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Abstract

This thesis deals with the analysis of stress and displacement fields of a mixed boundary-
value problem of fiber-reinforced composite materials. More specifically, the elastic field of
a thick stiffened simply-supported composite beam is investigated using an efficient
analytical scheme based on displacement-potential field formulation.

In the present displacement-potential approach, the elastic problem of composite materials
is formulated in terms of a single potential function of space variables, which is defined in
terms of the displacement components of plane elasticity. Accordingly, all the parameters
associated with the solution, namely stress, strain and displacements are expressed in terms
of the same potential function, which eventually reduces the plane problem to the
determination of the potential function from a single partial differential equation of
equilibrium. The solution of the equilibrium equation is obtained in the form of infinite
series, the coefficients of which are determined by appropriately satisfying the boundary
conditions at different edges of the beam.

Analytical expressions of the elastic field of the simply-supported beam are derived in terms
of the potential function using Fourier series. Solutions are obtained for two different types
of stiffeners (axial and lateral stiffeners) at the opposing lateral ends of the beam. Both the
isotropic as well as fiber-reinforced composite materials are considered for the present
analysis. Some of the practical issues of interest, like the effects of beam aspect ratio and
stiffeners are discussed in relation to the composite beam. The analytical scheme is then
extended to determine the fiber-orientation dependent stresses in stiffened simply-supported
beam. Two limiting cases of fiber orientation (8 = 0° and 90°) are considered for a wide

range of beam aspect ratio.

In an attempt to verify the reliability and accuracy of the analytical scheme developed, the
present potential function solutions are compared with the corresponding solutions obtained
by classical beam theory and verified with two standard computational methods of
numerical techniques. The four solutions are found to be in excellent agreement with each
other for all the cases of stiffeners and fiber orientations considered, which eventually

establishes the soundness and appropriateness of the analytical scheme developed.

XVi



CHAPTER1

INTRODUCTION

1.1 Preamble

The use of stiffeners, especially in the construction of marine and aerospace structures is quite
extensive. Stiffeners are usually placed along the boundaries of structural components mainly
to increase the stiffness of the components, which, in turn, reduces the level of deformation as
well as overall weight of the structure. As a result, the subject of analyzing the mechanical
behaviour of stiffened structures has received widespread attention. In particular, reliable and
accurate analysis of stresses in these structures is of great practical importance as far as the

modern design philosophy is concerned.

In the solution of stiffened structures, the physical conditions of stiffeners are usually modelled
in terms of a mixed mode of boundary conditions, namely known values of loading (traction)
and restraints for the stiffened sections. In general, stiffeners are of directional type, i.e.,
stiffness of a surface at which they are employed is enhanced in a particular direction, namely
normal and tangential directions. As far as the opposing lateral ends of a beam are concerned,
stiffeners may primarily be of two types, namely, axial stiffeners and lateral stiffeners. Axial
stiffeners are those which prevent axial deflection caused by bending of the beam, but the
stiffened section is free to assume any deflection along the lateral direction. On the other hand,
lateral stiffeners prevent deflection along the lateral direction, but the section is free to assume

any axial deflection.

Now-a-days, the theory of elasticity has found considerable application in the solution of
engineering problems. There are many cases where elementary theory is inadequate to give
accurate results. The elementary theory is insufficient to give the information regarding local

stresses near the load and near the supports/stiffeners of beams as well as in regions of sharp



variation of structure. This led to the emergence of a special trend of physics, i.e., the theory of
elasticity to apply to elastic solids. The equations of theory of elasticity are a system of partial
differential equations. In cases where a rigorous solution cannot be readily obtained,
approximate method, such as, numerical methods have been developed. Numerical methods
give approximate results instead of exact solution that can be obtained from analytical method.
That is, analytical method is always preferable because results obtained by approximate method
are not always reliable and acceptable for some applications where accuracy is important.
These are sometimes expensive. Sometimes analytical method is not independently adequate to
solve a practical problem and it needs some help from numerical methods.

Due to outstanding advantage of composite materials, they are being increasingly used
structural elements in various problems. The response of stiffened composite beams to
mechanical loadings largely depends on the fibre orientation. Therefore, the effect of fibre
orientation on the distribution of stresses and displacements are required to be analyzed to
ensure proper and safe application.

1.2 Literature Review

The theory of elasticity deals mainly with deformation parameters and stress parameters for the
solution of two dimensional problems since most of the three-dimensional problems may be
resolved to a two dimensional one. If it remains beyond the extent of analytical studies anyway,

the problem has to be handled experimentally as a particular case.

Although the theories of elasticity had been established long before, the solutions of practical
problems started mainly after the introduction of a stress function by George Biddell Airy [1].
The Airy’s stress function is governed by a fourth order partial deferential equation and stress
components are related to it through its various second order derivatives. The stress function
solutions were initially sought taking polynomial expressions of various degrees and suitably
adjusting their coefficients. By this way, a number of practically important problems of long
rectangular strips could be solved [2]. But the success of this approach was very limited. Using
these polynomial expressions, an elementary derivation of the effect of the shearing force on



the curvature of the deflection curve of beams were made. The problem of stresses in masonry
dams is of great practical interest and has been attempted for solution using polynomial
expressions for the stress functions [1-2]. But the solutions obtained do not satisfy the

conditions at the bottom of the dam where it is connected with the foundation.

Thereafter the use of trigonometric series is considered more fruitful in producing results
instead of polynomial expressions. The first application of trigonometric series in the solution
of elastic problems using stress function method was given by Ribiere [1]. Further progress in

the application of these solutions was made by Filon [1].

A number of works are found with the stress function in this regard [3-6]. Even tough the stress
analysis problems are bearing enumerable shortcomings to be addressed yet. The stumbling
block of obtaining exact solution using stress function is the inability of managing the physical
conditions imposed on them, i.e., management of boundary conditions of practical problems.
Boundary restraints specified in terms of the displacement components cannot be satisfactorily
imposed on the stress function. Since most of the practical problems in elasticity are of mixed
boundary conditions, the approach fails to provide any explicit understanding of the state of
stresses at the critical regions of supports and loadings. Moreover, the famous Saint Venant’s
principle is still applied and its merit is evaluated in solving problems of solid mechanics in
which full boundary effects could not be taken into account satisfactorily in the process of
solution [7-9]. For complex shapes of boundary, the difficulties of obtaining analytical
solutions become formidable. These difficulties were partially avoided by renovating to
experimental methods, such as extensometers, strain gauges or photoelastic methods. Using
Photoelasticity, Hetengi investigated the stresses in the threads of a bolt and nut fastening. Even
now, photoelastic studies are being carried out for classical problems like uniformly loaded
beams on two supports mainly because the boundary effects could not be taken into account
fully in the analytical method of solutions.

The drawback of Airy’s stress function and the difficulties of experimental works led to works
for finding ways to solve the engineering problems where boundary conditions are prescribed

in terms of displacements. Thus the displacement formulation was introduced for those

3



problems where boundary restraints exist [10]. This process involves finding of two
displacement functions simultaneously from the two second-order elliptic partial differential
equations of equilibrium, which is extremely difficult and the problem becomes more serious
when the boundary conditions are mixed. The difficulties involved in trying to solve practical
stress problems using the existing models have been pointed out by Durelli and
Ranganayakamma [11]. The complications associated with the solution of beams, especially
short/deep beams, were also brought to light by Rehfield and Murthy [12], Murty [13], Suzuki
[14], and Hardy [15].

Since neither the stress function nor the displacement formulation is suitable for solving
problems of mixed-boundary conditions, a new mathematical model called displacement
potential formulation is used to solve the elastic problems [16-20]. The current modelling
approach based on displacement potential formulation reduces the two-dimensional problem to
the solution of a single differential equation of equilibrium and also enables the mixed mode of
the boundary conditions to be managed appropriately. It is worth mentioning that a number of
researchers worked on the advancement of displacement potential approach to handle the
structural analysis with different loading and supporting conditions. Ahmed et. al. have
developed numerical solution of both ends fixed deep beams based on displacement potential
formulation [16]. An investigation of stresses at the fixed end of deep cantilever beams has
been carried out by Ahmed et. al.[17]. Akanda et. al. have carried out stress analysis of gear
teeth using displacement potential function and finite differences [19]. The potential of the
formulation has also been investigated by Ahmed et. al. [18] to design optimum shapes of tire-
treads for avoiding lateral slippage between tires and roads. Recently, Ahmed et. al. [18] have
proposed a general mathematical formulation for the solution of mixed-boundary-value
problems of anisotropic materials. Debnath et. al. have carried out analytical solution of a deep
stiffened cantilever beam of orthotropic composite material [21], and stiffened composite struts
subjected to eccentric loading [22]. Further, Rahman et. al. have analyzed the stress analysis of

cracked stiffened panels under flexural and axial loading [23]

Exact analytical solutions to the elastic field of structural components of composite materials,

especially with stiffened beam are hardly available in the literature. This is mainly because of



the lack of suitable mathematical formulations that can model of the problem appropriately, and
thus the solutions of such problems are usually investigated through numerical methods [24-
27]. On the other hand, the investigation of the effect of fibre orientation on the mechanical
behaviour of structural components has now become a key subject in the field of fibre
reinforced composite structures, and the corresponding reporting in the literature is quite
extensive, some of which are cited as examples in Reference [28-31]. For practical cases, these
investigations are also usually found to carry out by numerical approaches, as the exact
analytical methods are limited to very ideal cases. Recently, some experimental investigations
of the same are also being carried out mainly to validate the numerical approaches [32].
However, a reliable and accurate investigation of the effect of fibre orientation on the critical
stresses, especially in a stiffened simply supported beam of fibre-reinforced composites has not

been yet conducted.

1.3 Stiffened Structures

Stiffeners are secondary plates or sections which are attached to beam boundaries or webs or
flanges to stiffen them against deformations. There are two principal types of stiffener:
e Longitudinal web stiffeners, which are aligned in the span direction

e Transverse stiffeners, which are aligned normal to the span direction.

Longitudinal ____
stiffeners

Transverse
stiffeners

o

Fig. 1.1: Stiffeners on box griders



Almost all main bridge beams have stiffeners. However, most only have transverse web
stiffeners, i.e., vertical stiffeners attached to the web. Thick beams sometimes have longitudinal
web stiffeners. Stiffeners are extensively used in marine, aerodynamic and automobile

structures. Some of the applications of stiffened structures are shown in Fig. 1.2:

Stiffeners

(@) Ship body (b) Air-craft body

Fig. 1.2: Stiffeners used in small ship and air-craft body

In the present research, the proposed stiffening conditions which are used in beam boundaries:

(@) Axial stiffening condition: Prevent axial deflection of the lateral ends, which are however
free to assume any deflection along the lateral direction of the beam.

(b) Lateral stiffening condition: Prevent deflection along the lateral directions of the ends, but

they are free to assume any deflection along the axial direction of the beam.



1.4 Fiber-reinforced composite

Composite materials are materials made from two or more constituent materials with
significantly different physical or chemical properties, that when combined, produce a material
with characteristics different from the individual components. The individual components
remain separate and distinct within the finished structure. The new material may be preferred
for many reasons: common examples include materials which are stronger, lighter or less

expensive when compared to traditional materials.

Composite materials are generally used for buildings, bridges and structures such as boat hulls,
swimming pool panels, race car bodies, shower stalls, bathtubs, storage tanks, imitation granite
and cultured marble sinks and counter tops. The most advanced examples perform routinely on

spacecraft in demanding environments.

Typical engineered composite materials include:

e Composite building materials such as cements, concrete
e Reinforced plastics such as fiber-reinforced polymer

e Metal Composites

e Ceramic Composites (composite ceramic and metal matrices)

Among these composite materials, fiber-reinforced composites are made up of individual
materials referred to as constituent materials. There are two main categories of constituent
materials: matrix and reinforcement. At least one portion of each type is required. The matrix
material surrounds and supports the reinforcement materials by maintaining their relative
positions. The reinforcements impart their special mechanical and physical properties to
enhance the matrix properties. A synergism produces material properties unavailable from the
individual constituent materials, while the wide variety of matrix and strengthening materials

allows the designer of the product or structure to choose an optimum combination.

Fiber-reinforced composite materials have gained popularity (despite their generally high cost)



in high-performance products that need to be lightweight, yet strong enough to take harsh
loading conditions such as aerospace components (tails, wings, fuselages, propellers), boat and
scull hulls, bicycle frames, swimming pool panels and racing car bodies. Other uses include

fishing rods, storage tanks, swimming pool panels, and baseball bats.

1.5 Analysis of Thick Beams

A beam may be considered as one of the most commonly used structural elements in
engineering applications. A beam is said to be a thick beam when the thickness (depth) is
comparable to its span. In the field of civil engineering application, the beams are known as
deep beams while the same in the area of mechanical engineering is termed as thick or short
beam. In this research, in an attempt to analyze the thick beam, the aspect ratio, that is, span to
depth ratio (L/D) is considered from 1 to 10.

Design of thick beams based on classical Euler bending theory can be seriously erroneous,
since the simple theory of flexure takes no account of the effect of normal pressures on the top
and bottom edges of the beam caused by the loads and reactions [4]. The effect of normal
pressures on the stress distribution in thick beams is such that the distribution of bending
stresses on vertical sections is not linear and the distribution of shear stresses is not parabolic.
Consequently, a plane transverse section does not remain plane after bending, and the neutral
axis does not lie at the mid-depth, which eventually causes the basis of classical theory to be
violated. In an attempt to make up the limitation, different theories as well as methods of

solution have been reported in the literature [3-5, 13-14].

The use of standard structures, like beams, columns, etc. with stiffeners on part or full of their
bounding surfaces is receiving increased importance in order to satisfy precise and strict design
criteria in many of the engineering applications. Stiffened boundaries usually help in reducing
the level of deformation in the structural elements, which eventually resist the change of the
original shape of the bounding surfaces under loading. But structures with stiffened boundaries

usually remain away from the scope of analytical solutions, because the physical conditions of



stiffened boundaries need to be mathematically modelled in terms of a mixed mode of
boundary conditions.

Again the use of fibre-reinforced composites is found to increase extensively in almost all the
areas of structural applications, mainly because of their specific characteristics of light-weight
and high-strength. As a result, the analysis of composite structures has now become a key
subject in the field of solid mechanics. These analyses are mainly handled by approximate
numerical techniques [33-34], as, in most cases, the available mathematical models are found to

be inadequate to provide exact analytical solutions to them.

Since the exact analytical solution of mixed-boundary-value elastic problems, especially with
fibre reinforced composite materials is beyond the scope of existing mathematical models of
elasticity, the use of a new mathematical formulation will be investigated to analyze the elastic
behaviour of a stiffened thick beam of fibre reinforced composites under different loading and
support arrangements. It would be worth mentioning that, as far as the reporting in the literature
is concerned, the author has not come across any reliable study of the present problem, either
theoretical or experimental. Therefore, the analytical solution for a stiffened thick beam of
orthotropic as well as isotropic composite materials has been chosen as the subject of the
present thesis.

1.6 Objectives

The present study is an attempt to extend the capability of the displacement potential

formulation in order to address the structural analysis of orthotropic composites materials

having mixed boundary conditions. The main objectives of the present research work are

summarized as follows:

a. Development of a suitable mathematical scheme for the analysis of thick, simply-supported
composite beams with stiffened lateral ends



b. Determination of the elastic field of a stiffened isotropic beam using the analytical scheme
developed

c. Investigation the effect of stiffeners at the lateral ends of a stiffened thick simply-supported
fibre reinforced composite beam.

d. Investigation of the effect of fibre orientation on the state of deformation as well as stresses
in the stiffened composite beam

e. Establishment of credibility of the analytical scheme for the analysis of stiffened beams by

comparing the results with those of standard computational technique.

Results of the present analysis are expected to provide a reliable design guide for thick
composite beams of the present kind, which will be of significant help for their improved and
economic design. More importantly, the present analytical solution will remain as a standard
guide for checking reliability and accuracy of approximate solutions of the problem. The study
would be particularly important for machine parts under bending, supported on two supports
which are placed/inserted in a position that allows no axial deformation of the structural

member.

1.7 Study Procedure

In the present study, the elastic behaviour of stiffened thick beams of composite materials are
investigated through an analytical procedure based on displacement potential formulation,
which is suitable for mixed-boundary-value elastic problems of composite materials. In the
displacement potential boundary modelling approach, the plane elastic problem is formulated in
terms of a single function of space variables, called as displacement potential function which is
defined in terms of displacement components of plane elasticity, which has to satisfy a single
fourth-order partial differential equation of equilibrium. The relevant displacement and stress
components are derived into infinite series using Fourier integral with coincided boundary
conditions along with the physical boundary conditions. The beam is assumed to be simply
supported on two supports at the bottom, and the two opposing lateral edges are stiffened for

which any change in the axial displacement for axial stiffener and any change in the lateral
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displacement for lateral stiffener are restrained. First isotropic material is taken into
consideration for the beam material and the respective material chosen is steel. And finally
fiber-reinforced orthotropic composite material is considered by taking glass/epoxy material
into consideration. The fibres of the orthotropic composite materials are assumed to be situated
along the beam length (fiber orientation, 0% and along the beam depth (fiber orientation, 90°).
The numerical solution of the composite beam is also obtained by using finite element method
and finite difference solution with the help of standard commercial softwares which are used to

validate the accuracy of the present potential function solutions.

1.6 Significance of Present Study

The present study has the significant importance in regard to academic interest, design
reference and manufacturing engineering. The study presents the application of a new concept,
i.e., displacement potential approach for the analysis of stress and displacement in structures for
isotropic as well as orthotropic materials under mixed mode of boundary conditions. It is
expected to provide some additional aspects to the theory of elasticity, which in turn may
encourage academicians and researchers to explore the concept further and eliminate the lack of
suitable method for dealing with mixed boundary value problems of complex geometries. In
this study a number of problems of stiffened structures are solved by using the present
analytical methods and results are presented in the form of graphs. The results may be used as a
database and may be helpful to the designers working in the industries of aerospace,
shipbuilding and automobile, where numerous composite structures are used. The present study
of stiffened beam analysis would be very pertinent for those machine parts where expansion in

one dimension is restricted.
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CHAPTER 2

THEORETICAL OUTLINE AND FORMULATION

2.1 Preamble

The theory of elasticity sets forth the solution of problem in determining internal forces in a
solid elastic body. The internal forces represent interaction between molecules; they insure the
external forces applied to body. Under the action of external forces the body deforms, the
mutual position of molecules changes and so do the distance between them. The action of
external forces that produce deformation gives rise to additional internal forces causing the

stress of the bodly.

Thus structural analysis necessitates the requirements to investigate the state of stresses, strains
and displacements at any point due to given body forces and given conditions at the boundary
of the body. Most of the cases the requirement is to find the stress distribution in an elastic
body. In some cases, it is also required to find the strain distribution of the body. The state of
stress, strains and displacement are termed as the elastic field. A complete description of the
elastic fields requires specification of forces acting on the elementary body and its surface

orientation.

2.2 Equilibrium and Compatibility Conditions

Let us take an infinitesimal cubic element from an elastic body with sides parallel to the
coordinate axes. To ensure the equilibrium of the element, six forces will act on the six
different faces of the element. The forces acting on each face may be resolved into two types
i.e. one perpendicular to the plane of the face and the other parallel to the face. The stress
component acting perpendicular to the face is the normal stress and the two stress components

acting parallel of the face are the shearing stress as illustrated in Fig. 2.1.
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Fig. 2.1 Elementary cubic body

In order to provide complete information of an elastic field, it is necessary to determine nine

stress components (o ,,,0,,0,,0,,0,,0,.,0,,0,ando,) and six strain components

(1€ €01 VxrrVy,@NA Y, ). Instead of strain components, sometimes the displacement
components (u,,u, andu,) are determined. It is worthy to mention that the components of

strain and displacement can be determined from each other and each set provide the similar
information. Therefore, either the components of strain or displacement are sufficient for a

particular purpose.

According to general conventions, the normal stress is taken positive when producing tension

and negative when producing compression. On any side the direction of the positive shearing
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stress coincides with the positive direction of the axis if the outward normal of this side has the
positive direction of the corresponding axis. If the outward normal has a direction opposite to
positive axis the positive shearing stress will also have the opposite direction of the
corresponding axis. The first subscript of the symbol indicates the direction of the normal of the
plane on which the stress acting and the second subscript indicates the direction of stress. By a
simple consideration of the equilibrium of the element shown in Fig. 2.1, it can be shown that

Oy =0y, 0,=0, and o, =c, Thus, the nine components of stress are reduced to six

z

Oy Oy Oy, Oy 0, and o, [1-2].

From the consideration of an infinitesimal cubic element surrounding a given point in a body, it
is found that the static equilibrium of forces requires at this point is to satisfy the followings

equations:

WwoZTy Ty +Fy:0 > (2.1)

oz oy X _/

These equations are known as the equations of equilibrium, where Fy, Fy and F, are the
components of the body force per unit volume in X, y and z directions respectively [2].

The six stress components satisfy the above mentioned three equations of equilibrium, but it is
not practicable to obtain six stress components solving three equations. As such consideration
of more relations is the option to have equity in number of variables as well as equations. In
this regard, following six relations are defining the three strain components in terms of the three
displacement components through partial differentiation [2].
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ou, ou, ou

Ey = VEy = €, = ——,
*ooox Y oy 0z
du, 0ou, _ou,  Qu, ou, ou,

AL 'z + x
& oy  ox e =5 oy 4 ox o1

(2.2)

In addition, the six stress-strain relations are also there. Thus one can have altogether 15
unknowns and 15 equations. This system of equations is generally sufficient for the solution of
an elasticity problem.

By differentiation and simple manipulation of Eq. (2.2), the following set of differential
equations can be obtained.

a2‘9><>< azgyy _ 627/Xy . Zazgxx _g _87/3/2 + ayxz +ayXV

oyt ox* oxoy oyoz ox\ ox oy o

azgyy azgzz — 627/yz . 28283’3’ _E ayyz _ ayxz + ayXV (2 3)
o> oy*  oyor oxez oy\ ox oy oz '
62822 + 82‘C"xx _ 82]/xz . 282822 :g 87/yz + a7/xz _ayxy

ox: oz oxor ' oy oz\ ox oy @z

These differential relations are called the conditions of compatibility. The solution of an
elasticity problem must satisfy the equilibrium i.e. Eq. (2.1) and the compatibility conditions
i.e. EQ. (2.3) along with the boundary conditions.

