equation and the stress components
arc related to it through its various second order derivatives. Solutions were initially
sought through various polynomial expressions of the stress function [3,4], but the
success of this api)roach was very limited. Using these polynomial expressions, an
clementary derivation of the effect of the shearing force on the curvature of the
deflection curve of Beams were made by Rankine[5] in England and Grashof [6] in
Germany. The problem of stress in masonary dams is of great practica) interest and
has been attempted by various authors [7,8] using polynomial expressions for the

stress functions. But it should be noted that the solutions thus obtained do not satisfy

the conditions at the bottom of the beam where it is connected with the foundaticn

and would predict reasonable values of stress in the region far away from the
foundation on acclount of Saint-Venant’s principle [9]. The first application of
trigonometric serieé in the solution of elastic problems using stress function method
was given by Ribiere [10] in his thesis. Further progress in the application of these
solutions was made by Filon [11]. Several particular examples were worked by
Bleich [12]. Using Fourier series, Beyer [13] solved the problem of a continuous
bcam on equidistant supports under gravity loading. Stress function technique has
also been used by Ribiere [14] for analyzing the stresses around a circular hole in a

plate, Sadowsky [15] for stresses around a slender hole, Flamant [16] for stresses



around a concentrated load on a straight boundary and Stokes [18] for stresses
around a concentrated load on a beam. But somehow these stress analysis problems

are still suffering from a lot of shortcomings and thus are being constantly looked
into {19-25].

Although elasticity problems were formulated long before, exact solutions of
practical problems are hardly available because of the inability of managing the
physical conditions imposed ‘on them. Actually, management of boundary conditions
is one of the major obstacles to the reliable solution of practical problems. The
famous Saint - Venant’s principle is still applied and its merit is evaluated in solving
problems of solid mechanics [20-21] in which full boundary effects could not be
taken into account satisfactorily in the process of solution. For complex shapes of
boundary, the difficulties of obtaining analytical solutions become formidable. These
difficulties were phrtia]ly avoided by restoring to experimental methods, such as
cxlensometers, strain gages or the photoelastic method. Using photoelasticity,
Hetengi [26] investigated the stresses in the threads of a bolt and nut fastening, Most
of the experimental investigations of elastic problems are reported in the “Handbook
of Experimental Stress Analysis” [27] and by Frocht [28] in “Photoelasticity”. Even
now, photoelastic studies are being carried out for classical problems like uniformly
loaded beams on two supports {29] mainly because the boundary effects could not be

taken into account fully in their analytical method of solutions.

Successful application of the stress function formulation in conjunction with finite-
~ difference technique has been reported for the solution of plane elastic problems
where all the conditions on the boundary are prescribed in terms of stresses only
[19,30]. Further, Conway and Ithaca [3]] extended the stress function formulation in
the form of Fourier integrals to the case where the material is orthotropic and
obtained analytical solutions for a number of ideal problems. The difficulties
involved in trying to solve practical stress problems using the existing models are

clearly pointed out by Durelli and Ranganayakamma [29] and others [32—47]'.

An investigation was undertaken to develop a rigorous mathematical solution of



stress and strain for a composite pole consisting of a reinforced plastic Jacket
laminated on a solid wood core [48], which was also a numerical procedure. Adams
and Doner [49] worked on a double periodic rectangular array of elastic filaments
contained in an elastic matrix material, which has been formulated using a fheory of
clasticity. Principal elastic moduli of unidirectional composites with anisotropic
filaments had been predicted using the available elasticity solutions of multiple-
inclusion problems by Whitney [50] where the measured data was obtained from
previous experimental research. Pagano developed some equations to evaluate
flexure cxperiments on bi-directional composites [51]. Using the limit analysis
method, Shu and Rosen [52] analyzed in-planc shear strength and the transverse
strength in shear and in tension of compoesites in terms of yield strength and volume
fraction. A recent work has been carried out by Tsai and Wu [53]. They developed,
operationally, a simple criterion for anisotropic materials. Most recent work has been
carried out on strength of composites, which is a numerical ‘estimation of
compressive strength [54). Two works on laminated composite has been carried out
using the displacement potential function. Here mixed mode boundary value

problems are handled analytically [55-56).

From above discussions, it .is found that various elasticity problems of different
materials, including isotropic, anisotropic, homogéneous, and non-homogenous
materials, have been solved. However, a reliable and effective analytical method
scems to be still lacking for the solution of elastic problems of practical applications,
which are subject to mixed mode of boundary conditions. Recently Shankar [57] and
Shankar er. al. [58-60] carried out some works for solving the mixed mode boundary

value problem which are quite useful but only for a single lamina.

1.3 Objeétivcs

As discussed above, most of the methods for analytical solution of clasticity

problems are only available cither in the form of stress functlon formulations or of

displaccment formulations. However, neither is suitable for solving problems of -

mixed-boundary conditions, Furthermore, these formulations cannot be dlrectly

applied to the case of anisotropic and non-homogeneous composite materials, which



arc being increasingly used to mecet the requirements of current applications. ‘The
objectives of the present study are
[ todevelop a simple, effective, and reliable analytical method for the analysis
of elastic field in structural elements of a laminated composite using
displacement potential function. The method will be applicable to problems
of any boundary conditions, whether they are specified in terms of either
stresses or displacements or any combination of both.

I1. to demonstrate the methods by solving some problems under different

boundary conditions.



CHAPTER-2 THEORITICAL FORMULATION

2.1 Introduction

The most engineering materials possess, to a certain extent, the properties of
elasticity. Unless the external forces exceed a certain limit, a material returns to its
original shape after withdrawal of the forces from it. This fimit is called the elastic
limit. This study is concerned with the analysis of elastic field of composite materials
within the elastic limit. The elastic field comprises stress field, strain field, and
displacement field. In order to provide a complete information on an elastic field of a
body, nine components of stress (o G, O, Oy, G, Oy Oy oy, and 0y:), SiX
components of strains (&, &, &, ¥y, %z Yo and three components of displacements
(1, Uy, u-,) have to be determined. However, the components of strains can be readily
obtained from displacement components throhugh some simple relations. Further, the
components of strains and displacements provide the same informations. Therefore,
in the analysis of elastic field, only stress and displacement components will be dealt
with. The convention of nine stress components acting at a point of a body is
illustrated in Fig. 2.1. All the stress components shown in the figure are positive. The

directions of stresses other than those indicated in the figure are considered negative.

Fig. 2.1 Conventions of stress components.

-



By considering moment of forces at the center of the cubic element of [Fig. 2.1, it can
be shown that &, = o5, 0. = G:y, Owx = Ox=. Thus, the nine stress components reduce

to six in number. Furthermore, the condition of static equilibrium of forces acting on

the body gives:
5

oo, . Oy N oo, L F =0

Ox oy Oz

do, 0Ocg, OJo, '

—+—+—L 4 F =0 (2.1)
dy dx Oz d :
oo |
90, + 90, +—2 4 F =0
0z ox ady

These equations are known as the equations of equilibrium. The parameters F,, F,,
and F: are the components of body force in x, y, and z directions; respectively. Again

the relations between strain and displacement components are given by

du, ou, Su. ou, Ou, Ou,  du, Ou, du_
g.‘_:___'_’g‘,:h_"g::—zb,}/wz—-}--m—,}/y;:—ﬁ.k_-_,}/:x: 4 —_—
ox Oy az 7y o 8z oy 0z  Ox
(2.2)
Now from Eq. 2.2, one obtains the following relations by simple manipulation.
azg.\’ + azg,\‘ - az}/-"y . 28253’ -~ — a},)’-’ + ayzx + ay.\'}’
y? axr axdy’ oyoz ox dy Oz
az(;." + 628: _ 82},}7 . 2 azg_)’ - a}/yz _ ayzx + a}/x}’ (2 3)
2 9yt ovoz x0z &x oz '
O, O, . N N
ax? 8z Gz dxdy x oz

These differential equations are known as the conditions of compatibility. The
solution of elasticity problems must satisfy the equilibrium equations and the

compatibility conditions along with the specific boundary conditions.

2.2 Plane stress condition .
The thickness of a single lamina or a laminate is small in comparison with its other
dimensions. Thus, the analysis of a lamina or a laminate predominantly falls under
the plane stress condition. For plane stress condition

0.=0,0,=0,0,.=0 (2.4)



Therefore, for plane stress, the equilibrium Eq. (2.1) having no body force reduces to

OO'I ao’—‘)' —
Fv
ox Y 2.5)
do, do,, :
——+—" =10
dy ox

The strain-displacement relations Eq. (2.2) and the compatibility conditions given by

Eq. (2.3), respectively, reduce to

3, ou, ou,,
Sr = "J’ Ty = ’ ’y.rv = aul’ + ) (26)
oo o 7 Gy  ox
2 o'e, 8?2
and 9 i” + zy =2y (2.7
oy Ox Oxoy

A symmetric laminate is one in which the material, fiber angle, and thickness of the
plics are same above and bellow the mid plane. For a symmetric laminated
composite, there is no curvature of the laminate under inplane loading. For this case,

the mid-plane strains are equal to the global strains and the stress-strain relations are

given by [61]

c. Ay A, 0 |e¢

Ty =4 4n 0 e, ' (2.8)
: ah ’
0 0 Ay,

x

Xy

Here, the elements of stiffiess matrix are given by [57]

A, = g[g,,c‘ 05 + 20, +20 )% ] (B — ) (2.9)
A,y = Z,[(Q“ + 0y — 40, )% + 0, (et + 5 ) (h, ~ £, @10
4, = Z[Q,,s“ + 00 + 20, +20, )76 | (b, @110
Ay = g[(Q,. +0n —29.; =200 )5 + Qels” + e (- 1) (2.12)
where Q) ﬂTfi”;,:’ 0, =%, 0, = 1~i21vu . 0w =G,,, c=cost9,'

§=sin@. h —h,_, is the thickness of the k-th ply, / is the total thickness of the

laminate, £, and E, are the young’s moduli in longitudinal and transverse direction



of cach ply. respectively; v, and v,, arc the major and minor Poison’s ratios,
respectively; Gy is the in-plane shear modulus, » is the total number of plies.
Further, the reciprocal relation between the poison’s ratios and the elastic moduli is

given by [61]

Via _ ¥y

E K

Equations (2.5) and (2.7} form a complete set of equations for the two dimensional
plane stress elasticity problém. Equation (2.7) can be expressed in termas of three
stress components by using Eq. (2.8). Thus, this set of equations includes three
unknown stress components, which should be solved satisfying the associated
boundary conditions. However, instead of solving three unknown quantities (three
stress components) from three equations simultaneously, it would be convenient if
the number of unknown quantities and the number of unknown equations could be
reduced. One approach to achieve this goal is to express all the equation in terms of
displacement components. First, Eq. (2.8) is expressed in terms displacement

components by making use of Eq. (2.6) as

ou,
o =y Ley g, 2.13)
ah| 0 oy
0
0, =~ 4, Xe i 1, 2 (2.14)
T ah | oy :
e}
O =LA«, 9 Ty (2.15)
T ah d Ox
Substitution of Egs. (2.13) - (2.15) into equilibrium Eqgs. (2.5) yields
2 82 ' az ’
A“'———a T i (A, + A) e F At =0 (2.16)
= oy "y |
o%u, o%u, 8tu N
Ap—=+ (4, + Aﬁﬁ)axay + Ay axzy =0 (2:17)

Now, it is seen that there are only two equilibrium equations (Egs. (2.16) and (2.17))
of two unknown quantities i.e. two unknown displacement components. The third

cquation i.e. the compatibility Eq. (2.7) becomes irrelevant in this case.

10



2.3 Definition of displacement potential function

In this article, it is aimed at defining a function, called displacement potential
function, so as to further reduce the governing differential equations (Egs. (2.16) and
(2.17)). With this view, the displacement potential function y is defined as a

function of displacement components as follows:

2 2 2
u, =a, V;-Paz L Sayzj
X oxdy " oy (2.18)
alw aZy, 62'}'/ .

u, =a, +a
’ 0

Here, o’s are unknown material constants.

