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ABSTRACT

Distribution oF stresses in the neighbourhoed of junctions} of
axisymmetric shells of different geometries with different edge
restraints under axially varying internal pressure has been
investigated in this theis. The shells considered are thin in
which large deformations take place under 1load. lExtensive
numerical results ﬁn the axisymmetric shells have been obtained

for better designs:-of these shells.

The method of investigation involves solution of a set of six
first order nonlinear differential equations considering the

lérge axisymmetric deformations of these shells under axially

~varying pressure as derived by Reissner{36). The governing
nonlinear differnetial equaitons seek for that state of
deformation of the shell at which, for a given pressure, the

potential energy in the deformed shell is a relative minimum. The
basic concept of multisegment integration as developed by Kalnins
and Lestingi(24) has been utilized for obtaining the solutions of

the governing equations. A computer program has been developed

.



incorporating the algorithm of finding the stresses and
.displacements ‘of the axisymmetric shells. The information
necessary for specifying a particular shell and 1its edge

conditons and the base load are used by the program as input

data.

For a given low pressure, specified in the inbut data, the
program first finds the linear solution in)terms of deformations-
and stresses in the shell’ which is followed by nonlinear
solutions corresponding to tﬁe same pressure. Then pfessure is
.increésed in steps by an amount specified in the input data and
nonlinear sclutions are- obtained and printed out for each loading

- step till the pressure vcaches a maximum specified value.

The soundness of the method and the correctness of programming
are verified by comparing the resulls of axisymmetric shells with
that of the corresponding analytical results available .in the
literature. Curves are plotted based on both the linear and
nonlinear solutions for depicting the stress modes at different
values of the shell parameteré and ;lso for finding the locations

at which stresses are maximum.
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NOTATTONS

(m, 1) matrices, contain prescribed

variables at the boundary.
Eh, extensional rigidity
(1 - p%2) se/R
'Eh3/12 (1- p»2)), bending rigidity
1/(12(1- p2?)) Po T2 R)
Young’s'modulus of elasticity

horizontal stress resultant

H/PoR, nondimensicnal horizontal.stress

resultant
Shell thicknes;
(6,6) unit matrix

Changes of curvature of the middle
surface of the shell.

Se, nondimensional value of K,

Ko

KsSe, nondimensional value of Ks

R/Po T.
numebr of segments

meridional couple resultant



Mé = Circumferential couple resultant

Ms = Ms/PoRh, nondimensional value of Ms

Eg = MQ./Po Rh, non-dimensional value of M,
‘Na = meridional stress resultant

Ng = Circumferential stress resultant

Ne = Ns/PoR, nondimensiocal value of Ns.

ﬁb = N /PoR, nondimensional value of Ne

Po = outward nqrmql pressure at the base

of the shell (its positive value
indicate internal pressure}
P = internal nopmal pressure at any point on

the meridian.

Po = Po/E, nondimensional value of Po
ﬁ- = P/E, nondimensidnal vlaue of P
Pu = horizontal Comﬁdnent of surface load
Pv = Vertical component of surface Load
Q = transverse shear stress resultant
R = radius of base circle
_ﬁ = se/R
Rs,%f Principal radii of curvature of the
middle surface of the shell
To = distance of a péint og undeformed

middle suffgce of the shell



r = re + u, distance of a poiﬁt on dgformed

hiddle surface from axis of symmetry
To = ro/Se, nondimensional value of To -
s = distnace measured from the apex along the

meridian

s/se, nondimensional value of s

w|
T

Se = total length of the shell meridian
Si = ith segment of the shell meridian
T1, Tu+1 = (6,6) matrices, given by the bondary

conditions.

T . = R/h
u = radial displacement({ normal to the axis of
symmetry)
u = ‘uEh/PoR2, nondimensional value of radial
dispacement
v = vertical stress resultant
v =  V/PoR, nondimensinal value of veétiéal stress
resultant
W = axial displacément
W = wEh/PQRz, nondimensioﬁal value of axial
displacement
- X = independent Qariable assumed in the
method of solution.
X1 = vlaue of x at the ith nodal point of

‘"the segment

xii



y(x)

‘Zo

{6,1) matrix, contains 6 fundamental
vriables

axial distance of a point on undeformed
middle surface of shell from its plane
20 + w, axial distance of a point on
deformed middle surface

parameter of meridian of deformed shell,
defined in Equation (2.4)

value of correspohding to undeformed shell
/3_
angle of rotation of normal to the middle

surface of the shell
middle surface strains.

égEhse/PoR?2, noﬁdimenéional value of &
£&Ehse/PoR2, nondimensional value of &
angle between normal and axis of sym@etry
before deformation (meridional angle)
Poisson'’s ratia of shell material
Ne/h + 6Ms/h2, meridional stress at the

extreme inner fiber

xiili



'6:5 .= Ne/h - 6Mes /h?, meridional stress at the
extreme outer fiber

Oei = Ng/h + 6Mg/h? circumferential stress at the

extreme inner fiber.

Gco = Np/h - 6Mg/h?, circumferential stress at the

extreme outer fiber

Eii = (Jai/E, noﬁdimensional value of 6:1
5§o = (@ao/E, nondimensional value of (Jao
5%1 = (ci1/E, nondimensional value of (jci
-;o = O;O/E; nondimensinal value ofd??

,-..
1
|
I
|
—
1]

derivative with respect to s or s
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INTRODUCTION
1.1 PRELIMINARY
With the passage of time, shell structures are being utilized
more and more. In many instances, axially varying load 1is the
pPrimary consideration 1in the design of various structural
configurations. Shells are used as load - carring element in

some part of virtually evefy item of modern industrial equipment.
This is specially true of the marine, petrochemical industries,
nuclear and aérospace where dramatic and sophisticated wuses of
shells ére currentl& being made in space vehicles and missiles,

submarines, nuclear reactor vessels, refinary equipments and the

like. As interest in shell structures increased, _ more
sophisticated mathematical analysis of shells were sought.
Nonlinear shell analysis, which takes into account of finite

shell deformation under loading as well as non linear sfress—
strain relations, 1is <currently in its infancy. This type of
problem requires the integratioh of a rather complicated system
of simul;aneous nonlinear differential equations or solutions of

highly ill conditioned simultaneous algebraic equations.



Consequently, with the advent of large high speed computers, the
authors of numerous recent papers have focussed their attention

on the methods of numerical intégration of thin shell equations.

Shell structures are characteristicaily different from others in
the sense that large deformation takes place in many shells under
internal or external loading. This sometimes necessitates
conéideration of large deformation in the formulation of the
problems to obtain reasonable information of the structure.
Analysis of composite shells which invariab;y has to account for
the large deformations that take place at the junctions of shells
of different geometrics, is fundamentally a subtopic of nonlineér
rather . than linear mechanics. The nonlinearity is introduced in

the governing equations of elasticity in three ways

a. through the strain-displacement relations.
b. through the equaitons of equilibrium of a volume element
of the body, and

c. through the stress-strain relations.

In (a) and (b) retention of the nonlinear terms is conditioned
by geometric considerations, that is, ﬁhé necessity of taking
into account the angles of rotation in determining the changes of
dimension in the line elements and in formulating the conditions
of equiiibrium of a volunme element. On the other hand, nonlinear
terms #ppear in the third set of equations (c) if the material

does not behave in a linearly elastic fashion. Hence there are

two types of nonlinearity :



(i) geometric

{ii) physical
In the problems of shell structure, the angle of rotation can be
large, but the strain can remain within elastic limit. The
bending of a thin steel strip can be considered. Strips of gdod

éteel can straighten out without traces of residual deformation

after having their ends. brought together. This bears witness to
the fact that, in these strips, even for large displacement and
angle of rotation, the stresses do not exceed the yield point.

Thus, many shell structures belong to a class of problem which

are physically linear but geometrically nonlinear.

1.2 RESUME OF NONLINEAR SHELL ANALYSIS

That linear she}l analysis fails to give proper information about
the shell stresses and deformations in many problems can be seen
in 'recent papers on the nonlinear shell analysis
(4,5,7,9,10,11,22,24,34,36,38,41,43-53). For this reason the use
of nonlinear_ltheory has become rather widely accepted as a
plausible basis for predictions of elastic strengthg of thin

shells of various geometries.

The basic concept of finite deflection analysis, due to
Donnell{(9), has been employed by numerious investigators to
establish c¢ollapse loads of c¢ylindrical shells subjected‘to

various loadings.l Finite deflection analysis has also been



successful in offering reasonable predictions of the elastic
buckling loads of shallow spherical caps subjected to wuniformly
distributed external pressure. Kaplan‘ and Fung (24). have .
presented a perturbation solution Lo the nonlinear equations that
agrees quite well with results of their experiments for very
shallow clamped edge shells. Archer (1) extendcd hise vesnlls
- to a greater range of shells. As can he seen from recent papsirs,
very exlensive ’ lwc:‘k MNag hean done tn this field
(12,15,18,22,24,26,43). Ball (7} has considered the problems of
arbitrarily loaded shells of revolution and obtained solutiocn Tor
a clémped shallow spherical shell uniformly loaded over one hglf
of its surface. Finite. deflection studies are available for
cylindrical, spherical as well as other types of shells subjected
to variety of loadingé and boundary conditons. In all cases the
prediciions of these theories are in be£ter agreement with

expremental evidence than theose of the classical investigations

based upon infinitesimal deformations.

Uddin (456) has found extensive numerical results on perfect
spheric#l, ellipsoidal, conical 'and composite shells based on:
both the linear and nonlinear theories and has obfained critical
pressures of different types of spherical shells. He has also
obtained the solutions for spherical, ellipsoidal,‘ coﬂical and
rlate end pressure vessels (47,48,49,52) based on both the linear
and nonlinear theories. For éomposite shells with geometrical
discontinuity, he has found numerical results-of_stresses in the

neighbourhood of junctions under uniform internal pressure.



Bushnell (6) has developea a computer software package, known as
BOSORS5, for analyzing the nonlinear stress field of axisymmetric

shell systems based on thin shell theory and for determining the
bifurcation bucklihg pressures of ellipsoidal and torispherical
heads joined to cylinder and subjected to internal pressure. This
software is capable of taking inteo account of various meridional

geometry and practical boundary conditons.

Hagque {(16) has investigated buckling of perfect ellipéoidal
shells of reveolution and has obtained respective c¢ritical
pressures for various shell parameters. Eahman (38) has analysed
the stability of imperfect ellipsdidal shells of revolution under
external pressure. Extensive investigations had been carried out

for imperfections of various shells and structures (19,20,21, 23,

27,30,42}.
But the stresses under axially varving load of axisymmetric
shells  with discontinuities in slope of the meridian, taking

large deformation into consideration, has nol yet been studied.



1.3. OBJECTIVES OF THIS INVESTIGATION
The objectives of the present investigation are stated below

1. The purpose of this investigation is to’ detepmine stresses
at the junctionsAof axisymmetric shells of differént geometries
under axially varying load. This Envéstigatisn is thus to provide
some insight into the nonlinear analysis of shells of revolution
under axially wvarying internal pressure with discontinuities in

slope and curvature of the meridian.

2. The study includes only those shells which are considered to

be thin and in which lgrge deformations take place under load.

3. Distribution of stresses in the neighbohrhood of junctions
of axisymmetric shells of different geometries as found here are
expressed in graphical forms plotted against distance along the

meridian.

4, The present investigation is confined to the large
deformations and thus the maximum stress in the shell is
determined in order to ascertain that it is within the yieid
strength of the shell material, that is, it is checked whether
withdrawal of internal pressufe would allow the retention of

original shape of the shell.



The computer program developed for the analysis may be wused for

various boundary conditions like completgly fixed or roller

supported or hinged edges.

