STRESSES AT THE JUNCTIONS OF AXISYMMETRIC SHELLS UNDER AXIALLY VARYING LOAD.

BY
SARAJIT KUMAR MONDAL B. Sc. ENGG. (MECHANICAL)

A thesis submitted to the Department of Mechanical Engineering in partial fulfilment of the requirements for the degree of Master of Science
in
Mechanical Engineering June, 1989

Bangladesh University of Engineering and Technology Dhaka, Bangladesh.

RECOMMENDATION OF THE BOARD OF EXAMINERS

The Board of Examiners hereby recommends to the Department of Mechanical Engineering, BUET, Dhaka, acceptance of the thesis, "STRESSES AT THE JUNCTIONS OF AXISYMMETRIC SHELLS UNDER AXIALLY VARYING LOAD", submitted by SARAJIT KUMAR MONDAL, in partial fulfilment of the requirements for the degree of Master of Science in Mechanical Engineering.

Chairman \&
Supervisor

Dr. Md. Wahhaj Uddin
Professor
Department of Mechanical Engr. BUET, Dhaka.

Member
:

:

l

CERTIFICATE OF RESEARCH

This is to certify that the work presented in this thesis is an outcome of the investigation carried out. by the author under the supervision of Dr. Md. Wahhaj Uddin, Professor, Department of Mechanical Engineering, BUET, Dhaka.

DR. MD. WAHHAJ ODIN
Supervisor

SARAJIT KUMAR ṀONDAL
Author

This is certified that neither this thesis nor any part there of has been submitted or is being concurrently submitted anywhere else for the award of any degree or deploma or for publication.

SARAJIT KUMAR MONDAL
Author

ABSTRACT

Distribution of stresses in the neighbourhood of junctions, of axisymmetric shells of different geometries with different edge restrainṭs under axially varying internal pressure has been investigated in this theis. The shells considered are thin in which large deformations take place under load. Extensive numerical results on the axisymmetric shells have been obtained for better designs of these shells.

The method of investigation involves solution of a set of six first order nonlinear differential equations considering the large axisymmetric deformations of these shells under axially varying pressure as derived by Reissner(36). The governing nonlinear differnetial equaitons seek for that state of deformation of the shell at which, for a given pressure, the potential energy in the deformed shell is a relative minimum. The basic concept of multisegment integration as developed by Kalnins and Lestingi(24) has been utilized for obtaining the solutions of the governing equations. A computer program has been developed
incorporating the algorithm of finding the stresses and displacements of the axisymmetric shells. The information necessary for specifying a particular shell and its edge conditons and the base load are used by the program as input data.

For a given low pressure, specified in the input data, the program first finds the linear solution in terms of deformations. and stresses in the shell which is followed by nonlinear solutions corresponding to the same pressure. Then pressure is increased in steps by an amount specified in the input data and nonlinear solutions are obtained and printed out for each loading step till the pressure reaches a maximum specified value.

The soundness of the method and the correctness of programming are verified by comparing the rosults or axisymmetric shell.s with that of the corresponding analytical results available in the literature. Curves are plotted based on both the linear and nonlinear solutions for depicting the stress modes at different values of the shell parameters and also for finding the locations at which stresses are maximum.

The author would like to take the opportunity to express his sincere gratitude and indebtedness to Dr. Md. Wahhaj Uddin, Professor, Department of Mechanical Engineering, BUET, Dhaka, for his close supervision, guidance and invaluable suggestions. "The investigation" would never have been completed without his continued support and encouragement throughout this investigation.

The author wises to thank Mr. Md. Manzurul Haque, Assistant Professor, Department of Mechanical Engineering, BUET, Dhaka, who influenced the author's thoughts and ideas about this thesis.

The author likes to thank the personnel associated with the carrying out of the vast computational assignment by the mainframe computer of Computer Center, BUET, Dhaka.

Special thanks are due to Dr. Dipak Kanti Das, Professor and Head, Department of Mechanical Engineering, BUET, Dhaka and Dr. Md. Kamrul Islam, Associate Professor, Department of Mechanical Engineering, BUET, Dhaka, for their valuable suggestions.

Thanks are also due to Mr. Mosharrof Hossain of the Department of Naval Architecture and Marine Engineering for his neat typing of the manuscript.

Finally, the author expresses his gratefulness to his elder brother, Kunja Behari, for his constant inspiration for fulfilling this study for the degree of Master of Science in Mechanical Engineering.
Page No.
RECOMMENDATION OF THE BOARD OF EXAMINERS ii
CERTIFICATE OF RESEARCH iii
DECLARATION iv
ABSTRACT v
ACKNOWLEDGEMENT vii
CONTENTS viii
NOTATIONS x
CHAPTER 1 INTRODUCTION
1.1 Preliminary 1
1.2 Resume of nonlinear analysis 3
1.3 Objectives of this investigation 6
1.4 Method of solving nonlineardifferential euqation8
CHAPTER 2 SHELL THEORY
2.1 Introduction 14
2.2 Reissner's theory of axisymmetric deforma- tion of shells of revolution 15
2.3 Derivation of the field equations 18
2.4 Equations for the apex 24
2. Linearized equaiton of axisymmetri28
2.6.Boundary conditions of axisymmetric shells 31
2.7 Nondimensionalization of the equaitons 32
CHAPTER 3 METHOD OF SOLUTION
3.1 Introduciton of multisegment integration 38
3.2 Derivaiton of additional equaitons 46
3.3 Treatment of boundary conditions 49
CHAPTER 4 RESULTS AND DISCUSSION
4.1 Reliability and validity of the Analysis 51
4.2 Results and discussions 56
CHAPTER 5 CONCLUSIONS 73
REFERENCES 76
FIGURES 81
TABLES 122
APPENDIX A PROGRAMMING FEATURES
A-1 General features 127
A-2 Treatment of boundary conditions 128
A-3 On the use of the Program 130
A-4 Output of the program 134
A-5 Definition of computer variables 135
APPENDIX B PROGRAM LISTING 138

NOTATIONS

$M_{\theta}=\quad$ Circumferential couple resultant
$\bar{M}_{s}=M_{s} / P o R h$, nondimensional value of M_{s}
$\vec{M}_{\theta}=M_{\theta} / P o R h$, non-dimensional value of M_{θ}
$\mathrm{Ns}_{\mathrm{s}}=$ meridional stress resultant
$N_{\theta}=$ Circumferential stress resultant
$\bar{N}_{\mathrm{B}} \quad=\quad \mathrm{N}_{\mathrm{s}} / \mathrm{PoR}_{\mathrm{o}}$, nondimensioal value of Ns_{s}.
$\bar{N}_{\theta}=N / P o R$, nondimensional value of $N . e$
Po = outward normal pressure at the base of the shell (its positive value indicate internal pressure)

P = internal normal pressure at any point on the meridian.
$\bar{P}_{\circ}=P_{o} / E$, nondimensional value of P_{o}
$\bar{P} \quad=\quad P / E$, nondimensional vlaue of P
Ph $=$ horizontal Component of surface load
$P_{v}=$ Vertical component of surface load
Q $=$ transverse shear stress resultant
$R \quad=\quad$ radius of base circle
$\overline{\mathrm{R}}=\mathrm{se} / \mathrm{R}$
$R_{B}, R_{\theta}=\quad$ Principal radii of curvature of the middle surface of the shell
ro $=$ distance of a point on undeformed
middle surface of the shell

$$
\begin{aligned}
& y(x)=(6,1) \text { matrix, contains } 6 \text { fundamental } \\
& \text { variables } \\
& \text { no }=\text { axial distance of a point on unreformed } \\
& \text { middle surface of shell from its plane } \\
& z \quad=\quad \text { Zn }+w, a x i a l \text { distance of a point on } \\
& \text { deformed middle surface } \\
& \alpha=\text { parameter of meridian of deformed shell, } \\
& \text { defined in Equation (2.4) } \\
& \alpha_{0}=\text { value of corresponding to unreformed shell } \\
& \bar{\beta}=\beta \\
& \beta=\text { angle of rotation of normal to the middle } \\
& \text { surface of the shell } \\
& \epsilon_{0}, \epsilon_{s}=\text { middle surface strains. } \\
& \bar{\epsilon}_{\theta}=\epsilon_{\theta} \text { Ehse/PoR }{ }^{2} \text {, nondimensional value of } \epsilon_{\theta} \\
& \bar{\epsilon}_{\mathrm{B}}=\epsilon_{\mathrm{S}} \text { EhSo/PoR}{ }^{2} \text {, nondimensional value of } \epsilon_{S} \\
& \phi_{0}=a n g l e \text { between normal and axis of symmetry } \\
& \text { before deformation (meridional angle) } \\
& \nu=\text { Poisson's ratio of shell material } \\
& \sigma_{a i}=N_{B} / h+6 M_{B} / h^{2} \text {, meridional stress at the } \\
& \text { extreme inner fiber }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OO }=N_{s} / h-6 M_{s} / h^{2} \text {, meridional stress at the } \\
& \text { extreme outer fiber } \\
& \sigma_{c i}=N_{\theta} / h+6 M_{\theta} / h^{2} \text {, circumferential stress at the } \\
& \text { extreme inner fiber. } \\
& \sigma_{0}=N_{\theta} / h-6 M_{\theta} / h^{2} \text {, circumferential stress at the } \\
& \text { extreme outer fiber } \\
& \bar{\sigma}_{i}=\sigma_{a} / E, \text { nondimensional value of } \sigma_{a} \\
& \overline{\sigma_{a}}=\sigma_{a} / E \text {, nondimensional value of } \sigma_{a} \\
& \bar{\sigma}_{1}=\sigma_{1} / E, \text { nondimensional value of } \sigma_{c} \\
& \overrightarrow{\sigma_{c}}=\sigma_{0} / E, \text { nondimensinal value of } \sigma_{c o} \\
& (---)^{\prime}=\text { derivative with respect to dor } \bar{s}
\end{aligned}
$$

CHLAPTEAR I

INTRODUCTION

1.1 PRELIMINARY

With the passage of time, shell structures are being utilized more and more. In many instances, axially varying load is the primary consideration in the design of various structural configurations. Shells are used as load - carring element in some part of virtually every item of modern industrial equipment. This is specially true of the marine, petrochemical industries, nuclear and aerospace where dramatic and sophisticated uses of shells are currently being made in space vehicles and missiles, submarines, nuclear reactor vessels, refinary equipments and the like. As interest in shell structures increased, more sophisticated mathematical analysis of shells were sought. Nonlinear shell analysis, which takes into account of finite shell deformation under loading as well as non linear stressstrain relations, is currently in its infancy. This type of problem requires the integration of a rather complicated system of simultaneous nonlinear differential equations or solutions of highly ill conditioned simultaneous algebraic equations.

Consequently, with the advent of large high speed computers, the authors of numerous recent papers have focussed their attention on the methods of numerical integration of thin shell equations.

Shell structures are characteristically different from others in the sense that large deformation takes place in many shells under internal or external loading. This sometimes necessitates consideration of large deformation in the formulation of the problems to obtain reasonable information of the structure. Analysis of composite shells which invariably has to account for the large deformations that take place at the junctions of shells of different geometrics, is fundamentally a subtopic of nonlinear rather than linear mechanics. The nonlinearity is introduced in the governing equations of elasticity in three ways:
a. through the strain-displacement relations.
b. through the equaitons of equilibrium of a volume element of the body, and
c. through the stress-strain relations.

In (a) and (b) retention of the nonlinear terms is conditioned by geometric considerations, that is, the necessity of taking into account the angles of rotation in determining the changes of dimension in the line elements and in formulating the conditions of equilibrium of a volume element. On the other hand, nonlinear terms appear in the third set of equations (c) if the material does not behave in a linearly elastic fashion. Hence there are two types of nonlinearity :

In the problems of shell structure, the angle of rotation can be large, but the strain can remain within elastic limit. The bending of a thin steel strip can be considered. Strips of good steel can straighten out without traces of residual deformation after having their ends. brought together. This bears witness to the fact that, in these strips, even for large displacement and angle of rotation, the stresses do not exceed the yield point. Thus, many shell structures belong to a class of problem which are physically linear but geometrically nonlinear.

1.2 RESUME OF NONLINEAR SHELL ANALYSIS

That linear shell analysis fails to give proper information about the shell stresses and deformations in many problems can be seen in recent papers on the nonlinear shell analysis $(4,5,7,9,10,11,22,24,34,36,38,41,43-53)$. For this reason the use of nonlinear theory has become rather widely accepted as a plausible basis for predictions of elastic strengths of thin shells of various geometries.

The basic concept of finite deflection analysis, due to Donnell(9), has been employed by numerious investigators to establish collapse loads of cylindrical shells subjected to various loadings. Finite deflection analysis has also been
successful in offering reasonable predictions of the elastic buckling loads of shallow spherical caps subjected to uniformly distributed external pressure. Kaplan and Fung (24) have presented a perturbation solution lo the nonlinear equations that agrees quite well with results of their experiments for very
 to a greater range of shells. is can be seen from recent prems; very extensive wo:k bis been done in ihis field $(12,15,18,22,24,26,43)$. Ball (\because) has considered the problems of arbitrarily loaded shells of revolution and obtained solution for a clamped shallow spherical shell uniformly loaded over one half of its surface. Finite. deflection studies are available for cylindrical, spherical as well as other types of shells subjected to variety of loadings and boundary conditons. In all cases the predictions of these theories are in better agreement with expremental evidence than those of the classical investigations based upon infinitesimal deformations.

Uddin (46) has found extensive numerical results on perfect spherical, ellipsoidal, conical and composite shells based on both the linear and nonlinear theories and has obtained critical pressures of different types of spherical shells. He has also obtained the solutions for spherical, ellipsoidal, conical and plate end pressure vessels (47,48,49,52) based on both the linear and nonlinear theories. For composite shells with geometrical discontinuity, he has found numerical results of stresses in the neighbourhood of junctions under uniform internal pressure.

Bushnell (6) has developed a computer software package, known as BOSOR5, for analyzing the nonlinear stress field of axisymmetric shell systems based on thin shell theory and for determining the bifurcation buckling pressures of ellipsoidal and torispherical heads joined to cylinder and subjected to internal pressure. This software is capable of taking into account of various meridional geometry and practical boundary conditons.

Haque (16) has investigated buckling of perfect ellipsoidal shells of revolution and has obtained respective critical pressures for various shell parameters. Rahman (38) has analysed the stability of imperfect ellipsoidal shells of revolution under external pressure. Extensive investigations had been carried out for imperfections of various shells and structures (19,20,21, 23, 27,30,42).

But the stresses under axially varying load of axisymmetric shells with discontinuities in slope of the meridian, taking large deformation into consideration, has not yet been studied.

1.3. OBJECTIVES OF THIS INVESTIGATION

The objectives of the present investigation are stated below:

1. The purpose of this investigation is to determine stresses at the junctions of axisymmetric shells of different geometries under axially varying load. This investigation is thus to provide some insight into the nonlinear analysis of shells of revolution under axially varying internal pressure with discontinuities in slope and curvature of the meridian.
2. The study includes only those shells which are considered to be thin and in which large deformations take place under load.
3. Distribution of stresses in the neighbourhood of junctions of axisymmetric shells of different geometries as found here are expressed in graphical forms plotted against distance along the meridian.
4. The present investigation is confined to the large deformations and thus the maximum stress in the shell is determined in order to ascertain that it is within the yield strength of the shell material, that is, it is checked whether withdrawal of internal pressure would allow the retention of original shape of the shell.

The computer program developed for the analysis may be used for various boundary conditions like completely fixed or roller supported or hinged edges.

In order to achieve these objectives, a system of six first order nonlinear ordinary differential equations with geometrical discontinuity had to be integrated as a boundary value problem. The method of Multisagment Integration had been used for solving this boundary value problem of shells of revolution undergoing axisymmetric deformation. Usually, the method of Multisegment Integration is used to solve those boundary value problems of ordinary differential equations which can not be solved by direct integration; because, direct integration losses all of its accuracy in the process of subtraction of almost equal numbers in evaluating the unknown boundary values. The method of Multisegment Integration, as used in this analysis, was first developed by Kalnins and Lestingi (24) and later applied by Uddin (46) for sloving the nonlinear problem of axisymmetric deformation of shell of revolution. The computer program used in this analysis is adopted from that of Uddin with necessary modifications to suit the requirement of solving problems of general case of shells under axially varying axisymmetric loading.

1.4. METHOD OF SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

Abstract

A system of nonlinear ordinary differential equaitons with geometrical discontinuities is required in solving the present problem. Unfortunately, the development of modern mathematics has provided the applied scientists hardly with any general method for solving nonlinear ordinary and nonlinear partial differential equations. The situation has been brightened considerably, however, with the development of modern digital computers and with the simultaneous revitalization and growth of the study of numerical methods.

Though there are quite a number of approximate methods available for solving nonlinear differential equaitons, there is hardly any method proved to be unique or advantageous over the other method, leaving aside its applicability to a specific problem. The methods most frequently used in solving nonlinear differential equations are :
(1) Asymptotic integration
(2) Direct numerical integration
(3) Finite - difference method
(4) Perturbation technique
(5) Newton's method
(6) Method of multisegment integration
(1) Asymptotic integration_: It is not a general method and its scope of application is very limited. In the application of this method the solution is expressed in the form of a series where the terms of the series are the inverse powers of the largest parameter in the differential equations (31). It is very difficult to find out the terms of the series and most of the time the solution contains only the first term approximation. Considering the complexity of the shell equations and remembering that there are geometrical discontinuities at intermediate points, the posibility of obtaining a reasonably good solution by any approximate analytical method is highly unlikely.
(2) Direct Numerical Integration : The direct integration approach has certain advantages but it also has a serious disadvantage i.e. when the length of the shellis large, a loss of accuracy invariably results. This phenomenon is clearly pointed out in Ref (13). The loss of accuracy does not result from the cumulative error in integration, but it is caused by the subtruction of almost equal numbers in the process of determining unknown boundary values. It follows that for every set of geometric and material parameters of the shell there is a critical length beyond which the solution losses all its accuracy.
(3) Finite - difference method : This method is the most widely used technique for solving nonlinear differential equations. The advantage of this method over direct integration is that it can
avoid the above mentioned loss of accuracy. Here the analysis involves the solution of a large number of nonlinear algebraic equaitons which would probably have a number of solutions. Most of the time the solutions of nonlinear equaitons are obtained as the solutions of a sequence of linear equaitons. It is often difficult to distinguish between instability in the sequence of numerical calculations and the point of instability of the differential equaitons which correspond to the classical buckling pressure. It is usually the case that the finite difference method is not suitable for application to problems which contain discontinuities or rapidly varying parameters at a point.
4. Perturbation Technique_: The perturbation technique is also a frequently used analytical method for solving nonlinear differential equaitons. In this technique the functions to be obtained are expressed in the form of power series in terms of a perturbation parameter and the solutions are obtained as solutions of a sequence of linear differential equations. The solutions of the linear equaitons are the-terms of the series. But there must be a natural, an artificially created perturbation parameter which contributes to the nonlinearity of the problem and this parameter must be small enough so that the series is convergent.

Particularly this method is appropriate for nonlinear dynamic problem of rigid bodies (14) where a natural perturbation parameter exists and the solutions are periodic. In nonlinear shell analysis this technique is used by Archer (1) to clamped
spherical shell under uniform pressure where the nondimensionalized radial displacement at the point of maximum diflection has been used as a perturbation parameter. From this solution it is seen that the computational work involved in obtaining numerical values is so extensive that it would be desirable to apply some numerical technique from the beginning. The result of this solution is compared with experimental and other results by Reiss (37) where it is shown that the perturbation solution is in serious disagreement with the rest of the results. In this problem it is required to solve a number of sets of differential equaitons where no suitable perturbation parameter is obvious which is applicable lo all the sets. The convergence of the series under the present circumstances can only be established by comparing with known results, but there exist no such results.
(5)_Newton's method : Newton's method for solving nonlinear differnetial equations is the extension of Newton's method for calculating roots of algebraic equations. The approach is to express the solution as the sum of two parts; the first part is a known functin and the second part is a correction to the known function. A governing equation for the correction is obtained by substituting the assumed function into the nonlinear equations and neglecting the term which are nonlinear (17). This method does not require the perturbation parameter to be small, as is necessary in the perturbation technique, but involves the solution of a sequence of linear differential equations. These linear equaions have variable coefficients and generally can not
be solved in closed form. It is paradoxical that the greatest obstacle in solving nonlinear problems is the inability to solve linear differential equations in closed form.
(6) Method of multisegment integration : It is the most recent method developed and used by Kalnins and Lestingi (24) to solve nonlinear differential equations. This method involves :
(a) division of the total interval into a number of segments;
(b) initial-value integration of a system of first order differential equaitons over each segment;
(c) solution of a system of matrix equaitons which ensures the continuity of the variables at the ends of the segments; (d) repetition of (b) and (c) till convergence is achieved; (e) integration of an intial value problem to obtain the values of the dependent variables at any desired point within each segment.

The main advantage of this method over finite - difference method is that the solution is obtained everywhere with uniform accuracy and the iteration process with respect to the mesh size, as required in finite difference approach' is eliminated. But the feature which makes this method most attractive for this problem is that any discontinuity, either in geometry or in loading, can be easily handled by requiring that the nodal points of the segment coincide with the location of discontinuities. This method is the most accurate of all the numerical methods because the problem is solved in the form of a system of first order
differential equaitons in which no derivatives of geometrical or elastic properties appear and because no further numerical derivatives have to be evaluated for obtaining the desired results in the process of computations.