2.3 Hooke’s Law
In the simplest approximation the relation between stress and strain is taken to be linear and
called Hooke’s law named after the 17" century British physicist Robert Hooke. The most

general form of linear stress-strain relationship for anisotropic material is given by the
following expression [38].
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o g
XX Ch Cp C3 C,p Cg Cp Cy; Cg Cp X
g

ny C21 C22 C23 C24 C25 C26 C27 C28 C29 vy

o z C31 C32 C33 C34 C35 C36 C37 C38 C39 € z

Oy, Cu Cp Cp Cy Cp Cp Cpy Cpi Cy 7yz

On(=|Cn Gy GCs3 GCgy G5 Gy Gy Cgg Coo [\ Vi (2.4)

Oyy Ce1 GCo» Cez Cgs Cos Cgs Cgr Ceg Cgg Y xy

O yx C;1 Cpp Gy Gy Gy Gy Gy Cpg Cp }’yx

O Xz C81 C82 C83 C84 C85 C86 C87 C88 C89 }/ 7

Gzy _C91 C92 C93 C94 C95 C96 C97 C98 C99 _ }/ 2y
Where the 81 coefficients Cy;,......... , Cyy are called elastic coefficients or stiffness. For the
equilibrium condition it is found thato; =o; y;=7;. As such o, =0,, 0,=0,,
Gyz = Gzy’ 7/xy = 7/yx’ 7/zx = 7/22 and 7/yz = 7zy'
Therefore, the stress—strain relation becomes as follows

GXX _Cll ClZ Cl3 Cl4 ClS ClG ] 8XX

GW C21 C22 CZ3 CZ4 C25 CZG gW

On| |G G Gy Gy Gy Cy ||8

- 25

ny Cu Cpp Cp3 Gy G Cyg yyz ( )

O Cs; Gy Cs3 Csy Cos Cop ||V

Ow| LG Co2 Gz Cos Cos Cp || 7y

From the consideration of strain energy density, it can be shown that Cij =C ji
Therefore,

ClZ = CZl’ C13 = CSl’ C14 = C411 C15 = C51’ C16 = C6l

C23 -

Gs= Gy Ge= Ga CGs= G Ge= Gy Ge= G

C3y Cpu= Cpy Cyu= Csy Cpg= Cgy Gy = Cy
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Thus, the 36 coefficients of the stiffness matrix in Eg. (2.5) come down to 21 and the stiffness

matrix turns to a symmetric matrix as follows.

[C ]_ Ciz Cx3 Cg3 C3p Cg Cge
4 (2.6)

Materials having symmetry with respect to one plane is referred to as monoclinic materials. For

such case of material, transformation of axis can be done and found that
Cy= Cg= Cp= Cx= Cy = Cyu=C, =C; =0 and then the number of elastic

coefficient becomes 13 only.

Thus, the stiffness matrix of Eq. (2.6) further reduces to

_C11 Cpb C3 0 0 Cy |

Chb Cp Cp 0 0 Cy

[C ]_ Cis Cp Cyu 0 0 cCy
i (2.7)

0 0 0 c4cp O

0 0 O cpecyy O

1Ci6 C2 Cs 0 0 0_

Again an orthotropic material has at least two orthogonal planes of symmetry, where material
properties are independent of direction within each plane. Normally the reference system of
coordinates is selected along the principal planes of material symmetry. Examples of an

orthogonal material include a single lamina of continuous fibre composite arranged in a

rectangular array, a wooden bar and rolled steel. For such case C, =C, =C,; =C,s =0 and
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then this type of materials require 9 independent variables as elastic constants in their stiffness

matrix as follows.

Cll C12 Cl3 O O O
C12 C22 C23 O O O
F C13 C23 C33 O O O
C.. |Orthotropic) =
0 0 0 0c,O0
0 0 0 0 0 ¢y
Where
_ l_luyz:uzy B _ :uxy + :uzy:uxz
Cll T T - - o C12 - - - o
E,E,V EE,V
Hy, +:uzy:uyz B 1- My Koy
E,E,V E,E,V
:uyz +:uyx:uxz i l_luxy:uyx
O =S =r—— O S p——
E,E,V E,E,V
Cu = Gyz;CSS = sz;cee = ny

_ l_luxy:uyx _:uyz:uzy — Hy Hy, _zluyx:uzy:uxz
E,E,E,

\%

The reciprocal relations are given by

ﬂ—ﬂ'i =XV,
E_ E LR ’ ’

i i

Most metallic alloys and thermoset polymers are considered isotropic material, where by
definition the mechanical properties are independent of direction. In this case there are infinite
planes of symmetry. Such materials have only two independent variables i.e. elastic constants

in their stiffness matrix as
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[c,, ¢, ¢y 0 0 0 ]
C, Cy Cp 0 0 0
C, C, Cy 0 0 0
v.lo 0o o =% g g
[c, [nsotropic) = > (2.9)
0 0 o0 0 u"%2 g
2
0 0 o0 0 o fu_‘e
L 2 i
These constants are given by
C. = E(l—y) C e = HE and Su~Co _ E
Yo2u)tp) T -2u)tt ) 2 20+2u)L-2u)

The summarised form of independent elastic constants for general anisotropic, anisotropic with
symmetric stress and strain components or with energy consideration, orthotropic and isotropic

materials can be thus presented in Table 2.1 as follows.

Table 2.1 Number of elastic constants

Serial | Material Condition No. of constant

1 Anisotropic | General form 81

2 Anisotropic | Equilibrium condition 36

3 Anisotropic | Stain energy consideration 21

4 Monoclinic | Symmetric to a plane 13

5 Orthotropic | Having mutually perpendicular 09
planes of symmetry

6 Isotropic Same elastic properties in all 02
directions (having infinite
perpendicular planes of symmetry)
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2.4 Two-Dimensionalization of the Problem

Although the elastic analysis in general form is of three dimensional, orthotropic and isotropic
materials can be analyzed using two dimensions on the consideration of symmetry of planes.
For such simplification there are two options, i.e., (i) plane stress condition and (ii) plane strain

condition.

Plane stress condition is considered to be a state of stress in which the normal stress o, and the
shear stresses oy, and gy, directed perpendicular to the plane are assumed to be zero (but not the
strain). Generally, members that are thin (those with a small z dimension compared to the in-
plane x and y dimensions) and whose loads act only in the x-y plane can be considered to be
under plane stress. Thus, a state of plane stress exists in a thin object loaded in the plane of its
largest dimensions. The non-zero stresses oy, ayy, and oy lie in the x-y plane and do not vary in
the z direction. A thin beam loaded in its plane and a spur gear tooth are good examples of

plane stress problems.

On the other hand plane strain is said to be a state of strain in which the strain normal to the x-y
plane ¢, and the shear strains yy; and 7y, are assumed to be zero. The assumptions of the plane
strain are realistic for long bodies (saying in the z direction) with constant cross-sectional area

subjected to loads that act only in the x and/or y directions and do not vary in the z direction.

The option (i), i.e., the plane stress condition has been followed in the present study. Thus

0,=0,0,=00,=0 (2.10)

At this condition, the equilibrium Eq. (2.1) having no body forces reduces to

8
%+%=o 2.11a)
o, 0

%+%=o 2.11b)
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The stresses for a two dimensional element at plane stress condition are shown in Fig. 2.2.

o

——g—»Oxy

Oxy

Oxx
Oxx

Fig. 2.2 Stress components on a plane

The two equilibrium Egs. (2.11) contain three unknown stress components. Thus, one more
equation is required to obtain an exclusive solution of three unknowns. The third equation is the
mathematical formulation of the condition for compatibility, which can be obtained from the

strain displacement relations. For two dimensional cases, these relations are:

ou ou
Exx = aal"lxx 1 Eyy =Eya Vxy :%4_8_): (212)

Differentiating the first Eq. of (2.12) twice with respective to y, the second twice with respect
to x and the third once with respect to x and once with respect to y, the expression for condition
of compatibility in term of strain then becomes as follows:

2 o’s, 0
O by Oy Oy (2.13)
oy OX OXoy
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But there would have been the necessity of one more equation in terms of stresses; which can
be obtained using stiffness matrix in Eq. (2.13). For orthotropic material, while the stiffness

matrix is given by Eq. (2.8), the stress-strain relations in the case of plane stress can be reduced

to:
O-xx Kll K12 0 gxx
o, =Ky Ky 0 |e, (2.14)
0 0 Kes || 7

It can be noted that the symbols of elastic constants (c) are replaced conveniently by the

symbols K’s for the case of plane stress condition so that they can be identified easily, where

E wE «Ex
Ky = - ; Ky = Py = Ly
1_:uxy:uyx l_luxy:uyx l_luxy:uyx
E
Kp=—2—: Kgu=G, (2.15)
l_luxy:uyx

From the elastic constant K;, of Eq. (2.15) the reciprocal relations can be reduced as:

ey My (2.16)

E E

X y

Using Egs. (2.13), (2.14), (2.15) and (2.16), the differential equation for compatibility condition

in terms of stresses can be as follows:

L 1 oo,
— X4

i@zaw My d’c,, o, 1 o’c, (2.17)
E, o° E, o’ '

+ =
E, | oy> ox° G,, Oxdy

Now Eq. (2.11) and (2.17) are to be solved to obtain elastic fields satisfying the boundary

conditions.

22



2.5 Usual Method for Solution

As per existing mathematical methods, the analytical solution of three simultaneous partial
differential equations given by Eq. (2.11) and (2.17) is fairly impossible. However, these
equations may be solved numerically. The numerical solution procedure is even complicated
and cumbersome for this type of equations. Moreover, it gives only approximate results. As
such it continues to remain a challenging job for the researchers to obtain the solution of elastic
fields analytically for a composite structural element under mixed mode boundary conditions
using traditional formulation. In this study, attention is paid to the theoretical enhancement of
suitable and reliable formulation for the solution for elastic fields of orthotropic as well as
isotropic composite beams under mixed mode of boundary conditions. The principal viewpoint

in this regard is summarized in subsequent paragraphs.

There are mathematical concepts on the reduction in number of unknowns by assuming
intermediate functions, which in turn reduces the number of equations for solution. It is noticed
that the number of partial differential equations (Eq. 2.11 and 2.17) and the unknown terms can
be reduced to two when the stress components of these equations are replaced by displacement
components. Using Egs. (2.12), (2.14) and (2.15) it is possible to get three expressions for three

stresses in terms of two displacement components as follows:

ou
o = LF“X i, —V} (2.182)
1- py g | OX oy
E ou ou
o, = —y{_uuyx } (2.18h)
1-pgpy | Oy OX
ou ou
O,y :ny{ GyX + a—xy} (2.18c¢)

Substituting Eqg. (2.16) and (2.18) in to equilibrium Eqgs. (2.11) the following two elliptical

partial differential equations are obtained.
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E? 2 JEE o°u 2
[ 2 }Mu[ By =y +ny} e, S g (2.19a)
y y

2 2 2 + Xy 2
Ex —/,leE OX Ex _:uxyE 6X6y ay
E.E o°u +EE o%u o°u

[ ! } s +[ oy ==y +ny}—* +G, X =0 (2.19b)
Ex _:uxyEy 8y Ex _:uxy Ey 6X6y OX

2.6 Stress Function Approach

It may be noted that, in the analytical approach, stress function is being used for long time,
since it was introduced by George Biddell Airy, a British astrologer and mathematician, in
1862. Airy’s stress function &(x,y) is defined in terms of stresses as a function of x and y for

which following conditions are met [1-2]:

029 0% _ 0%
x ayz ; GW = aXZ ; ny o axay (220)

(o)

Stress function satisfies the equilibrium equations and compatibility conditions. After applying

the above relations of stresses in terms of @(x,y) in Eq. (2.17) following expression is obtained.

iaz 5245 +i82 82¢ _:uxy 02 82¢+82 82¢ _ii_ﬁ
E, oy’ ay? ) E, ox*(ax? E, |oy’lax® ) ax*loy? )| G, oxayl oxdy

or 1 o' (1 2my | 8% +ia“
’ G E, |ox*oy® E, oy

Xy

?_o 2.21)

This expression is the bi-harmonic partial differential equation for Airy’s stress function. Now
Eq. (2.21) is to be solved satisfying the boundary conditions to obtain stress components using
Eq. (2.20) and then Hooke’s law as well as strain displacement relations are used to obtain the

displacement components.
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For orthotropic case [Fig. 2.3] the young’s moduli Ex and E, may be replaced by E; and E;
where they are used to denote the Young’s modulus in the fibre direction and in perpendicular
to the fibre direction respectively. Further G ,y is replaced by G, to denote the shear modulus

for on-axis orientation.

Ty
A
- Oy H
i3z, G”I_Zlber
/
e P
a, 8=0" 7,
b |
Oy

Fig. 2.3 Stress components on a composite plane

In such case, the bi-harmonic governing differential equation for orthotropic composites, on the

basis of stress function &(x,y), i.e., Eq. (2.21) becomes:

190" 1 2 ! 10
109, 1 ) 09 109 , (2.22)
GlZ E, Ox“cy E, oy

For an isotropic elastic materials under the condition of plane stress Ex= Ey=E, p, =u, =u

_E
21+u)
the isotropic condition is found as:

and G, =G = Substituting these relations in Eq. (2.21) the mathematical model for

0'¢ ,, 0 0% _, (2.23)

ox* ox*oy? oy’

Egs. (2.22) and (2.23) developed basing on Airy’s stress function can handle elastic problems

of orthotropic and isotropic materials, whose boundary conditions are in terms of stress or load
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only. Thus attention is obviously necessary towards the solution of the two elliptical partial
differential equations for those problems where the boundary restrains are to be satisfied. Again
it is not even easy task to obtain the values of displacement components by the solution of Egs.

(2.19). Consequently, further simplification of the solution method is the necessity.

2.7 Displacement Potential Formulation

Considering the difficulty of solving Eqgs. (2.19), a single function y/(x,y) is taken into
consideration [30-33], which has to satisfy a single partial differential equation of equilibrium,
somewhat similar in concept to that of Eq. (2.21). It is named as displacement potential
function and defined as a function y (x, y) of space variables x and y, where the displacement

components are expressed as follows:

0° 0° 0°
u, =oy 6xv2/ +a, 6Xg/y + oy ayvzj (2.24a)
2 2 2
u, =a, (;xlé/ +a, SX;/y+a6 (;yl'[z/ (2.24Db)

Here, «'s are unknown material constants.

Using the expressions of Eq. (2.24) in Eq. (2.19a) for fibre orientation #=0° following equation
is obtained.

E: 0" E’ E.E Bk
~— oy y:+ “— la, + Hy —~—+G,, |, TW+
Ex - :uxyEy OX Ex - :uxyEy Ex - :uxyEy oX ay
2 E E 4
{[ Ex2 Jas +[ Hyy ><2 y nyJas + nyal} 82'// _+ (225)
Ex _:uxyEy Ex _:uxyEy OX ay

E E 4 4
{M +G, }16 +G,a, }5_‘/’3 +G,a, a_'/: -0
y OXoy oy
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The material constants a’s are chosen in such a way that the Eq. (2.25) is automatically
satisfied under all circumstances. This will happen when all of its coefficients are

independently zero. In that situation,

2
EXZ a, =0
E,—uyE,
2 E E
i g, | HEEy 16 e, =0
Ex_luxyEy Ex_luxyEy
2 E E
B o+ 955y 46 o 46, =0
Ex_luxyEy Ex_luxyEy
E E
Hay ~— +G,, |ag +G o, =
EX—,quEy
Gya; =0
Therefore,
\
o, =a,=0,=0
~-Ela,
a, = X (2.26)
) {/"xyExEerny(Ex_/"xzyEy)} >
a. = ny(Ex_:unyybz
i {/"xyExEy +ny(Ex _/"xzyEy)}
J

Again from the Eq. of (2.19b) and Eq. (2.24) it is found that

o quExEy J 1 { (#XyExEy J }

2 b
Xy | E-KE, NECACE
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Now using Eq. (2.26) and (2.27) it is found that

64q/

Xy 6X4

4 4
v _gc TV _g (2.28)

EXG + Ey(E)< — Z”XYGXY)W y XYW

The above fourth order partial differential Eq. (2.28) is the single governing equation for the
solution of the displacement potential functiony . Once the displacement potential function ¥
is known, the components of displacement can be readily found from Eq. (2.24). Thereafter,
using the stress displacement relations of Eq. (2.18) can be used for obtaining stress

components.

Assuming the value of a; is unity, and taking the values of a;, a3, a4, s and o from Eq. (2.26),
one can obtain the components of displacement and stress using Egs. (2.24) and (2.18)

respectively as follows:

82
u,(x,y)= axg/y (2.29a)
-1 oy oy
u,(x,y)= EZ +G,|\E, —u’E 2.29b
y( y) {ﬂxyExEy+ny(Ex_ﬂnyy)}|: " aXZ Xy( " luxy v)ayz ( )
~E,G 3 2
o, (xy)= e {EX 821,// —yXyEya ‘/2/} (2.29¢c)
1y EE, +G, (E, —uiE, )| " ox*ay oy
-EE o’y %y
X,y)= oy G,-E) -G 2.29d
O-yy( y) {‘leyExEy"r‘GXy(EX_,Unyy)H:(‘qu xy X/axzay Xy ays ( )

~E,G 3 ?
Oy (X’ y): — 2 {EX ‘ 1/3{ — kB, a—wz} (2.29)
1, E.E, +G, (E,—tiE, || ox Oxdy
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Now using the expressions of Eq. (2.24) in Eq. (2.19c) for fibre orientation 6=90° following

equation is obtained.

(2.30)

The material constants a’s are chosen in such a way that the Eq. (2.30) is automatically

satisfied under all circumstances. This will happen when all of its coefficients are

independently zero. In that situation,

E.E

E e |40

X ﬂXy y

E.E E.E
————a, + 'uxy—xzerny a, =0
Ex_luxyEy Ex_luxyEy

E.E E.E
T g | A LGy + G a, =0
Ex_luxyEy Ex_luxyEy

E.E
Ay “2—+G,, las +G a, =

E, —uyE,
Gya; =0
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Therefore,

\
o, =a,=0,=0
-E,E a,
_ (2.31)

* {f“xy E,E, +G, (Ex - luxzy E, )} >
. = - ny (Ex - :unyy )0‘2

6= 2

{/"XY ExEy + ny (Ex a /"xyEy)}
J

Again from the third Eq. of (2.19) and Eq. (2.24) it is found that

HEE | | & M55 +
me V. {[Ex #nyy ]% ﬂsja&@/ { J [Ex ~KE, GXJ% GX)%} (2.32)
E?

oy #xyExEy 16“1// dy _
ooy {Ex ~F, [ G*J JW( EJ%@“ ’

Now using Eq. (2.32) and (2.31) it is found that

4
G 2V

y =Xy 6X4

'y %
+ Ey(E)< - Zluxnyy)axz—ayz + Exny W =0 (233)

The above fourth order partial differential Eq. (2.33) is single governing equation for the
solution of the displacement potential functiony . Once the displacement potential function y
is known, the components of displacement can be readily found from Eq. (2.24). Thereafter,
using the stress displacement relations of Eq. (2.18) can be used for obtaining stress

components.
Assuming the value of o is unity, and taking the values of cu a3 a4, as and as from Eq. (2.31),

one can obtain the components of displacement and stress using Eg. (2.24) and (2.18)
respectively as follows:
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2

0
u, (% y)= b

=8x8y
U, xy)= = EE, 216, (E - u2E, )Y
y :uxyExEy+ny(EX—‘u5yEy) AP xy \Ex wEy 8y2
oY) = “EES, {331// L aﬂ
o ‘uXVEXEV +ny(Ex _,unyy) 3X23y Y 3)/2
70 ¥)= — (E, - 1,6 )83W ‘e, 2V
W W EE, 46 (B g )| T adey T oy

~EE G, o 0°
Oy (X1 y) = { — 2 H: l/;:,/ — Hyy Wz :|
:uxyExEy +ny (Ex _:uxy Ey) OX aXay

2.7.1 Displacement potential formulation for orthotropic materials

Case-A: 9=0° (Fibres are perpendicular to the direction of loading)

w7

6-=0°

v
X

Fig. 2.4 Fibres are perpendicular to the direction of loading
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For orthotropic materials with fibre orientation 6=0° (Fig. 2.4) the young’s moduli E, and E,
may be replaced by E; and E; where they are used to denote the Young’s modulus in fibre
direction and in perpendicular to fiber direction respectively. Further G, is replaced by G, to

denote the shear modulus for on-axis orientation.

Now for fibre orientation 6=0° the governing differential equation for the solution of two

dimensional orthotropic composite structures becomes:

o'y o'y o'y
EG, — P +E,(E, —2u, G”)axzayz + EzGlzy =0 (2.35)

Then the components of displacement and stress are:

0%y
0 (xy)= 2.36a
H¥)=35 @
1[_,0 o°
0, (% y):_z_iEf&X—‘g%GH(El— “fZEZ)Wﬂ (2.36b)
o (xy)= EG, E Oy —u,E 62_(// (2.36¢)
xx \ N le 18X28y 1272 ayz .
EE \ Oy o O
O-yy(x1 y): _ﬁ{(ﬂqu UGX Y ~Gp 3)/3 } (2.36d)
oy (y)-- B[ Y, O (2360
xy \/N1 le 1 6X3 2 ay .
Where, Z,, = u,EE, +GlZ( ~u5pE )
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Case-B: 6#=90° (Fibres are parallel to the direction of loading)

y Loading Fiber

i

0 = 90°

v
X

Fig. 2.5 Fibres are parallel to the direction of loading

For orthotropic materials with fibre orientation #=90° (Fig. 2.5), the young’s moduli Exand E,
would be replaced by E; and E; Further G,y is replaced by Gi, to denote the shear modulus for

on-axis orientation.

In such case the governing differential equation for the solution of two dimensional orthotropic

composite structures becomes:

64 64 84
E,G, ax_li/ + Ez(E1 —21;,Gyy )&z—gyz +EG, 8y_li/ =0 (2.37)

Then the components of displacement and stress are:

oy
u.lx,y)= 2.38a
(X y) vy (2.38a)
1 0? 0°
Uy(X, y) = _Z_M{ElEz % +Gy, (El - ,u122 E, )ay_vgl} (2.38b)
E,E,G,| &° 0?
Ox (X1 y) =122 |: ;/l — Hyp l/2/j| (238C)
Z, [OX“oy oy
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E ol ol
O-yy(x1 Y) = _Z_l{Ez(El _:ulzGlz)aX;gy +E,Gy, ay(/;} (2.38d)
11
E,E,G,|o* ol
oy (X y)=—-— > { axf — iy, ax;;z} (2.38¢)
11

Where, le =, ElEz + Glz (El - 1u122 EZ)

2.7.2 Displacement Potential Formulation for isotropic materials

For an isotropic elastic solid under the condition of plane stress Ex= Ey=E, u,, = u,, = ¢ and

G, =G= E . Then the values of a’s of Eq. (2.24) are also obtained as follows:
' 2(1+u)
: : -2 . 1-u
a1=a3=a5=0,a2=1, Ol4=m, O :E (239)

Then the stress-displacement relations for the plane stress problems are obtained from the

Hook’s law as follows:

ou
o= —0 |y, S (2.40a)
1-pu OX oy
ou
o, = E = u oy + Y (2.40b)
1-pu OX oy
ou
oy = o | Mo Ay (2.40¢)
20+ u)| oy ox

When the displacement components in Eq. (2.19) are replaced by Eq. (2.24) having values of a
as in Eq. (2.37), the single governing equation of equilibrium in partial differential form being

satisfied by y(x, y) is found for isotropic materials as follows:

4 4 4
ZXV“/ +2 652;;2 + 2yl/“/ =0 (2.41)
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Combining Egs. (2.18), (2.38) and (2.39), the expressions of displacement and stress

components in terms of function y(x, y) are obtained as follows:

ux(x,y)=§:;’y
o) 22 -0 22
il [t
K (e aay_ﬂ
il

2.8 Consideration of Boundary Conditions

(2.422a)

(2.42b)

(2.42c)\

(2.42d)

(2.42¢)

The equilibrium Eq. (2.1) has to be satisfied at all points throughout the volume of the solid

elastic body. The components of stress may vary over the volume of the body, and at the

surface the stresses must be such as to be in equilibrium with external forces acting on the

boundary of the body. As such the external forces would have a contribution over the internal

stress distribution.

