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ABSTRACT

A theoretical investigation of aerodynamic performance
and design is carried out for.vertical-axis straight~bladed
Darrieus wind. turbines. Aerodynamic performance.is performed
with blades of cambered .cross-section while design is conducted
with blades of symmetric cross-section. For the aerodynamic
analysis multiple streamtube theory and cascade theory are appli-
ed. In order to choose the lift and draé.coefficients for the
cambered Elade Qrofile, concept of thinYairfoil theory has been

applied.

y: Caséade principle ( Similar to that used in turbomachines)
with blades of.cambered cross—-section is applied for the perfor-
mance prediction of a verticai—axis straight=bladed Darrieﬁs
wind turbine. By using the blades of cambered cross-section, the
1ift forcé increaées.in'the upwind side and decreases in the
downwind side in comparison to those for a turbine with symmetric
blade cross—secﬁion. As a result higher power. is produced in
upwind side.and lower power is produced in downwind side fof a
turbine with cambered blade cross-section in comparison- to those
for turbine with symmetric'blade cross—section.‘Howevér the
net power production is positive thereby making the higher effi-

ciency. The calculated results of cambered blade cross-~section

are compared with those of symmetric blade cross-section,

A design of a straight-blaaed Darrieus, wind - turbine with
blades of symmetric cross-section is performed. The design is

done at variable turbine speed condition. ‘In order to mini-




mize the blade stress and with a view to use the low .cost
material for blade manufdcture the blade.supéort.type

is considered. to be overhanged type. It is observed from the
design analysis thak this design with overhanged support

" reduces the blade stress remarkably.

-vi-
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CHAPTER 1 : INTRODUCTION

[
.

Interesﬁ in wind machines recently ﬂas resulted in the
re-invention and analysis of the wind power machines developed
in the past. People are extracting energy from the wind in
various ways for the past few centuries. One means for conver-
ting wind energf to a more useful form may be,doﬁe by applying
fhe wind mills. Recently this science is gaining more popularity
due. to the fuel crisis. There are various types of windmills.
The most commoﬁ one having the blades of airfoil shape is-the
horizontal-axis turbine and another type is the vertical-axis
Darrigus wind turbine.. The main advantage of the vertical—axisv
wind turbine is the simplicity of its manufacture compared to
the horizontal-axis wind turbine. The present work consists of
the performance analysis of a vertical-axis Darrieus wind turbine.

The work also include the design of the similar type of turbine.

-l.l Renewal Interest in Wind Power.

Study of wind energy is of prime impoftance concerning
present wina energy crisis all over the world. . Conventicnal
energy source are no 1onger'sufficient to cover the increasing
demand of energy throughouf the world. For a long time people
are extracting_eneréy from the fossil fuels in élmost all the
countries. With the rising aemand of energy and for many other
reasons, prices of these fuels arée increasing day by day. So
people are trying to'find the.alternaté sources of energy to

exploit them at the cheapest rate. Wind energy is a kind of



energy source which will never be finished.

Since the last decade increasing and.widespread interest
has been taken in the potentialities. of the wind as a source of
énergy. In several countries both private and Government spon-
sored organizations have been established to investigate the
way -of extracting'energy from the wind. Some of the reasons for

thig interest are given as follows.

i) The rapidly increasing demand for electrical energy
accopanied by the inadequacy of fuel supply or of potential

hydro-electric resources in some countries;

ii) high and rising costs of power generation in stream-.
‘driven stations or in-neﬁly-constructed hydro-stations and that
for tﬁe transmission of the power generated by them, are now
‘often increased by the fact that the more easily developed

sources, near to .load centres, have already been expiited;

iii) difficult economic and,political.conditions-of the
post-war years tending: to make countries depend. upon their own
resources for the generation of power rather than upon imported
fuels;

iv) the realization that coal and oil resources are; being

used up at an increasingly high rate and that they can be put to

better use than burning them as fuels;

v) the greatly increased knowledge of aerodynamics as

applied to aeroplane construction, resulting from war-time



research and development. This renderS—the problems to be faced
in constructlng large windmills less formldable than they were

formerly;

vi) the appreciation of the advantages of diversity in the
availability of power from different sources connected to a

widespread,het work;

~vii) the Smith—Puﬁnam experimental aerogenerator, of‘l250 KW
capacity, built during the war On Grahpa's Knob-in central Vermont
U.S.A. Although this machine was not completely successful .as an
practical possibility of employing large plants to generate

electricity from wind power..

l.2R6§§BfAerodynamics in Wind Powex

The successeof wind power as an alternate'energylsource
is obviously a direct function of the economics of production
of wind power machines. Inﬁthis regard, the role of improved
power output.through the development ef better aerodynamic per-
formance offers somelpotenﬁiai return: however,; the focuss is on
the cost of‘entire system, of which the air-to-mechanical energy
is transducer is but one part. The technology and methodelogy'
used to develop present day fixed and rotating wind airc;aft

appears to be adequate to develop wind power.

One of the key areas aSSOCiated with future development
of w1nd power is rotor dynamlcs. The interaction of inertial,

elastic and aerodynamic forces will have a dlrect bearing on the



manufacture, life and operation of wind power systems, while

at tpe same time haﬁing a minor effect on’ the éower output.

Thus, the acrodynamics of performance prediction, quasi—sta£ic

in nature, 'is deemed adequately developed while the subjéct of
aeroelasticity remains to be transferred from aifcraft applica-
tions to‘wind power applications. Since 1920, there have been
numerous attempts in designing feasible WECS (wind energy conver- "
sion system) for large scale power generation in accordance with

.modern theories.

1.3 'Aim of the Present Work.

 Uptil now, on vertical-axis Darrieus wind tufbine.bdth aero-
.dynamic-and structural works have been done in many parts of the
world. However, little attentien has been given On-the Darrieus
wind turbine with bladeé of cambered. cross-section. Iﬁ this
thesis the aim was to find the detail aerodynamic as weil.as
structural analysis of Darrieué.turbine'With blades of cambered
cross~section. It is expected thaf.this work would contribute
greatly to the knowledge of existing research work regarding ‘the

" vertical axis straight-bladed Darrieus wind turbine.

[

- The present research work is consisted of finding the
performance characteristics of a vertical—éxis straight—hladed
Darrieus wind turbine and making necessary developﬁent of this
kind of turbine. At high solidity the performance prediction of

a vertical-axis Darrieus wind turbine with blades of cambered



cross-section .is also done. Blade pitching is also incorporated
to find the perofrmance characteristics of a turbine with cam-

bered blade airfoil.

It has also been noted that there is want of extensive
research work on-design for low as well as high solidity Darrieus
wind-turbines; A lot of prameteré control the performance éharac—

o,
terlstlcsuéf a Darrieus wind turblne. Among them solidity, height-
diameter zéilo, aspect ratio, tip speed ratio, number of blades,
chord -radius ratlo, Reynolds number etc. may be mentioned. In
the present work, it is aimed to find out an optlmum de51gn

condltlon with overhanged beam support to choose the above para-

meters. based on optimum design condition.

The primary object was to carry out the detail aerodynamic
and structural analyses. However finally it was not possible to
perform all the works. So mOStly aerodynamlc analysis is conduc-

ted and partlally stress analysis lS done.

1.4 Scope of the: Thesis

In this thesis, a théoretical investigation of the aero-
dynamic perofrmance is presented for the vertical-axis stfaight—
bladed wind turbines with both symmétric and cambered blade
céoss—sections. In addition, a simplified design is conducted
for a vertical-axis straight-bladed Derrieus wind turbine With

blades of symmetric cross-section.



Chapter 1 presents the general introduction providing with
the brief idea of the work which are performed and described in
this thesis. In the chapter 2, the review of the literature 1is
presented. It gives a short description of the related papers
which have been:published by the different authors in the differ-

ent place.

In the chapter 3, different aerodynamic theories of ver£ical
axis straight-bladed Darrieus wind turbine are described. The
analytical prediction methods which are related to the present
thesis are rather described. elaborately. Existing qascade theory
is remodelled to include the cambered blade. cross—-section and

applied for straight-bladed Darrieus_wind turbine.

Chapter 4 presentsfthe célculated results for the vertical
axis Darriéus”wind turbine with blades of cambered cross—sectioﬁ.
The effect of few parameters in the performance characteristics
of a vertical-axis Darrieus wind turbine are discussed. Compari=
sons. of the ca;cﬁlated results for the symmetric and cambered

blade profiles are given in this chapter.

A design method for vertical-axis straight~bladed Darrieus
wind turbine. is given in the chapter 5. Design at variable tur-
bine speed condition is performed. Design approach is suggested

with a view to make the design optimum.

Finally in the chapter 6, general conclusions are drawn

and few recommendations for the future works are presented.



CHAPTER 2 : LITERATURE SURVEY

Uptillnow many theories have been develcoped in different
parts of the world for the performance prediction of Darrieus
wind turBines. Few of them are described in brief in this
chapter. Brief history of the development of modern turbine. has

also been incorporated into this chapter.

2.1 Historical Background

To extract energy from the wind, people have been working
on various classes of windrcontrivancés from phe ancient time.
.Probably ﬁorks on windmills have been started from 2000 B.C. The
duration.fr&m the.ancient time upﬁo the end of thé 19th century
may ﬁe categorized as the ancient development period while that
from the end of 19th céntury upto date may be termed as the

modern. development period.

Hiséorically, wind energy conversidn systems can:be consi-
dered as one of ﬁan's truly basic machines. Early documents refer
to use of windmills, as depicted iﬁ Figure 2.1 in Persia in 644
A.D. called Persian vertical-axié windmill which was used to
grind grain.'That kind oflwindmill had been working upto about
_12th century, when simultaneously in France and England Dutch
ﬁype of windmills were made whose berpose were to grained.grain

and pump water. These windmills were of horizental-axis types.

At the mid-nineteenth century, more than six-million small
multibladed windmills, providing power outputs of less than 1 hp

each in an average wind, have been built and used in the United



States to pump.water, generate electricity, and perform similar
functions. It is estimated that over 150,000 turbines are curren-

tly in operation.

Water pumping windmilis are used in many parts of the
Unitéd States, not only for pumping water for farm and rural house-
holds, but for watering livestock on ranges in remotes area.
These types of machines commonly have metal fan-blades, ;2 to 16
feet in diameter, mounted on a horizontal. shaft, with a tail-vane
to keep rotor facing i§ to the wind ( Figure 2.2). A 12~ feet
diameter rotor of this type develppé.about 2/3 hp in a 15 mphl
wind and can pump about 10 gallons of water per minute to é height

of about 100 feet.

émall wind machines, uéed to generate electricity, Cifsually
have two or three propeller-type blades that are connected by
a. shaft and gear train ﬁo_a d.c. generator. They usually incor-
porate some type of-energy storage system, often cénsisting of
a bank of batteries. One of the classic designs of this type is
the Jacobs Wind Electric Company unit with a three-blades prope-
ller, 14 feet in éwept:diameter, Which.deliver about 1 KW iﬁ a

wind of 14 mph.

At the end of 19th century, the first modern windmill of
horizontal=-axis type with multi-blade was built in Denmark to

produce electricity. It was the beginning of the modern develop-
s

ment period. Starting from that time people in different countries |

i
especially in rural America have been constructing a large number L

of multibladed wind turbines for pumping water and generating



- electricity. Afterwards as a consedquence of development works for
several years, two or three bladed propeller type of windmills
with airfoil shape blades were built in near about 1925. In

. benmark, the 200 KW Gedser mill ( Figure 2.3), which was the

. latest, was operated until. 1968, when i£ was shut down because it
- was found that by that time the cost of electricity supplied by
this wind-powered unit was. about twice the equivalent fuel cost
of the steam-powered electric utility'plants.that were being
‘operated in Dénmark. After the energy crunch of 1973, the 200 RW
Gedser mill was refurbished, and in 1977 it was put back into ser-
vice, using funding partly suppliedjby the United States Depart;

ment of Energy.

In 1931, 100 KW Rﬁssian horizontal-axis wind turbine was
constructed while in 1934, the large 1250 KW Smith-Butnam horizon~-

tal-axis wind turbine was built in the United State;

Modern development period have really begun with the de#elop—
ment of horizontal-axis wind turbines. In 1924 Finnish Engineer
5.J. Savonius constructed the first savonilus. rotor of vertical-
axis type,( Figuré 2.4} and he conceived the idea from the
Flettnerfs Rotor. In 1925 G.J.M. Darrieus of France, Proposed
for United States pétent a new type of wind turbine designed for

the generation of power. The patent issued in 193] as number

e
' ‘l; II
[

1,835,018 was for a "turbine having its rotating shaft transvetse
to the flow of the current". The Straight-bladed confi@urétiOn;“.
was also covered in the original Darrieus pattern. This kind of

wind machine is.called Darrieus wind turbine ( Figures 2.5 andx.;

2.6) after the name of G.J.M. Darrieus.



Since the beginning of the twenteeth century, researchers
in the vafious parts of the world had been giving much effort in
the development works of the wind turbines but from about the
middle of this céntury, it began Eo locse its momentum for further
development. In about 1970's pecple took renewed. interest in this
field. Especially in 1973 with cil embargo, people were thinking
regarding the alternate sources of energy. As a result in many
developed and underdeveloped countries a lot of new projeéti

concerning the development of wind turbines have been taken.

Only during the last decade in the_different countries enocrmous
attention has been paid. in the field of performance prediction method
'applicable to wind turbines. As an outcome, a number of analztical
prediction methods have been developed. Works have also been extended
to both the static and dynamic analyses of'wind turbines. Different

types of design methods have been worked out in many places.

2.2 Existing Prediction Methods

The main purpose of a wind turbine. is to extract.energy from
-the.air flow and then convert it into mechanical energy which
later may be transformed into cther forms of energy. The perfor-
mance calculation of wind turbines are mestly based upon a
steady flow, in which the influence of the turbulence of the

atmospheric boundary layer is neglected.

For the design and evaluation of wind turbines the availabi-
lity of computational tools is essential. Most existing theore-

tical models are based on the momentum theory, cascade theory and
vortex theory. '

- =10-



For the calculation of the performance characteristics
of a straight-bladed Darrieus wind turbine the most simple
prediction method is the single streamtube model. It has been
introduced first by Templin [42] in 1974. In this model the
whole turbine is ‘assumed to be enclosed within the single
streamtube. Dr. Templin first incorporated the concept of wind-
mill actuator disc theories into the analytical model of a
Darrieus wind tufbiﬁé. In the actuator disc theory the induced
velocity (rotor axial flow velocity) is assumed td be constant
throughout the disc and is obtained by equating the streamwise
-drag with the change in axial momentum. In the assumption of
Templin, the éctuator disc is considered as the surface of the .
imaginary body of revolution. It is assumed that the flow velo-
city is constant althrough the upsﬁream and the downstream
faces of the swept volume. This theory presented by Templin is
the first'apprdacﬁ to permit numerical design calculations for

a vertical-axis Darrieus wind turbine.

Tﬂis nmodel affords a great deal of simplicity and can
prediét the overall performance of a.lightly lcaded wind turbine
but according to the investigation, it always predicts higher -
power than the experimental results. It is incapable of adéqua—
tely predicting the wind wvelocity variationé across the rotor.
.This wvariations gradually increasés with the iﬁc;ease of bladé

solidity and the tip speed ratio.

An analytical method using single streamtube model is

presented by Noll and Ham [31] for the performance prediction of

- | -
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a vertical-axis wind turbine with straight-blades which are cycli—
cally pitched. They added the effect of strut drag, turbulent wake

state and dynamic stall to their analytical method.

