
. A STUDY OF WEAR OF TYRE TREADS

A thesis submitted by

. ,

Sankar Kumar Deb Nath

. In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY

June, 2002
_. ---

1111111111111111111111111111111111
#96995#



The thesis titled 'A STUDY OF WEAR OF TYRE TREADS'

Submitted by Sankar Kumar Deb Nath, Roll No. 04001001 IF, Session

April, 2000, has been accepted as satisfactory in partial fulfillment of the

requirement for the degree of Master of Science in Mechanical

Engineering on June 01, 2002.

BOARD OF EXAMINARS

~~~
Dr. S. Reaz.Ahmed
Assistant Professor
Department of Mechanical Engineering
BUET,Dhaka

Dr. Md. Wahhaj Ud
Professor
Department of Mech ical Engineering
BUET,Dhaka

nt:AlNur
Professor and Head
Department of Mechanical Engineering
BUET,Dhaka

Dr. Md. Fazli Ilahi
Professor
Department of Mechanical and Chemical Engineering
ruT, Gazipur, Dhaka

Chairman
(Supervisor)

Member

Member
(Ex-officio)

Member /
(External) )

i.

fi

(~:
\ :,

\ "L' .'-



CANDIDATE'S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted

elsewhere for the award of any degree or diploma.

Sankar Kumar Deb Nath

. }'" '

"
.,~



•
TABLE OF CONTENTS

Declaration

Acknowledgement

List of Tables and Figures

List of Symbols

Abstract

Chapter 1: INTRODUCTION

1.1 General

1.2 Literature Survey

1.3 Objective of the Present Research

1.4 Outline of Solution Methodology

1.5 Choice of Solution Method

I

2

6

7

10

Chapter 2: GEOMETRY OF TYRE SECTION AND DEFINITIONS OF
PARAMETERS

2.1 Purpose of Tyres 12
2.2 Tyre Configurations and Materials 12
2.3 Construction of Tyres 14
2.4 Tyre Size and Marking IS
2.5 Description of Tyre Tread 16
2.6 Compounding of Tread Compounds 16
2.7 Tyre Inflation and Tyre Wear 18
2.8 Tyre Retreading 19

Chapter 3: MATHEMATICAL FORMULATION AND NUMERICAL
SOLUTION

3.1 Introduction

3.2 General Formulation For Elastic Problems
21

21

~ ....
•



3.3 Two-Dimensionalization of the Problem 24

3.4 Displacement Potential Function Formulation 26

3.5 Finite Difference Modeling of the Problem 30

3.5.1 Solution Procedure 30

3.5.2 Management of Boundary Conditions 32

3.5.3 Tagging of Boundary Conditions to Mesh Points and
Evaluation of Parameters ofInterest 39

Chapter 4: EXPERIMENTAL DETERMINATION OF MATERIAL
PROPERTIES

4.1 Introduction 41
4.2 Experimental Apparatus and Procedure for Compression Test 42
4.3 Experimental Apparatus and Procedure for Tension Test 43
4.4 Experimental Apparatus and Procedure for Hardness Test 44
4.5 Determination of Elastic Modulus of Tyre Rubber Materials 45
4.6 Determination of Poisson's Ratio and Hardness Number 46
4.7 Results and Discussion 46

Chapter 5: SOLUTION OF TYRE TREAD CONTACT PROBLEM
CONSIDERING FRICTIONLESS SLIPPING

5.1 Introduction 48

5.2 Numerical Modeling and the Solution 48

5.3 Influence of Dimensional Parameters (a and b) on the
Deformation of the Tread Section 49

5.4 Effect of Normal Contact Pressure (Inflation Pressure) on the.
Deformation of the Tread Section 51

Chapter 6: WEAR ANALYSIS OF TYRE TREAD SECTIONS
CONSIDERING FRICTIONAL SLIPPING

6.1 Introduction 53

6.2 Solution of the Tyre Tread Contact Problem Considering



No-Slip of the Contact Boundary 54

6.3 Analysis of Shearing Stress on the Contact Boundary
of the Tread Section 56

6.4 Determination of Optimum Tread Section for Minimum
Wear 57

6.5 Influence ofInflation Pressure on the Analysis of Wear
ofTyre Sections 59

Chapter 7: INFLUENCE OF TYRE MATERIAL ON THE
PREDICTION OF OPTIMUM TYRE TREAD SECTIONS

'"., ,,~
,'1"".'

7.1 Introduction

7.2 Frictionless Slipping of the Tyre Treads of Different
Materials

7.3 Frictional Slipping of the Tyre Treads of Different
Materials

Chapter 8: STRESS ANALYSIS OF TYRE TREAD SECTIONS

61

61

63

8.1 Introduction 66
8.2 Stress at the Bond Line Region of the Tread for Various

Contact Pressure 67
8.3 Stress at the Bond Line Region of Tyre Treads of Different

Sizes 67
8.4 Stress Distribution of the Whole Tyre Tread Section 68
8.5 Normal and Tangential Displacements at Different

Sections of a Tyre Tread 70

Chapter 9: CONCLUSIONS AND RECOMMENDATIONS

9.1 General

9.2 Conclusions

9.3 Recommendation for Future Investigation

71

72

76

"



REFERENCES
Appendix A : Tables

Appendix B : Figures

Appendix C : Program of Tread Geometry Generation

78

82
100

173



ACKNOWLEDGEMENT

The author is highly grateful and indebted to his supervisor, Dr. S. Reaz

Ahmed, Assistant Professor, Department of Mechanical Engineering,

Bangladesh University of Engineering & Technology (BUET), Dhaka, for his

continuous guidance, supervision, inspiration, encouragement, and untiring
support throughout this research work.

Finally, the author likes to express his sincere thanks to all other Teachers and

Staffs of the Mechanical Engineering Department, BUET, for their co-

operations and helps in the successful completion of this work.



List of Tables

Table No. Description

2.1 Requirements for Rubber Compounds used for different Tyre

Components, 83
4.1 Modulus of elasticity of different kinds of rubbers under

compression, 84
4.2 Modulus of elasticity and ultimate strength of different kinds of

Rubbers under tension, 85
4.3 Poisson's ratio of different kinds of tread rubbers, 86
4.4 Hardness number of different kinds of Rubbers, 87
4.5 Percentage Ultimate Elongation of different Tyre Rubbers, 88
5.1 Specification of the Boundary Conditions (Contact Boundary

under uniform normal pressure and free from friction), 89
5.2 Boundary condition modeling for the Comer Points of the Tread

Section, corresponding to Table 5.1, 90
5.3 Specification of the Boundary Conditions (Contact Boundary

under uniform normal displacement and free from friction), 91
5.4 Boundary condition modeling for the Comer Points of the Tread

Section, corresponding to Table 5.3, 92
6.1 Specification of the Boundary Conditions (Contact Boundary

under uniform normal pressure and frictional slipping), 93
6.2 Boundary condition modeling for the Comer Points of the Tread

Section, corresponding to Table 6.1, 94
6.3 Specification of the Boundary Conditions (Contact Boundary

under uniform normal displacement and frictional Slipping), 95
6.4 Boundary condition modeling for the Comer Points of the Tread

Section, corresponding to Table 6.3, 96
6.5 Management of Boundary Conditions for the Solution of Case-A

in Fig.6.5, 97
6.6 Management of Boundary Conditions for the Solution of Case-B

in Fig.6.5, 98
6.7 Coefficient of friction by the tests of the Goodrich Company on

wet brick Pavement with tyres of different Treads, 99



List of Figures

Figure No. Description

1.1 Direction of motion and the corresponding frictional forces on the
tyre-tread, 101,102

2.1 Typical tyre cross-section, 103

2.2 Geometry of the tread section to be considered for the present
analysis, 104

3.1 Application of the stencils for the displacement boundary
conditions at different comers of the tread section, 105

3.2 Application of the stencils for the stress boundary conditions at
different comers of the tread section, 106

3.3 Different stencils for normal and tangential components of
displacement and governing equation, 107

3.4 Boundary conditions for tyre tread neglecting frictional effect on
the contact boundary, 108

3.5 Boundary conditions for tyre tread section for the no-slip
condition of the contact boundary, 109

4. 1(a) Measured stress-strain relationship for truck tire rubber under

compression, 110

4.1 (b) Determination of elastic modulus of truck tyre rubber under

compression for low strain range, 110

4.2 Measured stress-strain relationship for retreading tyre rubber
under compression, 111

4.3 Measured stress-strain relationship for natural rubber under

compression, 112

4.4(a) Measured stress-strain relationship for truck tyre tread under

tension, 113

4.4(b) Determination of elastic modulus of truck tyre rubber under

tension for the low strain range, 113



4.5 Measured stress-strain relationship for retreading lyre rubber
under tension, 114

4.6 Measured stress-strain relationship for neoprene rubber under
tension, liS

4.7 Measured stress-strain relationship for natural rubber under
tension, 116

5.1 Deformation of the truck lyre tread section under the uniform
normal contact pressure of 690 kPa (displacements magnified 6
times), 117

5.2 Deformation of the truck lyre tread section under the uniform
normal displacement corresponding to 690 kPa (displacements
magnified 6 times), 118

5.3 Effect of skid depth, b on the normal displacement of the contact
boundary (a is kept fixed at 8.31 unit) for different inflation
pressure), 119

5.4 Effect of skid depth, b on the deformed shape of the tread section
keeping the contact length fixed (displacements magnified six
times), 120, 121

5.5 Effect of skid depth, b on the tangential displacement of the
contact boundary for fixed contact length, a, 122

5.6 Effect of contact length, a on the normal displacement of the
contact boundary when skid depth, b is kept fixed, 123

5.7 Effect of contact length, a on the deformed shape of the tread
section keeping the skid depth, b fixed (displacements magnified
six times), 124

5.8 Effect of contact length, a on the tangential displacement of the
contact boundary for a fixed skid depth, b, 125

5.9 Normal displacement of the contact plane as a function of normal
contact pressure for a tread section, aIb=1.5 I, 126

5.10 Effect of normal contact pressure on the tangential displacement
ofthe contact boundary for a tread section, aIb=1.5I, 127

5.11 Effect of normal contact pressure on the deformed shape of the
tread section, aIb=1.5I(displacements magnified 6 times), 128



6.1 Effect of skid depth, b on the normal displacement of the contact
boundary under no-slip condition, when the contact length is kept
fixed at various inflation pressure, 129

6.2 Influence of skid depth, b on the deformation of the tread section
under no-slip condition, when contact length is kept fixed
(displacements magnified 3 times), 130, 131

6.3 Effect of contact length, a on the normal displacement of the
contact boundary under no-slip condition, when the skid depth is
kept fixed, 132

6.4 Influence of contact length, a on the deformation of the tread
section under no-slip condition, when skid depth b is kept fixed
(displacements magnified 3 times), 133

6.5 Prediction of shearing stresses along the contact boundary of a
tread
Section (a/b=1.51) under no-slip condition and an inflation
pressure of 690 kPa, 134

6.6 Influence of skid depth, b on the developed shear stress along
thecontact boundary conforming the no-slip condition under
normal 690 kPa, 135

6.7 Influence of contact length, a on the developed shear stress along
the contact boundary conforming the no-slip condition under
normal 690 kPa, 136

6.8 Maximum shearing stress on the contact boundary as a function
of a tread aspect ratio (a is kept fixed), 137

6.9 Effect of skid depth on the coefficient of friction along the contact
surface conforming the no-slip condition under contact pressure

690 kPa, 138
6.10 Calculated maximum coefficient of friction as a function under an

inflation pressure of 690 kPa, 139
6.11 Maximum shearing stress on the contact boundary as a function of

tread aspect ratio (b is kept fixed), 140
6.12 Calculated maximum coefficient of friction as a function of tread

aspect ratio (b is kept fixed), 141
6.13 Normal displacement as a function of normal contact pressure for

no-slip condition, 142



6.14 Effect of inflation pressure on the deformed shape of the tread
section (a/b=1.51) under no-slip condition, 143

6.15 Effect of inflation pressure on the shear stress developed along the
tread contact surface, under the no-slip condition, 144

6.16 Maximum shearing stress (frictional stress) developed on the
contact boundary, as a function of inflation pressure, under no-slip
condition, 145

6.17 Effect of inflation pressure on the calculated maximum coefficient
of friction for a tread section under no-slip condition, 146

7.1 Normal displacement as a function of aspect ratio under the
frictionless slipping of the tread surfaces (a is kept fixed), 147

7.2 Deformed shapes of lyre treads of different materials under the
contact pressure of 690 kPa considering frictionless slipping, 148

7.3 Distribution of the tangential displacement along the contact
boundary of the treads (a/b=2.1) under frictionless slipping, 149

7.4 Effect of lyre material on the normal displacement of the contact
surface for varying skid depth under the no slip condition of the
contact surface, 150

7.5 Effect of lyre material on the deformed shape of the tread section
under the no-slip condition of the contact boundary
(displacements magnified 3 times), 151

7.6 Effect of lyre material on the shear stress developed along the
tread contact surface under the no-slip condition (a/b=2.1), 152

7.7 Maximum shear stress (frictional stress) as a function of tread
sizes for different lyre materials (a is kept constant), 153

7.8 Calculated maximum coefficient of friction as a function of tread
size (varying skid depth) for different lyre materials, 154

7.9 Effect of lyre material on the normal displacement of the tread
contact surface under the no-slip condition, when the skid is kept
fixed, 155

7.10 Maximum shearing stress (frictional stress) as a function of tread
size for different tyre materials when the skid depth is kept fixed,
156

7.11 Calculated maximum coefficient of friction as a function of tread
size (varying contact length) for different lyre materials, 157



8.1 Distribution of normal stress component, ax along the bond line of
a Tread section (a/b=1.51) for different contact pressures, 158

8.2 Distribution of normal stress component, ay along the bond line of
a Tread section (a/b=1.51) for different contact pressures, 159

8.3 Distribution of shearing stress of the contact surface with plies at
different contact pressure ofa tread section ofa/b=1.51, 160

8.4 Effect of tread size on the prediction of normal stress component,
along the bond line, 161

8.5 Distribution of shearing stress along the bond line region of truck
tyre treads when skid depth is varied, 162

8.6 Distribution of shearing stress along the bond line region of truck
tyre treads when the length of the contact boundary is varied, 163

8.7 Distribution of normal stress ax at different sections of tyre treads
(a/b=1.5I) under contact pressure 690 kPa, 164

8.7.a Different sections ofa tyre tread, 165
8.8 Distribution of normal stress ay of truck tyre tread of different

sections of tyre treads (a/b=1.51) under contact pressure 690 kPa,
166

8.9 Distribution of normal stress axy at different sections of tyre treads
(a/b=1.51) under contact pressure 690 kPa, 167

8.10 Contour plot of normalized stress component axlE over the whole
tyre tread section, 168

8.11 Contour plot of normalized stress component aylE over the whole
tyre tread section, 169

8.12 Contour plot of normalized stress component axylE over the whole
tyre tread section, 170

8.13 Normal displacement at different sections of a tyre tread
(a/b=I.51) under contact pressure 690 kPa, 171

8.14 Tangential displacement at different sections of a tyre tread
(a/b=1.51) under contact pressure .690kPa, 172

A Simplified geometry of the tread section, 89-98



LIST OF SYMBOLS

Notation Definition

x,y rectangular coordinate

h mesh length in x-direction

k mesh length in y- direction

E, modulus of elasticity in tension

Ec modulus of elasticity in compression

r/J Airy's stress functiom

'II displacement potential function

I,m direction cosines of the normal at any physical boundary

f.l Poisson's ratio

Ux displacement component in x-direction

uy displacement component in y-direction

o"x normal stress component in x-direction

O"y normal stress component in y-direction

O"xy shear stress component in xy-plane

Un displacement component normal to the boundary

u, displacement component tangential to the boundary

O"n stress component normal to the boundary

Oi stress component tangential to the boundary

an .ernlE

0", a, IE
a tread contact length

b skid depth of the tyre tread

alb aspect ratio

i variable subscript corresponding to x-axis

j variable subscript corresponding to y-axis



ABSTRACT

Wear of vehicular lyre treads is an important practical issue. Since the service
life of a lyre is primarily affected by the wear of treads, a useful study of lyre
treads is of great practical importance for the optimum design and thus improved
life of lyres. The present' thesis describes a new investigation for the
identification of the causes responsible for the lyre wear and a method to provide
a useful guideline for reducing the wear of lyre-treads through an extensive
analysis of the mixed boundary-value contact problem of lyre-tread.

Earlier, no seriouS attempt was made to provide a reasonable guideline for
the optimum tread sections that would ensure no wear of the treads. Actually, it
has not been successful in the past mainly because of the inabilily of simulating
the contact problem through an appropriate mathematical modeling where all the
boundary conditions would be satisfied justifiably. .

An ideal mathematical model for the practical stress problems, namely,
the displacement potential function formulation has been used in conjunction
with the finite-difference method of solution for the present analysis. For the
present computational investigation all the necessary material properties of lyre
are obtained experimentally. For the purpose of wear analysis, first, the contact
surface of the lyre tread is assumed to be free from frictional force, and the
corresponding solution of the problem is obtained where the contact boundary is
only subjected to a uniform normal compressive loading from the road surface.
The results of this frictionless analysis however give the basis for realizing the
fact that the continuous lateral slipping action of the tread contact surface on the
road plays the. most important role in shortening the life of lyres as far as the
wear is concerned.

Secondly, the solution of the problem is obtained by restnctmg the
tangential displacement of the contact boundary, which is subjected to a uniform
compressive stress from the road surface. From the resulting distribution of the
shearing stress along the contact boundary, a relationship between the maximum
shearing stress developed and the aspect ratio of the tread section is established
under different contact pressures. Finally, the maximum calculated coefficient of
friction obtained from the maximum shearing stress, are analyzed in the
perspective of tread aspect ratio, where the dimensions of the tread section are
varied in both the normal and lateral directions. From the comparison of the
calculated friction coefficient with the friction coefficient available from the
road, an optimum value of the aspect ratio is determined, which ensures no wear
of tyre tread due to the lateral slipping of the contact surface on the road. In
addition to the effects of dimensional parameters, the wear of the contact surface
is analyzed for different lyre materials and also for different inflation pressures.
Moreover, attempt is made to investigate the distributions of different stress
components along the bond line region near the ply, which might be responsible
for the separation of the tread from the ply.
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Chapter-1

INTRODUCTION

1.1 General

Rubber tyres are considered as one of the indispensable components of almost

all categories of automotive vehicles. They provide the required traction that

enables the vehicles to accelerate, brake and make turns on the road without

skidding. In order to provide good traction, sufficient friction between tyre

treads and the road surface is desirable, which however, in general, has no

relation with the wear of the tyre treads. Among the common reasons of rapid

tyre wear, quick starting and stopping, heavy braking, high speed running,

taking comers too fast, etc., are noticeable. Wear due to these reasons is

basically occasional phenomenon and .can be controlled, to some extent, by

avoiding them. It should be noted that the friction in the direction of motion

(referred to as longitudinal direction of the tyre) could hardly produce wear of

the treads as far as the rotary motion of the wheel is concerned. However, it is

important to note that when a tread section comes in contact with the road, the

contact surface will tend to slide along the lateral direction of the tread, under

the action of normal compressive stress from the road as illustrated in Fig!.!.