In practical situation, along the edge or boundary of a structure, there are two things to be

known, i.e. (i) displacements and (ii) loading or stress. Both the displacements and stresses are

identified by their respective components as follows:

a. Normal displacement
b. Tangential displacement

Normal stress

a o

. Tangential stress
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The solution of the governing equation requires specific normal and tangential conditions. At
any point on the boundary, any 2 components out of 4 are known at a time. Thus there are 6
types of following boundary conditions:

i. Normal displacement + Tangential displacement
ii. Normal displacement + Normal stress

iii. Normal displacement + Tangential stress

iv. Tangential displacement + Normal stress

v. Tangential displacement + Tangential stress

vi. Normal stress + Tangential stress

While both the components are purely normal or purely tangential, the boundary conditions do
not practically exist. As such boundary conditions of (ii) and (v) are no longer required to be
considered and the remaining four boundary conditions would be considered for solving the
physical problems of elastic body. If the shape of the boundary surface is rectangular, the
structure may be oriented so that its edges are parallel to the co-ordinate axes. In that case, the
normal and the tangential components of displacement and stress at the boundary are the
corresponding coordinate components inside the structure. Out of the above mentioned four
possible boundaries, only the number (vi) is suitable for Airy's stress function; whereas all four

boundary conditions can be dealt with using displacement potential function, y.

2.9 Solution Procedure Using Displacement Potential Approach

The concept of structural analysis consists of four essential matters, like any engineering
system, such as, proper understanding of physical phenomena, derivation of governing
equation, proper application of boundary conditions, and development of routines for the
solution and finally the interpretation of solutions. Thus the solution procedure is the uniting of
physics and mathematics with a view to potential usefulness in practical problems.

The equilibrium problem is essentially one of describing the steady-state configuration of the
physical system. This can usually be achieved by specifying the magnitudes of state variables
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like stresses, displacements, pressures, etc. at a finite number of points. In this thesis work,
boundary-value problems are dealt with having equilibrium state of affairs. With this pretext a
very powerful method of solving boundary-value problems is the so-called trial function or trial

solution method.

Attempt is made here to solve the fourth order homogeneous partial differential equations, i.e.,
Egs. (2.35) and (2.37) for orthotropic, Eq. (2.41) for isotropic materials through utilization of
different trial functions for w(x, y). Since the Airy’s stress function of similar pattern has been
solved using polynomials for quite long time, similar type of functions are considered here at
first as trial solutions. It is observed that pure polynomials do not actually help much in this
regard. Rather it is seen that various combinations of trigonometric and hyperbolic functions
offer suitable choices for analytical functions. If these functions can be expressed as an infinite
series, then construction of solutions of differential equations becomes more accurate. In the
light of the ubiquitous problems which display aspects of periodic and a discontinuous nature,

those infinite series known as Fourier series attain a place of special importance.

The Fourier series is probably the most commonly used of all the series for the solution of
physical problems. It is a trigonometric series which can be used for the expansion of an
arbitrary function. The usefulness of the Fourier series is due to the fact that certain functions
which cannot be expanded in power series form can still be represented by Fourier series. The
reason for this is that the coefficients of the power series contain derivatives of the function;
hence these derivatives must exist uniquely in order to obtain the power series expansion.
Many functions which are not differentiable, including certain types of discontinues function,
can be expanded in Fourier series. Thus a much greater degree of generality is attained by

taking the function as Fourier series.

Taking all this in mind trial and error operations are done to reach to the possible best
displacement potential function to be assumed. In this assumption process, boundary conditions
of the two ends should be satisfied automatically. Then the solution can be progressed further

to make the boundary conditions of remaining two ends of the beam satisfied.
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CHAPTER 3

ANALYSIS OF THE STIFFENED BEAM

The main focus of this chapter is to find the stress and displacement fields of a boundary value
problems of elasticity using displacement potential function approach. In this chapter, a
stiffened simply supported thick beam of isotropic material is considered for the analysis. The
beam is stiffened at its opposing lateral ends by using two different kinds of stiffeners, i.e.,
axial stiffeners and lateral stiffeners. The beam is loaded transversely at a certain portion on the
upper surface of the beam and roller supports are used for certain portions of the lower surface

of the beam. The effect of beam aspect ratio on the stress field is also discussed in this chapter.

3.1 Problem Description

A simply supported thick beam of rectangular cross section subjected to a distributed load is
considered. The generalised form of such a beam is shown in Fig. 3.1[(a) and (b)]. Since the
two opposing lateral ends of this beam are stiffened by some means, it can be considered as
stiffened simply supported beam. The support at the bottom surface is inserted over a certain
portion of beam length. Beam length, depth and width are denoted by L, D and W, respectively.
As a particular enunciation for the development of analytical solution, the load acting over the
top surface is considered as uniformly distributed with a magnitude of o, acting over 80% of the
length. The support of the beam is also considered as uniformly distributed and the effective
length for each support is assumed to be 10% of the beam span. The plane stress is assumed
here taking unit thickness of the beam. Two different types of stiffeners are considered for the
two opposing lateral ends of the beam, which are axial stiffener (Case-1) and lateral stiffener
(Case-2).The axial stiffeners prevent axial deflection of the lateral ends which are however free
to assume any deflection along the lateral direction. On the other hand, lateral stiffeners prevent
deflection along the lateral directions of the ends, but they are free to assume any deflection
along the axial direction.
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3.2 Boundary Conditions

The physical conditions of the present problem with reference to Fig. 3.1 are to be satisfied
along the all four boundaries of the beam. The boundary conditions are considered for the
present stiffened composite beam problem can be expressed mathematically as follows:

(@) Loaded boundary, EH:
The loading of the top boundary is modelled by assigning a uniform value to the normal
stress component, which is free from any shearing stress. The mathematical expressions of
the boundary are
O'W(X, D)=0, [01<x/L<09]

o (xD=0 [00<x/L<10]

(b) Supporting surface, FG:
The roller supported regions of the bottom surface are modelled by a uniform compressive
normal loading and free from shearing stress. At the supports, the total reaction forces
should be equal and opposite to the applied loading on the top surface. The reactions are
distributed over 20% of the beam span (x/L= 0.0-0.1 and 0.9-1.0).The remaining section of

the bottom surface are assumed to be free from loading. Therefore,

Supporting region : o, (x0)=0 [00<x/L<10]
0,,(x0)=40, [00<x/L<01 & 0.9<x/L<10]
Free region L 0,(x0)=0  [00<x/L<10]

o,(x0)=0 [01<x/L<09]
(%0

(c) Left lateral end, EF:
i.  For axial stiffener: The physical condition of the axial stiffener is modelled here by
considering no axial displacement and shearing stress. Thus,

u,(0,y)=0
o,(0y)=0 [0.0<y/D<10]
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ii.  For lateral stiffener: The physical condition of the lateral stiffener is modelled here
by considering the boundary free from lateral displacement and axial normal stress.
Thus,

u,(0,y)=0

0,(0Y)=0 [00<y/D<10]

(d) Right lateral end, GH:

i.  For axial stiffener: The mathematical expressions of this boundary are
u(Ly)=0
c,(Ly)=0 [00<y/D<10]

ii.  For lateral stiffener: The mathematical expressions of this boundary are
u,(L.y)=0

0,L.y)=0 [00<y/D<10]

3.3 Analytical Solution

The governing differential equation for the plane beam problem of isotropic materials in terms
of the displacement potential function w(x, y as follows [Eq. (2.34)]:

4 4 4
ZXV“/ +2 652;;2 + 2yl/“/ =0 (3.1)

The expressions of displacement and stress components in terms of function y(x, y) are also

obtained from Egs. (2.35) as follows:

u,(xy)= gxgy (3.2a)

0y (%, y)= - — {282‘“(1—#)62"”} (3.2)
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o (X y)=-

oy (X )=~

oy (X y)=-

E oy oy
- 3.2c
L+ p) {axzay % 8:2¢)
3 3
Ez{@+ﬂ)af +a%} (3.2d)
@+ u) ox’ay oy
3 3
= _|v_, o (3.2¢)
@+pu) | ox oxoy

3.3.1 Beam with axial stiffeners (Case-1)

First, a trial function is assumed for the displacement potential in such a way that the boundary

conditions at the two stiffened edges are satisfied instantly. The trial function is assumed in

terms of cosine function so that its first and third derivatives with respect to x are obtained in

terms of sine function. By this way the requirements of physical conditions of the two opposing

stiffened ends

are automatically satisfied, i.e., boundary conditions of c(i) and d(i). Considering

all these factors the expression for  may be approximated as follows

W% ) =3V, () cosax +K y?

m=1

where, Y, =f(y), « =(mz/L), Kisan arbitrary constantand m=1, 2, 3,

Derivatives of

(3.3)

Eq. (3.3) with respectto x and y are

D Y,a?cos ax

> Yol sin ax

o .
—=-) Y, asinax
o

0%y __

axz m=1
a3l// B o0

6X3 m=1
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3 -
2 l//2 ==Y Y, asinox
3X3y m=1

3 0
4 L~ 3, a? cosax
OX 3}’ m=1

4 oo
621// > == Y&’ Cosox
6)( ay m=1

o _ DY, cosax +3Ky’

m=1l

2 0
4 Y =3V, cosox -+ 6Ky
m=1

3 0
a—"[: =YY, cosox+6K
ay m=1
4 o
8_:,:/ =Y, cosax
6y m=1

Substituting the expressions of above derivatives in Eq. (3.1) following equation is obtained.

DYt cosax—2) Y a’ cosax+ D Y, cosax =0

m=1 m=1 m=1

or,Y, —2a’Y, +a'Y, = (3.4)

The general solution of the above 4™ order ordinary differential equation with constant

coefficients [Eq. (3.4)] can be approximated as follows:
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Y,=A,e" +B,ye” +C e +D, ye™

(3.5)

But the ordinary differential Eq. (3.4) has the complementary function of repeated roots. Thus

n=r,=a and r, =r, =—a and the general solution of Eq. (3.4) can be written as

Yo =(A, +B,y)e” +(Cy, + Dyy)e™

where A, B, C_ and D, are arbitrary constants.

Differentiating Eq. (3.6) following expressions are found

Y, =(A,a+B,ay+B, e +(-C,a-D,ay+D,)e ™
Y, = (Amoz2 + Bma2y+28ma)eay +(Cmoz2 + Dmazy—ZDma)e_“y

Y. = (Ama3 + Bm(>¢3y+3Bm(13)ﬁ'ay +(—CmO¢3 - Dm053Y+3Dm0‘2)e_ay

Y

U =(Ayat+Baty+4Ba’ kY +(Chat+ D a‘y-4D,a’ ™

(3.6)

Now substituting the derivatives of y and Y, in the expressions for displacement (3.2) and

stresses (3.3), following expressions are found.

Oy
Xy

u,(x,y)=
= —iY ‘met Sinax
m=1

- _i[(AnO‘JF B,y +B, e” +(-C,a-D,ay+D, g™ }ysinoo(
m=1

—-3[A0e" + B, (ay+ 16" ~C,0e™ ~ D (ay e rsinex

u, (xy) = . {282‘” +(1—u)azw}

1+u)|  ox? oy?
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= _L) {2{— iYma 2 cos ax} +(1- u){miYn: cosax +6 KyH

(1 + H m=1

0

- 22{(Am +B,ye +(C, + D,y cosax+(1- u)
1 m=1

- a) Z{

0
m=1

a’+ Bma2y+28ma)e“y +

a’+ Dmoczy—ZDmoc)e'”‘y

(A
c

m

}COSax+6K(1—/,z)y

m

— A, 0+ u)a’e™ +
~1 | & |Bu(-ay— uay —2u+ 2)ae®
mzzl ~C,(1+ pa’e™ +
D, (- oy — pay +2u—2)oe™

cosax +6K(1—u)y

Lo

ox2oy a oy’
E 0 : , 0 B
H—ZYma coswx}—y{ZYm coswx+6KH

B (1+ /,1)2 m=1 m=1

o (xy)=

> {(A,a+B,ay+B, )e” +(-C,a—D,ay+D, e |’ cos ax
—E m=1
= 2 A o’+B o B 2\, ay
L+ u) Uy, ( n®" +Bpoty +3B,a )e i cos ax + 6 uK
(—Cmozs—Dmozsy+3Dmozz)e"“y

0
m=1

m=1

“E { 2 {Ana(1+ p)e +B, (ay + pay +3u +1)”

2cosax + 6K
~Coaltr e+ D, (-oy—pay+ 3+ [* “]

m=1

__—F . {(2+y){—iYn;azcos ax}+{iYn;"cos ax+6KH
m=1
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~(2+ 1) i{A a+B,ay+B, " +(-C,a—-D,ay+D,) “y}x COSs ax
—-E m=1

+u) +Z (A @+ Bya’y + 3Bya )eay cos ax + 6K
(Ca —Day+3Da)e

(1

2

{i{ﬂw (~1- u)e® + B, (~ay — poy — p+1)? + }OZCOWwK] (3.7d)

C,all+ule™ +D, (ay+ uoy—u+1e™

-E |o° 0°
o, (1, y) - { v_, "”2}

@+pu)|ox® ° oxoy

m=1L

—E{ZY a’sinax — y{ ivr;asinaxH

(L+ uf m-1

; [Zw: {(A, + B,y +(C, + D,y x*sin ax +

(1+ H m=1
- [(A,a?+Ba’y+2B,ak” +|
#é{(cmaz +D,a’y-2D,a ™ }a s x|
0 ay ay
__—E > A (L pe)ae” + By (o + poy + 2u)e ?sinax (3.7¢)
(L p)l| &S |+C, 1+ p)oe™ + D, (ay + pay — 2u)e™

Now, the reactions on the bottom boundary (y = 0) are acting over the two supports. It is
considered that the supports are located at x=0 to 0.1L and x=0.9L to L respectively. The total
length for reaction is 20 percent of beam length, where the load is over the 80 percent. As a
result the intensity of reaction is four times of the load intensity. Therefore, the reactions over

the beam at the supports can be taken as Fourier series in the following manner:

o,/ (x0)=40, =E, + Y E, cosox forx=0t00.1L and 0.9L to L (3.8)

m=1

Here

J 4o, dx+ I4aodx

0
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_%{L+L QL}
L (10 10
4o,
= 3.9a
: (3.9a)
2 %0 L
E, == [ 40, cosoxdx+ |40, cosaxdx
L 0 9L,
10
%o i L
:Sﬂ J' cosaxdx +% I cosoxdx
L5 L Lo
_ 8o, [sinax}%o 80, _sinax}L
Ll a |, L
8o, | . (oL 9aL
=——4sIn — +S|n aL —sin| —
alL 10
:&i sin(M}_Fsm(mﬂ;) sm(—ﬂ} m=123,....© (39b)
mrz 1 10

The compressive load on the edge y = D acting over x = 0.1L to 0.9L can also be given by a

Fourier series as follows

o, (x0)=0, =1, + 31, cosax  forx=0.1Lto0.9L (3.10)
m=1
Here
1|0
J.GOdX
%
_5% 9L L
L—m}
4o,
= 5 (3.114)
V10
I, = { j o, cosaxdx}
Y10
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_20, sin(%_ﬂj_sin(Mj : Mm=123. ... o (3.11b)
ms 10 10

The loading considerations of Egs. (3.8) and (3.9a) are to satisfy the boundary conditions at the

bottom and top boundaries of the beam. Using boundary condition ny(x,O):O at the edge of

y=0, itis found that

; i (A +C )23smax+/,12{(Aa +2B,a)+ }asinax]:O

1+,u m-1 (C a?-2D a)

or,

—E [ (A, +C, )’ +y{(Ama2 +ZBma)+(Cma2 —2Dma)}a]

0
(1+u

> ﬁ[(l+ﬂ)a3Am +28m/,106 ? +(1+/,t)(X3Cm —2/,[06 2Dm]=0

- Ea

o, s ) [(1+,u)aA +2uB, + @+ pulaC, -2uD,]=0 (3.12a)

Using boundary condition o, (x,D)=0 at the edge of y = D

i{A +B,D)™ +(C, +D, D)e® p*sin ax+

—E m=1

- - 3 -0
@+ u) i{(A a?+B,a’D+2B,ak® }asinax

(Ca+DaD 2Da)e“D

m

{(A,+B,DE®+(C, +D,D)e " ju’+

{(Ama +B,a’D+2B,ak® + }

( C,a°+D,a D—2Dm(x)e P

Il
o
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—Ea? | A+ p)ae® +B, (aD+paD+2u)™ + | 0

or, =
@+p)|C,Q+u)e ™ +D,(aD+ puaD —2u) ™

Using boundary condition ,,(x,0)=40, at the edge of y=0

0

—(2+u)> (A, +B,)+(-CLa+D, )l cosax

—E " SE E
—| . , , =) E, cosax+E,
(L+4) + (A" +38,0° )+ cosax +6K "

~\(-c,a*+3D,0?)

Therefore,

Ea’ {(2+/~t){(Ama+Bm)+(—Cma+Dm)}}=E

A+ u) |-(A,@+3B,)-(-C,a+3D,) "

or, ~E%_[A, (14l + B, (-1 4)~C, (14 war+ D, (14 )] = E,
(L+4)

Using boundary condition o, (x,D)=0, at the edge of y =D

| 2 B,oD+B, e
—(2+u)> (Anr+B,oD+B, e + ? cosax
_E = |(-C,a-D,aD+D, e i' |
=1, cosax+1,
@+uf| & [(Ae®+B,a’D+3B, o’ p? + =
+ , \ \ o (COSaX+6K
| AZ|(-c,a*-D,a’D+3D,a’ k™

Therefore,

m

E [(+u)Aa+B,aD+B,)e®+(-C,a-D,aD+D, )’
(L+uf | -{Ae® +B,a°D+3B,a*f® +(-C,0° ~ D,a’D +3D,2 )

48

(3.12b)

(3.133)

(3.13b)

(3.14a)



Ea? | A0+ u)ae™ +B, (uaD +aD + u 1™ - )

or,
(@+uf|C, @+ u)e™-D,(uaD +aD — u+1)e™®

(3.14b)

m

and using Eq. (3.9a) and Eq. (3.13a) the arbitrary constant K can be obtained as follows:

-E 4o
6K =E,=—2
L+ p) "5
’
or, K:M (3.15)
15E

The simultaneous Eqgs. (3.12a), (3.12b), (3.13b) and (3.14b) can be realized in a simplified

matrix form for the solution of unknown coefficients like A, , B,,, C,, and D,, as follows:

DD, DD, DD, DD, A
FF, FF, FF, FF, |B
HH, HH, HH, HH,|[C
KK, KK, KK, KK, |D

(3.16)

0
0
Em
I m
Where

DO = Z11(1"' y)a
DD, =247,

DD, =Z,,(1+ u)
DD, =212,

FF = le(1+lu)aeaD

FF, =2, {(1+ ,U)O‘D + zlu}eaD
FFR =2, (1+ :u)ae_aD

FF, =2, {(1+ ,u)OLD - zlu}eiaD

HH =-Z,,(1-+ 1o

HH, =-Z,,(~1+4)
HH, =Z,,(1+ u)o

HH, = _211(_1"' u)

KK, =—Z,,(1+ u)oe®
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KK, = _le{(:l-‘*‘,U)O‘D‘*‘,U_:l-}e&D
KK, =Z,, 1+ pt)oe™®
KK, = le{(1+ ,u)aD —H +1}eiaD

—Ea?
0+ )

Once the matrix Eq. (3.16) or four algebraic Egs. (3.12a), (3.12b), (3.13b) and (3.14b) are

solved simultaneously and the values of four unknowns, namely, Ay, Bn, Cn and Dy, are

le =

obtained, Egs. of (3.7) are then used for subsequent finding of stress and displacement

components of the beam at various points.
3.3.2 Beam with lateral stiffeners (Case-2)
In this case, the trial function is assumed in terms of sine function so that its first and third

derivatives with respect to x can be found in terms of a sine function. The displacement

potential function y for the case of lateral stiffener is assumed as

w =YY, sinax (3.17)
m=1

where Y, =f(y), a= m—Lﬂ and K =Arbitrary constantand m=1,2,3, ........ 0.
Derivatives of Eq. (3.14) with respectto x and Yare

oy <
—=>»Y o COoSoX
o2

m=1L
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o'y

=Y Yo' sinox
m=1

2 0
v _ D Y, cosax
axay m=1

0° I
l//2 =Y Y acosax
m=1

3 0
621// ==Y Y, sinax
8X 3}’ m=1L

4 o
521//2 ==Y Y a’sinox
8)( ay m=1

€
|
]
<

5

Substituting the expressions of above derivatives in Eq. (3.1) following equation is obtained.

iYma“ sin ax—ziYn;az sin ax+iYnf sinax =0

m=1 m=1 m=1

or, Y. —2a’, +Y, =0 (3.18)
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The solution of the above 4™ order ordinary differential equation with constant coefficients

[Eq. (3.18)] can normally be approximated as follows:
Y,=L.e"+M_ ye? +N e +0,ye™ (3.19)

But the ordinary differential Eq. (3.18) has the complementary function of repeated roots. Thus
IL=r,=ca and r,=r, =—a and the general solution of Eq. (3.18) can be written as

Y, =(L,+M_ yee“+(N,+0, yke ™ (3.20)

Where, L., M, N and O, are arbitrary constants.
Differentiating Eq. (3.20) following expressions are found

Y. =(L,a+M_ ay+M_ ) +(-N,a-0,ay+0, )
Yo o=(L,a?+M,a’y+2M af” +(N,a?+0,a’y-20,a)
Y. = (Lya® + M, a’y +3N, a?k? +(-N, a® - 0,0y +30,a’ @

Y, :(Lmoz4 +M,a’y+4M mag)eay Jr(NmO‘4 +Om0‘4y_4oma3)e_ay

Now substituting the derivatives of y and y_ in the expressions for displacement (3.2) and

stresses (3.3), following expressions are found.