Combining Egs. (2.13) - (2.15) and (2.18), one can arrive at

3 3 3

o'y O’y 'y
o, =ay A —+Hlagd), o Ay )+ (a4 A, —— . A
153 (az4,, +a, 'Z)szay (@4, 5 1z)ax 2 612 P
3 3 3 3
0"y Oy 0w
O, = A, — a4, v a4y ) ——+{a 4, + @Ay )—— + @ A, =2
3 17712 axg ( 2402 4 22)ax26y ( 32 5 22)6)65_})2 622 ay3
8’y O’y &y &’y
Ty = Qy Agg — + @ Agg + A5 Agg )——+ (@) Ay + e Aps ) + gt A =P
X 4466 33 ( 14466 T s bﬁ)axzay ( 2766 T U 66)8x 2 3466 P
(2.19}
Applying Eq. (2.19) into Egs. (2.16) and (2.17), one obtains the equilibrium
cquations in terms of the function w (x, ¥), which are given as
64!// 64W a4
a4, “é;a_+(a2A|| +a, A, +a4A66)Ex'%+(a Ayt dg +agd, +a5A66)%y;_2+

4
(@, A + Ay, + oAy, + o A )~ oy —+ 2, A o' t':/ 0
Ox Sy
4{/ 64!}'/
a‘,A,,,,Ex—;+(a.A,2 + o, Ay, +a5A66)M+(aZA +ay A+t Ay, +a A,z)

+

6o za 2

Fl

(ang,2 +a, A + aSAn)% +agd,, gjﬂ =0

(2.20)
This gives two equilibrium equations in terms of a single functiony . The constants
a’s are chosen in such a way that the first equation of Egs. (2.20) is automatically
satisfied under all circumstances. This will happen when coefficients of all the

derivatives of the first equation of Eqs. (2.20) are individually zero. That is, when



o, A, =0

o, Ay +a, A, +a, 4y, =0

o Ay O A + X Ay HagAg =0 (2.21)
ay A, AL+ a, Ay +agdy = 0
a, A, =0

From these relations, it is found that

a, =0
oy =0
as; =0

The remaining three constants have the following relations:

a, =- a4
A!Z + A66 (2 22)
o = — a2A66
i —————
All + A()ﬁ

Thus for w to be a solution of the stress problem, it has to satisfy the second
cquilibrium equation of Egs. (2.20) only. However, the values of a’s must be known
in advance. Here, we have basically two equations Eq. (2.22) for determining three
unknown o’s. An arbitrary value is thus assigned to any one of these three unknowns

and the remaining a’s are sofved from Eq. (2.22). Assuminga, = 1, the values of

a,and @, are oblained as

A
2T e (2.23)
a. =— AG(:
R Vi
A12+A(16

When the above values of «’s are substituted in the second equation of Eq. (2.20), the

governing differential equation for the solution of two dimensional laminated
composite structures becomes
'y +{A22 A122 2A12} o'y Ay d'w

B R Wi S Sy | : 2.24
ox oy A4, & _ (224)

AOG Al.lAt’)ﬁ AH

By making use of the above values of a’s in Eqs. (2.18) and (2.19), one obtains the

components of displacement and stress as follows:

12



B Oxdy ,
N o=- Ali azl,lf _ Aﬁﬁ 621// (225)
' Ayt Ay, O%° A, + A, oy’
A, a* GE
9= ; Ay 2':” = Ay vaj
ah(Au + Aﬁﬁ) Ox* Oy oy
] a]w aJV/
O'_r = m[(ﬁifz + A12A66 - Aquz)ax_zay - AHA“ y (2.26)

y o’ 3’
Ty = - A12 Wz - AH V;
ah( 4, + A, )| oxdy ox
Now, it is found that there is only one governing differential equation Eq. (2.24) for

the solution of the displacement potential functiony . Once the displacement
potential function  is known, the components of displacement and stress can be

readily found from Eqs. (2.25) and (2.26).

2.4 General consideration of the boundary conditions

Equation (2.24) is solved for the displacement potential functiony , which is further

used to determine the components of displacement and stress from Egs. (2.25) and
(2.26). The components of stress and displacement vary over the volume of the body.
At the boundary, they must be such as to satisfy the boundary conditions. The
practical situations, which may exist along the edge or boundary of a structure, are
visualized in two different ways, namely

a) Displacements and

b) Loading or stress

Both the displacements and the stresses are defined by their respective components.
These components are

1. Normal displacement

2 Tangential displacement

3. Normal stress
4

Tangential stress

13



At any point on the boundary, out of these four quantitics, two are known at a Llime.
Therefore, the four quantities, taking two at a time, may provide six diflerent

boundary conditions. These six boundary conditions are given by

a) Normal displacement, tangential displacement
b) Normal displacement, tangential stress

<) Tangential displacement, normal stress

d) Normal stress, tangential stress

e) Normal displacemenf, normal stress

) Tangential displacement, tangential stress

Out of these six possible combinations, the last two combinations, namely () and (f),
do not generally exist in physical problems. Therefore, at any point on the boundary,
the first four possible boundary conditions are concerned with. If the shape of the
boundary considered is rectangular, the structure may be oriented so that its edges
are paralle]l to the co-ordinate axes. In that case, the normal and the tangential
components of stress and displacement at the boundary are the co-ordinate
components of stress and displacement inside the structure. When the first four
boundary conditions are stated mathematically in terms of the functions to be
determined, one obtains

I u, =y (x,y),u, =y, (x,y)

2. u, =y (x,y),0,=y,(x,y} (2.27)
3. u =y x )0, =y(xy)

4. 0,7y, (x2),0, =%, y)

From the above expressions of boundary conditions, it is revealed that, there is no |
technical difficulty in satisfying all the modes of boundary conditions appropriately.
Moreover, compared to the approach of solving the problem in terms of displacement .
components, the displacement potential function approach has the advantage that
only one function y is required to be evaluated instead of solving for two variables

u; and u, simultaneously.

14



CHAPTER-3 SOME SAMPLE PROBLEMS OF LAMINATED COMPOSITE
STRUCTURES

In this chapter, some sample problems of laminated composite structures are solved
to demonstrate the method developed in the preceding chapters. Two different types
of laminate will be considered: (i) cross-ply laminate and (ji) angle-ply laminate. For

cach of the laminates, different conditions will be imposed on the boundary.

3.1 A rectangular panel of cross-ply laminated composite under uniform tensile

loading:

A symmetric cross-ply laminated composite pane! consisting of » number of plies is
shown in Fig. 3.1. A cross-ply laminate is a laminate in which the fibers are oriented
only at 0° and 90°. The thickness of the panel is 4. A cross-ply laminate (also called
laminates with especially orthotropic layers) is one in which fiber angles are only 0°
and 90°. The left end of the panel is rigidly fixed while the two longitudinal ends are
stiffened. The other end is subjected to a uniform tensile load o} . The length of the
pancl is b and the width is a. The conditions on the stiffeners are mathematically

formuiatedr by the fact that there is no displacement along the length of the stiffened

edges under the action of load and the stress in the direction perpendicular to the

}}
A Fibers Stiffened edges
7
I—
.
—
Fi ; o
a —— o,
e ——-
v —
——»
omm———
Frrr———
.._H. x
< b

Fig. 3.1 A rectangular panel of cross-ply laminated composite under
uniform tensile loading. '
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stiffener is zero. Thus, the boundary conditions of the problem are given by

(M e (x, 0)=u(x,a)=0;0<x<h

2)ow0)=0.(x,a)=0,0<x<h

B) (0, ) =1, (0,y)=0;,0<y<a
@ abyn=c0,0,»)=00<y<a
Under these boundary conditions the elastic field in the panel has to be determined.
To accomplish this, Eq. (2.24) has to be solved for the unknown displacement
potential function y from which the components of stress and displacement can be
found using Eqs. (2.25) and (2.26). For a unique solution, w has to satisfy Eq. (2.24)
as well as the boundary conditions described above.

For the present problem, the displacement potential function is assumed to be

V/:ZX,,,cosay ) (3.1)
m=]
where X, is a function of x only and & = nr .
a
Now substitution of Eq. (3.1) into Eq. (2.24) yields
X'“BX!'a? +CX " =0 (3.2)

where () indicates differentiation with respect to x and

_ Ay A122 24, cC zﬁ

Aﬁﬁ A]IAM; All All .

The general solution of Eq. (3.2) can be given by
X,=A,e"" +Be" +C.e™ +D " (3.3)

where

B++B*-4C

2

,Bi\/Bz —-4C
n,n, =-a “‘“ﬁ-T—

and A, B, Cn, and D,, are arbitrary constants.

n.n, =a

(3.4)

Substituting Eq. (3.1) into Eqgs. (2.25) and (2.26), the expressions of displacement

and stress components are obtained as

6

B

ol

5



u (x,y)= ZGX' sinay

(3.50)
m=|
1 2 v '
u,(x,y)= m;l [ X, 0t ~ 4, %7 Jcosay (3.5b)
a_‘(x,y):—WZ[AHX @’ + 4, Xalsinay (3.50)
| = " .
G.v(x’y): “WZ[AHA%XM“J +(A122 + A4 "AnAzz)Xma]Smay (3.5d)
12 66 J m=|

oi,_,.(x,y)z —--~~A‘€'—i[A,zX,’,,o.f2 +A“X,',,"]cosay (3.5¢)

ah( A, + Ay, )

m=1

Substituting different derivatives of X, in the expressions of the stress and

displacement components (Egs. (3.5a) — (3.5¢)), one can obtain

(e p)=3 [— (n, A.e™ +mB,e" +n,C e™ +n,D_e™ )asin ay] (3.6a)
=l
A B C mx D nax 2
I
) Ay, + Ay ootl - ,,(n A, e™ +nzBmen1x +n32Cmen,.t Jr’/142){)'"&3:&.\)
(3.6b)
A”’ o A]Z(A eﬂ;l +B e”zk’ +C e";qx +D en‘xh3 + ‘
(r ))):~ ) smaoy
a](Atz +A66)m=1 ”(n| A e"lx +n2 Bme":x +n3 Clrre +n D;ne"‘xh
(3.6¢)
Azon(,(Amemx +Bmen;x +Cmerr_|x +Dmen.x )(13 +
o, (xy)=- ah(Au v ; (42 + 4, A — 4,43, sinay
(n," A,e" +m B, e" +nC,e™ +n! Dme"*‘)g(
(3.6d)
A!I(nlAmenl.‘ _!_nzBme"z-" +n3cme +n Dmend }22 +
O':y('ny) ah(A,z +A66)z , cosay
,l(n, Ae™ +n) B ™ +niC, e™ +n,D, e™ )
(3.6¢)

For the present problem, it is seen from Eqs. (3.6a) and (3.6d) that the boundary

conditions (1) and (2) are satisfied automatically. Therefore, only the boundary‘

conditions (3), and (4) are remaining to be satisfied. The uniform tensile load o,°

applied at the edge x = b can be expressed in Fourier series as

17



m=|

o, (b.y)=a" =3 £, sinay 3.7)

2 o 0
where £ == Icrf sinaydy = _do. form=1,3,5....0 (3.8)
a, mm : ‘

Now, by applying the boundary conditions (3) and (4) in Egs. (3.6a) - (3.6¢) and
(3.6€) and making use of relation (3.7), the following four algebraic equations can be
obtained for the four unknown coefficients Al By, Cy, and D,

"

mA, +m,B, +nC, +n,D, =0 (3.9a)

(A”n,z - A(,,,az)Am + (A,,nj —Aﬁﬁaz)Bm + (A,,n;" ~Aqa’)C + (A,,nj —Aﬁéaz)Dm =0

(3.9b)
(A“nfa + A,zas)Ame""’ + (A”nzza+A,2a3)Bme""’ (3.9¢)
_ 9¢
+ (A, Jna+ A,zas)Cme"-"’ + (A, i+ A,2a3)Dme”"’ =E_ : :
(A”n," + Aun,az)Ame""’ +(A“n§ + Aunzaz)Bme”"’ (3.94)
+ (A“M; +Amat)C e™ +(A,1nf +A,2114a2)Dme”"" =0 -

Emah(AIZ + Ass)

where £, = — y
66

The above equations can be written in a simplified form for the solution of the

unknowns as follows:

R

mon, onon,
A A
QI QZ Q] Q4 m
Rl RZ RJ- R-d

0 =
Ot{j]co

(3.10)

S

where

P o=Anl - A’

Q= (A”nfa + 4,0’ )c""" i=123, and 4.

R = (A“n,f1 + Aun,az)e""" ‘

The solution of the above algebraic Eq. (3.10) yields the unknown constants A, B,
Cm, and D,,. Once the values of the unknowns are determined, they are directly

substituted into Eqs. (3.6a) ~ (3.6¢) to obtain the explicit expressions for the different

parameters of interest, namely, the two displacement and the three stress |

components, which are valid for the entire region of the stiffened edge panel of

18



laminated composite. It is noted that Eq. (3.10) is derived by satisfying the remaining

boundary conditions (3) and (4). Thus, the solution of Eq. (3.10) ensures that all the

boundary conditions are satisfied identically.

3.2 A rectangular panel of cross-ply laminated composite under parabolic

tensile If)hding:

A symmetric cfoss~ply laminated composite panel consisting of # number of plies is
shown in Fig. 3.2. The thickness of the panel is /. The left end of the panel is rigidly
fixed while the two longitudinal ends are stiffened. The other end is subjected to a
parabolic tensile load, as shown in the figure, The length of the panel is » and the
width is a. | the boundary conditions of the problem are given by

D (x, )=, (x,a)=0;0<x<bh

(o (x.0=0(xa=0,0<x<h

(3) e (0, =u, (0,))=0;0<y<a

apr
@) o,(b,y)=0c? =a—2(ay1y2),0'xy(b,y):0;0SySa

where P is the maximum value of the tensile load, for this case itisat y =a/2.

