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Abstract 

 
This thesis deals with the analysis of stress and displacement fields of a mixed boundary-

value problem of fiber-reinforced composite materials. More specifically, the elastic field of 

a thick stiffened simply-supported composite beam is investigated using an efficient 

analytical scheme based on displacement-potential field formulation.  

 
In the present displacement-potential approach, the elastic problem of composite materials 

is formulated in terms of a single potential function of space variables, which is defined in 

terms of the displacement components of plane elasticity. Accordingly, all the parameters 

associated with the solution, namely stress, strain and displacements are expressed in terms 

of the same potential function, which eventually reduces the plane problem to the 

determination of the potential function from a single partial differential equation of 

equilibrium. The solution of the equilibrium equation is obtained in the form of infinite 

series, the coefficients of which are determined by appropriately satisfying the boundary 

conditions at different edges of the beam.  

 
Analytical expressions of the elastic field of the simply-supported beam are derived in terms 

of the potential function using Fourier series. Solutions are obtained for two different types 

of stiffeners (axial and lateral stiffeners) at the opposing lateral ends of the beam. Both the 

isotropic as well as fiber-reinforced composite materials are considered for the present 

analysis. Some of the practical issues of interest, like the effects of beam aspect ratio and 

stiffeners are discussed in relation to the composite beam. The analytical scheme is then 

extended to determine the fiber-orientation dependent stresses in stiffened simply-supported 

beam. Two limiting cases of fiber orientation ( = 0o and 90o) are considered for a wide 

range of beam aspect ratio. 

 
In an attempt to verify the reliability and accuracy of the analytical scheme developed, the 

present potential function solutions are compared with the corresponding solutions obtained 

by classical beam theory and verified with two standard computational methods of 

numerical techniques. The four solutions are found to be in excellent agreement with each 

other for all the cases of stiffeners and fiber orientations considered, which eventually 

establishes the soundness and appropriateness of the analytical scheme developed. 
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CHAPTER 1 
           

INTRODUCTION 
 
 

1.1 Preamble 

 
The use of stiffeners, especially in the construction of marine and aerospace structures is quite 

extensive. Stiffeners are usually placed along the boundaries of structural components mainly 

to increase the stiffness of the components, which, in turn, reduces the level of deformation as 

well as overall weight of the structure. As a result, the subject of analyzing the mechanical 

behaviour of stiffened structures has received widespread attention. In particular, reliable and 

accurate analysis of stresses in these structures is of great practical importance as far as the 

modern design philosophy is concerned. 

 

In the solution of stiffened structures, the physical conditions of stiffeners are usually modelled 

in terms of a mixed mode of boundary conditions, namely known values of loading (traction) 

and restraints for the stiffened sections. In general, stiffeners are of directional type, i.e., 

stiffness of a surface at which they are employed is enhanced in a particular direction, namely 

normal and tangential directions. As far as the opposing lateral ends of a beam are concerned, 

stiffeners may primarily be of two types, namely, axial stiffeners and lateral stiffeners. Axial 

stiffeners are those which prevent axial deflection caused by bending of the beam, but the 

stiffened section is free to assume any deflection along the lateral direction. On the other hand, 

lateral stiffeners prevent deflection along the lateral direction, but the section is free to assume 

any axial deflection. 

 
Now-a-days, the theory of elasticity has found considerable application in the solution of 

engineering problems. There are many cases where elementary theory is inadequate to give 

accurate results. The elementary theory is insufficient to give the information regarding local 

stresses near the load and near the supports/stiffeners of beams as well as in regions of sharp  
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variation of structure. This led to the emergence of a special trend of physics, i.e., the theory of 

elasticity to apply to elastic solids. The equations of theory of elasticity are a system of partial 

differential equations. In cases where a rigorous solution cannot be readily obtained, 

approximate method, such as, numerical methods have been developed. Numerical methods 

give approximate results instead of exact solution that can be obtained from analytical method. 

That is, analytical method is always preferable because results obtained by approximate method 

are not always reliable and acceptable for some applications where accuracy is important. 

These are sometimes expensive. Sometimes analytical method is not independently adequate to 

solve a practical problem and it needs some help from numerical methods. 

 

Due to outstanding advantage of composite materials, they are being increasingly used 

structural elements in various problems. The response of stiffened composite beams to 

mechanical loadings largely depends on the fibre orientation. Therefore, the effect of fibre 

orientation on the distribution of stresses and displacements are required to be analyzed to 

ensure proper and safe application.  

 

1.2   Literature Review  
 
The theory of elasticity deals mainly with deformation parameters and stress parameters for the 

solution of two dimensional problems since most of the three-dimensional problems may be 

resolved to a two dimensional one. If it remains beyond the extent of analytical studies anyway, 

the problem has to be handled experimentally as a particular case.  

 
Although the theories of elasticity had been established long before, the solutions of practical 

problems started mainly after the introduction of a stress function by George Biddell Airy [1]. 

The Airy’s stress function is governed by a fourth order partial deferential equation and stress 

components are related to it through its various second order derivatives. The stress function 

solutions were initially sought taking polynomial expressions of various degrees and suitably 

adjusting their coefficients. By this way, a number of practically important problems of long 

rectangular strips could be solved [2]. But the success of this approach was very limited. Using 

these polynomial expressions, an elementary derivation of the effect of the shearing force on  
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the curvature of the deflection curve of beams were made. The problem of stresses in masonry 

dams is of great practical interest and has been attempted for solution using polynomial 

expressions for the stress functions [1-2]. But the solutions obtained do not satisfy the 

conditions at the bottom of the dam where it is connected with the foundation.  

 

Thereafter the use of trigonometric series is considered more fruitful in producing results 

instead of polynomial expressions. The first application of trigonometric series in the solution 

of elastic problems using stress function method was given by Ribiere [1]. Further progress in 

the application of these solutions was made by Filon [1].  

 

A number of works are found with the stress function in this regard [3-6]. Even tough the stress 

analysis problems are bearing enumerable shortcomings to be addressed yet. The stumbling 

block of obtaining exact solution using stress function is the inability of managing the physical 

conditions imposed on them, i.e., management of boundary conditions of practical problems. 

Boundary restraints specified in terms of the displacement components cannot be satisfactorily 

imposed on the stress function. Since most of the practical problems in elasticity are of mixed 

boundary conditions, the approach fails to provide any explicit understanding of the state of 

stresses at the critical regions of supports and loadings. Moreover, the famous Saint Venant’s 

principle is still applied and its merit is evaluated in solving problems of solid mechanics in 

which full boundary effects could not be taken into account satisfactorily in the process of 

solution [7-9]. For complex shapes of boundary, the difficulties of obtaining analytical 

solutions become formidable. These difficulties were partially avoided by renovating to 

experimental methods, such as extensometers, strain gauges or photoelastic methods. Using 

Photoelasticity, Hetengi investigated the stresses in the threads of a bolt and nut fastening. Even 

now, photoelastic studies are being carried out for classical problems like uniformly loaded 

beams on two supports mainly because the boundary effects could not be taken into account 

fully in the analytical method of solutions. 

 

The drawback of Airy’s stress function and the difficulties of experimental works led to works 

for finding ways to solve the engineering problems where boundary conditions are prescribed 

in terms of displacements. Thus the displacement formulation was introduced for those 
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problems where boundary restraints exist [10]. This process involves finding of two 

displacement functions simultaneously from the two second-order elliptic partial differential 

equations of equilibrium, which is extremely difficult and the problem becomes more serious 

when the boundary conditions are mixed.  The difficulties involved in trying to solve practical 

stress problems using the existing models have been pointed out by Durelli and 

Ranganayakamma [11]. The complications associated with the solution of beams, especially 

short/deep beams, were also brought to light by Rehfield and Murthy [12], Murty [13], Suzuki 

[14], and Hardy [15].  

 
Since neither the stress function nor the displacement formulation is suitable for solving 

problems of mixed-boundary conditions, a new mathematical model called displacement 

potential formulation is used to solve the elastic problems [16-20]. The current modelling 

approach based on displacement potential formulation reduces the two-dimensional problem to 

the solution of a single differential equation of equilibrium and also enables the mixed mode of 

the boundary conditions to be managed appropriately. It is worth mentioning that a number of 

researchers worked on the advancement of displacement potential approach to handle the 

structural analysis with different loading and supporting conditions. Ahmed et. al. have 

developed numerical solution of both ends fixed deep beams based on displacement potential 

formulation [16]. An investigation of stresses at the fixed end of deep cantilever beams has 

been carried out by Ahmed et. al.[17]. Akanda et. al. have carried out stress analysis of gear 

teeth using displacement potential function and finite differences [19]. The potential of the 

formulation has also been investigated by Ahmed et. al. [18] to design optimum shapes of tire-

treads for avoiding lateral slippage between tires and roads. Recently, Ahmed et. al. [18] have 

proposed a general mathematical formulation for the solution of mixed-boundary-value 

problems of anisotropic materials. Debnath et. al. have carried  out analytical solution of a deep 

stiffened cantilever beam of orthotropic composite material [21], and stiffened composite struts 

subjected to eccentric loading [22]. Further, Rahman et. al. have analyzed the stress analysis of 

cracked stiffened panels under flexural and axial loading [23] 

 

Exact analytical solutions to the elastic field of structural components of composite materials, 

especially with stiffened beam are hardly available in the literature. This is mainly because of  
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the lack of suitable mathematical formulations that can model of the problem appropriately, and 

thus the solutions of such problems are usually investigated through numerical methods [24-

27]. On the other hand, the investigation of the effect of fibre orientation on the mechanical 

behaviour of structural components has now become a key subject in the field of fibre 

reinforced composite structures, and the corresponding reporting in the literature is quite 

extensive, some of which are cited as examples in Reference [28-31]. For practical cases, these 

investigations are also usually found to carry out by numerical approaches, as the exact 

analytical methods are limited to very ideal cases. Recently, some experimental investigations 

of the same are also being carried out mainly to validate the numerical approaches [32].  

However, a reliable and accurate investigation of the effect of fibre orientation on the critical 

stresses, especially in a stiffened simply supported beam of fibre-reinforced composites has not 

been yet conducted. 

 

1.3 Stiffened Structures 

Stiffeners are secondary plates or sections which are attached to beam boundaries or webs or 

flanges to stiffen them against deformations. There are two principal types of stiffener:  

 Longitudinal web stiffeners, which are aligned in the span direction  

 Transverse stiffeners, which are aligned normal to the span direction.  

 

 

 

 

 

 

 

 

   Fig. 1.1: Stiffeners on box griders 

 

Longitudinal 
stiffeners 

Transverse 
stiffeners 
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Almost all main bridge beams have stiffeners.  However, most only have transverse web 

stiffeners, i.e., vertical stiffeners attached to the web. Thick beams sometimes have longitudinal 

web stiffeners. Stiffeners are extensively used in marine, aerodynamic and automobile 

structures. Some of the applications of stiffened structures are shown in Fig. 1.2: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2: Stiffeners used in small ship and air-craft body 

 

In the present research, the proposed stiffening conditions which are used in beam boundaries: 

(a) Axial stiffening condition: Prevent axial deflection of the lateral ends, which are however 

free to assume any deflection along the lateral direction of the beam. 

(b) Lateral stiffening condition: Prevent deflection along the lateral directions of the ends, but 

they are free to assume any deflection along the axial direction of the beam.  

 

 

 

 

Stiffeners 

(a) Ship body (b) Air-craft body 
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1.4 Fiber-reinforced composite 

 
Composite materials are materials made from two or more constituent materials with 

significantly different physical or chemical properties, that when combined, produce a material 

with characteristics different from the individual components. The individual components 

remain separate and distinct within the finished structure. The new material may be preferred 

for many reasons: common examples include materials which are stronger, lighter or less 

expensive when compared to traditional materials. 

 

Composite materials are generally used for buildings, bridges and structures such as boat hulls, 

swimming pool panels, race car bodies, shower stalls, bathtubs, storage tanks, imitation granite 

and cultured marble sinks and counter tops. The most advanced examples perform routinely on 

spacecraft in demanding environments. 

 

Typical engineered composite materials include: 

 Composite building materials such as cements, concrete 

 Reinforced plastics such as fiber-reinforced polymer 

 Metal Composites 

 Ceramic Composites (composite ceramic and metal matrices) 

 

Among these composite materials, fiber-reinforced composites are made up of individual 

materials referred to as constituent materials. There are two main categories of constituent 

materials: matrix and reinforcement. At least one portion of each type is required. The matrix 

material surrounds and supports the reinforcement materials by maintaining their relative 

positions. The reinforcements impart their special mechanical and physical properties to 

enhance the matrix properties. A synergism produces material properties unavailable from the 

individual constituent materials, while the wide variety of matrix and strengthening materials 

allows the designer of the product or structure to choose an optimum combination. 

 

Fiber-reinforced composite materials have gained popularity (despite their generally high cost)  
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in high-performance products that need to be lightweight, yet strong enough to take harsh 

loading conditions such as aerospace components (tails, wings, fuselages, propellers), boat and 

scull hulls, bicycle frames, swimming pool panels and racing car bodies. Other uses include 

fishing rods, storage tanks, swimming pool panels, and baseball bats. 

 

1.5 Analysis of Thick Beams 
 

A beam may be considered as one of the most commonly used structural elements in 

engineering applications. A beam is said to be a thick beam when the thickness (depth) is 

comparable to its span.  In the field of civil engineering application, the beams are known as 

deep beams while the same in the area of mechanical engineering is termed as thick or short 

beam. In this research, in an attempt to analyze the thick beam, the aspect ratio, that is, span to 

depth ratio (L/D) is considered from 1 to 10. 

 

Design of thick beams based on classical Euler bending theory can be seriously erroneous, 

since the simple theory of flexure takes no account of the effect of normal pressures on the top 

and bottom edges of the beam caused by the loads and reactions [4]. The effect of normal 

pressures on the stress distribution in thick beams is such that the distribution of bending 

stresses on vertical sections is not linear and the distribution of shear stresses is not parabolic. 

Consequently, a plane transverse section does not remain plane after bending, and the neutral 

axis does not lie at the mid-depth, which eventually causes the basis of classical theory to be 

violated. In an attempt to make up the limitation, different theories as well as methods of 

solution have been reported in the literature [3-5, 13-14].  

 

The use of standard structures, like beams, columns, etc. with stiffeners on part or full of their 

bounding surfaces is receiving increased importance in order to satisfy precise and strict design 

criteria in many of the engineering applications. Stiffened boundaries usually help in reducing 

the level of deformation in the structural elements, which eventually resist the change of the 

original shape of the bounding surfaces under loading. But structures with stiffened boundaries 

usually remain away from the scope of analytical solutions, because the physical conditions of 
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stiffened boundaries need to be mathematically modelled in terms of a mixed mode of 

boundary conditions.  

 

Again the use of fibre-reinforced composites is found to increase extensively in almost all the 

areas of structural applications, mainly because of their specific characteristics of light-weight 

and high-strength. As a result, the analysis of composite structures has now become a key 

subject in the field of solid mechanics. These analyses are mainly handled by approximate 

numerical techniques [33-34], as, in most cases, the available mathematical models are found to 

be inadequate to provide exact analytical solutions to them.   

 

Since the exact analytical solution of mixed-boundary-value elastic problems, especially with 

fibre reinforced composite materials is beyond the scope of existing mathematical models of 

elasticity, the use of a new mathematical formulation will be investigated to analyze the elastic 

behaviour of a stiffened thick beam of fibre reinforced composites under different loading and 

support arrangements. It would be worth mentioning that, as far as the reporting in the literature 

is concerned, the author has not come across any reliable study of the present problem, either 

theoretical or experimental. Therefore, the analytical solution for a stiffened thick beam of 

orthotropic as well as isotropic composite materials has been chosen as the subject of the 

present thesis. 

 

1.6 Objectives 
 
The present study is an attempt to extend the capability of the displacement potential 

formulation in order to address the structural analysis of orthotropic composites materials 

having mixed boundary conditions. The main objectives of the present research work are 

summarized as follows: 

a. Development of a suitable mathematical scheme for the analysis of thick, simply-supported 

composite beams with stiffened lateral ends   
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b. Determination of the elastic field of a stiffened isotropic beam using the analytical scheme 

developed 

c. Investigation the effect of stiffeners at the lateral ends of a stiffened thick simply-supported 

fibre reinforced composite beam. 

d. Investigation of the effect of fibre orientation on the state of deformation as well as stresses 

in the stiffened composite beam 

e. Establishment of credibility of the analytical scheme for the analysis of stiffened beams by 

comparing the results with those of standard computational technique. 

