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ABSTRACT

"Distribution of stresses in the neighbourhood of junctions of

axisymmetric shells of different geometries with different edge

restraints under axially varying internal pressure has been

investigated in this theis. The shells considered are thin in

which large deformations take place under load. Extensive

numerical results on the axisymmetric shells have been obtained

for better designs'of these shells.

The method of investigation involves solution of a set of six

first order nonlinear different.ial equations considering the

large axisymmetric deformations of these shells under axially

varying pressure as derived by Reissner(36). The governing

nonlinear differnetial equaitons seek for that state of

deformation of the shell at which, for a given pressure, the

potential energy in the deformed shell is a relative minimum. The

basic concept of multisegment integration as developed by Kalnins

and Lestingi(24) has been utilized for obtaining the solutions of

the governing equations. A computer program has been developed
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incorporating the algorithm of finding the stresses and

displacements of the axisymmetric shells. The information

necessary for specifying a particular shell and its edge

conditons and the base load are used by the program as input

data.

For a given low pressure, specified in the input data, the

program first finds the linear solution in terms of deformations.

and stresses in the shell which is followed by nonlinear

solutions corresponding to the same pressure . Then pressure is

.increased in steps by an amount specified in the input data and

nonlinear solutions are. obtained and printed out for each loading

step till lohe pressur.c reaches a maximum specified value.

The soundness of the method and the correctness of programming

are verified by compH["ing the ,'csull.sof ax.isYlllmel.ricshells with

both the linear and
that of the corresponding analytical results

literature. Curves are plotted based on

available in the

nonlinear solutions for depicting the stress modes at different

values of the shell parameters and also for finding the locations

at which stresses are maximum.
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NOTATIONS

bl bM+l = (m, 1) matric~s, contain prescribed
variables at the bound~ry.

Eh, extensional rigidity

horizontal stress resultant

"
R)

bending rigidity
se/R

1/(12(1-

Young's modulus of elasticity

Eh3/12 (1- )}2))

H/PoR, nondimensional horizontal stress

C =
C =
D =
D =
E =
H =
H =

resultant

h = Shell thickness

I = (6,6) unit matrix

= Changes of curvature of the middle
surface of the sh~ll.,

= K& Se, nondimensional value of K&

K. = K.Se, nondimensional value of K.

= - - -R/Po T,

M = numebr of segments

M. = meridional couple resultant

x



.Ns =
N6I =
Ns =

Nil =
Po =

Po =
P =
PH =
Pv =
Q =
R =
R =
R a ,R&=

P

=

=

=

=

Circtimferential couple resuLtant
Ma/PoRh, nondimensional value of Ma

MS /Po Rh, non-dimensional value of Ma

meridional stress resultant
Circumferential stress resultant
Na/PoR, nondimensioal value of Na.
N /PoR, nondimensional vilue of N.
outward no~mal pressure at the base
of the shell (its positive value
indicate internal pressure)
internal normal pressure at any point on
the meridian.
PolE, nondimensional value of Po
PIE, nondimensional vlaue of P
horizontal Component of surface load
Vertical component of surface load
transverse shear stress resultant
radius of base circle
sa/R
Principal radii of ~urvature of the
middle surface of the shell

,.

ro = distance of a point on undeformed
middle surface of the shell
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r

ro

s

s

=

=
=

=

ro + u, distance of a point on deformed
middle surface from axis of symmetry

ro/se, nondimensional value of ro
distnace measured from the apex aloni the
meridian

slse, nondimensional value of s
Se = total length of the shell ~eridian
Si = ith segment of the shell meridian
TI, TM+I = (6,6) matrices, g,iven by the
conditions.

bondary

T

u

u

v

V

w

w

'x

Xi

=

=

=

=

=

=
=

=

=

R/h
radial displacement( normal to the axis of
symmetry)
uEh/PoR2, nondimensional value of radial
dispac'ement
vertical ~tress resultant
V/PoR, nondimensinal value of vertical stress

resultant
axial displacement
wEh/PoR2, nondimensional value of axial
displacement
independent variable assumed in the
method of solution.
vlaue of x at the ith nodal point of
the segment
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y(x) =

Zoo

z

0(

=

=

=

=

=

=

(6,1) matrix, contains 6 fundamental
vriables
axial distance of a point on undeformed
middle surface of shell from its plane
Zo + w, axial distance of a point on
deformed middle surface
parameter of meridian of deformed shell,
defined in Equation (?4)
value of corresponding to undeformed shell

angle of rotation of normal to the middle
surface of the shell

middle surface strains.

angle between normal and axis of symmetry
before deformation (meridional angle)

=

=

=

6~hse/PoR2 ,
£sEhse/PoR2,

nondimensi.onal value of f:/}

nondimensional value of ~

=
=

Poisson's ratio of shell material
N./h + 6Ma/h2, meridional stress at the
extreme inner fiber

z i 1 i



= Ns/h - 6Ms /hz, meridional stress at the

extreme outer fiber
= circumferential, stress at the

extreme inner fiber.

Ng/h - 6Ms/hZ, circumferential stress at the

extreme outer fiber

0;1 = 6701/E, nondimensional value of 6:1

0;0 = o;o/E, nondimensional value of ~o

0;;1 = Q;;1/E, nondimensional value of ~1

~o = cJc°/E, nondimensinal value of~o

I -(----) = derivative with respect to s or s
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CHAPTER I

INTRODUCTION

1.1 PRELIMINARY

With the passage of time, shell structures are being utilized
more and more. In many instances, axially varying load is the
primary consideration in the design of various structural
configurations. Shells are used as load earring element in
some part of virtually every item of modern industrial equipment.
This is specially true of the marine, petrochemical industries,
nuclear and aerospace where dramatic and sophisticated uses of
shells are currently being made in space vehicles and missiles,
submarines, nuclear reactor vessels, refinary e~uipments and the
like. As interest in shell structures increased, more

into account of finite
non linear stress-

sophisticated mathematical analysis of
Nonlinear shell analysis, which takes
shell deformation under loading as well as

shells were sought.

strain relations, is currently in its infancy. This type of
problem requires the integration of a rather complicated system
of simultaneous nonlinear differential equations or solutions of
highly ill conditioned simultaneous algebraic equations.



Consequently, with the advent of large high speed computers, the
authors of numerous recent papers have focussed their attention
on the methods of numerical integration of thin shell equations.

Shell structures are characteristically different from others in
the sense that large deformation takes place in many shells under
internal or external loading. This sometimes necessitates
consideration of large deformation in the formulation of the
problems to obtain reasonable information of the structure.
Analysis of composite shells which invariably has to account for
the large deformations that take place at the junctions of shells
of different geometrics, is fundamentally a subtopic of nonlinear
rather than linear mechanics. The nonlinearity is introduced in
the governing equations of elasticity in three ways :

a. through the strain-displacement relations.
b. through the equaitons of equilibrium of a volume element

of the body, and
c. through the stress-strain relations.

In (a) and (b) retention of the nonlinear terms is conditioned
by geometric considerations, that is, the necessity of taking
into account the angles of rotation in determining the changes of
dimension in the line elements and in formulating the conditions
of equilibrium of a volume element. On the other hand, nonlinear
terms appear in the third set of equations (c) if the material
does not behave in a linearly elastic fashion. Hence there are
two types of nonlinearity

2
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(i )

(ii )

geometric
physical

In the problems of shell structure, the angle of rotation can be
large, but the strain can remaih within elastic limit. The
bending of a thin steel strip can be considered. Strips of good
steel can straighten out without traces of residual deformation
after having their ends.brought together. This bears witness to
the fact that, in these strips, even for large displacement and
angle of rotation, the stresses do not exceed the yield point.
Thus, many shell structures belong to a class of problem which
are physically linear but geometrically nonlinear.

1.2 RESUME OF NONLINEAR SHELL ANALYSIS

That linear shell analysis fails to give proper information about
the shell stresses and deformations in many problems can be seen

in recent papers on the nonlinear shell analysis
(4,5,7,9,10,11,22,24,34,36,38,41,43-53). For this reason the use
of nonlinear theory has become rather widely accepted as a
plausible basis for predictions of elastic strengths of thin
shells of various geometries.

The basic concept of finite deflection analysis, due to
Donnell(9), has been employed by numerious investigators to
establish collapse loads of cylindrical shells subjected to
various loadings. Finite deflection analysis has also been

3
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successful in offering reasonable predictions of the elastic
buckling loads of shallow spherical caps subjected to uniformly
distributed external pressure. Kaplan and Fung (24) have
presented a perturbation solution La Lhe nonlinear equations that
agrees 'Ill ite well wi tti resll1Ls ()r I.heir experiments for very
s}t~lll1'w Clslllped edge shell.s.
to a greRter range of shells.

Archer (1) ext{~rl(l("l :~Ii.:",'. 1'1.~";llll.s

~\s Crt,,, be seen from rec...::n~ pdp .."'l....;;

vcry exl.eJ)siv~ .vG :'j( c!one 111 :.h i s field

( 12 , 15 , 18 , 22 , 21 , ~~I) ,'13 ) . RAil (~) has coosldcl'c,]the problems of
arbitrarily loaded shells of revolution and obtained sol,dinllfor
a clamped shallow spherical shell uniformly loaded over one half
of its surface. Finite. deflection studies are available for
cylindrical, spherical as well as other types of shells subjected
to variety of loadings and boundary coriditons. In all cases the
predictions of these theories are in better agreement with
expremental evidence than those of the classical investigations
based upon infinitesimal deformations.

Uddin (46) has found extensive numerical results on perfect
spherical, ellipsoidal, conical and composite shells based on
both the linear and nonlinear theories and has obtained critical
pressures of different types of spherical shells. He has also
obtained the solutions for spherical, ellipsoidal, conical and
plate end pressure vessels (47,48,49,52) based on both the linear
and nonlinear theories. For composite shells with geometrical
discontinuity, he has found numerical results of stresses in the
neighbourhood of junctions under uniform internal pressure.

4



Bushnell (6) has developed a computer software package, known as

BOSOR5, for analyzing. the nonlinear stress field of axisymmetric

shell systems based on thin shell theory and for determining the

bifurcation buckling pressures of ellipsoidal and torispherical

heads joined to cylinder and subjected to internal pressure. This

software is capable of taking into account of various meridional

geometry and practical boundary conditons.

Haque (16)
shells of

has investigated

revolution and

buckling of

has obtained

perfect ellipsoidal

respective critical

pressures for various shell parameters. Rahman (38) has analysed

the stability of imperfect ellipsoidal shells of revolution under

external pressure. Extensive investigations had been carried out

for imperfections of various shells and structures (19,20,21, 23,

27,30,42) .

But the stresses unrlcl' HxiRll~ vAr~ing load of axisymmetric

sh(.,lls "i i.1l rJ-iscontinuities in slope of the meridian, tak-i ng

large deformation into consideration, has not yet been studied.

5



1.3. OBJECTIVES OF THIS INVESTIGATION

The objectives of the present investigation are stated below

1. The purpose of this investigation is to determine stresses
at the junctions of axisymmetric shells of different geometries
under axially varying ~oad. This inv~stigation is thus to provide
some insight into the nonlinear analysis of shells of revolution
under axially varying internal pressure with discontinuities in
slope and curvature of the meridian.

2. The study includes only those shells which are considered to
be thin and in which large deformations take place under load.

3. Distribution of stresses in the neighbourhood of junctions
of axisymmetric shells of different geometries as found here are
expressed in graphical forms plotted against distance along the
meridian.

4. The present
deformations and

investigation is confined
thus the maximum stress in

to

the
the large
shell is

determined in order to ascertain that it is within the yield
strength of the shell material, that is, it is checked whether
withdrawal of internal pressure would allow the retention of
original shape of the shell.

6



The computer program developed for the analysis may be used for

various boundary conditions like completely fixed or roller

supported or hinged edges.

In order to achieve these objectives, a £ystem of six first order

nonlinear ordinary differential equations with geometrical

discontinuity had to be integrated as a boundary value problem.

The method of Multisagment Integration had been used for solving

this boundary value problem of shells of revolution undergoing

axisymmetric deformation. Usually, the method of Multisegment

Integration is used to solve those boundary value problems of

ordinary differential equations which can not be solved by direct

integration; because, direct integration losses all of its

accuracy in the process of subtraction of almost equal numbers in

evaluating the unknown boundary values. The method of

Multisegment Integration, as used .in this analysis, was first

developed by Kalnins and Lestingi (24) and lat,r applied by Uddin

(46) for sloving the nonlinear problem of axisymmetric

deformation of shell .of .revolution. The computer program used in

this analysis is adopted from that of Uddin with necessary

modifications to suit the requirement of solving problems of

general case of shells under axially varying axisymmetric

loading.

7



1.4. METHOD OF SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

A system of nonlinear ordinary differential equaitons with
geometrical discontinuities is required in solving the present
problem. Unfortunately,' the development of modern mathematics has
provided the applied scientists hardly with any general method
for solving nonlinear ordinary and nonlinear partial differential
equations. The situation has been brightened considerably,
however, with the development of modern digital computers and
with .the simultaneous revitalization and growth of the study of
numerical methods.

Though there are quite a number of approximate methods available
for solving nonlinear differential equaitons, there is hardly any
method proved to be unique or advantageous over the other method,
leaving aside its applicability to a specific problem. The
methods most frequently used in solving nonlinear differential
equations are :

( 31)

( 13)

(1)

( 2 )

( 3 )

( 4 )

( 5 )

( 6 )

Asymptotic integration
Direct numerical integration
Finite - difference method
Perturbation technique
Newton's method
Method of multisegment integration

8



(2) Direct Numerical Integration The direct integration
approach has certain advantages but it also has a serious
disadvantage i.e. when the length of the shell"is large, • loss
of accuracy invariably results. This phenomenon is clearly
pointed out in Ref (13). The loss of accuracy does not result
from the cumulative error in integration, but it is caused by the
subtruction of almost equal numbers in the process of determining
unknown boundary values. It follows that for every set of
geometric and material parameters of the shell there is a
critical length beyond which the solution losses all its

accuracy.

(3) Finite - difference method: This method is the most widely
used technique for solving nonlinear differential equations. The
advantage of this method over direct integration is that it can

9



avoid the above mentioned loss of accuracy. Here the analysis
involves the solution of a large number of nonlinear algebraic
equaitons which would probably have a number of solutions. Most
of the time the solutions of nonlinear equaitons are obtained as
the solutions of a sequence of linear equaitons. It is often
difficult to distinguish between instability in the sequence of
numerical calculations and the point of instability of the
differential equaitons which correspond to the classical buckling
pressure. It is usually the case that -the finite difference
method is not suitable for application to problems which contain
discontinuities or rapidly varying parameters at a point.

4. Perturbation Technique: The perturbation technique is also
a frequently used analytical method for solving nonlinear
differential equaitons. In this technique the functions to be
obtained are expressed in the form of power series in terms of a
perturbation parameter and the solutions are obtained as
solutions of a sequence of linear differential equations. The
solutions of the linear equaitons are the-terms of the series.
But there must be a natural, an artificially created
perturbation parameter which contributes to the nonlinearity of
the problem and this parameter must be small enough so that the
series is convergent.

Particularly this method is appropriate for nonlinear dynamic
problem of rigid bodies 14 where a natural perturbation
parameter exists and the solutions are periodic. In nonlinear
shell analysis this technique is used by Archer (1) to clamped

10



spherical shell under uni form pressure where the

nondimensionalized radiai displacement at the point of maximum

diflection has been used as a perturbation parameter. From this

solution it is seen that the computational work involved in

obtaining numerical values is so extensive that it would be

desirable to apply some numerical technique from the beginning.

The result of this solution is compared with experimental and

other results by Reiss (37) where it is shown that the

perturbation solution is in serious disagreement with the rest of

the results. In this problem it is required to solve a number of

sets of differential equaitons where no suitable perturbation

parameter is obvi.OlJS whic:h is dpplic:'lbl(~ 10 all the sets. The

convergence of the series under the present ~ircumstances can

only be established by comparing with known results,

exist no such results.

but there

(5) Newton's method: Newton's method for solving nonlinear

differnetial equations is the extension of Newton's method for

calculating roots of algebraic equations. The approach is to

express the solution as the sum of two parts; the first part is

a known functin and the second part is a correction to the known

function. A governing equation for the correction is obtained by

substituting the assumed function into the nonlinear equations

and neglecting the term which are nonlinear (17). This method

does not require the perturbation parameter to be small, as is

necessary in the perturbation technique, but involves the

solution of a sequence of linear differential equations. These

linear equaions have variable coefficients and generally can not

11



be solved in closed form. It is paradoxical that the greatest

obstacle in solving nonlinear problems is the inability to solve

linear differential equations in closed form.

(61 Method of multisegment integration It is the most recent

method developed and 'used by Kalnins and Lestingi (24) to solve

nonlinear differential equations. This method involves :

(al division of the total interval into a number of segments;

(bl initial-value integration of a system of first order

differential equaitons over each segment;

(cl solution of a system of matrix equaitons which ensures the

continuity of the variables at the ends of the segments;

(dl repetition of (b) and (cl till convergence is achieved;

(el integration of an intial value problem to obtain the values

of the dependent variables at any desired point within each

segment.

The main advantage of this method over finite - difference method

is that the solution is obtained everywhere with uniform accuracy

and the iteration process with respect to the mesh size, as

required in finite difference approach' is eliminated. But the

feature which makes this method most attractive for 'this problem

is that any discontinuity, either in geometry or in loading, can

be easily handled by requiring that the nodal points of the

segment coincide with the location of discontinuities. This

method is the most accurate of all the numerical methods because

the problem is solved in the form of a system of first order

12



differential equaitons in which no derivatives of geometrical or

elastic properties appear and because no further numerical

derivatives have to be evaluated for obtaining the desired

results in the process of computations.

•
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CHAPTER 2

THEORY OF SHELL

2.1 INTRODUCTION

The literature on shell theories is not devoid of papers in which
some of the aspects of finite displacement. on the deformation
of this shell are accounted for. The work of a completely general
nature appears to be the papers by Chang and Chen (8) followed by
a series of papers by Chen. The theory of shells de~eloped by
Chang and Chen avoids the use of displacement as unknowns in the
equations. The theory is deduced from the three-dimensional
theory of elas~icity and then, by means of series expansion in
powers of small thickness parameter, approximate theories of thin
shells are derived. Other developments which also employ linear
constituti~e relations are founded upon the Kirchhoff hypothesis
and often contain other approximations.Among these are Reissner's
(36) formulation of axisymmetric deformation of shells of
revolution and the more general work's of Sanders (39). and
Leonard. Beginning with the three dimensional field equations
Naghdi and Nordgren deduced an exact, complete, and

fully general nonlinear theory of elastic shells founded upon the

Kirchhoff hypothesis.



Several nonlinear theories for thin shells have been derived. in

increasing stages of approximation. In most cases the theories

are first approximative theories in the sense that transverse

shear and normal strains are neglected. Here the author has used

the theory of axisymmetric deformation of shells. of revolution as

presented by Reissner (36), because of the fact that Reissner's

derivations have extremely simple structure and that this theory

differs from others in using radia~ and axial components of

displacements and stress. resultants instead of the customary

practice of using normal and tangential components of

displacements and stress resultants. The modified definition of

displacements and stress resultants is very well suited for

managing the axially varying load of composite shell problems.

2.2 REISSNER'S THEORY OF AXISYMMETRIC DEFORMATION OF

SHELLS OF REVOLUTION.

The basic equations of Reissner's theory of finite axisymmetric. ,

deformations of shells of revolution are presented here for ready

reference.