Fibers - ' . Stiffened edges

DI
/V

Fig. 3.2 A rectangular panel of cross-ply laminated composite
under parabolic tensile loading. '
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For this problem, the displacement potential function is assumed Lo be same as given
by Lg. (3.1). Further Lgs. (3.2) to (3.6¢) also apply to the present probiem. ‘The
boundary conditions (1) and (2), as before, are satisfied automatically. Therefore,
only the boundary conditions (3) and (4) are remaining to be satisfied. The parabolic
tensile load applied at the edge x = b can be expressed in Fourier series as

o (b.y)=0’ :iEm sin ay (3.1

m=|

where K, :Hf—.[ay y smaydyuﬁi form=1,3,5....0 (3.12)
a ; m’n’

applying the remaining boundary conditions (3) and (4) in Egs. (3.6a) - (3.6¢) and

(3.6¢) and making use of relation (3.11), the following four algebraic equations can

be obtained for four unknown coefficients A,,, B, Co, and D,),.

mA, +mB, +nC +nD =0 ) (3.13a)

(A“M,2 - Aﬁﬁaz)Am +(A“n§ - Aﬁﬁaz)Bm +(A“n§ —Abﬁal)Cm +(A“nf —Aéﬁaz)Dm =90

(3.13b)
(A,,n a+ A,o )A e"’ (Alln22a+Al2a3)B e (3.13¢)
3 13c
+(A”n3a+A,2a' e (A nia+ Ao )Dmendh =E,
(AnnlJ +A,2n,az)A,,,€"‘h +(An”: “*‘Anz"zaz)Bmenlh (3.13d)

3 2 mb 3 2 el
+(A”n3 +A,na )Cme ' +(A”n4 +A4,n0a )Dme ¢ =0

Enah(A; + 4g)
A

where £ = -
66

The above equations can be written in a simplified form for the solution of the

unknowns as follows:

n,o n, n h4 A 0
r r P PUB 0
[ 2 ; 4 mi_ 7 . (3.14)
Q! Q2 Q} Qd Cm' Em . .
R, R, R, R ||D 0
where
P o= An A(:Ga
0 = (A,,n a+ Ay’ ™ i=1,2,3,and 4.
R, ={A,n

1, +A|2"0~' )c

20
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The solution of the above algebraic Eq. (3.14) yields the unknown constants A4,,, 5,
Cp and D, Once the values of the unknowns are detcrmined, they are directly
substituted into Eq. (3.6) to obtain the cxplicit cxpressions for the different
paramcters  of intercst, namely, the two displacement and the three stress

components, which are valid for the entire region of the stiffened cdge pancl of

laminated composite.,

3.3 A rectangular panel of cross-ply laminated composite under parabolic shear

loading:

A symmetric cross-ply laminated composite panel consisting of #» number of plies is
shown in Fig. 3.3. The thickness of the panel is 4. The left end of the panel is rigidly

fixed while the two longitudinal edges are stiffened. The other end is subjected to a

arabolic shear load o AP —ay). The length of the panel is b and the width is
p v y

a. The boundary conditions of the problem are given by
(D (x, )=, (x,a)=0;0<x<h
(2o, (x,0)=0,(x,a)=0;,0<x< b

Fibers ) Stiffened edges

Q

xy :i_f(yZ _ay)

OO

< b

Fig. 3.3 A rectangular panel of cross-ply laminated composite
under parabolic shear loading.

21

%



(MO =u. (0, )=0:0sy<a

) o,(b,y)= 0,0,(by)= oy, i —ay},OSySa
: v =

2

For the present problem, the displacement potential function is assumed to be

v =ZX," cosay + Mx’

m=l

. L mr
where X,, is a function of x onlyandg = —— ,

) a
Now substitution of Eq. (3.15) into Eq. (2.24) yields
X, =BX @’ +CX a*=0

m

Bew-tto 12271 a0d C=ﬁ2—.
A  AyAy A, Ay

The general solution of Eq. (3.16) is given by

mx nx HyX mx
Xy =d4,e" +B e™ +C e™ + D, e™

where
B++B* —4C
n,n, =
2
Bt+B® -4C
M H, =@ —— =

2

and A, B,,, C, and D,, are arbitrary constants.

Now substituting Eq. (3.21) into Eqgs. (2.25) and (2.26), the expressions of

displacement and stress components are obtained as

u, (6, ¥)= =3 X, sinay

m=|

u (x, )= ﬁ—i [(A%Xmaz - A,,X")cosay + 6MxA”]

12 + 66 m=|

A(vﬁ S 3 " .
= Y A, X A, X
T G s A R+ Aiinay

O’y (,Ysy) - ah(Am + Aﬁﬁ) m=1

22

(3.15)

(3.16)

(.17)

(3.18)

(3.19a)
(3.19b)
(3.19¢c)

S Apa X, o (4L + A Ay~ 4,4, X alsingy (3.19d)



A, O6MA, A
o y)ee el S a x osap e M A
(’._.-(" J) ah(A,,_ A, );][ A ' ]u)su:} ah(An +Am=.) ( ¢)

Substituting different derivatives of X, in the expressions of the stress and
displacement components (Egs. (3.19a) ~ (3.19¢)), one can obtain

u,(x,y)= Z[ nA e" +n,B e" +nC_e™ “+n,D,e™ )asmay] (3.20a)

=l

1 AGG (Amenlx + Bme"z-_‘ +C en,x + D e"ﬁ}xz
— 3 cos ay
21 |- (i A,em n3B,e™ +niC e™ +nlD, ")
AIZ A66 m=l + 6M A
XA,

u,(x.y)=

(3.20b)

mx Pyx my D mx
o (.y)=— A ZL,I(Ae +B,e" +C.e™ +De )o:+

singy (3.20c)
alld, + A A A" 2B, ¢ +niC.e" +n2D. e )CJ

A Al 4,6 + B 4 C o™ +D.e" e +

] o
Wy M AL + 4,4, ~ A A i 3.20d
O-J (x}) al(AI2+A66)"Z’=I: ( 2l2+ ni,rZA“'z “n.fz) 2 mx X Sln@} ( O )
(n,Ame' +m B e +nC e™ +nlD e )a

nx nyx X nmx 2
A,z(ntAme‘ +mB.e™ +n,C e™ +n,D, e )a +

A 2]
o-xr (x‘ ,V) cosay
) ah(AIZ + A ; ( 3 mx a nyx 3 (%] 3 HyX
A\ A,e™ +my B " +n)C, e" +n D, e™ )
+ _M__ (3.20e)
ah(A,2 + AGG)

With these expressions of displacement and stress components, the boundary
conditions (1) and (2) are satisfied automatically. Therefore, only the boundary
conditions (3) and (4) are remaining to be satisfied. The parabolic shear load applied

at the edge x = b can be expressed in Fourier series as

o (b.y)=0 =E, + iEm cosay (3.21)
pr
where
E, = %T(ay—yz)ﬂ’y= —335
sp‘:' 6P form=2,4.6,......0 (3.22) .
E = a—é[(ay ¥y )cosaya’y = Er?

Using Egs. (3.20¢) - (3.22) the value of M can be obtained as
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o = APy + A)
94,4

[i14]

Now, by applying the boundary conditions (3) and (4) in Egs. (3.20a) - (3.20c) and
(3.20¢) and making usc of relation (3.21), the following four algebraic cquations can
be obtained for four unknown coefficients 4, B,,, C,., and D,

md, +n,B_ +nC +nD =0 : (3.23a)

(A”n,2 - AM,aZ)Am + (A”ng —_A“az)Bm +(A,,M32 —Aﬁﬁaz)Cm +(A,,nf —A“az)D =0

m

(3.23b)
(4,20 + 4,0’ )Ame""’ + (A[ Haa+ Ana3)Bme"_""
2 3 b 2 3 h (3‘23C)
+ (A,,nJa + A, )Cme ¥+ (A,,n,,o: + A4, )Dme"‘ =0
(4,2} + 4,na?)4, e +(d,n + Ama’)B " ~ (3.23d)

m

1 2 mb 3 2 b T
+ (A,,n3 +Ayma” )C e™ + A, + AL,n,a )Dme =K
where

E — Emah(An + A(]G)
A66

n

The above equations can be written in a simplified form for the solution of the

unknowns as follows:

noon, n, on |4, 0
ror, P PIlB, 0
= (3.24)
Q] Qz QJ Q4 Cm 0
RI RI RJ 'R4 Dm ETm
where

P =An -A.a’
Q = (A”nfa + Alzaj)e""" i=1,2,3,and 4.

R ={A,n} + A, e

The solution of the above algebraic Eq. (3.24) yields the unknown constants, A,,, B,,.
Cm. and D,,. Once the values of the unknowns are determined, they are directly
substituted into Eq. (3.20) to obtain the explicit expressions for the different
parameters of interest, namely, the two displacement and the three stress
components, which are valid for the entire region of the stiffened edge panel of

laminated composite.
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3.4 A rectangular panel of cross-ply laminated composite under lincarly

varying tensile loading:

A symmetric cross-ply laminated composite panel consisting of n number of plies is
shown in Fig. 3.4. The thickness of the panel is /. The left end of the panel is rigidiy
fixed while the two longitudinal edges are roller supported. The other cnd is
subjected to a linearly varying eccentric tensile load, varying from the maximum
valuc of P at y = 0 to zero at y = a/2. The length and width of the panel are denoted
by b and a respectively. The conditions on the rollers are mathematically formulated
by the fact that there is no displacement in the direction perpendicular to the roller
cdges and no shear stresses along the edges under the action of load. Thus, the
boundary conditions of the problem can be formulated as

(D, x.O=u,(x,a)=0;0<x<h

(2 on(x,0)=0y (x,a)=0;0<x< b

(3w (0, =u, (0,)=0;0<y<gq

2P
(4) o"t(b,y)=o'f :( _—GXJ,OSJ'SQ/Z, O‘xy(b,y)=0;OSySa

y ~
T Fibers | Roller guided edges
. 7
7
Z
% 0 2Py
. L ey
/ a
Z ——"
7 .
2 o>
< b >

Fig. 3.4 A rectangular panel of cross-ply laminated composite
under linearly varying tensile loading.

25



For the problem, the displacement potential function is assumed to he

u/=ZXm sinay + Mx’y + Ny° : (3.25)

m=l

C e mm
where X, is a function of x only and ¢ = —— ,

a

Now substitution of Eq. (3.25) into Eq. (2.24) yields

X=BX,a? +CX,a' =0 (3.26)
where Bzil_{__Alzz___ﬁz_ C.—.ﬁ_
AG(: AHAGG AH AII

The gencral solution of Eq. (3.26) can be given by

X,=A,e" + B e™ + C,e™ + D e™ 327
where
Bi~B*—4C
Ry, = Q| ———
2
(3.28)

BB -4C

2

nH,=-a

and A, B, Cp, and D,, are arbitrary constants,

Now substituting Eq. (3.25) into Egs. (2.25) and (2.26), the expressions of

displacement and stress components are obtained as

u (x,y)= iax; cosay + 2Mx (3.29a)

m=]

u, (x, y) = m]—i[(AﬁﬁXmaz -4, lX”)sin ay — 2y(A”M + 3A66N)] (3.29b)
AIZ + AGG m=1

Aﬁﬁ 3 3 "
X yj=—— AX X 2 IN i
o (xy) G’?(A12+A66)mz=1[( X0’ + A4, X" )cosay + (M + )] (3.29¢)
o (r y)r 1 < {AzzAﬁeXmaJ +(A|22 + Ay Ay - A4,4, ,',',a}cosay
al ah(AFZ + AGG)’“‘ * 2(A122 + A4,y Ag _AnAzz)M + 64, A N
(3.29d) |
SIS . o P PR 3.29
O-‘r_l'(xiy) ah(An-FA“),,,Z::t[ 12 ma + [ fr:]Slnazy ( e)
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Now substituting different derivatives of X,, in the expressions of the stress and

displacement components (Egs. (3.29a) — (3.29¢)), one can obtain

u (x,y)= i (n, A" +n,B,e" +n,C e™ +n,D e )0: cosay +2Mx (3.30a)
mnal
Ay (Ame""‘ +B,e™ +C ™ + D " )a2 )
1 sthay
1, (x,y)=~—no - A, (n,zAme”"‘ +n;B,e" +nlC,e™ +n Dme"")

Al! + Aﬁﬁ m=]
~2p(4;, M +34..N)

(3.30b)

A ‘ Ilz(“’m‘?""' +B.e" +C ™ + D, e™ )a3 +
q > A\nt A4 cosqy
b y):_LA "("'2 ne™ +mB.e" +niC ™ +1lD, " b
Moo+ )5 +2(M + 3N)

(3.30¢)

F AZZA()G (Ame“:’ + Bme”zJr + Cmemx + Dmemx }13
1 i + (Alzz + A dy - 4 IAZZ) : cosay
ah(A,z + Aﬁé) e (anme"l-" + nzzBme"rf + n;Cmen_\x + ndszC""” b