In order to achieve these objeetives, a system of six first order
nonlinear ofdinary differential equations with geometrical
discontinuity had to be integrated as a boundary value problem.
The method of Multisagment Integration had been used for solving
this boundary value problem df shells of reveolution undergoing'
axisymmetric deformation. Usually, the methoed of Multisegment
Integration 1is lused t6 solve tﬁose boundary value problems pf
ordinary differential equations which can not be solved by direct
integration; because, direct integfatipn losses all of its
accuracy in the pfocess of subtraction of almost equal numbers in
evaluating the unknown boundary values, The method of
Multisegment Integration, as used .in this analysis, was first
déveloped by Kalnins and Lestingi i24) and latg;'applied by Uddin
(46) for sloving tﬁe nonlinear problem of axisymmetric
deformation of shell of revolution. The computer program Qsed in
phis -analysis is- adopted from that of Uddin with necessary
modificétions to suit the requirement of solving 'problems- of
general case of shells under‘ axially varyiné axisymmetric

loading.



1.4. METHOD OF SOLVING NONLINEAR DIFFERENTIAL EQUATiONS

A system of nonlinear ordinary differential equaitons with
geometrical discontinuities 1is required in solving the present
problem. Unfortunately,'the development of modern mathematics has
provided the applied scientists hardly witp any general method
lfor solving nonlinear ordinary and nonlinear partial differential
gquations. The situation has been brightened considerably,
however, with the development of modern 'digital computers and
with ‘the simultaneous revitalization and growth of the study of

numerical methods,

Though there are quite a number of appfoximate methods available
for solving nonlinear differential equaitons, there is hardly any
method proved to be unique or advantageous over the other method,
leaving aside its applicability to a specific problem. The
methods-most frequently used in solviné nonlinear differential

equations are ;

(1) Asymptotic integration . {31)
(2) ‘Direct numerical integration (13)
(3) Finite - difference mgﬁhod

(4) Perturbation technique

(5) Newton's method

(6) Mcthod of multisegment integration

8



(1) Asymptotic _integration : It is not a general method and
' its scope of application is very limited. 1In the application of

thié method the solution is expressed-in the form of a seriés
where the terms of the seriesl are fhe inverse powers of the
largest parameter in the differential equations (31}, It is very
difficult to find out the terﬁs of the series and most . of the
time the solution contains only the first term approximation.
Considering the complexity of* the shell equations and remembering
that there are geometrical discontinuities at intermediate
points, the posibility.of obtaining a reasonably good solution by

any approximate analytical method is highly unlikely.

{2) Direct Numerical Integration : "The direct integration

approach has certain advantages but it alsc has a serious

disadvantage i.e. when the length of the shell is large, a loss
of accuracy invariably results. This phenomenon is clearly
pointed out in Ref (13). The loss of accuracy does not result

from the cumulative error in integration, but it is caused by the
subtruction of almost equal numbers in the process of determining
unknown boundary values. It follows that for every set of

geometric and material parameters of the shell there is a

critical length beyond which the solution losses éll its
accuracy.

(3) Finite - difference method : This method is the most widely
used technique for solving nonlinear differential equations. The

advantage of this method over direct integration is that it «can

9



avoid the- above mentioned loss of accuracy. He;e the analysis
invdlves‘the solution of a large number of nonlinear aléebraic
eéuaitons which would probab;y have a numbér of solutions. Mést
ofnthe time'the solutions of nonlineaf equaitons are obtained- as
the solutions of a s;quence of linear equaitons. It is often
diffiéult to distinguish between instability in the sequence of
numerical calculations and the point of instability of the
diffe:éﬁtial équaitons'which correspond to the classical buckling
pressure. It is usually the case that -‘the finite difference

method is not suitable for application to problems which contain

discontinuities or rapidly varying parameters at a point.

4. Perturbation Techniéue :  The perfufbation technique is also
a frequently wused analytical method for scolving nonlinear
differential equaitons. In this technique the functions to be
obtained are expressed in the form of power series in terms of a
perturbation parameter and the soclutions are obtained as
sclutions qf a sequence of linear differential egquations. The
solutions of the linear equaitons are the- terms of the series.
But there must be a natural, an artificially created
perturbation parameter which contributes to tﬁe nonlinearity of
the problem and this parameter must be small enough so that the

series is convergent.

Particularly this method is appropriate for nonlinear dynamic
problem of rigid bodies ( 14 } where a natural perturbation
parameter exisfs and the solutions are periodic. In nonlinear

shell analysis this technique is used by Archer (1) +to clamped

10



spherical shell under uni form pressure where the
nondimensionalized radial displacement at the point of maximum
diflection has been used as ahperturbation parameter. From this
soiution it is "seen that the computational work involved in
obtaining numerical values is so extensive ‘that it would be
desirable to apply some numerical ‘technique from the_beginning.
The result of this solution is compared with experimental and
other results by Reiss (37) where it is shown that the
perturbation solution is in serious disagreement with the fest of
the results. 1In this ﬁroblem it is required to solve a number of
sets of differential equaitons where no suitable pefturbation
parameter is obviocus which is applicable lo all the gaets. The
convergence of the series vunder the present circumstances can
only be established by comparing with kﬁown results, but there

exist no such results.

{5) Newton'’s method : Newton's method for solving nonlinear

differnetial equations 1is the exténsion of Ne@ton’s method'for
calculating roots of algebraic equatiops. fhe apprecach 1is to
express the solution as the sum of two parts; the first part is
a known functin and the second part is a correction to the known
function. A governing equation for the correction is obtained by

substituting the assumed function into the nonlinear equations

and neglecting the term which ‘are nonlinear (17). This method
does not require the perturbation parameter to be small, as 1is
necessary in the perturbation technique, - but involves the

solution of a sequence of linear diffefential equations. These

linear equaions have variable coefficients and generally can not

LR

P )



be solved in closed form. It is paradoxical that the greatest
obstacle in solving nonlinear problems is the inability to solve

linear differential equations in closed form.

{6) Method of multisegment integration_ : It is the most recent

method developed and used by Kalnins and Lestingi (24) to solve

nonlinear differential equations. This method involves

(a) division of the total interval into a number of segments;
(b) initial-value integration of a system of first order
differential equaitons'0ver each segment;

(c) solution of a system of matrix equaitons which ensures the

continuity of the variables at the ends of the segments ;

(d) repetition of {(b) and (c) till convergence is achieved;

(e) integration of an intial value problem to obtain the wvalues
of the dependent variables at any desired point within each
segment.

The main advantage of this method over finite - difference method

is that the solution is obtained everywhere with uniform accuracy
and the iteration proceés with respect to the mesh size, as
required in finitg difference approach® is elimiﬁéted. But fhe
feature which makes this method most attractive for this problem
is that any discontinuity, either in geometry or in loading, can
be easily handled by requiring that the nodal ©points of the
segment coincide with- the location of discontinuities. -This
method is the most accurate of all the numerical methods because

the problem is solved in the form of a system of first order

12



differential equaitons in which no derivatives of geometrical or
elastic properties appear and -because no further numerical
derivatives have to be evaluated for obtaining the desired

results in the process of computations.

13



CHAPTER 2

THEORY OF SHELL

2.1 INTRODUCTION

The literature on shell theories is not devoid of papers in which
some of.the aspects of finite displacements on the deformatiqn
of this shell are accounted for. The work of a completely general
) natﬁre appears to be the papers by Chang and Chen (8) followed by
a series of papers by Chen. The theory of shells developed by
Chang and Chen avoids the use of displacement as unknowns in the
equations. The theory is deduced from the three-dimensioﬁal
theory of elasticity and then, by means of series expansion in
powers of small thickness parameter, approximate theories of ﬁhin
shells are derived. Other developments whicﬁ also employ linear
constitutive relations are founded upon the Kirchhoff hypothesis
apd often contain other approximations.Among these are Reissner’s
(36) formulation of axisymmetric deformation of shells-'of
revolption and the more general works of Sanders (39) and
Leonard. Beg?nning with the three dimensional field equations

Naghdi and Nordgren deduced an exact, complete, and

fully general nonlinear theory of elastic shells founded upon the

Kirchhoff hypothesis.



Several nonlinear theories for thin shells have been derived. in
increasing stages of approxiﬁation. In most cases tﬁe theories
are first approximativg theories in the sensér that transverse
shéar and normal strains are neglected. Here the author has used
the theory of axisymmetric deformation of shells of revolution as
presented by Reissner (36), because of the fact that Reissner’s
derivations have extremely simple structure and that this theory
differs from others in using " radial* and axiall comfonents of

displacements and stress. resultants instead of the customary

practice of wusing normal and tangential components of
displacements . and stress resultants. The modified definition of
displacements and stress resultants is ' very well suited for

managing the axially varving load of composite shell problems.

2.2 REISSNER'S THEORY QF AXTISYMMETRIC DEFORMATION OF

SHELLS OF REVOLUTION.

The basic equations of Reissner’s theory of finite axisymmetric

deformations of shells of revolution are presented here for ready

reference.

The gquation of the meridian of the shell is written in the

L)

parametric form (Fig. 3 ) as,’ .

I“:I‘fs), Zzz‘(s)................ (201)
so that s together with polar angle g in the x-y plane are the

" coordinates on the middle surface. The sloping angle .¢ of the

15



tangents to a meridian curve is given by

tan¢ = dZ/dI‘ LI I B N R I R I I (2-2)

From equation (2.2) it follows that

;o

cosg = r/x , singd= /M ....iie. . (2.3)

where the primes denote differentiation with'respect to s gnd X

is given by

X = (2 o+ (hHz ] riz ... (2.4)

The principal radii of curvature of the middle surface of the
shell are given by

Rs = ﬂ’ﬁﬁ’ , Rg = r/ sing .... (2.5)

With reference to Fig. (4a) the equation of deformed middle

surface is written as

r - ro + u, Z = Zo + W TR (206)

where the subscript o refers to the undeformed middle surface
and the quantities u and w are, respectively' the radial and the

axial components of displacement.

- The angle enclosed by the tangents to the deformed and to the
ﬁnderformed shell meridian, at the same material point, is given
by

B = g -4 e, (207)

16



With the above definition of displacements, the strain components

and the curvature changeé of the middle surface are given by the

following equaitons

€s = (- )/ Ko = (cos Pof cosg) ( 1 + u/ra) -1...(2.8)

€o = ulre e (2.9)
Ka =—t¢’—gg’>/m = A% Ce e Ceeraeeereeea(2.10)
Kg = =— (sing - singe)/ro ..ivvvevnnn N IS O B

The equation containing the axial displacement w is introduced as

w/' = si?¢ - 2o s e e e eee. (2.12)

With the definition of stress resultants and couples as shown

Fig{4a) and Fig(4b) the equations are written as :

From the condition of equilibrium of forces in axial direction

(2.13)

[}
(=1

/ .
{rv) + 'r & Pv

in’

From the condition of equilibrium of forces in radial direction,

, -
(rH) - N'Nb + r¥Pn 0 - . (2.14)

From the conditon of equilibrium of moments about circumferential

tangent,

(rMa)’-o(cos?5 Mg + n‘(}lsin(,é -V c_os;zﬁ )= 0eveneo(2.15)
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With the assumption that the behaviour is elastic, the relations

between strains and stress resultants are given by

"

Cés = NB"UN@, Cﬁa = NG -u NB---.--o.ooc (2016)
Ms = D(Ks.'ﬂ)Ka). MQ = D(K@ +})Ks)......--.. (2.17)
Where C = Eh, D= Eh3/(12(1-»2)}, and h is the thickness of the

shell. The radial stress resultant H and axial Qtress resultant V

are related to Ns and transverse shear Q as follows

Ne = Hcosp+ V sing,Q = - H sing + V cosg..... (2.18)

2.3. DERIVATION OF THE FIELD EQUATIONS

The order of the system of euquations (2.6 - 2.18) is six with,
respect to s, and consequently it is possible to reducg Egns
(2.6-2.18) to six first order differential equations which
invelves 8ix wunknowns. In the following derivation, the six
fundamental variables are taken as u, 4 , w, V, H, Me and the
differential equations are exp?essed in terms of these variables.