The equation of the meridian of the shell is written in the

parametric form (Fig. 3 ) as,

r = r ( s ) , z = z. (s)................ (2 • 1 )

so that .s together with polar angle () in the x-y plane are the

coordinates on the middle surface. The sloping angle f of the



tangents to a meridian curve is given by

tan~ = dz/dr .................. (2.2)

From equation (2.2) it follows that
cos tjJ I= r/fI( , sin~ =

I . .
z/tJ( •••••••• (2.3)

where the primes denote differentiation with respect to s and ~
is given by

= [ ( r') 2 + ( z') 2 ] 1 I 2 .... (2.4)

The principal radii of curvature of the middle surface of the
shell are given by

R. = ,. Rs = r/ sin~ .... (2.5)

With reference to Fig.
surface is written as

(4a) the equation of deformed middle

r = ro + u, z = Zo + w ••• 0 ••••• ". (2.6)

where the subscript 0 refers to the undeformed middle surface
and the quantities u and ware,
axial components of displacement.

respectively' the radial and the

The angle enclosed by the tangents to the deformed and to the
underformed shell meridian, at the same material point, is given
by

=

16

.................. (2.7)



With the above definition of displacements, the strain components

and the curvature changes of the middle surface are given by the

following equaitons :

= (0< - 0(0)/ c(o = ,I, I !(cos 'ro/ COS?) ( 1 + u/ro) -1. .. (2.8)

.c 0 = u/.ro ..... " . (2.9)

K. = -(cjJ! - 16' ) / Xo ......................... (2.10)

sin fo ) / ra -0 •••••••••••••••• ( 2 • 11 )

The equation containing the axial displacement w is introduced as

•.......••.• (2.12)

With the definition of stress resultants and couples as shown in

Fig(4a) and Fig(4b) the equations are written as:

From the condition of equilibrium of forces in axial direction

I
(rV)+ro(Pv = o (2.13)

From the condition of ~quilibrium of forces in radial direction,

/
(rH) - fI( N<9 + ro(P R = 0 (2.14)

,

From the conditon of equilibrium of moments about circumferential

tangent,
/

(rM.) - ()(cosf MS + IJI( Hsin f v cos~ )= 0 ••••.. (2.15)



With the assumption that the behaviour is elastic, the relations

between strains and stress resultants are given by

" '" .

"f,'

" ets = e~ = Ne -z)Ns ••••••••••• (2.16)

Ms = DlKs.+JiK6I), Mil = D(Kt9 +}) Ks) ..•......• (2.17)

Where e = Eh, D= Eh3/(12(1-p2), and h is the thickness of the

shell. The radial stress resultant H and axial stress resultant V

are related to Ns and transverse shear Q as follows :

Ns = H cos1' + V sin</',Q = - H sin?, + V cos~ .....

2.3. DERIVATION OF THE FIELD EQUATIONS

(2.18)

The order of the system of euquations (2.6 '- 2.1al is six with.

respect to s, and consequently it is possible to reduce Eqns

12.6-2.181 to six first order differential equations which

involves six unknowns. In the following derivation, the six

fundamental variables are taken as u, ~ , w, V, H, Ms and the

differential equations are expressed in terms of these variables.

The independent variables is taken as the distance measured from

the apex along the meridian of the shell so that the differential. .,

equations can be used for all possible geometrical shapes of the

meridian. With is definition of s, Eqn. (2.4) gives

0< 0 = [( rio ) 2 + (.') 2 1 11 2

18
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From the geometry of the meridian, which is yet to be specified,

it is known that

ro = ro(s) ............ (2.19)

............ (2.20)

The following equations .are I'ewritten from the previous section

in such an order that, when evaluated serially, they Clr.c in !erlllS

of the fundamental variabLes.

This is done in order to keep the fundamental set of differential

equations as simple as possible. Rewritting of Equns. (2.9),

(2.6), (2.7), (2.11), (2.18), (2.17) yeilds.

r

=
=

=

u/ r 0 ••••••••••••••••••••••••••• ( 2 . 21 )

ro + u (2.22)

S2i - ~ •••••••••••••••••••••• (2.23)

= (sin~ sin~) / r 0 •••••••••••• ( 2 • 24 )

Ns = H cosf + V sin~ .......... (2.25)

Ks =

=
MaID - 2J KS •.•..••..•..•.•.. ~.(2.26)

D (KS + JJ Ks) ••••••••••••••••• (2.27)

Eliminating N& from Eqns (2.16), itis found that

........ (2.28)

r-
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similarly, elimination of Ns from Eqns. (2.16) yields

.......... (2.29)

Rearrangement of Eqn'(2.8) and substitution of ~o =1 gives
ciJ

............. (2.30)

Elimination of 20 from Eqn(2.12) by means of Eqn(2.3) gives

dw/ds = 0( sin)IJ ... (2.31)

Subst'itution of the values of t. from Eqn (2.30) and'ro from Eqn

(2.3) in Eqn (2.8) gives

dul ds = rj, cos,! cos rj;o ...... '..... (2 .32 )

, /
From eqn (2.10), the expression for ~ is fond to be

d(3 Ids = Ks ........... (2.33)' ,

Expansion of the three equations of equilibrium and elimination

of Pv, PH and r I from these equations result in the. following
I I Iexpressions for V, Hand Ms :

dv/ds = - rj, «Vcos'!')/r-PCosf ....... (2.34)

dH/ds = ()(«H COS? - N$)/r + P sinp )•.• (2.35)

20



dM./ds = 0<: cost:/>(Me-M.) /r- 0«( H sinp -v COS?)... (2.36)

where P is the axially varying internal pressure, that is, P is
the function of s. Eqns (2.19 - 2.36) are the nonlinear governing
equations of the axisymmtric deformations of shells of revolution
expressed in terms of the fundamental variables. It should be
noted that this fundamental set o~ differential and algebraic
equations are expressed in such a manner that all the quantities
of physical importance are evaluated during the process of
solution of these equations.

The expressions of variable internal pressure P for various kinds
of shell elements are given below -

Expression for line-element

Let the shell contain a conical frustum and is, filled with a
liquid of specific weight ~ (Fig. (a)). Assuming that the total
depth of the liquid is dfrom a certain point z on the axis
corresponding to point s on the meridian of the shell where the
gauge pressure is denoted by Po. It is required to calculate the
pressure P normal to the meridian at some other point on the
shell.

21
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From the geometry of the shell it is seen that -

1::,ZI ~ S = sinfo, ri - ro) lLJ.s = cos,,"

Po = ~d + Pa

where Pa is the gage pressure above the liquid surface. Now,

pressure at any parallel circle mn is -

P = Po -tA.Z

Where Po is the maximum pressure of

Po = id + Pa

the base, defined as

or,

or,

P

P

=

=

Po [ 1 -

Po = [1

L::.Z
-------- 1
d + d'

.AS Sin rf
- ------ 1

d+ d'

where, Pa

or, P =
ri - ro Sin,po

Po [ 1 - ------- ----- 1
costo d+d'

22



ri - ro
or, P = Po [1 - ------------- tan fo 1

d + dl

P Po ril Se - rolse
or, --- = [ 1 - --------------- tanyt 1

IE E d/se + d/Se

rl - ro
or P = Po [ 1- --------- tan

d + dl

Expression for Circular elements

Here, the expression of variable internal pressure P as a

function of s is derived in the same manner as for line element.

I
y

I 151

J,.WiZo~:
2.l

From the geometry of the shell-

.ri
Zi = -----

tan11

• 2'



ro
Zo = ------

ro r1
Therefore, ~Z = Zo - Z1 =

Pressure P at any point on the circular meridian is

P = Po - tAZ
AZ

or, P = Po [ 1 - ----------]
d + dl

~

1 (ro r1 )Jor, P = Po --- -
d+dl tanf. tant1

Nondimensionalization of P yields

~

1 (~::~:--;~~-~,)Jr = Po
d+dl

3.4. E;QUA[TONS FOR THE APEX.
The fundamental set of equations derived in the previous sections

is singular at the pole (Fig.l ). In order to remove this

sigularity, the conditon that all the physical quantities must be

regular at the pole should be imposed. From the symmetry at the

pole it is found that

u= = 0

and as there is no concentrated load at the pole, it follows that

v = 0

24
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In the following derivation it is assumed that s is measured

from the pole of the axisymmetric shell.
I

Since (6) and Clil must be regular at s = 0 Eqn.(2.21) gives

("
I
i
I

and Lim fl.' =
S _0 I)

Iu'/ro (By L' Hospitals' principle)
III '.11u ro - u ro

IFrom eqn (2.3), it is found that ro = cos fJ
and therefore. r: = ~ sin~o. ~.

/ /ISubstitution of tI,e values of ro and ro into the expression of

to and (~ yeilds

Li.m ~ =
S-o

Lim

U I / cos fa ( 2 . 37)

............. (2.38)

Similarly, the following equations can be deduced from eqns

(2.19) - 2.36) by. taking the limit as s-O

Lim </> =
s_o

................. (2.39)

• .-/, / ...< /Ll.m I = y-'0
s_o

1"" " ,
- (;3 -1'/3 tan~o) .

2
Lim
s--o

=

=

13'
p'

.................

.................

(2.40)

(2.41)

(2.42)

Lim Ns. =
S-..o

H Cos fo

25
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r,.,

I I IH cosIo - H fPsinfPo + V sin?o •..(2.44)

(( 1-2J )/e ) H Cosz'/o .•..• ( 2.49)

E
1- ~z I

Lim ---------- Na - ..lJt.~) .... (2.48)
s-o e

= Lim(D(l- liZ)
s-o

(2.47)

(2.45)

(2.50)

costjJo

•••••.••• (2.46)

.......

H cos tJo -

I I
Ks +vMs) •••••••••

e

1-J,)Z

. I I
Ll.m (e eo + v N a
s-o

Mal (D (1 +,2) )

(1+ --------=

=

=

=

=

ILim Na =
s-o

Lim MI{)
s-o

ILim N(9s-o

Lim IX
s--o

Lim 0(1
s ....•.o

ILim u
s-o

Lim (31s...•0

Lim wi
S""O

=
1-LJ

e
H sinfo cospo.... (2.51)

Substitution of Eqn (2.49) in Eqn (2.47) gives

1 -JJ
Lim 0( = 1+
s-o e

V VI
Now Lim =s-o r o<.cos(po

H cOs'o ...•.•

.........

(2.52 )

(2.53 )

Substituting Eqn. (2.53) in Eqn. (2.34) and solving for VI at

the apex, it is found that

Lim VI
s~o

=
1
-~ p.cos~o •.••..•.• (2.54)
2

Differentiating Eqn. (2.32) and taking the limit as s-+o,

the expression for uH at the pole can be derived as

26
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Lim II
U = (

,
N. . / ~ /cosAl +O(~sin~ uitan~10 -h 0 0

hence from equation (2.46)

= ---~-- ( (1+2 2J
2 +V

I /
N. + C 0< (3 tan~).

ITaking the limit of Equation (2.35) and eliminating N
B ,

Lim HI
s 0

.1
= . ( 1 - 2.J) <jJ/ H +

3

()( C 1,1
----.,.-)tan (Po

cospo

'o(p
----sin~o •.•(2.55)
2 .

IIn order to evaluate Ms at the pole, the expression of M~ in
Iterms of Hs has to be derived first, Differentiating Eqn

(2.35) and taking the limit as s ~o,

Lim
s-o

(3" =
2 ,

(H. /0 +
JJ /3f'
------- tanto .)

2

which, when substituted in Eqn. (2.45), gives

Lim
s",O

1- IJ 2

(---------- ) f~/tanfJo
2 + V

Taking the limit of Eqn. (2.36) and eleminating ~

expression (pr M~ is fo~nd to be

, the

,
Lim M. =
s-o

1

3
(O« 2 +il) H sinpo+ D(1-.I>2)/l~/tanfo) •••• (2.56)

Thus Eqns (2.49), (2.50), (2.5U, (2.54), (2.56) form the

fundamental set of differential equations applicable only at the

pole, where ~ and f/appearing in these equations are given by
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Eqns. (2.52), and (2.40) respectively. These equations can
further be. simplified if it is assumed that the curvature of the
underformed shell is continuous at the pole. In this case,

4= 0 and, Thus fundamental set becomes -

ul = (1- U HIC ................. (2.57)

(31

WI

0<

VI

=

=

=

=

Ms I(D(1 +.J.J »

o

1 + (1 - ).) ) HIC

c< P/2

••••••••• (2.58)"

(2.59)

(2.60)

(2.61)

HI = o ...... (2.62)

= o .• ...•.... (2.63)

2.5. LINEARIZED EQUATIONS OF AXISYMMETRIC SHELLS

Highly nonlinear equations are derived in sections 2.3 and 2.4.
These nonlinear equations are always solved by the method of
iteration in which arbitrary initial values have to be assigned
to the fundamental dependent variables. Unless the initial values
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assigned to the dependent variables are a good approximation to
"

their actual values, the iteration process fails to converge.

For achieving convergence in the iteration process of solving
nonliear equations, it is usually necessary to solve first the
linearized version'ofthe given nonlinear equaitons. The results
of the linear solutions are then assigned as the initial values

to the dependent variables of the nonlinear equaitons. The linear

governing equations of axisymmetric deformation of shells of

revolution are thus derived in tnis section.

The equations of small deflection theory follow from the forgoing
Eqns. (2.19 - 2.36) together with (2.25) to the undeformed shell

and by omitting all n6nlinear terms in the remaining equations of

the fundamental sets' (2.19- 2.36). The resulting equations are
recorded below for ready reference :

= u/ro (2.64)

= j3 cos ~o Iro (2.65)

Na = H cos rjo + V sin (po (2.66 )

= ) N ./C - /Jes (2.67)



wi = Gg sinf> - ficos ~ 12.71)

ul . - t?g cosfo + fisinfo (2.72)

fJ = Kg (2.73)

VI = -( (V/ro) cosrfo - P cost/o) (2.74)

HI = - ((Hcos <j;o-NB )/ro + P sin?,o (2.75)

I -«M.-MB)cos~o)/ro-( sin~o V cos~o) ..(2.76)M. = H -

The corresponding lineariz~d equaitons at the pole are obtained.
. . I

in the same manner !is Eqns. (2.64-2.76), Expressios for u I, 13 and

wi remain the same, whereas, the three equations for equilibrium

reduce to

=

=

(P cos~o) /2

1.
- « 1- JJ) rP~H
3

cl3/
+ ---) tan?o -
c°sf.

(2.77)

P sinAI .. 'to
------ ••• (2.78)

2

IM. =
1
---«2+»)H sinpo + D(l~VZ)~/,~ tan~o) ..(2.79)
3

In the case of continuous curvature of the meridian at the apex

the linearized equaitons applicable at the pole remain the same

.as the Eqns (2.57-2.63) except that the value of ~ is to be

replaced by unity in Eqn(2.61).

..
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2.6. BOUNDARY CONDITIONS FOR AXISYMMETRIC SHELLS

The general bondary condi tons of a shell at an edge, .si =

constant, are to prescribe, in Sanders (~) notations,

)
)
)
)
)

..) ...(2.80)
)
)

or U 1,

or U2,

or w,
ort/l,

Nll

Mll

-j

ri2

1 _j _j 1
--(3R2 - Rl)MI2 + (Nil + N22)
2 2

Z>M 12
----- -~Nll - rP2 Nl2
~S2

+

Nl2

and

where Sl and S2 are the shell coordinates along the principal

lines of curvature, Nand M are the stress and couple resultants;

~'s are the rotations about respective axis; u and ware

tangential and normal displacement components. When the

quantities in Eqns (2.80) are specialized for axisymmetric

deformations of shells of revolution, they reduce to prescribing

Nil or Ul,

Ql - efl Nil or w, .......... (2.81)

and Mil or. 4J 1

at an edge, ~l = constant, From (3.81), it is seen that the

boundary conditions consist of the specification of rotational,

tangential and normal restraints at the edge. But in most of the

. .-1 ' ,-'~ 1 t i t .:.
\",. '1 J !
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practical cases of shell problems, the conditions ,of the

horizontal and vertical restraints are 'known rather than those of

the normal and tangential restraints, so it is concluded that it

will be preferable to specify the bondary conditons in terms of

the. horizontal and vertical restraints from the point of view of

practical applications. When this is done the boundary conditions

in terms of the notations used in the body of this thesis will be

to prescribe

H or u

M. or (3

and V or W

at the edge, s = constant.

............ (2.82)

2.7 NONDIMENSIONALIZATION OF THE EQUATIONS

It is always desirable to solve any engineering problem in terms

of nondimensional quantities in order to decrease the number of'

input of physical parameters as well as to increase applicability

of the solution. With this in mind and also to make the variables

more or less of the same order of magnitude, the desplacement

components and stress resultants are expressed as ratios of their

actual values to those of the cercumferential des placement and

stress resultant of an unrestrained thin cylindrical shell. The

independent variable s is normalized in such a manner that Se,

the total length of the shell meridian corresponds to unity

(Fig.l). The normalized quantities are defined mathematically by

,32
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wEh
Ks = Ks.se, w = , C = (1-.v2)se/R, Po= B/E,PoR2
T = R/h, R=se/R, D= 11[ 12( 1- lJ 2 ) Po T2 R I, P = PIE,
L = R/(PoT), ro = ro Is e,

Where R is is the radius of the cylindrical part in case of

pressure vessel problems or in general R= R", at s,,' With the help

of normalized qualities defined in Eqn (2.83), the fundamental

set of Eqns (2.64-2.79) (linear theory) becomes

\ '



\' ('

-I -H, = -( (H COS ,po-N6> )/ro + R f(s) sinp;o (.2.95)

M~ = -Cos(k(Ms-M6I )/io - R.T. (H Sinfo -v Cos~o) •.(2.96)

.
The corresponding nonlinear equations of the fundamental set in
nondimensional form are as follows :

0< cos ~ (Vir -P T)

-0« (H cos~ - N6> )/r +

(2.108)

( 2.109)

(2.110)

............ (2.97 )

..... ' ....
Ii T sinp ).. (2.111)

sin~- V co~J (2.112)

............

............. (2.102)

............ (2.98)

••••• ~••••• ( 2 • 106 )

............... (2 .. 107)

.•...........•• ( 2. 104 )

........... (2.105)

........... (2.99)

............... (2.100)

................ (2.101)

..............

................... ( 2 . 103 )

L. ro + u

CNs

Ks

Msjo - lJ Ks
( €61 +JJ 'fa) Ie

(sin t,Oo sin;>It: 0

H cosp+ V sin(6

- -
. D ( K61. +.ll K.)

L + £.

; sin ~ L sinjllo

p( cos r/J - L cos po

C61 =
{J =
K61 =
Ns =
ts =
Ks =
N6l =
M61 =
0( =
r =
-I
W =
-,
u =
;3' =
-I
V =
-I
H =

-I _ _

Ms = o(cosp( M6I

The equations at the pole corresponding to the nonlinear set take

the folowing form after normalization

-I
U = (1-.0) R H cos2 ~o ••• (2.113)

I.



'W/ = ( 1 -]J ) R H cosfo sinjio .... (2.114)

/31 = Ms I ( ( 1 -JJ ) D) • • • • • . • ( 2 • 115 )

r;( = L + ( 1 -J,) R H cospo ••• (2.116)

-/
J __

(2.117)V = -ocp T cos00 ......
2--, j

( ( 1- 2/) iiI
- -H =~ + 0( ;11 (R cos 10)) tan)lSo-

j - - - sin~o (2.118)-()(p T ........2 .
-I =.1.~ T2 sin<po + ~/I>I tan/Jo/(12 T2» •• (2.119)Ms H p R

J

Eqns (2.113-2.119) may be simplified in case of continuous

meridian at the pole as :

\i/ = CHI ( 1 +J1) ........ (2.120)

-/ = 0 (2.121)w ........

~I = Ms/( ( 1 '+ )} D) ..... (2.122)

-/
p(V = P/2 ....... (2.123)

-I
H = 0 ............. (2.124)

-IMs = 0 .......... (2.125)

Eqns. (2.113 - 2.125) may be linearized as before to obtain the

corresponding equaitons at the pole for the linear theory. The

nondimensionalized form employed here will make the linear

solutions independent of the loading parameter.

It should be noted that some of the nondimensional shell

parameters in Eqns.( 2.83) are defined in terms of Se which will

depend on the geometry of the meridian and thus should be derived

for each individuaL case. In some cases there is no closed form
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expression for Se and, therefore, Se has to be evaluated either

from a series expression or by numerical integration. The smae is

true for the expressions of r 0 and rPo in terms of s. There may

not be any closed form expressions for ro and ~o and thus

numerical integration has to be used. The evaluation of shell

parameters and the expressions of ro and ~ in terms of s for

general case of composite shells of revolution are'given below

General Case of shelis of revolution

For the general composite shell whose meridian is composed of

cylindrical, spherical and conical elements (Fig.l), the total

length Se of the shell meridian has to be determined for each

individual case. The constant R, defined as se/R (R being the

radius of the shell at the basel, is then directly read in by the

program. In addition the value of d't'o for each element at its

starting point along with its type (that is,

pherical or conical element) is required.

cylindrical or

Line element If a segment S1 of the meridian is a line'

element, the meridional angle ~ remains constant over the

segment Si and its value is

= ( r/Jo) 1 .................. (2.126)

Where subscript i refers to the starting point of the element.