Improved prediction methods for the calculation of performa-
nce characteristics of a Darrieus wind turbing‘is-the multiple
streamtube model introduced.by Wilson and Lissaman'[46}..-1ﬁ this
model. the swept volume of the turbine is divided into -a series
of adjacent, aerodynamically indepéndént streamtubes..B;ade element
and momentﬁm theories are then appl;ed:for each streamtube. Iﬁ |
their method they consider the flow‘as'inviSCid and incompfessible
_for the calculation of the induced velocity through the streamtﬁbe.
As a result, there appgars.only the lift force in. the calculation
of induced velocity. Wilson et al considered the theoretical 1lift
for their calculation. Atmospheric wind shear can be. included in
the multiple streamtube médel. Multiple streamtube model is still
.inadequate in its description.of'ﬁhe flow field. Wilson's model

can be applied only for a fast running lightly loaded. wind turbine.

‘Strickland [40] in ﬁis paper presents a multiple streamtubg
model for’a vertical-axis . Darrieus wind turbine. He finds
the induced velocity by equating the blade element forces
{induced. airfoil drag) and the change in the mémentum“along each
streamtube. The basic differeﬁce_between Wi1son's aﬁd-étrickland's'-
modél is that Wilson used the lift force (theoretical) only in
the calculation of induced velocity while Strickland. added the

effect of drag force as . well for the similar calculaticn.

-12~-



The effect of local Reynolds number on the lift-drag character-
istics is not included. This model predicts the overall perfor-
mance of a Dafrieus wind turbine treasonably especially when the
rotor is lightly loaded. It displays improvement over the single

streamtube methods.
f
Streamtube models with both uniform and non-uniform velocity -

distributions are presented by Shankar [36] . In his uniform
velocity distribution model, the axial-flow velocity in the
vertical and horizontal directions. 6f the rotor { curved-bladed)
frontal area and both in the upwind and downwind sides of ‘the
rotor is assumedlto be constant. Shankar's non-uniform velocity
distribution model. is actuaily the multiple streamtube model
where the axial-flow velocity varies both in the vertical and
horizontal directions but in eéch streamtube it remains constant
throughout the upwind and dOanind sides. In the calculation of
Shankar, he épplied:the lift-drag chéracteriétics independent of

Reynolds number like that of Strickland.

Sharpe [37] in his report gives an elaborate descriptibn of
a multiple streémtube model whose principal idea is similar to
that of Strickland [40] . He incorporates:the effect of Reynolds
. number in the calcuiation. Furthermore he uses analvtical expre-

ssion for the Troposkieh shépe.

. b
JEgad and Sharpe [33] have carried out an‘improved.veréﬁiﬁﬁ
of multiple streémtube methods for vertical—axilearrieus wind
. turbines. In their model the parallel.streaﬁtube concept is

dispensed with and the expansion of the streamtube is included.

_13_



It is strictly applicable to low solidity lightly loaded wind
turbines . with large aspect ratio. It can.predict'the instanta-
neous aerodynamic blade forces and the induced velocities better
than that by the conventional multiple streamtube model. But pre-
diction-of overall power coefficients. can not be made with reason-
able accuracy. It usually gives lower power than that obtained
experimentally.

Migliocre and Welfe [26] have.performed an eléborate study of
the’giow curvature effect on the performance characteristiés of
a straight-bladed Darrieus wind turbine. In their method they |
consider-thezcurved flow consisting of concentric streamlines
pattern 5n_the turbine blade airfoils'(geometric.airfoils). By
conformal mapping techniques the geometric airfoil is transformed
into a virtﬁal airfoil with change in camber and incidence angle
appearing in the rectilinear flow. They haﬁe observed stfong
infiuénce of flow curvature on the performance characterisﬁicé
of a Darrieus wind‘turbine'especiélly when the chord-radius ratio
is high. They also noted that under most circuﬁstances flow
cufvature.efféct has a detrimehtal influence on the blade .aero-
dynamic efficiency. However, when properly considered, virtual
aerodynamics may be used advantageouSly.to enhance turbine
'performance. In addition they describe the effect of éentrifugal

forces on the flow pattern of the blade airfoils of the turbine.

Larsen [22] in his paper first presents a vortex.theory.
He used his vortex model for the performance prediction of a
cyclogiro windmill. His model is a two dimensional one but if

the vortex trailing from the rotor blade tips are considered it

-14-



may not be said strictly two-dimensional. However in his model
angle of attack is assumed small, as. a result stall effect is

neglected.,

S A vortex.mbdel applicable to a curved bladed Darrieﬁs‘wind
£ﬁrbine have been presented by Strickland, Webster and Nguyen [41] .
It is simply the extension of the previous vortex models. This
vortex model is a three dimensional one.and aerodynamic stall

is incorporated inteo the model.

Mandal A. C [25] in his Ph.D. Thesis presents a cascade
theory model for vertical-axis Darrieus wind turbine. He has found
that, cascade theory gives feasohably good performance prediction
for a high solidity (above .25 approximately) as well as low soli-
dity ( below 0.25) Darrieus wind turbine. This theory can réasonably
predict the local forces developed on the turbine blade. These are
éomparéble with. those calculated by the quasisteady vortex model

presented by Strickland. [407] .

For the prediction of overall performance of a high solidity
straight=bladed Darriéus wind turbine and local forces of both
low ana high solidity turbines at the high tip speed ratio, appli-
cation of cascade theory gives more reliable results in comparison

to those by the multiple streamtube. theory with flow curvature effect.

This theory does not make any converdence problem even for - a
high. solidity turbine and at high tip speed ratio. In this model
unlike in the case of momentum theory, the iterated induced velocity
. ratio may go below 0.50. Applying cascade theory -the wake velocities
can be pfedicted very reascnably even for a high solidity turbine

and at high tip speed ratio while the momentum theory can not. do so.-
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CHAPTER 3 : AERODYNAMIC THEQRIES OF TURBINE

Many aerodynamic theories have been developed uptil now to
predict the performance of a vertical-axis Darrieus wind turbine.
These are. single streamtube theory, multiple streamtube theory,

vortex theory and cascade theory.

3.1 single Streamtube Theory

In the singie,streamtube:theoryA[42],the whole rotor is
assumed to be enclosed within the single'streamtube. Althrough
the rotor, .the axial velocity is aséumed to be constant. The
forces-on the blade airfoil are computed based on the uniform
velocity on the rotor. The wind velocity in the streamtube at
the roteor is related to the undisfurbed freestream velocity by

equating the streamwise drag force to the change of fluid momen-

tum through the rotor.

3.1.1 brag Force Along Streamtube

Based on the Glauert Actuatdr disc theory, the uniform

velocity through the rotor ( figure‘3;l) is given by the following

expression,
vt VW
Va = . ' (3.1)

where, Va is the axial flow'velocity { induced velocity) through
the rotor, V., is the freestream velocity and Vw is theée wake

velocity.



Due to the rate of chage of momentum, the drag force along. the

streamtube is,
F_ o=t (Vg- V. ) . (3.2)
where  is the mass flow rate. Introducing T = APV,

FD = ApVa (Vo — VW) ' (3.3)

where A is the turbine projected area while p 1is the fluid.den-
sity. From the equation (3.1) and (3.3), the drag force FD can

be cobtained as,

FD = ZAQVa (Yx - Va) - (3.4)

1

Rotor drag coefficient is defined by,

"D

2
1
0BV

c =

DD (3.5)

Introducing the value of FD from equation (3.4), the expreésion

of CDD is obtained as,

Vv -V
e 2

-
A"
a

c.. =4 ( ) (3.6)

DD

corresponding to the figure §3.2), the elemental drag force along
. the freestream velocity direction based on the aerodynamic forces

on the elemental blade airfoil is found as, - :

§Fpy = aFn sing - §F, Cosb | C(3.7)

where § is the azimuth angle. SFn.and SFt are respectively the ele~

mental normal and tangential forces on the elemental blade airfoil.



3.1.2 Blade Element Angles and Velocities

Flgure 3,3 shows the air velocities relative to an airfoil
element. If the blade moves withw rad/sec in still air, the air
velocity relative to the blade is Rw and acts in -the opposite
direction to the blade motion. From the induced velocity Va and
the tangential velocity. R@ , R being the radius -of the turbine,

one cobtaines the velocity in chordal direction as,

Vv = Rw + vV Cosét (3.8)
c . a

and the velocity in the normal direction. to the blade flight path as,

Vn = Va ?ln@ N (3.9)

Now the resultant velocity W relative to the airfoil which is
called the relative flow velocity becomes,

2 2 | 2 2
We =V +vn—‘( Rw+V.aCOSS) +(VaSln9) {3.10)

where the values of Vc and Vn are respectively taken from the
equations (3.8) and (3.9). Now rearranging the equation (3.10),

one obtaines,

2 _
g =v [« Rw%’ ) + Cose] + sing (3.11)
a .
where the term Rw / vV, 1is the tip speed ratio.h. wa the angle

of attack is obtained as ( figure 3.3),

Vn Va Siné Sing
tan a = v; S Rp ¥ v_Cosb = R/, Va (3.12)
L P S
Vco/ v Cosb
o0



I U -
Ruw#, 'a
S e
7 ’,V Cos 6

==}

where o is the local angle of attack.

3.1.3 Aerodynamic Forces .

Figure 3.4 shows the blade airfoil cross-section with the
aerodynamic forces acting on it. The elemental normal force BFn

and the tangential force §F,_ are respectivély perpendicular and

t
paraliel to the airfoil chord line. The elemental normal and

tangential forces are defined as,

¥ Cng)WZlc H - (3.14)

1

SFn

%'ct;awz c H (3.15)

il

oF¢

where Cnrand Ct,are respectively the normal and tangential force

coefficients while ¢ is the blade chord which occurs within. the

-

elemental angle 66. H is the height of the turbine. Two dimenssional
elemental 1ift and drag férces on an elemental blade airfoil are
resolved into SFn and SFt, which may be obtained referring to the

figure 3.4.

§F 81, Cosg. + 8D Sing - (3.16)

SF

. = 0L Sina - 8D Cosa _ _ (3.17)

where the elemental lift force §L and the .elemental drag force

8§D are defined as,

L = % C, pw2 ¢ H . (3.18)
_ 2
§D = 4 C4pW" ¢ H 7 : (3.19) !

where Ci and Cd are respectively the lift and drag coefficients.
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Now from equation (3.14) to (3.19) one may find,

Cp = C1 Cosa + Cd Sino | : ﬁ3.20)

£ Cl Sina - Cd Coso (3.21)

Q
1}

3.1.4 Velocity Ratio and Power Coefficient

Introducing the values of SFn (3.14) and §F,_ (3.15) in equa-

tion (3.7), the elemental streamwise drag force can be obtained as,

SF. = % p c W2

b (C_Sing - C_ Cosb ) H : (3.22)

Now for anfassumption of infinite number of blades distribution,
replacing ¢ by NC 86/2m, N being the number of blades, dynamic
pressure g = % p W2-, one may obtain from the equation (3.22) ‘in

integration form,

2m
. _ NCH N
FD_— =T é g (Cn 5ind Ct Cos® ) 4o (3.23)

Now from the equation (3.5) and (3.23), the drag coefficient

C may be found as,

oD
' 27
_ NC W, 2 Con '
Chp = it w é ( Va) (C, Sind Ce Cost ) 4o o (3.24)

Now. from the equation (3.6), the velocity ratio Rw /Vg based on

the ambient wind. speed may be expressed as

Rw _ Rw 1 |
=55 ( —&—) - (3.25)
For a given turbine geometry, rotational speed w and specified
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Tiotor velocity ratio Rm/va, the rotor drag coefficient CDD can

" be calculated from the equation (3.24). The velocity ratio Rw/V_

based on the ambient wind speed can be cobtained from the equation

(3.25). Thus this method does not require any iterative process.

The elemental torque. is given: by,

g = cSFt R (3.26)
Now substituting equation (3.15) and replacing.c by NC §6/2n for
an assumption of infinite number of blades distribution, one obtains
' the -expression of overall torque Q in the integration form,
27
- NC ‘
Q = T RH j Ct g 46 : (3.27)
o)
The overéll power PO is,
27
— _NCW
P, = Qu >— - RH. {) Cye q de (3.28)
According to Glauert, the expression for the maximum power { ideal
power) is,
/ .
Pmax ) 7 L] zpvoo .A (3.29)
L]
‘Templin defines the power coefficient as,
PO :
c. = : (3.30)
p P p .
max :

3.2 Multiple streamtube Theory (Wilson's Approach)

In the multiple streamtube theory a series of streamtubes

parallel to the freestream velocity direction are assumed to paés

through the rotor. This model gives rise to a velocity
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distribution through the rotor in horizontal direction.

3.2.1 Basi€) Assumptions

1)

2)

3)
ference of adjacent tubes and hence the momentum theorem is
applied to each of the tube seperately.

4) The streamtubes are considered to be parallel with each other.
So the induced velocity remains constant along each of the

: streamtube. .

5) The f;ow-is assumed to be steady, one-dimensional, frictioh~
less, and incompressible.

3.2.2 Axial Momentum Theory , ‘ j:

Multiple streamtube theory includes the following assumptions:

To determine the -induced velocity the flow is assumed to be
inviscid and incompressiblel As a result the 1lift force is the

only force which acts on the blade element and its component

along the streamtube ‘is equated to the force contributed by the

rate of chage of momentum along  the streamtube.

The blades are infinite in number causing the swept surface to
be continuous at all times but in such a way that the solidty

remains finite.

Each streamtube may be considered independently with no inter-

H
i

To find the streamwise force along the streamtube, the axiéf

momentum theory is applied. In the figure 3.5 an elemental

- 22 -
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Streamtube. is shown for a straight-bladed Darrieus wind turbine.
The cross-sectional area §A of the elemental streamtube is obtained

as,

SA = HR Sind &6 ' (3.31)

The flow around the airfoil blade element is retarded in two
stages. Once before and once after its passage through the blade
elements on the either side of the streamtube ( figure 3.6). The
elemental force along the streamtube is given by,

cSFD =.61’n ( v o= vw ) _ ' (3.32)

where &M is the mass flow rate through the streamtube, Introducing
the elemental masg flow rate ém = PV, §A, .elemental drag force

becomes,

§F, =pV_ (V_=- V) 8A ' (3.33)

D a

Applying Bernoulli's equation in the upstream and the downstream

sides respectively one obtains,

=P+ % p V™ | ' (3.34)

[L I
o]

, _ 2
P o+ %pV, =Pyt %oV, , (3.35)

where Pu and Pd are respectively the static pressure at the upstream

end of a streamtube as it enters the sept volume and tha£ at the

e 0]

downstream end of a streamtube as it leaves the swept volume. P, (]

is the atmospheric pressure. Now substracting the above two equations,

]

£

_ 2 *2

P Pd‘— ¥ p( V_ VW

4 ) (3.36)
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The elemental force along the streamtube. is,

§F, = (P, = By ) 6A , : o (3.37)

substituting the equation (3.36) into the equation-(3.37), one may

obtain,
— 1 . 2 |
§F, = 4 0 (V. -V, ) A (3.38)

Now balancing the eguations (3.33) and (3.38),

_ 2 2 '
pVa (v VW ) A =% p ﬁvm vw ) 8A (3.39)
‘The above equation. finally beéomes,
v =2V_ -V ' (3.40)

W a «®

According to the assumptions of uﬁgrtheory, the induced flow'
velocity cannot be greater than half of the free stream velocity.
Other wise, the wake velocity will either be zero or negative.

