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Abstract

Compositc matcrials drew attcntion of researchers from all over the world due to their

outstanding advantagcs over conventional materials. They are being increasingly used as

structural clements in almost all engineering applications. To take full advantage and

ensure reliable pcrformance of these materials in an application, it is indispensable to

analyze various aspects of these materials. However, these are anisotropic and

microscopically nonhomogeneous materials due to the presence of two phases in them.

This makes the analytical investigation quite complicated due to mathematical

difficultics. Thercforc, only numerical and experimental approaches are extensively used

in thc ficld of composites, especially in the case of mixed boundary conditions. A reliable

analytical method of analysis of these materials under mixed boundary conditions still

seems to be lacking.

In this study, an analytical method is developed to analyze the elastic field in structural

c1cmcnts of laminatcd composite materials under mixed boundary conditions. The two

displacement components of the two-dimensional elasticity problem are expressed in

terms of a single displacement potential function, which satisfies one of the equilibrium

cquations automatically. The other equilibrium equation is transformed into a fourth

ordcr partial differential equation of unknown displacement potential function. Thus, the

two dimcnsional mixed boundary value elasticity problem is reduced to the solution of a

single fourth order partial differential equation. The solution of the fourth order partial

diffcrcntial cquation is obtained in the form of Fourier series. To demonstrate the method,

it is applicd to a rectangular panel consisting of (i) cross-ply laminated composite and (ii)

angle-ply laminated composite. Analytical solutions of different components of stress and

displacement are presented in the form of graphs. Further, the effects of laminate. ,
thickness, fiber orientation, and panel aspect ratio on the components of stress and

displacement have been discussed in details. The results conform to the intuitively

cxpccted characteristics of the structures which verify that the method developed in th~

study can bc applied reliably to structural elements of laminated composites under mixed

boundary conditions to analyze elastic field. n
"



CHAPTER-I INTRODUCTION

1.1 Background

In cases of engineering problems, the elementary methods of strength of materials

arc just not enough to provide sufficient and accuratc information of clastic field in a

body. So, some more powerful methods are needed in the study of clastic field.

Further the elementary methods arc insufficient to give information regarding local

stresses ncar the loads and ncar the supports of bars. Again for the cases where the

stress distribution in bodies, with all the dimensions of same order, has to be

investigated, these methods are incapable of furnishing satisfactory information. For

example, the stress in rollers and in balls of bearings can be found only by using the

methods .of the theory of elasticity [I]. So, to obtain satisfactory and reliable

information of elastic fields in engineering structures of practical applications, it is

mandatory to adopt the theory of elasticity.

To solve any elasticity problem, it is mandatory to satisfy all the boundary conditions

imposed on the boundaries along with the equilibrium and compatibility relations.

All the elasticity problems can be categorized as any of the following three

fundamental boundary value problems:

I. Determination of clastic field in an clastic body, that is in equilibrium, under

prescribed forces on the boundary.

2. Determination of elastic field in an elastic body, that is in equilibrium, with a

prescribed displacement of the surface.

3. Determination of elastic field in an clastic body, that is in equilibrium, under

prescribed forces on the boundary and with a prescribed displacement of the

surface, where these two parameters denote the bounding surface of the body.

These categories of problems arc called mixed mode boundary value

problems.

The problems. which are very simple in terms of geometry and boundary conditions •.

can be solved analytically. But the fact is that these problems are of almost no

application in the field of engineering and technology. On the other hand the
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approximate methods have received considerable attention in the field of elasticity.

These include boundary-element method, finite element method, and finite difference

method among others. There are some experimental methods of stress analysis which

arc employed for bodies with intricate shapes. But these methods are expensive.

Therefore, despite availability of good numerical and experimental methods,

analytical solution of any elastic field problem is always desirable.

1.2 Literature Review:

In the field of elasticity the stress analysis has now become a classical subject. At

prcsent the stress function approach [2-16] and the displacement formulation [17] are

noticcable among the existing mathematical models. Although the theories of

elasticity had long been established, the solutions of practical problems started

mainly after the introduction of a stress function by Airy [2]. The Airy stress function

is governed by a fourth order partial differential equation and the stress components

arc related to it through its various second order derivatives. Solutions were initially

sought through various polynomial expressions of the stress function [3,4], but tbe

success of this approach was very' limited. Using these polynomial expressions, an

elementary derivation of the effect of the shearing force on the curvature of the

deflection curve of beams were made by Rankine[5] in England and Grashof [6] in

Germany. The problem of stress in masonary dams is of great practical interest and

has been attempted by various authors [7,8] using polynomial expressions for the

stress functions. But it should be noted that the solutions thus obtained do not satisfy

the conditions at the bottom of the beam where it is connected with the foundatio'n

and would predict reasonable values of stress in the region far away from the

foundation on account of Saint-Venan!'s principle [9]. The first application of

trigonometric series in the solution of elastic problems using stress function method

was given by Ribiere [10] in his thesis. Further progress in the application of these

solutions was made by Filon [11]. Several particular examples wcre worked by

Bleich [12]. Using Fourier series, Beyer [13] solved the problem of a continuous

bcam on equidistant supports under gravity loading. Stress function technique has

also been used by Ribiere [14] for analyzing the stresses around a circular hole in a

plate, Sadowsky [15] for stresses around a slender hole, Flamant [16] for stresses

3



around a concentrated load on a straight boundary and Stokes [18] for strcsses

around a conccntrated load on a beam. l3ut somehow thcse strcss analysis problcms

arc still suffering from a lot of shortcomings and thus are being constantly looked

into [19-25].

Although elasticity problems were formulated long before, exact solutions of

practical problems are hardly available because of the inability of managing the

physical conditions imposed on them. Actually, management of boundary conditions

is one of the major obstacles to the reliable solution of practical problems. The

famous Saint - Venant's principle is still applied and its merit is evaluated in solving

problems of solid mechanics [20-21] in which full boundary cffccts could not bc

taken into account satisfactorily in the process of solution. For complex shapes of

boundary, the difficulties of obtaining analytical solutions become formidable. These

difficulties were partially avoided by restoring to experimental methods, such as

extenson;cters, strain gages or the photoelastic method. Using photoelasticity,

Hetcngi [26] investigated the stresses in the threads of a bolt and nut fastening. Most

of the cxpcrimental investigations of elastic problems are reported in the "Handbook

of Experimental Stress Analysis" [27] and by Frocht [28] in "Photoelasticity". Even

now, photoelastic studies are being carried out for classical problems like uniformly

loaded beams on two supports [29] mainly because the boundary effects could not be

takcn into account fully in their analytical method of solutions.

Succcssful application of the stress function -formulation in conjunction with finite-

- diffcrcncc technique has been reported for the solution of plane elastic problems

whcre all thc conditions on the boundary are prescribed in terms of stresses only

[19,30]. Further, Conway and Ithaca [31] extended the stress function formulation in

the form of Fourier integrals to the case where the material is orthotropic and

obtaincd analytical solutions for a number of ideal problems. The difficulties

involvcd in trying to solve practical stress problems using the existing models are

clcarly pointcd out by Durelli and Ranganayakamma [29] and others [32-47].

An investigation was undertaken to develop a ngorous mathematical solution of
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strcss anu strain for a compositc polc consisting of a rcinlorccu plastic jackct

laminated on a solid wood core [48], which was also a numerical procedure. Adams

and Doner [49] w,orked on a double periodic rectangular array of elastic filaments

containcd in an elastic matrix material, which has been formulated using a theory of

clasticity. Principal elastic moduli of unidirectional composites with anisotropic

filamcnts had becn predicted using the available elasticity solutions of multiple-

inclusion problems by Whitney [50] where the measured data was obtained from

prcvious experimental research. Pagano developed some equations to evaluate

ncxurc cxpcrimcnts on bi-directional composites [51]. Using the limit analysis

mcthod, Shu and Roscn [52] analyzed in-plane shear strength and the transverse

strength in shear and in tension of composites in terms of yield strength and volume

fraction. A recent work has been carried out by Tsai and Wu [53]. They developed,

opcrationally, a simple criterion for anisotropic materials. Most recent work has been

carried out on strength of composites, which is a numerical estimation of

compressive strength [54]. Two works on laminated composite has bcen carried out

using the displacement potential function. Here mixed mode boundary value

problems arc handlcd analytically [55-56].

From above discussions, it is found that various elasticity problems of different

materials. including isotropic, anisotropic, homogeneous, and non-homogenous

matcrials, havc bccn solved. However, a reliable and effective analytical method

SCcms to be still lacking for the solution of elastic problems of practical applications,

which are subject to mixed mode of boundary conditions. Recently Shankar [57] and

Shankar C.I. al. [58-60] carried out SOmeworks for solving the mixed mode boundary

valuc problem which are quite uscful but only for a single lamina.

1.3 Objectives

As discussed above, most of the methods for analytical solution of elasticity

problems are only available either in the form of stress function formulations or of

displaccment formulations. However, neither is suitable for solving problems of

mixcd-boundary conditions. Furthermore, these formulations cannot be directly

applied to the case of anisotropic and non-homogeneous composite materials, which

5



arc bcing incrcasingly uscd to mcct thc rcquircmcnts or currcnt applieatiDns. The

objcctivcs or thc prcscnt study arc

I. to dcvelop a simple, effective, and reliable analytical method for the analysis

of elastic field in structural elements of a laminated composite using

displaccmcnt potcntial function. Thc mcthod will bc applicablc to problcms

of any boundary conditions, whether they are specified in terms of either

stresscs or displacements or any combination of both.

