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ABSTRACT

Pressure vessels used in industries usually incorporate openings in the main shell that

causes local stress concentration around the opening which in turn reduces the

pressure carrying capacity of the vessel. Therefore the aim of the present work is to

investigate the stress concentration factor and also the stress distribution around the

elliptical radial and offset holes having blended features at the intersection using

finite element method. Two different orientations of the cross holes are investigated,

one with the major axis of the hole along the longitudinal axis of the cylinder and

another along the circumferential direction of the cylinder A finite element package

ANSYS is used for the present computation. The cylindrical pressure vessels of

different ratios of outer to inner diameter are analyzed using three dimensional solid

isoparametric finite elements. After imposing boundary conditions and loading the

vessel with internal pressure, the stress concentration factors (SCF) are obtained for

some noticeable configurations of cross hole and cylinder. The comparison of

principal and von Mises SCFs between equivalent circular (obtained by Hamilton et

al. [11]) and elliptical radial cross holes show that elliptical cross holes reduce the

SCFs around 30% and 28% respectively compared to the circular ones. Elliptical

holes of circumferential orientation show about 55% reduction in SCF values than

the longitudinal orientation, thus establishing that the circumferential orientation of

the hole must be preferred over the longitudinal orientation. Again, the smaller offset

cross holes provide a maximum reduction in principal and von Mises SCF values

around 15% ad 9% respectively in comparison with the radial cross holes; thus

making offset cross holes a better proposition than the radial ones.
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Orientation A

Orientation B

Smaller hole

Larger hole

FE method

Nomenclature

Inner radius ofthe cylinder

Outer radius ofthe cylinder

Cylinder halflength

Stress concentration factor

Von Mises equivalent stress concentration factor

Maximum Principal Stress concentration factor

Radial; distance from the cylinder axis.

Major radius of the ellipse

Blend corner radius

Minor radius of ellipse

Stress concentration factor

Poisson's ratio

Modulus of elasticity

Maximum von Mises equivalent stress ofthe plain
cylinder

Maximum hoop/ principal stress of the plain cylinder

Maximum von Mises equivalent stress at the cross hole

Maximum hoop stress at the cross hole intersection

von Mises equivalent stress

Principal stress

Maximum principal stress in the vessel

Major axis of the elliptical hole along the hoop direction
of the cylinder
Major axis ofthe elliptical hole along the longitudinal
axis of the cylinder

R: = 0.4 mm, Ra = 0.8 mm

R: =2 mm, R.=4 mm

Finite Element Method
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INTRODUCTION

Pressure vessels are being increasingly used for storage, industrial processing and

power generation and it is clear that there is a need to determine the operating

stresses in such vessels using analytical and experimental techniques. Pressure vessel

systems are an essential feature of industrial life and are safe when used according to

established practice. They are, however, a potential source of danger when misused.

Knowledge of the behavior of the material used in the construction of a pressure

vessel is essential if failure and disasters are to be avoided and the vessel is to be

designed economically. To achieve these objectives as well as achieve good design,

the magnitude of stresses and strains together with their distribution as well as stress

concentration factors across the pressure vessel wall must be determined during the

design stage.

Usually the stresses acting in principal direction are evaluated from basic established

equations. The working stresses are kept below the yield stress of the material and to

ensure that yielding does not occur in the region of discontinuities, or due to

unknown factors, a safety factor is incorporated into the design. Safety factors can

vary enormously from 2 to 20 in some pressure vessels [19]. Economic factors and

safety demands have accelerated the need to collect and understand pressure vessel

material behavior and to improve stress analysis techniques. Although there is no

ideal material for a pressure vessel, selection of material must comply with its

applications and the environment it will encounter in service.



In the construction of high pressure systems, the simplest and commonest form of

container continues to be the thick walled cylinder with end closures. While many

such cylinders may be 'perfect' in the sense that no geometric discontinuity, or

stress-raiser, is introduced into the main cylindrical barrel, many other cases arise

where for practical reasons some kind of transverse pressure tapping or cross-bore is

unavoidable. A particular case is that of a thick-walled cylinder or pipe where it is

necessary to introduce a small transverse hole or cross bore through the vessel wall

for a specific purpose. In particular, vessels subjected to pressure fluctuations

frequently must be connected to other parts of a system, and it may be necessary to

consider the effect of such connections by passages which leave the cylinder in a

more-or-less radial direction. High-pressure cylindrical vessels, e.g. as used in the

petrochemical and pharmaceutical industries, usually incorporate openings in the

main shell for variety of reasons such as, access, transfer of fluid, instrumentation,

bursting caps, etc. The presence of an opening in the shell causes local stress

concentration factor (SCF) depending on the size, shape and location of the opening.

The sides holes or cross holes are major source of weakness in the vessel due to the

high stress concentrations that occur. The severity of these high stress concentrations

depends on the geometrical configuration of the cross bore at its junction with the

main bore, and such concentrations reduce the pressure-carrying capacity of the

vessel as well as reducing its fatigue life. It is clearly desirable to know how great

such stress concentrations are, and to what degree any stress concentration factor,

calculated on the usual assumptions of perfect elasticity, homogeneity, arid isotropy

and so on, is reflected in the lowered resistance of the member to an applied stress

system. The peak stress occurring at the stress concentration may be critical in

determining the design life of a vessel. It is therefore important to minimize the stress

raising effect at the opening.

Most side wall openings in high pressure vessels are either circular or elliptical in

cross section. Elliptical openings are one of the design possibilities of such openings.

Many arrangements of opening may be employed for different practical purposes and

there is a general terminology describing different types of opening. A single

opening in one side of a vessel is called a side hole. Two holes symmetrically

opposed about an axial plane of symmetry are called cross holes; i.e. the projected

bores are coincident across the main bore of the vessel. Diametrically opposed cross
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holes are referred to as radial cross holes. Cross holes on any other chord of the main

cylinder are called offset cross holes.

Sectional view of a cylindrical vessel with radial cross holes is shown in figure I. J.

When the vessel is pressurized, the stress concentrates around the hole due to the

discontinuity in geometry. In practice, a smooth blend is often incorporated in the

design at the junction between the cross hole and the main bore [17], as illustrated in

figure 1.2. This is intended to alleviate the local stress concentration factors (SCF)

(chamfers have also been incorporated at this location for the same reason [16] as

shown in figure 1.3. Elliptical cross holes provide lower SCF than their circular

counterparts but are less widely used due to higher manufacturing costs (14]. Offset

cross holes are cheaper to manufacture than radial cross hole. Figure 1.4 shows the

sectional view of offset cross hole.

I

Figure I. I: Radial elliptical cross holes having blended surface at the intersection.

Figure 1.2: Cross holes having blended surface at the intersection
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Figure 1.3: Cross holes having chamfer at the intersection

: ',r"

/'v~
~

Figurel.4: Offset cross holes having blended surface at the intersection

1.1 MOTIVATION OF THE PRESENT RESEARCH WORK

The thick walled cylindrical pressure vessels with cross holes has received

significant attention because it is obvious that such radial passages or holes, which

have for brevity in the title been called cross bores, introduce geometric

discontinuities to the cylinder configurations and hence a stress singularity locus.

Unfortunately, the stress concentration that exists at the intersection of the holes and

the main cylinder bore reduces the pressure capability of such configurations below

that of the main cylindrical configuration [8]. A proper understanding ofthe severity

of the stress in these regions of high stress fields would lead to usage of less

conservative safety factors in the design vessels, improved plant availability and

enhanced safety. For high pressure applications, a realistic picture of the state of

stress in a vessel with side ports is needed because fatigue life is very critical and

present day limitations of strength and ductility in commercial pressure vessel

4



materials prevent high factors of safety. At the point of discontinuitics, thc strcss and

strain must be precisely evaluated and this leads to better design methods and

consequential increase in pressure vessel life. For these reasons these stress

concentrations have been the concern of investigators and researchers over the years.

All of the earlier works to evaluate the stress distribution or the stress concentration

factor due to the presence of side holes and cross holes were either analytical or

experimental in nature [1-7]. One of the first attempts to analyze this problem by the

use of finite element method was by Masu and Craggs [8]. The authors examined the

stress concentrating effects on thick pressure vessels due to radial circular cross holes

for two outer to inner radius ratio of the main cylinder (b/a); b/a =1.4 and 2. The

numerical results showed good agreement with the experimental results, which was

incorporated in the same paper. Stress analysis in the wall of cylinders containing an

offset circular cross hole was done by Masu [10] using finite element method. The

same author also examined the effects of cross hole diameter size on the principle

stress distributions as well as the stress concentration factors along the radial and

offset circular cross hole, which was published in the same year. Recently, another

work by Hamilton et al. [11] studied the stress concentration factors for internally

pressurized thick cylindrical vessels having radial and offset circular cross holes

using finite element method. They considered chamfered and blended surface

between the intersection of the inner bore of the main cylinder and the cross hole and

compared their results with that of the plain cylinder. In their analysis they showed

that the circular cross holes, having chamfered and blended intersection, have less

SCFs in the main bore than that of circular crosshole without any of these features at

the intersection.

Now-a-days, sideholes or crossholes of elliptical cross section are used in pressure

vessels for various practical purposes. A noteworthy investigation of cylinders

having elliptical side branches were performed by Fenner and Nadiri [14], who used

boundary element method for the solution. From their study it is obtained that the

'elliptical side branches gives less stress concentration factor than those of circular

ones. So, elliptical cross holes is the topic of interest in the present study. However,

no significant finite element analysis has been reported on elliptical openings in

pressure vessels so far. Therefore the aim of the present work is to investigate the

5



stress concentration factor'and also the stress distribution around the elliptical radial

and offset holes having blending features at the intersection using Finite Element

Method.

1.2 OBJECTIVES

The specific objectives of the present research work are as follows:

(i) To investigate the stress concentration factor, stress distribution and the location

of the maximum stress around an elliptical radial and offset cross holes with blending

features at the intersection of the main bore and the cross hole of an internally

pressurized thick walled cylinder by commercial finite element software. Two

different orientation of the hole are investigated, one with the major axis of the hole

along the hoop direction of the cylinder and another along the longitudinal direction

of the cylinder.

(ii) To observe the effect of the main cylinder radius ratio (b/a) on stress

concentration factors along with the change of cross hole diameter.

(iii)To compare the results obtained for elliptical cross holes with the circular cross

holes as obtained in the literature.