CHAPTERR 2

THEORY OF SHELL

2.1 INTRODUCTION

The literature on shell theories is not devoid of papers in which some of the aspects of finite displacements on the deformation of this shell are accounted for. The work of a completely general nature appears to be the papers by Chang and Chen (8) followed by a series of papers by Chen. The theory of shells deyeloped by Chang and Chen avoids the use of displacement as unknowns in the equations. The theory is deduced from the three-dimensional theory of elasticity and then, by means of series expansion in powers of small thickness parameter, approximate theories of thin shells are derived. Other developments which also employ linear constitutive relations are founded upon the Kirchhoff hypothesis and often contain other approximations.Among these are Reissner's (36) formulation of axisymmetric deformation of shells of revolution and the more general works of Sanders (39) and Leonard. Beginning with the three dimensional field equations Naghdi and Nordgren deduced an exact, complete, and
fully general nonlinear theory of elastic shells founded upon the Kirchhoff hypothesis.

Several nonlinear theories for thin shells have been derived. in increasing stages of approximation. In most cases the theories are first approximative theories in the sense that transverse shear and normal strains are neglected. Here the author has used the theory of axisymmetric deformation of shells of revolution as presented by Reissner (36), because of the fact that Reissner's derivations have extremely simple structure and that this theory differs from others in using radial and axial components of displacements and stress resultants, instead of the customary practice of using normal and tangential components of displacements and stress resultants. The modified definition of displacements and stress resultants is very well suited for managing the axially varying load of composite shell problems.

2.2 REISSNER'S THEORY OF AXISYMMETRIC DEFORMATION OF
 SHELLS OF REVOLUTJON.

The basic equations of Reissner's theory of finite axisymmetric deformations of shells of revolution are presented here for ready reference.

The equation of the meridian of the shell is written in the parametric form (Fig. 3) as,

$$
r=r(s), z=z(s) \ldots \ldots \ldots \ldots \ldots
$$

so that s together with polar angle θ in the $x-y$ plane are the coordinates on the middle surface. The sloping angle ϕ of the

$$
\begin{equation*}
\tan \phi=\mathrm{dz} / \mathrm{dr} \tag{2.2}
\end{equation*}
$$

From equation (2.2) it follows that

$$
\cos \phi=r^{\prime} / \alpha \quad, \sin \phi=z^{\prime} / \alpha \ldots . \ldots \ldots(2.3)
$$

where the primes denote differentiation with respect to s and α is given by

$$
\alpha=\left[\left(r^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}\right] 1 / 2 \ldots(2.4)
$$

The principal radii of curvature of the middle surface of the shell are given by

$$
R_{B}=\alpha / \phi^{\prime}, R_{\theta}=r / \sin \phi \ldots(2.5)
$$

With reference to Fig. (Aa) the equation of deformed middle surface is written as

$$
r=r_{0}+u, \quad z=z_{0}+w \quad \ldots \ldots \ldots
$$

where the subscript o refers to the undeformed middle surface and the quantities u and w are, respectively' the radial and the axial components of displacement.

The angle enclosed by the tangents to the deformed and to the underformed shell meridian, at the same material point, is given by

$$
\begin{equation*}
\beta=\phi_{0}-\phi \tag{2.7}
\end{equation*}
$$

With the above definition of displacements, the strain components and the curvature changes of the middle surface are given by the following equaitons :
$E_{s}=\left(\alpha-\alpha_{0}\right) / \alpha_{0}=\left(\cos \phi_{0} / \cos \phi\right)\left(1+u^{\prime} / r_{0}^{\prime}\right)-1 \ldots(2.8)$
$\epsilon_{o}=u / r_{o}$ (2.9)
$K_{\mathrm{s}}=-\left(\phi^{\prime}-\phi_{0}^{\prime}\right) / \alpha_{0}=\beta^{\prime} / \alpha_{0}$
$\mathrm{K}_{\theta}=-\left(\sin \phi-\sin \phi_{0}\right) / \mathrm{r}_{\mathrm{o}}$

The equation containing the axial displacement w is introduced as

$$
\begin{equation*}
w^{\prime}=\alpha \sin \phi-z 0 \tag{2.12}
\end{equation*}
$$

With the definition of stress resultants and couples as shown in Fig(4a) and Fig(4b) the equations are written as:

From the condition of equilibrium of forces in axial direction

$$
\begin{equation*}
(r v)^{\prime}+r \propto P_{v}=0 \tag{2.13}
\end{equation*}
$$

From the condition of equilibrium of forces in radial direction,

$$
\begin{equation*}
(\mathrm{rH})^{\prime}-\alpha \mathrm{N}_{\theta}+\mathrm{r} \alpha \mathrm{P}_{\mathrm{H}}=0 \tag{2.14}
\end{equation*}
$$

From the conditon of equilibrium of moments about circumferential tangent,

$$
\begin{equation*}
\left.\left(r M_{a}\right)^{\prime}-\alpha \cos \phi M_{\theta}+n N H \sin \phi-V \cos \phi \quad\right)=0 . \tag{2.15}
\end{equation*}
$$

With the assumption that the behaviour is elastic, the relations between strains and stress resultants are given by

$$
\begin{aligned}
& c \epsilon_{s}=N_{s}-\nu N_{\theta}, \quad c \epsilon_{0}=N_{\theta}-\nu N_{s} \ldots \ldots \ldots(2.16) \\
& M_{s}=D\left(K_{s}+\nu K_{\theta}\right), M_{\theta}=D\left(K_{\theta}+\nu K_{s}\right) \ldots \ldots \ldots(2.17)
\end{aligned}
$$

Where $C=E h, D=E h^{3} /\left(12\left(1-\nu^{2}\right)\right)$, and h is the thickness of the shell. The radial stress resultant H and axial stress resultant V are related to N_{s} and transverse shear Q as follows :
$N_{B}=H \cos \phi+V \sin \phi, Q=-H \sin \phi+V \cos \phi \ldots$

2.3. DERIVATION OF THE FIELD EQUATIONS

The order of the system of equations (2.6-2.18) is six with. respect to s, and consequently it is possible to reduce Ens (2.6-2.18) to six first order differential equations which involves six unknowns. In the following derivation, the six fundamental variables are taken as $u, \beta, w, V, H, M a$ and the differential equations are expressed in terms of these variables. The independent variable s is taken as the distance measured from the apex along the meridian of the shell so that the differential equations can be used for all possible geometrical shapes of the meridian. With is definition of s, Eqn. (2.4) gives

$$
\alpha_{0}=\left[\left(r_{0}^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}\right]^{1 / 2}=1
$$

From the geometry of the meridian, which is yet to be specified, it is known that

$$
\begin{aligned}
& r_{0}=r_{0}(s) \\
& \phi_{0}=\phi_{0}(s)
\end{aligned}
$$

. (2.19)
. (2.20)

The following equations are rewritten from the previous section in such an order that, when evaluated serially, they are in ferilis of the fundamental variables.

This is done in order to keep the fundamental set of differential equations as simple as possible. Rewritting of Equns. (2.9), (2.6), (2.7), (2.11), (2.18), (2.17) yeilds.

ϵ_{θ}	$=$	u/ro............................(2.21)	
r	$=$	ro +u	. (2.22)
ϕ	=	$\phi_{0}-\beta$.(2.23)
K_{θ}	$=$	$\left(\sin \phi_{0}-\sin \phi\right) / r$	(2.24)
Ns	=	$\mathrm{H} \cos \phi+\mathrm{V} \sin \phi$. (2.25)
Ks	=	$M_{s} / D-\nu K_{\theta}$	(2.26)
M_{θ}	$=$	D ($\mathrm{K}_{\dot{\mathcal{O}}}+\nu \mathrm{K}_{s}$)	. ${ }^{(2.27 \text {) }}$

Eliminating N_{θ} from Eqns (2.16), it.is found that

$$
\begin{equation*}
\epsilon_{s}=\left(\frac{1-\nu^{2}}{C}\right) N_{s}-\nu \epsilon_{\theta} \tag{2.28}
\end{equation*}
$$

similarly, elimination of Ns from Eqns. (2.16) yields

$$
\begin{equation*}
N_{\theta}=\left(\frac{c}{1-\nu^{2}}\right)\left(\epsilon_{\theta}+\nu \epsilon_{s}\right) \tag{2.29}
\end{equation*}
$$

Rearrangement of Eq ${ }^{\prime}(2.8)$ and substitution of $\alpha_{0}=1$ gives *

$$
\begin{equation*}
\alpha=1+\epsilon_{\mathrm{s}} \tag{2.30}
\end{equation*}
$$

Elimination of z_{0} from Eqn(2.12) by means of Eqn(2.3) gives

$$
\mathrm{dw} / \mathrm{d} \operatorname{s}=\alpha \sin \phi-\alpha_{0} \sin \phi=\alpha \sin \phi-\sin \phi_{0} \ldots(2.31)
$$

Substitution of the values of ϵ_{s} from Eq (2.30) and rod from Eq (2.3) in Eq (2.8) gives

$$
\begin{equation*}
\mathrm{du} / \mathrm{ds}=\alpha \cos \phi-\cos \phi_{0} \tag{2.32}
\end{equation*}
$$

From eq (2.10), the expression for β^{\prime} is fond to be

$$
\begin{equation*}
\mathrm{d} \beta / \mathrm{ds}=\mathrm{K}_{\mathrm{s}} \tag{2.33}
\end{equation*}
$$

Expansion of the three equations of equilibrium and elimination of $\quad P_{v}, P_{n}$ and r^{\prime} from these equations result in the following expressions for $\mathrm{V}^{\prime}, \mathrm{H}^{\prime}$ and $\mathrm{M}_{\mathrm{s}}^{\prime}$:

$$
\begin{align*}
& \mathrm{dv} / \mathrm{ds}=-\alpha((\mathrm{V} \cos \phi) / r-\mathrm{P} \cos \phi) \ldots(2.34) \tag{2.34}\\
& \mathrm{dH} / \mathrm{ds}=-\ldots\left(\left(H \cos \phi-\mathrm{N}_{\theta}\right) / r+\mathrm{P} \sin \phi\right) \ldots(2.35)
\end{align*}
$$

$$
\mathrm{d} M_{s} / \mathrm{ds}=\alpha \cos \phi\left(M_{\theta}-M_{s}\right) / r-\alpha(H \sin \phi-V \cos \phi) \ldots(2.36)
$$

where P is the axially varying internal pressure, that is, P is the function of s. Eqns (2.19-2.36) are the nonlinear governing equations of the axisymmtric deformations of shells of revolution expressed in terms of the fundamental variables. It should be noted that this fundamental set of differential and algebraic equations are expressed in such a manner that all the quantities of physical importance are evaluated during the process of solution of these equations.

The expressions of variable internal pressure P for various kinds of shell elements are given below -

Expression for line-element:

Let the shell contain a conical frustum and is. filled with a liquid of specific weight γ (Fig. (a)). Assuming that the total depth of the liquid is d from a certain point z on the axis corresponding to point s on the meridian of the shell where the gauge pressure is denoted by $P o$. It is required to calculate the pressure P normal to the meridian at some other point on the shell.

Figure - (a)
From the geometry of the shell it is seen that -

$$
\begin{aligned}
\Delta Z / \Delta S & =\sin \phi_{0},\left(r_{1}-r_{0}\right) / \Delta s=\cos \phi_{0} \\
P_{0} & =\gamma^{\prime} d+P_{a}
\end{aligned}
$$

where P_{a} is the gage pressure above the liquid surface. Now, pressure at any parallel circle mn is -

$$
P=P_{0}-\gamma^{\gamma} \Delta Z
$$

Where P_{0} is the maximum pressure of the base, defined as

$$
P_{0}=\gamma_{d}+P_{a}
$$

or, $P=P o\left[1-\frac{\Delta Z}{d+d^{\prime}}\right] \quad$ where, $P a \quad=\gamma_{d}$ '
or, $P=P_{0}=\left[1-\frac{\Delta S \operatorname{Sin} \phi}{d+d^{\prime}}\right]$

$$
\begin{aligned}
& \text { or, } \quad P=P_{0}\left[1-\frac{r_{1}-r_{0}}{d+d^{\prime}} \quad \tan \phi_{0}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \overline{\mathrm{P}}=\overline{\mathrm{P}}_{0}\left[1-\begin{array}{l}
\overline{\mathbf{r}}_{i}-\overline{\mathbf{r}}_{0} \\
\overline{\mathrm{~d}}+\overline{\mathrm{d}}^{\prime}
\end{array} \tan \quad\right]
\end{aligned}
$$

Expression for Circular elements :

Here, the expression of variable internal pressure P as a function of s is derived in the same manner as for line element.

From the geometry of the shell-

$$
\mathrm{Z}_{1}=\frac{\mathrm{r}_{1}}{-\tan _{1}}
$$

$$
Z_{0}=\frac{r_{0}}{\tan \phi_{0}}
$$

Therefore, $\Delta Z=Z_{0}-Z_{1}=\begin{aligned} & \text { roc ri } \\ & \tan \phi_{0} \\ & \tan \phi \\ & \text { tan }\end{aligned}$

Pressure P at any point on the circular meridian is

$$
\begin{aligned}
& P=p_{0}-\gamma \Delta z \\
& \text { or, } P=P_{o}\left[1-\frac{\Delta Z}{d+d /}\right] \\
& \text { or, } P=P_{o}\left[1-\underset{d+d /}{1}\left(\begin{array}{ll}
r_{0} & r_{i} \\
--- & -- \\
\tan \phi_{0} & \tan \phi_{i}
\end{array}\right)\right]
\end{aligned}
$$

Nondimensionalization of P yields

$$
\bar{p}=\bar{p}_{0}\left[\begin{array}{cc}
1 \\
1 & -\bar{d}+\bar{d} /
\end{array} \quad\left(\begin{array}{cc}
\bar{r}_{0} & \bar{r}_{i} \\
\overline{\tan \phi_{0}} & -\overline{\tan }_{i}
\end{array}\right]\right.
$$

3.4. EQUALTONS FOR THE APEX

The fundamental set of equations derived in the previous sections is singular at the pole (Fig. 1). In order to remove this sigularity, the condition that all the physical quantities must be regular at the pole should be imposed. From the symmetry at the pole it is found that

$$
\mathbf{u}=\quad=0
$$

and as there is no concentrated load at the pole, it follows that

$$
V=0
$$

In the following derivation it is assumed that s is measured from the pole of the axisymmetric shell.
Since ϵ_{θ} and $\epsilon_{\theta}^{\prime}$ must be regular at $s=0$ Eqn.(2.21) gives

$$
\operatorname{Lim}_{\mathrm{s} \rightarrow 0} \epsilon_{\theta}=\mathrm{u} / \mathrm{r}_{\mathrm{o}}^{\prime}\left(\text { By } \mathrm{L}^{\prime}\right. \text { Hospitals' principle) }
$$

and

$$
\operatorname{Lim}_{\mathrm{s} \rightarrow 0} \epsilon_{\theta}^{\prime}=\frac{u r_{o}-u^{\prime} r_{o}^{\prime}}{2\left(r_{o}^{\prime}\right)^{2}}
$$

From eq (2.3), it is found that $r_{0}^{\prime}=\cos \phi$ and therefore, $r_{o}^{\prime \prime}=-\sin \phi_{0} . \phi_{0}^{\prime}$.
Substitution of the values of r_{0}^{\prime} and $r_{o}^{\prime \prime}$ into the expression of ϵ_{0} and ϵ_{0}^{\prime} yeilds

$$
\begin{align*}
& \operatorname{Lim}_{\mathrm{sim}} \epsilon_{\theta}=u^{\prime} / \cos \phi_{0} \ldots \ldots \ldots \ldots \ldots \ldots \ldots(2.37) \\
& \operatorname{Lim}_{\mathrm{sim} \rightarrow 0} \epsilon_{\theta}^{\prime}=\frac{u^{\prime \prime} \cos \phi_{0}+u^{\prime} \phi_{0}^{\prime} \sin \phi_{0}}{2 \cos ^{2} \phi_{0}} \quad \ldots \ldots \ldots \ldots \ldots(2 . \tag{2.38}
\end{align*}
$$

Similarly, the following equations can be deduced from eqns (2.19) - 2.36) by taking the limit as $s \rightarrow 0$

$$
\begin{align*}
& \operatorname{Lim}_{s \rightarrow 0} \phi=\phi_{0} \tag{2.39}\\
& \operatorname{Lim}_{s \rightarrow 0} \phi^{\prime}=\phi_{0}^{\prime}-\beta^{\prime} \tag{2.40}\\
& \operatorname{Lim}_{s \rightarrow 0} K_{\theta} \quad \beta^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots \text { (2.41) } \tag{2.41}\\
& \operatorname{Lim}_{s \rightarrow 0} K_{\theta}^{\prime}=\frac{1}{2}\left(\beta^{\prime \prime}-\phi^{\prime} \beta^{\prime} \tan \phi_{0}\right) \ldots \ldots . . \tag{2.42}\\
& \operatorname{Lim}_{\mathrm{s} \rightarrow \mathrm{O}} \mathrm{Ns}_{\mathrm{s}}=\mathrm{H} \operatorname{Cos} \phi_{0}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Lim}_{s \rightarrow 0} N_{s}^{\prime}=H^{\prime} \cos \phi_{0}-H \phi^{\prime} \sin \phi_{0}+V^{\prime} \sin \phi_{0} \ldots(2.44) \\
& \operatorname{Lim}_{s \rightarrow 0} M_{\theta}^{\prime}=\operatorname{Lim}_{s \rightarrow 0}\left(D\left(1-\nu^{2}\right) K_{\theta}^{\prime}+\nu M_{s}^{\prime}\right) \ldots \ldots(2.45) \\
& \operatorname{Lim}_{s \rightarrow 0} N_{\theta}^{\prime}=\operatorname{Lim}_{s \rightarrow 0}\left(\mathrm{C} \epsilon_{\theta}^{\prime}+\nu \mathrm{N}_{\mathrm{s}}^{\prime}\right) \ldots \ldots(2.46)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Lim}_{s \rightarrow 0} \alpha^{\prime}=\operatorname{Lim}_{s \rightarrow 0}\left(-\frac{1-\nu^{2}}{C} \quad N_{s}^{\prime}-\nu E_{\theta}^{\prime}\right) \ldots(2.48) \\
& \operatorname{Lim}_{s \rightarrow 0} u^{\prime}=((1-\nu) / C) H \operatorname{Cos}^{2} \phi_{0} \ldots(2.49) \\
& \operatorname{Lim}_{s \rightarrow 0} \beta^{\prime}=M_{s} /(D(1+2)) \ldots(2.50) \\
& \operatorname{Lim}_{s \rightarrow 0} w^{\prime}=\frac{1-\nu}{C} \quad H \sin \phi_{0} \quad \cos \phi_{0} \ldots(2.51)
\end{aligned}
$$

Substitution of Eq (2.49) in Eq (2.47) gives

$$
\begin{equation*}
\operatorname{Lim}_{s \rightarrow 0} \alpha=. \quad 1+\frac{1-2}{C} \quad H \cos \phi_{0} \ldots \ldots \tag{2.52}
\end{equation*}
$$

Now $\begin{array}{lll} & V \\ \operatorname{Lim} & - & V^{\prime} \\ s \rightarrow 0 & r & ---- \\ \alpha \cos \phi_{0}\end{array}$

Substituting Eqn. (2.53) in Eqn. (2.34) and solving for $V /$ at the apex, it is found that

$$
\begin{equation*}
\operatorname{Lim}_{s \rightarrow 0} V^{\prime} \quad=\quad-\frac{1}{2} \alpha P \cos \phi_{0} \tag{2.54}
\end{equation*}
$$

Differentiating Eqn. (2.32) and taking the limit as $s \rightarrow 0$, the expression for $u^{\prime \prime}$ at the pole can be derived as

$$
\left.\left.\operatorname{Lim}_{s \rightarrow 0} u^{\prime \prime}=\left(\frac{2}{2+-}\right)^{\left(--\nu^{2}\right.}(--)^{\prime}\right) N_{s}^{\prime} \cos \phi_{0}+\alpha \beta^{\prime} \sin \phi_{0}\right)-u^{\prime} \phi_{0} \tan \phi_{0}
$$

hence from equation (2.46)
$\operatorname{Lim}_{S \rightarrow 0} N_{\theta}^{\prime}=---\frac{1}{2}+\left((1+2 \nu) \quad N_{s}^{\prime}+C \alpha \beta^{\prime} \cdot \tan \phi_{0}\right)$.

Taking the limit of Equation (2.35) and eliminating N_{θ}^{\prime},

In order to evaluate M_{s}^{\prime} at the pole, the expression of M_{θ}^{\prime} in terms of M_{s}^{\prime} has to be derived first, Differentiating Eq.
(2.35) and taking the limit as $s \rightarrow 0$,
$\operatorname{Lim}_{s \rightarrow 0} \quad \beta^{\prime \prime}=-\frac{2}{2+\nu}\left(M_{B}^{\prime} / D+-\frac{\nu}{\beta^{\prime} \phi^{\prime}} \frac{--}{2} \tan \phi_{0}\right)$
which, when substituted in Eq. (2.45), gives
$\operatorname{Lim}_{s \rightarrow 0} \quad M_{\theta}^{\prime}=\left(\begin{array}{c}1+2 \nu \\ -\sim---- \\ 2+\nu\end{array}\right) M_{s}^{\prime}-\binom{1-\nu)^{2}}{2+\nu} \phi^{\prime} \beta^{\prime} \tan \phi 0$
Taking the limit of Eqn. (2.36) and eleminating M_{θ}^{\prime}, the expression for M_{s}^{\prime} is found to be
$\operatorname{Lim}_{s \rightarrow 0} M_{s}^{\prime}=-\frac{1}{3}\left(\alpha(2+\nu) H \sin \phi_{0}+D\left(1-\nu^{2}\right) \beta^{\prime} \phi^{\prime} \tan \phi_{0}\right) \ldots(2.56)$

Thus Eqns (2.49), (2.50), (2.51), (2.54), (2.56) form the fundamental set of differential equations applicable only at the pole, where α and ϕ^{\prime} appearing in these equations are given by

Eqns. (2.52), and (2.40) respectively. These equations can further be simplified if it is assumed that the curvature of the underformed shell is continuous at the pole. In this case,
$\phi=0$ and, Thus fundamental set becomes -

$$
\begin{align*}
& u^{\prime}=(1-\searrow) \text { H/C(2.57) } \\
& \beta^{\prime}=M_{B} /(D(1+\nu)) \\
& \mathrm{w}^{\prime}=0 \text {.......... (2.59) } \\
& \alpha=1+(1-\nu) H / C \\
& v^{\prime}=\alpha \mathrm{P} / 2 \tag{2.61}\\
& \mathrm{H}^{\prime}=0 \\
& M_{B}^{\prime}=0 \tag{2.63}
\end{align*}
$$

2.5. LINEARIZED EQUATIONS OF AXISYMMETRIC SHELLS

Highly nonlinear equations are derived in sections 2.3 and 2.4. These nonlinear equations are always solved by the method of iteration in which arbitrary initial values have to be assigned to the fundamental dependent variables. Unless the initial values
assigned to the dependent variables are a good approximation to their actual values, the iteration process fails to converge. For achieving convergence in the iteration process of solving nonliear equations, it is usually necessary to solve first the linearized version of the given nonlinear equaitons. The results of the linear solutions are then assigned as the initial values to the dependent variables of the nonlinear equaitons. The linear governing equations of axisymmetric deformation of shells of revolution are thus derived in this section.