_%y
UX(X, y)_ 8Xay
=iY'ma COS X

1

3
I

(L My e + (- Ny -0,y + 0, e rcosan

[

3
Il

1

I

[Lce” + M, (ay+ 1) —N, 0™ — O, (ay — 1) b cosax (3.21a)

3

1
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R

S H ZY a 5|nax}+ ZY smaXH

m=1

0

- 22{(Lm M,y +(N, +0, ke psinox+(1— 1)
m=1

(4 i{ELmaz + M, a?y+2M o +}sin »

N,a? +0,a’y - 20,a

m

m=1
-L (1+ pa’e™ + |
_ o 2 2 )ae™
_ -1 Z —ay - ut:yay 2™ |
L+ p)| =]~ 1+ﬂ)0‘ +
O, (- ay — uay +2u —2)ae™

_E o’y o’y
Gxx (X'y)_ (1+ ’u)g |:6X26y H 6y3 :|

& Sretanan) S v

i{(Lma+Mmay+Mm)e“y+( N, — O,y + O, e~ o sin ax

-E
_(14.# i (L a’+M_a’y+3M az)e"y+ sin e
S| N,a®-0,0°y+30,a2 k™
_E i Lo(l+ u)e” + M, (ay + pay +3u +1)e™ 2 inax
= a
@+ u)f || =N a@+p)e™ +0,(—ay — pay +3u+1)™

aw(xyy)=ﬁ{(2+ﬂ) 0%y +a3q

ox“oy oy

- (1; E)z {(2+ u){— mzw:lvn;a ? sin ax}+ {mzw:lvn;" sin axH
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-2+ ) i{L a+May+N, e +(- N, -0,ay +0, ) pr*sin ax

—E
:( +Z:( v M aerSMoc)e"y in ax
(04
(~N,a®-0,a’y+30,a% k™
__-E i La(-1-p)e” +M,_ (- ay — pay — u+1)e® + 2 in ax (3.21d)
(L+ pf | 23 [Nqall+ pe® + 0, (ay + pay — i +1)e™

w6 g e

axay

—E E2 I
- —2{— D Y, cosax— u{— > Y,acos axH
m=1

(L+ )

m=1
= (1+E#)2 [i {(Lm +M_yke?+(N, + Omy)e“”y};z3 COS axX +

m=1

e (Lo’ + M a’y+2M a k” +

”mzl{(l\l a®+0,a’y—20,ak™ }a 005 x|
0 1 oy M 2 ay
E " z (L o™ + My (ay + oy + 2u)e 2 cosox (3.21e)

o |+ N, (1+ p)oe™ +0, (ay + paty —2p)e™™

Now, the reactions on the bottom boundary (y = 0) are acting over the two supports. Therefore,

the reactions over the beam at the supports can be taken as Fourier series in the following

manner:

o,/ (x0)=40, =E,+ Y E, sinax forx=0t0 0.1L and 0.9L to L (3.22)
m=1

Here

E,=0 (3.23a)
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9L
10

E, = E{J’4o-05|nocxdx+ I4o-osmaxdx
L 0

9L

L
III’]O{XdX +% jsinaxdx
0
10

_ 8, [COS(XX}/O_'_&FO[ COSaX}L
9L,

L] a 0 L a
10
_ _8ou]eod Ok ~1+cos(al)-c 9ol
al 10 10
_ 8% ) eod M) _1.+ cos(mr) - cod 2ME L. m=123, ... (3.23b)
mz 10 10

The compressive load on the edge y = D acting over x = 0.1L to 0.9L can also be given by a

Fourier series as follows

0, (x0)=0, =l,+> I sinax  forx=0.1L to 0.9L (3.24)
m=1
Here
I,=0 (3.25a)
o
I =T Ioosinaxdx
V1o
_ 20, [COSaxT%O
L a Jy
= —ﬁ co %—ﬂj—co{mj : m=123,........ o0 (3.25b)
mrz 10 10

The loading considerations of Eqns. (3.22) and (3.23a) are to satisfy the boundary conditions at

the bottom and top boundaries of the beam. Using boundary condition oxy(x,0)=0 at the edge

of y=0, itis found that
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) 0 2
| M e z{(“‘ *2M )t }}0
u

(= = |(N,e?-20,a)

> (1+E )2 [(Lm +M, e’ +,u{<Lma2 +2Mma)+<Nma2 —ZOma)}a]:O
U

or, =2 — = _[@+u)aL, +2uM , + @+ u)aN, —2u0, ]=0

@en) )2

Using boundary condition o, (x,D)=0 at the edge of y =D

{L,+M, D) +(N,+0,D) ® x*sinax+

M

I_I.I
3
Il

1

=0

L+ n) (Lma2+Mma2D+2Mma)e”‘D+ _

a SIN aX
(Nma2 +0,a?D-20,ak ™

L, +M,D)?®+(N,+0,D)e®a®+

(L,a?+M,a’D+2N, ak® + =0
“I(N,a? +0,a?D-20,ak |

or,

Ea? |L,(0+u)ee® +M (aD+puaD+2u)™ +|
1+ u)* [N, (L+pu)ee ™ +0, (aD + paD —2pu)e ™ |

Using boundary condition o,,(x,0)= 4o, at the edge of y=0

0

@2+ u)> ALya + M)+ (=N, +0, )ja’sin ax

—E m=1

A+ uf . i{(Lmoﬁ +3M ma2)+}sin »

(- N,a®+30,0?)
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=Y E,sinax+E,
m=1

(3.26a)

(3.26h)

(3.27a)



Therefore,

Ea? {(2+/~t){(Lma+ M)+ (=N a +Om)}}= E.,

e ) L (Lo +3M,)- (N30,
or, (1Ea (Lm0 ke Mol 1)~ Ny (1 o+ Op -4 0] = (3:27b)
+u

Using boundary condition o,,(x,D)=0, at the edge of y = D

Z {(Lma+ M _aD+M, e + i

-2+

—E ( ﬂ)mZ:‘I (-N,&-0,aD +0, e
1+ uV © 3 3 N o2

( ﬂ) +2{(Lma +M_ a’D+3 ma)e +}sinax

‘|~ 0,0° -0,a°D +30,0%

=D I, sinax+1, (3.28a)
m=1

e [@+ufla+MaD+M,e®+(-Na-0aD+0 )’ |
or, ~m
L+ w1 |- {Le® +M,a°D+3M, 0 + (- N, - 0,0°D + 30,02 |
2 oD _ ab
or, _E® 2 Ly L+ p)ae™ + M, (uaD +aD + u -1)e ' (3.28b)
@+ [N, @+ poe™® -0, (uaD +aD - u+1)™°

The simultaneous Egs. (3.26a), (3.26b), (3.27b) and (3.28b) can be realized in a simplified

matrix form for the solution of unknown terms like L ., M N . and O as follows:

m? m

EE, EE, EE; EE,| L, 0
GG, GG, GG, GG, |M, 0
I, I, I, i, | N E,,

Im

B, N, W, u,|o

(3.29)
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Where,

EE=Z1+ 1o
EE, =2uZ,,

EE, =Z,(1+ e
EE =-21Z,,

GG = 211(1+ :u)aeaD

GG, =Z,,{(1+ p)aD+2uje”®
GG, =Z,,(1+ u)oe™®

GG, = le{(1+ ,u)OLD - zlu}eiaD

I, = _211(1"' y)a

I, :_211(_1"'”)
1, =2Z,,(1+u)a
I, :_211(_1"'#)

3, =-7,,(1+ p)oe®

3J, :_le{(1+ ,U)O‘D TH _1}60@

3, = Z11(1+ :u)ae_aD

N, =2y {(1+ ﬂ)aD —H +1}e_aD
Ea?

L+ p)

Once the matrix Eq. (3.29) or four algebraic Eqgs. (3.26a), (3.26b), (3.27b) and (3.28b) are

solved simultaneously and the values of four unknowns, namely, Ly, My, Ny and Oy, are

Z11 =

obtained, Egs. of (3.21) are then used for subsequent finding of stress and displacement

components of the beam at various points.
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3.4 Results of Displacement Potential Solution

The analytical solutions of displacement and stress components are obtained using
displacement potential function for various aspect ratios (L/D) of the stiffened deep beam
taking steel material into consideration both for axial stiffeners (Case-1) and lateral stiffeners

(Case-2) .The properties of the material considered for solutions are as follows:

Table 3.1 Properties of the isotropic material used in the present study

Material E(MPa) | G(MPa)
Steel 209000 4500 0.3

At first by considering axial stiffener (Case-1) the result of a stiffened beam of steel material
having aspect ratio three (L/D = 3) and the uniform loading parameter, o,= 40 N/mm on the top
edge is presented in sequence of axial displacement (uy), lateral displacement (uy), bending
stress (ow), normal stress (oy,) and shearing stress (ox). The same procedure is then used for
the results of the beam with lateral stiffener (Case-2). Thereafter, the effects of change of aspect
ratio and on the elastic fields are observed from the solution.

3.4.1 Solution of the beam with axial stiffeners (Case-1)

Axial displacements (uy) are found zero at the mid section of span, at the lateral stiffened
boundaries and over the mid-horizontal plane [Fig. 3.2(a) and (b)]. Zero value of uy at the
stiffened boundaries confirms the satisfaction of boundary condition of those ends. Axial
displacements are found to be symmetric about the mid-vertical plane. The magnitudes of axial
displacement at the top half are quite less than those of bottom half of the beam. The values of
Uy are negative for sections 0<x/L< 0.5 and positive for 0.5<x/L<1.0. The maximum magnitude
of u,/L=0.0016 is observed at sections x/L = 0.1 and 0.9 of the bottom surface, where the loads

terminate from both sides of the beam.
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Lateral displacements (uy) near the two lateral ends are found to take positive value because of
the supports at the bottom boundary, and for the region 0.2<x/L< 0.8, displacements are
negative [Fig. 3.3(a) and (b)]. In the present problem, there is no restriction on the lateral
displacement other than the loading at the top edge and balanced at the bottom corners of the
beam to bring the equilibrium condition. The result confirms this physical condition being
pushed the corners up and mid-region down. The positive and negative maximum lateral
displacements are u,/D=0.000225 and u,/D= - 0.00017, respectively. The positive maximum
value is observed at the two ends on the lowest fibre and the negative maximum value is found

on the top fibre at the mid section of the beam.

Fig. 3.4 presents the deformed shape of the beam together with the original shape with the
magnification of 500 times of displacement. The stiffened ends have gone up and at the same
time centre region of the beam have gone down. The deformation of the top edge is uniform
throughout the length of beam with the uniformly distributed loading. The bottom edge is also
deformed uniformly except the support region, where there is very little non-uniformity of
deformation. However, the overall vertical sliding type deformation is again in excellent

agreement with the applied loading and support of the beam.

Bending stress distribution is more or less non-linear over the whole span [Fig. 3.5(a) and (b)].
This non-linearity increases towards the stiffened ends. The stress (ox) maximizes at the top
and bottom edges of the beam but carries opposite sign. The maximum normalized values at the
top and bottom fibre are 3.368 and -5.243 respectively. Near the stiffened ends, oy is positive
for the upper half and negative for the lower half of the beam, but the opposite is observed for

sections away from the support.

Fig. 3.6 reveals that the lateral stress (ayy) gets its highest value around the position of supports
on the bottom edge. As per the loading configuration, the uniform load is distributed over 80%
of beam length (from x/L= 0.1 to x/L=0.9) and support reaction is distributed over 20% of beam
length (x/L= 0.0 to 0.1 and x/L=0.9 to 1.0). Therefore, the reaction at each support is four times
of the load density. From the solution of displacement potential approach it is comprehensible
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that the normalized value of the lateral stress is zero where load is absent at the top layer and
unity in the loaded region. The magnitude of the normalized value is four at the bottom layer of
the support region and zero in the free region. This is in full agreement with the applied loading

as well as boundary condition.

Four edges and mid-span section of the stiffened beam are found free from shearing stress [Fig.
3.7(a) and (b)]. The distributions of shearing stress (oy,) conform to the standard parabolic
profile except that at sections x/L= 0.1 and 0.9, i.e., the termination point of loading [Fig. 3.1].
The maximum shear stress is observed at y/D=0.2 of sections x/L=0.1 (ox/oo = - 1.512) and
X/L=0.9 (000 =1.512).

3.4.2 Solution of the beam with lateral stiffeners (Case-2)

Axial displacements (uy) are found zero at the mid section of span and positive or negative at
the lateral stiffened boundaries [Fig. 3.8(a) and (b)]. Positive or negative values of uy at the
stiffened boundaries confirm the satisfaction of boundary condition of those ends. Axial
displacements are found to be symmetric about the mid-vertical plane. The significant values of
Uy are negative for beam depths O<y/D< 0.5 and positive for 0.5<y/D<1.0. The maximum
magnitude of u,/L=3.2708 is observed on bottom fibre at the sections of x/L = 0.1 and 0.9,

where the loads terminate from both sides of the beam.

Lateral displacements (uy) near the two lateral ends are found zero and for the rest of region
0.0<x/L< 1.0, displacements are negative [Fig. 3.9(a) and (b)]. In the present problem, there is
no restriction on the axial displacement other than the loading at the top edge and balanced at
the bottom corners of the beam to bring the equilibrium condition. The result confirms this
physical condition being pushed the supporting portions up and mid-region down. The negative
maximum lateral displacement is u,/D= -0.00078028 and it is observed immediate lowest fibre

at the mid section of the beam.
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Fig. 3.10 presents the deformed shape of the isotropic beam for lateral stiffener along with its
original shape at the magnification of 500 times of displacement. The stiffened ends are
displaced in the axial direction and at the same time loading portion is displaced down from
original shape of the beam. However, the overall axial sliding type deformation is in excellent

agreement with the physical condition of applied loading and support of the stiffened beam.

Bending stress distribution is more or less non-linear over the whole span [Fig. 3.11(a) and (b)].
This non-linearity becomes zero towards the stiffened ends. The stress (ox) maximizes at the
top and bottom edges of the beam but carries opposite sign. The maximum normalized values at
the top and bottom fibre are 5.5898 and -5.5720 respectively. At the stiffened ends, oy IS zero
for both the upper half and lower half of the beam, whereas it is positive for upper half and
negative for lower half of the beam if we advanced towards the mid section of the beam from
stiffened ends.

Fig. 3.12 reveals that the lateral stress (oyy) gets its highest value around the position of supports
on the bottom edge and becomes zero at a the stiffened ends. As per the loading configuration,
the uniform load is distributed over 80% of beam length (from x/L= 0.1 to x/L=0.9) and support
reaction is distributed over 20% of beam length (x/L=0.0 to 0.1 and x/L=0.9 to 1.0). Therefore,
the reaction at each support is four times of the load density. From the solution of displacement
potential approach it is comprehensible that the normalized value of the lateral stress is zero
where load is absent at the bottom layer and unity in the loaded region. The magnitude of the
normalized value is four at the bottom layer of the support region and zero in the free region.
This is a full agreement with the applied loading as well as boundary condition.

Four edges of the stiffened beam experience non zero shearing stress whereas mid-span section
of the beam is found free from shearing stress [Fig. 3.13(a) and (b)]. The distributions of
shearing stress (oyxy) conform to the standard parabolic profile except that at sections x/L= 0.1
and 0.9, i.e., the termination point of loading [Fig. 3.1]. The maximum shear stress is observed
at y/D=0.4 of sections x/L=0.15 (oyy/oo = - 1.516) and x/L=0.9 (ox/o0 =1.512).
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3.5 Effect of Beam Aspect ratio on the Stress fields

The effect of the aspect ratio (L/D) on the stress components are discussed in this chapter. The
stress components are observed with respect to beam depth (y/D) for both axial and lateral
stiffening conditions and also for various L/D ratios from 1 to 4 at different sections of the

beam.

3.5.1 Beam with axial stiffeners (Case-1)

The bending stresses for various aspect ratios (L/D=1 to 4) at different sections of the beam are
observed as shown in Fig. 3.14 (a) and (b). It is seen that the nonlinearity of bending stress is
highest at the stiffened end, while aspect ratio is one and it gets reduced with the increase of
aspect ratio. For higher L/D ratio at the mid region (x/L=0.4 to 0.6) of the beam, the bending
stress distribution is quite linear [Fig. 3.14(b)], whereas it is still nonlinear for aspect ratio one
or two. However, the maximum magnitude of bending stress is increasing with the increase of
L/D ratio.

The lateral stress distributions for L/D=1 to 4 at sections from stiffened end to middle of the
span (x/L=0.0 to 0.5) are shown in Fig. 3.15 (a) and (b). As appeared from the figures that
lateral stresses in all L/D ratios follow the loading pattern. With the increase of L/D ratio the
nonlinearity reduces, but some degree of nonlinearity remains. Lateral stress at the guided ends
as shown in Fig. 3.15(a) indicates that the distribution pattern changes while the length depth
ratio is changed. This pattern changing phenomenon is less with respect to sections moving

away from the guide. At the mid sections it is almost insignificant.

Shear stress is zero at the stiffened ends and at the mid span for all L/D ratios. Therefore, the
results at x/L=0.1 to 0.4 (4 sections) are shown in Fig. 3.16 (a) and (b), where the shearing

stress distribution patterns for L/D=1 are found quite different from others. With the rise of
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length depth ratio parabolic pattern of shear stress distribution is observed with higher value of
maximum shear stress magnitude. The accuracy of parabolic pattern becomes finer at the
sections away from the stiffened ends.

3.5.2 Beam with lateral stiffeners (Case-2)

The bending stress distribution is zero at the stiffened end of the beam for various aspect ratios.
That’s why section x/L=0.1 and mid span section is considered in Fig. 3.17(a) and (b) for
various aspect ratios (L/D=1-4). At section x/L=0.1, all the bending stress distribution is non
linear and maximum non linearity is observed for lower aspect ratio L/D=1.0. Now advancing
towards the midsection of the beam x/L=0.5, the nonlinearity is still observed for lower aspect

ratio L/D=1, whereas it is almost linear for higher aspect ratio L/D=4.

Again section x/L=0.1 is considered instead of stiffened end in Fig. 3.18(a) and (b), because the
lateral stress distributions at the stiffened end is zero. At Fig. 3.18(a), maximum non linearity is
observed at lower aspect ratio L/D=1. Now advancing towards the higher aspect ratio, this non
linearity decreases and lowest non linearity is observed at aspect ratio L/D=4. Now to get the
overall idea of lateral stress, mid span section x/L=0.5 is considered for L/D=1 to 4 in Fig.
3.18(b) and it is observed that the change of lateral stress distribution is insignificant with

respect to beam aspect ratio.

Fig. 3.19(a) and (b) describe the shearing stress distribution at section x/L=0.1 and 0.4 for
different beam aspect ratios (L/D=1-4). Stiffened end section (x/L=0) and mid span section
(x/L=0.5) is not considered because the shearing stress distribution is zero at those sections. At
section x/L=0.1, the value of shear stress is maximum within beam depth 0<y/D<0.05 and the
difference between these values with respect to beam aspect ratio is too small. Now by
advancing towards section x/L=0.4, the distribution pattern becomes parabolic and the

difference between the shear stress increases with the increase of beam aspect ratio.
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Fig. 3.1 A stiffened simply-supported beam of isotropic material:

65

(a) Physical model, (b) Analytical model



Axial deflection, (uX/L)xlO4
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Fig. 3.2 Distribution of normalized axial displacement components at different sections of
the beam with axial stiffener (L/D=3): (a) along beam span, (b) along beam depth
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Lateral deflection, (uy/D)x104
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Fig. 3.3 Distribution of normalized lateral displacement components at different sections of
the beam with axial stiffener (L/D=3): (a) along beam span, (b) along beam depth
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Fig. 3.4 Deformed shape of the stiffened (axial) isotropic thick beam, L/D = 3

(magnification factor x500)
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Fig. 3.5 Distribution of normalized bending stress components at different sections of the beam
with axial stiffener (L/D=3): (a) along beam span, (b) along beam depth
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Fig. 3.6 Distribution of normalized lateral stress components at different sections of the
beam with axial stiffener (L/D=3): (a) along beam span, (b) along beam depth
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Fig. 3.7 Distribution of normalized shear stress components at different sections of the beam

with axial stiffener (L/D=3): (a) along beam span, (b) along beam depth
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Fig. 3.8 Distribution of normalized axial displacement components at different sections
of the beam with lateral stiffener (L/D=3): (a) along beam span, (b) along beam depth
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Fig. 3.9 Distribution of normalized lateral displacement components at different sections of
the beam with lateral stiffener (L/D=3): (a) along beam span, (b) along beam depth

73



1.2
1.0 A
0.8 -
0.6

0.4 1 ——— Original shape
02 Deformed shape

0.0 -
0.2 -

0.4 -

-0.6

-0.5 0.0 05 1.0 15 2.0 2.5 3.0 35
Beam length (arb unit)

Fig. 3.10 Deformed shape of the stiffened (lateral) isotropic thick beam, L/D = 3

(magnification factor x500)
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Fig. 3.11 Distribution of normalized bending stress components at different sections of the

beam with lateral stiffener (L/D=3): (a) along beam span, (b) along beam depth
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Fig. 3.12 Distribution of normalized lateral stress components at different sections of the
beam with lateral stiffener (L/D=3): (a) along beam span, (b) along beam depth
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Fig. 3.13 Distribution of normalized shear stress components at different sections of the
beam with lateral stiffener (L/D=3): (a) along beam span, (b) along beam depth
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Fig. 3.14 Distribution of bending stress components at different sections of the stiffened

(axial) beam for different aspect ratios: (a) at left lateral end, (b) at mid-span section
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Fig. 3.15 Distribution of lateral stress at different sections of the stiffened (axial) beam

for different aspect ratios: (a) at left lateral end, (b) at mid-span section
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Fig. 3.16 Distribution of shear stress at different sections of the stiffened (axial) beam

for different aspect ratios: (a) at section x/L=0.1, (b) at section x/L=0.4
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Fig. 3.17 Distribution of bending stress at different sections of the stiffened (lateral)

beam for different aspect ratios: (a) at section x/L=0.1, (b) at mid-span section
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Fig. 3.18 Distribution of lateral stress at different sections of the stiffened (lateral)

beam for different aspect ratios: (a) at section x/L=0.1, (b) at mid-span section
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Fig. 3.19 Distribution of shear stress at different sections of the stiffened (lateral)

beam for different aspect ratios: (a) at section x/L=0.1, (b) at section x/L=0.4
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CHAPTER 4

ANALYSIS OF A STIFFENED FIBER REINFORCED COMPOSITE
BEAM

The main focus of this chapter is to investigate the effect of stiffeners on the elastic field of a
mixed boundary value problem using displacement potential function approach. In this chapter,
a stiffened simply supported thick beam of orthotropic composite material is considered for the
analysis. The beam is stiffened at its opposing lateral ends by using two different kinds of
stiffeners, i.e., axial stiffeners and lateral stiffeners. The beam is loaded transversely at a certain
portion on its upper surface and roller supports are used at certain portions of the lower surface
of the beam. The effect of beam aspect ratio on the stress field is also discussed in a
comparative fashion for both kinds of stiffeners.

