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ABSTRACT ..

A theoretical investigation of aerodynamic performance

and design is carried out for vertical-axis straight-bladed

Darrieus wind turbines. Aerodynamic performance is performed

with blades of cambered;cross-section while design is conducted

with blades of symmetric cross-section. For the aerodynamic

analysis multiple streamtube theory and cascade theory are appli-

ed. In order to choose the lift and drag coef.ficients for the

cambered blade profile, concept of thi@airfoil theory has been

applied.

A cascade principle ( Similar to that used in turbomachines)

with blades of cambered cross-section is applied for the perfor-

mance prediction of a vertical-axis straight~bladed Darrieus

wind turbine. By using the blades of cambered cross-section, the

lift force increases in the upwind side and decreases in the

downwind side in comparison to those for a turbine with symmetric

blade cross-section. As a result higher power is produced in

upwind side and lower power is produced in downwind side for a

turbine with cambered blade cross-section in comparison to those

for turbine with symmetric blade cross-s.ection •.However the

net power production is positive thereby making the higher effi-

ciency. The calculated results of.cambered blade cross-section

are compared with those of symmetric blade cross-section.

A design of a straight-bladed Darrieus. wind turbine with

blades of symmetric cross-section is performed. The design is

done at variable turbine speed condition. In order to mini-
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mize the blade stress and with a view to use the low cost

material for blade manufacture the blade support.type

is considered to be overhanged type. It is observed from the

design analysis that this design with overhanged support

reduces the blade stress remarkably.

-vi-

••.

•



•
To My Parents

- ....

•,

••



••

CONTENTS

ACKNOWLEDGEMENT

ABSTRACT

CONTENTS

LIST OF FIGURES

LIST OF SYMBOLS

iv

v

viii

x

xv

CHAPTER 1

CHAPTER 2

CHAPTER 3

INTRODUCTION
1.1 Renewal Interest in Wind Power

1.2 Role of Aerodynamics in Wind Power
. - "....;:;;-. •-:-:::::J1.3 "Aim of the ~re~t work

l.4 Scope of the Thesis

LITERATURE SURVEY

2.1 Historical Background

2.2 Existing Prediction Methods

AERODYNAMIC "THEORIES OF TURBINE

1

1

3

4

5

7

7

10

16

3.1 Single Streamtube Theory 16
3.1.1 Drag Force Along Streamtube 16

3.1.2 Blade Element Angles and Velocities 18

3.1.3 Aerodynamic Forces 19
3.1~4 Velocity ,Ratio and Power Coefficient 20

3.2 Multiple Streamtube Theory (Wilson'sApproach) 21

3.2.1 Basic Assumptions 22

3.2.2 Axial Momentum Theory 22

3.2.3 Blade Element Force Along Streamtube 25
r- - __ '~ _.~.!_'-"'---~-,----=~_..._,..- ~-~-;-~.'-~-=:-".---

_._'....-:-'-"---'~;i-fr'::~'""-~_F\ ~:--- __.." .'
•



••

-ix-

6.1 Conclusions

FIGURES

APPENDICES

Page

28

32
34
35

36

39

41

44

48

50

50
57

64

73
73
76

78

..85

131

131
(,or ..

136
. I
\

141

143

145

.'

3.4.6 Blade Pitching

4.2.Comparative Resul.ts

4.1 Calculated Results

RESULTS AND DISCUSSIONS

Appendix-E Effect of Aspect Ratio

Appendix-C Derivation of Bending.Moment and Bending
Stress

Appendix-D Airfoil Characteristics

6.2 Recommendations for Further Researches

3.4.1 Basic Assumptions
3.4.2 Blade Element Angles and "Velocities

3.3 Vortex Theory

3.4 Cascade Theory

3.4.5 Velocity Ratios and Rotor Power
Coefficient

3.4.4 Velocity Contributed. by Circulation
and Total Power Loss Term

3.4.3 Aerodynamic Forces

3.2.4 Induced Velocity Ratio,Aerodynamic
Forces and Power Coefficient

Appendix-A Flow Diagram of Computational Methods

.Appendix-B Derivation of Moment of Inertia of Blade
Airfoil Section

REFERENCES

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS.

CHAPTER 5 DESIGN. OF TURBINE.

CHAPTER 4

\



••

LIST OF FIGURES
Figures

2.1 Persian windmill of vertical axis type

2.2 Horizontal-axis wind turbine for pu~ping water

2.3 Restored Danish Gedser wind turbine

2.4 Savonius rotor

2.5 Vertical-axis curved-bladed Darrieus'wind turbine

2.6 Vertical-axis straight-bladed Darrieus wind turbine
~""3.1 Streamt~konsisting of the rotor showing the axial

flow velocities

3.2 Aerodynamic forces on a blade element of a Darrieus
rotor

3.3 Velocity diagram on the blade element of straight
bladed Darrieus wind turbine

3.4 Aerodynamic forces acting on an airfoil

3.5 Cross-sectional area of an elemental streamtube
of a straight-bladed Darrieus wind turbine

3.6 Pressures and velocities along the streamtube

3.7 Velocity diagram on the blade element of a straight-
bladed Darrieus wind turbine

3.8 Force diagram on the blade element of a straight-
bladed Darrieus wind turbine

3.9 Elemental blade forces of a straight_bladed
Darrieus wind turbine

3.10 Vortex system for a single blade element

3.11 Velocity induced ata point by a vortex filament

3.12 Horizontal section ofa straight-bladed (cambered
blade cross-section). Darrieus wind turbine w~th flow.
velocities.

3.13 Relative flow velocities on a cambered_blade airfoil

3.14 Development of blades into cascade configuration

3.15 Velocity diagram on the blade section

-x-
\

86

86

87

87
88

89

90

90

91

91

92

93

93

94

94

95

95

96

96

97

98



Figures

3.16

.3.17

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

••

Force diagram on the blade section

Velocities and forces on blade airfoil with
pitching in cascade configuration
Overall power coefficients VS. tip speed ratios at
various solidities, ( calculated by cascade theory)

Overall torque coefficients Vs. tip speed ratios
at various solidities (calculated by cascade theory)

Overall drag coefficients Vs.tip speed ratios at
vatious solidities (calculated by cascade theory)

Overall power coefficients Vs.tip speed ratios at
different fixed blade pitchings (calculated by
cascade theory)
Overall power coefficients Vs. tip speed ratios at
different ampl~tudes of sinusoidal pitch variation
(calculated by cascade theory)
Overall power coefficients Vs. tip sp~ed ratios at
different combined pitch (fixed +sinusoidal)
variation (calculated by cascade theory),

Variations of instantaneous torques with azimuth for
various no. of blades (calculated by cascade theory)

Comparisons of overall power coefficients at various
solidities (calculated by cascade theory)

Comparisons of overall torque coefficients at various
solidities (calculated by cascade theory).

Comparisons of overall drag coefficients at various
solidities (calculated by cascade theory) .

Comparisons of overall power coefficients with tip
speed ratios at different fixed blade pitchings
(calculated by cascade theory) •

Comparisons of overall power coefficients with tip
speed ratios at different amplitudes of sinusoidal
pitch variation (calculated. by cascade theory).

-xi-
\

98

99 ,.

100

100

101

101

102

102

103

104

104

105

105

106



.~.

,Figures

4.13

4.14

4.15

.4.16

4.17

4.18

4.19

4.20

4.21

••

Compariso~ of overall power coefficients with tip
speed ratios at different (fixed + amplitudes of
sinusoidal) pitch variation (calculated by cascade
theory) . .

Comparisons of induced velocity ratios by various
analytical methods.

Comparison of local angles of attack by various
analytical methods.

Comparisons.of local Reynolds number by various
analytical methods.

Comparisons of local non-dimensional tangential
forces by various. analytical methods.

Comparisons of local non-dimensional normal
forces by various analytical methods.

Comparisons of induced velocities with azimuth at
different tip speed ratios (calculated by cascade
theory) •

Comparisons of local angles of attack with azimuth
at different tip speed ratios (calculated by cascade
theory) .

Comparisons 'of local Reynolds number with azimuth
at different ~g;t'tril£I~s(Calculated by cascade
theory) ..

106

107

107

108

108

109

109

no

110

4.22

4.23

5.1

5.2

Comparisons of local non~dimenssional tangential forces
with azimuth at different tip speed ratios (calculated
by cascade theory).

comparisons of local non-dimenssional.normal forces
wtth azimuth at different tip speed ratios (calculated
by cascade theory) .

Design configurations of variable speed turbines
at various solidities (calculated by cascade theory)

Comparisons of design configurations .of variable
speed turbines at various solidities (calculated by
cascade theory).

111

111

112

.113

-xii- \



Figures

5.3

5.4

5.5

5.6

5.7

5.8

5.9

••

Comparisons of design configurations of variable
speed turbines at various solidities (calculated by
cascade theory).

Comparisons of total blade length (LB) at various
solidities (calculated by cascade theory).

Variatlons of overall power .coefficients with tip
speed ratios at different wind speeds (calculated
by cascade theory).

Variations of overall torques with rpm at various
wind speeds (calculated by cascade theory).

Variations of overall power with rpm at various
wind speeds (caiculated by cascade theory).

Variations of blade mass and maximum olade stress
with blade skin thickness (calculated by cascade
theory) •

Variations of normal, centrifugal and net normal
forces with azimuth angle (calculated by cascade
theory) .

114

115

116

116

117

117

118

5.10

.5.11

Var.iations of bending moments due to net normal forces
with azimuth angle (calculated by cascade theory). 119

Variations of bending moments due to tangential
forces with azimuth angle (calculated by cascade theory) .119

5.12

5.13

5.14

5.15

Variations 6f bending stresses due to net normal
forces with azimuth angle (calculated by cascade
theory) .

Variations of bending stresses due to tangential
forces with azimuth angle (calculated by cascade
theory) .

Variations of starting. torques with blade pitchings.

Variation of starting torque with wind speed.

-xiii-

\

120

120

121

121



Figures

5.16

5.17

5.18

B.l

B.2

B.3

B.4

B.5

C.l

C.2

C.3

D.l

D.2

D.3

D.4 '

••

Variation of blade mass with blade skin thickness
(calculated by cascade theory) (Ref. [25J )

Variation of centroidal area moment of inertia
about x-axis with blade skin thickness (calculated
by cascade theory). (Ref. [25J )

Variation of centroidal area moment of inertia
about y-axis with blade skin thickness (calculated
by cascade theory) (Ref. [25 J )

Blade airfoil cross-section.

Geometry of inner and outer faces of blade airfoil.

Geometry on blade airfoil cross-section to find
skin area.

Geometry to obtain rib area.
Geometry to determine centroid and 'moment of inertia.

•
Schematic Diagram of Vertical~axis straight-bladed
Darrieus turbine •

Horizontal section of a straight-blftded wind
turbine showing forces on the turbine blade.

Bending moment diagram of a overhanged support beam.

Variation of lift coefficient with angle of attack
at a fixed Reynolds number of 3000000 for the airfoil
Nl).CA1412.
Variation of drag coefficient with angle of attack at
a fixed Reynolds number of 3000000 for the airfoil
NACA 1412.

Variation,of lift coefficient with angle of attack at
a fixed Reynolds number of 3000000 for the airfoil
NACA 1415.

Variation of drag coefficient with angle of attack at
a fixed Reynolds number of 3000000 for the airfoil
NACA 1415.

,

Page

122

122

123

124
124

125

125

126

127

128

128

129

129.',
,J

"

130

130

", .



••

LIST OF SYMBOLS

A

As
AR

C

c.

projected frontal area of turbine

total blade sectional area

area of blade rib

area of blade skin

aspect ratio = H/C

blade chord
chord of blade within elemental 68

blade drag coefficient

induced drag coefficient
zero-lift drag coefficientlsectiondrag coefficient
for infinite aspect ratio

turbine overall drag coefficient

rotor drag coefficient = F 11 P AD

= F 11 P A
D

V2
a.

turbine overall power coefficient = P 11 P A v3
0 00

°2turbine overall torque coefficient = Q/1 PA V<-' R
00

C1 blade lift coefficient

C blade pitching moment coefficient
.m

C normal force coefficient
n

C
P

Co
Ct tangential Iorce coefficient

D blade drag force
+ec

unit vector along chordal direction

F force on blade airfoil

f maximum camber

Fcf centrifugal force

F turbine drag in streamwise direction
D

F' normal force ( in radial direction)
n

-xv- \ \
\



••

blade lift force

mass flow rate

number of blades

area moment of inertia

•../ '.

,- xvi-

overall torque

atmospheric pressure

dynamic pressure = ~ p w2

overall power

static pressure

bending moment due to tangential force in N-m

bending moment due to net normal force in N-m

blade pitching moment

blade mass per unit length

total blade length

exponent in the induced velocity relation

moment of inertia of blade skin

length of vortex filament

factor to include real lift value

moment of inertia of blade rib

centroidal area moment of inertia

unit vectors, each is normal to the plane of the others
height of turbine

rotor height diameter ratio = H/D

acceleration due to gravity

tangential force
non-dimensional tangential force = CctLW/Voo )2

~.

net normal force ( in radial direction)

non-dimensional normal force = C (W/Voo)2n

pnet
p+
n

Pt
p+
t

g

hd
H.,. .,. .,.
i j k

I

I

I r
Is
k

k.
J.

1

L

LB
ITt

mb
M

Mbn
Mbt
N

P

P
0

P
00

q

Q



rpm

R

'Re
Rer'

Ret
Rew
Sa

Sbn

Sbt
Sm
t

••

local torque

starting torque

uni.t vector

turbine speed in 'revolution per minute

turbine radius

local Reynolds number = WC/v

reference Reynolds number

turbine speed Reynolds number = R w C/ v

wind speed Reynolds number = Voo C/v

.,al.fow~..@ stress in Newton/sq.mm
bending stress due to net normal force in Newton/sq.mm

bending stress due to tangential force in Newton/sq.mm

maximum value of blade stress in each revolution N/sq.mm

blade spacing = 2 1\ R/N

velocity contributed by circulation

maximum blade thickness as a fraction of chordt c
t s
v
Va
Vav

V cut
Ve
V n

blade skin thickness

local velocity

induced velocity

average induced velocity

chordal velocity component

cutout speed

wake velocity in upstream side

normal velocity component

induced velocity at a point p

wake velocity in downstream side

wind velocity

relative flow velocity

-xvii- ,



a cor
a.
l

a• mod
a o

'\
B

'f::,p. ov

e

\!

p

T

w

••

angle of attack/angle of attack fo~ finite wing

corrected angle of attack due to camberness effect

induced angle of attack

local angle of attack

modified angle of attack

angle 6f attack for infinite wing

angle between relative flow velocity direction and
tangent to blade .flight path at blade fixing point

blade pitch angle

circulation per unit length

bound vortex
total pressure loss term (total cascade loss)

D/L
azimuth .angle

tip .speed ratio ~ Rw/V
'"

kinematic viscosity

fluid density

density of blade material

solidity = NC/R
correction factor for induced angle

angle between chordal and freestream velocity direction

angul.ar velocity of turbine in rad/sec

-xviii-



SUBSCRIPTS

d downstream side/design point

m maximum value

u upstream side

x x-axis

y y-axis

1 cascade inlet

2 cascade outlet

-xix-

••



CHAPTER 1 INTRODUCTION

••

•

Interest in wind machines recently has resulted in the

re-invention and analysis of the wind power machines developed

in the past. People are extracting energy from the wind in

various ways for the past few centuries. One means for conver-

ting wind energy to a more useful form may be done by applying

the wind mills. Recently this science is gaining more popularity

due to the fuel crisis. There are various types of windmills.

The most common one having the blades of airfoil shape is the

horizontal-axis turbine and another type is the vertical-axis

Da'rrieus wind turbine., The main advantage of the vertical-axis

wind turbine is the simplicity of its manufacture compared to

the horizontal-axis wind turbine. The present work consists of

the performance analysis of a vertical-axis Darrieus wind turbine •

The work also include the design of the similar type of turbine.

1.1 Renewal Interest in Wind Power,

study of wind energy is of prime importance concerning

present wind energy crisis allover the world. ,Conventional

energy source are no longer sufficient to cover the increasing

demand of energy throughout the world. For a longtime people

are extracting energy from the fossil fuels in almost all the

countries. With the rising demand of energy and for many other

,reasons, prices of these fuels are increasing day by day. So

people are trying to find the alternate sources of energy to

exploit them at the cheapest rate. Wind energy is a kind of

-1-
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energy source which will never be finished.

Since the last decade increasing and widespread interest

has been taken in the potentialities of the wind as a source of

energy. In several countries both pr~vate and Government spon-

sored organizations have been .established to investigate the

way.of extracting energy from the wind. Some of the reasons for

this interest are given as follows.

i) The rapidly increasing demand for electrical energy

accopanied by the inadequacy of fuel supply or of potential

hydro-electric resources in some countries;

ii) high and rising costs of power generation in stream- .