This continuous lateral slipping action of the tread contact surface plays the

most important role in shortening the life of tyres as far as the wear is

concerned. It has been identified in the present research that the wear of tyre

is basically caused by the lateral friction between the tread surface and the

road surface. Since the service life of a tyre is affected primarily by the wear

of the treads, a careful study of wear of tyre treads is of great practical

importance for their optimum design and improved life.
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1.2 Literature Survey

Technical reporting on the analysis and design of rubber tyres for various

automotive vehicles, in the literature, is quite extensive. It is interesting to

note that most of the reporting in the literature describes computational

schemes and numerical solution of the present problem. The application of the

finite element method to the analysis of structures, made of cord-reinforced

rubber composites, has gained increased popularity in recent years. Structures

like tyres, belts, and domes are generally complex in their internal and

external geometry, boundary conditions, material properties and mode of

operation. The structures do not render themselves to closed form type of

solutions. Tabbador and Stafford [1] reported that finite element analysis has

been considered to be the only viable analytical technique which can be

applied without having to make numerous simplifying assumptions.

A finite-element contact formulation and the equations for the effective

material properties of rubber composites have been developed and applied to

the inflation and contact problem of a reinforced tyre by Huh and Kwak [2].

The equations for the effective material properties take the bending effect of

reinforced cords into consideration, laying emphasis on the bending effect

during shear deformation of elements. Their results indicated the stress

concentration between reinforced layers as an interpretation of the separation

of steel-belted layers in tyres. Their finite element results also showed the

reason for wear around the comer by showing the increase in the contact

pressure near the edge and the increase of the contact surface when the load is

heavier than normal.

Quite recently, Wang, Daniel and Huang [3] reported an experimental stress-

strain analysis by means of the Moire method in the area of the shoulder

region of a retreaded tyre section and a comparison with results obtained by

the finite element analysis method. The specimen for the experiment was a
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cross-sectional slice of a Bandag T4100 retread on a 295175R22-truck tyre

casing approximately 25 mm thick. A loading fixture was designed to support

the tyre section and to load it in a manner simulating service loading and

allowing for Moire measurements. The specimen was loaded by imposing a

uniform fixed deflection on the tread surface and increasing the internal

pressure in steps. For the finite element comparison a 2-D quarter tyre model

was created to best simulate the experimental conditions. The tyre section was

modeled using three and four-noded plane stress elements. Rubber elements

were modeled with isotropic, linear elastic, nearly incompressible properties.

To simulate the conditions of the Moire test as closely as possible, the model

was loaded in two steps. The first step was the application of a normal

displacement and the second was the introduction of inflation pressure. The

authors have reported that although the FEM results were in substantia!

agreement with the corresponding experimental results, the discrepancies

were primarily because of the fact that the boundary conditions in the FEM

were not exactly matched with those of the experiment. It was also reported

that the FEM results were found to be very sensitive to boundary conditions,

as slight changes in the boundary and loading conditions had a significant

effect especially on the displacement conditions imposed around the shoulder

region.

A number of authors have focussed, specially, on the stress analysis of

reinforced tyres by using the [mite element method [1-4]. Some of the papers

[3-4] considered the static lyre contact problem for obtaining the deformed

shape and stress state in the cross section without giving attention to the

bending effect of the reinforced cords. In rubber composite structures the

cords as well as rubbers exhibit viscoelastic characteristic under loading [5].

Some authors have discussed that the [mite element method can predict mode

shapes and natural frequencies [6], inflated shapes of lyres [7-9], loaded tyre

shapes [10-11], lyre cord loads [12] and force/wear in conveyor belts [13-14].
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The definition of the finite element model for such a tyre is complicated, if

the details of the belt, bed, plies, overhead, fillers, tread, etc., are required to

be included. At present most manufacturers use proprietary software to model

such complexities of construction [15-16]. Numerous papers have dealt with

contact problems which involve static rolling or impact events [17-23].

Padovan and Pardilok [24] have given attention detailing the influence of

viscoelasticity on the development of transient and steady rolling contact at

varying rolling speeds. As noted recently by Padovan [25], the hierarchy of

frequency eigenvalues associated with the tyre can be determined as various

of the standing waves are excited at different load speeds. A contact

formulation is added by some authors [26-27] to the finite element

formulation to calculate the stress state of tyres in contact with a flat, rigid

road under the load due to the self-weight of a vehicle.

The lack of analytical tyre design tools has been recognized within the United

States tyre industry and research has been underway for sometime to develop

the techniques necessary to model the response of the tyre to its operational

environment. A summary of these modeling efforts is presented in Ref.[28]. A

number of survey papers have been written on computational models for tyres

in Refs. [29-31] and go beyond the cited reference in detailing the recent and

projected advances in finite element technology, computational algorithms,

and new computing systems and their potential in tyre modeling and analysis.

A typical tyre usually contains a variety of rubber compositions in order to

achieve a balance of properties for a particular type of tyre service. Table 2.1

(which is based on Ref.[32] ) lists some of the major requirements on the

rubber compounds used for the different components of the tyre.

Although the strength and stiffness of the constituent cord and rubber

components of the pneumatic tyre have been the subject of many

investigations by the tyre industry, relatively little work has been done on the
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cord-rubber composites. Most of the work on strength and stiffness

characterization of cord rubber composites has been based on adaption of the

techniques and theories developed for laminated fibrous composites [33-35].

Cord-network models are sometimes referred to as netting analysis, wherein

inflation pressure is assumed to be carried exclusively by the cords Ref.[36].

These models have the limitation of neglecting both the bending of the tyre

and the stiffness effects of the rubber surrounding the cords~Two-dimensional

axisymmetric models are limited to axisymmetric loading. Applications of

these models to the study of the tyre response to cord-shrink forces and

inflation pressure are given in Refs.[37-38]. The first approach is based on

using semianalytic techniques to reduce the dimensionality of the problem

[37]. Two-dimensional thin and thick shell models have been proposed [39-

40]. Thin shell models are based on Kirchhoff-Love shell theories which

neglect transverse shear deformation and their use for modeling tyres is

therefore questionable. Anisotropy results in increasing the size of the

analysis model and consequently many investigators neglect its effect by

using an orthotropic model.

A number of efficient algorithms have been developed for solving contact

problems involving sticking, frictional sliding and separation between two

bodies [41-43]. In most of these algorithms Coulomb's law of friction is used

in the evaluation of the tangential traction from the normal traction. However

in some of the recent studies a local friction law is presented [44]. The contact

algorithm presented in Refs.[41-44] appear to be useful for analysing tyre

stresses and deformation due to footprint loading. More recently, reduction

methods have been used in conjunction with symmetry concepts to reduce the

analysis region of a structure subjected to unsymmetrical loading [45].

Reduction methods have high potential for use in predicting the structural and

thermal responses of tyres subjected to non-axisymetric mechanical and

thermal loading. Noor and Tanner [46] focus on a number of aspects of tyre
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modeling and analysis including: lyre materials and their characterization;

evolution of lyre models; characteristics of effective finite element models for

analysing lyres; analysis needs for lyres; and impact of the advances made in

finite element technology, computational algorithoms, and new computing

systems on lyre modeling and analysis.

However, no serious attempt was reported so far in the literature that can

provide a useful investigation on the wearing effect of treads for suggesting

an effective guideline to minimize the wear of lyres. This has not been

successful in the past mainly because of the inability of simulating the actual

tyre contact problem by an appropriate mathematical modeling, where the

wearing stress on the contact plane of the tread section would be obtained by

satisfying the real boundary conditions, justifiably.

1.3 Objective of the Present Research

The central objective of the present research is to obtain the numerical

solution of the lyre contact problem in such a fashion that the wear of the

tread section can be analysed in an effective manner. In addition, based on the

analysis, the optimum size of the tread section can be determined which will

ensure minimum wear of the treads and thus improve life of lyres. Thus the

objectives can be listed sequentially as follows: '

(a) Mathematical simulation of the lyre-tread contact problem considering it

as a two-dimensional mixed boundary value elastic problem, using

displacement potential function, \If.

(b) Development of suitable numerical scheme for the treatment of the mixed-

mode of the boundary conditions associated with the tread contact problem

and to obtain the corresponding numerical solution for the relevant stress and

displacement components.
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(c) Development of scheme for the experimental determination of elastic

behaviour of different types of tyre materials including natural rubber, at

different strain levels, and to determine the necessary material properties of

the tyre rubbers.

(d) Analysis of the deformation pattern for the inflated tread section under the

action of uniform normal compressive stress from the road, for the case of

frictionless slipping of the contact surface.

(e) Determination of frictional stress required to ensure the no-slip condition

of tread contact surface on the road (i.e., no displacement of the tread contact

surface in the lateral direction).

(f) Development of a scheme to predict the optimum tread section, which will

ensure minimum wear of the tyre treads.

(g)' Investigations of the influence of tyre material on the prediction of

optimum tread section for minimum wear.

(h) Analysis of different stress as well as displacement components for an

optimum tyre treads section in contact with the road.

1.4 Outline of Solution Methodology

Among the existing mathematical models for the solution of two-dimensional

boundary-value elastic problems, the stress function (<I>-formulation) [47] and

the two displacement functions approach Ref. [48] are noticeable. But the

difficulties involved in trying to solve practical stress problem using either of

the approaches are clearly pointed"out in Refs. [49-50]. Dow et al. [51] have

however introduced a "new boundary modeling approach for finite difference

applications of displacement formulation of solid mechanics. While

comparing the merit of their numerical method with today's popular FEM

method, they reported that the accuracy of the finite difference method in
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reproducing the state of stresses along the boundary was much higher than

that of FEM method. However, they have added that the computational effort

of their finite difference analysis, under the new boundary modeling, is

somewhat greater than that ofFEM analysis.

Taking into account the respective merits and demerits of the existing

approaches, recently a new method of solution has been developed for the

analysis of two-dimensional boundary-value elastic problems, where an ideal

mathematical formulation, called displacement potential function formulation

(ljI-formulation [48]), has been used in conjunction with finite difference

technique. In this approach, the whole problem is formulated using a single

displacement potential function, 1jI, which is defined in terms of the two

displacement components - Ux and uy• Using this formulation, a number of

elementary problems, like in plane loaded plates, deep beams, etc., are solved

both analytically [49] and numerically [50]. Results found from the 1jI-

formulation are observed to be very close to the classical solutions, which

show that the ljI-formulation is a very reliable and efficient tool to handle

practical stress problems. The ljI-formulation is capable of handling mixed

boundary effects very efficiently where the classical 1\>-formulation is very

weak. The accuracy and reliability of the numerical model of 1jI- formulation

has been verified repeatedly through the numerical solutions of a number of

mixed boundary-value stress problems of both regular [52-56] and curved

shaped bodies [57-58].

The displacement potential function formulation has been used to formulate

the present tyre contact problem. Finite difference technique is used to

descritize the governing bi-harmonic partial differential equation and also the

differential equations associated with the boundary conditions. The discrete

values of the function at the mesh points of the domain concerned are

obtained by solving the system of linear algebraic equations resulting from



9

the discretization of the governmg equation and the associated boundary

conditions. An imaginary boundary, exterior to the physical boundary of the

tread section is included for the discritization of the domain using a uniform

rectangular mesh network.

In order to analyse the displacement components as well as the inflated shape

of the tread section, the tyre tread contact problem is first solved for the case

of frictionless slipping of the tread surface in contact under the action of

uniform normal compressive stress from the road. The results of this analysis

are considered as the basis for developing the numerical scheme for the

analysis of wear of the tread surface. Secondly, the tyre tread contact problem

is solved for the case of frictional slipping of the tread under the action of

uniform normal compressive stress from the road, and finally, the frictional

stress required to ensure the no-slip condition of the tread surface is obtained.

The calculated coefficient of friction corresponding to the no-slip condition is

compared with that available for the tyre and road surface, in order to

determine the optimum tread section which will ensure no wear of tyre

surface in contact with the road.

The use of appropriate material properties for the solution of the tyre contact

problem is of utmost importance for employing the obtained results to

practical design purposes. Since the elastic properties of tyre materials are not

readily available in literature, an attempt is made here to determine all the

necessary material constants experimentally. The stress-strain curves for

natural rubber, retreaded rubber and also for the truck tyre rubber are obtained

for both the conditions of tension and compression to predict the elastic

modulus of the materials at different strain levels. Therefore, all the numerical

solutions are obtained here by using appropriate elastic properties of the tyre

rubber which are determined experimentally.

~,
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1.5 Choice of Solution Method

Solutions of structural problems can be obtained by either one of the two

basic approaches - i) experimental and ii) theoretical. Experimental

investigations are not of much help in solving these types of problem as they

are confined to limited applications. Results obtained from a particular

experiment set up can be used only for that particular shape and boundary

conditions of the body.

Again the theoretical method of solution can broadly be classified into two

categories - analytical and numerical approach. Analytical approach is again

very limited because general solution can be obtained only for very ideal

cases. Most of the practical problems of elasticity are of mixed boundary-

value type and these mixed boundary-value problems are normally beyond the

scope of any 'closed form' analytical solution. Of course, there are attempts to

solve some stress problems analytically where the problems are of very

regular-shaped body with uniform boundary conditions, that is, the boundary

conditions are prescribed either in terms of stresses only or in terms of

displacements only. In addition, the results are invariably approximate as they

include various approximations. Therefore, there are no aliematives except

the numerical methods of solution for critical stress problems like tyre tread

contact problem. Further, among the numerical methods, the finite-element

and finite difference methods are the two most widely used methods in almost

all the branches of engineering.

In the case of finite element method, the body is divided into a finite number

of elements, where the elements are connected to each other only at the nodes.

Any parameter like stress, temperature, density, displacement varies within

the element according to a given simple relation like linear, parabolic, etc.,

along length, breadth, etc, and the values of the parameters are evaluated only

""".....~. ',,
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at the nodes satisfying the conditions of continuity conservation, equilibrium,

etc.

In the finite difference method, the problem is formulated in terms of

differential equations, and the differential equations are expressed in terms of

algebraic equations using finite-difference forms of the differential

derivatives. In this case, the body is in one piece but the parameters are

evaluated only at some selected points, called nodes, within the body. The

values of the parameters at the nodal points are based on continuity

conservation, equilibrium, etc.

Ultimately, both the methods involve evaluating certain parameters of

structures namely, either the force parameters or the displacement parameters

at the nodal points representing the whole domain of the body. Both the

methods involve solution of a large set of algebraic equations. The number of

equations to be solved is determined by the number of unknowns at each

nodal point and also by the total number of nodal points required to represent

the whole domain of the structural body.

Usually, the unknown parameters at the nodal points are the displacement

components of each nodal point. Thus, in case of FEM, the number of

unknowns at each nodal point is three (u" uy, uz) or two (u" uy) depending on

whether it's a 3-D or a 2-D problem. As a result, the total number of

unknowns to be solved in FEM is much more than that in FDM. Thus the

computational time is more in FEM, and eventually the solution is cruder..

On the other hand, the finite-difference technique in conjunction with the

potential displacement function formulation permits reduction of parameters

to be evaluated at the nodal points to one. Hence, it does not only provide

more accurate results than that of finite element solution but also the

computational work is less. The present problem is thus solved by the FD

method.
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Chapter-2

GEOMETRY OF TYRE SECTION AND DEFINITIONS

OF PARAMETERS

2.1 Purpose of Tyres

Tyres have two basic functions. First, they are air-filled cushions that absorb

most of the shocks caused by road irregularities. The tyres flex, or give in, as

they meet these irregularities. Therefore they reduce the effect of the shocks

on the passengers in the car. Second, the tyres grip the road to provide good

traction. Good traction enables the car to accelerate, brake, and make turns

without skidding.

2.2 Tyre Configurations and Materials

Commercially successful tyres are now built as series of layers of flexible

high-modulus cords, encased in a low-modulus rubber or rubber-like material,

resulting in laminated (or layered) construction. In addition to the cord-rubber

plies, a tyre has tread and sidewall rubbers, innerlinear, bead filler, and

inserts.

(a) Tyre Configurations

There are three typical configuration for modem tyres, namely, (a) bias-ply

construction (b) bias-belted construction and (c) radial-belted construction. In

the bias-ply construction the body cords make a rather large angle with the

tread centerline, and there are no tread plies. Bias-belted tyres have, in

addition to the body plies, two or more belt plies between the tread rubber and

the tyre body. Cords in the belt plies are more nearly circumferential than ..'.:
:. ;"-\, '
\~ ,J)
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those in the body plies. In radial belted tyres the body cords are perpendicular

to the tread centerline (i.e. they lie in meridional planes of the tyre). The belt

constrains both the width and circumference of the tread area thereby

restricting the inflated tyre profile and reducing tread movement in the

footprint. In radial-belted tyres the reduction of the tread movement in the

footprint is further amplified by the flexibility of the sidewall, which can act

independent of the belt. The ply rating is usually 2-4 for passenger car tyres

and 20 or more for commercial and military aircraft tyres.

(b) Tyre Materials and their Characterization

Modem pneumatic tyres are made from cord-rubber materials. The low

modulus, high elongation rubber contains. the air and provides abrasion

resistance and road grip. The high-modulus, low elongation cords provide

reinforcement for the rubber and carry most of the loads applied to fue tyre in

service.

A typical tyre usually contains a variety of rubber compositions in order to

achieve a balance of properties for a particular type of tyre service. Table 2.1

lists some of the major requirements on the rubber compounds used for the

different components of the tyre. There is no general agreement within the

tyre industry as to how many different rubber compounds to use, or what their

composition should be. In addition to material variations, the tyre designer

has many options available for modifYing the properties. Perhaps the most

powerful is that of changing cord angles in either the body or tread plies [46].

A variety of cord materials are currently in use including nylon, polyester,

steel, fiberglass, and Kevlar. In the past, cotton and rayon cords were used.

Different rubber compounds for different tyre components are given in Table

2.1.
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2.3 Construction of Tyres

The construction of a tyre has many material and geometric discontinuities

that causes stress and strain concentrations that could potentially lead to

fatigue-related tyre failures. Retreading is an effective means of renewing the

tyre and extending its life since the casing has a much longer fatigue life than

the tread. Both the reliability and durability of a retreated tyre depend

critically on the state of stress and the adhesion strength in the tread / cushion

/ casing region. A tyre consists of the following parts which have their

respective importance in the tyre structure :( I) Tread ( 2) Carcass (3) Cushion

( 4) Reinforcement fabric (5) Bead wires (6) Abrasion strips or breaker (7)

Side wall. A typical schematic diagram of the tyre cross section with its

different components is illustrated in Fig. 2.1 [3]. Figure 2.2 describes the

geometry of a single tread section along with its boundary conditions to be

considered for the present problem. The tread and sidewall (constituting the

covering airable outside of the tyre) are composed of rubber compounds to

withstand wear and friction. Generally both are composed of same compound

but the sidewall is thinner as it does not come in contact with road surface.

Tread designs are plain or non-skid type. The cushion is placed under the

breaker strips composed of an woven fabric. The breaker takes the Shocks

and effect of pressure from the outside of the tyre and distributes evenly over

the carcass through cushion. The cushion acts as a binder or flux between

tread or breaker and the carcass has the responsibility of the real strength of

the tyre. Cushion is made of a typical rubber compound which gives jerk

resistance to fabdc plies, whereas carcass is composed of layers of fabrics or

cable cords built up to the shape and size of tyre. Bead rings are high carbon

steel coated with brass to give good adhesion. Bead core forms the basis of

the outer cover providing rigidity, non-extensibility and means for attachment

to rims.