 

Results of the present analysis are expected to provide a reliable design guide for thick 

composite beams of the present kind, which will be of significant help for their improved and 

economic design. More importantly, the present analytical solution will remain as a standard 

guide for checking reliability and accuracy of approximate solutions of the problem. The study 

would be particularly important for machine parts under bending, supported on two supports 

which are placed/inserted in a position that allows no axial deformation of the structural 

member. 

 

1.7 Study Procedure 
 
In the present study, the elastic behaviour of stiffened thick beams of composite materials are 

investigated through an analytical procedure based on displacement potential formulation, 

which is suitable for mixed-boundary-value elastic problems of composite materials. In the 

displacement potential boundary modelling approach, the plane elastic problem is formulated in 

terms of a single function of space variables, called as displacement potential function which is 

defined in terms of displacement components of plane elasticity, which has to satisfy a single 

fourth-order partial differential equation of equilibrium. The relevant displacement and stress 

components are derived into infinite series using Fourier integral with coincided boundary 

conditions along with the physical boundary conditions. The beam is assumed to be simply 

supported on two supports at the bottom, and the two opposing lateral edges are stiffened for 

which any change in the axial displacement for axial stiffener and any change in the lateral  
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displacement for lateral stiffener are restrained. First isotropic material is taken into 

consideration for the beam material and the respective material chosen is steel. And finally 

fiber-reinforced orthotropic composite material is considered by taking glass/epoxy material 

into consideration. The fibres of the orthotropic composite materials are assumed to be situated 

along the beam length (fiber orientation, 00) and along the beam depth (fiber orientation, 900). 

The numerical solution of the composite beam is also obtained by using finite element method 

and finite difference solution with the help of standard commercial softwares which are used to 

validate the accuracy of the present potential function solutions. 

 

1.6 Significance of Present Study 
 

The present study has the significant importance in regard to academic interest, design 

reference and manufacturing engineering. The study presents the application of a new concept, 

i.e., displacement potential approach for the analysis of stress and displacement in structures for 

isotropic as well as orthotropic materials under mixed mode of boundary conditions. It is 

expected to provide some additional aspects to the theory of elasticity, which in turn may 

encourage academicians and researchers to explore the concept further and eliminate the lack of 

suitable method for dealing with mixed boundary value problems of complex geometries.  In 

this study a number of problems of stiffened structures are solved by using the present 

analytical methods and results are presented in the form of graphs. The results may be used as a 

database and may be helpful to the designers working in the industries of aerospace, 

shipbuilding and automobile, where numerous composite structures are used. The present study 

of stiffened beam analysis would be very pertinent for those machine parts where expansion in 

one dimension is restricted.  
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CHAPTER 2 

            

THEORETICAL OUTLINE AND FORMULATION 
 

2.1   Preamble 
 
The theory of elasticity sets forth the solution of problem in determining internal forces in a 

solid elastic body. The internal forces represent interaction between molecules; they insure the 

external forces applied to body. Under the action of external forces the body deforms, the 

mutual position of molecules changes and so do the distance between them. The action of 

external forces that produce deformation gives rise to additional internal forces causing the 

stress of the body.  

 

Thus structural analysis necessitates the requirements to investigate the state of stresses, strains 

and displacements at any point due to given body forces and given conditions at the boundary 

of the body. Most of the cases the requirement is to find the stress distribution in an elastic 

body. In some cases, it is also required to find the strain distribution of the body. The state of 

stress, strains and displacement are termed as the elastic field. A complete description of the 

elastic fields requires specification of forces acting on the elementary body and its surface 

orientation.  

 

2.2   Equilibrium and Compatibility Conditions 
 

Let us take an infinitesimal cubic element from an elastic body with sides parallel to the 

coordinate axes. To ensure the equilibrium of the element, six forces will act on the six 

different faces of the element. The forces acting on each face may be resolved into two types 

i.e. one perpendicular to the plane of the face and the other parallel to the face. The stress 

component acting perpendicular to the face is the normal stress and the two stress components 

acting parallel of the face are the shearing stress as illustrated in Fig. 2.1.  
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Fig. 2.1 Elementary cubic body 

 

In order to provide complete information of an elastic field, it is necessary to determine nine 

stress components ( xzzyyzyxxyzzyyxx  ,,,,,,, and zx ) and six strain components 

( yzxrzzyyxx  ,,,, and zx ). Instead of strain components, sometimes the displacement 

components ( yx uu ,  and zu ) are determined. It is worthy to mention that the components of 

strain and displacement can be determined from each other and each set provide the similar 

information. Therefore, either the components of strain or displacement are sufficient for a 

particular purpose.  

 
According to general conventions, the normal stress is taken positive when producing tension 

and negative when producing compression. On any side the direction of the positive shearing  
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stress coincides with the positive direction of the axis if the outward normal of this side has the 

positive direction of the corresponding axis. If the outward normal has a direction opposite to 

positive axis the positive shearing stress will also have the opposite direction of the 

corresponding axis. The first subscript of the symbol indicates the direction of the normal of the 

plane on which the stress acting and the second subscript indicates the direction of stress. By a 

simple consideration of the equilibrium of the element shown in Fig. 2.1, it can be shown that 

xzzxyxxy     ,  and zyyz    Thus, the nine components of stress are reduced to six 

yzxyzzyyxx    ,  ,  ,  ,  and zx  [1-2]. 

 
From the consideration of an infinitesimal cubic element surrounding a given point in a body, it 

is found that the static equilibrium of forces requires at this point is to satisfy the followings 

equations: 

 

0











x
xzxyxx F

zyx
  

 

0













y

yzxyyy F
zxy


          (2.1) 

 

0












z
zxyzzz F

xyz
  

 

These equations are known as the equations of equilibrium, where Fx, Fy and Fz are the 

components of the body force per unit volume in x, y and z directions respectively [2].  

 

The six stress components satisfy the above mentioned three equations of equilibrium, but it is 

not practicable to obtain six stress components solving three equations. As such consideration 

of more relations is the option to have equity in number of variables as well as equations. In 

this regard, following six relations are defining the three strain components in terms of the three 

displacement components through partial differentiation [2].  
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In addition, the six stress-strain relations are also there. Thus one can have altogether 15 

unknowns and 15 equations. This system of equations is generally sufficient for the solution of 

an elasticity problem.  

 

By differentiation and simple manipulation of Eq. (2.2), the following set of differential 

equations can be obtained.  
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
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
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These differential relations are called the conditions of compatibility. The solution of an 

elasticity problem must satisfy the equilibrium i.e. Eq. (2.1) and the compatibility conditions 

i.e. Eq. (2.3) along with the boundary conditions. 

 

2.3   Hooke’s Law 
 

In the simplest approximation the relation between stress and strain is taken to be linear and 

called Hooke’s law named after the 17th century British physicist Robert Hooke. The most 

general form of linear stress-strain relationship for anisotropic material is given by the 

following expression [38]. 

 



16 
 





















































































































zy

xz

yx

xy

zx

yz

zz

yy

xx

zy

xz

yx

xy

zx

yz

zz

yy

xx

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc





























999897969594939291

898887868584838281

797877767574737271

696867666564636261

595857565554535251

494847464544434241

393837363534333231

292827262524232221

191817161514131211

    (2.4) 

 
 
Where the 81 coefficients 11c ,………, 99c  are called elastic coefficients or stiffness. For the 

equilibrium condition it is found that jiij    jiij   . As such xzzxyxxy     , , 

zyyz   , zzzxyxxy     ,  and zyyz   .  

 
Therefore, the stress–strain relation becomes as follows 
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From the consideration of strain energy density, it can be shown that jiij cc   

Therefore,  

,,, 411431132112 cccccc   61165115 , cccc   
,,, 522542243223 cccccc   43346226 , cccc   

65566446544563365335 ,,,, cccccccccc   
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Thus, the 36 coefficients of the stiffness matrix in Eq. (2.5) come down to 21 and the stiffness 

matrix turns to a symmetric matrix as follows. 

 

 
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Materials having symmetry with respect to one plane is referred to as monoclinic materials. For 

such case of material, transformation of axis can be done and found that  

05644353425241514  cccccccc  and then the number of elastic 

coefficient becomes 13 only.  

 

Thus, the stiffness matrix of Eq. (2.6) further reduces to  
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Again an orthotropic material has at least two orthogonal planes of symmetry, where material 

properties are independent of direction within each plane. Normally the reference system of 

coordinates is selected along the principal planes of material symmetry. Examples of an 

orthogonal material include a single lamina of continuous fibre composite arranged in a 

rectangular array, a wooden bar and rolled steel. For such case 045362616  cccc  and 
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then this type of materials require 9 independent variables as elastic constants in their stiffness 

matrix as follows. 
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The reciprocal relations are given by 
 

zyxji
EE j

ji

i

ij ,,,; 


   

 
Most metallic alloys and thermoset polymers are considered isotropic material, where by 

definition the mechanical properties are independent of direction. In this case there are infinite 

planes of symmetry. Such materials have only two independent variables i.e. elastic constants 

in their stiffness matrix as   
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These constants are given by  
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The summarised form of independent elastic constants for general anisotropic, anisotropic with 

symmetric stress and strain components or with energy consideration, orthotropic and isotropic 

materials can be thus presented in Table 2.1 as follows. 

 

Table 2.1 Number of elastic constants 

 
Serial Material Condition No. of constant 

1 Anisotropic General form 81 

2 Anisotropic Equilibrium condition 36 

3 Anisotropic Stain energy consideration 21 

4 Monoclinic Symmetric to a plane 13 

5 Orthotropic Having mutually perpendicular 
planes of symmetry 
 

09 

6 Isotropic Same elastic properties in all 
directions (having infinite 
perpendicular planes of symmetry) 

02 
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2.4  Two-Dimensionalization of the Problem 
 
Although the elastic analysis in general form is of three dimensional, orthotropic and isotropic 

materials can be analyzed using two dimensions on the consideration of symmetry of planes. 

For such simplification there are two options, i.e., (i) plane stress condition and (ii) plane strain 

condition.  

 
Plane stress condition is considered to be a state of stress in which the normal stress σzz and the 

shear stresses σxz  and σyz directed perpendicular to the plane are assumed to be zero (but not the 

strain). Generally, members that are thin (those with a small z dimension compared to the in-

plane x and y dimensions) and whose loads act only in the x-y plane can be considered to be 

under plane stress. Thus, a state of plane stress exists in a thin object loaded in the plane of its 

largest dimensions. The non-zero stresses σxx, σyy, and σxy lie in the x-y plane and do not vary in 

the z direction. A thin beam loaded in its plane and a spur gear tooth are good examples of 

plane stress problems.  

 
On the other hand plane strain is said to be a state of strain in which the strain normal to the x-y 

plane εzz and the shear strains γxz and γyz are assumed to be zero. The assumptions of the plane 

strain are realistic for long bodies (saying in the z direction) with constant cross-sectional area 

subjected to loads that act only in the x and/or y directions and do not vary in the z direction. 

 
The option (i), i.e., the plane stress condition has been followed in the present study. Thus 

0  ;0  ;0  yzzxzz                     (2.10)
  
 
At this condition, the equilibrium Eq. (2.1) having no body forces reduces to  
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The stresses for a two dimensional element at plane stress condition are shown in Fig. 2.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2.2 Stress components on a plane 
 
 

The two equilibrium Eqs. (2.11) contain three unknown stress components. Thus, one more 

equation is required to obtain an exclusive solution of three unknowns. The third equation is the 

mathematical formulation of the condition for compatibility, which can be obtained from the 

strain displacement relations. For two dimensional cases, these relations are: 
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Differentiating the first Eq. of (2.12) twice with respective to y, the second twice with respect 

to x and the third once with respect to x and once with respect to y, the expression for condition 

of compatibility in term of strain then becomes as follows: 
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But there would have been the necessity of one more equation in terms of stresses; which can 

be obtained using stiffness matrix in Eq. (2.13). For orthotropic material, while the stiffness 

matrix is given by Eq. (2.8), the stress-strain relations in the case of plane stress can be reduced 

to: 
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It can be noted that the symbols of elastic constants (c) are replaced conveniently by the 

symbols K’s for the case of plane stress condition so that they can be identified easily, where  
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From the elastic constant K12 of Eq. (2.15) the reciprocal relations can be reduced as:  
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Using Eqs. (2.13), (2.14), (2.15) and (2.16), the differential equation for compatibility condition 

in terms of stresses can be as follows: 
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Now Eq. (2.11) and (2.17) are to be solved to obtain elastic fields satisfying the boundary 

conditions.  
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2.5 Usual Method for Solution 

 
As per existing mathematical methods, the analytical solution of three simultaneous partial 

differential equations given by Eq. (2.11) and (2.17) is fairly impossible. However, these 

equations may be solved numerically. The numerical solution procedure is even complicated 

and cumbersome for this type of equations. Moreover, it gives only approximate results. As 

such it continues to remain a challenging job for the researchers to obtain the solution of elastic 

fields analytically for a composite structural element under mixed mode boundary conditions 

using traditional formulation. In this study, attention is paid to the theoretical enhancement of 

suitable and reliable formulation for the solution for elastic fields of orthotropic as well as 

isotropic composite beams under mixed mode of boundary conditions. The principal viewpoint 

in this regard is summarized in subsequent paragraphs.    

 

There are mathematical concepts on the reduction in number of unknowns by assuming 

intermediate functions, which in turn reduces the number of equations for solution. It is noticed 

that the number of partial differential equations (Eq. 2.11 and 2.17) and the unknown terms can 

be reduced to two when the stress components of these equations are replaced by displacement 

components. Using Eqs. (2.12), (2.14) and (2.15) it is possible to get three expressions for three 

stresses in terms of two displacement components as follows: 
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Substituting Eq. (2.16) and (2.18) in to equilibrium Eqs. (2.11) the following two elliptical 

partial differential equations are obtained.  

 



24 
 

02

22

22

2

2

2






































 y
u

G
yx

u
G

EE
EE

x
u

EE
E x

xy
y

xy
yxyx

yxxyx

yxyx

x






                       (2.19a) 

           

02

22

22

2

2 





































 x
u

G
yx

u
G

EE
EE

y
u

EE
EE y

xy
x

xy
yxyx

yxxyy

yxyx

yx






                       (2.19b) 

 
 
2.6 Stress Function Approach 

 
It may be noted that, in the analytical approach, stress function is being used for long time, 

since it was introduced by George Biddell Airy, a British astrologer and mathematician, in 

1862. Airy’s stress function Φ(x,y) is defined in terms of stresses as a function of x and y for 

which following conditions are met [1-2]: 
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Stress function satisfies the equilibrium equations and compatibility conditions. After applying 

the above relations of stresses in terms of Φ(x,y) in Eq. (2.17) following expression is obtained. 
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This expression is the bi-harmonic partial differential equation for Airy’s stress function. Now 

Eq. (2.21) is to be solved satisfying the boundary conditions to obtain stress components using 

Eq. (2.20) and then  Hooke’s law as well as strain displacement relations are used to obtain the 

displacement components. 
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For orthotropic case [Fig. 2.3] the young’s moduli Ex and Ey may be replaced by E1 and E2 

where they are used to denote the Young’s modulus in the fibre direction and in perpendicular 

to the fibre direction respectively. Further G 
xy is replaced by G12 to denote the shear modulus 

for on-axis orientation.   

 

 
 

Fig. 2.3 Stress components on a composite plane  
 
 

In such case, the bi-harmonic governing differential equation for orthotropic composites, on the 

basis of stress function Φ(x,y), i.e., Eq. (2.21) becomes:   
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For an isotropic elastic materials under the condition of plane stress Ex= Ey = E,   yxxy  

and  
12
EGGxy  .  Substituting these relations in Eq. (2.21) the mathematical model for 

the isotropic condition is found as: 
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only. Thus attention is obviously necessary towards the solution of the two elliptical partial 

differential equations for those problems where the boundary restrains are to be satisfied. Again 

it is not even easy task to obtain the values of displacement components by the solution of Eqs. 