II. to demonstrate the methods by solving some problems under different

boundary conditions.
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CHAPTER-2 THEORITICAL FORMULATION

2.1 Introdnction

The most engineering materials possess, to a certain extent, the properties of

elasticity. Unless the external forces exceed a certain limit, a material returns tq its

original shape after withdrawal of the forces from it. This limit is called the elastic

limit. This study is concerned with the analysis of elastic field of composite materials

within the elastic limit. The elastic field comprises stress field, strain field, and

displacement field. In order to provide a complete information on an elastic field of a

body, nine components of stress (OX, 0)., 0-" o-xy, o-yx, oy" o-'Y' 0-,,, and 0-,,), six

components of strains (B" By, B" Yxy, Yr-' Yo,,), and three components of displacements

(II." Un II,,) have to be determined. However, the components of strains can be readily

obtained from displaccment components through some silnple relations. Further, the

components of strains and displacements provide the same informations. Therefore,

in the analysis of elastic field, only stress and displacement components will be dealt

with. The convention of nine stress components acting at a point of a body is

illustrated in Fig. 2.1. All the stress components shown in the figure are positive. The

directions of stresses other than those indicated in the figure are considered negative.

y

dx

x

t'y dy

~,
....J!.,I;i .

z
Fig. 2.1 Conventions of stress components.
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(2.1 )

By considering moment of forces at the center of the cubic clement of Fig. 2. I, it call

be shown that OXy= Oj'x,ar-= a,y, aox = ox,. Thus, the nine stress components reduce

to six in number. Furthermore, the condition of static equilibrium of forces acting on

the body gives:

aa, + aa.,y + aa." + F = 0
ax ay az '
aay aa.,y aa),
--+--+--+F =0
ay ax az Y

aa, + aa" + aay, +F,=0
az ax ay

These equations are known as the equations of equilibrium. The parameters Fx, Fy,

and F, are the components of body force in x, y, and z directions, respectively. Again

the relations between strain and displacement components are given by

L' = au, [; = au" [; = all, = allx + ally = ally + all, = allx + all,
x "',, rh'" ,,' r xv " a' r r- a ,,' r ox a aux . v)' uz - uy x z uy z x

(2.2)

Now from Eq. 2.2, one obtains the following relations by simple manipulation.

(2.3)

These differential equations are known as the conditions of compatibility. The

solution of elasticity problems must satisfy the equilibrium equations and the

compatibility conditions along with the specific boundary conditions.

2.2 Plane stress condition

The thickness of a single lamina or a laminate is small in comparison with its other

dimensions. Thus, the analysis of a lamina or a laminate predominantly falls under

the plane stress condition. For plane stress condition

0', = 0 ;0'" = 0 ;0'), = 0

8
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(2.5)

Thcrc!ilrc, fur planc strcss, thc cquilibrium Eq. (2.1) having no body furcc rcduccs to

oa, + oa,y = 0
Dx Dy

Day + oa.". = 0

all 011,. ou au v
0, = ax' ,Oy = -0'-' ,r xy = -0'_x + -a-",-' (2.6)

(2.7)

A symmetric laminate is one in which the material, fiber angle, and thickness of the

plies are same above and bellow the mid plane. For a symmetric laminated

composite, thcre is no curvature of the laminate under inplane loading. For this case,

the mid-plane strains are equal to the global strains and the stress-strain relations are

given by [61]

Here, the elements of stiffness matrix are given by [57]

A" =I[Q"c' + Q,,'" + 2(Q" + 2Q66),,' c'], (h. - h._,)
k"'l

A" =I[(QII+Q" -4Q66)S'C' +QI'(C' +s')].(h. -h._J
1,,=1

A" = I[QI's' +Q"c' +2(Q" + 2Q66)S'C']. (h. -h._J
.\""'1 ~

A66=I[(QII+ Q" - 2Q" - 2Q66)s'c' +Q66(~' + c,)], (h. - h._I)
b'l

(2.8)

(2.9)

(2.10)

(2.11 )

(2.12)

where QII

.I' = sin (); h. - h._, is the thickness of the k-th ply, h is the total thickness of the

laminate, £1 and £2 are the young's moduli in longitudinal and transverse direction

9



of each ply, respectively; v12 and v21 arc the major and minor Poison's ralios,

respectively; GI, is the in-plane shear modulus, n is the total number of plies.

Further, the reciprocal relation between the poison's ratios and the elastic moduli is

given by [61]

~= V21

£1 £,

Equations (2.5) and (2.7) form a complete set of equations for the two dimensional

plane stress elasticity problem. Equation (2.7) can be expressed in terms of three

stress components by using Eq. (2.8). Thus, this set of equations includes three

unknown stress components, which should be solved satisfying the associated

boundary conditions. However, instead of solving three unknown quantities (three

stress components) from three equations simultaneously, it would be convenient if

the number of unknown quantities and the number of unknown equations could be

reduced. One approach to achieve this goal is to express all the equation in terms of

displacement components. First, Eq. (2.8)

components by making use ofEq. (2.6) as

1 [au au,]
a, = ail All a: +A12 ~

a, = _1_[A
2I

au, + A" auy]
ail ax ay

1 [au, auy]a --A --+--
.'Y - ail '" ~ ax

is expressed in terms displacement

(2.13)

(2.14)

(2.15)

Substitution of Eqs. (2.13) • (2.15) into equilibrium Eqs. (2.5) yields

a'u ( )a'u,. a'uA11---.T + A12 + AM --" + A66 --2
x = 0ax' ax~ ~

a'u,. ( )a'U, a'uy
A" --, + AI' + A" -- + A" --, = 0~ ax~ ax

(2.16)

(2:17)

Now, it is seen that there are only two equilibrium equations (Eqs. (2.16) and (2.17))

of two unknown quantities i.e. two unknown displacement components. The third.

equation i.e. the compatibility Eq. (2.7) becomes irrelevant in this case.

10



(2.18)

2.3 Definition of displacement potential function

In this article, it is aimed at defining a function, called displacement potcntial

function, so as to further reduce the governing differential equations (Eqs. (2.16) and

(2.17)). With this view, the displacement potential function 'f/ is defined as a

function of displace'ment components as follows:

O''f/ O''f/ O''f/
UX =al--2 +a2--+a,--,ox oxoy 0'

O''f/ O''f/ a''f/uy = a" --2 +as --+a, --,ox oxoy 0'
Hcrc, a's are unknown material constants.

Combining Eqs. (2.13) - (2.15) and (2.18), one can arrive at

03'f/ 03'f/ 03'f/ 03'f/
ax =aIAII--+(a,AII +a4A12)-2-+(a3AII +aSAI2)--2 +a6AI2-3-ox3 ox 0' oX0' 0'

03'f/ 03'f/ 03'f/ 03'f/
a" =aIA12--3 + (a2A12+a4A22)-2-+(a3AI2 +aSAn)--2 +a6A22-3-. ox ox oy oxoy 0'

03'f/ 03'f/ 03'f/ 03'f/
ax!, = a4A66--3 + (a1A66+aSA66)-2-+ (a2A66 + a6A66)--2 + a3A66--3ox ox oy OX0' oy

(2.19)

(2.20)

This gives two equilibrium equations in terms of a single function'f/ . The constants

IX'S arc chosen in such a way that the first equation of Eqs. (2.20) is automatically

satisficd under all circumstances. This will happen when coefficients of all the

derivatives of the first equation ofEqs. (2.20) are individually zero. That is, when

11



a,A" = 0

a,A" + a,A" + a,A"" = 0

a,A" + a,A" + asA" + asA" = 0
u2A(,{, + ac,An + a5A12 + u(IA(,(, = 0

u)A(,(, =0

From these relations, it is found that

a, =0
a, = 0

as = 0
The remaining three constants have the following relations:

(2.21 )

(2.22)

Thus for VI to be a solution of the stress problem, it has to satisfy the second

equilibrium equation of Eqs. (2.20) only. However, the values of a's must be known

in advance. Here, we have basically two equations Eq. (2.22) for determining three

unknown a'S. An arbitrary value is thus assigned to anyone of these three unknowns

and the remaining a's are solved from Eq. (2.22). Assuminga, = 1, the values of

a,anda, arc obtained as

a -, - A"
A" + A"

A"
An + A66

(2.23)

(2.24)

When the above values of a's are substituted in the second equation ofEq. (2.20), the

governing differential equation for the solution of two dimensional laminated

composite structures becomes

a'VI + [A12 _ ~ _ 2A,,] a'lf! + A12 a'lf! = 0
ax' A66 AliA" All ax'ay' A" ay'
By making use of the above values of a's in Eqs. (2.18) and (2.19), one obtains the

components of displacement and stress as follows:

12
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(2.25)

(2.26)

Now, it is found that there is only one governing differential equation Eq. (2.24) for

the solution of the displacement potential function f//. Once the displacement

potential function f// is known, the components of displacement and stress can be

readily found from Eqs. (2.25) and (2.26).