In ﬁhe real flow fielﬁ this does not appear. The wake region is
turbulent, as a result there occurs mixing of the wake with the

high energy fluid layers outside the wake region.
From the equations (3.33} and.(3.40),'the elemental force becomes,
_SFD = ?fJVa (v, - Va ) GA (3.41)
Introducing the valué of §A, the above equation becomes,
an = 2R p 5ine V_ (v, - v, )y H &9 (3.42)

Introducing a non-dimensional parameter h = H/R,

— opo : ' :
§F, .= 2R“p- §in® Vv, ( V, - V) h 50 | (3.43)
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3.2.3 Blade Element Force Along Streamtube

Wilson and Lissaman [46‘]consider a theoretical 1lift cceffi-

cient in their calculation, which is given by,

C1 = 2T Sina - {3.44)
To take into account the real 1lift coefficient,'it may be expressed

as,
Cf$2 Tk Sind - {3.45)

The value of C is taken from the airfoil data corresponding to the
local angle of attack while the value of the factor k is found by

an iterative process.

For an inviscid and incompressible fluid, the elemental lift

force, from the Kutta—Joukowski relations is given by,
§L = pWHS ' : (3.46)

where g§g is the elemental circulation for unit length of the blade
and W is the relative flow velocity. The élemental lift force,
according to the eguation (3.18) .is,

§L =% Cpc woH ' _ (3.47)

From the equations (3.46) and (3.47) the expression of the elemen-

tal circulation is found as,

o . .
v L ¢ Cl W (3_.48)
Introducing the equation (3.45) for the 1lift coefficient C, one
obtaines,
§y = 1kcW Sina (3.49)
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The above equation can be expressed in vector form as,

R .
8T = Tk cW Siny ev ‘ (3.50)

where ey is the unit vector in' the direction of 5%
The above equation may also be written as,
- > - ‘
sV = mkeW x e, - A .{3.51)
where 30 is the unit vector in the chordal direction. For an

inviscid and incompressible fluid the elemental force on the blade

.element. can be expressed. in vector form. as,

st =poHwWxsY : ‘ (3.52) .

e
o

Now referring?; to the figure 3.7, the.expressioﬂ of the relative

> - )
flow velocity W and unit vector e, becomes,

b
i

> ) - e -+
W=V +V_ 3=V, Sin® i + (Rw+Va Cos® ) J (3.53)

n C

+ =
and e, =3 . {(3.54)

. ’ > > . .
where the unit vectors i and Jj are considered. respectively along
the normal direction to the blade chord and the tangential velocity
direction. The values of Vc and Vn are taken from the equations

. .

- + .
(3.8) and (3.9) respectively. Inserting the values of W and e in

the equation (3.51) one cobtains,

} , ' a
st =nke [V, _sin® I + (Rw + Vv, Cosp) 31«3 (3.55)

. - . }
Considering the unit vector k perpendicular to the plane of the

unit vectors: I, 3; since 1 x J =k and 3 x 3 = 0, the above

equation becomes



67 = mkc v_ Sino k | (3.56)
Introducing the values of W (3.53) and 6? (3.56) in the equation
(3.52) one may obtain,

§F = ptk C ‘Eva Sinf 1 + (Rw + vy Cosb) § ] H x (Va sint k)

(3.57)

After vector multiplication, the elemental force 5%'becomes

¥ = prkc H [(Ru V_ Sing .+ v2 sing Coso ) 1 - vi sin®s 312

(3.58)
The equation. (3.58) can be writtén in the following form,
§F =prk cH ( Fy E F, 1) (3.59)
where F, = Rw V_ S5inf + V2 Sin6 Cosb
1 a a
and F. =-v sinZe
2 a .

Now referﬁﬁﬁitO‘the figure 3.8, the elemental force comﬁonent on

the blade element along the streamtube is,

Sine + F. Cosf ) . (3.60)

1 2

GFD =_pwkcH (F

Equation (3.60) may be obtained in the following form after intro-

ducing the wvalues Qf_Fl and‘FZ,

§F, =prkc Ru H V, $in°s \ (3.61)

Now introducing a non-dimensional parameter h = H/R and replacing

¢ by Eé%gefor an @ssumption of infinite number of blades distri- ¢
bution, GFD may be expressed as,
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5Fy =% ok NC R2nwv_ sin’6 66 - (3.62)

Now multiplying the_equationx(3.62)-by 2 for two blade elements

in one streamtube, one finds,

2

sF, =pk NC R*hwv, sin® e & . (3.63)

b

3.2.4 Induced Velocity Ratio, AerodYnamic Forces and Power
Coefficient. '

7o find the induced velocity ratio, the-rglative flow velocity
W, tﬁe l1ocal angle -of attack a and the local Reynolds pumber Ré
are necessary. The relative flow veiocity W and angle of attackli
may be obtained from the quations (3.11) and (3.13}, which are

given below,

v . . : '
H oo/ Bufy 2 + cos6]? + sin®e (3.64)
a. [ae] [=2] .
o = tan T [ gln 8 ] ,  (3.65)
Rpf_a
Vw/Vw + Cos 8

The local Reynolds number Re for the constant wind speed condition

is expressed in the. form, .

o v Vv_cC v -
WC _ W a = % =2 . R (3.66)

R .
and that for the constant turbine speed condition is expressed

in the form,

R = ___C = V_\I .Y..a‘_ ( ____Rw C ) / { B.(."J_) = E Y_@. ._._.Ret (3 67/;\"
e v V. Ve : Veo V." Vo ° B
.- a . a
where R ( =V C/y) is the wind speed Reynolds number and R
ew @ et

( = B%Q') is the turbine speed Reynolds number. L

a
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Now from the equations (3.43) and (3.63), one may obtain the
expression of the induced velocity ratio (rotor axial flow velocity)

as,

A . '
a _ _k NC Rw .. , .
.{f: = 1 3 . — . __Vm Sineg {3.68)

The. value of the induced velocity ratio is obtained by an itera-
tive process. For known values of tip speed ratio Al = Ruyvi);
solidity. ratio 8 { = NC/R), azimuth angle 6, the starting value of
the induced-velécity ratio ié chosen as 1.0 or as that éalcuiated
for the prior streamtube. Now the relative flow ﬁelocity W and

the local angle of attack & are respectively calcﬁlated from equation
(3.11) and (3.13). Then the 1oca1'Reynolds number R_ is calculated
either.ffom-the equation (3.66) for.éonstantéﬂiﬁ&fﬁ}speed.éopdition
or from the eqﬁation (3.67) for constant turbine speed condition.
With the known values of R and. o , the value of the lift coefficieﬁt’
ig taken from the airfoil data and the facﬁof k is calculaﬁed from
the equation (3.45). Now the new value of the induced velocity.ratio
- is calculated by using tﬁe egquation (3.68).'This process 1is conti-
nued uﬁtil the induced velocity ratio is obtained with desired

accuracy.

The elemental blade pitching moment. is defined by,

oM = % C_p W cHC (3.69)

. ) + . L
The non-dimensional normal force Fn and the nen-dimensional tan-' -

gential force F; are defined in the feollowing way, L
. o N .
SF '
+ .
Fn = ____1'_1__2_ : (3.70)'
%DC H Vg ’
SF,_ '
+ - ’ .
Flo= —— _ (3.71)
¥ pcHV )

_ 29~



Introducing the values of GFn (3.14) and SFt (3.15) in the above

equations " ( 3.70) and (3.71) respectively, one obtains,

2 .
Fro=c I (3.72)
VCO
L, | |
t oo W
Ry = C | (3.73)

Referring to the figure 3.9, the elemental streamwise drag force is,

SFD = 2 (.SFn Sinft - 8Ft Cosf ) (3.74)

‘Introducing the value of GFn (3.14) and SFt (3.15) respectively

in the above edquation (3.74), one finds,

- 2 ; -
5FD =pc W ( Cn_Slne Ct Cosf ) H (3.75)

Replacing ¢ by NC §0/2n for an assumption of infinite number of
blades distribution and introducing a non-dimensional parameter

'h = H/R, the equation (3.75) can be written as,

_NC 2 2 . ~
6FD = 3TR e p W RT Cn Sind Ct CosfH ) h &9 (3.76)

coefficient of overall elemental turbine drag ( streamwise force)

is defined as,

SF. _
§C. = w2 — . (3.77)
oAV,

where A ( = 2RH) being the projected frontal area of the swept
valume. Now the expression of the_turbine_overall,elemenﬁal drag

*

coefficient can be obtained as,
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- R W ' -c
8Cy, = Y ..h. (_V ) B Cn Sing Ct Cosg } &6 (3.78)

Integrating the equation (3.78)}, the turbine overall drag coeffi-

ciént can be obtained as,

2 )
_ nNc Tw . _ 7
CD = _—211, R fo ?—(Cn 5inbd Ct Cosg ) \g.e i (3.79)

The blade elemental torgue of the turbine is found. as,

§Q. = 6F, R + 8M . (3.80)
From the equations (3}15),‘(3.69) and (3.80) one obtains,

60 = % p c W (RC, +CC) H  (3.81)

t

Inserting the non-dimensional parameter is h = H/R and replacing
c by NC 88/27 for an assumption of infinite number of blades

distribution, 60 may be expressed as}

N C. 3 2
o 0 R (c, +

¢Q = C ) h §9 . (3.82)

m

Eolle

The overall elemental torque coefficient .is defined as,

. |
sC. = —20 | (3.83)

Q L o AvVIR:
From the equation (3.82) and (3.83), the expression of §C_. is

obtained as,

- ' 2

2 2 v

_ NC R W c a
vy Ve,

After integration, the turbine overall torque coefficient is

expressed as,
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c. =8C ¥ _ (¢ '+%c ) -2 ao (3.85)
v Ve

The ovérall power coefficient Cp ( may also be called .as the
aerodynamic efficiency ) is defined as the ratio of the power
PO produced by the turbine to the total power gvailable in the
air passing-through the same swept volume of the turbine_and is

given by,
P . B -
C, = 2 , , (3.86)
YpA V

Introducing the value of overall power PO = Qw , one obtains,

C = ___Q_UJ = Q 7 : . %EJ“ = C_.A (3.87)
»pA V_R o '

Inserting the value of CQ from the equation (3.85), the overall
power cefficient Cp may be found at any particular tip speed
ratio A . The power coefficient is calculated by the numerical

integration method applying(§impson's rule.

3.3 vVortex Theory -

Strickland,_Webster-and Nguyen [ 9] have présented three
dimensional vortex model. In this model aerodynamic stall may be
encountered. The general analytical approach reqﬁires that-fhe
rotor blades be divided into a number of segments along their
span. The production, convéction.and interaction of vortex sys-
tems springing from the individual blade elements are modeled
and used to predict the "induced velocity"lor "perturbation
velocity". at various points in the flow field. The induced or
perturbation velocity at a point is simply the velocity which is

superimposed on the undisturbed wind stream by the wind machine.



Having obtained the induced velocities, the 1ift and drag of

the blade segment can be obtained using airfoil section data.

A simple representation of the vortex system associated with
a blade element ié’shown in the. figure 3.10..The airfcoil blade
' eleménf is replaced by a "bound" vortex filament sometimes called
"substitution" vortex filament or a lifting line. The strengths
of the bound vértex and each trailing tip vortex are equal as a
consequence 6f the Helmholtz theorems of Qorticity. According to
the figure 3.10, the strengths of the shed vortex systems have
Ehangéd on several occasions. On'gach of these occasions, a
spanwise &ortek is shed who;e stréngth is equal to the change

in the bound vortex strength as dictated by Kelvin's theorem.

The fluid velocity at any point in the flow fieid is the
sum of the undisturbed wind stream velocity and the wvelocity
induced by all of the vortex filaments in'the flow field. The
velocity induced at a point in the flow field by a single vortex
filament can be obtained from the Biot-Savart law, which relates
the induced velocity to the filament strength. Referring to the
case shown in the figure 3.l1ll,for a straight vortex filamenp
of strepgth V and length 1, the.induced.velocity %p at a point

p not-on.the filament is given by,

> v
Vp = & .3 ( Cosel + Cosez) | - (3.88)

Where d is the minimum distance of the point p from the

vortex filament, & is the unit vector. in the direction of r x 1.

T is also the unit vector. It. should be.noted.that if point p
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should happen to lie on the vortex filament, equation (3.88)

yields indeterminate results, since € cannot be defined and. the
. " . _

magnitude of Vp is infinite. The velocity induced by a straight

vortex filament on itself is, in fact, egqual to zero.

-In_order to allow closure éf the vortex model, a relationship
between the bound vortex strength. and the velocity induceq.at a
blade segment must be obtained. A relationship between. the 1lift L
per unit span on a blade segment and the bound vortex strength VB

is given by the Kutta-Joukowski law. The lift can also be formu-

lated in terms 'of the airfoil section 1ift coefficient-cl. Equating

these two expressions for the 1lift, yields the required relation-
ship between the bound vortex strength and the induced velocity at

a particular blade segment.
¢ o 1
= 5C/ CW : {3.89)

It should ﬁe noted that the effects of aerodynamic stall are auto-
matically introduced into the equétion,(3.89) through the section
1ift coefficient. After determininé the induced velocity distribu-
tion, it becomes stréight—forward to obtain the performance

characteristics of & Darrieus rotor.

3.4 Cascade Theory

In the cascade theory [25],the blade airfoils of a turbine
are assumed to be positioned in a plane sﬁrface ( termed as
cascade) with the blade interspace equal to the turbine. circum-

ferencial distance divided by the number of biades. In this model
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the relationship between the wake velocity and the freestream
‘velocity is established by using the Bernoulli's equation while
the induced velocity is related to the wake velocity through a

particular assumed analytical expression.

3.4.1 Bagic Assumptions’

In order to symplify fhe analysis with cascade theory for
the determination of the performance characteristics. of. a.Darricus

wind turbine the following assumptions are made:

1) The blades on the cylindrical surface (cylinder with height
H) are assumed to be developed into a plane surface. This confiz’

guration is known as_ the rectilinear cascade.

2) As the turbine blade rotates in a circular path, the flow velocity

on the blade continuously varies; és a resgult at any instant

each of the turbine blades faces flow cohditions diffgrent from
those on others. In the present analysis one of the blades is
considered gsfthe refergnce blade and at any instant power is
caiculated_with-suéposition that each of the blades sees the

same flow and produces the same power as that of the reference
blade. This process is continued at every station with the
reference blade for. one complete revolution of thé turbine.

Later the average power is obtained.

3) The wake velocity for the upstreém side is supposed to act
in the axial direction and behaves as the freestream velo-

city on. the downstream blade which is pbsitioned behind the
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4)

upstream blade. The pressure in the.wake region of the upstream

side is assumed to be equal to the atmospheric pressure.

During finding the wake velocity the flow is assumed to be

steady, One-dimensional and incompressible.

3.4.2 Blade .Element Angles and Velocities

In the present analysis the flow velocities in the upstream

and the downstream sides. of the turbine are not constant(Figure, 3.12).

From the. figure 3.12, it may be observed that the flow is considered

to occur in. the axial direction. The expressions of the chordal

velocity component ch, the normal velocity component Vnu forlthe

upstream side are respectively obtained fcollowing the equation (3.8)

and (3.9) in the section 3.1l.2.

v

Rw + V CosB (3.90)
cu au

Vg = Vay Sine B , (3.91)

Referring to the figure 3.12, the angle of attack %4 for the

upstream side may be expressed as,

' -1 vnu
Con " tan ( v——') . (3.92)
. cu -

Introducing the value of Vnu and ch and non~dimensionalizing,

Ay = tan™T [ JS;ne ] | | (3.93)
Rwy, au .
(V—oo- /\—70—0——)4' Cosb

" The relative flow velocity WOu for the upstream side is obtained

“as(Figure 3.13)

) 2 ' :
Wou T /ch *Vnu ' , o (3.94) v
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After inserting the values of ch (3.90) and Vnu {3.91) and non-

dimensionalizing ‘the eguation. (3.94) becomes,

wou Wou Vau vau Rw/vau 2 2 :
= . = : o= + ' i .
5 e T O ) Cos8]“ + Sin”® (3.95)
au . . (o] oo

'Following the same procedure, similar expressions are obtained for
the downstream side. Hence to determin€ the angle of attack -“od and

the relative flow velocity Wod for the downstream side subscript u

is replaced by d in equations. (3.93) and (3.95).