The expression for ro becomes

ro = ...... (2.127)



Circular element:

If any segment S1 of the meridian is a circular element, the

quantities ro and over this segment Si are given by

=
((sli-s) sin( ~o) 1

.... (2 .128 )

ro =
(ro)1 sinfo

sin(00li
....... (2.129)

Elliptic element

If a segment S1 of the meridian is a portion of an ellipse, the

quantities 00 and ro at any point over this segment have to be

evaluated from the numerical integration of eqn (2.128) for

which the values of (0 o)i and Z are necessary.
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3

METHOD OF SOLUTION

3.1 INTRODUCTION TO MULTI SEGMENT INTEGRATION

The fundamental set of linear differential equaitons (2.84

2.96) and nonlinear differential equations (2~97-2.112) along

with their corresponding forms at the apex and the boundary

conditons (2.82) have to be integrated over a finite range of the

independent variable s. But the.numerical iritegration of the~e

equaitons is not possible beyond a very limited range of s due to

the loss of accuracy in solving for the unknown boundary values,

as pointed out by Kalnins (22), That is why, the multi segment

method of integration developed by Kalnins and Lestingi (24) has

been used in this analysis.

It. is supposed that a set of 6 first order nonlinear differential

equations are given to be :

dy 11x)
------ =
dx

dyz (x)
------ =
dx

fl (x.,yllx), yz(x) .•.•.......... ys(x»

fz (X,Yl(X) ,yz(x) •..••••....•.•.•• ys(x» --(3.1)

............................... '.' .
• ••••• ••••••• t ••• t ••••••••••••••••• t ••• t •• t •••••• t •••

dy 6 (X)
------ =

dx
fs (X,Yl(X), yz(x) ......•........ ys (X) )



where. (Yk(X). K = 1,6) are dependent foundamental variables,

and x is the independent variable.

The above equations can be written in the form

i.
l

dy(x)
----- =
dx

F (X,Yl(X), yz (x) f ••••••••• , Y6(X) ------(3.2)

where y(x) = yI(x)
yz(x)

Y6(X)

(6 ,1) fundamental variable matrix,

and F = fl
fz

,(6,1) matrix of nonlinear functions
of fundamental variables

It is assumed here for convenience that the first 3 eleterms of

Y(XI ) and last 3 elements of Y (XH,I) are prescribed by the

boundary conditions, where Xl is the starting boundary and

XH+l is the finishing boundary (Fig. 5).

If at the initial point Xl of the segment Sl (Fig - 5), a set

of values y (Xl) is prescribed for the variables of Eqns. (3.2),

then the variables at any X within Sl can be expressed as

y(x) = f(yI(x!l, yz(x!l •..•..•..•.• Y6(x!l) • • • • •(3 .3)

where the function f is uniquely dependent on X and the system

of equaitons (3.2).

From the set of.equations (3.3), the expression for small change

in the values of the independent variables can be written as

'9
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OY2(x) =PY2(x) "0 (x) OY2~~\;'Y (X) + •••• .;c>Y2(X)'aY6(xi)
OYl (Xi) Yli "OY2 i 2 i 7JY6(Xi) (3.4)............................................................... j

•• • •••• •• • •••••••••• • ••••• •••••••••••••• ••••• •••• •••••• ••• •• ••

OY6(x) =~6(7) ) ~Yl (xi) )Y6(X) dY2(xi) + : •• dY6(x) d ( )
UYl xi OY2(xi) ';iY6(xi} Y6 xi) I

Eqns. '(3.4) can be written in matrix ~orm as

dYl(X) )Yl(x) ••••••••••• ;tYl(X) aYl (xi)
OY1~) aY2(xi) Y6(Xi)

'oY2(x) a Y2(x) ........... ay2(x) OY2(xi)

OYl (xi) OY2(xi) )':6 (xi)

• • •
•• •

• ••••••••• ••• ••• •• ••• • • •••• • • • • •• • •• •
• •• ••• • •• ••• •• • ••• •• • • • ••• ••• ••• ••• • •

•• • •• •
••••••

or
where

OY6(x)
OYl (xi)

'oy(x) =
Yi(x)=

'aY6(X)
()Y2(xi)

Yi (x) dY(Xi)

OYl(x) OYl (x)
OYl (xi) OY2(Xi)

'oY2(X)
'bYl (xi)

OY2(x) ••••••• tlY2(x) ,
llY2(xi) OY6(xi)<

•••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••

OY6(x) OY6(x) 'OY6(x)
OYl (xi) ~Y2(xi) ••• '••• OY6(xi)

't> y(x) = 2lYl (x) C>Yl(xi)

~Y2(x)
Oy2(xi)

••••• (3. Sb) and Y(xi) = ••••••

••••• • •••••

~Y6(x) ;'Y6(xi)

40



Equations (3.5

(y(X)-yt(X) ) =
are expressed in finite difference form as

Yi (x) (y(xtl - yt( "tl - yt (xii) ---(3.6)

where y(x) denotes an iterated solution state based on the

condition of continuity of the variables at the nodal points and

yt (x) denotes a trial solution state. Evaluating Equns. (~.ol
at x = Xi, it is found that

(y(xil- yt(Xi» =

Therefore, Yi (Xi) =

Yi(Xi)(Y(Xi)-yt(Xi)---~--~-(3.7)

I

where I denotes (6,6) unit matrix. Evaluating Eqns, (3.6) at x =

Xi+l, it is found that

(Y(.XI+l) -yt(xI+l))= YdXitl)(y(xll-yt(xll) ........ (3.8)

Equns (3.8) can be rearranged as

YI (Xi+l) y(xil - y (Xi+l) = -ZllxI+Il ....•..;...(3.91

where, ZllXi+1l = yt(xI+1l - Yi (Xi+1l yt(xtl.

In Eqns (3.9), y (xi), y (x1+l) and Y I (xI+1) are unknown. In

order to determine the elements ofYi(x), the th column of

Yi(X) can be regarded as a set of new variables, which is a

solution of an initial value problem governed within each

segment by a linear system of first order differential r~
equations, obtained from Equns (3.2) by differentiating with

respect to yJ in (Xi) in the form
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d dy d
------- = ------ (F(X,YI,Y2 ..• y6 »
dy j (x1) dx dy j (xiJ

which gives,

d
(~;~(~~,)

dF
= -------- ........... (3.10)

dx dYj(Xl)

Thus the columns of the matrix Yi(X) are defined as the. solutions

of 6 initial value problems governed by (3.9) in Si (with j =
1,2 6) having initial values specified by Eqns (3.7). It

should be noted that the initial value integration is possible

only when the original equations of yare already integrated with

the initial value of yt Xi). Now to obtain the iterated solution.

Eqns (3.91 are written as a partitioned matrix product

of the form

YI(Xl+1]------- =
y2(Xi+ll

Yll (Xi+l) I Y21(Xl +1
--------- --1----------
Y3dxl+1I I Y4dxi+1I

I
I

------- + --------- •••• (3.11)

where y 1 (x1+11 = Y 1 and Y 2 (x 1+11 = y4

Y2

Y3

Y5

y6

So, a pair of equations can be written from Eqn. (3.11) to

replace each of eqns (3.9) as

«(Yl1 (Xl+ 1l) (yl(xiJ)

(Y31(Xl+ll) (yl(xiJ) +

+ (Y2dxl+1l) (y2(xiJ) - (YI(Xl+l»f
= -Zl1 (Xl+ll,

(3.12)
(Y41(Xl+ll) (y2(xiJ) (y2(Xl+l»

= -Z2dxl+I).
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Replacement of Eqns (3.9) is done .to seperate known bounday

conditions from the unknowns. Thus from Eqns (3.12), a

simultaneous systems of 2M linear metrix equations is obtained in

which the known cefficients (Yji (Xi+1» and (Zij(Xi+1» are

(3,3) and 3,1) matrices respectively, and the unknows (yj(Xi))

are (3,1) matrices. Since (y1(Xill and (y2 (XM+1) are known from

the boundary conditions, there are exactly 2M unknowns

(y1(Xi+1)with i = 2,3 •.... , M+1, and (y2(Xi» with i = 1,2,3

•..•. ,M.

The problem is, therefore, well set in order to obtain the

solution of the linear equations (3.12), Gaussian elimination

method is used. Gaussian elimination method leads to a

triangularized set of linear equaitons which for the specific,

case of Equns. (3.12), takes the following form

El -I 0 o ... 0 0 Y 2(X tl A1

0 Cl -I 0 .. 0 0 y1(X2 ) B1

0 0 E2 -I ... 0 0 y2(X2) = A2

..................... . ...... ....
.. . .................... . ......
0 0 0 O ••• EM -I y2(XM) AM

0 0 0 0 ... 0 CM yl(XM+ 1l BM



or

(Ed (y2(xd )-(yl(xi+ll) = (Ail

(Cd (yl(Xi+l) )_(y2(Xi + ll)= (Bil

•••••• ( 3 • 1'3 )

for, i = 1,2,3 M. Using the rotations(2JI) and (Yji)

in place of the symbols, (2ji(xi+ll and (Yji (Xi+x)), the (3,3)

matrices (Ei) and(Ci) in the Eqns •. (3.13) are defined by

( Ell = (Y21), (C x) = Y41)

and ( Ed = (Y2i) + (YIi) (Ci-x) - 1

(C d = «Y4i)+ (Y3il (Ci_ll-I(Eil-1

for i = 2 t 3 ,......... t M.

The (3,1 ) matrices (A d and (Bd are given by
,

( AI ) = - (211l - (Y 11) (yl (x 1l )

(B 1l = - (221) - (Y3x) ( Y1 (XI)-(Y41)(E1l-1 (A I)

and (A il = - (2 Ii) - (YIi ) (Ci_ll-l (Bi-ll,

(B il = - (22il - (Y3 il (Ci_ll-l (Bi-x) - « Y4 i ) +

(Y3d (Ci_ll-l) (Eil-1 (Ad

for i = 2,3, ,M-l.

and' (Atd =
-J

(YIM) (CM-I) (BM-Il
-i

(y2 (XM+ ll) - (22M) - (Y3M) (CM'-l) (BM-ll -
-1

«Y4M) + (Y3M) (CM-I» (EM) (AM)

The unknowns of (3.13) are obtained by
-J

(yl (XM+I» =(CM) (BM)

(y2(XII» =
-j

(EM) « yl (XM+I» + (AM»,
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"-....;.l..-~:~-.~

and (yl\'J'XH-i+11)

(y2 (xH-il) =

-1= (CH-ll «y2(XH_i+l» +(BH-il)
-1

(EH-i) «yl (XH-i+l» + (AH-i». ,

for i = .1,2,3 , M-l.

Assuming y (Xi) as the next trial solution, y' (Xi), the process

is repeated until the integration results of Eqns. (3.1) at xi+I,

as obtained from the integrations in segment Si with the initial

values y (Xi), match with the elements of y(Xi+l) as obtained

from (3.~) and also with the bondary conditions at XH+I. This

completes the formal solution of the problem. Therefore, ~he'

method of multi segment integration involves the following steps:

(i) Initial-value integrations of Eqns. ( 3.1) in each ofM

segments. To start,the initial values 7J (Xl) for the integration.

over any segment are arbitrary.

(ii) Initial value integration for the six additional sets of

variables of matrix (3.5a) over each of M segments.

(iii) Solution of M matrix equaitons which ensures the

continuity of variables of Eqns (3.2) at the nodal points of the

segments including the given boundary conditions at the two end

nodal points.

, ::.<

'.:" ..
. ;\;'
'.' .. ,

....._, .



(iv) Repetition of steps (i) to (iii) with initial values YJ(Xi)

of steps (i) replaced each time by their improved values obtained
in step (iii) from the solution of continuity equaiton. The
process is continued until the values of the variables of Eqns
(3.2) at the end point of any segment as obtained from the
initial value integration' in step (i) match with their initial
values in the next segment obtained from the solutions of the
continuity equatios in step (iii).

3.2 DERIVATION OF ADDITIONAL EQUAITONS

In the multisegmentintegration technique for a set of ordinary
differential equations it has already been noted that in addition
to the integration of the given equations, it is required to
integrate another 6 set of equations represented by (3.10). Thus
in order to apply the method of 'multisegment integrtion,
differential equations corresponding to Eqns. (3.10) for the 36
additional variables as represented in (3.59) have to be derived.
These differential equations can be obtained by dirrerenl;ial.ing
Eqns. (2.84-2.96) for the linear solution and Eqns. (2.97-2.112)
for nonlinear solution with respect to each fundamental variable.
As the variables in any column of (3.5a) have the same form, it
is required to derive here the system of equaitons (3.10) for the
variables of any column of (3.59) where the new variables are
identified from the fundamental variables by the subscript a.
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From the nonlinear equations (2.97 - 2.112), differentiation in

succession gives

) cos ~ + (Ii ~ + Va) s info ~.. ( 3 . 17 ,.

••••••.•. ( 3". 18 )

(3.14)

(3.16)

(3.15)

••••••••• (3.25)

••••••••• (3.20)

• •.••••••• (3.22)

••••••••• ( 3 • 26 )

......... (3.19)

••.....•. (3.21)

••••••••• (3.23)

••••••••• (3.24)

... , .

............

............

o(a cos f +(3a 0( sin,p

()(a sintf - p<A cosfll

H.ali5 - VK6'a

(E~a +z) e.a) /e

Kaa

Ua

CN.a

;3a cossz$

(Ha - V fia

D (K sa + JJ )(. a 1

e..

tsa. =
tfa =

K6>a =
Naa =
t.a =
K.a =
N&a =
Hs. =
01.... =
r. =
-IUa =
-/ =¥la

;3~ =
v: = -( O(a co¥+~i3a sins6)(v/r-PT)-~co~Va/r - Vra/r2).(3.27)

--I -
Ha = -lXa«H cosrj; -"NJ/r + P T sinc;6 I -t>((Ha cosjD +

fia H si¥- fia-ua(ii cosl!' -Ni9 l/rl/r-P Tj1acos'fl. (3:28)

-I
. Haa = o(a cost; +fia« sinfl «M&- Hs)/r+P T2 VI +O«Cos~

(P T2 Va + (M61a - Haa - uaIM6/-Ma)/rl -p T2 Ha sin$O )-

P T2 H ( .;(a sin(r~;Ja cos,) ••••••••••••••••• (3.29)
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At the pole, the corresponding equations are obtained from

(~.113-2.119) as

_I cos2foUa = (I- V R Ha ........ (3.30)
-/ (1- z) R Ha cos "0 sin~o (3.31)Wa = .......

13~ = Maa/ ( ( 1 - 2J D) ........ (3.32)

1./ a = (I -JJ ) R Ha cos r)o .......... (3.33)
-/ .:l cosrfo. ~a (3.34)Va = z: P T .............

-I .i -/-

P<a + ()( ;gallHa = « l-lf )( 4>'Ha- /3aH) + ( (3';:;- cos ~o) ) i- sin ,00(R tan~ 2,:>(a P T .....(3.35)
-/ j (p T2sin~0 ~: cP1 - 13/ f~)Ma a = ~

()(aH +o(Ha + (

tan IJ 0/
-(l2P R T~» .........(3.36)

Eqns. (3.14-3.29) which takes the form (3.30-3.36) at s = 0, have
to be integrated as initial value problem 6 times in each segment
with the initial values given by (3.7). It should be noted that
the equaitons (3.14-3.36) contain not only the variables of
(3.5a) but also the variables of the fundamental set. Thus eqns.
(3.14-3.36) cannot be integrated unless the fundamental variables
are stored for use in Eqns (3.14-3.36). It should be furt~er
pointed out that one point integration formula can not be used
for the integrtion of Equns (3.14-3.36) since this formula needs
evaluation of derivatives at intermediate points where the

variables are never evaluated.

The corresponding equaitons for the linear theory are given by
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the homogeneous form of Eqns. (2.84-2.96) and thus readily
obtainable by dropping the load terms in Eqns.(2.84-2.96).

3.3 TREATMENT OF BONDARY CONDITIONS

In the introduction of the method of multisegment integration, it
was assumed that the first 3 elements of y (x) at Xl and last 3
elements of y (xl at XH+l were prescribed as the bondary
conditions. But, in general, the boundary conditions are given as

= bl at Xl, and
............... (3.37 )

TH +1 y(XH+ll = bH+l at XH+l
in which any 3 elements of bl and any 3 elements of bH+l are
specified as boundary conditons. The sysmbols Tl and TH +1

represent nonsingular (6,6) matrices which are known from the
specification of the boundary conditons at the ends of the

interval.

By rearranging 'the rows of TI and TH+ 1 in a special order,
Eqns. (3.37) can always be stated in a manner such that the
prescribed elements of bl and bH+l become respectively the first
3 and last 3 elements of bl and bH+I when this is achieved,
evaluation of (3.9) at i = 1 and i =M, and then elimination of

y(Xl) and y( XH+I) by means of (3.37) yields.



••...... ----
,"",1,-,~

Y(XI) and y( XH.I) by means of (3.37) yields.

1.~

-1YllX2) TI bl - y (X2) = -Zl (X2) ••••••••• (3.38)

TH.I YH (XH.ll Y(XH) - bH.I = -TH.I ZH (xH.1l.....(3.39)

The form'and notation of (3.9) can be retained if it is regarded

that the coefficient matrices Yllx21.
occurring in (3.9) represent YI (X2) TI. TH.I YH (XH.I) and TH.I

ZH (XH.I) respectively.

In doing SOi the solution of (3.9) will not yield Y(XI) and

Y(XH.I but rather the transformed variables bl and bH.l, When
Y(XI) and Y(XH.I) are derived they can be obtained by the
i~version of the .atrix equations (3,37).

It should be noted here that with reference to the boundary
conditions (2.82) stated in terms of the fundamental variables.

it is obvious that the matrices TI and TH.I are both unit

matrices of order 6. The construction of TI' and TH. I. in

accordance with any possible statement of (2.82), so that the

Eqns (3.37) are in order, .istreated in Appendix A:

"
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. CHAPTER 4

RESULTS AND DISCUSSION

4.1. Reliability and Validity of the Analysis

It is always desirable that the solutions obtained. by any new

technique should be compared with the available results in the

literature in order to determine the reliability and validity of

the method employed. In other words it should be ascertained that

no error due to logic is committed in formulating the problem, in

method of solution and, in this particular case, no mistake is

made in the computer programming. Keeping all these in mind, a

number of standard problems are solved with the present method of

solution and later the results are compared with the

corresponding analytical solution or so~ution' by some other

method as available in the literature. On the basis of this

comparsion, reliability and validity of the method employed here

are determined.



The multisegment method of integration and the governing
equations of shells as used in the present analysis, had been
used by a number of authors earlier. Uddin (46)used this method
in finding the solution for pressurized 'composite shell with
clamped edge made-up of an inverted conical frustum, a
cylindrical part, and a spherical part. He also found the
variation of meridional st~ess and circumferential stress along
the meridian of an ellipsoidal-head pressure vessel based on both
the linear and nonlinear theories by multisegment integration
which' had earlier been worked out by Kraus et al (28) and it was
found that there was hardly any 'difference between these two
results. Haque (16) took,the full advantage of the fact that a
hemispherical shell with radius A and a semiellipsoidal shell
with the ratio of major to minor exes, B/A = 1, are identical and
found that the solution fOT ellipsoidal shells with B/A = 1
differed from that for hemispherical shells available in the
literature 3 after six digi~s. Rahman (38) obtained the
solutions of imperfect semi-ellipsoidal shells,with rigidly fixed
edges in which different values of parameters, degree of
imperfaction and position of imperfect segment were used. Rahman
observed that his results of imperfect ellipsoidal shells
converged to those of Haque when imperfections were gradually
reduced.
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The above developments prove that the multi segment method of

integration and the linear and nonlinear governing equations of

shells as employed in this analysis is highly accurate.Actually.

in an indirect way, the accuracy of the method of multisegment

integration is self ascertaining. Once the values of the

fundamental variables at the nodal points are known from the

multi segment method of integration. the fundamental set of the

governing differential equations can be integrated over each

segment of the meridian as an initial value integration of the

fundamental set of differential equations. If the values of the

fundamental variables at the end of each segement Si, as obtained

from the initial value integration, match upto six or seven

digits with their respective initial values for the respective

subsequent segments Si.l for i = 1.2,3 ..... M and also with the

boundary conditions at the edges, then it can be concluded that

the results are correct upto six or seven digits of their

numerical figures.