2.4 General consideration of the boundary conditions

Equation (2.24) is solved for the displacement potential function f// , which is furthcr

uscd to determine the components of displacement and stress from Eqs. (2.25) and

(2.26). The components of stress and displacement vary over the volume of the body.

At the boundary, they must be such as to satisfy the boundary conditions. The

practical situations, which may exist along the edge or boundary of a structure, are

visualized in two different ways, namely

a) Displacements and

b) Loading or stress

Both the displacements and the stresses are defined by their respective components.

Thesc components are

I. Normal displacement

2. Tangential displacement

3. Normal stress

4. Tangential stress

13
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At any point on the boundary, out of these four quantities, two are known al a lime.

Therefore, the four quantities, taking two at a time, may provide six different

boundary conditions. These six boundary conditions are given by

a) Normal displacement, tangential displacement

b) Normal displacement, tangential stress

c) Tangential displacement, normal stress

d) Normal stress, tangential stress

e) Normal displacement, normal stress

t) Tangential displacement, tangential stress

Out of these six possible combinations, the last two combinations, namely (e) and (I),

do not generally exist in physical problems. Therefore, at any point on the boundary,

the first four possible boundary conditions are concerned with. If the shape of the

boundary considered is rectangular, the structure may be oriented so that its edges

are parallel to the co-ordinate axes. In that case, the normal and the tangential

components of stress and displacement at the boundary are the co-ordinate

components of stress and displacement inside the structure. When the first four

boundary conditions are stated mathematically in terms of the functions to be

determined, one obtains

l.

2.

II" = V/,(x,y) ,II, = VI,(x,y)

II" = W,(x,y) ,a, =V/,(x,y) (2.27)

3. II, = W,(x,y}, a" = W.(x,y)

4. a" =W,(x,y},a, =W.(x,y)

From the above expressions of boundary conditions, it is revealed that, there is no

technical difficulty in satisfying all the modes of boundary conditions appropriately.

Moreover, compared to the approach of solving the problem in terms of displacement

components, the displacement potential function approach has the advantage that

only one function If is required to be evaluated instead of solving for two variables

II, and u" simultaneously.

14
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CHAPTER-3 SOME SAMPLE PROBLEMS OF LAMINATED COMPOSITE

STRUCTURES

In this chaptcr, some sample problems of laminated composite structures are solved

to demonstrate the method developed in the preceding chapters. Two different types

of laminate will be considered: (i) cross-ply laminate and (ii) angle-ply laminate. For

each or the laminates, different conditions will be imposed on the boundary.

3.1 A rectangular panel of cross-ply laminated composite undcr uniform tensilc

loading:

A symmetric cross-ply laminated composite panel consisting of n number of plies is

shown in Fig. 3.1. A cross-ply laminate is a laminate in which the fibers are oriented

only at 0° and 90°. The thickness of the panel is h. A cross-ply laminate (also called

laminates with especially orthotropic layers) is one in which fiber angles are only 0°

and 90°. The lell end of the panel is rigidly fixed while the two longitudinal cnds are

5tifTened. The other end is subjected to a uniform tensile load a-~.The length of the

panel is b and the width is a. The conditions on the stiffeners are mathematically

formulated by the fact that there is no displacement along the length of the stiffened

edges undcr the action of load and the stress in the direction perpendicular to the

y

a

Fibers Stiffened edges

> x

Fig. 3.1 A rectangular panel of cross-ply laminated composite under
uniform tensile loading.
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stiffener is zero. Thus, the boundary conditions of the problem are given by

(I) 11, (x, 0) ~ 11, (x, a) ~ 0; 0 :0::x :0:: b

(2) 0;' (x, 0) ~ 0-" (x, a) ~ 0; 0 :0:: x 5, b

(3) 11, (O,y) ~ uy (O,y) ~ 0; O:o::y:o:: a

(4) o-;(b,y)~ 0-/, o-,y(b,y)~O;O:O::y:O::a

Under these boundary conditions the elastic field in the panel has to be determined.

To accomplish this, Eq. (2.24) has to be solved for the unknown displacement

potential function 'If from which the components of stress and displacement can be

found using Eqs. (2.25) and (2.26). For a unique solution, 'If has to satisfy Eq. (2.24)

as well as the boundary conditions described above.

For the present problem, the displacement potential function is assumed to be

"
VI ~ IX", cosay

m=]

where Xm is a function of x only and a ~ In" .
a

Now substitution ofEq. (3.1) into Eq. (2.24) yields

X"'~ BX" 2 + ex a4 :::: 0
III ma III

where ( , ) indicates differentiation with respect to x and

The general solution ofEq. (3.2) can be given by

where

JB:t.JB2 -4Cn"I1, =--u. 2

and A"" Bm, C"" and D", are arbitrary constants.

(3.1)

(3.2)

(3.3)

(3.4)

Substituting Eq. (3.1) into Eqs. (2.25) and (2.26), the expressions of displacement

and stress components arc obtained as

16



1I,(X,y)= - IlL¥~sinay
m=1

(3.Sa)

(3.5b)

a, (x,y) = AM ~ [A X J A X" ].
( )L...J 12 rna + 11 ",a smayah AI2 + A66 m=l

(3.Sc)

a,.(x,y)=

an(x,y)= (3.5e)

Substituting different derivatives of Xm in the expressions of the stress and

displacement components (Eqs. (3.Sa) - (3.Se)), one can obtain

(3.6a)

u,.(x,y) I. ~ [A (A en,. +B en,. +C e",. +D en,.\., J66 III In 11/ In P
A + A ~ _ A (n'A en,. + 'B n,. + 'C ".1.t+ n'D 114.\) cosay12 66 m_l II I m n2 me n] me 4 me

(3.6b)

(3.6c)

ay (x, y)

(3.6d)

(3.6e)

For the present problem, it is seen from Eqs. (3.6a) and (3.6d) that the boundary

conditions (1) and (2) are satisfied automatically. Therefore, only the boundary

conditions (3), and (4) are remaining to be satisfied. The uniform tensile load axe

applied at the cdge x = b can be expressed in Fourier series as

17



a, (b,y) ~ a~~:~>:msin<ry
111",1

2" 4 0
where Em ~ - fa~ sin <rydy ~ _ ax

a 0 f1l7r
for m ~ 1,3,5 ..... 00

(3.7)

(3.8)

Now, by applying the boundary conditions (3) and (4) in Eqs. (3.6a) _ (3.6c) and

(3.6e) and making use of relation (3.7), the following four algebraic equations can be
obtained for the four unknown coefficients An" En" Cn" and Dm.

(3.9a)

(3.9b)

(3.9c)

(3.9d)

Emah(A12 + A66)

A66

The above equations can be written in a simplified form for the solution of the
unknowns as follows:

", ", ", ", Am 0
l' 1', 1', 1', Em 0,

~Q, Q, Q, Q, Cm Em
R, R, R, R, Dm 0

where

p, = Arll1j
2

- A66a1

Q (A ' A 'k,h i= 1,2,3, and 4.j= Ilnia+ 12a

R (A 3 A 'k'hi = IInj + 1211ja

(3.10)

The solution of the above algebraic Eq. (3.10) yields the unknown constants Am, Em,

Cm, and Dm. Once the values of the unknowns are determined, they are directly

substituted into Eqs. (3.6a) - (3.6e) to obtain the explicit expressions for the different

parameters of interest, namely, the two displacement and the three stress

components, which arc valid for the entire region of the stiffened edge panel of

18



laminated composite. It is noted that Eg. (3.10) is derived by satisfying the remaining

boundary conditions (3) and (4). Thus, the solution of Eg. (3.10) ensures that all the

boundary conditions are satisfied identically.

3.2 A rectangular pauel of cross-ply laminated composite under parabolic

tensile loading:

A symmetric cross-ply laminated composite panel consisting of n number of plies is

shown in Fig. 3.2. The thickness of the panel is h. The left end of the panel is rigidly

fixed while the two longitudinal ends are stiffened. The other end is subjected to a

parabolic tcnsi Ie load, as shown in the figure. Thc Icngth of thc pancl is hand thc

width is a. , thc boundary conditions of the problem are given by

(f) "x (x, 0) = "x (x, a) = 0; 0 '" x'" b

(2) a,. (x. 0) = 0;. (x, a) = 0; 0 '" x'" b

(3) 1(, (0, y) = 11)' (0, y) = 0; 0 '" y '" a

(4) a,(h,y)=a: = 4~(ay-y2}a,y(b,y)=0;0",y",a
a

whcrc Pis the maximum value of the tensile load, for this case it is aty = a/2.

y

a

Fibers A Stiffened edges

" 4P ( ,)ax =-2 \ay- y
a

Fig. 3.2 A rectangular panel of cross-ply laminated composite
under parabolic tensile loading.
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I'lli' this problelll. tbc l1isplaccllIcut potcutial fuuctiou is assulllcd to bc SalUC as givcu

by Eq. (3.t). Furthcr lOqs. (3.2) to (3.6e) atso apply to thc prescnt problem. Thc

boundary conditions (I) and (2), as befDre, arc satisfied automatically. Therefore,

only the boundary conditions (3) and (4) are remaining to be satisfied. The parabolic

tensile load applied at the edge x = b can be expressed in Fourier series as
~

a (h ),)= aO = "E sin ay
\. .\ ~ III

m",1

81''' 321'
where Em = -, J(ay - y2 )sin aydy = -,-,

a 0 mtr
form= 1,3,5 .... 00

(3.11 )

(3.12)

applying the remaining boundary conditions (3) and (4) in Eqs. (3.6a) - (3.6c) and

(3.6e) and making use of relation (3.11), the following four algebraic equations can

be obtained for four unknown coefficients A"" Em, em, and Dm.