The independent. variable s is taken as the distance measﬁ;ed from

the apex along the meridian of the shell so that the‘différential
equations can be used for all possible geometricai sh#p@ﬁ:@f” the f-§'

meridian. With is definition of s, Eqn. (2.4) gives -

Ko = [(ﬂ;)z + (;)2 Jirz = 1 " giz_‘1i ¥i'?
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From the geometry of the meridian, which is yet to be specified,

it is known that

o

Po

The following equations are rewritten from the

in such an order that, when evaluated serially,

'of the fundamental variables.

¢°(s) e eeaas

I‘o(S) . oooon---o--o(2-19}

cee.(2.20)

previcus section

they arc in terns

This is done in order to keep the fundamental set of differential

equations as simple as possible. Rewritting of Equns. (2.9},

(2.6), (2.7), (2.11), (2.18), (2.17) yeilds.

6\9 = u/I‘o [ R R R R T ST T T I A Y I I ------(2.21)

r = o +u ---u--.!.0.....?!!'.!.!.-(2.22)

=. ﬂ" ﬁ TR R R R R T TS S I ) 000100(2.23)

Kg = (Sinpé - Sin¢]/ro ] . clonoo(2¢24)

Ns = H cosf + V sin¢ teesenerea(2.25)

Kﬂ = H/D -D K& DR S R I NN ) oo--‘on(2-26)

Mg = D (K@ + DKB) N EEEEEEEN] ..Il..(2l27)

Eliminating Ng from Eqns (2.16), it is found that

. 2
. , i_JJ

& = (—S— )N~ VEs veeeenss (2.28)

cC
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similarly, elimination of Ns from Egns. (2.16) yields
N C Nleay
g - (‘i__‘_jz)(é‘g'l"yés) EEEEEEREER (2.29)
Rearrangement of Eqn~(2.8) and substitution of Ko =1 gives
d lﬁ 1 +€E .-o-c;coo--c-- (2-30)
Elimination of Z; from Eqn(2.12) by means of Eqn{2.3) gives

dw/ds =& sinyg —dasingzﬂ = b(sin;d - sin¢o ... (2.31)

Substitution of the values of 6; from Egqn (2.30) and ro from Egn

{2.3}) in Egn (2.8) giveg

du/ds = Kcos?é - cosf A - F 3

From eqn (2.10), Fhe expressioﬁlfor /g/is fond to be

df? /ds ='\Ka | cereeeseass (2.33)7
Expansion of the threé equations of equilibrium and lelimination
of Pv, P and r/ from these equations fesult in the following

. L
expressions for V, H and Mg

dv/ds

= (Vv cosp)/r - P Cos¢ } o veeeees (2.34)

dH/ds

- X ((H cos¢ - Ns)/r + P sing )... (2.35)



dMa/ds = o cosd (Mg~Ma)/r~¥(H sing -V cosg)... (2.36)
whére P is the axially varying internal pressure, that is, P is
the function of s. Egqns (2.19 - 2.36} are the nonlinear governing
equations of the axisymmtric deformétions of shells of revolution
expressed in terms of the fundamental variables. It should be
noted that this fundamental set of differential ‘and algebraic
equations are ex@ressed in such a manner that all'the quantities
of physical importance are evaluated during the process of

_solutibn of these equations.

The expressions of variable internal pressure P for various kinds

of shell elements are giQen below -

Expression for line-element :

Let the shell contain a conical frustum and is . filled with a
ligquid of specific weight '{ (Fig. (a)). Assuming that the total
depth of the liquid is d from a certain point z on the axis
corresponding to point s on the‘meridian of the shell where the
gauge pressure is denoted by Ps. It is required to calculate the
. pressure P normal to the ﬁeridian‘at some other point on the

shell.
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From the geometry of the

AZ/AS

Pa

where Pa

"

Flgura -(.)

sinﬁo, { ri - ra) /as =
h)d + Pa
the gage

pressure at any parallel circle mn is -

P =

Po -YAZ

Where Po is the maximum pressure of

Po = ‘gd
or, P
or, P
or, P

Pa

Po [ 1 -
"Po =l [
Po [ 1 -

AZ
———————— ]
d + d’

AS Sin
1 - ===--- 75]
d+ d’

L e e e - — v —

cosg%

the

where,

shell it is seen that -

base,

Pa

pressure above the liquid surface.

defined

4’

Now,

as



or, P =Po [1 - —=--c— tan ¢o 1
d + df
P Po 1‘1/ Se ~- l‘o/Se
or, --= = -———= [ 1 = - it tan¢ ]
E E d/Se + d/se
— —_ ;1 - -I"‘-o
or P = Po [ 1- =-——==——- tan ]
a + 4’

Expression for Circular elements

Here, the expression of variable internal pressure P as a

function of s is derived in the same manner as for line element.

—pN—

Figure - (v)

From the gebmetry of the shell-
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ro ri
Therefore, AZ = Zo - Zi1 = == = -==
tanﬁ tanf%. |

Pressure P at any point on the circular meridian is

P = Po -. {AZ
AZ
or, P = Pa [l - =-===ocn--= ]
d + d/
or, P = Pao |1 - ———

1 o ri
d:-;l/ ( tanftg tanfi )

Nondimensionalization 617 P yields

— _ 1 Co ri

P = Po |1 = —-z- [ =o—-ms - ------

_ d+d/ tango tan %l

3.4. EQUAITONS FOR THE APEX
The fundamental set of equations derived in the previous sections
is singular at the pole (Fig.l ). In order to remove this
sigularity, the conditon that all the physical quantities must be

regular at the pole should be imposed. From the symmetry at the

pole it is found that

and as there is no concentrated load at the pole, it follows that

v=20
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In the following derivation it is assumed that s is measured
from the pole of the axisymmetric shell.

/
Since €9 and 68 must be regular at s = 0 Eqn.{(2.21) gives

Lim 59 = ullrfa (By L’ Hospitals’ principle)

8—0 v row
U rI'ec = UTo
and Lim £/ = —===-- ittt
S —o. 2(1‘0)2
/
From eqn (2.3), it is found that ro = cos¢
. , ,
and therefore, ro = - sinﬂo. ¢:
/ r

Subgtitution of bthe values of ry and re inlo the expression of

/
€o and go yeilds

Lim €= u,/COS¢o..........................-(2-37)

&g
S —=o /" ﬁ-} ’d, R
/ u cos Useo 8S1nN . '
Lim €a = —_-—_-—3 --------- ?; L LR 01‘2038)
8o ' 2cos zgo i

Similarly, the following equations can be deduced from egns

{2.19) - 2.36) by taking the limit as s—20

Lim ¢= | L L L I AR SR A (2-39)
S-'FO' ﬁ ’ .
: Y |
le ¢=¢0 - ﬂ’ L R A R A S (2-40)
S—»0 :
/

Lim Ky, = B i i (2.41)

/ 1 ’” 7.t ’
Lim Ky = —(/B -gAtanfe).....ouvt. (2.42)
s8—0 2 '
Lim Ns . = qus?éo e reeeeses (2.43) -
S—»0

25
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Lim Na = H'cosfo - H #'singo + v'sin,;#o e (2.44)

s —0
/ . / /
Lim_ Mg : le(D{l—'yz) K& +2M8)l.l._..’.'- (2.45)
8—0 8—=0
! / /
Lim N@ = Lim (C €9+ D Nﬂ ) * s 8 58 s 80 (2.46)
S0 S —=9 .
. 1 -2 u’/
Lim M = (1+ -------- H CoOs ¢O - T T e (2-47)
S—~0 ' C cosgo
1- y? /
Lim dl = Lim é __________ NS *dé{p) 00-1(2048)
S—>0 ' 8 —p C '
Lim u’ = (( 1-2)/C ) H Cos?do ..... ( 2.49)
8— 0
Lim 3/ = Ma/ (D {1 +2 )) civeees (2.50)
Ss—0 '
1=V
Lim w/ = -———- H SinPn cosﬁ% seee (2.51)
s—o0 C
Substitution of Eqn (2.49) in Eqn (2.47) gives
1 =
Lim K = 1+ _———— H COSpo---..o ‘2-52)
S—0 C
\ v’
NOW Lim - = —_——— L R R I Sy (2-53]
S—0 T X cos o

Substituting Egn. (2.53) in Eqn. (2.34) and solving for V/ at

the apex, it is found that

. 1
Lim V/ = -~ P cos¢o seceseees {2.54)

8 —p»pn 2

Differentiating Eqn. (2.32) and taking the limit as s-so0,

the expression for u”’ at the pole can be derived as
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hence from equation (2.46)

/ 4 / / '
Lim Ny . --===={((1+#22 ) Ns + CX/3 tang ).
S —¢p 2+ '

/
Taking the limit of Equation (2.35) and eliminating No

3

1 ' X C A "XP
Lim H = --"(( 1 -2) 4/ H + -—---- Jtango - ----singo...(2.55)
s o 3 cospo 2 B
/
In order to evaluate Ms at the pole, the expression of Mé in

St . . . .
terms of Ms has to be derived first, Differentiating Egn.

(2.35) and taking the limit as s —o,

o . J
Lim ﬂ = ~=== (Mg /D + ~===—=—- tan;ﬁo )
s8-0 ‘ 2+ 2

1+ 2 1- p 2 ,
Lim M‘; = ( ——————— ) Ma - ( —————————— ) ¢/ﬂtan;ﬂo
s-+0 2 +2 2 + 2
Taking the limit of Eqn. (2.36) and eleminating M the

a ]
expression for M:; is found to be '

b

1
Lim Ma = - — (X( 2 +)) H singo+ D(1-pz)ﬁ’¢’tan¢o)....(2.55)
S —=0 3

Thus Eqns (2.49), (2.50), (2.51}), (2.54), (2.56) form the
fundamental set of differential equations applicable only at the

pole, where ) and ?lappearing in these equations are given by
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Eqns. (2.52), and {( 2.40) respectively. These eqﬁations can

further be simplified if it is assumed that the curvature of the

underformed shell is continuous at the pole. In this case,

¢= o and, Thus fundamental set becomes -

(1= 2 ) H/C  evurennnn creeee.a(2.57)

‘u/ =

A= Ma /(D(1 '+ )M 1)) ceeeeeae. (2.58)
w/ = 0o : """""".(2'59)
x . 1 4+ (1 = 2 ) H/C  vevvereen. (2.60)
Vi = Kp/z‘ ceereseens (2.81)
Ho o= 0 (2.62)
Ma =0 ve eenee.. (2.63)

2.5. LINEARIZED EQUATIONS OF AXTISYMMETRIC SHELLS

Highly nonlinear equations are derived in sections 2.3 and 2.4,

These nonlinear equations are always solved by the method of

iteration in which arbitrary initial values have to be assigned

to the fundamental dependent variables. Unless the initial values
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éséigned to the dependent variables are a good approximation to
their actual values, the ‘iteration process fails to converge.
For achieQing conveféenée in- the'iteratibn process of solving
nonliear eqﬁitions, it is usually necessary to solve first the
linearized version of the given nonlinear equaitons. The results
of the linear solutions are then assigned as the initial ‘values
to the dependent variables of the nonlinear equaitons. The linear
governing equations of axisymmetric deformation of shells of

revolution are thus derived in this section.

+ The equations of small defiection theory follow from the forgoing
Eans. ({2.19 -~ 2.36) together with {2.25} to the undeformed shell
and by omitting all nonlinear terms in the remaining equations of
the fundamental sets  (2.19 - 2.36). The resulting equations are

recorded below for ready reference

65 = u/r; . , (2.64)

Kg = ﬁcos ﬁo /I‘o- . (2065)

Na = H cds¢% + v singo (2.66)

€: = (1 - 2% ) Ne/C -Ug, (2.67)

Ke =  Ma/D- D Kg | | (2.68)
N &4 o

Mg = D (Kg+)V Ka) {2.70)
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‘w/ = €s singe -~ ficosgh (2.71)

u/ .= €q cosfo + -fsindoe (2.72)
# =  Ka | (2.73)
v/ = ~-((V/ro} cosgo - P co§¢o) , S (2.74)
H/ = =~ ((Hcosgo =Ny )/To + P singo ) (2.75)
Ma = -((Ms-Mg)cosgol)/ro-( H sindo - V cosgal..(2.76)

The corresponding linearized equaitons at the pole are obtained’
in the same manner as Egns. (2.64—2.76),-Expressios for uf,/3/and
w/ remain the same, whereas, the three equations for equilibrium

reduce to

V = {P COS&Q') /2 ------ L N N I B I A I ) (2-77)
, 1 . . , Cﬂ/ P _sin .
H = - ((1-J) fa H + -—-) tango - ---——- . 12.78)
3 cosﬁ 2
! ' 1 Y
Mg = - -—-——{({2+J)H sinﬁo +_D(1fuz)/2¢o tango) .. (2.79)
3 .