4.1 Problem Description

A uniform rectangular composite beam of length L, depth D and thickness W is considered for
the present analysis. The beam is subjected to a uniformly distributed load at its upper surface
and is simply supported at the two extreme regions of the bottom surface. The beam is in

equilibrium with a uniform loading o, acting over 80% of its span (from 0.1L to 0.9L) at the

upper surface (y = D), and distributed reactions from x = 0 to 0.1L and x = 0.9L to L at the
bottom surface (y = 0), as shown in Fig. 4.1. It is noted that the chosen analytical model of the
beam is similar to those treated by Chow [3, 4] and Hardy and Pipelzadeh [15]. The lateral ends
of the beam, EF and HG are assumed to be stiffened with rigid stiffeners. Two different types
of stiffeners are considered for the opposing lateral ends of the beam, which are axial stiffener
(Case-1) and lateral stiffener (Case-2). The beam is considered to be of unit thickness and the

fibers are assumed to be oriented along the length of the beam (x-axis, Fig. 4.1).
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4.2 Boundary Conditions

The physical conditions of the present problem with reference to Fig. 4.1 [(a) and (b)] are to be
satisfied along the all four boundaries of the beam can be expressed mathematically as follows:

(@) Loaded boundary, EH (y = D):
The loading at the upper boundary is modelled by assigning a uniform value to the normal

stress component, which is also free from any shearing stress. The corresponding

mathematical expressions of the conditions are

(D) {—ao [0.1<x/L<0.9]
Oyy x,D)=

o,,(x,D)=0 [0.0<x/L<1.0]
(x.D)

0 [otherwise]

(b) Supporting surface, FG (y = 0):
The roller supported regions of the bottom surface are modelled by a uniform distribution
of normal loading which is free from shearing stress. At the supports, the total reaction
forces are considered to be equal and opposite to the loading applied at the top surface. The
reactions are distributed over 20% of the beam span (i.e., x/L = 0.0-0.1 and 0.9-1.0). The

remaining section of the bottom surface is assumed to be free from loading.

o, (x0)=0 [0.0<x/L<1.0]
Oyy (x, 0)={

~4c, [0.0<x/L<0.1;0.9<x/L<1.0]

0 [otherwise ]

(c) Left lateral end, EF (x = 0):
Axial stiffener (Case-1): The physical condition of the rigid axial stiffener is modelled here
by assigning zero values to both the axial displacement and the associated tangential stress
components along the end. Thus,
u, (0,y) =0

[0.0<y/D<1.0]
Oxy (O’ y)= 0
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Lateral stiffener (Case-2): The physical condition of the rigid lateral stiffener is modelled
here by considering the boundary free from lateral displacement and axial normal stress.
Thus,

uy (0’ y) =0

} [0.0<y/D<1.0]
O xx (0, y): 0

(d) Right lateral end, GH (x = L):
Axial stiffener (Case-1): Likewise the case of left lateral end, the corresponding

mathematical expressions for the conditions of rigid axial stiffener at this boundary are
uy (L,y) =0

[0.0<y/D<1.0]
oy (Ly)=0

Lateral stiffener (Case-2): The conditions of rigid lateral stiffener at the right lateral end are

modelled by the following expressions:
uy (L,y) =0

} [0.0<y/D<1.0]
O xx (L’ y): 0

4.3 Analytical Solution

4.3.1 Approach

Based on the potential-function formulation, an analytical scheme is developed for the analysis
of the stiffened simply-supported beams. In the present scheme, a trial solution to the potential
function w is first assumed as a function of coordinate parameters (x, y) in the form of an

infinite series. More specifically, the solution is expressed as an infinite series of combinations

of two independent functions of x and y, which assumes a form like, v (X,¥) =Y. g,,(X) h,,(y).
m

A suitable form of the function is determined in a trial and error fashion so that it can

automatically satisfy the prescribed physical conditions of the two opposing lateral ends of the
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beam. Substitution of the trial solution into the governing differential equation results in a
fourth-order ordinary differential equation. A general solution to the ordinary differential
equation is then assumed in terms of four arbitrary constants. These four constants are
determined by satisfying the remaining four physical conditions associated with the top and
bottom surfaces of the beam. By knowing the values of the four arbitrary constants the trial
solution assumed for the beam problem is explicitly known. Once the appropriate potential
function for the beam is explicitly determined, all the parameters of interest of the elastic field
can readily be obtained, as in the present potential-function formulation, they are expressed as

the summation of different derivatives of the function, v.
4.3.2 Solution procedure

The governing differential equation for the present composite beam is expressed in
terms of the potential function, w through the following partial differential equation of
equilibrium [Eq. (2.30)]:

4

o 0 o
E.G, % +E, (El —21,Gy, )axz—;/yz +E,Gp, 8y_li/ =0 (4.1)

In this case the displacement and stress components are also obtained from Eq. (2.29) as

follows:

u,(x,y)= g:g/y (4.2a)
u,(x,y)= _%M{Elzgi_erG“(El — u5E, )(2;_1/2/} (4.2b)
o, (xy)= Efl“ {El ;;lgy — 1,E, aa;_l/;} (4.2¢)
o, (xy)= EzllElz {(MZG12 - El)aiz—‘gy -G, aa;—ﬂ (4.2d)
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O-xy(x1 y): (429)

EG 0° 0°
2 = |:E1 8):/3/ _,uleza—Wz}
1 Xy

Where Z,, = u,E\E, +G,, (El - ,u122 Ez)
4.3.3 Beam with axial stiffeners (Case-1)

The trial function for the present problem is assumed in terms of a cosine function so that its
first and third derivatives with respect to x are obtained in terms of a sine function. It is
observed that such a trial solution is capable of satisfying the necessary physical conditions
associated with the two opposing lateral ends automatically, which are given by the conditions
of ‘c’ and ‘d” of section 4.2. Considering all these factors, the potential function, y for the

present problem is approximated as follows:

w = Y, cosax+Ky? (4.3)
m=1
where Y. = f(y), « :m—Lﬂ and K = Arbitrary constantandm=1,2,3, ........ 0.

Derivatives of Eq. (4.3) with respectto x and y are

v _ =Y Yasinox

aX m=1
oy N 2
=—>» Y a“cosax
ox? mZ; "
O’y

=>Y a’sinax
3 z m
aX m=1

oy 3 4
= > Y, o cosoax
ox* Z{
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2 o0
Y _ - Y asinax
aXay m=1

3 -
a_l//Z =-Y Y,asinax
aXay m=1

3 0
4 Z_—_3'Y,a?cosax
OX ay m=1

4 o0
oy __ —> Y, cosax

aXzay2 m=1
oy <y 2
e DY, cosax + 3Ky

y m=1
aZv/ £ .,

7= Y, cosax+6Ky

8y m=1
%y

—— =) Y. cosax+6K
o

4 0
4 Y _ SV cosax
ay m=1

Using the derivatives of Eq. (4.3), Eq. (4.1) yields

E,Gy, Y Yo' cosax—E,(E, —2u,G,, )Y Y, a? cosax + E,G, Y| Y, cosax =0
m=1 m=1 m=1

wd w E (E,—2 . E

or, EZGlzz‘[Ym _EE ”HG”)YmaZ +&Yma“}cos ax =0
= E.G
m=1 212 212

12 2

or, Y. —(——2M2]Yn;‘a2 +E5Yma“ =0 (4.4)
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Eq. (4.4) is a fourth-order ordinary differential equation. The general solution of the differential

equation can be written as

Y,=A,e" +B,e?” +C_e* +D e" (4.5)

where A, B,,, C,, and D,, are arbitrary constants, and r,, I,, I, and r, are the corresponding

roots which are given below

1
2 2
a | E E E
rr=—2||t_2 + || =L_9 4L 4.6a
1l \/E (Gz lulzJ \/£G2 ﬂu) E, ( )
2
o | E E E
r3,r4:—$ (G—l—zﬂuji\/(c;—l—zﬂuj _4E_1 (4.6b)
2 2 2

Now substituting the derivatives of yand Y, as obtained from Eq. (4.3) and (4.5),

respectively, in the expressions for displacement and stresses (4.2a, 4.2b, 4.2c, 4.2d and 4.2¢).

0%y
X0y

u,(xy)=

= —iY ‘m(X sinax

m=1

00

= —Z(Am re” +B,r,e? +C, re®” +D, r4er4y)ozsin ax (4.7a)

m=1

1[_,d 0?
Uy(X, y)= ——{Ef aTUZ/+612(E1 _:ulzzEZ)ay_vz/}

1 SV
= _Z_{Ef {— D Y,al cosax} +GylE, - 43E, ){ZYm cosax + 6KyH
11

)
m=1 m=1
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m=1

Ef{—i(Ameﬁy +B,e? +C e" + Dmer‘*y)pc2 cosocx}+G12 (E1 — 1 EZ)

1
VA o
: {Z(Am r2e™ + B, r2e™ +C, r2e™ + D, r’e™ )cosax+ 6Ky}

m=

AN

. {(Efaz - E1G‘12r12 + ﬂlzzEzGlz"lz)erlyAn + (E120‘2 - E1G‘12r22 +,LL122E2G12I’22 rzme 4}
z (Efaz - E1€‘12r32 + :u122 EzGlzrsz)erayCm + (E120‘2 - E1G12r42 + :u122 EZGIZr42 kw D,

_ 1 (4.7b)
2y |
Cosax — (E1G12 ~ gy E2G12)6Ky

E.G o° o°
GXX(X’ y)= 2 = |:E1 alegy _lu12E2 ayl/;:|
11

E 0 : 0 .
- EGH { { ZY a’ coswx} — 1,E, {ZYm cosax + 6 KH
11 m=1

EGp [El{z A re” +B re™ +C re™ + Dmr4er4y)9¢2 cos«xx} +

m=1

Mo 2{

i (Ere™a’ + w,Er%e™ A, +(Ene™a? + i,E,rle™ B, +

m=1

Anrferly +B, e +C, rje™ + Dmrfer”)cowx + GK}]

H

(Eerewoz2 + y12E2r33er3y)Cm + (E1r4er4ya2 + /,tlezrfe”y)Dm}cos ax+6Ku,E,] (4.7¢c)

EE o° 0°
GW(X’ Y): Zl 2 |:(:u12612 _El) v -G, _W}

11

E.E 5y Sy
— Zl 2|:(‘Ll12G12_E1 _ZYmazcos (ZX}—Glz{zYm COS(XX+6K}i|

11 m=1 m=1

= _i[(#lze12 - E){i (Amrlerly +B,rne? +C, e + Dmr4er4y)>z2 cos ax} +

le m=1

G, (Am r’e"™ + B, rye” +C re™ + D, rfe“*y)cos ax+6K}]
m=1
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_EE

22{(/,t12612rler1ya2—Elreriy 2+Glzr3eriy)A“ +(ﬂ12612r e a’-Ere?a 2+Glzr3er2y)B
11
( G,re¥a’ —Ere™a 2+Glzr3er3y)c +

+
(4.7d)
( Gpure™a’ —Ere“a’ +Glzrf’e“*y)Dm}comx+6KG12
( )_ EGy, E O’y E O’y
O\ XY Tz, 1 58 Mz > 2xoy?
- EZG” {E, Z (Ameriy +B,e” +C e™ + Dme”y)a3sin ax + u,E,
11 m=1
Z (Amrlzeriy n erzzerzy + Cmrszer3y N Dml’fer“y)a sin ax}
m=1
Elelz 0 (Eleriya3+‘l,112E r:LZeriya)An +(Elel’21ya3+‘ule rZZel’zya)Bm +| . X (4 7 )
B — SIna /e
1 (Eie@yoc3 + 1,E, r328r3ya)Cm +( e“a® + u,E, rfe“‘ya)Dm

From the expressions of (4.7a) and (4.7e) it is evident that the boundary conditions associated
with the left and right lateral ends are automatically satisfied. Thus the next requirement is to
satisfy the remaining boundary conditions associated with the upper and bottom boundary

surfaces.

Now the reactions acting at the two extreme regions of the supporting surface, y = 0 may be

expressed in terms of Fourier series as follows:

o, (x,0)=40, =E, + i E_cosax forx=0to0.1L and 0.9L to L (4.8a)
m=1

Here

E, j 4o dx + j 4o ,dx

9L
10
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_ 49, [£—0+ L—g}
L [10 10
4o,
=—2 4.8b
5 (4.8b)

2 %0 L
E., =1 'f 40, cos oxdx + '[ 40, CoS axdx
0

9L
10

L L o oL

:&i{sin(m}ﬂin(mn)—sin(%—ﬂ}} (4.8c)
mrs 10 10

The applied loading on the top surface, y = D can also be expressed in terms of Fourier series

_8ay, [sin ax}%o . 8o, [sin ocx}L
(04

as follows

o, (x0)=c,=1, +i I, cosax  forx=0.1L to 0.9L (4.9a)

m=1

Here

_4oy (4.9b)

2 9%0
I =T jaocowxdx
V1o
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_ 20, [Sin ax}g%o
L 2

:ﬁ{sin("m—”]_sm[ﬂj} (4.90)
mrz 10 10

Using boundary condition o, (x,0)=0 at the edge of y =0

o

=) (E ea®+ u, E2r32a)Cm +(E o'+ u,E,rla

E G 1 {i{( 10‘3 +‘L112E2I’120£)An +(E10£3 + By r220‘)Bm + )D }sinax] ~0

or _ EGy {(Eloﬁ + B A, + (B + 1B, r7a B, +} e

(4.10a)
Z,, |(Ea® + m,Ex2a )C, +(Ea® + m,Eor2a D,

Using boundary condition o, (x,D)=0 at the edge of y = D

w( rD 3 2r1) ( D3 2rz )

ElG12 z Ee*a” + u,E, a)A, +\Ee™ a” + w,E, By | _
sinax|=0

& ( r3Da3+‘uﬂ 2 oD k ( r“Da3+,uﬂ 2 oD )Dm

or _E G12 (E ePo’ + /,tlezl’lzeriDoc)A11 + (E ePa® + u,E,re"" a)Bm + (4.10b)
( Ee"Pa’ +/,112E2I’32er3DakIm +( Ee“Ca’+ u,E,r’e"P )Dm .

Using boundary condition o, (x,0)=4c, at the edge of y =0

(:u12G12 no ? - E.na 2+ G, r13 )Am +

2 2 3
EE, | & | \w,Guha®—ELa®+G,r, B, + ©
A (1o , 1“3) " tcosax+6KG,, | =Y E, cosax+E,
Z, | ™ (ulzGlzrsa —-Ena”+G,r, )Cm+ m-1

(:u12G12 ra’ —Ena’ +G,r, )Dm
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Therefore,

(ﬂlzGlz rlaz - Elrlaz +Gy, r13 )Am +
E.E, (:u12612r2a2 - Ell’zaz +Ger23)Bm +
B 2 2 3 = Em (410C)
Zy (,UlzGlz a® —Erna® +G,r, k:m +
(:u12612 "40‘2 - Eer,O‘2 +Gy, r43 )Dm

Using boundary condition o, (x,D)=0, atthe edge of y =D

(:u12612 re®a’ - Ere®a’+Gp,r’e"™ )An +
D_ 2 LD 2 3,n,D
E.E | < (:"llzcalzrzerz a’—-Ere*a +Glzr2e 2 )Bm o
- Z Z D 2 D 2 3,.D CosaxX + 6KG12 = Z Im COS aX + IO
n | ma | (pGphe ™ a” —Einera” + 6,1 m T m-1
nD 2 nD 2 3.r,D
(:ulZGlz re“a”—gre“a”+G,re" )Dm
Therefore,

(/,tlzG12 re"a’ -Ere"a’+Gy,r’e™ )Am +
(/,tlzG12 r,e”®a’ —Ere”a’+G,rle?” )Bm +

LD 2 LD 2 3,10 =In (4.10d)
(ﬂ12612r3e3 o —Ere*a®+G,re? k:m +

(/,tlzG12 re“®a’—Ere“®a’®+G,rle" )Dm

E1E2
le

From Eqns. (4.7d) and (4.8) or (4.9), the arbitrary constant K can be obtained as follows:

_BEEKG, _ _ 4o
OE e _p oy oo
Z, 5
or, K =——2%u% (4.11)
15E,E,G,,

The simultaneous Egs. (4.10a), (4.10b), (4.10c) and (4.10d) can be realized in a simplified

matrix form for solution of the unknown terms of arbitrary constants like A, B, C,, and D,
as follows:
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I m
m
.
.m
o o

H2 H3 H4 Bm
=| = (4.12)
RR, R, R, R,/ [C,| |En
S, S, S, S,ID,| |1In
Where
F =Eo’+ u,E,r’a N

H, =Ee"’a’+u,E,r’e"’a

> i=1,2,3,4

2 2 3
Ri = u,Gpria® —Era® +Gyr,

S, = u,G,rePa’-ErePa’+G,r’e"" ~
Em:_ZnEm
E1E2
T __lelm
i ElEZ

Zy, = u,E B, +Gyy (El - ,U122E2)

Eqgns. 4.7 are used for finding the stress and displacement components at various points of the
beam and the appropriate values of E, and I, are determined to get the values of four
unknowns constant, namely An, Bm, Cr and D, by using either the matrix (4.12) or the four
algebraic simultaneous Eqs. (4.10a), (4.10b), (4.10c) and (4.10d).
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4.3.4 Beam with lateral stiffeners (Case-2)

In this case the trial function is assumed in terms of sine function so that its first and third
derivatives with respect to x can be found in terms of cosine function. The displacement

potential function y for the case of lateral stiffener is assumed as:

v = iYm sin ax (4.13)
m=1
where Y,, = f(y), « :m—Lﬂ and K = Arbitrary constantand m=1,2, 3, ........ ©.

Derivatives of Eq. (4.13) with respect to x and yare

oy &
— = > Y, o COSax
o

o’y Z 2 s
=-> Y, a“sinax
ox? Z‘i

O’y N 3
=-) Y, a’ cosax

4 )
o _ D Y, sinax

8X4 m=1

2 £
oY _ D Y, cosox
aXay m=1

3 0
d V=3 Y acosax
3X8y m=1
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3 0
621// =-> Y, a?sin ax
8X ay m=1

Using the derivatives of Eq. (4.13), Eq. (4.11) yields

E,Gp, Y Yna'cosax —E,(E, — 24,6, )Y Yy’ sinax+E,G, Y Y, 'sinax =0

m=1 m=1 m=1

or, Y.° —(GE—l—zulZ]Y"az +Ey a*=0 (4.14)

m m
12 2

The general solution of ordinary differential equation be

Y,=L.e”+M,e? +N e +0,e" (4.15)

98



where L,, M, N, and O, are arbitrary constants, and r, r,, I, and r, are the
corresponding roots which are given below
1
E E gl
a 1 1 1
r’r — __2 + __2 _4_ 4163.
1l \/E (Gz ﬂu) \/(Gz ﬂu) E, ( )
: 1
a |l E E E
SR YN N 150
3174 \/E (GZ 12 \/C;2 12 E2

Now substituting the derivatives of y and Y, by using Eq. (4.13) and (4.15) respectively in the

expressions for displacement and stresses (4.2a, 4.2b, 4.2c, 4.2d and 4.2e).

oy
X0y

u,(x,y)=

=> (Lmrlerly +M,r,e?” + N re® +0,r,e™ )1 COS ax (4.17a)

1 0° 0°
u, (X1 y) = __{ E12 v +Gp, (El - ,u122 E, )w_f}

1 = : SV i
_ _Z_{_ E? {ZYmoz2 sin ax} +G,, (E1 — uE, ){ZYm sin aXH
m=1 m=1

1] (Elzaz - ElGlzrlz +/U122 EZGlzrlz )erly L, +(E120‘2 -EG, r22 +/U122 E,G, r22 )erzy M, +
(Elzaz -EG, r32 +/U122 Ez(-:"12r32 )er3y N +(E120‘2 -EG, r42 + lulzz Ez(-:"12r42 )C”wom sinax |(4.17b)

3 3
GXX(X’ y): EG, {E oy a‘//}

L. E. 2%
Z, 18x28y HipEy ay3

E.G 2, . S\
=178 {El{— Y. a’sin ax} — u,E, {ZYm sin axH
le =1 m=1

m:
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__EGy [Z{(E e ol + u,E,rle™ )L, +(Ere™a’ + u,E,rle® M, +

le m=1
(Eerer3ya2 + /,tlezrfew)Nm + (E1r4er“ya2 + Ezrfe“‘y)om}sin ax] (4.17c)
E.E 0° o’
Oy (X’ Y): 21112 |:(:u12G12 -E, )alegy -Gy, %}

= EZlEZ |:(:ulZGlZ - El - ZYnlwa ?sin ax} - GlZ {Z YfTI\"Sin ax}}

11 m=1 m=1

0

{(/leGlz reVa’ —ErreYa’ +G,r’e"” )Lm + (/,112612 re™a’ —Ere®a’ +Gyr, erzy)M

m
1 m=l

+ (ulzGlzrgewoz2 ~Er.e¥a’® +G,rie" )Nm +

ny 2 ny 2 3,1,y H (417d)
u,G,re?a”—Ereva+Gyre L sinox

EG k% %y
axy(x, y)= 21112 |:E1 o —MzEzW

_E;
ZG“{E Z(L e +M_e”+N _e*+0 e"‘y)a cos ax + i, E,

11 m=1

Z(Lmrfe“y +M r7e” + N _rfe™ + Omrfe“y)a cos ax}

m=1

E = [(E,eVa® + u,E, r’eVYa)l, +(Ee™ o’ + u,E,rfe?aM_+
_EGy Z %( Hi2Bol ) ( =2l ) COSOoX (4.17¢)

Zy, ™ (Eler3y0¢ +y12E2r326r3ya)Nm +(E e“a® + u,E, rfer“yabm
From the expressions of (4.17a) and (4.17e) it is evident that the boundary conditions
associated with the left and right lateral ends are automatically satisfied. Thus the next
requirement is to satisfy the remaining boundary conditions associated with the upper and
bottom boundary surfaces.

Now the compressive load exerted at the two corners on the edge y=0 may be taken as

Fourier function in the following manner:
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o, (x,0)=40, =E, + i E_cosax forx=0t00.1L and 0.9L to L (4.18a)

m=1

Here

E,=0

0 9L

(4.18b)

2 %0 L
En= T 'f 40, sin axdx + j40'0 sin axdx

10

o 0 L

__%% cos(m} ~1+cos(mx)- cos(
mrz 10

0 L 0
8o, [—cowx}ﬁo . 8o, [—cowx

10

Imx
W}} (4.18¢c)

The compressive load on the edge y = D can also be given by a Fourier series as follows

o, (x0)=0, =1, +ilmsinax

m=1

Here

l,=0

2 9%0
I =1 '[crosin axdx
V1o

_ 20, [COSO{XT%O
- Yo

20, Imn mrz
=—2:c0§ —— |—Cc0§ —
mrs 10 10

o

forx=0.1L to 0.9L (4.19a)

(4.19b)

(4.19¢)
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Using boundary condition o,,(x,0)=0 at the edge of y =0

E @’ + p,Eorfa)l, + (Ea® + uyErfaM, + I
1 (Ee™a® + u,Eor2a N, +(Ee”a® + uy,E,r2a 0,

or,

E,G,, {(Eia +ipEa ), + (B’ + wErfa M, +} 0 (4.20a)

Zy (Eﬂ + B, Q)N +(E105 + B, ab

Using boundary condition o,,(x,D)=0 at the edge of y = D

Gy < (E "o’ +u,E,re™ )L +(E er21D(x3+,U12E rie"’ (X)Mm+ cosax |=0
1 (E e*Pa’ + u,E,rle™” O‘)N +(E e“Ca’ + py,E,re"’ bm

{E €0 + 1, E 1700 )L, + (Ee*%a® + 11, E,r7e"Pa M, +} (4.20b)

1er3Da3+,L112 2 oD )N +(E1er4Da3+/,L12 2010 b
Using boundary condition o, (x,0)= 40, at the edge of y =0

(:u12G12 rlaz - Elrlaz +Gy, r13 )Lm +
EE | < (:ulzGlzrzaz - Elrzaz +Gy, r23 )M mt
Z, ™= (,ulzG12 ro’ —Era’ +GLr. )Nm +
(:u12G12 o’ —Era’+G,r, bm

sinox | =Y E, sinax+E,
m=1

Therefore,

2 2 3
(ﬂlzGlz na” —Erna®+Gp,n )Lm +

2 2 3
(ﬂlzGlz Lo —Era®+Gy,r, )M m T

2 2 3
(,UlzGlz a® —Ena” +Gyr; )N m T

2 2 3
(:u12612 ra” —Era”+Gy,r, bm

=E, (4.20c)
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Using boundary condition o, (x,D)= o, atthe edge of y = D

(/,112612 re"a’® -Ere"a’ +G,rle™ )Lm +
D _2 nD 2 3.r,D
EE,|& (/,zlzGlzrzerz a’—Ere*a®+G,r,e" )Mm+ ] © ]
- > Lo’ Ere®a G e N sinax |=> I, sinax+1,
1 | m= |\, he T a —EeTTa + 60 m T m=1
nD 2 nD 2 3.1,D
(:u12612r484 a’-Ernea’ +Gyret bm
Therefore,
1,G,rea’ —Ere™a’ +G,rle"" )Lm +
E,E, (/,tlzGlzrzerzDoc2 ~Ere?a? +Glzr23er2[’)Mm H_, (4.20d)
- LD 2 D 2 3..1,D = Im '
Z, (ﬂ12612r3e3 a’® —Ere*a’+G,re" )Nm+

D _ 2 nD 2 3,1D
(:u12612r4er4 a” -Ere*a’ +Gyret bm

From Eqgs. (4.17d) and (4.19) or (4.20)
E,=1,=0

The simultaneous Egs. (4.20a), (4.20b), (4.20c) and (4.20d) can be realized in a simplified

matrix form for solution of the unknown terms of arbitrary constants like L,, M, N,

andO,, as follows:

PR R RL, 0
M 0
Ql Q2 Q3 Q4 m —| (421)
T, T, T, T,IN,| |En
U, U, U, U,|lo, ]| |In
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where
P, = E1a3 + Uy, Ezriza
Q, =Ee"a’+u,E,r’e"a i=1,2,3,4

2 2 3
T = up,Gpria® —Ena® +Gyr,

U, = u,G,rea’-Ere™a’+G,r’e"™” _/

Zy, = u,E B, +Gyy (El - ,U122E2)

Egs. 4.17 are used for finding the stress and displacement components at various points of the
beam and the appropriate values of E, and I, are determined to get the values of four
unknowns constant, namely Ly, My, N and O, by using either the matrix (4.21) or the four
algebraic simultaneous Eqs. (4.20a), (4.20b), (4.20c) and (4.20d).
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4.4 Results of Composite Beam

In this section, numerical results of the analytical solution of the composite beams are
presented in the form of graphs. First, the distributions of different displacement and stress
components at different sections of a thick beam (L/D = 3) are discussed. The effects of
stiffeners at the lateral ends and beam aspect ratio on the elastic field are then investigated.
Although the analytical method developed can be applied to any composite material of interest,
a glass-epoxy composite beam is chosen as an example in the present study, the effective
mechanical properties of which are listed in Table 4.1. The value of the maximum intensity of
the normal loading assumed to calculate the present results is oo = 40 N/mm.