The equations of small deflection theory follow from the forgoing Eqns. (2.19-2.36) together with (2.25) to the undeformed shell and by omitting all nonlinear terms in the remaining equations of the fundamental sets. (2.19-2.36). The resulting equations are recorded below for ready reference:

$$
\begin{align*}
\epsilon_{\theta} & =u / r_{0} \tag{2.64}\\
K_{\theta} & =\beta \cos \phi_{0} / r_{0} \tag{2.65}\\
N_{A} & =H \cos \phi_{0}+v \sin \phi_{0} \tag{2.66}\\
\epsilon_{s} & =\left(1-\nu V^{2}\right) N_{s} / C-\nu \epsilon_{\theta} \tag{2.67}\\
K_{s} & =M_{s} / D-\nu K_{\theta} \tag{2.68}\\
N_{\theta} & =\left(\frac{C}{1-\nu^{2}}\right)\left(\epsilon_{\theta}+\nu \epsilon_{s}\right) \tag{2.69}\\
M_{\theta} & =D\left(K_{\theta}+\nu K_{s}\right) \tag{2.70}
\end{align*}
$$

$$
\begin{aligned}
& w^{\prime}=\cdots \epsilon_{s} \sin \phi_{0}-\beta \cos \phi_{0} \\
& u^{\prime}=\epsilon_{\mathrm{a}} \cos \phi_{0}+\beta \sin \phi_{0} \\
& \beta^{\prime}=K_{s} \\
& \mathrm{~V} /=-\left(\left(\mathrm{V} / \mathrm{r}_{0}\right) \cos \phi_{0}-\mathrm{P} \cos \phi_{0}\right) \\
& H^{\prime}=-\left(\left(H \cos \phi_{0}-N_{\theta}\right) / r_{0}+P \sin \phi_{0}\right) \\
& M_{s}^{\prime}=-\left(\left(M_{s}-M_{\theta}\right) \cos \phi_{0}\right) / r_{0}-\left(H \sin \phi_{0}-V \cos \phi_{0}\right) \ldots(2.76)
\end{aligned}
$$

The corresponding linearized equaitons at the pole are obtained in the same manner as Eqns. (2.64-2.76), Expression for $u^{\prime}, \beta^{\prime}$ and w/ remain the same, whereas, the three equations for equilibrium reduce to

$$
\begin{aligned}
& v^{\prime}=\left(P \cos \phi_{0}\right) / 2 \ldots \ldots(2.77) \\
& H^{\prime}=\frac{1}{3}\left((1-\nu) \phi_{0}^{\prime} H+\frac{C \beta^{\prime}}{\cos \phi_{0}} \tan \phi_{0}-\frac{P \sin \phi_{0}}{2} \ldots(2.78)\right. \\
& M_{s}^{\prime}=-\frac{1}{3}-\left((2+\nu) H \sin \phi_{0}+D\left(1-\nu^{2}\right) \beta^{\prime} \phi_{0}^{\prime} \tan \phi_{0}\right) \ldots(2.79)
\end{aligned}
$$

In the case of continuous curvature of the meridian at the apex the linearized equaitons applicable at the pole remain the same as the Eqns (2.57-2.63) except that the value of α is to be replaced by unity in Eqn(2.61).

2.6. BOUNDARY CONDITIONS FOR AXISYMMETRIC SHELLS

The general bondary conditons of a shell at an edge, $s_{1}=$ constant, are to prescribe, in Sanders (39) notations,

where S_{1} and S_{2} are the shell coordinates along the principal lines of curvature, N and M are the stress and couple resultants; ϕ 's are the rotations about respective axis; u and w are tangential and normal displacement components. When the quantities in Eqns (2.80) are specialized for axisymmetric deformations of shells of revolution, they reduce to prescribing

$$
\begin{aligned}
N_{11} & \text { or } u_{1} \\
Q_{1}-\phi_{1 N_{11}} & \text { or } w, \\
\text { and } M_{11} & \text { or } \phi_{1}
\end{aligned}
$$

at an edge, $s_{1}=$ constant, From (3.81), it is seen that the boundary conditions consist of the specification of rotational, tangential and normal restraints at the edge. But in most of the
practical cases of shell problems, the conditions of the horizontal and vertical restraints are known rather than those of the normal and tangential restraints, so it is concluded that it will be preferable to specify the bondary conditons in terms of the horizontal and vertical restraints from the point of view of practical applications. When this is done the boundary conditions in terms of the notations used in the body of this thesis will be to prescribe

$$
\begin{array}{r}
\mathrm{H} \text { or } \mathrm{u} \\
\mathrm{Ms} \text { or } \beta \\
\text { and } \mathrm{V} \text { or } \mathrm{W}
\end{array}
$$

at the edge, $s=$ constant.

2.7 NONDIMENSIONALIZATION OF THE EQUATIONS

It is always desirable to solve any engineering problem in terms of nondimensional quantities in order to decrease the number of input of physical parameters as well as to increase applicability of the solution. With this in mind and also to make the variables more or less of the same order of magnitude, the desplacement components and stress resultants are expressed as ratios of their actual values to those of the cercumferential desplacement and stress resultant of an unrestrained thin cylindrical shell. The independent variable s is normalized in such a manner that so, the total length of the shell meridian corresponds to unity (Fig.1). The normalized quantities are defined mathematically by
the following equations;

$$
\begin{aligned}
& \bar{\epsilon}_{\theta}=\epsilon_{\theta} E h s_{e} /\left(\mathrm{PoR}^{2}, \quad \bar{\epsilon}_{\mathrm{a}}=\epsilon_{\mathrm{sEhse}} /\left(\mathrm{PoR}_{\mathrm{oR}}\right)^{2}, \quad \bar{K}_{\theta}=\mathrm{K}_{\dot{\theta}} \mathrm{se} \quad \ldots(2.83)\right. \\
& \bar{K}_{\mathrm{B}}=\mathrm{Ks}_{\mathrm{se}}, \quad \overline{\mathrm{~W}}=\frac{\mathrm{wEh}}{\mathrm{PoR}^{2}}, \overline{\mathrm{C}}=\left(1-\nu^{2}\right) \mathrm{sa} / \mathrm{R}, \quad \overline{\mathrm{P}}_{\mathrm{o}}=\mathrm{B} / \mathrm{E}, \\
& \vec{T}=R / h, \bar{R}=S_{e} / R, \bar{D}=1 /\left[12\left(1-\nu^{2}\right) \bar{P}_{o} \bar{T}^{2} \bar{R}\right], \quad \vec{P}=P / E, \\
& \overline{\mathrm{~L}}=\overline{\mathrm{R}} /\left(\overline{\mathrm{P}}_{\mathrm{o}} \overline{\mathrm{~T}}\right), \quad \overline{\mathrm{r}}_{\mathrm{o}}=\mathrm{ro}_{\mathrm{o}} / \mathrm{se}_{\mathrm{e}},
\end{aligned}
$$

Where R is is the radius of the cylindrical part in case of pressure vessel problems or in general $R=R \circ$ at s_{a}. With the help of normalized qualities defined in Eq (2.83), the fundamental set of Eqns (2.64-2.79) (linear theory) becomes

$$
\begin{align*}
& \bar{\epsilon}_{\theta}=\bar{u} / \bar{r}_{0} \\
& \bar{K}_{\theta}=\bar{\beta}_{\cos } \phi_{0} / \bar{r}_{0} \tag{2.85}\\
& \bar{N}_{s}=\overline{\mathrm{H}} \cos \phi_{0}+\overline{\mathrm{V}} \sin \phi_{0} \tag{2.86}\\
& \bar{\epsilon}_{B}=\bar{C} \bar{N}_{B}-\nu \bar{\epsilon}_{\theta} \tag{2.87}\\
& \bar{K}_{s}=\bar{M}_{s} / \overline{\mathrm{D}}-\nu \overline{\mathrm{K}}_{\theta} \tag{2.88}\\
& \bar{N}_{\theta}=\left(\bar{\epsilon}_{\theta}+\nu \bar{\epsilon}_{s}\right) / \bar{C} \tag{2.89}\\
& \bar{M}_{\theta}=\bar{D}\left(\bar{K}_{\theta}+\nu \bar{K}_{a}\right) \\
& \text { (2.90) } \\
& \bar{w}^{\prime}=\bar{\epsilon}_{\mathrm{s}} \sin \phi_{0}-\bar{\beta} \cos \phi_{0} \cdot \overline{\mathrm{~L}} \tag{2.91}\\
& \bar{u}^{\prime}=\bar{\epsilon}_{s} \cos \phi_{0}+\bar{\beta} \sin \phi_{0} \cdot \bar{L} \tag{2.92}\\
& \bar{\beta}^{\prime}=\bar{K}_{s} \tag{2.93}\\
& \overline{\mathrm{~V}}^{\prime}=-\left(\overline{\mathrm{V}} \cos \phi_{0} / \bar{r}_{0}-\bar{R} \overline{\mathrm{f}}(\mathrm{~s}) \cos \phi_{0}\right. \tag{2.94}
\end{align*}
$$

$$
\begin{aligned}
& \bar{H}_{4}^{\prime}=-\left(\left(\overline{\mathrm{H}} \operatorname{Cos} \phi_{0}-\overline{\mathrm{N}}_{\theta}\right) / \overline{\mathrm{r}}_{0}+\overline{\mathrm{R}} \overline{\mathrm{f}}(\mathrm{~s}) \sin \phi_{0}(2.95)\right. \\
& \bar{M}_{\mathrm{s}}^{\prime}=-\operatorname{Cos} \phi_{0}\left(\overline{\mathrm{M}}_{\mathrm{s}}-\bar{M}_{\theta}\right) / \overline{\mathrm{r}}_{0}-\overline{\mathrm{R}} \cdot \overline{\mathrm{~T}} \cdot\left(\overline{\mathrm{H}} \operatorname{Sin} \phi_{0}-\overline{\mathrm{V}} \operatorname{Cos} \phi_{0}\right) \ldots(2.96)
\end{aligned}
$$

The corresponding nonlinear equations of the fundamental set in nondimensional form are as follows :

$$
\begin{aligned}
& \bar{\epsilon}_{\theta}=\overline{\mathbf{u}} / \overline{\mathbf{r}}_{\mathbf{0}} \\
& \phi=\phi_{0}-\bar{\beta} \\
& \overline{\mathrm{K}}_{\theta}=\left(\sin \phi_{0}-\sin \phi / \overline{\mathrm{r}}_{0}\right. \\
& \overline{\mathrm{N}}_{\mathrm{a}}=\overline{\mathrm{H}} \cos \phi+\overline{\mathrm{V}} \sin \phi \\
& \bar{\epsilon}_{\mathrm{s}}=\overline{\mathrm{C}}_{\mathrm{s}}-\nu \bar{\epsilon}_{\theta} \\
& \bar{K}_{s}=\bar{M}_{B} / \overrightarrow{\mathrm{D}}-\nu \overline{\mathrm{K}}_{\theta} \\
& \bar{N}_{\theta}=\left(\bar{\epsilon}_{\theta}+\nu \bar{\epsilon}_{\theta}\right) / \bar{C} \\
& \bar{M}_{\theta}=\overline{\mathrm{D}}\left(\overline{\mathrm{~K}}_{\theta}+\nu \overline{\mathrm{K}}_{\mathrm{s}}\right) \\
& \bar{\alpha}=\overline{\mathrm{L}}+\bar{\epsilon}_{\mathrm{B}} \\
& \overline{\mathbf{r}}=\overline{\mathrm{L}} \cdot \overline{\mathbf{r}}_{\mathbf{o}}+\overline{\mathbf{u}} \\
& \bar{w}^{\prime}=\bar{\alpha} \sin \phi-\bar{L} \sin \phi_{0} \\
& \text { (2.107) } \\
& \overline{\mathbf{u}}^{\prime}=\bar{\alpha} \cos \phi-\overline{\mathrm{L}} \cos \phi_{0} \\
& \bar{\beta}^{\prime}=\bar{K}_{s} \\
& \bar{V}^{\prime}=-\bar{\alpha} \cos \phi(\overline{\mathrm{V}} / \overline{\mathrm{F}}-\overline{\mathrm{P}} \overline{\mathrm{~T}}) \\
& \text { (2.110) } \\
& \bar{H}^{\prime}=-\bar{\alpha}\left(\left(\overline{\mathrm{H}} \cos \phi-\overline{\mathrm{N}}_{\theta}\right) / \overline{\mathrm{r}}+\overline{\mathrm{P}} \overline{\mathrm{~T}} \sin \phi\right) \ldots(2.111) \\
& \bar{M}_{\mathrm{s}}^{\prime}=\bar{\alpha} \cos \phi\left(\bar{M}_{\theta}-\bar{M}_{s}\right) \bar{r}-\bar{\alpha} \overline{\mathrm{P}} \overline{\mathrm{~T}}^{2}(\overline{\mathrm{H}} \sin \phi-\overline{\mathrm{V}} \cos \phi) \text { (2.112) }
\end{aligned}
$$

The equations at the pole corresponding to the nonlinear set take the following form after normalization :

$$
\begin{equation*}
\bar{u}^{\prime}=(1-2) \quad \overline{\mathrm{R}} \quad \overrightarrow{\mathrm{H}} \cos ^{2} \phi_{0} \tag{2.113}
\end{equation*}
$$

$$
\begin{aligned}
& \bar{w}^{\prime}=\left(\begin{array}{ll}
1 & -2
\end{array}\right) \overline{\mathrm{R}} \overline{\mathrm{H}} \cos \phi_{0} \sin \phi_{0} \quad \cdots(2.114) \\
& \bar{\beta} /=\bar{M}_{\mathrm{s}} /((1-\nu) \quad \bar{D}) \\
& \bar{\alpha}=\bar{L}+(1-\nu) \bar{R} \bar{H} \cos \phi_{0} \\
& \overline{\mathrm{~V}}^{\prime}=\frac{1}{2} \bar{\alpha} \overline{\mathrm{P}} \overline{\mathrm{~T}} \cos \emptyset_{0} \quad \ldots \ldots \text { (2.117) } \\
& \bar{H}^{\prime}=\frac{1}{3}\left((1-\nu) \phi^{\prime} \overline{\mathrm{H}}+\bar{\alpha} \bar{\beta}^{\prime}\left(\overline{\mathrm{R}} \cos \phi_{0}\right)\right) \tan \phi_{0}- \\
& \frac{1}{2} \bar{\alpha} \overline{\mathrm{P}} \overline{\mathrm{~T}} \sin \phi_{0} . \quad \ldots . . .(2.118) \\
& \overline{\mathrm{M}}_{\mathrm{s}}^{\prime} .=\frac{1}{3}\left(\overline{\mathrm{P}} \overline{\mathrm{~T}}^{2} \overline{\mathrm{H}} \sin \phi_{0}+\beta^{\prime} \phi^{\prime} \tan \phi_{0} /\left(12 \overline{\mathrm{P}} \overline{\mathrm{R}}^{\mathrm{T}} \overline{\mathrm{~T}}^{2}\right)\right) \ldots(2.119)
\end{aligned}
$$

Eqns (2.113-2.119) may be simplified in case of continuous meridian at the pole as :

$$
\begin{aligned}
& \overline{\mathrm{u}}^{\prime}=\overline{\mathrm{CH}} /(1+\mathcal{V}) \quad \ldots . . .(2.120) \\
& \bar{W}^{\prime}=0 \quad \ldots \ldots . .(2.121) \\
& \overline{\beta_{1}}=\bar{M}_{B} /((1+\nu) \bar{D}) \quad \ldots .(2.122) \\
& \overrightarrow{\mathrm{V}}^{\prime}=\quad \bar{\alpha} \overline{\mathrm{P}} / 2 \quad \ldots \ldots . .(2.123) \\
& \bar{H}^{\prime}=0 \quad 0 \ldots \ldots \ldots \ldots \text { (2.124) } \\
& \bar{M}_{\mathrm{a}}^{\prime}=0 \quad . \ldots \ldots . . .(2.125)
\end{aligned}
$$

Eqns. (2.113-2.125) may be linearized as before to obtain the corresponding equaitons at the pole for the linear theory. The nondimensionalized form employed here will make the linear solutions independent of the loading parameter.

It should be noted that some of the nondimensional shell parameters in Eqns. (2.83) are defined in terms of se which will depend on the geometry of the meridian and thus should be derived for each individual case. In some cases there is no closed form
expression for se and, therefore, se has to be evaluated either from a series expression or by numerical integration. The smae is true for the expressions of $r o$ and ϕ_{0} in terms of s. There may not be any closed form expressions for r_{0} and ϕ_{0} and thus numerical integration has to be used. The evaluation of shell parameters and the expressions of ro and ϕ_{0} in terms of \vec{s} for general case of composite shells of revolution are given below

General Case of shell's of revolution

For the general composite shell whose meridian is composed of cylindrical, spherical and conical elements (Fig.1), the total length so of the shell meridian has to be determined for each individual case. The constant \bar{R}, defined as s_{e} / R (R being the radius of the shell at the basel, is then directly read in by the program. In addition the value of ϕ_{0} for each element at its starting point along with its type (that is, cylindrical or pherical or conical element) is required.

Line element: If a segment s_{i} of the meridian is a line. element, the meridional angle ϕ_{0} remains constant over the segment s_{i} and its value is

$$
\phi_{0} \quad=\quad\left(\phi_{0}\right)_{i} \quad \ldots \ldots \ldots \ldots \ldots \ldots(2.126)
$$

Where subscript i refers to the starting point of the element.
The expression for ro becomes

$$
\bar{r}_{0}=\left(\bar{r}_{0}\right)_{i}-\left((\bar{s})_{i}-\bar{s}\right) \cos \left(\phi_{0}\right)_{i} \ldots \ldots(2.127)
$$

Circular element:

If any segment $s i$ of the meridian is a circular element, the quantities \bar{r}_{o} and over this segment s_{i} are given by

$$
\begin{align*}
\phi_{0} & =\left(\phi_{0}\right)_{1}-\frac{\left((\bar{s})_{1}-\bar{s}\right) \sin \left(\phi_{0}\right)_{i}}{\left(\bar{r}_{0}\right)_{1}} \tag{2.128}\\
\bar{r} \dot{0} & =\frac{\left(\bar{r}_{0}\right)_{1} \sin \phi_{0}}{\sin \left(\theta_{0}\right)_{1}} \tag{2.129}
\end{align*}
$$

Elliptic element :

If a segment $s i$ of the meridian is a portion of an ellipse, the quantities $\emptyset 0$ and rom at any point over this segment have to be evaluated from the numerical integration of eq (2.128) for which the values of $(\emptyset \circ)_{i}$ and Z are necessary.

METHOD OF SOLUTION

3.1 INTRODUCTION TO MULTISEGMENT INTEGRATION

The fundamental set of linear differential equaitons (2.842.96) and nonlinear differential equations (2.97-2.112) along with their corresponding forms at the apex and the boundary conditons (2.82) have to be integrated over a finite range of the independent variable s. But the numerical integration of these equaitons is not possible beyond a very limited range of s due to the loss of accuracy in solving for the unknown boundary values, as pointed out by Kalnins (22), That is why, the multisegment method of integration developed by Kalnins and Lestingi (24) has been used in this analysis.

It is supposed that a set of 6 first order nonlinear differential equations are given to be :

where, $(\mathrm{yk}(\mathrm{x}), \mathrm{K}=1,6)$ are dependent foundamental variables, and x is the independent variable.

The above equations can be written in the form
dy (x)
$\ldots=F\left(x, y_{1}(x), y_{2}(x) \ldots \ldots . . . y_{6}(x)\right.$
------(3.2)
dx
where $y(x)=\left[\begin{array}{c}y_{1}(x) \\ y_{2}(x) \\ \hdashline-1 \\ \hdashline y_{6}(x)\end{array}\right],(6,1)$ fundamental variable matrix,
and $F \quad=\left[\begin{array}{l}f_{1} \\ f_{2}\end{array}\right] \quad \begin{aligned} & (6,1) \text { matrix of nonlinear functions } \\ & \text { of fundamental variables }\end{aligned}$
-
f 6

It is assumed here for convenience that the first 3 eleterms of $y\left(x_{1}\right)$ and last 3 elements of $y\left(x_{M+1}\right)$ are prescribed by the boundary conditions, where x_{1} is the starting boundary and $\mathrm{Xm}_{\mathrm{H}} \mathrm{t}$ is the finishing boundary (Fig. 5).