In the case of continuous curvature of the meridian at the apex
the linearized equaitons applicable at the pocle remain the same

as the Egqns (2.57-2.63) except that the value of X is to be

replaced by unity'inlEqn(Z.Gl).



2.6. BOUNDARY CONDITIONS FOR AXISYMMETRIC SHELLS

i

constant, are to prescribe, in Sanders (39

k

The general bondary conditons of a shell at an edge);51

} notations,

, Ni11 or
1

- 1
--{3R2

uil,
-3

- Ri1)M12 + -
2

N12

- (N11-+ Nz22) or uz,
2

)
)

)

p)

~4 12 )

o+ ol 5
)

j

and

2 ————- - QN11 - @2 N12 or w, ...{2.80)
b52 '
. Mi11

or {1,

where S1 and Sz are the shell coordinates along the principal
lines of curvature, N and M are the stress and couple resultants;
@’s are_the rotations about respective axis; u and w are

tangential and normal displacement components.

When the
duantities in Egqns (2.80}) are specialized for axisymmetric

deformations of shells of reveolution, they reduce to prescribing

N11

or u1i,

Q1 - ¢1 N11 or

and Mi11

Wy

OI‘.¢1

ceesreessa(2.81)

at an edge, s1

constant, From (3.81),

it is seen that the
boundary conditions consist of the specification of rotational,

tangential and normal restraints at the edge.

But in most of the
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practical cases of shell problems, the conditions .of the
horizontal and vertical restraints are known rather than those of
the normal and tdngential resfraints, so it is concluded that it
will be preferable to specify the bondary conditons in terms of
the-horizontal and vertical restraints from the point of view of
practical applications. When this is done the boundary conditions
in terms of the notations used in the body of this thesis will be

to prescribe

H or u
Mﬂ Orﬂ ..-.........fz.az,

and V or W
at the edge , s = constant.

2.7 NONDIMENSIONALIZATION OF THE EQUATIONS

Iﬁ is always desirable to solve any engineering problem in terms
of nondimensional quantities in order to decrease the number of
input of physical parameters as well as to increase applicability
of thg solution. Hith this in mind and alsc to make the variables
more or less of the same order of magnitude, the desplacement
compﬁnents gnd stress resultants are expressed as rétios of their
actual values to those of the cgrcumferential desplacement and
stress resultant of an unrestrained thin cylindrical shell. The
independent variable s is normalized in such a manner théf Se,

the total length of the shell meridian corresponds to unity

(Fig.1l). The normalized quantities are defined mathematically by
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the following equations;

ukEh — H _ Vv —_

s = s/se, u = TTTT, H= ---—-, V = ———-- 1/-)’:ﬁ
Po R2 PoR PoR

— ME _ MQ — Nﬂ — Ng

Ms T o=, MG = me—_—— s 8 = —e=—, NQ = =m——

PoRh PoRh PoR PoR

€9 = &Eh se/(PoR)2, €.z £4Ehse/(PoR)?, Kg= K se ...(2.83)

— wEh - _

KB = KS-SE, w = TS, C = (I“UZ)SG/R, PO= B/E,
PoR?2

T = R/h, R=se/R, D=1/[12(1- y2) Py T2 RI, P = P/E,

T.- = E/(ﬁo?), Fo = o /Se,

Where R is is the radius of the cylindrical part in case of

pressure vessel problems or in general R= Ro at 8, . With the hglp

of normalized quglities defined in Eqn (2.83), the fundamental
set of Egns (2.64-2.79) (linear theory) becomes
€y = /F e (280
K = fcos gosFo | (2.85)
Na = H cosgo + v singo {2.86)
€e = TRe - VE, | (2.87)
Ka = Ma/D - UK, | ' (2.88)
No = (€ +06),C - (2.89)
M= D (K, + Ka) - (2.90)
w o= e singo -Zicosﬁo . L (2.91)
W o= €a cosgo + B singo. T (2.92)
A= Ka (2.93) -
v’ = ~(V Cosgo/To-R f}s) cos go (2.94)
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= -((H Cos o-Ng)/To + R £(s) singo (2.95)

= -Cosgo(Ma—Mg )/Fo - R.T.(H Singo -V Cosgo)..(2.96)

The corresponding nonlinear equations of the fundamental set in
nondimensional form are as follows

s = ufTo e (2.97)
b = fo -/ e .(2.98)
K, = (sin go - si.nﬁ/Fo' . (2.99)
Na = _Hcosp+ Vsungﬁ - ceeeenen(2.100)
€a = TNe - V& v eeiee.aa(2.101)
Ke = Ms/D - UK, Cereeeee..(2.102)
Ny = (& +J6a)/C e veeeeen...(2.103)
M, = DiKe + U Ka) e .. {2.104)
= 1 + & e et {2.105)
T = L. Te +1u Cereiieees.(2.106)
w/ = Asingd - L siffo  ..eeiienaien...(2.107)
T = Kcos;ﬁ -. L cos;ﬁo . cesese. (2.108)
Zl: Ks - eeeiiieeeeees (2.109)
V/i= - Kcos@ (V/T-BPT) ...oooves (2.110)
H = -X((H cosg- Ng )/T + P T sing ).. (2.111)

Wa = Xcosp(Mg - Ma)T -%P T2(H sing- V cosd) (2.112)

The equations at the pole corrésponding to the nonlinear set take

the folowing form after normalization
W= (1-J) R H cos?do ce. (2.113)
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w/ = (1 -2) R H cosféo singo vee. (2.114)
Al =  Ma/ ({1 -2) D) Ceie....(2.115)
X =L s (1-2) RE cosfo cea(2.118)
v/ = &P T cosfo el {2.117)
n’ =%— ((1-2) ¢/ﬁ +x A (R cosdo)) tango -

L X T singo | eeeen. (2.118)

Eqns (2.113-2.119) may be simplified 1in case of continuous

meridian at the pole as

, 4/ = CH/ L1 +M) Jeas (2.120)
w o= 0 . e ..o 12.0121)
ﬂ7 = Ma/(( 1 % Y )5) . (2.122)
vl X /2 e, (2.123)
A= o0 e eeeeaaae. (2.124)
He = 0 v, (2.125)

Eqns. { 2.113

2.125) may be linearized as before to obtain the
corresponding equaitons at the pole for the linear theory. The
nondimensionalized form employed here will maké the linear

solutions independent of the loading parameter.

It should be noted that some of the nondimensional shell
parameters in Eqns.{( 2.83) are defined in terms of se which will
depend on the geometry of the meridian and thus should be derived

for each individual case. In some cases there is no closed form
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expression for se and, therefore, se has to be evaluated either
from a series expression or by numerical integiation. The smae is
true for the expressions of ro and Q in terms of s. There may
no£ be any closed form expressions for re and ¢L and thus
numerical integration has to be used. The evaluation of shell
parameters and the expressions of ro and % in terms of s for

general case of composite shells of revolution are given below

General Case of shells of revolution

For the general composite shell whose meridian is composed of
cylindrical, spherical and conical elements (Fig.1), the total
length se of the shell meridian has to be determined for each
individual case. - The constant'ﬁ, defined as s,/R (R being the
radius of the shell at the base}, is then direétly read in by the
program. In addition the value of Q’ for each element at its
starting point alongl with its type (that is, cylindrical or

pherical or conical element) is required.

Line element : If a segment si of the meridian is a line-
element, the meridional angle ﬁ% remains constant over the
segment s;and its value is

po = Pos ereieeieiee e (2.126)
Where subscript i refers to the starting point of the element.

The expression for ro becomes

ro = (To)i = ((S)1 -S) cos(Po)i eveess (2.127)
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Circular element:

If any segment si of the meridian is a circular element, the

quantities ro and over this segment si are given by

(($)1-8) sin( @Po)i .
/éo ( Polt - ——==- —mm—mmmem - e..(2.128)
{roli

cevn...02.129)

To = =  —mmm—mem—e—anleo
gin(@o)1
Elliptic element
If a segment si of the meridian is a portion of an ellipse, the

quantities @o and ro at any point over this segment have to be
evaluated from the numerical integration of eqn (2.128) for

which the values of (P o)Ji and Z are necessary.
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A

METHQD OF SOLUTION

3.1 INTRODUCTION TO MULTISEGMENT INTEGRATION

The fundamenéal set of linear differential equaitons (2.84 -
2.96) and nonlinear differentiﬁl equations (2.97-2.112) along
with their correSponding forms at the apex and the boundary
conditons (2.82) have to be integrated over a finite range of the
independent ~variable é. But the numerical ihtggration of these
equaitons is not possible beyond a very limited raﬁge of s due to
the loss of accuracy in solving for the unknown boundary values, .
as pointed out by Kalnins (22}, .That is why , the multisegment
method of integration developed by Kalniﬁs and Lestingi (24) has
been used in this analysis, 7

It is supposed that a set of 6 first order‘nonlinear differential

equations are given to be :

dyi1{x) ] . |
-——--= = f1 {x, yu{x), vz(x)eeiisvivevaes velx))

dx

dyz(x)

______ = fz {x,7y1(x),¥2{X) +svseeeccccennaccyelx)) -=(3.1)
dx ‘
dys(x) LR LR R LR I g.i‘tlo.ouoooa-.c-----oo--.-ooonoo

______ = fe (x,y1{x), yz2(x) ..‘.............ys(x)}



where, (yx(x), K = 1,6) are dependent foundamental variables,"
and x is the independent variablé.

The above equations can be written in the form

dy(x) :
----- = F (X,YI(X), Y2 (x) IR E R YS(X) —-""""'”"'(302)
dx - N

where yi(x) = vi(x) , (6,1) fundamental variable matrix,
va(x)
ys(x)

and F = f1 ,]6,1} matrix of nonlinear functions
f2 of fundamental variables
fs

It is assumed here for convenience that the first 3 eleterms of
y{x1 ) and last 3 elements of y (xu+1) are prescribed by the
boundary conditioné,.where x1 1is the starting boundary and.

xu+1 is the finishing beoundary (Fig. 5).