Table 4.1: Mechanical properties used for the Glass-Epoxy composite

Material Mechanical Property Symbol (unit) Value
E; (GPa 43.0
Elastic modulus 1(GPa)
E. (GPa) 8.9
Glass-Epoxy Shear modulus G2 (GPa) 4.5
. . V12 0.27
Poisson’s ratio
Va1 0.0559

4.4.1 Displacement field

The variations in the normalized axial and lateral displacement components (ux/L, uy/D) along
the span (x/L) of a glass-epoxy beam (L/D = 3) with axial stiffeners at the lateral ends are
shown in Fig. 4.2. Axial displacements (u,/L) are found to be of nearly anti-symmetric nature
about the mid-span section of the beam. The displacements are found to be zero at the mid-span
section as well as the lateral stiffened ends [Fig. 4.2(a)], which, in turn, verifies the proper
modeling of the boundary conditions at the stiffened ends. The maximum magnitudes of axial
displacement are observed at the bottom surface of the beam, particularly at the sections x/L =
0.1and 0.9.
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Lateral displacements (u,/D) are found to assume positive value (upward displacement) around
the two supporting regions near the lateral ends, and negative value (downward displacement)
for the region 0.2 < x/L < 0.8, which is in good conformity with the distributions of loading at
the top and bottom surfaces as well as with the boundary conditions of the lateral ends [Fig.
4.2(b)]. The distributions are symmetric about the mid-span section of the beam. The maximum
and minimum downward displacements are found to occur at the bottom and top surfaces of the
beam, respectively. A comparison of the results shown in Figs. 4.2(a) and (b) reveals that the
maximum lateral displacement is nearly three times higher than the maximum axial

displacement occurred for the present stiffened composite beam, L/D = 3.

4.4.2 Stress field

The distributions of normalized bending stress component oy/oo With respect to beam depth,
y/D at different sections of the beam are illustrated in Fig. 4.3(a). Bending stress distributions
are observed to be non-linear over the whole span, although the beam length is three times
higher than its depth. The degree of nonlinearity increases with the decrease of distances from
the stiffened ends. In general, maximum values of bending stresses are observed at the top and
bottom surfaces of the beam with opposite sign. The maximum normalized values of the stress
at the top and bottom surfaces are found to be nearly 4.8 and —9.0, respectively. These
maximum bending stresses are found to occur at the stiffened ends of the beam, which, in turn,
identifies the stiffened lateral ends of the beam as the most critical section in term of axial
stresses, which is, however, the most dominating stress components among the others. Bending
stress is found to be positive (tensile) for the upper half and negative (compressive) for the
lower half for sections close to the stiffened ends, but opposite characteristics are observed for
sections in the region, 0.1<x/L<0.9. The bending stress distribution at the mid-span section of
the present composite beam (L/D=3) is found to be still highly nonlinear which is in contrast
with the case of unstiffened beam, as the distribution was verified to be almost linear at the

mid-span section of an unstiffened beam of L/D=2 [9].
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As appears from Fig. 4.3(b), the lateral stress (cyy/00) is of higher concentration around the
regions of supports at the bottom surface. The applied uniform load is distributed over 80% of
beam-span (from x/L= 0.1 to x/L=0.9) and support reactions are distributed over 20% of the
beam-span (x/L= 0.0 to 0.1 and 0.9 to 1.0). A simple quantitative analysis shows that the
intensity of the reactions is four times the applied load intensity. From the present
displacement-potential solution it is revealed that the normalized value of lateral stress varies
from zero to unity at the bottom and top surfaces, respectively, for sections within the loaded
region (0.1<x/L<0.9), and the corresponding values at the stiffened ends vary from —4 to zero,
which is in excellent agreement with the applied loading as well as other boundary conditions
of the beam. When the distributions of lateral stress are analyzed in the perspective of the
beam-depth, they are found to be highly nonlinear, particularly for sections near the stiffened
ends. This nonlinearity is found to decrease as the distance from the stiffened end is increased.
It can be noted that for sections around the mid-span section of the beam (L/D=3), the
distributions are found to be still nonlinear, which is, however, in contrast to the case of an

equivalent un-stiffened beam.

From the distributions of shear stress at different sections of the beam it is observed that the
entire top and bottom surfaces and the two stiffened ends as well as the mid-span section are
completely free from shear stress (see Fig.4.3(c)), which is in conformity with the physical
characteristics of the present beam. Maximum shear stress is found to occur at the load
transition section, x/L= 0.1 and 0.9, specifically at the vicinity of the bottom surface, which is
in contrast with the standard parabolic profile. The shear stress distributions are found to
assume the parabolic profile in a gradual fashion as we move towards the mid-span section.
Distributions are symmetric about the mid-span section of the beam. The maximum shear stress
developed at section x/L= 0.1 of the present beam is found to be nearly 1.8 times the intensity

of the applied loading, op.
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4.4.3 Effect of stiffeners at the opposing lateral ends

This section describes the effect of different types of stiffeners at the opposing lateral ends of
the beam on the state of stresses. More specifically, the distributions of stresses obtained with
axial and lateral stiffeners at the ends are compared with those of the unstiffened beam. Fig. 4.4
compares the bending stress distributions at sections x/L= 0 and 0.5 for three different cases of
stiffeners at the lateral ends. At the lateral ends, the bending stresses are basically zero for both
the cases of lateral and no stiffeners, whereas for the case of axial stiffeners, the lateral ends are
identified as the most critical sections in terms of the bending stress. The maximum stress is
developed for the case of axial stiffeners at the bottom surface of the beam, which is more than
eight times the intensity of the applied loading. When the corresponding solution of bending
stress at the mid-span section are compared, it is observed that the lateral stiffeners at the two
opposing lateral ends do not cause much change in the mid-span bending stress distribution
from the corresponding case of no stiffeners. However, the axial stiffeners at the lateral ends
have significant influence on the mid-span bending stress compared to the case of lateral
stiffeners, as the corresponding magnitude of the stress is found to be nearly half of that of the

unstiffened beam.

Fig. 4.5 illustrates the comparison of distribution of lateral stresses at the lateral ends (x/L= 0)
and mid-span section (x/L= 0.5) of the beam is subjected to axial and lateral stiffeners as well
as of an unstiffened beam. The lateral ends of the beam with lateral stiffeners are free from
normal stress, oy, Whereas the remaining two cases are close to each other in terms of
magnitude and shape with slight discrepancy only at the left and right corner points of the
bottom surface. The three distributions are found to be almost identical when the section
concerned is the mid-span section of the beam, which vary from zero at the bottom surface to
unity at the top surface. However, the distributions are found to be slightly nonlinear even at

the mid-span section of the beam, L/D =3.

The comparison of shear stress distributions at two different sections of the beam with and

without stiffeners is presented in Fig. 4.6. It is observed that the effect of stiffeners at the lateral
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ends on shear stress distribution is not that significant, when the section concerned is away
from the lateral ends [Fig.4.6(b)], as the three distributions are found to assume nearly the
similar parabolic profile. On the other hand, the lateral ends of the beam subjected to lateral
stiffeners are identified to be the most critical sections of the beam in terms of shear stress,
while the ends of the other two cases are free from shear stress, which is, however, in complete
conformity with the given end conditions. Shear stress at the lateral ends for the case of lateral
stiffeners assumes negative value for the upper 70% of the depth and for the lower 30% of the
depth; it increases gradually with positive value and eventually assumes its maximum value

near the bottom surface.

In attempt to demonstrate the overall deformation of the beam under the influence of stiffeners
at the lateral ends, the corresponding deformed shapes of a beam (L/D =3) are compared with
the original undeformed shape in Fig. 4.7. The conditions of the two types of stiffeners are

clearly reflected through the corresponding deformed shapes of the beam.

4.4.4 Effect of beam aspect ratio

The effects of the aspect ratio (L/D) on the components of stress are also analyzed for both the
axial and lateral stiffening conditions at the lateral ends. Figs. 4.8(a.1) and (b.1) represent the
distribution of bending stresses at mid span section (x/L=0.5) of the beam for different L/D
ratios for the cases of axial and lateral stiffeners, respectively. For both the cases, stress level
increases with the increase of L/D ratio, although the stress level itself is much higher for the
case of lateral stiffeners. Another important observation is, the axial stiffeners at the lateral
ends make the distribution of bending stress more nonlinear (warping) than those caused by the
lateral stiffeners. The distributions for the case of lateral stiffener are found to be similar to
those of unstiffened beam in terms of both magnitude and nature of variation. Further Figs.
4.8(a.2) and (b.2) present the analysis of critical bending stresses at the stiffened and the mid-
span sections in the perspective of beam aspect ratio for the cases of axial and lateral stiffeners,
respectively, where a wide range of L/D ratio has been covered. For the case of axial and lateral

stiffeners, the lateral ends and the mid-span sections, respectively, are found to be the most
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critical sections in terms of bending stress, which are observed to be the functions of beam
aspect ratio. For the entire range of L/D ratio considered, the critical bending stresses are found

to increase with the increase of L/D ratio.

The effect of ratio on the magnitude and distribution of shear stresses in the stiffened beams is
illustrated in Fig.4.9. The distributions of shear stress along the beam depth are presented in
Figs. 4.9(a.1) and (b.1) for various L/D ratios of the beam with axial and lateral stiffeners,
respectively. The overall magnitude of the stress increases with the increase of beam aspect
ratio. For lower aspect ratios, the distributions are different from the standard parabolic profile,
which is mainly because of short beam effect. For the beam with L/D =4, the shear stress
distributions are found to assume nearly the parabolic profile for both the cases of stiffeners
considered. The comparison of distributions of shear stress for the two kinds of stiffeners
reveals that distributions are hardly effected by the stiffeners at the two opposing lateral ends.
Again, the maximum shear stresses at the critical sections, namely, x/L= 0 and 0.1 are also
analyzed in the perspective of beam aspect ratio for both the stiffeners, in Figs. 4.9(a.2) and
(b.2). Although the stiffened ends (axial stiffener) are free from shearing stresses, those with
lateral stiffeners are found to experience a significant level of shear stress, the maximum value
of which is however found to be nearly independent of beam aspect ratio, as shown in Fig.
4.9(b.2). The increase in the maximum value of shear stress at the load changing section (x/L=
0.1), with the increase of L/D ratio are identified to be nearly similar for both the cases of

stiffeners.
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Fig. 4.1 A stiffened simply-supported beam of fiber-reinforced composite material:
(a) Physical model, (b) Analytical model
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Fig. 4.2 Distribution of displacement components at different

sections of the stiffened (axial) composite beam, L/D = 3
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composite beam (L/D = 3) with different types of stiffeners
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Fig. 4.6 Distribution of shear stress components at different sections of the

composite beam (L/D = 3) with different types of stiffeners
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Fig. 4.7 Deformed shapes of the stiffened composite beam, L/D = 3
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Fig. 4.9 Effect of aspect ratio on shear stress components in the stiffened composite

beam: a) axial stiffener, b) lateral stiffener
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CHAPTER5

EFFECT OF FIBER ORIENTATION ON THE ELASTIC FIELD

In the previous chapter, the effect of stiffeners on the elastic field of a simply supported
orthotropic beam was investigated with fibre orientation #=0°. The main focus in this chapter is
to investigate the effect of fibre orientation on the elastic field of the stiffened simply supported
orthotropic beam. For this purpose, the stress and displacement fields of the simply supported
beam with fibre orientation 6=90° and #=0° are obtained for both the axial and lateral stiffening
conditions, and then the effect of fibre orientation is described for both with respect to stress
and displacement fields. All the solutions of stresses and displacements are analyzed for

different beam aspect ratios.

5.1 Problem Description

A uniform rectangular composite beam of length L, depth D and thickness W is considered for
the present analysis. The beam is subjected to a uniformly distributed load at its upper surface
and is simply supported at the two extreme regions of the bottom surface. The beam is in

equilibrium with a uniform loading o, acting over 80% of its span (from 0.1L to 0.9L) at the

upper surface (y = D), and distributed reactions from x = 0 to 0.1L and x = 0.9L to L at the
bottom surface (y = 0), as shown in Fig. 5.1. The lateral ends of the beam, EF and HG are
assumed to be stiffened with rigid stiffeners. Two different types of stiffeners are considered
for the opposing lateral ends of the beam, which are axial stiffener and lateral stiffener. The
beam is considered to be of unit thickness and the fibres are assumed to be oriented along the
depth of the beam (#=90°, Fig. 5.1(a)) as well as along the length of the beam (6=0°, Fig.
5.1(b)).
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5.2 Boundary Conditions

The physical conditions of the present problem with reference to Fig. 5.1 are to be satisfied

along the all four boundaries of the beam can be expressed mathematically as follows:

(@) Loaded boundary, EH (y = D):
The loading at the upper boundary is modelled by assigning a uniform value to the normal
stress component, which is also free from any shearing stress. The corresponding
mathematical expressions of the conditions are

{— oy [0.1<x/L<0.9]

Oyy (x,D)=
0 [otherwise]

o.(x,D)=0 [0.0<x/L<1.0]
»(x,D)

(b) Supporting surface, FG (y = 0):
The roller supported regions of the bottom surface are modelled by a uniform distribution
of normal loading which is free from shearing stress. At the supports, the total reaction
forces are considered to be equal and opposite to the loading applied at the top surface. The
reactions are distributed over 20% of the beam span (i.e., x/L = 0.0-0.1 and 0.9-1.0). The

remaining section of the bottom surface is assumed to be free from loading.

o, (x0)=0 [00<x/L<1.0]
~40, [0.0<x/L<0.2;09<x/L<1.0]
Oyy (X, 0)= _
0 [otherwise ]

(c) Left lateral end, EF (x = 0):
Axial stiffener (Case-1): The physical condition of the rigid axial stiffener is modelled here
by assigning zero values to both the axial displacement and the associated tangential stress

components along the end. Thus,
uy (0,y) =0

[0.0<y/D<1.0]
Oxy (0, y): 0
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Lateral stiffener (Case-2): The physical condition of the rigid lateral stiffener is modelled
here by considering the boundary free from lateral displacement and axial normal stress.
Thus,

uy (0,y) =0

} [0.0<y/D<1.0]
O xx (0, y) =0
(d) Right lateral end, GH (x = L):
Axial stiffener (Case-1): Likewise the case of left lateral end, the corresponding
mathematical expressions for the conditions of rigid axial stiffener at this boundary are
uy (L, y) =0
[0.0<y/D<1.0]
oy (Ly)=0

Lateral stiffener (Case-2): The conditions of rigid lateral stiffener at the right lateral end are

modelled by the following expressions:
uy (L,y) =0

[0.0<y/D<1.0]
O xx (L’ y) =0

5.3 Analytical Solution

Mathematical model here is the partial differential equation derived from the equations of
equilibrium and equations of compatibility based on Displacement Potential Function y(x,y)
obtained from Eq. (2.30) as follows.

o'y o'y o'y
E,Gy, y +E, (El —203,Gy )8X2—8yz +E,Gy, =0 (5.1)

In this case the displacement and stress components are also obtained from Eq. (2.29) as
follows:
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u,(x,y)= oy (5.23)
u,(x,y)= —ZiiElE2 aai—"z’ + Gy, (E, - 12E, )aa;—"z’} (5.2b)
oy (1 y)= 22 I;f“ { aii‘gy — Iy g;ﬂ (5.2¢)
o, (xy)= —ZE—;{ElGH g;—f +E,(E, - 1,G,, )aig—;gy} (5.2d)
0,y () = ';G {ulz aia‘;’ - ZX‘”} (5.2¢)

Where Z,, = u,EE, + GlZ(Ei - /JizzEz)

The solution of the beam is obtained with fibre orientation, 6=90° (case-A) and 6=0° (case-B)

for both axial and lateral stiffening conditions.

5.3.1 Case-A (Fiber orientation, 8 = 90°)

Case-1: Beam with axial stiffeners

The trial function for the present problem is assumed in terms of a cosine function so that its
first and third derivatives with respect to x are obtained in terms of a sine function. It is
observed that such a trial solution is capable of satisfying the necessary physical conditions
associated with the two opposing lateral ends automatically, which are given by the conditions

of ‘c’ and ‘d” of section 5.2. Considering all these factors, the potential function, y for the

present problem is approximated as follows:
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w = Y, cosax+Ky? (5.3)

m=1
where Y. = f(y), « :m—Lﬂ and K = Arbitrary constantandm=1,2,3, ........ 0.
Derivatives of Eq. (5.3) with respectto x and y are

oy < .
—=—>Y asinax
X Z{ "

o’y N 2
=—)> Y, o cosax
Ox? ;

a3v/ 0 -
—= ) Y,a sinax
ox® ;‘

oy 3 4
= > Y, o cosoax
ox* ;

2 o0
v _ - Y asinax
aXay m=1

3 -
o Wz =-Y Yyasinax
aXay m=1

3 0
4 Z_—_3'Y,a?cosax
8X ay m=1

4 o0
62 Y — Y, a?cosax
OX ay m=1

a—‘”zZYr; cos ax + 3Ky
8y m=1
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2 0
d Y~ 3", cosax+6Ky
ay m=1

3 0
d ==Y, cosax +6K
m=1

@\s

Y. cosax

(@)
% <

I
1M

Using the derivatives of Eq. (5.3), equation (5.1) yields

E,Gyp, Y Yot cosax—E,(E, — 2u,G, )Y Yoa? cosax + E,G, Y Y, cosax =0
m=1 m=1

m=1
© . E,(E, -2 . E
or, E1G12Z|:Ym - 2( 1E G‘ulZGlZ)YmOl2 +E2—CC;12Yma4i|COS ax =0
m=1 1912 1912
or, Y. - EZ(El - ZMZGH)Y“:(XZ + E.G, Y a*=0
EG, EG,
w [ E E, . . E
or, Y, —(—2 — 21, —Z}(maz +—=2Y o' =0 (5.4)
Gy E, E

The general solution of ordinary differential equation will be

Y,=A,e”+B.e?+C. e +D,e" (5.5)

where A, B, C,, and D, are arbitrary constants and r,, r,, I; and r, are the corresponding

roots which are given below
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2 2
E E E E E
rl’rz — o 2 _2/'[12 2 + 2 _2ﬂ12_2 _4_2 (56a)
\/E G2 El G12 El El

2
E E E E E
M, == (—2 — 24y, —Z}i (_Z_Zﬂlz —2) -4 (5.6D)
N2 |Gy, E, G, E, E,

Now substituting the derivative of y and Y, by using Eq. (5.3) and (5.5) respectively in the

expressions for displacement and stresses (5.2a, 5.2b, 5.2c, 5.2d and 5.2e).

oy
X0y

u,(x,y)=

:—ZY'masin o
m=1

=-> (Aﬂrlerly +B,re” +C,re™ + Dmr4e““)1 sin ax (5.7a)

m=1

1 0? 0?
uy(X1 y): _Z_{El E, 8X_V2/+612(E1 _,u122 Ez) 8;/2/}
1

1 0 ki "
- _Z_{El E, {— DYl cosax} + Gy, (E, - 2E, DY, cosax+ 6KyH

m=1 m=1

. E E, {— (Anerly +B e? +C e™ + Dmer‘*y)pz2 cos«xx} + Glz(E1 — EZ)
m=1

Z 0
B {Z(Anrlzew +B,r’e” +C, rje™ + Dmrfer”)cowx + 6Ky}

m=1

1le {(E1 EQO‘Z o E1G‘12r12 + :L‘122E2G12r12 )3rlyAr12 + (E1 E2052 - E1G‘12r22 + F‘szzGlzrzz)erzmez "}_
z (E1 EQO‘Z o E1G‘12r32 + :L‘122E2G‘12r32 )3r3ycm2 +(E1 E2a2 - E1G‘12r42 +:”122E2G12r42 )3r4y sz

_ (5.7b)
Zy|ma )
COSO(X_(E1612 _:LLLZEQGlZ%Ky ]
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- (X Y)= E.E,G, | Oy iy O’y
Uz, [y oy

E.G 2. 2.
- ; L {EZ {— D Y.al COSaX}— ﬂlez{ZYm cosax + 6KH
11 m=1

m=1
_ E1G12 [E {
2
le

Hqp Ez{

_ECe [i{(Ezr e"a’® + u,E, r3e'1y)Am +(E r,e”a’ + u,E,r, erzy)B +

NgE

(A,re™ +B,,r,e™ +C,,r,e™ + D, rer4y)9¢2c05ax}+

1

3
Il

NgE

(A,r%e™ +B,,r2e™ +C,,r2e™ + D,,rfe™ Jcosax + BK}]

1

3
Il

(E2r3e'3yoz2 + u,,E, r33e'3y)(:m + (E2r4er“ya2 +ylezrfe"‘y)Dm}cowx+6Ky12E2] (5.7c)

E 0° 0°
GW(X1 y) = _Z_L{EZ (El - :u12612 )&Tlgy + GlZ E1 ay_l/;}

E 0 , 00 .
= Zl {EQ(MZG12 — El){—ZYmazcos ax}—GuEl{ZYm cos ax+6KH
11

m=1 m=1

= _E[Ez(ﬂlzelz —~ El){i (Am re®” +B,r,e” +C re™ + Dmr4er“y)az2 cos ax}+

le m=1

GLE{D, (Am r’e™ +B,re” +C rle™ + Dmrfe“‘y)cos ax +6K}]
m=1

(EzylzG12 reVa’-EE,reYa’+E,G,r’e" )Am

+\E,1,,G,,r,e?a’ —EE,r,e”a’ +E,G,r’e™ B
B ( 2 M990 2 1Eo0 2 2 122 ) m cosax +6KG,,E, (5.7d)
+(E2,U12Glz rseraya —-E,E, rseraya +E,G, 1, ereyk:m

ny 2 ny 2 3.1y
+(Ep1,Gor,e™ a® —E,E,r,e™a’ + E,G,rle™ D,

qm
?

N
-
=
3
I
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E,E,G, | O°w o0’y
o.(X,y)=-— -
xy( y) le 5 3 :u12 5 5 2

_EG " r
= 12{EZZ(A e +B,e?” +C_e" +D e4y)a sin ax + u;, E,

0
le m=1

> (Am r’e™” + B, r;e®” +C_ r’e™ + Dmrfe”y)a sin ax}
m=1

E.G, & |(E.eYa’ + r’e” +|E,e™a’ + u,Erfe”aB +| .
1912 {( s )Am ( Frz ) sin ax (5.7¢)

Z, &\(Ee”a® +m,E, r32er3ya)cm+( o + 1, E,r2e™a)D,
From the expressions of (5.7a) and (5.7e) it is evident that the boundary conditions associated
with the left and right lateral ends are automatically satisfied. Thus the next requirement is to
satisfy the remaining boundary conditions associated with the upper and bottom boundary

surfaces.