15

There are two general types of lyres, those with inner tubes and those without

inner tubes, called tubeless tyres. On the inner tube type, both the tube and the

lyre casing are mounted on the wheel rim. The tube is a hollow rubber

doughnut. It is inflated with air after it is installed inside the tyre and the lyre

is put on the wheel rim. This inflation causes the tyre to resist any change of

shape. Tubes are used in truck lyres and in motorcycle lyres. Tubes are not

always used in passenger-car tyres today. The tubeless lyre does not use an

inner tube. Instead, tubeless tyre is mounted on the wheel rim so that the air is

retained between the rim and the tyre.

The amount of air pressure used in the lyre depends on the type of lyre and

the operation. Passenger lyres are inflated to about 22 to 36 psi. Heavy-duty

tyres with trucks or busses may be inflated to 100 psi. Tyre casings and

tubeless lyres are made in about the same way. Layers of cord, called plies,

are shaped on a form and impregnated with rubber. The rubber sidewalls and

treads are then applied. They are vulcanized into place to form the completed

lyre. The term vulcanizing means heating the rubber under pressure. This

process molds the rubber into the desired form and gives it the proper wear

characteristics and flexibility. The number of layers of cord or plies varies

according to the intended use of the lyre. Passenger-car tyres have 2, 4 or 6

plies. Tyres for heavy-duty service, such as earthmoving machinery, may

have up to 32 plies.

2.4 Tyre Size and Marking

Tyre size is marked on the sidewall of the lyre. An older tyre might be marked

7.75-14. This means that the lyre fits on a wheel that is 14 inches in diameter

at the rim where the tyre bed rests. The 7.75 means the tyre itself is about 7.75

inches wide when it is properly inflated. Tyres carry several marking on the

sidewall. The marking include a letter code to designate the type of car the

tyre is designated for. D means a lightweight car. F means intermediate, G

(
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means a standard car and H, T and L are for large luxury cars and high-

performance vehicles. For example, some cars use a G78-l4 tyre. The 14

means.a rim diameter of 14 inches [356mm], the 78 indicates the ratio

between tyre height and width. The ratio between the height and the width is

called the aspect ratio or the profile ratio. The lower the number, the wider the

tyre looks. The addition to the side wall marking, such as GR 78-14 indicates

that the tyre is a radial. Also, if a tyre is a radial, the word radial must be

molded into the sidewall. Some radials are marked in the metric system. For

example, a tyre marked l75R13 is a radial tyre, which measures 175 mm

wide. It mounts on a wheel with a rim diameter of 13 inches.

2.5 Description of Tyre Tread

The tread is the part of the tyre that rests on the road. There are many different

tread designs. Snow tyres have large rubber cleats molded into the tread. The

cleats cut through snow to improve traction. Some tyres have steel studs that

stick out through the tread. Studs help the tyres to get better traction on ice

and snow. However, some people claim studded tyres shorten the life of the

road surface. For this reason, studded tyres are banned in some localities.

Tread should have following properties:

(a) Good scorch resistance, (b) Flat cure rate, (c) Optimum plasticity, (d)

Abrasive resistance, (e) Tear resistance, (f) Flex resistance and (g) Age

resistance

2.6 Compounding of Tread Compounds

Tread consists of (1) Polymer, (2) Fillers, and (3) Plasticisers.

(a) Polymers: For this, polybutadiene rubber, natural rubber, SBR or blends

of these rubbers with or without reclaim rubber can be used. Natural rubber

•
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vulcanizates have good abrasion resistance and excellent tear resistance.

Styrene butadiene rubber (SBR) vulcanizates have a better abrasion resistance

than corresponding natural rubber vulcanizates. These compounds do not lose

their physical properties or age resistance if they are over cured. The only

disadvantage of these rubber is that compounds have low green tack and low

green strength. These processing disadvantages can be overcome by use of

natural rubber/SBR blends or by use of natural rubber cements over the green

tread. One of the advantages of SBR or Buna CB rubber is that these rubber

can accept higher quantities of oil and thus more economic compounds can be .

made without loss in abrasion resistance. Reclaim rubbers give adverse

effects regarding the abrasion resistance or tear resistance of vulcanizates.

However the requirements of abrasion resistance and tear resistance in cycle

tyre treads are not so very stringent as in the case of auto tyres and therefore

reclaim rubber can be used in cycle tyre tread compounds. The prime

advantages of reclaim rubber are the economy better control of dimension

during extrusion calendering of the green tread, low thermoplastic nature of

the compounds, good reversion resistance, and good flex resistance of the

vulcanizates.

(b) Fi1lers: To improve the wear and the tear properties it is essential to use

some quantities of reinforcing fillers even in natural rubber compounds. In

synthetic rubbers, SBR or Buna CB, use of reinforcing fillers is a must.

Carbon blacks are the prime reinforcing fillers. Carbon black of the type of

HAF (High-abrasion furnace) or even FEF (Fast-extrusion furnace) can be

used.

China clay is a semi reinforcing filler and can be used along with carbon

blacks for improvement in the wear and tear resistance of the compounds. In

compounds containing synthetic rubbers hard China clay should be preferred.

In natural rubber compounds soft clays or even whiting can be used as
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extender. One of the disadvantages of these mineral filler clays and whiting is

their high specific gravity and when used above certain levels the vulcanizate

properties deteriorate.

(c) Plasticisers: Pine tar and aromatic mineral oils are to be preferred for

black compounds. If tread crumb, is used, it is preferable to use some mineral

rubber (blown bitumen) in the compounds to give a better bond between the

tread crumb and the compound.

2.7 lyre Inflationandlyre Wears

Rapid tyre wear results from quick starts and stops, heavy breaking, high

speed, taking comers too fast, and striking or rubbing curbs. Too little air in

the tyre can cause hard steering, front wheel shimmy, steering kickback and

tyre squeal on turns. A tyre with too little air will wear on the shoulders and

not in the center of the tread. If the tyre strikes a rut or stone or bumps a curb

too hard, it flexes so much that it is pinched against the rim. Any of these

kinds of damage can lead to early tyre failure. Different kinds of tyre wear are

as follows:

(a) Toe-in or Toe-out Tyre Wear

Excessive toe-in or toe-out on tum causes the tyre to be dragged sideways as

it moves forward. For example, a tyre on a front wheel that toes in 1 inch

[25.4 mm] from straight ahead will be dragged sideways about 150 feet [46

m] every mile [1.6 kID]. This sideways drag scrapes off rubber. If both sides

show this type of wear, the toe is incorrect. If only one tyre shows this type

of wear, a steering arm probably is bent. This causes one wheel to toe in or

out more than the other.
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(b) Camber Wear

If a wheel has excessive camber, the tyre runs more on one shoulder than on

the other shoulder. The tread wears excessively on that side.

(c) Cornering Wear

Cornering is caused by taking curves at excessive speeds. The tyre skids and

tends to roll, producing the diagonal type of wear. This is one of the more

common causes of tyre wear.

(d) Uneven Tyre Wear

Uneven tyre wear, with the tread unevenly or spottily worn. These include

miss aligned wheels, unbalanced wheels, uneven or "grabby" brakes, over

inflated lyres, and out- of-round brake drums.

(e) High Speed Wear

Tyres wear more rapidly at high speed than at low speed. Tyres driven

consistently at 70 to 80 mph [113 to 129km/h] will give less than half the life

oftyres driven at 30 mph [48 km/h]

2.8 Tyre Retreading

Tyre retreading or 'recapping' is a specialized process that involves applying

new tread material to the old casing and vulcanizing it into place. Only

Casings that are in good condition should be recapped. Recapping cannot

repair a casing with broken or separated plies or other damage. Recapping

requires special equipment. If a tyre is in sound condition and only its tread is

worn or cut, it will be accepted for retreading.

Various Steps in Retreading Process

(a) Inspection-Used tyre is mounted on a pneumatically operated machine

for close inspection of the inside of casing and wounds or cuts on the tread to

judge whether the lyre is acceptable for retreading or it should be rejected.
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(b) Removal of Tread- The old tread is removed by pulling of the top layer

to a very close limits on a special machine and outer layer of the remaining

tyre buffed. In practice, it is very important to buff or otherwise roughen all

surfaces to which new materials are to be added. Both cleanliness and

roughness are essential for retreading.

(c) Solutioning - The outer buffed layer of tyre casing is given a coat of

solution to obtain a foundation for retreading.

(d) Application of Material and Curing - When solution is dry, new tread is

built on the old casing as usual. In orbitread process, a ribbon of tread is

extruded directly on the buffed cemented casing and wound helically. The

complete tyre is then fitted into a mould and mounted on a curing table where

steam, heat and pressure are applied for curing. After curing the new tyre with

the old casing is as good as a new tyre. A retread compounds (camelback or

slab) should have a long storage life and should be abrasion and wear

resistant, flux resistant, wet skid resistant and silent running. Synaprene 1712

and EBR-OE are preferred in camelback compounds. For passenger retreads

EBR-OE is blended with S-1712, while for truck treads EBR-OE is blended

with NR to minimize heat build up during use. Insoluble sulphur is used in

retread compounds to reduce blooming and to increase storage life of the

products. SBR compounds exhibit lower building tack compared to NR

compounds. But the use of NR cushion gum eliminates building up

difficulties and fusion of retread with the casing is excellent.



21

Chapter 3

MATHEMATICAL FORMULATION AND NUMERICAL
SOLUTION

3.1 Introduction

Almost all engineering materials posses to a certain extent the property of

elasticity. If the external forces producing deformation do not exceed a certain

limit, the deformation disappears with the removal of forces. Throughout this

thesis it will be assumed that the bodies undergoing the action of external

forces are perfectly elastic, that is, that they resume their initial form

completely after removal of forces. Atomic structure will not be considered

here. It will be assumed that the maller of an elastic body is homogeneous and

continuously distributed over its volume so that the smallest element cut from

the body possesses the same specific physical properties as that of the body.

To simplify the discussion it will also be assumed that, for the "mostpart, the

tread section is isotropic, that is, the elastic properties are the same in all

directions.

3.2 General Formulation for Elastic Problems

There are two kinds of external forces, which may act on bodies. Forces

applied over the surface of the body are known as surface forces and that

distributed over the volume of a body are called body forces. In the analysis

of stress in almost all-engineering problems, the effect of body forces

compared to those of surface forces are very small. Thus, the effect of body

force may be neglected and that is why, in the present work, only the

influence of surface forces is considered. The surface force per unit area will

resolve into three components parallel to cartesian coordinates x, y, z. The

",
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normal stress components are represented by crx> cry and crz in the x-, y-and z-

directions, respectively, while the components crxy, cryz, crzx are the

components of shear stress in xy-, yz- and zx-planes respectively. The normal

stress, crx is taken positive when it produces tension and negative for

compression. For shearing stress, crt (tangential stress) on external surface, the

sign is positive when acting clockwise and negative for anticlockwise.

In discussing the deformation of an elastic body it is assumed that there are

constraints to prevent the body from moving as a rigid body so that no

displacements of particles of the body are possible without a deformation of

it. The displacements of particles of deformed body are first resolved into

components -Ux> uy, Uz parallel to the co-ordinates x, y, z, respectively. It is

also assumed that these displacement components are very small quantities,

varying continuously over the volume of the body.

By definition, the normal and shear strains in an elastic body are [47],

au.
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(3.1)

where Ex> Ey, Ez are the strain components parallel to the co-ordinate axes and

Yxy, yyz, Yzx are shear strains in the xy-, yz- and zx-planes, respectively.

The stresses are related to strains through the elastic constants, according to

the Hook's law. The relations are as follows:

(3.2)
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The six quantities crx>cry, cr" cr,y, cry" crzx are sufficient to describe the state of

stress at a point within the body [45]. If a cubic block element, cut-off from a

solid body with its sides parallel to the co-ordinate axes is in equilibrium

under the action of continuous functions crx> cry, cr" cr,y, cry" crzx, then

equations of equilibrium for general 3-D problem, in absence of body forces,
are

oax oa.,y oan--+--+--=0
Ox 8y OZ

oay oa xy oar-
--+--+--=0
8y ox oz
oa oa oa__ ' + _'_.1: + ---l::- == 0oz ox 8y

(3.3)

In the theory of elasticity, determination of the state of stress in a body

submitted to the action of given forces is a fundamental problem. In a 3-D

problem, it is necessary to solve the differential equations of equilibrium

(3.3), and the solution must be such as to satisfY the boundary conditions

imposed on the boundary surface. The stress components vary within the

body and, on the boundary, they must be such as to be in equilibrium with the

external forces on the boundary. Thus the external forces may be regarded as

a continuation of the internal forces in the body. The equilibrium equations

(3.3), derived by application of the equations of statics and containing six

stress components are not sufficient for the determination of six unknowns -

crx>cry, cr" cr'y, cry" crzx. The problem is a statically indeterminate one, and in

order to obtain the solution, the elastic deformation of the body must be

considered. The additional equations ensure continuity of deformation in the
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body and known as compatibility equations. In fact, they ensure compatibility

of displacement Ux> uy and Uz• The three compatibility equations in terms of

strain components are as follows:

a'li a' a'yy Ex :9'--+--=--
ax' 0" aX0'
a'li a'li a'y__ Y+ __ z =-L
az' 0" 0'az

3.3 Two-Dimensionalization of the Problem

(3.4)

Although a body is always three dimensional, most of the practical problems

of stress analysis can be reduced to a two-dimensional one under two

simplifying assumptions. The first of these two assumptions is that the

loading on the body is confined in a plane and the dimension of the body in

the direction perpendicular to its plane is relatively small compared to the

other two. In such cases, the stresses in the body perpendicular to the plane of

loading is usually very small and thus can be neglected. As a result, these

problems become two-dimensional, usually referred to as plane stress

problems. The second simplifying assumption holds for bodies whose one of

the three dimensions is relatively large or straining of the body in a particular

direction is restrained. Under such circumstances, the problem of stress

analysis becomes two-dimensional, referred to as plane strain problem.

In case of plane problems, only the stress components ax> ay, axy and

displacement components Ux and uy are to be determined as a function of x

and y. Knowing the stress components ax> ay, axy at any point of a plane in a

condition of plane stress or plane strain, the stress acting on any plane passing



25

through this point and inclined to the x- and y-axes can be calculated from the

equations of statics.

With reference to a rectangular coordinate system (x, y), the differential

equations of equilibrium for the case of two-dimensional problems, in the

absence of body forces, are as follows:

oUx + ou X)' = 0
ox 0'

oUy ouX)'--+--=0oy ox
(3.5)

Equation (3.5) must be satisfied at all points within the body. The condition of

compatibility for the two dimensional case becomes,

Elimination of strains in terms of stresses from equation (3.6) gives

( 0' 0')ox' + 0" (ux +uJ= 0

(3.6)

(3.7)

It is mentioned here that the compatibility equation (3.7) in terms of stress

components holds for both the cases of plane stress and plane strain problems

in the absence of body forces.

The normal and shear stress components an and at on a plane where normal

has the direction cosines (I,m) are given by

(In =12ox +m2oy +21mCJxy

u, =lm(uy -ux)+(l' -m')u.",

(3.8)
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Similarly, if Un and Ut are the normal and tangential components of

displacement, respectively, on a plane whose normal has the direction cosines

I and m, then it can be shown that

Un = lux +muy

", =luy-mux

(3.9)

Here an and Un are taken positive when directed normally outward on the

boundary and tangential components (a" ut) are taken positive if they act anti-

clockwise on the body, but u" uy are taken positive in the direction of positive

x and y axes for both the body and the boundary.

3.4 Displacement Potential Function Formulation

In order to formulate the two dimensional elastic problems in terms of

displacement potential function, \jJ, both the equilibrium equations and the

boundary conditions are required to be expressed in terms of the displacement

components Ux and uy• In absence of body forces, the equilibrium equations

for two-dimensional elastic problems in terms of displacement components

are,

o'u, +(I-,u)O'U, +(I+,u)O'Uy =0
ox' 2 0" 2 OX0'

o'uy +(I-,u)O'Uy +(I+,u)O'U, =0
0" 2 ox' 2 OX0'

(3.10)

Where Ux and uy are the displacement components of a point in the x and y

directions, respectively. These two homogeneous elliptical partial differential

equations with the appropriate boundary conditions should be sufficient for

the evaluation of the two functions Ux and uy, and the knowledge of these

functions over the region concerned will uniquely determine the stress

components.
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Although the above two differential equations are sufficient to solve mixed

boundary-value elastic problems, but in reality, it is difficult to solve for two

functions simultaneously. So, to overcome this difficulty, equations (3.10) are

converted into a single equation, using a potential function. If a function is

defined in terms of the displacement components Ux and uy, then the

determination of that function uniquely determines the stress functions sought

for.

The present potential function approach involves investigation of the

existence of a function defined in terms of the displacement components. In

this approach, as in the case of Airy's stress function, the problem is reduced

to the determination of a single variable. The potential function Ijf (x,y) is

defined in terms of displacement components as,

(3.11)

With this definition of Ijf (x, y), the first of the two equations (3.10) is

automatically satisfied. Therefore, Ijf has only to satisfy the 'second equation.

Expressing this equation in terms Ijf, the condition that Ijf has to satisfy

becomes,.

a4'1/ a4'1/ a4'1/
-4-+2 2 2+--4 =0
ax ax 8y 8y

(3.12)

Therefore the problem is reduced to the evaluation of a single variable Ijf (x,y)

from the bi-harmonic partial differential equation (3.12).
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In order to solve the problem in terms of the potential function \jI of the bi-

harmonic equation (3.12), the boundary conditions should also be expressed

in terms of \jI. The boundary conditions are prescribed as known restraints and

loadings, that is, known values of components of stresses and displacements

on the boundary. The relations between the known functions on the boundary

and the function \jI (x,y) are

a2
",u =--

x ikC1v

(3.13)

From these expressions it is found that, as far as boundary conditions are

concerned, either known restraints or known stresses or any combination of

these, can readily be converted to finite difference expressions in terms of \jI

on the boundary.

To analyze the state of stress for two-dimensional regular/irregular-shaped

bodies with mixed boundary condition, the 4th order-partial differential

equation (3.12) together with the stress and displacement components given

by the Eq. (3.13) are considered as the governing equations. The expressions

for stress and displacement components [Eq. 3.13] are valid for points within
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the body as well as on the boundary. But for the case of practical problems,

the boundary conditions are known in terms of their normal and tangential

components on the boundary. Thus the boundary equations for the known

conditions on the boundary having arbitrary shape are,

U,(x,y) = ux.l+uy.m
= _ 2m a'If/ m(l- p) O'If/+ I a'If/

1+ pax' 1+p iJy' axiJy

u,(x,y)=uy.l-ux.m

21 a'If/ I(]- p) a'If/
= - ] + pax' - ] + p iJy'

a'If/m--
axDy (3.14)

___ ._E_[_2Im_a'_If/+(1' _2m' _pm,)_o'_If/_+2Imp a'If/, -(pi' +m') a';]
(I +p)' ax' ax'iJy axiJy iJy

a, (x,y) = (I' - m')a xy + Im(ay - ax)

E [ , , .a'If/ a'If/" a'If/ a'If/ ]=--- -(I -m )--lm(p+3)--+p(l -m )--+Im(p-I)-
(I +p)' ax' ax'Dy axiJy' iJy'

By knowing the proper boundary conditions (un, ub an , at) the function '¥

would be solved by using equation (3.12) and equation (3.14). Then stress or

strain components within the body as well as on the boundary would be

determined by the equations (3.14). The computational work in solving any

problem remains the same in the present case as it was in the case of lj>-

formulation, since both of them have to satisfy the same bi-harmonic

equation. But the ljI-formulation is free from the inability of the lj>-formulation

in handling the mixed boundary conditions.