(2.19). Consequently, further simplification of the solution method is the necessity. 

 

2.7 Displacement Potential Formulation  

 
Considering the difficulty of solving Eqs. (2.19), a single function  yx,  is taken into 

consideration [30-33], which has to satisfy a single partial differential equation of equilibrium, 

somewhat similar in concept to that of Eq. (2.21). It is named as displacement potential 

function and defined as a function  yx ,  of space variables x and y, where the displacement 

components are expressed as follows: 

 

2

2

3

2

22

2

1 yyxx
ux 












                            (2.24a) 

 

2

2

6

2

52

2

4 yyxx
u y 




















                            (2.24b) 

 
 
Here, s'  are unknown material constants. 
 
Using the expressions of Eq. (2.24) in Eq. (2.19a) for fibre orientation θ=00 following equation 

is obtained.   
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The material constants α’s are chosen in such a way that the Eq. (2.25) is automatically 

satisfied under all circumstances. This will happen when all of its coefficients are 

independently zero. In that situation, 
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Again from the Eq. of (2.19b) and Eq. (2.24) it is found that 
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Now using Eq. (2.26) and (2.27) it is found that 
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The above fourth order partial differential Eq. (2.28) is the single governing equation for the 

solution of the displacement potential function . Once the displacement potential function   

is known, the components of displacement can be readily found from Eq. (2.24). Thereafter, 

using the stress displacement relations of Eq. (2.18) can be used for obtaining stress 

components.  

 

Assuming the value of 2 is unity, and taking the values of 1, 3, 4, 5 and 6 from Eq. (2.26), 

one can obtain the components of displacement and stress using Eqs. (2.24) and (2.18) 

respectively as follows: 
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Now using the expressions of Eq. (2.24) in Eq. (2.19c) for fibre orientation θ=900 following 

equation is obtained. 
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The material constants α’s are chosen in such a way that the Eq. (2.30) is automatically 

satisfied under all circumstances. This will happen when all of its coefficients are 

independently zero. In that situation, 
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Therefore,  
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Again from the third Eq. of (2.19) and Eq. (2.24) it is found that 
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Now using Eq. (2.32) and (2.31) it is found that 
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The above fourth order partial differential Eq. (2.33) is single governing equation for the 

solution of the displacement potential function . Once the displacement potential function   

is known, the components of displacement can be readily found from Eq. (2.24). Thereafter, 

using the stress displacement relations of Eq. (2.18) can be used for obtaining stress 

components.  

 

Assuming the value of 2 is unity, and taking the values of 1, 3, 4, 5 and 6 from Eq. (2.31), 

one can obtain the components of displacement and stress using Eq. (2.24) and (2.18) 

respectively as follows: 
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2.7.1   Displacement potential formulation for orthotropic materials 

 

Case-A: θ=00 (Fibres are perpendicular to the direction of loading) 

 

 

 

 

 

 

 

 

 

                   Fig. 2.4 Fibres are perpendicular to the direction of loading 
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For orthotropic materials with fibre orientation θ=00 (Fig. 2.4) the young’s moduli Ex and Ey 

may be replaced by E1 and E2 where they are used to denote the Young’s modulus in fibre 

direction and in perpendicular to fiber direction respectively. Further G 
xy is replaced by G12 to 

denote the shear modulus for on-axis orientation.   

 

Now for fibre orientation θ=00, the governing differential equation for the solution of two 

dimensional orthotropic composite structures becomes:   
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Then the components of displacement and stress are: 
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Case-B: θ=900 (Fibres are parallel to the direction of loading) 

 

 

 

 

 

 

 

 

 Fig. 2.5 Fibres are parallel to the direction of loading 

 

For orthotropic materials with fibre orientation θ=900 (Fig. 2.5), the young’s moduli Ex and Ey 

would be replaced by E2 and E1. Further Gxy is replaced by G12 to denote the shear modulus for 

on-axis orientation.   

 

In such case the governing differential equation for the solution of two dimensional orthotropic 

composite structures becomes:   
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Then the components of displacement and stress are: 
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2.7.2   Displacement Potential Formulation for isotropic materials 

 

For an isotropic elastic solid under the condition of plane stress Ex= Ey = E,   yxxy  and 
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Then the stress-displacement relations for the plane stress problems are obtained from the 

Hook’s law as follows:   
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When the displacement components in Eq. (2.19) are replaced by Eq. (2.24) having values of  

as in Eq. (2.37), the single governing equation of equilibrium in partial differential form being 

satisfied by (x, y) is found for isotropic materials as follows: 
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Combining Eqs. (2.18), (2.38) and (2.39), the expressions of displacement and stress 

components in terms of function (x, y) are obtained as follows: 
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2.8 Consideration of Boundary Conditions 
 

The equilibrium Eq. (2.1) has to be satisfied at all points throughout the volume of the solid 

elastic body. The components of stress may vary over the volume of the body, and at the 

surface the stresses must be such as to be in equilibrium with external forces acting on the 

boundary of the body. As such the external forces would have a contribution over the internal 

stress distribution.  
 
In practical situation, along the edge or boundary of a structure, there are two things to be 

known, i.e. (i) displacements and (ii) loading or stress. Both the displacements and stresses are 

identified by their respective components as follows: 

 

a. Normal displacement  

b. Tangential displacement  

c.   Normal stress  

d.  Tangential stress  
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The solution of the governing equation requires specific normal and tangential conditions. At 

any point on the boundary, any 2 components out of 4 are known at a time. Thus there are 6 

types of following boundary conditions: 
 

i.    Normal displacement  + Tangential displacement  

ii.   Normal displacement  + Normal stress  

iii.  Normal displacement  + Tangential stress  

iv.  Tangential displacement  + Normal stress  

v.   Tangential displacement  + Tangential stress  

vi.  Normal stress  + Tangential stress  

 

While both the components are purely normal or purely tangential, the boundary conditions do 

not practically exist. As such boundary conditions of (ii) and (v) are no longer required to be 

considered and the remaining four boundary conditions would be considered for solving the 

physical problems of elastic body. If the shape of the boundary surface is rectangular, the 

structure may be oriented so that its edges are parallel to the co-ordinate axes. In that case, the 

normal and the tangential components of displacement and stress at the boundary are the 

corresponding coordinate components inside the structure. Out of the above mentioned four 

possible boundaries, only the number (vi) is suitable for Airy's stress function; whereas all four 

boundary conditions can be dealt with using displacement potential function, ψ.   

 

2.9   Solution Procedure Using Displacement Potential Approach  
 

The concept of structural analysis consists of four essential matters, like any engineering 

system, such as, proper understanding of physical phenomena, derivation of governing 

equation, proper application of boundary conditions, and development of routines for the 

solution and finally the interpretation of solutions. Thus the solution procedure is the uniting of 

physics and mathematics with a view to potential usefulness in practical problems. 

 

The equilibrium problem is essentially one of describing the steady-state configuration of the 

physical system. This can usually be achieved by specifying the magnitudes of state variables  
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like stresses, displacements, pressures, etc. at a finite number of points. In this thesis work, 

boundary-value problems are dealt with having equilibrium state of affairs. With this pretext a 

very powerful method of solving boundary-value problems is the so-called trial function or trial 

solution method.  

 

Attempt is made here to solve the fourth order homogeneous partial differential equations, i.e., 

Eqs. (2.35) and (2.37) for orthotropic, Eq. (2.41) for isotropic materials through utilization of 

different trial functions for (x, y). Since the Airy’s stress function of similar pattern has been 

solved using polynomials for quite long time, similar type of functions are considered here at 

first as trial solutions. It is observed that pure polynomials do not actually help much in this 

regard. Rather it is seen that various combinations of trigonometric and hyperbolic functions 

offer suitable choices for analytical functions. If these functions can be expressed as an infinite 

series, then construction of solutions of differential equations becomes more accurate. In the 

light of the ubiquitous problems which display aspects of periodic and a discontinuous nature, 

those infinite series known as Fourier series attain a place of special importance. 

 

The Fourier series is probably the most commonly used of all the series for the solution of 

physical problems. It is a trigonometric series which can be used for the expansion of an 

arbitrary function. The usefulness of the Fourier series is due to the fact that certain functions 

which cannot be expanded in power series form can still be represented by Fourier series. The 

reason for this is that the coefficients of the power series contain derivatives of the function; 

hence these derivatives must exist uniquely in order to obtain the power series expansion. 

Many functions which are not differentiable, including certain types of discontinues function, 

can be expanded in Fourier series. Thus a much greater degree of generality is attained by 

taking the function as Fourier series. 

 

Taking all this in mind trial and error operations are done to reach to the possible best 

displacement potential function to be assumed. In this assumption process, boundary conditions 

of the two ends should be satisfied automatically. Then the solution can be progressed further 

to make the boundary conditions of remaining two ends of the beam satisfied. 
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CHAPTER 3 

           

ANALYSIS OF THE STIFFENED BEAM   
 
The main focus of this chapter is to find the stress and displacement fields of a boundary value 

problems of elasticity using displacement potential function approach. In this chapter, a 

stiffened simply supported thick beam of isotropic material is considered for the analysis. The 

beam is stiffened at its opposing lateral ends by using two different kinds of stiffeners, i.e., 

axial stiffeners and lateral stiffeners. The beam is loaded transversely at a certain portion on the 

upper surface of the beam and roller supports are used for certain portions of the lower surface 

of the beam. The effect of beam aspect ratio on the stress field is also discussed in this chapter. 

 
3.1   Problem Description 
 

A simply supported thick beam of rectangular cross section subjected to a distributed load is 

considered. The generalised form of such a beam is shown in Fig. 3.1[(a) and (b)]. Since the 

two opposing lateral ends of this beam are stiffened by some means, it can be considered as 

stiffened simply supported beam. The support at the bottom surface is inserted over a certain 

portion of beam length. Beam length, depth and width are denoted by L, D and W, respectively. 

As a particular enunciation for the development of analytical solution, the load acting over the 

top surface is considered as uniformly distributed with a magnitude of σo acting over 80% of the 

length. The support of the beam is also considered as uniformly distributed and the effective 

length for each support is assumed to be 10% of the beam span. The plane stress is assumed 

here taking unit thickness of the beam. Two different types of stiffeners are considered for the 

two opposing lateral ends of the beam, which are axial stiffener (Case-1) and lateral stiffener 

(Case-2).The axial stiffeners prevent axial deflection of the lateral ends which are however free 

to assume any deflection along the lateral direction. On the other hand, lateral stiffeners prevent 

deflection along the lateral directions of the ends, but they are free to assume any deflection 

along the axial direction.  
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3.2 Boundary Conditions 

 
The physical conditions of the present problem with reference to Fig. 3.1 are to be satisfied 

along the all four boundaries of the beam. The boundary conditions are considered for the 

present stiffened composite beam problem can be expressed mathematically as follows:  

 

(a) Loaded boundary, EH:  

The loading of the top boundary is modelled by assigning a uniform value to the normal 

stress component, which is free from any shearing stress. The mathematical expressions of 

the boundary are  

  0,  Dxyy   [ 9.0/1.0  Lx ] 

  0, Dxxy       [ 0.1/0.0  Lx ]  

 

(b) Supporting surface, FG:   

The roller supported regions of the bottom surface are modelled by a uniform compressive 

normal loading and free from shearing stress. At the supports, the total reaction forces 

should be equal and opposite to the applied loading on the top surface. The reactions are 

distributed over 20% of the beam span (x/L= 0.0-0.1 and 0.9-1.0).The remaining section of 

the bottom surface are assumed to be free from loading. Therefore,  

Supporting region :   00, xxy      [ 0.1/0.0  Lx ]  

                                   040,  xyy  [ 1.0/0.0  Lx  & 0.1/9.0  Lx ] 

Free region :   00, xxy       [ 0.1/0.0  Lx ] 

     00, xyy      [ 9.0/1.0  Lx ] 

 

(c) Left lateral end, EF: 

i. For axial stiffener: The physical condition of the axial stiffener is modelled here by 

considering no axial displacement and shearing stress. Thus,  

  0,0 yux   

  0,0 yxy    [ 0.1/0.0  Dy ] 
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ii. For lateral stiffener: The physical condition of the lateral stiffener is modelled here 

by considering the boundary free from lateral displacement and axial normal stress. 

Thus,  

  0,0 yuy   

  0,0 yxx    [ 0.1/0.0  Dy ] 

 

(d) Right lateral end, GH: 

i. For axial stiffener: The mathematical expressions of this boundary are 

  0, yLux   

  0, yLxy    [ 0.1/0.0  Dy ] 

ii. For lateral stiffener: The mathematical expressions of this boundary are 

  0, yLuy  

  0, yLxx    [ 0.1/0.0  Dy ] 

 

3.3   Analytical Solution 
 

The governing differential equation for the plane beam problem of isotropic materials in terms 

of the displacement potential function ψ(x, y as follows [Eq. (2.34)]:  
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The expressions of displacement and stress components in terms of function (x, y) are also 

obtained from Eqs. (2.35) as follows: 
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3.3.1 Beam with axial stiffeners (Case-1) 

First, a trial function is assumed for the displacement potential in such a way that the boundary 

conditions at the two stiffened edges are satisfied instantly. The trial function is assumed in 

terms of cosine function so that its first and third derivatives with respect to x  are obtained in 

terms of sine function. By this way the requirements of physical conditions of the two opposing 

stiffened ends are automatically satisfied, i.e., boundary conditions of c(i) and d(i). Considering 

all these factors the expression for  may be approximated as follows 
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where, )(yfYm  , )/( Lm  ,  K is an arbitrary constant and m = 1, 2, 3, ……...  

 

Derivatives of Eq. (3.3) with respect to x  and y  are 
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Substituting the expressions of above derivatives in Eq. (3.1) following equation is obtained. 
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The general solution of the above 4th order ordinary differential equation with constant 

coefficients [Eq. (3.4)] can be approximated as follows:  
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yr
m
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m

yr
m

yr
mm yeDeCyeBeAY 4321            (3.5) 

But the ordinary differential Eq. (3.4) has the complementary function of repeated roots. Thus  
 21 rr  and  43 rr   and the general solution of Eq. (3.4) can be written as   
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y
mmm eyDCeyBAY                   (3.6) 

where mA , mB , mC  and mD  are arbitrary constants. 

 

Differentiating Eq. (3.6) following expressions are found 
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Now substituting the derivatives of  and mY  in the expressions for displacement (3.2) and 

stresses (3.3), following expressions are found. 
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Now, the reactions on the bottom boundary (y = 0) are acting over the two supports. It is 

considered that the supports are located at x=0 to 0.1L and x=0.9L to L respectively. The total 

length for reaction is 20 percent of beam length, where the load is over the 80 percent. As a 

result the intensity of reaction is four times of the load intensity. Therefore, the reactions over 

the beam at the supports can be taken as Fourier series in the following manner: 
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The compressive load on the edge Dy   acting over x = 0.1L to 0.9L can also be given by a 

Fourier series as follows 
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The loading considerations of Eqs. (3.8) and (3.9a) are to satisfy the boundary conditions at the 

bottom and top boundaries of the beam. Using boundary condition    00, xxy  at the edge of 

0y , it is found that  
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Using boundary condition    0, Dxxy  at the edge of Dy   
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Using boundary condition   040,  xyy  at the edge of 0y  
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Therefore, 
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Using boundary condition   0,  Dxyy  at the edge of Dy   
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Therefore, 
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and using Eq. (3.9a) and Eq. (3.13a) the arbitrary constant K can be obtained as follows: 
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The simultaneous Eqs. (3.12a), (3.12b), (3.13b) and (3.14b) can be realized in a simplified 

matrix form for the solution of unknown coefficients like mA , mB , mC  and mD  as follows: 
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Where 
 

  1111 ZDD  

112 2 ZDD   
  1113 ZDD  
114 2 ZDD   

 
  DeZFF  1111  
   DeDZFF  21112   
  DeZFF   1113  

   DeDZFF   21114  
 

  1111 ZHH  
  1112 ZHH  
  1113 ZHH  
  1114 ZHH  

 
  DeZKK  1111  
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   DeDZKK  11112   
  DeZKK   1113  
   DeDZKK   11114  
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Once the matrix Eq. (3.16) or four algebraic Eqs. (3.12a), (3.12b), (3.13b) and (3.14b) are 

solved simultaneously and the values of four unknowns, namely, Am, Bm, Cm and Dm, are 

obtained, Eqs. of (3.7) are then used for subsequent finding of stress and displacement 

components of the beam at various points.  