.driven stations or in newly-constructed hydro-stations and that

for the transmission of the power generated by them, are now

often increased by the fact that the more easily developed

sources, near to .load centres, have already neen explited;

iii) difficult economic and political conditions of the

post-war years tending to make countries depend. upon their own

resources for the generation of power rather than upon imported

fuels;

iv) the realization that coal and oil resources are,bei-ng\1, (,:,.

used up at an increasingly high rate and that they can be put to

better use than burning them as fuels;

v) the greatly increased knowledge of aerodynamics as

applied to aeroplane construction, resulting from war-time

- 2 -
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research and development. This renders the problems to be faced

in constructing large windmills less formidable than they were

formerly;

vi) the appreciation of the advantages of diversity in the

availability of power from different sources connected to a

widespread net work;

vii) the Smith-Putnam experimental aerogenerator, of 1250 KW

capacity, built during the 'war on Granpa's Knob in central Vermont

U.S.A. Although this machine was not completely successful as an

practical possibility of employing large plants to generate

electricity from wind power.

1.2R6teP~Aerodynamics in Wind Power

The success of wind power as an alternate energy source

is obviously a direct function of the economics of production

of wind power machines. In this regard, the role of improved

power output through the development of better aerodynamic per-

formance offers some potential return: however; the focuss is on

the cost of entire system, of which the air-to-mechanical energy

is transducer is but one part. The technology and methodology

used to develop present day fixed and rotating wind aircraft

appears to be adequate to develop wind power.

One of the key areas asso~iated with future development

of wind poweris rotor dynamics. The interaction of inertial,

elastic and aerodynamic forces will have a direct bearing on the

- 3 -
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manufacture, life and operation of wind power systems, while

at the same time having a minor effect on' the power output.

Thus, the aerodynamics of performance prediction, quasi-static

in nature, 'is deemed adequately developed whi~e the subject of

aeroelasticity remains to be transferred from aircraft applica~

tions to wind power applications. Since 1920, there have been

numerous,attempts in designing feasible WECS (wind energy conver-'

sion system) for large scale power generation in accordance with

modern theories.

1.3 'Aim of the Present Work.

uptil now, on vertical-axis Darrieus wind turbine bo'th aero-

dynamic 'and structural works have been done in many parts of the

world. However, little attenti0n has been given on the Darrieus

wind turbine with blades of cambered cross-section. In this

thesis the aim was to find the detail aerodynamic as well as

structural analysis of Darrieus turbine with blades of cambered

cross-secEion. It is expected that this work would contribute

greatly to ,the knowledge of existing research work regarding ,the

vertical axis straight-bladed Darrieus wind turbine.

The present research work is consisted of finding the

performance characteristics of a vertical-axis straight-bladed

Darrieus wind turbine and making necessary development of this

kind of turbine. At high solidity the performance prediction of

a vertical-axis Darrieus wind turbine with blades of cambered

- 4 -
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cross~sectionis also done. Blade pitching is also incorporated

to find the perofrmance characteristics of a turbine with cam-

bered blade airfoil.

It has also been noted that there is want of extensive

research work on design for low as well as high solidity Darrieus

wind turbines. A lot of prameters control the performance charac-
Q, ..•
'1.-., ./teristics~of a Darrieus wind turbine. Among them solidity, height-

:">;-",',77
~:-'<,fi4

diameter ratio, aspect ratio, tip speed ratio, number of blades,

chord-radius ratio, Reynolds number etc. may be.mentioned. In

the present work, it is aimed to find out an optimum design

condition with overhanged beam support to choose the above para-

meters based on optimum design condition.

The primary object was to carry out the detail aerodynamic

and structural analyses. However finally it was not possible to

perform all the works. So mostly aerodynamic analysis is conduc-

ted and partia~lystress analysis is done.

1.4 Scope of tha Thesis

In this thesis, a theoretical investigation of the aero-

dynamic perofrmance is presented for the vertical-axis straight-

bladed wind turbines with both symmetric and cambered blade

cross-sections. In addition, a simplified design is conducted

for a vertica~-axis straight-bladed Derrieus wind turbine with

blades of symmetric cross-section.

- 5 -
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Chapter 1 presents the general introduction providing with

the brief idea of the work which are performed and described in

this thesis. In the chapter 2, the review of the literature is

.presented. It gives a short description of the related papers

which have been published by the different authors in the differ-

ent place.

In the chapter 3, different aerodynamic theories of vertical

axis straight-bladed Darrieus wind turbine are described. The

analytical prediction methods which are related to the present

thesis are rather described elaborately. Existing cascade theory

is remodelled to include the cambered blade cross-se'ction and

applied for straight-bladed Darrieus wind turbine.

Chapter 4 presents. the calculated results for the vertical

axis Darrieus.wind turbine with blades of cambered cross-section •

.The effect of few parameters in the performance characteristics

of a vertical-axis Darrieus wind turbine are discussed. Compar.i:"

sons of the calculated results for the symmetric and cambered

blade profiles are given in this chapter.

A design method for vertical-axis straight-bladed Darrieus

wind turbine is given in the chapter 5. Design. at variable tur-

bine speed condition is performed. Design approach is suggested

with a view to make the design optimum.

Finally in the chapter 6, general conclusions are drawn

and few recommendations for the future works are ,presented.

- 6 - '
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CHAPTER 2 LITERATURE SURVEY

Uptil now many theories have been developed in different

parts of the world for the performance prediction of Darrieus

wind turbines. Few of them are described in brief in this

chapter. Brief history of the development of modern turbine has

also been incorporated into this chapter.

2.1 Historical Background

To extract energy from the wind, people have been working

on various classes of wind contrivances from the ancient time.

Probably works on windmills have been started from 2000 B.C. The

duration from the ancient time upto the end of the 19th century

may be categorized as the ancient development period while that

from the end of 19th century upto date may be termed as the

modern development period.

Historically, wind energy conversion systems can be consi-

dered as one of man's truly basic machines. Early documents refer

to use of windmills, as depicted in Figure 2.1 in Persia in 644

A.D. called Persian vertical-axis windmill which was used to

grind grain. That kind of windmill had been working upto about

12th century, when slmu.ltaneously in France and England Dutch

type of windmills 'were made whose perpose were to'grained grain

and pump water. These windmills were of horizontal-axis types.

. .

At the mid-nineteenth century, more than six-million small

multibladed windmills, providing power outputs of less than Ihp

each in an average wind, have been built and used in the United

- 7 -
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States to pump water, generate electricity, and perform similar

functions. It is estimated that over 150,000 turbines are curren-

tly in operation.

Water pumping windmills are used in many parts of the

United States, not only for pumping water for farm and rural house-

holds, but for watering livestock on ranges in remotes area.,

These types of machines commonly have metal fan-blades, 12 to 16

feet in diameter, mounted on a horizontal shaft, with a tail-vane

to keep rotor facing is to the wind ( F~gure 2.2). A 12- feet

diameter rotor of this type develops, about 2/3 hp in a 15 mph

wind and can pump about 10 gallons of water per minute to a height

of about 100 feet.

Small wind machines, used to generate electricity, (~~sually

have two or ,three propeller-type blades that are connected by

a shaft and gear train toa d.c. generator. They usually incor-

porate some type of energy storage system, often consisting of

a bank of batteries. One of the classic designs of this type is

the Jacobs Wind Electric Company unit with a three-blades prope-

ller, 14 feet in swept diameter, which deliver about 1 KW in a

wind of 14 mph.

At the end of 19th century, the first modern windmill of

horizontal-axis type with multi-blade was built in Denmark to

produce electricity. It was the beginning of the modern develop-
, ' ,

ment period. Starting from that time people in different countries

especially in rural America have been constructing a large number

of multibladedwind turbines for pumping water and generating

- 8 -
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electricity. Afterwards as a consequence of development works for

several years, two or three bladed propeller type of windmills

with airfoil shape blades were built in near about 1925. In

Denmark, the 200 KW Gedser mill ( Figure 2.3), which was the

latest, was operated until 1968, when it was shut down because it

was found that by that time the cost of electricity supplied by

this wind-powered unit was about twice the equivalent fuel cost

of the steam-powered electric utility plants that were being

operated in Denmark. After the energy crunch of 1973, the 200 KW

Gedser mill was refurbished, and in 1977 it was put back into ser-

vice, using funding partly supplied by the United States Depart-

ment of Energy.

In 1931, 100 KW Russian horizontal-axis wind turbine was

constructed while in 1934, the large 1250 KW Smith-~utnam horizon-

tal-axis wind turbine was built in the United State.

Modern development period have really begun with the develop-

ment of horizontal-axis wind turbines. In 1924 Finnish Engineer

S.J. Savonius constructed the first savoniusrotor of vertical-

axis type ( Figure 2.4) and he conceived the idea from the

Flettner's Rotor. In 1925 G.J.M. Darrieus of France, Proposed

for United States patent a new type of wind turbine designed for

the generation of power. The patent issued in 193~ as number

1,835,018 was for a "turbine having its rotating
: i,'"

'1 i

shaft transvefse

to the flow of the current". The Straight-bladed configuration"

was also covered in the original Darrieus pattern. This kind of

wind machine is called Darrieus wind turbine ( Figures 2.5 and,

2.6) after the name of G.J.M. Darrieus.

- 9 -



since the beginning of the twenteeth century, researchers

in the various parts of the world had been giving much effort in

the development works of the wind turbines but from about the

mi.ddle of this century, it began to loose its momentum for further

development. In about 1970's people took renewed interest in this

field. Especially in 1973 with oil embargo, people were thinking

regarding the alternate sources of energy. As a result in many

developed and underdeveloped countries a lot of new projects

concerning the development of wind turbines have been taken .•

Only during the last decade in the different countries enormous

attention has been paid in the field of performance prediction method

applicable to wind turbines. As an outcome, a number of analytical

prediction methods have been developed. Works have also been extended

to both the static and dynamic analyses of wind turbines. Different

types of design methods have been worked out in many places.

2;2 Existing Prediction Methods

The main purpose of a wind turbine is to extract energy from

the air flow and then convert it into mechanical energy which

later may be transformed into other forms of energy. The perfor-

mance calculation of wind turbines are mostly based upon a

steady flow, in which the influence of the turbulence of the .,•atmospheric boundary layer is neglected.

For the design and evaluation of wind turbines the availabi-

lity of computational tools is essential. Most existing theore-

tical models are based on the momentum theory, cascade theory and
vortex theory.

-10-
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For the calculation of the performance characteristics

of a straight-bladed Darrieus wind turbine the most simple

prediction method is the single streamtube model. It has been

introduced first by Templin [42] in 1974. In this model the

whole turbine is -assumed to be enclosed within the single

streamtube. Dr. Templin first incorporated the concept of wind-

mill actuator disc theories into the analytical model of a
Darrieus wind turbine. In the actuator disc- theory the induced

velocity (rotor axial flow velocity) is assumed to be constant

throughout the disc and is obtained by equating the streamwise

drag with the change in axial momentum. In the assumption of

Templin, the actuator disc is considered as the surface of the

imaginary body of revolution. It is assumed th~t the flow velo-

city is constant althrough the upstream and the downstream

faces of the swept volume. This theory presented by Templin is

the first-approach to permit numerical design calculations for

a vertical-axis Darrieus wind turbine.

This model affords a great deal of simplicity and can

predict the overall performance of a_lightly loaded wind turbine

but according to the investigation, it always predicts higher

power than the experimental results. It is incapable of adequa-

tely predicting .the wind velocity variations across the rotor •

.This variations gradually increases with the increase of blade

solidity and the tip speed ratio.

An analytical method using single streamtube model is

presented by Noll and Ham [31] for the performance prediction of

-11-
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a vertical-axis wind turbine with straight-blades which are cycli-

cally pitched. They added the ,effect of strut drag, ,turbulent wake

state and dynamic stall to their analytical method.

Improved prediction methods for the calculation of performa-

nce characteristics of a Darrieus wind turbine is,the multiple

streamtube model introduced, by Wilson and Lissaman' [46] • In'this

model, the swept volume of the turbine is divided into a series

of adjacent, aerodynamically independent streamtubes. Blade element

and momentum theories are then applied for each streamtube. In

their method they consider the flow as invisdid and incompressible

for the calculation of the induced velocity through the streamtube.

As a result, there appears only the lift force in the calculation

of induced velocity., Wilson et aI'considered the theoretical lift

for their calculation. Atmospheric wind shear can be included in

the multiple streamtube model. Multiple streamtube model is still

inadequate in its description of the flow field. Wilson's model

can be applied only for a fast running lightly loaded wind turbine.

Strickland [40] in his paper presents a multiple streamtube

mode,l for a verticah-axis Darrieus wind turbine. He finds

the induced velocity by eq~ating the blade element forces

(induced, airfoil drag) and the change in the momentum along each

streamtube. The basic difference between Wilson's and,Strickland's'

model is that Wilson used the lift force (theoretical) only in

the calculation of induced velocity while Strickland added the

effect of drag force as well for the Similar calculation.

-12-
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The effect of local Reynolds number on the lift-drag character-

istics is not included. This model predicts the overall perfor-

mance of a Darrieus wind turbine reasonably especially when the

rotor is lightly loaded. It displays improvement'over the single

streamtube'methods.

streamtube models with both uniform and non-uniform velocity

distributions are presented by Shankar [36] • In his uniform

velocity distribution model, the axial-flow velocity in the

vertical and horizontal directions of the rotor ( curved-bladed)

frontal area and both in the upwind and downwind sides of ,the

rotor is assumed to be constant. Shankar's non-uniform velocity

distribution model is actually the multiple streamtube model

where the axial-flow velocity varies both in the vertical and

horizontal directions but in each streamtube it'remains constant

throughout the upwind and downwind sides. In the calculation of

Shankar, he applied the lift-drag characteristics independent of

Reynolds number, like that of Strickland.

Sharpe [37] in his report gives an elaborate description of

a multiple streamtube model whose principal idea is similar to

that of Strickland [40] . He incorporates. the effect of Reynolds

number in the calculation. Furthermore he uses analytical expre-

ssion for the Troposkien shape.

Read and Sharpe [33] have carried out an improved ver~~
./' .

of multiple streamtube methods for vertical-axis Darrieus wind

turbines. In their model the parallel.streamtube concept is

dispensed with and the expansion of the streamtube is included.

-13-
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It is strictly applicable to low solidity lightly loaded wind

turbines with large aspect ratio. It can predict the instanta-

neous aerodynamic blade forces 'and the induced velocities better

than that by the conventional multiple streamtube model. But pre-

diction-of overall power coefficients can not be made with reason-

able accuracy. It usually gives lower power than that obtained

experimentally.

Migliore and Wolfe [26J have 'performed an elaborate study, of
/

the flow curvature effect on the performance characteristics of

a straight-bladed Darrieus wind turbine. In their method they

consider the" curved f'low consisting of concentric streamlines

pattern on the turbine blade airfoils (geometric, airfoils). By

conformal mapping techniques the geometric airfoil is transformed

into a virtual airfoil with change in camber and incidence angle

appearing in the rectilinear flow. They have observed strong

influence of flow curvature on the performance characteris~ics

of a Darrieus wind turbine especially when the chord-radius ratio

is high. They also noted that under most circumstances flow

curvature effect has a detrimental influence on the blade aero-

dynamic efficiency. However, when properly considered, virtual

aerodynamics may be used advantageous'ly to enhance turbine

performance. In addition they describe the effect ,of centrifugal

forces on the flow_pattern of the blade airfoils of the turbine.

Larsen [22] in his paper first presents a vortex theory.

He used his vortex model for the performance prediction of a

cyclogiro windmilL His model is a two dimensional one but if

the vortex trailing from the rotor blade tips are considered it

-14-
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may not be said strictly ~w0~dimensional ..However in his model

angle of attack is assumed small, as a result stall effect is

neglected •

.A vortex model applic;able to a curved bladed Darrieus wind

turbine have been presented by Strickland, webster and Nguyen [41]

It is simply the extension of the previous vortex models. This

vortex model is a three dimensional one and aerodynamic stall

is incorporated into the model.

Mandal A. C [25] in his Ph.D. Thesis presents a cascade

theory model for vertical-axis Darrieus wind turbine. He has found

that, cascade theory gives reasonably good performance prediction

for a high solidity (above .25 approximately) as well as low soli-

dity ( below 0.25) Darrieus wind turbine. This theory can reasonably

predict the local forces developed on the turbine blade. These are

comparable with those calculated by the quas.isteady vortex model

presented by Strickland [40] •

For the prediction of overall performance of a high solidity

straight-bladed Darrieus wind turbine and local forces of both

low and high solidity turbines at the high tip speed ratio, appli-

cation of cascade theory gives more re.liable.resul ts in comparison

to those by the multiple streamtube.theory with flow curvature effect.