After determination of the .local relative flow velocity and
the angle of attack, the straight-bladed ﬁarrieus turbine is deve-
loped into the casche configuration which is shown in the figure
3.14. If the blade‘repreéented by (1) at an azimuth angle‘e is con-
sidered as the reference blade, the flow dQnditions on the other
blades represented by (2) and (3), are assumed to be saﬁé to-that:
of the reference blade. This process is continued forvone compiete

revolution .of the reference blade with a step §§.

In the following analysis, the géneral mathematical express-
ions are derived for the upstream and the downstream sides by
omitting the'subscripts'u and d. These general'expressions‘may be
applied for both the upstfeam and downstream sides by subsdripting
the variable parameters ( dependent of sides of turbine) with u

(upstream) and d (downstream)..

Figure 3.15 shows the velocity diagram on the reference
blade element of the cascade configuration. for a straight-bladed Ff'

Darrieus turbine. To perform the analysis a control surface is
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chosen as shown ih this figure. This control surface consists. of
two parallel 1ine$ to the céscade front and two idéntical stream-
lines having interspace t. This figure-also shows velocities in
reference ﬁo the blade element in the cascade. Referring to the

- figure 3.14, the expressions of these velocities are obtained as,

=

Cos o - ' (3.96)

W
X - 2
V., v, o
Wx Wo 7
‘—]: = .‘_f; Sin 0&0 ‘ (3.97)
W‘JZ_ Wi (W, - V¢ )2
- VCD Vm VOO
w2 Wl (W + Vo )2 |
_ s _ N'H ' ‘
where Vi = 3% = TR o (3.100)

Wx and W__ are the components.of.the Velocity Wo in the x and y direc-
tions respectively where x is choseﬁ aiong the ﬁerpendicular,direction
and y is chosen alopg:the parallel direction of the éhscade front
(figgre 3.14. Wl and W2 are the relative flow velocities respectively.
at fhe cascade inlet and ocutlet. Blade.airfoil'upstream-side is

. termed as cascade inlet aﬁd downstream side is termed as cascade
outlet. Vy is the velocity contributed by circulation YH. t (=27 R/N}
is the blade spacing. .The angles of attack'at the cascade inlet oy

and outlet o are obtained as,

2
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W, /V
x' = -
== 37ij] (3.101)

-1
o, = tan [ _
(Wy

WV '
"l xlie ] (3.102)
(Wy+ V"- ) /Voo

1

tan

3.4.3 Aerodynamic Forces

along the bounding streamlines (figure 3.15)the pressure. forces
are cancelled: Viscous forces can be neglected outside of the boun-
dary layers. There exists only the momentum flux through the straight
iines.parallel to the cascade front. So the force in the tangential

direction due to the rate of chage of momentum,

F_ =m (W2 cos 0, = Wl Cos al) : (3.103)

Applying the continuity equation,the mass flow rate m can be found as,

m= pH t W1 Sin al =0H -t W2 Sln_oc2 = pH t Wx (3.104)

From the equation {(3.103) and (3.104), the tangential force Ft becomes,

_ 2 . . 2 . :
Ft =pH t (W2.Sln o, Cos o, Wl Sin oy Cos ul) - (3.105)

. The force in the normal. direction to the cascade may be obtained as

F_=m { Wy Sin o, - W, Sin « ) (3.106) -

n 1 5 2)+Ht(Pl—-P

2

where Pl and P2 are respectively the pressures at the cascade

inlet and outlet. Introducing the value of m ( 3.104), egquation

(3.106) can be written as,
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_ 2 .2 ol w2 _ '
Fn = pH t (Wl Sin oy W2 Sin az) + H t(P1 P2) (3.107)

Considering the total cascade loss by a total pressure loss term

-APOV and using Bernoulli's equation between the cascade inlet

and. outlet, one obtains,

2 2 :
P W P W P
Ay L. 2, 2, (3.108)
pg 29 Pg 29 Py
Rearranging, (P,-P, )} = 2 W2 - W2 ) + AP (3.109)
! 12 2 2 1 ov :

Now introducing value of (PlﬂP ) in the equation (3.107) and

2

writing Wl Sin o4 = W2 Sin o, ( for the present configuration),

the normal force becomes,

_pH t 2 _ o2 -
F o= (W) - W)+ Ht AP (3.110)

The expressions of the normal force coefficient Cn' the tangenﬁial
forée coefficieht Ct' the non-dimensional ncrmal force F; and
the non-dimensional.tangential force F: in the cascade theory are
respectively obtained following the equations (3.20), (3.21),
(3.72) and (3.73). These are given below { since ao isridentical
to a given by the equations (3.20) and (3:21j while Wé is identi-
cal to W given by the equations (3.72) and (3.73), @ and W are
replaéed by a, and WO respectively).

Cn.= C1 Cos Oto-+-cd Sin-aO ‘ (3.11L)

= i - ‘ 3.112
c, = C, Sin ag C4 Cos ag ol \)

wr

-4 0



2
W -
FF = ¢ =2 (3.113)
n n .2
VCD
R W

3,4.4 Velocity Contributed by Circulation and Total Power Loss Term

The circulation about the blade profile is defined as,

(3.115)

& v

>
vV o= §s W
Its contribution along the streamlines is cancel}ed by virtue

of the opposing directions of s, while the contribution along the

parallel direction.of the cascade front is retained. As a result

" the circulation becomes,

T o=t (w2_005 6y = Wy Cos ay ) (3.116)

From the equations (3.103), (3.104) and. (3.106) one.obtain,
F. = oWV H R (3.117)

Referring to the figure 3.16, the 1ift force can be written as,g

L = Lid + Lv ' : (3.118)

where, Lid and Lv are respectively the lift force appearing in

frictionless flow and the lift force due to pressure loss.

According to the figure 3.16, Lid and LV may be expressed és,

= F_/Sin g ' ~(3.119)
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where D is the drag force on the blade airfoil. The equations

{3.118), (3.119) and (3.120) yield,

L = F, /Sin a_ + D Cot (3.121)

o)
Dividing both sides of the equation (3.121) by L, introducing

= D/L and arranging,

F ' -
t — _ .
A o (_l e Cot ao) (3.122)
Rearranging,
F
L t

S - (3.123)
.8in a (1- ¢ Cot ao) )

Introducing the value of F, from the equation (3.117), the 1lift

t
force L beCOmes,'
pwW, H Ny
_ % = 5
L = Sin Q. ( 1 -eCot ay) (3.124)

Referring to the figure 3.15, one may write Wx = WO Sin 0,r SO

the 1ift force L can be expressed as,

Y .
{ 1- ¢ Cot ao) (3.125)

pr HWO

The 1ift force is defined as,

. 2 ' . '
= 1
L=3%CpW, CH | (3.126)

From the equations (3.125) and (3.126) the expression of the

circulation is obtained as,

V=g c, CW, (1-cCota,) (3.127)
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' Now the expression of. A from. the/equations (3.100) and (3.127)

are obtalined as,

_1 N C
8T 1 R

WO ( 1- €¢ot N ) H {3.128)

In the non-dimensional. form, the equation (3.128) beCOmes;

vy Ne o ‘ o
- = ) H _ (3.129)

1
- B Cl v (1 e?o? uo

Now an expressioh of. the pressure loss term APOV will be derived.

From the figure 3.16, the normal force can be obtained as,

F =F .. +F ' : : (3.130)

Where Fnid is the force appearing in the frictionless flow and
an is the force due. to pressure loss. Referring to the figure 3.16,

an may be expressed as,

D

Fnﬁ T Sin o (3.131)
o)
The force an may also be expressed as,
an =H t APOV . - ‘ (3.132)
From;the equations .(3.131) and (3.132) one obtains,
S S R o — : (3.133)
oV t H Sin,cxo . '
The drag force D is defined aé,
D=%C.pWoCH '  (3.130)
™ "o . : )
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Now from the equations (3.133).and (3.134) one obtains,

C
_p_a g2
APov 2 Sin o Tt W0 (3.135)
! ' _ NC_ _ L . NC
where C/t = 57 R 5=+ R (3.136)
In non-dimensionalized form,
2
APy _ 1 Ca ne o (3.137)
2 47 Sina. R 2 .
oV, 0 Ve

3.4.5 Velocity Ratios and Rotor Power Coefficient

The wake velocities for the upstream and the downstream sides
of "the turbine are obtained by applying Bernoulli's equation.with

absolute velocity and that with relative flow velocity.

Applying @Lrnoulli's equation with absolute velocity in front

and behind. the cascade one.obtains for the upstream.side,

2 2
zg i Eﬁ - Vau + Pﬂu
2g Pg 29 rg
Vi Poo viﬁ P2u
B e ] .
2g 5g 29 - 5g (3.139)

wherelvau and Ve are respectively the induced velocity and the
wake velocity for the upstream side. Piu and P2u are the static
pressures respectively at the cascade inlet and outlet for the

upstream side. In the wake region of the upstream side with the

velocity Ve' the pressure is assumed to be equal to the atmospheric
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pressure (figure 3.12). b HE: {_gﬁ the above equatlons (3.138)

F\__.‘w-——'
and (3.139),
2 2
v v P P
o = lu 2u .
—_— == = amm o 2= 3.
3g 73 - Pg o9 (3.140)
After rearranging,
‘ . B 2 _ 42 '
-(Plu qu) = 3 ( v, _Ve) : (3.}41)

Now subscripting the variable parameters in the equation (3.109)
by u for the upstream side and balancing with the equation. (3.141)
_one. obtains,

L 2 _ = 2 _wl ) o+ A -

5 (v v > (W Wlu )+ POVu (3.142)
Again subscripting the variable parameters in the equation (3.137)
by u for the upstream side, introducing in the equation (3.142)
and dividing throughout by p/2 one may fihd,

c .
1 NC du 2
= . & =n aou..Wou (3.143)

2— —
Voo ™ Ve "_( You Wlu) *

© From the equation.(3.l43), the expression,of-the wake velocity
ratio in non-dimensionalized form .for the upstream side can be

written as,

R R | 2
Ve oyy- fzul o oL(ng _au Tou  (3.140
Veo Vi Vi , 2T R* Sin @,y vﬁ

similarly the expression of t@@ﬁwake velocity ratio in non~dimen-

sionalized form for the downstream side can be found as), .

2. 2 - 2
v W W cC W -
V1= 2<Zi _ ]z_d ) - 1 ( NC) ad cd (3.145)
21 R Sin «o 2 )
e
Ve Ve od ve
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The wake velocity ratio for teh downstream side may be related as,

v VA : :
_W. = .—2{ 5 _E (3-146)
v v e

In this. model, for the upstream side a relationship between. the

wake velocity and the induced velocity is given as,

v v k, ' :

au _ , _e i
v_ f ( A ) (3.147)

ad - (¥, i (3.148)

The wvalue of the exponent ki ig found from a fit of experimental

results. The induced velocity ratio for the down-stream side may
) £

also be written in the form,

Vad Vad Ve 'Ve Vw ki
7 = 7 - u= .{7_ ( T ) ) (3.149)
oo e o0 0 =]

Induced velocity ratio depends on many parameters such as, solidity,
tip speed ratio, azimuth angle, Reynolds number, aspect ratio,
blade. pitching and airfoil profile. In the iterative process; the
effect of every parameter except solidity is taken care of through
the airfoil chéracteristics which controi circulation. Thus the
exponent ki becomes the function of solidity onily. Tﬁe expression

of the exponent is obtained as,
ki = (.425 + .332q) , . (3.150)

where ¢ is solidity of a Darrieus wind turbine.
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The expressions, for the tangential force F_ and the normal force

t

Fn, may be used for the'upstréam and the downstream sides by subs-

cripting the variable parameters with u (upstream) and d (downstream) .

The equations (3.105) and (3.110) are expressed.in the following

forms. inserting t = 271 R/N.

_ 21 2 .. - S

Fo () = 5= - PHR ( Wy Sin a, Cos o, Wl 8in o, Cos al) (3.151)
_ I 22 27

Fn (6) = N ° pHR(W2 w1 )+ g HR APOV (3.152)

Since the tangential and the normal forces represented by the

equations (3.151) and (3.152) are for any azimuthal position,. so

from now on they are considered as a function of azimuth. angle 9.

The average tangential force on each blade. is expressed as,

- o1 2T
ta 2m o _
The total torgue for the number of blades N is expressed as,

0= NF__ R  (3.154)

From the eguations (3.151), (3.153) and (3.154) one obtains,

A
0= o R% [ (W2 Sin a

2 . L
! Cos q,-W] Sin a,/C0sf) d6  (3.155)

2 2 1
The turbine torque coefficient is defined by,

¢, = — (3.156)
p A V_R
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Introducing the value of Q from teh equation (3.155), inserting
A = 2RH, one may bbtain.the expression of the turbine overall

torque coefficient as,

, 27 Wg Wi
¢y = é ( ;fﬁ Sin g, COs g, ;5 Sin o, Cos ap). de (3.157)

The turbiné overall power coefficient is given by the equation

c o= ac | | (3.158)

The numerical calculation to obtain‘the overall power coefficient

is carried out following the’ procedure given. in the Appendix - A.

3.4.6 Blade Pitching

The same expressions as for no blade pitching condition in
this theory may be applied for the blade pitching condition

after alteration in the angle of incidence only.

Figure 3.17 shows the velocities and the forces acting.on
the blade airfoil with pitching. In this analysis pitching is
considered to be positive for the blade airfoil nose rotating in
the oﬁtward diréction from the blade flight path. As a result

for the upstream side'the angle of. attack.becomes,

Ot‘l.l - OLOU "E;Y Pu (3-159)

and for the downstream side the angle of attack becomes,

0g T Gggq t Ypd B ' (3.160)
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where Ypu and Ypd are the pitch angles in the upstream and the

downstream sides respectively. Now the lift and drag characterist-

ics are taken corresponding to au‘(upstream ) and O g {downstream) . .
The parameters. shown in the figure 3.17 have not been subscripted
to make them generalized. Subscripts u and d are used with the

parameters for. the upstream and the downstream sides respectively.
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CHAPTER 4 : RESULTS AND DISCUSSIONS

In this chapter the calculated results are presented. The
effects of a number of paraﬁeters such as soiidity, blade pitching
etc. on the performance characteristics of a stfaigﬁthbladed
Darrieus wind turbine are discussed. Afterwards the calculated
values by cascade theory for cambered-blade cross-section are
compared with those by cascade and simple multiple streamtube
"theoreis for symmetric-blade cross sections of straight-bladed

Darrieus wind turbines.

Before geing to discuss the theéretical results, it is
necessary to mention regarding the lift-drag characteristics of
the turbine blade airfoil. Two types of airfoils are included in
this analysis. These are NACA 1415 and NACA 0015. The lift-drag
values aré taken by consulting many references. Thege are presen-
ted by Abott and Von Doenhoff [1] , Clancy [9] , Dommas%ﬁ?fl3] .
Durand [14] , Mandal [25] , Sharpel37] . The lift-drag charac-
teristics are presented in graphicai forms in the Appendix-b.
Aspect ratio effect is also encountered in the analysis which is

described in brief in Appendix - E.

4.1 Calculated Results

The ﬁumerical results are determined for a straight;bladed
Darrieus wind turbine by éascade theory‘for cambered-blade cross-—
section. Theselare presented in the graphical forms. The results
of a straight-bladed Darrieus wind turbine are presénted and both

the overall and local values are included.
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Few comparative results of overall values and 1OCai values
are presented which are calculated by cascade:theofy with blades
of cambered cross-section and multiple-streamtube and cascade
theories with blades‘of symmetric cross—seétion. If blades of cam-
bered cross-section are applied in place of symmetric crosé—section
and proper. blade pitching is employed, improvement in the furbine

performance is achieved.