If at the initial point xi of the segment si1 (Fig - 5), a set
of values y (xi) is prescribeﬂ for the variables of Egns. (3.2),

then the variables at any x within si can be expressed as

yix) = F{y1(x1)y, ¥2(Xi)yeeennnnaaay, ¥6(x1}) ceeee(3.3)

p ;l"

where the function f is uniquély dependent on x and the system
of equaitons (3.2).
From the set of equations (3.3), the expression for small change

in the values of the independent variables can be written as
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gy 271(%) x ;BY - |
'BY1( ) —f(z—JPY ( ) 'ay:z :1 72 (x4) + +ve- ?’—%(—J(:-)f)BYG(‘i)

'372(1) =2y2(x) x x + eess 'bY (x) x
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‘(3.4) can be written in matrix form as

Eqns,
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Equations (3.5 ) are expressed in finite difference form as

(y(x)-yt(x)) = Yi (x) (y(x1) - y*(xi) - ¥y* (x1}) ---(3.6)

where y(x) denotes an iterated solution state based on the
condition of continuity of the variables at the nodal points and
vyt (x) denotes a trial solution state. Evaluating'Equns. {3.6)

at x = xi, it is found that

(y(x1) = yt(x1)) = Yilxi)(y(x1)-yt(x1))===2====(3.7)
Therefore, Yi (xi}) = I

‘where I denotes {6,6) unit matrix. Evaluating Eqns, (3.6) at x =
Xi+1, it is found that

(yix1+1) =yi{xi+1))= Yi{xts)(y(x1)-y*{xi)) {3.8)

Equns (3.8) can be pearrapged as

Yi (xi1+1) y(x1} -y (x1+41) = -Zi(x141)...:..;...(3.9)
where, Zi{x1+1) = Ye{x1+41) - Y1 (x1+1) y*{x1).
In Eqns (3.9), ¥y (x1), ¥y (xi+1) and Yi (xi+1) are unknown. In
order to determine the elements of Yi(x), the th column of

Yi(x) can be regarded as a set of new variab1es, which is a

solution "of an initial wvalue lpnoblem governed within each
segment by a linear system of first order differential
equations, qbtained from Equns (3.2) by differentiating with

respect to yj in (xi1) in the form

e
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—m———— “—— = me———- ‘ (F(X:YI,YZ--; ¥e6))
dyj(xi) dx dyj(xi)

which gives,
d dy dF
-_——— ( ------ >= -------- PR R A S ) (3010)
dx dy j(xi) dyi{x1)

Thus the columns of the matrix vi{(x) are defined as the solutions
of 6 initial value problems governed by (3.9) in si (with j =
1,2.......6) having initial values specified by Eqns (3.7). It
should- be noted that the initial value integration is possible
only when the 6riginal equations of y are already integrated with
the initial value of y* xi). Now to obtain the iterated solution,
Eqns {3.9) are written as a partitioned matrix product
of the form

t

1

vi{xi+1) Yii (x1+1) ) Y21(xi +1y(y! (x1) Zi1i(xie1)
= |mmm——————— o —— ] [ —————— + | =———————— -...(3.11)

ye(x1+1) Yai(xie1l) : Yer(xis1) |ly2(xi1) Zzi(xi+1)
" []

where y! (xi1+1) =ry1 and y2? (x1+1) = [YG
¥y ¥5
v3 ‘ y6

So, a pair of equations can be written from Egqn. (3.11) to

replace each of egqns (3.9} as

((Y11 (x1+1)) (yl{xi)) + (Y21(x1+1)) (¥y3(x1)) - (yl(x1+1))
= =Z11 (x1+1}),
(3.12)

(Yatg(xa+1)) (yl(x1)) + (Yas(xi+1)) (73(x1)) - (y%(x1+1))
' = =Zz1(xi1+1).
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Replacement of Egqns (3.9) 1is done -to seperﬁte- known bounday
conditions from the unknowns. Thus from Egqns (3.12), a

gimultaneous systems of 2M linear metrix equations is obtained in
which the known cefficients (Yj1 tx1+1)) and (Z1j(xi+1))} are

(3,3) and 3,1) matrices respectively, and the unknows ({yJ(x1))

are (3,1) matrices. Since (y!(x1)) and (y? {xM+1) are known from
the boundary conditions, there aré exactly 2M unknowns
(yl(xi+1)with 1 = 2,3.....; ﬁ+1.. and (y2(xt)) with i = 1,2,3
veaeeyMe

The problem is, therefore, well set in 6rder to obtain the
solution of the linear equations (3.12), Gaussian elimination

method 1is wused.  Gaussian eliminaﬁion method leads to a

triangularized set of linecar equaitons which for the specific

case of Equns. (3.12{, takes the following form
E1 -1 0 0... 0 0 vyi(xi) Al
0 Ci -I o..0 O y{(xz) Bi
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—&

- (E1) (v¥(x1))-(yl(x1e1)) = (A1)
or | ... (3.13)
(C1) (y'{x1+1))=-(y2(x1 ¢« 1))= (B1)
for, i = 1,2,3.......M. ﬁsing the rotations(Zs1) and {(Yji)

in place of the symbols, (Zsi(xie1) and (Yj1 (x1e1)), the (3,3)

matrices (Ei1) and( Ci) in the Eaqns. (3.13) are defined by

(E1) = (Yz1), (C1) = ?41!

and (E1) = (Yz1) + (Y11) (Ci-1} "1
(Ci) = ((Yar)+ (Y31} (Ci-1)-YED)-!
for 1 = 2,3,......L.., M.

The (3,1) matrices (A1) and (Bi)} are given by

(A1) = - (Z11) - (Y11) (y! (x1))
(B1) = - (Zil) - (Ya1) (y¥ {x1)-(Ys1)(E1)~! (A1)
and (A1) = = (Z11) - (Y11) (Ct-1)-1 (Bi-1},
(Bi} = = (Zz1) = (Y¥31) (Ci-1)-1 (Bt-1) ~({Ys1) +
| (Ya1) (Ci-1)-1) (Ei)-1? (A1) |
for i = 2,3,..... ees M-1.
and‘(gn) = - (21w} - (Yim) (Cn-liJ(BH-I)

(Bn) (y2 (xme1)) - (Z2m) - (Y3n) (CH-I;i(BH-l) -

C((Yaw) + (Yam) (Cn-1))  (Ew) (Aw)
The unknowns of {3.13) are obtained by
-1 :
(y! {(xn+1)) =(Cx) (Bn)

-1
(y2(xn)} =~ (Eu) (( vb (xmer)) + (An)),

bl



‘_;g',f'p.*:&,‘,,'. A

and (ylifxm-1+1)) = (Cu-1) ((y2(xmu-1+1)}) +(Bu-1)) ;
—_1 L
(y? (xu-1}) = (En-1) ({y! (xm-1+¢1)) + (An-1)).

fOI‘ i =’1,2,3¢00----.-.., M_lc ' 'j","""-r

[
o

Assuming y (xi1) as the next trial solution, yt (x1), the pr&céss

p

is'repeated until the integration results of Egns. (3.1) at X141,

as obtained from the integrations in segment Si witH the initial 

values y (x1), match with the elements of y(x1+1) as obtained

from {3.9) and alse with the bondary conditiohs at xu}j. This
completes the formal solution of the problem. Therefore, the'

method of multisegment integration involves the following steps @ -

(i} Initial-value integrations of Egns. (3.1) in each of M

segments. To start,the initial values yj {xi1) for the integrationp

over any segment are arbitrary.

(ii) Initial wvalue integration for the six additional sets of

variables of matrix (3.5a) over each of M segments.

(iii) Solution of M matrix equaitons which ensures the

continuity of variables of Egns (3.2) at the nodal points of,the
segments including the given boundary conditions at the ‘tﬁo 'eﬁd

nodal points.

ks




(iv) Repetition of steps (i) to (iii) with initial values yj(x1)
of steps (i) replaced each time by their improved values obtained
in.step'(iii) from the solution of continuity equaiton. The
process 1is continued until the values of the variables of Egns
(3.2) at the end point of any segment as obtained from the
initigl value integration  in step (i) match with their initial
values in the pext segment obtained from the .solutions of: the

continuity equatios in step (iii}).

3.2 DERIVATION OF ADDITIONAL EQUATITONS

In the multisegment ‘integration technique for a set of ordinary
diffefential equations it has already been noted that in addition
ﬁo the integration of the given egquations, it "is required to
‘integrate another 6 set of equations represented by (3.10). Thus
in order .to apply the method of 1multi§egment integrtion,
differential equations co;responding to Egns,. {3.10} for the 36
additional variables as reéresented in (3.59) have to be derived.,
These differential equations can be obtained by differentiating
Eqnﬁ. (5.84-2.96) for the linear solution aqd Egns. (2.97-2.112)
for nonlinear solution with respect to each fundamental variable.
As the variables in any column of (3.5a) have the same forﬁ, it

is required to derive here the system of equaitons (3.10) for the
variables of any columﬁ of (3.5%) where the neﬁ variables are

identified from the fundamental variables by the subscript a.
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From the nonlinear equations (2.97 - 2.112),
succession gives

€&a-= -‘l:a/:[—‘-o A A N I B I S
a

- - a EEEEEREER

= |
©
o
!

= ﬁL cosg /To . e raeaaa

Z|
b a
i
|

sa = Eﬁsa - . JJ é’a
Esa = gsa/D J).]-(_
Ean = ( ?wa )) g

X
I

it
-
o
®

differentiation

in

e (3.14)

oaa {3.16)

..

.

LI S )

= (Ha - V /%2 ) cos¢g +(H /% + Va) sin¢.,..(3.l7L

ceeeesa(3.18)
oqaoooc{3-19).

00.----{3-20)

00100(3-26)

Vi = -( Xa cosgtdBa sing) (V/5-F T)-AcofVa/F - VFa/F2).(3.27)
He = - (a((H cosg - N)/F + P T sing ) - ((Ha cosg +

s H sing- '»;a-'ﬁ,iﬁ cosg -Ng }/T)/T-P T/flacosg).(3.28)
Wes = ( Xa cosg +Ba & sing) ((Hg- Ma)/T+P T2 V) +& (Cosg

(P T2 Va + (HMga - Hea - Galfiy-Ma)/£) P T2 Ha sing )-

PT2H (&a sinp-E/J’_n.cosﬁ). e ceenenan(3.29)

by



At the pole, the corresponding equations are obtained from

(2.113-2.119) as ' .

ua = (1- » ) R Ha cos?go . (3.30)
Wa = (1- 2 ) R Ha cos Po sindo ceeeaes (3.31)
AL = Mea/ (( 1 - 2J ) D) Ceeeeae. (3.32)
A'a = (4 -y) RHa cosgo Ceeeeee. (3.33)
Va = 5 P T cosgo.fa e (3.34)
Ha = -;7 ((1-2 ) BlHa- BaH) + (Ko B/ + X foa)/

(_li cos Po)) tang - 12-3(3 PT sin %o .....(3.35)
Maa = ;‘% (P T2singo ( Xoll +&Ta + ( Al g - BP0

tan o/ (12P R T¢)) vt iear.{3.36)

Eqns. (3.14-3.29) which takes the form (3.30-3.36) at s = o, have
to be integrated as initial vélue problem 6 times in each segment
with the initial values given by (3.7). It should be noted that
the equaitons (3.14-3.36) contain not only the variables of
{3.5a) but also the variables of the fundamental set. Thus egns.
: (3.14~3.36)‘cannot be integrated unless the fundamental variables
are stored for use in Eqns (3.14-3.36). It should be further
pointed out that one point infegration formula can not be used
for the integrtion of Equns (3.14-3.36) since this formula needs
evaluation of derivatives at intermediate‘ points where . the

variables are never evaluated.

The corresponding equaitons for the linear theory are given by
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the homogeneous ‘form of Egns. (2.84-2.96) and thus readily

obtainable by dropping the load terms in Egqns.{2.84-2.96).

3.3 TREATMENT OF BONDARY CONDITIONS

In the introduction of the method of multisegment integration, it
was assumed that the first 3 elements of y (x) at xi and last 3
elements of y (x) at xu+1 were prescribed as the bondary

conditions. But, in general, the boundary conditions are given as

Tiy(x1) = b1 at x1, and
e ceas (3.37)
Tu +1 ¥i{xm+1) = bHusl at XH+1 |
in which any 3 elements of b1 and any 3 elements 6f bus1 are
specified as boundary conditons. The sysmbols Ti and Tue+1
represént nonsingular (6,6$ matrices which are known from the’
specification of the boundary conditons at the ends. of the

interval.

By rearranging ‘the TOWS of T1 and Tu+1 | in a special order,
Eqns. (3.37) can always be stated in a manner such that the
prescribed elements of b1 and bu:1 become respectively the first
3 and lﬁst 3 elements of b1 and - bu+1 when fhis is achieved,
evaluation of (3.9) at i = 1 and i =M, and then elimination of

v{x1) and y( xu+1) by means of (3.37) yields.

ko



T
y(x1) and y{ xu+1) by means of (3.37) yields.
-4
Yi{xz2) T1 b1 -y (x2) = —Z1 (X2) +eveseaas(3.38)
Tuel YH (xns+1) y{xu) - busr = -Tu+1 Zn (xno1)3...(3.39)

The form-and notation of (3.9) can be ;etained if it is regarded
that the coefficient matrices Yi(xz2), Yu(xnsel), Zul(xns+1)
occurring in (3.§) represent Y1 (x2) Ti, Tus1 ¥Yn (xne+1) and Tu+1

Zn (xn+1) respectively.