(3.\3a)

(3.13b)

(3.13c)

(3.13d)

where Em = Emah(A'2 + A66)

A66

The above equations can be written in a simplified form for the solution of the

unknowns as follows:

11, 11, 11, 114 Am 0

P, 1', 1', 1'4 Em 0
= EQ, Q, Q, Q4 Cm" m

R, R, R, R4 Dm 0

where

1', = All 11;2 - A66a1

Q, = (AlIl1,'a + Al2a,~",h
R (A 'A 2 k,h

I = lin; + 12nja

(3.14)

i= I,2, 3, and 4.
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The solution of the above algebraic Eq. (3.14) yields the unknown constants A"" B",.
e",. and D",. Once the values of the unknowns arc determined, they are directly

substituted into Eq. (3.6) to obtain the explicit expressions for the different

parameters of interest, namely. the two displaccmcnt and the thrcc strcss

components. which are valid for the entire region of the stiffened edge panel of

laminated eompositc.

3.3 A rectangular panel of cross-ply laminated composite under parabolic shear

loading:

A symmetric cross-ply laminated composite panel consisting of n number of plies is

shown in Fig. 3.3. The thickness of the panel is h. The left end of the panel is rigidly

fixed whilc the two longitudinal edges are stiffened. The other end is subjected to a

parabolic shear 10adO"~= :: (y' -ay). The length of the panel is b and the width is

a. Thc boundary conditions of the problem are given by

(I) II., (x, 0) = IIx (x, a) = 0; 0 S; x S; b

(2) a,. (x, 0) = Oi. (x. a) = 0; 0 S;x S; b

y

a

Fibers Sti ffened edges

x

Fig. 3.3 A rectangular panel of cross-ply laminated composite
under parabolic shear loading.
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(J) 11., (0 . .1') ~ 11." (0. y) ~ 0; 0 "Y "It

(4) a,(b.y)~ O,ax,(b,y)~ a:, ~ 4~'(y' -aytO:<; y:<;a
. . It

For the present problem, the displacement potential function is assumed to be

VI ~ IX m cosay +Mx'
m~1

where Xm is a function of x only and a = I1lJr .

a

Now substitution ofEg. (3.15) into Eg. (2.24) yields

X"I~BX"a2+c...A 4::::;0m In ma

The general solution of Eg. (3.16) is given by

where

)
B:t.JB' -4C

111,112 = a ----_
2

and Am, B." Cm, and Dm are arbitrary constants.

(3,15)

(3.16)

(3.17)

(3,18)

Now substituting Eg, (3,21) into Egs. (2.25) and (2.26), the expressions of

displacement and stress components are obtained as
~

uJ"y)= - IaX~ sinay
m=l

(3.19a)

(3,19b)

a,(x,y)~

a, (x,y) = h{ I )I[A" A66Xma 3 + (A,', + A12A66 -AIIA,,)X;,aJsinay (3,19d) .a AI2 + AM m=]
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n (t J')" - . __ :t,~_.__~[A r' ,,' -I A x"'l""s"v.,. 6MAIIA",--
ll' - • ( ) ~ 11.•.. III II til ";.I h( )
. all All + A66 m=1 a All + AM,

(J.I~c)

Substituting different derivatives of x,,, in the expressions of the stress and

displaccmcnt componcnts (Eqs. (3.19a) - (3.19c)), onc can obtain

1I,(x,y)= f[-(n,Amen" +n,Bmen" +n,Cmen" + n4Dmen"}xsinay]
","'I

(3.20a)

[{
A (A en,' + Be"" + C en" + De"" \.' } ]I 0() 66 m nr m m P

li ,(x.y)::=----I -A (n2A en1x +n2B e"2X +n2C en.,x +n2D ell•x) cosCQ!) A +A 11 1m2 m 3 m 4 m
12 66 m=1

+6MxAII

(3.20b)

a,(x,y) -

(3.20c)

(3.20d)

With thcsc exprcssions of displacement and stress components, the boundary

conditions (I) and (2) are satisfied automatically. Therefore, only the boundary

conditions (3) and (4) are remaining to be satisfied. The parabolic shear load applied

at the edge x = b can be expressed in Fourier series as

a". (b,y)= a~. = Eo+ fEm cosay
m"'l

where

4P" , 2P
Eo=-J(ay-y py=--

a' 3o

8P "J( ,) 16PEm= -, ay - y cosaydy = -,-,
Q" 0 m ;r

for m = 2,4,6, 00

(3.21)

(3.22) .

Using Eqs. (3.20e) - (3.22) the value of M can be obtained as
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M = ahl'(A12 + A6J
9A11A66

Now, by applying the boundary conditions (3) and (4) in Eqs. (3.20a) - (3.20c) and

(J.20c) and making use of relation (3.21), the following four algebraic equations can

be obtained for four unknown coefficients An" Bm, Cn" and Dm.

(3.23a)

(3.23b)

where

(3.23e)

(J.23d)

E =m
Emah(A12 + A66)

A66

The above equations can be written in a simplified form for the solution of the

unknowns as follows:

", ", 11) ", Am 0
l' 1', l' 1', Bm 0, ,

=
Q, Q, Q, Q, Cm 0

R, R, R, R, Dm E m

where

P-A 2 A '
I - lin; - 66a
Q _ (A ' A 3 ~n;b i= 1,2,3, and 4.I - lin; a + t2G

R - (A 3 + A ' }n,b
I - 1111; 12niG

(3.24)

The solution of the above algebraic Eq. (3.24) yields the unknown constants, Am, Bn"

Cm, and Dm. Once the values of the unknowns are determined, they are directly

substituted into Eq. (3,20) to obtain the explicit expressions for the different

paramet~rs of interest, namely, the two displacement and the three stress

components, which are valid for the entire region of the stiffened edge panel or"

laminated composite.
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3.4 A rectangular panel of cross-ply laminated composite under linearly

varying tensile loading:

II symmetric cross-ply laminated composite panel consisting of n number of plies is

shown in Fig. 3.4. The thickness of the panel is h. The left cnd of the panel is rigidly

fixed while the two longitudinal edges arc roller supported. The other end is

subjected to a linearly varying eccentric tensile load, varying from the maximum

value of r at y = 0 to zero at y = a/2. The length and width of the panel are denoted

by b and a rcspectively. The conditions on the rollers are mathematically formulated

by the fact that there is no displacement in the direction perpendicular to the roller

cdges and no shear stresses along the edges under the action of load. Thus, the

boundary conditions of the problem can be formulated as

(1) 11,. (x. 0) = ",. (x, a) = 0; 0 ~ x ~ b

(2) ax, (x, 0) = ax)' (x, a) = 0; 0 ~x ~ b

(3) "x (O,y) = 1/, (O,y) = 0; 0 ~y ~ a

(4) a,(b,y)=a~ =(r- 2=Y}0~y~a/2,

y

a

Fibers

b

Roller guided edges

x

~I
Fig. 3.4 A rectangular panel of cross-ply laminated composite
under linearly varying tensile loading.
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For the prohlem. the displacement potential function is assumed to he
~

If = IX m sin ay + Mx' y+ Ny'
m=1

I X. f' . f I d iliaW lcrc m ISa unction 0 x on y an a = - .
a

Now substitution of Eg. (3.25) into Eg. (2.24) yields

The general solution of Eg. (3.26) can be given by

where

(3.25)

(3.26)

(3.27)

(3.28)

and An" Bm, em, and Dm are arbitrary constants.

Now substituting Eg. (3.25) into Egs. (2.25) and (2.26), the expressions of

displacement and stress components are obtained as
~

u.(x.y)= IaX~ eosay+ 2Mx
m"'l

(3.29a)

(3.29b)

(3.2ge)

(3.29d) .
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Now substituting dinerent derivatives of X", in the expressions or the stress and

displacement components (Eqs. (3.29a) - (3.2ge)), one can obtain

u((x,y)= f(nlAme"IX +nlBme"1X +nJCme"'x +n4Dnren~.r}xcosay+2Mx
m •• 1

(3.30a)

(3.30b)

(3.30e)

(3.30d)

[

AI2(nIAme"" +n,Brne"" +n,Cme"" +n4Dme"<k' +]A "a,,(x.y)=---(~66~-)L sinay
ail A12 + A" mol ( )

A n3 A e"'.\' + n3 B e"2X + nJC e"..x + n3 D e"4X
111m 2m 3m 4m

(3.30e)
As before, the boundary conditions (1) and (2) are satisfied automatically. Therefore,

only the boundary conditions (3) and (4) are remaining to be satisfied. The linearly

varying tensile load a~ = (p - 2;Y) applied at the edge x = b can be expressed in

Fourier series as

"a, (h,y) = Eo+ l:Ern eosay
",,,,,I

27
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where

, P'R 2\') PI"~ ~ --- I -- -~ ii' = -
(l .' 4

11 (1 a

, 2P'R 2)') 4P ( mJr)/, m = - I---'- cos aY(~)I= -- I- cos ._--
a 0 a m2tr2. 2

for m = t, 2, 3,_.... ,00 (3,32)

By making use ofEqs, (330b) - (330c), (3,31) - (332), and satisfying the boundary

condition (1), the value of M and N can be obtained as

M = ahP(A" + A",,)
8(A", - A,,)

N = ahPAII (A" + A6,)

24A66 (A66 - All)

By applying the boundary conditions (3) and (4) in Eqs, (330a) - (330c) and (DOe)

and making use of relation (331), the following four algebraic equations can be

obtained for four unknown coefficients Am, Bm, Cm, and Dm,

(333a)

(333b)

(333c)

(333d)

where

The above equations can be written in a simplified form for the solution of the

unknowns as follows:

II, II, II, II, Am 0

P, P, P, P, Bm 0
= (334)Q, Q, Q, Q, Cm Em

R, R, R, R, Dm 0
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where

i = 1, 2, 3, and 4.