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3.5 Finite Difference Modeling of the Problem

Finite-difference method is the oldest numerical technique, which is

particularly suitable for the solution of differential equations. In the present

approach, the governing differential equation and the boundary conditions are

replaced by their corresponding finite-difference algebraic equations. The

general approach of finite difference solution assumes that the function can be

represented in a prescribed range with a sufficient degree of accuracy by

Taylor series with origin at the successive pivotal points of the range. For the

solution of our present problem, the pivotal points are taken as the regular

mesh points of the domain of dependence of the functions, obtained by

dividing the domain by lines parallel to the co-ordinate axes.

3.5.1 Solution Procedure

Method of Solution

The mixed boundary value problem is unquestionably beyond the scope of

pure analytical methods of solutions. Thus numerical solution for this class of

problems is the only plausible approach. Here, finite difference technique is

used to discretize the bi-harmonic partial differential equation and also the

differential equations associated with the boundary conditions. The discrete

values of the displacement potential function W(x,y), at the mesh points of the

domain (Fig.3.l) concerned, is solved from the system of linear algebraic

equations resulting from the discretization of the bi-harmonic equation and

the associated boundary conditions.

Discretization of the Domain

According to the usual practice, the region in which a dependent function is to ;

be evaluated is divided into a desirable number of mesh points and the values
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of the function are sought only at these mesh points. The present program is

to solve a function within a stepped rectangular region, which is divided into

meshes with lines parallel to rectangular co-ordinate axes. As a result, the

boundary may not always pass through the mesh points of rectangular

networks. But the physical problems are associated with the known boundary

conditions at the boundary points of arbitrary shaped bodies. It requires a

further treatment to relate the values on the boundary with the field grid

points.

The governing bi-harmonic equation, which is used to evaluate the function \jI

at the internal mesh points, is expressed in its corresponding difference

equation using central difference operators. When all the derivatives present

in the bi-harmonic equation are replaced by their respective central difference

formulae, the complete finite difference expression for biharmonic equation

becomes

R4 ('P'(i - 2,j) - 4'P'(; -],j) + 6'P'(i,j) - 4'P'(i + ],j) + 'P'(i + 2,j)}
+ 2R 2 ('P'(; + ], j + ]) + 'P'(;+ ], j -]) + 'P'(;-], j + ]) + 'P'(; -], j -]) + 4'P'(;,j)
- 2'P'(;+ ],j) - 2'P'(i,j +]) - 2'P'(i,j -1) - 2'P'(i -],j)} + ('P'(;,j - 2)

- 4'P'(i,j -]) + 6'P'(i,j) - 4'P'(i,j +]) + 'P'(i,j + 2)} (3.15)

The grid structure of the governing equation at any internal mesh point (i,j) is

shown in Figs 3.1 and 3.2. The pivotal point (i, j) in the grid structure is the

point of application of the governing equation. For the case of any interior

mesh point, the finite-difference equation (3.15) contains the discretized

variable of the thirteen neighboring mesh points, and when the point of

application (i, j) becomes an immediate neighbor of the physical boundary,

the equation will involve mesh points both interior and exterior to the physical

boundary as shown in Fig. 3.2.
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3.5.2 Management of Boundary Conditions

Normally, the boundary conditions are specified either in terms of loadings or

of restraints or of some combination of two. Each mesh point on the physical

boundary of the domain always entertains two of the four possible boundary

conditions at a time namely, (I) normal stress and shear stress; (2) normal

stress and tangential displacement; (3) shear stress and normal displacement;

(4) normal displacement and tangential displacement. The computer program

is organized here in such a fashion that, out of these two conditions, one is

used for evaluation of \If at the concerned boundary point and the other one for

the corresponding point on the exterior false boundary. Thus, when the

boundary conditions are expressed by their appropriate difference equations,

every mesh point of the domain will have a single linear algebraic equation

tagged to it for its evaluation.

As the differential equations associated with the boundary conditions contain

second and third order derivatives of the function \If, the application of the

central difference expression is not practical as, most of the time, it leads to

the inclusion of the points exterior to the false boundary. The derivatives of

the boundary expressions are thus replaced by their corresponding backward

or forward difference formulae, keeping the order of local truncation error the

same.

The boundary of the tread section is divided into four segments, namely, (a)

the top-left, (b) the bottom left, (c) the bottom right, and (d) the top right.

Four different sets of boundary expressions are used for the four segments.

The finite difference expressions of the boundary conditions for four different

segments are as follows.
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Finite diffrence expressions of different boundary conditions for bottom
left boundary segment:

u"(i,j) = u,(i,j).l +uy(i,j)
= (908l.l- m.s2).lf/(i,j) + zk7.s2.m.lf/(i -I,j) + zk6.m.s2.lf/(i,j -I)
+ (zk6.m.s2 -12.sl.l)lf/(i, j + I) + 3.sl.l.lf/(i,j + 2) + 1608l.l.lf/(i + I,j + I)

+ (zk7.m.s2. -12.sl.l).lf/(i + I,j) - 4.sl.l.lf/(i + I,j + 2) + 3.sl.l.lf/(i + 2, j)
- 4.sl.l.s.lf/(i + 2,j + I) + sl.l.lf/(i + 2, j + 2) (3.16)

u, (i,j) = u/i,j)J + Ux (i,j).m

= (-9.sl.m -1.s2).lf/(i,j) + zk7.s2.l.lf/(i -I,j) + zk6.I.s2.lf/(i,j -I)

+ (zk6.l.s2 + 12.sl.m)lf/(i,j + I) - 3.sl.m.lf/(i,j + 2) -16.sl.m.lf/(i + I,j + I)

+ (zk7.I.s2. + 1208l.m)lf/(i + I,j) + 4.sl.m.lf/(i + I, j + 2) - 3.sl.m.lf/(i + 2,j)

+ 408l.m.lf/(i + 2, j + I) - sl.m.lf/(i + 2, j + 2) (3.17)

a" (i,j) = ax(i,j)J' + 2lm.a xy(i,j) + m' .ay(i,j)
= If/(i -I, j). {6.zk9.R.s3.lm - 3zk9.s3.l' - 3zkl 0.s4.m'}

+If/(i -I,j + I). {4.zk9.R.s3.l' + zkI0.s4.m' + If/(i -I,j + 2){-zk9083J' -

zkl 0.s4.m'} + If/(i,j -1){1.5(s3J' - s4.m' - 2Im.R.s3)} + If/(i,j){s4.m'

(5 + 6.zklO) +s3.l' {(6.zk9 - 5) + 2R.s3.lm(3 -IOzk9)} + If/(i,j + l){s3 ..l' (6

~ 8.zk9) - 3.R.s3.lm - s4.m'(6 + 8.zkI0)} + If/(i,j + 2){s4.m' (3 + 2.zkI0)

s3.l' (2.zk9 - 3)} +If/(i,j + 3){0.5(s3.l' - s4.m')} + If/(i + I,j -1).4.R.s3.lm

If/(i + l,j){2R.s3.lm(12.zk9 - 4) - 3(zk9.s3.l' + zkl 0084.m')}

If/(i + I,j + 1){4(R.s3.lm + zk9.s3.l' + zkI0.s4.m')}

If/(i + I,j + 2)( -zk9.s3.l' - zkl 0.s4.m') + If/(i + 2,j -1)( -R.s3.lm)

If/(i + 2,j){2Ro83.lm(l- 6.zk9)} + If/(i + 2,j + 1)(-R.s3.lm)

If/(i + 3,j)(2zk9.R.s3Jm)

a, (i,j) = (/' - m' )a" (i,j) + 1m{a y (i,j) - a x(i,j))

= If/(i -1,j){3.lm(-zklO.s4 + zk9.s3) - 3.zk9.R.s3(m' _I')}

+ If/(i -I, j + 1){--4lm(zk9.s3.I' - zkl 0.s4)}m' + If/(i -I,j + 2){-lm(zkl 0084-

zk9083} + If/(i, j -1){-1.5lm(s3 + s4) + J.5R.s3(m' -I')}

+ If/(i, j)[lm{-s4(5 + 6.zklO) + s3(6.zk9 - 5)} + R.s3(m' _I' )(3 -I0.zk9»)

-If/(i,j + 1)[lm{s4(6 + 8.zkl 0) + s3(6 - 8.zk9)} - Ro83(m' _I' )(1.5»)

- If/(i, j + 2)[lm{s3(2.zk9 - 3) - s4(3 + 2.zkl O)}) -If/(i, j + 3){0.5Im{s3 + s4)}

( -If/(i + I,j -1){2.R.s3(m' -I')} -If/(i + l,j)[3Im(s4.zklO - s3.zk9)

~! \.
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+(12.zk9 - 4)R.s3(m' -I')] -1jI(i + I,j + 1)[4Im(s3.zk9 - s4.zkl 0+

2.R.s3(m' -I')] -ljI(i + I,j + 2){lm(s4.zkl 0- s3.zk9)} -ljI(i + 2,j -I)

(-O.5R.s3(m' _I' )}-ljI(i+2,j){1-6.zk9)R.s3(m2 _12 )}-ljI(i+2,j+l)

(-O.5R.s3(m2 _12 )}-ljI(i+3,j){Zk9.R.s3(m2 _12
)}

Finite difference equations of different boundary conditions for
bottom right boundary segment:

Un(i, j) = Ux(i,j)l +Uy(i, j).m

= (-9.sll- m.s2).1jI(i, j) + zk7.s2.m.1jI(i + I,j) + zk6.m.s2.1jI(i, j -I)

+ (zk6.m.s2 + 12.s1.1)1jI(i,j + I)- 3.s1.1.ljI(i,j + 2) -16.sl.l.1jI(i -I, j + I)

+ (zk7.m.s2. + 12.slJ)1jI(i -I,) + 4.s1.l.ljI(i -I,) + 2) - 3.sl.l.1jI(i - 2, j)

+ 4.s1.1.s.1jI(i- 2,} + I) - slJ.ljI(i - 2,} + 2)

u,(i,}) = uy(i,j)l +ux(i,j).m

= (9.s1.m -1.s2)ljI(i,j) + zk7.s2.l.ljI(i + I,j) + zk6.l.s2.1jI(i,) -I)
+ (zk6.l.s2 -12.s1.m)ljI(i,) + I)+ 3.s1.m.ljI(i,) + 2) + 16.s1.m.ljI(i -I,) + I)
+ (zk7.I.s2. -12.s1.m).ljI(i -I,) - 4.s1.m.ljI(i -I,) + 2)+ 3.s1.m.1jI(i - 2,)
- 4.s1.m.s.1jI(i - 2, ; + I) + s1.m.ljI(i - 2, ; + 2)

an (i,j) = ax (i,j).l' + 2Im.ax/i,) +m' .ay(i,j)

= ljI(i + I, j). {-6.zk9.R.s3.lm - 3zk9.s3.l' - 3zklO.s4.m'}

+ 1jI(i+ I, j + I). {4(zk9.s3.I' + zkl O.s4.m'} + 1jI(i+ I, j + 2){-zk9.s3.l' -

zkl O.s4.m'} + ljI(i,) -1){1.5(s3l' - s4.m' + 2Im.R.s3)} + ljI(i, )){s4.m'

(5 + 6.zklO) + s3.l' {(6.zk9 - 5) - 2R.s3.lm(3 -I Ozk9)} + 1jI(i,) + l){s3 ..l' (6

- 8.zk9) + 3.R.s3.lm - s4.m'(6 + 8.zkIO)} + ljI(i,) + 2){s4.m'(3 + 2.zkIO)

s3.l'(2.zk9 - 3)} +ljI(i,) + 3){O.5(s3.l' - s4.m')} -ljI(i -I,) -1).4.R.s31m

+1jI(i -1,)){-2R.s3.lm(l2.zk9 -4) - 3(zk9.s31' + zklO.s4.m')}

1jI(i-I, j + 1){4(-R.s3.lm + zk9.s3.l' + zkl O.s4.m')}

1jI(i-I,) + 2)( -zk9.s3.l' - zkl O.s4.m') + 1jI(i- 2,j -1)(R.s3.lm)

-1jI(i - 2,j){-2R.s31m(l- 6.zk9)} + ljI(i - 2,) + 1)(R.s3.lm)

ljI(i - 3,)(2zk9.R.s3.lm)
(3.22)
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a, (i,) = (/' - m')a -'Y (i,) + Im{a y(i,) - a., (i,))

= \f/(i + I,){3.lm( -zkl 0.s4 + zk9.s3) - 3.zk9.R.s3(m' -I')}

+ \f/(i+ I,) + 1){4.zk9.s3.I' + zkI0.s4.m' + \f/(i+ I,) + 2){-lm(zkI0.s4-

zk9.s3} + \f/(i,) -1){-1.5Im(s3 + s4) -1.5R.s3(m' -I')}

+ \f/(i,)[lm{-s4(5 + 6.zkl 0) + s3(6.zk9 - 5)} - R.s3(m' _I' )(3 -10.zk9)]

- \f/(i,) + 1)[lm{s4(6+ 8.zkl 0) + s3(6 - 8.zk9)} + R.s3(m' _I' )(1.5)]
- \f/(i,) + 2)[lm{s3(2.zk9 - 3) - s4(3 + 2.zkl O)}] - \f/(i,) + 3){0.5Im{s3+ s4)}
+ \f/(i-I,) -1){2.R.s3(m' -I')} - \f/(i-I,)[3Im(s4.zkl 0 - s3.zk9)

-(12.zk9 - 4)R.s3(m' _I')] - \f/(i -I,) + 1)[4Im(s3.zk9 - s4.zkl 0-

2.R.s3(m' -I')] - \f/(i-I,) + 2){lm(s4.zkl 0 - s3.zk9)} - \f/(i- 2,) -I)
[O.5R.s3(m' _I' )}+\f/(i+2,j){I-6.zk9)R.s3(m' _I' )}-\f/(i-2,j+l)

[O.5R.s3(m' _I' )}+\f/(i-3,j){zk9.R.s3(m' -I')}

Finite difference equations of different boundary conditions for top right
boundary segment:

u, (i,) = ux(i,).1 + uy (i,)

= (9.s1.l- m.s2)\f/(i,) + zk7.s2.m.\f/(i + I,}) + zk6.m.s2.\f/(i,) + I)
+(zk6.m.s2 + 12.s1.l)\f/(i,) -I) + 3.s1.l.\f/(i,}- 2) + 16.s1.l.\f/(i-I,) -I)

+(zk7.m.s2. -12.s1.l)\f/(i -I,}) +4.sl.l.\f/(i -I,} - 2) +3.sl.l.\f/(i - 2,})
- 4.sl.l.\f/(i - 2,} -I) +sl.l.\f/(i - 2,} - 2)

u,(i,) = uy(i,).l +ux(i,).m

= (-9.s1.m -1.s2)\f/(i,) + zk7.s2.l.\f/(i + I,) + zk6.l.s2.\f/(i,} + I)
+(zk6.l.s2 + 12.s1.m)\f/(i,) -I) - 3.sl.m.\f/(i,J - 2)-16.sl.m.\f/(i -I,) -I)
+(zk7.l.s2. +12.s1.m)\f/(i-I,}) +4.sI.m.\f/(i -I,f- 2)- 3.s1.m.\f/(i- 2,)

+4.sl.m.s.\f/(i - 2,) -I) - sl.m.\f/(i - 2,) - 2)
(3.25)
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rr, (i,j) = rrx (i,j).l' + 2lm.rrxy(i,j) + m' rry (i,j)

= If/(i + I, j). {-6.zk9.R.s3.lm + 3zk9.s3.l' + 3zkl 0.s4.m'}

-If/(i + I,j -I). {4.zk9.R.s3.l' + zkl 0.s4.m' + If/(i+ I,j - 2){zk9.s3.l' +

zklO.s4.m'} -If/(i,j + 1){1.5(s3.l' - s4.m' - 2Im.R.s3)} -If/(i,j){s4.m'

(5 + 6.zklO) +s3.l' {(6.zk9 - 5) + 2R.s3.lm(3 -I Ozk9)} -If/(i, j -1){s3 ..I' (6

- 8.zk9) - 3.R.s3.lm - s4.m'(6 + 8.zklO)} -If/(i,j - 2){s4.m' (3 + 2.zkI0)
+s3.l' (2.zk9 - 3)}-If/(i,j - 3){0.5(s3.l' - s4.m')} -If/(i -I, j + 1).4.R.s3.lm

-If/(i -I, j){2R.s3.lm(l2.zk9 - 4)- 3(zk9.s3.l' + zklO.s4.m')}
-If/(i -I,j -1){4(R.s3.lm + zk9.s3.l' + zkI0.s4.m')}

If/(i-I,j - 2)(zk9.s3.l' + zkl 0.s4.m') + If/(i- 2,j + 1)(R.s3.lm)

-If/(i - 2,j){2R.s3.lm(l- 6.zk9)} + If/(i- 2,j -1)(R.s3.lm)

-If/(i - 3,j)(2zk9.R.s3.lm)

(3.26)

rr, (i,j) = (/' - m' )rrxy (i,j) + Im{rry (i, j) - rrx (i, j)}

= If/(i+ l,j){3.lm(zkl 0.s4 - zk9.s3) + 3.zk9.R.s3(m' -I')}

+ If/(i+ I,j -1){4Im(zk9.s3 - zkI0.s4)} + If/(i+ I,j - 2){/m(zkl 0.s4-

zk9.s3} -If/(i, j + 1){-1.5Im(s3 + s4) +1.5R.s3(m' -I')}

+ If/(i,j)[lm {-s4(5 + 6.zkl 0) + s3(6.zk9 - 5)} +R.s3(m' _I' )(3 -I 0.zk9)]

+ If/(i,j -1)[lm{s4(6 +8.zkI0) + s3(6 - 8.zk9)} - R.s3(m' _I' )(1.5)]

+ If/(i,j - 2)[lm{s3(2.zk9 - 3) - s4(3 + 2.zklO)}] + If/(i,j - 3){0.5lm{s3 + s4)}

+ If/(i-I,j + 1){2.R.s3(m' -I')} + If/(i-1,j)[3Im(s4.zkl 0 - s3.zk9)

+ (12.zk9 -4)R.s3(m' _I')] + If/(i-I,j -1)[4Im(s3.zk9 - s4.zkl0 +

2.R.s3(m' -I')] + If/(i-I,j - 2){lm(s4.zkI0 - s3.zk9)} -If/(i - 2, j + I)

{0.5R.s3(m' _I')} + If/(i- 2,j){l- 6.zk9)R.s3(m' _I')} -If/(i - 2,j -I)

{0.5R.s3(m' -I')} + If/(i- 3, j){zk9.R.s3(m , -I')}

(3.27)
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Finite difference equations of different boundary conditions for top left
boundary segment:

u"(i,j) = u,(i,j).l +uy(i,j)

= (-9.s1.I- m.s2)1f/(i,j) + zk7.s2.m.lf/(i -I,j) + zk6.m.s2.1f/(i, j + I)

+ (zk6.m.s2 + 12.s1.l)If/(i,j -I) - 3.s1.l.If/(i, j - 2) -16.s1.l.If/(i + I, j -I)

+ (zk7 .m.s2. + 12.s 1.l)If/(i + I, j) + 4.s 1.I.1f/(i+ I, j - 2) - 3.s 1.I.If/(i+ 2, j)

+ 4.sl.l If/(i + 2, j -I) - sl.I.lf/(i + 2,j - 2)
(3.28)

u, (i, j) = Uy (i,j).l + u, (i,j).m

= (9.sl.m -1.s2)If/(i,j) + zk7.s2.l.1f/(i -I,j) + zk6.l.s2.If/(i,j + I)

+ (zk6.l.s2 -12.sl.m)If/(i,j -I) + 3.sl.m.lf/(i,j - 2) + 16.sl.m.lf/(i + I,j -I)

+ (zk7.l.s2. -12.sl.m)lf/(i + I,j) - 4.sl.m ..lf/(i + I, j - 2) + 3.sl.m.lf/(i + 2, j)

- 4.sl.m.s.lf/(i + 2, j -I) + sl.m.lf/(i + 2,j - 2)

(3.29)

CY"(i,j) = CYx(i,j).l' + 2Im'CYxy(i,j) +m'CYy(i,j)

= If/(i -I,j). {6.zk9.R.s3.lm + 3zk9.s3.l' + 3zkI0.s4.m'}

-If/(i -I,j -I). (4.(zk9.R.s3.l' + zklO.s4.m')} + If/(i -I,j - 2){zk9.s3.l' +

zkl 0.s4.m'} + If/(i,j + 1){1.5(-s3.I' + s4.m' - 2Im.R.s3)} -1f/(i,j){s4.m'

(5 + 6.zkl 0)+ s3.l' {(6.zk9 - 5) - 2R.s3.lm(3 -I Ozk9)} -If/(i,j -1){s3 ..I' (6

-8.zk9) + 3.R.s3.lm -s4.m'(6 + 8.zkI0)} -If/(i,j - 2){s4.m' (3 + 2.zkI0)

+ s3.l' (2.zk9 - 3)} -If/(i,j - 3){0.5(s3.l' -s4.m')} + If/(i + I,j + 1).4.R.s3.lm

+ If/(i + l,j){2R.s3.lm(l2.zk9 - 4) + 3(zk9.s3.l' + zkl 0.s4.m')}

+ If/(i+ I,j-1){4(R.s3.lm - zk9.s3.l' - zkI0.s4.m')}

+If/(i + I,j - 2)(zk9.s3.l' + zklO.s4.m') + If/(i + 2, j + 1)(-R.s3.lm)

+If/(i + 2,j){2R.s3.lm(l- 6.zk9)} + If/(i + 2,j -1)(-R.s3.lm)

If/(i + 3,j)(2zk9.R.s3.lm)
(3.30)
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a,(i,j) = (/' - m')a.",(i,j) + Im{ay(i,j) - ax (i,j)}

= V/(i -I,j){3.lm(zkI0.s4 - zk9.s3) - 3.zk9.R:s3(m' -I')}

+ V/(i -I,j -1){4Im(zk9.s3 - zkI0.s4) - V/(i -I,j - 2){-lm(zklO.s4-

zk9.s3} + V/(i,j + 1){1.5lm(s3 + s4) + 1.5R.s3(m' -I')}

- V/(i,j)[lm{s4(5 + 6.zkl 0)- s3(6.zk9 - 5)}+ R.s3(m' -1')(3 -I 0.zk9)]

+ V/(i,j -1)[lm{s4(6 + 8.zkl 0) + s3(6 - 8.zk9)} + R.s3(m' _I' )(1.5)]

+ V/(i,j - 2)[lm{s3(2.zk9 - 3) - s4(3 + 2.zkl O)}] + V/(i, j - 3){0.5Im{s3 + s4)}
- V/(i + I, j + 1){2.R.s3(m' -I')} +V/(i + I, j)[3Im(s4.zkl 0 - s3.zk9)

- (12.zk9 - 4)R.s3(m' _I')] + V/(i + I,j -1)[4Im(s3.zk9 -s4.zklO-

2.R.s3(m' _I')] + V/(i + I,j - 2){lm(s4.zkI0 - s3.zk9)} - V/(i + 2,j + I)

(-O.5R.s3(m' -/' )}-V/(i+2,j){1-6.zk9)R.s3(m' -/' )}-V/(i+2,j-l)

(-O.5R.s3(m' -/' )}-V/(i + 3,j){zk9.R.s3(m' -/')}
(3.31 )

The definition of the coefficients used in the above expressions are given

below:

zk6 = I-,u
2(1- ,u+ 2R')

R'
zk9=-

2,u

1
sl=--

4Rh'

zk8= (1-,u)R'h'
2(1-,u + 2R')

E
s3=--

P2

R'
zk7=-----

2(1-,u + 2R')

zklO = R'(2 + ,u)
2

1s2=--
zk8

(I + ,u)' R' h'
P2=----

,u

Es4=---
,uP2
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3.5.3 Tagging of Boundary Conditions to Mesh Points and
Evaluation of Parameters of Interest

Since there are two conditions to be satisfied at an arbitrary point on the

physical boundary of the tire tread, the finite difference expressions of the

differential equations associated with the boundary conditions are applied to

the same point on the boundary. It should be noted that two linear algebraic

equations are assigned to a single point on the boundary. Out of these two

equations, one is used to evaluate the function \If at point on the physical

boundary and the other one for the corresponding point on the false boundary.