In doing so, the solution of {3.9) will not yield y(x1) and
yixnss1 } but rather the transformed variables bi and bus+1. When
y(x1) and y(xn+1) are derived they can be obtained by the

inversion of the matrix egquations (3.37).

It should be noted here that with reference to the boundary

conditions (2.82) stated in terms of the fqndamental variables,

it is obvious that the matrices Ti and Tu+1 are both unit
matrices of order 6. The construction of Ti - and Twue1, in
accordance with any possible statement of (2.82), so that the

Eqns (3.37) are in order, .is treated in Apﬁendix A
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- CHAPTER 4

RESULTS AND DISCUSSION

4.f. Reliability and Validity of the Analysis

It is alwayé desirable that the solutions obtained by any new
technique‘ should .ber compared with the available results in the
literature in order to determine the reliability and validity of
the method employed. In other words it should be ascertained that
no error due to logic is committed in formulating the problem, in
method of solution and, in this particular case, no mistake is
made in the computer programming. ,Keéping all thege in mind, a
number of standard problems are solved with the present method of
solution and later the results are compared with the
corresponding analytical solution or solution r by some other
method- as available in thelliterature. ' On the basis of this
comparsion, reliability and validity of the method emplcoyed here

are determined.



The multisegment method of integration and the governing
equations of shells as used in the present analysis, had been
ﬁsed by a number of authors earlier. Uddin (46 )used this method
in finding the solution for pressurized -cémposite shell with
clamped edge made~up of an 1inverted conical frustum, a
cylindrical part, and a spherical part. He also found the
variation of meridional stress and circumferential stress along
the meridian of'an ellipscidal~head pressure vessel based on both
the linear and nonlinear theories by multisegment integration
which - had earlier been worked out by Kraus et al (28) and it was
fqund that there was hardly —any ‘difference between these two
fesults. Haque (16} toqk_the full advantage of the fact that a
hemispherical shell with radius A and ﬁ semiellipsoidal shell
with the ratio of major to minor exes, B/A = 1, are identical and
found that the solution for ellipsoidal shells with B/A =1
differed from that for hemispherical shells available in the
literature ( 3 )} after six digits. Rahman (385 obtained the
solutions of imperfect semi-ellipsoidal shells with rigidly fixed
edges in which differént values of parameters, degree of
imperfaction and position of imperfect segment were used. Rahman
observed that his results of imperfect ellipsoidal shells
converged to those of Haque when imperfections were gradually

reduced.
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The above developments prove that the multisegment method of
integration and the linear and nonlinear governing equations of
shells as employed in this analysis is highly accurate.Actually,
in. an indirect way, the accuracy of the method of multisegment
integration is self ascertaining. Once the values of the
fundamental variables gt the nodal points are kqown from the
multisegment method of integration, the fundamental set of the
governiAg' differential équations can be integrated over each
segment of the meridian as an initial value inﬁegration of the
fundamental set of differential equations. If the valués of the
fundamental variab;es at the end of each segement si, as obtained
from the initial value integration, match wupto six or seven
digits with their respective initial values.for the respective
subsequent seghents si+1. for i ; 1,2,3..... M.and also with the
boundary conditions at the edges, then it can be concluded that
the results are correct upto six or seven digits of their

numerical figures.

Further, for establishing fhe reliability and validity of the
method, a'cylindrical shell containing a fluid of density 8 ’
fixed at the base and free a£ the upper end, was considered. This
particular problem was solved by the present method of solution
because an approximate analytical solution, based on the general
theory of cyliﬁdrical shells is available in the literature in
closed form (45).  Here, for solving the Cylindrical shell

problem, axially Qarying internal pressure on the shell surface
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was assumed to be applied by a liquid column of épecific

weight % .

The shell meridian was divided into ten seg-ments of equal
lengths. The shell and its parameters are presented in Fig.l(B).

Using the computer programme of the present analysis the result
of this cylindrical shell is obtained based on both the linear

and nonlinear theories under axially varying load. These results
compare quite well with the analyticai gsolution éf linear theory
(45), as observed in Table ~ 1. The tabular results show that the
computer results are slightly different from the analyticél
soiutions at the upper portion of,the cylinder. These differences
may be attributed to the fact that the boundary conditions at the
ends of the shell mepidian and the differential equaitons of Ref
{45) can not be considered very appropriate for this problem. The
-analytical solution of Ref (45) is fdr an inner liquid column of
height equal to that of the cylinder itself whereas the computer
results are for a liquid column of hight less than the hight of
the cylinder. It should furhter be pointed out that the linear
theory employed in Ref (45) 4is entirely different and very
approximate in comparison to the linear theory of Reissner, the
theory employed in the present analysis. Alsc, it should be noted
that the objective of Ref (45) was to obtain only the maximum
values of u, Ms and Mg at the fixed edge of the shell which is
hardly infiuenced by fhe boundarylconditions at the upper edge

whereas in the present analysis exact boundary conditions at
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both the ends of the shell meridian wgre: employed in this
computations. The graphical representation of the analytical ana
the present linear and nonlinearlsolutions of this cylindrical
shell are shown in Figs. 6 and 7. Analytical solution for N,
based on membrane theory of Ref. (45), for this 'cylindrical

shell is also plotted in figure 7. Other results of the presnt

analysis of cylindrical shell, of figure 6, are presented in
figures 8 to 11. Pertinent results of the membrane theory are.
also shown in figures 3 and 10. As observed here, the results of

linear theory are highly conservative in comparison to that of
nonlinear theory, specifically in the region of edge fixity and
junction. The results Ef membrane theorﬁ; . whenever pertinent,
' #re obsrbed to be much closer to nonlinear results and thus
superior to the linear rééults. Looking at the stresses, if

can be concluded that the membrane theory predicts quite

acceptable values of stresses except at the end fixity.

From this comparisons it can be conclude that the governing
equations, the method of solution and the algorithms incorporated.
in the computer program are sound and free from both the

conceptual and accidential errors.
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4.2. Results and Discussion :

The method of investigation employed here is quite versatile to
hAndIé any problem of the general case of comﬁosite shells under
axially varying load. Here, axially variable internal or
external pressure load on the shell surface ié considered to Dbe

applied by a liquid column of a certain specific weight??.

The input wvariables of £he composite shells as fequired in the
present method of solution are edge conditions, totai.number of
segments of the shell meridian, base-radius £o thickness ratio
and Poisson’s ratio of shell material. ‘Here each segment of the -
composite shells is considered to be of uniform thickness but
different segment may have different thicknesses. Meridional
length of the composite shell may be divided into any number of
segements, equal or unequal in length. The results of this study
as presented here is confined to only one kind‘of eﬁd fixity as,
otherwise, the results would be too volumenous and the Lime

required would be very long.

It happens that the composite shells as studied here are commonly
used as water towers, ships, unaer water crafts, pressure
vessels, etc., with ring stiffened edges which very nearly

approximate the boundary conditions of rigidly fixed edge. Thus

the results presented here are of major practical importanée.
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The computer program which obtains the solution in the present
method of analysis first finds the solution in terms of stresses
and‘displacéhents based on the linear theory = for an .initial
value of the axially varying pressure as assigned by the
investigator. Then the solutioﬁ based on the nonlipear theory is
obtained for the same loading through iterations; from here on,
the loading parameter 1is increased in small steps to find
solution for the new loading, taking solution of previous loading
as initial values fér fhe variables. In this investigation the

following input variables are required to be prescribed.

EM1 = Increas;ng step of base pressure

501 = Numwher of desieed Joaidng steps

M = Number of segments.

IZ . -= Indicatof of type of Problem.

IG(I) = Indicator of type of a segment.

APH(I) = Meridional angle at the starting point of each
segment.

RC = Se/R-, Normalised base radius.

EMO = Po/E , Normalised base pressure.

Tk(I) = R/h Thickness ratio for each segment.

AN = Yy, , Poisson’s ratio -

X(1,I), I = 1 to M 41 , meridional distance from the opex.

X(J,I1), J = 2, 7 anﬂkl, M+1; iﬁitial values of six fundamental

variables
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H,/g, Wy, U, /&V. Boundary Conditions at starting and

finishing boundary.

Is1,I1s52,153 , Indicators of boundary conditons at base.

IF1,IF2,IF3, Indicators of boundary conditons at upper end.

All the results obtained in this investigation are based on the
nonlinear theory, because nonlingart theory gives ﬁuch better
prediction than linear theory at higher loadings. But the results
of linear theory are also presented here in order to point out
its short-comings at higher loading.The solution fgr each shéll
studied is also presented in the tabular form 'so that the exact

magnitude of moments and stresses can easily be checked.

The results of individual shell of different parametric values
are presented seperately and their individual trends are also

~discussed separately.

(a) Types of the Composite Shells Investigated :

Solutions were obtained for Composite shells made-up of a
cylindrical part, a circular part and a conincal frustum (Figs. 1

and 2).
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Shell - I :

This composite shell consists of a cylindrical part at the lower

end and closed at. the top with a spherical part as shown'in

Figure 1. For this shell, the thickness ratio, R/h = 200, for all

the segments, ‘Poisson’s ratio, = 0.3 and thc basé pressire,
Po/F = 0.256 x 10-35. For Tixed lowar alg: L RTINS PR H
of the fundawmenial \:‘u'ifih'l(}g T NI ﬁ 0 S w -
0.0 and Tor 1ol top the Lheee boudary conditions are

u = 0, /i = 0, and v = 0. The numerical values of variogs

moments and displacements at 10 equidistant locations along the

meridian are presenfed in Table 2.

The present investigation is based on the Reissner’s theor& of
axisymmetric deformation of shells of revolutioﬁ which is founded
on the assumption that the stress in the shell material is always
with in the elastic limit. That is, if for a particular material,
the stress level in the shell at a particular loading exceeds |
the yield streﬁgth, the results are not valid for that material.
. For this reason it has to be checked that the stresses found for
any load do not excged the corresponding yield strength of the
material., From the detail results of this shell, it is found that
the nondimentional meridional stress 0ap occuring at the base (s
= 1.0), has a maximum values of 6.66881 x 10-3, Considefing the
shell material to be steel, the numerical value of this stress is

6:o= 138 Mpa. Since high strength steels have yield 'strength as
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| high as 1890 Mpa, the maximum stress in the shell is much below
the yield strength of the shell material and thus the shell

deformation is within the elastic limit.

Results of this composite shell are shown in Figs. 12 to 20.
Figure 12 shows the deformed and undeformed shape of the shell
un@er axially varying load. It is observd that the deformed shell
is wavy in the region between s = 1.0 and S = 0.6 and it is of
particular interest that the region between s =0.2 and s = 0.0
beﬁds inward under internal liquid pressure whereas the remaining
portion bends outward. It is to be noticed here that thé_shell
is filled uﬁ with a liquid. of specific weight 'g uﬁ tos = 0.2.
The linear, nonlinear and analytiqal membrane solutions of the
various quantities are plotted against meridional distance in
Figs. 15 to  20. The plotting of axial and circumferential
stresses for this shell are shwon in Figs. 15 to 18. Fig. 15
shows the distribution of axial stress at the inner fiber in

shell No.l. Normally, had there been no edge restrain and no

junctions in the shell, the development of axial stress in the

shell could hardly be jusﬁified. Only tensile circumferential

atress could have been explained. A rough estimate of the maximum
value of this circumferential stress by simple thin shell formula
gives it a numerical value of 0}51200 x 10-3 whereas the maximum
value of the axial stress here 15\1.01 X 10-3 according to
linear theory and according to non;inear theory ﬁhe corresponding

axial stress value is 0.67 x 10-3,

.