This theory does not make any convergence problem even fora

high. solidity turbine and at high tip speed ratio. In this mddel

unlike in the case of momentum theory, the iterated induced velocity

ratio may go below 0.50. Applying cascade theory.the wake velocities

can be predicted very reasonably even for a high solidity turbine

and at high tip speed ratio while the momentum theory can not do so ..

-15-



CHAPTER 3 AERODYNAMIC THEORIES OF TURBINE

Many aerodynamic theories have been developed uptil now to

predict the performance of a vertical-axis Darrieus wind turbine.

These are single streamtube theory, multiple streamtube theory,

vortex theory and cascade theory.

3.1 Single Streamtube Theory

In the single streamtube theory. [42.],the whole rotor is

assumed to be enclosed within the single streamtube. Althrough

the rotor, .the axial velocity is assumed to be constant. The

forces on the blade airfoil are computed based on the uniform

velocity on the rotor. The wind velocity in the streamtube at

the rotor is related to the undisturbed freestream velocity by

equating the streamwise drag force to the change of fluid momen-

tum t.hrough the rotor.

3.1.1 Drag Force Along Streamtube

Based on the Glauert Actuator disc theory, the uniform

velocity through the rotor ( figure 3.1) is given by the following

expression,

v =a

v + V= w
2

(3.1)

where, Va is the axial flow velocity ( induced velocity) through

the rotor, .V= is the freestream velocity and Vw is the wake

velocity.
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Due to the rate of chage of momentum, the drag force along the

streamtube is,

FD = m ( V - V00 w

where m is the mass flow rate. Introducing m - APVa,

FD = ApVa (V 00 - Vw)

(3.2)

(3.3)

where A is the turbine projected area while P is the fluid den-

sity,' From the equation (3.1) and (3.3), the drag force FD can

be obtained as,

(3.4)

Rotor drag coefficient is defined by,

(3,5)

Introducing the value of FD from equation (3.4), the expression

of CDD is obtained as,

V - V
. 00 a

Va
(3.6)

Corresponding to'the figure ~3.2~, the elemental drag force along

the freestream velocity direction based on the aerodynamic forces

on the elemental blade airfoil is found as,

(3.7)

where e is the azimuth angle. 8Fn.and 8Ft are respectively the ele-

mental normal and tangential forces on the elemental blade airfoil.
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3.1.2 BI~de Element Angles and Velocities

Figure 3.3 shows the air velocities relative to an airfoil

element. If the blade moves withw radlsec in still air, the air

velocity relative to the blade is Rw and acts in the opposite

direction to the blade motion. From the induced velocity V anda

the tangential velocity Rw , R being th? radius "of the turbine,

one obtainesthe velocity in chordal direction as,

V = Rw + V cosec a
(3.8)

and the velocity in the normal direction to the blade flight path as,

V = V Sinen a
(3.9)

Now the resultant velocity W relative to the airfoil which is

called the relative flow velocity becomes,

= ( Rw + V cose )2 + IV Sine )2a a
(3.10)

where the values of Vc and Vn are respectively taken from the

equations (3.8) aJ;ld"(3.9). Now rearranging the equation (3.10),,

one obtaines,

= .; [(
2

) + cose] + Sin2e (3.11)

where the term Rw / V is the tip speed ratioA. Now the angle
'"

of attack is obtained as ( figure 3.3),

V V Sine Sinetan --E. = a =a - Vc Rw + VaCose RW!J/ Va + cose
V", V",

(3.12)

'.
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ex = Sin8
J v

~//~ + Cos 8V V
'" '"

]

•

(3.13)

where ex is the local angle of attack.

3.1.3 Aerodynamic Forces

Figure 3.4 shows the blad~ airfoil cross-section with the

aerodynamic forces acting on it. The elemental normal force ofn
and the tangential force 8Ft are respectively perpendicular and

parallel to the airfoil chord line. The elemental normal and

tangential forces are defined as,

8Fn = !;; C w2 c HnP

8F !;;
2= Ct P W c H.t

(3.14 )

(3.15 )

where Cn and Ct are respectively the normal and tangential force

coefficients while c is the blade chord which occurs within the

elemental angle 88.>H is the height of the turbine. Two dimenssional

elemental lift and drag forces on an elemental blade airfoil are

resolved into

figure 3.4.

8F and
n

8Ft, which may be obtained referring to the

8Fn = 8L Cosex + 8D Sina

8Ft = 8L Sinex - 8D Cosa (3.17)

where the elemental lift force 8L and the elemental drag force

8D are defined as,

8L = !;; Cl P W
2 c H (3.18)

8D = !;;.Cd P w2 c H. (3.19)
I ~ ,.,

where Cl and Cd are respectively the lift and drag coefficients.
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Now from equation (3.14) to (3.19) one may find,

(3.20)

(3.21)

3.1.4 Velocity Ratio and Power Coefficient

Introducing the values of 6Fn (3..14) and 6Ft (3~15) in equa-

tion (3.7), the elemental streamwise drag force can be obtained as,

6F = ~ p c w2 (C Sine - C cose ) HD n t.
(3.22)

Now foran:assumption of infinite number of blades distribution,

replacing c by NC 6e/2Tf, N being the number of blades, dynamic

pressure q = ~ P w2 , one may obtain from the equation (3.22) in

integration form,

F =
D

N C H
2Tf

2Tf
J g (C

no
Sine ~ Ct cose ) de (3•23)

Now from the equation (3.5) and (3.23), the drag coefficient

CDO may be found as,

NC
4TfR

2Tf
J (
o

cose ) de (3.24)

Now from the equation (3.6), the velocity ratio

the ambient wind speed may be expressed as

Rw /v:.. based on
00

= Rw
Va

.1
C

1+..m2.
4

(3.25)

For a given turbine geometry, rotational speed wand specified
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~otor velocity ratio RW/Va, the rotor drag coefficient CDD can

be calculated from the equation (3.24). The velocity ratio'Rw/V '"
based on the ambient.wind speed can be obtained from the equation

(3.25). Thus this method does not require any iterative process.

The elemental torque. is given. by,

OQ = OF Rt
(3.26)

Now substituting equation (3.l5) and replacing c by NC Oe/21T for

aI!assumption 'of infinite .number of blades distribution, one obtains

the expression of overall torque Q in the integration form,

NC. 21T
Q = . RH f Ct q de2 1T

0

The overall power p is,
0

N CW 21T
P = Qw= . RH. f Ct q de
0 2 1T 0

(3.27)

(3.28)

According to Glauert, the expression for the maximum power ( ideal

power) is,

p =max
16
27

1 v3'2 p
'"

A (3.29)

Templin defines the power coefficient as,
p
o

pmax

3.2 Multiple Streamtube The'ory (Wilson's Approach)

(3.30)

In the multiple streamtube theory a series of streamtubes

parallel to the freestream velocity direction are assumed to pass

through the rotor. This model gives rise to a velocity
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distribution through the rotor in horizontal direction.

3.2.1 Bas:i(clAssumptions

Multiple streamtube theory includes the following assumptions:

1) To determine the induced velocity the flow is assumed to be

inviscid and incompressible'. As a result the lift. force is the

only force which acts on the blade element and its component

along the streamtube is equated to the force contributed by the

rate of chage of momentum along the streamtube.

2) The blades are infinite in number causing the swept surface to

be continuous at all times but in such a way that the solidty

remains finite.

3) Each streamtube may be considered independently with no inter-

ference of adjacent tubes and hence the momentum theorem is

applied to each of the tube seperately.

4) The streamtubes are considered to be parallel with each other.

So the induced velocity remains constant along each of the

streamtube.

5) The flow is assumed to be steady, one-dimensional, friction-

less, and incompressible.

3.2.2 Axial Momentum Theory I!
: '

To find the streamwise force along the streamtube, the axial
.. --,

momentum theory is applied. In the figure 3.5 an elemental
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Stre.amtube is shown for a straight-bladed Darrieus wind turbine.

The cross-sectional area 6A of the elemental streamtubeis obtained

as,

6A = H R Sine 6e (3.31)

The flow around the airfoil blade element is retarded in two

stages. Once before and once after its passage through the blade

elements on the either side of the streamtube ( figure 3.6). The

elemental force along the streamtube is given by,

= 6m ( V
ee

(3.32)

where 6mis the mass flow rate through the streamtube, Introducing

the elemental mass flow rate 6m = pVa 6A,elemental drag force

becomes,

6FD=pV (V -V) 6Aa ee W
(3.33)

Applying Bernoulli's equation in the upstream and the downstream

sides respectively one obtains,

(3.34)

(3.35)

where Pu and Pd are respectively the static pressure at the upstream

end of a streamtube as it enters the sept volume and that at the

downstream end of a streamtube as it leaves the swept volume. Pee (]

is the atmospheric pressure. Now substracting the above two equations,
(:

f "

(3.36)
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The elemental force along the streamtube is,

(3.37)

substituting the equation (3.36) into the equation (3.37), one may

obtain,

Now balancing the equations (3.33) and (3.38),

(3.38)

pV (V - V ) oA = ~ P (V
2

a 00 w 00

The above equation finally becomes,

(3.39)

= 2Va V
'"

(3.40)

elAccording to the assumptions of th€Jtheory, the induced flow

velocity cannot be greater than half of the fre~ stream velocity.

Other wise, the wake velocity will either be zero or negative.

In the real flow field this does not appear. The wake region is

turbulent, as a result there occurs mixing of the wake with the

high energy fluid layers outside the wake region.

From the equations (3.33) and (3.40), the elemental force becomes,

(3.41)

Introducing the value of oA, the above equation becomes,

oF
D

" = 2 R P Sin8 V (V - V ) H 08
a '" a

Introducing a non~dimensional parameter h = H/R,

(3.42)

V - V ) h 08
00 a

- 24 -
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3.2.3 Blade Element Force Along Streamtube

Wilson and Lissaman [46 J consider a theoretical lift.coeffi-

cient in their calculation, which is given by,

, (3.44)

To take into account the real lift coefficient, it may be expressed

as,

C =,2 11k Sin Cl
1

(3.45)

The value of Cl is taken from the airfoil data corresponding to the

local angle of attack while the value of the factor k is found by

an iterative process.

For an inviscid and incompressible fluid, the elemental lift

force, from the Kutta-Joukowski relations is given by,

(3.46)

where 0, is the elemental circulation for unit length of the blade

and W is the relative flow velocity. The elemental lift force,

according to the equation (3.18) .is,

(3.47)

From the equations (3.46) and (3.47) the expression of the elemen-

tal circulation is found as,

'(3.48) t'

Introducing the equation (3.45) for the lift coefficient Clone

obtaines,

0, = 11kc W SinCl
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The above equation can be expressed in vector form as,

,+ 1T • +u, = k cW S~n:a e, (3.50)

where +e, is the unit vector. in the direction of

The above equation may also be written as,

8~ = +1Tkc W x . (3.51)

where ~c is the unit vector in the chordal direction. For an

inviscid and incompressible fluid the elemental force on the blade

.element can be expressed in vector form.as,

(3.52)

Now referr:tgg2)to the figure 3.7, the expression of the relative
+ +

floW velocity W and unit vector e becomes,c
+ + + + +

W = V i + V j = V Sin e i + (Rw + V Cos e ) j (3.53)
n c a a.

and ."= J (3.54)

where the unit vectors
+
i

+and j are considered respectively along

the normal direction to the blade chord and the tangential velocity

direction. The values of V and V are taken from the equationsc n + +
(3.8) and (3.9) respectively'. Inserting the values' of'Wand ec in

the equation (3.51) one obtains,

8\;=1Tkc [V Sine 1a
+ (Rw + V Cose) OJ ] x j

a
(3.55)

(1

"i

Considering the unit vector k perpendicular to the plane of the

unit vectors' + -7 •
1, ]i Sl.nce + -7 -~ x J = k and j x j = 0, the above

equation becomes
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o~ = 11kc V Sine ka

•

(3.56)

-+. -+Introducing the values of W (3.53) and 0, (3.56) in the equation

(3.52) one may obtain,

of = pl1k c '[V Sine 1 + (Rw + V Cos e.)j ] H x (V Sine k)a a a
(3.57)

After vector multiplication, the elemental force 0"1; becomes

of = pl1k c H [(Rw V Sine. + v2 Sine. cose )a a
-t
~ - V2 Sin2e -t],-,a J:;

(3.58)

The equation (3.58) can be written in the following form,

-+ -t . "t
J
)of =pl1k c H ( F1 ~ + F 2

where Fl = Rw Va Sine + V; Sine cose

(3.59)

,-.'''.s,.,Now refer~~,to the figure 3.8, the elemental force component on

the blade element,along the streamtube is,

F1 Sine + F2'Cos e ) (3.60)

Equation (3.60) may be obtained in the following form after intro-

ducing the values ofFl and F2,

(3.61)

• Now introducing a non-dimensional parameter h = H/R and replacing

c by N2Cl10efor an @.~sumPtion of infinite number of blades distri- :

bution, oFD may be expressed as,
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(3.62)

Now multiplying the equation (3.62) by 2 for two blade elements

in one streamtube, one finds,

(3 • 63)

3.2.4 Induced Veloc.ity,Ratio, Aerodynamic Forces and Power
Coefficient.

To find the induced velocity ratio, the relative flow velocity

W, the local angle of attack a and the local Reynolds number Re
are necessary. The relative flow velocity Wand angle of attack oi

may be obtained from the equations (3.11) and (3.13), which are

given' below,

) + Cos e]2 + Sin2 e (3.64)

, -1 [ Sin Aa = tan .v -
&J~ + Cos e
Vco Voo

(3.65)

and that for the constant turbine speed condition is expressed

in the form"

we W v Rw C )/ Rw) V R 1\a (
W a et

R = = . = v;;, (3.67)
e v Va V", 'v V", Va A

where Rew
RwC( = v

( = V",C/v) is the wind speed Reynolds number and Ret

is the turbine speed Reynolds number.
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Now from the equations (3.43) and (3.63), one may obtain the

expression of the induced velocity ratio (rotor axial flow velocity)

as,

k
1 - '2 NC

R
~WSine

00

, (3.68)

The value of the induced velocity ratio is obtained by an itera-

tive process. For known values of tip speed ratio A ( = RW/Voo)'

solidity ratio a ( = NC/R), azimuth angle e, the starting value of

the induced velocity ratio is chosen as 1.0 or as that calculated

for the prior streamtube. Now the relative flow velocity Wand

the local angle of attack a are respectively calculated from equation

(3.11) and (3.13). Then the local Reynolds number R is calculated, e

either from the equation (3.66), for constant l\?fiid~ speed condition

or from the equation (3.67) for c'onstant turbine speed condition.

With the known values of R and a , the value of the lift coefficiente
is taken from the airfoil data and the factor k is calculated from

the equation (3.45). Now the new value of the, induced velocity ratio

is calculated by using the equation (3.68). This process is conti-

nued until. the induced velocity ratio is obtained with desired

accuracy.

The elemental blade pitching moment is defined by,

r

2oM = ~ C P W c H Cm
(3.69)

\:
The non-dimensional normal force F~ and the non-dimensional tan~:

+gential force Ft are defined in the following way,
( ,

I'

+ of
Fn = n (3.70)

~ pc H V200

F~ =
oFt

(3.71)
V2

..,
~ p c H "

00 ,
-;2 9-
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Introducing the values of OFn (3.14) and OFt (3.15) in the above

equations'( 3.70) and (3.71) respectively, one obtains,

Referring to

(3.72)

(3.73)

is,

w2
'-'2Voo

w2
v200

the figure 3.9, the elemental streamwise drag force

= CnF~

of = 2
D

of S.in8 - of Cos8
n t

(3.74)

Introducing the value of oFn (3.14) and oFt (3.15) respectively

in the above equation (3.74), one finds,

(3.75)

Replacing c by NC o8/2n for an assumption of infinite .number of

blades distribution and introducing a non-dimensional parameter

h = H/R, the equation (3.75) can be written as,

~F = N C P w2 R2 ( S' 8 C C 8) h ~8
U D 2 nR • Cn J.n - t os U

(3.7.6)

Coefficient of overall elemental turbine drag ( streamwise force)

is defined as,

(3.77)

where A ( = 2RH) being the projected frontal area of the swept

valume. Now the expression of the turbine overall elemental drag

coefficient can be obtained as,
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NC
1IR

•

Cn Sin8 - Ct Cos8 ) 88 (3.78)

Integrating the equation (3.78), the turbine overall drag coeffi-

cient can be obtained as,

C =D
NC
21T R

Cos8 (3.79)

The blade elemental torque of the turbine is found. as,

From the equations (3.15), (3.6.9)and (3.80) one obtains,

(3.80)

28Q = ~ p c W (RCt + Cern) H (3.81)

Inserting the non-dimensional parameter is h =H/R and replacing

c by NC 88/211 for an assumption of infinite number of blades

distribution, 8Q may be expressed as,

8Q = N C. P R3 w2 .(C + ~ C
411 R t R m

h 88 (3.82)

The overall elemental torque coefficient is defined as,

8Q
8CQ = .v2 R

~ p.A '"

(3.83)

From the equation (3.82) and (3.83), the expression of 8CQ is

obtained as,

• h 88 (3.84)

After integration, the turbine overall torque coefficient is

expressed as,
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C
Q

211
=!i..£.. J

411 R o
( C
t
+ C CR m de (3.85)

The overall power coefficient C
P

may also be called ,as the

aerodynamic effi~iency ) is defined as the ratio of the power

p produced by the turbine to the total power available in the
o
air passing ,through the same swept volume of the turbine and is

given by,
p
o

k P A V
3

, 00

(3.86 )

Introducing the value of overall power P = Qw , one obtains,o

Q

>; p A v2 R •
00

(3.87)

Inserting the value of CQ from the equation (3.85), the overall

power cefficient C may be found at any particular tip speed
p

ratio A • The power coefficient is calculated by. the numerical

integration method applying G>impso~' s rule.