Effect of Solidity:

The effects of solidity on the overall power, torque and drag
'cqeffidients of a straight-bladed Darrieus wind turbine calculated
by cascadé théory with cambered cross-section .are respectivelyA
shown in the figures 4.1, 4.2 and 4.3. The solidity is varied while

the wind speed, blade.chord, number of blades and aspect ratio are

kept constant. As a result wind speed Reynolds number become fixed.

Solidity is changed with the change of radius. The figure'4.l
reveals that the maximum: power coefficient appeafs at a solidity
of about .3. However if the solidity is lowered, the performance
curve flattens out thereby making peak power to be delivered over
a wide range of tip speed ratios. With.the 1bwer,solidity powerh
qbefficient falls as well as opefating range procéeds towards
higher tip speed ratio side, g0 the turbine.rotational speed
increases yielding higher ‘blade stresses. The figure 4.2 shows
that with the higher solidity, the torque at low tip speed ratio
increases which is good from the p?int of view of self-starting.

But the disadvantage of using a high solidity turbine is that

there is sharpe chage in power with the tip speed ratio as well"
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as peak power drops. It can be seen from the figure 4.3 that the
turbine overall drag coefficient changes significantly with the

solidity. At low solidity, the overall drag is lower. As a result,

a low solidity turbine is better from.the structural point of view.

According to the figure 4.1, with the increase of solidity,
peak power coeffiéient moves towards the low tip speed ratio side.
This is because of. the fact that for a high solidity'turbine, the
induced velocities drop with tip speed ratio at a higher rate in
comparison to that for a low sblidity turbine. As a result, for
a high solidity turbine; the local angles of attack change towards
the lower values at a faster rate thus making the best éngles of
attack values (which give best '1ift wvalues) to occur at lower
tip speed ratio side. AtAlow solidity, change of induced veloci-
ties and hence the local éngles of attack with tip speed ratio
happén slowly, so the optimum lift characteristics may appear
over a wider range of tip speed ratio thereby making the nature
of the curve flat near the peak value. While for a high solidity
turbine since the change of local angles of attack with tip speed
ratio occurs sharply; the best 1ift values appear for a very
shorter-ranﬁe of tip speed ratio thereby making sharp change of

power coefficient near .the peak.

Theoretically production of-power becdmes maximum when
the induced velocity ratioc is 2/3 (Betz limit) which may be
termed as the optimum induced velocity. When at anf station there
occurs the coincidence of the optimum induced velocity with' the

lift close the stalling angle (optimum lift), it gives optimum
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power. Actually the induced velocity is varying with azimuth

angle, so the optimum condition is not satiéfied at every staion.
However the solidity for which, in most of the stations the

induced velocity and the angle of attack become either equal or
near to the optimum induced velocity and optimum 1ift respectively,
the peak power coafficient.appears to. be the highest. As the figure

4.1 reveals, it probably happens at solidity of about .3.

With the increase of solidity, the variation of the torgue
coefficienf near the peak and the shifting of the peak torque
coefficient towards the low.tip speed ratio side(figure 4.2)may
be explained in the same manner as in the case of power coeffici-
ents in the figure 4.1. For a high solidity. turbine, solid blockage
is higher ( in other words the product of number of blades and
chord is higher), as a result the tangential forces are higher
which are the reasons of higher torque coefficients at low tip
‘ speed ratio. At low tip speed ratioc the induced velocitiés and
the local angles of aﬁtack distribufion.with azimuth angle remain
almostrunchaﬁged,with solidity, so they have very negligible
effects on the variations- of the torque coefficients with solidity

at low tip speed ratio side.

Drag on a turbine is the axial force which may be considered
ﬁo be equal to the rate of change of momentum in .the axial direc-
tion. Thus for any. particular turbine, this force is the function'
of induced velocity aﬁd the change of velocity (i.e. the differencgﬁ
of wind and wake velocities). With the rise of tip speed ratio,

induced velocity drops and the change of velocity increases. But

the product of induced velbcity and change of velocity begin to
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increase with tip speed ratio. As a result the draé aﬁd.hence

the drag coefficient increases with tip speed ratio and approaches
unity when the wake velocity approaches zero. For a high scolidity
turbine fall of induced velocity as well as change of velocity
occurs with tip speed ratio at a highef fate in comparison to that
for a low scolidity turbine. As a result drag coefficient for a
high solidity turbine approaches. to unity with tip speed ratio

prior to that for a low solidity turbine.

Effect of Blade Pitching:

Performance characteristics of a straight-bladed Darrieus
wind turbine with blade. pitching have been presented in the figures
4f4, 4.5 and 4.6. In the bresent analysis pitching is said to be
positive for the blade nose rotating. in. outward direction from
the blade flight path. From the figure 4.4 it is observed that
with the application of fixed pitching, the rotor power coefficient
decreases especially after the peak.valué. The highér.is the pitch~

ing, the lower is the power coefficient.

Incorporating fixed blade pitching (here it is positive),
the angle of attack decreases in the upstream and increases in
the downstream sides. So the blade'airfoil lift coefficient drops
in the upstream side and rises in the downstream side which are thé
outcome of the lower tangential force coefficients in the upstream
side and higher tangential force coefficients in the downstream
sides in general. But the increased angles of attack in the down-

stream side sometimes go beyond stalling angle which again are the
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causes of reduced tangential force coefficients. However'the net

effect always reduces the power coefficients.

In the figure 4.5, the resﬁlts are given for sinusoidal pitch
variation. This figure shows that amplitude of angular pitch varia-
tion { sinﬁsoidal) has significant effects on the performance
curves. The figure 4.5 reveals that as the amplitude of sinusoidal
pitch variation increases power rises with lower amplitude at the
low tip speed rétio side. From the figure 4.4, it is séen that with
the change of magnitude of fixed pitching, peak power remains in
the higher tip:speed ratic side while the. figure 4.5 shows that
with the change of amplitude of sinuscidal pitching, it gradually

proceeds towards the lower tip speed ratio side.

As the sinusoidal pitchingAis inéroporated into the turbine
blade, the local angles of attack decreases in the upstream. as
‘well as in the downstream side in géneral.,In.the higher tip speéd
ratio range, these angles remain below the stalling angle. As a
result with lower angles of attack, the 1ift coefficients become
lower which are the results of lower tangential force coefficients.
So the power coefficients fall with the rise of amplitude oflsinu—
soidal blade pitching. With the rise of amplitude of sinusoidal
pitching, the values of local angles of attack fall witﬁ tip speed
ratio at a relatively higher rate which is the reason of shifting
the peak power coefficient towards the.lower tip speed ratio side.
According to the figure 4.5, at low tip speed ratic range, the .
power coefficient increases with rise of amplitude of pitching. |

It is because, at zero pitching, angles of attack in many stations
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are above stalling angie'but eméloying sinusoidal pitching,
{as a result of reduction of angle of attack) relatively lower
number Qf'stations occur in the stalling region. Incorporating

the blade pitching, there appears relatively févourable local
angles of attack-distribution which makes favourable local tangen-

tial forces, as a result torgque coefficients at the low tip speed‘

ratioc side increases with sinusoidal pitching.

From the figure 4.6 it is observed that the combination
of fixed pitching and the sinusoidal pitching has remarkable
effects on the performance curves. This figure reveals that as
the combined pitéhing increases power rises with lower combined
pitching at very low tip spéed'ratio side. From the figuges 4.5
and 4.6; it is observed that of the high tip speed ratio side
the power coefficieﬁts:drop more for the combined blade pitching
condition.than-fhose‘for the sinusoidal blade pitching condition.
It is becauée of the fact that as the combined pitching is emplo-
| yved, the local angles of attack at the high tip speed ratioc dec-
reases more in the upstream side and increases more in the dOWn;
stream side iﬁ comparison to those for sinusoidal pitching condi-
tion. For the combined pitching condition, lift'vaiues drops more
in upstream side and exceeds stailing angle more rapidly than .

those for the sinuscidal blade pitching condition.

Effect of Number of Blades:

Figure 4.7 presents the variations of instantaneous torgque
with azimuth angle for wvarious numbér of blades. The values. are

shown for one complete revolution of the rotor at an optimum tip
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speed ratio. It is observéa from ﬁhis figure that number of

blades has strong influence on the instantanecus torgque of the

" rotor. The uniformity of the rotor speed depends 6n the amplitude
of instanteneous torque variation or in other.words, on the fluc-
tuation of energy in one complete revolution. ForC}one—Bladed.and
two=-bladed turbines thesé fluctuations are high, as a result in
each reyolution the turbine will rotate with relatively nonuniform
speed. The fluctuations of energy for a three-bladed and é four-
bladed turbine are low and since the rotor has self-inertia, so

it will cause negligible variation in rotor speed. The torgque vari-
ations of a two-bladed, 'a three-bladed and-a four-bladed. rotors
can be obtained by superimposing respectively two torque curves;
-three torque curves and four -torque curves for single blades.

For a two-bladed, a three-bladed and a four-bladed turbines each

curve is displaced by 1800, 120o and.900‘respectively.

4.2_Comparative Results:

In the figures 4.8, 4.9 and 4.10 respectively, domparisons
of the calculated values of overall power coefficients, torque
coefficients and drag coefficients by the cascade theory both
for the blades of cambered cross-section and symmetric cross=-section
are shown. From these figures, it is seen that the performance
characteriétics of the turbine with cambered blade cross-section
improves negligibly in comparison to those of a turbine with symm—
etric blade cross-section. The figures 4.11, 4.12-and 4.13 shows
the similar comparisons as the figures 4.8, 4.9 and 4.10 but it

incorporates blade pitching. It is observed from these figures

=57~



that employing blade pitching there occurs small improvement

of power coefficient in each of the cases.

In general for'the blade airfoil of cambered cross~section,
1ift values increases in the upstream side and drop -in-the down-.
stream side. As a result there occur higher torgue in uﬁstréam
side and lower torque in downstreém side in comparisocon. to those
for the blade airfoil-of symmetric cross-section. The net. effect
for the upstream and doﬁnstreamtsides change.negligibly for the
case with no blaae pitching-and for those with fixed;sinusoidal

and combined blade pitching conditicons.

In the figures 4.14 .to 4.18 respectively, compafisons of
the calculated values of the induced.velocity ratios, local angles
of attack, local Reynolds number, local non—dimensional tangential
and normai forces by cascade theofy with blades of cambered cross-
section and symmetric croés—section, gsimple multiple streamtube
theory are shown} The values are determined at tip speéd ratio,
4.5, From the figure 4.14 it is seeh that the induced velocity
ratios by the cascade theory differ) significantly from those by
simple multiple streamtube theory. In the simple multiple stream-
tube theory it is assumed that the ;nduceé.veldcities in the
upstfeam,aﬁd the downstream siaes of the rotor are constant.
But in the cascade theory for the upstream and the downstream sides
these are calculated seperately. In the cascade theory,. the drop

of axial flow velocity occurs twice, one in the upstream side and
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another in the downstream side. The wake velocity in the upstream
side acts as the inlet velocity in the downstream side. As a result
the induced velocities in the upstream side are higher than those
in the downstream side which are depicted in the figure 5.14. From
this figure it is also observed that the induced velocity ratios
calculated by cascade theory for the blades of cambered cross-
section varies negligibly in comparison with those calculated by
cascade theory for the blades of symmetric cross-section. In the
upstream side for blade airfoil of cambered cross-section the 1ift
value increases, making the higher blade element drag force which
is to be balanced by the higher drag produced due to the chahge of
momentum occurs with the lower value of induced velocity while for

the downstream side the opposite effect appears.

It may be observed from the figure 4.15 that the local angles
of attack values by the cascade theory differ appreciably from
those by simple multiple spreamtube theory. But the lpcal éngles
of attack values by the cascade theory for the b;&des of camberea
cross-section differ in small amount from those by the cascade
theory for the blades of symmetric cross-section. Eigure-4.14.
reveals. that induced velocities in the upstteam gside fall for the
cascade theory with blades of cambered cross-section than those
for the cascade theory with blades of symmetric cross-section,
which is the reason of relatively lower angles of attack in upstream
side. Similarly angles of attack for downstream side may be

explained.
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The c0mparative'curves of”Reynolds number.in the'figure 4.16

show that there are negligible differences in Reynolds.number

by the cascade théory with blades of cambered cross-section

aﬁd symmetric cross-section and simple multiple streamtube theory.
For any particular turbine, Reynolds number is the function of

the local relative flow velocity which is the vector sum of the
tangential velocity and induced .velocity. At high tip speed-ratio,
relative flow velocity is dominated mostly by the tangential
velocity than the induced velocity. Since for the present case the
tangential velocity is constant and the tip speed ratio is higher,
so the only variations of the 1nduced veloc1t1es ( according to
the figure 4. 14) cannot make prominent change in Reynolds number

by the theories mentioned above.

Referring to the figufes 4.17 and 4.18 for the comparative
curves of non-dimensional tangen£ia1 and nﬁrmal forces, one may
observe that by cascade theory with blades of cambered cross-
section and symmetric c;oss—section, the forces in the upstream
side are higher than those in the downstream side while by the
simple multiple streamtube theory, these forces are equal in both
upstream and downstream sides. Figure 4.17 reveals that higher
forces are producgd in the upstream side than those in the down-
stream side. This can be explained easily following the figure 4.15
showing angle' of attack‘dist:ibution.’These angles are below the
stall point. So far higher angle there is higher 1ift, hence higher
tangential force. Cascade theory with blades of cambered cross-

section give mroe relatively higher blade 1ift value which is the
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outcome of relatively higher local tangential force in the
upstream side. Figure 4.18 having normal force distributions may
be explained in the same manner as for the case of tangential

force distribution in the figure 4.17. . ‘ -

Effect of Tip Speed Ratios:

Comparisons of the induced velocity ratios, local angles of
atteck, local Reynolds number, local non-dimensional tangential
and normal forceg at three tip speed ratios. are shown in the
figures 4.19 to 4.23 respectively. The local values are ealcula—
ted by the cascade theory with blades of cambered cross-section
and symmetriq cross=section. Referring to the figure 4.19, it is
observed that as the tip speed ratio‘increases inauced velocity
ratio decreases. With the rise of tip speed ratio, more and more
air passes outside the rotor, hence the induced velocity beéin
to drop with tip speed ratio. At vefy high tip speed ratio almost
ail the air passes,arouhd‘ the rotor thereby making the induced l !
velocity very small., From this figure it is also seen that the
induced velocity ratios calculated by caecade,theory for blades
of cambered cross-section varies negligibly . in comparison with
the induced velocity ratios for blades of symmetric cross-section.
Figﬁre 4,20 shows. that at low tip speed ratio side there appear
stalling engies in many stations. As the tip speed ratio increases
the local angles of attack in all‘staﬁions go below stalling
point. With further rise of tip speed ratio local angles of attack

fall more. This phenomenon can be explained from the induced velocity
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distribution of the figure 4.19. Keeping the tangential velocity
constant as the induced velocity.decreases, values of local angles

of attack. decreases.

Figure 4.21 depicts that there is remarkable effect of tip
speed ratio on the local Reynolds number. At constant turbine
sﬁeed, tangential velocity is fixed, the wind velocity varies with
tip speed ratio. At low tip speed ratio induced velocities are
higher than those at high tip speed ratio {figure 4.19).As it is
mentioned before for a particular turbine, local Reynolds number
. is the fuﬁction of local relative flow velocity which is the
vector sum of the tangential Velécity and the induced velocity.