Now the reactions acting at the two extreme regions of the supporting surface, y = 0 may be

expressed in terms of Fourier series as follows:

&, (x0)= 4oy = Ey + 3 E, cosax forx=01t0 0.1L and 0.9L to L (5.82)
m=1
Here
1|79
E, j4a dx + j4aodx
9L
10
_ 49, [£—0+ L—g}
L |10 10
4o,
_2% 5.8b
c (5.8b)
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9L,
10

2 %0 L
E,=— 'f 40, COS axdx + I40'0 C0S axdx
L 0

9L

_8ay, [sin ax}%o . 8o, [sin ocx}L

10

_80, sin(a—L} - 0+sin(aL)—sin(%)
ol 10 10

:&i{sin(m}ﬂin(mn)—sin(?—oﬂ}} (5.8¢)

10

The compressive load on the edge y = D can also be given by a Fourier series as follows

0

o, (x0)=0,=1,+> 1, cosax forx=0.1Lto 0.9L (5.9a)
m=1
Here
4o
Iy :%{ J.O'odX:|
Yo
_ &[2_%
~L|10 10
4o,
=0 5.9b
: (5.9)
2 9%0
I, =T Iao C0S arxdx
"o
_ 20, [Sinax}g%o
L a A
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_2% sin(—gmﬂ}—sin(m} (5.9¢)
mr 10 10
Using boundary condition o,,(x,0)=0 at the edge of y =0

E,a® + 1, E,r2a)A, +(E,a® + uy,E,ra B, + o }sinax]—o

(E,

2

{ 1{( e a® + pu,E,r; a)Cm +(E2er“ya +u,Erfa
(

Using boundary condition o,,(x,D)=0 at the edge of y = D

E,0® + mErta)A, + (Eya + o ria B, + }: 0 (5.10a)

E,o® + u,E, gakﬁ (Eza +,L112E2|’4a)Dm

E.G;, (E e a +,“12E rz P )Am +(EzerﬂDa3 + Ezl’zzerzDa)Bm + sinax | =0
_ e
211 m=1 (Eze o +ﬂ12E2r3 el’a akm +(E2er4Da3 +Iu12E2r42er4Da)D

m

E E,e"’a’+ u,E,r’e"Pa JA +|\Ee"Pa’ + u,E,r’e*’a B, +

le (Ezer3 OC o EZrSzeraDak:m + (EzeuDaS + ,u*le r2 i )Dm

Using boundary condition o, (x,0)= 40, at the edge of y =0

E, 1,6y, rlaz - E1E2r1a2 +E,Gy, r13 )Am +

0 2 2 3 ©
5 > EEZ#HG”QO‘ EEyra” +EGur B, + cosax +6KG,,E, |=> E, cosax+E,

E, 1,G 0" —EE R0 + Gyl km +
E,1,Gpr,a” —EE;ra’ +EGpr) )Dm
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Therefore,

E, 1,6y, rlaz - IElEzr10‘2 +E,G,, r13 )Am +

E,u,Gy, rzaj - E1E2r2a22 +E,G,, r233 B, + e 5,100
E,u,Gpra” —E E,ra” +E Gyl k:m +

E,1,Gp 1% —E,E,r,a? +E,GLré D,

Using boundary condition o, (x,D)=0, atthe edge of y = D

(EzMzGlzrlerlDaz -EE, rlerpaz + E1612r139r1D )An +

E < (Ez,uizGlzrzerZDO‘2 -EE, rzerzDaz + E1612r239r2D )Bm +
)y €

E

cosax+6KG,E, (=) I, cosox+1,
11 [ m=l m=L

21,Ge™ e’ ~E E,rea’ +E G, re™ km +
2,LL12G12I’4er4D0£2 -EE, rzlerADO‘2 + E1612r43er4D )Dm

Therefore,

(EzﬂlzGlz rlerlDaz - ElEzrlerlDaz +E,Gy, r1BerlD )Am +
1 (EzﬂlzGlz rzerZDO‘2 - ElEzrzerzDO‘2 +E,Gy, r23er2D )Bm +
a |(E

(E

E
T KD 2 KD 2 3,10 =l (5.10d)
VA J1,Gore* o —E E,r,e* a® +E,G,re" k:m+

L 1,GLrePa’ —EE,re“®a’ +E,G,r’e" " )D

m

From Egs. (5.7d) and (5.8) or (5.9), the arbitrary constant K can be obtained as follows:

_m: E —| :ﬂ
Z © % 5
11
or, K =—221—f° (5.11)
15E2G,,
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The simultaneous Egs. (4.10a), (4.10b), (4.10c) and (4.10d) can be realized in a simplified

matrix form for solution of the unknown terms of arbitrary constants like A,, B,,, C,, and D,

as follows:

FF F K KA, 0

H, H, H, H,|B | |0

SO T s T (5.12)
R R, R R|C,| |En

s, S, S, S, |D.| |Tn
where

\
F. =E,a®+ u,E,r’a
H, =E,e"®a’+ u,E,r’e"a >
i=1,2,3,4

Ri = E,u,,G,ria® —EE,ria® + EG,, 1y

S =E,u,G,rea?—EE,re®a’+EG,r’e"®
Em:_ZnEmz

El
Tmz_znlmz

E

Z,, = u,EE,+G, (E1 - ,u122 E, )

Egs. 5.7 are used for finding the stress and displacement components at various points of the
beam and the appropriate values of En, and I, are determined to get the values of four
unknowns constant, namely An, Bm, Cy and Dy, by using either the matrix (5.12) or the four
algebraic simultaneous Eqgs. (5.10a), (5.10b), (5.10c) and (5.10d).
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Case-2: Beam with lateral stiffeners

In this case the trial function is assumed in terms of sine function so that its first and third
derivatives with respect to x can be found in terms of cosine function. The displacement

potential function  for the case of lateral stiffener is assumed as:

v =§:Ym sin ax (5.13)
m=1
where Y. = f(y), « :m—Lﬂ and K = Arbitrary constantandm=1,2,3, ........ 0.

Derivatives of Eq. (4.14) with respect to x and y are

oy <
—— = > Y_a cosax
X Z‘i "

2 0
v _ =Y Y a?sin ax
=1

ox? —
O’y N 3

=-) Y, a’ cosax
a4w 0 .

= > Y, a"sinax
2 0
Oy = Y, acosax
aXay m=1

3 0
0 l//2 =Y Y, acosax
aXay m=1
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3 0
621// =-> Y, a?sin ax
8X ay m=1

4
521//2 :—ZY“azsin ax
8X ay m=1

Using the derivatives of Eq. (5.13), Eq. (5.1) yields

E,Gp, Y Yna' cosax+E,(E, — 24,6, ) Yoo’ sinax+EG, Y Y, sinax =0

m=1 m=1

e[ . E,(E,—2u,G,). . E,G .
or, ElGHZ‘[Ym _Ei(E -24,6,), a?+=222Y g |sin ax=0

E1G12 " E1G12

m=1

v EZ(E1 —ZﬂlzGlz)Y"aZ +ﬁYma4 =0

" E1G12 " E1G12

E E, \ . E
or, Y. —| =2 —2u,—2 Y. a*+—=2Y a*=0
G E E

12 1 1

or,

134

(5.14)



The general solution of ordinary differential equation will be

Y,=L.e”+M_e” +N e* +0,e" (5.15)

Where L., M., N, and O, are arbitrary constants and r,, r,, I, and r, are the

corresponding roots which are given below

2 2
E E E E E
" - e B | T B (5.16a)
V2| Gy, E, Gy, E, E,
E E E E, 2
. r . 2 12 e N 12 2 4% (5.16Db)
V2| Gy, E, G E, E,

Now substituting the derivatives of y and Y, by using Egs. (5.13) and (5.15) respectively in the
expressions for displacement and stresses (5.2a, 5.2b, 4.13c, 4.13d and 4.13e).

2

0y
2

u,(x,y)=

=YY ‘narcosax
m=L1
=> (Lm re” +M,r,e®” +N re®” +0, r,e" )1 COS oX (5.17a)

00
m=1

1 o* o*
Uy(X, Y)= _Z_|:E1 E, ax_llzj+G12(E1 _,ulzzEz) ay‘lz/}
1

= {_ E,E, {ZYmaz sin ax} +G,, (E1 — uHE, KDY, sin aXH
11 m=1

m=1
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s

|E EZ{— (L™ + M, e + N e +0,e™ h?sin ax} +Gy,(E, - 12E,)

Z © .
H {Z(Lmrfe”y +M, r7e” + N _r7e™ + Omrfe“y)sm ax}

1

3
I

m=1

(B E0® ~EG,F +12E G VL, +(E E0? ~EGI? + 1EEG,E M, +
>
Z

(E1 Ezozz N EiGl2r32 +1u122EZGl2r32)9r3y Nm +(E1 EZO‘Z - E1612r42 "’ﬂlzzEzGlzrf)erAyom }sinax (5'17b)

11| m=L

3 3
o, (X, Y)= E,E,Gy, { o'y 0 ‘l/}

Z, |oxdoy "oy

m=1

E.E N, . Ny,
- %GHH_ D Y,a?sin ax} — 1, {ZYm sin axH
11 m=1

E.E.G > i
- _ 1=2 12[ Z(Amrlel’iy +erzel’zy +Cmr3el’3y+Dmr4el’4Y}XZS|n(XX +

m=1

m

Haa {Z (A r’e" +B,r;e” +C re™ + Dmrfe”y)sin ax}]

EG, &
_ 112 [Z{(Ezrlerlyaz + Mo E2r13er1y )Lm +(E2rzer21ya2 + Mo E2r23er2y )Mm +

le m=1

(E2r3er3yoz2 +/,112E2r33er3y)Nm +(E2r4e“‘yo¢2 +/,¢12E2r43er4y)om}sin ax] (5.17c)

E 0° 0°
Oy (X’ Y) = _Z_l{Ez(El - :u12612 )OX—;gy + GlZ El _W}

11

E =, I
> L {EZ(,,“ZG12 -~ El){— D Y,a?sin ax} —GHEl{Z Y, sin axH
11

m=1 m=1

E = .
= _Z_l[Ez(:uuGlZ - El){z (Lm re” +M r,e®” +N r.e®” +0, r4er4y)12 sin ax}+
m=1

11

GLE{D, (Lmrferly +M_ r’e?” +N, rle™ +0, r’e™ )sin ax}]

m=1
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| (EZ/'tlZGlZ rlerlya2 o E1E2 rlerlya2 + EzGlz rlserly )Lm |
- _ii +(Eop,8 e 0’ —EEyre”a’ +E,G, e M, sin ax (5.17d)
ot +(E2,L112G12 rsergyaz - ElEzrsersyOtz +E,G,, rssergy )Nm
(EZILtlZGlZ r4er4ya2 - E1 E2 r4er4ya2 + EzGlz r4ser4y bm ]
(X )__ E,E,G,, | O’y B o’y
Oy X Y)= VA PYE ) Xy
1
E.E i
= 122612 {Z (Lmeny + M merzy + Nmergy + OmerAy)a:«; COS aX + Ly,
3 (Lor2e™ + M rZe™ + N, r2e™ + 0, r2e™ )a cos ax}

m=1

ny 2,0y 1y 2y
_ EG, Z (E e"a’ +u,E,r’e a)L +(E e™a’ +,E,rye a)l\/lm+ cosax  (5.17e)
Z, m ( e"a® +u,E, rzer3ya)N +(E e“o® + u,E, rzer“yab

Now the reactions acting at the two extreme regions of the supporting surface, y = 0 may be

expressed in terms of Fourier series as follows:

(x,0)=40, =E, + i E, cosax forx=01to 0.1L and 0.9L to L (5.18a)
m=1
Here
E,=0 (5.18b)
5| o
E.= 'f 4o, sin axdx + I4c70 sin axdx

9L,
10

0 L 0 L
8o, [—cowx}ﬁo . 8o, [—cowx}
9L

L lo 0 L lo /s
8% Jood A1y cos(al ) cos ol
al 10 10
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_ 890 J oo M2 —1+cos(mz)-co gm—ﬂ} (5.18c)
mr 10 10

The compressive load on the edge y = D can also be given by a Fourier series as follows

o, (x0)=0y=1,+ 3 1, sinax forx=0.1Lto0.9L (5.19a)
m=1
Here
5.19b
l,=0 (5.19b)
9L10
l,=— Icro sin axdx
Yo
_ 20, [cowx}g%‘)
L a %0
2
:ﬂ CoS _9mﬂ: —COo ﬂ (519C)
mrz 10 10

Using boundary condition o,,(x,0)=0 at the edge of y =0

(E,a® + uy, B r2a)L,, +(E,a® + uyE,r2a M, +
r , \ , cosax |=0
([52533y0‘3 + 1, By O‘)Nm +(E2er“ya + 1, Bty abm

B

le

or. E:Gu {EEZM + g rta ), + (B0 + p,E ra M, +} " (5.208)
E

o +/u12E2r320‘)Nm +(E20‘3 +,U12E2r42abm

11
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Using boundary condition o, (x,D)=0 at the edge of y = D

c (
E G12 (E e"a’ + u,E,r’e™ a)Lm +(E2er2Doc3 + u, E,rie” )M -
(E e"Pa’ + u,E,rle™’ a)Nm +(E2e“‘Doc3 + u,E, rie" a)O

E,e™a’®+ uy,E,r7e®all, +(E,e™Pa’ + 1, E,r2e®a M, +
o o . cosax |=0
E,e"a®+pu,E,rle" )Nm+(E2e4 a’+pu,E,rle" a)Om

—0 (5.20b)
Using boundary condition o, (x,0)= 40, at the edge of y =0

(EZILtlZGlZ rlaz - E1E2r1a2 +Gy, Elrl3 )Lm +
= i (EZII’llZGerZaZ ~E,E,nLa’ +G,Er) )M mt

sinax |= ) E_ sinax+E,
Zyy | 1 |\Eo 3,60, r3a2 - E1E2r30£2 +G12E1I’33 )Nm + Z i

m=1
E,u,G 0’ —EE,r,a’® +G,E,r/ bm
Therefore,
(EzﬂlzGlz rlaz - IElEzr10‘2 +Gy, E1r13 )Lm +
E, |(E,p,Guna’ ~EE,La’ +GLER M, +| - (5,200
Zy (EzﬂlzGlz "30‘2 - ElEzr30‘2 +Gy, E1r33 )Nm + " .
(EzﬂlzGlz I’40£2 - ElEzr40‘2 +Gy, E1r43bm
Using boundary condition o, (x,D)=0, atthe edge of y = D
( E,1,,G,re"°a’ — E,E,re"°a® + G,E,r’e"’ )L + |
E |& G,re*Pa’ E,re""a’ +GLEre"° M _+| ©
-2 (EassCr, o ~EEL S, M, sinax |= Y"1, sinax+1,
Z,|ma ( E,1,,G,re" a’ — EE,re"*’a’ + G,E r’e"" )N + m=1
i ( E,1,,G,re" a’ — EE,re"“Ya’ + G,Er’e"" )O

m
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Therefore,

(EzﬂlzGlz nea’-EE,ne"a’+G,Er’e"” )Lm +
E, (EzﬂlzGlz rzerzDO‘2 - ElEzrzerZDO‘2 +Gy, E1r23er2D )M mt
Zy (EzﬂlzGlz raeraDO‘Z - E1E2r3er30a2 +Gy, Elrs3er3D )Nm +
(E

nD 2 nbD 2 3,1,D
MG a” —EiE e a” + G Epre bm

| (5.20d)

m

From Eqs. (5.17d) and (5.18) or (5.19)

The simultaneous Egs. (5.20a), (5.20b), (5.20c) and (5.20d) can be realized in a simplified

matrix form for solution of the unknown terms of arbitrary constants like L., M, N andO,,

as follows:

P P, P, PIJL, 0

M 0
Ql Q2 Q3 Q4 m —| (5.21)
T, T, T, T,|N, Enm
U, U, U, U,|lo,| |In
where
P. = E1a3 + ,ulezriza

\

Q, =E.e"a’®+pu,E,r’ea i=1,2,3,4

2 2 3
T, = u,Gpra” —Ejra” +Gyr,

U,=u,G,rea?-Ere®®a’+G,r’e"® /
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Zy, = u,E B, +Gyy (El - ,U122E2)

Egs. 5.17 are used for finding the stress and displacement components at various points of the
beam and the appropriate values of E, and I, are determined to get the values of four
unknowns constant, namely Ly, My, N and O, by using either the matrix (5.22) or the four
algebraic simultaneous Eqgs. (5.20a), (5.20b), (5.20c) and (5.20d).

5.3.2 Case-B (Fiber orientation, 8 = 0°)

Fiber orientation, 6 = 0° is already discussed in previous chapter for both stiffening conditions,
i.e., beam with axial stiffeners and beam with lateral stiffeners. So, a brief discussion is given

below to facilitate the whole understanding of fiber orientation.
Case-1: Beam with axial stiffeners

By utilizing the same assumed potential function in Egs. (2.19a) and (2.19b), the fourth order

ordinary differential equation will be

. (5.22)
JYmoc2 +EYmoc4 =0
EZ

E
Ym - [G_l - 2:“12

12

The general solution of the differential equation can be written as
Ym(y)z Aev+B e”+C e” +D, e (5.23)
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and A, B,,, C,, and D, are arbitrary constants

Now substituting Egs. (5.3) and (5.23) in the expressions for displacements and stresses as
given by Eqgs. (2.36a), (2.36b), (2.36¢), (2.36d) and (2.36e), one obtains

(% y)= (Anrlew +B,e” +C re" + Dmr4er4y)asin ax

m=1 (524)

: - E.Gy r12 + lu122E2612 r12 )erly Ay +

-E,Gy, r22 + lu122E2612 r22 )erzy B, +
2 - E.Gp, r32 + lu122 E,G, r32 )er3ycm +
? - E,Gy r42 + lu122 E,Gy, r42 )euy D,

cosax —6(E, Gy, — u5E,Gy, ky | (5.25)

| (Elrle”yoc2 +;¢12E2r13e”)Arn + |
E = E,r,e®a’+u,E,rle™ B, +
o, (xy)= G > ( v Hha =2l ) cos ox + 6ku,, E, (5.26)
Z, |ma (Elrseri*ya +y12E2r33er3y)Cm+
i (E r.e”a +y12E2r3er4y)D |

(ulzGlzrleri a’-EreYa +Glzr3er1y)A +

ny —-E 3 rzy B
& (x, y):_ElEz Z EulzGlzrze a’-Er,e”a’+G,rye ) + cosax—6KG,, |(5.27)

1,Gpre”a’ —E;r,e”a’ +Gyrle rBV)C +
G,re“a’-E;re“a’+G,rle™ D
Hi 0151, 12

0
m=1

m
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EeVa®+ /,tlezrlzerlya)Am +

(
E.G, i (Elerzyot3 + iy, Ezrzzerzyoz)Bm +
Zy W (

(

o (X y)=- sin ox

i ||E.e” o’ +/,112E2r32er3ya)cm +

Ee“a®+ py, Ezrfe”ya)Dm

(5.28)

The loading parameters (Eo, lo, Em, Im) obtained by the use of Fourier series for the case of axial

stiffening condition with fiber orientation 6 = 0° are same as those obtained for axial stiffening

condition with fiber orientation 6 = 90°.

Using boundary condition, oxy (X, y) = 0 and ayy (X, y), at the surfaces, y = 0 and y = D, the

following equations are obtained

{(Elag + g Eyrfa A, + (B0’ + u,E,rfa B, +} L

(Esa® + w3, E,r2a)C,, +(Ea® + uy, E,r2a)D,

{(Ele“Doz3 + 1, EzrferlDoz)Am + (ElerzDoz3 + Uy, EzrferzDa)B _o

+
m
(Eler3Da3 +/,¢12E2r32er3Da)Cm +(E1er4'°oz3 +y12E2r42er4Da)D }

m

2 2 3
(ﬂlzGlz na®-Ena”+G,n )Am +

(/,tlzG12 r,a’ —E,r,a’ +Gpr} )Bm + Z,E

m

(1“12612 ra’—Era’+Gy, rssk:m + E.E,
(ﬂlzGlz I’40£2 - Elr40‘2 +Gy, r43 )Dm

(/,tlzG12 re"’a’-E;re"a’+G,r’e"’ )Am +

(/,tlzGlzrze“Doz2 —Er,e”a’ +Gy,rle” )Bm + Z,\.
(/,112G12r3er3[’oz2 ~E,r,e"’a’ +Glzr33er3[’)cm [ EE,
(/,tlzG12 r,e“®a’-Ere“Ca’+G,rle"" )D

m
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By using Eqgs. (5.27) and (5.8a) or (5.9a), the value of k is determined as

27,0,
15E,E,G,,

Egs. (5.24)-(5.28) are used for finding of stress and displacement components at various points
of the beam and the appropriate values of Er, and I, are determined to get the values of four
unknowns constant (Ay, Bm, Cy and Dp).

Case-2: Beam with lateral stiffeners

In this case, by assuming the same assumed potential function in Eq. (5.22), the general
expressions for the relevant displacement and stress components are obtained in terms of the

four arbitrary constants, as follows:

u(x, y)=>" (Lmrlerly +M re” + N, re™ + Omr4e“y)a COS ax (5.33)

0
m=1

2 2 2 \\ny
-E,G,n" +u, E,Gpn )el L, +

(Ef(xz
o (%)= zi $ (Efa’ ~EGut} + HhEGLr R My +| 630
n |13 |(E2a? —E,GLr2 + uLE,GyLr2 BN, +
| |(E?a? -EG,r? + iiE,GLr2 O, |
| (Elrleriyoc2 +u,E,r’e™ )Lm + ]
o (X y)= _EG, i (Elrzerzyoc2 +y12E2r23er2y)M ot i o 535
Z, | |(Ere™a? + u,Erle™ N, +
(E1r4e“‘yoc2 +;112E2r43e“‘y)orn |
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u, G,oreva® —E;reYa® +G,r’e" )L +

m

E.E,|& (/,tlzGlzrzerzya ~Er,e?a’+Gyre rzV)M

+
owly)=- " sinax (5.36)
’ Zy | (ﬂ12612r36r3y0‘ -E;re¥a’ +Gyr)le rsy)Nm +
(lu12612 re“a® -Ere“a’+ Gyrle™ bm i
Eiea’ + B rfeValL, +
E e (X + E rzerzya M+
Ha 22 ) " Lcosax (5.37)

(
- |(E,
(X = mZ: (E ea®+ u, E2r3zer3y05)Nm +
(E e“a®+u, Ezrfe”ya)om
The obtained loading parameters (Eo, lo, Em, Im) associated with the case of lateral stiffeners
with fiber orientation & = 0° are as like as those obtained for lateral stiffeners with fiber
orientation & = 90°. Once the four unknown constants (Lm, Mm, Nm and Op) in the evaluation
are determined with the appropriate values of loading parameters (Eo, lo, Em, Im) then Egs.
(5.33)-(5.37) will give the explicit expressions of the elastic field of the simply-supported
composite beam with lateral stiffeners at the opposing lateral ends.