The existence of axial stress is entirely due to bending at the
junctions and at the edge restraint which is not accounted for in
the simple membrane theory of shell. Normally a shell has the
tendency of straighfening—up at the junctions under load. The
distribution of axial stress in figure 15 is fully in conformity
with this general tendency of shell. 'However, a few intere;ting
points should be noted hefe. First, the Jjunctions in a shell
plays a havocal role in induéing stress which has no bearing with
the concept of membrane theory of thin shell. Second, the
prediction of linear theory is highly inadequate in this shell.
It predicts a highly exaggerated value in comparison to nonlinéar.
theory. The difference between the predictions of the two
theories can easily be explained. The linear theory assumes that
shell retains the original geometry and as a result has to exert
a higher.momént to straighten the shell at the junctions. But the
nonlinear theory take the shape of the shell under load as its
true form. The shell under load is already straightened up to a

" large ‘extent and it has to exert a far lesser moment for further

straightening up.

Fig.15 indicates that the junctions are under high tensions.
Maximum tension is at the junction, s = 0.7, as expected in case

of a shell containing liquid inside. But junctions are under high

compression as indicated by the outer axial stresses, which is
shown in Fig. 16. High tension and compression occured at the
junctions for inner and outer fibers aof Lhe sheil respecltively

61



because of bendings and discontinuties of radius of curvature.
Figs. i? and 18 show that the distribution of ~ the inner and
Quter circumferential stresses are of approximatelf the-same
éualitative nature as the inner and outer axial stresses,
respectively. But contribution of maximum axial stresses are

about 3 times the contribution of circumferential stresses.

Figures 15 to 18 also show that the analytical membrane resulfs
are much closer to nonlinear results. So,' it is noted that
membrane th;ory predicts better results than the linear "theory
dna those results are quite acceptable except at the end fixity

and shell junctions.

Figures 13 and 14 show the distribution of meridional and
circumferential bending "moments along the meridian. In these
figures it is‘noted that the meridional bendiné moment 1is the
dominating cohtributor to stresses in the shell. Considerable
amount of bending moments are developed at the junctions which
gradually decrease with the deCreaée in loading along the
meridian. The difference between the results of linear and
nonlinear theories are shown in the figures. The maximum stress
in this shell is the meridional stress at the inner surface of
the junctions. Although the meridional bending stress at the.
junction as predicted by the linear theory is much higher- thgn
the actual stress as indicated by the nonlinear results, it still

remains to be the maximum of all the stresses. The most
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interesting observation in Fig. 13 is that the amount of bending
moment developed in the spherical tip of this shell is
practically zero.'Had there been no spherical top the bending

moment at the apex of the shell would definitely have been much
greater. This is ﬁ clear indication of the fact that the best
possible way of avoiding the stress concentration at the junction

is to use a spherical ring there.

Figure 14 shows that the distribution of the circumferential
bending moment is approximately of the same qualitative nature as

the meridional bending moment.

Figs. 19 and 20 show the membrane state of axial and
circumferential stress resultants, ‘Ne and E@‘ Fig. 19 shows that
the maximum positive value of Na occurs at the base {s = 1.0) of

the shell and gradually decreases with the decrease in internal
pressure. At locations, s = 0.0, 0.10, 0.20, and 0.30 the
compressive values of Ns indicate that the shell is under

compression meridionally under liquid pressure.

Fig. 20 shows that the maximum circumferential stress resultant
occurs near the base of the shell meridian. Compressive value of
ﬁo is obtained at the junction s = 0.7. It should be noted here
that the circuﬁferential stress resﬁltant is of much greater
mdgnitude in comparison to that of the axial stress resultant.

Analytical results of ib based on membrane theory are also
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_presented in Figure 20. It should be noted here that the
analytical results are very close to nonlinear results except at

the base of the shell.

In the absence of edge restraint, Ns would be zero along the

edge.'Thus Es is induced in the shell because of the restraint at

the edge.
Shell - 2 :

This shell is_exactly of the same geometry and boundary conditoﬁs
as shell - 1 except . that the thickness ratio, R/h = 300 and
pressure at the base Po/E = 0.356 x 10 -5 , The numerical values
" of different quantities for axially variable loadings, specially'
the components of displacement and moment at 10 equidistant

locaitons on the meridian are presented in Table - 3.

In order to ascertain that Reissner's theory of axisymmetric
deformations holds good in the analysis of this shell, -it 1is
required to show that the deformétions are eldstic. Thus the
values of the maximum stresses at the junctions would have té Ee
less than the yield strength of the shell material. From the
detail results of this shell, 'nondimensional value of maximum
meridional stress at the junction (s = 0.7), 5:1,= 2.517 x 10-3

according to linear theory and 0.445 x 10-3 according to

nonlinear theory. Considering shell material to be steel,
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corresponding numerical value of maximum meridicnal stress is

found as (ao = 503.4 Mpa at the junction (s = 0.7), which is
much below the yield stréngth of high strength steels.So the
deformations of this shell are elastic.At the apeﬁ '811 =
-0.16831 x 10-8. For the same material, its numerical vlaue is
very small than that of the maximum value. The linear and
nonlinear solutions for stresses and moments are plotted against
meridional distance in figures 21 to 27. Analytical results
based on membrane theory are also plotted in Figures (21 -
23,26,27). These results show that the membrane theory can

predict the state of sgstress in these thin shells more accurately

than the linear bending theory.

Here also, the stfesses conform to the general expectation.
Fig. 23 shows the distribution of the inner circumferential
stress which is maximum in the line element near the junction
(s=1.0 to S= 0.8) according to linear theory and its numerical
value of 1.0057 x 10-3 whereas ther maximum vlaue is this
circumferential stress by simple thin shell formula is 1.068 x
10-3, The distribution of circumferential and meridional bending
moments for this shell are shown in figures 24 ahd 25, Figure 25
indicates that the meridional bending moment is maximum at the
junctions (s = 0.7 and s = 0.5) and at the base (s = 1.0) due to
bending at £he junctions and at the edge restraint. The numerical
value of maximum nondimensional meridional bending moment is

3.3741 x 10-1 at the junction S = 0.7 according to linear theory
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and the corresponding nonlinear value is 0.541 x 10-1- Between
the Jjunctions the curve -of Ms takes a wavy form. The value of Ma
gradually decreaseé with the decrease 1in loadings and becomes

very small above the liquid surface.

Fig. 24 shows that the distribution of the circumferential
bendipg moment has approximately the same qualitative nature as
the meridional bending moment. But it is seen that contribution

of maximum circumferential moment to the stress is about times

the contribution of the maximum meridional moment. It shows

further that the distribution given by the nonlinear solution

differs substantially .from that of the linear solution which is

already discussed with reference to shell - 1.

Figures 26 and 27 show the distribution of the nondimentional
meridional and circumferential stress resultants, respectively,
against the meridional distance of the shell. The linear solution
of Ns is maximum at the base (s= 1.0) and it remains high up to
s = 0.7 due fo uniform slope of thé cylindrical part. From the
location, S = 0.7, the value of Ns decreases gradually along
the meridian because of low loadings and reduction in the

circumferential of radius of curvature,

Figures 26 and 27 also show that the results of membrane theory
are almost identical tononlinear results. Thus membrane theory

predicts quite acceptable valus of stress resultants except at
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the end fixity.

Fig. 27 indicates that the magnitude of i% gradually decreases
towards the juncﬁions. Specifically, it has ebcome compressive

at the junction, 8 = 0.7 due to the general tendency of shell and

it is maximum in between the base (s = 1.0) and the junction § =
0.7. After the location s = 0.7, the value of ﬁ; decreases and
it is nearly =zero at the apex (S = 0.0). -Due to the edge -

restraint the circumferential stress resultant at the base |is
approximately zero. Figs. 26 and 27 also indicate that ﬁa is very
small in comparison to ﬁo_ because internal load is mainly

resisted by the circumferential straining of the shell.

It is noted here that ‘the stresses increase with the increase in

loadings and also with the increase in R/h ratio.

This 1is another Composite' shell consisting of a eylinderical
part, a circular part and a conical frustum. The base of the
shgll is 5 cylindrié#l part and the top is closed_with. a
spherical part, like shell - 1 and shell - 2. But the locations
of various elements, meridional angle £ ¢o 11 for each segment
at the lower end and the thickness ratio for each segment are

different from that.of shell - 1 and shell 2 . Here the junctions
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are located at the points s = 0.7, s = 0.5 and's = 0.3 from the
apex. The me;idional angle (¢¢o)i at the lower end of each of
thelsegments are : | 4%)1 = 90c , | ﬁ%)z "= 909, ¢°)3 = 900, (¢

66.960, ( Bode = 45° , ( Pol71 = 45°, (£

7809, ( %0)5

o) 4

o)s = 350, (. Fols = 23.27° and ( go)1o = 13°.

Initially the 'sheil.is considered to be filled with a liquid of
specific weight { up to the segment Ss.This particular shell is
shown in Fig. 2. The numerical values of moments and
displacements at ten equidistant.locations on the meridion are
presented 1in Table - 4. The nondimentional inner meridional
stress 'Eii at the base is maximum where ifs nunerical value is
0.2844 x 10-? and at the apex 511 - 0.26156 x 10-1%. The
ma#imum stress at the base becomes 568.8 Mpa and at the apex
5.23 Mpa, if the material is steel. So the deéformation of the
shell meridiaﬁ is within the elastic limit. The base and the

junctions of the shell meridion are under high tension axially at

the inner surface.

The linear and nonlineér solutions of bendiﬁg moments along the
sheli meridian are presented in graphical forms in Figs. 28 and
29. It should be mentioned here that the'maximum values of Ma .and
Eb have occured at the base in this shell whereas the respective
values are maximum at the junction s = 0.7 in case of shell -1
and shell - 2 . Fig. 28 shows that the maximum value of E; is

0.263 at the base and 0.224 al the junction, S = 0.7 according to
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linear theory. For different geometry the slopes at fhe junctiéns
and the radius of curvatﬁres of this shell are lesser'than that
of shell - 1 and shell - 2. So, in relation to original geometry
this shell is more strgightened at the junctions than the shell -
1 and shell - 2. That is why the maximum moment and stress are

developed at the base rather than at the junctions of this shell.

Figs. 30 and 31 show the distribution of nondimensional axial
stresses at the inner and outer surfaces of the shell.Fig.31

shows. that the base and the junctions are under high compression

axiallf at the outer surface, while the neighbourhocod of the
junctions and middle portions of the cylindrical, 'spherical and
conical parts are under tensions. The maximum stress is obtained

at the base (5 = 1.0) due to end restraint. Fig. 32 shows that
the maximum inner circumferential stresses are developed 1in ‘the
middle portions of the respective parts of the shell. The maximum

numerical vlaue of circumferential stress is 1.416 x 10-3 whereas

the rough estimate of the maximum value of this circumferential
stress by simple thin shell formula gives it a numerical value of
1.500 x 10 -3, The same qualitative nature is obtained for £he
distributions of circumferential stress resultants which is shown
in Fig. 33. Above the liquid surface a little compressive stress
is developed due to discontinuties of loadings. Fig. 34 shows
that the distribution of Ns given by the nonlinear soluiion

differs substantially from that of the linear solution.
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Analytical results based on membrane theory are also presented in

Figures 30 to 34

(b) Built-in Edge Hemispherical shell

For this shell‘ both the lineér and nonlinear solutions are
obtained and presentéd in graﬁhical forms so that the difference
between these two results can be readily checked . It should be
ngted here that in all the graphs presented, the linear solution

may be considered as equfvalent to the nonlinear solution at zero

loading.
In Figs. 35 and 36 the nondimensional values of Mgy and Ms fof
'hémispherical shell are plotted, respectively, against the

meridional length of the shell for R/h egqual to 200. The peak
values of the meridional bending moment based on both the linear
and nonlinear theories have almost the saﬁe magnitude gnd are

identical in distribution in the hemispherical and in the

cylindrical shell for the smae loadings and for the same R/H
ratios. The maximum bending moment is obtained at the base (8 =
. 1.0) of the shell meridian, where the shell edge is assumed to be
restrained against rotation.The same mégﬁitude of the edge

bending moment ‘for the spherical and the cylinderical edge

segment shows that bending moment due to edge restraint is
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~independent of shell geometry.