_+ 2(‘4122 + AI2A66 - AI |A12 )]M + 6‘A22A66N

o, (x,y)=

(3.30d)

A,,(n,Ame"" +n,B e™ +n,C e™ + n4Dme"‘x)a2 +
Ag % .
o, ()= *_‘**‘"Z sinqy
- ah(Alz + A“‘ ) m=1 3 mx 3 X 3 fyx 3 Hax
A”(nl Ae™ +m B e™ +nC e™ +nlD e )
(3.30e)
As before, the boundary conditions (1) and (2) are satisfied automatically. Therefore,

only the boundary conditions (3) and (4) are remaining to be satisfied. The linearly
, . 0 2Py . .
varying tensile load o, = P—=— | applied at the edge x = b can be expressed in
a

Fourier scries as

o (b.y)=E, +i5m cosay (3.3

m=]
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where

P 2y P
a; a 4

. 2P 2y 4p mir
km =— || | -~ |cos (I_})dy = | —cos——
a mx -2

a,

form=1,23,...... o0 (3.32)

By making use of Egs. (3.30b) - (3.30c), (3.31) — (3.32), and satisfying the boundary
condition (1), the value of M and N can be obtained as

_ahP(4, + A,) |

" 8(4, - 4,)

_ahPA, {4, + 4,)
24A66 (Aﬁb - Au)

By applying the boundary conditions (3) and (4) in Eqgs. (3.30a) - (3.30c) and (3.30e)
and making use of relation (3.31), the following four algebraic equations can be
obtained for four unknown coefficients A4,,, B, C, and D

e

mA, +n,B +nC +nD =0 (3.33a)

(‘4||"|2 - Aﬁ(uaz)Am +(A11"22 _AGGaz)Bm +(‘411”32 _Aﬁﬁazk?m + (A”n: _A(:Gaz)Dm =0

(3.33b)
(4,m2a + 4,0° )Amc""’ + (A”nia +4,a )Bme"‘b

2 k3 nh 2 3 nh T (3'33(:)
+(A,,n3a+A,2a )Cme-‘ +(A”n4a+A12a )Dme v =F,
A + Apna® J4,e™ +(4, 1) + 4,n,a% )B_e™ :
( Y 12°F1 )A ( 11772 12""2 ) (3_33d)

+(A|1’733 +A|1H3a2k'men;h +(A”n3 + A12n4a2)D,"e"4’” -0
where .
Fo= Emah(Au + Ag)

m A

66

The above equations can be written in a simplified form for the solution of the

unknowns as follows:

mon, ny on |14, 0
£ P, P P ||B,. 0

X =4 = (3.34)
Ql QZ Q] Q4 Cm Em N
R, R, R, R,/ ||D, 0
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where

P=An-A.a’ .

0, ={4,,nta + 4,0 " i=1,2,3,and 4.

R =(d,n + Ayt "

The solution of the above algebraic Eq. (3.34) yields the unknown constants A4,,, B,
Cuw, and D,,. Once the values of the unknowns are determined, they are directly
substituted into Eq. (3.30) to obtain the explicit expressions for the different
parameters of intcrest, namely, the two displacement and the three stress

components, which are valid for the entire region of the stiffened edge panel of

laminated composite.
3.5 Angle-ply laminated composite panel

A laminate is called an angle-ply laminate if it has plies of same material and
thickness, and only oriented at +6 and -@ directions. All the four different types of
boundary conditions discussed for cross-ply laminates are also considered for angle-
ply laminates. The corresponding angle-ply faminate has the same formulations as
for the cross-ply laminate. The only difference lies in the components of the stiffness

matrix given by Eqs. (2.9) — (2.12). Here the values of s and ¢ should be calculated

from the prescribed values of 6.
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CHAPTER-4  RESULTS AND DISCUSSION

In this chapter, some numerical results arc presented for the problems discussed in
the preceding chapter. All the results are obtained with reference to a glass epoxy
composite. Although the formulations can be applied to any composite, the
glass/cpoxy composite is chosen merely as an example. The mechanical properties of
the ingredient materials and their composites are shown in Table 4.1 and 4.2. In order
to make the results non-dimensional, the displacements are expressed as the ratio of
actual displacement to the actual dimension of the panel, and the stresses are

expressed as the ratio of the actual stress to the applied loading parameter.

Table 4.1 Propertics of fiber and matrix material:

Material Property
Fiber | Er (xI0'MPa) | 50
(Glass) Vi 0.20
E, (x10° MPa) 3.40
(Epoxy) Vo 0.30

Table 4.2 Properties of glass/epoxy composite:

Material Property

E, (x10°MPa) | 386
E, (x10° MPa) 8.27
Composite G2 (x10° MPa) 41.4
via 0.26

va 0.055

4.1 Results of the problem of article 3.1

The problem at article 3.1 refers to a rectangular pane! of symmetric cross-ply.
laminated composite. The panel is subjected to a uniform tensile load o, at one

lateral end while the other lateral end is fixed. The two longitudinal edges of the
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pancl arc stiffened. The geometry and the type of the loading of the problem arc

shown in Fig. 3.1.

The result shown in Fig. 4.1 is the normalized longitudinal displacement component
u /b as a function of normalized position y/a at different sections of the panel. The
distribution of the longitudinal displacement is parabolic and symmetric with respect
to the line y/a = 0.5. The magnitude of the longitudinal displacement increases with
the increase of x/b. It is zero ét the fixed end (x/b = 0) and two stiffened edges (y/a =
0, and 1.0), which satisfies the physical boundary conditions of the problem. The

result correspond to the number of plies » = 3 and the aspect ratio b/a = 3.0.

Figures 4.2 and 4.3 illusirate the variation of normalized lateral displacement
component u, /a at different sections of the panel for n =3 and b/a = 3.0. The lateral
displacement varies anti-symmetrically with respect to the line y/a = 0.5. For any
particular value of x/b, the lateral displacement is the maximum at the two stiffened
edges (y/a = 0 and 1) and zero at the mid plane (y/a = 0.5). The lateral displacement
is also zero at the section x/b = 0, i.e. at the left lateral boundary. This conforms to
the physical phenomenon of the problem. The characteristics of lateral displacement
arc similar for all the sections apart from the right latera.l end x/b = 1, i.e. the
displacement varies from a positive value at the bottom surface via =0 1o negative
value at the top surface y/a = 1. The reverse characteristics are obtained at the section
x/h = 1 and its few adjoining section. The magnitude of the lateral displacement is
much higher at section x/b = | than those of the other sections (x/b < 1). Therefore,
the detail characteristics of variation of the displacement at the sections of x/b < |
can not be obtained from Fig. 4.2. To observe detail characteristics, the results of

these sections (x/b < 1) only are plotted in Fig. 4.3

Figure 4.4 shows the original and the deformed shape of the panel, which is obtained,
form Fig. 4.1, and Fig. 4.2. It represents the combined effect of deformations in both

the x-and y-directions. The lateral displacement componentu,/a, which expresses.

expansion or contraction in y-direction, shows the intuitively expected behavior.

Tensile loading in axial direction should have normally led to contraction in the y-
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direction due to the effect of Poisson’s ratio, which is found to be true over the range
of 0 < x/b <0.9. But, for the small region, x/b 2 0.9, the bar is observed to be
expanding in the y-direction and the explanation is that, it may be attributed to the
applicd conditions of the stiffencd boundary under tension. The solutions for both the

displacement components u, and u, are found to be zcro at the fixed support, which

is also expected for the physical characteristic of the problem.

Figure 4.5 illustrates the distribution of normalized longitudinal stress
component o, /o at different sections of the panel for n =3 and d/a = 3.0. The stress

distribution is symmetric with respect to the mid longitudinal section y/a = 0.5. The
magnitude of the stress increases as the right lateral end approaches, i.e. as the value
of x/b increases. At x/b = 1, the value of o/’ is unity, which is in con formity with

the boundary condition of the problem

Figures 4.6 and 4.7 exhibit the distribution of normalized lateral stress versus
normalized position at different sections of the panet for n = 3 and b/a = 3.0. Figure
4.7 is plotted to show the detail characteristics of the stress variation at the sections
other than the right lateral end where the magnitude of the stress is much higher than
thosc of other sections. The stress distribution is symmetric. However, the nature of
distribution is quite different at different sections. At the section x/b = 0, the stress is
tensile whose magnitude is not so significant. At x/b = 0.5, the stress is negative that
represent compressive stress. At the section x/b = 0.9, the central region of the panel
(0.24 < y/a < 0.76) is under tension i.e. the stress is positive while the remaining
region of the panel is under compression (negative stress). At the right lateral end
(x/b = 1.0) the lateral stress is the maximum, which is tensile in nature. At all the
sections, the lateral stress is only a fraction to the applied load. Moreover, the stress

components are zero at the stiffened edges, which satisfies the boundary condition as

well.

The distribution of normalized shearing stresses o, / o) as a function of x and y is

shown in Fig. 4.8. At x/b = 1, i.e. at the right lateral edge, the shearing stress is zero

32

1



which is in conformity with the boundary condition of the problem. The distribution
of shear stress at all sections, other than x/b = 1, is anti-symmetric. Further, it is
observed that the magnitude of the shear stress increases with the increase of x/b

~ s

cxeept at x/b = |, where it is zcro.

Figure 4.9 displays the longitudinal displacement as a function of ply number for 5/
= 3.0 and x/b = 0.5. The results are calculated at three points, y/a = 0.2,0.4, and 0.95
along the section x/b = 0.5. It is observed that the magnitude of displacement

decreases with' the increase in ply number for same resultant applied load at x/b =
1.0.

Figure 4.10 shows the effect of ply number on the lateral displacement u/a for the
same values of different parameters as stated for Fig. 4.9. As tongitudinal

displacement, the magnitude of lateral displacement also decreases as the numbei of

plies increases.

Figure 4.11 represents the change in longitudinal stress component with the change
in ply number. The figure shows that for the same resultant load the magnitude of
stress reduces with the increase in ply number. This characteristic conforms with the
obvious fact that the greater the number of plies gives the larger cross-sectional area
over which the load is distributed. The magnitude of latcral and shear stress also

dccreases with the increase of ply number as can be seen from Figs. 4.12 and 4.13,

The effect of panel aspect ratio b/a on the longitudinal displacement u/b is portrayed
in Fig. 4.14. The results correspond to n = 3 and x/b = 0.5. The results are calculated
at three points along the section x/b = 0.5, Tt is to be noted that the magnitude of the
longitudinal displacement, for a particular value of y/a, decreases as the aspect ratio
increases. This is due to the fact that the section x/6 = 0.5 is getting away from the
loading section x/b = 1.0 as the aspect ratio b/a increases. Obviously, the effect of
load will diminish as the distance of a point rises. Due to the same reason, the aspect
ratio, in general, has the same effect on all other displacement'and stress components

as can be seen from Figs. 4.15 to 4.18.
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The results presented so far show the characteristics of cross-ply laminate. For the
same boundary and loading conditions, angle-ply laminated composite panel is also
considercd in order to analyze the elastic field. Figure 4.19 shows the geometry of

the problem.

Figure 4.20 to Fig. 4.36 present different characteristics of the angle-ply laminated
composite panel. The nature of the curves resembles to those discussed for cross-ply

laminated panel. Therefore the discussions of the curves are not repeated here for the

purpose of brevity.

Figure 4.37 demonstrates the effect of fiber angle on the longitudinal displacement of
angle-ply laminates. It shows that for fiber angles near zero to a higher value of
angles, within the range 0° < 8 < 20° the deflection reduces with the increase of
angle and vise versa for the range 70° < 6 < 90°. It happens due to the stiffened
cdges. On the other hand Fig. 4.38 shows that the magnitude of normalized lateral
deflection increascs with the increase in fiber angle within the range 0° < 8 < 20° and

vise versa for the range 70° < 8< 90°. So an optimization can be suggested for design

problems.

Like longitudinal deflection the normalized longitudinal stress decreases with
incrcase in fiber angle, depicted in Fig. 4.39. So, for design problems these
characteristics can become useful. Again analyzing Fig. 4.40 shows that the
magnitude of the normalized lateral stress increases with increase in fiber angle for
an angle ply composite laminate. On the other hand the normalized shear stress has

no effect on the fiber angle, shown in Fig. 4.41, as the load applied here is only the

tensile load.
4.2 Results of the problem of article 3.2
The problem at article 3.2 refers to a rectangular panel of symmetric cross-ply®

laminated composite. The panel is subjected to a parabolic tensile

loado® = 4P/a’ (ay - y?), at one lateral end while the other lateral end is fixed. The
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two longitudinal edges of the panel are stiffened. The geometry and the type of the

loading of the problem are shown in Fig. 3.2.