3 .3 Vortex Theory ,

Strickland, Webster and Nguyen [9J have presented three

dimensional vortex model.. In this model aerodynamic stall may be

encountered. The general analytical approach requires that the

rotor blades be divided into a number of segments along their

span. The production, convection and interaction of vortex sys-

tems springing from the individual blade elements are modeled

and used to predict the "induced velocity" or "perturbation

velocity". at various points in the flow field. The induced or

perturbation velocity at a point is simply the velocity which is

superimposed on the undisturbed wind stream by the ~ind machine.



•

•

Having obtained the induced veiocities, the lift and drag of

the blade segment. can be obtained using airfoil section data •

.A simple representation of the vortex system associated with

a blade element is shown in the figure 3.10. The airfoil blade

element is replaced by a "bound" vortex filament sometimes called

;'substitution" vortex filament or. a lifting line. The strengths

of the bound vortex and each trailing tip vortex are equal as a

consequence of the Helmholtz theorems of vor.ticity. According to

the figure 3.10, the strengths of the shed vortex systems have

changed on sev~ral occasions. On ~ach of these occasions, a

spanwise vortex is shed whose strength is equal to the change

in the bound vortex strength as dictated by Kelvin's theorem.

The fluid velocity at any point in the flow field is the

sum of the undisturbed wind stream velocity and the velocity

induced by all of the vortex filaments in the flow field. The

velocity induced ata point in the flow field by a single vortex

filament can be obtained from the Biot-Savart law, which relates

the induced velocity to the filament strength. Referring to the

case shown in the figure 3.11,for a straight vortex filament

of strength I' and' length 1, theinduced.velocity V at a pointp

p not on the filament is given by,

V = ~
p

(3.88)

Where d is the minimum distance of 'the point p from the

vortex filament, ~ is the unit vector in the direction of ? x 1.
? is also the unit vector. It.should be noted that if pointp
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should happen to lie on the vortex filament, equation (3.88)

yields indeterminate results, since e cannot be defined and. the.•magnitude. of V is infinite. The velocity induced by a straight
p

vortex filament on itself is, in fact, equal to zero •

.In order to allow closure of the vortex model, a relationship

between the bound vortex strength and the velocity induced at a

blade segment must be obtained. A relationship between the lift L

per unit span on a blade segment and the bound vortex.strength 'B

is given by the Kutta-Joukowski law. The lift can also be formu-

latFd in terms~f the airfoil section lift coefficientCl• Equating

these two expressions for the lift, yields the required relation-

ship between the bound vortex strength and the induced velocity at

a par.ticular blade segment.

,
B = (3.89)

It should be noted that the effects of aerodynamic stall are auto-

matically introduced into the equation (3.89) through the section

lift coefficient. After determining the induced velocity distribu-

tion, it becomes straight-forward to obtain the performance

characteristi.cs of a:Darrieus rotor.

3.4 Cascade Theory

In the cascade theory [25J, the blade airfoils of a turbine

are assumed to be positioned in a plane surface ( termed as

cascade) with the blade interspace equal to the turbine circum-

ferencial distance divided by the number of blades. In this model
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the relationship between the wake velocity and the freestream

velocity is established by using the BernOulli's equation while

the induced velocity is related to the wake velocity through a

particular assumed analytical expression.

3.4.1 Bas.ic.Assumptions

In order to symplify the analysis with cascade theory for

the determination of the performance characteristics of a Darrieus

wind turbine the following assumptions are made:

1) The blades on the cylindrical surface (cylinder with height

H) are assumed to be developed into a plane surface. This confi'~

guration is known as the rectilinear cascade.

2) As the turbine blade rotates in a circular path, the flow velocity

on the blade continuously varies; as a result at any instant

each of the turbine blades faces flow conditions different from

those on others. In the present analysis one of the blades is

considered as the reference blade and at any instant power is

calculated with supposition that each of the blades sees the

same flow and produces the same power as that o.f the reference

blade. This process is continued at every station with the

reference blade for. one complete revolution of the turbine.

Later the average power is obtained.

3) The wake velocity for the upstream side is supposed to act

in the axial direction and behaves as the freestream velo-

city on the downstream blade which is positioned behind the
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upstream blade. The pressure in the-wake region of the upstream

side is assumed to be equal to the atmospheric pressure.

4) During finding the wake velocity the flow is assumed to be

steady, One-dimenslonal and incompressible.

3.4.2 Blade Element Angles and Velocities

In the present analysis the flow velocities in the upstream

and the downstream sides of the turbine are not constant.(Figure. 3.12).

From the figure 3.12, it may be observed that the flow is considered

to occur in the axial direction. The expressions of the chordal

velocity component V ,the normal velocity component V for thecu . nu
upstream side are respectively obtained following the equation (3.8)

and (3.9) in the section 3.1.2.

Vcu

Vnu

= Rw + V CosSau

= V SinSau

(3.90)

(3.91)

Referring to the figure 3.12, the angle of attack a for theou
upstream side may be expressed as,

(3.92)

Introducing the value of Vnu and Vcu and non-dimensionalizing,

= tan-1 [ Sine
(RW!; vau) +
Voo Voo

]

cose
(3.93)

The relative flow velocity W for the upstream side is obtainedou
as(Figure 3.13).

(3.94)
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After inserting the values of V (3.90) and V (3.91) and non-cu nu
dimensionalizing .the equation. (3.94) becomes,

WouV-
au

VRw/~
V V<X> <X>

) + Cos8] 2 + Sin28 (3.95)

Following the same procedure, similar expressions are obtained for

the downstream side. Hence to determine the angle of attack <:todand

the relative flow velocity Wod for the downstream side subscript u

is replaced by d in equations. (3.93) and (3.95).

After determination of the local relative flow velocity and

the angle of attack, the straight-bladed Darrieus turbine is deve-

loped into the cascade configuration which is shown in the figure

3.14. If the blade represented by (1) at an azimuth angle 8 is con-

sidered as the reference blade, the flow conditions on the other

blades represented by (2) and (3), are assumed to be same to that

of the reference blade. This process is continued for one complete

revolution of the reference blade with a step 68.

In the fOllowing analysis, the general mathematical express-

ions are derived for the upstream and the downstream sides by

omitting the 'subscriptsu and d. These general expressions may be

applied for both the upstream and downstream sides by subscripting.

the variable parameters ( dependent of sides of turbine) with u

(upstream) and d (downstream).

Figure 3.15 shows the velocity diagram on the reference

blade element of the cascade configuration for a straight-bladed

Darrieus turbine. To perform the analysis a control surface is

-37-
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chosen as shown in this figure. This control surface consists of

two parallel lines to the cascade front and two identical stream-

lines having interspace t. This figure also shows velocities in

reference to the blade element in the cascade. Referring to the

.figure 3.14, the expressions of these velocities are obtained as,

~
W

= 0 Cos CtVoo Voo
o.

W Wx = 0 Sin CtVoo V 0
00

W2 w2 (Wy - V, )2
1 x

v2
=

v2
+

v2
00 00 00

W2 2 (W V, )2W +2 = x + Y
V2 v2 V~00 00

(3.96)

(3.97)

(3.98)

(3.99)

where = = N'H
411R

(3.100)

Wand Ware the components of ,the velocity W in the x and y direc-
x y . 0 ,

tions respectively where x is chosen along the perpendicular direction

and y is chosen along. the parallel direction of the Cascade fronty

(figure 3.14). W1 and W2 are the relative flow velocities respectively,

at the cascade inlet and outlet. Blade airfoil upstream side is

termed as cascade inlet and downstream side is termed as cascade

outlet. V, is the velocity contributed by circulation 'H. t (=211 R/N)

is the blade spacing ..The angles of attack at the cascade inlet Ct1
and outlet Ct 2 are obtained as,
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)/V ]
00

(3.101)

U
2

= tan -1 [_w.•.x~/_V,-"oo _
(W + Vp ) Ivy , 00

3.4.3 Aerodynamic Forces

(3.102)

Along the bounding streamlines (figure 3.15)the pressure, forces

are cancelled: Viscous forces can be neglected outside of the boun-

dary layers. There exists only the momentum flux through the straight

lines parallel to the cascade front. So the force in the tangential

direction due to the rate of chage of momentum,

(3.103)

Applying the continuity equation the mass flow rate ITt can be found as,

(3.104)

From the equation (3.103) and (3.104), the tangential force Ft becomes,

(3.105)

.The force in the normal direction to the cascade may be obtained as

(3.106)

where PI and P2 are respectively the pressures at the cascade

inlet and outlet. Introducing the value of ITt ( 3.104), equation
(3.106) can be written as,
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(3.107)

Considering the total cascade loss by a total pressure loss term

,/::,p and using Bernoulli's equation between the cascade inletov .
and outlet, one obtains,

W2 P2
' 2 PPl 1 W2 --9Y- + :zg = - + -+pg Pg 2g pg

Rearranging, (P1-P2 ) = £. w2 w2 ) + /::,P2 2 1 ov

(3.1Q8)

(3.109)

Now introducing value of (PI-P2 in 'the equation (3.107) and

writing Wl Sin al = W2 Sin a2 ( for the present configuration),

the normal force becomes,

F
n'

= £lLi
2

/::,P ov
(3.110)

The expressions of the normal force coefficient C , the tangentialn

force coefficient Ct' the non-dimensional normal force F+ and. n

the non-dimensional tangential force F~ in the ca~cade theory are

respectively obtained following the equation~ (3.20), (3.21),

(3.72) and (3.73). These are given below ( since a is identicalo

to a given by the equations (3.20) and (3:21) while Wo is identi-

cal to W given by the equations (3.72) and (3.73), ,a and Ware

replaced by a and W respectively).o 0

Cn

Ct
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F+
W2

C
0=

V2n n

'"

F+
w2

C
t

0=
v2t

'"

(3.113)

(3.114) .

3.4.4 Velocity Contributed by Circulation and Total Power Loss Term

The circulation about the blade profile is defined as,

.•. .•.
I' = !isW ds (3.115)

Its contribution along the streamlines is cancelled by virtue

of the oppos.ing directions of s,.whi.le the contribution along the

parallel direction of the cascade front is retained. As a result

the circulation becomes,

(3.116)

From the equations (3.103), (3.104) and (3.106) one obtain,

F
t
= P .Wx I' H (3.117)

Referring to the figure 3.16, the lift force can be written as,r
\

L = L'd + L
1- V

(3.118)

where, L.d and L are respectively the lift force appearing in
1- v

frictionless flow and the lift force due to pressure loss.

According to the figure 3.16, Lid and Lv may be expressed as,

L'd = F /Sin Ct~ t . 0
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where D is the drag force on the blade airfoil. The equations

(3.118), (3.119) and (3.120) yield,

(3.121)

Dividing both sides of the equation (3.121) by L, introducing

E'= D/L and arranging,

Rearranging,

1- E Cot 0. )o
(3.122)

L = ,Sin
F
t

0. (l-ECoto
(3.123)

Introducing the value of Ft from the equation (3.117), the lift

force L becomes,

( 1
'fl:-

- E Cot 0.0)
(3.124)

Referring to the figure 3.15, one may 'write Wx =

the lift force L can be expressed as,

\'
L=p HW ( 1- E Cot 0.0)0

The lift force is defined as,

L = ~ C1P w2 C H
0

Wo Sin so

(3.125)

(3.126)

From the equations (3.125) and (3.126) the expression of the

circulation is obtained as,

\' =

-42-

(3.127)



Now the expression of.

are obtained as,

from tne/equations (3.100) and (3.127)

1VI = 811
New (1- E: Cot
R 0

C/o ) H (3.128)

In the non-dimensional form, the equation (3.128) becomes;

VI 1 NC W
0= 811C1 ( 1- E: Cot C/ ) H (3.129)

V R V 0

'" '"
Now an expression of the pressure loss term LIP will be derived.ov
From the figure 3.16, the normal force can be obtained as,

= F 0d + Fnl. nv.
(3.130)

Where Fnid is the force appearing in the frictionless flow and

F is the force due to pressure loss. Referring. to the figure 3.16,nv
F may ,be expressed as,nv

F =nv
(3.131)

The force F may also be expressed as,nv

F = H t LIPnv ov

From the equations' (3.131) and (3.132) one obtains,

LIP D=ov t H Sin C/o

The drag force D is defined as,
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Now from the equations (3.133) and (3.134) one obtains,

f:,P =ov
Q.
2

(3.1.35)

where Cft = NC
21TR

= 1
21T

NC
R

(3.13~)

In non-dimensionalized form,

1= 4ii
(3.137)

3.4.5 Velocity Ratios and Rotor Power Coefficient

The wake velocities for the.upstream and the downstream sides

of-the turbine are obtained by applying Bernqulli's equation. with

absolute velocity and that with relative flow velocity.

Applying ,,~krnoulli'S equation with absolute velocity. in front

and behind the cascade one obtains for the upstream.side,

2 P v2 PI,Voo 00 au ,;1,Ju- + = +2g Pg 2g pg

v2 P v2 P2u~+ 00 au= + (3.139)
2g pg 2g pg

where Vau and Ve are respectively the induced velocity and the

wake velocity for the upstream side. P1u and P2u are the static

pressures respectively at ~he cascade inlet and outlet for the

upstream side. In the wake region of the upstream side with the

velocity Ve, the pressure is assumed to be equal to the atmospheric
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,_" K~->-"'--.\ _ .-';"""'---pressure (figure 3.12).@~,tJ;:.aet.ing'r,the above equations (3.138)
. V"V '~~- ..,

and (3.139),

v2 v2 P1u _ P2u00 e =2g 2g Pg Pg

After rearranging,

(P1u - P2u) = P v2 V2)'2 00 e

(3.140)

(3.141)

Now subscripting the variable parameters in the equation (3.109)

by u for the upstream side and balancing with the equation (3.141)

.one, obt.ains,

.£
2

= P
'2 (3.142)

Again subscripting the variable parameters in the equation (3.137)

by u for the upstream side, introducing in the equation (3.142)
"

and dividing throughout by P /2 one may find,

1
21\

NC
R Ci ou

(3.143)

From the equation (3.143), the expression of the wake velocity

ratio in non-dimensionalized form for the upstream side can be

written as,

I 1 - ) - 1
21\ Ci ou

(3.144)

Similarly the expression of th3?wake velocity ratio.in non-dimenc

sionalized form for the downstream side can be found as~ '

) - 1
21\

NC-)
R

. Cdd
Sin

w2od
v2e

(3.145)
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The wake velocity ratio for teh downstream side may be related as,

(3.146)

In this, model, for the upstream side a relationship between the

wake velocity and the induced' velocity is given as,

v V k.au = ( e J.

V V
00 00

and for the .downstream side as,

Vad V k.
= w ) J.

Ve Ve

(3.147)

(3.14.8)

The value of the exponent k. is found ftom a fit of experimental
J.

results. The induced velocity ratio for the down-stream side may

also be written in the form,

V V V V V k.
~ = ad e = ~ w ) J. (3.149)V V V Voo V

00 e 00 e

Induced velocity ratio depends on many parameters such as, solidity,

tip speed ratio, azimuth angle, Reynolds number, aspect ratio,

blade pitching and airfoil profile. In the iterative process, the

effect of every parameter except solidity is taken care of through

the airfoil characteristics which control circulation~ Thus the

exponent k. becomes the function of solidity on.ly. The expression
J.

of the exponent is obtained as,

ki = (.425 + .332iii) (3.150)

where \d is solidity of a Darrieus wind turbine.
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The expressions, for the tangential force Ft and the normal force

F , may be used for the upstream and the downstream sides by subs-
n

cripting the variable parameters with u (upstream) and d (downstream).