If at the initial point x_{1} of the segment sif_{1} (Fig - 5), a set of values $y\left(x_{i}\right)$ is prescribed for the variables of Eqns. (3.2), then the variables at any x within si can be expressed as

$$
\begin{equation*}
y(x)=f\left(y_{1}\left(x_{1}\right), y_{2}\left(x_{1}\right), \ldots \ldots \ldots, y_{6}\left(x_{1}\right)\right) \tag{3.3}
\end{equation*}
$$

where the function f is uniquely dependent on x and the system of equaitons (3.2).

From the set of equations (3.3), the expression for small change in the values of the independent variables can be written as

$$
\begin{aligned}
& \left.\partial y_{6}(x)=\frac{\partial y_{6}(x)}{\partial y_{1}\left(x_{i}\right)} \partial y_{1}\left(x_{i}\right)+\frac{\partial y_{6}(x)}{\partial y_{2}\left(x_{i}\right)} \partial y_{2}\left(x_{i}\right)+\therefore \frac{\partial y_{6}(x)}{\partial y_{6}\left(x_{i}\right)} \partial y_{6}\left(x_{i}\right)\right\}
\end{aligned}
$$

Eqns. (3.4) can be written in matrix form as
or $\quad \partial y(x)=\quad Y_{i}(x) \partial y\left(x_{i}\right)$

$$
\partial y(x)=\left[\begin{array}{c}
\partial y_{1}(x) \tag{3.5c}\\
\partial_{y_{2}}(x) \\
\ldots \ldots \cdot \\
\ldots \ldots . \\
\partial y_{6}(x)
\end{array}\right] \quad(3.50) \text { and } y\left(x_{i}\right)=\left[\begin{array}{c}
\partial_{y_{1}}\left(x_{i}\right) \\
\partial y_{2}\left(x_{i}\right) \\
\ldots \ldots \ldots \\
\ldots \ldots \ldots \\
\partial y_{6}\left(x_{i}\right)
\end{array}\right]
$$

Equations (3.5) are expressed in finite difference form as $\left(y(x)-y^{t}(x)\right)=Y_{i}(x)\left(y_{\left(x_{i}\right)}-y^{t}\left(x_{i}\right)-y^{t}\left(x_{i}\right)\right)--(3.6)$
where $y(x)$ denotes an iterated solution state based on the condition of continuity of the variables at the nodal points and $y^{t}(x)$ denotes a trial solution state. Evaluating Equns. (3.6) at $x=x_{i}$, it is found that
$\left(y\left(x_{i}\right)-y^{t}\left(x_{i}\right)\right)=Y_{1}\left(x_{i}\right)\left(y\left(x_{i}\right)-y^{t}\left(x_{i}\right)\right)---(3.7)$
Therefore, $Y_{i}\left(x_{i}\right)=I$
where I denotes $(6,6)$ unit matrix. Evaluating Eqns, (3.6) at $x=$ x_{i+1}, it is found that
$\left(y\left(x_{1}+1\right)-y^{2}\left(x_{1}+1\right)\right)=Y_{1}\left(x_{i+1}\right)\left(y^{\left.\left(x_{1}\right)-y^{t}\left(x_{i}\right)\right)}\right.$
Equns (3.8) can be rearranged as
$Y_{i}\left(x_{i+1}\right) y\left(x_{i}\right)-y\left(x_{i+1}\right)=-Z_{i}\left(x_{i+1}\right) \ldots \ldots . \ldots(3.9)$ where, $Z_{i}\left(x_{1+1}\right)=y^{t}\left(x_{i+1}\right)-Y_{i}\left(x_{1+1}\right) y^{t}\left(x_{1}\right)$.

In Eqns (3.9), $y\left(x_{i}\right), y\left(x_{i+1}\right)$ and $Y_{i}\left(x_{i+1}\right)$ are unknown. In order to determine the elements of $Y_{1}(x)$, the th column of $Y_{i}(x)$ can be regarded as a set of new variables, which is a solution of an initial value problem governed within each segment by a linear system of first order differential equations, obtained from Equns (3.2) by differentiating with respect to yJ_{J} in $\left(\mathrm{x}_{1}\right)$ in the form
which gives,

$$
\begin{gather*}
d \tag{3.10}\\
d x
\end{gathered}\left(\begin{array}{c}
d y \\
------ \\
d y y_{j}\left(x_{i}\right)
\end{array}\right)=\begin{gathered}
d F \\

\end{gather*}
$$

Thus the columns of the matrix $Y_{i}(x)$ are defined as the solutions of 6 initial value problems governed by (3.9) in si (with $j=$ 1,2......6) having initial values specified by Eqns (3.7). It should be noted that the initial value integration is possible only when the original equations of y are already integrated with the initial value of $y^{t} x_{i}$). Now to obtain the iterated solution, Eqns (3.9) are written as a partitioned matrix product of the form
$\left[\begin{array}{c}y^{1}\left(x_{1+1}\right) \\ \hdashline y^{2}\left(x_{1+1}\right)\end{array}\right]=\left[\begin{array}{l:l}y_{11}\left(x_{1+1}\right) & y_{21\left(x_{1}+1\right.} \\ \hdashline y_{31\left(x_{1+1}\right)} & y_{41\left(x_{1+1}\right)}\end{array}\right]\left[\begin{array}{c}y^{1}\left(x_{1}\right) \\ \hdashline y^{2}\left(x_{1}\right)\end{array}\right]+\left[\begin{array}{l}Z_{11}\left(x_{1+1}\right) \\ \hdashline z_{21}\left(x_{1+1}\right)\end{array}\right] \ldots(3.11)$
where $y^{1}\left(x_{i+1}\right)=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$ and $y^{2}\left(x_{1+1}\right)=\left[\begin{array}{l}y_{4} \\ y_{5} \\ y_{6}\end{array}\right]$
So, a pair of equations can be written from Eqn. (3.11) to replace each of eqns (3.9) as

$$
\left.\begin{array}{r}
\left(\left(Y_{11}\left(x_{1}+1\right)\right)\left(y^{1}\left(x_{1}\right)\right)+\left(Y_{21}\left(x_{1}+1\right)\right)\left(y^{2}\left(x_{1}\right)\right)-\left(y^{1}\left(x_{1}+1\right)\right)\right. \\
\\
=-Z_{11}\left(x_{1}+1\right), \\
\left(Y_{31}\left(x_{1}+1\right)\right)\left(y^{1}\left(x_{1}\right)\right)+\left(Y_{41}\left(x_{i}+1\right)\right)\left(y^{2}\left(x_{1}\right)\right)-\left(y^{2}\left(x_{1}+1\right)\right) \\
\\
=-Z_{21}\left(x_{1}+1\right) .
\end{array}\right\}\left(\begin{array}{l}
\text { (3.12)}
\end{array}\right.
$$

Replacement of Eqns (3.9) is done to seperate known bounday conditions from the unknowns. Thus from Eqns (3.12), a simultaneous systems of 2 M linear metrix equations is obtained in which the known cefficients ($Y_{j 1}\left(X_{1+1}\right)$) and $\left(Z_{i f}\left(X_{i+1}\right)\right)$ are (3,3) and 3,1) matrices respectively, and the unknows ($y^{j}\left(x_{1}\right)$) are (3,1) matrices. Since $\left(y^{1}\left(x_{1}\right)\right)$ and $\left(y^{2}\left(x_{M}+1\right)\right.$ are known from the boundary conditions, there are exactly 2 M unknowns : $\left(y^{1}\left(x_{1}+1\right)\right.$ with $i=2,3 \ldots, \quad M+1$, and $\left(y^{2}\left(x_{1}\right)\right)$ with $i=1,2,3$, M.

The problem is, therefore, well set in order to obtain the solution of the linear equations (3.12), Gaussian elimination method is used. Gaussian elimination method leads to a triangularized set of linear equaitons which for the specific, case of Equns. (3.12), takes the following form :

E_{1}	-I	0	0... 0	0	$y^{2}\left(x_{1}\right)$		A_{1}
0	C 1	-I	0 .. 0	0	$\mathrm{y}^{1}\left(\begin{array}{l}\mathrm{x}\end{array} \mathrm{l}\right.$)		B_{1}
0	0	E 2	-I... 0	0	$\mathrm{y}^{\mathbf{2}}$ (x_{2})	=	A 2 .
\cdots			- . .		-		\ldots
\cdots			.		\cdots		
0	0	0	O...Em	-I	$y^{2}\left(X_{4}\right)$		AH_{4}
0	0	0	0... 0	CH_{H}	$y^{1}(x y+1)$		BH_{4}

(EA) $\left(y^{2}\left(x_{i}\right)\right)-\left(y^{1}\left(x_{i}+1\right)\right)=\left(A_{i}\right)$
or
($\left.C_{1}\right)\left(y^{1}\left(x_{i+1}\right)\right)-\left(y^{2}\left(x_{1}+1\right)\right)=\left(B_{1}\right)$
for, $i=1,2,3 \ldots \ldots M$. Using the rotations $\left(Z_{J I}\right)$ and $\left(Y_{j i}\right)$ in place of the symbols, $\left(Z_{j 1}\left(X_{i+1}\right)\right.$ and $\left(Y_{j 1}\left(X_{i+1}\right)\right)$, the $(3,3)$ matrices (E_{1}) and (C_{i}) in the Eqns. (3.13) are defined by

```
and
\[
\begin{aligned}
& \left(E_{1}\right)=\left(Y_{21}\right)+\left(Y_{11}\right)\left(C_{1-1}\right)-1 \\
& \left(C_{1}\right)=\left(\left(Y_{41}\right)+\left(Y_{31}\right)\left(C_{1-1}\right)^{-1}\left(E_{1}\right)^{-1}\right. \\
& \text { for } i=2,3, \ldots \ldots, M .
\end{aligned}
\]
```

$\left.\left(E_{1}\right)=\left(Y_{21}\right),\left(C_{1}\right)=Y_{41}\right)$

The (3,1) matrices (A_{1}) and (B_{i}) are given by

$$
\begin{aligned}
& \left(A_{1}\right)=-\left(Z_{11}\right)-\left(Y_{11}\right)\left(y^{1}\left(x_{1}\right)\right) \\
& \left(B_{1}\right)=-\left(Z_{21}\right)-\left(Y_{31}\right)\left(y^{1}\left(X_{1}\right)-\left(Y_{41}\right)\left(E_{1}\right)^{-1}\left(A_{1}\right)\right. \\
& \text { and } \\
& \left(A_{1}\right)=-\left(Z_{1 i}\right)-\left(Y_{1 i}\right)\left(C_{1-1}\right)^{-1}\left(B_{1-1}\right) \text {, } \\
& \left(B_{1}\right)=-\left(Z_{21}\right)-\left(Y_{31}\right)\left(C_{1-1}\right)^{-1}\left(B_{1-1}\right)-\left(Y_{41}\right)+ \\
& \left.\left(Y_{31}\right)\left(C_{1-1}\right)^{-1}\right)\left(E_{1}\right)^{-1}\left(A_{1}\right) \\
& \text { for } \mathrm{i}=2,3, \ldots \ldots, \mathrm{M}-1 \text {. } \\
& \text { and }\left(A_{M}\right)=-\left(Z_{M M}\right)-\left(Y_{M M}\right)\left(C_{M-1}\right)^{-1}\left(B_{M-1}\right) \\
& \left(B_{M}\right)=\left(y^{2}(X H+1)\right)-\left(Z_{2 H}\right)-\left(Y_{3 M}\right)\left(C_{M-1}\right)^{-1}\left(B_{M-1}\right)- \\
& \left(\left(Y_{4 M}\right)+\left(Y_{3 M}\right)\left(C_{M-1}\right)^{-1}\right)\left(E_{M}\right)\left(A_{M}\right)
\end{aligned}
$$

The unknowns of (3.13) are obtained by
$\left(y^{1}\left(X_{M}+1\right)\right)=\left(C_{M}\right)^{-1}\left(B_{M}\right)$
$\left(y^{2}\left(X_{M}\right)\right)=\left(E_{H}\right)^{-1}\left(\left(y^{1}\left(X_{M}+1\right)\right)+\left(A_{H}\right)\right)$,
and $\left(y^{1}(X X-1+1)\right)=(C M-1)^{-1}\left(\left(y^{2}(X M-1+1)\right)+(B M-1)\right)$ $\left(y^{2}\left(X_{M}-1\right)\right)=(E M-1)^{-1}\left(\left(y^{1}\left(X_{M-1+1}\right)\right)+\left(A_{M}-1\right)\right)$.
for $i=1,2,3 \ldots \ldots M^{\prime}$.
ve
Assuming $y\left(x_{1}\right)$ as the next trial solution, $y^{t}\left(x_{1}\right)$, the process is repeated until the integration results of Eqns. (3.1) at x_{1+1}, as obtained from the integrations in segment S_{1} with the initial values $y\left(x_{1}\right)$, match with the elements of $y\left(x_{1+1}\right)$ as obtained from (3.9) and also with the bondary conditions at xy+1. This completes the formal solution of the problem. Therefore, the method of multisegment integration involves the following steps
(i) Initial-value integrations of Eqns. (3.1) in each of M segments. To start, the initial values $y_{j}\left(x_{i}\right)$ for the integration over any segment are arbitrary.
(ii) Initial value integration for the six additional sets of variables of matrix (3.5a) over each of M segments.
(iii) Solution of M matrix equaitons which ensures the continuity of variables of Eqns (3.2) at the nodal points of the segments including the given boundary conditions at the two end nodal points.
(iv) Repetition of steps (i) to (iii) with initial values $\mathrm{y}_{\mathrm{j}}(\mathrm{xi})$ of steps (i) replaced each time by their improved values obtained in step (iii) from the solution of continuity equaiton. The process is continued until the values of the variables of Eqns (3.2) at the end point of any segment as obtained from the initial value integration in step (i) match with their initial values in the next segment obtained from the solutions of the continuity equatios in step (iii).

3.2 DERIVATION OF ADDITIONAL EQUAITONS

In the multisegment integration technique for a set of ordinary differential equations it has already been noted that in addition to the integration of the given equations, it is required to integrate another 6 set of equations represented by (3.10). Thus in order to apply the method of multisegment integrtion, differential equations corresponding to Eqns. (3.10) for the 36 additional variables as represented in (3.59) have to be derived. These differential equations can be obtained by dirferentialing Eqns. (2.84-2.96) for the linear solution and Eqns. (2.97-2.112) for nonlinear solution with respect to each fundamental variable. As the variables in any column of (3.5a) have the same form, it is required to derive here the system of equaitons (3.10) for the variables of any column of (3.59) where the new variables are identified from the fundamental variables by the subscript a.

From the nonlinear equations (2.97-2.112), differentiation in succession gives

$$
\begin{align*}
& \bar{\epsilon}_{\theta^{a}}=\bar{u}_{a} / \bar{r}_{o} \quad . \ldots \ldots . . . \\
& \phi_{a}=-\bar{\beta}_{a} \quad \ldots \ldots \ldots \ldots \text { (3.15) } \\
& \bar{K}_{\theta_{a}}=\bar{\beta}_{\mathrm{a}} \cos \phi / \overline{\mathrm{r}}_{\mathrm{o}} \quad \ldots \ldots \ldots \ldots(3.16 \text {) } \\
& \bar{N}_{a \mathrm{a}}=\left(\overrightarrow{\mathrm{H}}_{\mathrm{a}}-\overline{\mathrm{V}} \bar{\beta}_{\mathrm{a}}\right) \cos \phi+\left(\overline{\mathrm{H}}_{\bar{\beta}_{a}}+\overrightarrow{\mathrm{V}}_{\mathrm{a}}\right) \sin \phi \ldots(3.17) \text {. } \\
& \bar{\epsilon}_{\mathrm{sa}}=\overline{\mathrm{C}}_{\mathrm{sa}}-\nu \bar{\epsilon}_{\mathrm{a}} \quad \ldots \ldots \ldots(3.18) \\
& \overline{\mathrm{K}}_{\mathrm{Ba}}=\overline{\mathrm{M}}_{\mathrm{Ba}} / \overline{\mathrm{D}}-\nu \overline{\mathrm{K}}_{\theta \mathrm{a}} \\
& \overline{\mathrm{~N}}_{\theta a}=\left(\bar{\epsilon}_{\phi a}+\nu \bar{\epsilon}_{s a}\right) / \overline{\mathrm{C}} \\
& \bar{M}_{\theta a}=\bar{D}\left(\bar{K}_{\theta a}+\nu \bar{K}_{a a}\right) \\
& \bar{\alpha}_{a}=\bar{\epsilon}_{\mathrm{aa}} \\
& \bar{r}_{\mathbf{a}}=\bar{u}_{a} \quad \ldots \ldots \ldots \text {.........23) } \\
& \bar{u}_{a}^{\prime}=\bar{\alpha}_{a} \cos \phi+\bar{\beta}_{a} \bar{\alpha} \sin \phi \tag{3.24}\\
& \bar{w}^{\prime} \mathbf{a}=\bar{\alpha}_{a} \sin \phi-\bar{\alpha} \beta_{a} \cos \phi \tag{3.25}\\
& \bar{\beta}_{a}^{\prime}=\bar{K}_{a \mathrm{a}} \tag{3.26}\\
& \left.\overline{\mathrm{~V}}_{\mathrm{a}}^{\prime}=-\left(\bar{\alpha}_{a} \cos \phi+\bar{\alpha} \bar{\beta}_{a} \sin \phi\right)(\overrightarrow{\mathrm{V}} / \overline{\mathrm{r}}-\overline{\mathrm{P}} \overline{\mathrm{~T}})-\bar{\alpha}_{\cos } \operatorname{co} \overline{\mathrm{V}}_{\mathrm{a}} / \overline{\mathrm{r}}-\overline{\mathrm{V}}_{\mathrm{r}} / \overline{\mathrm{r}}^{2}\right) \cdot(3.27) \\
& \bar{H}_{a}^{\prime}=-\bar{\alpha}_{a}\left(\left(\overline{\mathrm{H}} \cos \phi-\bar{N}_{\theta}\right) / \overline{\mathrm{r}}+\overline{\mathrm{P}} \overline{\mathrm{~T}} \sin \phi\right)-\bar{\alpha}\left(\left(\overline{\mathrm{H}}_{\mathrm{a}} \cos \phi+\right.\right. \\
& \left.\left.\bar{\beta}_{a} \bar{H} \sin \phi-\bar{N}_{a}-\bar{u}_{a}\left(\overline{\mathrm{H}} \cos \phi-\bar{N}_{\theta}\right) / \overline{\mathrm{r}}\right) / \overline{\mathrm{r}}-\overline{\mathrm{P}} \overline{\mathrm{~T}} \beta_{\mathrm{a}} \cos \phi\right) .(3.28) \\
& \bar{M}_{\mathrm{Ba}}^{\prime}=\left(\bar{\alpha}_{a} \cos \phi+\bar{\beta}_{\mathrm{B}} \bar{\alpha} \sin \phi\right)\left(\left(\bar{M}_{\theta}-\bar{M}_{B}\right) / \bar{r}+\overline{\mathrm{P}} \overline{\mathrm{~T}}^{2} \overline{\mathrm{~V}}\right)+\bar{\alpha}(\cos \phi \\
& \left(\overline{\mathrm{P}} \overline{\mathrm{~T}}^{2} \overline{\mathrm{~V}}_{\mathrm{a}}+\left(\overline{\mathrm{M}}_{\theta a}-\bar{M}_{\mathrm{aa}}-\overline{\mathrm{u}}_{\mathrm{a}}\left(\overline{\mathrm{M}}_{\theta}-\overline{\mathrm{M}}_{\mathrm{B}}\right) / \overline{\mathrm{r}}\right)-\overline{\mathrm{P}} \overline{\mathrm{~T}}^{2} \overline{\mathrm{H}}_{\mathrm{a}} \sin \phi\right)- \\
& \bar{P} \bar{T}^{2} \bar{H}\left(\bar{\alpha}_{a} \sin \phi-\bar{\alpha} \bar{\beta}_{a} \cdot \cos \phi\right) \text {. } \tag{3.29}
\end{align*}
$$

At the pole, the corresponding equations are obtained from (2.113-2.119) as
$\bar{u}_{a}^{\prime}=(1-\nu) \quad \bar{R} \bar{H}_{a} \cos ^{2} \phi_{0} \quad \therefore \ldots \ldots(3.30)$
$\bar{w}_{a}^{\prime}=(1-\nu) \quad \bar{R} \bar{H}_{a} \cos \phi_{0} \sin \phi_{0} \ldots \ldots(3.31)$
$\bar{\beta}_{a}^{\prime}=\bar{M}_{a a} /((1-L) \bar{D})$
$\bar{\alpha}_{a}^{\prime}=(1-\nu) \bar{R}_{H_{a}} \cos \phi_{0}$
$\bar{V}_{a}^{\prime}=\frac{1}{2} \overline{\mathrm{P}} \overline{\mathrm{T}} \cos \phi_{0} \cdot \bar{\alpha}_{a}$
$\bar{H}_{a}^{\prime}=\frac{1}{3}\left((1-\nu)\left(\phi^{\prime} \bar{H}_{a}-\bar{\beta}_{a}^{\prime} \bar{H}\right)+\left(\bar{\alpha}_{a} \bar{\beta}^{\prime}+\bar{\alpha} \bar{\beta}_{a}\right) /\right.$ $\left.\left(\bar{R} \cos \phi_{0}\right)\right) \tan \phi_{0}-\frac{1}{2} \bar{\alpha}_{a} \overline{\mathrm{P}} \overline{\mathrm{T}} \sin \phi_{0} \ldots(3.35)$ $\bar{M}_{B a}^{\prime}=\frac{1}{3}\left(\bar{P} \bar{T}^{2} \sin \phi_{0}\left(\bar{\alpha}_{a} \vec{H}+\bar{\alpha} \bar{H}_{a}+\left(\bar{\beta}_{a}^{\prime} \phi^{\prime}-\bar{\beta}^{\prime} \phi_{a}^{\prime}\right)\right.\right.$ $\tan \phi_{o}$ ($\left.\left(12 \overline{\mathrm{P}} \overline{\mathrm{R}} \overline{\mathrm{T}}^{2}\right)\right)$

Eqns. (3.14-3.29) which takes the form (3.30-3.36) at $s=0$, have to be integrated as initial value problem 6 times in each segment with the initial values given by (3.7). It should be noted that the equaitons (3.14-3.36) contain not only the variables of (3.5a) but also the variables of the fundamental set. Thus eqns. (3.14-3.36) cannot be integrated unless the fundamental variables are stored for use in Eqns (3.14-3.36). It should be further pointed out that one point integration formula can not be used for the integration of Equns (3.14-3.36) since this formula needs evaluation of derivatives at intermediate points where the variables are never evaluated.