6
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CHArTEl2
LITERATURE REVIEW

The problem of the stress concentration at the intersection of the side hole and cross

hole of cylinders under internal pressure has been one of much concern to the high-

pressure industry. As a result, this problem has become the concern of many

researchers. One of the first noteworthy papers was that by Fessler and Lewin (1],

who derived an approximate method of calculation (based on the theoretical solution

for a hole in an infinite plate under uniform tension) and compared results with

experimental data of stresses in ajunction formed from 'Araldite' casting-resin B by

the frozen stress photo-elastic model. They considered analytically the approximate

stresses at a junction between a small branch pipe and a large pipe and the

corrections in the simple theory appropriate to certain particular cases where the

bores of the pipes were comparable. The comparison showed a theoretical value of

the hoop stress-concentration factor of 3.70, which was 32% greater than the

measured experimental value of2.80 for a cylinder ofK=3 and Ks= 2, where,

K = outside diameter
bore diameter

K = bore diameter
S sidehow dmmeWr

'Thus the maximum stresses predicted by the theory of Fessler and Lewin [I] proved

to be too large. However, their theory provided the equations to calculate asymptotic

7
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stress-concentration factors for cylinders with side holes sufficiently small compared

with the bore.

In a valuable but brief contribution to the discussion of an earlier paper by Lake [2],

the same equation was derived in a more straightforward manner. He showed that in

a particular case the theoretical stress concentration factor on the von Mises (or

Maxwell) basis due to a small radial hole in a thick tube was 2.9. Following this,

Morrison et af. [4] also presented the same equation using the same technique as

Lake.

Probably the most extensive effort devoted to the subject of the stress-conccntration

problem was done by Faupel and Harris [3] who have carried out a project similar to,

but more elaborate than, that undertaken by Fessler and Lewin [I], including a

theoretical analysis and both photo-elastic and strain-gauge experimental

observations. Their results are in reasonable agreement with each other, but an error

was made by Faupel and Harris [3] in the theoretical work. They predicted a

universal value of hoop stress concentration factor 2.5 for all closed-end cylinders

with small side holes. The approach consisted in superimposing on the whole system

to a fictitious volumetric tension which facilitates calculation, and as a result, the

hoop stress concentration at a small circular cross-bore was found to be 2.5. If,

however, the fictitious volumetric tension was removed, the hoop stress factor gave a

change in value as

Where, K= the ratio of external to internal diameter of the main tube. The degree of

the discrepancy, of course, were changing with K; for a very thin tube the error was

small; for a tube with K=2 it was 36%.

But as Morrison et al. [4] pointed out, if the fictitious volumetric tension, used by

Faupel and Harris [3] to facilitate calculation, was removed, the hoop stress

concentration factor could be obtained in a rather simpler manner. Morrison et af. [4]

provided both the analytical and experimental solution to the problem. The method

8
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they explained not only provided the direct stress concentration factor, but also the

shear stress and Maxwell ( von Mises) equivalent stress concentration factors, the

ones which in the opinion of Morrison et at [4] were more likely to be ofrclcvance in

any problems concerning the behavior under static or repeated stress of any ductile

material. In experimental method, the authors presented single series of tests on

cylinder of outer to inner diameter ratio of2.25. The side holes in this study were in

form of circular holes of diameter I inch. These cylinders were, however, machined

from material about which ample information was available so the test results can be

compared directly with those from plain cylinders and the effective stress

concentration factor for use in design were directly deduced. The investigation was

primarily experimental; but the they drew attention to the elastic strcss analysis

which, exploiting solution for uniaxial stress concentration around a circular hole,

provided a valuable assessment of effects at the outlet of the side hole to the main

bore. A result from the analytical solution was of particular importance because

independently of the value of the ratio of bore diameter to outer diameter for the

vessel, the side hole introduced a shear stress 2.5 times the value arising in the

undrilled cylinder. In other words, in systems limited by shear stress and loadcd by

internal pressure only, the introduction of a side hole immediately reduced the safc

working pressure to 40 % of its original full value.

Cole [5] first studied the effect of offset branch holes in a cylinder. He showed that

the round section cross-bore having its axis offset from the radial center-line has the

low stress concentration. In a comparison of the internal pressure at a cylider for an

offset cross hole and radial cross-hole, he observed a ratio of 1: 1.668, thus making

an off-axis cross-hole an attractive proposition. He then suggested that a cylinder

with an offset transverse hole has a better fatigue life than a rounded radial cross-

hole. From the results of his investigation it is obtained that, the safe working

pressures for an undrilled cylinder and a cylinder having a diametral round cross-

hole having all the parameters same, if expressed in terms of ratios, were I: 0.4.

Thus, for the c~linder having a diametral round cross-bore, the allowable pressure

was shown to be practically 40 % greater than that corresponding to the undrilled

cylinder. Cole [5] further reported that during a fatigue test at low cycle pressures,

9



fatigue crack was found to form at the internal outlet of the cross bore and then

propagate slowly in a radial direction (regardless of cross bore position) throctgh the

cylinder wall and form a hair crack on the outer surface of the cylindcr at failurc. As

the cyclic pressure approached a level that caused overall yielding at the cylinder

bore, unstable fracture of the cylinder was found to occur before the fatigue crack

had completed its propagation through the cylinder wall, and the crack width usually

extended over the full length of the cylinder test section.

A more sophisticated approximate analysis was presented by Gerdeen [6] who took

into account the effect of transverse shear deformation in the cylinder due to circular

side hole. There have been no successful attempts to account for the sidc holc effects

including the shear and. bending effects for side holes; which were not infinitely

small compared to the cylinder bore until the analysis performed by Gerdeen. The

analysis was performed for a number of geometries of the cylinder and the hole;

diameter ratios of 1.5,2,3,4, 5 and 6 and with bore radius of the cylinder to the side

hole radius ratio of 1.5, 2, 3, 5 and 8. The distribution of hoop stress concentration

factor showed that the stress concentration factors increased with the increasing side

hole ratio (decreasing side hole diamtere for a fixed bore diameter). Thus he showed

that it is advantageous to use as small a side hole ratio as possible to reduce the stress

concentration factors from internal pressure loading. These calculations supported

experimental measurements that show that for large side hole ratios the stress

concentrations were lower. For either an internal pressure or an external pressure

acting separately, the theoretical results obtained by the authors indicated that the

best configuration was one for which the internal intersecting bores have identically

the same diameter. The experimental results obtained by Gerdeen and Smith [7] also

verified the theoretical analysis performed by Gerdeen. Both plastic and steel

materials were used for the experiment and the loading considered were both internal

and external in nature.

The finite element method to analyze the stress distribution and stress concentration
•

on cylinders having side holes or cross holes was first attempted by Masu and Craggs

[8]. The finite element analysis of the present problem by Masu and Craggs [8]
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reported an investigation of fatigue strength of thick walled cylinders that contain a

small traverse circular hole or cross hole in the cylinder wall. Experimental tests

have been carried out on high strength steel cylinders containing a small diameter

cross hole in order to observe the effect of cross bore on fatigue life; this work was

supplemented by a three dimensional finite element analysis of the problem. The

results obtained by the authors justified the previous analytical or experimental

works which showed that the introduction of cross hole increases the stress

concentration factor than that of plain cylinder.

Another numerical study was made by Masu [9] where a three dimensional finite

element analyses were performed for closed ended thick walled cylinder with a cross

bore under internal pressure. Cylinders having either a round cross bore or optimally

offset circular cross bore were investigated. The effects of cross bore diameter size

on the principal stress distribution as well as the stress concentration factors along

the cross bores were also investigated. The results showed that the hoop stress

distributions as well as the stress concentration factors in a thick walled cylinder

depend on cross bore diameter size. The maximum hoop stresses in the circular

radial cross bore cylinders approached 1.5 times that in offset cross hole cylinders.

The stress concentration factor at the bore of the circular radial cross bore, and an

optimally offset circular cross bore were found to be 2.30 and 1.33 respectively. The

present observations were in general supportive of experimental observations by

Ficenec (15] where an improvement of fatigue life upto 170% was obtained by

offsetting the cross hole.

In the same year, Masu [10] investigated the cross bore diameter size effects on the

principle stress distribution as well as the stress concentration factors along the plain

cross bores. The results showed a dependency of the stress distributions, as well as

the stress concentration factors on cross bore diameter size. The stress concentration

factor was found to increase with the increasing cross bore size for a particular

thickness ratio. This behavior contradicted other previous observations that the stress

concentration in a plate decreases with increasing hole size due to the fact that there

is less abrupt change in cross sectional area with a large hole. However the previous

11



observations were based on uniaxial loads and they assumed plane stress conditions.,
But as the stress state they considered was complex in this case where also shear

stresses were involved so their effect cannot be ignored as they dictated the outcome

of the stress found on the cross bore surface.

In industry, it has been common practice to incorporate a chamfer [16] or smooth

blend radius [17] at the junction between the cross hole, side hole and main bore.

Although this would seem to be in keeping with standard engineering practice to

minimize stress concentration effects, there is no clear theoretical or experimental

justification for this design in details in the literature.

Hamilton et aZ. [I I] used finite element method to study the elastic stress

concentration factors for internally pressurized thick walled cylinders having radial

and offset circular cross holes. Three forms of intersection between the cross hole

and main bore were considered: plain, chamfered and blend radiused intersection.

The effects on the stress concentration factor of such blending is of particular interest

to the pressure vessel designer, particularly if the effect of blending geometry is to

reduce the stress concentration factor at the cross bore - main cylinder bore

intersection. Thus a study was carried out to observe effects of blending geometry on

the stress field and its consequent influence on fatigue life. The authors carried out

the study on five outer to inner radius of the main cylinder; b/a = 1.5, 1.75,2,2.25

and 2.5. Two circular cross holes of different radii were modeled; the radius of the

circular holes were taken as Rc= 0.45mm and Rc= 2 mm. The results obtained from

the study showed that introduction of a cross bore into a cylinder wall greatly

increases the hoop stress that would otherwise be present in a plain cylinder.

Attempts to reduce the hoop stress in a plain cross bore cylinder by using blending

features were seen to be successful over a region close to the main bore. The results

of this investigation carried out by the authors also confirmed the fact that offsetting

the cross holes gives less stress concentration factor.