Further, for establishing the reliability and validity of the

method. a cylindrical shell containing a fluid of density t .
fixed at the base and free at the upper end. was considered. This

particular problem was solved by the present method of solution

because an approximate analytical solution. based on the general

theory of cylindrical shells is available irithe literature in

closed form (45). Here. for solving the Cylindri~al shell

problem. axially varying internal pressure on the shell surface
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was assumed to be applied by a liquid

weight i.
column of specific

The shell meridian was divided into ten seg-ments of equal

lengths. The shell and its parameters are presented in Fig. (6).

Using the computer programme of the present analys~s the result

of this cylindrical shell is obtained based on both the linear

and nonlinear theories under axially varying load. These results

compare quite well with the analytical solution of linear theory

(45), as observed in Table - 1. The tabular results show that the

computer results are slightly different from the analytical

solutions at the upper portion of the cylinder. These differences

may be attributed to the fact that the boundary conditions at the

ends of the shell meridian and the differential equaitons of Ref

(45) can not be considered very appropriate for this problem. The

analytical solution of Ref (45) is for an inner liquid column of

height equal to that of the cylinder 1tself whereas the computer

results are for a liquid column of hight less than the hight of
the cylinder. It should furhter be pointed out that the linear
theory employed in Ref (45) is entirely different and very

approximate in comparison to the linear theory of Reissner, the

theory employed in the present analysis. Also, it should be noted

that the objective of Ref (45) was to obtain only the maximum

values of u, M. and M& at the fixed edge of the shell which is

hardly influenced by the boundary conditions at the upper edge

whereas in the present analysis exact boundary conditions at



both the ends of the shell meridian were. employed in this

computations. The graphical representation of the analytical and

the present linear and nonlinear solutions of this cylindrical

shell are shown in Figs. 6 and 7. Analytical solution for N,

based on membrane theory of Ref. (45), for this ~ylindrical

shell is also plotted in figure 7. Other results of the presnt

analysis of cylindrical shell, of figure 6, are presented in

figures 8 to 11. Pertinent results of the membrane theory are

also shown in figures 9 and 10. As observed here, the results of

linear theory are highly conservative in comparison to that of

nonlinear theory, specifically in the region of edge fixity and'.
junction. The results of membrane theory; .whenever pertinent,

are obsrbed to be much closer to nonlinear results and thus

superior to the linear results. Looking at the stresses, if

can be concluded that the membrane theory predicts quite

acceptable values of stresses except at the end fixity.

From this comparisons it can be conclude that the governing

equations, the method of solution and the algorithms incorporated.

in the computer program are sound and free from both the

conceptual and accidential errors.
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4.2. Results and Discussion

The method of investigation employed here is quite versatile to

handle any problem of the general case of composite shells under

axially varying load. Here, axially variable internal or

external pressure load on the shell surface is considered to be

applied by a liquid column of a certain specific weighti.

The input variables of the composite shells as required in the

present method of solution are edge conditions, total. number of

segments of the shell meridian, base-radius to thickness ratio

and Poisson's ratio of shell material. Here each segment of the

composite shells is considered to be of uniform thickness b'lt

different segment may have different thicknesses. Meridional

length of the composite shell may be divided into any number of

segements, equal or unequal in length. The results of this study

as presented here is confined to only one kind of end fixity as,

otherwise, the results would be too volumenous and the ti",,,

required would be very long.

It happens that the composite shells as studied here are commonly

used as water towers, ships, under water crafts, pressl:Jre

vessels, etc., with ring stiffened edges which very nearly

approximate the boundary conditions of rigidly fixed edge.

the results presented here are of major practical importance.

Thus



, . The computer program which obtains the solution in the present

method of analysis first finds the solution in terms of stresses

and displacements based on the linear theory for an ..initial

value of the axially varying pressure as assigned by the

investigator. Then the sclution based on the nonlinear theory is

obtained for the same loading through iterations; from here on,

the loading parameter is increased in small steps to find

solution for .the new loading, taking solution of ~revious loading

as initial values for the variables. In this investigation the

following input variables are required to be prescribed.

EMl =
SO.1 =
M =
12 =
IG(I) =
APH (I) =

Increasing step of base pressure

Number of segments.

Indicator of type of Problem.

Indicator of type of a segment.

Meridional angle at the starting point of each

segment.

Se/R Normalised base radius.

Po/E Normalised base pressure.

R/h Thickness ratio for each segment.

lJ Po 'j sson' s ratio

1 to ~I+.1 , meridional distance from the opex.

Re =
EMO =
Tk(I) =
AN =
X(l,I), I =
X(J,I), J = 2,

variables

7 andl=l, M+l;
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H,~, w, u, ~V, Boundary Conditions at starting and

finishing boundary.

151,152,153, Indicators of boundary conditons at base.

IF1,IF2,IF3, Indicators of boundary conditons at upper end.

All the results obtained in this investigation are based on the

nonlinear theory, because nonlinear theory gives much better

prediction than linear theory at higher loadings. But the results

of linear theory are also presented here in order to point out

its short-comings at higher 10ading.The solution for each shell

studied is also presented in the tabular form so that the exact

magnitude of moments and stresses can easily be checked.

The results of individual 'shell of different parametric values

are presented seperately and their individual trends are also

discussed separately.

(al Types of the Composite Shells Investigated

Solutions were obtained for Composite shells made-up of a

cylindrical part, a circular part and a conincal frustum (Figs. 1

and 2).
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Shell'- I

This composite shell consists of a cylindrical part at the lower
end and closed at. the top with a spherical part as shown:in
Figure 1. For this shell, the thickness ratio, Rlh = 200, for all
the segments, .Poisson',s ratio, = 0.3 and the base pr"SSll'.CI

PolE = 0.256 X 10-5• For f'jxed .1owc~I' Cdgl~ Lh •.. ,.:Ii,':;'("~ ,.,1;;:'

of the furltLlllll't\ i ;11 : :; ..;:J.G} (J .. ~..~ •:-111 U w

0.0 and ro,. ,".lll:-:l.d l1Jl,l Ill(. l.11'."I' !:r"lllt1:.t['Y conditions are:

u = 0, (1) = 0, and V = 0. The numerical values of various
moments and displacements at 10 equidistant locations along the
meridian are presented in Table 2.

The present investigation is based on the Reissner's theory of
axisymmetric deformation of shells of revolution which is founded
on the assumption that the stress in the shell material is always
with in the elastic limit. That is, if for a particular material,
the stress level in the shell at a particular loading exceeds
the yield strength, the results are not valid for that material.
For this reason it has to be checked that the stresses found for
any load do not exceed the corresponding yield strength of the

,
material. From the detail results of this shell, it is fOlllldLhaL ('.'T

the nondimentional meridional stressC)~ occuring at the base (5
= 1.0), has a maximum values of 0.66881 x 10-3• Considering the
shell material to be steel, the numerical value of this stress is

~o= 138 Mpa. Since high strength steels have yield strength as
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high as 1890 Mpa, the maximum stress in the shell is much below
the yield strength of the shell material and thus the shell

deformation is within the elastic limit.

Results of this composite shell are shown in Figs. 12 to 20.

Figure 12 ,shows the deformed and undeformed shape of the shell
un~er axially varying load. It is observd that the deformed shell
is wavy in the region between ~ = 1.0 and ~ = 0.6 and it is of
particular interest that the region between S =0.2 and s = 0.0
bends inward under internal liquid pressure whereas the remaining

It is to be noticed here that the,shellportion bends outward.
is filled up with a liquid of specific weight ~ -up to s = 0.2.

The linear, nonlinear and analytical membrane solutions of the
'various quantities are plotted against meridional distance in

Figs. 15 to 20. The plotting of axial and circumferential

stresses for this shell are shwon in Figs. 15 to 18. Fig. 15

shows the distrioution of axial stress at the inner fiber in
shell No.1. Normally, had there been no edge restrain and no

junctions in the shell. the development of axial stress in the
shell could hardly be justified. Only tensile circumferential
stress could have been explained. A rough estimate of the maximum
value of this circumferential stress by simple thin shell formula
gives it a numerical value of 0.51200 x 10-3 whereas the maximum

value of the axial stress here is 1.01 x 10-3 according to

linear theory and according to nonlinear theory the corresponding

axial stress value is 0.67 x 10-3•
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The existence of axial stress is entirely due to bending at the

junctions and at the edge restraint which is not accounted for in

the simple membrane theory of shell. Normally a shell has the

tendency of :straightening-up at the junctions under load. The

distribution of axial stress in figure 15 is fully in conformity

with this general tendency of shell. However, a few interesting

points should be noted here. First, the junctions in a shell

plays a havocal role in inducing stress which has no bearing with

the concept of membrane theory of thin shell. Second, the

prediction of linear theory is highly inadequate in this shell.

It predicts a highly exaggerated value in comparison to nonlinear

theory. The difference between the predictions of the two

theories can easily be explained. The linear theory assumes that

shell retains the original geometry and as a result has to exert

a higher moment to straighten the shell at the junctions. But the

nonlinear theory take the shape of the shell under load as its

true form. The shell under load is already straightened up to a

large extent and it has to exert a far lesser moment for further

straightening up.

Fig.15 indicates that the junctions are under high tensions.

Maximum tension is at the junction, s = 0.7, as expected in case

of a shell containing liquid inside. But junctions are under high

compression as indicated by the outer axial stresses, which is

shown in Fig. ~6. High tension and compression occured at the

junctions for inner and ol,l;erfihers of t.I,e shell respectively
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because of bendings and discontinuties of radius of curvature.

.. ~'.

Figs. 17 and 18 show that the distribution of the inner and

outer circumferential stresses are of approximately the same
qualitative nature as the inner and outer axial stresses,

respectively. But contribution of maximum axial stresses are

about 3 times the contribution of circumferential stresses.

Figures 15 to 18 also show that the analytical membrane results
are much closer to nonlinear results. So, it is noted that

membrane theory predicts better results than the linear. theory
and those results are quite acceptable except at the end fixity

and shell junctions.

Figures 13 and 14 show the distribution of meridional and
circumferential bending moments along the meridian. In these

figures it is noted that the meridional bending moment is the
dominating contributor to stresses in the shell. Considerable
amount of bending moments are developed at the junctions which
gradually decrease with the decrease in loading along the
meridian. The diffe~ence between the results of linear and
nonlinear theories are shown in the figures. The maximum stress
in this shell is the meridional stress at the inner surface of
the junctions. Although the meridional bending stress at the
junction as predicted by the linear theory is much higher than
the actual stress as indicated by the nonlinear results, it still
remains to be the maximum of all the stresses. The most
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interesting observation in Fig. 13 is that the amount of bending
moment developed in the spherical tip of this shell is

practically zero. Had there been no spherical top the bending
moment at the apex of the shell would definitely have been much
greater. This is a clear indication of the fact that the best
possible way of avoiding the stress concentration at the junction

is to use a spherical ring there.

Figure 14 shows that the distribution of the circumferential
bending moment is approximately of the same qualitative nature as

the meridional bending moment.

Figs. 19 and 20 show the membrane state of axial and

circumferential stress resultants, Ns and N~. Fig. 19 shows that
the maximum positive value of Ns occurs at the base (s = 1.0) of
the shell and gradually decreases with the decrease in internal

pressure. At locations, s = 0.0 , 0.10, 0.20, and 0.30 the

compressive values of Ns indicate that the shell is under

compression meridionally under liquid pressure.

Fig. 20 shows that the maximum circumferential stress resultant
occurs near the base of the shell meridian. Compressive value of

N9 is obtained at the junction s = 0.7. It should be noted here

that the circumferential stress resultant is of much greater
magnitude in comparison to that of the axial stress resultant.

Analytical results of N&

6)

based on membrane theory are also



presented,in Figure 20.

..\ ..

It should be noted here that the

analytical results are very close to nonlinear results except at

the,base of the shell.

In the absence of edge restraint, N. would be zero along the
edge. Thus N. is induced in the shell because of the restraint at

the edge.

Shell - 2

This shell is exactly of the same geometry and boundary conditons

as shell 1 except, that the thickness ratio, Rlh = 300 and
pressure at the base PolE = 0.356 x 10 -5. The numerical values
of different quantitie~ for axiallt variable loadings, specially

the components of displacement and moment at 10 equidistant

locaitons on the meridian are presented in Table - 3.

In order to ascertain that Reissner'stheory of axisymmetric
deformations holds good in the analysis of this shell, it is
required to show that the deformations are elastic. Thus the
.values of the maximum stresses at the junctions would have to be
less than the yield strength of the shell material. From the
detail results of this shell, nondimensional value of maximum

meridional stress at the junction (5 = 0.7), ()..1. = 2.517 X 10-3

according to linear theory and 0.445 X 10-3 according to

nonlinear theory. Considering shell material to be steel,
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corresponding numerical value of maximum meridional stress is
found as C).O = 503.4 Mpa at the junction (s = 0.7), which is
much below the yield strength of high strength steels.So the
deformations of this shell are elastic.At the apex Clai =
-0.16831 X 10-8• For the same material, its numerical vlaue is
very small than that of the' maximum value. The linear and
nonlinear solutions for stresses and moments are plotted against
meridional distance in figures 21 to
based on membrane theory are also
23,26,27). These results show that

27. Analytical results
plotted in Figures (21 -

the membrane theory can
predict the state of stress in these thin shells more accurately
than the linear bending theory.

Here also, the stresses conform to the general expectation.
Fig. 23 shows the distribution of the inner circumferential
stress which is maximum in the line element near the junction
(5=1.0 to s= 0.8) according to linear theory and its numerical
value of 1.0057 x 10-3 whereas the maximum vlaue is this
circumferential stress by simple thin shell formula is 1.068 x
10-3• The distribution of circumferential and meridional bending
moments for this shell are shown in figures 24 and 25. Figure 25
indicates that the meridional bending moment is maximum at the
junctions (8 = 0.7 and s = 0.5) and at the base (8 = 1.0) due to
bending at the junctions and at the edge restraint. The numerical
value of maximum nondimensional meridional bending moment is
3.3741 x 10-1 at the junction S = 0.7 according to linear theory



and the corresponding nonlinear value is 0.541 x 10-1•

'.. ..-----('

Between
the junctions the curve 'of Ms takes a wavy form. The value ofMs
gradually decreases with the decrease in loadings and becomes
very small above the liquid surface.

Fig. 24 shows that the distribution of the circumferential
bending moment has approximately the same qualitative "rd."r'" 'IS

the meridional bending moment. But it is seen that contribution
of maximum circumferential moment to the stress is about ~ times
the contribution of the maximum meridional moment. It shows
further that the distribution given by the nonlinear solution
differs substantially from that of the linear solution which is
already discussed with reference to shell - 1.

Figures 26 and 27 show the distribution of the nondimentional
meridional and circumferential stress resultants, respectively,
against the meridional distance of the shell. The linear solution
of Ns is maximum at the base (s= 1.0) and it remains high up to
s = 0.7 due to uniform slope of the cylindrical part. From the
location, -s = 0.7, the value of Ns decreases gradually along
the meridian because of low loadings and reduction in the
circumferential of radius of curvature.

Figures 26 and 27 also show that the results of membrane theory
are almost identical tononlinear results. Thus membrane theory
predicts quite acceptable valus of stress resultants except at
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the end fixity.

Fig. 27 indicates that the magnitude of N8 gradually decreases

towar,lsthe junctions. Specifically, it has ebcome compressive

at the junction, s = 0.7 due to the general tendency of shell and
it is maximum in between the base (8 = 1.0) and the junction s =
0.7. After the location 5 = 0.7, the value of Nil> decreases and

it is nearly zero at the apex (8 = 0.0) .. Due to the edge -
restraint the circumferential stress resultant at the base is
approximately zero. Figs. 26 and 27 also indicate that N. is very

small in comparison to No because internal load is mainly

resisted by the circumferential straining of the shell.

It is noted here that the stresses increase with the increase in
loadings and also with the increase in Rlh ratio.

This is another Composite shell consisting of a eylinderical

part, a circular part and a conical frustum. The base of the
she.ll is a cylindrical part and the top is closed with a

spherical part, like shell - 1 and shell - 2. But the locations

of various elements, meridional angle ( cPo ) i for each segment

at the lower end and the thickness ratio for each segment are
different from that.of shell - 1 and shell 2 • Here the junctions
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are located at the points s = 0.7, s = 0.5 and s = 0.3 from the

apex. The meridional angle ( 4>0) i at the lower end of each of

the segments are : foil = 90° , ( fo) Z = 90° , po) 3 = 900, (1'
0) 4 - 780, fo) 5 = 66.960• ( po) 6 = 45° , ( po) 7 = 450• (~

0) a = 35°, ( ~o) 9 = 23.27° and ( ~0)10 = 130.

Initially the shell is considered to be filled with a liquid of

specific weight l up to the segment Sa.This particular shell is

shown in Fig. 2. The numerical values of moments and

displacements at ten equidistant locations on the meridion are

presented in Table 4. The nondimentional inner meridional

stress 0;1 at the bast"' is 111;'1.";; lllllm \"hcr'('" i Ls numeric.al value is

0.2844 x 10-z and at the apex Oai = 0.26156 X 10-4• The

maximum stress at the base becomes 568.8 Mpa and at the apex

5.23 Mpa. if the material is steel. So the deformation of the

shell meridian is within the elastic limit. The base and the

junctions of the shell meridion are under high tension axially at

the inner surface.

The linear and nonlinear solutions of bending moments along the

shell meridian are presented in graphical forms in Figs. 28 and

29. It should be mentioned here that the maximum values of M. and

M$ have occured at the base in this shell whereas the respective

values are maximum at the junction s = 0.7 in case of shel.l - 1

and shell - 2. Fig. 28 sl,ows that the maxim'im value of ~9 is

0.263 at the base and 0.224 al lohe junction, ~ = 0.7 according to
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linear theory. For different geometry the slopes at the junctions

and the radius of curvatures of this shell are lesser than that

of shell - 1 and shell. - 2. So, in relation to original geometry

this shell is more straightened at the junctions than the shell -

1 and shell - 2. That is why the maximum moment and stress are

developed at the base rather than at the junctions of this shell.

Figs. 30 and 31 show the distribution of nondimensional axial

stresses at the inner and outer surfaces of the shell.Fig.31

shows. that the base and the junctions are under high compression

axially at the outer surface, while the neighbourhood of the

junctions and middle portions of the cylindrical, .spherical and

conical parts are under tensions. The maximum stress is obtained

at the base(~ = 1.0) due to end restraint. Fig. 32 shows that

the maximum inner circumf","cntiaJ stresses are developed in the

middle portions of the respective parts of the shell. The maximum

solution.lineartheofthatfromsubstantially

numerical vlaue of circumferential stress is 1.416 x 10-3 whereas
the rough estimate of the maximum value of this circumferential

stress by simple thin shell formula gives it a numerical value of

1.500 x 10 -3. The same qualitative nature is obtained for the

distributions of circumferential stress resultants which is shown

in Fig. 33. Above the liquid surface a little compressive stress

is deveLoped due to discontinuties of loadings. Fig. 34 shows

that the distribution of N. given by the nonlinear solution
differs

, \
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Analytical results based on membrane theory are also presented in

Figures 30 to 34

(b) Built-in Edge Hemispherical shell

For this shell both the linear and nonlinear solutions are
obtained and presented in graphical forms so that the difference
between these two results can be readily checked. It should be
noted here that in all the graphs presented, the linear solution

may be considered as equivalent to the nonlinear solution at zero

loading.