The corresponding equaitons for the linear theory are given by
the homogeneous form of Eqns. (2.84-2.96) and thus readily obtainable by dropping the load terms in Eqns.(2.84-2.96).

3.3 TREATMENT OF BONDARY CONDITIONS

In the introduction of the method of multisegment integration, it was assumed that the first 3 elements of $y(x)$ at x_{1} and last 3 elements of $y(x)$ at x_{m+1} were prescribed as the bondary conditions. But, in general, the boundary conditions are given as

$$
T_{1 y} y\left(x_{1}\right)=b_{1} \text { at } x_{1} \text {, and }
$$

$$
\mathrm{T}_{\mathrm{M}}+1 \mathrm{y}\left(\mathrm{XM}_{\mathrm{M}}+1\right)=\mathrm{b}_{\mathrm{M}+1} \text { at } \mathrm{XM}+1
$$

in which any 3 elements of b_{1} and any 3 elements of b_{a+1} are specified as boundary conditons. The sysmbols T_{1} and T_{1+1} represent nonsingular (6,6) matrices which are known from the specification of the boundary conditons at the ends of the interval.

By rearranging the rows of T_{1} and T_{M+1} in a special order, Eqns. (3.37) can always be stated in a manner such that the prescribed elements of b_{1} and b_{H+1} become respectively the first 3 and last 3 elements of b_{1} and b_{i+1}, when this is achieved, evaluation of (3.9) at $i=1$ and $i=M$, and then elimination of $y\left(x_{1}\right)$ and $y\left(x_{M+1}\right)$ by means of (3.37) yields.
$y\left(X_{1}\right)$ and $y\left(X_{1+1}\right)$ by means of (3.37) yields.

$$
\begin{equation*}
Y_{1}\left(x_{2}\right) T_{1}^{-1} b_{1}-Y\left(x_{2}\right)=-Z_{1}\left(x_{2}\right) \tag{3.38}
\end{equation*}
$$

$T_{M+1} Y_{M}\left(X_{M+1}\right) y_{\left(X_{M}\right)}-b_{M+1}=-T_{M+1} Z_{M}\left(X_{M+1}\right) \ldots(3.39)$

The formand notation of (3.9) can be retained if it is regarded that the coefficient matrices $Y_{1}\left(X_{2}\right), Y_{M}\left(X_{M+1}\right), Z_{M}\left(X_{M+1}\right)$ occurring in (3.'9) represent $Y_{1}\left(X_{2}\right) T_{1}, T_{M+1} Y_{M}\left(X_{M}+1\right)$ and T_{M+1} $Z_{M}\left(X_{M+1}\right)$ respectively.

In doing so, the solution of (3.9) will not yield $\dot{y}\left(\mathrm{x}_{1}\right)$ and $y\left(x_{M+1}\right)$ but rather the transformed variables b_{1} and b_{m+1}. When $y\left(x_{1}\right)$ and $y\left(x_{y}+1\right)$ are derived they can be obtained by the inversion of the matrix equations (3.37).

It should be noted here that with reference to the boundary conditions (2.82) stated in terms of the fundamental variables, it is obvious that the matrices T_{1} and $T_{\mu+1}$ are both unit matrices of order 6. The construction of T_{1}. and T_{M+1}, in accordance with any possible statement of (2.82), so that the Eqns (3.37) are in order, is treated in Appendix A:

CHAPTER 4

RESULTS AND DISCUSSION

4.1. Reliability and Validity of the Analysis :

It is always desirable that the solutions obtained by any new technique should be compared with the available results in the literature in order to determine the reliability and validity of the method employed. In other words it should be ascertained that no error due to logic is committed in formulating the problem, in method of solution and, in this particular case, no mistake is made in the computer programming. Keeping all these in mind, a number of standard problems are solved with the present method of solution and later the results are compared with the corresponding analytical solution or solution by some other method as available in the literature. On the basis of this comparsion, reliability and validity of the method employed here are determined.

The multisegment method of integration and the governing equations of shells as used in the present analysis, had been used by a number of authors earlier. Uddin (46)used this method in finding the solution for pressurized composite shell with clamped edge made-up of an inverted conical frustum, a cylindrical part, and a spherical part. He also found the variation of meridional stress and circumferential stress along the meridian of an ellipsoidal-head pressure vessel based on both the linear and nonlinear theories by multisegment integration which had earlier been worked out by Kraus et al (28) and it was found that there was hardly any difference between these two results. Haque (16) took the full advantage of the fact that a hemispherical shell with radius A and a semiellipsoidal shell with the ratio of major to minor exes, $B / A=1$, are identical and found that the solution for ellipsoidal shells with $B / A=1$ differed from that for hemispherical shells available in the literature (3) after six digits. Rahman (38) obtained the solutions of imperfect semi-ellipsoidal shells, with rigidly fixed edges in which different values of parameters, degree of imperfaction and position of imperfect segment were used. Rahman observed that his results of imperfect ellipsoidal shells converged to those of Haque when imperfections were gradually reduced.

The above developments prove that the multisegment method of integration and the linear and nonlinear governing equations of shells as employed in this analysis is highly accurate. Actually, in an indirect way, the accuracy of the method of multisegment integration is self ascertaining. Once the values of the fundamental variables at the nodal points are known from the multisegment method of integration, the fundamental set of the governing differential equations can be integrated over each segment of the meridian as an initial value integration of the fundamental set of differential equations. If the values of the fundamental variables at the end of each segement s_{1}, as obtained from the initial value integration, match upto six or seven digits with their respective initial values for the respective subsequent segments s_{1+1} for $\mathrm{i}=1,2,3 \ldots \mathrm{M}$ and also with the boundary conditions at the edges, then it can be concluded that the results are correct upto six or seven digits of their numerical figures.

Further, for establishing the reliability and validity of the method, a cylindrical shell containing a fluid of density γ, fixed at the base and free at the upper end, was considered. This particular problem was solved by the present method of solution because an approximate analytical solution, based on the general theory of cylindrical shells is available in the literature in closed form (45). Here, for solving the Cylindrical shell problem, axially varying internal pressure on the shell surface
was assumed to be applied by a liquid column of specific weight γ.

The shell meridian was divided into ten seg-ments of equal lengths. The shell and its parameters are presented in Fig. (6). Using the computer programme of the present analysis the result of this cylindrical shell is obtained based on both the linear and nonlinear theories under axially varying load. These results compare quite well with the analytical solution of linear theory (45), as observed in Table - 1. The tabular results show that the computer results are slightly different from the analytical solutions at the upper portion of the cylinder. These differences may be attributed to the fact that the boundary conditions at the ends of the shell meridian and the differential equaitons of Ref (45) can not be considered very appropriate for this problem. The analytical solution of Ref (45) is for an inner liquid column of height equal to that of the cylinder itself whereas the computer results are for a liquid column of hight less than the hight of the cylinder. It should furhter be pointed out that the linear theory employed in Ref (45) is entirely different and very approximate in comparison to the linear theory of Reissner, the theory employed in the present analysis. Also, it should be noted that the objective of Ref (45) was to obtain only the maximum values of u, M_{s} and M_{θ} at the fixed edge of the shell which is hardly influenced by the boundary conditions at the upper edge whereas in the present analysis exact boundary conditions at
both the ends of the shell meridian were employed in this computations. The graphical representation of the analytical and the present linear and nonlinear solutions of this cylindrical shell are shown in Figs. 6 and 7. Analytical solution for N, based on membrane theory of Ref. (45), for this cylindrical shell is also plotted in figure 7. Other results of the presnt analysis of cylindrical shell, of figure 6 , are presented in figures 8 to 11. Pertinent results of the membrane theory are also shown in figures 9 and 10. As observed here, the results of linear theory are highly conservative in comparison to that of nonlinear theory, specifically in the region of edge fixity and junction. The results of membrane theory; whenever pertinent, are obsrbed to be much closer to nonlinear results and thus superior to the linear results. Looking at the stresses, if can be concluded that the membrane theory predicts quite acceptable values of stresses except at the end fixity.

From this comparisons it can be conclude that the governing equations, the method of solution and the algorithms incorporated in the computer program are sound and free from both the conceptual and accidential errors.

4.2. Results and Discussion :

The method of investigation employed here is quite versatile to handle any problem of the general case of composite shells under axially varying load. Here, axially variable internal or external pressure load on the shell surface is considered to be applied by a liquid column of a certain specific weight γ.

The input variables of the composite shells as required in the present method of solution are edge conditions, total.number of segments of the shell meridian, base-radius to thickness ratio and Poisson's ratio of shell material. Here each segment of the composite shells is considered to be of uniform thickness but different segment may have different thicknesses. Meridional length of the composite shell may be divided into any number of segements, equal or unequal in length. The results of this study as presented here is confined to only one kind of end fixity as, otherwise, the results would be too volumenous and the time: required would be very long.

It happens that the composite shells as studied here are commonly used as water towers, ships, under water crafts, pressure vessels, etc., with ring stiffened edges which very nearly approximate the boundary conditions of rigidly fixed edge. Thus the results presented here are of major practical importance.

The computer program which obtains the solution in the present method of analysis first finds the solution in terms of stresses and displacements based on the linear theory for an initial value of the axially varying pressure as assigned by the investigator. Then the solution based on the nonlinear theory is obtained for the same loading through iterations; from here on, the loading parameter is increased in small steps to find solution for the new loading, taking solution of previous loading as initial values for the variables. In this investigation the following input variables are required to be prescribed.

H, β, w, u, β, v, Boundary Conditions at starting and finishing boundary.

IS1,IS2,IS3, Indicators of boundary conditons at base. IF1,IF2,IF3, Indicators of boundary conditons at upper end.

All the results obtained in this investigation are based on the nonlinear theory, because nonlinear theory gives much better prediction than linear theory at higher loadings. But the results of linear theory are also presented here in order to point out its short-comings at higher loading. The solution for each shell studied is also presented in the tabular form so that the exact magnitude of moments and stresses can easily be checked.

The results of individual shell of different parametric values are presented seperately and their individual trends are also discussed separately.
(a) Types of the Composite Shells Investigated :

Solutions were obtained for Composite shells made-up of a cylindrical part, a circular part and a conincal frustum (Figs. 1 and 2).

Shell - I :

This composite shell consists of a cylindrical part at the lower end and closed at the top with a spherical part as shown: in Figure 1. For this shell, the thickness ratio, $R / h=200$, for all the segments, Poisson's ratio, $\quad=0.3$ and the base pressure,
 of the funtamenial ariables are : $\bar{H}=0.0, \quad \bar{\beta}$. n.0 tuit $\bar{w}-$
 $\bar{u}=0, \quad \bar{\beta}=0, \quad$ and $\bar{v}=0$. The numerical values of various moments and displacements at 10 equidistant locations along the meridian are presented in Table 2.

The present investigation is based on the Reissner's theory of axisymmetric deformation of shells of revolution which is founded on the assumption that the stress in the shell material is always with in the elastic limit. That is, if for a particular material, the stress level in the shell at a particular loading exceeds the yield strength, the results are not valid for that material. For this reason it has to be checked that the stresses found for any load do not exceed the corresponding yield strength of the material. From the detail results of this shell, it is fomm that the nondimentional meridional stress σ_{a} occuring at the base (\bar{s} $=1.0$), has a maximum values of 0.66881×10^{-3}. Considering the shell material to be steel, the numerical value of this stress is $\sigma_{a}=138$ Mpa. Since high strength steels have yield strength as
high as 1890 Mpa, the maximum stress in the shell is much below the yield strength of the shell material and thus the shell deformation is within the elastic limit.

Results of this composite shell are shown in Figs. 12 to 20 . Figure 12 shows the deformed and undeformed shape of the shell under axially varying load. It is observd that the deformed shell is wavy in the region between $\bar{s}=1.0$ and $\bar{s}=0.6$ and it is of particular interest that the region between $\bar{s}=0.2$ and $\bar{s}=0.0$ bends inward under internal liquid pressure whereas the remaining portion bends outward. It is to be noticed here that the shell is filled up with a liquid of specific weight γ up to $\bar{s}=0.2$. The linear, nonlinear and analytical membrane solutions of the various quantities are plotted against meridional distance in Figs. 15 to 20 , The plotting of axial and circumferential stresses for this shell are shwon in Figs. 15 to 18. Fig. 15 shows the distribution of axial stress at the inner fiber in shell No.1. Normally, had there been no edge restrain and no junctions in the shell, the development of axial stress in the shell could hardly be justified. Only tensile circumferential stress could have been explained. A rough estimate of the maximum value of this circumferential stress by simple thin shell formula gives it a numerical value of 0.51200×10^{-3} whereas the maximum value of the axial stress here is $1.01 \mathrm{x} \quad 10^{-3}$ according to linear theory and according to nonlinear theory the corresponding axial stress value is 0.67×10^{-3}.

The existence of axial stress is entirely due to bending at the junctions and at the edge restraint which is not accounted for in the simple membrane theory of shell. Normally a shell has the tendency of straightening-up at the junctions under load. The distribution of axial stress in figure 15 is fully in conformity with this general tendency of shell. However, a few interesting points should be noted here. First, the junctions in a shell plays a havocal role in inducing stress which has no bearing with the concept of membrane theory of thin shell. Second, the prediction of linear theory is highly inadequate in this shell. It predicts a highly exaggerated value in comparison to nonlinear theory. The difference between the predictions of the two theories can easily be explained. The linear theory assumes that shell retains the original geometry and as a result has to exert a higher moment to straighten the shell at the junctions. But the nonlinear theory take the shape of the shell under load as its true form. The shell under load is already straightened up to a large extent and it has to exert a far lesser moment for further straightening up.

Fig. 15 indicates that the junctions are under high tensions. Maximum tension is at the junction, $\bar{s}=0.7$, as expected in case of a shell containing liquid inside. But junctions are under high compression as indicated by the outer axial stresses, which is shown in Fig. 16. High tension and compression occured at the junctions for inner and outer fibers of the shell respectively
because of bendings and discontinuties of radius of curvature. Figs. 17 and 18 show that the distribution of the inner and outer circumferential stresses are of approximately the same qualitative nature as the inner and outer axial stresses, respectively. But contribution of maximum axial stresses are about 3 times the contribution of circumferential stresses.

Figures 15 to 18 also show that the analytical membrane results are much closer to nonlinear results. So, it is noted that membrane theory predicts better results than the linear theory and those results are quite acceptable except at the end fixity and shell junctions.

Figures 13 and 14 show the distribution of meridional and circumferential bending moments along the meridian. In these figures it is noted that the meridional bending moment is the dominating contributor to stresses in the shell. Considerable amount of bending moments are developed at the junctions which gradually decrease with the decrease in loading along the meridian. The difference between the results of linear and nonlinear theories are shown in the figures. The maximum stress in this shell is the meridional stress at the inner surface of the junctions. Although the meridional bending stress at the junction as predicted by the linear theory is much higher than the actual stress as indicated by the nonlinear results, it still remains to be the maximum of all the stresses. The most
interesting observation in Fig. 13 is that the amount of bending moment developed in the spherical tip of this shell is practically zero. Had there been no spherical top the bending moment at the apex of the shell would definitely have been much greater. This is a clear indication of the fact that the best possible way of avoiding the stress concentration at the junction is to use a spherical ring there.

Figure 14 shows that the distribution of the circumferential bending moment is approximately of the same qualitative nature as the meridional bending moment.

Figs. 19 and 20 show the membrane state of axial and circumferential stress resultants, \bar{N}_{s} and \bar{N}_{θ}. Fig. 19 shows that the maximum positive value of \bar{N}_{a} occurs at the base ($\bar{s}=1.0$) of the shell and gradually decreases with the decrease in internal pressure. At locations, $\overline{\mathbf{s}}=0.0,0.10,0.20$, and 0.30 the compressive values of \bar{N}_{s} indicate that the shell is under compression meridionally under liquid pressure.

Fig. 20 shows that the maximum circumferential stress resultant occurs near the base of the shell meridian. Compressive value of \bar{N}_{θ} is obtained at the junction $\bar{s}=0.7$. It should be noted here that the circumferential stress resultant is of much greater magnitude in comparison to that of the axial stress resultant. Analytical results of \bar{N}_{θ} based on membrane theory are also
presented in Figure 20. It should be noted here that the analytical results are very close to nonlinear results except at the base of the shell.

In the absence of edge restraint, \bar{N}_{s} would be zero along the edge. Thus \bar{N}_{s} is induced in the shell because of the restraint at the edge.

Shell-2 :

This shell is exactly of the same geometry and boundary conditons as shell - 1 except that the thickness ratio, $R / h=300$ and pressure at the base $\mathrm{Po} / E=0.356 \times 10^{-5}$. The numerical values of different quantities for axially variable loadings, specially the components of displacement and moment at 10 equidistant locaitons on the meridian are presented in Table - 3.

In order to ascertain that Reissner's theory of axisymmetric deformations holds good in the analysis of this shell, it is required to show that the deformations are elastic. Thus the values of the maximum stresses at the junctions would have to be less than the yield strength of the shell material. From the detail results of this shell, nondimensional value of maximum meridional stress at the junction $(\bar{s}=0.7), \quad \overline{\sigma_{a}}=2.517 \times 10^{-3}$ according to linear theory and 0.445×10^{-3} according to nonlinear theory. Considering shell material to be steel,
corresponding numerical value of maximum meridional stress is found as $\sigma_{\mathrm{a}}=503.4 \mathrm{Mpa}$ at the junction ($\overline{\mathrm{s}}=0.7$), which is much below the yield strength of high strength steels. So the deformations of this shell are elastic.At the apex $\overrightarrow{\sigma a i}_{\mathrm{\sigma}}=$ $-0.16831 \mathrm{x} 10^{-8}$. For the same material, its numerical vlaue is very small than that of the maximum value. The linear and nonlinear solutions for stresses and moments are plotted against meridional distance in figures 21 to 27. Analytical results based on membrane theory are also plotted in Figures (2123,26,27). These results show that the membrane theory can predict the state of stress in these thin shells more accurately than the linear bending theory.

Here also, the stresses conform to the general expectation. Fig. 23 shows the distribution of the inner circumferential stress which is maximum in the line element near the junction ($\bar{s}=1.0$ to $\bar{s}=0.8$) according to linear theory and its numerical value of 1.0057 x 10-3 whereas the maximum vlaue is this circumferential stress by simple thin shell formula is 1.068 x 10^{-3}. The distribution of circumferential and meridional bending moments for this shell are shown in figures 24 and 25. Figure 25 indicates that the meridional bending moment is maximum at the junctions ($\bar{s}=0.7$ and $\bar{s}=0.5$) and at the base $(\bar{s}=1.0)$ due to bending at the junctions and at the edge restraint. The numerical value of maximum nondimensional meridional bending moment is 3.3741×10^{-1} at the junction $\bar{S}=0.7$ according to linear theory
and the corresponding nonlinear value is 0.541×10^{-1}. Between the junctions the curve of $\bar{M} s$ takes a wavy form. The value of \bar{M}_{s} gradually decreases with the decrease in loadings and becomes very small above the liquid surface.

Fig. 24 shows that the distribution of the circumferential bending moment has approximately the same qualitative nature as the meridional bending moment. But it is seen that contribution of maximum circumferential moment to the stress is about ν times the contribution of the maximum meridional moment. It shows further that the distribution given by the nonlinear solution differs substantially from that of the linear solution which is already discussed with reference to shell - 1 .

Figures 26 and 27 show the distribution of the nondimentional meridional and circumferential stress resultants, respectively, against the meridional distance of the shell. The linear solution of \bar{N}_{s} is maximum at the base $(\bar{s}=1.0)$ and it remains high up to $\bar{s}=0.7$ due to uniform slope of the cylindrical. part. From the location, $\quad \bar{s}=0.7$, the value of \bar{N}_{a} decreases gradually along the meridian because of low loadings and reduction in the circumferential of radius of curvature.

Figures 26 and 27 also show that the results of membrane theory are almost identical tononlinear results. Thus membrane theory predicts quite acceptable valus of stress resultants except at
the end fixity.

Fig. 27 indicates that the magnitude of \bar{N}_{θ} gradually decreases towards the junctions. Specifically, it has ebcome compressive at the junction, $\bar{s}=0.7$ due to the general tendency of shell and it is maximum in between the base $(\bar{s}=1.0)$ and the junction $\bar{s}=$ 0.7. After the location $\bar{s}=0.7$, the value of \bar{N}_{θ} decreases and it is nearly zero at the apex $(\bar{s}=0.0)$. Due to the edge restraint the circumferential stress resultant at the base is approximately zero. Figs. 26 and 27 also indicate that \vec{N}_{s} is very small in comparison to \bar{N}_{θ}. because internal load is mainly resisted by the circumferential straining of the shell.

It is noted here that the stresses increase with the increase in loadings and also with the increase in R / h ratio.