One of the earlier works regarding elliptical side holes or cross holes in a cylinder,

were by Murthy [I2) and Murthy and Bapu Rao (13) where they obtained analytical

12



solutions for the stresses around a small elliptical hole in a long thin circular

cylindrical shell under axial tension: But there analysis was for thin cylinder which

was under axial tension. Fenner and Nadiri [14] performed an extensive work to

compute the stress concentration factors at the intersection between elliptical side

branches and thick walled tubes or pressure vessels. They used boundary integral

equation (boundary element) method to obtain the effect of the elliptical side

branches on cylinders. In their investigation, they considered the aspect ratios of the

elliptical branehes to be 0.9 and 0.8 and main cylinder radius ratio to be 1.5. The

results of their investigation showed that the elliptical holes give less stress

concentration factors compared to that of circular ones.

Until now, no noteworthy finite element analysis of thick walled cylinders having

elliptical cross hole has been found in the literature. So in this present study the finite

element method is employed to solve Ibis phenomenon. In this present study an

extensive finite element investigation of the elastic stress concentration effect of

radial and offset elliptical cross holes in cylindrical vessels is presented, with

particular consideration given to the effect of incorporating supposed local stress

reducing features.
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CHAP1fER3
THEORITICAL BACKGROUND

In this chapter, the governing basic equations for the applied mechanics with

appropriate boundary conditions and also the solution procedure applicable to the

present problem will be discussed. The generalized governing equations are based on

constitutive relation of stress-strain and the equilibrium equations. Also, the

formulation of the three-dimensional stress-analysis using finite element will be

discussed in this chapter.

3.1 FUNDAMENTAL EQUATIONS

The problem that dealt in this present study is three dimensional in nature. This

problem is governed by the constitutive relation of stress-strain and the equilibrium

equations.

3.1.1. STRESS-STRAIN RELATIONS

For linear elastic materials, the stress-strain relations come from the generalized

Hooke's law. For isotropic materials, the two material properties are Young's

modulus (or modulus of elasticity) E and Poisson's ratio v .Considering an elemental
cube inside a body, Hooke's law gives, for the triaxial stress system,

Ex = ax _ v ay _ v a, (3.1)
E E E
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,

By = _ V O"x + O"y _ V 0", ....•..•....••••••.••.•.......................... (3.2)
E E E

Bz = _ V O"x _ V O"y + o"x ..................................••....••.•••••• (3.3)
E E E

"r =--"'-yx G
r" = "" (3.4)

G
"xy

rxy =-.
G

Where, O"x' 0"y and 0"x are normal stresses, ex. €y and €z are normal strains, "YX'

"" and" xy are shear stresses and r yx' r" and rxy are the engineering shear strains.

The shear modulus (or modulus of rigidity), G, is given by,

E '
G = -- (3 .5)

2(1+ v)

From Hooke's law relationships, note that,

(1- 2v)
B x + B y+ Bz= --- (0" + 0" + 0" ) ..........................•..• (3.6)E x Y z

Substituting for (O"y + 0",) and so on into Eg. a, we get the inverse relations,

0" =D B ..........••••••••••••••.••...........................•••• (3.7)

This is the constitutive relation of stress and strain in form of linear elasticity.

D is the symmetric (6x6) material matrix given by,

I-v v v 0 0 0
v I-v v 0 0 0

E v v I-v 0 0 0
D= .............. (3.8)

(1+v)(I- 2v) 0 0 0 0.5-v 0 0
0 0 0 0 0.5-v 0
0 0 0 0 0 0.5-v

The above mentioned matrix is used to calculate the stresses from strains in each

elements in finite element (FE) method.
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3.1.2. THE EQUILffiRIUM EQUATIONS:

. aax +aTxy +aTx, +fx = 0 (3.9)ax ay az

aT~ aa, aT~ _-+-+-+ fy - 0 (3.10)ax ay az

aTx, + aT~ +aa, +fz=0 (3.11)ax ay az

Where, G, fy and fz are the distributed body forces per unit volume.

The differential equations of equilibrium can be written as,

VTa+b=O

Where, b is the body force vector.

The equations given here have to be solved by given certain boundary conditions.

These boundary conditions may be expressed in terms of prescribed traction vector

t or prescribed displacement u. That is for three dimensional problems, it is

obtained that,

t = S n = h on Sh

u = g on Sg

where hand g are given vectors, Sh is that part of the boundary S, on which the

traction vector T is prescribed and Sg is that part of the boundary S on which

displacement vector u is given. The sum of Sh and Sg constitutes the entire boundary

S.

It is no surprise that exact analytical solutions of the three-dimensional elasticity

problems present a formidable task, and as a consequence they are scarce. Moreover,

these solutions are confined to physically simple problems with uncomplicated

geometry. But when the geometry is arbitrary and also the boundary conditions are

complicated, the exact solution of the problem cannot be obtained. This inability to
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obtain an exact solution may be attributed to either the complex nature of governing

differential equations or the difficulties that arise from dealing with the boundary and

initial conditions. To deal with such problems, numerical approximations are

therefore made. Numerical solutions approximate exact solutions only at discrete

points, called nodes. The first step of any numerical procedure is discretization. This

process divides the medium of interest into a number of small sub regions and nodes.

There are two common classes of numerical methods:

(I) Finite difference methods and

(2) Finite element methods.

With finite difference methods, the differential equation is written for each node, and

the derivatives are replaced by difference equations. This approach results in a set of

simultaneous linear equations. Although finite difference methods arc easy to

understand and employ in simple problems: they become difficult to apply for

problems with complex geometries or complex boundary conditions. This situation is

also true for problems with no isotropic material properties.

The advantage of the FE method is that in principle any problem can be solved,

irrespective of the geometry and even considering complex constitutive relations.

The expense that has to be paid for this gain in generality is that the FE method

provides an approximate solution, which, however, converges towards the exact

solution for a decreasing element size.

In the present numerical computation of the problem Finite element method (FEM) is

used.

3.2. FINITE ELEMENT METHOD

The finite element method has become a powerful tool for the numerical solution of

a wide range of engineering problems. Applications range from deformation and

stress analysis of automotive, aircraft, building and bridge structures to field analysis

of heat flux, fluid flow, magnetic flux, seepage, and other flow problems. With the

advances in computer technology and CAD systems, complex problems can be

modeled with relatively easier. Several alternative configurations can be tested on a

computer before the first prototype is built. All of these suggest the need to keep

17
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pace with these developments by understanding the basic theory, modeling

techniques and computational aspects of the finite element method.

All the physical phenomena encountered in engineering mechanics are modeled by

differential equations, and usually the problem addressed is too complicated to be

solved by classical analytical methods. The finite element method is a numerical

approach by which general differential equations can be solved in an approximate

manner.

The differential equations which describe the physical problem considered are

assumed to hold over a certain region. This region may be one, two, or three

dimensional. It is a characteristic feature of the finite element method that instead of

seeking approximations that hold directly over the entire region, the region is divided

into smaller parts, so called finite elements, and the approximation is then carried out

over each element. For instance, even though the parameters vary in a highly non

linear in manner over the entire region, it may be for approximation to assume that

the parameters vary in a liner manner over each element. The collection of all

elements is called a finite element mesh. The material properties and the governing

relationships are considered over these elements and expressed in terms of unknown

values at element corners.

When the type of approximation which is to be applied over each element has been

selected, the corresponding behavior of each element can then be determined. This

can be performed because the approximation made over each element is fairly

simple; as a result can be determined easily. Having determined the behavior of all

elements, these elements are then patched together, using some specific rules, to

form the entire region, which eventually enable us to obtain an approximate solution

for the behavior of the entire body.

The finite element method can be applied to obtain approximate solutions for

arbitrary differential equations. For some physical problems differential equations

can be solved by finite element method for both the boundary value problems and

initial value problems.
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A system with a finite number of unknowns is called a discrete system in contrast to

the original continuous system with an infinite number of unknowns. The

determination of the values of the variable at the nodal points follows from the

solution of a certain system of equations. A system often involves thousands of

equations, so such systems cannot be solved by hand and therefore the FE method

relies entirely on the availability of efficient computers.

The finite element method can be applied to arbitrary differential equations and

arbitrary geometries of bodies consisting arbitrary materials. It is therefore no

surprise that the FE method today is the most powerful approach for solving

differential equations that occur in engineering, physics and mathematics.

In the next section, the three dimensional modeling of finite element method will be

discussed as for the analysis made in this research work is based on three

dimensional FE method. The formulation and equations used to analyze a three

dimensional FE problem are discussed below.

3.2. THREE DIMENSIONAL FINITE ELEMENTS MODELING

Most engineering problems are three dimensional. So far, we have studied the

possibilities of finite element analysis of simplified models, where rod elements,

constant-strain triangles, axisymmetric elements, beams, and so on give reasonable

results. In this chapter, we deal with the formulation of three-dimensional stress-

analysis problems. The ten-node tetrahedral element is presented in this section.

Problem modeling is also discussed. In addition, frontal solution method is
introduced.

If u, v and w are displacements in the x, y and z directions respectively, then

u = [u, v, wr (3.9)

. The stresses and strains are given by,

a = [ax ay a, '", '" TXYY
......................... (3.10)

E: = [ex TXYYE:y E:, 'y, '"

19



The stress-strain relations are given by, from 3.7 as

(j = De
Where, D is a (6x6) symmetric matrix. For isotropic materials, D is givcn by

equation (3.8)

The strain-displacement relations are given by,

e = [au, Ov , Ow , Ov + Ow, au + Ow , au + Ov]r (3.11)ax By oz oz By oz ax By ax

The body force and traction vectors those act on a three dimensional body are given

by,

I = [/x,fy,fJ
T = [T

x
' Ty,TJ (3.12)

Now, for the formulation of FE method, the volume is divided into ten-node

tetrahedral. Each node is assigned a number in the X-, y-, and z-coordinates .

For each local node I three degrees of freedom are assigned q3;.2,q3;-I, and q3;, and

for the corresponding global node I, the assigned degree of freedoms are Q31-2,Q31-1,

Q31.Thus, the element and global displacement vectors are,

[" ]r "q = q"q"q, .lJ12
............................. (3.13)

Q = [QI' Q" Q, , QNY

Where N is the total number of degrees of freedom for the structure, three per node.