 

3.3.2 Beam with lateral stiffeners (Case-2) 
 

In this case, the trial function is assumed in terms of sine function so that its first and third 

derivatives with respect to x  can be found in terms of a sine function. The displacement 

potential function   for the case of lateral stiffener is assumed as 
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where )(yfYm  ,   
L

m    and K Arbitrary constant and  m = 1, 2, 3, …….. . 

 

Derivatives of Eq. (3.14) with respect to x  and yare  
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Substituting the expressions of above derivatives in Eq. (3.1) following equation is obtained. 
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or, 02 ''2''''  mmm YYY                                                                                       (3.18)   
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The solution of the above 4th order ordinary differential equation with constant coefficients  

[Eq. (3.18)] can normally be approximated as follows:  

yr
m

yr
m

yr
m

yr
mm yeOeNyeMeLY 4321                     (3.19) 

But the ordinary differential Eq. (3.18) has the complementary function of repeated roots. Thus  
 21 rr  and  43 rr   and the general solution of Eq. (3.18) can be written as   
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Where, mL , mM , mN  and mO  are arbitrary constants. 

 

Differentiating Eq. (3.20) following expressions are found 
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Now substituting the derivatives of  and mY  in the expressions for displacement (3.2) and 

stresses (3.3), following expressions are found. 
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Now, the reactions on the bottom boundary (y = 0) are acting over the two supports. Therefore, 

the reactions over the beam at the supports can be taken as Fourier series in the following 

manner: 
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The compressive load on the edge Dy   acting over x = 0.1L to 0.9L can also be given by a 

Fourier series as follows 

 

  xIIx
m

myy  sin0,
1

00 




  for x= 0.1L to 0.9L                           (3.24) 

 
 
Here  
 

                               (3.25a) 
 














 

10
9

10

0 sin2
L

L
m xdx

L
I   

10
9

10

0 cos2
L

l

x
L 








 
























10
cos

10
9cos2 0 


 mm

m
;    m = 1,2,3, ..…….                           (3.25b) 

 
The loading considerations of Eqns. (3.22) and (3.23a) are to satisfy the boundary conditions at 

the bottom and top boundaries of the beam. Using boundary condition    00, xxy  at the edge 

of 0y , it is found that  
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Using boundary condition    0, Dxxy  at the edge of Dy   
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Using boundary condition   040,  xyy  at the edge of 0y  
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Therefore, 
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Using boundary condition   0,  Dxyy  at the edge of Dy   
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The simultaneous Eqs. (3.26a), (3.26b), (3.27b) and (3.28b) can be realized in a simplified 

matrix form for the solution of unknown terms like mL , mM , mN  and mO as follows: 
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Where, 
 

  1111 ZEE  
112 2 ZEE   
  1113 ZEE  

114 2 ZEE   
 
  DeZGG  1111  
   DeDZGG  21112   
  DeZGG   1113  

   DeDZGG   21114  
 
  1111 ZII  
  1112 ZII  
  1113 ZII  
  1114 ZII  

 
  DeZJJ  1111  
   DeDZJJ  11112   

  DeZJJ   1113  
   DeDZJJ   11114  

 2
2

11 1 




EZ

 
 

Once the matrix Eq. (3.29) or four algebraic Eqs. (3.26a), (3.26b), (3.27b) and (3.28b) are 

solved simultaneously and the values of four unknowns, namely, Lm, Mm, Nm and Om, are 

obtained, Eqs. of (3.21) are then used for subsequent finding of stress and displacement 

components of the beam at various points.  
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3.4   Results of Displacement Potential Solution 

 

The analytical solutions of displacement and stress components are obtained using 

displacement potential function for various aspect ratios (L/D) of the stiffened deep beam 

taking steel material into consideration both for axial stiffeners (Case-1) and lateral stiffeners 

(Case-2) .The properties of the material considered for solutions are as follows: 

 

Table 3.1 Properties of the isotropic material used in the present study 

 
Material E (MPa) G (MPa) µ 

Steel 209000 4500 0.3 

 

At first by considering axial stiffener (Case-1) the result of a stiffened beam of steel material 

having aspect ratio three (L/D = 3) and the uniform loading parameter, σo= 40 N/mm on the top 

edge is presented in sequence of axial displacement (ux), lateral displacement (uy), bending 

stress (σxx), normal stress (σyy) and shearing stress (σxy).  The same procedure is then used for 

the results of the beam with lateral stiffener (Case-2). Thereafter, the effects of change of aspect 

ratio and on the elastic fields are observed from the solution.  

 

3.4.1 Solution of the beam with axial stiffeners (Case-1) 

 

Axial displacements (ux) are found zero at the mid section of span, at the lateral stiffened 

boundaries and over the mid-horizontal plane [Fig. 3.2(a) and (b)]. Zero value of ux at the 

stiffened boundaries confirms the satisfaction of boundary condition of those ends. Axial 

displacements are found to be symmetric about the mid-vertical plane. The magnitudes of axial 

displacement at the top half are quite less than those of bottom half of the beam. The values of 

ux are negative for sections 0<x/L< 0.5 and positive for 0.5<x/L<1.0. The maximum magnitude 

of ux/L=0.0016 is observed at sections x/L = 0.1 and 0.9 of the bottom surface, where the loads 

terminate from both sides of the beam. 
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Lateral displacements (uy) near the two lateral ends are found to take positive value because of 

the supports at the bottom boundary, and for the region 0.2<x/L< 0.8, displacements are 

negative [Fig. 3.3(a) and (b)]. In the present problem, there is no restriction on the lateral 

displacement other than the loading at the top edge and balanced at the bottom corners of the 

beam to bring the equilibrium condition. The result confirms this physical condition being 

pushed the corners up and mid-region down. The positive and negative maximum lateral 

displacements are uy/D=0.000225 and uy/D= - 0.00017, respectively. The positive maximum 

value is observed at the two ends on the lowest fibre and the negative maximum value is found 

on the top fibre at the mid section of the beam. 

 

Fig. 3.4 presents the deformed shape of the beam together with the original shape with the 

magnification of 500 times of displacement. The stiffened ends have gone up and at the same 

time centre region of the beam have gone down. The deformation of the top edge is uniform 

throughout the length of beam with the uniformly distributed loading. The bottom edge is also 

deformed uniformly except the support region, where there is very little non-uniformity of 

deformation. However, the overall vertical sliding type deformation is again in excellent 

agreement with the applied loading and support of the beam.  

 

Bending stress distribution is more or less non-linear over the whole span [Fig. 3.5(a) and (b)]. 

This non-linearity increases towards the stiffened ends. The stress (σxx) maximizes at the top 

and bottom edges of the beam but carries opposite sign. The maximum normalized values at the 

top and bottom fibre are 3.368 and -5.243 respectively. Near the stiffened ends, σxx is positive 

for the upper half and negative for the lower half of the beam, but the opposite is observed for 

sections away from the support.  

  

Fig. 3.6 reveals that the lateral stress (σyy) gets its highest value around the position of supports 

on the bottom edge. As per the loading configuration, the uniform load is distributed over 80% 

of beam length (from x/L= 0.1 to x/L=0.9) and support reaction is distributed over 20% of beam 

length (x/L= 0.0 to 0.1 and x/L=0.9 to 1.0). Therefore, the reaction at each support is four times 

of the load density. From the solution of displacement potential approach it is comprehensible  
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that the normalized value of the lateral stress is zero where load is absent at the top layer and 

unity in the loaded region. The magnitude of the normalized value is four at the bottom layer of 

the support region and zero in the free region. This is in full agreement with the applied loading 

as well as boundary condition.  

 
Four edges and mid-span section of the stiffened beam are found free from shearing stress [Fig. 

3.7(a) and (b)]. The distributions of shearing stress (σxy) conform to the standard parabolic 

profile except that at sections x/L= 0.1 and 0.9, i.e., the termination point of loading [Fig. 3.1]. 

The maximum shear stress is observed at y/D=0.2 of sections x/L=0.1 (σxy/σ0 = - 1.512) and 

x/L=0.9 (σxy/σ0 =1.512).  

 

3.4.2 Solution of the beam with lateral stiffeners (Case-2) 

 

Axial displacements (ux) are found zero at the mid section of span and positive or negative at 

the lateral stiffened boundaries [Fig. 3.8(a) and (b)]. Positive or negative values of ux at the 

stiffened boundaries confirm the satisfaction of boundary condition of those ends. Axial 

displacements are found to be symmetric about the mid-vertical plane. The significant values of 

ux are negative for beam depths 0<y/D< 0.5 and positive for 0.5<y/D<1.0. The maximum 

magnitude of ux/L=3.2708 is observed on bottom fibre at the sections of x/L = 0.1 and 0.9, 

where the loads terminate from both sides of the beam.    

 

Lateral displacements (uy) near the two lateral ends are found zero and for the rest of region 

0.0<x/L< 1.0, displacements are negative [Fig. 3.9(a) and (b)]. In the present problem, there is 

no restriction on the axial displacement other than the loading at the top edge and balanced at 

the bottom corners of the beam to bring the equilibrium condition. The result confirms this 

physical condition being pushed the supporting portions up and mid-region down. The negative 

maximum lateral displacement is uy/D= -0.00078028 and it is observed immediate lowest fibre 

at the mid section of the beam. 

 



62 
 

Fig. 3.10 presents the deformed shape of the isotropic beam for lateral stiffener along with its 

original shape at the magnification of 500 times of displacement. The stiffened ends are 

displaced in the axial direction and at the same time loading portion is displaced down from 

original shape of the beam. However, the overall axial sliding type deformation is in excellent 

agreement with the physical condition of applied loading and support of the stiffened beam. 

 

Bending stress distribution is more or less non-linear over the whole span [Fig. 3.11(a) and (b)]. 

This non-linearity becomes zero towards the stiffened ends. The stress (σxx) maximizes at the 

top and bottom edges of the beam but carries opposite sign. The maximum normalized values at 

the top and bottom fibre are 5.5898 and -5.5720 respectively. At the stiffened ends, σxx is zero 

for both the upper half and lower half of the beam, whereas it is positive for upper half and 

negative for lower half of the beam if we advanced towards the mid section of the beam from 

stiffened ends.  

 

Fig. 3.12 reveals that the lateral stress (σyy) gets its highest value around the position of supports 

on the bottom edge and becomes zero at a the stiffened ends. As per the loading configuration, 

the uniform load is distributed over 80% of beam length (from x/L= 0.1 to x/L=0.9) and support 

reaction is distributed over 20% of beam length (x/L= 0.0 to 0.1 and x/L=0.9 to 1.0). Therefore, 

the reaction at each support is four times of the load density. From the solution of displacement 

potential approach it is comprehensible that the normalized value of the lateral stress is zero 

where load is absent at the bottom layer and unity in the loaded region. The magnitude of the 

normalized value is four at the bottom layer of the support region and zero in the free region. 

This is a full agreement with the applied loading as well as boundary condition.  

 

Four edges of the stiffened beam experience non zero shearing stress whereas mid-span section 

of the beam is found free from shearing stress [Fig. 3.13(a) and (b)]. The distributions of 

shearing stress (σxy) conform to the standard parabolic profile except that at sections x/L= 0.1 

and 0.9, i.e., the termination point of loading [Fig. 3.1]. The maximum shear stress is observed 

at y/D=0.4 of sections x/L=0.15 (σxy/σ0 = - 1.516) and x/L=0.9 (σxy/σ0 =1.512). 
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 3.5   Effect of Beam Aspect ratio on the Stress fields 

 
The effect of the aspect ratio (L/D) on the stress components are discussed in this chapter. The 

stress components are observed with respect to beam depth (y/D) for both axial and lateral 

stiffening conditions and also for various L/D ratios from 1 to 4 at different sections of the 

beam.  

 

 
3.5.1 Beam with axial stiffeners (Case-1) 
 

The bending stresses for various aspect ratios (L/D=1 to 4) at different sections of the beam are 

observed as shown in Fig. 3.14 (a) and (b). It is seen that the nonlinearity of bending stress is 

highest at the stiffened end, while aspect ratio is one and it gets reduced with the increase of 

aspect ratio. For higher L/D ratio at the mid region (x/L=0.4 to 0.6) of the beam, the bending 

stress distribution is quite linear [Fig. 3.14(b)], whereas it is still nonlinear for aspect ratio one 

or two. However, the maximum magnitude of bending stress is increasing with the increase of 

L/D ratio.  

 
The lateral stress distributions for L/D=1 to 4 at sections from stiffened end to middle of the 

span (x/L=0.0 to 0.5) are shown in Fig. 3.15 (a) and (b).  As appeared from the figures that 

lateral stresses in all L/D ratios follow the loading pattern. With the increase of L/D ratio the 

nonlinearity reduces, but some degree of nonlinearity remains. Lateral stress at the guided ends 

as shown in Fig. 3.15(a) indicates that the distribution pattern changes while the length depth 

ratio is changed. This pattern changing phenomenon is less with respect to sections moving 

away from the guide. At the mid sections it is almost insignificant.  

 
 
Shear stress is zero at the stiffened ends and at the mid span for all L/D ratios. Therefore, the 

results at x/L=0.1 to 0.4 (4 sections) are shown in Fig. 3.16 (a) and (b), where the shearing 

stress distribution patterns for L/D=1 are found quite different from others. With the rise of  
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length depth ratio parabolic pattern of shear stress distribution is observed with higher value of 

maximum shear stress magnitude. The accuracy of parabolic pattern becomes finer at the 

sections away from the stiffened ends. 

 

3.5.2 Beam with lateral stiffeners (Case-2) 
 

The bending stress distribution is zero at the stiffened end of the beam for various aspect ratios. 

That’s why section x/L=0.1 and mid span section is considered in Fig. 3.17(a) and (b) for 

various aspect ratios (L/D=1-4). At section x/L=0.1, all the bending stress distribution is non 

linear and maximum non linearity is observed for lower aspect ratio L/D=1.0. Now advancing 

towards the midsection of the beam x/L=0.5, the nonlinearity is still observed for lower aspect 

ratio L/D=1, whereas it is almost linear for higher aspect ratio L/D=4.  

 

Again section x/L=0.1 is considered instead of stiffened end in Fig. 3.18(a) and (b), because the 

lateral stress distributions at the stiffened end is zero. At Fig. 3.18(a), maximum non linearity is 

observed at lower aspect ratio L/D=1. Now advancing towards the higher aspect ratio, this non 

linearity decreases and lowest non linearity is observed at aspect ratio L/D=4.  Now to get the 

overall idea of lateral stress, mid span section x/L=0.5 is considered for L/D=1 to 4 in Fig. 

3.18(b) and it is observed that the change of lateral stress distribution is insignificant with 

respect to beam aspect ratio.  