Shell - 3_:

This is another Composite shell consisting of a eylinderical part, a circular part and a conical frustum. The base of the shell is a cylindrical part and the top is closed with a spherical part, like shell - 1 and shell - 2. But the locations of various elements, meridional angle (ϕ_{0})i for each segment at the lower end and the thickness ratio for each segment are different from that of shell - 1 and shell 2 . Here the junctions
are located at the points $\bar{s}=0.7, \bar{s}=0.5$ and $\bar{s}=0.3$ from the apex. The meridional angle (ϕ_{0})i at the lower end of each of the segments are $:\left(\phi_{0}\right)_{1}=90^{\circ},\left(\phi_{0}\right)_{2}=90^{\circ},\left(\phi_{0}\right) 3=90^{\circ},(\phi$ $0)_{4}=78^{\circ},\left(\phi_{0}\right)_{5}=66.960,\left(\phi_{0}\right)_{6}=45^{\circ}, \quad\left(\phi_{0}\right)_{7}=45^{\circ}, \quad(\phi$ $0)_{8}=35^{\circ},\left(\phi_{0}\right)_{9}=23.27^{\circ}$ and $\left(\phi_{0}\right)_{10}=13^{\circ}$.

Initially the shell is considered to be filled with a liquid of specific weight γ up to the segment S. This particular shell is shown in Fig. 2. The numerical values of moments and displacements at ten equidistant locations on the meridion are presented in Table - 4. The nondimentional inner meridional stress $\overline{\sigma_{a i}}$ at the bash, is maximum where itis numerical value is 0.2844×10^{-2} and at the apex $\vec{\sigma}_{a 1}=0.26156 \times 10^{-4}$. The maximum stress at the base becomes 568.8 Mpa and at the apex 5. 23 Mpa, if the material is steel. So the deformation of the shell meridian is within the elastic limit. The base and the junctions of the shell meridion are under high tension axially at the inner surface.

The linear and nonlinear solutions of bending moments along the shell meridian are presented in graphical forms in Figs. 28 and 29. It should be mentioned here that the maximum values of \bar{M}_{a} and \bar{M}_{θ} have occured at the base in this shell whereas the respective values are maximum at the junction $\bar{s}=0.7$ in case of shell - 1 and shell - 2 . Fig. 28 shows that the maximum value of \bar{M}_{s} is 0.263 at the base and 0.224 at the junction, $\bar{s}=0.7$ according to
linear theory. For different geometry the slopes at the junctions and the radius of curvatures of this shell are lesser than that of shell - 1 and shell. - 2. So, in relation to original geometry this shell is more straightened at the junctions than the shell 1 and shell - 2. That is why the maximum moment and stress are developed at the base rather than at the junctions of this shell.

Figs. 30 and 31 show the distribution of nondimensional axial stresses at the inner and outer surfaces of the shell.Fig. 31 shows that the base and the junctions are under high compression axially at the outer surface, while the neighbourhood of the junctions and middle portions of the cylindrical, spherical and conical parts are under tensions. The maximum stress is obtained at the base $(\bar{s}=1.0)$ due to end restraint. Fig. 32 shows that the maximum inner circumferential stresses are developed in the middle portions of the respective parts of the shell. The maximum numerical vlaue of circumferential stress is 1.416×10^{-3} whereas the rough estimate of the maximum value of this circumferential stress by simple thin shell formula gives. it a numerical value of 1.500×10^{-3}. The same qualitative nature is obtained for the distributions of circumferential stress resultants which is shown in Fig. 33. Above the liquid surface a little compressive stress is developed due to discontinuties of loadings. Fig. 34 shows that the distribution of \bar{N}_{s} given by the nonlinear solution differs substantially from that of the linear solution.

Analytical results based on membrane theory are also presented in Figures 30 to 34
(b) Built-in Edge Hemispherical shell :

For this shell both the linear and nonlinear solutions are obtained and presented in graphical forms so that the difference between these two results can be readily checked. It should be noted here that in all the graphs presented, the linear solution may be considered as equivalent to the nonlinear solution at zero loading.

In Figs. 35 and 36 the nondimensional values of M_{θ} and M_{a} for hemispherical shell are plotted, respectively, against the meridional length of the shell for R / h equal to 200. The peak values of the meridional bending moment based on both the linear and nonlinear theories have almost the same magnitude and are identical in distribution in the hemispherical and in the cylindrical shell for the smae loadings and for the same R / h ratios. The maximum bending moment is obtained at the base $(\bar{s}=$ 1.0) of the shell meridian, where the shell edge is assumed to be restrained against rotation.The same magnitude of the edge bending moment for the spherical and the cylinderical edge segment shows that bending moment due to edge restraint is
independent of shell geometry.

It should be mentioned here that the circumferential bending moment is approximately 2 times the meridional bending moment as dictated by the governing equation and verified here in figures 35 and 36.

Fig. 37 presents the distribution of the circumferential stress resultant \bar{N}_{θ} for both the linear and nonlinear solutions. The values of \bar{N}_{θ} obtained from analytical membrane solution are also presented in figure 37. It shows that the distribution given by the nonlinear and membrane solutions differ substantially from that of the linear solution. In the absence of edge restraint, a roughly estimated maximum value of \bar{N}_{θ} is 0.5 . As seen in figure 37 . \bar{N}_{θ} has exceeded this value because of edge restraint. The zero value of \bar{N}_{θ} at the edge is easily
explained. Because of edge fixity the shell could not expand circumferentially. Hence, no circumferential stress could be induced in the shell at the edge. The wavy nature in the distribution of \bar{N}_{θ} is quite in conformity with the distribution of circumferential moment distribution.

Fig. 38 shows the distribution of $\overrightarrow{N s}_{s}$, which decreases with decrease in loading along the meridian. In the absence of edge restraint, \bar{N}_{s} would be zero along the edge. Thus, \bar{N}_{s} is induced in the shell because of restraint at the edge:

Figs. 39 and 40 show the distribution of the nondimensional circumferential stresses at the inner and outer fibers of the shell. It is observed that the circumferential stress has almost the same magnitude at the inner and outer fibre. This shows that circumferential stress is mainly induced by the internal liquid pressure. Analytical membrane. results of circumferential stressea are also presented in figures 39 and 40. The results based on membrane theory are observed to be much closer to nonlinear results and thus superior to the linear results.

The distribution of the meridional stress at the inner and outer fibers in the hemispherical shell is shown in Figs. 41 and 42. The distribution of stresses and their peak values for both the hemispherical and one end fixed cylindrical shells are almost identical. This shows that meridianal stress in both these shells is entirely due to edge restraint. The maximum value occurs at the inner fiber at the base in both the cylindrical and hemispherical shells. The maximum value of $\overline{\sigma_{a}}$ is equal to 0.62549×10^{-3}. This stress becomes 18764.7 psi Considering the material of the shell to be steel. So the deformation is within the elastic zone. The difference between the solutions of the two theories increases with the increase in load. The numerical values of various displacements and moments are presented in Table - 5 .

CHAPTEER

CONCLUSIONS

The stress problems of axisymmetric shells under axially varying internal pressure has been investigated in this thesis. The axisymmetric shells under investigation may be composed of spherical, conical and cylindrical segments and the two edge of the shell, top and bottom, may have any kind of edge-fixity including the provision of completely closed top. The axially varying load may be considered as that exerted by a liquid column contained either inside or outside the shell. Solution is obtained for varying height of the liquid column subjected to any pressure on its top surface. Analysis of axisymmetric shells based on both the linear and nonlinear theories have been achieved here. The nonlinear theory of axisymmetric shells as developed by Reissner (36) has been used in this analysis. The basic concept of multisegment integration developed by Kalnins and Lestingi (24) has been employed to obtain the solutions of the nonlinear equations of shells. The soundness of the theory, the method of solution, the criterion of finding the internal pressure along the meridian and the computer program used for numerical results are all checked by comparing the solutions of
a one end fixed cylindrical shell of uniform thickness ratio with those of an analytical solutino of the same shell under the same conditions.

The comparison shows that the method of solution, the governing equations and the computer programme are all free from any error and based on sound hypothesis.

Based upon the results of various problems presented here, the following conclusions ari mite:
(1) The linear theory of shells is, in general, very conservative in predicting the state of stresses and deformations in the axisymmetric shells.
(2) Any discontinuity in geometry of the meridian induces bending stresses in the shell. If the change in geometry is also assoriated with the discontinuity of slope, then the maximum values of bending moments occur at. the junction. Under this circumstance the inner fiber meridional stresses become usually the maximum of all the stresses of the shell under internal pressure except those produced by the end fixity.
(3) If the included angle of a junction is less than 180 degrees then a circumferentially compressive zone is developed there under load.
(4) The magnitude of the bending moment developed at the junction is observed to increase with the decrease of the included angle. at the junction.
(5) In designing axisymmetric shells with discontinuity of slope of the meridian care has to be taken of the extreme stress concentration at the junction.
(6) The best possible way of avoiding the stress concentration at the junction is to use a spherical ring matching in slope with the two neighbouring segments.
(7) In this shells the membrane theory is observed to be superior to linear bending theory in predicting the actual state of stress even if the shells have geometrical discontinuity. It can thus be concluded that the linear bending theory should not be used in analyzing stresses in shells except perhaps in finding the effect of edge fixity in absence of a nonlinear theory. The prediction of stresses at the restrained edge, by the linear bending theory is always found to be highly conservative.

REEEARENCES

1. : Archer, R.R. 'Stability limits for a clamped sperical shell segment under uniform pressure', Applied Math, Vol. 15, 958.
2. Ball, R.E., "A geometrically nonlinear analysis of arbitrarily loaded shells of revolution', NASA CR-909, 1968.
3. Brush, O.D. \& Almroth, O.B. 'Buckling of Bars, Plates, and Shells'. McGraw-Hill Kogakusha, Ltd., 1975.
4. Bushnell, D. 'Nonlinear axisymmetric behaviour of shells of revolution'. AIAA Journal, 5, 1967, Pp. 432-439.
5. Bushnell, D. 'Buckling of Spherical Shells Ring-Supported at the Edges'. AIAA Journal, Vol.5, No.11, November, 1967,pp.2041-2046.
6. Bushnell, D. 'BOSOR5 : Program for buckling of elastic plastic complex shells of revolution, including large deflections and creep'. J. Computers and Structures, 6, 1976, pp.221-239.
7. Bushnell, D. 'Elastic-Plastic Buckling of Internally Pre:sinuiथed Ellipsoidal Pressure Vessel Heads'. Weldinj sescarch Council Bulletin, 267, May 1981, pp. 1-28.
8. Chang, S.C. and Chen. J.J. 'Effectiveness of linear bifurcation analysis for predicting the nonlinear stability limits of structures', Int. J. of Numerical Methods in Engg. vol. 23, No.5, May 1986.
9. Donnell, L.H. 'A new theory for the buckling of thin cylinders under axial compression and bending'. Trans. Am. Soc. Mech. Eng. 56: p. 795.
10. Dumir, P.C. et al. 'Axisymmetric static and dynamic buckling of orthotropic shallow conical caps', AIAA Journal Vol. $25, \mathrm{No} .11$, 1985.
11. Dumir, P.C. ' Nonlinear axisymmetric response of orthotropic thin spherical caps on elastic foundations', International J. of Mech. Science. Vol.27, No.11 page 751, 1985.
12. Dumir, P.C., Gandhi, M.L., Math, Y., 'Axisymmetric static nd dynamic buckling of orthotropic shallow spherical caps with flexible supports'. Acta Mechanica, Vol.52, page 93-106, 1984.
13. Galletly, G.D. Kyner, W.T. Moller, C.E., 'Numerical methods and bending of ellipsoidal shells', Journal of the Society of Industrial and Applied Mathematics, Vol. 9 1961, pp. 489313.
14. Goodstein, R., 'A perturbation solutio of the equation of motion of a gyroscope'. J. Appl. Mech. 26, 1959.
15. Godoy, L.a., Quinores, D. and Wagner, R. 'Shallow shells with local deviation in shape bulletin of the international association for shell and spatial structures, Vó1. 97, August 1988, pp. 55-62
16. Haque. M. "Axisymmetric Buckling of Ellipsidal Shells Under External Pressure". M.Sc. Engg. Thesis, Bangladesh University of Engineering and Technology, Dhaka, September 1986.
17. Holston, A., 'Approximate analytical solution for a shallow Spherical shell, J. Appl. Math. 34, 1967, pp 65-72.
18. Huang, N.C., 'Unsymmetrically buckling of thin shallow Spherical shells, J. Appl. Mech., 31, pp 447-457.
19. Hutchinson, J.W. 'Imperfection Sensitivity of Externally Pressurized Spherical Shells'. J. Appl. Mech., 34, 1967, pp. 9-55.
20. Hutchinson, J.W. \& Budinansky, B., 'Dynamic Buckling of Imperfection Sensitive structure' Proc. XI Intern. Congr. Appl. Mech., Munich. 1964. Springer, Berlin.
21. Imbert, J.F. 'The Effect of Imperfections on the Buckling of Cylindrical Shells'. A.E. Thesis, California Inst. of Tech., Pasadena, 1971.
22. Kalnins, A. 'Analysis of Shells of Revolution subjected to Symmetrical and Nonsymmetrical Loads'. Journal of Applied Mechanics, Vol.31, Series E., No.3, September 1854, pp. 467-478.
23. Kalnins, A. \&Biricikoglu, V. 'On the Stability Anaysis of Imperfect Spherical Shells'. J. Appl. Mech. 37, 1970, pp. 629-634
24. Kalnins, A. \& Lestingi, J.F. 'On Nonlinear Analysis of Elastic Shells of Revolution.' Journal of Applied Mechnics, Vol.34, Series E. No. 1, March 1967, pp. 59-64.
25. Kaplan, A. 'Buckling of Spherical Shells'. In 'thin shell structure', ed. Fung, Y.C. \& Sechler, E.E.; Prentice-Hall, and Englewood Cliffs, New Jersey, 1974, pp. 274-288.
26. Kaplan, A. \& Fung, Y.C., 'A nonlinear theory for bending and buckling of thin elastic shallow spherical shells,' Nacatn 3212, 1954.
27. Koga, T. \& Hoff, N. 'The axisymmetric buckling of initially imperfect complete spherical shells". Int. J. Solids and Structures, 5, 1969, pp. 679-697.
28. Kraus, H. "Thin Elastic Shells". John Wiley and Sons, Inc., New York, 1967.
29. Milne, W.E. 'Numerical Solutions of Differential Equaitons". John Wiley and Sons, Inc., 1962, p. 49.
30. Morton,J., Murray, P.R., \& Ruiz, C. 'Effect of Imperfections on the Buckiing Pressure of Complete Spherical Shells'; In 'Stability Problems in Engineering Structures and Components' ed. Richards, T.H. \& Stanley, P., Applied Sciences Publishers Ltd., London, 1978.
31. Mushtari, Kh. M., \& Galimov, K.Z. 'Nonlinear theory of thin elastic shells'. Israel Program for Scientific Translation, 1961.
32. Naghdi, P.M., \& DeSilva, C.N. "Deformation of Elastic Ellipsoidal Shells of Revolution'. Proceeding of the $2 n d$. U.S. National Congress of Applied Mechanics 1954. pp. 333343.
33. Oliver. J. and Onate, E. 'A total lagrangian formulation for the geometrically nonlinear analysis of structures using finite elements. Int. J. for Numerical Method in Engg. Vol. 23. Feb. 1986.
34. Perroul, N. Kao, R. 'Large deformation response and buckling of partially and fully loaded spherical caps', AAIAA, J. 8, 1970.
35. Reissner, E. "On the Theory of Thin Elastic Shells" H. Reissner Anniversary volume, J.w. Edwards, Ann Arbon, Michigan, 1949, pp. 231-247.
36. Reissner, E. "On axisymmetric deformations of thin shells of revolution". Proc. Symposia Appl. Math., Vol.3, McGraw-Hill, 1950, pp.27-52.
37. Reiss, L', 'Axially symmetric buckling of shallow spherical shells under external pressure'. J. Appl. Mech. 25, 1958. pp. 556-560.
38. Rahaman, A. "Axisymmetric buckling of imperfect ellipsoidal shells under external pressure'. BUET, Dhaka, November, 1987.
39. Sanders, J.L., Jr. 'Nonlinear theories for thin shells', Q. Appl. Math., Vol. 21, 1963, pp. 21-36.
40. Sechler, E.E. "The historical development of shell research and design'. In "Thin Shell Structures', ed. Fung.', Y.C. \& Sechler, E.E. ; Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1974, pp. 3-25.
41. Sepetoski, W.K., Pearson, C.E., Dingwell, I.W. \& Adkins, A.W. "A digital computer program, for the general axiall symmetric thin shell problem'. Journal of Applied Mechanics, Vol.29, Series E., 1962, pp. 655-661.
42. Siede, P. 'A reexamination of Koiter's theory of initial Postbuckling behaviour and imperfectio sensitivity of tructures'. In 'Thin Shell Structures', ed. Fung, Y.C. \& echler, E.E. ; Prentice-Hall, Inc., Englewood Cliffs, 1974, pp. 59-80.
43. Thompson, J.M.T. 'The elastic instability of a complete spherical shell'. J. Aeronaut. Quart., 13, 1962, pp. 189-. 201.
44. Thurston, G.A. \& Penning, F.A. 'Effect of axisymmetric imperfections on the buckling of spherical caps under uniform pressure'. AIAa Journal, 4, 1966, pp. 319-327.
45. Timoshenko, S.P. \& woinowsky - Krieger, S. 'Theory of Plastes and Shells', Second edition, McGraw-Hill Book Company, 1959.
46. Uddin, M.W. 'Large deflection analysis of composite shells of revolution', Ph.D. thesis, Carleton University, Ottawa, April 1969.
47. Uddin, M.W. " Large deformation analysis of ellipsoidal head pressure vessels'. J. Computers and structures, vol. 23, No.4, 1986, pp. 487-495.
48. Uddin, M.W. 'Large Defleciton Analysis of Spherical Head Pressure Vessels'. J. Nuclear Engineering and Deisgn, Vol.52, No.1, 1986, pp. 47-61.
49. Uddin, M.W. 'Large Deflection Analysis of Conical Head Pressure Vessels; J. Forschung in Ingeniour Wosen, Vol. 52, No.6, 1986, pp. 146-152.
50. Uddin, M.W. 'A Computer Program for Nonlinear Analysis of Pressure Vessels'. International Journal of Pressure Vessels and Piping, Vol. 22, No.4, 1986, pp. 487-495.
51. Uddin, M.W. 'Buckling of General Spherical Shells Under External Pressure'. International Journal of Mechanical Sciences, Vol. 29, 1987, pp. 469-481.
52. Uddin, M.W. 'Large Deflection Analysis of Plate-End Pressure Vessels'. Internatinoal Journal of Pressure Vessels and Piping, Vol. 29, No.1, 1987, pp. 47-66.
53. Wedellsborg, B.W. ' Critical buckling load on large spherical shells' Proc. ASCE, J. Struct. Div., 88, STI, 1962, pp. 111-121.

Fig. 1 A composite shell consisting of a cylindrical part at the bottom edge followed by a spherical ring. A conical frustum and a spherical top. R is the radius at the bottom edge. Se is the total meridional distance from apex to the base circle. d is the total depth of liquid. This shell is reffered as shell no. 1 and shell no. 2

Fig. 2 A composite shell consisting of a cylindrical part, Spherical ring a conical frustum and a spherical top. R is the radius at the base. Se is the total meridional distance from the apex to the base circle, d is the total depth of liquid. This shell is reffered as shell no. 3

Fig. 3 Middle surface of shell

Fig. 4 (a) Side view of element of shell in undeformed and deformed states

Fig. 4 (b) Element of shell showing stress resultants and couples

Fig. 5 Division for multisemen integration

Fig. 6 Distribution of meridional bending moment in cylindrical shell

Fig. 7 Distribution of circumferential stress resultant in cylindrical shell

Fig. 8 Distribution of circumferential bending moment in cylindrical shell

Fig. 10 Distribution of circumferential stress at the outer fiber

Fig. 11 Distribution of axial stress at the inner fiber
$\bar{P}_{0}=0.25600 * \mathrm{E}-05$

Fig. 12 Undeformed and deformed shape of the shell

Shell no. 1

Fig. 13 Distribution of meridional bending moment shell no. 1

Fig. 15 Distribution of axial stress at the inner surface in shell no. 1

Shell no. 1

Fig. 16 Axial stress at outer surface in shell no. 1

Fig. 17 Distribution of circumferencial stress at inner surface in shell no. 1

Fig. 18 Distribution of circumferential stress at the outer fiber in shell no. 1

Fig. 21 Distribution of axial stress at the inner fiber in

Meridional distance, $\bar{S}=\frac{S}{S_{e}}$
Fig. 22 Distribution of meridional stress at the outer fiber in shell no-2

Fig. 23 Distribution of circumferential stress at the inner fiber in shell no-2

Fig. 24 Distribution of circumferential bending moment in
shell no-2

Fig. 25 Distribution of meridional bending moment in shell no-2

Fig. 26 Distribution of meridional stress resultant in shelt: no-2

Fig. 30 Distribution of meridional stress at the inner fiber in shell no-3

Fig. 31 Distribution of meridional stress at the outer fiber in shell no-3

Fig. 32 Distribution of circumferential stress at the inner fiber in shell no. 3

Fig. 34 Distribution of meridional stress resultant in shell no.-3

Fig. 39 Distribution of circumferential stress at the inner fiber in shell no.(b)

Fig. 40 Distribution of circumterential stress at the outer fiber in shell no (b)

Fig. 41 Distribution of axial stress at the inner fiber in shell no-(b)

TABLE - 1
Analytical and Computational Soltiona of pure Cylindrical shell with one end fixed.
SHELL PARAMETERS : $\quad P_{0} / E=0.256 \times 10^{-5}, \quad \mathrm{R} / \mathrm{h}=200, \quad 2 \mathrm{~J}=0.3$

Meridionaldistancefrom theappex,	Radial Displacemento, u in inch			Circumferential stress Resultant, N_{0} 1b/ inch			Axial Bending Moments, Ma_{s} inch 1 b . per inch		
	Analytical	Computational		Analyticad	Computational		Analytical	1 Computational	
		Linear	Non-1inear		Linear	Non-linear		Linear Non	n-1inear
1.0	0.0	0.0	0.0	0.0	0.2279	-11.776	765175.1	773292.14	660476.27
0.95	1.109	1.12	0.9433	166350	168219.27	141511.87	-159792.7	-15331506	-139186.62
0.90	0.9919	1.304	0.9880	148785	195749.47	148216.79	-7562.65	- 9305.61	- 11116.31
0.85	0.8477	1.24	0.770	127155	186231.1	115596.64	4806.17	- 3144.02	4816.04
0.80	0.680	1.213.	0.5924	102000	182090.54	88868.82	- 183.95	- 2564.66	255.75
0.75	0.5108	1.176	0.4216	76620	176469.76	67576.40	- 112.02	- 3221.10	1169.13
0.70	0.3404	1.11	0.2641	51060	167808.89	39623.15	13.65	. 13026.88	4581.02
0.65	0.1702	0.909	0.1476	25530	136377.01	22142.17	1.86	-65105.90	0.01025
0.60	1.79×1 ¢	0.224	0.9457	0.02685	33602.20	6858.05	-0. 5097	76485.19	-3.49×10 ?
0.55		-0.030	0-0.0561		-4517.04	-8425.25		18860.36	-3.47×10 ${ }^{-5}$
0. 50		4.27×10^{-1}	$3-0.0158$		640.68	-23708.15		0.0165	$-4.126=10^{-5}$

linear and nonlinear results of the composite silell no. 1 (figure - 1)

SHELL PARAMETERS :Thickness ratio, $R / h=200 ;$ Poisson's ratio, $=0.3$
Base Pressure, $P_{o} / E=0.25600 \mathrm{E}-05$

LINEAR RESULTS

TABLE-3

LIN: AR AND NONLINEAR RESULTS OF THE COMPOSITE SHELL No. 2 (Figure - 1)

SHELL PARAMETERS : Thickness ratio, $\mathrm{R} / \mathrm{h}=300$ Poisson's ratio, $=0.3$

Base Pressure, $P_{0} / E=0.35600 \mathrm{E}-05$

LINEAR RESULTS

 $0.50 J J J J 0 E+000 \cdot 25214165=+00 \sim 57841794=-02$.