At high tip speed ratio, Reynolds numbef is dominated mostly by
tangential velocity and since this quantify is fixed there is .
relatively small variation of iocal Reynolds number with azimuﬁh
angle whereas at low tip:speed ratioc this variation is relatively
higher because of higher inflhencé of of induced velocity in compa-
rison to that at high tip'speed ratio side. With bladeé,of cam-
bered cross-section the distribution.of local Reynolds number

varies negligibly from that with blades of symmetric cross-section.

It is seen from.the figure 4.22 that at low tip speed ratio
the local tangential forces drop in some range. of.azimuth angle
which is due.to the stalling effect as the figure 4.20 reveals.
As the tip speed ratio risgs stalling disappears. With very high
tip speed ratio tangential forces decreases more because 0f lower
local angles of attack. In the upstream side, local'tangential for-

ces calculated by the cascade theory for cambered blade cross-
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section are slightly higher than those calculated by the cascade
theory for syﬁmetric blade cross-section. It occurs due to the
fact ;hat tﬁe local 1lift forcé in uéstream siée higher by cascade
theory with caﬁbered blade cross-section than those for symmetric
blade cross;section. Similarly the figuré 4.i3 showing the non-
dimentidnal locai normal forces at different tip speed ratios can

be explained.
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CHAPTER 5 : DESIGN OF TURBINES

In this chapter simplified fbrm of design .method is presented
for vertical-axis étraightubladed Darrieus wind turbine.. The
design is performed at variable turbine speed condition. A number
of parameters such as solidity, design power, design wind speed,
cutout speed, blade stress (. in othér words blade material),.number
of blades, airfoil shape, blade supporting type (simple/overhanged/
cantileve}) etc. control the design of turbines. Considering. all
the above mentioned variable. parameters, the present design approach
gives guidelines to have thimum turbine configurations at varia-

ble turbine speed.

" Design of a vertical-axis Darrieus wind turbine at variable
turbinenspeed condition is‘generally done with a view to serve
the foLloWing_purposes: {a) It hay be applied to perform water
pumpingmfor'irrigation (b) It may also be used in the DC genera-
tor/regulétor/storage battery combination for. generation of
eleétricity in the remote areas. During desighing ;he vertical-
axis Darrieus wind turbine at variable turbine speed, there - o :
appear many variable parameters. Among them few paramétefs are
considered to be fi%ed before conducting the design analysis.
Thesle are number of blades, blade material, blade supporting type
and cutout speed. The flow diagfam of the variable speed design
épproach has been given in the appendix-A. In this deéign, the
blade pitching is considered as zero. Fixed blade pitching (either.
positive or negative) always gives reduced power. On the other

A

hand, variable blade pitching may give improved power but. control
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of variable pitching is difficﬁlt especially at high turbine
speeds. Number of blades is choosen as threé but the othér number
may be taken as well. A turbine with three blades is better con-
cerning smooth running because of lower fluctuations of energy

in each revolution. In this design the blade material is chosen

as aluminium. alloy ( where allowable stress is 100 N/sg. mm) and
the cutout speed .is considered as 14 m/sec. The blades are assumed
to be supported like that of the overheanged type which is shown

in figuregscC.l.

In the present design analysis,'the variable speed design
is carried out at constant tip speed ratio. In other words, the
load characteristic curve is aésumed in such a way that the tip
speed ratio remains constant. The constant tip speed ratio design
may approximatély follow the load characteristic curve of either
a positive displacement pump or a centrifugal pump. However to
make the accuracy of the design, actual pump characteristic curve
is necessary. to be encountered. in the present design method,
emphasis is giﬁen on finding a general design approach of a varia-
ble spéed.turbine rather than to study a partiéular problem:
Design configurations of a variable speed turbine at various
sclidities are shown in the figure 5.1. The design wind speed
is chosen as 8 m/ sec.-while the design power is 10 Kw. It can be
seen from this figure 5.1 that with the increase of solidity, the
height. and chord of the tu;bine iﬁcreage appreciably while the
turbine diameter decreases which is remarkable in the low solidity
range only. It is also observed from this figure that with the

rise of solidity, starting torgue increases adeguately. Starting
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tofque is important for the design of a variable speed wind

turbine coﬁpled with a pump. These starting torques are calcu-

lated at a wind speed'of 4 m/sec. Obviously high solidity turbine

is gocod in consideration of higher starting torque and lower
diameter, one the other hand, low solidity turbine is good .in
consideration of lower height and chord. It has also been explained
that a turbine with large diameter is not good becuase of adaitional
losses due to additicnal drég produced by the blade supporting
struts which are higher for a large diameter turbine. Blade skin
thickness remains constant with solidity. Alsc the aspect ratio

does not chage much. The design power-coefficients are higher in

the middle range of solidity. The total length of struts and blades
is minimum around solidity 0.500. At variable turbine speed condi-
tion, the designlrpm should be aS high as possible to reduce trans-
mission losses. The figure 5.1 reveals that the peak wvalues of rpm
occur from solidity .300 to .600-bututhe variation of rpm with

solidity is not much.

With the same number of bladés, as the solidity (NC/R) of
a turbine increaseé, the chord-radius ratioc (C/R) increases
which may be satisfied by reduced diameter and increased. chord,
The diameter is inversely proportional to the square root of
the sqlidity of a turbine if the projected. area and the aspect
ratio remain constant. In this design these quantities do. not
vary considerably with solidity. Since the design power coeffi-
cient.with solidity does not change much, for the production
of the same power at the same wind speed, phe projected area

(A = H.D) of the turbine does ﬁot vary appreciably. As a result,
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as the diameter decreases with solidity, the height increases.
Since both height and chord increases with solidity, the aspect
ratio (H/C) does not change much. For any fixed aspect ratio.
peak power_coefficient is low at low solidity. It increases with
the increase of solidity. With the further inpreases-of solidity
it decreases, Since in this design, the aéﬁect ratio which has
the ;nfluence on power coefficient, does not change much; the.
design power coefficient remain higher in. the middle range of
solidity. In this design torque is directly proportional to the,
diameter of the tﬁrbine and the planform area of the turbine
blade. With the rise of,turbine'solidity, turbine diameter decre-
ases while the planform area'incréases for the increase of blade
chord‘and height. The combined éffects increase the starting

torgque with rise of solidity.

Figures 5.2, 5.3 apd 5.4 shows the comparisons of design
configurations at wvarious solidities for two types of blaae
supports: simple and overhanged type figure c.1l. g One may observe
from the figure 5.2 that applying overhanged blade support in place
of simple blade.support, the diameter of the turbine and chord of
the blade profile decrease remarkably while the height of the tur-
bine only_increases but at lower rate in comparison to diameter. and
chord. It may also be seen from the figure .5.2 that the aspect ratio
for the ovérhanged blade support is more than double to.that for
the simplie blade support.'For overhanged blade support, aspect
ratio is higher because of higher height of.the turbine and lower
chord of blade profile. From figure 5.3, it is observed that for

the overhanged blade support, the design rpm and design power
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coefficient increase appreciably from the correspon@ing value.
for simple blade support., It may also be 'seen from this figure
that for the overhanged blade support the design tip speed ratio
increases while the étarting torgue decreases in comparison to
those for the simple blade support. Due to the higher aspeqt
ratio for the overhanged blade support, the design power coeffi-
cient increases. For the overhanged blade support starting . torque
values decrease becaisé of lower diameter of the turbine. Since
the design tip speed ratio increases.ané.diameter.of.the turbine
decreases, hence for the same wind speed, design rpm for the

overhanged blade support. increases remarkably. .

In this design the blade supporting struts is considered
as of airfoil cross-section. It is observed that the struts
having.airfoil cross-section creates negligible drag i.e. the
power ioss due to¢ supporting struts of airfoil cross-~section
become very negligible. The design is conducted based on support-
ing struts of airfoil cross-secticn. Total blade léngth LB is
the length of blade supporting struts and the turbine blades.
From the figure 5.4 it may bé seen that the totél blade iength‘
in the case of overhanged blade support is lower in comparison
to that forlsimple blade support. It is because of the fact that
for the overhanged-blade support, the diameter of the turbine
decreases at higher rate while the height of the turbine increase
at lower rate. It is obvious that the cost oprroduction.conﬁéb—

ning blade supporting struts and turbine.blades become lower in

case'of.overhanged blade support in comparison to that for simple

-68-



blade support. Here from the economic point of viéw, the design

for overhanged blade support is obwviously better than that for the

simple blade support.

Figures 5.5 shows the power coefficient distribution with
tip speed ratio while figures 5.6 and 5.7 give respectively
the distribution of 6verall torgque and power with rpm of turbine
at various wind speeds. The solidity is képt fixed at 0.500 while
design power is 10 Kw. One may observe.from the figure 5.5 that
the design power coefficient has been chosen in the highex tip
speed ratio side from that corresponding to the peak power coeffi-
cient. With a° view to make the operation stable and smooth,
design point is selected in such a way. In the reference. [10 ],
Blackwell et al also suggest to consider the design. point accor-
dingly for variable speed operation. In the figure 5.5 before the
peak value of power coefficient, there are some differences‘in
the power coefficients at various wiﬁd.speeds. These are due to
- the Reynolds number effects. After the peak power coefficient
this differences are small because the Reynolds numbers become
very high in this region and in the higher range of Reynolds.
number the effects of them are small. In ﬁhe figures 5.6 and 5.7,
system load characteristic curves are shown. These figures also
show that with the change of wind speed, both. the torque and
power of_turbine change adequately. One can 6bserve‘from these
figures 5.6 and 5.7 that tﬁe maximum rpm corresponding to the
cutout speed is remarkably higher than the design- rpm. The figures

5.6 and 5.7 show that the torque and power increases remarkably with
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the wind speed. For the same turbine configuration and constant
design tip speed ratio, having power.coefficients nearly same
( which is ‘clear from figure 5.5), the torgue and power are

respectively proportional to the square and cube of wind speed.

The variations of blade mass énd the maximum blade stress
with blade skin thickness are shown in the figure 5.8. OngC:ﬁéy
observe from this figﬁre that with the inérease of blade skin
thickness blade mass increases aimost linearly while the maximum
blade stress decreases in the lower range of skin ﬁhickness and
increase in the higher range. It happens. because of the fact
.that with the increase of blade skin thickness, the area moment
of inertia improveé in combarison to. blade mass in the lower
range of gkin thickness while in the higher fange the reverse}
effect occurs. The skin thickness which corresponds to thé lowest
value of maximum blade stresses, is the best thickness and is

chosen as tﬁg?design skin thickness of the blade airfoil.

Figure 5.9 presents the distributions of normal, centrifugal.
and net normal forces_with azimuth angle. The forces corresponding
to fhe design and cutout speeds have been shown in tﬁis figure.
The net norﬁal forces corresponding to the cutout speed.are
remarkably higher in éomparison'to those’ at the deéign wind épeed.
This happens mainly for)the high rpm corresponding to the cutout
spéed and it creates tremendous centrifugal force. This figure
also shows' that the normal forces (aerodynamic) are almost .

negligible in comparison to the centrifugal fofces.
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At the design and the cutout speeds, the‘variatio;s of bending
moments with azimuth angle afe presented in the figures 5.10 and
51ll'wﬁile,variations of bending stresses Qith azimuth angle are
“given in the figures 5.12 and 5.13. The figure 5.10 shows the
bending moments due to the net normal forces while the figure 5.11
shows the bending moments due terthe tangential forces.. It is
seen from these figures that the bending moments et the cutout
- speed are remarﬁably higher than those at the design wind speed.
These'are because of higher net normal forces correspOnding.to-the
cutout speed. It cen also be observed from these figures that the
bending'moments.due to tangential‘forces are almost negligible
compared to those due to the net normal forces. The figuresx5.12

and 5, 13 can be explained in the same way as 1n the case .0of bending
moments. The figures 5.12 and .5.13 show that bending stresses ‘due

to the tengentlal forces are negllglble in comparlson to those

due to the net normal forces. As a result the desi@n stress analysis
'is performed based on the stresses due to the net normal'fofces
only. The derivatiocon techniquestof bending‘momenﬁ.and bending stre-

sses are given'in the appendix-C.

There appears the starting problem. for the variable speed
design where the wind turbine is directly coupled with e,pump.'
The starting can be done in many wéys. One possible way of start-
ing may be acbieved by employing variable pitching. The figure
5.14 shows that with the wvariable pitchingqﬁhe,sﬁa¥ting torque

increases significantly. Fixed pitching makes very'negligible
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change invthe starting torqgue. Application.of variable pitchingi
in the low tip speed ratio range of operation cén also provide
wifh nearly constant torgque; so employing variable bitching,

once starting occurs, there appears no problem of stalling with
the rise of tip speed ratio. Figures 5.15 shows that the starting
torque can be increased remarkably by. increasing wind speed. It
indicatés that the region having high winf@ speeds has. relatively
less starting proble@i} For any particular turbine starting.torque

is proportional to the square of the wind velocity.

Figures 5.16, 5.17 and 5.18 respectively show the variations
of blade mass, centroidal area moment of inertia about i-éxis
and that about y-axis with blade skin thickness. It is observed
ffomrtﬁe figures 5.16 and 5.17 that with the increase of skin
thickness in the lower range, the area moment of inertia improves
in compariéon'to the blade mass while in the higher range it
gives the reverse effect. It may be noted here that for the same
blade skin thickness, with'the rise of bladé chord, area moment
‘of inertia increases;in;pOrportion,to“CQ.While blade mass increa-
seé in porportion to C2. It indicates thgt increasing blade . chord,
blade structure can be improved remarkably. The form of blade
airfoil cross—section applied in the preéent-design is shown in
the gppendix-B. This appendix also presents. the derivation
technigues of the blade cross—sect?onal area and area moment of

L4

inertia.
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CHAPTER 6 : CONCLUSIONS ANDlRECOMMENDATIONS

In this chapter general conclusions. are drawn regarding the
performance with cascade theory applying blades of cémbered cross-
section and the design method of a straight—bladed.Darfieus wind
turbine with blade support of overhanged type. Few recommendations

are also given for. the future works. -

6.1 Conclusions:

Cascade Theory:

1} The performance of a vertical-axis straight-bladed Darrieus
wind turbine with cambered blade cross-section improves negligi-
bly in comparison to that of a Darrieus wind turbine with symme-

tric blade cross-section.

2) Due to the non—availability of experimental results for the
verticaleaxis straight-bladed barrieuslwind turbine with cambered
blade cross-section, correlation could not be made._It is expec~
ted that the calculated results by cascade theory With'cambered
blade cross-section.would give reasonable correlation with

experimental results.

3} Performance analysis has been done with cascade theory mainly
because the momentum theory cannot give reasonable performance

prediction at higher tip speed ratios and at higher solidities.

[



4) Employing the cambered blade profile in place of symmetric
blade profile, the local values of. power increase in the upstream

and decrease in the downstream sides in general.

Degign of Turbines:

1) Employing cambered blade profile in place of symmetric blade
profile there appears negligible.improvement of performance of a
Darrieus turbine in addition application of blade with cambered
section incurs higher cost of production, as a result design is

performed with blade of symmetric cross-section.

2) In the present design method, design point is chosen'in‘the
higher tipvspeed ratio side from that corresponding to the peak
power coefficient. Because the region after the peak power coeffi-
cient is relatively stable and suitable for smooth operation. For
a high solidity turbine, the power ccefficient curvelnear the peak
is not flat, as a result design with peak power coefficient is not
good because with a slight shifting of tip speed ratio towards the
lower value, there may appear stalling in some o©f the stations.l

For normal running it is avoided.