 
Fig. 3.19(a) and (b) describe the shearing stress distribution at section x/L=0.1 and 0.4 for 

different beam aspect ratios (L/D=1-4). Stiffened end section (x/L=0) and mid span section 

(x/L=0.5) is not considered because the shearing stress distribution is zero at those sections. At 

section x/L=0.1, the value of shear stress is maximum within beam depth 0≤y/D≤0.05 and the 

difference between these values with respect to beam aspect ratio is too small. Now by 

advancing towards section x/L=0.4, the distribution pattern becomes parabolic and the 

difference between the shear stress increases with the increase of beam aspect ratio. 
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Fig. 3.1 A stiffened simply-supported beam of isotropic material:  
(a) Physical model, (b) Analytical model 
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Fig. 3.2 Distribution of normalized axial displacement components at different sections of 

 the beam with axial stiffener (L/D=3):  (a) along beam span, (b) along beam depth 
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Fig. 3.3 Distribution of normalized lateral displacement components at different sections of 

the beam with axial stiffener (L/D=3):  (a) along beam span, (b) along beam depth 

 



68 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 

Beam length (arb unit)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

B
ea

m
 d

ep
th

 (a
rb

 u
ni

t)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Original shape
Deformed shape
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Fig. 3.5 Distribution of normalized bending stress components at different sections of the beam 

 with axial stiffener (L/D=3):  (a) along beam span, (b) along beam depth 
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Fig. 3.6 Distribution of normalized lateral stress components at different sections of the 

beam with axial stiffener (L/D=3):  (a) along beam span, (b) along beam depth 
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Fig. 3.7 Distribution of normalized shear stress components at different sections of the beam 

with axial stiffener (L/D=3):  (a) along beam span, (b) along beam depth 
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Fig. 3.8 Distribution of normalized axial displacement components at different sections 

of the beam with lateral stiffener (L/D=3):  (a) along beam span, (b) along beam depth 
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Fig. 3.9 Distribution of normalized lateral displacement components at different sections of 

the beam with lateral stiffener (L/D=3):  (a) along beam span, (b) along beam depth 
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Fig. 3.10 Deformed shape of the stiffened (lateral) isotropic thick beam, L/D = 3 

(magnification factor 500) 



75 
 

 
 
 
 
 
 
 
 
 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
  
  
 
 

 
 
 
 
 
 

 

Beam length, x/L

0.0 0.2 0.4 0.6 0.8 1.0

Be
nd

in
g 

st
re

ss
, 

xx
/

0

-10

-5

0

5

10 y/D=0.0
y/D=0.2
y/D=0.4

y/D=0.6
y/D=0.8
y/D=1.0

Bending stress, xx/0

-8 -6 -4 -2 0 2 4 6 8

Be
am

 d
ep

th
, y

/D

0.0

0.2

0.4

0.6

0.8

1.0
x/L=0.0
x/L=0.1
x/L=0.2
x/L=0.3
x/L=0.4
x/L=0.5

(a)  along beam span   (b) along beam depth 

Fig. 3.11 Distribution of normalized bending stress components at different sections of the  

beam with lateral stiffener (L/D=3):  (a) along beam span, (b) along beam depth 
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Fig. 3.12 Distribution of normalized lateral stress components at different sections of the  

beam with lateral stiffener (L/D=3):  (a) along beam span, (b) along beam depth 
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Fig. 3.13 Distribution of normalized shear stress components at different sections of the  

beam with lateral stiffener (L/D=3):  (a) along beam span, (b) along beam depth 
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Fig. 3.14 Distribution of bending stress components at different sections of the stiffened 

(axial) beam for different aspect ratios: (a) at left lateral end, (b) at mid-span section 

 



79 
 

 
 
 
 
 

 
 
 
 
 
 

 
 

 
    

 
 
 

 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lateral stress, yy/0

-5 -4 -3 -2 -1 0

B
ea

m
 d

ep
th

, y
/D

0.0

0.2

0.4

0.6

0.8

1.0

L/D=1.0
L/D=2.0
L/D=3.0
L/D=4.0

Lateral stress, yy/0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

L/D=1.0
L/D=2.0
L/D=3.0
L/D=4.0

(a) at left lateral end  (b) at mid-span section 

Fig. 3.15 Distribution of lateral stress at different sections of the stiffened (axial) beam 

 for different aspect ratios: (a) at left lateral end, (b) at mid-span section 
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Fig. 3.16 Distribution of shear stress at different sections of the stiffened (axial) beam  

for different aspect ratios: (a) at section x/L=0.1, (b) at section x/L=0.4 
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Fig. 3.17 Distribution of bending stress at different sections of the stiffened (lateral)  

beam for different aspect ratios: (a) at section x/L=0.1, (b) at mid-span section 
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Fig. 3.18 Distribution of lateral stress at different sections of the stiffened (lateral)  

beam for different aspect ratios: (a) at section x/L=0.1, (b) at mid-span section 
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Fig. 3.19 Distribution of shear stress at different sections of the stiffened (lateral)  

beam for different aspect ratios: (a) at section x/L=0.1, (b) at section x/L=0.4 
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CHAPTER 4 
           

ANALYSIS OF A STIFFENED FIBER REINFORCED COMPOSITE 

BEAM 
 
The main focus of this chapter is to investigate the effect of stiffeners on the elastic field of a 

mixed boundary value problem using displacement potential function approach. In this chapter, 

a stiffened simply supported thick beam of orthotropic composite material is considered for the 

analysis. The beam is stiffened at its opposing lateral ends by using two different kinds of 

stiffeners, i.e., axial stiffeners and lateral stiffeners. The beam is loaded transversely at a certain 

portion on its upper surface and roller supports are used at certain portions of the lower surface 

of the beam. The effect of beam aspect ratio on the stress field is also discussed in a 

comparative fashion for both kinds of stiffeners. 

 

4.1 Problem Description 

 

A uniform rectangular composite beam of length L, depth D and thickness W is considered for 

the present analysis. The beam is subjected to a uniformly distributed load at its upper surface 

and is simply supported at the two extreme regions of the bottom surface. The beam is in 

equilibrium with a uniform loading 0  acting over 80% of its span (from 0.1L to 0.9L) at the 

upper surface (y = D), and distributed reactions from x = 0 to 0.1L and x = 0.9L to L at the 

bottom surface (y = 0), as shown in Fig. 4.1. It is noted that the chosen analytical model of the 

beam is similar to those treated by Chow [3, 4] and Hardy and Pipelzadeh [15]. The lateral ends 

of the beam, EF and HG are assumed to be stiffened with rigid stiffeners. Two different types 

of stiffeners are considered for the opposing lateral ends of the beam, which are axial stiffener 

(Case-1) and lateral stiffener (Case-2). The beam is considered to be of unit thickness and the 

fibers are assumed to be oriented along the length of the beam (x-axis, Fig. 4.1). 
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4.2 Boundary Conditions    
 

The physical conditions of the present problem with reference to Fig. 4.1 [(a) and (b)] are to be 

satisfied along the all four boundaries of the beam can be expressed mathematically as follows:  

(a) Loaded boundary, EH (y = D):  

The loading at the upper boundary is modelled by assigning a uniform value to the normal 

stress component, which is also free from any shearing stress. The corresponding 

mathematical expressions of the conditions are  

 




 


][otherwise0

]9.0/1.0[
,

0 Lx
Dxyy


    

  0, Dxxy     [ 0.1/0.0  Lx ]  

 

(b) Supporting surface, FG (y = 0):   

The roller supported regions of the bottom surface are modelled by a uniform distribution 

of normal loading which is free from shearing stress. At the supports, the total reaction 

forces are considered to be equal and opposite to the loading applied at the top surface. The 

reactions are distributed over 20% of the beam span (i.e., x/L = 0.0-0.1 and 0.9-1.0). The 

remaining section of the bottom surface is assumed to be free from loading.  

 

  00, xxy     [ 0.1/0.0  Lx ]  
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]0.1/9.0;1.0/0.0[4
0,

0 LxLx
xyy


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(c) Left lateral end, EF (x = 0): 

Axial stiffener (Case-1): The physical condition of the rigid axial stiffener is modelled here 

by assigning zero values to both the axial displacement and the associated tangential stress 

components along the end. Thus,  

      
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Lateral stiffener (Case-2): The physical condition of the rigid lateral stiffener is modelled 

here by considering the boundary free from lateral displacement and axial normal stress. 

Thus,  

       
]0.1/0.0[

0,0

0),0(
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(d) Right lateral end, GH (x = L): 

Axial stiffener (Case-1): Likewise the case of left lateral end, the corresponding 

mathematical expressions for the conditions of rigid axial stiffener at this boundary are 

      
 
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0),(
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Lateral stiffener (Case-2): The conditions of rigid lateral stiffener at the right lateral end are 

modelled by the following expressions:  

     
]0.1/0.0[
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0),(
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4.3   Analytical Solution    
 
4.3.1 Approach 
 
 
Based on the potential-function formulation, an analytical scheme is developed for the analysis 

of the stiffened simply-supported beams. In the present scheme, a trial solution to the potential 

function  is first assumed as a function of coordinate parameters (x, y) in the form of an 

infinite series. More specifically, the solution is expressed as an infinite series of combinations 

of two independent functions of x and y, which assumes a form like, )()(),( yhxgyx m
m

m . 

A suitable form of the function is determined in a trial and error fashion so that it can 

automatically satisfy the prescribed physical conditions of the two opposing lateral ends of the  
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beam. Substitution of the trial solution into the governing differential equation results in a 

fourth-order ordinary differential equation. A general solution to the ordinary differential 

equation is then assumed in terms of four arbitrary constants. These four constants are 

determined by satisfying the remaining four physical conditions associated with the top and 

bottom surfaces of the beam. By knowing the values of the four arbitrary constants the trial 

solution assumed for the beam problem is explicitly known. Once the appropriate potential 

function for the beam is explicitly determined, all the parameters of interest of the elastic field 

can readily be obtained, as in the present potential-function formulation, they are expressed as 

the summation of different derivatives of the function, .    

 

4.3.2 Solution procedure 
 
 
The governing differential equation for the present composite beam is expressed in 

terms of the potential function,  through the following partial differential equation of 

equilibrium [Eq. (2.30)]: 
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In this case the displacement and stress components are also obtained from Eq. (2.29) as 

follows:  
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 Where  2
2
12112211211 EEGEEZ    

 

4.3.3 Beam with axial stiffeners (Case-1) 

 
The trial function for the present problem is assumed in terms of a cosine function so that its 

first and third derivatives with respect to x are obtained in terms of a sine function. It is 

observed that such a trial solution is capable of satisfying the necessary physical conditions 

associated with the two opposing lateral ends automatically, which are given by the conditions 

of ‘c’ and ‘d’ of section 4.2. Considering all these factors, the potential function,   for the 

present problem is approximated as follows: 
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L

m    and K Arbitrary constant and m = 1, 2, 3, …….. . 

 

Derivatives of Eq. (4.3) with respect to x  and y are  
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Using the derivatives of Eq. (4.3), Eq. (4.1) yields 
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Eq. (4.4) is a fourth-order ordinary differential equation. The general solution of the differential 

equation can be written as 
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where mA , mB , mC  and mD  are arbitrary constants, and 1r , 2r , 3r  and 4r  are the corresponding 

roots which are given below 
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Now substituting the derivatives of  and mY  as obtained from Eq. (4.3) and (4.5), 

respectively, in the expressions for displacement and stresses (4.2a, 4.2b, 4.2c, 4.2d and 4.2e). 
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From the expressions of (4.7a) and (4.7e) it is evident that the boundary conditions associated 

with the left and right lateral ends are automatically satisfied. Thus the next requirement is to 

satisfy the remaining boundary conditions associated with the upper and bottom boundary 

surfaces.  

 

Now the reactions acting at the two extreme regions of the supporting surface, y = 0 may be 

expressed in terms of Fourier series as follows: 
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The applied loading on the top surface, Dy   can also be expressed in terms of Fourier series 

as follows 

 

  xIIx
m

myy  cos0,
1

00 




  for x= 0.1L to 0.9L       (4.9a) 

 

Here  

 














 

10
9

10

00
1

L

L

dx
L

I   





 

1010
90 LL

L
  

5
4 0                       (4.9b) 

 














 

10
9

10

0 cos2
L

L
m xdx

L
I   



94 
 

10
9

10

0 sin2
L

l

x
L 






  
























10
sin

10
9sin2 0 


 mm

m
                  (4.9c) 

 

Using boundary condition   00, xxy  at the edge of 0y  
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Using boundary condition   0, Dxxy  at the edge of Dy   
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Using boundary condition   040,  xyy  at the edge of 0y  
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Therefore,  
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Using boundary condition   0,  Dxyy  at the edge of Dy     
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From Eqns. (4.7d) and (4.8) or (4.9), the arbitrary constant K can be obtained as follows: 
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The simultaneous Eqs. (4.10a), (4.10b), (4.10c) and (4.10d) can be realized in a simplified  

matrix form for solution of the unknown terms of arbitrary constants like mA , mB , mC  and mD  

as follows: 
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Eqns. 4.7 are used for finding the stress and displacement components at various points of the 

beam and the appropriate values of Em and Im are determined to get the values of four 

unknowns constant, namely Am, Bm, Cm and Dm by using either the matrix (4.12) or the four 

algebraic simultaneous Eqs. (4.10a), (4.10b), (4.10c) and (4.10d). 

 

 

 

 



97 
 

4.3.4 Beam with lateral stiffeners (Case-2) 
 

In this case the trial function is assumed in terms of sine function so that its first and third 

derivatives with respect to x  can be found in terms of cosine function. The displacement 

potential function   for the case of lateral stiffener is assumed as: 
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where )(yfYm  ,   
L

m    and K Arbitrary constant and m = 1, 2, 3, …….. . 

 

Derivatives of Eq. (4.13) with respect to x  and y are  
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Using the derivatives of Eq. (4.13), Eq. (4.11) yields 
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The general solution of ordinary differential equation be  
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where mL , mM , mN  and mO  are arbitrary constants, and 1r , 2r , 3r  and 4r  are the 

corresponding roots which are given below 
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Now substituting the derivatives of  and mY by using Eq. (4.13) and (4.15) respectively in the 

expressions for displacement and stresses (4.2a, 4.2b, 4.2c, 4.2d and 4.2e). 
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(4.17e) 

 

From the expressions of (4.17a) and (4.17e) it is evident that the boundary conditions 

associated with the left and right lateral ends are automatically satisfied. Thus the next 

requirement is to satisfy the remaining boundary conditions associated with the upper and 

bottom boundary surfaces.  

 

Now the compressive load exerted at the two corners on the edge 0y  may be taken as 

Fourier function in the following manner: 
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The compressive load on the edge Dy   can also be given by a Fourier series as follows 
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Using boundary condition   00, xxy  at the edge of 0y  
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Using boundary condition   0, Dxxy  at the edge of Dy   
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Using boundary condition   040,  xyy  at the edge of 0y  
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Using boundary condition   0,  Dxyy  at the edge of Dy     
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From Eqs. (4.17d) and (4.19) or (4.20) 

000  IE  
 

The simultaneous Eqs. (4.20a), (4.20b), (4.20c) and (4.20d) can be realized in a simplified 

matrix form for solution of the unknown terms of arbitrary constants like mL , mM , mN  

and mO   as follows: 
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where 
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Eqs. 4.17 are used for finding the stress and displacement components at various points of the 

beam and the appropriate values of Em and Im are determined to get the values of four 

unknowns constant, namely Lm, Mm, Nm and Om by using either the matrix (4.21) or the four 

algebraic simultaneous Eqs. (4.20a), (4.20b), (4.20c) and (4.20d). 
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4.4 Results of Composite Beam  
 

In this section, numerical results of the analytical solution of the composite beams are 

presented in the form of graphs. First, the distributions of different displacement and stress 

components at different sections of a thick beam (L/D = 3) are discussed. The effects of 

stiffeners at the lateral ends and beam aspect ratio on the elastic field are then investigated. 

Although the analytical method developed can be applied to any composite material of interest, 

a glass-epoxy composite beam is chosen as an example in the present study, the effective 

mechanical properties of which are listed in Table 4.1. The value of the maximum intensity of 

the normal loading assumed to calculate the present results is σ0 = 40 N/mm. 

 

Table 4.1: Mechanical properties used for the Glass-Epoxy composite 

 

4.4.1 Displacement field   

 

The variations in the normalized axial and lateral displacement components (ux/L, uy/D) along 

the span (x/L) of a glass-epoxy beam (L/D = 3) with axial stiffeners at the lateral ends are 

shown in Fig. 4.2. Axial displacements (ux/L) are found to be of nearly anti-symmetric nature 

about the mid-span section of the beam. The displacements are found to be zero at the mid-span 

section as well as the lateral stiffened ends [Fig. 4.2(a)], which, in turn, verifies the proper 

modeling of the boundary conditions at the stiffened ends. The maximum magnitudes of axial 

displacement are observed at the bottom surface of the beam, particularly at the sections x/L = 

0.1 and 0.9.  

Material Mechanical Property Symbol (unit)  Value 

Glass-Epoxy 

Elastic modulus 
E1 (GPa) 43.0 
E2 (GPa) 8.9 

Shear modulus G12 (GPa) 4.5 

Poisson’s ratio 
ν12 0.27 
ν21 0.0559 
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Lateral displacements (uy/D) are found to assume positive value (upward displacement) around 

the two supporting regions near the lateral ends, and negative value (downward displacement) 

for the region 0.2 < x/L < 0.8, which is in good conformity with the distributions of loading at 

the top and bottom surfaces as well as with the boundary conditions of the lateral ends [Fig. 