The equations (3.105) and (3.110) are expressed. in the following

forms. inserting t = 211R/N.

211
N • pH R (3.151)

F (e) = 1L. pH R (W2
n N 2 ~ HR /:,PN ov

(3.152)

Since the tangential and the normal forces represented by the

equations (3.151) and (3.152) are for any azimuthal position,. so

from now on they are considered as a function of azimuth.angle e.

The average tangential force on each blade is expressed as,

1 211
Fta = J Ft (e) de (3.153)211

0

The total torque for the number of blades N is expressed as,

Q = NF ta R (3.154)

From the equations (3.151), (3.153) and (3.154) one obtains,

(3.155)

The turbine torque coefficient is defined by,

(3.156)
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Introducing the value of Q from teh equation (3.155).1 inserting

A = 2RH, one may obtain. the expression of the .turbine overall

torque coefficient as,

211

J
6

(3.157)

The turbine overall power coefficient is given by the equation

(3,158)

The numerical calculation to obtain the overall power coefficient

is carried out fo.llowing the' procedure given in the Appendix - A.

3.4.6 Blade Pitching

The same expressions as for no blade p.itching condition in

this theory may be applied for the blade pitching condition

after alteration in the angle of incidence only.

Figure 3.17 shows the velocities and the forces acting on

the blade airfoil with pitching. In this analysis pitching is

considered to be positive for the blade airfoil nose rotating in

the outward direction from the blade flight path. As a result

for the upstream side the angle of attack becomes,

(3.159)

and for the downstream side the angle of attack becomes,

(3.160)
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where y and y d are the pitch angles in the upstream and thepu p
downstream sides respectively. Now the lift and drag characterist-

ics are taken corresponding to au (upstream ) and ad (downstream).

The parameters shown in the figure 3.17 have not been subscripted

to make them generalized. Subscripts uand d are used with the

parameters for. the upstream and the downstream sides respectively.
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CHAPTER 4 RESULTS AND DISCUSSIONS

•

In this chapter the calculated results are presented. The

effects of a number of parameters such as solidity, blade pitching

etc. on the performance characteristics of a straight-bladed

Darrieus wind turbine are discussed. Afterwards the calculated

values by cascade theory for cambered-blade cross-section. are

compared with those by cascade and simple multiple streamtube

theoreis for symmetric-blade cross sections of straight-bladed

Darrieus wind turbines.

Before going to discuss the theoretical results, it is

necessary to mention regarding the lift-drag characteristics of

the turbine blade airfoil. Two types of airfoils are included in

this analysis. These are NACA 1415 and NACA 0015. The lift-drag

values are taken by consulting many references. The~ are presen-

ted by Abott and Von Doenhoff [1] , Clancy [9] , DommasGfJ.?[13] ,

Durand [14] , MandaI [25] , Sharpe [37 ] The lift-drag charac-

teristics are presented in graphical forms in the Appendix-D.

Aspect ratio effect is also encountered in the analysis which is

described in brief in Appendix - E.

4.1 Calculated Results

The numerical results are determined for a straight-bladed

Darrieus wind turbine by cascade theory for cambered-blade cross-

section. These are presented in the graphical forms. The results

of a straight-bladed Darrieus wind turbine are presented and both

the overall and local values are included.
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Few comparative results of overall values and local values

are presented which are calculated by cascade ,theory with blades

of cambered cross-section and multiple ,streamtube and cascade

theories with blades of symmetric cross-section. If blades of cam-

bered cross-section are applied in place of symmetric cross-section

and proper blade pitching is employed, improvement in the turbine

performance is achieved.

Effect of Solidity:

The effects of solidity on the overall power, torque and drag

coefficients of a straight-bladed Darrieus wind turbine calculated

by cascade theory with cambered cross-section are respectively

shown in the figures 4.1, 4.2 and 4.3. The solidity is varied while

the wind speed, blade chord, number of blades and aspect ratio are

kept constant. As a result wind speed Reynolds number become fixed.

Solidity is changed with the change of radius. The figure 4.1

reveals that the maximum power coefficient appears at a solidity

of about .3. However if the solidity is lowered, the performance

curve flatten~ out thereby making peak power to be delivered over

a wide range 6f tip speed ratios. With the lower solidity power

coefficient falls as well as operating range proceeds towards

higher tip speed ratio side, so the turbine rotational speed

increases yielding higher 'blade stresses. The figure 4.2 shows

that with the higher solidity, the torque at low tip speed ratio

increases which is good from the point of view of self-starting.

But the disadvantage of using a high solidity turbine is that

there is sharpe chage in power with the tip speed ratio as well
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as peak power drops. It can be seen from the figure 4.3 that the

turbine overaLL drag coefficient changes significantLy with the

SOLidity. At Low soLidity, the overaLL drag is Lower. As a resuLt,

a Low soLidity turbine is better from the structuraL point of view.

According to the figure 4.L, with the increase of soLidity,

peak power coefficient moves towards the Low tip speed ratio side.

This is because of the fact that for a high soLidity turbine, the

induced veLocities drop with tip speed ratio at a higher rate in

comparison to that for a low solidity turbine. As a result, for

a high solidity turbine, the local angles of attack change towards

the lower values at a faster rate thus making the best angles of

attack values (which give best 'lift values) to occur at lower

tip speed ratio s.ide. At low SOlidity, change of induced veloci-

ties and hence the local angles of attack with tip speed ratio

happen slowly, so the optimum lift characteristics may appear

over a wider range of tip speed ratio thereby making the nature

of the curve flat near the peak value. While for a high solidity

turbine since the change of local angles of attack with tip speed

ratio occurs sharply; the best )ift values appear for a very

shorter range of tip speed ratio thereby making sharp change of

power coefficient near the peak.

Theoretically production of ..power becomes maximum when

the induced velocity ratio is 2/3 (Betz limit) which maybe

termed as the optimum induced velocity. When at any station there

occurs the coincidence of the optimum induced velocity with'the

lift close the stalling angle (optimum lift), it gives optimum
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power. Actually the induced velocity is varying with azimuth

angle, so the optimum condition is not satisfied at every staion.

However the solidity for which, in most of the stations the

induced velocity and the angle of attack become either equal or

near to the optimum induced velocity and optimum lift respectively,

the peak power coefficient appears to be the highest. As the figure

4.1 reveals, it probably happens at solidity of about .3.

With the increase of solidity, the variation of the torque

coefficient near the peak and the shifting of the peak torque

coefficient towards the low.tip speed ratio side(figure 4.2)may

be explained in the same manner as in the case of power coeffici-

ents in the figure 4.1. For a high solidity'turbine, solid blockage

is higher ( in other words the product of number of blades and

chord is higher), as a result the tangential forces are higher

which are the reasons of higher torque coefficients at low tip

speed ratio. At low tip speed ratio the induced velocities and

the local angles of attack distribution with azimuth angle remain

almost unchanged with solidity, so they have very negligible

effects on the variations' of the torque coefficients with solidity

at low tip speed ratio side.

Drag on a turbine is the axial force which may be considered

to be equal to the rate of change of momentum in the axial direc-

tion. Thus for any. particular turbine, this force is the function

of induced velocity and the change of velocity (i.e. the difference,
",

of wind and wake velocities). With the rise of tip speed ratio,

induced velocity drops and the change of velocity increases. But

the product of induced velocity and change of velocity begin to
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increase with tip speed ratio. As a result the drag and hence

the drag. coefficient increases with tip speed ratio and approaches

unity when the wake velocity approaches zero. For a high solidity

turbine fall of induced velocity as well as change of velocity

occurs with tip speed ratio at a higher rate in comparison to that

for a low solidity turbine. As a result drag coefficient for a

high solidity turbine approaches to unity with tip speed ratio

prior to that for a low solidity turbine.

Effect of Blade Pitching:

Performance characteristics of a straight-bladed Darrieus

wind turbine with blade. pitching have been presented in the figures

4.4, 4.5 and 4.6. In the present analysis pitching is said .to be

positive for the blade nose rotating. in outward direction from

the blade flight path. From the figure 4.4 it is observed that

with the application of fixed pitching, the rotor power coefficient

decreases especially after the peak value. The higher is the pitch-

ing, the lower is the power coefficient.

Incorporating fixed blade pitching (here it is positive),

the angle of attack decreases in the upstream and increases in

the downstream sides. So the blade airfoil lift coefficient drops

in the upstream side and rises in the downstream side which are the

outcome of the lower tangential force coefficients in the upstream

side and higher tangential force coefficients in the downstream

sides in general. But the increased angles of attack in the down-

stream side sometimes go beyond stalling angle which again are the
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causes of reduced tangential force coefficients. However'the net'

effect always reduces the power coefficients.

In the figure 4.5, the results are given for sinusoidal pitch

variation. This figure shows that amplitude of angular pitch varia-

tion ( sinusoidal) has significant, effects on the performance

curves. The figure 4.5 reveals that as the amplitude of sinusoidal

pitch variation increases po~er rises with lower amplitude at the

low tip speed ratio side. From the figure 4.4, it is seen that with

the change of magnitude of fixed pitching, peak power remains in

the higher tip speed ratio side while the figure 4.5 shows that

with the change of amplitude of sinusoidal pitching, it gradually

proceeds towards the lower tip speed ratio side.

As the sinusoidal pitching is incroporated into the turbine

blade, the local angles of attack decreases in the upstream,as

well as in the downstream side in general. In the higher tip speed

ratio range, these angles remain below the stalling angle. As a

result with lower angles of attack, the lift coefficients become

lower which are the results of lower tangential force coefficients.

So the power coefficients fall with the rise of amplitude of sinu-

soidal blade p~tching. With the rise of amplitude of sinusoidal

pitching, the values of local angles of attack fall with tip speed

ratio at a relatively higher rate which is the reason of shifting

the peak power coefficient towards the lower tip speed ratio side.

According to the figure 4.5, at low tip speed ratio range, the

power coefficient increases with rise of amplitude of pitching.

It is because, at zero pitching, angles of attack in many stat'ions

-55-



are above stalling angle but employing sinusoidal pitching,

(as a result of reduction of angle of attack) relatively lower

number of stations occur in'the stalling region. Incorporating

the blade pitching, there,appears relatively favourable local

angles of attack distribution which makes favourable local tangen-

tial forces, as a result torque coefficients at the low tip speed

ratio side incr~ases with sinusoidal pitchirig.

From the figure 4.6 it is observed that the combination

of fixed pitching and the sinusoidal pitching has remarkable

effects on the 'performance curves. This figu:r:ereveals that as

the combined pitching increases power rises with lower combined

pitching at very low tip speed ratio side. From the figures 4.5

and 4.6; it is observed that of the high tip speed ratio side

the power coefficients drop more for the combined blade pitching

condition than those for the sinusoidal blade pitching condition.

It is because of the fact that as the combined pitching is emplo-

yed, the local angles of attack at the high tip speed ratio dec-

reases more in the upstream side and increases more in the down-

stream side in comparison to those for sinusoidal pitching condi-

tion. For the combined pitching condition, lift'values drops more

in upstream side and exceeds stalling angle more rapidly than

those for the sinusoidal blade pitching condition.

Effect of Number of Blades:

Figure 4.7 presents the variations of instantaneous tor'[ue

with azimuth angle for various number of blades. The values are

shown for one complete revolution of the rotor at an optimum tip
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speed ratio. It is observed from this figure that number of

blades has strong influence on the instantaneous torque of the

rotor. The uniformity of the rotor speed depends on the amplitude

of instanteneous torque variation or in other words, on the fluc-

tuation of energy in one complete revolution. ForQlone-bladed.and

two-bladed turbines these fluctuations are high, as a result in

each revolution the turbine will rotate with relatively nonuniform

speed. The fluctuations of energy for a three-bladed and a four-

bladed turbine are low and since the rotor has self-inertia, so

it will cause negligible variation in rotor speed. The torque vari-

ations of a two-bladed, a three-bladed and a four-bladed rotors

can be obtained by superimposing respectively two t9rque curves;

three torque curves and four-torque curves for single blades.

For a two-bladed, a three-bladed and a four-bladed turbines each

curve is displaced by 1800, 1200 and 900 respectively.

4.2 Comparative Results:

In the figures 4.8, 4.9 and 4.10 respectively, comparisons

of the calculated values of overall power coefficients, torque

coefficients and drag coefficients by the cascade theory both

for the blades of cambered cross-section and symmetric cross-section

are shown. From these figures, it is seen that the performance

characteristics of the turbine with cambered blade cross-section

improves negligibly in comparison to those of a turbine with symm-

etric blade cross-section. The figures 4.11, 4.12 and 4.13 shows

the similar comparisons as the figures 4.8, 4.9 and 4 •.10 but it

incorporates blade pitching. It is observed from these figures

-57-



•

that employing blade pitching there occurs small improvement

of power coefficient in each of the cases.

In general for the blade airfoil of cambered cross-section,

lift values increases in the upstream side and drop in the down-.

stream side. As a result there occur higher torque in upstream

side and.lower torque in downstream side in comparison. to those

for the blade airfoil of symmetric cross-section. The net effect

for the upstream and downstream sides change negligibly for the

case with no blade pitching and for those with fixed,sinusoidal

and combined blade pitching conditions.

In the figures 4.14 to 4.18 respectively, comparisons of

the calculated values of the induced velocity ratios, local angles

of attack, local Reynolds number, local non-dimensional tangential

and normal forces by cascade theory with blades of cambered cross-

section and symmetric cross-section, simple multiple streamtube

theory are shown. The values are determined at tip speed ratio,

4.5. From the figure 4.14 it is seen that the induced velocity

ratios by the cascade theory differO significantly from those by

simple multiple streamtube theory. In the simple multiple stream-

tube theory it is assumed that the induced velocities in the

upstream.and the downstream sides of the rotor are constant.

But in the cascade theory for the upstream and the downstream sides

these are calcu.lated seperately. In the cascade theory, the .drop

of axial flow velocity occurs twice, one in the upstream side and
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another in the downstream side. The wake velocity in the upstream

side acts as the inlet velocity in the downstream side. As a result

the induced ¥elocities in the upstream side are higher than those

in the downstream side which are depicted in the figure 5.14. From

this figure it is also observed that the induced velocity ratios

calculated by cascade theory for the blades of cambered cross-

section varies negligibly in comparison with those calculated by

cascade theory for the blades of symmetric cross-section. In the

upstream side for blade airfoil of cambered cross-section the lift

value increases, making the higher blade element drag force which

is to be balanced by the higher drag produced due to the change of

momentum occurs with the lower value of induced velocity while for

the downstream side the opposite effect appears.

It may be observed from the figure 4.15 that the local angles

of attack values by the cascade theory differ appreciably from

those by simple multiple streamtube theory. But the local angles. .

of attack values by the cascade theory for the blades of cambered

cross-section differ in small amount from those by the cascade

theory for the blades of symmetric cross-section. Figure 4.14

reveals that induced'veloc.ities in the upstream side fall for the

cascade theory with blades of cambered cross-section than those

for the cascade theory with blades of symmetric cross-section,

which is the reason of relatively lower angles of attack in upstream

side. Similarly angles of attack for downstream side may be

explained.
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The comparative curves of "Reynolds number in the figure 4.16

show that there ar~ negligible differences in Reynolds number

by the cascade theory with blades of cambered cross-section

and symmetric cross-section and simple multiple streamtube theory.

For any particular turbine, Reynolds number is the function of

the local relative flow velocity which is the vector sum of the

tangential velocity and induced velocity. At high tip speed ratio,

relative flow velocity is dominated mostly by the tangential

velocity than the induced velocity. Since for the present case the

tangential velocity is constant and the tip speed ratio is higher,

so the only variations of the induced velocities ( according to

the figure 4.14) cannot make prominent change in Reynolds number

by the theories mentioned above.

Referring to the figures 4.17 and 4.18 for the comparative

curves of non-dimensional tangential and normal forces, one may

observe that by cascade theory with blades of cambered cross-

section and symmetric cross-section, the forces in the upstream

side are higher than those in the downstream side while by the

simple multiple streamtube theory, these forces are equal in both

upstream and downstream sides. Figure 4.17 ~eveals that higher

forces are produced in the upstream side than those in the down-

stream side. This can be explained easily following the figure 4.15

showing angle of attack distribution. These angles are below the

stall point. So far higher angle there is higher lift, hence higher

tangential force. Cascade theory with blades of cambered cross- 1

section give mroe relatively higher blade lift value which is the
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outcome of relatively higher local tangential force in the

upstream side. Figure 4.18 having normal force distributions may

be explained in the same manner as for the case of tangential

force distribution in the figure 4.17.