The variation of the normalized longitudinal diSplacerhcnt component u#,/b as a
function of normalized position y/a at different sections of the panel is shown in Fig.
4.42. The distribution of the longitudinal displacement is parabolic and symmetric
with respect to the line y/b = 0.5. The magnitude of the longitudinal displacement
increases with the increase bf x/b. It is zero at the fixed end (x4 = 0) and two
stiffened ends (3/a = 0, and 1.0), which satisfies the physical boundary conditions to

the problem. The results corresponds to the number of plies # = 3 and aspect ratio h/a
=3.0.

Figures 4.43 and 4.44 illustrate the variation of normalized lateral _c_lisplaéement
component w,/a at different sections of the panel for » = 3 and b/a = 3.0. The lateral
displacement varies anti-symmetrically with respect to the line y/a = 0.5. For any
particular value of x/b, the lateral displacement is the maximum at the two stiffened
edges (p/a = 0 and 1) and zero at the mid plane (3/a = 0.5). The lateral displacement
is also zero for any y/a at the section x/b = 0, i.e. at the left lateral boundary. This
conforms to the physical phenomenon of the problem. The characteristics of lateral
displacement are similar for all the sections apart from the right lateral end x/b = I,
i.c. the displacement varies from a positive value at the bottom surface y/a =0 to
negative value at the top surface y/a = 1. The reverse characteristics are obtained at
the section x/b = 1 and its few adjoining section. The magnitude of the lateral
displacement is much higher at section x/b = 1 than those of the other sections (x/b <
1). Therefore, the detail characteristics of variation of the displacement at the
scctions of x/b < 1 can not be obtained from Fig. 4.43. To observe detail

characteristics, the results of these sections (x/b < 1) only are plotted in Fig, 4.44 -

Figure 4.45 shows the original and the deformed shape of the panel, which is

obtained, form Fig. 4.42, and Fig. 4.43. It represents the combined effect of

deformations in  both the x-and y-directions. The ‘lateral displacement

componentu, /a, which expresses expansion or contraction in y-direction, shows the
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intuitively expected behavior. But at the same time some part of the deformed pancl
shows some unexpected shape. Tensile loading in axial direction should have
normally led to contraction in the y-direction due to the effect of Poisson’s ratio,
which is found to be truc over the range of 0 < x/b < 0.9. But, for the small region,
x/h = 0.9, the bar js obscrved to be expanding in the y-direction and the cxplanation
is that, it may be attributed to the physical conditions of the stiffened boundary under
tension. The solutions for both the displacement components u, and u are found to

be zero at the fixed support, which is also expected for the physical characteristic of

the problem.

Figure 4.46 illustrates the distribution of normaljzed longitudinal stress component

o,/ P at different scctions of the panel for n = 3 and b/a = 3.0. The stress distribution

is symmetric with respect to the mid longitudinal section ya=0.5. The magnitude of
the stress incrcases as the right lateral end approaches, i.c. as the value of x/b
increases. At x/b = 1, the maximum value of o /P is unity, which is in conformity

with the boundary condition of the problem

Figures 4.47 and 4.48 exhibit the distribution of normalized lateral stress versus
normalized position due to parabolic tensile load at different sections of the panel for
n =3 and b/a = 3.0. Figure 4.7 is plotted to show the detail characteristics of the
strcss variation at the sections other than the right lateral end where the magnitude of
the stress is much higher than those of other sections. The stress distribution is
symmetric. However, the nature of distribution is quite different at different sections.
At the section x/b = 0, the stress is tensile whose magnitude is not so significant. At
x/b = 0.5, the stress is negative that represent compressive stress. At the section x/b =
0.9, the panel is in tension. But the magnitude closer to the stiffened edges is not
significant while at y/a = 0.5, tension is much higher, although not that high

compared to the applied load. At all the sections the lateral stress is only a fraction to

the applied load. Moreover, the stress components are zero at the stiffened edges,

which satisfies the boundary condition as well.
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The distributions of normalized shearing stresso,, /P as a function of x and y is

shown in Fig. 4.49. At x/b = 1, i.e. at the right lateral edge, the shearing stress is zero
which is in conformity with the boundary condition of the problem. The distribution
of shear stress at all sections, other than x/b = I, is anti-symmectric. Further, it is

observed that the magnitude of the shear stress increases with the increase of x/b

except at x/b = 1, where it is zero.

Figure 4.50 explores the longitudinal displacement as a function ply number for b/a

= 3.0 and x/b = 0.5. The results are calculated at three points y/a = 0.2, 0.4, and 0.95

along the section x/b = 0.5. It is observed that the magnitude of displacement

decreases with the increase of ply number for the same resultant applied load at x/b =
1.0.

Figurc 4.51 shows the effect of ply number on the lateral displacement u,/a, for the
same values of different parameters as stated for Fig. 4.50. As longitudinal
displacement, the magnitude of lateral displacement also decreases as the number of

plies increascs.

Figure 4.52 represents the change in longitudinal stress component with the change
in ply number. The figure shows that for the same resultant load the magnitude of
stress reduces with the increase in ply number. This characteristic conforms to the
obvious fact that the greater the number of plies gives the larger cross-sectional arca
over which the load is distributed. The magnitude of lateral and shear stress also

decreases with the increase of ply number as can be seen from Figs. 4.53 and 4.54.

The effect of panel aspect ratio 5/a on the longitudinal displacement u,/b is portrayed
in Fig. 4.55. The results correspond to n =3 and x/6 = 0.5. The results are calculated
at three points along the section x/b = 0.5. It is to be noted that the magnitude of the
longitudinal displacement, for a particular value of y/a, decreases as the aspect ratio
increases. This is due to the fact that the sectioﬁ x/b = 0.5 is getting away from the
loading section x/b = 1.0 as the aspect ratio b/a increases. Obviously, the effect of

load will diminish as the distance of a point rises. Due to the same réason, the aspect
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ratio, in general, has the same effect on all other displacement and stress components -

as can be scen from Figs. 4.56 to 4.59.

The results presented so far show the characteristics of cross-ply laminate. For the
same boundary and loading conditions, angle-ply laminated composite panel is also

considered in order to analyze the elastic field. Figure 4.60 shows the geometry of

the probiem.

Figures 4.61 to Fig. 4.77 present different characteristics of the angle-ply laminated

composite panel. The nature of the curves resembles to those discussed for cross-ply

laminated panel. Therefore the discussions of the curves are not repeated here for the -

purpose of brevity.

Figure 4.78 demonstrates the effect of fiber angle on the longitudinai displacement of
angle-ply laminates. It shows that for fiber angles near zero to a higher value of
angles, within the range 0° < @ < 20°, the magnitude of the deflection decreases with
the increase of angle and vise versa for the range 70° < 6< 90°, It happens due to the
stiffencd edges. On the other hand Fig. 4.79 shows that the magnitude of the
normalized deflection along the lateral direction increases with the increase in fiber
angle within the range 0° < @ < 20° and vise versa for the range 70° < 8 < 90°. So an

optimization can be suggested for design problems.

Likec longitudinal deflection the normalized longitudinal stress decreases with
incrcase in fiber angle, depicted in Fig. 4.80. So, for design problems these
characteristics can become useful. Again analyzing Fig. 4.81 shows that the
magnitude of the normalized lateral stress increases with increase in fiber angle for
an angle ply composite laminate. On the other hand the normalized shear stress has
no effect on the fiber angle, shown in Fig. 4.82, as the load applied here is only the

tensile load.
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4.3 Results of the problem of article 3.3

The problem at article 3.3 refers to a rectangular panel of symmetric cross-ply

laminated composite. The panel is subjected to a parabolic shear
loadr® = 4P/ a? (y’ - ay), at one lateral end while the other lateral end is fixed. The

two longitudinal edges of the panel are stiffened. The geometry and the type of the

loading of the problem are shown in Fig. 3.3.

Shown in Fig. 4.83 is the normalized longitudinal displacement component u,/b as a
function of normalized position y/a at different sections of the panel. The distribution
of the longitudinal displacement is anti-symmetric with respect to the line ya =10.5.
It varies from zero, at y/a = 0, 0.5, and 1, to the maximum, at y/a = 0.25, and 0.75.
Further, the magnitude of the longitudinal displacement increases with the increase
of x/b. It is zero at the fixed end (x/b = 0), two stiffened edges and the mid plane (/a
=0, 0.5, and 1.0), which satisfies the physical boundary conditions of the problem.

The results corresponds to the number of plies » = 3 and the aspect ratio 4/a = 3.0.

Figurc 4.84 illustrates the variation of the lateral displacement component u/a at
different sections of the panel for n =3 and b/a = 3.0. The lateral displacement varies
symmetrically. For any particular value of x/b, the magnitude of displacement is the
maximum at transversely mid section (y/a =‘0.5). The displacement is zero at the
fixed end (x/b = 0). This conforms to the physical phenomenon of the problems. The
two cdges (a = 0 and 1) move parallel to each other while mid plane (y/a = 0.5)
deflection is the maximum which resembles with the applied load. However, the |
maximum deflection is at the right lateral edge (x/b = 1.0). One thing should be noted

that the deflection is in the negative direction as the applied load is negative in

direction.
Figurc 4.85 shows the original and the deformed shape of the panel under parabolic

shear loading. The deformations are obtained form Fig. 4.86, and Fig. 4.87. Here it is .

observed that the deformation along y direction is quite natural and expected but the -
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deformation along x dircction is so small, with respect to the size of the pancl, that it

actually could not be visualized.

Figurcs 4.86 and 4.87 illustrate the distribution of the longitudinal stress component

o, /P at different sections of the panel for » = 3 and #/a = 3.0. The stress

distribution is anti-symmetric with respect to-mid longitudinal section y/a = 0.5. But
at right lateral edge (x/& = 1), the value of o_/P is zero, depicted in Fig. 4.86. This

satisfics the boundary condition. And in Fig. 4.87 it is observed that the magnitude
increases with the increase in x/b for x/b < 1. Moreover, it is also observed that the

upper part of the panel is in tension while the lower part of the panel is in

compression,

Figures 4.88 and 4.89 show the distribution of lateral stress at different section of the
panel for 7 =3 and b/a = 3.0. The stress distribution is anti-symmetric with respect to
the mid plane (3/a = 0.5). Its magnitude increases with the increase in x/b. But in Fig.
4.88, the pattern of the curves shows different behavior at different sections. At x/b =
0 the stress is almost zero, where as at x/b = (.5 the stress in significant, but the
direction of the stress is opposite in upper and lower half of the panel. Now looking
at the plane x/b = 0.9 a very complicated condition is observed where at 0.88 < ya <
1.0 the stress is negative and at 0.88 > y/a > 0.5 the stress is positive. A similar
characlteristic is observed for the lower half (y/a < 0.5) of the panel. Moreover, the
stress components are zero at the stiffened edges, which satisfies the boundary

condition as well. The Fig. 4.89 shows the lateral stress distribution in the panel at
x/b=1.0,

The disttibution of the shearing stresses a,,/Pas a function of x and y is shown in
Fig. 4.90. Atx/b = 1, i.e. at the right lateral edge, the magnitude of the shearing stress
is maximum and the maximum value is unity which is in conformity with the loading
condition. The distribution of shear stress at all sections is symmetric. The variation
in shear stress along the width of the panel is very small at any point nearer to the\

fixed support. But at x/b = 0.9 the magnitude of the stress is minimum at the mid
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plane, which is opposite to the applied load. One thing is to: be noted that the shear
stress for any particular x/b is same for y/a = 0.2 and 0.8.

Figurc 4.91 shows the longitudinal displacement as a function of ply number for b/a
= 3.0 and x/b = 0.5. The results are calculated at three points y/a = 0.2, 0.4, and 0.95
along the section x/b = 0.5. It is observed that the magnitude of displacement

decreases with the increase of ply number for the same resultant applied load at x/b =
1.0.

Figure 4.92 aiso shows the non-linear and inverse characteristics for the relation
between lateral deflection u#/a and ply number for the same values of different
paramcters as stated for Fig. 4.91. Like the longitudinal displacement, the magnitude
of lateral displacement also decreases as the number of plies increases. One thing is
noticeable that for any particular x/b the amount of deflection is same at all Y/a. So,

all the curves become a single one for a particular x/b.

Figure 4.93 represents the change in longitudinal stress component with the change
in ply number. The figure shows that for the same resultant load the magnitude of
stress reduces with the increase in ply number. This characteristic conforms to the
obvious fact that the greater the number of plies gives the larger cross-sectional area
over which the load is distributed. The magnitude of lateral and shear stress also
decreases with the increase of ply number as can be seen from Figs. 4.94 and 4.95.
Again one thing is noticeable in Fig. 4.95 that for any particular x/b the amount of

deflection is same at all y/a. So, all the curves become a single one for a particular
x/b.