4.2(b)]. The distributions are symmetric about the mid-span section of the beam. The maximum 

and minimum downward displacements are found to occur at the bottom and top surfaces of the 

beam, respectively. A comparison of the results shown in Figs. 4.2(a) and (b) reveals that the 

maximum lateral displacement is nearly three times higher than the maximum axial 

displacement occurred for the present stiffened composite beam, L/D = 3. 

 

4.4.2 Stress field 

 

The distributions of normalized bending stress component σxx/σ0 with respect to beam depth, 

y/D at different sections of the beam are illustrated in Fig. 4.3(a). Bending stress distributions 

are observed to be non-linear over the whole span, although the beam length is three times 

higher than its depth. The degree of nonlinearity increases with the decrease of distances from 

the stiffened ends. In general, maximum values of bending stresses are observed at the top and 

bottom surfaces of the beam with opposite sign. The maximum normalized values of the stress      

at the top and bottom surfaces are found to be nearly 4.8 and 9.0, respectively. These 

maximum bending stresses are found to occur at the stiffened ends of the beam, which, in turn, 

identifies the stiffened lateral ends of the beam as the most critical section in term of axial 

stresses, which is, however, the most dominating stress components among the others. Bending 

stress is found to be positive (tensile) for the upper half and negative (compressive) for the 

lower half for sections close to the stiffened ends, but opposite characteristics are observed for 

sections in the region, 0.1<x/L<0.9. The bending stress distribution at the mid-span section of 

the present composite beam (L/D=3) is found to be still highly nonlinear which is in contrast 

with the case of unstiffened beam, as the distribution was verified to be almost linear at the 

mid-span section of an unstiffened beam of L/D=2 [9].   
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As appears from Fig. 4.3(b), the lateral stress (σyy/σ0) is of higher concentration around the 

regions of supports at the bottom surface. The applied uniform load is distributed over 80% of 

beam-span (from x/L= 0.1 to x/L=0.9) and support reactions are distributed over 20% of the 

beam-span (x/L= 0.0 to 0.1 and 0.9 to 1.0). A simple quantitative analysis shows that the 

intensity of the reactions is four times the applied load intensity. From the present 

displacement-potential solution it is revealed that the normalized value of lateral stress varies 

from zero to unity at the bottom and top surfaces, respectively, for sections within the loaded 

region (0.1<x/L<0.9), and the corresponding values at the stiffened ends vary from 4 to zero, 

which is in excellent agreement with the applied loading as well as other boundary conditions 

of the beam. When the distributions of lateral stress are analyzed in the perspective of the 

beam-depth, they are found to be highly nonlinear, particularly for sections near the stiffened 

ends. This nonlinearity is found to decrease as the distance from the stiffened end is increased. 

It can be noted that for sections around the mid-span section of the beam (L/D=3), the 

distributions are found to be still nonlinear, which is, however, in contrast to the case of an 

equivalent un-stiffened beam.   

 

From the distributions of shear stress at different sections of the beam it is observed that the 

entire top and bottom surfaces and the two stiffened ends as well as the mid-span section are 

completely free from shear stress (see Fig.4.3(c)), which is in conformity with the physical 

characteristics of the present beam. Maximum shear stress is found to occur at the load 

transition section, x/L= 0.1 and 0.9, specifically at the vicinity of the bottom surface, which is 

in contrast with the standard parabolic profile. The shear stress distributions are found to 

assume the parabolic profile in a gradual fashion as we move towards the mid-span section. 

Distributions are symmetric about the mid-span section of the beam. The maximum shear stress 

developed at section x/L= 0.1 of the present beam is found to be nearly 1.8 times the intensity 

of the applied loading, 0.  
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4.4.3 Effect of stiffeners at the opposing lateral ends 
 

This section describes the effect of different types of stiffeners at the opposing lateral ends of 

the beam on the state of stresses. More specifically, the distributions of stresses obtained with 

axial and lateral stiffeners at the ends are compared with those of the unstiffened beam. Fig. 4.4 

compares the bending stress distributions at sections x/L= 0 and 0.5 for three different cases of 

stiffeners at the lateral ends. At the lateral ends, the bending stresses are basically zero for both 

the cases of lateral and no stiffeners, whereas for the case of axial stiffeners, the lateral ends are 

identified as the most critical sections in terms of the bending stress. The maximum stress is 

developed for the case of axial stiffeners at the bottom surface of the beam, which is more than 

eight times the intensity of the applied loading. When the corresponding solution of bending 

stress at the mid-span section are compared, it is observed that the lateral stiffeners at the two 

opposing lateral ends do not cause much change in the mid-span bending stress distribution 

from the corresponding case of no stiffeners. However, the axial stiffeners at the lateral ends 

have significant influence on the mid-span bending stress compared to the case of lateral 

stiffeners, as the corresponding magnitude of the stress is found to be nearly half of that of the 

unstiffened beam.     

 

Fig. 4.5 illustrates the comparison of distribution of lateral stresses at the lateral ends (x/L= 0) 

and mid-span section (x/L= 0.5) of the beam is subjected to axial and lateral stiffeners as well 

as of an unstiffened beam. The lateral ends of the beam with lateral stiffeners are free from 

normal stress, yy, whereas the remaining two cases are close to each other in terms of 

magnitude and shape with slight discrepancy only at the left and right corner points of the 

bottom surface. The three distributions are found to be almost identical when the section 

concerned is the mid-span section of the beam, which vary from zero at the bottom surface to 

unity at the top surface. However, the distributions are found to be slightly nonlinear even at 

the mid-span section of the beam, L/D =3. 

 

The comparison of shear stress distributions at two different sections of the beam with and 

without stiffeners is presented in Fig. 4.6. It is observed that the effect of stiffeners at the lateral  
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ends on shear stress distribution is not that significant, when the section concerned is away 

from the lateral ends [Fig.4.6(b)], as the three distributions are found to assume nearly the 

similar parabolic profile. On the other hand, the lateral ends of the beam subjected to lateral 

stiffeners are identified to be the most critical sections of the beam in terms of shear stress, 

while the ends of the other two cases are free from shear stress, which is, however, in complete 

conformity with the given end conditions. Shear stress at the lateral ends for the case of lateral 

stiffeners assumes negative value for the upper 70% of the depth and for the lower 30% of the 

depth; it increases gradually with positive value and eventually assumes its maximum value 

near the bottom surface.  

 

In attempt to demonstrate the overall deformation of the beam under the influence of stiffeners 

at the lateral ends, the corresponding deformed shapes of a beam (L/D =3) are compared with 

the original undeformed shape in Fig. 4.7. The conditions of the two types of stiffeners are 

clearly reflected through the corresponding deformed shapes of the beam. 

 

4.4.4  Effect of beam aspect ratio 

 
The effects of the aspect ratio (L/D) on the components of stress are also analyzed for both the 

axial and lateral stiffening conditions at the lateral ends. Figs. 4.8(a.1) and (b.1) represent the 

distribution of bending stresses at mid span section (x/L=0.5) of the beam for different L/D 

ratios for the cases of axial and lateral stiffeners, respectively. For both the cases, stress level 

increases with the increase of L/D ratio, although the stress level itself is much higher for the 

case of lateral stiffeners. Another important observation is, the axial stiffeners at the lateral 

ends make the distribution of bending stress more nonlinear (warping) than those caused by the 

lateral stiffeners. The distributions for the case of lateral stiffener are found to be similar to 

those of unstiffened beam in terms of both magnitude and nature of variation. Further Figs. 

4.8(a.2) and (b.2) present the analysis of critical bending stresses at the stiffened and the mid-

span sections in the perspective of beam aspect ratio for the cases of axial and lateral stiffeners, 

respectively, where a wide range of L/D ratio has been covered. For the case of axial and lateral 

stiffeners, the lateral ends and the mid-span sections, respectively, are found to be the most  
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critical sections in terms of bending stress, which are observed to be the functions of beam 

aspect ratio. For the entire range of L/D ratio considered, the critical bending stresses are found 

to increase with the increase of L/D ratio. 

 

The effect of ratio on the magnitude and distribution of shear stresses in the stiffened beams is 

illustrated in Fig.4.9. The distributions of shear stress along the beam depth are presented in 

Figs. 4.9(a.1) and (b.1) for various L/D ratios of the beam with axial and lateral stiffeners, 

respectively. The overall magnitude of the stress increases with the increase of beam aspect 

ratio. For lower aspect ratios, the distributions are different from the standard parabolic profile, 

which is mainly because of short beam effect. For the beam with L/D =4, the shear stress 

distributions are found to assume nearly the parabolic profile for both the cases of stiffeners 

considered. The comparison of distributions of shear stress for the two kinds of stiffeners 

reveals that distributions are hardly effected by the stiffeners at the two opposing lateral ends. 

Again, the maximum shear stresses at the critical sections, namely, x/L= 0 and 0.1 are also 

analyzed in the perspective of beam aspect ratio for both the stiffeners, in Figs. 4.9(a.2) and 

(b.2). Although the stiffened ends (axial stiffener) are free from shearing stresses, those with 

lateral stiffeners are found to experience a significant level of shear stress, the maximum value 

of which is however found to be nearly independent of beam aspect ratio, as shown in Fig. 

4.9(b.2). The increase in the maximum value of shear stress at the load changing section (x/L= 

0.1), with the increase of L/D ratio are identified to be nearly similar for both the cases of 

stiffeners. 
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Fig. 4.1 A stiffened simply-supported beam of fiber-reinforced composite material:  
(a) Physical model, (b) Analytical model 
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Fig. 4.2 Distribution of displacement components at different 

sections of the stiffened (axial) composite beam, L/D = 3 
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(axial) composite beam, L/D = 3 
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Fig. 4.4 Distribution of bending stress components at different sections of the 

composite beam (L/D = 3) with different types of stiffeners 
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Fig. 4.5 Distribution of lateral stress components at different sections of the 

composite beam (L/D = 3) with different types of stiffeners 
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Fig. 4.6 Distribution of shear stress components at different sections of the 

composite beam (L/D = 3) with different types of stiffeners 
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Fig. 4.7 Deformed shapes of the stiffened composite beam, L/D = 3 

(magnification factor, 200) 
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Fig. 4.8 Effect of aspect ratio on bending stress components in the stiffened composite 

beam: a) axial stiffener, b) lateral stiffener 
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Fig. 4.9 Effect of aspect ratio on shear stress components in the stiffened composite 

beam: a) axial stiffener, b) lateral stiffener 
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CHAPTER 5 

           

EFFECT OF FIBER ORIENTATION ON THE ELASTIC FIELD  
 

In the previous chapter, the effect of stiffeners on the elastic field of a simply supported 

orthotropic beam was investigated with fibre orientation θ=00. The main focus in this chapter is 

to investigate the effect of fibre orientation on the elastic field of the stiffened simply supported 

orthotropic beam. For this purpose, the stress and displacement fields of the simply supported 

beam with fibre orientation θ=900 and θ=00 are obtained for both the axial and lateral stiffening 

conditions, and then the effect of fibre orientation is described for both with respect to stress 

and displacement fields. All the solutions of stresses and displacements are analyzed for 

different beam aspect ratios.  

 
5.1 Problem Description 
 
A uniform rectangular composite beam of length L, depth D and thickness W is considered for 

the present analysis. The beam is subjected to a uniformly distributed load at its upper surface 

and is simply supported at the two extreme regions of the bottom surface. The beam is in 

equilibrium with a uniform loading 0  acting over 80% of its span (from 0.1L to 0.9L) at the 

upper surface (y = D), and distributed reactions from x = 0 to 0.1L and x = 0.9L to L at the 

bottom surface (y = 0), as shown in Fig. 5.1. The lateral ends of the beam, EF and HG are 

assumed to be stiffened with rigid stiffeners. Two different types of stiffeners are considered 

for the opposing lateral ends of the beam, which are axial stiffener and lateral stiffener. The 

beam is considered to be of unit thickness and the fibres are assumed to be oriented along the 

depth of the beam (θ=900, Fig. 5.1(a)) as well as along the length of the beam (θ=00, Fig. 

5.1(b)). 
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5.2 Boundary Conditions    
 
The physical conditions of the present problem with reference to Fig. 5.1 are to be satisfied 

along the all four boundaries of the beam can be expressed mathematically as follows:  

 

(a) Loaded boundary, EH (y = D):  

The loading at the upper boundary is modelled by assigning a uniform value to the normal 

stress component, which is also free from any shearing stress. The corresponding 

mathematical expressions of the conditions are  
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(b) Supporting surface, FG (y = 0):   

The roller supported regions of the bottom surface are modelled by a uniform distribution 

of normal loading which is free from shearing stress. At the supports, the total reaction 

forces are considered to be equal and opposite to the loading applied at the top surface. The 

reactions are distributed over 20% of the beam span (i.e., x/L = 0.0-0.1 and 0.9-1.0). The 

remaining section of the bottom surface is assumed to be free from loading.  
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(c) Left lateral end, EF (x = 0): 

Axial stiffener (Case-1): The physical condition of the rigid axial stiffener is modelled here 

by assigning zero values to both the axial displacement and the associated tangential stress 

components along the end. Thus,  
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Lateral stiffener (Case-2): The physical condition of the rigid lateral stiffener is modelled 

here by considering the boundary free from lateral displacement and axial normal stress. 

Thus,  

       
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(d) Right lateral end, GH (x = L): 

Axial stiffener (Case-1): Likewise the case of left lateral end, the corresponding 

mathematical expressions for the conditions of rigid axial stiffener at this boundary are 

      
 

]0.1/0.0[
0,

0),(











Dy

yL

yLu

xy

x


 

 

Lateral stiffener (Case-2): The conditions of rigid lateral stiffener at the right lateral end are 

modelled by the following expressions:  
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5.3 Analytical Solution    
 
Mathematical model here is the partial differential equation derived from the equations of 

equilibrium and equations of compatibility based on Displacement Potential Function ψ(x,y) 

obtained from Eq. (2.30) as follows.  

 

  02 4

4

12122

4

1212124

4

122 












y
GE

yx
GEE

x
GE                      (5.1) 

 

In this case the displacement and stress components are also obtained from Eq. (2.29) as 

follows:  
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  Where  2
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12112211211 EEGEEZ    

 
 
The solution of the beam is obtained with fibre orientation, θ=900 (case-A) and θ=00 (case-B) 

for both axial and lateral stiffening conditions.  

 

5.3.1 Case-A (Fiber orientation, θ = 900) 

Case-1: Beam with axial stiffeners  

 

The trial function for the present problem is assumed in terms of a cosine function so that its 

first and third derivatives with respect to x are obtained in terms of a sine function. It is 

observed that such a trial solution is capable of satisfying the necessary physical conditions 

associated with the two opposing lateral ends automatically, which are given by the conditions 

of ‘c’ and ‘d’ of section 5.2. Considering all these factors, the potential function,   for the 

present problem is approximated as follows: 
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Using the derivatives of Eq. (5.3), equation (5.1) yields 
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The general solution of ordinary differential equation will be  
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where mA , mB , mC  and mD  are arbitrary constants and 1r , 2r , 3r  and 4r  are the corresponding 

roots which are given below 
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Now substituting the derivative of  and mY by using Eq. (5.3) and (5.5) respectively in the 

expressions for displacement and stresses (5.2a, 5.2b, 5.2c, 5.2d and 5.2e). 
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From the expressions of (5.7a) and (5.7e) it is evident that the boundary conditions associated 

with the left and right lateral ends are automatically satisfied. Thus the next requirement is to 

satisfy the remaining boundary conditions associated with the upper and bottom boundary 

surfaces.  