Effect of Tip Speed Ratios:

Comparisons of the induced velocity ratios" local angles .of

attack, local Reynolds number, local non-dimensional tangential

and normal forces at three tip speed ratios are shown in the

figures 4.19 to 4.23 respectively. The local values are calcula-

ted by the casc'ade theory with blades of cambered cross-section

and symmetric cross-section. Referring to the figure 4.19, it is

observed that as the tip speed ratio increases induced velocity

ratio decreases. With the rise of tip speed ratio, more and more

air passes outside the rotor, hence the induced velocity begin

to drop with tip speed ratio. At very high tip speed ratio almost

all the air passes around the rotor thereby making the induced

velocity very small. From this figure it is also seen that the

induced velocity ratios calculated by cascade theory for blades

of cambered cross-section varies negligibly in comparison with

the induced velocity ratios for blades of symmetric cross-section.

Figure 4.20 shows that at low tip speed ratio side there appear

stalling angles in many stations. As the tip speed ratio increases

the local angles of attack in all stations go below stalling

point. With further rise of tip speed ratio local angles' of attack

fall more. This phenomenon can be explained from the induced velocity
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distribution of the figure 4.19. Keeping the tangential velocity

constant as the induced velocity,decreases, values of local ,angles

of attack. decreases.

Figure 4.21 depicts that there is remarkable effect of tip

speed ratio on the local Reynolds number. At constant turbine

speed, tangential velocity is'fixed, the wind velocity varies with

tip speed ratio. At low tip speed ratio induced velocities are

higher than those at high tip speed ratio (figure 4.19).As it is

mentioned before for a particular turbine, local Reynolds number

,is the function of local relative flow velocity which is the

vector sum of the tangential velocity and the induced velocity.

At high tip speed ratio, Reynolds number is dominated mostly by

tangential velocity and since this quantity is fixed there is

relatively small variation of local Reynolds number with azimuth

angle whereas at low tip speed ratio this variation is relatively

higher because of higher influence of of induced velocity in compa-

rison to that at high tip speed ratio side. With blades of cam-

bered cross-section the distribution of local Reynolds number

varies negligibly from that with blades of symmetric cross-section.

It is seen from. the figure 4.22 that at low tip speed ratio

the local tangential forces drop in some range of azimuth angle

which is due to the stalling effect as the figure 4.20 reveals.

As the tip speed ratio rises stalling disappears. With very high

tip speed ratio tangential forces decreases more because of lower

local angles of at~ack. In the upstream side, local tangential for-

ces calculated' by the cascade theory for cambered blade cross-
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section are slightly higher than those calculated by the cascade

theory for symmetric blade cross-section. It occurs due to the

fact that the local lift force in upstream side higher by cascade

theory with cambered blade cross~section than those for symmetric
. .blade cross-sectiort. Similarly the figure 4.2,3 showing the non-

dimentional local normal forces at different tip speed ratios can
be explained.
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CHAPTER 5 DESIGN OF TURBINES

•

In this chapter simplified form of design.method is presented

for vertical-axis straight-bladed Darrieus wind turbine. The

design is performed at variable turbine speed condition. A number

of parameters such as solidity, design power,- design wind speed,

cutout speed, blade stress ( in other words blade material), number

of blades, airfoil shape, blade supporting type (simple/overhanged/

cantilever) etc. control the design. of turbines. Considering. all

the above mentioned variable. parameters, the present design approach

gives guidelines to have optimum turbine configurations at varia-

ble turbine speed.

Design of a vertical-axis Darrieus wind turbine at variable

turbine speed condition is generally done with a view to serve

the following purposes: (a) It may be applied to perform water

pumping ...for irrigation (b) It may a'1so be used in the DC genera-

tor/regulator/storage battery combination for generation of

electricity in the remote areas. During designing the vertical-

axis Darrieus wind turbine at variable turbine speed, there'.

appear many variable parameters. Am~ng them few parameters are

considered to be fixed before conducting the design analysis.

TheSie are number of blades, blade material, blade supporting type

and cutout speed. The flow diagram of the variable speed design

approach has been given in the appendix-A. In this design, the

blade pitching is considered as zero. Fixed blade pitching (either.

positive or negative) always gives requced power. On the other ..
hand, variable blade .pitching may give improved power but control
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of variable pitching is difficult especially at high turbine

speeds. Number of blades is choosen as three but the other number

may be taken as well.'A turbine with three blades is better con-

cerning smooth running because of lower fluctuations of energy

in each revolution. In this design the blade material is chosen

as aluminium alloy ( where allowable stress is 100 N/sq. rom) and

the cutout speed is considered as 14 m/sec. The blades are assumed

to be supported like that. of the overheanged type which is shown

in figureQC.l.

In the present design analysis, the variable speed design

is carried out at constant tip speed ratio. In other words, the

load characteristic curve is assumed in such a way that the tip

speed ratio remains constant. The constant tip speed ratio design

may approximately follow the load characteristic curve of either

a positive displacement pump or a centrifugal pump. However to

make the accuracy of the design, actual pump characteristic curve

is necessary. to "be encountered. In the present design method,

emphasis is given on finding a general design approach of a varia-
\

ble speed turbine rather than to study a particular problem.

Design configurations of a variable speed turbine at various

solidities are shown in the figure 5.1- The design wind speed

is chosen as 8 m/ sec. while the design pow.er is 10 Kw. It can be

seen from this figure 5.1 that with the increase of solidi.ty, the

height and chord of the turbine increase appreciably while the

turbine diameter decreases which is remarkable in the low solidity

range only. It is also observed from this figure that with the

rise of solidity, starting torque increases adequately. Starting
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torque is important for the design of a variable speed wind

turbine coupled with a pump. These starting torques are calcu-

lated at a wind speed of 4 m/sec. Obviously high solidity turbine

is good in consideration of higher starting torque and lower

diameter, one the other hand, low solidity turbine is good in

consideration of lower height and chord. It has also been explained

that a turbine with large diameter is not good b~cuaseof additional

losses due to additional drag produced by the blade supporting

struts which are higher for a large diameter turbine. Blade skin

.thickness remains constant with solidity. Also the aspect ratio

does.not chage much. The design power coefficients are higher in

the middle range of solidity. The total length of struts and blades

is minimum around solidity 0.500. At variable turbine speed condi-

tion, the design rpm should be as high as possible to reduce trans-

mission losses. The figure 5.1 reveals that the peak values of rpm

occur from solidity .300 to .600 but the variation of rpm with

solidity is not much.

With the same number of blades, as the solidity (NC/R) of

a turbine increases, the chord-radius ratio (C/R) increases

which may be satisfied by reduced diameter and increased chord.

The diameter is inversely proportional to the square root of

the solidity of a turbine if the projected. area and the aspect

ratio remain constant. In this design these quantities do. not

vary considerably with solidity. Since the design power coeffi-

cient with solidity does not change much, for the production

of the same power at the same wind speed, the projected area

(A = H.D) of the turbine does not vary appreciably. As a result,
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as the diameter decreases with solidity, the height increases.

Since both height and chord increases with solidity, the aspect

ratio (H/C) does not change much. For any fixed aspect ratio

peak power coefficient is low at low solidity. It increases with

the increase of solidity. With the further increases of solidity

it decreases. Since in this design, the aspect rqtio which has

the influence on power coefficient, does not change much; the

design power coefficient remain higher in the middle range of

solidity. In this design torque is directly proportional to the.

diameter of the turbine and the planform area of the turbine

blade. With the rise of .turbine solidity, turbine diameter decre-

ases while the planform area increases for the increase of blade

chord and height. The combined effects increase the starting

torque with rise of solidity.

Figures 5.2, 5.3 and 5.4 shows the comparisons of design

configurations at various solidities for two types of blade

supports: simple and overhanged type figure C.l. 0 One may observe

from the figure 5.2 that applying overhanged blade support in place

of simple blade support, the diameter of the turbine and chord of

the blade profile decrease remarkably while the height of the tur-

bine only increases but at lower rate in comparison to diameter and

chord. It may aIso be seen from the fig'ure,5.2 that the aspect ratio.

for the overhanged blade support is more than double to that for

the simple blade support. For overhanged blade support, aspect

ratio is higher because of higher height of the turbine and lower

chord of blade profile. From figure 5.3, it is observed that for

the overhanged blade support, the design rpm and design power
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coefficient increase appreciably from the corresponding value

for simple blade support. It may also be seen from. this f.igure

that for the overhanged blade support the design tip speed ratio

increases while the starting torque decreases in comparison to

those for the simple blade support. Due to the higher aspect

ratio for the overhanged blade support, the design power coeffi-

cient increases. For the overhanged blade support starting.torque

values decrease bec@ls~of lower diameter of the turbine. Since

the design tip speed ratio increases and diameter of the turbine

decreases, hence for the same wind speed, design rpm for the

overhanged blade support increases remarkably.

In this design the blade supporting struts is considered

as of airfoil cross-section. It is observea that the struts .

having airfoil cross-section creates negligible drag i.e. the

power loss due to supporting struts of airfoil cross-section

become very negligible. The design is conducted based on support-

ing struts of airfoil cross-section. Total blade length LB is

the length of blade supporting struts and the turbine blades.

From the figure 5.4 it may be seen that the total blade length

in the case of ove~hanged blade support is lower in comparison

to that for simple blade support. It is because 6f the fact th~t

for the overhanged blade support, the diameter of the turbine

decreases at higher rate while the height of the turbine increase

at lower rate. It is obvious that the cost of .production con~D-

ning blade suppor.ting struts and turbine. blades become lower in

case of overhanged blade support in comparison to that for simple
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blade support. Here from the economic point of view, the design

for overhanged blade support is obviously better than that for the

simple blade support.

Figures 5.5 shows the power coefficient distribution with

tip speed ratio while figures 5.6 and 5.7 give respectively

the distribution of overall torque and power with rpm of turbine

at various wind speeds. The solidity is kept fixed at 0.500 while

design power is 10 Kw. One may observe from the fi~ure 5.5 that

the design power coefficient has been chosen in the higher tip

speed ratio side from that corresponding to the peak power coeffi-

cient. With a-view to make the operation stable and smooth,

design point is selected in such away. In the reference [10 1 ,

Blackwell et al also suggest to consider the design point accor-

dinglyfor variable speed operation. In the figure 5.5 before the

peak value of power coefficient, there are some differences in

the power coefficients at various wind speeds. These are due to

the Reynolds number effects. After the peak power coefficient

this differences are small because the Reynolds numbers become

very high in this region and in the higher range of Reynolds

number the effects of them are small. In the figures 5.6 and 5.7,

system load characteristic curves are shown. These figures also

show .that with the change of wind speed, both the torque and

power of turbine change adequately. One can observe from these

figures 5.6 and 5.7 that the maximum rpm corresponding to the

cutout speed is remarkably higher than the design rpm. The figures

.5.6 and 5.7 show that the torque and .power increases remarkably with

-69-



. 1

the wind speed. For the same turbine configuration and constant

design tip speed ratio, having power. coefficients nearly same

( which is clear from figure 5.5), the torque ~nd power are

respectively proportional to the square .and cube of wind speed.

The variations of blade mass and the maximum blade stress

with blade skin thickness are shown in the figure 5.8. O~C(m~y

observe from this figure that with the increase of blade skin

thickness blade mass increases almost linearly while the maximum

blade stress decreases in the lower range of skin thickness and

increase in the higher range. It happens-because of the fact

.that with the increase of blade skin thickness, the area moment

of inertia improves in comparison to blade mass in the lower

range of skin thickness while in the higher range the reverse

effect occurs. The skin thickness which corresponds to the lowest

value of maximum blade stresses, is the best thickness and is

chosen as ~design skin: thickness of the blade airfoil.

Figure 5.9 presents the distributions of normal, centrifugal

and net normal forces with azimuth angle. The forces corresponding

to the design and cutout speeds have been shown in this figure.

The net normal forces corresponding to the cutout speed_are

remarkably higher in comparison to those-at the design wind speed.

This ..happens mainly for the high rpm corresponding to the cutout

speed and it creates tremendous centrifugal force. This figure

also shows that the normal forces (aerodynamic) are almost

negligible in comparison to the centrifugal forces.
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At the design and the cutout speeds, the variations of bending

moments with azimuth angle are presented in the figures 5.10 and

5.11 while.variations of bending stresses with azimuth angle are

given in the figures 5.12 and 5.13. The figure 5.10 shows the

bending. moments due to the net normal forces while the figure 5.11

shows the bending moments due to the tangential forces. It is

seen from these figures that the bending moments at the cutout

speed are remarkably higher than those at the design wind speed.

These are because of higher net normal forces corresponding. to the

cutout speed. It can also be observed from these figures that the

bending moments due to tan~ential forces are almost negligible

compared to those due to the net normal forces. The figures 5.12

and 5.13 can be explained in the same way as in the case .of bending

moments. The figures 5.12 and.5.13 show that bending stresses due

to the tangential forces are negligible in comparison to those

due to the net normal forces. As a result the design stress analysis

is performed based on. the stresses due to the net normal forces

only. The derivation techniques of bending moment and bending stre-

sses are given in the appendix-C.

There appears the starting problem for the variable speed

design where the wind turbine is directly coupled with a pump.

The starting can be done in many ways. One possible way of start-

ing may be achieved by employing variable pitching. The figure

5.14 shows that with the variable pitching the starting torque

increases 'significantly. Fixed pitching makes very negligible
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change in the starting torque. Application of variable pitching

in the low tip speed ratio range of operation can also prov~de

with nearly constant torque; so employing variable pitching,

once starting occurs, there appears no problem of stalling with

the rise of tip speed ratio. Figures 5.15 shows that the starting

torque can be increased remarkably by. increasing wind speed. It

indicates that the region having high win8 speeds has relatively

less starting proble~~ For any particular turbine starting.torque

is proportional to the square of the wind velocity.

Figures 5.16, 5.17 and 5.18 respectively show the variations

of blade mass, centrbidal area moment of inertia about x-axis

and that about y-axis with blade skin thickness. It is observed

from the figures 5.16 and 5.17 that with the increase of skin

thickness in the lower range, the area moment of inertia improves

in comparison to the blade mass while in the higher range it

gives the reverse erfect. It may be noted here that for the same

blade skin thickness, with the rise of blade chord, area moment

of inertia increases in.porportion to C4while blade mass increa-

ses in porportion to C2. It indicates th~t increasing blade chord,

blade structure can be improved remarkably. The form of blade

airfoil cross-section applied in the present design is shown in

the appendix-B. This appendix also presents the derivation

techniques of the blade cross-sectional area and area moment of
•inertia.

,
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

•

In this chapter general conclusions are drawn regarding the

performance with cascade theory applying blades of cambered cross-

section and the design method of a straight-bladed Darrieus wind

turbine with blade support of overhanged type. Few recommendations

are also given for the future works.

6.1 Conclusions:

Cascade Theory:

1) The performance of a vertical-axis straight-bladed Darrieus

wind turbine with cambered blade cross-section improves negligi-

bly in comparison to that of a Darrieus wind turbine with symme-

tric blade cross-section.

2)' Due to the non-availabi.lity of experimental results for the

vertical-axis straight-bladed Darrieus, wind turbine with cambered

blade cross-section, correlation could not be made. It is expec-

ted that the calculated results by cascade theory with cambered

blade cross-section would give reasonabl~ correlation with

experimental results.

3) Performance analysis has been done with cascade theory mainly

because the momentum theory cannot give reasonable performance

prediction at higher tip speed ratios and at higher solidities •
••
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4) Employing the cambered blade profile in place of symmetric

blade profile, the local values of power increase in the upstream

and decrease in the downstream sides in general.

Design of Turbines:

1) Employing cambered blade profile in place of-symmetric blade

profile thepe appears negligible improvement of performance of a

Darrieus turbine in addition application of blade with cambered

section incurs higher cost of production, as a result design is

performed with blade of symmetric cross-section.

2) In the present design method, design point is chosen in the

higher tip~speed ratio side from that corresponding to the peak

power coefficient. Because the region after the peak power coeffi-

cient is relatively stable and suitable for smooth operation. For

a high solidity turbine, the power coefficient curve near the peak

is not flat, as a result design with peak power coefficient is not

good because with a slight shifting of tip speed ratio towards the

lower value, there may appear stalling in some of the stations.

For normal running it is avoided.

3) The variable speed turbine design is carried out at constant

tip speed ratio. The constant tip speed ratio design may approxi-

mately follow the load characteristics curve of either a positive

displacement pump or a centrifugal pump. However to make the accu-

racy of the design, actual pump characteristic curve is necessary
-I --.~ -_.~---to be encountered. The present design analysis gives a )generlll .'-'~

de~-ig_~,,:pproa,?h-rather -than-.t~find-a -s_olutioh'~fora partic~ar
p-;ob'om.-- -~-1
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4) In the present design, the blade pitching is considered as

zero for normal running. Fixed blade pitching either positive

or negative) always gives reduced power. On the other hand,

variable blade pitching may give higher power but control of

variable pitching is difficult especially at high turbine speeds.