The effect of panel aspect ratio d/a on the longitudinal displacement u,/b is portrayed
in Fig. 4.96. The results correspond to 7 = 3 and x/6 = 0.5. The results are calculated
at three points along the section x/b = 0.5. It is to be noted that the magnitude of the
longitudinal displacement, for a particular value of y/a, decreases as the aspect ratio -
increases. This is due to the fact that the section x/5 = 0.5 is getting away from the

loading section x/b = 1.0 as the aspect ratio 5/a increases. Obviously, the effect of
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load will diminish as the distance of a point rises. Due to the same reason, the aspect
ratio, in gencral, has the same effect on all other displacement and stress components

as can be seen from Figs. 4.97 to 4.100.

The results presented so far show the characteristics of cross-ply laminate. For the
same boundary and loading conditions, angle-ply laminated composite panel is also

considered in order to analyze the elastic field. Figure 4.101 shows the geometry of

the problem.

Figure 4.102 to Fig. 4.119 present different characteristics of the angle-ply laminated
composite panel. The nature of the curves resembles to those discussed for cross-ply

laminated panel. Therefore the discussions of the curves are not repeated here for the

purpose of brevity.

Figure 4.120 demonstrates the effect of fiber ahgle on the longitudinal displacement
of angle-ply laminates. It shows that for fiber angles near zero to a higher value of
angles, within the range 0° < & < 20°, the magnitude of the deflection reduces with
the increase of angle and vise versa for the range 70° < 8 < 90°. It happens due to the
stiffened edges. On the other hand Fig. 4.121 shows that the normalized deflection
along the magnitude of the lateral direction decreases with the increase in fiber angle
within the range 0° < @ < 20° and vise versa for the range 70° < 8 < 90°. So an

optimization can be suggested for design problems.

Like longitudinal deflection the magnitude of the normalized longitudinal stress
decreascs with increase in fiber angle, depicted in Fig. 4.122. So, for design
problems these characteristics can become useful. Again analyzing Fig. 4.123 shows
that the magnitude of the normalized lateral stress decreases slightly with increase in
fiber angle for an angle ply composite laminate. But the amount of change in stress is
negligible. On the other hand the magnitude of the normalized shear stress decreases

with increase in fiber angle, shown in Fig. 4.124.
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4.4 Results of the problem of article 3.4

The problem at article 3.4 refers to a rectangular panel of symmetric cross-ply

laminated  composite. The panel s subjccléd_ to a parabolic shear
load ! = (P - 2Py/a). The load is applied at onc lateral end and within the range 0

<y < a2 while the other lateral end is fixed. The two longitudinal edges of the panel

are stiffened. The geometry and the type of the loading of the problem are shown in
Fig. 3.4.

Shown in Fig. 4.125 is the normalized longitudinal displacement component u,/b as a
function of normalized position at different sections of the panel. The distribution of
the longitudinal displécement is non-symmetric. It varies from a minimum, at y/a =
L. to the maximum, at y/a = 0 which resembles with the load. Further, the magnitude

of normalized longitudinal displacement increases with the increase of x/b.

Figure 5.126 illustrates the variation of normalized lateral displacement component
due to linearly varying tensile load at different sections of the panel. The lateral
displacement also varies non-symmetrically. For any value of x/b, displacement is
the maximum at some where bellow mid section, The displacement is zero for any
yla at the section x/b = 0, i.e. at the left lateral boundary. This conforms to the
physical phenomenon of the problems. Deflection at the two edges (/a = 0 and 1)
are also zero. However, the maximum deflection is at the right lateral edge (x/b =

1.0). One thing should be noted that some deflections are in the negative direction

like problem 3.1.

Figure 4.127 shows the original and the deformed shape of the panel under parabolic
shear loading. The deformations are obtained form Fig. 4.125, and Fig. 4.126. Here it
is obscrved that the deformation at the lower part of the panel is greater, where the
load is applied. Moreover, the contraction in the width of the panel is not'signiﬁcant

as the load is applied only in a part of the panel.
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Figure 4.128 illustrates the distribution of normalized longitudinal stress component
due to linearly varying tensile load at different sections of the panel. The stress
distribution is non-symmetric and the magnitude increases as the reference point is
moved toward the load. At x/b = 1, and y/a = 0, the valuc of o, /P is unity, which

satisfies the boundary condition.

Figure 4.129 is the distribution of normalized lateral stress vs. normalized position
due to linearly varying tensile load at different sections of the panel. The stress
distribution is non-symmetric. The stress is the maximum at the right lateral end
where the load is applied. Here lateral stresses at different points are very small.

Only at x/b = 1 the stress is almost 60% of the applied load.

The distribution of normalized shearing stresses due to linearty varying tensile load
is shown in Fig. 4.130. At x/b = 1, i.e. at the right lateral edge, the shearing stress is
zero which satisfies the boundary condition. Further, it is observed that the
magnitude of the shear stress increases with increase of x/b at any particular y/a of
the panel-except at x/b =1. Again the variation in shear stress along the width of the
pancl is very small at any point nearer to the fixed support. One thing should be

noted that the shear stress developed in the panel is all through negative.

Figure 4.131 shows the change in longitudinal displacement with a changc in ply
number. The figure represents the non-linear and inverse characteristic due to
lincarly varying tensile load for all three planes (3/a = 0.2, 0.4, and 0.95). So, it is
observed that the increase in ply number decreases the deflection along the length of

the pancl, which is quite natural.

Figure 4.132 also shows the non-finear and inverse characteristics for the relation
between lateral deflection and ply number due to linearly varying tensile load. It is
also observed that the deflections are negative in direction and the magnitude of the

displacements decrease with increase in ply number.
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Figure 4,133 represents the change in longitudinal stress pattern, in a roller guided
cross-ply laminated panel under linearly varying tensile load, with change in ply
number. The figure shows that under same load the amount of stress reduces with an

increase in ply number. Similar phenomena can be seen from Fig, 4.134.

In casc of shear stress developed in the laminated pane! due to lincarly varying
tensile, shown in Fig, 4.135, it is also observed here that the magnitude of the stress

ts reducing with increase in ply number and again all through the stress is negative.

The effect of panel aspect ratio 4/ on the longitudinal displacement u./b is portrayed
in Fig. 4.136. The results correspond to 7 =3 and x/b = 0.5. The results are calculated
at three points along the section x/b = 0.5. It is to be noted that the magnitude of the
longitudinal displacement, for a particular value of y/a, decreases as the aspect ratio
increases. This is due to the fact that the section x/b = 0.5 is getting away from the
loading section x/b = 1.0 as the aspect ratio b/a increases. Obviously, the effect of
load will diminish as the distance of a point rises. Due to the same reason, the aspect

ratio, in general, has the same effect on all other displacement and stress components

as can be seen from Figs. 4.137 to 4.140.

The results presented so far show the characteristics of cross-ply laminate. For the
same boundary and loading conditions, angle-ply laminated composite panel is also

considered in order to analyze the elastic field. Figure 4.141 shows the geometry of

the problem.

Figure 4.142 to Fig. 4.157 present different characteristics of the angle-ply laminated
composite pancl. The nature of the curves resembles to those discussed for cross-ply

laminated panel. Therefore the discussions of the curves are not repeated here for the

purpose of brevity.

Figure 4.158 demonstrates the effect of fiber angle on the longitudinal displacement -
of angle-pty laminates. It shows that for fiber angles near zcro to a higher value of

angles. On the other hand Fig. 4.159 shows that the magnitude of the normalized
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deflection along the lateral direction increases with the increase in liber angle within

the range 0 < @< 20°. So an optimization can be suggested for design problems.

The normalized longitudinal stress decreases with increase in fiber angle at lower
half of the panel and at the upper half the stress increases with increase in fiber angle,
depicted in Fig. 4.160. So, for design problems these characteristics can become
ﬁscful. Again analyzing Fig. 4.161 shows that the normalized lateral stress increases
with increase in fiber angle for an angle ply composite laminate. On the other hand
the normalized shear stress slightly decreases in magnitude with increase in fiber

angle but no effect at the right lateral edge, shown in Fig. 4.162, as the load applied
here is only the tensile load.

4.5 Verification of equilibrivm of forces

In the preceding article, analytical resuits of elastic field have been discussed. It is
observed from the results that all the boundary conditions of the problems are
satisfied identically, which may clarify the accuracy and reliability of the results.
However, in the preceding articles, equilibrium of forces acting on the body is not
stated which is equally important for the results to be accepted as accurate and

rcliable. In this article, an attempt is made to verify the equilibrium of forces for a

problem discussed earlier.

Problem of ar_ticle 31

Article 3.1 describes a rectangular panel of laminated combosite with two stiffened
cdges, a fixed end, and a uniform tensile load at the other end. To verify the
equilibrium of forces acting on the panel, it is cut along the fixed support and its free
body diagram is shown in Fig. 4.163. It is acted upon by the applied uniform tensile
load (F)) at the right lateral surface, reaction force (F3) from the fixed support at the
lefi lateral surface, and shear loads (F3 and F4) at the remaining two surfaces.
Equilibrium of forces in the direction of applied load must satisfy that

F =F,+F+F, (4.1)
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Here, F, = _[o-fdy = _[ f()dy, where f(y)=o),. The thickness of the panel is
0 o

assumed to be unity. The integral can be evaluated numerically by using the

trapezoidal rule as

{
Fes(f+2/i+2f, 44205+ f,) (4.2)
where [ =(a--0)/N and N = number of strips. For numerical calculation, the size of
the strip is taken as a = 100ﬁ1m, b= 100mm, and N = 16 for tensile stresses and 11

for shear stresses. With these values, Eq. (4.2) is evaluated as

100

F = Xl [0+2(1.001933+1.007559+0.998309+0.996134-+1.001828+1.002678
X

+0.997879+0.997878+1.002677+1.001829+0.996134+0.998308+1.007559
+1.001934)-6.421351e-05] o, = 87.58 c°N

Similarly,
F, = 21 0?6 [0+2(0.177667+0.341491+0.481406+0.592481+0.673833+0.726655
X

+0.75255540.752555+0.726655+0.673833+0.592481-+0.481406+0.34149
+0.177666)-4.294468¢-07] 2= 46.82 6 'N

b [
The shear force F3 is given by F, = Jaxydxz _[f(x)dx. By trapezoidal rule, it is
Q 0

computed as

F, = ;L?l[0.087854+2(0.086072+0.107393+0.14l 154+0.182743+0.229885
X

+0.281076+0.334518+0.38624+0.415274) +1.12E-05] 00 = 20.07 ¢°N
Similarly,

F, = 2' 001 [0.087854+2(0.086072+0.107393+0.141154+0.182743+0.229885

X

+0.281076+0.334518+0.3862440.415274) +1.12E-05] o} = 20.07 0N
The total reaction force Fi+ Fot Fj is 86.97c. N which is slightly less than the

applied load 87.58a)N. The small variation may be attributed 1o the numerical

errors. Thus the above values of F’s satisfy the force equilibrium given by Eq. (4.1).
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CHAPTER-5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

Due to their outstanding advantages over the conventional materials composites are
being used increasingly for structural elements. Thus to make these materials more
cificient a comprehensive method of analyzing the elastic field in structural elements
of laminated composite has been developed. This method is a very effective and
efficient one. It can be used to solve problems under any kind of boundary
conditions whether they are prescribed in terms in terms of either stress or
constraints or any combination of these two. As this method uses displacement
potential function and all the boundary conditions can be represented in terms of the
same single function, the procedure becomes very simple. Thus it reduces the
problems into a single differential equation. The differential equation was solved
with the help of an infinite series. It is true that the stress function formulation also
sceks for the solution of a single function. But still the present method is superior as
the stress function formulation can handle only the problems when the boundary

condition is prescribed in terms of stress only.

Using this method elastic field in two different types of composite panel has been

analyzed as a demonstration of this method, where various elastic properties have

been calculated as a function of some other parameters. It is seen that the most of the _

. results are expected and can be explained. Although some results are littie confusing
and those were explained from intuition. But it still needs more strong reasons to
explain. Afler going through this method it seems that this method is capable of

handling such type of problems. But as this is at an infant stage, it needs more

development in future
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5.2 Recommendation for future work

This is a new method and can successfully deal with composite lamina as well as
with laminate. It can also deal with mixed mode boundary condition. Even then this
method has some limitations. The method is suitable for a particular group of

problems of stiffened and roller guided structures.

In addition, the method can handle cross-ply and angle-ply laminates. But in case of
angle-ply laminate this method is applicable to a certain range of angle. It is

observed that in the range 20° < 6 < 70° this method is unable to work with.

Moreover, this method is applicable for the cases of composite laminate where the
coupling component of the stiffness matrix is absent for which the laminate must be
a symmetric. For angle ply laminates the number of plies must be even above and

bellow the mid plan. In addition to that two more elements ( 4,,and 4,, ) of matrix

|4] have to be zero to fit this method. So, these factors limit the application of the
method. Thus the recommendation for future works may be;

+ Modification of the method for dealing with all angles

. .Rectiﬁcation of the method to deal with all types of composites

; Rectification of the method to deal with all kinds of boundary conditions

+ Using the results obtained from the method to optimize the design.