 

Now the reactions acting at the two extreme regions of the supporting surface, y = 0 may be 

expressed in terms of Fourier series as follows: 
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The compressive load on the edge Dy   can also be given by a Fourier series as follows 
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Using boundary condition   00, xxy  at the edge of 0y  
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Using boundary condition   0, Dxxy  at the edge of Dy   
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Using boundary condition   040,  xyy  at the edge of 0y  
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Therefore,  
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Using boundary condition   0,  Dxyy  at the edge of Dy     
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From Eqs. (5.7d) and (5.8) or (5.9), the arbitrary constant K can be obtained as follows: 
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The simultaneous Eqs. (4.10a), (4.10b), (4.10c) and (4.10d) can be realized in a simplified 

matrix form for solution of the unknown terms of arbitrary constants like mA , mB , mC  and mD  

as follows: 
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Eqs. 5.7 are used for finding the stress and displacement components at various points of the 

beam and the appropriate values of Em and Im are determined to get the values of four 

unknowns constant, namely Am, Bm, Cm and Dm by using either the matrix (5.12) or the four 

algebraic simultaneous Eqs. (5.10a), (5.10b), (5.10c) and (5.10d).  
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Case-2: Beam with lateral stiffeners  

 

In this case the trial function is assumed in terms of sine function so that its first and third 

derivatives with respect to x  can be found in terms of cosine function. The displacement 

potential function   for the case of lateral stiffener is assumed as: 
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Derivatives of Eq. (4.14) with respect to x  and y are  
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Using the derivatives of Eq. (5.13), Eq. (5.1) yields 
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The general solution of ordinary differential equation will be  
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Where mL , mM , mN  and mO  are arbitrary constants and 1r , 2r , 3r  and 4r  are the 
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Now substituting the derivatives of  and mY by using Eqs. (5.13) and (5.15) respectively in the 

expressions for displacement and stresses (5.2a, 5.2b, 4.13c, 4.13d and 4.13e). 
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Now the reactions acting at the two extreme regions of the supporting surface, y = 0 may be 

expressed in terms of Fourier series as follows: 
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The compressive load on the edge Dy   can also be given by a Fourier series as follows 
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Using boundary condition   00, xxy  at the edge of 0y  
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Using boundary condition   0, Dxxy  at the edge of Dy   
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Using boundary condition   040,  xyy  at the edge of 0y  
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Using boundary condition   0,  Dxyy  at the edge of Dy     
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Therefore, 
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From Eqs. (5.17d) and (5.18) or (5.19) 
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The simultaneous Eqs. (5.20a), (5.20b), (5.20c) and (5.20d) can be realized in a simplified 

matrix form for solution of the unknown terms of arbitrary constants like mL , mM , mN  and mO   

as follows: 
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Eqs. 5.17 are used for finding the stress and displacement components at various points of the 

beam and the appropriate values of Em and Im are determined to get the values of four 

unknowns constant, namely Lm, Mm, Nm and Om by using either the matrix (5.22) or the four 

algebraic simultaneous Eqs. (5.20a), (5.20b), (5.20c) and (5.20d). 

 

5.3.2 Case-B (Fiber orientation, θ = 00) 

 

Fiber orientation, θ = 00 is already discussed in previous chapter for both stiffening conditions, 

i.e., beam with axial stiffeners and beam with lateral stiffeners. So, a brief discussion is given 

below to facilitate the whole understanding of fiber orientation.  

 

Case-1: Beam with axial stiffeners 

 

By utilizing the same assumed potential function in Eqs. (2.19a) and (2.19b), the fourth order 

ordinary differential equation will be 
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and mA , mB , mC  and mD  are arbitrary constants 

Now substituting Eqs. (5.3) and (5.23) in the expressions for displacements and stresses as 

given by Eqs. (2.36a), (2.36b), (2.36c), (2.36d) and (2.36e), one obtains 
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The loading parameters (E0, I0, Em, Im) obtained by the use of Fourier series for the case of axial 

stiffening condition with fiber orientation θ = 00 are same as those obtained for axial stiffening 

condition with fiber orientation θ = 900. 

 

Using boundary condition, xy (x, y) = 0 and yy (x, y), at the surfaces, y = 0 and y = D, the 

following equations are obtained  
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By using Eqs. (5.27) and (5.8a) or (5.9a), the value of k is determined as  

1221

011

15
2

GEE
Zk 


 

Eqs. (5.24)-(5.28) are used for finding of stress and displacement components at various points 

of the beam and the appropriate values of Em and Im  are determined to get the values of four 

unknowns constant (Am, Bm, Cm and Dm). 

 

Case-2: Beam with lateral stiffeners 

 

In this case, by assuming the same assumed potential function in Eq. (5.22), the general 

expressions for the relevant displacement and stress components are obtained in terms of the 

four arbitrary constants, as follows:   
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The obtained loading parameters (E0, I0, Em, Im) associated with the case of lateral stiffeners 

with fiber orientation θ = 00 are as like as those obtained for lateral stiffeners with fiber 

orientation θ = 900. Once the four unknown constants (Lm, Mm , Nm and Om)  in the evaluation 

are determined with the appropriate values of loading parameters (E0, I0, Em, Im) then Eqs. 

(5.33)-(5.37) will give the explicit expressions of the elastic field of the simply-supported 

composite beam with lateral stiffeners at the opposing lateral ends.  

 

5.4 Results of Composite Beam  

 

In this section, the effects of fibre orientation on the components of stress at different sections 

of a thick beam are discussed both for axial and lateral stiffening conditions. This discussion or 

the numerical results of the analytical solution of the composite beams are presented in the 

form of graphs by considering varying beam aspect ratios, L/D=1-4. Then this effect is further 

investigated as a manner the influence of fibre orientation by considering axial, lateral and no 

stiffening conditions. Since the central objective of the present chapter is to investigate the 

effect of fiber orientation on the elastic field of the beam, results of all the parameters of 

interest are presented in a comparative fashion for the two cases of fiber orientation,  = 0o and 

90o. The glass/epoxy composite is considered as the beam material, the effective mechanical 

properties of which are listed in Table 4.1. The magnitude of the compressive stress, 

0 assumed to generate the numerical results is 40.0 MPa. 
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5.4.1 Stress field 

 
The distributions of bending stress components σxx/σ0 with respect to beam depth, y/D at the 

stiffened end section x/L=0 for axial stiffening condition are illustrated in Fig. 5.2. Bending 

stress distributions are observed to be non linear over the whole span of the beam for both fiber 

orientations. Maximum values of bending stresses are observed at the top and bottom surfaces 

of the beam with opposite sign. The maximum normalized values of the stress at the top and 

bottom surfaces are found to be nearly 7 and 11 times the applied intensity of loading for fiber 

orientation θ=00 as well as 6 and 6 times for fiber orientation θ=900, respectively. These 

maximum bending stresses are found to occur at the stiffened ends of the beam with aspect 

ratio L/D=4, which, in turn, identifies the stiffened lateral ends of the beam as the most critical 

section in term of axial stresses, which is, however, the most dominating stress components 

among the others. On the other hand, the minimum values of stress at the top and bottom 

surfaces are found to be nearly 0.5 and 6.2 times of the applied intensity of the loading for fiber 

orientation θ=00 as well as 0.2, 1.8 times of the applied intensity of loading for fiber orientation 

θ=900. These minimum values of bending stress are also found to occur at the stiffened ends of 

the beam with aspect ratio L/D=1. For most of the sections, bending stresses are found to be 

positive (tensile) for upper half and negative (compressive) for lower half of the beam. Now 

from the distributions it is verified that the fiber orientations has a significant effect on the 

lower surface of the beam for different beam aspect ratios. Because at the bottom surface of the 

beam, the difference between the stresses due to fiber orientations are decreasing by increasing 

the beam aspect ratio, whether, at the upper surface of the beam, this difference is too small 

with respect to the beam aspect ratio. 

 

The load transition section x/L=0.1 is also considered in Fig. 5.3 to get the overall idea about 

the distribution of bending stress components σxx/σ0. These components are figured out with 

respect to beam depth y/D for axial stiffening condition at different beam aspect ratios, L/D=1-

4. For all the considered beam aspect ratios, the distribution patterns are almost non linear for 

both fiber orientations and the maximum non linearity is observed for fiber orientation θ=00 

than θ=900. At both fiber orientations (θ= 00 and 900), the values of maximum bending stresses  
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are observed 0.7 and 2.8 times the applied intensity of loading for lower beam aspect ratio 

(L/D=1) and 4 and 6 times the applied intensity of loading for higher beam aspect ratio 

(L/D=4). All these stresses are developed at the lower surface of the beam and on the other 

hand, at the upper surface of the beam, the difference between the stresses for both fiber 

orientations is insignificant. So, it can be said that the degree of non linearity increases and 

individual value of stress decreases at both fiber orientations by increasing the beam aspect 

ratio. 

 

From Fig. 5.4, the distributions of bending stress σxx/σ0 components with respect to beam depth, 

y/D are observed by considering mid section (x/L=0.5) of the beam for axial stiffening 

condition. The degree of non linearity decreases with the increase of section from the stiffened 

ends, that’s why mid section is considered for observation. In this case the bending stress 

distributions pattern are also non linear over the whole span of the beam for both fiber 

orientations. The upper surface and lower surface of the beam contain positive and negative 

values of bending stress like section x/L=0.The maximum values of bending stress at the upper 

and lower surfaces of the beam are nearly 3 and 4 times the applied intensity of loading for 

fiber orientation θ=900 as well as 4 and 4.5 times the applied intensity of loading for fiber 

orientation θ=00. On the other hand the minimum values of bending stress at the upper and 

lower surfaces are nearly 0.2 and 0.5 times the applied intensity of loading for fiber orientation 

θ=900 as well as 0.5 and 1.5 times the applied intensity of loading for fiber orientation θ=00 

.These maximum and minimum values of bending stresses are obtained for beam aspect ratio, 

L/D=4 and 1. From these values it is verified that the effect of fiber orientation is decreasing by 

increasing the section from stiffened ends. At the upper and lower surfaces of the beam the 

difference between the stresses for two fiber orientations is also decreasing by increasing the 

beam aspect ratios. So, it can be said that the fiber orientation has a high effect on bending 

stresses for short beam. 

 

For axial stiffening condition, the shear stress σxy/σ0 distribution of left lateral end is zero. So, 

the shear stress distributions at section x/L=0.10 is investigated in Fig. 5.5 with respect to beam 

depth, y/D. From the distributions of shear stress it is observed that the entire top and bottom  
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surfaces and the two stiffened ends as well as the mid section are completely free from shear 

stress, which is in conformity with the physical characteristics of the present beam. Maximum 

shear stress is found to occur at the load transition section for fiber orientation θ=00, especially, 

at the vicinity of the bottom surface, which is in contrast with the standard parabolic profile. 

The shear stress distributions are found to assume the parabolic profile in a gradual fashion as 

we move towards the higher beam aspect ratios for both fiber orientations, especially, it is 

shown at beam aspect ratio, L/D=4.0. As this aspect ratio, the maximum shear stress is found to 

be nearly 2 times the intensity of the applied loading for both fiber orientations. On the other 

hand the minimum values of shear stresses are found nearly 1.5 and 0.8 times the intensity of 

applied loading and both are developed for fiber orientations, θ=00 as well as 900 respectively.  

So, the values of shear stress are increasing by increasing the beam aspect ratios. 

 

At left lateral end, the bending stress σxx/σ0 distribution with respect to beam depth, y/D is zero 

for lateral stiffening condition. That is why section x/L=0.1 is considered in Fig. 5.6 to describe 

the bending stress distribution at different beam aspect ratios, L/D= 1-4 for lateral stiffening 

condition. From these figures it is observed that the distributions are non linear over the whole 

span and non-symmetric with respect to the mid section of the beam depth. Maximum non 

linearity is observed at the bottom surface of the beam for fiber orientation θ=00 and this non 

linearity exists within beam depth 0≤y/D≤0.2 for all beam aspect ratios. After this portion of 

beam depth, this non linearity pattern is similar and at the top surface of the beam the 

difference of non linearity between two fiber orientations is too small for all beam aspect ratios. 

The maximum values bending stresses are found nearly 4 and 0.5 for both fiber orientations 

(θ=00 and 900) and these stresses are developed at the bottom surface of the beam for aspect 

ratio, L/D=1.0. Now advancing towards higher beam aspect ratio, the value of shear stress is 

decreasing for fiber orientation θ=00 and increasing for fiber orientation θ=900. At beam aspect 

ratio, L/D=4 the observed maximum bending stresses for both fiber orientations (θ=00 and 900) 

are -1 and 1. So, it can be concluded that the fiber orientation has a small effect on long beam. 

 

Now the bending stress distribution σxx/σ0 is observed in Fig. 5.7 by advancing towards the 

midsection, x/L=0.5 of the beam for lateral stiffening condition. From these distributions of 
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bending stresses at different beam aspect ratios, L/D=1-4 it is observed that the distributions 

pattern are symmetric about the mid section of the beam depth for both fiber orientations, only  

exception is observed for fiber orientation θ=00 at beam aspect ratio, L/D=1.0. Most bending 

stress is found to be positive (tensile) for upper half and negative (compressive) for lower half 

of the beam. At higher beam aspect ratio, L/D=4 the maximum values of bending stresses are 

found for both fiber orientations, θ=00 and 900 are nearly 10.5 and 10 times the applied 

intensity of loading and these values are developed at both the top and bottom surface of the 

beam. On the other hand for lower beam aspect ratio, L/D=1 again the maximum values of 

bending stresses are found for both fiber orientations (θ=00 and 900) are nearly 1.8 and 0.5 

times the applied intensity of loading and these values are developed at the top surface of the 

beam. From these values it is verified that by increasing the beam aspect ratio the difference 

between the stresses for both fiber orientations is decreasing, which identifies the fiber 

orientation has a small effect on long beam. 

 

As it appears from Fig. 5.8, the shear stress σxy/σ0 stress distributions pattern almost same shape 

at different beam aspect ratios for both fiber orientations. Here the beam is stiffened with lateral 

stiffener and stiffened end section, x/L=0 is considered for explanation. From these 

distributions it is observed that the upper surface and lower surface of the beam are free from 

shear stress, which is in conformity with the physical characteristics of the beam. Maximum 

developed shear stress is approximately 3 times the applied intensity of loading for fiber 

orientation, θ=900 and 1 time the applied intensity of loading for fiber orientation, θ=00. Both 

these stresses are developed within beam depth, 0≤y/D≤0.025 and beyond these portion of 

beam depth, the magnitudes of shear stresses are decreasing by increasing the beam depth, y/D 

until it becomes zero. Another most important observation is that the fiber orientation has no 

effect on shear stress distributions for considering section because the values of shear stress are 

remain unchanged with respect to beam depth at different beam aspect ratios. 

 

Load transition section, x/L=0 is considered in Fig. 5.9 to describe the shear stress distributions 

at different beam aspect ratios, L/D=1-4 for both fibre orientations. Midsection is not 

considered because the shear stress distribution is zero at this section. From this distribution it  
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is observed that magnitude of shear stress is zero at the top and bottom surfaces of the beam for 

both fibre orientations. At fibre orientation, θ=900 the values of shear stresses become 

maximum within the beam depth 0≤y/D≤0.02 and maximum value of shear stress is increasing  

by increasing the beam aspect ratios. The maximum value of shear stress is found two times the 

applied intensity of loading and this stress is developed at the beam aspect ratio, L/D=4. Now 

for fibre orientation, θ=00 the shear stress distributions patterns are as like as standard parabolic 

profile if we move towards the higher beam aspect ratio. In this case the maximum value of 

shear stress is found at the mid position of beam depth and this value is also two times the 

applied intensity of loading. 

 

5.4.2 Influence of fibre orientation 

 
The influence of fibre orientation on the components of stress and displacement is also 

analyzed for axial, lateral and no stiffening conditions at the lateral ends. Figs. 5.10-5.12 

represent the distribution of bending stresses σxx/σ0 at mid span section (x/L=0.5) and lower 

surface (y/D=0) of the beam with respect to different L/D ratios. For all the cases of stiffening 

conditions, the distributions values are positive, distributions pattern are almost similar shape 

and stress level increases with the increase of L/D ratios, although the individual stress level is 

much higher for both the cases of lateral and no stiffening conditions than axial stiffening 

condition. Another important observation is, the influence of fibre orientation is more at lower 

aspect ratios for both axial and no stiffening conditions than that of lateral stiffening condition. 