5) The design is done at the cutout speed of 14 m/sec. obviously

higher cutout speed makes higher blade stress. For the overhanged

blade support cutout speed may be increased, still it does not

create much problem concerning the blade stress like that which

appear for .the simple blade support.

6) Aspect ratio of a straight-bladed Darrieus wind turpine plays

vital role in the design analysis. It controls the blade maximum

stress .If the stress developed on the turbine ,blade is more than

the allowable stress, aspect ratio is lowered in order to reduce

the.bladestress. With the change of aspect ratio, the turbine

design configurations are also changed.

7) Blade skin thickness is also important in the design analysis.

Increasing skin thickness the blade moment of inertia increases, l

'on the other hand the centrifugal force rises due to higher blade

mass, as a result a compromise is made to obtain the optimum skin

thickness.

8) In the present design few parameters are assumed to be fixed

for the analysis. These are blade material, number of blades,

cutout speed. The design cenfigurations will be changed with

the variations of these parameters.
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9) For a Darrieus turbine with one or two blades, .the amplitude

of instantaneous torque variation or fluctuations of energy in one

revolution are relatively higher than those for a turbine with

three or four blades which give relatively more uniformity in

rotor speed. So the present design is carried out with three blades.

6.2 Recommendations for.Further Researches:

Concerning the.research work' few .recommendations are presented
in this section.

1) Performance prediction with blades of cambered cross-section

employing proper blade pitching has not been studied in detail in

the present analysis. It is believed that if the blades of cambered

cross-section with proper blade pitching are incorporated. the

turbine performance may improve appreciably.

2) Blade pitching moment has not been considered. in the calcula-

tion. At high tip speed ratio there is no such effect while at low

tip speed ratio it may not be neglected. Pitching moment may be

applied in the calculation to see the effect on the performance
characteristics.

3) During designing the turbine with straight-blade, the blades

are assumed to be supported like that of overhanged type. It may

be repeated with other type of support like centilever for
comparative study.

•
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4) Design of a straight-bladed Darrieus turbine has been done

with the aluminium blade. The same design may be performed for

the overhanged blade support applying wood with skins of alluminium

as a blade material which is available in our"country.

5) Natural frequency of wind turbine rotation has not been

determined in the present work. However it is important, it can

be taken into. account as well.

6) In the present design work, airfoil NACA 0015. is chosen for the

turbine blade. It may be carried out with other types. of airfoil

such as NACA 0012 and NACA 0018 for the comparative study. In the

design the number 6f blades is considered as three. The design .may

be conducted with other number as well for the comparative study"

7) In the design the.blade stress analysis is done corresponding

to "the cutout speed of 14.0 m(sec. This design may also be repeated

at higher value of cutout speed for comparative study.
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view on vertical section view on horizontal section

Figure 2.1 Persian windmill of vertical-axis type.
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Figure' 2.2: Horizontal axis wind turbine .for pumping water.
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Figure 2.3: Restored Danish Gedser wind turbine.
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Figure 2.4 Savonius rotor.
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Figure 2.5 Vertical-axis curved-bladed Darrieus wind turbine.
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Figure 2.6 Vertical-axis straight-bladed Darrieus wind turbine.
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streamtube

Figure 3.1 8treamtube consisting of the rotor showing
the axial flow velocities.-

Figure 3.2: Aerodynamic forces on a blade element of
a Darrieus rotor.
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Figure 3.3: Velocity diagram on the blade element of straight-
bladed Darrieus wind turbine.

Figure 3.4: Aerodynamic forces acting on an airfoil.
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view on section A - A
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Figure 3.5 Cross-sectional area of an elemental streamtube
of a straight-bladed Darrieus wind turbine.
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Figure 3.6: Pressures and velocities along the streamtube

a
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a straight-bladed Darrieus wind turbine.
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Figure 3.10 Vortex system for a single blade element.

Vortex filament

p

Figure 3. II Velocity induced at a point by a vortex filament.

-95-



•

Figure 3.12 Horizontal section"of a straight-bladed (cambered-
bladed cross-section) Darrieus wind turbine with
flow velocities.

Figure 3.13 Relative flow velocities on a cambered-blade airfoil.
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Figure 3.16 Force diagram on the blade section.
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6 =.143
AR =18'70
N :::: 2
rpm'" 50"&
A='.5

'.00

.800

.&00.

O. 100. 200. 300.
B I dog.)

Figure 4.14 Comparisons of induced velocity ratios by various
analytical methods.
/::,calc. (cascade theory; .NACA : 0015)
.x calc. (cascade theory; NACA: 1415)
O. calc. (simple multiple streamtube theory; NACA: 0015)

<Xl

(dogl

-----------

Re-t- 1380000,
rpm 0:: 50'&,
AR - 18'70,

6 - .'03
N = 2
A= ,.5

10' 0

o

•

NACA 0015)

300'

NACA : 0015)
NACA :! 1415)
streamtube theory;

200.'00.
B (dog.)

Comparison of local angles of attack by various
analytical methods.
/::,calc. (cascade theory;
x calc. (cascade theory;
o calc. (simple multiple

O.

Figure 4. 15:
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R<

0,0 100.

Ret= 13&0000, 6 •."le}
rpm;:: 50"6, N =3

AR ciS"' 0 • )... ~ 4"5

200, )00

no

B Id<g')
Figure 4.16: Comparisons of local Reynolds number by various

analytical methods.
~ calc. (cascade theory; NACA : 0015)
x calc. (cascade theory; NACA : 1415)
o calc. (simple multiple streamtube theory; NACA: 0015)

R"et:: 1380000.

rpm=50'6,

AR = 18"70,

6 .'14)

, N = 2

A = "5

HO

2' DO ii,
l)

Ft-
!

"DO

0,0 100: 200: ) DO,
B I dog ,)

Figure 4.17: Comparisoa of local non-dimensional tangential forces
by various analytical methods.
~ calc. (cascade theory; NACA : 0015)
x calc. (cascade theory; NACA': 1415)
o calc. (simple multiple streamtube theory; NACA:0015)

-108-



Ret:: 1380000
6 = 11.3
rpm •• 50'6

N "3
AR = 18"70

;A= , 5

800200.o. 100
. aldeg.)

Figure 4.18: Comparisons of local non-dimensional normal.
forces by various analytical methods.
6 calc. (cascade theory; NACA : 0015)
x calc. (cascade theory; NACA : 1415)
o calc. (simple multiple streamt.ube theory;. NACA: 0015)

'600

. SOD

6;"3
N = 2

Ret = 1380000,
rpm = 50"6,
AR, = lS.70

--X--:- - .-/ X •
6 ~x - ---<;X .
. X X ::---0
~'O--o .

Vo

Vo>

.4 00

O. 100' 200. 300.

8 (deg,)

Figure 4.19: Comparisons of induced velocities with azimuth at different
tip speed ratios (calc~lated by cascade theory).

--- ------,._.Symmetric (NACA:0015)
Cambered (NACA :1415).
A

6
3'.00

x
4.00

o
.6.00
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0(
Id'g )

S tolling
Qngl~

0.0 100. 200.

R'1_1380000, 6 ~IU
rpm-~O"&, N-Z,AR-la"1

10.0

5.00

0.00

300.
ald'gl

Figure 4.20: Comparisons of local angles of attack with azimuth at
different tip speed ratios (calculated by cascade theory).
Symmetric (NACA:0015)
Cambered (NACA:1415)
A

f::, x
3.00 4.00

o
6.00 .

1-.,

R,

R,t -1380000
6 _11.3, N =2
rpm=SO"6
AR=IS'"1

'.00

0.0 '000 200. 300.
9-ld'ylFigure 4.21: Comparisons of.local Reynolds number with azimuth at

different tip speed ratios (calculated by cascade theory).
Symmetric (NACA:0015)
Cambered (NACA :1415)
A

f::, x
3.00 4.00

o
6.00
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100'

Ret; 13&0000
6 = IL3J1 N=J
rpm=50"b
AR ; l8" 1

200' lOO'

l'OO

2'00

roo

0'

B (deg)

Figure 4.22: Comparisons of local non-dimenssional tangential force with
azimuth at different tip speed ratios (calculated by'cascade
theory).
Symmetric (NACA: 0015) --- -,.-
Cambered (NACA: 1415) b. x 0'
A 3.00 4.00 6.00

0'

Ret - 1360000
6=-1t.~, N=-2
rpm","~O'b
AR = 18'1

200' lOO'

20'0

0'0

20'0

B I deg I
Figure 4.23: Comparisons of local non-dimenssional normal forces with azimuth

at different tip speed ratios (calculated by cascade theory).
Symmetric (NACA: 0015)
Cambered (NACA: 1415)
A

b.
3.00
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z

r£«

70'0

.0'0

~O'O

30'0

Airloil: NA CA 0015
Po = 10 KW,. N"3
Vmd= 8m/Sec
Vcuf= It.mlSec
.Sa = 100 N/sp. mm.

,. 8

,. 2

;p
0'9 u

E
u

E
Cl

E
J:

20'0

10'0 0'3

0'0
0'2 0'4. 0'6 0'8

0"
,. 0

61=Nc/R)

Figure 5.1: Design configurations of variable speed turbines at
various solidities (calculated by cascade theory)

Symbol
Parameter

o
H

•
D

o

C

1::.'

AR
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35'0

o

E
r

10'0

20' a

10"0

0'0
0"2

Airtoil : NACA 0015
PO=10KW, N=3
Vood.= 8m ISec
Vcut::;14m/Sec
Sa ::;100 N/sp. mrn

a"
61'Nc/R)

Ir& 0'8

1'8

u0.9 -;

E

a')

0'0
a" 0

Figure 5.2: Comparisons of design configurations of variable speed
turbines at various. solidities (calculated by cascade theory).

(Overhanged support) 0 t, 0 '.1> ••
Symbol

(Simple support)(Ref. [2S]): • , • ~ ••
Parameter H D G AR t /C%s
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O' 7
70'0

Airtoi!: NACA OOIS
Po = 10 KW, N=.)
Vcod;" 8m ISec
Vcut::: Il.m/Sec
Sa = 100 N/sp.mm

60"0

in

E
i:.,
0

'0'0.
0"

~~
C)

~
~

'C
E
0. 0']

40'0 v
0.
U

20'0

10'0
0"

0'2
0'8

0-0
" 0

d (=Nc/RJ

Figure 5.3: Comparisons of design configurations'of variable speed
turbines at various solidities (calculated by cascade theory)

(Overhanged support) a [> D. <J
Symbol (Simple support) (Ref. [25]) • •• ~

Parameter rpmd Cpd Ad Qs
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Lelm I

,Airtoll: NACA 0015
Po = 10 KW, N= 3
VClld=. 8m/Sec
Sa ;: 100 N/sp, mm

110'0

'00 '0

90'0

80'0

70'0

bO'O

0' 2 0', O'b
61-Nc/R)

0' 8
0'0

"0

Figure 5.4: Comparisons of total blade length (LB) at various
solidities (calculated by cascade theory).

Symbol
Blade support

o
Overhanged

-llS..,

•
Simple (Ref. [25] )



Air10tt : NACA 0015

6 = 'SOO) N=d
H/D= 1'01
AR ~ 12'12
Ywd = 8m/Sec

Vcu1;= ll.m/Sec , '00

1'00 2'00

Figure 5.5:
)'09>-(: RUJ/V~I

Vatiations of overall power coefficients with tip speed ratios
at different wind speeds (calculated by cascade theory).

Symbol
Voo (m/sec)

/':,

4

x
8

•
12

o
14

0'50

'75"0\

'25

0' 00

150'0

o
14

120'0

•12x
8

/':,

4

60'0)0 '0

Airtoil NACA 00'5

6 ~ '500, N = )
H/D=I'OI.
AR = ,"2'12

Y(I)d = am ISe-c
Ycul :::: lJ.m /Se-c

90'0
rpm

5.6: Variations of overall torques with rpm at various
'wind speeds (calculated by cascade theory).
,Symbol
V (m/sec)
00

Q
(N,m)

Figure

-116-



Airfoil: NACA 0015

6='500 N~l
H/D ••. 1'01
AR = 12'12
Vcod = 8m / Sec
Vcul = It.m/Sec

Polkw)

&0'0

30.0

Figure 5.7: Variations of overall power with rpm at various wind
speeds (calculated by cascade theory) •

Symbol
V (m/sec)
00

{:,

4

X

8
•
12

o
14

'20,

11~.

110,Sm
( N/Sq.mm)

105,

'00

Airfoil: NACA 0015
6 -'500 N=l

H/D=l'Ol
AR - 12"2
V(Dd = 8m/Sec
Vcut = 14m/Sec

Ad = no '00"0

mb
( kg 1m

50'0

2'00I' 501'00
ts IC (",)

Figure 5.8: Variations of blade mass and maximum blade stress with blade
skin thickness (calculated ,by cascade theory).
Symbol
Parameter

o
S
m

•
~
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Airtoil NACA 0015
6=0'5, N.3'
H/D= "01
AR .c: Irl2
Vcod = 8m ISec
Vcut = 14 rnlSec

)--.d. T 30

\"' 105

"0

0"

0
0

~ 0'0~z

;
0"-.
';;
"-
0

"- 0"

0'2 .

B I deg.1

Variations of normal, centrifugal and net normal forces
with azimuth angle (calculated by cascade theory).

0'0

Firugre 5.9

100' 200' 300'

0'0

.'

Symbol • 0 + X D. .•~

Parameter F Fef F F Fef Fn net n net
V", (m/sec) 8.0 (design) 14.0 (cutout)
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0"0

Airloil : NACA .0015
6 •••.O'5, N. 3
HID"" I'D 1
AR "" 12"12
VtDd=6m/Sec

Vcut = 14m ISec

"d:3"30

200" 300" ,

0")0<105

0" 20

0"10

0" 0 0

Figure 5.10: Variations of
azimuth angle
Symbol
V"" (m/sec)

9Idog")

bending moments
( calculated by

•
8.0 (design)

due to normal forces with
cascade theory).

;,' 0
14.0 (cutout)

_A;rtoil; NACA 0015
6.0- 5, N_]
H/D:"OI
AR •. 12"'2
VQ:)dl:;"8m/Sec
Vcut=lt.r:nISec
).d=3"30

0' 20

0"00

o
14.0 (cutout)

0'0

Figure 5.11:
100"

Variations of
azimuth angle
Symbol
V (m/sec)
""

200"
9 I dog,)

bending moments "due to
(calculated by cascade

•8.0 (design)
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Sbo
(N/sq.mm) .

100'

--

Airtoil : NACA 0015

6 ""O'So,'N=-J
HID = l'O~
AR = 12'lL
Vood ; 8m ISec
Vcut ::::Il"m/Sec

)...d = 3"30

200. 300.
2,"0

Figure 5.12
8 Ides.)

.Variations of bending stresses due to net normal forces
with "azimuth angle (calculated by cascade theory).

Sbt
( N/sq.mm)

Symbol
V (m/sec)
00

• 0

8.0 (design) 14.0 (cutout)

Aritoil : NA.CA 0015
6 = 0;. N = j
H/D='.OI
AR = 12"'2
VQ)d = 8m/Sec
Vcut II: "m/Sec

),d = 3")0
'"SO

0.0
200. 300.

r

Bldeg.)

Figure 5.13: Variations of bending stresses due to tangential forces
with azimuth angle (calculated by cascade theory).
Symbol
V (m/sec)
00

•8.0 (design)

-1 20-
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14.0.(cutout)



Airtoil NACA
6 = 0' 5. N= 3
AR=12'12
H/D= 1'01

Vaod= 8m/Se-c

~s (N,m) 2'0

,'0

fixed
•

with blade pitching

IS'O 20'016'0

o
Variable (y Sine)

p

S'O '0'0 12'0
~p (dog,)

of starting torques

Parameter.

2'0

Figure 5.14: Variations
Symbol

,300,

Airtoil: NACA 001S

6.0'5, N.3
AR = 12'12
H/D=loOI

Vood -im/Sec
200,

100,

0,

S'OO7'006' 003' 002'00" 00 ''DO 5'00
. Vm (mISe-c)

Figure 5.15 : Variation of starting torque with wind speed.
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Airtoil, NACA 0015
6 = '500, N=3
H/D=l'OI
"AR =12"12
V md= 8m/Sec
Vcut = 14m/Sec"

roo1'00 '.5
's IC {'I,I

Variation of blade mass with blade skin thickness
(calculated by cascade theory) (Ref. [25] )

Figure 5.16

1x
C'

Airtoil NACA 0015
6 = .500 N" 3
H/D= 1"01
AR = 12'12
Vt;»d= 8m/Sec
Vcut =- ILm/Sec

0.50
r
I

\
centroid

0.00

c•
x-axis with
(Ref. [25] )

2.00

of inertia about
cascade theory).

roo.500 l'50
'siC {'I,I

Variation of centroidal area moment
blade skin thickness (calculated by

Figure 5.17:
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Airtol : NACA 00 15
6 ""00, N=3

HID"" '"01
AR '" 12"12
V 00 d"" 8 m ISec
Vcut== 14m ISec

~
c4

v

centroid

'" 50

•

',00 1.00

Figure 5.18: Variation of centroidal area moment of inertia about y-axis
with blade skin thickness (calculated by cascade theory)
(Ref. [ 25] )
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... ....::: .

c

Figure B. I Blade airfoil cross-section.