The solution of the above algebraic Eq. (3.34) yields the unknown constants Am, B""

em, and Dm. Once the values of the unknowns are determined, they are directly

substituted into Eq. (3.30) to obtain the explicit expressions for the different

parameters of interest, namely, the two displacement and thc three stress

components, which are valid for the entire region of the stiffened edge panel of

laminated composite.

3.5 Angle-ply laminated composite panel

/\ laminate is called an angle-ply laminate if it has plies of same material and

thickness, and only oriented at +8 and -8 directions. All the four different types of

boundary conditions discussed for cross-ply laminates are also considered for angle-

ply laminates. The corresponding angle-ply laminate has the same formulations as

for the cross-ply laminate. The only difference lies in the components of the stiffness

matrix given by Eqs. (2.9) - (2.12). Here the values of sand c should be calculated

from the prescribed values om
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CHAPTER-4 RESULTS AND DlSC1JSSION

In this chaptcr, somc numerical rcsults are prcsented for the problems discussed in

the preceding chapter. All the results are obtained with refercnce to a glass epoxy

composite. Although the formulations can be applied to. any composite, the

glass/epoxy composite is chosen merely as an example. The mechanical properties of

the ingredient materials and their composites are shown in Table 4.1 and 4.2. In order

to makc the results non-dimensional, the displacements are expressed as the ratio of

actual displacement to the actual dimension of the panel, and the stresses are

cxpressed as the ratio of the actual stress to the applied loading parameter.

Table 4.1 Properties of fiber and matrix material:

Material Property

Fiber EJ (x I03 MPa) 85.0

(Glass) Vr 0.20

Em (x I03 MPa) 3.40
(Epoxy)

0.30vm

Table 4.2 Properties of glass/epoxy composite:

Material Property

E) (x 103 MPa) 38.6
E2 (xl03 MPa) 8.27

Composite G'2 (xl0
3 MPa) 41.4

VI2 0.26

V21 0.055

4.1 Results of the problem of art ide 3.1

The problem at article 3.1 refers to a rectangular panel of symmetric cross-ply.

laminated composite. The panel is subjected to a uniform tensile load CJ: at one

lateral end while the other lateral end is fixed. The two longitudinal edges of the
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panel arc stiffened. The geometry and the type of the loading of the problcm arc

shown in Fig. 3.1.

Thc rcsult shown in Fig. 4.1 is the normalized longitudinal displacement component

11.,1" as a function of normalized position yla at different sections of the panel. The

distribution of the longitudinal displacement is parabolic and symmetric with respect

to the line yla = 0.5. The magnitude of the longitudinal displacement increases with

the increase of xlb. It is zero at the fixed end (xlb = 0) and two stiffened edges (yla =

0, and 1.0), which satisfies the. physical boundary conditions of the problem. The

result correspond to the number of plies n = 3 and the aspect ratio bla = 3.0.

Figures 4.2 and 4.3 illustrate the variation of normalized lateral displacement

component lIyla at different sections of the panel for n = 3 and bla = 3.0. The lateral

displaccmcnt varies anti-symmetrically with respect to the line yla = 0.5. For any

particular value of xlb, the lateral displacement is the maximum at the two stiffened

edges (yla = 0 and I) and zero at the mid plane (yla = 0.5). The lateral displacement

is also zero at the section xlb = 0, i.e. at the left lateral boundary. This conforms to

the physical phenomenon of the problem. The characteristics of lateral displacement

arc similar for all the sections apart from the right lateral end xlb = 1, i.e. the

displacemcnt varies from a positive value at the bottom surface yla =0 to negative

value at thc top surface yla = 1. Thc reverse characteristics are obtained at the section

xlb = I and its few adjoining section. The magnitude of the lateral displacement is

much higher at section xlb = 1 than those of the other sections (xlb < 1). Therefore,

the dctail characteristics of variation of the displacement at the sections of xlb < I

can not be obtained from Fig. 4.2. To observe detail characteristics, the results of

these sections (x/b < I) only are plotted in Fig. 4.3

Figurc 4.4 shows the original and the deformed shape of the panel, which is obtained,

form Fig. 4.1, and Fig. 4.2. It represents the combined effect of deformations in both

the x-and y-directions. The lateral displacement component lIy I a, which expresses

expansion or contraction in y-direction, shows the intuitively expected behavior.

Tcnsile loading in axial direction should have normally led to contraction in the y-
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direction due to the ctfect of Poisson's ratio, which is found to he true ovcr thc rangc

of 0 < xll> < 0.9. But, for the small region, xlb ;:: 0.9, the bar is observcd to bc

cxpanding in the y-direction and the explanation is that, it may be attributed to the

applicd conditions ofthc stiffencd boundary undcr tension. The solutions for both the

displacement components u, and uyare found to be zero at the fixed support, which

is also expected for the physical characteristic of the problem.

Figure 4.5 illustrates the distribution of normalized longitudinal stress

componenta,/a: at different sections of the panel for n = 3 and bla = 3.0. The stress

distribution is symmetric with respect to the mid longitudinal section yla = 0.5. The

magnitude of the stress increases as the right lateral end approaches, i.e. as the value

ofxlb increases. Atxlb = 1, the value of a,/a~ is unity, which is in conformity with

the boundary condition of the problem

Figures 4.6 and 4.7 exhibit the distribution of normalized lateral stress versus

normalizcd position at different sections of the panel for n = 3 and bla = 3.0. Figure

4.7 is plotted to show the detail characteristics of the stress variation at the sections

other than the right lateral end where the magnitude of the stress is much higher than

thosc of other sections. The stress distribution is symmetric. However, the naturc of

distribution is quite different at different sections. At the section xlb = 0, the stress is

tcnsilc whose magnitude is not so significant. At xlb = 0.5, the stress is negative that

represent compressive stress. At the section xlb = 0.9, the central region of the panel

(0.24 < yla < 0.76) is under tension i.e. the stress is positive while the remaining

region of the panel is under compression (negative stress). At the right lateral end

(xlb = 1.0) the lateral stress is the maximum, which is tensile in nature. At all the

scctions. the lateral stress is only a fraction to the applied load. Moreover, the stress

components are zero at the stiffened edges, which satisfies the boundary condition as

well.

The distribution of normalized shearing stresses a,y / a~ as a function of x and y is

shown in Fig. 4.8. At xlb = 1, i.e. at the right lateral edge, the shearing stress is zero
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which is in conformity with the boundary condition of the problem. The distri"ution

of shear stress at all sections, other than xlb = I, is anti-symmetric. Further, it is

observed that the magnitude of the shear stress increases with the increase of xlb

except at xlb = I, where it is zero.

Figure 4.9 displays the longitudinal displacement as a function of ply number for bla

= 3.0 and xlb = 0.5. The results are calculated at three points, yla = 0.2,0.4, and 0.95

along the section xlb = 0.5. It is observed that the magnitude of displacement

decreases with the increase in ply number for same resultant applied load at xlb =

1.0.

Figure 4.10 shows the effect of ply number on the lateral displacement u/a for the

same values of different parameters as stated for Fig. 4.9. As longitudinal

displacement, the magnitude of lateral displacement also decreases as the number of

plies increases.

Figure 4.11 represents the change in longitudinal stress component with the change

in ply number. The figure shows that for the Same resultant load the magnitude of

strcss reduces with the increase in ply number. This characteristic conforms with the

obvious fact that the greater the number of plies gives the larger cross-sectional area

over which the load is distributed. The magnitude of lateral and shear stress also

decreases with the increase of ply number as Can be seen from Figs. 4.12 and 4.13.

The effect of panel aspect ratio bla on the longitudinal displacement u/b is portrayed

in Fig. 4.14. The results correspond to n = 3 and xlb =; 0.5. The results are calculated

at three points along the section xlb = 0.5. It is to be noted that the magnitude of the,
longitudinal displacement, for a particular value of yla, decreases as the aspect ratio

increases. This is due to the fact that the section xlb ~ 0.5 is getting away from the

loading section xlb = 1.0 as the aspect ratio bla increases. Obviously, the effect of

load will diminish as the distance of a point rises. Due to the same reason, the aspect

ratio, in general, has the same effect on all other displacement and stress components

as can be seen from Figs. 4.15 to 4.18.
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The resulls presented so far show the characteristics of cross-ply laminale. For the

same boundary and loading conditions, angle-ply laminated composite panel is also

considered in order to analyze the elastic field. Figure 4.19 shows the gcometry of

the problem.