Ten Lagrange-type shape functions are considered N], N2, N3 •••.••••• N9 and NIO,

where shape function N; has a value of Iat node Iand is zero at the other nine nodes.

Specifically, N1 is 0 at nodes 2, 3 9 and 10 and linearly increases to I at node I.

Using the master element, the shape functions can be defined as,
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N1 =-,; +2e,
2N2 = -1] + 21] ,

N3 =-t; +t;2,

N4 = 4';1]
Ns = 41]t;
N6 = 4t;,;
N 7 = 4'; - 4e - 4';1] - 4,;t;
Ng = 41]- 41]2 - 4';1] - 41]t;

N9 = 4t; - 4t;2 - 41]t; - 4,;t;

NIO = 1- 3'; - 31]- 3t; + 2e + 21]2+ 2t;2 + 4';1] + 41]t;+ 4,;t;

..(3.14)

The displacements u, v, and w at x can be written in terms of the unknown nodal

values as,

u= Nq (3.15)

where

N = '" (3 .16)

[

Nl

Where, Ni=l = ~ ~ ] and so on.

N!

It is easy to see that the shape functions can be used to define the coordinates x, y,

and z of the point at which the displacements u, v, and ware interpolated. This is

called the isoparametric formulation when the co-ordinates and also the
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corresponding displacements can be expressed using same shape functions.The

isoparametrie transformation is given by,

10
x= 2,xiNi

i=1
10

Y = 2,YiNi (3.17)
i=1
10

z= 2,zjNj

i=1

Using the ehain rule for partial derivatives, say, of u,

au au
a~ -oxau

=J
au-

017 By
au au-at; az

...................................... (3.18)

Thus, the partial derivatives with respect to ~.17 and t; are related to x, y, and z

derivatives by the foregoing relationship. The Jacobian matrix of the transformation

is given by,

Ox 8y oz-
ot% ot% ot%

J= Ox 8y oz
- ................................ (3.19)
077 077 077
Ox 8y oz
-Os Os Os

The volume ofthe element is given by,

I 1-~ 1-{-1]

V, = f f f det Jd ~d 17 d t; (3.20)
a a a
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Since detJ is constant,

I l-~ l-~-'1

V, = Idet JIJ J Jd~dT]dt; (3.21)
000 .

Thus obtained,

I
V, = (jldetJl (3.22)

The inverse relation corresponding ofthe partial derivative of u is given by,

au au
- a~oxau =A au
Oy aT]
au au-az at;

..................................... (3.23)

Where A is the inverse of the Jacobian matrix J

Using the strain-displacement relations, the relation among derivatives in x, y, and z

and ~, T], and t; and the assumed displacement field u=Nq,

& = Bq (3.24)

Where B is a (6x30) matrix.

All the terms of B are constants. Thus this equation gives constant strains after the

nodal displacements are calculated.

Now, the element stiffness matrix will be calculated. Element stiffness matrix is

important to obtain the value of displacements in each elements of FE method.
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The element strain energy in the total potential is given by,

U, = 1. feT DcdV
2,

= l.qTBT DBq fdV
2 ' (3.25)

= l.qTV,BT DBq
2

I Tk'=-q q
2

Where the element stiffness matrix k' is given by,

k' = V,BT DB (3.26)

In which V, is the volume of the element given by l./detJl. In the Galerkin
6

approach, the internal virtual work of the element comes out to be,

faT e(r/J)dV = 'f/TV,BT DBq (3.27)

Equation 3.27 gives the element stiffness matrix. This element stiffness is required to

obtain the displacements in each node of an element.

Now, the force terms will be calculated.

The potential term associated with body force is,

fuT fdV = qT f ffNT f detJdl;dr;d(
, (3.28)
= qT f'

Using the integration formula,
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For this equation, the element body force vector r is of dimension I2x 1. It is noted

that Vefx is the x component of the body force, which is distributed to the degrees of

freedom q), q., q7, and qlO.

It is now consider uniformly distributed traction on the boundary surface. The

boundary surface of a tetrahedron is a triangle. Without loss of generality, if Ae is the

boundary surface on which traction is applied, formed by local nodes, then,

fuTTdA = QT fNTTdA = ql'T' (3.30)
A, A,

The element traction load vector is given by,

T' = ~' [Tx, Ty, T" T" Ty, T" Tx, Ty, T" 0 0 0] .... (3.31)

The stiffnesses and forces are gathered into global locations using element

connectivity. Point loads are added into proper locations of the force vector.

Boundary conditions are considered using penalty or other approaches. The energy

and Galerkin approaches yield the set of equations,

KQ = F (3.32)

Where, K is the element stiffness matrix, Q the displacement matrix which gives the

values of displacements in each node of an element and F is the force matrix which

contains all the force effects on a body (body force+ traction force+ point force).The

above equation 3.32 gives a set of equations for each node of an element and for all

the elements of a discritized body the same set of equations are obtained. Then all the

equations of all elements are globalized and by applying boundary conditions to

these equations, the values of the displacements are obtained from the known

stiffness matrix and the force terms( obtained from boundary conditions)
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As we are dealing with solid mechanics problem so the quantity we want to calculate

is the stress.

As mentioned above, after these equations of (3.32) are solved, the element nodal

displacements q can be obtained. Since (J = Dc and c =Bq, the element stresses are

given by,

(J = DEq (3.33)

The three principal stresses can be calculated by using the relationships of. the three

invariants of the (3x3) stress tensor are,

II = (J'x +o-y +O'z

I ' , ,2=~~+~~+~~-~-~-~~
13=axO'yCYz +2't"~'l"xz'!'xy -axr

2
yz -ay'r;z -az,lxy

We define,

I'a=-' -I
3 '

b= -2(!.l)' + 1/, - I
3 3 '

C=2~

I _'(3b)B=-cos --
3 ac

The principal stresses are given by,

....... (3.34)

I,
(J, = - + ccosB

3

(J, = i +CCO{B+ 2;) (3.35)

I (47!')(J, =-t+ccos B+3
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This is the procedure of solving three dimensional models using Finite element

method. Now solving of these equations requires computer as these large volumes of

equations is not possible to solve by hand. So in the following section, the computer

programs and soft wares those are used for solving these problems are discussed.

3.3. COMPUTER PROGRAMS

Computer use is an essential part of the finite element analysis. Well-developed,

well-maintained, and well-supported eomputer programs are necessary in solving

engineering problems and interpreting results. Many available commercial finite

element packages fulfill these needs. It is also the trend in industry that the results are

acceptable only when solved using certain standard computer program packages. The

commercial packages provide user-friendly data-input platforms and elegant and

easy to follow display formats. However, the packages do not provide an insight into

the formulations and solution methods. Specially developed computer programs with

available source codes enhance the learning process.

3.3.1. ANSYS

ANSYS is a comprehensive general-purpose finite element computer program that

contains over 100,000 lines of code. ANSYS is capable of performing static,

dynamic, heat transfer, fluid flow, and electromagnetism analyses. ANSYS has been

a leading FEA program for well over 20 years. Today, ANSYS is used in many

engineering fields, including aerospace, automotive, electronics, and 11Uclear.In

order to use ANSYS or any other "canned" FEA computer program intelligently, it is

imperative that one first fully understands the underlying basic concepts and

limitations of the finite element methods. ANSYS is a very powerful and impressive

engineering tool that may be used to solve a variety of problems.

3.3.2. BASIC STEPS IN THE FINITE ELEMENT METHOD

The basic steps involved in any finite element analysis consist of the following:
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Preprocessing Phase

1. Create and discretize the solution domain into finite elements; that is, subdivided
the problem into nodes and elements.

2. Assume a shape function to represent the physical behavior of an element; that is,

an approximate continuous function is assumed to represent the solution of an
element.

3. Develop equations for an element.

4. Assemble the elements to present the entire problem. Construct the global stiffness
matrix.

5. Apply boundary conditions, initial conditions and loading.

Solution Phase

6. Solve a set of linear or nonlinear algebraic equations simultaneously to obtain

nodal results. such as displacement values at different nodes or temperature values at

different nodes in a heat transfer problem.

Postprocessing Phase

7. Obtain other important information. At this point, you may be interested in values
of principal stresses. heat fluxes, etc.

ANSYSuses the same procedure to solve any problem.

3.3.3. THREE DIMENSIONAL ELEMENTS USED IN ANSYS

A number of three dimensional elements are used in ANSYS, among them some are

used for solving solid mechanics problems. Some of thses structural elements are
described below.

SOLID45 is a three-dimensional brick element used to model isotropic solid

problems It has eight nodes, with each node having three translational degrees of
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freedom in the nodal X-, y-, and z-directions, as shown in Figure 3.3. I. (The

element's faces are shown by the circled numbers) This element may be used to

analyze large-deflection, large-strain, plasticity, and creep problems.

K

}-

z IX

Y Surface coordinate system

X

Figure 3.3.1:Solid45 element used by ANSYS

SOLID65 is used to model reinforced-concrete problems or reinforced composite

materials, such as fiberglass. This element is similar to the SOLID45 elements, and it

has eight nodes, with each node having three translational degrees of freedom in the

nodal x, y, and z-directions, as shown in Figure 3.3.2. The element may be used to

analyze cracking in tension or crushing in compression.

M
I ,o I

L•.. _
/

/ X
/

/

J

K

Figure 3.3.2:Solid65 element used by ANSYS

SOLID72 is a four-node tetrahedral ,element, with each node having three

translational degrees of freedom in the nodal x, y, and z-directions, as well as

rotations about the nodal x, y, and z-directions, as shown in Figure 3.3.3. As in
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previous examples, the element's faces are shown by the circled numbers Distributed

surface loads (pressures) may be applied to the element's surfaces.

L

K

Figure 3.3.3:Solid72 element used by ANSYS

SOLID92 is a ten-node tetrahedral element that is more accurate than the SOLJD72

element, but it requires more solution time. Each node has three translational degrees

of freedom in the nodal x-, yo, and z-directions, as shown in Figure 10.1l. This

element may be used to analyze large-deflection, large-strain, plasticity, and creep
problems.

K

J

y 1

}-x
z

Figure 3.3.4:Solid92 element used by ANSYS

In the present study SOLID92 is used to describe the three dimensional model.

SOLID92 has a quadratic displacement behavior and is well suited to model irregular

meshes (such as produced from various CAD/CAM systems).