In Figs. 35 and 36 the nondimensional values of M, and M. for
hemispherical shell are plotted I respectively I against the
meridional length of the shell for Rlh equal to 200. The peak
values of the meridional bending moment based on both the linear
and nonlinear theories have almost the same magnitude and are
identical in distribution in the hemispherical and in the
cylindrical shell for the smae loadings and for the same Rlh

ratios. The maximum bending moment is obtained at the base (8 =
1.0) of the shell meridian, where the.shell edge is assumed to be
restrained against rotation.The same magnitude of the edge
bending moment for the spherical and the cylinderical edge
segment shows that bending moment due to edge restraint is
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independent of shell geometry.

It should be mentioned here that the circumferential bending

moment is approximately V times the meridional bending moment

as dictated by the governing equation and verified here in

figures 35 and 36.

Fig. 37 presents the distribution of the circumferential stress

resultant Ne for both the linear and nonlinear solutions. The

values of ~ obtained from analytical membrane solution are also

presented in figure 37. It shows that the. distribution given by

the nonlinear and membrane solutions differ substantially from

that of the linear solution. In the absence of edge restraint, a

roughly estimated maximum value of ~ is 0.5. As seen in figure

37 N& has exceeded this value because of edge restraint. The

zero value of Ne at the edge is easily

explained. Because of edge fixity the shell could not expand

circumferentially. Hence, no circumferential stress could be

induced in the shell at the edge. The wavy nature in the

distribution of Ne is quite in conformity with the distribution

of circumferential moment distribution.

Fig. 38 shows the distribution of N., which decreases with

decrease in loading along the meridian. In the absence of edge

in the shell because of restraint at the edge.

restraint, ..--N. would be zero along the edge. Thus, N. is induced

,



~igs. 39 and 40 show the distribution of the nondimensional

circumferential stresses at the inner and outer fibers of the

shell. It is observed that the circumferential stress has almost

the same magnitude at the inner and outer fibre. This shows that

circumferential stress is mainly induced by the internal liquid

pressure. Analytical membrane. results of circumferential

stressea are also presented in figures 39 and 40. The results

based on membrane theory are observed to be much closer to

nonlinear results and thus superior to the linear results.

The distribution of the meridional stress at the inner and outer

fibers in the hemispherical shell is shown in Figs. 41 and 42.

The distribution of stresses and their peak values for both l:hr

hemispherical and one end fixed cylindrical shells are almost

identical. This shows that meridianal stress in both these shells

is entirely due to edge restraint. The maximum value occurs at

the inner fiber at the base in both the cylindrical and

hemispherical shells. The maximum value of Clai is equal to

0.62549 x 10-3• This stress becomes' 18764.7 psiConsideri6g the

material of the shell to be steel. So the deformation is within

the elastic zone. The difference between the solutions of the two

theories increases with the increase in load. The numerical

values of various displacements and moments are presented in

Table -5.
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CONCLUSIONS

The stress problems of axisymmetric shells under axially varying

internal pressure has been investigated in this thesis. The

axisymmetric shells under investigation may be composed of

spherical, conical and cylindrical segments and the two edge of

the shell, top and bottom, may have any kind of edge-fixity

including the provision of completely closed top. The axially

varying load may be considered as that exerted by a liquid column

contained either inside or outside the shell. Solution is

obtained for varying height of the liquid column subjected to any

pressure on its top surface. Analysis of axisymmetric shells

based on both the linear and nonlinear theories have been

achieved here. The nonlinear theory of axisymmetric shells as

developed by Reissner (36) has been used in this analysis. The

basic concept of multisegment integration developed by Kalnins

and Lestingi (24) has been employed to obtain the solutions of

the nonlinear equations of shells. The soundness of the theory,

the method of solution, the criterion of finding the internal

pressure along the meridian and the computer program used for

numerical results are all checked by comparing the solutions of



",.-.,,'('w'/-;.. ..... ~.
.,.,.~ - :-:;..:-.

a one end fixed cylindrical shell of uniform thickness ratio with

those of an analytical solutino of the same shell under the same

conditions.
The comparison shows that the method of solution, the governing

equations and the computer programme are all free from any error

and based on sound hypothesis.

Based upon the results of various problems presented here, the

following conclu::5 i 011:-: .ll~(' m,Jdr: :

(1) The linear theory of shells is, in general, very conservative

in predicting the state of stresses and deformations in the

axisymmetric shells.

(2) Any discontinuity in geometry of the meridian induces bending

\';'. ;.~

"-~, - ~~

stresses in the shell. If the change in geometry is also

ass,'"i.aLcd with the discontinuity of slope, then the max i IIltllll

values of bending moments occur at the junction. Under this

circumstance the inner fiber meridional stresses become usually

the maximum of all the stresses of the shell under internal

pressure except those produced by the end fixity.

(3) If the included angle of a junction is less than 180 degrees

then a circumferentially compressive zone is developed there

under load .

.\
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(4) The magnitude of the bending moment developed at the junction

is observed to increase with the decrease of the included angle.

at. the junction.

(5) In designing axisymmetric shells with discontinuity of slope

of the meridian care has to be taken of the extreme stress

concentration at the junction.

(6) The best possible way of avoiding the stress concentration

at the junction is to use a spherical ring matching in slope'with

the two neighbouring segments.

(7) In this shells the membrane theory is observed to be

superior to linear bending theory in predicting the actual state Dr
stress even ~f the shells have geometrical discontinuity. It can

thus be concluded that the linear bending theory should not be

used in analyzing stresses in shells except perhaps in finding

the effect of edge fixity in absence of a nonlinear theory. The

prediction of stresses at the restrained edge, by the linear

bending theory is always found to be highly conservative.
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TABLE - 1

Ana1ytica1 and Computational Soll1tionaof pure Cylindrical shell
with one end fixed.

SHELL PARAMETERS I polE = 0.256 x 10-5 , Rlh = 200. v= 0.3
JlIeridlona1 Radial Displacements, circumferen~;a1 stress Resu1- Axial Bending Moments,
distance u in inCh tant.N. 1b inch Ms inCh lb. per inCh
from the Analytic&: Computa tiona1 Ana1ytic~al\ Computa tiona1 Ana1ytica11 Computationa1
appex.~ -

Linear Non-linear Linear Non-linear LinearlNon-1inear

1.0 0.0 0.0 0.0 0.0 0.2279 -11.776 765175.1 771292.14 660476.27

0.95 1.109 1.12 0.9433 166350 168219.2' 141511.87 -159792.7 -153315D6 ••139186.62

0.90 0.9919 1. :J)4 0.9880 148785 195749.4~ 148216.79 - 7562.65 - 910 '>.61- 11116.31

0.85 0.8477 1.24 0.770 127155 18 6231.1 115596.64 4806.17 - 3144.0: 4816.04
. .

0.80 0.680 1.213 0.5924 102000 182090.54 88868.82 - 183.95 - 2564.61 255.75

0.75 0.5108 1.176 0.4216 76620 176469.76 67576.40 - 112.02 - 3221.10 1169.13.-
0.70 . o. )404 1.11 0.2641. 51060 167808.89 39623.15 13.65 _1:J)26. 88 4581.02

0.65 0.1702 0.909 0.1476 25530 136377.01 22142~17 1.86 -65105.90 0.01025

0.60 .1.79 xl& 0.224 0.6457 0.02685 3360~. 20 6858.05 -0.5097 76485.19 - 3. 49x1O"'-. - ,

0.55 -O.O:J) P-0.0561 1-4517.04 -8425.25 18860.36 _J.47xl0,.5.

• :

0.50 4.272:10 -0.0158 640.68 -23708.15 0.0165 -4.12~10-.

122

1 r,- 0:--~



TABLE- 2

LINEAR AND NONLINEAR RESULTS OF THE COMPOSITE SHELL NO.1 (Fi«ure - 1)

SHELL PARAMETERS , Thickness ratio, R/h = 200 I Poisson's ratio, = 0.3

Base Pressure, Po /E = 0.25600 E-05
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TABLE-3

LIN,:AR.AND NONLINEARRESULTS OF mE COMPOSITESHELL No.2 (Figure.-l)

SHELL PARAMETERS I Thickness ratio, R/h = 300, Poisson's ratio,

Base Pressure, polE = 0.'S600B-OS

= 0.' ,,
"

NONLINEARRESULTS

LINEAR RESULTS

.• U (3 v I ' : i V' H Me

. b~. a ~ lO:J:):J 0 0 0 =+010. :)) ) 0 0) 0 0 E+00) • 00 Q 0 0 J DOE+ ) 0) •G()aGe:,::, .J:: +000 • 3,2:"1 't t> 9,' +00 - .3 '.' " 79" 3 2 E- J 10.2 6192619 E+0 0
O.9J)))))J=+OOO.S3341123::+00-.3736?73b::-J3-.Z2zo1157r_aln.332~13B4=+OO-.154Ii394E-020.15219768E-02

•• O.80)OJOOO=+O)).S2~52063E+OO-.16135~9~E-)2-.337~~S~b~_jln.332~1;IJE.nO-.20576759~-020.25S32563E-02
"~O.7000000)E+O)~~472"4116E+OOO.240623S6=-)2-.6233cJ97=-:I~.312~123et+000.51232831Ej)10.33740678E+00 .~

).5))000)OE-000.47~37321E+OO-.90q74834E-)3-.454S6~P6t.O)O.29057319~-OUO.15123IB8E+000.1306S755E-02
"r-'O•50))))00E+OOO.25214165=+OO-.57841734=-02-.34130273::.0)0.229759B3~+JOO.19b97299f-OOO.l0863361E+00 _"
• ~O. 40)0 0000 =+D) O. 48711S81 =+000.19345793= -) 3-.5350 So 1S = -J 00. l', 7::,23E.6 =+000. 1l,l87 5 [,4r:.000. 42099307E-03 .;""

O. 30)OaJ)0=+aOO.'27081153E+00- .56852'; 305-) 3-.] '0421 1]4,0-000.644]079!;=-0 10.5759700)['-01- .40668706E-02'-'
'''';- _.0.200 a:>0 a) =+0 0) • 811 2 ~ 8" 2 E- 02) • '141 b 8 3 32 F- )] - • 7281 b ~ 'i :' ~ - ~ I a .::n 3 H b 11 1: -:) A - • .32 I 3 J D:) 7 i> 0 3 a • SI 9055 17 E- 0 2 .,._,.\
. ,LO.l000)aaOE+O)- ."2952181E-05- .10792446E-)9-.f, 1560 103:: -[JI0.171~41 hF-()8- .18190d7E-04-.18675455E-03 __.:...3i

0.D))0))0)E-OO).aOOa))DOF-O()o.()()n)))oor'J()-.D,7~IO'iI:_01().00000000~+OO-.722b.3JB2F-nl0.73327005E+00

-
s u (3 v i V B R8- ..~

,~_Q. 1OJ)) JODE-Ol 0.))) aOD DOE+OO) .0000n)) 0:: +)):].J J J J J )oe F -:~OJ • '~l 0'10" I 7 5-0 1- • .3) 5 j ') -,~2 F7 0 lJ. 23223 0 HE+DO_2'::~
0.9))))0)a=-000.77)~S7~6::+00).1973S775C-)2J.?~3~?]1 IF-OIO.?1717627i-JIO.?1165802c-D2a.19172440E-02

.;. I .0.8 J) Q 000 ) ~ - 000 • ~ 171 1 ,2 .3::HlO O. 1233 9 ~ 5~ ::- J2;). " : "~~ .: ,,', ~ - J 1-). 9) 615" 9 9C - a 10 .1 72322 , 8 ~ - 020. n..2 1H 8DE- 0 3 ~
. 1._dl_._7a:J O:JD) 0 t: +0 aD. I 7 89995 1E+ODD. 2327 b" 3 4 E- J2 0 • "J 8 "" ' t." ..- J to. 91 )'1 ~ 097 ° - 0 10. I OJ"13 9 ~ 5 = - 0 10 • 541 8 7 7 7 2 E- 0 l.~~

0.600))00)=+)OO.27589797E+oaa.11617568=-Jc).27G.~j2~O-OIO.64826546=-alC.3632,d5DE-Jl-.92675039E-03
.".J~,..'.O. 50)0)00) E+0)) .153 90 il5 9" +00).53508036::- 030. II 0 5 DD25 =- J 00.]7319531 E-) 1:).3337127, c- J 10.,55) 32 74E-02 ..•
- .L:"Q •.400000 DOE+OOO. 93 )28b2 ~=-OlJ. '16900,73=-) 30 .1 727 72 ~5 =+000.130 I 750fl E-J 10.15742935 [=-a 10. 51362 06bE-03 ."' -.

0.3a)))0))=-OOJ.31253~29t:-Ol0.2'131~5J5~-)JG.2.490:7J=_lJ-.2~308,33=-07a.SD)B21~2~-030.2J795023E-03
; . '0.2 J)) )D) OJE+0 0 0 • 3Dl 59577:= - 020. 153 B 051 =- J 30.2 77 5 b tJ) 9 0 - 0) - .20] 13,80 =- 07 - .1 51 3 i 5 8 2 = - a lJ • 22682972 =-:n -- ..-.;;-....
- O. 1 [)) 0 a J J ) E+J a - • 2 " '0 7 2 a " 7 E- 020 • 1 7 50 47 2 1=- a 9 :J• 2 :; 29 3 35 2 ': +0 0 - • I ~ I 5 7 i 5 3 C- 0 7 - • I 3 5 4 5 5H =- 0 1 J • 3 03 ) 500 4 E- a 3n:~;-.'

0.)ooaoa))=+ooO.JOOOooooc+ooa.JOOOOJOOc-}OJ.c)2,+7Jl "='~)0.')GJpO)Jc-CO-.23,5i22C=-cl-.201?3B80E-01
',_--L- - - 124.



TABLE-4

LINEAR AND NONLINEAR RESULTS OF THE COMPOSITE SHELL NO.3 (Figure-2)
SHELL PARAMETERS I Thickness ratio, R/h = 300; Poisson's ratio, = 0.3
Baae Pressure, PolE = 0.50000E-05
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TABLE-5

LINEAR AND NONLINEAR RESULTS OF BUILT IN EOOE HEMISPHERICAL SHELL No. b '

SHELL PARAMETERS I Thickness ratio, Rlh = 200 Poisson's ratio = 0.3

.,
~

Base Pressure, PolE = 0.2S60oE-05
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APPENDIX A

PROGRAMMING FEATURES

A-I GENERAL FEATURES

The Computer program used in the present investigation is adopted

from that of Uddin ( 46) with necessary modifications to suit the

requirements of solving stability problems of axisymmetric

composite shells under axially varying internal pressure. The

program is based on Reissner's nonlinear theory of axisymmetric

deformation of shells (36) while the multisegment method

developed by Kalnins and Lestingi (24) takes care of the solution

of the governing equations and the integration process is carried

out by a predictor - corrector method. The predictor and the

corrector are respectively given by formulas (19.16) and (19.17)

of Ref. (29). To secure the six starting values necessar~ for the

application of this pair of predictor and corrector, the six-

point forward difference formulas (19.10 - 19.14) of kef. ( 29 )

are being used. It should be noted that all. these formulas

contain error of the order of H7, where H is the distance between

two consecutive co~putational points, thus they.are highly
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sophisticated. The program will produce nonlinear results for

increasing steps of louding up to the number of steps as

directed. In part A of the program the necessary information

required for the solution of problem is read in. Part B of the

program deals with the problem of adjusting the given boundary

conditons with regard to the solution of the matrix equations. In

part C, R, called 'RC' is determined for composite shells. Part D

of the program is concerned with the calculation of the

normalised constants involving shell parameters, material

constant, and loading; under the part E of the program the output

of the results is handled. The remaining portion of the program

deals with the integration of the different systems of

differential equations and the solutio of matrix equaitons. Each

segment of the shell is divided into twenty-one computational

points.

A-2 TREATMENT OF BOUNDARY CONDITONS

Equations (3.37) written in terms of the normalised fundamental

variables and in accordance with the statement of equation (2.82)

appear as
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1 0 0 0 0 0 u u

0 1 0 0 0 0 (b (JJ
0 0 1 0 0 0 w w

0 0 0 1 0 0 V = V ...... A-l

0 0 0 0 1 0 H H

0 0 0 0 0 1 M. M.

In the matrix equation (A-I) the elements of the column matrix on

the left hand side remain in the same order, whereas, those on

the right hand side should be arranged in such a manner that the

three prescribed elements at the boundary become the first three

elements of this column matrix. According to equation (2.82) if u

is specified at the boundary, the first and fifth rows of the

unit matrix of (A-I) remain the same, while specification of H at

the boundary will require the inter change of these two rows

which will interchange u and H in the column matrix on the right

hand side. Similarly, if (J is specified at the boundary, the

second and the last rows remain as they are, and interchanged

when M. is specified. Lastly, the third and the fourth rows of

the unit - matrix are kept the same or interchanged depending on-whether W or V is specified at the boundary. The same operation

is carried out for both the boundary points. The transformed unit

matrices of (A-I) are then designated by Tl at the starting

boundary and by TH+l at the finishing boundary.
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A-3 ON THE USE OF THE PROGRAM

In order to use the program for obtaining solutions of different

problems, knowledge of the definition of input and output

variables is essential. Variables used in the program with their

definition are given in the table at the end of Appendix A.

Necessary information to be read in are.

Card No. 33 This card reads in the amount of loading step EM1

and the number of loading steps SOB1. If at any loading the

solution fails to converge, the loading step EM1 is automatically

halved by the program and the solution for the new loading is

attempted.

Card No.

and IZ,

card.

35: H, the number of segments of the shell meridian,

indicator of the type of problem, are read in by this

The indicator IZ will have different values depending upon the

type of problem to be solved. The appropriate values of TZ in

accordance with the types of problems are given below in tabular

form.



Type of Problem

Spherical head puressure vessel

Flat end pressure vessel

Conical head pressure vessel

Ellipsoidal head pressure vessel

General case of composite shell

Card No. 38

Value of 12

1

2

3

4

5

This card is used only for the general case of composite shell

and will be skipped over in case of pressure vessel problems. It

reads in the value of IG(I) which indicate the type of the

segment Si. The quantity IG(I) may have anyone of the values

given below in tabular form depending upon the type of the

Segment Si

Type of Segment Si

Line element

Circular element

Elliptic element

1'1

Value of IG (1)

1

2

3



Card- No. 40

. '

This card also is used only for the general case

of composite shells and skipped otherwise. It reads in the values

of APH(I) which indicate the starting value of the merdional

angle(fo ) i for the segment S:i.

Card No. 42 Like cards No.38 and 40 this card is ignored

for pressure vessel problems and is used only for composite

shells. The value of 'RC', the ratio of the total length of the

shell meridian to the radius at the base of the shell, is read in

by this card. In case of a shell which is open at the top the

length of the meridian should be measured from the center of the

open top so that the value of s at the edge of the open top is

different from zero. This is neces,sary because s = 0 is

associated with the specialised equations valid only at the apex.

ratio 'AN',

This card r~ads in the values of poisson'sCard No. 44
normalized load 'ENO' at. t.he base ('5 = 1.0),

meridional angle of the spherical cap 'PHI' at the juncture the

semi-angle 'ALP' of the conical head, the ratio 'ER' of the minor

to major axes of the ellipsoidal head and the ratio 'XL' of the

radius at the juncture of the sperical tipping of conical head to

the radius of the cylindrical part. 'EM2' is the same as 'EMO'

for operation facilities only. The four quantities of this card,

namely 'PHI', 'ALP', "ER', and •XL' are not needed for general

case of composite shells, and thus can be assigned arbitrary

values.