Therefore, every mesh point of the domain has a single linear algebraic

equation tagged to it. The discrete values of the potential function, \jf(x, y), at

mesh points are solved from the system of linear algebraic equations resulting

from the discretization of the governing equation and the associated boundary

conditions. There are numerous existing methods of solving a system of

algebraic equations. In the present problem, the number of unknowns in the

system of equations is extremely large but only a few in each individual

equation. Under this condition, the iterative method may be preferable. But

the problem of solving the difference equations by the iterative method has

certain shortcomings. Although this method works very well for certain

boundary conditions, it fails to produce any solution for other complex

boundary conditions. In certain cases, the rate of convergence of iteration is

extremely slow, which makes it impractical. As the iterative method has the

limitation of not always converging to a solution and sometimes converging

but very slowly, the present problem is solved by the use of the triangular

decomposition method which ensures better reliability as well as better

accuracy of solution in a shorter period oftime.
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Finally, the same difference equations are organized for the evaluation of all

the parameters of interest in the solution of tire tread, namely the components

of stress and displacement at every interior and boundary points from the \If

values at mesh points of the body, as all the components of stress and

displacement are expressed in terms of derivatives of the function, \If.

A tire tread along with a portion of the tread-bed in which the tire tread is

embedded has been considered as the stress field as shown in Figs.3.4 and

3.5. The portion of the boundary of the stressed tread within the tread-bed,

marked with dotted lines, is considered as rigidly fixed. However, the

boundaries DE and GF are assumed to be free from shearing stress, but at the

same time, they allow no displacement in the direction perpendicular to the

boundaries. The remaining boundary is considered free from external stress

except the boundary in contact with the road, where two different cases of

boundary conditions are considered as illustrated in Figs. 3.4 and 3.5.
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Chapter 4

EXPERIMENTAL DETERMINATION OF TYRE
MATERIAL PROPERTIES

4.1 Introduction

Tyre tread is one of the major parts or components of lyres. Tyre tread is

made of rubbers, binders, colors and other filler materials. The mechanical

properties of lyre materials are not readily available in the literature. For the

present research work, elastic properties of rubber, for example, modulus of

elasticity, Poisson's ratio, etc. are required for appropriate analysis of wear of

treads. These properties are obtained by direct experiment. Different lyre

manufacturing companies make lyre tread of rubber materials with different

properties of constituents, which eventually leads to different mechanical

properties. So it is difficult to specifY unique properties for lyre tread

materials. In the present analysis, attempts have been made to determine

experimentally all the important mechanical properties, such as, modulus of

elasticity, hardness, Poisson's ratio of natural rubber, retreading lyre rubber,

original truck lyre rubber. The modulus of elasticity has been determined for

both cases of compression and tension and the results are compared to each

other. The ultimate strength (fracture) of different lyre materials has been

determined by tension test.

Tyre rubber consists of different materials including air. Under load it

absorbs strain energy, however after releasing load it does not give-up the

total strain energy. As a whole a little amount of energy is absorbed by the

lyre tread as a result of loading. If the properties of creeping and hysteresis

could be decreased, it is possible to find out yield point. In order to obtain

accurate result, all the experiments have been repeated 4-5 times or even
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more, and the results were averaged. Tyre tread is not exactly homogenous or

isotropic because tyre tread rubber does not have binders, additives at the

same ratio. That is why the results were found to vary, to some extent, from

specimen to specimen. The complete stress-strain behavior of all the rubber

materials were analyzed under both the conditions of tension and

compression. The compression modulus of the tyre material has been used

throughout the whole calculation, as in service, the tyre tread is subjected to

compressive loading. The compression modulus of tyre tread materials has

been determined in three different strain range such as low strain range,

medium strain range and high strain range. The tension modulus has been

determined for the low strain range. The original truck tyre used is specified

as extra heavy tread Nylon. Single maximum load is 2550 kg at 795 kpa and

Dual maximum load is 2325 kg at 725 kpa. The commercial name of the tyre

is DUNLOP R.T.M SUPREME, made in India.

4.2 Experimental Apparatus and Procedure for Compression
Test

The apparatus used for the compression test are (a) Universal testing machine

(b) digital slide calipers (c) dial gauge (d) compression block (Specimen) (e)

white marker (f) sharp knife (g) small grinding machine. Maximum range of

digital slide calipers was 300 mm. Maximum loading capacity of universal

testing machine was 20 ton. Type of grinding machine used was Bench

grinder (Model SIST-150). It's of speed 2800 rev/min. Safe linear velocity is

35 mls.

Procedure: First, tyre tread sections were cut by sharp knife for preparing

compression block for compression test. Then the surfaces of the compression

blocks were made smooth by grinding machine. Compression blocks were

prepared from three different materials of tyres, namely, natural rubber,

retreaded rubber and truck tyre rubber. For measuring the overall dimensions
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of the block, each dimension is measured 8 times and the average values were

taken as the accurate one. The compression block was fixed between the jaws

of Universal testing machine, and the jaws were under the contact of two

surfaces of the block. After setting the specimen; the ram was lift about 20mm

to confirm the '0' position of pointer before testing. Afterwards load was

increased slowly and the corresponding deformation of the block was read

from the dial gauge scale, and the load was increased at the same rate up to a

total deformation of 50% of the initial block. For compression test, more than

three compression blocks of each tyre material, such as, natural rubber,

retreaded tyre rubber, truck tyre rubber were tested.

Dimension of the Specimen made out of the truck tyre were as follows:

~or specimen #1

Breadth = 3.90cm, Width = 2.82cm and Height = 2.63 cm

Contact surface area = 11.02cm2

For specimen #2

Breadth = 3.77cm,Width = 2.92cm and Height = 2.51cm

Contact surface area = II. 0Icm2

For specimen #3

Breadth = 3.99cm, Width = 2.77cm and Height = 2.45cm

Contact surface area = II. 09cm2

4.3 Experimental Apparatus and Procedure for Tension Test

For the tension test, the apparatus consisted of (a) a Universal testing

machine (b) a digital slide calipers (c) a sharp knife (d) tensile specimens (e)

white marker and small grinding machine.

Procedure: First, more than three pieces each of the three tyre materials

were taken and tensile specimens were prepared by a sharp knife, and then the

surfaces of the specimen were smoothened by the help of grinding machine.
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The length, width, thickness and gage length of each specimen were measured

by the digital slide calipers. Then the specimens were increasingly loaded at a

constant slow rate and extensions were measured by digital slide calipers, and

the corresponding load was read from the dial gauge.

During preparation of the tension specimen fillet radius was controlled. The

load was increased up to the limit at which the specimen broke, and the

corresponding load and extension at break were recorded.

Dimensions of the tensile specimens of the truck -tyre tread were as follows:

For specimen # I

Gage length = 26.68mm,Breadth = 9.04mm and Thickness = 7.90mm

Cross sectional area = 0.71416cm2

For specimen #2

Gage length= 27. 76mm, Breadth = 9.06mm and Thickness = 5.40mm

Cross sectional area = 0.4886cm2

4.4 Experimental Apparatus and Procedure for Hardness
Test

The apparatus used are (a) Hardness meter (Shore-A-Durometer) and (b)

blocks of different tyre tread materia!.

The range of the hardness tester is (0-100). The hardness of any substance

which has hardness number below 100 can be measured by the present tester.

Procedure: At first, the hardness meter was pressed by fingers on the

surface of the specimens in different places, and the corresponding hardness

numbers were recorded and their average value is calculated. Following same

procedure, the hardness of natural rubber, retreading tyre rubber, Neoprene

rubber and Truck tyre rubber was measured.
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4.5 Determination of Elastic Modulus ofTyre Materials

Figure 4.1(a) shows the stress-strain relationship for the truck rubber under

compression. From the figure, it is seen that the strain increases with the

increase of stress, but not any constant rate. It is thus very difficult to identify

a unique proportional limit, which is, in general, necessary for determining

elastic modulus. In order to determine the elastic modulus, the stress-strain

relation is assumed to be composed of three segments. First portion of the

curve of Figure 4.1(a) is fitted with a straight line which is shown in Figure

4.1(b). Three strain ranges are identified to represents these segments of the

curve namely, low strain range (0-21%), medium strain range (22-38%) and

high strain range (38-51%). The measured relations in each strain range are

approximated by the corresponding best fitted straight lines. The equation of

best fitted straight line of Figure 4.1.(a) is given in Figure 4.I(b). Following

the same procedure, the elastic modulus of different types of rubbers for

different strain ranges are obtained from the measured relation of stress and

strains (Figure 4.2-4.3). The stress-strain relationships under tension for

different rubber materials are shown in Figs. 4.4-4.7. For these tension tests,

data were taken upto the breaking point of the specimens. The truck tyre

rubber was found to break at a strain of 479%. For the strain range, 0-130%,

the relation was nearly linear and the corresponding modulus of elasticity was

obtained in a similar fashion as that of the compression test, as shown in Fig.

4.4 (b). For determining the elastic modulus of different tyre rubbers, two or

three specimens for each material were tested under tension and compression.

The fmal values of the elastic modulus were obtained by averaging the data

obtained for each specimen. The modulus of elasticity under compression and

tension and also the ultimate strength of the materials are listed in Tables 4.1

and 4.2, respectively.
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4.6 Determination of Poisson's Ratio and Hardness Number

Poisson's ratio is defined as the ratio of lateral strain to longitudinal strain. It

is expressed mathematically as J.1 = Lateral strainILongitudinal strain.

Poisson's ratio is obtained from the tension test of different tyre materia!. For

obtaining Poisson's ratio, four tensile specimens were prepared. The

specimens were found to extend longitudinally and contract laterally when

they were subjected to tensile loading. For obtaining Poisson's ratio, 3 / 4

specimens were prepared each of the materials. The Poisson's ratio for the

three different materials along with the corresponding lateral and longitudinal

strains is listed in Table 4.3. From the results it is seen that the Poisson's ratio

for the truck tyre rubber is in between those of natural rubber and retreaded

rubber. For measuring the hardness of different tyre materials, five specimens

of each material were prepared. The measured hardness were arranged in

descending order and third hardness value is taken as the average hardness of

the materia!. The Shore-A-Durometer hardness values are given in Table 4.4.

From the measured results it is seen that natural rubber has the lowest

hardness and the retreading rubber the highest. The hardness of truck tyre

rubber lies in between those of natural rubber and retreading rubber.

The percentage elongation of different kinds of rubber materials at break is

shown in Table 4.5. It is seen that the rubber of truck tyre has the highest

elongation at break and natural rubber has the lowest.

4.7 Results and Discussion

If the modulus of elasticity for different tyre materials obtained under the

condition of tension and compression is compared with each other, it is

observed that the two modulus are quite different. Elastic modulus of all the

tyre materials are higher than in compression than that in tension. Therefore, .

for the appropriate analysis of wear of tyre-treads the compression modulus

\.:
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cannot be replaced by the tension modulus. Further, experimental

investigation shows that both the ultimate strength and percentage elongation

of truck lyre rubber are higher than those of natural rubber. Hardness and the

Poisson's ratio of truck tyre rubber are in between the values obtained for

natural rubber and retreading rubber.

Therefore the present experimental investigation reveals that the mechanical

properties of tyre rubbers vary significantly from those of natural rubber and

thus determination of appropriate material properties is of utmost importance

for reliable prediction of stress and strains in tyre treads.

.,.
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Chapter 5

SOLUTION OF TYRE TREAD CONTACT PROBLEM
CONSIDERING FRICTIONLESS SLIPPING

5.1 Introduction

In this chapter, the tyre tread contact problem is analyzed mainly in the

perspective of deformation pattern. Actually, the deformation pattern, or in

other words, the deformed shape of the tyre tread section subjected to normal

compressive stress from the road surface, is analyzed in an attempt to identify

the displacement component responsible for the tyre wear. In this chapter, the

solution of the tread contact problem is obtained considering frictionless

slipping of the tread surface in contact, i.e., the tread contact plane will be

allowed to deform both normally and laterally. Here, it is allowed to deform

both normally and laterally. However it will experience no frictional force

(i.e., stress) from the road that will tend to oppose the displacement in the

lateral direction. It is important to mention here that, in the present study of

wear, the deformation pattern of the tread sections for the case of frictionless

slipping gives the basis for analyzing the wear of tyre treads.

5.2 Numerical Modeling and the Solution

First, attempt is made to solve the tyre tread stress problem in terms of the

normal uniform pressure at the contact boundary. The normal loading at the

contact boundary is considered as the uniformly distributed normal

compressive stress from the road surface, which just balances the internal tyre

inflation pressure. The relevant boundary conditions which have been

satisfied by the different segments of the tyre tread section are illustrated in
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Table 5.1. Since the tread section of a truck tyre is considered here, the

inflation pressure inside the tyre is likewise assumed to be 690 kPa. Table 5.2

illustrates the scheme for treating the comer boundary points, which are, in

general, the points of singularity. For example, the comer points of the

contact boundary share the conditions of boundary in contact and of a free

boundary, simultaneously. Figure 5.1 shows the deformed shape of the tyre

tread section obtained satisfying the conditions mentioned above.

From the result it is seen that the normal displacement, uy is not constant over

the whole contact boundary of the tread section, rather, the displacement is

lower in the comer regions of the boundary, which ultimately leads to an

impractical deformation pattern of the tread section. In an attempt to get rid of

the problem, a large number of trial and error have been made and finally it

has been observed that the problem can be eliminated if the applied normal

pressure on the contact boundary can be replaced by its equivalent normal

displacement. The boundary conditions of the comer mesh points are satisfied

in accordance with those shown in Tables 5.3 and 5.4. The deformed shape

of the same tyre tread section obtained by satisfying the conditions as

mentioned in Table.s 5.3 and 5.4, is shown in Fig 5.2. As appears from the

figure, it satisfies almost all the physical requirements and also, the overall

accuracy of the solution is found better than that obtained with the applied

normal stress. It has also been verified that the same normal compressive

stress is reproduced along the boundary if the problem is solved in terms of its

equivalent normal displacement component.