In the next section, the ,methods ANSYS uses to solve equations described in section
3.2 are discussed.
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3.3.4. THE FRONTAL SOLVER

There are number of solver used by the software ANSYS to solve the equations of a

given problem such as, Frontal Solver (direct elimination solver), Sparse Direct

Solver (direct elimination solver), Preconditioned Conjugate Gradient (PCG)

Solver(iterative solver), Incomplete Cholesky Conjugate Gradient (ICCG)

Solver(Iterative solver) and Jacobi Conjugate Gradient (JCG) Solver (iterative

solver). The frontal solver is the default, but one can select a different solver. In the

present study the frontal solver method is used to get the solution.

The frontal solver does not assemble the complete global matrix. Instead, ANSYS

performs the assembly and solution steps simultaneously as the solver processes each

element. The method works as follows:

• After the individual element matrices are calculated, the solver reads in the degrees

of freedom (DOF) for the first element.

• The program eliminates any degrees of freedom that can be expressed in terms of

the other DOF by writing an equation to the. TR! file. This process repeats for all

elements until all degrees of freedom have been eliminated and a complete

triangularzed matrix is left on the .TR! file.

• The program then calculates the nodal DOF solution by back substitution, and uses

the individual element matrices to calculate the element solution. Frontal solution

shows the main steps in a frontal solution and the files produced at each step.

Figure 3.4.l.Typical steps and files in a frontal solution
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3.4. von Mises equivalent stress

von Mises stress is used as a criterion in determining the onsct of failurc in ductilc

materials. The failure criterion states that the von Mises stress aVM should be less

than the yield stress a y of the materia!. In the inequality form, the criterion may be

put as,

aVM ~ ay (3.36)

The von Mises stress aVM is given by,

aVM =~I,'-31, (3.37)

Where I, and I, are the first two invariants of the stress tensor. For the general state

of stress I, and I, are given by,

, , , (3.38)
~=~~+~~+~~-~-~-~~

In terms of the principal stresses ap a, and, the two invariants can be written as,

I, =a, +a, +a3

I, = a,a, +a,a3 +a3a,
.......................... (3.39)

It is easy to check that von Mises stress can be expressed in the form of principal

stresses,

I~ ' , ,aVM = .fi (a, -a,) + (a, -a3) +(a3 -a,) (3.40)

Or,
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3.5. ELASTIC STRESS CONCENTRATION FACTORS

To obtain stress concentration factors usually the Principal stress concentration factor

and the von Mises stress concentrations factors are used. The stress concentration

effect of the cross holes in a cylinder is quantified here in terms of two elastic Stress

concentration factors (SCF). The Principal Stress concentration factor is given as,

KS1 = aim" (3.42)
air

Where, a'm" is the maximum value of principal stress in the vessel and aIX: is the

value of maximum principal stress at the inner surface of the plain cylinder (the hoop

stress at the bore). The von Mises equivalent stress concentration factor is defined as,

K, = a,m" (3.43)
a"

Where, a,m" is the maximum value of equivalent stress in the vessel with a cross

hole and a" is the value of equivalent stress at the inner surface of a similar plain

cylinder.

The von Mises equivalent stress concentration factors are particularly of more

interest as any problems concerning the behavior under static or repeated stress of

any ductile material, the von Mises equivalent is more accurate than the principal

stress which is also discussed in reference [4). From section 3.4 it is seen that to

calculate von Mises Equivalent stress all the three principal stresses are taken into

account, i.e.; all the three principal stresses are given the equal importance. So for

this present study the von Mises stress concentration factor is calculated along with

the principal stress concentration factor.
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CH.ArTJER4
COMPUTATIONAL DETAILS

In the present investigation, an extensive parametric finite element investigation

of the elastic stress concentration effect due to elliptical shaped cross holes in

internally pressurized cylindrical vessels is presented. Two different orientation of

the cross hole are considered; one major axis of the elliptical hole along the hoop

direction of the cylinder (circumferential orientation) as shown in figure 4.1. In

another orientation of the cross hole major axis of the elliptical hole is along the

longitudinal direction of the cylinder (longitudinal orientation) as shown in figure

4.2. In figures 4.3 and 4.5, the sectional views of the main cylinder for both the

orientations are shown. Figures 4.4 and 4.6 show the close view of the blended

intersection between the main bore of the cylinder and the cross hole. Particular

consideration is given to the effect of incorporating local stress reducing features,

Le. blended surface at the intersection of the cross hole and the inner surface of

the main cylinder as shown in figure 4.2 and 4.4 for both the orientation.

Two thick cylindrical vessel configurations are investigated, one with elliptical

cross hole along the radial center direction of the cylinder (Radial cross hole),

(shown in figure 4.5 and 4.7) and one elliptical cross hole offset from the radial

center line of the cylinder (offset cross hole) (shown in figure 4.6 and 4.8) for two

different orientation of holes; orientation A and orientation B. The main cylinder

has inner radius a and outer radius shown in figure 4. I 0 Five cylinder radius ratios

were considered for each type of vessel:

b/a = 1.5; I. 75, 2, 2.25, 2.5
Two elliptical cross hole of different geometrical dimension are modeled:

R: = 0.4 mm (smaller hole) and
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Rc= 2 mm (larger hole)

Where, Rc is the minor axis radius of the elliptical hole.

In this present investigation, the elliptical hole with minor axis radius Rc = 0.4
mm is termed as smaller hole and Rc = 2 mm is termed as larger hole. The reason

behind using these two dimensions of elliptical holes is because the smaller hole

is perhaps typical for an instrumentation tapping and the larger hole is more

typical for a fluid entry or exit port.

Figure 4.1 I: The dimension of the elliptical hole

Rb~

Figure 4.12: Vessel with cross hole configurations showing all the dimensions of

the vessel
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All through the finite element investigations, the major to minor axis ratio of the

elliptical hole, RiRc= 2 is used where Ra is the major axis radius of the elliptical

hole as shown in figure 4.9.

The intersection between the inner surface of the main bore and cross holes is

modeled as a smooth blend having blend radius of Rb = 0.4 mm for smaller hole

and Rb = 2.0 mm for the larger hole. These blended surfaces are incorporated in

all the vessel configurations, radiuses different for smaller and larger holes.

The two hole dimensions; smaller hole and larger hole, are used for both the radial

and offset configurations of holes and for orientation A only. For orientation B the

finite element investigations are done on cylinders containing only the larger cross

holes. For offset smaller and larger holes, for both orientation, the offset distance

used is O.l12b [suggested by reference [10] as the optimum distance].When all the

different parameters are combined, they define a range of 30 different vessel

configurations on which finite element analysis has been performed.

4.1: MODELING THE PROBLEM IN ANSYS

4.1.1 Pre-processing of the model

The vessels were analyzed using the commercial program ANSYS. The models

being three dimensional in nature, three dimensional isoparametric tetrahedral

element models are used for the study. Model size is minimized by invoking

symmetry boundary conditions. The radial elliptical cross hole configurations of

both the orientation have three plane of symmetry and the offset cross hole

configurations have two planes of symmetry. Thus only quarter and half models

required for the radial and offset geometries respectively. A model length of L=

2b is used for all cases.
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Figure 4.13: The quarter models of radial cross hole for orientation A and B .

Figure 4.14: The half models of offset cross hole for orientation A and B

The geometries of the models for the present study are drawn by CAD software

'SolidWorks'. It is an alternative to creating a model directly with ANSYS. The

models are generated first by 'SolidWorks' software and then it is imported into

ANSYS for analysis, by saving them in the IGES file fonnat. Creating a model

using a CAD package has the following advantages:

• The effort of duplication can be avoided by using existing CAD models to

generate solid models for analysis, so the models can be created in a easy

manner.

• More familiar tools can be used to create models.
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However, models imported from CAD systems may require extensive repair if

they are not of suitable quality for meshing. But once successfully imported, the

model can be meshed just as any model created in ANSYS. It is also possible to

generate the models in ANSYS, but there is no such short cut way of drawing

elliptical shaped cross holes and also generating the model every time can be

avoided. By using Solid works the main model is generated once and after that

only the dimensions of the various features are edited to get different b/a ratio or

the smaller and larger holes.

As stated earlier, the models are imported into ANSYS in the IGES file format.

The Initial Graphics Exchange Specification (IGES) is a vendor neutral standard

format used to exchange geometric models between various CAD and analysis

systems. ANSYS's IGES import capability is among the most robust in the

industry. Moreover, because the filter can import partial files, at least some

portion of the model can generally be imported. ANSYS provides the following

two options for importing IGES files:

• DEFAULT--This option uses an enhanced geometry database and should,

in almost all cases, be the choice of the user. The option is designed to

convert IGES files, if possible, without user intervention. The conversion

includes automatic merging and the creation of volumes to prepare the

models for meshing. If the DEFAULT option encounters problems

translating the IGES file, ANSYS will alert user to this and activate a suite

of enhanced topological and geometric tools designed specifically for

interactive repair of imported models.

• ALTERNATE--This option uses the standard ANSYS geometry database,

and is provided largely for backward compatibility. Occasionally, ANSYS

will be unable to translate an IGES model using the DEFAULT option and

the user will be instructed to try to ALTERNATE option. The

ALTERNATE option has no capabilities for automatically creating

volumes and models imported through this translator will require manual

repair. However, the enhanced set of topological or geometric repair tools
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is not available for models imported through this translator; the user must

use the standard PREP7 geometry tools to repair the model.

In the present study, the DEFAULT options of the ANSYS importing of IGES

files are used.

As stated earlier, in the pre-processing stage of the finite element analysis, the

tetrahedral elements are selected for all the models. The material properties of the

steel material have been used. After successful import of the model in ANSYS, it

is meshed by a suitable element. In Finite element method the mesh generation is

the technique to subdivide a domain into a set of sub domains, called finite

elements. The structures are meshed using a 10 node tetrahedron element

(SOLID92). Figure 4.13 show the view of the model after it is meshed. The

regions around the cross hole, where the largest strain gradient occurs and where

the stress is likely to concentrate, are refined to increase the accuracy of the

solution. From figure 4.13, it is easily visible that the node density is higher

around the regions around the cross holes.