Card,No.46 This card reads in the thickness ratios Tk (I) for

the segments S1 , i = 1,2 •••• ~ •••• M

Card No. 50 This card reads in the values of the independent

variables X(J,l) and the initial values of the six fundamental

variables X (J,'I), I = 2,7) for the nodal points J, (J = 1, M

+1), For the general case of composite shells the nodal point

(J=l) coincides with the base of the shell where X (1,1) = 1.0

CArd No. 52 The boundary values of any three of the six

fundamental variables at the starting boundary are accepted

th l'olJ~h I.h i s <"u",i. These are, for clamp"d edges

X ( 1, 1) = H = 0.0

X (2 ,t ) = (3 = 0.0 A-2

X ( 3 , t) = w = 0.0

Card No; 54 This card reads in the three prescribed boundary

conditions at the final boundary. For the- general case of

composite shell with no hole at the apex, they are -

XY (1,1)
XY (2,1)

XY (3,1)

= u = 0.0

= (J = 0.0

= V = 0.0

......... A-3

Card No. 56 .. The values of the boundary condition

indicators at the starting boundary are read in by this card. The

1JJ

n
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appropriate values of the indicators 'lSI', 'IS2', and 'IS3' are

given in the following table. ",

Specified quantity Indicator and its value

u lSI = 0

(3 IS2 = 0

w IS3 = 0

V IS3 = 1

H lSI = 1

M. IS2 = 1

Card No.58 Here the values of the boundary condition

indicators at the final boundary are read in. Their appropriate

values are given in the above table where the quantities 'lSI',

'IS2', and 'IS3' should be replaced by 'IFl',

respectively.

A-4 OUTPUT OF THE PROGRAM

'IF2', and'IF3',

The first output will be the given initial nodal values of the

independent variable s and the six fundamental variables u, ;1,



w, V, H, and Ms in their written order columnwise and in tabular

form. The second output gives the value of number of of pass and

residue - the .sum of the differences of the absolute values of

the fundamental variables at the nodal points of the two recent

consequtive passes.

The first out-put is then repeated for solution based on linear

theory. The next output presents the details of the solution

based on the linear thery. Her~ 'the following quantities are

printed out in tabular form and in the order of s, u, w, Ms

N s , ()co. ~i. ~o. P columnwise.

For each segment these quantities are printed out at twelve

equispaced points.

A-5. DEFINITION OF COMPUTER VARIABLES

Variable Definition

EMO PolE, normalized load at the base

EM PIE, normalized load at any point on the meridian

EMI Increasing step of EMO

SOB1 Number of desired loading step

M Number of segments on the shell meridian

IZ Indicator of the type of problem(IZ=5, for composite

she 11)

:1 :35



Constant R = se/R

u at the nodalpoint I

(3 at the nodal point I

w at the nodal point I

V at the nodal point I

H at the nodal point I

M. at the nodal point I

u or H at the starting boundary

p or M. at the starting boundary

w or V at the starting boundary

u or H at the finishing boundary

~ or M. at the finishing boundary

w or V at the finishing boundary

RC
AN
ER
Tk(I)

X(I,l)

X(I,2)

X(I,3)

X(I,4)

X(I,5)

X(I,6)

X(I,7)

XX('l,l)

XX(2,l)

XX(3,ll

XY(l,l)

XY(2,l)

XY(3,l)

Poisson's ratio,

Ellipticity ratio, B/A

R/h, Thickness ratio for segment

s at the nodal point I

Si

151,152,153 Indicators of boundary Conditions at thestarting

boundary
Indicators of boundary Conditions at the finishing

boundary
'Number of pass; NP=l indicates linear solutions.

N./(PoR).

M61 /(Po.R.h)

IF1,IF2,IF3

NP

T7(N)

T22(N)

T9(N)

=
=
=

NII /(PoR)
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APPENDIX -B

UNDERSHELLS [0'10003
CO"OOO"
CO~Oa05

~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CO~OJ06
COMOOC7

JI"E'JSIJ'J I~( 10) C8'10003
~:: 4 L~3 X( 11 , 7) , Y( 7 ,z II ,z ( 7,6) • YII 7,211 ,Y Z ( 11 ,3) ,Y 3 ( 11 ,3 I ,F ( 7 ,2ll : 0,'10 J ~?
~E~L~ 51( 3 Z ) ,~ ~~ ( 10 I , I Kl 1 0 J • X7 l 11 .7 I ,A KI 4) , TZ Z ( Z I J , l Z I 3 • 1 ) , IS L [0'10) 1 J
~E" L~,g " Y( ) , 1 ) ,,'~,YI 3. 1 ) , i',~I 2 1 ) , FX( 2 1 ) ,H -j ( 2 1 ) , l " I 21 I , Za ( 21 ) : D'10 0 1 1
~E~L~' 8 IS 1 I 3 ,3 I , TS 2 I 3 , 3 ) , TS 3 I 3,3) , IS 4 ( 3,3) ,T F I ( 3, 3 ) , TF 2 ( 3,3 1 , IC L : 0'1 0 J 12
~E" L:' 8 IF) l ), ) ) , IF" ( 3 , 3 ) , A14 I 3 , 1 ) , Al 5 I 3 , 1) • AI" l 3, 1) • A171 3, 1) • TS[ [0,.,001)
RE4~ ~,8 AI 8 I 3 , ) ) , [ I 1 1 , 3 , 3 ) '" I 1 1 , 3 ) , Ell 1 , 3 ',3) , gIll, 3) ,X 1 I 3" 1 ) , R4 : Q ~ ail 1"
~:: "L'~ 8 X2 ( 3, 11 ,C l( 2l'l , [2 I Z1 ) , T7 ( 21 ) • I9 ( 2 II , Tl a ( 21 I d ( 21 I ,p H( 21 ) C0,'10 J 15
~ = ~L~' 8 R') ( 21 ) , l 1 (3. 1 J • A1 ( 3 , 3 ) • A2 ( 3 .3 ) .43 ( 3, 3) • Vtl J. 3 ) • ,,6 ( 3 • 3 ) : 0'10 J I S
~E" L~ 8 " 7 I 3 , 3 ) • A8 l 3. 3) • " 9 ( 3 • 1 ) • " 1:: ( 3 • 1 ) ,A 11 I 3 • 1 1 • A12 l 3, 1 ) , B~ S • EMZ: 0 ..,0 0 17
~E4 L* 8 XXI ) , 1) • XYI 3. 1 ) • A9 ( 3 , J ) • UI &.6 ) , l F ( 21 ) ,ct L( 101 • C'10 • T'1 C0'1 0 J 18
~E,,~*8 ~3Z,~:.AKL.EL.aR.FL.TO.TL.ZZ.FF,P3,JP.PHI.AL~,TJ,T21.IM.PR:8~001°
JPE'J(U'JIT=3,=[LE='[N'.SIAIUS='OLJ') CO'lOJ2J
JP=NlUNIT=?FILE='QUI',STATUS='NEW') :0'10021
'JP=J :DMOil22
['J=1 :0'10023
SJ)~=O.J :O~002~
55:: l.D C0"1002S
'12=~ co~oa2~
N3=' :0'10027,
'J?=1.57071&3ZS8 :O'lOOZ8

k
','

*=====>5T~ESScS 4I I~E JJNCTIONS JFAXISYMMETRIC
* AXI4LLf VA~YI~G LOAD.

[OMOil)O'
:0'10031:

~EA0(3,110)~~1.SJ31
~~IIEI9;1101=~1,SJg1

25 ~E~JI8.5~)~.Il
~H IE(~.S9)"1tIl
IFIIl-SISlS.515.516

516 ~EU(3.5~1 (I;1I1 ,r=lt'll
~HI=(~,59)11:;III ,I=1,"11
RE"JI8,1101(4PH(1I.I=1.~1
~~ I I E 19. 1 10) I APHI II ,1= 1 , 'I)
lE~JI3.1101~[.~A,3H6
IH1TEI9,llOI ~[,il.A,BH5

515 ~E~)13,110IA'J.E"10.PHI.ALP.ER,Xl.E'I2
~~IIE[9,1101~~.E'I0,PHI.ALP,ER.XL,E'I2
~c,,)[8.1100)(I~I1I.I=1,~1
.RIIE[9,11001 CTKI f) .1=1,'11

1100 'J~'14III0FS.l1
"IJ='1.1
~C~J ( 3. ~1) I I XI J , I 1 tI = I. 71 • J= 1 • "101
.~ITEI9."1)I[X(J.II.I=1,71.J=1,MOI
R=~J(8.~11(XXII,11.I=1,31
.~Ir=n,H) IXXII.1I,I=1,JI
il.E4)IB.41)(XYII.ll.I=1.31
••RIT E Ig. 'H II xv ( I • 11 , 1=1 ,3 I

:0'100331
:0'100341
[0'10035:
CO'1003&:
::0'100371
:D~003B(

. [O~J0391
[O'l0040[
CO'lOO"l~
[O'l00~2[
CO"l0043(
C0'10 044~
:0'l0045[
CO'10045(
[8'1004 7~.
[0~004BI
CO'lOJPI
[O'l()JSO(
[0~0051{
C0'1G052f
:0'10053:
[OMOOS~:
CO'l00S51

, )8



~E~OI8,5~IISl,IS2,IS3
~RrfE(9,59IISl,IS2,IS3
~E~)(3,59IIFl,IF2,IF3
~RrfEI9,59)ICl,rF2,IF3

PART-a
5)U~aARY CJN)rTln~ TRE~TMENT

CO~0056
CO~0057
CO~0053
Ca~0059

CO~OO"l
CD~oO(>Z

)) 2l r=l,'H CD~OJ,,4
)] 21 J=l,'O CD~OO,,5
ISl{I,J)=o.O :J~OO66
ISZrr,JI=O.O :OVlOJ67

IS3(r,J)=~.O CD~OO"B
TS4( I,JI=O.O CO~O::J6q
IF4rI,JI=0.O :~:},~OJ7J
IF3( r,JI=O.O C:J~0D71
IFZII,JI=O.O CO~OO72

21 IFllI,J)=O.O CJ'IOO73
IF{ rSlJ23,23,Z't CJI.10J74

Z3 ISl(ltll=1.0 CJ~OD75
TS41Z,z)=I.O ::8"10:J76
S]n 27 CO'lOO77

24 IS?II,2)=I.a CO~Qj7~
IS3(2tl)=I.D CO~Jon

27 IFf IS21Z~,2B,2'1 C]'~OD~D
2~ f51(Z,2J::l.l :J~DO'n

15.( 3,31 =1.0 " :]~JB?

~J 1)3J CD'IOO5"\
2'1 IS? (2, 3 1= I. 0 CCl'lOJ54

IS3(3,z1=1.J :"O"10J8S

3D I F{ I S3133, 33, 34 ClJ'lO J e"
33 ISll 3,3) =1.0 co~oa57

rS1-(l,lJ=l.J CO~005~
;J IJ 35 :0~oaB9

3't T5213,11=1.0 :o~ao'lo
IS3(1,31=1.0 :o~JJ91'

35 IFIIFlJ36,3b,37 CD~JJ92'
36 F211,21=1.J :0~OJ93,

P'312,lJ=1.J :J~0:H4i
:;J rJ 33 CO~JJ95:

37 FlCl,1l=l.J CO"l00961
IF.12,21=1.o CD"10Jq7~

33 IF 1 r F2) 39,31, 'to CO"lOJ93:
39 11'212,31=1.0 COOJ9'1:

1':313,21=1.0 CO"lJI001
GO fJ 3I? COMOI011

'to 11'1(2,21 =1.0 CJ~Jl 02:
FH3,31=1.J :0"lJI03:

8 19' I F.IIF318't, 34, 87 :O"lJ 1 04:
84 IF2r3,11=1.J CO~O1O'i I

TCHl,3)=1.0 CO"lClI 05:
SJ rJ 83 C0101071

87 In I3,31=1.J ~. CO~OlO3
I1'411.1)-=1.J co~al0<>:

33 C)~rr~tE 139
CO~OllJ:



:)'10149
CO'l0150

:0'10152
CD~Jl53
[Q"I015"
eJ"IJl55
CO~Jl5(',
CO"l0157,
CO"0156'
CO"lJl59-
CO"l0150
CO"l0151
CO"l0152
[0~015)-
[ 0"1)16"
[0"10155

C0'101111
CO~0112'
CO~01l3'

:O~0130
:0'10131
CO~Jl p
:Q'I0133
:0'10134
CO'lOlJ5
CD'~013S
CD'IJl3T
CJ~Dl)3
:DuJ1J~
:O\lJlftu
:D~J141
CJI.1~1{t2
:::0 I.i 01 It 3
CQ'IOll,4
:O~Jt45
CD~0146
:D'~014T

:O~0113
CQ~011J'
:0_~0120
:Q'~0121
:O~Jl2Z
CJ~at23:::u~o12~
:)~0125
CD~012S
CQ'IrJ1ZT
CO~JlZ3

~) TJ (+01,+02,403,404,405J,ll
RC=?~I/JSI~(PHIJ
~) TJ 405
~:::;l.
:;) fJ 4-J5
~C=(1.-XLJ/JSI~IALP)t(PB2-ALP)OXL/OCOSCALPJ
XC~tll=IP32-ALD)OXL/DC)SCALP1/~C
~J TJ 405
1=1
AL=1.
~L :; 2 •
A,(L=1.- =~ot2-.
EL=l.
CL=I.
EL==LOIAL/3LJ*OZ.
FL=ELOA(LO'.'I/AL
CL=:L-FL
AL=AL.2.
3L=JL-2.
[=1-1
1~!JABS!FLJ-.IE-OH140Tt40Tt416

Tl=l.tA~
T1=~[O(1.-A~~A~)
T=T([ JIl
T)=1.0/(12.0~T10EM2oTOTI
TL=~:/T/EM2
T21=EM20T
TH=I.0/>320J:)S(AP~(9IJ
TSL =~,-H J 1I0ClS1'J(APH (1)I03.0
T[l=~AOI)[DS!3H5J-D:QSIAP~(41IJ
TS[=~H(J1)ODSI'J(APH(7J)02.0
r p = ~ A0 I ) [) S I AP'i ( 9 ) J - DC Q S I A P H ( 8 I ) )
T:;)=~3011.0-D[)SIAPH(9) II
TH=-TSltTCl-TSCtTP
~~ITEI5,t)TSL,T:l,TP,TH

C1HI'.'U::
IF! IZ-51521.5Z2.522
)?=P:J2
~J TJ SD
)P=A'HCII
JR=1./~:
:lfJ=:J]2
JJ 1 J1=1.'1

)) 31 J=I,,'1
~HIJl=XIJ.1,11-XIJ,1)
HIJl=IXIJ.1,11-XIJ,11It.05

26

406

522
523

407
ItO 5

4,02

'+03

404

401

31

140

(

\,



3Z

31Z
313
30g
305

306
301

30Z

303
3J?

307

304

311

314
31&
310

509

.510

11=1
D) 3Z 1=1,7
Yl 1,II)=X( Jl,[)
)) 300 [=I,ZI
L=[ [-Zll31Z,313,313
Y[I,1+l)=Y(I,I)~Y(Jl1
IF[Y(I,II-l.1306,30B.)05
F( Il-5130&,305,305
PY(I)='32
U[I)=I.n.:
~'J=FLOAr(I-ll
l A{ I 1 =YII~Y( Jl P) 5 I \II I'H[ I 1 I
lA( I 1=~\j~RCJ( I 1"')C05 (py( III
lJII)=n(ll/TH
=XIII=I.0-l3111
~'1( I) =E'1D~FXI II
P'=E'1 (I) ~T~T
P<=,,'1( Il~T
~UTE I 5. ~ I E'1 ( I I , TH, S::J82
:;J TO )OJ
:;] TO (3Jl.3J2,3J3,304.5091,ll
'HI[)=Y(I.II~'YI
U ( I ) =::J" I '.j( I' y ( r ) I I I'YI
:;J fJ 300
'YII)=O.
,)II)=Y(I'[1
:;J IJ )JJ
I F[ Y (1, II - Xl '1,1» 307,309,30'1
'H( 1)=pJ2-ALo
~J ( [ I = X _ I R : • I Y I 1 , I ) - X I '1 , 1 ) I ~ 0 5 I ~Jl A L I' )
:;::J T) 3JJ
, Y ( [ ) =Y ( 1, I ) ~ RC IXL *DC JS I AL P 1
<)[II=XL~)SI\l(pYIII)/<C/OCOSIALP)
:;) TJ 300
PHII)=)?
,D(I)="~
ll='YlI )
)) 310 J=I,4
FF=<C/E<~*2.~IE,**Z.'AKL*DS1Nlll)~D5INlll)1**1.5
Hf Jl =~[ Jll*F:=
:;) T) [)11,311,314,3101,J
V=.5
:;] T] 315
1/=1.0
ll='HIII'''*A(IJ)
CJ\lTI'JJ::
) P= , YI I I • [ A< I 1 ) • AK( 4 ) • Z • * I Al( I 3) • AKI 2 ) I 1/6.
),=)5III()p)/<C/IER**Z.'AKL~DSI\lID?)*DSI\lI)PI)*~.5
;J rJ 300
IH=I:;I JlI
;) TJ I 510,511,3a41 ,IJK
PHI Il=AP-lI Jll
ROIII=O,
)<=<0III'YIJll*DC05IA?HIJlli
-l,\I==LOArr1-ll

141

COllJl &5
:0'101&7
:0'101&8
:J'10169
:0'10170
:0'10171
:O~CJI7Z
:D'10173
CO"lJl7~
C0'10175
:::J"I0176
C::J"IOI77
:0'1JI73
CO'1Jl 79
:0'10130
:0'10191
C0'10132
:0'10133
SCl~)tS4
:::J'10IgS
CO"lCJI3&
:0'10137
CJ'10139
:0'10139
::ClI.10l"?O
:0'101'11
:0'10192
CJ"10L93
:0'101'1'+
:0"10195
CO'1Jl 95
:0'10197
CO"'019~
CD'1Ol?~1
::iJ~J20~:
:0,'10201:
:0~020Z:
:0~az03:
CD'10Z0~1
:D~n051
CO~020,:
CO~02071
CO,'10Z0BI
:0~02091,
CD'10210(,
:0'10211~
CD'1JZ121
:O~OZ131
C0'10Z141
:0'10n51
:0~OZl5:
:0'10Z 1 7:
:0'1021B,
:0~021 ~I

:O~)2ZJI



959

358

757

511

C
C
C

252

353

333

444

-¥

lArIJ='i\l~;.jIJlI~JSINIPHlIJI :0,'10221<
IF[11-&195~,858,85B [0'10222'
~'1l=FLJ~ftJl-ll C0'102231
~L1Jll=f~ •. [~"Il~~'lIJll~JSINIAP,-HJlJl J' [0"102241
;) f) 757 CO"l0225,
'l"l"l=FL)~I(Jl-S1 :0'1022S;
-iU Jl I = n' ( IS L- I: L" « H'-lI.1*+1( J 1 ) ~ OS I 'J ( 1\ PH( 7 I 1 I I [" '1n 2 7'
:)\lTI~UE :J'10223
lB(I)=l~(I)/~LlJ1) CO,"ID229
FX{l)=1.iJ'l3(II :J'10230
E:~{ [)=E~J('Fxr II :0"10231
1~=~'1(II~T*T CO"lD232
o~=~"I(II~T :0"10233
~~IT~(S,=)E'-lIII,'ll{Jll.SJ32 :0~D234
;0 TJ 300 CO~0235
~'1=FlJATI I-II :""I0DS
>,'H I 1 = ~ >'i ( J 1 ) q "!~~ ( J 1 ) * J S I'll IIP -i ( J 1 I J I DR CO'0 Z3 7
U I I ) =D,~= J 5 I \l { f' HI I I I IJ 5 I ;;r IIP'-I( J 1 I I : a "I0 23 '
E ( I 1= U [[ I/) TA\l I PH [[ 1 I C0"1 0 Z3 ~
ZJ(I)=D~/JTA\l(DPI CO"lOZ40'
lFtIl=EIII-D(11 CO"l02'+l
l = ( I I = ( ): 0 S ( > '-I( I I ) - 0 Co 5 ( J? I 1* R 1\ CO"IJ2 42
;J TJ (Z52,Z52,353,353,B17,817.987S,9876.444,444),J1 CO"J243
IFI J 1-3)252, 353,444 C!J"!02't4
-i\l\l==lJ~T(J1-41 :J"IJZ~5
-il ( J 1 ) = r ~ • T5 ~ - 'i 'J 'I (,R1\ * I JCOS I ,\ P '1 ( 5 ) ) - DCJ S ( ,\ P 'H 4 I ) ) : a "I0 Z't "
GJ fJ 333 CO~JZ~I
-i"l\l==LJ~TIJI-3) :J"IDZ~3
~l I J 1 ) = T~ • ITS l- r: L' IS C I -'1 "lN,' I P CJ~J Z't 9
-il (JlI=P CO"lJZ50
;J TO 333 :0"10251
-i \1"1 = = l J 1\ f ( Jl -,5 I : Cl "I 0 Z 5 2
{U Jl ) = T {- [ J: J 5 I II P ~ I 5 I ) If' 52 J - d 'I M* ( ( DC 0 S ( 1\ PC!( & ) I - DC OS ( APH ( 5 I I ) IP!3 2 I :) w 0 2 5 3
;J T) 333 :Cl"l0254
~"I"==lJ~T{JI-l). :0"10255
-i l ( J I J = T -i - I J: J5 I IIP -I ( 7) liP 321 - "P-l~'W( I 0 Cos ( AP H ( 8 1 I - D: 0 S ( APY ( 7 I ) I 10a2 I : JW J2 5 S
:J\lTINJ~ CO"J257
FX( I 1=1.0-lFfI I/YLI Jll CQ'1325B
EO'll I I =E"lJ~~X( I I [J"'OZ59;
T"l=;:'1III~T~T [0'1)2bO!
>'l.=;:"IIIPTCJ"IJZ51,
IIUTEr6,~IE"ll II ,HLlJll ,S032 CD'1()Z62'
;J TO 30) :D'102&3:
-I'1~1=FlJ~T(J1-9) CD"IOZS4:
-ILI'Jl l=l1' I II CD"IDZ65:
"XI I 1=1.0-ZFI Il("lll Jll :0'102&&'
=XrII=O.O C0'1D267'
E"II[I=="I)~FXIII CO"l)268'
f'1=;:'1rII~r~f CJ'1J2&9'
>~=;:'11II~r :0'10270
HIf=I6,~IE"l( I1,:-ILlJll.SDB2 :)'10271
;J f) 30J CO"l0272
-Il( [I=T~"TSL-T:L"TSC-T? CO"lJ273
FX( rl=1.0-Z"III(ZFIII C0'10214
E"'III=E"I)~FXrII :0'10275