5.3 Influence of Dimensional Parameters (a and b) on
the Deformation of the Tread Section

In this Section, the obtained solutions are analyzed mainly in the perspective

of the tread aspect ratio. First, the influence of the tread contact length, a is
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investigated when skid depth, b is kept constant, and secondly, the influence

of the skid depth is investigated keeping length, a constant.

Figure 5.3 describes the influence of skid depth, b on the normal displacement

of the tread contact boundary. The result is presented as a function of tread

aspect ratio alb, where b is varied and the contact length a is kept fixed as

8.31 unit. It is seen that with the increase of the skid depth, the normal

displacement of the contact boundary increases for the constant normal

loading from the road surface. In other words, it can be said that at higher

aspect ratio, the rate of change of normal displacement is very low. Since all

the problems are solved with the equivalent normal displacement of the

contact boundary, instead of using the inflation pressure, it is important to

know the equivalent normal displacement corresponding to every aspect ratio

of the tread section under the constant inflation pressure. Fig. 5.3 can easily

serve the purpose of providing the equivalent normal displacement for various

aspect ratios ranging from 0 to 5.5, under different inflation pressure from

517.5 kPa to 828 kPa.

Figure 5.5 illustrates the influence of skid depth, b on the tangential

displacement component for contact boundary under the inflation pressure of

690 kPa. In this figure, the distribution of tangential displacement component

is plotted along the contact boundary of the tread section for different aspect

ratio. In this case, as before, while changing the value of b, a is kept fixed.

From the general trend of the curves it is seen that the tangential displacement

at both the ends takes the maximum positive and negative values, leaving the

central point undisturbed. Another conclusion is that with the increase of

aspect ratio, the maximum tangential displacement decreases. In other words,

for a constant contact length of the tread section and also for the same

inflation pressure of the lyre, increase of skid depth increases the tangential

deformation of the tread contact boundary.
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Figures 5.6 to 5.8 illustrate the corresponding influence of contact length, a,

on the various displacement components obtained for the tread section when

the skid depth is kept constant. From Fig 5.6 it is seen that the normal

displacement of the contact boundary decreases as the contact length is

increased keeping the skid depth constant. The corresponding influence on the

deformed shape is illustrated in Fig. 5.7. The influence of length of the

contact boundary, a on the tangential displacement is described in Fig. 5.8.

Here the contact length a is varied while the skid depth is kept constant. From

the figure it is concluded that with the increase of aspect ratio, the tangential

displacement is increased. Also the nonlinearity of the distribution of the

tangential displacement component is found to increase with the increase of

aspect ratio. Therefore, with the increase of contact length of the tread section,

the tangential displacement of the contact boundary increases when the skid

depth is kept constant. With the increase of aspect ratio of the tyre tread

section, the tangential displacement increases upto a certain limit of aspect

ratio, and then the tangential displacement becomes saturated, i.e., no further

change in the tangential displacement component is observed with the

increase of contact length (aspect ratio). It is the critical value of aspect ratio,

which permits maximum tangential displacement under a particular contact

pressure. From this analysis it is clear that wear does not occur at middle

portion of the contact surface because the middle portion of the contact

surface is basically free from tangential displacement under any situation.

5.4 Effect of Normal Contact Pressure (Inflation Pressure) on
the Deformation of the Tread Section

In order to investigate the influence of contact pressure on the tyre tread

contact boundary, on the individual displacement components and also on the

deformed shape, a particular tyre tread section has been analyzed with varying

normal contact pressure, (i.e., inflation pressure) ranging from 100 to 900

kPa. Figure 5.9 represents the relation between the normal displacement and
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normal contact pressure on the contact boundary for an aspect ratio of 1.51. It

is clear from the figure that a linear relationship exists between the normal

displacement and contact pressure. That is, with the increase of contact

pressure, the normal displacement of the contact boundary increases linearly.

Figure 5.10 illustrates the influence on the tangential displacement

component; it is seen that the displacement is zero at the middle and it

mcreases as we move towards the comer of the tread, and ultimately

maximum tangential displacement occurs at the comers. But these maximum

displacements at the two corners are of opposite nature. In general, it is

revealed from the figure that the tangential displacement component increases

with the increase of inflation pressure inside the tyre. Moreover, the non-

linearity of the distribution is observed to increase with the increase of the

contact pressure on the tread boundary. The influence of the contact pressure

on the overall inflation of the tread section is shown in Figure 5.11. As seen in

the figure, the inflation of the tread section increases significantly when the

contact pressure is increased. on the contact boundary of the tread section.
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Chapter 6

WEAR ANALYSIS OF TYRE TREAD SECTIONS
CONSIDERING FRICTIONAL SLIPPING

6.1 Introduction

In this section, the same tyre tread contact problem of chapter 5 is solved

taking the frictional slipping of the tread contact surface into account. It has

been verified in chapter 5 that when the tread section is subjected to uniform

contact pressure/displacemt from the road, the contact boundary tends to slip

laterally on the road due to its tangential component of the displacement. If

there is no friction between the tyre surface and the road, the magnitude of

lateral slipping on the road will be maximum. However, if the frictional

slipping is taken into account, the tangential displacement of the contact

boundary under the normal compressive stress/displacement from the road, is

opposed by the frictional force, that is, stress developed from the road. The

frictional stress due to the road surface is a function of normal contact

pressure an, and thus, for a constant inflation pressure of the tyre, the

frictional stress remains constant for all tyre treads of same materia!. It should

be made clear that this frictional stress may, however, vary for different tyre

materials because of the fact that the friction coefficient between the road and

different tyre materials is different.

The essential feature of the present method of wear analysis is that, here the

mixed boundary value contact problem of tyre tread is solved to obtain the

corresponding amount of shearing stress (frictional stress due to the road)

which will completely stop the lateral slipping of the tread contact surface
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over the road. It is noted here that this shearing stress on the tread contact

boundary is a function of skid depth, contact length on the road, inflation

pressure and also of the lyre materia!. After determining the no-slip shearing

stress on the contact boundary, it is compared with the frictional stress

available from the road.

If the calculated maximum frictional stress for a tread section is found to be

equal or lower than that available from the road, then no wear of the tyre tread

occurs on that particular tread section. This is because of the fact that the

frictional stress available from the road is there just equal or even higher than

that required to deform the tread section under the action of normal

compressive stress from the road, keeping the contact boundary free from any

lateral displacement.

6.2 Solution of Tyre Tread Contact Problem under
No-Slip Condition of the Contact Boundary

First, attempt is first made to solve the lyre tread contact problem in terms of

normal uniform contact pressure on the contact boundary. The normal loading

on the contact boundary is considered as the uniformly distributed

compressive stress from the road surface, which is just balancing the lyre

inflation pressure. The relevant boundary conditions which on the different

segments of the tread sections are given in Table 6.1. Since the tread sections

of the truck lyre are considered here, the inflation pressure inside the lyre is

likewise assumed to be 690 kPa. Table 6.2 illustrates the scheme for modeling

the boundary conditions at the corner points, usually, the points of singularity.

For example, the comer points of the contact boundary share the conditions of

a loaded boundary and a free boundary. For obtaining accurate results of

different stresses which would be developed at the contact surface of the lyre

tread, the uniform normal stress acting on the contact boundary can be

replaced by its equivalent normal displacement; and the management of the

\



55

boundary conditions for the boundary segments and comer points are done in

accordance with those shown in Table 6.3 and 6.4, respectively.

Figure 6.1 shows the influence of skid depth, b on the normal displacement of

the contact boundary. The result is presented as a function of tread aspect

ratio alb, where b is varied and the contact length a is kept fixed as 8.31 unit.

It is seen that with the increase of skid depth, the normal displacement of the

contact boundary is increased for the constant normal loading from the road

surface. More specifically, it can be said that at higher aspect ratios, the rate

of change of the normal displacement is very low. Since all the problems are

solved with the equivalent normal displacement of the contact boundary

instead of using the direct inflation pressure, it is important to know the

equivalent normal displacement corresponding to every aspect ratio of the

tread section under different inflation pressures. From Fig. 6.2 normal

displacement of the contact surface is found to be uniform along the skid

surface. With the decrease of aspect ratio normal displacement of the contact

boundary increases. Tangential displacement of the contact surface IS zero,

which is verified from Fig. 6.2.

Figures 6.3 and 6.4 illustrate the influence of contact length,. a on the two

displacement components and the overal deformation pattern the tread section

when the skid depth, b, is kept constant. From Fig. 6.3, it shows that the

normal displacement of the contact boundary decreases as the contact length

is increased at constant skid depth. From Fig. 6.4 it is observed that with the

increase of contact length, normal displacement of the middle portion of the

skid surface decreases. The tread sections are found to be inflated under the

action of normal uniform displacement applied at the contact boundary,

leaving the contact boundary free from any lateral displacement.

"
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6.3 Analysis of Shearing Stress on the Contact Boundary of
the Tread Section

In Figure 2.2, AB is the contact surface of the tread with the road. In order to

predict the shearing stress along the contact boundary, the problem is solved

in such a fashion that the contact boundary experiences a uniform normal

displacement, equivalent to an inflation pressure inside the lyre. Keeping all

the boundary conditions of the contact surface of the tread section constant,

attempt is made to solve the problem by managing the boundary conditions of

the two comer points of the contact boundary in two different ways (case-A

and case-B), the corresponding boundary conditions along with their points of

application are illustrated in Tables 6.5 and 6.6. These two solutions (case-

A&B) show that the obtained stress and displacement components for the

whole tread domain are exactly same except at the two comer points of the

contact boundary; case-A gives an extremely high value of the shear stress at

the comer points while case-B gives zero shearing stress, which is quite likely

as these points are in general, the points of stress singularity. Figure 6.5

illustrates the two different solutions of shearing stress along the contact

boundary. The solutions differ mainly at the comer points. In order to obtain a

justified value of the shear stress at the comer points of the contact boundary,

stresses are predicted by extrapolation keeping the slope of the curve near the

comer the same. This extrapolated curve along with the two other solutions

are presented in Fig 6.5.

Figure 6.6 describes the shear stress distribution along the contact surface of

the lyre tread at different aspect ratios, when skid depth, b is varied keeping

the contact length same under contact pressure of 690 kPa. At the middle

portion of the contact surface, shear stress is completely for all the sizes of

treads. Away from the middle portion of the contact surface shear stress

increases upto the comer point of the contact surface, and thus maximum

shear stresses are developed at the two extreme points on the contact
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boundary with equal in magnitudes but opposite III sIgn for all the tread

sections. Figure 6.7 shows the distribution of the shear stress along the

contact surface under a contact pressure of 690 kPa when contact length of

the tyre tread is varied, keeping the skid depth constant. From the figure, it is

clear that when contact length increases, shear stress increases. It is

interesting to note that shearing stress at the contact boundary increases up to

a certain limit with the increase of contact length, but beyond this value of a ,

it is found to remain the same, i.e.,. no change of shearing stress with the

increase of a.

6.4 Determination of Optimum Tread Section for Minimum
Wear

It is necessary to investigate the maximum shear stress at the contact surface

for the analysis of wear of lyre treads. Figure 6.8 shows the relationship

between maximum shear stress and aspect ratio under a contact pressure of

690 kPa. For higher aspect ratios, maximum shear stress increases with nearly

a linear rate with the decrease of aspect ratio and then remains nearly constant

for the lower range of aspect ratio; when the contact length is kept fixed but

the skid depth is varied. The magnitude of maximum shear stress even at the

very low aspect ratio is less than half of the inflation pressure and at a very

high aspect ratio, the contact pressure is more than eight times of maximum

shear stress developed at the corner of the contact boundary. Figure 6.9

describes the distribution of coefficient of friction of the contact surface at

different aspect ratio under a contact pressure of 690 kPa. Here the calculated

coefficient of friction is obtained by dividing the shearing stress developed on

the contact surface of the tread by the normal contact pressure. At the middle

portion of the contact surface the coefficient of friction is zero which means

there would be no friction at the mid point, and beyond the middle portion of

the contact surface coefficient of friction increases up to the corner point of

the contact surface. When the aspect ratio is increased keeping the contact
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length fixed, coefficient of friction decreases. Figure 6.10 shows the

relationship between the calculated maximum coefficient of friction and

aspect ratio of tyre tread when the size of the tread is kept fixed in tangential

direction and that in normal direction is varied. For example, at a very high

aspect ratio maximum calculated coefficient friction is found 0.12 and at very

low aspect it is 0.33. Figure 6.10 is divided into two regions, such as, wear

zone and no wear zone. It is also necessary to investigate the maximum shear

stress distribution of the contact surface of the tyre tread at a definite contact

pressure when the size of the tyre tread is varied in tangential direction

keeping the skid depth constant. Figure 6.11 shows the relationship between

maximum shear stress and aspect ratio under a contact pressure of 690 kPa.

Maximum shear stress increases nearly at a linear rate and then the rate of

increasing maximum shear stress decreases and this rate is zero for higher

aspect ratio. Figure 6.12 shows the relationship between maximum coefficient

of friction and aspect ratio where the skid depth is kept constant and the size

of the tread in tangential direction is varied. When the aspect ratio is

increased, the calculated maximum coefficient of friction increases and then

the rate decreases to zero with the increase of aspect ratio.

Table 6.7 shows actual coefficient of friction for different kinds of tyre with

the road surface at different speed and for different conditions. A value of

actual coefficient of friction between the road and the contact surface of truck

tyre, for example, 0.28, divides Figs. 6.10 and 6.12 into two zones, such as,

wear zone and no wear zone. At this coefficient of friction in Figs. 6.10 and

6.12, a horizontal line is drawn which cuts the curves of Figs. 6.10 and 6.12

separately at a point and the vertical line drawn at this point ultimately divides

the curve into wear and no wear zones.. In Fig 6.10 the left portion of the line

is identified as wear zone and right part is no wear zone when the size of tyre

tread is varied in normal direction, keeping the contact length constant. Figure

6.12 also shows the left portion of curve as no wear zone and right portion as
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wear zone, when the size of lyre tread is varied in tangential direction,

keeping the skid depth constant. For designing an optimum size of tyre tread

any size of the lyre tread from the no wear zone can be taken as a safe one

which allows no wear of the tyre tread at any inflation pressure.

6.5 Influence of Inflation Pressure on the Analysis of Wear of
Tyre Treads

Figure 6.13 describes the relationship between the normal displacement of the

lyre tread contact surface and the contact pressure. From the figure, normal

displacement is found to increase linearly with the increase of contact

pressure. This relation can be used to determine the corresponding normal

displacement of the tread contact surface, subjected to various normal contact

pressures. Figure 6.14 shows the deformed shapes of a truck tyre tread of

a/b=LSI under different contact pressures. From the Figure, it is clear that all

the treads are inflated under the action of uniform normal displacement on the

contact surface, however, as desired, the contact boundary was completely

free from the lateral displacement for all the cases considered. Moreover, the

inflation of the tread increases with the increase of normal contact pressure.

From the distribution of shear stress along the contact surface of the tread

section under different contact pressure, as shown in Fig. 6.15, it is seen that

at the middle portion of the contact surface shear stress is always zero, no

matter what value of normal pressure is used away from the middle portion,
of the contact surface, the shear stress increases when the contact pressure is

increased. Therefore it is said that when contact pressure is increased shear

stress distribution along the contact surface increases. For all cases maximum

shear stress is less than half of the normal contact pressure. For the analysis of

wear of tyre tread, it is very important to know the shear stress distribution

along the contact surface. The portion of the contact surface, for which

magnitude of shear stress is less than the frictional stress due to coefficient of
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friction, wear will not occur at that portion of the tyre tread. Figure 6.16

shows the maximum shear stress obtained for different contact pressure (for

the tread of aIb=1.51). As appears from the figure, maximum shear stress

mcreases linearly with the increase of contact pressure. The maximum

coefficient of friction obtained from the maximum shearing stress developed

at the corners of tread contact boundary is again presented as a function of

normal contact pressure in Fig. 6.17. It is seen from the figure, calculated

maximum coefficient of friction remains the same when the contact pressure

is increased or decreased. Calculated maximum coefficient of friction is thus

found to be independent of the normal contact pressure. Since the relationship

between the maximum shearing stress and the normal contact pressure is

linear (Fig. 6.16), the maximum coefficient of friction, which is basically the

slope of the straight line relation, is found to remain constant when analysed

in the perspective of normal contact pressure (Fig. 6.17). If the coefficient of

friction of the road surface with the tyre tread contact surface is greater or

even equal than the calculated maximum coefficient of friction, tyre tread

does not wear, because in that case the lateral displacement of the contact

surface will not occur even with the increase of contact pressure. However, if

the coefficient of friction is lower than the calculated one, the wear of tyre

tread increases with the increase of contact pressure because with the increase

of normal contact pressure lateral tangential displacement of the contact

boundary will be increased, which is responsible for the wear of tyre treads.
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Chapter 7

INFLUENCE OF TYRE MATERIAL ON THE
PREDICTION OF OPTIMUM TYRE TREAD SECTIONS

7.1 Introduction

This chapter is on the analysis of the influence of tyre material on the

determination of optimum tyre tread section for minimum wear. Three

different materials, namely, natural rubber, truck tyre rubber and retreaded

tyre rubber are considered for the present analysis. All the necessary

properties of the three rubber materials have been determined experimentally

and presented in Chapter 4. Using these material properties, a number of tyre

tread contact problems are solved with an inflation pressure of 690 kPa. Both

the problems of frictionless slipping and frictional slipping are considered for

better comprehention of the analysis.

7.2 Frictionless Slipping of Tyre Treads of Different Materials

In an attempt to investigate the influence of different tyre materials on the

deformation of the tyre tread under uniform contact pressure, three different

tyre materials are considered as the tread material, and then solutions are

compared with each other. Figure 7.1 shows the relationship between normal

displacement and aspect ratio (alb) of different tyre materials. This

relationship is obtained for the direct normal contact pressure of 690 kPa. In

this figure, it is seen that the normal displacement increases for all the

materials of interest if the skid depth is increased, keeping the contact length

constant, for the constant uniform contact pressure. Further, for a given aspect

ratio, normal displacement is found to be maximum for natural rubber,

minimum for retreading rubber and in-between for truck tyre. At higher
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aspect ratio (a>b), the difference in the magnitude of the normal displacement

among the three tyre materials is not that high as in the case of low aspect

ratio. From this figure, it is possible to find the corresponding normal

displacement for a particular size of tyre tread for three different tyre

materials under a particular contact pressure of 690 kPa . Figure 7.2 shows the

original shape and the corresponding deformed shape of tyre tread section

(a!b=2.1) of different tyre materials under contact pressure of 690 kPa ,

considering frictionless sleeping of the tread contact surface. From the figure,

it is clear that the inflation of the natural rubber is highest and that of

retreading rubber is lowest. Since the material properties of truck tyre lies in

between those of natural rubber and retreading tyre, inflation of the truck tyre

under the same contact pressure is found in between them. Here it is

observed that the bond line of tyre tread in contact with the ply and the

interior side boundaries oftyre tread do not displace from it's own position.