Figure 4.15: Model after it is meshed
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4.1.2: Boundary conditions and the solution:

After the meshing of the model is completed by tetrahedral elements, the proper

boundary conditions are applied to the model. Both the 1/8 th model for radial

cross holes and the 1/4 th model for offset cross holes have 7 sides: I arid 2 the

inside surface and the outer surface of the main cylinder respectively, 3 the end

remote from the hole, 4 and 5 the two sides along the length of the model (on

longitudinal planes of symmetry), 6 the cross hole surface, 7 the surface on the

transverse plane of symmetry. Symmetry boundary conditions are applied to

symmetry surfaces (side 4, 5 and 7). The cut end of the cylinder (side 3) is

constrained such that the plane section remains plane upon loading. The vessel is

loaded by internal pressure, assuming a closed-end condition for the main

cylinder. In the finite element models, internal pressure is applied to the main bore

(side I), the cross hole (side 6) and the junction between the cross hole and the

inner surface of the main cylinder. The closed end boundary condition was

represented by applying a uniform axial thrust to the end of the cylinder (side 3).

After applying the boundary conditions, the solution phases of the finite element

analysis are executed. In this phase, computer takes over and solves the

simultaneous equations that the finite element method generates. For the present

investigations, the frontal solver is used for the solution of the finite element

models.

4.1.3: Post processing:

The general post processor contains the commands that allow displaying results of

an analysis. All the vital information can be obtained by using the post processing

command. In the present study, the quantities that are of importance are the von

Mises equivalent stress and the Principal stress that is developed in the cylinder

containing the cross hole due to the application of internal pressure. The von

Mises equivalent stress distribution or the Principal stress distribution in the

models of the cylinders can be obtained easily by the contour plot of these

stresses. From the contour plot, the location where the stress either von Mises

equivalent stress or the Principal stress, is concentrating can be easily observed.
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Again, after solution of a finite element analysis is made, the von Mises

equivalent stress or the Principal stress at each node point can be obtained. So the

values of the stresses where they are concentrating are readily available. The

maximum values of these stresses are required because they are needed to
calculate the stress concentration factors.

To calculate stress concentration factors, from the definition, it is apparent that the

value of the maximum Principal stress and the value of the maximum von Mises

equivalent stress at the inner surface of a plain cylinder (cylinder without cross

hole) are required. For this, 5 models of the cylinders without any cross holes for

5 outer to inner radius ratios (b/a) are analyzed and corresponding maximum

values of the stresses at the bore of the cylinders are obtained. These values arc

then used to calculate the Principal stress concentration factor (K,J) and von Miscs

equivalent stress concentration factor (Ke) for different models using the formula
stated in the previous chapter.
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RESULTS AND DISCUSSION

In the preceding chapters the computational technique for determination of the stress

concentration factor, stress distribution and the location of the maximum stress around

elliptical radial and offset cross holes of an internally pressurized thick walled cylinder

has been presented. Two different orientation of the hole have been investigated, one

with the major axis of the cross hole along the circumferential direction of the cylinder

and another major axis of the cross hole along the longitudinal direction of the cylinder.

The different geometries of the thick walled cylindrical vessel and different dimensions

of the elliptical hole for two different orientations are summarized in the table 5.1.

A 1/8th model of the cylinder for radial elliptical cross holes and 1I4th model for offset

cross holes for both the orientations are used for the present investigation. The inner

diameter of the main cylinder is 20 mID and the outer diameter is calculated using the

five thickness ratio given in the previous chapter.

This chapter is divided into two sections; the first section deals with results obtained

from the finite element analysis of the models of different geometry and orientation and

in the second section the results obtained are compared with the published data available

in literature.
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Table 5.1: Geometrical Characteristics of Various Tcst Cases Investigated

Elliptical cross hole along the radial Elliptical cross hole offset from thc
center direction of the cylinder radial center line of the cylinder (offset

Radial cross hole cross hole

b/a 2.5 b/a 2.5
<t: Rc= 0.4 mm Rc=O.4mmQ Smaller Smaller0 R. = 0.8 mm R.=0.8 mm.~ hole hole
OJ Rb=0.4 mm Rb= 0.4 mm
Q)

'1:: Rc=2.0mm Rc = 2.0 mm0 Larger R.=4.0mm
Larger R.=4.0mm

hole Rb=2.0mm
hole Rb=2.0mm

Q
0 Rc=2.0mm Rc=2.0mm.~ Larger LargerOJa:l R.=4.0mm R.=4.0mm
Q) hole Rb=2.0mm

hole Rb=2.0mm'1::
0

5.1 Circumferential Orientation

5.1.1. Radial Cross hole

Figure 5.1 shows the von Mises equivalent stress distribution as a contour plot for a

radial elliptical cross hole with the major axis of the elliptical hole along the hoop

direction of the cylinder(orientation A). In this case the main cylinder ratio is b/a = 2, the

minor axis radius of the hole is Rc = 2 mm and the fillet radius is Rb = 2 mm between the

hole and inner surface of the cylinder. From the contour plot of von Mises equivalent

stress (cr VM), it is observed that the highest stress occurs at the junction between the

crosshole and outer surface of the cylinder, on the transverse plane of symmetry. The

same stress distribution occurs for all the other test cases. This is an interesting finding

of this thesis work as the finite element Analysis by Hamilton et at. [II] for circular

cross hole shows that von Mises equivalent stress (cr VM) concentrates around the

intersection of the cross hole and inner surface of the main cylinder, with same boundary

conditions and same finite element solution technique being carried out. But in case of
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elliptical cross hole the stress is observed to bc conccntrating at thc junction bctwccn thc

hole and the outer surface of the cylinder rather than thc inncr surfacc, which is obscrvcd

in case of circular cross holes. The reason behind this phenomenon is due to the

elongation of the effective major to minor axis ratio of the elliptical hole, as it intersects

with the inner radius, which does not happen in the intersection between the hole and the

outer surface of the main cylinder. As a result the stress concentrates at the outer surface

of the cylinder which is also observed in other test cases.

The Principal stress concentration factors (Ks1) and von Mises equivalent stress

concentration factors (Ke) for all the larger cross hole and smaller cross hole

configurations are plotted against main cylinder radius ratio, which are shown in figures

from 5.5 to 5.8. All these figures illustrate that the SCFs, either the Principal or the von

Mises, increases with the increase of the main cylinder radius ratio (b/a). Table 5.2

shows the values of Principal stress concentration factors (Ks1) and von Mises equivalent

stress concentration factors (Ke) obtained from the present study-

]

Table 5.2: The values of Ks1 and Ke fordifferent b/a ratio

Circumferential Orientation

b/a Smaller radial cross hole Larger radial cross hole

ratio Ks1 Ke Ks1 Ke
1.5 1.77 1.71 1.92 1.72
1.75 1.803 1.75 2.2 1.815
2.0 2 1.795 2.36 1.93
2.25 2.11 1.9 2.45 1.952
2.5 2.2 2. 2.52 2.012

The data in table 5.2 depicts that both the Principal SCFs (Ks1) and the von Mises

equivalent SCFs (Ke) are greater in values for larger radial cross holes than for smaller

radial cross holes.
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Figure 5.2 depicts the contour plot of Principal stress (a I) distribution for an elliptical

radial cross hole where the major axis of the cross hole is along the hoop dircction of the

cylinder (Circumferential Orientation). In this case the main cylinder ratio is b/a = 2, the
minor axis radius of the hole is R: = 2 mm and the fillet radius is Rb = 2 mm between the

hole and inner surface of the cylinder.

5.1.2. Offset Cross hole

Figure 5.3 shows the von Mises equivalent stress (av) distribution as a contour plot for

an elliptical cross hole offset at a distance 3.36 mm from the radial center line with the

major axis along the hoop direction of the cross hole(Circumferential Orientation). In

this case the main cylinder ratio is b/a = 1.5, the minor axis radius of the hole is Rc = 0.4

mm and the fillet radius is Rb = 0.4 mm between the hole and inner surface of the

cylinder. The offset distances for each b/a ratio are calculated from the relation Rb =

O. II2b. So the offset distances for b/a = 1.5, 1.75, 2.0, 2.25 and 2.5 are 3.36 mm, 3.92

mm, 4.48 mm, 5.04 mm respectively. The results obtained from the investigation of the

offset holes for circumferential orientation was seen to have similar effects on the

location and magnitude of the peak stress. The stresses are observed to be concentrating

at the outer cylinder-hole intersection as the previous analysis on the radial elliptical

cross holes. The calculated stress concentration factors for both smaller and larger

elliptical cross holes offset from the radial center line of the cylinder are shown in table

5.3:

Table 5.3: The values ofKsl and Ke for different b/a ratio

(circumferential orientation)

b/a Smaller offset cross hole Larger offset cross hole

ratio Ks1 Ke Ks1 Ke

1.5 1.71 1.66 1.88 1.65
1.75 1.815 1.71 2.04 1.72
2.0 1.93 1.7 2.1 1.746
2.25 1.95 1.68 2.23 1.77
2.5 2 1.7 2.35 1.82

44



Figures 5.8 to 5.12 show the effect of outer to inner radius ratio of the main cylinder on

the Principal SCFs and the von Mises Equivalent SCFs. These graphs also demonstrate

the increasing nature of the SCFs with the increment of the bla ratio same as those of

radial cross holes.

5.2 Longitudinal orientation

,5.2.1. Radial Cross hole

Figure5.4 presents the contour plot of von Mises «J VM) distribution for a radial elliptical

cross hole; where the major axis ofthe.cross hole is along the longitudinal direction of

the cylinder. In this case the main cylinder ratio is bla = 2, the minor axis radius of the

hole is Rc = 2 mrn and the fillet radius is Rb = 2 mrn between the hole and inner surface

of the cylinder. Considering this contour plot of von Mises stress distribution of

orientation B, it is observed that the von Mises stress ((J v) is highest around the major

axis of the elliptical hole at the outer intersection of the hole and the cylinder. Similar

results are obtained for all other finite element analysis of this orientation. The reason

behind this occurrence can be explained by the theory of a flat plate having a hole

loaded by internal pressure. A flat plate here may be considered to be a section of a thin

cylinder of infinite radius. Under internal pressure, the plate is subjected to an in-plane

biaxial state of stress «Je, (Je/2), where (Jeis equivalent to the hoop stress of a pressurized

thin cylinder. The maximum SCF at the hole can be found from the well known solution

for a small hole in an infinite plate and stress superposition. This is illustrated in figure

5.13, which shows a maximum SCF of 2.5 for a circular hole. The solution for an'

elliptical hole is found in a similar manner. The maximum SCF depends on the major-

minor axis ratio of the ellipse. If it is parallel to the higher axial stress (Je , the SCF will

be lower than that for a circular hole; for an axis ratio of 2, the corresponding maximum

SCF value is 1.5. If the major axis is perpendicular, the SCF will be greater than that for

a circular hole, the corresponding maximum SCF value is 4.5. The solution for a cross

45



hole in a thick cylinder subject to internal pressure is more complex but a similar

approach can be employed.