Figure 4.20 to Fig. 4.36 present different characteristics of the angle-ply laminated

composite panel. The nature of the curves resembles to those discussed for cross-ply

laminated panel. Therefore the discussions of the curves are not repeated here for the

purpose of brevity.

Figure 4.37 demonstrates the effect of fiber angle on the longitudinal displacement of

angle-ply laminates. It shows that for fiber angles near zero to a higher value of

angles, within the range 0° < e < 20°, the deflection reduces with the increase of

angle and vise versa for the range 70° < e < 90°. It happens due to the stiffened

edges. On the other hand Fig. 4.38 shows that the magnitude of normalized lateral

deflection increases with the increase in fiber angle within the range 0° < e < 20° and
vise versa for the range 70° < e< 90°. So an optimization can be suggested for design

problems.

Like longitudinal deflection the normalized longitudinal stress decreases with

increase in fiber angle, depicted in Fig. 4.39. So, for design problems these

characteristics can become useful. Again analyzing Fig. 4.40 shows that the

magnitude of the normalized lateral stress increases with increase in fiber angle for

an angle ply composite laminate. On the other hand the normalized shear stress has

no effect on the fiber angle, shown in Fig. 4.41, as the load applied here is only the

tensile load.

4.2 Results of the problem of article 3.2

The problem at article 3.2 refers to a rectangular panel of symmetric cross-ply'

laminated composite. The panel is subjected to a parabolic tensile

load (J"~ = 4Pj a' (ay - y'), at one lateral end while the other lateral end is fixed. The
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two longitudinal edges of the panel are stiffened. The geometry and the type or the

loading of the problem arc shown in Fig. 3.2.

The variation of the normalized longitudinal displacement component u,/b as a

function of normalized positiony/a at different sections of the panel is shown in Fig.

4.42. Thc distribution of the longitudinal displacement is parabolic and symmetric

with respect to the line y/b = 0.5. The magnitude of the longitudinal displacement

increases with the increase of x/b. It is zero at the fixed end (x/b = 0) and two

stiffened ends (y/a = 0, and 1.0), which satisfies the physical boundary conditions to

the problem. The results corresponds to the number of plies n ""3 and aspect ratio bla

= 3.0.

Figures 4.43 and 4.44 illustrate the variation of normalized lateral displacement

component u/a at different sections of the panel for n = 3 and b/a = 3.0. The lateral

displacement varies anti-symmetrically with respect to the line y/a = 0.5. For any

particular value of X/b, the lateral displacement is the maximum at the two stiffened

edges (y/a = 0 and I) and zero at the mid plane (y/a = 0.5). The lateral displacement

is also zero for any y/a at the section x/b = 0, i.e. at the left lateral boundary. This

conforms to the physical phenomenon of the problem. The characteristics of lateral

displacement are similar for all the sections apart from the right lateral end x/b = I,

i.c. the displacement varies from a positive value at the bottom surface y/a =0 to

negative value at the top surface y/a = I. The reverse characteristics are obtained at

the section x/b = 1 and its few adjoining section. The magnitude of the lateral

displaccment is much higher at section x/b = I than those of the other sections (x/b <

I). Therefore, the detail characteristics of variation of the displacement at the

sections of x/b < 1 can not be obtained from Fig. 4.43. To observe detail

characteristics, the results of these sections (x/b < I) only are plotted in Fig. 4.44

Figure 4.45 shows the original and the deformed shape of the panel, which is

obtained, form Fig. 4.42, and Fig. 4.43. It represents the combined effect of.

dcformations in both the x-and y-direetions: The 'lateral displacement

component u,' / a, which expresses expansion or contraction in y-direetion, shows the
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intuitively expected behavior. But at the same time some part of the deformed panel

shows some unexpected shape. Tensile loading in axial direction should have

normally led to contraction in the y-direction due to the effect of Poisson's ratio,

which is found to be true over the range of 0 < xlb < 0.9. But, for the small region,

xl" <: 0.9, the bar is observed to be expanding in the y-direetion and the explanation

is that, it may be attributed to the physical conditions of the stiffened boundary under

tension. The solutions for both the displacement components u, and uyare found to

be zero at the fixed support, which is also expected for the physical characteristic of

the problem.

Figure 4.46 illustrates the distribution of normalized longitudinal stress component

a.) P at different sections of the panel for n = 3 and bla = 3.0. The stress distribution

is symmetric with respect to the mid longitudinal section yla = 0.5. The magnitude of

the stress increases as the right lateral end approaches, i.e. as the value of xlb

increases. At xlb = 1, the maximum value of a) P is unity, which is in conformity

with the boundary condition of the problem

Figures 4.47 and 4.48 exhibit the distribution of normalized lateral stress versus

normalized position due to parabolic tensile load at different sections of the panel for

n = 3 and bla = 3.0. Figure 4.7 is plotted to show the detail characteristics of the

stress variation at the sections other than the right lateral end where the magnitude of

the stress is much higher than those of other sections. The stress distribution is

symmetric. However, the nature of distribution is quite different at different sections.

At the section xlb = 0, the stress is tensile whose magnitude is not so significant. At

xlb = 0.5, the stress is negative that represent compressive stress. At the section xlb =

0.9, the panel is in tension. But the magnitude e10ser to the stiffened edges is not

significant while at yla = 0.5, tension is much higher, although not that high

compared to the applied load. At all the sections the lateral stress is only a fraction to

the applied load. Moreover, the stress components are zero at the stiffened edges,

which satisfies the boundary condition as well.

36

. -~
'i. ~\, . ":,""

.....' Ii,
"



The distributions of normalized shearing stress a". / P as a function of x and y is

shown in Fig. 4.49. Atxlb = I, i.e. at the right lateral edge, the shearing stress is zero

which is in conformity with the boundary condition of the problem. The distribution

of shear stress at all sections, other than xlb = I, is anti-symmetric. Further. it is

observed that the magnitude of the shear stress increases with the increase of xlb

exccpt at xlb = 1, where it is zero.

Figurc 4.50 explores the longitudinal displacement as a function ply number for bla

= 3.0 and xlb = 0.5. The results are calculated at three points yla = 0.2, 0.4, and 0.95

along the section xlb = 0.5. It is observed that the magnitude of displacement

decreases with the increase of ply number for the same resultant applied load at xlb =
1.0.

Figure 4.51 shows the effect of ply number on the lateral displacement u/a, for the

same values of different parameters as stated for Fig. 4.50. As longitudinal

displacement. the magnitude of lateral displacement also decreases as the number of

plies increases.

Figure 4.52 represents the change in longitudinal stress component with the change

in ply number. The figure shows that for the same resultant load the magnitude of

stress reduces with the increase in ply number. This characteristic conforms to the

obvious fact that thc greater the number of plies gives the larger cross-sectional area

over which the load is distributed. The magnitude of lateral and shear stress also

decreases with the increase of ply number as can be seen from Figs. 4.53 and 4.54.

The effect of panel aspect ratio bla on the longitudinal displacement u./b is portrayed

in Fig. 4.55. The results correspond to n = 3 and xlb = 0.5. The results are calculated

at three points along the section xlb = 0.5. It is to be noted that the magnitude of the

longitudinal displacement. for a particular value of yla, decreases as the aspect ratio

increases. This is due to the fact that the section xlb = 0.5 is getting away from the

loading section xlb = 1.0 as the aspect ratio bla increases. Obviously, the effect of

load will diminish as the distance of a point rises. Due to the same reason, the aspect
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ratio, in general, has the same efleet on all other displacement and stress componcnls .

as can be seen from Figs. 4.56 to 4.59.

The results presented so far show the characteristics of cross-ply laminate. For the

same boundary and loading conditions, angle-ply laminated composite panel is also

Considered in order to analyze the clastic field. Figure 4.60 shows the geomclry of

the problcm.

Figurcs 4.6\ to Fig. 4.77 present diffcrent characteristics of the angle-ply laminatcd

composite panel. The nature of the curves resembles to those discusscd for cross-ply

laminated panel. Therefore the discussions ofthe curves are not repeated here for the.

purpose of brevity.

Figure 4.78 demonstrates the effect of fiber angle on the longitudinal displacement of

angle-ply laminates. It shows that for fiber angles near zero to a higher value of

angles, within the range 0° < ()< 20°, the magnitude of the deflection decreases with

the increase of angle and vise versa for the range 70° < ()< 90°. It happens due to the

stiffened edges. On the other hand Fig. 4.79 shows that the magnitude of the

normalized deflection along the lateral direction increases with the increase in fiber

angle within the range 0° < ()< 20° and vise versa for the range 70° < (J < 90°. So an

optimization can be suggested for design problems.

Like longitudinal deflection the normalized longitudinal stress decreases with

increase in fiber angle, depicted in Fig. 4.80. So, for design problems these

characteristics can become useful. Again analyzing Fig. 4.81 shows that the

magnitude of the normalized lateral stress increases with increase in fiber angle for

an angle ply composite laminate. On the other hand the normalized shear stress has

no effect on the fiber angle, shown in Fig. 4.82, as the load applied here is only the

tensile 1000d.
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4.3 Results of the problem of article 3.3

The problem at article 3.3 refers to a rectangular panel of symmetric cross-ply

laminated composite. The panel is subjected to a parabolic shear

load a~ = 4P/ a' (y' - ay), at one lateral end while the other lateral end is fixed. The

two longitudinal edges of the panel are stiffened. The geometry and the type of the

loading ofthe problem are shown in Fig. 3.3.