NONLINEAR RESULTS

$\overrightarrow{\mathbf{8}} \overrightarrow{\mathbf{u}}$

$\overline{\mathbf{V}} \quad ; \quad \overline{\mathbf{H}}$

TABLE－4

LINEAR AND NONLINEAR RESULTS OF THE COMPOSITE SHELL NO． 3 （Figure－2）
SHELL PARAMETERS $:$ Thickness ratio，$R / h=300 ;$ Poisson＇s ratio，$=0.3$
Base Pressure，$\quad P_{0} / E=0.50000 \mathrm{E}-05$

LINEAR RESULTS

8	$\overline{\mathbf{u}}$	$\bar{\beta}$	$\overline{\mathbf{w}}$ ．	$\overline{\mathbf{V}}$	$\overline{\mathbf{H}}$	

 U．90JうJJJJミ＋000． $342259235+00-.54331499 E-33-.172395355-010.31650600 E+00-.15533650 E+020.15416811 E-02$
 －

No NLINEAR RESULTS

$\bar{\beta} \quad \overline{\mathbf{v}} \ldots \overline{\mathbf{V}}$

吾

TABLE-5

LINEAR AND NONLINEAR RESULTS OF BUILT IN EDGE HEMISPHERICAL SHELL No. b

SHELL PARAMETERS: Thickness ratio, $R / h=200$ Poisson's ratio $=0.3$
Base Pressure, $P_{0} / E=0.25600 \mathrm{E}-05$

LINEAR RESULTS

$\overline{\mathbf{w}}$

\qquad

NONLINEAR RESULTS

\bar{s}
$\overline{\mathbf{u}} \quad \bar{\beta}$
$\stackrel{\rightharpoonup}{\nabla}$
$\overline{\mathrm{H}}$

\bar{M}_{s}

 U. 1 juju

APPENDDIX - A

PROGRAMMING FEATURES

A-1 : GENERAL FEATURES

The Computer program used in the present investigation is adopted from that of Uddin (46) with necessary modifications to suit the requirements of solving stability problems of axisymmetric composite shells under axially varying internal pressure. The program is based on Reissner's nonlinear theory of axisymmetric deformation of shells (36) while the multisegment method developed by Kalnins and Lestingi (24) takes care of the solution of the governing equations and the integration process is carried out by a predictor - corrector method. The predictor and the corrector are respectively given by formulas (19.16) and (19.17) of Ref. (29). To secure the six starting values necessary for the application of this pair of predictor and corrector, the sixpoint forward difference formulas (19.10-19.14) of Ref. (29) are being used. It should be noted that all these formulas contain error of the order of H^{7}, where H is the distance between two consecutive computational points, thus they are highly
sophisticated. The program will produce nonlinear results for increasing steps of louding up to the number of steps as directed. In part A of the program the necessary information required for the solution of problem is read in. Part B of the program deals with the problem of adjusting the given boundary conditons with regard to the solution of the matrix equations. In part C, R, called 'RC' is determined for composite shells. Part D of the program is concerned with the calculation of the normalised constants involving shell parameters, material constant, and loading; under the part E of the program the output of the results is handled. The remaining portion of the program deals with the integration of the different systems of differential equations and the solutio of matrix equaitons. Each segment of the shell is divided into twenty-one computational points.

A-2 : TREATMENT OF BOUNDARY CONDITONS

Equations (3.37) written in terms of the normalised fundamental variables and in accordance with the statement of equation (2.82) appear as

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\bar{u} \\
\bar{\beta} \\
\bar{w} \\
\bar{v} \\
\bar{H} \\
\bar{M}_{s}
\end{array}\right]=\left[\begin{array}{c}
\bar{u} \\
\bar{\beta} \\
\bar{w} \\
\bar{v} \\
\bar{H} \\
\bar{M}_{s}
\end{array}\right] \ldots \ldots A-1
$$

In the matrix equation ($A-1$) the elements of the column matrix on the left hand side remain in the same order, whereas, those on the right hand side should be arranged in such a manner that the three prescribed elements at the boundary become the first three elements of this column matrix. According to equation (2.82) if \bar{u} is specified at the boundary, the first and fifth rows of the unit matrix of (A-1) remain the same, while specification of \bar{H} at the boundary will require the inter change of these two rows which will interchange \bar{u} and \bar{H} in the column matrix on the right hand side. Similarly, if $\vec{\beta}$ is specified at the boundary, the second and the last rows remain as they are, and interchanged when \bar{M}_{s} is specified. Lastly, the third and the fourth rows of the unit - matrix are kept the same or interchanged depending on whether \bar{W} or \bar{V} is specified at the boundary. The same operation
is carried out for both the boundary points. The transformed unit matrices of (A-1) are then designated by $T 1$ at the starting boundary and by $\mathrm{T}_{\mathrm{n}+1}$ at the finishing boundary.

In order to use the program for obtaining solutions of different problems, knowledge of the definition of input and output variables is essential. Variables used in the program with their definition are given in the table at the end of Appendix A.

Necessary information to be read in are :

Card No. 33 : This card reads in the amount of loading step EM1 and the number of loading steps SOB1. If at any loading the solution fails to converge, the loading step EM1 is automatically halved by the program and the solution for the new loading is attempted.

Card No. 35 : M, the number of segments of the shell meridian, and IZ, indicator of the type of problem, are read in by this card.

The indicator $I Z$ will have different values depending upon the, type of problem to be solved. The appropriate values of $J Z$ in accordance with the types of problems are given below in tabular form.
Type of Problem Value of IZ
Spherical head puressure vessel 1
Flat end pressure vessel 2
Conical head pressure vessel 3
Ellipsoidal head pressure vessel 4
General case of composite shell 5
Card No. 38 :
This card is used only for the general case of composite shelland will be skipped over in case of pressure vessel problems. Itreads in the value of $I G(I)$ which indicate the type of thesegment S_{i}. The quantity $I G(I)$ may have any one of the valuesgiven below in tabular form depending upon the type of theSegment Si_{i}
Type of Segment Si
Value of IG (1)
Line element 1
Circular element 2
Elliptic element 3

Card No. 40 : This card also is used only for the general case of composite shells and skipped otherwise. It reads in the values of $A P H(I)$ which indicate the starting value of the merdional angle $\left(\phi_{0}\right)$ for the segment S_{i}.

Card No. 42 : Like cards No. 38 and 40 this card is ignored for pressure vessel problems and is used only for composite shells. The value of 'RC', the ratio of the total length of the shell meridian to the radius at the base of the shell, is read in by this card. In case of a shell which is open at the top the length of the meridian should be measured from the center of the open top; so that the value of \bar{s} at the edge of the open top is different from zero. This is necessary because $\bar{s}=0$ is associated with the specialised equations valid only at the apex.

Card No. 44 : This card reads in the values of Poisson's ratio 'AN', normalized load 'EMO' at. the base ($\bar{s}=1.0$), meridional angle of the spherical cap 'PHI' at the juncture the semi-angle 'ALP' of the conical head, the ratio 'ER' of the minor to major axes of the ellipsoidal head and the ratio 'XL' of the radius at the juncture of the sperical tipping of conical head to the radius of the cylindrical part. 'EM2' is the same as 'EMO' for operation facilities only. The four quantities of this card, namely 'PHI', 'ALP', 'ER', and 'XL' are not needed for general case of composite shells, and thus can be assigned arbitrary values.

Card.No. 46 : This card reads in the thickness ratios Tk (I) for the segments $\mathrm{si}_{\mathrm{i}}, \mathrm{i}=1,2 \ldots \ldots \mathrm{M}$

Card No. 50 : This card reads in the values of the independent variables $X(J, 1)$ and the initial values of the six fundamental variables $X(J, I), I=2,7)$ for the nodal points $J,(J=1, M$ +1), For the general case of composite shells the nodal point $(J=1)$ coincides with the base of the shell where $X(1,1)=1.0$

CArd No. 52 : The boundary values of any three of the six fundamental variables at the starting boundary are accepted through lhis vard. These are, for clampod edges

$\mathrm{X}(1,1)$	$=$	$\overline{\mathrm{H}}$	$=0.0$
$\mathrm{X}(2,1)$	\bar{B}	$=0.0 \quad \ldots$	$\mathrm{~A}-2$
$\mathrm{X}(3,1)$	$=$	$\overline{\mathbf{w}}=0.0$	

Card No: 54 : This card reads in the three prescribed boundary conditions at the final boundary. For the general case of composite shell with no hole at the apex, they are -

$$
\begin{array}{ll}
X Y(1,1) & =\bar{u}=0.0 \\
X Y(2,1) & =\bar{\beta}=0.0 \\
X Y(3,1) & =\bar{v}=0.0
\end{array}
$$

Card No. 56 : The values of the boundary condition indicators at the starting boundary are read in by this card. The
appropriate values of the indicators 'IS1', 'IS2', and 'IS3' are given in the following table.

Specified quantity Indicator and its value
\qquad

$\overline{\mathrm{u}}$	ISI	=	0
$\bar{\beta}$	IS2	$=$	0
w	IS 3	$=$	0
$\overline{\mathrm{V}}$	IS3	=	1
$\overline{\mathrm{H}}$	IS 1	=	1
\bar{M}_{s}	IS 2	$=$	1

Card No. 58 : Here the values of the boundary condition indicators at the final boundary are read in. Their appropriate values are given in the above table where the quantities 'IS1', 'IS2', and 'IS3' should be replaced by 'IF1', 'IF2', and 'IF3', respectively.

A-4 : OUTPUT OF THE PROGRAM

The first output will be the given initial nodal values of the independent variable s and the six fundamental variables $\bar{u}, \bar{\beta}$,
$\bar{\omega}, \overline{\mathrm{V}}, \overline{\mathrm{H}}$, and \bar{M}_{B} in their written order columnwise and in tabular form. The second output gives the value of number of of pass and residue - the sum of the differences of the absolute values of the fundamental variables at the nodal points of the two recent consequtive passes.

The first out-put is then repeated for solution based on linear theory. The next output presents the details of the solution based on the linear thery. Here the following quantities are printed out in tabular form and in the order of $\bar{s}, \bar{u}, \bar{w}, \bar{M}_{\theta}$, $\bar{M}_{s}, \quad \bar{N}_{\theta}, \quad \bar{N}_{s}, \quad \bar{\sigma}_{i}, \quad \bar{\sigma}_{o}, \quad \bar{\sigma}_{i}, \quad \bar{\sigma}_{0}, \quad \overline{\mathrm{P}}$ columnwise. For each segment these quantities are printed out at twelve equispaced points.

A-5, DEFINITION OF COMPUTER VARIABLES

Variable Definition

EMO Po/E, normalized load at the base
EM P/E, normalized load at any point on the meridian
EM1 Increasing step of EMO
SOB1 Number of desired loading step
M Number of segments on the shell meridian
IZ Indicator of the type of problem(IZ=5, for composite shell)

RC Constant $\overline{\mathrm{R}}=\mathbf{s e} / \mathrm{R}$
AN Poisson's ratio,
ER E/lipticity ratio., B/A
Tk(I) $\quad \mathrm{R} / \mathrm{h}$, Thickness ratio for segment si
$X(I, 1) \quad \bar{s}$ at the nodal point I
$X(I, 2) \quad \bar{u}$ at the nodalpoint I
$X(I, 3) \quad \bar{\beta}$ at the nodal point I
$X(I, 4) \quad \bar{w}$ at the nodal point I
$X(I, 5) \quad \vec{V}$ at the nodal point I
$X(I, 6) \quad \bar{H}$ at the nodal point I
$X(I, 7) \quad \bar{M}_{s}$ at the nodal point I
$\mathrm{XX}(\cdot 1,1) \quad \overline{\mathrm{u}}$ or $\overline{\mathrm{H}}$ at the starting boundary
$X X(2,1) \quad \bar{\beta}$ or \bar{M}_{s} at the starting boundary
$\mathrm{XX}(3,1) \quad \overline{\mathrm{w}}$ or $\overline{\mathrm{V}}$ at the starting boundary
XY(1,1) \bar{u} or $\overline{\mathrm{H}}$ at the finishing boundary
$X Y(2,1) \quad \bar{\beta}$ or \bar{M}_{s} at the finishing boundary
$X Y(3,1) \quad \bar{w}$ or \bar{V} at the finishing boundary
IS1,IS2,IS3 Indicators of boundary Conditions at thestarting boundary

IF1, IF2,IF3 Indicators of boundary Conditions at the finishing boundary

NP
T7(N)
$\bar{N}_{\theta}=N_{\theta} /(\mathrm{PoR})$
$\mathrm{T} 2 \mathrm{Z}(\mathrm{N}) \quad \overline{\mathrm{N}}_{\mathrm{s}}=\mathrm{Ns} /(\mathrm{PoR})$.
T9(N) $\quad \bar{M}_{\theta}=M_{\theta} /($ Po.R.h $)$

APPENDIX－B

PROGRAM LISTING

\approx
$\stackrel{2}{*}$

$\stackrel{\sim}{*}====>5$ T PESSES $4 T$ THE JUNCTIDNS JF AXISYMMETRIC SHELLS UNDER CDMOOO3
＊AXIALLY VAZYIVG LDAD．

JIMENSIJV I J（10）

रEAL： 8 －（32），AP4（10），TK（10），X7（11，7），AK（4），T22（21），22（3，1），「SL
रEAL＊ 4 Y $(3,1), \bigcirc Y(3,1), E Y(21), F X(21), H+(21), 24(21), 2 己(21)$
रEAL＊\quad TS $1(3,3), T 52(3,3), T S 3(3,3), T S 4(3,3), T F 1(3,3), T F 2(3,3), T C L$

REA：$: 8$ A $3(3,3), C(11,3,3), A(11,3), E(11,3,3), 3(11,3), X(3,1), R A$

2EAL $: ~ R ~ R(21), ~ Z 1(3,1), 41(3,3), A 2(3,3), 43(3,3), A 4(3,3), 46(3,3)$
रEAL $\% ~ A ~ A 7(3,3), A 8(3,3), A 9(3,1), A 12(3,1), A 11(3,1), A 12(3,1), B H S, E 42$
रEAL＊$\quad X X(3,1), X Y(3,1), A 3(3,3), U(5,6), 2 F(21), H L(10), E M O, T H$ くロッフ004 こロप0005
C040305
［040307
CD40003
こロMOJこ7
ここ4031J
こロप0コ11
こロムココ1？
こロMOO13
CDYOO14
CJMOJ15
こ040015

）P EV（UVIT＝3，＝［LE＝•［N＊，STATUS＝＊DL）＂］
Сロ40J20
JPシン（UNIT＝？，FILE＝•OUT＇，STATUS＝＇NEW＇）
$V P=9$
I $\mathrm{V}=1$
5．วアコ＝0．コ
$55=1.0$
$y 2=5$
$y 3=3$
$332=1.5737753253$
ᄃ040021
$=0.43022$
ころ40023
こ04002\％
5040025
C040025
こロ40J27
このイJJ23

REAJIVG IN I NFJRMATION
C0．40030
こ．040031

2EAD（3，110）E41，5331
NRITE（9；110）
२EA）（3．59）M，IZ
NरITE（9，59）M，IZ．
IF（IZ－5）515，515，516
516 2EA）（3，59）（IF（I），I＝1，4）
NマITE（7，59）（IF（I），I＝1，4）
READ（8，110）（APH（I），I＝1，M）
NPITE（9，110）（APH（I），I＝1，प）
रEA）（3．110）叉C，2A，B46
W2ITE（9，110）२C，RA，BHS
515 २EAJ（B，ILOIAV，EYD，PHI，ALP，ER，XL，EM2
सरITE（9，110）AV，E40，PHI，ALP，ER，XL，E42
रEA）（3，110J）（TK（I），I＝1，M）
NRITE（9，1100）（TK（I），I＝1，4）
1100
「コマपAT（10F5．1）
$4 J=4+1$
२ミム）（3，+1$)((x(J, I), I=1,7), J=1,40)$
NरITE（9，41）（（X（5，I），I＝1，7），J＝1，MO）
$R E 4)(3,41)(X X(I, 1), I=1,3)$
由रI「E（7，＋ 1 ）（XX（I，1），$I=1,3)$
REA）（3，41）（XY（I，1），I＝1，3）
NRITE（9，41）（XY（I，1），$I=1,3)$

040032
こ0400331
C0400341
C040J35：
CO40035：
こロ403371
こ．040338！
СО 030391
CD40340？
CO40041：
CO400420
COMOJ430
C0Y0044：
ᄃ040345！
CO40J45i
C040047：
С0ツ0048
［040347i
C口丩णJ50
Сロप00511
こロ40052
こ040053：
C0M0J54：
C丁403556

32 Y(I,V)=X(Jl,I)

```
    N=1 COMJ165
```

 D] 32 I=1,7
    ```
    D] 32 I=1,7
    3) 300 I=1,21
    3) 300 I=1,21
    IF(I-21)312,313,313
    IF(I-21)312,313,313
    Y(I,I+I)=Y(I,I)+4(JI)
    Y(I,I+I)=Y(I,I)+4(JI)
    IF(Y(L,I)-1.)305,308.305
    IF(Y(L,I)-1.)305,308.305
    I=(IZ-5)305,305,305
    I=(IZ-5)305,305,305
    PH(I)=03?
    PH(I)=03?
    マコII)=1./RC
    マコII)=1./RC
    fV=FLJAT(I-1)
    fV=FLJAT(I-1)
    ZA(I)=-HV=-1(Jl)*OSIV(PH(I))
    ZA(I)=-HV=-1(Jl)*OSIV(PH(I))
    ZA(I)=fN%RJ(I)%)COS(PH(I))
    ZA(I)=fN%RJ(I)%)COS(PH(I))
    Z3(I)=2A(I)/TH
    Z3(I)=2A(I)/TH
    =x(I)=1.0-23(I)
    =x(I)=1.0-23(I)
    EH(I)=EMO*FX(I)
    EH(I)=EMO*FX(I)
    TM=巨प(I)*T*T
    TM=巨प(I)*T*T
    Pマ=ミM(I)*T
    Pマ=ミM(I)*T
    NरITE(S,*)EM(I),TH,SJB2
    NरITE(S,*)EM(I),TH,SJB2
    こJ TJ 300
    こJ TJ 300
    5) TJ (301,3)2,303,304,509),[Z
    5) TJ (301,3)2,303,304,509),[Z
    OH(I)=Y(I,I)%P4I
    OH(I)=Y(I,I)%P4I
    2J(I)=0SIV(P+(I))/PHI
    2J(I)=0SIV(P+(I))/PHI
    弓] r] 300
    弓] r] 300
    3H(I)=0.
    3H(I)=0.
    रコ(I)=Y(1,I)
    रコ(I)=Y(1,I)
    #J 「コ 30コ
    #J 「コ 30コ
    IF(Y(1,I)-X(4.1) 307.309.309
    IF(Y(1,I)-X(4.1) 307.309.309
    OH(I)=P32-ALD
```