49

e



Figures



Normalized Position, (y/a)

Norma¥zed Position, (p/a)

LG f
08 ~o 5 Z
~ A
L= b =0 o I
0.6 : \ 718}
i i_ moxh =05 %
= =09 | — » —]
047 / /
C—— b =10,
Vs
-
02} <
o L .
-0.01 0 001 002 003  0.04

Longitudinal Displacement, (u /b)

Fig. 4.1 Longitudinal displacement at different sections -
of the panel.

1.0

08|

| —]
I
VVVVVYV
q

0.6

NN \:\\\\ B >

}
1

047

|\ n=3
Il bla=3.0

0 !L 1 1
006 -004 -002 0 002 004 006

Lateral Displacement, (u/a)

Fig. 4.2 Lateral displacement at different sections of
the panel.

50



Normalized Position, (y/a}

1.0
\\ l E 4
AN [T b0 T
08 N == wb =03 7 .
NN\t =09 |17 o
067t N 7 ’
\\\. v 7 -y,
)
' N e >
04 F : \\\_ b
AN
0.2 I n=3 ] \§\
b/a=3.0 | CON
0 1 1 i 1 1 \
-0.006 -0.004 -0.002 O 0.002 0.004 0.006.
Lateral Displacement, (uy/a)
Fig. 4.3 Lateral displacement at different sections of
the panel.
.5 w
3.0 - 1’,’
25 ) /)
2.0 7 n g
E — Original Panel " i' 2 _§ o
s . = H x
= L3 -~ --- Deformed Panel | Z -
= . ¢
= 1.0 I — & ]
0.5 :
0.0 <~
45—+

01 2 3 4 5 6 7 8 9 10
Length, (mm)

Fig. 4.4 Deformed and original shape of a cross-ply

laminated composite panel under uniformly distributed -
tensile load.

51



)
)
: !
= 061 \ ¥
g ULy ] — o xb=05 )
5 C L b=09 |
- —_—— =
® ooal ! ! whmRe
= Y xb=10
£ o/ i
S o2} n=3 7

i, bla=39 -~

0 N Lt re "

0 02 04 06 08 10 12

. Longitudinal Stress, (o, Io-xo)

SONBNANMAY >

I

b

Fig. 4.5 Longitudinal stress at different sections of the panel.

Normalized Position, (y/a)

aad L 1 1 1

Lateral Stress, (o, Ia;o)

0 0.1 02 03 04 0506 07 08 0.9

Fig. 4.6 Lateral stress at different sections of the panel.

52

|
7 £
=

i TE
; B— x
|4— b —b




Normalized Position, {y/a)

Normalized Position, (y/a)

Ll e

-

Shear Stress, (d,,/0,")

53

Fig. 4.8 Shear stress at different sections of the panel.

1.0 —= ¢
/"—_ - - 7\ T
. -t y
08} S Z >
: i - Zh-L- B>
'/ "T--..___\ t g— ——; .CT'"
/ LT~ 147 i
06fr —  —xb=0 | ~o 2 —
N fa
b == =05 I ) e— s —»
\ s
041 - b= 0.9 ////
Lo
\. ,———.-’l
02 e ! n=3
Sl e bla=3.0
0 L .1‘-‘_'1‘-1:-'.‘.:_4' PP P |
-0.04 -0.03 -0.02-0.01 0 0.01 0.02 0.03 0.04
Lateral Stress, (o, ia')
Fig. 4.7 Lateral Stress at different sections of the panel,
1.0 \\ I ¥y
N I
0.8 \\ V] - — wb=05 Z >
ol == wp=09 |32 g
N xb=09 | 4 7 o
06 F N ‘ 7 >
. \\: xb=10 7 > — x
b e— s —»
0.4} v
. \\
LN
02r n=73 | AN
b/a=3.0 " ~
0 1 L X ' 1 AW
06 -04 -02 0 02 04 0.6




Lateral Displacement, (u/a)

Longitudinal Displacement, (i /b)

0.01
xb=105 Y
bla=73.0 T
Ja = 0.2 / 5
. T ya=t 12" le; a"
\\ ——-ya=04 |} 2 4 _"
0.005 - S — pla=095 % )
o .
N ~w
‘\. \\'-.-.,_‘_
0 1 i 1 i
2 4 6 8 10
Number of Ply, (n)
Fig. 4.9 Longitudinal displacement as a function of ply
number.
0.004
—-—ya=02 y
——-yia=04 T
S - Y
~._ ya =095 T >
- « 7 0> O'"
~.  Trme—o_ _ * ; - O,
e Z >—
0r Z
b b —]
-0.004 1 1 1 1
2 4 6 8 10
Number of Ply, (1)
Fig. 4.10 Lateral displacement as a function of ply SR
number.
54

P



Longitudinal Stress, (¢} MPa

1000

>0
=
=]

6(H)

400

200

\ == ya=102
‘\_ ——- ya=104
\x\‘ — ya=095
Tl /b =0.5
~.._ba=30
~
. \'-.._.___
4 6 8 10
Number of Ply, {(n)

f—:—)
a
\\. o~ >

Fig. 4.11 Effect of ply number on the longitudinal stress
component.

Lateral Stress, (o, ) MPa

Fig. 4.12 Effect of ply number on the lateral stress
component.

30+

oz —

55

7 o7 xb =05
: ~
’,’ /// bla=3.0
7
e —-—yla=02
/
// == yia =04
/ — y/a = 0.95
4 6 8 10
Number of Ply, (n) -

=~ =\\\=\\' N e

i
1




120
- = -ya=02 »

- ———-ya=04 T

[ N .

= o0r ~oo ya = 0.95 5 Z

~ e Z >

b;‘ ~— el _ u 2 :1; O""
~ T e Z .,

g o Z

% — s —

g

2 60

-120 L 1 1 1
2 4 6 8 10
Number of Ply, (#)
Fig. 4.13 Eflect of ply number on the shear stress.
0.05

i~ y
> —-— ya=02 T
:é: 0.04 H\\\ = ya=0.4 2 .

2 N — a-09s | T8 3
FRE AN AL ..
e . SN 7
a ~ ~ '
£ ooz} ~ ~ xb=0.5 s —»

(=1
5
]
%, 0.01

=

(-]
-

0 " i L i i
1.0 1.5 20 2.5 30 .
Aspect Ratio, (b/a)

Fig. 4.14 Effect of aspect ratio on longitudinal displacement.

56



0.008 —
- P
30004} el .,T
3 b—— IS >
< 0y T —— ? ; Fitlps
5 T 7 Y O'"
0y —-— ywa=02 7 ¥
§ ; —_— x
= ——= ya=04 g
F-0.004 | D
a
T
4
2.0.008
~ n=3
-0.012 el : :
1.0 1.5 2.0 2.5 3.0
Aspcct Ratio, (b/a)
Fig. 4,15 Effect of aspect ratio on lateral displacement.
1.0 v
eb" o — = ya=02 T
S 081 N ——— yla=04 Z
s N T 3
- ~ yia =0.95 Z > g0
4 I ~ oo & I
8060 S v i
= "~ ~ —» x
7 - ~ %
Z 04 ’
b~
2
Y
502
|
0
1.0 1.5 2.0 25 - 3.0

Aspect Ratio, (b/a)

Fig. 4.16 Effect of aspect ratic on longitudinal stress
component,

57



0
h=05 T‘
S0} 13 ,
g [ e
;" ‘/" f 2
~ 004 F : P =1 %
g P 7
“ 006 f PR e fe— » —]
g -7 ///
£ - PR ya=02
- -
0.08 ,// ——— ya=04
b -~
N — yla =095
'Ol —_ i 1 1 " 2 Iy
1.0 1.5 2.0 25 3.0

Shear Stress, (o, /fJ;0 )

Aspect Ratio, (b/a)

Aspect Ratio, (b/a)

Fig. 4.18 Effect of aspect ratio on shear stress,

58

Fig. 4.17 Effect of aspect ratio on lateral stress

component.
0.2
________ ¥
0.1} R T ,/T
_____________ ——>
———————— ) EEEEEE:
OF——- ya=02 4 Z
>
——— va=04 Z
— 5 —
n=3
_03 1 1 s
1.0 1.5 2.0 2.5 3.0




Normalized Position, (3/a)

Fibers

Q O
otatelety eteletetalele?,
ORISR
Seteleleletateteletatatets
aselelatelitolaledatateds
e tot ettt ettt t ety
e tatelitetetetetetetats
Petateteteletetetele % tete! !
et a et et e tate e e tete bt
SRR
ot

oetetetele

oteteretele
O 0
220252505

otelatetete

L .’0
O

X P o

>
otetaledels!
atetetsteteledototed L r b 0y

el

Py
KR0S
SHHEANAA

(A
AR

05260509052

(AR
telels
) olelels
L) ’...0.0....

Jeledaleleleleleleleleletala et lalate et tetetetadets

X,

RS

&

T

I b

1

Fig. 4.19 A rectangular pancl of angle-ply laminated

composiic under uniform tensile loading.

02t

0

I

pewy—£>
% SaArime

SR
Vot SO A ST

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Longitudinal Displacement, (u,/b)

Fig. 4.20 Longitudinal displacement at different scctions

of the panel,

59




Normalized Position, (y/a)

Normalized Position, (y/a)

0.8

ST .

S -
Yz e
a " SN O
061 i_z/ Lt 'h“a’-ﬂ“_b_._’
?)': x
04t fe— » —
02
0
-0.08-0.06-0.04 -0.02 0 0.02 0.04 0.06 0.08
' Lateral Displacement, (u,/a)
Fig. 4.21 Lateral displacement at different sections of the
panel.
1o
1 N
\ \‘i\ — = xbh=0
0.8 | \_\ I MU b =05 7| o
o~ D I-—— wh=09| T ZiEgigtame
~ . a < g,
0.6 ¢ ~ 1/ y I ?%ﬁ
~/ EA ko
P~
04} SN = —
SR
n=4 \ R
O2F pa=30 ™ N
6= £10° TN -
0 i al \ 1 \
-0.008 -0.004 0 0.004 0.008

Lateral Displacement, (u,/a)

Fig. 4.22 Lateral displacement at different sections of the

panel.

60



3. =

i
2.5 ,
E 2.0 o !
E ——— Original Panel I
1.5 '
E ————— Deformed Panel !
< 1.0 f
0.5 !
I

0.0 ~=

"O-S T T T T T T T T
6 1 2 3 4 5 6 7 8 9
Length, (mm)

10

———

Fig. 423 Deformed and original shape of an angle-ply
laminated composite panel under uniformly distributed

tensile load.

1.0
— l\
= e
:._-? 0.3 ) \ \\
8 1N =0 \
0500 = — =05
- : ; |
T ol f=—— x5 =09 ,
5 P =10 [/
g L/ n=4 e
z 021!, ba=30 -

i 6=110°

0 = 1 I\
0 02 04 06 08 1.0 12

Longitudinal Stress, (5, /0.° )

>
o
;
7 >
f ',;* = T v:;:i
a f | & o)
<
i ;5‘;’\ D, :__g » x
4
fe— 5
A
“ >
Yoo
e
SRS
}_:{_h G I
%
— s —»

‘Fig. 4.24 Longitudinal stress at different sections of the

panel.

61



Normalized Position, (y/a)

=

ot
(=]
T

&
=

<
F-N
T

&
b

0.1 02 03

Lateral Stress, (a} lo;" )

0.4

0.5

R
p xw:m@ :'E

" “‘N{
S

% én‘:év

Fig. 4.25 Lateral stress at different sections of the panel.

Normalized Position, (y/a)

1.0 = T T
Vol T =0
08 \\\ \ i — = xb=05
~ N
M\ == xb=09
0.6 N —— wp=10
\ -
04r .\\
AN
|
n=4 : \ \\\
021  ba=30 RN
6=+10° P S~
O 1 . | 1 LY
-0.4 0.2 0 0.2 0.4

Shear Stress, (o, Io;o )

5
— s —

'/K >
¥, L
TS
o 7 e S
) >
s~
v
I-l— h —

Fig. 4.26 Shear stress at different sections of the panel.

62




164222 -

(u)a)
i
[
8

Lateral Displacement,

Longitudinal Displacement, (i /b)

0.008
xb =05
bla=13.0
0.006 F 8 = £10
\
AN
' SO —-—ya=102
0.004 . .\ \\\ _— y/a —04
. -
e S — Wa=095
0.002 | "»\_\ S
0 e ] 1 i L 1
2 4 6 8 10
’ Number of Ply, (1)

Fig. 4.27 Longitudinal displacement as a function of ply

number.

0.008

-0.004

—-—yla=02
N ——-yla=04
I yia = 0.95

————

1 1 ol 1

-0.008

4 6 8 10
Number of Ply, (n)

.