Lateral displacement of the contact boundary for the tyre treads are shown in

Figure 7.3 as a function of grid points along the contact boundary. The

nonlinear distribution of the tangential displacement component conforms to

the deformed shapes of the treads (Figure 7.2), as the tangential displacement

is highest for the case of natural rubber and lowest for the retreading tyre. The

truck tyre remains in between those of natural rubber and retreading rubber. A

quantitative analysis of the tangential displacement shows that, maximum

tangential displacement for the case of natural rubber is twice than that of the

retreading tyre rubber. Since this displacement component is mainly

responsible for the tread wear, the present analysis shows that wear due to the

lateral slipping will be higher for the same contact pressure if a soft material

like natural rubber is used as the tyre tread material and the same will be

lower for the present retreading tyre rubber.
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7.3 Frictional Slipping of the Treads of Different Materials

For the comparative analysis, firstly, the size of the lyre tread is varied in

normal direction keeping the contact length fixed and secondly the size of the

tyre tread is varied in tangential direction keeping the skid depth constant. In

the present work, the normal displacement of the tyre tread of different tyre

materials such as natural rubber, truck tyre and retreading rubber and their

deformed shapes under a constant contact pressure of 690 kPa are observed. It

is necessary to investigate the shear stress distribution along the contact

surface of the tyre tread and then the maximum shear stress and the

corresponding maximum coefficient of friction of the contact boundary with

the road surface under the same contact pressure of 690 kPa.

Figure 7.4 shows the effect of size on the normal displacement of the contact

surface of different tyre materials under the same contact pressure when the

dimension of the tyre tread is varied in normal direction keeping the contact

length constant. In this figure, the normal displacement is highest for the tyre

treads of natural rubber and lowest for retreading tyre rubber and the normal

displacement for truck tyre tread remains in between natural rubber and

retreading rubber. With the increase of aspect ratio, normal displacement

decreases when the dimension of the tyre tread is varied in normal direction.

The deformed shape of tyre tread of three different tyre materials are shown in

Fig 7.5. It is clear from the figure that tangential displacement of the contact

surface is zero for the three different lyre treads. The inflation of the side

surfaces is maximum for lyre tread of natural rubber and minimum for

retreading rubber and the same for the truck tyre tread remains in between

those of natural rubber and retreading rubber.

As is shown in Fig.7.6, for a definite contact pressure of 690 kPa shear stress

is zero at the middle portion of the contact surface of the lyre treads (aIb=2.1)

and this shear stress increases up to the corner points of the contact boundary
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for all the tyre tread of three different lyre materials. Beyond the middle

portion of the contact snrface, the slope of curve of retreading rubber is lowest

and the slope of natnral rubber is highest and the slope of truck lyre remains

between the two materials. Therefore, it is said that the amount of shear stress

developed under no slip condition of the contact snrface for natnral rubber is

maximum and is minimum for retreading lyre tread and the shear stress of

truck lyre remains in between the two lyre materials except middle portion of

the contact surface. Figure 7.7 describes the effect of tread size on the

maximum shear stress developed at the corners of the contact snrface of lyre

tread of three different lyre materials under a uniform contact pressure of 690

kPa, where the horizontal dimension, a is kept constant. From the variation of

the stresses it is revealed that, with the decrease of aspect ratio, maximum

shear stress for all the three different tyre tread contact surfaces increase

linearly up to a certain limit and then become nearly constant. From this

relationship, it is clear that the maximum shear stress for a particular aspect

ratio is highest for the lyre tread of natural rubber and lowest for retreading

lyre tread. Results of Fig.7.7 is again represented in a more useful form in

Fig.7.8, which shows the maximum coefficient of friction required to ensure

the no slip condition of the contact surfaces as a function of aspect ratio. From

this relationship, it is clear that maximum coefficient of friction is highest for

lyre tread of natural rubber and is lowest for the lyre tread of retreading

rubber and that for the truck lyre remains in between the two materials. If a

horizontal line corresponding to the available coefficient of friction (for

example, 0.28 in Fig.7.8) for the lyres is drawn, it will intersect three curves

for three different materials at three points. The corresponding aspect ratios of

the tread section of the point of intersections are considered as the optimum

tread section, and the values higher than the optimum one will experience no

wear due to lateral slipping over the road.

("



65

Figure 7.9 describes the variation of normal displacement of the tyre treads of

different tyre materials under a uniform contact pressure of 690 kPa, with

respect to tread aspect ratio where the skid depth is kept fixed. From this

figure, it is observed that the normal displacement for a particular aspect ratio

is highest for natural rubber and is lowest for retreading rubber and the

normal displacement of truck tyre tread lies between other two. Figure 7.10

shows the relationship between maximum shearing stress and aspect ratio

under the uniform contact pressure 690 kPa when the length of the contact

boundary is varied. Figure 7.11 describes the corresponding relationship of

Fig. 7.8, i.e., the relationship between the maximum coefficient of friction and

the tread aspect ratio, where the length of the contact boundary is varied while

the skid depth is kept constant. It is seen that maximum coefficient of friction

of tyre tread of any size is highest for the tyre tread of natural rubber and

lowest for the lyre tread of retreading tyre rubber with truck lyre tread

between the two. This analysis is of great importance for the selection of tyre

material, which will minimize the wearing effect of the tyres due to the lateral

slipping of the tread surface on the road. It is possible to design the

appropriate size of lyre tread of different lyre materials by comparing the

available coefficient of friction of the road with the calculated maximum

coefficient of friction. For removing or minimizing the wearing effect of tyre

tread the available coefficient of friction should be greater or equal to the

maximum coefficient of friction obtained for tyre treads of different tyre

materials. If the available coefficient of friction of the road is found to be

close to the maximum calculated coefficient of friction with the variation of

size and material of lyre tread, wearing effect of tyre tread can be removed.
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Chapter 8

STRESS ANALYSIS OF TYRE TREAD SECTIONS

8.1 Introduction

In this chapter, attempt is made to investigate the state of stresses, especially

at the bond line region of the tyre. Bond line is situated between the tread and

ply of tyre. Life of tyre depends on the strength of the bond line materia!.

Bond line is defined by an imaginary line which separates the tyre tread from

the tyre plies. For the case of weak bonding of tyre tread with the ply, tyre

tread and ply may separate from each other due to the developed shear stress

at the bond line region. In the present analysis, contact portion of the tyre

tread is assumed to be loaded with a uniform normal displacement which is

corresponds to an inflation pressure inside the tyre. Firstly, the bond line

stresses are obtained for various inflation / contact pressures. Further, for a

particular contact pressure, the variation of stresses is investigated at the bond

line for various sizes of the tyre tread. Besides, the stresses in the wh?le tread

domain are analysed through stress contours. The normal and tangential

displacement at different sections of tyre tread are obtained under a particular

contact pressures. From this analysis, the critical region of stress

concentrations is identified. Retreading is basically the process of making the

old tyre into new one by attaching new tyre tread by the process of

vulcanizing. For improving the life of retreading tyre, it is necessary to

investigate the bond line stress. The stress distribution of the whole field of

tyre tread has been observed by different contour plots which indicates stress

concentration at different sections of tyre tread.
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8.2 Stresses at the Bond Line Region of the Tread for
Various Contact Pressures

Figure 8.1 shows the relationship of normal stress crx along x-direction for

different contact pressure. From this relationship, it is clear that at the middle

portion of the contact surface, this stress is maximum for any contact

pressure. Beyond the middle portion of the contact surface, this stress

decreases gradually and tends to about zero at the bond line region of lyre

tread. With the increasing contact pressure, this stress increases in all grid

positions. From this relation, maximum stress is less than half of each contact

pressure. Figure 8.2 presents the relationship of normal stress cry in the y-

direction with grid position at various contact pressures. The shape of curves

is similar to Fig. 8.2. Maximum stress is seen in this figure at the middle

portion of the bond line region and minimum stress is seen at last portion of

the bond line. Maximum bond line stress is very close to the normal contact

pressure. At low pressure the rate of change of stress distribution is very low.

Figure 8.3 describes the distribution of another relationship between shear

stress as a function of grid position in the x-direction different contact

pressure. At the middle portion of the bond line contact surface, the shear

stress is zero and this stress increases towards the curve half-positive and half-

negative in the same manner. This shear stress increases up to a certain limit

and then decreases. The main reason of failure of lyre tread bond with the ply

is the shear stress concentration. With the increase of contact pressure, shear

stress increases at the bond line region.

8.3 Stresses at the Bond Line Region of Tyre Treads of
Different Sizes

Figure 8.4 illustrates the relationship of normal stress cry with the Grid

position along x-direction at various sizes of lyre tread. Here, a is kept fixed
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and b is varied. At the middle portion of the bond line this stress increases

with the increasing aspect ratio (alb). In this figure stress distribution is seen

for three different tyre tread size. Beyond the middle portion of the bond line,

this stress decreases up to a certain limit. The rate of decreasing stress

remains constant for all the treads.

Shear stress distribution along the bond line section also depends on the size

of the tread section, as shown in Fig.8.S. At the middle portion of the contact

surface, shear stress remains zero and then increases up to a certain limit and

then decreases. After increasing upto a certain limit of tread size, the shear

stress increase and remains constant.

Shear stress distribution along the bond line increases with the increasing

tread aspect ratio when a is varied and b is kept fixed. This type of stress

distribution is seen in Fig.8.6. Shear stress is zero at the middle portion of

bond line.

8.4 Stress Distribution in the Whole Tyre Tread Section

Here different kinds of stresses, such as ax> ay and axy for a definite size of

tyre tread (aIb=I.SI) are studied. In Figure 8.7 normal stress ax is shown at

different section. At the contact surface, ax is same everywhere except at the

two comer point. Shape of the curve at the section, y/k=S, is quite different

from all other curves in this figure. The magnitude of the stress is almost

same for the mid portion of the section but increases towards the inner comer

points (H and C, Fig. 8.7.a) and finally decreases to zero at the outer comer

point G and D. At sections, ylk = I & 9, the nature of the variation is found to

be similar. The stress at the bond line (y/k=l) is more than the stress at the

section (y/k=9). At the contact surface (ylk=l) the rate of increasing and

decreasing stress is slower than section (ylk=9). There is given different

sections ofa tyre tread in Fig. 8.7.a.



69

Normal stresses (ay) at different sections of a definite size of tyre tread

(a/b=1.5I) is shown in Figure 8.8. At the middle portion, normal stress (ay)

is almost same for all the sections except that of y/k=5 .. At the last portion of

the skid depth of section (y/k=5) the normal stress (ay) concentrates at sharp

edge region.

Figure 8.9 illustrates the distribution of shear stress at different section of tyre

tread. Shear stress concentrates at the sharp edge of the lyre tread at the

section (y/k=5). At the section (y/k=5), the shear stress is zero at the middle

portion of the contact surface and then increases at a certain rate up to a

certain limit and the maximum shear stress occurs at the sharp edge. Shear

stress is zero at the middle portion of each section of lyre tread and then

increases positively and negatively. At the bond line of sharp edge the shear

stress is maximum and then decreases.

Figure 8.10 is a contour plot (ax) for the whole field of tyre tread. In this

figure, the stress distribution is observed to be similar in left and right portion

of the graph. Stress concentrates at the sharp edge of the lyre tread. Stresses

are plotted here as normalised form (axlE). In some regions dimensionless

stress is zero. At some region this stress is maximum. From this figure we

clearly understand the stress distribution and it's overall concentration in

deferent regions of tyre tread.

Figure 8.11 shows the contour plot of the normalised stress in y-direction

(aylE). But the stress (a/E) concentrates at the sharp edge but remains almost

same for the contact boundary. From this stress contour it is clear that the

stress is lower at the skid boundary, and for the interior points the stress is

found to be almost same. At the bond line outside the sharp edge (aylE)

decreases to zero. Dimensionless shear stress distribution is presented in

figure 8.12. The shear stress distribution of the top left and top right is similar
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to look at and the shear stress distribution at the bottom left and bottom right

is also similar.

8.5 Normal and Tangential Displacements at Different
Sections of a Tyre Tread

As appears from figure 8.13, the normal displacement is constant at the

contact surface (section= 16); the normal displacement is maximum at this

section. Beyond the contact surface normal displacement is found to decrease

as we move from top to bottom of the tread section. The shape of curves at

sections 16,10 and 5 are observed to be similar. The general pattern of curves

at section 5 and 3 is similar. Rate of normal displacement with grid points is

near about same along the skid depth of sections 5 and 3 and then decreases to

zero. The normal displacement is minimum at section 3 among these sections.

It is observed that the tangential displacement is zero at the contact surface of

tyre tread in Figure 8.14. At the middle portion of the contact surface

tangential displacement is zero for all the sections. With the increase of

distance from the contact boundary towards the bond line, tangential

displacement gradually decreases. Tangential displacement is half positive

and half negative. At sections y/k=5 & 3, tangential displacement is zero at

the middle portion as well as at the two comer points of tyre tread. At the

section y/k= 5, tangential displacement increases from the middle portion of

the contact to the sharp edge at the same rate and then decreases, increases

and decreases to zero. At the section y/k=3, tangential displacement increases

from the middle portion of the contact surface up to a certain limit at a

constant rate and then decreases to zero.
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Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 General

The main purpose of the present research is to investigate the cause of wear of

tyre tread at the contact surface under different contact pressure and then to

determine the optimum condition for which the wear of tyre will be

minimum, through an extensive analysis of the mixed boundary value contact

problem of tyre tread. Earlier, the finite element method was the only tool for

the analysis of tyre contact problem and eventually a number of authors

investigated the stress and strain in tyre section using finite element method.

However, no useful study was reported so far in the literature concentrating

the wear of tyre treads, which can suggest an optimum section of tyre treads

for minimizing the wear. The present thesis is an attempt to remove that

limitation in the literature, which provides a useful guideline for improved

design and thus improved life of vehecular tyres. The three dimensional

problem is considered here as a two-dimensional plane problem. In the

present analysis all the necessary material properties of tyre, such as, modulus

of elasticity for tension and compression, Poisson's ratio, etc. are obtained by

direct experimental method. For the analysis, first, the contact surface of the

tyre tread is assumed to be free from frictional force and the corresponding

solution of the problem is obtained for the case where the contact boundary of

the tread is only subjected to a normal compressive loading from the road

surface. Deformation (inflation) patterns are analysed in the perspective of

dimensional parameters, loading, materials, etc. Secondly the solution is

obtained for the same tyre treads section, loaded normally from the road, by

restricting the lateral displacement of the contact boundary. Therefore, from
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the resulting distribution of the shearing stress on the contact surface the

relationship between the maximum shearing stress on the contact surface of

the tyre tread and the aspect ratio has been established under different contact

pressures. The relationship between the calculated maximum friction

coefficient at the contact surface and aspect ratio are obtained for the analysis

of wear of tyre tread contact surface. The maximum shear stress and

maximum calculated coefficient of friction are analysed as a function of

aspect ratio, where the dimensional parameters are varied in both the normal

and lateral direction. From the comparison of the calculated friction

coefficient with the friction coefficient available from the road, a suitable

tread section is selected, which will minimize or even remove the wear of tyre

tread contact surface due to the lateral slipping of the contact surface on the

road. In addition to the effects of dimensional parameters, the wear of tyre

tread contact surface has been analysed for different lyre materials. Here the

property of lyre materials is defined in terms of their elastic modulus and

Poisson's ratio. Further, attempt is made to investigate the shear stress

distribution along the bond line region near to the ply, which is responsible

for the separation of tyre tread from the ply. Shear stress distributions are

investigated for varying the size of the lyre tread in both the normal and

lateral directions. Attempt is also extended to investigate different kinds of

stress distribution at the bond line region. In addition the stress distribution of

the whole tyre tread section has been observed for a defmite size of tyre tread

and thus the critical zones of stress concentration are identified.

9.2 Conclusions

From the present investigation the following important conclusions are made.

(I) In an attempt to generate useful data for the practical applications,

solutions of lyre-treads are obtained here by using the actual material

properties of tyre. The modulus of elasticity in tension and compression
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of tyre materials are found to be different. Compression modulus of

elasticity is used for the present solution. Besides, the Poisson's ratio and

other mechanical properties of tyre materials are determined by

experiments, which have provided a general comprehension of the

materials used for vehicular tyres.

(2) In contrast to the usual method of solution of elasticity, the displacement

potential function is used in conjunction with finite difference technique

for solve in the present problem of tyre treads. In case of displacement

potential formulation, the whole problem is formulated in terms of a

single function, defined in terms of displacement components. Therefore .

the computational effort is drastically reduced when compared to the

conventional finite element method of solution where two variables are

evaluated at each node of the two dimensional domain. Therefore the

present solution is claimed to be highly accurate and reliable.

(3) The problem was first solved considering frictionless slipping of the tyre

tread contact surface. For a constant inflation pressure, lateral or lateral,
displacement of the contact surface of the tyre tread increases with the

increasing of aspect ratio when the contact length is constant. If the

available frictional force due to coefficient of friction between the road

and the tyre is not enough to stop such lateral displacement of the

contact surface with the road, wear of tyre tread will occur.

(4) Then the behaviour of the lateral displacement of the contact surface of

the tyre tread is analysed for different contact length of the tread,

keeping the skid depth constant. When the size of the tyre tread is

increased in lateral direction, lateral displacement of the contact surface

of the tyre treads increases. Similarly if the lateral displacement of the

contact surface of the tyre tread is decreased by varying the size in



74

lateral direction, wear of the contact surface of the tyre tread will be

decreased or removed.

(5) For a particular aspect ratio, the lateral displacement at the contact surface

increases when the inflation pressure is increased. So it may be realised

that maximum wear occurs at higher contact pressures.

(6) Secondly, the problem is solved for the case of frictional slipping of tread

at the contact boundary, where it is assumed that the available friction

from the road surface is such that it will allow no displacement of the

contact boundary in the lateral direction. In this analysis, the distribution

of the shear stress on the contact surface is obtained for different aspect

ratio where the contact length of the tread is kept fixed. For the portion

of the contact boundary, where the available frictional force from the

road surface is greater than that obtained from the calculation, wear will

not occur, however, there will be wear if the available frictional force is

lower than the calculated one. Extent of wear depends on the difference

between the magnitude of shearing stress developed on the contact

surface and the available frictional stress from the road on the tyre tread.

In general, it can be said that if the maximum calculated coefficient of

friction is less than the coefficient of friction available from the road

with the tyre tread, wearing of tread surface due to lateral slipping will

not occur.

(7) The shear stress distribution along the contact surface is investigated as a

function of aspect ratio, where the contact length is varied keeping the

skid depth constant. At the middle portion of the contact surface for any

given size shear stress is zero. So there is no wear at the middle of the

contact length. If the calculated maximum shear stress or maximum

calculated coefficient of friction is less than the available frictional force

or coefficient of friction respectively, tyre tread contact surface does not

(
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allow wear of lyre tread contact surface due to lateral slipping. By

varying the size a of the lyre tread, it is possible to design optimum size

of lyre tread which removes the wears of tyre tread contact surface.

(8) It has been verified that with the increase of inflation pressure, maximum

shear stress increases but maximum calculated coefficient of friction

remains the same. If the available coefficient of friction from the road

surface is greater than the maximum calculated coefficient of friction,

lyre tread contact surface will not experience any wear with the increase

of contact pressure, as with the increase of contact pressure, the available

frictional stress will be increased. If the coefficient of friction of the road

with the lyre tread is less than the maximum calculated coefficient of

friction, the wear of lyre tread contact surface increases with the increase

of contact pressure.