It can be concluded that in case of the elliptical hole, there are different SCF values on

each hole axis. The small effective radius of curvature at the ends of the hole gives a

higher SCF than at the middle of the ellipse. The ellipse should be oriented in such a

way that the larger SCF is applied to the smaller bulk stress, i.e. the major axis of the

elliptical hole should be placed along the hoop direction of the cylinder for less stress to

build up. So if the orientation of the ellipse is placed the other way round then the

maximum stress that will be developed will be greater than this orientation and also that

given by a circular hole. So the results, obtained for longitudinal orientation of the cross

hole, validate the above discussion that in this orientation the stress is concentrating

around the major axis of the elliptical hole at the outer intersection of the hole and the

cylinder.

For the finite element analysis of the models of longitudinal orientation only the larger

holes are taken into account. The calculated stress concentration factors for larger

elliptical cross holes along the radial center line of the cylinder are shown in table 5.4:

Table 5.4: The values ofKs! and Ke for different b/a ratio

longitudinal orientation

b/a ratio
Larger radial cross hole

Ks1 Ke

1.5 4.627 4.15
1.75 4.89 4.229
2.0 5.1 4.44
2.25 5.2 4.5
2.5 5.36 4.4667
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Figures 5.14 and 5.15 present the variation of the Principal SCFs and the von Mises

equivalent SCFs with the change of outer to inner radius ratio of the main cylinder.

5.2.2 Offset Cross hole

The offset distances for longitudinal orientation of cross holes each b/a ratio are same as

that are calculated for the offset cross holes of circumferential orientation.

Table 5.5: The values ofKsl and Ke for different b/a ratio

longitudinal orientation

b/a ratio
larger radial cross hole

Ks1 Ke

1.5 4.29 3.84
1.75 4.66 3.88
2.0 4.85 3.94
2.25 5.08 3.99
2.5 5.18 4.1

The finite element analysis of offset cross holes of longitudinal orientation leads to the

similar results as for other test cases. The calculated stress concentration factors for the

larger elliptical cross holes offset from the radial center line of the cylinder are shown in

table 5.5:

The corresponding figures 5.16 and 5.17 describe the effect of outer to inner radius ratio

ofthe main cylinder on the Principal SCFs and the von Mises Equivalent SCFs.

5.3. Comparison of KsJ sand Ke s for different orientation

JIAs in case of longitudinal orientation of cross holes only the large holes of both radial

and offset configuration have been analyzed using finite element method so the SCFs are

47



compared for only the larger cross holes. In figures 5.18 and 5.19, the variation of the

Principal SCFs (KsI) and the von Mises SCFs (Ke) are observed for the radial cross holes

of both the orientation. As for the reason described in section 5.2.1 it is obvious that the

values of both the stress concentration factors for different b/a ratio will be higher for

longitudinal orientation than that for the circumferential orientation.

Figures 5.20 and 5.21 present the variation of the Principal SCFs (Ks1) and the von

Mises SCFs (Ke) for the offset cross holes of both the orientation. These figures are

indicating the same outcomes for those obtained for radial cross holes.

S.4. Comparison of Ks1 sand Ke s between radial and offset erossholes

In figures 5.22 and 5.23 for orientation A, the comparison of the Principal SCFs and the

von Mises SCFs between smaller radial and smaller offset cross holes for different b/a

ratio are observed. It is observed from both the figures that smaller offset cross holes

show less stress concentration factor than that the radial cross holes which substantiates

the findings of the reference [10] that offsetting circular cross holes led to reduced SCF,

which in turn results in a significant increase in the fatigue life of vessels. Though the

findings of the reference [10] were based on circular cross holes, same results are also

obtained for the elliptical offset cross holes.

Figures 5.24 and 5.25 also indicate the similar results for larger radial and offset cross

holes as those for larger radial and offset cross holes for circumferential orientation.

In the figures 5.26 and 5.27, the Principal SCFs (Ks1) and von Mises SCFs (Ke) are

plotted against main cylinder radius ratio for larger cross holes of radial and offset

configuration for longitudinal orientation. These figures are also of same nature as the

previous ones for the circumferential orientation.
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5.5 Comparison of the SCFs between radial and offset eross holes

In figures 5.28 and 5.29 the Principal SCFs (Ks1) and the von Mises SCFs (Kc) for

smaller and larger radial cross holes for different orientation are plotted against different

b/a ratios. It is noticed from the figures that for all conditions the SCFs are increased

with the increasing b/a ratio. In case of comparing the SCFs between large and small

radial cross holes for circumferential orientation, it is seen from the figures that both the

SCFs are higher for larger holes than those of smaller holes. Again, Comparing between

all the three cases, large and small hole of circumferential orientation and large hole of

longitudinal orientation, it is observed that the small radial cross holes of circumfcrential

orientation provides less stress concentration of all the 3 cases. Although the SCFs of

radial small cross holes oflongitudinal orientation is not calculated in this present study,

but showing the trend it can be said that the SCFs for this cross hole of longitudinal

orientation would have been definitely greater than that of the same of circumferential

orientation.

The figures 5.30 and 5.31 illustrate the Principal SCFs (Ks1) and the von Mises SCFs

(Ke) for smaller and larger offset cross holes for different orientation. The natures of the

figures are same as that obtained for the radial cross holes. Here also the small offset

cross hole of circumferential orientation shows the less SCFs among all for different b/a

ratios.

From all the figures from 5.28 to 5.31 it can be observed that the von Mises equivalent

SCFs does not vary much for both the small and large radial and offset cross holes of

circumferential orientation where as the Principal SCFs shows a significant differences

in the values for the same condition. As the concept of the von Mises equivalent stress in

this study is included as the complex stress state that occurs in the cylinders due to the

cross holes can be explained accurately by this theory, so it can be said that the values of

the von Mises equivalent SCFs are some what independent of the hole sizes for different

b/a ratios.
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5.6: Comparison of the SCFs between eross hole sizes and orientation

Figures from 5.32 to 5.36 represent the comparison of Principal SCFs and von Miscs

equivalent SCFs between different cross hole sizes and two orientation of the hole for

each outer to inner radius ratio (b/a) of the cylinder. Each figure demonstrates the

comparison of both SCFs for all the geometries and orientation of the cross hole taken

into consideration in this study for each b/a ratio. Actually each figure summarizes all

the results obtained for each b/a ratio which are shown as bar charts. From each figure it

is evident that the smaller offset cross hole of orientation A shows smallest SCF among

all other configurations. And in each case the von Mises equivalent SCF is always less

than the Principal SCF for all the configurations of the cross holes.

5.7: Comparison of the SCFs with published data available in literature

In this section the SCFs for elliptical cross holes in a cylinder are compared with the

SCFs obtained by Hamilton et al. [11] for mainly circular cross holes. Before making any

comparison, the validity of the finite element computer program (ANSYS) and the

computational procedure used to obtain the stress concentration factors for elliptical

cross holes is made. The equivalent circular large cross holes (the radius of the circular

hole is same as the minor axis radius of the elliptical hole) placed along the radial center

line of the main cylinder for 5 b/a ratios are analyzed using ANSYS and keeping all the

parameters the same. Figure 5.37 present the principal stress concentration factors

obtained for the circular large holes in the present study and the SCFs obtained by

Hamilton et al.. From the figure it is observed that the results obtained in the present

study provide almo'st same values of SCFs as that of the results obtained by Hamilton et

al.. The results of both the investigation show around 1-1.5% variation in results, which

is quite low. So it can be said that the computational procedure and the finite element

software used to analyze the stress concentration effects of elliptical cross holes are

valid.

Figure 5.38 illustrates the von Mises equivalent stress concentration factors obtained for

the circular large holes in the present study and the SCFs obtained by Hamilton et al..
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The figure also shows that the values obtained by both the investigation arc rathcr

similar and show a around 1.5-2.5% variation in values.

Now in figures 5.39 to 5.42; the SCFs Ks1 and Ke for all the larger cross hole

configurations (radial and offset) of circumferential orientation are plotted against main

cylinder radius ratio for circular cross hole having blended intersection (data taken from

reference [II]), circular cross hole having chamfer at the intersection (data taken from

reference [II]) and elliptical cross hole having blended intersection (data obtained from

the present study). From the figures it is observed that elliptical cross holes give the

lowest SCFs for all b/ratios than for those of circular cross hole having blended

intersection, circular cross hole having chamfer at the intersection.

Figures 5.43 to 5.46 show the SCFs Ks1 and Ke for all the smaller cross hole

configurations (radial and offset) of circumferential orientation plotted against b/a ratio

for plain elliptical cross hole having blended intersection, cross hole having blended

intersection, and circular cross hole having chamfer at the intersection. These figures

also show that the SCFs are smallest for elliptical cross holes compared to other two

cross holes.

So it can be concluded by observing the figures 5.39 to 5.46 that the SCF is reduced

when the intersection between the cross hole and main bore surface has an elliptical

profile. So the elliptical shaped cross holes should be preferred over the circular ones.

Also it can be seen from the results of Hamilton et at. [II] that the circular cross holes

having blended intersection give less stress concentration factor compared to that of the

chamfered one. So in this present study blending of the surface between the cross hole

and the inner of the cylinder is used to obtain less stress concentration factor.

A complete set of SCF values for elliptical cross hole geometries considered here has

not been previously presented in the literature and it is not therefore possible to make

direct comparison with other solutions. Fenner and Nadiri (14] obtained stress

concentration factors for ellipse aspect ratios (minor radius to major radius ratio) 0.9 and
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0.8, but in the present study we obtained stress concentration factors for 0.5 aspect ratio.