300

SIZ

S13

S14

f\I=E'1lrPT~T
~~=:::'1(IPT
:JHr NU:::
H=UIZll
IF( IZ-S) SlZ,S13,SLl
JP='HlZl) .
~J TJ Sl~
JP=h'HC Jl'll
:::"IJ=E'1C21)
~1=1

PhRT-!:
I~T:::~~hTIJN JF FJNDAME~TAL SET

C0'10Z16
C0'10Z71
:0'1)219.
:0'10Z79
:0"10280
CD'~0?81
:J'1023Z
:Q'10ZB
:D'1n8~
CJ'10Z95

CJ"I0297 .
CJ"I)235

60 ~J=J :0'10290
~6 :J~TI.NJ= :0'10291

I={ ~'-1l1l1.rllrl12 :0'10Z92
lIZ IC'(f( 1,'n-.I=~0:» 19B,l98.t99 :0"10293
198 =12,~)=TI~Y(S,~J/TZ C0'1029~

=13,~)=YI1,'H/TJ/TZ CJ'10?'/S
T~=TL.=rZ,NI :0'1J296
FI,,~'=T"~D,/2. :0"lJ?97
={~,'J)=a.J :J\'02?~
=( ,>, ~) =0. 0 Co"lCJ297
C'17,N)=0.0 :0'10100:
~J TJ 200 :0"10301

199 T2=fIZ,'n/,)(',J :D~J3D2:
T3='~(NI-fI3,~) CO~0303,
Cll~'=)COSCT3' :0'1030<,1
CZ(~'=JSI'HT31 CO'n")')i
T't = (D SI~ (PH (N ),-D SPH T3 III R0 I'll :J "I0306;
T,=fl ,>,~l~Cll '11'f( S ,.'1)~C2(Nl C0'10307,
T2?(~)=T5 CD'10308,
T9=Tl~T,)-A'I~rZ C0'10309i
T6=lYl7,'l)-h'l~TJ~T41/TO C0'10310l
T1( ~ I=1 TZ'A~~TB) ITl C0'10311(
P( ~1=T)~lT4'A'l~T6J C0'10312:
TrOl'lJ=TL'T8 C0'10313C
,(~J=T~~Rol'l1'Yl2,'11 CJ'1031~(
Fl2,~1=flOI'lP:ll NI-DCJSlPHINll~TL CD'1031,:
FI3,'1I=TS, C0'1031,:
~('.'1I=TI0lNI~C2lN'-DSrNIPH(Nll*TL C0'10317C
=l,,'l1~-TIO('l'~IY(S,Nl~C1IN'/RlNl-PR~CllNll CS'1031SC
=(S,'lI=-flOl'lP[ (Yl6,N'~CIINl-T7lNlI/Rl\lI'PR~C2(N' I :0'103l'1:
F(7,~I~ITIO('l1~Cl(N1/~(N))~(T9(N)-Y(1,NI )-TIOl~I~IY(6,Nl*C2(~I-Y(5CD'1032]:

~,~P:ll'lII~T'1 C0'103210
~) TJ 2J] CD'1J3220

III clr~l=D:JS(PH(~)l CJ'10323C
C2(~1=]SI~IP~l~ll CJ~032'C
I~lfrl,~1-.1~-J~lS9g.S98.S99 :0'1032SC

S98 =(2,~)=fl~YIS.'l1/TZ :O~J32,C
=r3,~1=r(1.~1/T)/TZ ca'1J321C
=( ~,~1=0.0 CJ'1032S:,
F(S,~I==xr'lI~RC/2. CD~J32q~
FlS,N)=J.O :0'1033J:

/-..,
I ),,



cr7,~J=D.D CO~D331(
;J TJ ~JJ eO~D332:

599 T2=fI2,~lf~JI~J eO~J3331
T,=rr3.~J~CII~JrROINJ CD~J3341
T5=Y16.~J ~CI (Nl'Y(5.Nl ~C2( .'I) CD~J335(
T2~r~)=T5 CO~D336(
T8=TI~T5-A~~T2 CO~D337[
T6=fI7,~)/TJ-A~~T4 CO~D33e;
T71~J=IT2.A'~~T8I/Tl CQ~D33'[
T~I ~) =1 T't'A\l~T6) "'TO CD~J34J:
=l~,~l=T9~Cll\lI'YI3,N)"'C2(NIOTl CJ~J)41'
"1),\lI=T6 CJ'10342;
=( 't,'.H=Tg~C~1 \l1-YI ),\llOel1 \l1'~Tl :J'034):
" I 5 r ~ l = - I YI 5 , 'HI R0 1'1 I - r:X I 'I ) '~RC I 0: 1 I \I) : 0 ~D3 44
= I 6, \II = - I YI 6, 'j} '"C1 ( .'I 1- T7 ( NI ) IRJ ( NI -" X( N ) 0 RC~CZ ( NI : 0''0) 4 5:
TX=-{Y{7,N)-T'II'J1 I/RQI\I) eO~)346:
= I 7 , \II =TX~C1 { ': I - RC.'"T'" {YI 6 , ~ I '"CZ un - YI 5, \l I ~C1 ( \II ) C0 ~ J 347:

ZOO .Ir:!\1-214~,4~,43 CJ~J)4~:
43 leI ~-614't.47,45 :O~O)'t,,;
44 \l=~q :O~D35J:

;J TJ .6 CO~015t:
4Z )J 81 J=Z,6 CO~J352:

'Z==lJATlJ-l1 CO~0)53:
'3=.'2"'~( JI) CO~J)54:
y( I, J) =fl 1,[ 1 .'>3 CO~J 3,5:
OJ 91 1=2,7 CJ~J3,:>:

31 Yl[,JJ=YlI,[).P3~Fl[,l1 C:.J~J3~7:
~=? :Q~J3'j~(
['=1 CJ~J35":
~J TJ ~5 CO~O}60:

47 )J.g [=2,7 CO~O)~I:
II I , ~ I =r I I , I ) • l ~ ( J 1 ) 1144 J • I ~ I 'd 3 • ~" I I , I I • I J J 7 • ~ F I [ , 2 I - 615 • '"F ( I , 3 ) .: J ~ J 3 ~ 2:

• ) J 2 • ~ FIr", 4 I - 9 3. ~ F I I , 5 l • <].0 F ( I , 6 I 1 : 0 ~D3:>):
~ I I , ) ) = YI I , I ) • I HI J I 1/90 • ) ~ ( Z9 • ~F { [ , 1 I • I Z, • ~F ( I , Z I • I 4. "F ( [ , 3 ) • 14. ~ : 0 ~D3 I>4:

'=1 I r 4 )-:>.~=rr ,SI'F{ 1.6)) CO~J3:>5:
l I [ , 41 = YI I , 1 I • ( 3 • ~ 'i( J 1 I 11 :'r O. 1 ~ ( 17 • ~ ".( I , I I • 73. ~ F I I • Z I .3 8. ~ ( F ( I ,3 )' CQ ~ J 3 1>"[

.FlI,'tI'-7.~F(I,51.FlI,61l . :Q~03i>7[
ZI[,,'=flI,I"{4.~~IJI)/,O.ID(7.0{r:II,I"F(I,,"'32.~1FI [,21.F(I,4CQ~0369:

'J)'12.~=II0311 C::J'103i>ge
'08 l ( I , 6 I =Y( I .t )• 15. ~ '-! ( J II /288. I ~ ( 1 'I. ~ ( F I I , 1 I • F ( I ,6) ) .75 .0 (F I I .2) • : 0 ~ a 37 0:

• F ( I , 5 II •5O. ~ I e I I .4) • F ( 1.3 J II C0'10 3 71:
~I=J.O CO~0372:
IP=I3.1 e::J~0373[
)J 49 1=2,7 CO~037't[
)J ••9 J=2.6 CO~0375[
U = ) ABS1YI I , 1) -l I I. J I l • RIC 0 ~0 37 6 [

'0'1 Y(I,J)=ll[,JJ C0'1J377[
IF! [0-1> J ~4r,45.45 C::J'10376C

141 IF(~I-.I=-07J45.45.50 CD~0371[
50 ~=Z e0'1036JC

;0 TJ 46 C0'10331C
45 IF( '0-1)53,53.55 C:J~J382[
53 ~=~.1 CJ'10363:

IFl ~-ZI) 61.61,62 :J~J384[
51 rll.~I=YI I,.\I-I)+HIJII CO'l0385:



:O~O4-21

CQMO~ 3:
C0'10~)
CD'10n
::J ...•.)!t3
(0'1043
(D"I043
CO,",O!t3
C0'1D!t3
CJ~:J43
CD~)43
:a~:J44

'11='11'1
'I= 1
I'lIl,NI=XIJl,ll
JJ ,3 1=2,7
I'l([ ,'II =J.O
Vll'H,'lI=l.J
'lD=O
eO'HI "Ill::
IF(~P-l1 113,113,114
IF(flI1,'lI-.lE-061 201,201,202
FI2,'lI=Tl*VlI5,'lI/Tl

114
ZOI

&3

90
16

.,IT=('I,508) CJ~J41i
,.,If=(?,507) C0'1041~
)) 713" ~=l,Zl,~ CJ~O~l;
STl =ITTl'l)'PI'lI*6. I*TZ 1 eJ~O~z:
ST2=(T7t'lI-T'It'lI*6.I*TZl CJ'10~2J
ST3={TZZINI.VI7,~1*6.I~T21 CDMJ~Z,
ST~=ITZ2INI-Y(7,'11*6.I*TZl co~a~z~

793 .,lfEI'l,105IVll,NI,VIZ,NI,VI4,'lI,T'IINI,Vt7,'1I,T22INI,T7IN),STl,ST2(D~a42'
~,ST),ST~,EMI'l1 CD~04Z'
:;] fa 1 CD'10~Z!

JJ 51I~2,7 eJ~0335;
51 V (r,~)=VIr,~_,I•I•3~ 'i ( J 1 II~t11. * {FII ,'1-5I•F II,.~-lII-1'••~ IF II,'1-4 I.eJ~0387 [

.=(I,~-21).2b.~FII,~1-311 CJ~~388:
'1'1 ~J=2 :D~D38'1'

1'=1 :D~03'1D
3J TJ ~5 eD~03,1

55 ~1=0.0 (D~03'12
IP=I"l CD~03'13
JJ 55 1=2,7 CJ~03'14
l II,1 I=tIl, "_5 I• (•3*1 (J 1 )I* 1F (I ,'l-5 )• 5.~F (I,'l-5 )•F (I,"1-4 I•5 •~'F(I,'IeCJ'103'15

~ _ 3 I • F ( I , 'l- 2 ) • 5 • ~ F { I , '1- 1 I ." ( 1 , 'I ) I : 0'1 D3 q 6
n=n+J~~S{Y(I,'ll-l( I,lll eJ~03'17

56 YII,~I=lII,1l CO~D3'13
1=(1'-101 1~2,60,60 CJ'1Q3~o

142 1=(,1-.1=-071 50,46,46 :D'10~OD
62 IF( '1'-1) 662,752,'I1Z (O~D~n
'lIZ I:=I~~-J.ll '111,911,'I1~ (0"04)2
'Il~ ::=1'1'-101 552,'111,'111 (j'1J~a3gIL 1~=2 :~~)~a~

;J TJ 7,4 eD~0405
76Z ,~~=J.O CJ'10~J6

JJ 763 1=2,7 :0'10407
753 ,<~=,:~UJA[1SIYlr,21)-XIJl>l,r11 (0'10',03

I := 1 ~ R< _ • 1) 7 5 4 , 7 6 4, 76'. : 0 '10 4 0 ?
766 .,ITcl'l,7671 :]~O~lC
767 =J~'1~T(2X,'S=;~='lT IS TDJ LDN;') eJ'10~11
764 eJ'ITI'lJ= e0'10412



=r3,~I=rI17,~J/T)/Tl [Q~D~~11
=(5,~I=FIZ,~I~PR/2. CO~J~4Z:
FI~,~I=D.O CO~J~43:
=1~.~I=J.D Ca~J~44:
=ll,~I=).D ca~D445:
;0 TO Z)3 CD~)445:

ZOZ Tt='I(Z.~I/~OIN) [J~0~411
T3=n(3,~I~Cl('II/~J('I) [J~J~49:
T+=n ( , , ~ I ~: I ( \1) ,y I ( 5 , ~ ) ~c ~ ( '1I - YII 3 , N) ~,I Y( 5 • ~) *CI I ~II - YI 5 , NI '"CZ IN) ): J ~J +" l'
T5=TI*T~-AN~TZ CD~0~5).
TS,'117,~)/TJ-A~~T3 ':a~D"51
n=IL~'A~~T5)/Tl :O~H5~'
T3=TJ*1 T3~A~n6) CO~0~53
= I ~ , ~ I =T5~: 1 I 'II • T1) I 'JI" Y1 ( 3, N) ~CZ( 'I Ie] ~a +54
= ( 4 , 'I ) = r 5 ~ : Z I 'j I - T I 0 ( \1) " Y1( 3, N I ~ C I I 'I ) : J '~a 4 ,; 5
=( ),'I)=T5:J~)~56
TA= ( YI 5 , ~ I * [ 1 l '11 - T7 ('I) I I~I ~II. [D ~) 457'
C( S , ~ I =- T5 * I TA~P~~ : 2.( 'I J I - T10 ( 'I j " ( ( , 1 I 6, 'I ) ~'C1 ( NI • YI ( ),.'1 ) " YI 5 , \) I '- : D~) ~5 9

~:Zl ~)-n-TA~Yl(2,\)) )/R(~1l-P~*YlI3,'I)~Cl(NIJ [D~J+51,
=15,~)=-=(Z,~)*lYI5,\))/R(NI-PR)-TIJI\)).[IINIC{'1(5,\)I-YI5,NI. CD~J46)

::YlI~,'."n(IIIJnl~) CJ~O~61
TX=lT'lIIlJ-YC7,IIIJ/RI'l) :J~046~
=I 7 , II) , =( Z , 'I ) ~ ( TX~ T"1 CY( S , NI J ~ TID I I) I~q[ I ( NI ~ ( T'P Y1(.5, ~ ) ~ ( -, I ( 7, N) ~ : D"10'.63

:: r 3- TX~YI ( 2 , \I ) I I ~.('Il ) - T~~,[ Z I NICVI I 6 , :, I I - TM~F I 4 , II) CY( 6 , 'I I : ') ~J 4 " "
~J TJ Z~~ CG~0465

113 r=UIll,'j)-.lc-J6J "Ol.SOI.50Z [D"1J466
SOL =1~,III=Tl~Y1l6,'IJ/TZ ['J"1041,7

cl),~J=YlI7.III/TJ/TZ :IJ"10463
=( 4,'I)=J.) [J~J+61
=15,~)=0.O. :J~J470
Flo,III=J.O :J"1Q471
=(7.~)=)~J [0"10.72.
:;) f) Z)3 [0'10+73:

50Z TZ='lIZ,\)I/~O(NI [D'I)474i
H =n (3 , ~ ) ~[ I ( 'II IR) ( 'll CD~0 4 75 :
T5' Yl IS, II ) ~C1 1'1 I • Y I I 5 ,N ) ~ C 21 'II [0'1 J ~7 S:
T3=rl~T5-A~~T2 :0'11477'
TS='tI7,~I/TO-A~~T4 [J~J473'
TT(~I=[TZ~AII~T3J/Tl [J'I0471'
pr '1)1=( T~~A~~Tol ~TJ [J~0't30:
=[!,~)=T9~[t('lI~rl(3,~)~C2(NI.Tl :O'lJ4dl:
c[3,\))=T5 CO'l043Z:
= r ~ , ~ ) =T3~: Z( ~ I - YII 3, NI • CtIN I ~ Tl CO'I0 ~8 3:
=15,~I=-rl(5,1I1/~)INI.ClrNI [0~O~84i
F ( :. • \) I = - ( Yl ( , , ~ I • Cl ( '0 - T 71 N I )n 0 I 'I) J [ 0 "\) 4 9 51
n=-[Y1l7, ~l-n( NII/RO( Nl CO~J~96'
~(7,~)=TX~:t[~)-~C.T~frl(6,NI~C21~I-YtI5,NI~[1(~11 CO~J~87:

Z03 r=( \)-ZI 7Z,73,73 [0.'1J4S3:
73 rF(~-61 74,11,15 :D'I)~9'1l
74 ~=~~l [a'10~'1):

;J TO 1, [O'lO~H:
12 )0 3Z J=2,6 CO~J~'1Z:

'Z==LO~T(J-ll CD~0~'13.
?3='2~H(Jll CO~)~'14
Yln.JI=nll,lI~P3 :0'1J4'15

11:,6



)J l2 1=2,7 :D~O~9[,C
32 fllI,JI=flfI,lJ'P3*FCI,1l CD~O't97C

11=2 CJ~0't98C
I?=.I :-J~O't99:
~-JfJ 76 :-J~a5uO:

77 )) 73 [=2,7 CO~05uI[
U I,2)=fl([,Il•(~IJI,(1't+o. l*('t93.~F(I,1I.1337•* F(I,21-618. 'rF(I,3I:J"0,02:

••3)2.~F(I,'t)-33•*F([,5).9.*F(I,6)). :J~0,03:
l (I,3)=fl(I,I)•('~(JI)(9O. ,q 23 .'~F (I,II+ I21.':'=I[,21.14. *F ([,3 I :0~050"~

•• 1"•~~([,+)-[,•':'F(I,5I•F([,[,II CJ~0505c

~([,+1=f I(I,I1•(3•~,H IJ1)/160 •I~,(17•*F(I,I).73.*F(I,2)•38•~,(F([,3I :J~)5)6:
"F I [ , 't) I -7.:' = ( I , 5 ) • F ( I ,61 I : J ~0 5 0 7:
~ ( [ , 5 ) = fl ( [ , I ) • ( 't • :'H( J 1 J (90. ) ,~I 7. * (F I I , 1 I • F ( I , 5' ) .32. * (F ( [ , 2 1 C0 ~J , a 8 [

•• C{[,'t}I>li.~C(I,31) :J~)5D9C
7 8 l, ( I , 6 J = f 1 ( [ , 1 I+ ( 5 • ~HI J I l /2 88. ) ~ ( 1 'I • * ( F ( [ , I J + F { I ,6 I I • 75. " ( F ( [ , 2 I CJ ~0 5 I ) ~