(9) In an attempt to investigate the influence of lyre material on the analysis,

solutions are obtained for different materials of interest. At a definite

contact pressure and with a definite size of lyre tread, the lateral

displacement of the contact surface of the lyre tread of natural rubber is

maximum and that of retreading lyre rubber is minimum and the lateral

displacement of the contact surface of the truck lyre remains between

them. If the available lateral frictional force from the road surface is not

enough to restrict the lateral displacement of the contact boundary, wear

will be higher for the case of softer lyre material, like natural rubber, and

will be lower for the relatively harder material, like retreaded rubber.

(IO) The shear stress distribution at the bond line region with the ply is

important factor for attaching the lyre tread with the ply. For a defmite

size middle portion of the lyre tread bond line shear stress is zero. At the

bond line of the lyre tread with the ply along the sharp edge, shear stress

is maximum, and this maximum shear stress increases with the increase
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of contact pressure. With the decrease of aspect ratio, shear stress

increases at that portion. Bond line failure may be occurred for the

concentration of shear stress at this region.

(11) The stress distribution for the whole field of tyre tread section is also

investigated. It is observed that and maximum normal stress in x-

direction, maximum normal stress in y-direction and maximum shear

stress concentrates at the sharp edge region of the tyre tread which

identifies the sharp edge regions of the tyre tread section to be critical.

(12) Besides, maximum shear stress concentrates at the outer portion of the

contact surface. Shear stress is zero at the mid vertical portion of the tyre

tread from the bond line to contact surface and from the middle portion

of one skid surface to another skid surface.

9.3 Recommendation for Future Investigation

For improving the life of tyre it is necessary to investigate the wear of

shoulder regions of tyre tread. Besides it is necessary to investigate the stress

and strain in rubber ply region thoroughly, where two materials are used one

is rubber and other is cotton. The following recommendations are however

made as the future research guide.

(1) It has been observed in our present analysis that the comer points of the

tread section are the points of singularity and the solution of the tyre

tread contact problem is sensitive to the boundary conditions of the

points of singularity. Attention should be given to incorporate an

improved treatment for the boundary conditions for the points of

singularity. These singularities are encountered in combining the

different groups of boundary equations coming from two different

boundaries. One appropriate method of treating these singularities would
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be to assume some series of \jJ satisfYing the local conditions, and then to

use these series in truncated from for the evaluation of the functions at

these points instead of using the finite difference expressions.

(2) In the present research, the wearing effect of tyre tread at the shoulder

region has not been analysed. Since the shoulder region is considered as

the critical in terms of wear, the present solution scheme should be

extended to the analysis of wear of the contact surface of shoulder tread

region of tyres.

(3) The stress analysis for the tyre tread contact problem has been performed

for the condition of no-slip over the road surface. Attempt should be

made to extent the stress analysis scheme to another cases of interest, for

example, frictional slipping of the tread surface over the road. Further,

since, the geometry of the shoulder treads has more discontinuity than

the central treads, analysis of stress concentrations for the shoulder tread

sections would be very interesting for the researches in the field of tyre

science and technology.

(4) Attempt can be made to perform the similar analysis experimentally in

the laboratory by measuring the deformation and strains for the loaded

tyre blocks. Then the results obtained from the experimental results can

be compared with those obtained by our present numerical method of

solution.
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Table 2.1. Requirements for rubber compounds used for different tyre
components

Tyre component Requirements

(a) Abrasion resistance

Tread compound
(b) Wet and dry skid resistance
(c) Crack growth resistance
(d) Low hysteresis

(a) Low hysteresis
Undertread (b) Bond well to the cord-rubber composite

making up the carcass or body of the tyre

(a) Good fatigue life
Sidewall (b) Resistance to oxygen and ozone attack

(c) Good molding properties

(a) Good flow properties

Carcass Coat stock (b) Good addesion
(c) Low hysteresis
(d) Good fatigue

Bead Filler and (a) High modulusRubber compounds in
the Bead area (b) Good adhesion

Innerliner for (a) Good flex resistance

Tubeless Tyre (b) Mold with no imperfections
(c) Have low air permeability
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Table 4.1 Modulus of elasticity of different kinds of rubbers under
compressIon

Average.

Strain Specimen Modulus modulus
Material of elasticity of elasticity,range number (kPa) E

(kPa)

Low I 6581.529

(0-0.21) 2 7032.789 7030.827
3 7478.163

Medium I 7197.597
Truck tyre (0.228-0.38) 2 11252.07 10101.357

3 11853.423

High I 27336.546
2 36287.190 31654.908(0.41-0.51 )
3 31341.969

Low I 8343.405
8855.487(0-0.15) 2 9367.569

Retreading Medium I 12264.462 11877.948tyre (0.15-0.32) 2 11491.434
High I . 46788.795

37183.824(0.32-0.47) 2 27578.853
Low I 5263.065

4853.988(0-0.17) 2 4444.911
Natural Medium I 7515.441 6833.646rubber (0.17-0.41) 2 6152.832

High I 19501.299 16139.412(0.41-0.52) 2 12777.525



Table 4.2 Modulus of elasticity and ultimate strength of different kinds of
rubbers under tension
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Modulus
Ultimate Average Average

Material Strain of Strength modulus of Ultimate
Elasticity Elasticity Strengthrange

(kPa)(kPa) (kPa) (kPa)

0-1.3 2869.621 3 I720.63
Truck tyre 2547.755 27742.185

0- 1.2 2225.889 23763.74

0-1.05 3165.687 12241.51
Retreading 0-1.01 3935.379 12555.43 3603.998 12342.942tyre

0-1.05 3710.927 12241.51

0.0-
2239.329 7283.827Neoprene 0.55

2192.0445 6741.432rubber 0.0-
2144.662 6199.6260.43

Natural 0.0-1.1 11990.17 3086.815
1277.8506 3079.359rubber

0.0-1.1 1356.625 3071.609



Table 4.3 Poisson's ratio of different kinds of tread rubbers
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Specimen Lateral Longitudinal Poisson's Average
Material Poisson'snumber Strain Strain ratio ratio

1 0.0866 0.2109 0.4105

Truck tyre 2 0.1118 0.2492 0.4486
0.427

3 0.0335 0.0768 0.4360

4 0.1164 0.2822 0.4126

1 0.1254 0.3160 0.3968
Retreading

2 0.3370 0.8667 0.3889 0.39tyre

3 0.4359 1.1333 0.3858

1 0.0492 0.0982 0.5062

Natural
0.0955 0.5120 0.50rubber 2 0.0498

3 0.0444 0.0907 0.4893



Table 4.4 Hardness number of different kinds of rubbers
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Hardness number Average Hardness
Material (Shore -A-Durometer) Number (Shore-A-

Durometer)

Truck tyre 65,65,64,64,63 64
Retreading lyre 70, 70, 70, 68, 68 70
Neoprene rubber 63, 63, 62, 62, 61 62

Natural rubber 55,54,53,52,52 53



Table 4.5 Percentage ultimate elongation of different tyre rubbers
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Ultimate Average ultimate
Material elongation elongation

(%) (%)

469.16
Truck tyre 452.91

436.66

306.37
Retreading tyre 303.19

300.00

331.02
Neoprene rubber 330.51

330.00

267.71
Natural rubber 263.86

260.00
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Table 5.1 Specification of the boundary conditions (contact boundary under
uniform normal pressure and free from friction)

Tagging of boundary conditions

Boundary Boundary
segment conditions Mesh point on Mesh point on

the physical the false
boundary boundary

AB an , crt crn cr,

BC an , crt crn cr,

CD an , O't crn crt

DE Un , O't Un crt

EF Un, Ut Ut Un

FG Un , crt Un crt

GH ern, at crn crt

AH an , O"t crn crt

I" a _I

Gnl
h ••••••••••••••••••••••••• ,.

F
L--_-x

E

Fig. A Simplified geometry of the tread Section

/
\



Table 5.2 Boundary condition modeling for the comer points of the tread
Section, corresponding to Table 5. I
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Available Boundary
Additional

Boundary boundary
Comer boundary condition at condition at condition on
point condition the physical the false the false

boundary boundary boundary

A (an> at), an (AB) a,(top) at(left)
(an>a,)

B (an>a,),
an(AB) at(top) an(right)

(an, at)

D
(un, at), Un(DE) a,(right) ut(top)
(an>Ut)

E
(un, u,), Ut(EF) un(bottom) a,(right)
(un, at)

F
(un, u,), u, (GF) un(bottom) a,(left)
(un, a,)

G
(un, a,), Un(GF) a,(left) ut(top)
(an>ut)

I" a _I

ITlG:.H C i
~ ,
F

I---_~x
E

Fig. A Simplified geometry ofthe tread Section

1'), ,
{,
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Table 5.3 Specification of the boundary conditions (contact under uniform
normal displacement and free from friction)

Tagging of boundary conditions
Boundary Boundary
Segment conditions Mesh point on Mesh point on

the Physical the false
boundary boundary

AB Un , crt cr, Un

BC an , O't crt crn

CD On , crt crn crt

DE Un, crt Un crt

EF Un, Ut Ut Un

FG Un , O't Un crt

GH an , crt crn crt

AH an , O't crt crn

I_ a ~I

anl
, ,
F

l---_x
E

Fig. A Simplified. geometry of the tread Section



Table 5.4 Boundary condition modeling for the corner points of the tread
Section, corresponding to Table 5.3
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Boundary Boundary Additional
Possible boundaryCorner conditions at conditions

point boundary
the physical at the false condition on

conditions the falseboundary boundary
boundary

A (un, at), at (AB) un(top) at(left)(an, at)

B (un, at), at (AB) at(right) an(right)(a" at)

D (un, at), Un(DE)
at(right) an(top)(am at)

E (un, Ut), Ut(EF) un(bottom) at(right)(Un,at)

F (un, Ut), Ut(EF) un(bottom) at(left)(Un,at)

G (un, at), Un(GF)
at(left) an(top)(Un,at)

I_ a _I

J:-l1
h ••••••••••••••••••••••••• ,

F
L-_-~x

E

Fig. A Simplified geometry of the tread Section
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Table 6.1 Specification of the boundary conditions (contact boundary under
uniform normal pressure and frictional slipping)

Tagging of boundary conditions
Boundary
Segment Boundary

conditions Mesh points on Mesh points on
the Physical the false
boundary boundary

AB Ut, an Ut an

BC O'n , crt an at

CD an , O't an at

DE Un ; O't Un at

EF Un, Ut Ut Un

FG Un , O't Un at

GH an , crt an at

AH an , O't an at

I_ a ~I

GDl
, ,
F

L----_x
E

Fig. A Simplified geometry of the tread Section
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Table 6.2 Boundary condition modeling for the comer mesh points of the
tread section corresponding to Table 6.1

Available Boundary Boundary Additional
boundaryComer boundary conditions at conditions at

condition onpoint conditions the physical the false
the falseboundary boundary
boundary

A (u" an) ut(AB) an(top) at(left)(an, at)

B (u" an) Ut(AB) an(top) at(right)(an, at)

D (un, at) Un(DE) at(right) at(top)(an, at)

E (un, at) Un(EF) at(right) at(bottom)(an, a,)

F (un, at) Un(EF) qt(left) at(bottom)(an, a,)
.

G (un, a,)
Un(GF) at(left) at(top)(an, at)

1 ~ a _IAr-IB

~H c~l
•••••••••••••••••••••••••• "I

F
l---_x

E

Fig. A Simplified geometry of the tread Section
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Table 6.3 Specification of the boundary conditions (contact boundary under
uniform normal displacement and frictional slipping)

Tagging of boundary conditions
Boundary Boundary
Segment conditions Mesh points of Mesh points of

the Physical the false
boundary boundary

AB Un, Ut Ut Un

BC an , crt crn crt

CD On , O't crn crt

DE Un , O't Un crt

EF Un, Ut Ut Un

FG Un,O't Un crt

GH an , crt crn crt

AH an , O't crn crt

I_ a _I

anl
, ,
F

L--_X
E

Fig. A Simplified geometry of the tread Section
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Table 6.4 Boundary condition modeling for the comer points of the tread
section corresponding to Table 6.3

Possible Boundary Boundary
Additional
boundaryComer boundary conditions at conditions at

condition onpoint conditions the physical the false
the falseboundary boundary
boundary

A (un, Ut) Ut(AB) un(top) an(left)(an, Ut)

B (un, Ut) Ut(AB) un(top) an(right)(an, Ut)

D (un, at) Un(DE) at(right) an(top)(an, at)

E (un, at) Un(EF) at(right)
at(bottom)(an, cr t)

F (un, at) Un(EF) at(left)
at(bottom)(an, at)

G (un, at) Un(GF)
at(left) atCtop)(an, at)

I. a _ITIlGi.H C;
•.......................... '
F

'-----x
E

Fig. A Simplified geometry of the tread Section



Table 6.5 Boundary condition modeling for the solution of Case-A in Fig.
6.5

97

Possible Boundary Boundary Additional
boundaryComer boundary condition at condition at condition onpoint conditions the physical the false the falseboundary boundary boundary

A (un>Ut) Ut(AB) un(top) an(left)
(an, ut)

B (un, ut) Ut(AB) un(top) an(right)
(an>Ut)

D (un, at) Un(DE) at(right) an(top)
(an, at)

E (un, at) Un(EF) a,(right) a,(bottom)
(an>at)

F (un, at) Un(EF) at(left) at(bottom)
(an, at)

G (un, a,) Un(GF)
at(left) at(top)

(an, at)

I. a _I

onl
\ •••••••••••••••••••••••••• 1

F EL---__._x
Fig. A Simplified geometry of the tread Section
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Table 6.6 Boundary condition modeling for the solution of case-B in Fig.6.5

Possible Boundary Boundary Additional
boundary

Comer boundary condition at condition at condition onpoint* conditions the physical the false the falseboundary boundary boundary

A
(un, ut) ut(AB) un(top) at(left)
(an, ut)

B
(un, ut) Ut(AB) un(top) at(right)
(an, Ut)

D (un, at) Un(DE) at(right) an (top )
(an, at)
(un, at) Un(EF) at(right) at(bottom)E (an, at)

F (un, at) Un(EF) at(left) at(bottom)
(an, at)

G (um at) Un(GF) at(left) at(top)
(an, at)

I_ a _I

GI11
•••••• o ••••••••••••••••••••• ,

F
!-----x

E

Fig. A Simplified geometry of the tread Section

•,'r
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Table 6.7 Coefficient of friction by the tests of The Goodrich Company on
wet pavement with tires of different treads (Ref.[59])

Coefficient of friction

Static (before slipping) Sliding (after slipping)

Speed milelhr 5 30 5 30

Smooth tyre 0.49 0.28 0.43 0.26

Circumferential
0.58 0.42 0.52 0.36groove

Angular grooves
0.75 0.55 0.70 0.39at 60°

Angular grooves 0.77 0.55 0.68 0.44at 45°
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Fig. 1.1(a) Direction of motion oftyre with traction friction on tyre treads
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(c) No-slip condition of the lyre tread contact boundary

Figure 1.1 Direction of motion and the corresponding frictional forces on
the lyre tread
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Figure 3.2 Application of the stencils for the stress boundary conditions at different
comers of the tread section
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Figure 3.3 Different stencils for normal and tangential components of
displacement and governing equation
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Figure 4.4 (a) Measured stress-strain relationship of truck tyre tread
under tension
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Figure 6.15 Effect of inflation pressure on the shear stress developed
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Figure 7.3 Distribution of the tangential displacement along the
contact boundary of the treads (a/b=2.1) under frictionless
slipping
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Figure 7.4 Effect of tyre material on the normal displacement of
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Figure 8.10 Contour plot of normalized stress component (axlE) over the whole tyre
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APPENDIXC

PROGRAM OF TREAD GEOMETRY GENERATION
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List of variables used in the program of tyre-tread coordinate
generation

mn =No of division of the stressed body in x -direction

nn =No of division of the stressed body in y -direction

xl = distance of the left tangent of the stressed body

xr = distance of the right tangent of the stressed body

yb = distance of the top tangent of the stressed body

yt = distance of the bottom tangent of the stressed body

xbr = Left skid depth distance of the tyre tread in the x-direction

xtt = Right skid depth distance of the lyre tread in the x-

direction

ytb = Top skid depth distance in the y-direction

m = Initial x-coordinate

n = Initial y-coordinate

dx =mesh length in x-direction

dy =mesh length in y-direction
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Program for coordinate generation of the tyre tread boundaries

dimension bx(800),by(800)

integer mn,nn

real*8 xl, xr, yb, yt, xbr, ytr, ytb, xtt, m, n

open (1 ,file='infiI2.out',status='old')

open (2,file='infiI2.xls',status='unknown')

mn=15

nn=65

dx=0.50

dy=dx-0.125/2

yt=(nn+1)*dy

yb=l *dy

xl=dx

xr=(mn+ 1)*dx

xbr=xl+4*dx

xtt=xl+4 *dx

m=xbr

n=yt

ytr=yb+ 3*dy

ytb=yt-3*dy

bx(l)=m

by(l)=n

do 50 i=I,600

if (bx(i).le. bx( I).and. by( i).eq.by( 1).and.bx(i).gt.xl)then

bx( i+1)=bx(i)-dx

by( i+ 1)=by( i)

.,



elseif (bx(i).Ie.xl.and. by( i).gt.yb )then

bx(i+ I)=bx(i)

by( i+1 )=by(i)-dy

elseif (bx(i).ge.xl.and. bx(i).lt.xbr .and.by(i).eq. yb )then

bx(i+ 1)=bx(i)+dx

by(i+ I )=by(i)

elseif (bx( i) .eq. xbr. and. by( i) .ge. yb. and. by( i). It.ytr )then

by(i+1 )=by( i)+dy

bx(i+ I )=bx( i)

elseif (bx( i) .It.xr .and. bx( i).ge. xbr. and. by( i). eq. ytr )then

bx( i+ I )=bx(i)+dx

by( i+1 )=by( i)

elseif (bx( i).eq .xr. and. by( i).It.ytb .and. by( i).ge. ytr )then

bx( i+ I)=bx(i)

by( i+1 )=by(i)+dy

elseif (bx(i).le.xr.and. bx( i).gt.xtt.and.by(i).eq. ytb )then

bx(i+ 1)=bx( i)-dx

by(i+ I )=by( i)

elseif (bx( i).eq .xtl.and.by(i).It. yt.and.by( i).ge.ytb )then

bx( i+ I )=bx( i)

by( i+ I )=by(i)+dy

elseif (bx( i).ge. (xl+ 2*dx) .and. bx( i).le.xtt.and. by( i) .eq. yt)then

bx(i+ I )=bx( i)-dx

by(i+1 )=by( i)

else

endif

50 continue

do 100 i=I,(mn+nn+2)*2

write(2, 18) bx( i),by(i)

write(l, 17) bx(i),by(i),i-2
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100 continue

17 format(lx 2fl2.4,i7)

18 format(lx 2fl2.4,i7)

stop

end

-------------------------------------------------------------
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