```
    OH(I)=P32-ALD
```

```


```

```
    3コ 「コ 3JJ
```

```
    3コ 「コ 3JJ
    OH(I)=Y(I,I)*RC/XL*DCJS(ALP)
    OH(I)=Y(I,I)*RC/XL*DCJS(ALP)
    Rコ(I)=XL^JSIV(PH(I))/RC/DCOS(ALP)
    Rコ(I)=XL^JSIV(PH(I))/RC/DCOS(ALP)
    こコ TJ 300
    こコ TJ 300
    94(I)=\P
    94(I)=\P
    २O(I)=\?
    २O(I)=\?
    LL=3H(I)
    LL=3H(I)
    )] 310 J=1.4
    )] 310 J=1.4
    FF={C/ER^*2.*(Eマ*ヶ2.*AKL*OSIN(ZZ)&DSIN(ZZ))**L.5
    FF={C/ER^*2.*(Eマ*ヶ2.*AKL*OSIN(ZZ)&DSIN(ZZ))**L.5
    A(CJ)= ((J)) %FF
    A(CJ)= ((J)) %FF
    j) rJ (311,311,314,310),J
    j) rJ (311,311,314,310),J
    V=.5
    V=.5
    `] TJ 315
    `] TJ 315
    v=1.0
    v=1.0
    ZZ=3:H(I)+V\hbar4く(J)
    ZZ=3:H(I)+V\hbar4く(J)
    CJvTIVJE
    CJvTIVJE
    JP=?H(I)+(A<(1)+AK(4)+2.*(AK(3)+AK(2)))/6.
```

```
    JP=?H(I)+(A<(1)+AK(4)+2.*(AK(3)+AK(2)))/6.
```

```


```

```
    30 1J 30J
```

```
    30 1J 30J
    IJR=Iう(J1)
    IJR=Iう(J1)
    j) [J (510,511,304),IJK
    j) [J (510,511,304),IJK
    PH(I)=APH(JI)
    PH(I)=APH(JI)
    R)(I)=0?
    R)(I)=0?
    コマ=2)(I)+H(Jl)合DCOS(APH(Jl))
    コマ=2)(I)+H(Jl)合DCOS(APH(Jl))
    fiv==: JAT(I-1)
```

```
    fiv==: JAT(I-1)
```

```
    CDYO167
    こ040158
    [J40169
    C.J4017J
C040171
COMO172
こロッフ173
CDMOI74
COMOL75
CJ40175
CJ40177
こ04J173
couj179
COMOL90
co40191
COMOL3?
C040133
[口丩כ19'
こЈ40195
COMO135
こ04J137
CO4J184
こ040137
この40190
こ040171
こ04019?
CJ40193
こう4019'4
こ040195
COMJI 95
Сロ40197
CO4019?
こロ4J177
C丁43200
COMO201
こロ40202
こ0M0203i
こ5402041
こ0402051
C040205:
CO40?071
COMO208:
こ040?09
C] \(40 \geq 10\)
こロ40211!
comoz121
\(=0402131\)
CO402141
COYO215:
\(=0402151\)
Сロ40217:
こ0M0218:
040217
-04 22231


```

 F(7,v)=0.0
 3) TJ 23J
 T2=Y(2,N)/RJ(V)
 T4=Y(3,V)看I(N)/RD(N)
 T5=Y(6,V)=5l(N)+Y(5,N)=C2(N)
 T22(v)= r5
 T3=T1*T5-AN:T2
 TG=Y(T,V)/TJ-AN二T4
 T7(v)=(T2+Av:T9)/Tl
 T\ni(V)=(T'++\DeltaV:TS)*T]
 =(2,V)=TB*CL(V)+Y(3,N) =C2(N) %TL
 F}(3,V)=\Gamma
 =(4,V)=T3% こ2(V)-Y(3,N) =C:(N) %TL
 C(5,V)=-(Y(S,V)/RO(N)-FX(N)*RC)*こ1(V)
 =(S,V)=-(Y(S,N) =[1(N)-TT(N))/RJ(N)-EX(N) %RC=C2(N)
 TX=-(Y(T,N)-\Gamma9(N))/RO(V)
 =(7,V)=TX=C1(Y)-RC{T*(Y(S,N)*CZ(N)-Y(5,V)\approxCl(N))
 IF(V-2)42,4?,43
 I=(V-5)4'4,47,45
 v=v+1
 3) 「う +5
)] B1 J=?,5
 つ2==!コAT(J-1)
 3=`2%1(J1)
 Y(1,J)=Y(1,1)+03
 0] 31 [=2,7
 Y(I,J)=Y(I,1)+P3~F(I,I)
 V=?
 I? =1
 5] 1. 45
)] +3 I=2,7
    ```

```

 *302.*F(I'4)-93.2F(I,5)+9.%F(I,5))
 I(I, 3)=Y(I,I)+(H(Jl)/90.)*(29.*F(I,1)+129.*F(I, 2)+14.%F(I, 3)+140*
 *=(I,4)-5.f=(I, 5)+F(I, 6))
    ```

```

 *F(I,+1)-7.^F(I,5)+F(I,5))
    ```

```

 +1)+12.:=([, 3))
    ```

```

 +F(I,5))+50.*(C(I,4)+F(I,3)))
 2 1 = 3.0
 IP=I 3+1
 3] 47 [=2,7.
 3) 47 J=2.5
 2l=)ABS(Y(I,J)-Z(I,J))+RI
 Y([,J)=Z(I,J)
 IF(ID-15) 141,45,45
 141 I=(21-.1E-07)45,45,50
50 V=?
3J 「J '45
45 [:(V)-1)53.53.55
53 V=V+1
I={V-21) 51,51,62
6 1
Y(1,V)=r(L,V-1)+H(J1)

```

COMO3311
CO40332：
CDMO3331
こD403341
CDYつ335
こO40336i
こロ403371
ca4033？：
こ04033
C口4כ343：
こ040341
こ． 40342
こコソつ343
こ040344
こ0ムフ345：
CO4 3345 ：
［J43347
こコ40344：
こ040349
こコ4035
C口40351：
こ． 40352
こ040353：
［040354：
［ロ4）355：
こう43355：
CouT357：
こ04つ3\％
こう4035
COMO360：
COMO351
こロuつ3ヶ2：
こ040353：
ここ40364i
こ丁口つろっちi
こ． 453658
こ丁40367：

\(+1)+12 . \dot{=}=(1,3))\) こ0403676
こロ40370：
ᄃロ40371：
Сロッフ372：
CJ403730
С04037＇
CO403750
こ040375C
こ0403775
こう40378：
6040377：
cou0330
C040331
CJMO382！
СЈ40333：
こう40384i
CDYO385：

こコ40335：
Jう \(51 . I=2,7\)（ 1

62
912
714

762 २२₹＝0．0
3） \(753 \mathrm{I}=2,7\)
२ママ＝マママ＋）ABS（Y（I．21）－X（J1＋1．I））
IC（マRマ－．1）754，764，766
766 सरITET7．7571
757 ＝コ2MAT（ZX．＇S三JMENT IS TOJ LONJ＇）
764 こうVTINJこ
－
\(V=1\)
\(Y 1(1, N)=x(J 1,1)\)
J） \(53 \mathrm{I}=2.7\)
\(Y I([, V)=0.0\)
\(Y \mid\{V 1, V)=1 . J\)
\(90 \quad V J=3\)
T6 こJVIINUE
IF（VP－1）113，113，114
114 IF（YI（I．V）－：IS－06）201，201，202
\(201 \quad F(2, V)=T 1\)～Y1（S，V）／TZ
\(\llbracket P=[?+1\)
J \(55 \quad \mathrm{I}=2,7\)
\(\div-3)+F(I, V-2)+5,=F(I, V-1)+F(I, V))\)

\(Y(I, V)=?(I, 1)\)
\(I=(1 ?-10) 142,0\) ）， 60
I＝（21－．15－27）53．45．46
IF（V）－1）552，752，912
． H （TE J （7．507）
כ כ 773 V \(=1,21,4\)
\(S T 1=(T 7(V)+T \ni(N) * 6.) \div T 21\)
\(S T 2=(T 7(V)-T \neq(N) * 6) * T\).
ST \(3=\{T 22(N)+Y(T, V) \div 6.) \approx T 21\)
\(S T^{\prime}+=(T 2 Z(N)-Y(7, V) \div 6.) \div T 21\)
〔．ST3．5T4，EM（V）

C丁40388
こ040389
こ010390
CDMO371
C口MJ392
C口40373
こ丁पJ394
－

こう以つ397
Cロ40399
60403．70
\(=040 \% 00\)
Cロ40ヶ41
СЈиつ40？
こうиロч03
こうイコヶ04
こコムコ405
［040405
こ．J40407
こう40＇0）
こう4J40
こJ．0＇18
ころ40：11
\(=340+12\)
ここムゴ＋1？
COMO＇14
こ040415
JUTPUT JF RESULTS
C．0404 17
COMO＇ 1 ：
CJ40＇1：
こう40＇2：
CO40＇2？
C0M0＋2
COMO＋ 2

C口MO42


IVTEGRATION OF DERIVED SET STARTS
504042

［040＇3：
［040＇＋3
CO40ヶ3
ここムう＊3
504043
こJ4043
COMD＇3
COMD\＆ 3
CJMO？ 3
COMJ＋ 3
こ04044

\(3332 \mathrm{I}=2.7\)
Y（II，J）\(=Y(1,1)+P 3 \div F(I, 1)\)
\(V=2\)
I？\(=1\)
ココ 「コ 76
3） \(73 \quad \mathrm{I}=2,7\)

\(+3) 2 .=F(1,4)-33 . * F(I, 5)+9 . \approx F(I, 6))\)

\(++1+-:=F([,+)-5 *=(I, 5)+F(I, 5))\)

\(++F(I, 4))-7 .\{=(I, 5)+F(I ; 6))\)

\(++=([, 4))+12 .=E(I, 3))\)

\(+F F(I, 5))+50 . \div(5(I, 4)+F(I, 3)))\)
र \(1=0.0\)
\(1 ?=[?+1\)
） \(77 \mathrm{I}=2,7\)
ว \(77 \mathrm{~J}=2,5\)
२L＝JABS（Y：（I，J）－Z（I，J））＋RI
\(Y 1(I, J)=1([, J)\)
IF（ID－15）143，75，75
IF（21－．15－05）75，75，80
\(V=?\)
33 rJ 75
IF（v）－1）33，33，95
\(V=V+1\)
1F（V－21）71， 71,72
YL（ \(1, V)=Y(1, V-1)+H(J 1)\)
J \(75 \quad I=2.7\)

\(+1+=(I, V-2))+25,=F(I, N-3))\)
\(V J=?\)
！\(P=1\)
3） 1375
R1 \(=0.0\)
［ \(P=[P+1\)
ว） \(35 \mathrm{I}=2,7\)

\(: \sim(I, V-3)+F(I, N-2)+5-*(I, N-1)+F(I, V))\)
RI＝ \(21+343 S(Y I(I, V)-Z(I, I))\)
YIII，V）\(=2(I, 1)\)
IF（IP－1 3）14́t，90，90
IF（RI－．1ミ－07）90，76，76
ЈJ \(22 \mathrm{~J}=1, \mathrm{~V} 2\)
\(J(V 1-1, j)=Y(1(J+1,21)\)
IF（V1－7）552，76，96
＝コ244T（7E14．9）
＝う244T（10I？）




EER＇，5X．＂PRESSURE＇）

FJマपAT（TE11．5）
CDMO551！
411 Fつマ4AT（7E14．3）
211 Fうरप4T（7F7．5）
110 FJマपムT（7E11．5）
105 FJ？4AT（I2E11．5）
505

こロ40552！
こロッフ553i
С．J40554：
СЗ40555：

PART－G
こ丁4055E：
SJLJTIJN ］\(=\) MATRIX EJUATIOV STARTS \(こ 04 J 557\) ．

\(\mathrm{VI}=J 1\)
コン 4 \(I=1\), V3
J］ \(4 J=1, V^{3}\)
\(A 1(J, I)=J(I, J)\)
\(A 2(J, I)=J(I+3, J)\)
\(43(J, I)=U(I, J+3)\)
\(A^{\prime}+(J, I)=J(I+3, J+3)\)
\(\times 1(I, I)=X(V L, I+1)\)
\(X 2(I, 1)=X(V I, I+4)\)
\(Y 3(V I+1, I)=Y(I+1,21)\)
\(Y こ(V I+1, I)=Y(I+\uparrow+21)\)
JJ \(20 I=1, N 3\)
\(A Y(1,1)=Y 3(N 1+1, I)\)
\(3 Y(I, L)=Y 2(N L+1, I)\)
こALL VATY（A1，XI，A？，N3，N3，1）
＝ILL MarM（AL，X2，Z1，N3，V3，i）
＝aLL MaTS（Aつ，21，N3，1）
これ：L Mars3（21，v3，1）
＝ALL YaTS（AY，21，V3，1）
＝ALL＇ATM（A3，X1，A3，N3，N3，1）
こALL MATY（A＋，X2，Z2，N3，V3，1）
こALL MATS（A7，22，V3，1）．
zaLl MaTS3（Z2，V3，1）
＝ALL MATS（3Y， \(22, V 3,1)\)
［F（V1－1）5．5．7
こALL MATM\｛AL，TSI，AS，N3，N3，N3）
こALL MATY（AL，TS2，A7，N3，N3，N3）
こALL MATY（AL，TS3，A1，N3，N3，N3）
CALL MATS（AS，AL，V3，N3）．
こA＿：MATY（AZ，TS4，A6，N3，N3，N3）
こALL MATS（AS，A7，N3，N3）
こALL MATY（A3，TSL，AS，N3，N3，N3）
こaLL MATY（A3，TS2，AS，N3，N3，N3）
こALL MATY（A4，TS3，A3，N3，N3，N3）
CALL MATS（A6，A3，N3，N3）
こALL MATY（A4，TS＇t，A6，N3，N3，N3）
こA＇L YATSIA6，A3，N3，N3）
コ） \(2 \mathrm{I}=1, \mathrm{~V} 3\)
כコ \(2 \mathrm{~J}=1, \mathrm{~N} 3\)
\(44([, J)=A 3(I, J)\)
\(A Z(I, J)=A 7(I, J)\)

こJM0561
Couoss？
こЈ40563
Сコリコミ54
сЈМつ565
こコYつ565
こЈपכ507
こコリフ568：
「丁प丁56？
C口MO．57）
こ．040571
（コ以うこ7？
くコリロラず3
こコムコラ7́
こう43575
こコ૫コ575
こう以う57？
こうपכラ79
こコ以つう7？
c040．330
こロ40531：
こうムフラ3？
こЈムフ583：
こЈムコ5日4！
こうMOラ85
こ040535：
こロ40587：
こコ4053？：
こ040う539
CO40590
こ040591：
こコリフ572！
こ丁40593：
ここムす594
ᄃЈ4J595
こ040595
くこムフラ97：
Сロッフ598：
こロ4アラ791
こコ43500
こうपכ501：
C040502：
CO40503
E－240504
COMJ505：

こALL MATI（AL，AG，N3）
\(=A L L\) MATY（Át，A6，AT，N3，V3，N3）
こALL MATI（AT，A3，V3）
CALL MATY（A1，XX，A9，N3，V3，1）
```

 こALL MATS(ZI,A9,V3,1)
 =ALL MATS3(4#,N3,1)
 こALL MATY[A3,XX,A1O,N3,N3,1]
 こALL MATS(Z2,A1O,N3,1)
 EALL MATY(A't,AS,AT,N3,V3,N3)
 こALL पATM(AT,A7,A11,N3,N3,1)
 こALL MATS(A11,A10,V3,1)
 =ALL \varthetaATS3(410,V3,1)
 3コ TJ 3
 I=(v1-4) 3.5.5
 こALL YATH(TFI,AI,AS,N3,N3,N3)
 こALL MATM(TF3,A1,AT,N3,N3,N3)
 こALL M4TU(TF?,43,A1,N3,N3,N3)
 ZALL पATS(AS,A1,N3,N3)
 こALL MATUITF4,A3,AS,N3,N3,N131
 =ALL MATS(AS,AT,V3,N3)
 こALL YATM{TF1,A2,A5,N3,N3,N3)
 EaLL MATMPTF3,A2,A18,N3,N3,N3)
 こALL MATU(T=?,A4,A2,N3,N3,N3)
 こALL MATS(AK,42,V3,V3)
 こALL MATM(TF4,A4,A5,N3,N3,N3)
 =ALL MATS(A5,413,N3,N3)
 =ALL MATUITF1,7:,A14,N3,N3,1)
 こALL Y4T4(TF3,Z1,A15,N3,N3,1)
 =ALL पATM(TF?,22,Z1,N3,N3,1)
 こA:L MATS(4:',21,V3,1)
 こALL :ATH(T=4, L2,A14,N3,N3,1)
 =A_L MATS(A14,A15,N3,1)
 J] 19 I=1,V3
 22(I,1)=415(I,1)
)J 17 J=1.v3
 A3(I,J)=47(I,J)
 44([,J)=413(I,J)
 こALL MATM(Al,A9,AT,N3,V3,N3)
 こALL MATS(AL,AT,V3,N3)
 EALL MATI(AT,AG,N3)
 CALL MATY(A1,A9,A7,N3,N3,N3)
 =ALL MATY(AT,A1J,A9,N3,N3,1)
 こALL MATS(21,A?,V3,1)
 こALL YATSS(AF,N3,1)
 =ALL MATY(A3,A8,AT,N3,V3,N3)
 EALL MATY(AT,A1O,A12,N3,N3,1)
 こALL MATS(A't,47,V3,N3)
 ZALL MATY(AS,A7,AL2,N3,N3,1)
 こALL MATM(AT,A12,A1O,N3,N3,1)
 こALL MATS(A11,A1O,V3,2)
 =ALL MATSIL2,A1J,N3,1)
 =ALL MATS3(41O,V3,1)
 =ALL MATY(A3,AB,A7,N3,V3,N3)
 EALL MATS(A't,AT,V3,N3)
 =ALL YATY(AT,AS,A1,N3,N3,N3)
 こALL MATI(Al.AB,N3)
 IF('VI-4) 8;9,7
 =ALL MATS(XY,A10,N3,1)
] I I= L,V3
    ```

こロ40505
C040507
こ0Y050s
C040509
COYOSIO
こ0M0511
CO40512
ここY0513
COYOS1＇4
COMOS15
こ0YOS15
20YOS1？
C．YYOS13．
こう4051？
C340520
こう．40521
こ043522：
こ．JYOS23：
couos24：
COMJS25：
CJ．40525：
こJч0s27：
CJ40629：
こ0Y15529
EJYOS30：
＝040531：
こЈчว532
СЈчวऽ33：
こכ40534：
こコ40535
こつ40535
ここ40537t
СЈ40538：
E0405395
COYOS400
COMOS415
CJ435420
こ0405430
C3405440
COMO5450
COMOS455
COMOS476
С0405490
［04）547：
COMOS50
Сכ405510
СЈッフ552：
こ0405530
СЗч0554：
COMO555C
－043555：
COMO5575
Cכ40653：
COMO5575
E0405soc
```

 3) 1 J=1,N3
 E(VI,I,J)=AS(I,J)
 こ(VI,I,J)=4B(I,J)
 A(VI,I)=49(I,I)
 3(VI,I)=A10(I,1)
 CJVTIyUE
 EM]= =42
 I=(NP-1) 117,115,117
 j] [J (718,1)B),IN
 718 44=0.0
ว] 15 IL=1,4
VI= 4-II+1
J) 10 I= 1,V3
ว) 10 J=1,V3
4G([,J)=E(VI,I,J)
Ag(I,J)=こ(VI,I,J)
4)(I,l)=4(VI,I)
10 A1O([,1)=3(Vl,I)
IF(V1-4) 11,12,1?
12 EALL MATM(AB,410,A11,N3,N3,1)
ZALL MATS(A11,AF,N3,1)
=A!L MATM(AS,A7,A12,N3,N3,1)
こALL MaTU(TFI,A1L,A1't,N3,N3,1)
CALL MAT'A(TF?,XY,A15,N3,N3,1)
=ALL YATM(T=3,A1L,ALS,N3,N3,1)
こALL MATY(T=+,XY,AIT,N3,N3,1)
3] 37 [= 1.V3
x(4],[+1)=4{5(I,1)+4{4(I,1)
x(4],[+')=417(I,1)+41S(I,1)
コ) 「コ 1's
11 こALL YATS(AI?,AIJ,N3,1)
CALL MATY(AE,A1J,All,N3,N3,1)
こALL MATS(411,47,N3,1)
こALL MATY(A5,A9,A12,N3,N3,1)
วコ 17 [=I,V3
17 x (VL+1,I+1)=411(I,1)
I=(v1-1) 93,73,16
93 CALL MATY{TS1,XX,A1'+N3,N3,1)
こA_L YATY(TS?,412,415,V3,N3,1)
こALL MATY(TS3,XX,A1S,N3,N3,1)
こALL MATM(TS'+,AI2,A17,N3,N3,1)
วコ 9B I=L,V3
X(1,I+1)=A15(I,I)+AI4(I,I)
X(1,I+4)=AI7(I,1)+AL6(I,1)
う丁 TO 13
16 33.13 I=1,V3
13 X(VIPI*\&)=A1?(I,1)
18 JJ 15 I=1,V3
AA=)ABS(Y3(VI+I,I)-X(NI+I,I+1))+AA
I5 AA=)ABS(Y2(VI+1,I)-X(NI+1,I+4))+AA
1LS VP=VP+1
2ES=AA/SS
S5=AA
N२[TE(7,505) VP,A4
IF(NP-5) 151,152,152

```

С0405510
Сロ4つ562C
C340663C
－0M066＇t
こ0MO6550
С0435656
CDYJS57：
СЗ406585
COMJ5679
こכ40．670：
CJuJs71：
C340572
Сコч0 573 ：
こコบכ57\％？
［コロJS75
сЈч0s 75 ：
［Јй577：
こうム次73：
ここ4う679：
C］YCS800
CO4OS81：
conjs32：
\(=340583:\)
\(=040584\)
こכ40585：
こういうs 86
こういつ537
C540633
こう4ア589．
こ〇43590
coujs 91
COMO592
こ04J593
こう4コ594
СО4J595
こJ43595
こ丁40597
こ． 40599
C丁Y＂So9
こコッジ 700
このपכ701
こ040702
С．J40703
Сこ4070ヶ
CO40705
COMO705
CD40707
CO40708 Сロ4J707 こJ40710
C340711
COMOT12
5040713：
こ040714
CO40715

```