5.4 Results of Composite Beam

In this section, the effects of fibre orientation on the components of stress at different sections
of a thick beam are discussed both for axial and lateral stiffening conditions. This discussion or
the numerical results of the analytical solution of the composite beams are presented in the
form of graphs by considering varying beam aspect ratios, L/D=1-4. Then this effect is further
investigated as a manner the influence of fibre orientation by considering axial, lateral and no
stiffening conditions. Since the central objective of the present chapter is to investigate the
effect of fiber orientation on the elastic field of the beam, results of all the parameters of
interest are presented in a comparative fashion for the two cases of fiber orientation, 6 = 0° and
90°. The glass/epoxy composite is considered as the beam material, the effective mechanical

properties of which are listed in Table 4.1. The magnitude of the compressive stress,

o, assumed to generate the numerical results is 40.0 MPa.
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5.4.1 Stress field

The distributions of bending stress components oy/oo With respect to beam depth, y/D at the
stiffened end section x/L=0 for axial stiffening condition are illustrated in Fig. 5.2. Bending
stress distributions are observed to be non linear over the whole span of the beam for both fiber
orientations. Maximum values of bending stresses are observed at the top and bottom surfaces
of the beam with opposite sign. The maximum normalized values of the stress at the top and
bottom surfaces are found to be nearly 7 and 11 times the applied intensity of loading for fiber
orientation #=0° as well as 6 and 6 times for fiber orientation #=90° respectively. These
maximum bending stresses are found to occur at the stiffened ends of the beam with aspect
ratio L/D=4, which, in turn, identifies the stiffened lateral ends of the beam as the most critical
section in term of axial stresses, which is, however, the most dominating stress components
among the others. On the other hand, the minimum values of stress at the top and bottom
surfaces are found to be nearly 0.5 and 6.2 times of the applied intensity of the loading for fiber
orientation #=0°as well as 0.2, 1.8 times of the applied intensity of loading for fiber orientation
6=90°. These minimum values of bending stress are also found to occur at the stiffened ends of
the beam with aspect ratio L/D=1. For most of the sections, bending stresses are found to be
positive (tensile) for upper half and negative (compressive) for lower half of the beam. Now
from the distributions it is verified that the fiber orientations has a significant effect on the
lower surface of the beam for different beam aspect ratios. Because at the bottom surface of the
beam, the difference between the stresses due to fiber orientations are decreasing by increasing
the beam aspect ratio, whether, at the upper surface of the beam, this difference is too small

with respect to the beam aspect ratio.

The load transition section x/L=0.1 is also considered in Fig. 5.3 to get the overall idea about
the distribution of bending stress components oy/co. These components are figured out with
respect to beam depth y/D for axial stiffening condition at different beam aspect ratios, L/D=1-
4. For all the considered beam aspect ratios, the distribution patterns are almost non linear for
both fiber orientations and the maximum non linearity is observed for fiber orientation 6=0°

than 6=90°. At both fiber orientations (6= 0° and 90°), the values of maximum bending stresses
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are observed 0.7 and 2.8 times the applied intensity of loading for lower beam aspect ratio
(L/D=1) and 4 and 6 times the applied intensity of loading for higher beam aspect ratio
(L/D=4). All these stresses are developed at the lower surface of the beam and on the other
hand, at the upper surface of the beam, the difference between the stresses for both fiber
orientations is insignificant. So, it can be said that the degree of non linearity increases and
individual value of stress decreases at both fiber orientations by increasing the beam aspect

ratio.

From Fig. 5.4, the distributions of bending stress ox/oo components with respect to beam depth,
y/D are observed by considering mid section (x/L=0.5) of the beam for axial stiffening
condition. The degree of non linearity decreases with the increase of section from the stiffened
ends, that’s why mid section is considered for observation. In this case the bending stress
distributions pattern are also non linear over the whole span of the beam for both fiber
orientations. The upper surface and lower surface of the beam contain positive and negative
values of bending stress like section x/L=0.The maximum values of bending stress at the upper
and lower surfaces of the beam are nearly 3 and 4 times the applied intensity of loading for
fiber orientation 6=90° as well as 4 and 4.5 times the applied intensity of loading for fiber
orientation #=0°. On the other hand the minimum values of bending stress at the upper and
lower surfaces are nearly 0.2 and 0.5 times the applied intensity of loading for fiber orientation
6=90" as well as 0.5 and 1.5 times the applied intensity of loading for fiber orientation 6=0°
.These maximum and minimum values of bending stresses are obtained for beam aspect ratio,
L/D=4 and 1. From these values it is verified that the effect of fiber orientation is decreasing by
increasing the section from stiffened ends. At the upper and lower surfaces of the beam the
difference between the stresses for two fiber orientations is also decreasing by increasing the
beam aspect ratios. So, it can be said that the fiber orientation has a high effect on bending

stresses for short beam.
For axial stiffening condition, the shear stress oy,/op distribution of left lateral end is zero. So,

the shear stress distributions at section x/L=0.10 is investigated in Fig. 5.5 with respect to beam
depth, y/D. From the distributions of shear stress it is observed that the entire top and bottom
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surfaces and the two stiffened ends as well as the mid section are completely free from shear
stress, which is in conformity with the physical characteristics of the present beam. Maximum
shear stress is found to occur at the load transition section for fiber orientation 6#=0°, especially,
at the vicinity of the bottom surface, which is in contrast with the standard parabolic profile.
The shear stress distributions are found to assume the parabolic profile in a gradual fashion as
we move towards the higher beam aspect ratios for both fiber orientations, especially, it is
shown at beam aspect ratio, L/D=4.0. As this aspect ratio, the maximum shear stress is found to
be nearly 2 times the intensity of the applied loading for both fiber orientations. On the other
hand the minimum values of shear stresses are found nearly 1.5 and 0.8 times the intensity of
applied loading and both are developed for fiber orientations, #=0° as well as 90° respectively.

So, the values of shear stress are increasing by increasing the beam aspect ratios.

At left lateral end, the bending stress aw/oo distribution with respect to beam depth, y/D is zero
for lateral stiffening condition. That is why section x/L=0.1 is considered in Fig. 5.6 to describe
the bending stress distribution at different beam aspect ratios, L/D= 1-4 for lateral stiffening
condition. From these figures it is observed that the distributions are non linear over the whole
span and non-symmetric with respect to the mid section of the beam depth. Maximum non
linearity is observed at the bottom surface of the beam for fiber orientation #=0° and this non
linearity exists within beam depth 0<y/D<0.2 for all beam aspect ratios. After this portion of
beam depth, this non linearity pattern is similar and at the top surface of the beam the
difference of non linearity between two fiber orientations is too small for all beam aspect ratios.
The maximum values bending stresses are found nearly 4 and 0.5 for both fiber orientations
(6=0° and 90°%) and these stresses are developed at the bottom surface of the beam for aspect
ratio, L/D=1.0. Now advancing towards higher beam aspect ratio, the value of shear stress is
decreasing for fiber orientation #=0° and increasing for fiber orientation #=90°. At beam aspect
ratio, L/D=4 the observed maximum bending stresses for both fiber orientations (#=0° and 90°)
are -1 and 1. So, it can be concluded that the fiber orientation has a small effect on long beam.

Now the bending stress distribution ox/oo is observed in Fig. 5.7 by advancing towards the
midsection, x/L=0.5 of the beam for lateral stiffening condition. From these distributions of
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bending stresses at different beam aspect ratios, L/D=1-4 it is observed that the distributions
pattern are symmetric about the mid section of the beam depth for both fiber orientations, only
exception is observed for fiber orientation #=0° at beam aspect ratio, L/D=1.0. Most bending
stress is found to be positive (tensile) for upper half and negative (compressive) for lower half
of the beam. At higher beam aspect ratio, L/D=4 the maximum values of bending stresses are
found for both fiber orientations, #=0° and 90° are nearly 10.5 and 10 times the applied
intensity of loading and these values are developed at both the top and bottom surface of the
beam. On the other hand for lower beam aspect ratio, L/D=1 again the maximum values of
bending stresses are found for both fiber orientations (6=0° and 90°) are nearly 1.8 and 0.5
times the applied intensity of loading and these values are developed at the top surface of the
beam. From these values it is verified that by increasing the beam aspect ratio the difference
between the stresses for both fiber orientations is decreasing, which identifies the fiber
orientation has a small effect on long beam.

As it appears from Fig. 5.8, the shear stress ayy/op Stress distributions pattern almost same shape
at different beam aspect ratios for both fiber orientations. Here the beam is stiffened with lateral
stiffener and stiffened end section, x/L=0 is considered for explanation. From these
distributions it is observed that the upper surface and lower surface of the beam are free from
shear stress, which is in conformity with the physical characteristics of the beam. Maximum
developed shear stress is approximately 3 times the applied intensity of loading for fiber
orientation, #=90° and 1 time the applied intensity of loading for fiber orientation, #=0°. Both
these stresses are developed within beam depth, 0<y/D<0.025 and beyond these portion of
beam depth, the magnitudes of shear stresses are decreasing by increasing the beam depth, y/D
until it becomes zero. Another most important observation is that the fiber orientation has no
effect on shear stress distributions for considering section because the values of shear stress are

remain unchanged with respect to beam depth at different beam aspect ratios.
Load transition section, x/L=0 is considered in Fig. 5.9 to describe the shear stress distributions

at different beam aspect ratios, L/D=1-4 for both fibre orientations. Midsection is not
considered because the shear stress distribution is zero at this section. From this distribution it
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is observed that magnitude of shear stress is zero at the top and bottom surfaces of the beam for
both fibre orientations. At fibre orientation, #=90° the values of shear stresses become
maximum within the beam depth 0<y/D<0.02 and maximum value of shear stress is increasing

by increasing the beam aspect ratios. The maximum value of shear stress is found two times the
applied intensity of loading and this stress is developed at the beam aspect ratio, L/D=4. Now
for fibre orientation, 6=0° the shear stress distributions patterns are as like as standard parabolic
profile if we move towards the higher beam aspect ratio. In this case the maximum value of
shear stress is found at the mid position of beam depth and this value is also two times the

applied intensity of loading.

5.4.2 Influence of fibre orientation

The influence of fibre orientation on the components of stress and displacement is also
analyzed for axial, lateral and no stiffening conditions at the lateral ends. Figs. 5.10-5.12
represent the distribution of bending stresses ox/oo at mid span section (x/L=0.5) and lower
surface (y/D=0) of the beam with respect to different L/D ratios. For all the cases of stiffening
conditions, the distributions values are positive, distributions pattern are almost similar shape
and stress level increases with the increase of L/D ratios, although the individual stress level is
much higher for both the cases of lateral and no stiffening conditions than axial stiffening
condition. Another important observation is, the influence of fibre orientation is more at lower
aspect ratios for both axial and no stiffening conditions than that of lateral stiffening condition.
Now, to get the overall idea of fibre orientation, the stiffened end (x/L=0) section as well as
section x/L=0.1 is also considered at lower surface (y/D=0) of the beam for axial stiffening
condition. In these figures, the distribution of bending stresses is negative and influence of fibre
orientation is more at lower aspect ratios. This influence decreases with the increase of aspect
ratios, but still the effect is more significant at the lower surface of the beam than the upper

surface.

The distributions of maximum shear stress oy/oo along the beam depth are presented in Figs.

5.13-5.15 for various L/D ratios of the beam with axial, lateral and no stiffeners, respectively.
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At section x/L=0.1, the shear stress distributions pattern are almost similar shape and the
magnitude of the maximum shear stress increases with the increase of beam aspect ratios. For
lower aspect ratios, i.e., up to L/D=4 for axial and lateral stiffeners as well as up to L/D=3 for

no stiffeners, the influence of fibre orientation is maximum and this influence increases with
the increase of beam aspect ratios. Beyond the considered beam aspect ratios, the influence of
fiber orientation is still significant, but it is less than the considered lower aspect ratios. Now
the distributions of maximum shear stresses at the stiffened end for lateral stiffening condition
is considered to describe the overall idea of shear stresses. The value of maximum shear stress
is almost similar with respect to the beam aspect ratios for both fibre orientations. Only
exception is observed for L/D=1, which is due to the effect of short beam. Another important

observation is the influence of fibre orientation is more at #=90° than that of #=0°.

In Figs. 5.16-5.18, the distribution of lateral displacement u,/D component is considered at mid
span section (x/L=0.5) and lower surface of the beam (y/D=0) with respect to the beam aspect
ratios for axial, lateral and no stiffeners, respectively. Here the distribution patterns are almost
similar shape, lateral displacement increases with the increase of beam aspect ratios and fibre
orientation effect is more at #=90° than 6=0° for all the cases of stiffening conditions.
Maximum displacement is observed at no stiffening condition for both fibre orientations,
because no restriction is provided at any direction. Then, due to the restriction of displacement
at lateral direction, maximum displacement is found for lateral stiffening condition and finally,
lowest displacement is found for axial stiffening condition, where, restriction of displacement is

provided at axial direction for both fibre orientations.
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CHAPTER 6

COMPARISION AND VERIFICATION OF RESULTS

To verify the accuracy and reliability of the method proposed, a number of problems are
analyzed. First, the results obtained for orthotropic materials by using potential function
approach are now compared with the classical beam theory for both axial and lateral stiffening
conditions. Then, the solutions verified with corresponding numerical results, i.e., FEM and
FDM by considering fiber orientations 6=0° and 90° for both axial and lateral stiffening
conditions of same orthotropic materials. Finite difference formulation will be slightly
discussed here for orthotropic material because it is not the major concern in this study that had
been already formulated in several previous works [18-19]. Those works of FDM formulation
have been used to find the solution of elastic field of all problems. Furthermore, as the
analytical results have been discussed in details in the previous chapters, this chapter analyses
basically the agreement of the results of the displacement potential method, classical beam
theory and numerical methods without paying attention to the characteristics of the results.

6.1 Classical Beam theory

Although the classical beam theory may not be adequate for the analysis of stiffened short
composite beams, the present potential-function solutions are compared with the classical
simple beam theory in order to access the discrepancy of the solutions caused by attaching the
stiffeners at the lateral ends. This simple beam theory basically gives the corresponding
solutions of an unstiffened simply supported beam. Since the distribution of reaction at the
bottom surface cannot be addressed appropriately using the elementary theory, the beam is
considered here to be simply supported taking the resultant of the reaction forces. The solutions
for the lateral displacement, bending stress and shear stress are obtained for the present model
of the beam as shown in Fig. 4.1 without considering stiffeners at the lateral ends, which are

given below as a ready reference for the interested readers.
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6.2 Finite Difference Method

Finite difference solutions are obtained on the basis of present displacement potential approach.
The region of interest in which the potential function v is to be evaluated is divided into a
desirable number of mesh points and the values of the function are sought only at these points.
A uniform rectangular mesh network is used to discretize the beam domain. The number of
meshes used in the x and y directions are 51 and 51 respectively. An imaginary boundary,
exterior to the physical boundary of the beam, is considered for the present discretization. The
fourth order partial derivatives of the governing differential equation (Egns. 2.35, 2.37 and
2.41) are expressed by their corresponding central difference formulae whereas, in an attempt
to avoid the inclusion of points exterior to the imaginary boundary, the second and third-order
derivatives associated with the boundary expressions are replaced by their corresponding
backward or forward difference formulae, keeping the order of local truncation error the same.
The discrete values of the potential function w (X, y) are solved from the system of linear
algebraic equations by the direct method of solution (triangular decomposition method). Since
all the components of stress and displacements are expressed in terms of function y, the
parameters of interest are readily calculated from the values of y obtained at the mesh points of

the domain. The detailed computational scheme for the discretization of the domain,
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management of boundary conditions, evaluations of the parameters of interest are given in
references [6, 18-19].

6.3 Finite Element Method

Finite element method is widely used all over the world for various computational purposes in
lab and commercial areas. In this study, ANSYS has been used to solve several problems in
order to compare and verify the analytical results. The relevant boundary conditions used are
the same as those used in the analytical solution. Four nodded rectangular plane elements are
used to construct the corresponding mesh network of the beam. The total number of finite
elements used to construct the element mesh network for all problems is 6400 (80x80). All the
elements are of the same size and their distribution is kept uniform all over the domain. The
convergence and accuracy of the solution has been verified by varying the number of finite

elements used to model the beam.

6.4 Comparison of Solutions for Stiffened beam of Orthotropic Composite

Material

The comparison of y-solutions with the corresponding solutions of the elementary beam theory
is presented in Figs. 6.1-6.3 for both the cases of axial and lateral stiffeners. The simple beam
theory is, however, found to be, to some extent, in contrast with the other solution, which is
because of the fact that it does not take into account the influence of stiffener at the lateral ends.
In general, the simple beam theory under predicts the lateral deflection of the beams, which is,
however, found to be influenced by the type of stiffeners at the lateral ends. For the case of
axial stiffeners, the prediction by the simple theory is reasonably close to the other solution,

which is however not the case for lateral stiffeners at the ends.
Fig. 6.2 shows the comparison of the two solutions of bending stress at sections x/L= 0 and 0.5
of the beam for both the cases of axial and lateral stiffeners. The bending stress distributions

obtained by the elementary theory show linear variations over the beam depth for both the
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stiffener. Moreover, the agreement between the solutions are identified to be independent of
section concerned, that is, the status of agreement remains unchanged for sections at or away
from the stiffened ends. Another interesting observation is that the axial stiffeners cause the
distribution of bending stress to deviate more from that of elementary solutions than the case of
lateral stiffeners, in terms of both magnitude and nonlinearity. As a result, two solutions of
bending stress distribution at the mid-span section of a simply-supported beam of L/D = 3 are

found to be quite close to each other, which is however not the case with axial stiffeners.

The shear stress distributions at section x/L= 0.25 of the beam (L/D = 3) obtained by two
different approaches for both the cases of axial and lateral stiffeners are presented in Fig. 6.3.
For both the cases of stiffeners, two solutions are found to be in good agreement, which, in
turn, reveals that the stiffeners at the lateral ends of the simply-supported beam do not make the
actual distributions of shear stress, especially for sections away from the stiffened ends, much

different from those predicted by simple beam theory.

6.5 Verification of Solutions for Stiffened Beam with Fiber Orientation =0°

An orthotropic composite (glass/epoxy) beam with fiber orientation 6=0°, beam aspect ratio
L/D=3 and the uniform loading parameter 6;2=40 MPa has been chosen for the comparison. This
comparison is figured out by considering stiffened end (x/L=0) or near to the stiffened end
(x/L=0.1) and mid section (x/L=0.5) or near to the mid section (x/L=0.25) of the beam by
considering both axial and lateral stiffening conditions. Here, near to the stiffened end
(x/L=0.1) and near to the mid section (x/L=0.25) is considered for those particular cases where
beam properties i.e. normalized displacement and normalized stresses are zero at the stiffened
end and mid section of the beam. A good agreement between the analytical and numerical
results can be realized from Figs. 6.4-6.6. These figures show the comparison of normalized
lateral displacement (u,/D), normalized bending stress (oxw/o¢) and normalized shear stress
(oxy/00) components at different sections of the beam for both axial and lateral stiffening
conditions. One can see that even at the stiffened end (x/L=0) or near to the stiffened end

(x/L=0.1) the results are almost same. Slight discrepancies of the results of FEM with those of
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the present analytical and FDM solutions can be attributed to the fact that the FDM solutions

are obtained using a relatively lower mesh density compared to that of FEM solution. The
result of the present analytical method exactly conforms to the results of FEM. The present y-
solution is free from the limitation and provides reliable and accurate results at any section of

the orthotropic material with fiber orientation 6=0°.

6.6 Verification of Solutions for Stiffened Beam with Fiber Orientation §=90°

The parameters chosen for the comparison of the results of the present orthotropic composite
(glass/epoxy) beam are: fiber orientation #=90°, beam aspect ratio L/D=3 and the maximum
intensity of the bending load o= 40 MPa. The comparison of normalized displacement
component uy/L and normalized stress components ay/00, oxy/oo are displayed in Figs. 6.7-6.9
respectively at two different sections of the beam for both axial and lateral stiffening conditions
of the beam. It is noted that all the results obtained by w-solution, FDM and FEM agree well
within acceptable limits. The slight discrepancy associated with FDM, which was discussed in

section 6.5, has also found in current problem.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The analytical solution for the elastic field of a stiffened simply-supported composite beam
subjected to a uniformly distributed loading has been successfully derived for both isotropic
and orthotropic materials. Having appropriate analytical expressions for all the necessary
boundary conditions, an efficient and accurate analytical scheme has been developed in terms
of a potential function defined in terms of displacement components for the analysis of
stiffened thick composite beam. The analytical scheme developed is not only limited to the
problems of isotropic materials, but also equally applicable to orthotropic composite materials
with all possible mixed modes of boundary conditions, whether they are prescribed in terms of
displacements, strains or stresses or even any combination thereof. The superiority of the
present modelling scheme over the existing approaches is that it reduces the solution of a plane
problem to the determination of a single function satisfying a single differential equation of
equilibrium. The capability of the method is demonstrated by solving a number of problems of
stiffened composite beam of isotropic as well as orthotropic composite materials with different

types of stiffeners as well as different types of fiber orientation.

The overall results of the stiffened simply supported composite beam under distributed loading
reveals that the presence of stiffeners has a significant influence on the elastic behavior of the
beam. This conclusion has been made evident when the results of elastic field are analyzed in a
comparative fashion for axial, lateral and no stiffening conditions. The influence of beam
aspect ratio also plays an important role in defining the state of displacement and stresses in the
beam. The intensity of stress is found to decrease with increase of beam aspect ratio. Further
from the comparison of results of fiber reinforced composite beam with three different types of

stiffening conditions, it is revealed that the fiber orientation effect is critical shear stress in the

184



neighbourhood of to the stiffened ends, especially for lower aspect ratio. The lateral
displacement however shows the dominating characteristics for the case of fibers oriented
perpendicular to the direction of loading as well as also for all three stiffening conditions.

An analytical method usually provides exact solution whereas numerical methods give
approximate solution. Exact analytical solution is always preferable over any numerical
solution of a particular problem. But the practical fact is that the analytical methods of solutions
are usually limited to only very ideal cases. That is why the analytical methods of solution
could not gain popularity in the field of stress analysis of actual structures. An attempt is made
to remove the limitation of the literature by developing a new analytical scheme for stress
analysis of stiffened simply supported composite beam. In order to check the reliability and
accuracy of the present analytical solutions, results are compared with the corresponding
solution of approximate numerical methods, namely, Finite Element Method and Finite
Difference Method. This is because of the fact that no other reliable solution is available in the
literature that can be compared with the present solutions. From comparison of the results of
different methods, it is observed that solutions are in excellent agreement with each other. More
specially, the present analytical solutions are found to be almost identical to those of the FEM
with few exceptions only at the stiffened ends. Finite difference solutions also compare well
with the present solutions, but slight discrepancies are observed for some sections, especially at
the stiffened end, which is probably because of low mesh density used to model the beam by

Finite difference method.

7.2 Recommendations

This is completely a new analytical method to find out the stress and displacement filed of a

stiffened simply-supported composite beam.

e The method has been investigated and instituted as capable to deal isotropic and orthotropic
stiffened beams effectively for uniformly distributed load. The present approach needs to be

expanded for the analytical solution of anisotropic materials.
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It also require to be investigated for a variety of loading configurations like three point
bending, four point bending etc. in order to have its wide range of adoptability and
versatility.

The method can effectively and efficiently deal with the structures of unidirectional
composite lamina. Further, even for a unidirectional lamina, the loading should be either in
the direction of fibers or perpendicular to the fiber. Therefore, the method, at its present
states, cannot be directly applied to laminated (multilayered) composites with fibers
oriented in different directions. However, with minor modification in the formulations, the
method can be made suitable for laminated composites without any limitation of the fiber

direction.
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