,

Figure B.2: Geometry of inner and outer faces of blade airfoil.
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::- :

Figure B.3: Geometry on blade airfoil cross-section to
find skin area.

y

x

c

Figure B.4 Geometry to obtain rib area.
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Figure B.5 Geometry to determine centroid and moment of inertia.
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w
w

a) Simple support blade b) Overhanged support blade

Figure C.I: Schematic Diagram of vertical - axis straight-bladed Darrieus
turbine.
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Figure C.2: Horizontal section of a straight-bladed wind
turbine showing forces on the turbine blade.

t"'" ••

H

w=( Fn~11H)kg I'n

•

H

Figure C.3: Bending moment diagram of a overhanged supported beam.
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-1'6-8 - , 0 , 8 12 16
"'Idoge)

Figure D. 1: Variation of lift coefficient with angle of attack at a fixed Reynolds
number of 3000000 for the airfoil NACA 1412.

Symbol
• I..

o (obtained from NACA 0012 after modification)
• (experimental values of NACA 1412)

'016

, 012

'008

angle of attack at a fixed
airfoil NACA 1412.

-a
Figure D.2:

-4 0 1
",Idegl

Variation of drag coefficient with
Reynolds number of 3000000 for the

'8 '12

, i

o (obtained from NACA 0012 after modification)
Symbol: • (experimental values of NACA 1412)
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Figure D.3: Variation of lift coefficient. with angle of attack at a fixed
Reynolds number of 3000000. for the airfoil NACA 1415.

o (obtained from NACA 0015 after modification)
Symbol: • (experimental values of NACA 1415)

(I. -

•

'-01&

"012

"00 I

'" I dog JVariation of drag coefficient with
Reynolds number of 3000000 for the

angle of attack at a fixed
airfoil NACA 1415.

-8
Figure D.4

6 4 8 12
"004

1&

o (obtained from NACA 0015 after modification)Symbol : • (experimental values of NACA 1415)
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APPENDICES
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Appendix-A: Flow Diagram of~Computati~~al Methods

.,

Flow Diagram of Computational Method by Multiple Streamtube Theory

Start

Input values:
O,H/D,N,Cd ,R ,A,no.of stations, airfoilor er
For constant wind speed : Re and Voo
For constant turbine speed :w Re and rpm
AR,y (pitch) t

p

First station:
Ass.umed :Va/Voo~ 1.0

no

no
is

ao,wo/Va,Wo/Voo,Re
are calculated

K is determined

yes

At ao & Re:c
l
& Cd are

obta1ned. Also C and C
are found. AR ef¥ect t
is considered.

Upstream:
au =.ao-ypu

Ku is determined

At au 0: R.:. C I &-~Cd~are
obtained. AlsouC~a~~
C are calculatg~. ARtueffect is considered.

Is pitch zero ?=

At ad & Re: C1d & Cddare
obtained. Also C & C
are calculated. ndAR td
effect is~n$idered

Kdis determined

(Va/Va/nis calculated
based on no pitching

•

yes

yes

<.00 I ?

For the same station:
was prior calculated
(,Va/Voo)n<.5 ?

es
Local torque and drag values
are calculated and stored
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Is it laststation ?
no

yes
overall power,torque,drag
coefficients etc. are found

Flow Diagram of Computational Method by Cascade Theory

Input values:
(J ,H/D,N,Cdor',Rer,A,AR,yp(pitch) ,no.of stations airfoil
For constant wind speed : Rew and Voo
For constant turbine speed: Ret and rpm
For straight-bladed turbine AR, yp (pitch)

.425 + .332 (J

First station: upstream
Assumed: Vau/Voo ~ 1.0

1 Is pitch zero ? no ypu is found

3

2

yes
Clou ,Wou/V au'Wou/Voo.and
Reu are calculated

Is pitch zero?
yes

At Clou & Reu: CI & Cd
are obtained. AR
effect is considered
E ~ Cd/CI

~s/Voo, Wx/Va, Wy/Voo
are calculated

WI/Voo and w2/Voo
are dete.rmined

no

At Clu & Reu: CI &,Cd
are calculated. AReffect is conside •.
red
E ~ Cd/CI

Is upstream side ? no
, .
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7

Ve/Voois found and
stored to use in calcu-lation of downstream
velocity.

diff= I Vau -(Voo
"no

Is upstream side ?
.yes'

2

overall power,
t9rque,drag coeffiClents etc. are
found

yes

no

Local torque and drag
values are calculated
and stored

Is it last station ?

yes
Is downstream"side ?

no

no
no

upstream side ?

yes-

First station : downstream
Assumed: Vad/Voo = 1.00

Is pitch zer,o ?

'les
aod,Wod/Vad , Wod/Ve
Wod/Voo & Red are found

no

Is pitch zero ? no

yes
At aod Red: CI & Cd are
obtained. AR effect is
considered

E:= Cd/C"I"

-133-

At ad & Red; CI & Cd
are calculated. AR
effect is considered

E: = C /C
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-----"'" ~~ ~ ..•..•~---Flow Diagram of Des ign/~P,roce41J"e coCS,t",:a'ighr--"Bl,ide'druth i;;e-;}--
Input values:

p , Vood' V , 0' N, S 'P' V
. 0 cut a

Assumed value
Cpa = .4(say), ARa = 20(say)

A
p
o

(1/2) C P V3
pa "'d

Turbine configurations such as
H, D, C, R, H/D are found from:
0= NC R AR = H/C A = H.D & N

V"'d C
Re = ---

wd \!

N, AR & H/D:
a wide range

are de-termined.
m

and A

Now for known Re d' a,
C are calculate~ for
p
of A'. Cpm

C d =.,p
Corresponding to

Cpm
Cpd' Ad is found

no
?

maximum angular velocity
wm is found from Ad= RWm/Vcut
Rew= Vcut C/\!o Acut = Ad.

no

dif = I Cpa - Cpd I

Is turbine
yes

rpm is calculated at design
p01nt. Ret = RwC/\!. Acut is
found corresponding to Vcut

For known Ret, 0' N, AR & rpm:
local blade stresses are calcu-
lated at Acut with different
skin thickness ts'

For known Rew' 0; N, AR & V", :
local blade stresses are cal-
culated at Acut with different
skin thickness ts'

, -134-



2

is

tie,s
of S in

m
blade

lowest value
.50% to 2.5%

with

From stress VB. azimuth distribution co~res-
ponding to value of A ; maximum stresscut
S is found. This value is obtained at every
m

skin thickness t (froms
step of .25%). The

(S vs. t ) distribution is the requiredm s
stress and the corresponding value of ts
the best thickness.
, .
'.-

End
yes

Is Smd (S~:!: .5) ?

no

altered.
:!: .5), AR

AR value is
For S >(S

m a
value is reduced and
vice-versa.
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APPENDIX - B DERIVATION OF MOMENT OF INERTIA OF BLADE
AIRFOIL SECTION

Figure B.l represents the blade airfoil cross-section which

is used in the present design analysis.

The thickness distribution for NACA four-digit sections is

given by the following equation (B.ll,

+ y =
t
c (.2969 x ~ _ .1260 x - .3516 x2 + .2843 x3.2

. 4.1015 x )

(B.ll

where x,y are in percent of chord. t is in fraction of chord.c
So. for blade airfoil NACA 0012, t = .12 and for blade airfoilc
NACA 0015, t = .15.c

Equation of Inner Fac~ of Blade Airfoil Skin

Differentiating equation (B.l) and subscripting x and y by

o tb indicate the outer faces of blade skin, one obtains,

t 1

-£ (.14845/xo'"• 2 .1260 - .7032 x + .8529 x2o 0
.4060 x;)

(B.2)

Referring .to the figure B.2, the co-ordinates ( x1'Yi) on the

inner face of the blade skin are,

x = x + t Sine, y. = y - t Cos ei 0 SOlOS 0 (B.3)

where ts is the skin thickness of the blade airfoil. e may
\ 0

be expressed as,

eo = tan-l (dy /dx )o 0

-136-
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Subscripts 0 and i are respectively used to'distinguish the

co-ordinates between the outer and the inner faces.

x., y. are percent of chord. Now the new co~ordinates
~ ~

(Xi,Yi) are chosen in such a way that Xi = xiC and Yi = y.C.
~

In this analysis, the equation of the inner face of the blade

skin is obtained in polynomial form from the sets of co-ordinates

(Xi,Yi) by the method of curve. fit which is given by,

(B.5)

where bo' b1, b2, b3 and b4 are the constants.

Area of Blade Skin

The elemental blade skin area,

dA = 2 (Y - Y.) dXs 0 ~

which may be written as,

= 2 f Y dX-2 f Y .dx = 2 (A - A.)o ~ 0 ~

(B.6)

(B.7)

(B.8)

Now subscripting x,y of the equa~ion (B.1) by 0 to indicate

the outer face of blade skin and substituting in the equation

(B,8), one may find,

1 1<
f (.2969 x'-.1260oo.

-137-
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which may be reduced to,

Ai may be expressed as;

A. = J Y. dx~ '~

(B. 10)

(B .11)

Now introducing the value of Yi from the equation (B.5) and

integrating between the limits Xl and X2 ( figure B.3), one

obtains,

(B.12)

Inserting the values of Ao (B.I0)and Ai (B.12) in the equation

(B.7), the blade skin area can be determined.

Area of Blade Rib

The ribs are assumed to be equally interspaced and the

spacing b is considered to be C/6 (figure B.4) .

The total blade sectional area Ab is,

(B.13)

MasS of the blade per unit length,
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whereP b is the density of the blade material.

Centroid of Blade Cross-Section

For the electric body the neutral axis passes through the

centroid of the blade cross-section.

The centroids are defined by,

-X = and Y = (B.l6)

Numerically one may obtain,

(B.l7)

where Os is the thickness of each strip considered in the numeri-

cal computation. For symmetric blade,Y is zero and X is one'the

chord.

Area Moment of Inertia

Area moment of inertia about X-axis is defined as,

while area moment of inertia about Y-axis is defined as,

(B.la)

(B.19)

Moment of inertia of blade section area is found by numerical

integration method. Moment of inertia about X-axis may be obtained

from,
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where IsX and Irx are respectively the moments of inertia of

blade skin and ribs about the X-axis. Referring to the figure

B.S, IsX and IrX may be obtained as follows,

= 2 l: [0s

(Y _Y,) 3
o l +12 o (Y -Y,)

SOl

(Yo
4

+ Y,) 2
l J (B.21)

t s
3

, (B.22)

Now putting the values of IsX (B.21) and Irx ( B.22) in the

equation (B.20), the moment of inertia about X-axis can be .deter-

mined. The moment of inertia about Y-axis can be obtained as,

(B.23)

where IsY and Iry are the moments of inertia of b~J blade skin

and ribs respectively about the Y-axis, which may be obtained from,

(B.24)

(B.2S)

Now the centroidal moments of inertia about X-axis andY-axis

respectively obtained from,

(B.26)
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APPENDIX - C DERIVATION OF BENDING MOMENT AND BENDING STRESS

Derivation techniques of bending moment and bending stress

are given in this appendix. These are done for no blade pitching

condition.

Figure C.2 shows the .forces developed on the turbine blade. Fn
i~'Ft are respectively the normal and the tangential forces (aero-

dynamic). Fn and Ft can be obtained from the equations (3.14) and

(3.15) respectively. Fcf is the centrifugal force. The centrifugal

force may be expressed as,

(C.1)

where mb is the blade mass per unit blade length. w is the angular

velocity and R is the radius of the turbine. The directions of

the forces as shown in the figure C.2, are considered to be posi-

tive in this analysis. The net normal force .on the turbine blade

( in the radially outward direct~on) can be obtained as,

F =F -F (C.2)net cOf n

In the present analysis, the blades are considered to be

supported like that of a overhanged support beam.

In the figure C.3, the bending moment diagram of a overhanged

supported beam is shown. The forces on the turbine blade are

distributed allover the blade length which is also seen from

the figure C.3. The expression of t~maximum bending moment

can be obtained as,
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(C.3)

where w is the load per unit length of t~ blade. Introducing

the value of w = F t/H in the equation (C.3), one obtains,ne

F Hnet.
46.5

(C.4)

where H is the height of the turbine and hence the length of

the turbine blade. The maximum bending stress can found as,

M (t C/2)
Sbm = bm c

IX

where t is the maximumc

(C.S)

blade thickness as a fraction of chord

and C is the chord of the blade airfoil. IX is the area moment

of inertia about the chord of the blade airfoil. From the equa-

tions(C.4) and (C.S), the expression of the maximum bending

stress can be written as,

Sbrn :::;: (C.6)

The effect of tangential force an the blade stress is not

encountered in.this analysis, because this force is negligible

in comparison to the net normal force.
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APPENDIX - D AIRFOIL CHARACTERISTICS

The airfoil characteristics for the cambered blade profile

are not available for the wider range of Reynolds number and

the anglesof attack\?- For the performance analysis of a

Darrieus turbine with blades of cambered cross-section the

airfoil characteristics for wider range of Reynolds number and

angles of attack are necessary. Hence to fulfill this requirement

a technique is used to modify the lift-drag characteristics of

a symmetric airfoil to be applicable for the cambered airfoil.

The modified lift-drag characteristics are compared with the-,,-

existing experimental values of lift-drag for the cambered air-

foil which are available at few Reynolds number only. The compa~

rative figures shows excellent correlation •.So this idea is exten-

ded to find the lift-drag.valuesfor the cambered airfoil at

wider range of Reynolds number and angles of attack. It is expected

that this idea, to consider lift-drag characteristics for a cam-

bered airfoil, would be very reasonable and make error wi thin, 1-2%.

Ofcourse for higher camberness effect the idea would give higher

error.

To modify the lift-drag characteristics the thin airfoil

theory is applied. The procedure of choosing the lift-drag charac-

teristics is given below in short.

(D.l)

where CI. is the calculated angle of attack wh-ich may be obtained

from equation (3.13).
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a is the corrected angle of attack due to cambernesscor
effect and a d is the modified angle of attack value.mo .

Lift-drag characteristics of a cambered airfoil for angle

of attack ais taken corresponding to a d from the lift-dragmo ,
characteristics of a symmetric-blade profile. a in equation (D.l)cor .
may be obtained from,

a cor = tan-l ( f
C

(D.2)

where C is the blade chord and f is the maximum camber of the blade.'
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APPENDIX - E EFFECT OF 'ASPECT RATIO

For the performance prediction of a ,straight-bladed

Darrieus' wind turbine, the eff.ect of finite aspect ratio on the

airfoil characteristics are necessary. Since the finite wing

and the finite b.lade of a straight-bladed wi1i:G!'Jturbine are

of similar pattern" so wing theory may be applied for the

finite aspect ratio effects on the airfoil characteristics

before using them for the performance prediction ofa straight

-bladed wind turbine.

For the wing 'of finite span, there occurs always down-

wash and ~J required to induce downwash is expressed in terms

of induced drag'. The downwash velocity is created by, the pre-

sence of tip vortices. The total drag coefficient of a finite'

wing is given. by,

(E.1)

where CdO is the section drag coefficient for infinite aspect

ratio while Cdi is the induced drag coefficient, Cdi is expre-

ssed as,

(E.2)

where AR indicates the aspect ratio of the turbine blade.

Introducing the value of Cdi in the equation (E.1),

(E.3)
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The angle of attack corrected for finite aspect ratio effect

is obtained as,

a = a + a (E.4)
0 i

where a indicate the angle of attack for infinite wing and
0

a is the induced angle. The expression of induced angle a is,
i i

a, =
1

(E.5)

substituting equation (E.5) in the equation (E.4)

a = a
o

(E.6)

The above two equations (E.3) and (E.6) are developed on the

assumptions of uniform distribution of downwash and they are

e'xplicitly valid only for wings possesing an elliptic lift

distribution. However other cases are dealt with considering

appropriate correction factors. Letting T is the correction

factor for the induced angle and <I is the correction factor for

the induced drag, the expressions of Cd and a become,

( l' + <I)

( 1 + T)

(E.7)

(E.8)

For a rectangular wing there are two limiting.cases. When the

chord is large compared with the span, aspect ratio AR approaches

zero. In this case Betz finds an elliptical distribution of 10ad-

ing. As the aspect ratio increases to infinite the loading approaches

rectangular distribution •.The values of T and <I are taken from the

reference [27J and [34J
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