Shown in Fig. 4.83 is the normalized longitudinal displacement component u/b as a

function of normalized positionyla at different sections of the panel. The distribution

of the longitudinal displacement is anti-symmetric with respect to the line yla = 0.5.

It varies from zero, atyla = 0, 0.5, and I, to the maximum, atyla ~ 0.25, and 0.75.

Further, the magnitude of the longitudinal displacement increases with the increase

of xlb. It is zero at the fixed end (xlb = 0), two stiffened edges and the mid plane (yla

= 0, 0.5, and 1.0), which satisfies the physical boundary conditions of the problem.

The results corresponds to the number of plies n = 3 and the aspect ratio bla = 3.0.

Figure 4.84 illustrates the variation of the lateral displacement component u/a at

different sections ofthe panel for n = 3 and bla = 3.0. The lateral displacement varies

symmetrically. For any particular value of xlb, the magnitude of displacement is the

maximum at transversely mid section (yla = 0.5). The displacement is zero at the

fixed end (xlb = 0). This conforms to the physical phenomenon of the problems. The

two edges ()'Ia = 0 and I) move parallel to each other while mid plane (yla = 0.5)

dcncction is the maximum which resembles with the applied load. However, the

maximum dcnection is at the right lateral edge (xlb = 1.0). One thing should be noted

that the dcnection is in the negative direction as the applied load is negative in

direction.

Figure 4.85 shows the original and the deformed shape of the panel under parabolic

shear loading. The deformations are obtained form Fig. 4.86, and Fig. 4.87. Here it is

observed that the deformation along y direction is quite natural and expected but the
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deformation along x direction is so small. with respect to the size of the panel. that it

actually could not be visualized.

Figures 4.86 and 4.87 illustrate the distribution of the longitudinal stress component

a./ P at different sections of the panel for n = 3 and bla = 3.0. The stress

distribution is anti-symmetric with respect to mid longitudinal section yla = 0.5. But

at right lateral edge (xlb = 1), the value of a./ P is zero, depicted in Fig. 4.86. This

satisfies the boundary condition. And in Fig. 4.87 it is observed that the magnitude

increases with the increase in xlb for X/b < 1. Moreover, it is also observed that the

upper part of the panel is in tension while the lower part of the panel is in

compression.

Figures 4.88 and 4.89 show the distribution of lateral stress at different section of the

panel for 11 =3 and bla = 3.0. The stress distribution is anti-symmetric with respect to

the mid plane (yla = 0.5). Its magnitude increases with the increase in xlb. But in Fig.

4.88. the pattern of the curves shows different behavior at different sections. At X/b =
o the stress is almost zero, where as at xlb = 0.5 the stress in significant, but the

direction of the stress is opposite in upper and lower half of the panel. Now looking

at the plane xlb = 0.9 a very complicated condition is observed where at 0.88 < yla <

1.0 the stress is negative and at 0.88 > yla > 0.5 the stress is positive. A similar

characteristic is observed for the lower half (yla < 0.5) of the panel. Moreover, the

stress components are zero at the stiffened edges, which satisfies the boundary

condition as well. The Fig. 4.89 shows the lateral stress distribution in the panel at

xlb = 1.0.

The disttibution of the shearing stresses a,y / P as a function of x and y is shown in

Fig. 4.90. At xlb = I, i.e. at the right lateral edge, the magnitude of the shearing stress

is maximum and the maximum value is unity which is in conformity with the loading

condition. The distribution of shear stress at all sections is symmetric. The variation

in shear stress along the width of the panel is very small at any point nearer to the

fixed support. But at xlb = 0.9 the magnitude of the stress is minimum at the mid
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plane, which is opposite to the applied load. One thing is to: be noted that the. shear

stress for any particular xlb is same for yla = 0.2 and 0.8.

Figure 4.91 shows the longitudinal displacement as a function of ply numbcr for bla

= 3.0 and xlb = 0.5. The results are calculated at three points yla = 0.2, 0.4, and 0.95

along the section xlb = 0.5. It is observed that the magnitude of displacement

decreases with the increase of ply number for the same resultant applied load at xlb =

1.0.

Figure 4.92 also shows the non-linear and inverse characteristics for the relation

between lateral deflection u/a and ply number for the same values of different

parameters as stated for Fig. 4.91. Like the longitudinal displacement, the magnitude

of lateral displacement also decreases as the number of plies increases. One thing is

noticeable that for any particular X/b the amount of deflection is same at all yla. So,

all the curves become a single one for a particular xlb.

Figure 4.93 represents the change in longitudinal stress component with the change

in ply number. The figure shows that for the same resultant load the magnitude of

stress reduces with the increase in ply number. This characteristic conforms to the

obvious fact that the greater the number of plies gives the larger cross-sectional area

over which the load is distributed. The magnitude of lateral and shear stress also

decreases with the increase of ply number as can be seen from Figs. 4;94 and 4.95.

Again one thing is noticeable in Fig. 4.95 that for any particular X/b the amount of

deflection is same at all yla. So, all the curves become a single one for a particular

xlb.

The effect of panel aspect ratio bla on the longitudinal displacement u,/b is portrayed

in Fig. 4.96. The results correspond to n = 3 and xlb = 0.5. The results are calculated

at three points along the section xlb = 0.5. It is to be noted that the magnitude of the

longitudinal displacement, for a particular value of yla, decreases as the aspect ratio"

increases. This is due to the fact that the section X/b = 0.5 is getting away from the

loading section xlb = 1.0 as the aspect ratio bla increases. Obviously, the effect of
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load will diminish as the distance of a point rises. Due to the samc rcason. thc aspect

ratio. in general. has the same effect on all other displaccment and strcss components

as can be seen from Figs. 4.97 to 4.100.

The results presented so far show the characteristics of cross-ply laminate. For the

samc boundary and loading conditions, angle-ply laminatcd composite panel is also

considered in order to analyze the elastic field. Figure 4.101 shows the geometry of

the problem.

Figure 4.102 to Fig. 4.119 present different characteristics of the angle-ply laminated

composite panel. The nature of the curves resembles to those discussed for cross-ply

laminated panel. Therefore the discussions of the curves are not repeated here for the

purpose of brevity.

Figure 4.120 demonstrates the effect of fiber angle on the longitudinal displacement

of angle-ply laminates. It shows that for fiber angles near zero to a higher value of

angles, within the range 0° < B < 20°, the magnitude of the deflection reduces with

the incrcase of angle and vise versa for the range 70° < B < 90°. It happens due to the

stiffened edges. On the other hand Fig. 4.121 shows that the normalized deflection

along the magnitude of the lateral direction decreases with the increase in fiber angle

within the range 0° < () < 20° and vise versa for the range 70° < B < 90°. So an

optimization can be suggested for design problems.

Like longitudinal deflection the magnitude of the normalized longitudinal stress

decreases with increase in fiber angle, depicted in Fig. 4.122. So, for design

problems these characteristics can become useful. Again analyzing Fig. 4.123 shows

that the magnitude of the normalized lateral stress decreases slightly with increase in

fiber angle for an angle ply composite laminate. But the amount of change in stress is

negligible. On the other hand the magnitude of the normalized shear stress decreases

with increase in fiber angle, shown in Fig. 4.124.
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4.4 Results of the problem of article 3.4

The problem at article 3.4" refers to a rectangular panel of symmetric cross-ply

laminated composite. The panel is subjcctcd to a parabolic shear

load a: = (p - 2Py / a). Thc load is applicd at onc lateral end and within the rangc 0

:sy :s aI2 while the other lateral end is fixed. The two longitudinal edges of the panel

arc stiffened. The geometry and the type of the loading of the problem are shown in

Fig. 3.4.

Shown in Fig. 4.125 is the normalized longitudinal displacement component uxl'b as a

function of normalized position at different sections of the panel. The distribution of

the longitudinal displacement is non-symmetric. It varies from a minimum, at y/a ~

I, to the maximum, at y/a = 0 which resembles with the load. Further, the magnitude

of normalized longitudinal displacement increases with the increase ofx/b.

Figure 5.126 illustrates the variation of normalized lateral displacement component

due to linearly varying tensile load at different sections of the panel. The lateral

displacement also varies non-symmetrically. For any value of x/b, displacement is

the maximum at some where bellow mid section. The displacement is zero for any

y/a at the section x/b = 0, Le. at the left lateral boundary. This conforms to the

physical phenomenon of the problems. Deflection at the two edges (y/a = 0 and I)

are also zero. However, the maximum deflection is at the right lateral edge (x/b =

1.0). One thing should be noted that some deflections are in the negative direction

like problem 3.1.

Figure 4.127 shows the original and the deformed shape of the panel under parabolic

shear loading. The deformations are obtained form Fig. 4.125, and Fig. 4.126. Here it

is observed that the deformation at the lower part of the panel "is greater, where the

load is applied. Moreover, the contraction in the width of the panel is not significant

as the load is applied only in a part ofthe panel.
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Figure 4.12& illustrates the distribution of normalized longitudinal stress component

due to linearly varying tensile load at different sections of the panel. The stress

distribution is non-symmetric and the magnitude increases as the reference point is

moved toward the load. Atx/b = I, andyla = 0, the value of u,/Pis unity, which

satisfies the boundary condition.