Now, to get the overall idea of fibre orientation, the stiffened end (x/L=0) section as well as 

section x/L=0.1 is also considered at lower surface (y/D=0) of the beam for axial stiffening 

condition. In these figures, the distribution of bending stresses is negative and influence of fibre 

orientation is more at lower aspect ratios. This influence decreases with the increase of aspect 

ratios, but still the effect is more significant at the lower surface of the beam than the upper 

surface.   

 

The distributions of maximum shear stress σxy/σ0 along the beam depth are presented in Figs. 

5.13-5.15 for various L/D ratios of the beam with axial, lateral and no stiffeners, respectively.  
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At section x/L=0.1, the shear stress distributions pattern are almost similar shape and the 

magnitude of the maximum shear stress increases with the increase of beam aspect ratios. For 

lower aspect ratios, i.e., up to L/D=4 for axial and lateral stiffeners as well as up to L/D=3 for  

no stiffeners, the influence of fibre orientation is maximum and this influence increases with 

the increase of beam aspect ratios. Beyond the considered beam aspect ratios, the influence of 

fiber orientation is still significant, but it is less than the considered lower aspect ratios. Now 

the distributions of maximum shear stresses at the stiffened end for lateral stiffening condition 

is considered to describe the overall idea of shear stresses. The value of maximum shear stress 

is almost similar with respect to the beam aspect ratios for both fibre orientations. Only 

exception is observed for L/D=1, which is due to the effect of short beam. Another important 

observation is the influence of fibre orientation is more at θ=900 than that of θ=00.  

 

In Figs. 5.16-5.18, the distribution of lateral displacement uy/D component is considered at mid 

span section (x/L=0.5) and lower surface of the beam (y/D=0) with respect to the beam aspect 

ratios for axial, lateral and no stiffeners, respectively. Here the distribution patterns are almost 

similar shape, lateral displacement increases with the increase of beam aspect ratios and fibre 

orientation effect is more at θ=900 than θ=00 for all the cases of stiffening conditions. 

Maximum displacement is observed at no stiffening condition for both fibre orientations, 

because no restriction is provided at any direction. Then, due to the restriction of displacement 

at lateral direction, maximum displacement is found for lateral stiffening condition and finally, 

lowest displacement is found for axial stiffening condition, where, restriction of displacement is 

provided at axial direction for both fibre orientations. 
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Fig. 5.1 Physical model of a simply-supported beam of composite material with 

stiffened lateral ends and fiber orientation (a) θ=900, (b) θ=00 
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Fig. 5.2 Effect of fiber orientation on bending stress components at the stiffened end 

section (x/L=0) of the composite beam with axial stiffeners for different aspect ratios 
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Fig. 5.5 Effect of fiber orientation on shear stress components at the section (x/L=0.1)  

of the composite beam with axial stiffeners for different aspect ratios 
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Fig. 5.6 Effect of fiber orientation on bending stress components at the section 

(x/L=0.1) of the composite beam with lateral stiffeners for different aspect ratios 
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Fig. 5.7 Effect of fiber orientation on bending stress components at the mid section 

(x/L=0.5) of the composite beam with lateral stiffeners for different aspect ratios 
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Fig. 5.8 Effect of fiber orientation on shear stress components at the stiffened end 

section (x/L=0) of the composite beam with lateral stiffeners for different aspect ratios 
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Fig. 5.9 Effect of fiber orientation on shear stress components at the section (x/L=0.1) 

 of the composite beam with lateral stiffeners for different aspect ratios 
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Fig.5.11 Influence of fiber orientation on bending stress components for the beam  

with lateral stiffening condition at x/L= 0.1 and 0.5 
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Fig.5.12 Influence of fiber orientation on bending stress components for the beam  

with no stiffening condition at x/L= 0.1 and 0.5 
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Fig.5.13 Influence of fiber orientation on shear stress components for the beam  

with axial stiffening condition at x/L= 0.1 
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Fig.5.14 Influence of fiber orientation on shear stress components for the beam  

with lateral stiffening condition at x/L= 0 and 0.1 

 



166 
 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aspect ratio, L/D

0 2 4 6 8 10

M
ax

im
um

 sh
ea

r s
tre

ss
, 

xy




-5

-4

-3

-2

-1

0





Fig.5.15 Influence of fiber orientation on shear stress components for the beam  

with no stiffening condition at x/L= 0.1 
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Fig. 5.16 Influence of fiber orientation on beam deflection components  

for the beam with axial stiffening condition at x/L=0.5 and y/D=0 
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Fig. 5.17 Influence of fiber orientation on beam deflection components  

for the beam with lateral stiffening condition at x/L=0.5 and y/D=0 
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CHAPTER 6 
           
 
COMPARISION AND VERIFICATION OF RESULTS 
 
 
To verify the accuracy and reliability of the method proposed, a number of problems are 

analyzed. First, the results obtained for orthotropic materials by using potential function 

approach are now compared with the classical beam theory for both axial and lateral stiffening 

conditions. Then, the solutions verified with corresponding numerical results, i.e., FEM and 

FDM by considering fiber orientations θ=00 and 900 for both axial and lateral stiffening 

conditions of same orthotropic materials. Finite difference formulation will be slightly 

discussed here for orthotropic material because it is not the major concern in this study that had 

been already formulated in several previous works [18-19]. Those works of FDM formulation 

have been used to find the solution of elastic field of all problems. Furthermore, as the 

analytical results have been discussed in details in the previous chapters, this chapter analyses 

basically the agreement of the results of the displacement potential method, classical beam 

theory and numerical methods without paying attention to the characteristics of the results. 

 

6.1 Classical Beam theory 

Although the classical beam theory may not be adequate for the analysis of stiffened short 

composite beams, the present potential-function solutions are compared with the classical 

simple beam theory in order to access the discrepancy of the solutions caused by attaching the 

stiffeners at the lateral ends. This simple beam theory basically gives the corresponding 

solutions of an unstiffened simply supported beam. Since the distribution of reaction at the 

bottom surface cannot be addressed appropriately using the elementary theory, the beam is 

considered here to be simply supported taking the resultant of the reaction forces. The solutions 

for the lateral displacement, bending stress and shear stress are obtained for the present model 

of the beam as shown in Fig. 4.1 without considering stiffeners at the lateral ends, which are 

given below as a ready reference for the interested readers. 
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6.2 Finite Difference Method 

 
Finite difference solutions are obtained on the basis of present displacement potential approach. 

The region of interest in which the potential function ψ is to be evaluated is divided into a 

desirable number of mesh points and the values of the function are sought only at these points. 

A uniform rectangular mesh network is used to discretize the beam domain. The number of 

meshes used in the x and y directions are 51 and 51 respectively. An imaginary boundary, 

exterior to the physical boundary of the beam, is considered for the present discretization. The 

fourth order partial derivatives of the governing differential equation (Eqns. 2.35, 2.37 and 

2.41) are expressed by their corresponding central difference formulae whereas, in an attempt 

to avoid the inclusion of points exterior to the imaginary boundary, the second and third-order 

derivatives associated with the boundary expressions are replaced by their corresponding 

backward or forward difference formulae, keeping the order of local truncation error the same. 

The discrete values of the potential function ψ (x, y) are solved from the system of linear 

algebraic equations by the direct method of solution (triangular decomposition method). Since 

all the components of stress and displacements are expressed in terms of function ψ, the 

parameters of interest are readily calculated from the values of ψ obtained at the mesh points of 

the domain. The detailed computational scheme for the discretization of the domain, 
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management of boundary conditions, evaluations of the parameters of interest are given in 

references [6, 18-19].   

 

6.3 Finite Element Method 
 

Finite element method is widely used all over the world for various computational purposes in 

lab and commercial areas. In this study, ANSYS has been used to solve several problems in 

order to compare and verify the analytical results. The relevant boundary conditions used are 

the same as those used in the analytical solution. Four nodded rectangular plane elements are 

used to construct the corresponding mesh network of the beam. The total number of finite 

elements used to construct the element mesh network for all problems is 6400 (80x80). All the 

elements are of the same size and their distribution is kept uniform all over the domain. The 

convergence and accuracy of the solution has been verified by varying the number of finite 

elements used to model the beam.  

 

6.4 Comparison of Solutions for Stiffened beam of Orthotropic Composite 

Material 

 

The comparison of -solutions with the corresponding solutions of the elementary beam theory 

is presented in Figs. 6.1-6.3 for both the cases of axial and lateral stiffeners. The simple beam 

theory is, however, found to be, to some extent, in contrast with the other solution, which is 

because of the fact that it does not take into account the influence of stiffener at the lateral ends. 

In general, the simple beam theory under predicts the lateral deflection of the beams, which is, 

however, found to be influenced by the type of stiffeners at the lateral ends.  For the case of 

axial stiffeners, the prediction by the simple theory is reasonably close to the other solution, 

which is however not the case for lateral stiffeners at the ends. 

 

Fig. 6.2 shows the comparison of the two solutions of bending stress at sections x/L= 0 and 0.5 

of the beam for both the cases of axial and lateral stiffeners. The bending stress distributions 

obtained by the elementary theory show linear variations over the beam depth for both the  
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stiffener. Moreover, the agreement between the solutions are identified to be independent of 

section concerned, that is, the status of agreement remains unchanged for sections at or away 

from the stiffened ends. Another interesting observation is that the axial stiffeners cause the 

distribution of bending stress to deviate more from that of elementary solutions than the case of 

lateral stiffeners, in terms of both magnitude and nonlinearity. As a result, two solutions of 

bending stress distribution at the mid-span section of a simply-supported beam of L/D = 3 are 

found to be quite close to each other, which is however not the case with axial stiffeners.  

   

The shear stress distributions at section x/L= 0.25 of the beam (L/D = 3) obtained by two 

different approaches for both the cases of axial and lateral stiffeners are presented in Fig. 6.3. 

For both the cases of stiffeners, two solutions are found to be in good agreement, which, in 

turn, reveals that the stiffeners at the lateral ends of the simply-supported beam do not make the 

actual distributions of shear stress, especially for sections away from the stiffened ends, much 

different from those predicted by simple beam theory.  
 

6.5 Verification of Solutions for Stiffened Beam with Fiber Orientation θ=00 

 
An orthotropic composite (glass/epoxy) beam with fiber orientation θ=00, beam aspect ratio 

L/D=3 and the uniform loading parameter σ0=40 MPa has been chosen for the comparison. This 

comparison is figured out by considering stiffened end (x/L=0) or near to the stiffened end 

(x/L=0.1) and mid section (x/L=0.5) or near to the mid section (x/L=0.25) of the beam by 

considering both axial and lateral stiffening conditions. Here, near to the stiffened end 

(x/L=0.1) and near to the mid section (x/L=0.25) is considered for those particular cases where 

beam properties i.e. normalized displacement and normalized stresses are zero at the stiffened 

end and mid section of the beam. A good agreement between the analytical and numerical 

results can be realized from Figs. 6.4-6.6. These figures show the comparison of normalized 

lateral displacement (uy/D), normalized bending stress (σxx/σ0) and normalized shear stress 

(σxy/σ0) components at different sections of the beam for both axial and lateral stiffening 

conditions. One can see that even at the stiffened end (x/L=0) or near to the stiffened end 

(x/L=0.1) the results are almost same. Slight discrepancies of the results of FEM with those of  
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the present analytical and FDM solutions can be attributed to the fact that the FDM solutions  

are obtained using a relatively lower mesh density compared to that of FEM solution. The 

result of the present analytical method exactly conforms to the results of FEM. The present ψ-

solution is free from the limitation and provides reliable and accurate results at any section of 

the orthotropic material with fiber orientation θ=00. 

 

6.6 Verification of Solutions for Stiffened Beam with Fiber Orientation θ=900 

 
The parameters chosen for the comparison of the results of the present orthotropic composite 

(glass/epoxy) beam are: fiber orientation θ=900, beam aspect ratio L/D=3 and the maximum 

intensity of the bending load σ0= 40 MPa. The comparison of normalized displacement 

component ux/L and normalized stress components σxx/σ0, σxy/σ0 are displayed in Figs. 6.7-6.9 

respectively at two different sections of the beam for both axial and lateral stiffening conditions 

of the beam. It is noted that all the results obtained by ψ-solution, FDM and FEM agree well 

within acceptable limits. The slight discrepancy associated with FDM, which was discussed in 

section 6.5, has also found in current problem. 
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Fig. 6.1 Comparison of solutions for lateral displacements at section, y/D = 0.5  

of the stiffened orthotropic composite beam, L/D = 3 
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CHAPTER 7 
           
 
CONCLUSIONS AND RECOMMENDATIONS 
 
 
7.1 Conclusions 
 
The analytical solution for the elastic field of a stiffened simply-supported composite beam 

subjected to a uniformly distributed loading has been successfully derived for both isotropic 

and orthotropic materials. Having appropriate analytical expressions for all the necessary 

boundary conditions, an efficient and accurate analytical scheme has been developed in terms 

of a potential function defined in terms of displacement components for the analysis of 

stiffened thick composite beam. The analytical scheme developed is not only limited to the 

problems of isotropic materials, but also equally applicable to orthotropic composite materials 

with all possible mixed modes of boundary conditions, whether they are prescribed in terms of 

displacements, strains or stresses or even any combination thereof. The superiority of the 

present modelling scheme over the existing approaches is that it reduces the solution of a plane 

problem to the determination of a single function satisfying a single differential equation of 

equilibrium. The capability of the method is demonstrated by solving a number of problems of 

stiffened composite beam of isotropic as well as orthotropic composite materials with different 

types of stiffeners as well as different types of fiber orientation. 

 

The overall results of the stiffened simply supported composite beam under distributed loading 

reveals that the presence of stiffeners has a significant influence on the elastic behavior of the 

beam. This conclusion has been made evident when the results of elastic field are analyzed in a 

comparative fashion for axial, lateral and no stiffening conditions. The influence of beam 

aspect ratio also plays an important role in defining the state of displacement and stresses in the 

beam. The intensity of stress is found to decrease with increase of beam aspect ratio. Further 

from the comparison of results of fiber reinforced composite beam with three different types of 

stiffening conditions, it is revealed that the fiber orientation effect is critical shear stress in the  
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neighbourhood of to the stiffened ends, especially for lower aspect ratio. The lateral 

displacement however shows the dominating characteristics for the case of fibers oriented 

perpendicular to the direction of loading as well as also for all three stiffening conditions. 

 

An analytical method usually provides exact solution whereas numerical methods give 

approximate solution. Exact analytical solution is always preferable over any numerical 

solution of a particular problem. But the practical fact is that the analytical methods of solutions 

are usually limited to only very ideal cases. That is why the analytical methods of solution 

could not gain popularity in the field of stress analysis of actual structures. An attempt is made 

to remove the limitation of the literature by developing a new analytical scheme for stress 

analysis of stiffened simply supported composite beam. In order to check the reliability and 

accuracy of the present analytical solutions, results are compared with the corresponding 

solution of approximate numerical methods, namely, Finite Element Method and Finite 

Difference Method. This is because of the fact that no other reliable solution is available in the 

literature that can be compared with the present solutions. From comparison of the results of 

different methods, it is observed that solutions are in excellent agreement with each other. More 

specially, the present analytical solutions are found to be almost identical to those of the FEM 

with few exceptions only at the stiffened ends. Finite difference solutions also compare well 

with the present solutions, but slight discrepancies are observed for some sections, especially at 

the stiffened end, which is probably because of low mesh density used to model the beam by 

Finite difference method. 

    

7.2 Recommendations 

 
This is completely a new analytical method to find out the stress and displacement filed of a 

stiffened simply-supported composite beam.  

 

 The method has been investigated and instituted as capable to deal isotropic and orthotropic 

stiffened beams effectively for uniformly distributed load. The present approach needs to be 

expanded for the analytical solution of anisotropic materials. 
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  It also require to be investigated for a variety of loading configurations like three point 

bending, four point bending etc. in order to have its wide range of adoptability and 

versatility. 

 

 The method can effectively and efficiently deal with the structures of unidirectional 

composite lamina. Further, even for a unidirectional lamina, the loading should be either in 

the direction of fibers or perpendicular to the fiber. Therefore, the method, at its present 

states, cannot be directly applied to laminated (multilayered) composites with fibers 

oriented in different directions. However, with minor modification in the formulations, the 

method can be made suitable for laminated composites without any limitation of the fiber 

direction. 
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