Again they considered side branch holes, so the effect of the branch pipes are considered

as closed end boundary conditions in their literature but in this present study the hole has

been considered open. Therefore obviously they results cannot be compared.
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CONCLUSIONS

In the present study two relatively small opening are considered, which are typical of

an instrumentation tapping, bursting caps or fluid entry/ exit ports in thick walled

high pressure vessels. Overall, the stress concentration effect was smaller for smaller

hole. Again the results obtained from the analysis demonstrates the increasing nature

of the stress concentration factors for both radial and offset elliptical cross holes with

the increment of the outer to inner radius ratio of the main cylinder (b/a) for both

circumferential and longitudinal orientation.

The Principal SCFs for elliptical smaller radial cross holes having blended

intersection obtained from the present study are 1.77, 1.803,2,2.1 I, and 2.2 and von

Mises SCFs for the same configuration are 1.71, 1.815, 1.93, 1.95 and 2.01.

. Similarly the Principal SCFs for equivalent circular smaller radial cross hole having

blended intersection are 3.2, 3.4, 3.5, 3.55 and 3.6 and von Mises SCFs for the same

configuration are 2.75, 2.75, 2.73, 2.72 and 2.71. The results for the circular cross

holes are obtained by Hamilton et al. [I I]. Comparing these results obtained for

elliptical smaller radial cross holes with those obtained for equivalent circular cross

holes by Hamilton et al.[1 I] show that the both the SCFs are less for elliptical cross

holes than the circular ones. All other configurations of holes also show that the

SCFs are less for elliptical shaped holes.

Comparing the results of the equivalent circular and elliptical radial larger cross

holes, the principal and von Mises SCFs for the elliptical cross holes are seen to vary
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around 30% and 28% in contrast to the circular ones. The Principal and von Mises

SCFs for equivalent smaller radial cross holes vary around 42% and 30%

respectively. Considering offset cross holes, the principal SCFs for larger and smaller

elliptical cross holes show around 35% and 41% reduction in values than the

equivalent circular cross holes and the von Mises SCFs show around 22% and 34%

reduction in values. So cross holes of elliptical shape can be used instead of the

circular one, though the manufacturing cost of the elliptical holes are high.

The Principal SCFs for larger radial elliptical cross hole of circumferential

orientation found in the present study are 1.92, 2.2, 2.36, 2.45 and 2.52 and the von

Mises SCFs are 1.71, 1.75, 1.795, 1.9 and 2.01. Again, the Principal SCFs for the

same configuration of cross hole of longitudinal orientation are 4.627, 4.89, 5.1, 5.2

and 5.36 and the von Mises SCFs are 4.15, 4.229, 4.44, 4.5 and 4.4667. Comparing

the SCFs, it can be concluded that the circumferential orientation of the cross hole

give less SCFs than the longitudinal orientation of holes.

For larger radial cross hole orienting along the circumferential direction of the main

cylinder, the Principal SCFs for corresponding b/a ratios of 1.5, 1.75, 2, 2.25 and 2.5

are found to be 1.92, 2.2, 2.36, 2.45 and 2.52 respectively, where as for offset cross

holes the SCFs are 1.88, 2.04, 2.1, 2.23 and 2.35 respectively. For the same

configuration of cross holes, the von Mises SCFs are 1.71, 1.75, 1.795, 1.9 and 2.01

respectively for radial configuration and 1.65, 1.72, 1.746, 1.77 and 1.82 respectively

for offset configuration. So it can be seen from the results that the Principal SCFs

and von Mises SCFs for larger offset cross holes show maximum 8% and 9%

reduction in values than the radial cross holes. The smaller offset cross holes of

circumferential orientation give around 15% and 9% maximum reduction in

Principal and von Mises SCF values respectively. From the results obtaim:d and also

from the figures it can be concluded that the offset cross holes are a better

proposition that the radial ones. Offset cross holes are cheaper to manufacture than

elliptical radial cross holes and give some reduction in stress concentration factor

compared with a radial cross hole. Offset elliptical cross holes are not generally used

in practice but included in this present study as a design possibility.
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Bar charts from figure 5.32 to 5.36 show all the results, obtained for the entire

elliptical hole configurations for each b/a ratio, in a differcnt approach. From the

figures it can be concluded for all b/a ratio the smaller offset hole of circumferential

orientation gives the smallest Principal and von Mises equivalent stress concentration
factors.

Comparing the results obtained in the present study with that of the results obtained

by Hamilton et al. it is seen that the elliptical cross holes having blended surface in

the intersection gives less stress concentration factors than that of the circular cross

holes with blended and chamfered intersection. So it can be concluded that the

elliptical cross holes both the radial and offset configurations having blended feature

in the intersection give less stress concentration factors than those of the circular
ones.
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Figure 4.1: Circumferential orientation of the cross hole
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Top view

Front view R.H.S view

Figure 4.2:1ongitudinal orientation of the cross hole
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Figure 4.3: A half section of a cylinder containing radial cross hole
(Circumferential orientation)

Figure 4.4: Radial cross hole having blended surface between the main bore and the cross
hole intersection

(circumferential orientation)
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Figure 4.5: A half section of a cylinder containing radial cross hole
( longitudinal orientation)

Figure 4.6: Radial cross hole having blended surface between the main bore and the cross
hole intersection

( longitudinal orientation)
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Figure 4.7: A cross section ofa cylinder containing radial cross hole
(circumferential orientation)

Figure 4.8: A cross section of a cylinder containing offset cross hole
(circumferential orientation)
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Figure 4.9: A cross secbon of a cylinder containing radial cross hole
( longitudinal orientation)

'- .

Figure 4.10: A cross section of a cylinder containing offset cross hole
( longitudinal orientation)
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Figure 5.1: The Von Mises equivalent stress distribution is shown as a contour plot for a

radial elliptical cross hole; circumferential orientation, main cylinder ratio b/a = 2, Rc =

2 mm and fillet radius RJ,= 2 mm
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Figure 5.5: The effect of thickness ratio on Principal SCF for larger bore radial crossholes

(Circumferential Orientation)
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Figure 5.6: The effect of thickness ratio on von Mises SCF for larger radial crosshole
(Circumferential Orientation)
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Figure 5.7: The effect of thickness ratio on Principal SCF for smaller radial crossholes

(Circumferential Orientation)
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Figure 5.8: The effect of thickness ratio on von Mises equivalent SCFs for smaller radial
crossholes

(Circumferential Orientation)
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Figure 5.9: The effect of thickness ratio on Principal SCF for larger offset crossbores

(Circumferential Orientation)
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Figure 5.10: The effect of thickness ratio on Von mises SCF for larger offset crossbores
(Circumferential Orientation)
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Figure 5.11: The effect of thickness ratio on Principal SCF for smaller offset crossholes

(Circumferential Orientation)
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Figure 5.12: The effect of thickness ratio on von Mises SCF for smaller offset crossbores

(Circumferential Orientation)
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FigureS.!3: Stress concentration in a biaxially loaded (au, ao/2) flat plate with small
central hole
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Figure 5.14: The effect of thickness ratio on the principal SCF for larger radial cross

holes (longitudinal direction)
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Figure 5.15: The effect of thickness ratio on the von Mises SCF for larger radial

crossholes (longitudinal direction)
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Figure 5.16: The effect of thickness ratio on the Principal SCF for larger offset cross

holes (longitudinal direction)
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Figure 5.17: The effect of thickness ratio on von Mises equivalent SCF for larger offset

cross holes (longitudinal direction)
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Figure 5.18: Comparison of Principal SCFs for larger radial crossholes between
longitudinal and circumferential orientation

6

Figure 5.19: Comparison of von Mises Equivalent SCFs for larger radial crossholes
between longitudinal and circumferential orientation
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Figure 5.20: Comparison of Principal SCFs for larger offset crossholes between

longitudinal and circumferential orientation
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Figure 5.21: Comparison of von Mises Equivalent SCFs for larger offset crossholes

between longitudinal and circumferential orientation
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Figure 5.22: Comparison of Principal SCF between smaller radial and offset crosshole

for circumferential orientation
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Figure 5.23: Comparison of von Mises SCF between smaller radial and offset crosshole

for circumferential orientation
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Figure 5.24: Comparison of Principal SCF between large radial and offset crosshole

for circumferential orientation
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Figure 5.25: Comparison of von Mises SCF between larger radial and offset crosshole

for circumferential orientation
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Figure 5.26: Comparison of Principal SCF between large radial and offset crosshole

for longitudinal orientation
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Figure 5.27: Comparison of von Mises SCF between large radial and offset crosshole

for longitudinal orientation
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Figure 5.28: Comparison Principal SCFs between smaller and larger radial cross holes
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Figure 5.29: Comparison von Mises equivalent SCFs between smaller and larger radial

cross holes
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Figure 5.30: Comparison Principal SCFs between smaller and larger offset cross holes

5

I I I

t- -

Large hole of longitudin
orientation -t-

-

Large hole of circumferential. . -onentatlOn

Small hole of circumferential
orientation

I I

4

6

2

3

1
1.50 1.75 2.00 2.25 2.50

b/a
Figure 5.3 I: Comparison von Mises equivalent SCFs between smaller and larger offset

cross holes
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Figure 5.32: Comparison of hole sizes and orientation of the elliptical cross hole for
b/a =1.5
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Figure 5.33: Comparison of hole sizes and orientation of the elliptical cross hole for
b/a =1.75
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Figure 5.34: Comparison of hole sizes and orientation of the elliptical cross hole for
b/a =2.0
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Figure 5.35: Comparison of hole sizes and orientation of the elliptical cross hole for
b/a =2.25
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Figure 5.36: Comparison of hole sizes and orientation of the elliptical cross hole for
b/a=2.50
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FigureS.37: Comparison of Principal SCFs for circular cross holes between the present

study and the results of Hamilton et al.
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FigureS.38: Comparison of von Mises SCFs for circular cross holes between the present

study and the results of Hamilton et al.
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Figure 5.39: Comparison of Principal SCFs for larger radial crossbore
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Figure 5.40: Comparison of Principal SCFs for large bore offset cross bores
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Figure 5.41: Comparison of von Mises equivalent SCFs oflarger radial crossholes.
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Figure 5.42: Comparison of von Mises Equivalent stresses for larger offset cross hole
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Figure 5,,43: Comparsion of Principal SCFs between smaller radial crossholes
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Figure 5.44: Comparison of von Mises equivalent SCFs of smaller radial crossholes
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Figure 5.45: Comparison of principal SCFs for smaller bore offset crossholes
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Figure 5.46: Comparison of von Mises Equivalent stresses for smaller bore offset

crossholes
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