+ • F ( [ , 5 I ) • 5 o. * (F I I , 't I • F ( I ,3 l ) 1 CC~05 1I ~
~I=).O CO~D512(
I~=[?'I :D~-JSI3(
)J 79 [=2,7 :J~)I't(
)) 79 J=2,6 :J~0515(
~I=)A~Slfl(I,Jl-l([,J))+"'1 :J~0516:

79 Yl([,J)=~([,J) :J~D517:
[F([D-I'») 1+3,75,75 CJ"O'iI~(

143 [COln-.le-c)6l 75,75,80 :0"0510:
80 1l~2 :J~a5za:

;J fJ 76 :J~05Z1:
75 [CO(Il)-1133,83,35 CJ~a522C
83 11=11'1 :]"J')23C

[F(11-21) 91,1I,9Z :)~)52.+:
'It fllhll'=fIll,Il-IlHIJIl CJ"0525C

)J 15 1=2,7 CO~OS26C
oS fl([,IIJ =Yl (I,.~-'> l•I.3*'~(JI)I* (11.:q F(.I,11-S)•=(I,11-11I-14."(F(I,N-4:)~),27C

• I • = ( I , 11- 2 I , • 2 [,. ~ ~ ( I ,11- 3 I 1 : 0 ~) 5 2 3 C
101 IlJ=2 CJ~0529:

I?=I :D~0530:
;) f) 76 :J~D~3I=

85 ~l=a.D :D~OS32:
IP=I~.1 :J~0533~
)) 96 1=2,7 CO~D53+J
te I , 1 ) = fl I 1 , 11- 5) • I • 3 *HI J 1 1 ) * ( 5. * F ( I , N- 5 I • F I I , N- 6) • F I I , N- 4 1+ 6 • * : 0 ~0 5 350

~=rr, 1l-31'F(I,.'1-2'.S.*Fl 1,'1-1I.F( 1,1111 CJ~0536C
~1=~1.)~3S(Yll[,Il)-l(1,11) CJ~aS37C

86 YlII,IlI=ZII,11 :J~D53gJ
IF(I~-IJll+~,9J,90 :J~D539)

144 IF(Rl-.1::-J7I 9J,76, 76 CD~D5'tJC
92 D) 22 J=I,'l2 CD~05'tlC
22 )11l1-1,)I=Yll;'I,21) CJ~DS'2C

[Fllll-TJ 562,96,96 CJ~O"3C
1D4 =)~~~TI7El't.gl CO~D5't'[
59 =J~~~Tll)[21 CO~)S't5[
508 =)~~~T(r(,gX,')IST~NCE',5X,'DISPLA:EMENTS'.9X,'~DMENTS',8X,'STRESS:)~D5+6:

~ R::S~LT~NfS',5X,'CIRCUM. STRESS',7X,'AXIAL STRESS',5X,'INTER'lAL'1 CJ~054,:
S07 =)~~~Tr3x,'FRO~ APEX',2X,'RADIAL',5X,'AXIAL',3X,'CIRCUM.',5X,'AXIA:D~05't3:

~L'r3X,':I~:J~',5X,'AXIAL',~X,'INNE~',5X,'JUfER',5X,'INNER',5X,'DUT:J~05't9[
:EP ,r,x,'P:l.ESSU:l.E'I :D~D5.5D[



CJ~0553:
CD~055?

eD~OS51:
CD~0552!
CD~a553;
CJ~055't:
eD~0555:
CD~a55S

PART-G
SJLJTIJ~ J:: MATRIX EJUATIO~ STARTS

FJ~~Arr7Ell.SI
::J~ ~A Tl7::l"t. ~ I
FJ~~~Tl7;:7.5J
FH~Hf7cll.51
FJ~~AHt2El1"5J
=J~~ATIII,2X,"~8. JF PASS=',I3,ZX,",cSIDUE=" ,E14.~1

41
'tIl
211
110
105
sa5

'16

't

20

~I=JI
JJ't I=l,'D
OJ 't J=1,~3
UIJ,I)=JII,JI
AZI J,I)='J( I+3,J)
A31 J,I)=UII,J'31
A'tIJ,I)=JII+3,J'3)
Xl { I , II = X ( ~l , 1+1 I
XZIIol)=XI~l,r.'t1
1'31 ~ 1'1, I I =1' I 1'1, Zl)
Y 2 I ~ 1 • I , I )= Y ( I • 't , 2 I I
)J 20 1=1o~3
Ai'll, II =1'3('(1+1,1)
31'l1, II =1'2 "'(I f1, I I
CALL ~Ar~IAI,XI,A'l,~3,N3,11
:.\LL \1l\r~{ I\Z,XZ,ll,,"i3,'J),:'"

_CHL ~ATSI,\'l,ll,'13ol)
C.LL _~AiS31 l1 ,'B, II
CALL ~ArSI\Y,ll,'13,[)
CAL L .~AT ~ ( A3 , X 1 , A?, N 3 ,"13, tl
CALL MAT~(A't,XZ,ZZ,"I3,"I3,1)

-CALL MArS(A7,ZZ,~3,1)
CALL MATSlll2,~3,11
CALL ~ArS(3Y,lZ,~3,1)
IFf H-ll 6,:'>,7
CALL ~Ar~IAI,TS1,A6,N3,N3,~31
CALL MAr~IA1,TS2,A7,~3,N3,"I31
CALL MAT~(A2,TS3,Al,N3,N3,N31
eeL _MArSIA6,Al,~3,N3I.
CALL MATM(AZ,rS't,A6,N3,N3,N31
CALL MArSIA6,A7,N3,N3J
CALL MATMIA3,TSl,A6,N3,N3,~31
CAll MATM(A3,TSZ,A3,N3,N3,N31
CALL MATMIA4,TS3,A3,N3,N3,N3J
CALL MATS(A6,A3,N3,N31
CALL MATMIA4,TS't,A6,N3,N3,N31
C-ALl MArSl A6,A~,N3,N3)
)J 2 I=1,N3
JJ 2 J=loN3
A'tfl,JI=A~rr,JI
A2 l I, J I = A7 I I , J J
CALL MATIIAZ,A6,N31
CALL MATM(A4,A6,A7,N3,N3,N31
CALL MArIIA7.A3,~31
CAll MATMlAl,XX,A9,N3,N3,11

CJ~056I
Ca~a5:l2
CO~0563
CJ~a3~'t
CJ~)%'i
C8M)56A
CJ~)507
CJ~J568:
CJ~J56?:
CD~)57J.
C8M0571
C0Io4)572
CJ~u'i73

-CJ~)571
CJ~J575
CJ~)57S
:J'A]'57?
CJMJ57S
:0"1;)'37'
CO~D'i3D
CO~053t:
CJM;)532
CJMJ583:
CJMO 5 8't!
CJMO'i85:
C8M05%:
CO~)587:
CJ~OS33:
CDM05891
C8MO 5 90:
CO~[)591:
CJMa572~
CJ~:J593:
CJM:J59't:
CJ~)5'15~
COMOS9&1
CJ'1) 5 97:
CO~:J5'18:
:OMJ57?(
CO'1Jf>OO!
:J~)f>Ol:
C0'1060Z!
CDMO&031
:D"4PSO!t{
C0'1:>&05:

(,



:UL M~rSCZl,A9,~3,ll CO"l0,05
:>\LL '1~TS3(~1,~3,11 ,CO'10,01
CAlL '1AT'1(A3,XX,A10.N3,N3,11 CO'10&09
:~:"L '1~TS(Z2,AlO,N3,lJ CO'10,09
C~LL '1~T"I(~~,~5,~7.N3,~3,~31 CO"l0510
C~LL "I~T '" ( ~ 7 ,~9 , ~ 11 ,'0, N3, 1 ) CD"IO,ll
: ALL '1~TS (~lt, A 10 ,'13,II CD"IOS12
:UL '''~TS3(~10,'O,11 CJ'10S13
;J rJ 9 CO"lOSI~

1 1=( ~l-"I' 3,5,5 CO"lOSI5
5 CAlL '1~T'1(T~1"1,AS,N3,N3,~31 CO"lO,lS

C~LL M.r'1(TF3,Al,A7,N3,N3,~31 CO'10,17
CUL '1~T'1!T=2,~3,A1 ,N3,N3,~3) CO"lOSI3.
C~LL '1ArS(~S,Al,N3,N31 CJ",OSl9
:~LL 'HT",! TC'4,A3,AS,el3,'U,'13) CJ"I0620
:A,-L "I~[SI'S,~1,N3,N31 CJ'10,2l'
CALL '''~T'1( TFl ,A2,AS,N3,N3,cI3) CJ'10,22
C~LL ~.\~TM(TF3,A2,AIB,N3,N3,N31 CJ"IOS23:
:ALL '1~T'1( F2,A4,A2,N3,N3,~31 C0'10,2 It:
:~LL V,ATS(Ah,A2,N3,N31 CQ'1)S25:
C~LL '1AT'1(TC'~,'4,A6,N3,N3,N3J CJ'10S26:
:Al L '1ATS(A6,Al3,N3,N31 CJ'1Ch27:
CALL '1~ r• (TFl',21 ,All., 'J 3 ,N3 ,1) CJIo10&Zg:

CALL '1~r'11TF 3, 2l ,f,1 5, N 3, '0 d 1 CO'''0629
CALL '1. T 'A. ( T= Z ,22 ,Il ,'J 3 ,'0 , 1J ::J~OS3J:
C~,-L "I~[S I Al 'to Il ,N3, II CO'10S31i
CAL L ..., ~ T'1 ( T= ~ ,I Z ,A 14, N3 ,~3, 1 ) CJ'1)'>32:
CA,-L '1ATS(Allt,A1S,N3.l) CJ"I)'>33:
)J 19 1=l ,~3 CJ'10,34:
221(d)=~l51Id) CJ'10S35C
)J 11 J=1,~3 CJ'10S36C
A3(I,J)=A7(I,JI CJ"IO>3H

19 ~ltlI ,JI =~13( I,J) CJ'10638:
3 CALL \1~["IIAl, AS, A7, N3, ~3, ~31 CO'OSHe

C~LLMATSI~2,A1,~3,N3) CO"lOS40::
:.\LL .'1ATI (A1 ,~6, N 31 CO"l0641::
CUL '1AT'1(Al,A9,~7.N3,~3,N31 CO'1)642::
:~LL ,IAT'11AT, A10.A9,N3,N3, 11 CO'10S43::
CALL "IATSll1,A",~3,1l CJ'10644C
C .\LL '1ATS:lIO"n,ll CO'106lt5C
C~L L '1~T"II~3,A8,~7,N3,N3,N31 CO'1064SC
CALL '1~T"I1A1,.\10.All,N3,,'Bd I CO"1054TC
C~LL M~TSIA~,~7,~3,N31 CO"l0549::
C~LL "I~T'1I~S,A9,~12,N3.N3,l) CO"l)649::
C~LL '1AT"II~7,~12,AIO,N3,N3,l) :0"lOS50::
CALL "I~TSC~11,~10.~3.11 CJ'1055lC
:AlL '1~TSll2,AlJ,N3.l1 CJ"IJS52:
:LL .'1AfS31~la,'l3,l) CO'10S5H
:~~ L '1~T'1IA3,A8,A1,N3,~3,'l31 CJ"I0554:
CALL ~ATSI~~,~1,~3,N31 .CO"l035S::
:ALL "I~r"lIA1,~3,~l,N3,~3,N3) .CO"lJS5S::
:~lL ."IATI!H. A8, N31 CO~:>,S7C
1C(''I1l-''l)8; 9,1 CJ"lJ653:

9 CHL ~~TSrXY,~lJ,N3,11 CCl'1DSS?C
B )J l 1=1,'13 CiJ"IJ330:

1:~9

1\



)) 1 J= 1, ~B :a'10f>f>IC

EI~I,I,JI=~f>rl,JI :O'10f>b2C

:1~I,I,JI=~8II,JI
CJ~0f>63C

qH,I1=~9Ir,11 :O"l066'tC

3rHrI)=~101 [,11 :O,'10665C

1 CJ~TI'IlE
Ca"l0f>6&C

::,'n = ::'12 CO'10f>&7:

[=I~P-II 117rllS,r17 :J'10&&8C

H7 ;J TJ 1718,lOB),IN CO'1Jf>&9C

718 ~~=J.J
[J'10&7Q:

JJ 15 11=1,'1 CO"0f>7I:

H="I-Il>l [J'IO&72l

J) 10 [=1,~3 :J"I0f>73C

)) 10 'J=I, ~3 :J'IJf>7'.:

~6l I,J)==I'Url,JI CJ"'!J575~

~Bl I, J') =[ I ~I, I, J I CJ'IOS 7&:

~9lI,Il=~{~I,r1 ::J"IJS77C

10 HJ{Irll=gl~I,r) :)"OS73:

IFI 'Jl-'I) ll,lZ,lZ [J'IJ&79[

IZ :l\lL "IAr'l(~8,AIQ,AII,~3,~3,II CJ'10S80[

[nL '1ATS ( All, ~ 9, N3, II ::D"1D~81(

:>\~L ,'IAr'1 ( Af>, A9 , Al 2 , 'J 3 , N3 , 1 ) CO~)53Z:

[ALL '~~ r' ( r F 1 , All, A1 ~, N3 , ~J3 , 1 ) [J"IOS83:

:l\LL "I~r.{TFZ,Xf,AI5,N3,N3,I) '[O'10f>8~(

[ALL 'I Ar'l l r = 3 , All, A1 S , 'n, N3, Il :)'1JS85:

[ALL "IAr'll r=~,Xf,AI7,N3,,'J3,1l [J.JS86l

)J ~9 I=I,~3
:J.J,H:

Xl "1),1'11 =~I'i{r, 11.~14{ I ,1) [0'10038:

89 X( '1) , I • " ) = ~ 1 7 e I , 1 I • A1 6 I I , 1 ) [)'IJ"p,

;) rJ b
:0'lJr,90.

11 [~LL .ArS{ HZ,AIJ,N3,1l CO"lJS9I:

CI\LL "IAT"I(A2,AIJ,AII,N3,N3,1) CJ "'1 0 ~~} z :
:~LL "IATSl ~Il,~9,N3,l1 eO'1J&93:

:ALL MAT"II~S,A9,AI2,N3,N3,II eO"lJf>9't1

)J 17 I=I,'oj] CO"l0,951

1 7 X[~I+I,I'I)=~II(I,II eO'1069&:

Fe'll-ll 93,B,r6 :0'10S97,

93 'CALL ',"I~r"l[TSI,XX,AI~,~n,'J3,11 :0"l0,98!

e A~L "IAT 'H TS Z , A1 2 , ~ 1 5, 'J 3, N3, 1 ) CO"l'OS99:
I,;:

[AL L "IAT"II TS , , x X, Al 6, N3 , ~B , 1 I eJ"IJrOOI

:AlL "IAT'1rrS~,AI2,AI7,N3,N3,11 ::O'107Jll

)) B I=I,~3 ::0'1D702!

)( I 1 , r + 11 = ~ 15 I I , 1 ) + ~ I 'tI I , I ) CO'10703:

98 xrI,I+~I=AI7II,I).AI6II,1) CJ"I07041

so TO 13 CO"l0705:

16 ))13 I=I,~3 CO'1070f>:

13 ~1~1,I'41=AIZII,I)
:0"10707:

18 )) 1 5 I=I,~3 CO'107Q81

AA=)~BSIY3INl.I,II-X(Nl.I,I.ll).AA CO'1JrO'l1

15 AA=)ABSrY21~I'I,Il-XINI'I,I.4»).AA ::0'1071 0:

115 NP=NP'I
C0'1071 I:

~::S=AA/ss
C0'1071 21

SS=AA
::0'1071 3:

,",U TEl '1, 5J 51 ~P, H :0"10714'

rrINP-5) 15I, 152,152 :0"1071 5

150



152 IFl~ES-l.01 151,151,153
153 )J 154 1=2,7

)J 154 J=l,'1J
154 XIJ,I'=X7IJ,II

E'1J=E'1J-E~H
='11=,::~H/2.
E'1J=t','1).::'11
~P=3

151 HrfEp,l041 ((XIJtIltI=lt71 ,J=I,'1])
~J rJ "05

IDS )) 155 1=2,7
)J 155 J=l,"D

155 X7IJtIl=X(JtI)
r~=l
~f'=3
~~=1.0
SJ3~=SJ32.1.0
E'1)=::"Io.::'H
r~I~3S1::"I11-.1E-oBJ 109,109,1011

1011 I=(SJi32-SJ31J "05,"05,109
10'1 SDP

t"j)

:0'101151
:0'10717'
:0'1071 St
:0'10719'
:0'10720
:0'1J721
:0'1:l722
:J"I0723
:O~07Z+
:J"I0725
:J'10'25,
:J"I0727
CJ"I072S'
eJ"I0729
eo"l0730,
CJ"I07311
eJ"I0732
:0~0733,
.eJ'~0734:
eJ"I0735
:0"10735;
eJ'10737,

2

3

5
5

T

B

9

11

SJ3~JUfr~E '1.rI(.5,35,<1)
~E~_~8 ~5(3,3I,3513.31
'=).J
)J J L=l,3
)J 9 K=1,3
~J TJ 1203,4) ,L
Il=~'l
r2=L'2
OJ fJ 5
rl=~'l
r2=1
:;J fJ 5
11=1
r2=2
:;J fJ 15,7,8),K
Jl=('l
J2={'2
:;J fJ "
Jl={'1
J2=1
OJ fJ 9
Jl=l
U=2
35({,LI=.51rl,Jl)~.5(I2,J21-A5112,Jl)~A51Il,J2)
)J 11 l=I,3'
'=>'A511,ll*351l,l)
))12 l=I,3
)J 12 ~=1,3
S51_,K)=351l,K)/P
~=fJ"''1

1 ;51

eJ"I0741'
eJ"I0742i
::::"1J743:
eO"loH41
:J"I07't5:

. CJ'10745:
CJ'1J747:
:J'1D7 48:
:J"I0749l
:J'10750l
CJ"I07.511
C0'10752,
C0'10753(
CJ'10754:
C0'10755,
:0"l0755[
:0"l07571
:J'1J 75 BC
:0'10759[
C0'107 60C
C0'10751[
:0'10752[
:0'10753C
:J'13764:
CJ'10765[
:J'107t>5[
Cd'1076H
: 0'1 0 7 6 8 (
:J'1:)759:
Co'1H70:

r:



97

~~"---"-"----- "-_ ..---. ~- ..,----_. "~~-

EN)

5U'HOJTI'lE '1AfSl"A5.35.L.IO
~E.L'8 A5(),3).3513.)
:)]99 Ll=l.L
)) 99 {l=l,K
35(Ll.<1)=A5(Ll,Kll+B5(Ll,Kll
~=fJHj
E'lJ

SU3~OUfl'lE '1~rS3IA5.L,K)
~E'L'3 ~51),3l
)J ~g- LI=I,L
)J 9g <1=I,K
~5 (:"1 ,K1I =-~ 5 Ill, Kll
~=rJ~\1
c'n

SJ3~JJrl '1='~~r'11A5,35,:5,L,K,K21
~=~L'8 45(3,31,351),31,[5(),3)
DJ ~7 Ll=I,L
DJ ~7 <l =1 , K 2
:3(Ll,Kll=D.J
DJ ~7 Jl=l,<
:5(:I,Kl)=:5(Ll,Kll.~5ILl,Jl)'35(Jl,Kll
l. c T J:t '~
E'll

_/co '1 0 771~
C0'10T72~
: 0''10 T7 ) (-- ,
:0'1077'>:
:0;~07151
: 0'1 J'71 ~

I, ,",
: 0,'1 O\T17 I
:0"107181'
::1'1071'11-
:0"1J7301

:0'10781:
:0"10732,
':0-'1D733:
C0'1078'"
:0'1J735,
CJ'107B6.
:J'107B7'
:0'10788:

\': J'1:> 7 39'
[0'10710
CD'1:>711
:0'10792
:J'107'B
:0'107'14
:0'10795-
:J'10795-
:0'1:>797
:0'10793
:0'10799:
C0'1:>3:>J
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