3) The variable speed. turbine design is carried out at constant
tip speed ratio. The constant tip speed ratio design may approxi-iv
mately follow the load chafacteristics curve of either a positive
displacement pump or a centrifugal pump. However to make the accu-

racy of the design, actual pump characteristic curve is necessary

— g, e

to be encountered. The present design analysis gives é{ﬁEﬁQ;él i
.design“?pproagh?rather-thanﬂtodfind—a“solﬁtEOhffoijﬁ“ﬁarticuhar

_—— o e ——— e e J-—r—ﬁ_,__ﬂ‘———-—u—______————‘-_-f
problem.
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4) In the present design, the blade pitching is considered as
zero for normal. running. Fixed blade pitching ( either positive
or negative) alWays gives reéuced power. On the other hand,‘
variable blade pitching may give higher power but control of

variable pitching is difficult especially &t high turbine speeds.

5) The design is. done at the cutout speed of 14 m/sec. obviously
higher cutout speed makes higher blade stress. For the overhanged
blade suppor£ cutout speed may be increased, still it does not
'create much problem concerning the blade stress like that which

appear for the simple blade support.

6) Aspect rati& of a straight-bladed Darrieus wind turbine plays
vital rcle in the design analysis. It controls the blade maximum

stress. If the stress developed on the turbine blade is more than
the allowable stress, aspect ratio is iowered in order to reduce

the blade stress. With the change of aspect ratio, the turbine

'design configurations are also changed,.

7) Blade skin thickness is also important in the deéign analysis.
Increasing skin thickness the blade moment of inértia increases, 3y
‘on the other hand the centrifugal force rises due to higher ‘blade
mass, as a result a cbmpromise is made to obtain the coptimum skiﬁ

thickness.

8} In the present design few parameters are assumed to be fixed
‘for the analysis. These ‘are blade material, number of blades,
cutout speed. The design cenfigurations will be changed with -

the variations ©of these parameters.
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9) For a Darrieus turbine with one ér two blades, ‘the amplitude
of instantaneoué'torque variation or fluctuations of energy in one
revoluﬁion are relatively higher‘ﬁhan those fqr a turbine with‘
three or four blades which give felatively more uniformity in

rotor speed. So the present design is carried out with three blades.

6.2 Recommendations for Further .Researches:

=

Concerning the research work few recommendations are presented

in this section.

1) Perfofmance prediction with blades of cambered cross—seétion
employing proper blade pitching. has not been studied in detail in
the present analysis. It is believed that if the blades of cambered
cross-section with proper blade pitching are incorporated. the

turbine performance may improve appreciably.

2) Blade pitching moment has .not been considered. in the calcula-
tion. At high tip speed ratio there is no such effect while at low
tip speed ratio it may not be neglected. Pitching moment may be
applied in the calculatiOH'to see the effect on the performance

characteristics.

3) During designing the turbine with straight-blade, the blades
_are assumed to be supported like that of overhanged type. It may
be repeated with other type of support like centilever for

- comparative study.
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4) Design of a straight-bladed Darrieus turbine has been done
with the aluminium blade. The same design may be performed for
the overhanged blade support applying wood with skins of alluminium

as a blade material which is available in our-"country.

5) Natural fregquency of wind turbine rotation has not been
determined in the present work. However it is important, it can

be taken into. account as well.

6) In the present design work, airfoil'NACA 0015 is chosen for the
turbine bladé. It may be carried out with other types. of airfoil
such as NACA 0012 and NACA 0018 for the comparative study. In the
design the number &f blades is considered as three. The design may

be conducted with other number as well for the. comparative study.

7) In the design the blade stress analysis is done corresponding
to 'the cutout speed of 14.0 m/sec. This design-may also be- repeated

at higher value of cutout speed for comparative study.
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Figure 2.1 : Persian windmill of vertical-axis type. .

Figure 2.2: Horizontal axis wind turbine .for pumping water.
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Figure 2.3: Restored Danish Gedser wind turbine.
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Figure 2.4 : Savonius rotor.
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Figure 2.5 : Vertical-axis curved-bladed Darrieus wind turbine.
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Figure 2.6 : Vertical-axis straight-bladed Darrieus wind turbine.
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Figure 3.1 : Streamtube consisting of the rotor showing
the axial flow velocities.

Figure 3.2: Aerodynamic forces on a blade element of
a Darrieus rotor. . '
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Figure 3.3: Velocity diagram on the blade element of straight-
bladed Darrieus wind turbine.
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Figure 3.4: Aerodynamic forces acting on an airfoil.
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Flgure 3.5 : Cross-sectional area of an elemental streamtube
of a straight-bladed Darrieus wind turbine.
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Figure 3.(J : €Velocinyzdiudian: on i blgde e lendnidof
a straight-bladed Darrieus wind turbine.
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Figure 3.10 : Vortex system for a single blade element.

Vortex filament

.
Vp

Figure 3.11 : Velocity induced at a point by a vortex filament.
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Figure 3.12 : Horizontal section-of a straight-bladed (cambered-
bladed cross-section) Darrieus wind turbine with
flow velocities.
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Figure 3.13 : Relative flow velocities on a cambered-blade airfoil.
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Figure 3.14 : Development of blades into cascade configuration.
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Figure 3.15 : Velocity diagram on the blade sectionm.
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Figure 3.16 : Force diagram on the blade section.
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Figure 3.17 : Velocities and forces on blade airfoil with
pitching in cascade configuration.
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Figure 4.1 : Overall power coefficients vs. tip speed ratios
at various solidities (calculated by cascade theory)
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Figure 4.2 : Overall torque coefficients vs.tip speed ratios at
various solidities (calculated by cascade theory).
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Figure 4.3 : Overall drag coefficients vs. tip speed ratios at
- ' various solidities (calculated by cascade theory Y.
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Figure 4.4 Overallpnwercoeff1c1ents vs. tip speed ratios at different fixed
5.7 % (calculated by cascade theory).
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Figure 4.9 : Comparisons of overall torque coefficients at various
solidities (calculated by cascade theory)
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Figure 4.10 : Comparisons of overall drag coefficients at various
solidities (calculated by cascade theory).

Symmetric (NACA : 0015)

Cambered (NACA : 1415) : A X o
a : .200 .300 400
Rei=131000
6 = '228 h
AR=18"7 .
L 00
"200
00
i e 1 R WY WU W B R IR N S SR SR N R SRR T R T
2'00 300 400 500 6°00
A{=Ruw/Vw )

Figure 4.11 : Cbmparisons of overall power coefficients with tip speed ratios
at different fixed blade pitchings (calculated by cascade theory).
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Figure 4.12;

Comparlsons of overall power coefficients with tip
speed ratios at different amplitudes of sinuscidal

pitch variation (calculated by cascade thecry).
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Figure 4. 13
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Comparisons of overall power coefficients with tip speed

ratios at different (fixed # amplutudes of sinusoidal)
pitch variation (calculated by cascade theory).
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Figure 4.14 : Comparisons of induced velocity ratios by various
analytical methods. ’

A calec. (cascade theory ; NACA : 0015)

.x calc. (cascade theory ; NACA : 1415)
0 calc. (simple multiple streamtube theory; NACA: 0015)

. Ret- 1380000, 6 = 143
‘ ' fpm= 506, . N= 2
AR = 18°70,
10°0
o
{deg)
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0
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Figure 4.15: Comparison of local angles of attack by various
analytical methods.

A cale. (cascade theory; NACA : 0015)
x calec. (cascade theory; NACA ::1415)
0 calc. (simple multiple streamtube theory; NACA 0015)
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Figure 4.16: Comparisons of local Reynolds number by various

analytical methods.

A eale. (cascade theory; NACA : 0015)
x cale. (cascade theory; NACA : 1415)

» arw

0 calc. (simple multiple streamtube theory; NACA: 0015)

Ret = 1180000, 6
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AR = 18770, X
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H
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Figure 4.17:

200! 300.

0 [deg.) .
Comparisoa of local non-dimensional tangential forces
by various analytical methods.

A cale. (cascade theory; NACA : 0015)
x calc. (cascade theory; NACA':"1415) ,
0 cale. (simple multiple streamtube theory; NACA:0015)
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Figure 4.18: Comparisons of local non-dimensional normal :
forces by various analytical methods.

. A calc. (cascade theory; NACA : 0015)
x ~cale. (cascade theory; NACA : 1415)
0 calc. (simple multiple streamtube theory; NACA: 0015)

: % © 800
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X /é 500

O-

F U Y U R T L i [ R R R | ST W N R ST U A L
o 100" 200- 300-
8 (deg)
Figure 4.19: Comparisons of induced velocities with azimuth at different
tip speed ratios (calculated by cascade theory).
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Figure 4.20: Comparisons of local angles of attack with azimuth at
different tip speed ratios (calculated by cascade theory).

Symmetric (NACA:0015) :
Cambered (NACA:1415) : A x 0
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Figure 4.21: Comparisons of local Reynolds number with azimuth at

different tip .speed ratios (calculated by cascade theory).

Symmetric (NACA:0015) ¢ —— v — .
Cambered (NACA :1415) : A x 0
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Figure 4.22: Comparisons of local non-dimenssional tangential force with
azimuth at different tip speed ratios (calculated by-cascade
theory).
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Figure 4.23: Comparisons of local non-dimenssional normal forces with azimuth
at different tip speed ratios (calculated by cascade theory).
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Figure 5.1: Design configurations of variable speed turbines at
various solidities (calculated by cascade theory)
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Airtoil : NACA 0015 . N
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Vood=8m /Sec : -
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Figure 5.2: Comparisons of design configurations of variable speed
' turbines at various, solidities (calculated by cascade theory).
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Figure 5.3: Comparisons of design configurationsiof variable speed
turbines at various solidities (calculated by cascade theory)
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Parameter : Tpmy de Ad Qs

=114~



lgim)

JAirtgll: NACA 0015
Po =0 KW, N=3
Vod= 8m/Sec

Sa = 100 Nisp, mm

06
§ (=Nc/R)

Figure 5.4: Comparisons of total blade length (LB) at various

solidities (calculated by cascade theory).
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6-00x 107
Airtofl : NACA 0015 7
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H/D= 101
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Vocut = 1am/Sec &'00
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2°00
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Figure 5.5: Variations of overall power coefficients with tip speed ratios
at different wind speeds (calculated by cascade theory).

Symbol e A X ]
Vv, (m/sec)

(4]

12 14

“75%10 A
Airtoil « NACA 015
§ = 500, N=3 ' '
H/D=10), . : ]
AR = 12712 . n
Vwod — &m /Sec
Veut = 14m/Sec 0°50
Q
{N.m}
.,
6)
&
L4
Y
By, 245
rpmy N
- - W — - - 0'00
0 1 1 L T W P SR R 'R S R | IR P 1
300 60°0 800 1200 150°0

) rpm
Figure 5.6: Variations of overall torques with rpm at various
*wind speeds (calculated by cascade theory).
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Figure 5.7: Variations of overall power with rpm at various wind
speeds (calculated by cascade theory).
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Figure 5.8: Variations of blade mass and maximum blade stress with blade
skin thickness (calculated .by cascade theory).
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Firugre 5.9 : Variations of normal, centrifugal and net normal forces
with azimuth angle (calculated by cascade theory).
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Figure 5.10:

Variations of bending moments due to normal forces

200
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azimuth angle ( calculated by cascade theory).
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Figure 5.11:
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azimuth angle (calculated by cascade theory).
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Variations of bending moments ‘due to tangential forces with
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Figure 5.12 : Variations of bending stresses due to net normal forces
with ‘azimuth angle (calculated by cascade theory).
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Figure 5.13: Variations of bending stresses due to tangential forces
with azimuth angle (calculated by cascade theory).
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Figure 5.14: Variations of starting torques with blade pitching
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Figure 5.15 : Variation of starting torque with wind speed. ,
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Figure 5.16 : Variation of blade mass with blade skin thickness
(calculated by cascade theory) (Ref. [25] )
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Figure 5.17: Variation of centroidal area moment

blade skin thickness (calculated by cascade theory). (Ref. [ 25] )
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Figure 5.18: Variation of centroidal area moment of inertia about y-axis
with blade skin thickness (calculated by cascade theory)
(Ref. [ 25] )
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Figure B.1 : Blade airfoil cross-section.

Figure B.2: Geometry of inmer and outer faces of blade airfoil.
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Figure B.3: Geometry on blade airfoil cross-section to
' find skin area.

]
N

———

Figure B.4 : Geometry to obtain rib area.
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Figure B.5 : Geometry to determine centroid and moment of inertia.
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a) Simple support blade ' b) Overhanged support blade

Figure C.l: Schematic Diagram of vertical - axis straight-bladed Darrieus
' turbine.
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Figure C.2: Horizontal sectiom of a straight-bladed wind
turbine showing forces on the turbine blade.
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Figure C.3: Bending moment diagram of a overhanged supported beam.
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Figure D.1: Variation of 1ift coefficient with angle of attack at a fixed Reynolds
number of 3000000 for the airfoil NACA 1412.

0 (obtained from'NACA 0012 after modification)

$¥mb9%.€ ® (experimental values of NACA 1412)
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Figure D.2: Variation of drag coefficient with angle of attack at a fixed
Reynolds number of 3000000 for the airfoil NACA 1412. S

0 (obtained from NACA 0012 after modification)

Symb01 : 0 (experimental values of NACA 1412)
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Figure D.3: Variation of 1ift coefficient with angle of attack at a fixed
Reynolds- number of 3000000. for the airfoil NACA 1415.
Svmbol : 0 (obtained from NACA 0015 after modification) {%l
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Figure D.4 : Variation of drag coefficient with angle of attack at a fixed
Reynolds number of 3000000 for the airfoil NACA 1415.

0 (oEtained ffom NACA 0015 after modification)
® (experimental values of NACA 1415)
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. Appendix-A: Flow Diagram of”Computational Methods

Flow Diagram of Computational Method by Multiple Streamtube Theory -

Start

1

9,H/D,N,C

For constant
For constant

R
dor’ e

Input values:

wind speed : Re
turbine speed :

and Vg

c? xsno.of stations, airfoil

Ret and rpm

AR,Yp(pitch)
¥
First station:
Assumed : Va/Vm= 1.0
| TEE

@—.

Is pitch -zero ?

yes

1o

-

1

Downstreams:
Cg= Qo+ Yopd

Y u and Y d.are aO’WO/Va,WO/Vm,RE
——— ]
dgtermine are calculated
1 e ‘i is pitch zero?
Upstream:

Oy =. OLO _'Ypu

!

y

At @

. ! . CAT=are
q & Re: Cld & C, are At Oy & Rp: Cpy 8. Caa™
, obtained, Alsoc C and
obtained. Also C d & Ctd C are calculat®¥. AR
are calculated. ““AR tu ¢ ‘

effect 18 eonsgidered

effect 1s considered.

Kdis determined

t

is determined

¥

Ky

e

At 00 & Re:C,& C, are
obtagned. Also C and C
are found. AR ef?éct

is considered.

(Va/Vu)nis calculated

based on no pitching

]

]

K is determined

For the same station:
was prior caleculated

Va/Vew) | <.5 ?

yes .
Vo /2 (V /Y,

= 0
Is (Va/VOO) <-5 ? AT Va/Voo='5 ——.‘®
I
y 1o
diff =|V,/V-(V,/V) |
‘ no

Is diff <.001 ?

y ves

| . o

Va/Voo =(Va/Voo)n

Local torque and drag values

are calculated and stored
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( : }___ﬁ.. * Is 1t last no
; L
station ? Va/

(s}

= (V /%),

yes

overall powerx,torque,drag
coefficients etc. are found

1 .