Figure 4.129 is the distribution of normalized lateral stress vs. normalized position

due to linearly varying tensile load at different sections of the panel. The stress

distribution is non-symmetric. The stress is the maximum at the right lateral end

where the load is applied. Here lateral stresses at different points are very small.

Only at xlb = I the stress is almost 60% of the applied load.

The distribution of normalized shearing stresses due to linearly varying tensile load

is shown in Fig. 4.130. At X/b = I, i.e. at the right lateral edge, the shearing stress is

zero which satisfies the boundary condition. Further, it is observed that the

magnitude of the shear stress increases with increase of X/b at any particular yla of

the panel except at X/b =1. Again the variation in shear stress along the width of the

panel is very small at any point nearer to the fixed support. One thing should be

noted that the shear stress developed in the panel is all through negative.

Figure 4.131 shows the ehange in longitudinal displacement with a change in ply

number. The figure represents the non-linear and inverse characteristic due to

linearly varying tensile load for all three planes (yla = 0.2, 0.4, and 0.95). So, it is

observed that the increase in ply number decreases the deflection along the length of

the panel, which is quite natural.

Figure 4.132 also shows the non-linear and inverse characteristics for the relation

between lateral deflection and ply number due to linearly varying tensile load. It is

also observed that the deflections are negative in direction and the magnitude of the

displacements decrease with increase in ply number.
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Figure 4.133 represents the change in longitudinal stress pattern, in a roller guided

cross-ply laminated panel under linearly varying tensile load, with change in ply

number. The figure shows that under same load the amount of stress reduces with an

increase in ply number. Similar phcnomcna can bc sccn from Fig. 4.134.

In case of shear stress developed in the laminated panel due to lincarly varying

tensile, shown in Fig, 4.135, it is also observed here that the magnitude of the stress

is reducing with increase in ply number and again all through the stress is negative.

The effect of panel aspcct ratio bla on the longitudinal displacement uxlb is portrayed

in Fig. 4. t 36. The results correspond to n = 3 and x1b = 0.5. The results are calculated

at three points along the section x1b = 0.5. It is to be noted that the magnitude of the

longitudinal displacemeni, for a particular value of yla, decreases as the aspect ratio

increases. This is due to the fact that the section xlb = 0.5 is getting away from the

loading section x1b = 1.0 as the aspect ratio bla increases. Obviously, the effect of

load will diminish as the distance of a point rises. Due to the same reason, the aspect

ratio, in general, has the same effect on all other displacement and stress components

as can be seen from Figs. 4.137 to 4,140.

The results presented so far show the characteristics of cross-ply laminate. For the

same boundary and loading conditions, angle-ply laminated composite panel is also

considered in order to analyze the elastic field. Figure 4.141 shows the geometry of

the problem.

Figure 4.142 to Fig. 4.157 present different characteristics of the angle-ply laminated

compositc pancl. The nature of the curves resembles to those discussed for cross-ply

laminated panel. Therefore the discussions of the curves are not repeated here for the

purpose of brevity.

Figure 4.158 demonstrates the effect of fiber angle on the longitudinal displacement.

of angle-ply laminates. It shows that for fiber angles near zcro to a higher value of

angles. On the other hand Fig. 4.159 shows that the magnitude of the normalized
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deflection along the lateral direction increases with the increase in liher angle within

the range 0° < (J< 20°. So an optimization can be suggested for design problems.

The normalized longitudinal stress decreases with increase in fiber angle at lower

halfofthe panel and at the upper half the stress increases with increase in fiber angle,

depicted in Fig. 4.160. So, for design problems these characteristics can become

useful. Again analyzing Fig. 4.161 shows that the normalized lateral stress increases

with increase in fiber angle for an angle ply composite laminate. On the other hand

the normalized shear stress slightly decreases in magnitude with increase in fiber

angle but no effect at the right lateral edge, shown in Fig. 4.162, as the load applied

here is only the tensile load.

4.5 Verification of equilibrium offorees

In the preceding article, analytical results of elastic field have been discussed. It is

observed from the results that all the boundary conditions of the problems are

satisfied identically, which may clarify the accuracy and reliability of the results.

However, in the preceding articles, equilibrium of forces acting on the body is not

stated which is equally important for the results to be accepted as accurate and

reliable. In this article, an attempt is made to verify the equilibrium of forces for a

problem discussed earlier.

Problem of article 3.1

Article 3.1 describes a rectangular panel of laminated composite with two stiffened

edges, a fixed end, and a uniform tensile load at the other end. To verify the

equilibrium of forces acting on the panel, it is cut along the fixed support and its free

body diagram is shown in Fig. 4.163. It is acted upon by the applied uniform tensile

load (FI) at the right lateral surface, reaction force (F2) from the fixed support at the

left lateral surface, and shear loads (F3 and F4) at the remaining two surfaces.

Equilibrium of forces in the direction of applied load must satisfy that

F,=F,+F,+F, (4.1)
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Here, F, = Jer~dy = Jf(y)dy, where fey) = er~. The thickness of the panel is

o 0

assumed to be unity. The integral can be evaluated numerically by using the

trapezoidal rule as

IF, =2((0 +2j, +2f, + .... +2/,,_, + /,,) (4.2)

where I = (a - 0) / Nand N = number of strips. For numerical calculation, the size of

the strip is taken as a = 100mm, b = 100mm, and N = 16 for tensile stresses and 11

for shear stresses. With these values, Eq. (4.2) is evaluated as

I~= ~ [0+2( 1.001933+ 1.007559+0.998309+0.996134+ 1.00 1828+ 1.002678
2x 16

+0.997879+0.997878+ 1.002677+ 1.001829+0.996134+0.998308+ 1.007559

+ 1.00 1934)-6.421351 e-05] er~= 87.58 er~N

Similarly,

F, = ~ [0+2(0.177667+0.341491 +0.481406+0.592481 +0.673833+0.726655
2x 16

+0.752555+0.752555+0. 726655+0.673833+0.592481 +0.481406+0.34149

+0.177666)-4.294468e-07] er~=46.82 er~N

b b

The shear force FJ is given by FJ = Jer,ydx = Jf(x)dx. By trapezoidal rule, it is
o 0

computed as

F, = ~ [0.087854+2(0.086072+0.1 07393+0.141154+0.182743+0.229885
2 x 11

+0.281076+0.334518+0.38624+0.415274) + 1.12E-05] er~= 20.07 er~N

Similarly,

F, = ~ [0.087854+2(0.086072+0.107393+0.141154+0.182743+0.229885
2x II

+0.281076+0.334518+0.38624+0.415274) + 1.12E-05] er~= 20.07 er~N

The total reaction force F,+ F2+ FJ is 86.97 er~N which is slightly less than the'

applied load 87.58er~N. The small variation may be attributed to the numerical

errors. Thus the above values of Fs satisfy the force equilibrium given by Eq. (4.1).
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CHAPTER-5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

Due to their outstanding advantages over the conventional materials composites are

being used increasingly for structural elements. Thus to make these materials more

efficient a comprehensive method of analyzing the elastic field in structural elements

of laminated composite has been developed. This method is a very effective and

efficient one. It can be used to solve problems under any kind of boundary

conditions whether they are prescribed in terms in terms of either stress or

constraints or any combination of these two. As this method uses displacement

potential function and all the boundary conditions can be represented in terms of the

same single function, the procedure becomes very simple. Thus it reduces the

problcms into a single differential equation. The differential equation was solved

with the help of an infinite series. It is true that the stress function formulation also

seeks for the solution of a single function. But still the present method is superior as

the stress function formulation can handle only the problems when the boundary

condition is prescribed in terms of stress only.

Using this method elastic field in two different types of composite panel has been

analyzed as a demonstration of this method, where various elastic properties have

been calculated as a function of some other parameters. It is seen that the most of the

. results arc expected and can be explained. Although some results are little confusing

and those were explained from intuition. But it still needs more strong reasons to

explain. After going through this method it seems that this method is capable of

handling such type of problems. But as this is at an infant stage, it needs more

development in future

48



5.2 Recommendation for future work

This is a new method and can successfully deal with composite lamina as well as

with laminate. It can also deal with mixed mode boundary condition. Even then this

method has some limitations. The method is suitable for a particular group of

problems of stiffened and roller guided structures.

In addition, the method can handle cross-ply and angle-ply laminates. But in case of

angle-ply laminate this method is applicable to a certain range of angle. It is

observcd that in the range 20° S; e S; 70° this method is unable to work with.

Moreover, this method is applicable for the cases of composite laminate where the

coupling component of the stiffness matrix is absent for which the laminate must be

a symmctric. For angle ply laminates the number of plies must be even abovc and

bcllow the mid plan. In addition to that two more elements (A16andA26) of matrix

IAI have to bc zero to fit this method. So, these factors limit the application of the

method. Thus thc recommendation for future works may be;

• Modification ofthe method for dealing with all angles

• Rectification of the method to deal with all types of composites

• Rectification of the method to deal with all kinds of boundary conditions

• Using the results obtained from the method to optimize the design.
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Fig. 4.101 A rectangular panel of angle-ply laminated
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