Y

j—=

SN N

A,

Fig. 4.28 Lateral displacement as a function of ply

number,

63

p
5 Y
f e I
] ZERRREae
g SR
//a .
|""_ b




., 1000 .
& R - —pa=02
= 800f R
“;. e ——-ya=04
b ~, _
600 xb-05 " ya =095
4 ba=30 . 777!
D A0 H =x10° Tl
o : -
S -
= ~
2 200F . T~
) e Pt S
s [ ——— . T T T pm
S 0

._200 1 1 L 1

2 4 6 8 10

Number of Ply, (#)

Fig. 4.29 Effect of ply number on the longitudinal stress
component,

0 f
nz‘f -lof //i’,’—i—:—— .

.- e e ar 0>
> T ! i’*%%wzﬁéx ‘.
2 R [ l/ // _ o o ._x'\! o .—b o,
e 20 /,/ /// —-ya=02 |4 ,f 55,.,&?.‘;-;&.,.;.;’.}’;—3__’ .
o ' - = A
£ , ~—-ya =04
Z 307 - — ya=095 '
~ / '

g /
3 40+ / x/b =0.5
! b/a=13.0
g =+10°
-50 L L 1 [
2 4 6 3 10
Number of Ply, (#)

Fig. 4.30 Effect of ply number on the lateral stress
component.

64



Longitudinal Displacement, (& /b)

I ~
& 80 .
Z R 7
;e el ? ol i B
bb 40t \""-—- “““““““ _- ] 2 &? ._E o
- b T T —— ;u' . .: e
- L aN T L‘r el & X
i o Z '
x — s —]
o 40}
o
=
7]
-80 F
-]20 1 T 1 i
2 4 6 8 10

Number of Ply, (n)

Fig. 4.31 Effect of ply number on the shear stress.

0.04

0.03

0.02

0.01

1.0 1.5 2.0 2.5 3.0
Aspect Ratio, (b/a)

Fig. 432 Effect of aspect ratio on longitudinal
displacement.

65



0.016

& 0oz T T T~ f
= 0.008 | I X
o L Wi i
S 0004 - =TT T T ] ’:2 : B o
E | i > ‘_:> '
@ ok ¥ L A
= = ya=02 ) —*
= - 4
] G — ) —»
K -0.008 | ya = 095
£ 0012} x/b=0.5
o | =
-0.016 F T a10°
-0.02 ' —— :
1.0 1.5 2.0 25 3.0
Aspect Ratio, (b/a)
Fig. 4.33 Effect of aspect ratio on lateral displacement.
1.0
- . — = ya=02
o' ~a
I_}( 08 o ——— ya=04 " N
-— ~ 4 rymee——
4 \.\_ \\\ wa =095 f 5%""‘«:’5-,\:%%&.&3 o
Eo°1 o | JEERERE
@ aq —
£ 04 e » —»
E
&
§02
-
0
1.0 1.5 20 2.5 3.0

Aspect Ratio, (b/a)

Fig. 4.34 Effect of aspect ratio on longitudinal stress

component.

66



0
& -0.02 —// T
g -1 5 .
- - A i >
= .0.04 I\ P o 7 £
g N PR - L;/ 3
T - A
20061 N_ e — s —»i
g ~. ——
5 —_——
E 08 b=0.5 — = ya=02
0.08F ,=4
——= ya=04
6= £10° ya 005
wa =
“0'[ i 1 i 1 1 "
1.0 1.5 2.0 2.5 3.0
Aspect Ratio, (b/m)

Fig. 435 Effect of aspect ratio on lateral stress

component.
0.2
Q: 01F Timee i ,j
b A,
\:. L T T T T T T T T e e ? 2
S a 2
- 0f—= ya= 0.2 y 7
g ——= ya=04 Z
700 F wa = 0.95
g .\_//
£
" x/b=10.5
-0.2 n=4
8= %101
-0.3 1 i 1 L i
1.0 1.5 2.0 2.5 3.0

Aspect Ratio, (/1)

Fig. 4.36 Effect of aspect ratio on shear stress.

67




Longitudinat Displacement, (z./5)

(uja)

Lateral Displacement,

0.008

0.006

0.004

0.002

- ya=02
\'\"‘---._,__ = ya=04
B yia =095
Xb=05 " T~ _
n=4 T~
ba=3.0

8. 12
Fiber Angle, {8)

h— =

—_—

UL UG, L

Fig. 4.37 Effect of fiber angle on longitudinal displacement.

0.61

0.005

0.005

-0.01

- = yla=02 xh=05
n=3
TTT ya=04 bla=3.0
— ya= 095
8 12 16

Fiber Angle, (8)

f

o

l‘—a—b

Fig. 4.38 Effect of fiber angle on lateral displacement.

68

‘ £
p Xt
%@ﬂ G o
‘al‘
Ry

— 5 —»

N \."- o




=
i

- = ya=02

@03 — —~— ya-04 '
bu - -_._.__‘___h\ - 0.95 ’,,
:: ~~_ ya = 0. }—;
g ~—e ;7
/= . b
Zo2f .
8 xb=05 " ""-—.. -

= n=4 Tl

£ ba=3.0

& (.1

[=]

|

0 : ; )
4 3 12 16
Fiber Angle, (§)

Fig. 4.39 Effect of fiber angle on longitudinal stress
component.

T

)
A
e

Codbdd

e 5 —

0
eﬂ -0.01 .
Q"‘ — =~ ya=02
2?_002_ ~—— ya=04
S ya = 0.95
& B O
2003} Xb=03
s n=4
= 004} ~——e_ bla=30
-0.05 ' .
4 8 12 16
Fiber Angle, (8)

Fig. 4.40 Effect of fiber angle on lateral stress component.

69




Normalized Position, (y/a)

0.2 f

° L z
‘E“ 0l . _._._._. — ? e
N z
b _________________ o ;.;
g ot = —- ya=02 xb=05 7
= o _ n=4

2 yla=04 bla=3.0

@ ya =095

= -0.1

& -0

-0'2 1 i "

4 8 i2 16

Fiber Angle, (8)

Fig. 4.41 Effcct of fiber angle on shear stress.

1.0 [ Tv
0.8 L "
T
0.6 ¥ 4
o
04 r
027
0 . 1 1 1 1 1 1

-0.005 0 0.0050.01 0.015 0.02 0.025 0.03 0.035
Longitudinal Displacement, (u,/b)

Fig. 4.42 Longitudinal displacement at different sections
of the panel.

70



Normalized Position, (y/a}

Normalized Position, (y/a}

0.8

0.6

0.4

0.2

G

s wb=0 |
F - wb=05 1
T xb=09
- xb=10 {

|
|

n=73
ba=3.0

A 1 L

-0.04 -0.03 -0.02-0.01 ¢

Lateral Displacement, {u,/a)

0.01 0.02 0.03 0.04

Fig. 4.43 Lateral displacement at different sections of the
panel.

0.3

0.6

0.4

0.2

0

\\\_ I
W\ — = xb=0
AN |
SN — = x/b=05
\\\ — xb=09
[ N
Y
|\
L LN
N \\
!
L n=3 i \.\\
b/a=3.0 : AR
I \‘\\

-0.003 -0.002 -0.00 0

0.001 0402 0.003

Lateral Displacement, (uy/a)

Fig. 4.44 Lateral displacement at different sections of
the panel.

71



¥y

3. = T

2.5 | f, .
Ez_(] | I ?i O-r"
E —— Original Panel E y b ilss
£ 15 - Z
L= Deformed Panel | .
14 !

0.5

0. =

_0 At daaaaia g by bl liraalriialiing

O 1 2 3 4 5 6 7 8 9 10
Length, (mm)

Fig. 4.45 Deformed and original shape of a cross-ply
laminated composite panel under parabolic tensile load.

1.0 perg
-.‘\. \\\\\ "=3
CHPPS SR =~ bla=3.0
) 0.8 (I "‘\\
g o /b =0 s
2 W T xb=
Zo06f: A
£ 1 1= xb =03 \l
b ' [ -
8 04} ! ; x/b = 0.9 //
S ! ' b =107
g o -
2 02 '.’ ," ///
o7 -
J/ /,/’
0 - 1 L L L L

0 0.2 0.4 0.6 0.8 1.0
Longitudinal Stress, (o, / P)

Fig. 4.46 Longitudinal stress at different sections of the
panel.

72



Normalized Position, (y/a)

.5 06 0.7 0.8 09

0 610203040
Lateral Stress, {o, 1P}

Fig. 4.47 Lateral stress at different sections of the pancl.

Normalized Position, {(y/a)

Lateral Stress, (o:v P

0.02

Fig. 4.48 Lateral stress at different sections of the panel.



Longitudinal Displacement, (w /)

1.0

¥ 08¢t

3

s

2 06

2

- ™

E o4l

&

E

5 021

- bla=3.0 o AN

1 1 .L \

0 1 L 1 Il
03 02 01 0 01 02 03

Shear Stress, {0,/ P)

Fig. 4.49 Shear stress at different sections of the panel.

0.006 - y
\ —-= ya=02 T
\\ ——- ya=04 g
\ Ul
0.004 \ — ya=1095 .
~ I s
N /b =05 z
N\
'~ S~ bla=30
0.002 > TN
0 i A 1 i 1 L
2 4 6 8 0

Number of Ply, (n)

Fig. 4.50 Longitudinal displacement as a function of ply

number.

74



0.003

- —-— ya=02
i‘} 0002 F ——- ya=04
E 0.001f
E
s
= 0l
&
2 o001k
£
2 /b = 0.5
= o002} b
b/a=30 -
-0.003 : ' . :
2 4 6 8 10

Number of Ply, (1)

Fig. 451 Lateral displacement as a function of ply
number.

1000

BOOF o
600 | ..

400 | .

200l x/b = 0.5

Longitudinal Stress, (o, ) MPa

_200 1 1 n : i 1

Number of Ply, (1)

Fig. 4.52 Effect of ply number on the longitudinal stress
component.

75




Mo e,

Lateral Stress, (q,) MPa

0
S ////’_’i___,_.‘:
-10 | T T
- - "//
. L . -
15 K4 //’ ~-—=ya=02
-20 ' /// —=-ya=04
4 — =
25 / ya=095
3 ‘/ xb =105
-30
bia = 3.0
_35 1 1 1 1
2 4 6 8 10
Number of Ply, (1)

b

'\.\1‘\.\ >
H

o

Fig. 4.53 Effect of ply number on the lateral stress
component.

Shear Stress, (o) Mpa

———

. 1 1 Il

4 6 8 10
Number of Ply, (1)

Fig. 4,54 Effect of ply number on the shear stress.

76

\Z‘é‘["ﬁ
e

i
RN

.\\:‘]‘._‘\' -

o
o
T




0.04
by
= == ya=02
= \
£ 003} "\ T Ve 04
o
E \\ y/a = 0.95
b ~
= . \\
20021~ N
a8 ~ ~ -3
— ~ \\
2 ~ ~ x/b =105
- ~. ~
S 001 RERe S~
B0
=
e
-

1.0

1.5 2.0 2.5

Aspect Ratio, (5/a)

Fig. 4.55 Effect of aspect ratio on longitudinal displacement.

0.008

<
o]
<
=

-0.004

Lateral Displacement, (x /a)

n=13
x/b =0.5

2.0 2.5
Aspect Ratio, (b/a)

3.0

Fig. 4.56 Effect of aspect ratio on lateral displacement.

77




0.8
L y
_ \\\ — = ya=02 T
& 06 F \\ - y/a =0.4 g“
B AN —— ya=1095 Yoo
‘-: ~ ] 1;_
g ‘~ N vz
Eo04p > TS n=3 7
) e ~. xb=05 "
I ~ e
= -~ — s
:E -~ \""*-.-
3 02t ~ - ~
s ~
o -
=]
-
0 1 1 1
1.0 1.5 2.0 2.5 3.0
Aspect Ratio, (/@)
Fig. 4.57 Effect of aspect ratio on longitudinal stress
component.
0 / f
: -0.02 F .~ ::
™~ - - ?' o
s - e i) pdss
s -0.04 e - /// * ? i+
3 - // N :"{'
= —_— P e
w2 b AT yla=02 ey —»
= 006 -
E //’ ——— ya=04
o -~
] - _ =
008 F~—" yla = 0.95
n=3
‘x/b = 0.5
-0‘l 1 1 i 1
1.0 1.5 2.0 2.5 3.0
Aspect Ratio, (b/a)
Fig. 4.58 Effect of aspect ratio on lateral stress
component.

78

"%



0.2
T,.
soab T ~ - 7
~ T,
bﬁ‘ ..... n f {’ Fee
S  bemmem——— a g
R § g
£ 0 -~ yum=02 7
n — s —
E ——= ya=04
@01}t wa = 0.95
n=73
x/b =05
-0.2 L 1 L i
1.0 1.5 2.0 2.5 3.0
Aspect Ratio, (b/a)
Fig. 4.5% Effect of aspect ratio on shear stress.
y
0 Fibers Stiffencd edpes
—7
7
/ o 4P 2
7, ot =—lay-y
a é e ( )
b

79

Fig. 5.60 A rectangular pane! of angle-ply laminated composite
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Fig. 4.160 Longitudinal stress of laminated composite
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