End

Flow Diagram of Computational Method by Cascade Theoxry

=)

: Input values: .
O,H/D,N,Cdof,Rer,k,AR;Yp(pitch),no.of stations airfoil
For constant wind speed : Rey, and V,

For constant turbine .speed : Rep and rpm
For straight-bladed turbine : AR, yp (pitch)

k; ¥ .425 + .332 g
- First station: upstream
Assumed : Vg, /V, = 1.0

o< 2
- ®__—— Is pitch zero ?  p——am Ypu is found
+ yes

1

Is pitch zero ?

Qou ,wou/Vau ,Wou/Vm +and
ot )
Rey are calculated )

no

o, = O‘ou'Ypu

e

are obtained. A are calculated. AR

effect is considered efgect is conside=:
g = Cd/C] re
. £ = Cd/Cl

At opou & Rey: Cﬁ & Cg At ay & Re,: G &Cy

| Vg Vs Wx/Va, Wy/Voo
» P ——
: are calculated
are determined
‘ no

Is upstream side 7 |——mm Vi;/Ve is found

yes
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Ve/V_is found and

stored to use in calcu-
lation of downstream

velocity.
'

- "
(Yad/Ve) =(Vw/Ve§

!

(Vad/Ve), is found

(V au/Ve) = (Ve V) K

!

Vad . Vad Va v v .
- = — . vV a P EE_ d
v, diff= | AU . Ay dlff—I_Vad —(%)IJ
[« o] [ee] QQ
no
I= i |
Is upstream side ? - [ diff \<.58] ? -
y ges ves Y
Vau _ /Vau Ql &.&2 are cal-
Vo E-)-n culated
v Vv
- d d
Local torque and drag Vi = (’*%'—)n
values are calculated @« @

and stored

]

-

Is it last station ?

overall power,

e

torque,drag coeffi{ yes
cients ete. are [~

Is downstream'side ?

found

o

’I'IO

no Is upstream side ?
* yes—
Vau = Vnu)

First station : downstream

End

(7))~

+ yes

Assumed : Vg4q/V, = 1.00
. ' no .
Is pitch zero ? —=t  Ypq is found
yes t
Bodr»Wod/Vad » Wog/Ve -
Wod/Vs & Reg are found
* - no — .
Is pitch zero ? [ g = 0549 + Ypd

]

At G54 Rey @ C; & Cg are
obtained. AR effect 1is
considered

€ = C4/Cr

At ag & Red§ Cl & Cg
are calculated. AR
effect is considered
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Flow Diagram of De51gnﬁE9rogeguggggjj

D

e

Input values:
‘PO, de’ cht’ g N, Sa LI VE IRV

Assumed value

Cpa = -4(say), AR, = 20(say)

pa

Y

P
0

. 3
(1/2) € P Vo
)

Turbine configurations such as

H, D, C, R, H/D are found from:
o= NC/R, AR = H/C, A = H.D & N
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pm

pd

R xd,is found

dif = ’CPE - del

@-—E—LIS dif <.0025 7 |

* yes

ye51

rpm is calculated at design
point. Re, = RwC/ve Acut is

found corresponding to Veout

]

———~ﬂ_}s turbine speed constant ?]————}
o no

maximum angular velocity

wy is found from Ag= Rwp/Veut

Re,= Vour ©/Ve Acut = Ad-

¥

For known Rep, s N, AR & rpm:
local blade stresses are calcu-
lated at )y with different
skin thickness tg-

For known Reg,, 0, N, AR & V,
local blade stresses are cal-
culated at h.u¢ with different

skin thickness tg.
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From stress vs. azimuth distribution corres-
ponding to value of X 3} maximum stress

3
Sm is found. This valuguzs obtained at every
skin thickness tS (from .50% to 2.5% tS/C,
with step of .25%). The lowest value of Sm in
(Sm Vs, ts) distribution is the required blade
stress and the corresponding value of ts is

the best thickness.

]
 Is 5 & (Smt .5) 2

y oo /

AR value is altered.
/ For § >(S + -5)9 AR
( : }-n——— m a -

value is reduced and.

vice-versa.
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APPENDIX - B : DERIVATION OF MOMENT OF INERTIA OF BLADE
ATIRFOIL SECTION

Figure B.l represents the blade airfoil cross-section which

is used in the present design analysis.

The thickness distribution for NACA four-digit sections is -

given by the following equation (B.1),

L ¥ o 2 3 _ 4
r Y= = (.2969 x - .1260 x - .3516 x° + .2843 x~ - .1015 x7)

(B.1)

where x,vy are in percent ¢f chord. tc,is in fraction of chord.
So. for blade airfoll NACA 0012, tC = .12 and for blade airfoil

NACA 0015, t_ = .15.

Equation of Inner Face of Blade Airfoil Skin

Differentiating egquation (B.l) and subscripting x and y by

0 toO indicate the outer faces of blade skin,.one obtains,

dyo tC

dxo .2

1 . .
(.14845/x% - .1260 - .7032 x_ + .8529 x> — .4060 x> )
O ‘ O [®] Q

(B.2)

Referring to the figure B.2, the co-ordinates ( xi,yi) on the

inner face of the blade skin are,

.= + i = - .
X X tS Slneo, Y Y tS Cos eo (B.3)

i
where tS is the skin thic%ness of the blade airfoil. eo may
be expressed as, '
0 = tan" 1 (dy Jdx ) ' | (B.4)
o o' "o
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Subscripts o and i are respectively used to-distinguish the

co-ordinates between the outer and the inner faces.

Xi' yi are percent of chord. Now the new co-ordinates

(X.,Y.) are chosen in such a way that ¥, = x.C and ¥, = y,C.
i’7i : i i i i

In this analysis, the equation of the inner. face of the blade

skin is obtained in polynomial form from the sets of co-ordinates

(XirYi) by the'method.of curve fit which is given by,

_ ' 2 3 4
Yi = b0 +_lei + §2Xi + b3Xi + b4X_ (3.5)
where bo' bl' b2, b3 and b4 are the constants.

Area of Blade Skin

The elemental blade skin area,
da_ = 2 (YO - Yi) dX (B.6)
which may be written as,

A = 2 IYde—z J Yidx = 2 (Ao_ - Ai) (B.7)
- a2 o
where, A =Y dX =°C S Yo ax (B.8)

Now subscripting x,y of the equation (B.1l) by o to indicate
the outer face of blade skin and substituting in. the equation.

(B.8), one may find,

1 \ .
_ 2 % _ 2 S 4
.Ao 5C t. é (.?969 xof.l260 X, .3516 X + .2843 2g .1015 xo) dxo

(B.9)
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which may be reduced to,

_ 2
A, = .34255 t C _ (B.10)

A, may be expressed as,
A, = [ Y, dx ' ' (B.11)

Now introducing the value of Yi from the equation (B.5) and

integrating between the limits X, and X2 ( figure B.3), one

1
cbtains,
b b b b
_ _ Tl 2,2 T2 03_43 4. 03,4 4 T4(x5_.5
A; = b_(X,-X)) + 5= (X5=X]) + =5 (X X7 )+ = (Xy=X)) + 5( > xl)
(B.12)

Inserting the values of AO (B.10)and Ai (B.12) in the eguation

(B.7), the blade skin area can be determined.

Area of Blade Rib

The ribs are assumed to be equally interspaced and the

spacing b is considered to be C/6 (figure B.4).
Area ©of rib, Ar = 2 ts (Yl + Y2 + Y3 + Y4) (B.13)

The total blade sectional area Ab is,

Ay, = (AS + A ) ‘ : (B.14)
Mass of the biade per unit length,

my, = Pyhy, (B.15)
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where P b is the density of the blade material.

Centroid of Blade Cross-Section

For the electric body the neutral axis passes through the

centroid of the blade cross-section.

The centroids are defined by,

. Jxda _ Y dag , .
X = 54— and Y = —fp—= - N (B.16)
b b

Numerically. one may obtain,

JX da =2 §_IX (Y -Y)) +'2-ts(xly (B.17)

b + X, Y, + X, Y. + X

1 2%2 3Y3 a¥y)

where Gs is the thickness of each strip considered in the numeri-‘
cal computation. For symmetric blade ¥ is zero and X is one the

chord.

Area Moment of Inertia

Area moment of inertia about X-axis is defined as,

_ 2
Iy =7 ¥ dpy (B.ls)
while area moment of inertia about Y-axis is defined as,
I =_fx2 da ‘ | (B.19)
Y . b ' . *

Moment of inertia of blade section area is found by numerical
integration method. Moment. of inertia about X-axis may be obtained
from,

Iy = gy * Iy | (520
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where st and Irx are respectively the moments of inertia of

blade. skin and ribs about the X-axis. Referring to the figure

B.5, I and I |, may be obtained as follows,

sX rX
tYO—Yi)3 (v + ¥,
I, =2 2[55 Ot (Y -y S ]. (B.zlt
ts 3 3 ‘3 3 .
.IrX=2 —3(Y1+Y2+Y3+Y4) {B.22)

( B.22} in the

Now putting the values of I (B.21) and I

sX rx

equation (B.20), the moment of inertia about X-axis can be deter-

mined. The moment of inertia about Y-dxis can be obtained as,

where I sy and I & are the moments of inertia of tmﬁ blade skln

and ribs respectlvely about the Y-axis, which may be obtained from,

- v 3 45 _ 2. '
Ty = 22[ (Y, - ¥,) 87 /12 + §_ (Y_-¥,) x° ] - (B.24)
I =.2 (Y. + ¥ + Y_ + Y ) t3/12.+ 2t (Y X2
ryY 17 72 3 4’ T’ s, 101

T2 2 2 ;
+Y2x2'+ Y3X3 + Y4X4 ) | (B.25)

Now the centroidal moments of inertia about X-axis and Y-axis

respectively obtained from,

- - 32 ]
IX = IX and IY = IY AbX (B.26)

~140-



APPENDIX -~ C : DERIVATION OF BENDING MOMENT AND BENDING STRESS

Derivation techniques of bending moment and bending stress
are inen in this appendix. These are done for no blade pitching

condition.

Figure C.2 shows the forces developed on the turbine blade. Fn
éﬁyFt are respectively the normal and the tangential forces (aero-

dynamic}. Fn and F,_ can be obtained from the equations (3.14) and

t

(3.15) respectively. Fcf is the centrifugal force. The centrifugal

force may be expressed as,

Fo¢ - mbﬂ)zR | T (c.D)
where my is the blade ﬁéss per unit blaée lenéth. w is the angular
velocity and R is the radius of the turbine. The directions of
the forces as shown in the figuré'c.z, are considered to be posi-
tive in this analysis. The net normal force-onlthe turbine blade

( in . the radially outward direction} can be obtained as,

Fret = Fegr ~ n | C(C.2)

In the present analysis, the blades are considered to be

supported like that of a overhanged support beam.

In the figure C.3, the bending moment diagram of a overhanged
supported beam is shown. The forces on the turbine blade are
distributed all over the blade length which is also seen from
the figure C.3. The expreséion of thg) maximum bending moﬁent

can be obtained as,
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w = | (c.3)

where w is the load per unit length of tﬁe blade. Introducing

the value of w = Fnet/H in the equation (C.3), one obtains,

Fnet H
Mpm = 726.5 . c.a

where H is the height of the turbine and hence the length of

the turbine blade. The maximum bending stress can found as, .

‘M (t  C/2) .
_ bm cC
Sbm = Ix (C.5)

where tc is the maximum blade thickness as a fraction of chofd
and C is the chord of the blade airfoil. IX is the area moment
of inertia abéﬁt the chord of the bladg airfoil. From the equa-
tions .(C.4) and (C.5), the expression of the maximum bending-

stréss can be written as,

C Fler B C g '
5 = , (C.6)
bm 93 Iy »,
¥
b
The effect of tangential force on the blade stress is not
encountered in.this analysis, because this force is'negligible
in comparison to the net normal force. |
e,
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APPENDIX - D : AIRFOIL CHARACTERISTICS

The airfoil characteristics for the cambered blade profile
are not available for the wider range of Reynolds number and
the anglesof attackC? For the performance analy31s of a
Darrieus turbine with blades of cambered cross-section the
airfoil characteristics for wider range of Reynolds_number and
angles of attack are necessary. Hence to fulfill this requirement
a technique is used to modify the lift-drag characteristics of
a symmetric airfoil to be applicable for the cambered airfoil.
The modified lift-drag characteristics are compared with the C*?Cii}
existing experimental values of lift-drag for the cambered air-
foil which are available at few Reynclds number only. The compa=
rative figures shows excellent correlation.. 8o this idea is exten-
ded to find the lift-drag.values- for the cambered airfoil at . |
wider range of'Reynolds number and angles- of attack. It is expected .
that this idea, to comsider lift-drag characteristics for a cam— ‘
bered airfoil, would be very reasonable and make errof within 1-2%.
Cfcourse fcr higher camberness effect the idea would give higher

error.

To modify the lift-drag characteristics the thin airfoil
theory is applied. The procedure of .choosing the lift-drag charac-

teristics is given below in short.

Omea ~ ¢ * %cor : ' (D.1)

where o is the calculated angle of attack which may be cbtained

from equation (3.13),
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Cor is the corrected angle of attack due to camberness

effect and amod is the modified angle of attack value.

Lift-drag characteristics of a cambered airfoil for angle
of attack a 1s taken corresponding to % od from the lift-drag

_characteristics of a symmetric-blade profile.acor in equation. {D.1)

may be obtained from,

_ -1 £
¢ op tan { o } ‘ (D.2)

where C is the blade chord and f is the maximum camber of the blade.’
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APPENDIX - E : EFFECT OF ‘ASPECT RATIO

For the performance prediction of é.straight-bladed
Darrieus wind turbine, the efﬁeét of finite aspect ratio on the
airfoil characteristics are necessary. Since the finite wing
,énd the finite blade of a straight-bladed winds turbine ére
of similar pattern, so wing theory may be applied for the
finite aspect ratio effects on the airfoil characteristics
before using them for the performance prediction of -a straight

~bliaded wind turbine.

For the wing of finite span, there occurs always'dOWn;
wash andggﬁagﬂrequired to induce downwash is e#pressed in terms
of induced_dragﬁ The downwash velocity 1s created by. the pre-
sence of tip vortices. The total drag coefficient of a finite’

wing ‘is given. by,

Cq = 40 * Cay ' ~ (E.1)
where Cg  is the section drag coefficient for infinite aspect
ratio while Cdi is the induced drag coefficient, Cai is expre-
ssed as, - 1

c? :
Cdi = > TER (E.2)

where AR indicates the aspect ratio. of the turbine blade.

Introducing the value of Cdi in the egquation (E.1l),

o)
N

+

d = "do " <FaR | | (E.3)

gi
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The angle of attack corrected for finite aspect ratio effect

is obtaiﬁed as,
Qo =0"' +Cx.. i ‘ ' - . (E.4)

where o é indicate the angle of attack for infinite wing and

ai is the induced angle. The expression of induced angle @i is,

0. = 1 (E.5)

subsﬁituting equation (E.5) in the equation (E.4)

C

) o] 2 7 AR
The above two equations (E.3).and (E.6) are developed on the
assumptions of uniform distribution of dOanash and they are
explicitly Qalid only for wings possesing an elliptic lift
distribution. However other cases are dealt with considering
appropriate correction factors. Letting T is the correction

factor for thé induced angle and 6§ is the correction factor for

the induced drag, the expressions of Cd and o become,

c? ‘
1 . '
Cd,-—— CdO + mﬁ- ( 1"+ '§8) ' - {(E.7)
. Cl . )
o =0, +- TTAR (1 +T) , (E.8)

For a rectangular wingrthere are two limiting cases. When the

chord is large compared with the span, aspect ratio AR approaches
zero. In this case Beté finaS an elliptical distribution of load-
ing. As the aspect ratio increases to infinite the loading approaches
rectangular distributionr-The_values of T and § are takeﬁ from the

reference [27] and [34] .
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