It should be mentioned here that the circumferential bending
moment is approximately 2) times the meridicnal bending moment
as dictated by the governing equation and verified here in

figures 35 and 36.

lFig. 37 presents the distribution. of the circumferential stress
resultant ﬁ@ for both the linear and nonlinear solutions. The
values of Ny obtained from analytical membrane sélution are also
presented in figure 37. It shows that the.distribufion given-by
the nonlinear and membrane solutions differ substantially from
that of the linear solution:, In the absence of edge restraint, a
roughly estimated maximum value of Eé is 0.5. As seen in figuru
37 ﬁg has exceeded this value because of'edge restraint. The
zero value of ﬁ@ at the edge is easily

explained.~ Because of edge fixity the shell could not expanﬂ
circuﬁferentially. Hence, no circumferential stress could be
induced in the shell at the edge. fhe wavy nature 1in the
distribution of E& is quite in conformity with the distribution

of circumferential moment distribution.

Fig. 38 shows the distribution .of Ns, which decreases with
decrease in loading along the mefidian.__ln the absence of edge

restraint, Na would be zero along the edge. Thus, Ns is induced

-

in the shell because of restraint at the edge.
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Figs. 39 and 40 show the distribution of the nondimensional
circumferential stresses at the inner and outer fibers of the
shell. It is observed that'thé circumferential stress has almost
the same magnitude at the inner and cuter fibre. This shows that

circumferential stress is mainly induced by the internal 1liquid

pressure. Analytical membrane. results of circumferential
stressea are also presented in figures 39 and 40. The results
based on membrane theory are observed to be much closer to

nonlinear results and thus superior to the linear results.

'The distribution of the meridional stress at the inner and outer
fibers in the hemispherical sﬁell is shown in Figs. 41 and 42.
lThe distribution of stresses and their peak values for both the
hemispherical and one end fixed <cylindrical shells are almost
identical. This shows that meridianal stress in both these shells
is éntirely due to edge restraint. The maximum value occurs at

the inner fiber at the base in both the <¢ylindrical and

hemispherical shells. The maximum value of 5}1 is equal to
0.62549 x 10-3: This stress becomes 18764.7 psi Considering the
material of the shell to be steel. 'So the deformation is within

the elastic zone. The difference between the solutions of the two
theories increases with the increase in locad. The numerical
values of various displacements and moments are presented ‘in .

Table -5.
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CHAPTER S

CONCLUSTONS

The stress problems of axisymmetric shells under axially varying
internal pressure has been investigated in this thesis. The
axisymmetric shells under invéstigation may be composed of
spherical, conical and cylindrical segments and the two edge of
the shell, top and bottom, may have any kind of edge-fixity
including the provision of completely closed top. The axially
varying locad may be considered as that exerted by a liquid column
contained either inside or outside the shell. Solution is
obtained for varying height of the liquid column subjected to any
pressure on its top surface. Analysis of axisymmetric shells
based on both tﬁe- linear and nonlinear thecories ‘have been
achieved here. The nonlinear theory of axisymmetric shells as
developed by Reissner {36) has been used in this analysis. The
basic concept of multisegment integration developed by Kalnins
and Lestingi (24)- has been employed to obtain the solutions.of
the nonlineaf equations of shells. The soundness_of the theory,
the method of . solution, the cf;teriqn of finding the_internal'
pressure along the meridian and the computer program used for

numerical results are all checked by comparing the solutions of



S T

a one end fixed cylindrical shell of unifofm ﬁﬁickness ratio with
those of an analytical solutino of the same shell under the same
conditions.

The comparison shows that the method of solution, the governing
equations and the computer programme are all free from any error

and based on sound hypothesis.

Based upon the results of various problems presented here, the.

following conclusiasns are made

{1) The linear theory of shells is, in general, very conservative

in predicting the state of stresses and deformations in the

axisymmetric shells.

{2) Any discontinuity in geometry of the meridian induces bending

stresses in the shell. If the change in geometry 1is also
assnglatcd with the discontinuity of slope, then the maximum
values of bending moments occur at the Jjunction. Under this

circumstance the inner fiber meridional stresses become usually
the maximum of all the stresses of the shell wunder internal

pressure except those produced by the end fixity.

(3) If the included angle of a junction is less than 180 degrees
then a circumferentially compressive zone is developed there
under load.
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(4) The magnitude of the bending moment developed at the Junctlon

is observed to increase with the decrease of the included angle

at the junction.

(5) In designing axisymmetric shells with discontinuity of slope
of the meridian care has to " be taken of the extreme stress

concentration at the junction.

(6) The best possible way of avoiding the stress concentration
at the junction is to use a spherical ring matching in slope with

the two neighbouring segments.

{7) In this shells the membrane theory 1is observed to be
superior to linear-bending theory in predicting the actual state
stress even_%f the shells have geometrical discontinuity. It can
-thus be concluded that the linear bending theory should not be
used ie analyzing stresses id shells except perhaps 1in finding
the effect of edge fixity ih absence of a nonlinear theory. The
prediction of stresses at the restrained edge, by the liﬁear

bending theory is always found to be highly conservative.
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Fig. 1 A composite shell consisting of a cylindrical part at the bottom e‘dge followed
by a spherical ring, A conical .-frustum and a spherical top,R is the radius at the
bottom edge, Se is the total meridional distance from apex to the base circle,
d' is the total depth of liquid..This shell is reftered as shell no.1 and shell no.2
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Fig.2 A composite shell consisting of a cylindrical part, Spherical ring a conical frustum
and a spherical top.Ris the radius at the base. Se is the total mendional distance

from the apex to the base circle, d is the total depth of liquid. This shell is reftered
as shell no. 3
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TABLE - 1

Analytical and Computational Solationa of pure Cylindrical shell
with one end fixed,

SHELL PARAMETERS 1@

' P,/B = 0.256 x 10

=3, =®/h = 200 2= 0.3
'Meridional Radial Displacements, Circumferential stress Resul- Axial Bending Moments,
distance u__in inch . tant,Ne 1b/ inch Mg inch 1b, per inch )
from the Analytical Computational] Analytical Compu tatiomal Analytical] Compu tational
appex;§ ' Linear|Non=-linear Linear [Nonelinear ‘Linear‘Nonnlinear
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TABLE- 2

LINEAR AND NONLINEAR RESULTS OF THE COMPOSITE SHELL No.1 (Figure - 1)

SHELL PARAMETERS

Base Pressure, P /E

Thickness ratio, R/h

= 00256‘00 E-05

200 3 Poisson's ratio,

= 0,3
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TABLE-3

LIN:AR AND NONLINEAR RESULTS OF THE COMPOSITE SHELL No.2 (Figure - 1)
SHELL PARAMETERS 1 Thickness ratio, R/h = 300 3 Polsson's ratio, = 0.3

Base Pr_eésure, Po/E = 0._3560012-05 ) :
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TABLE-4

LINEAR AND NONLINEAR RESULTS OF THE COMPOSITE SHELL No.3 (Figure-2)

SHELL PARAMETERS 1 Thickness ratio, R/h = 300; Poisson's ratio, = 0.3
Base Pressure, P,/E = 0.,50000E-05
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TABLE-5

LINEAR AND NONLINEAR RESULTS OF BUILT IN EDGE HEMISPHERICAL SHELL No. b

SHELL PARAMETERS

Thickness ratio, R/h

= 200 Poisson's ratio = 0.3
Base Pressure, P_/B = 0.25600E-05
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APPENDTX — A

PROGRAMMING FEATURES

A-1 : GENERAL FEATURES

The Computer program used in the present investigation is adopted

from that of Uddin ( 46) with necessary modifications to suit the

requirements of solving stability problems of axisymmetric
composite shells under axially varying internal pressure. The

program is based on Reissner’s nonlinear theory of axisymmetric
deformation of shells (36) while the multisegment method .
developed by Kalninsland Lestingi (24) takes care of the solution
of the governing équations and the integration process is carried
out by a predictor - corrector method. The predictor and the
corrector are respectiveiy given by formulas (19.16) and {(19.17)
of Ref. (29). To secure the six starting values necessary for the
application;of this pair of predictor and corrector, the six-
point forward difference formulas (19.10 - 19.14) of Ref, {29)
are being used. ‘It should be noted that all these formulas
contain error of the order of HT; where H is the distance hetween

two consecutive computational points, thus they are highly



sophistiéated. The prograﬁ will produce nonlinear results for
increasing steps of louding up to the number of steps‘as
directed., In part A of the proéram the necessary information
reéuired for the solution of problem is read\in. Part B of the
program deals with the problem of adjusting the given boundary
conditons with regard to the solution of the matrix equations. In
part C, R, called ‘RC’ is determined for composite shells. Part D
of -the program 1is concerned with the calculation of the
normalised - constants involving shell parameters, . material
constant, and loading; under the part E of the program the output
of the results is hanaled. The remaining portion of the program
deals with thé ‘ integration of the different systems of
differential equationé and the seolutio of ﬁatrix equaitons. Each

segment of the shell 1is divided into twenty-one computational

points.

A-2 : TREATMENT OF BOUNDARY CONDITONS

Equations {3.37) written in terms of the normalised fundamental

variables and in accordance with the statement of equation (2.82)

appear as
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- [~ _ - r -1
1 0 0 0 0 0 u u
0 1 0 0 0 0 7 Z;
0 0 1 0 0 0 W w
0 0 0 1 0 0 v = v P |
0 0 0 0 1 0 H H
0 0 0 0 0 1 Ma Ms

- » B B __L

In the matrix equation (A-1) the elements of the column matrix on
thé left hand side remain in the same order, whereas, those on
.the right hand side should be arranged in such a manner that the
three prescribed eiements at the boundary become the firét three
elements of this column matrix. According to equation {2.82}) if u
is specified at the boundary, the first and fifth rows of the
unit matrix of (A-1) remain the same, while specificapion of H at
the boundary will require the inter change of these two rows
which will interchange'g and'ﬁ in the column matrix on the right
hand side. Similarly, if /5 is specified at the boundary, the
second and the last rows-remain as they are, and interchanged
when ﬁ}ris specified. Lastly, the third and the fourth rows of
the unit - ﬁatrix are kept the same or interchanged depending on

whether W or V is specified at the boundary. The same operation
is carried out for both the boundary points. The transformed unit

matrices of (A-1) are then designated by T1 at the starting

boundary and by Tu+1 at the finishing boundary.
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A-3 : ON THE USE OF THE PROGRAM

In order to use the program for obtaining solutions of different
probleﬁs; knowledge of the definition of input and output
variables is essential. Variables used in the program with their
definition are given in the table at the end of Appendix A,

Necessary information to be read in are :

Card No. 33 : This card reads in the amount of loading step EMI

gnd the number of locading steps SOB1. If at any loading the
solution fails to converge, the loading step EM1 is automaticélly
halved by the program and the solution for the new loading is

attempted.

Card No. 35 : M, the number of segments of the shell meridian,
and IZ, indicator of the type of prdblem,"are read in by this

card.

The indicator IZ will have differepf values depending wupon the
type of problem to be solved. The appropriate values of JZ in
accordance with the types of problems are given below in tabular

form.
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Type of Problem Value of IZ
Spherical head puressure vessel 1
Flat end pressure vessel 2
Conical head pressuré vessel ' 3
Ellipsoidal head pressure vessel 4
General case of composite shell 5

Card No. 38

" This card is used only for the general case of composite shell

and will be skipped over in caée of pressure vessel
reads in the value of IG(I) which indicate  the
segment Si. The gquantity IG(I} may have any one

given below in tabular form depending upon the

prcblems. It
type of the
of the values

t&pe of the

Segment Si
Type of Segment Si Value of IG (1)
~Line element . 1
Circular element 2
Elliptic element ' ' 3

13
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Card No. 40 : This card also is used only for the general case

of composite shells and skipped otherwise. It reads in the values
of APH(I) which indicate the starting value of the merdional

angle-(?% ) ¢ for the segment S,

card No. 42 : - Like cards No.38 and 40 this card is ignored

for pressure - vessel problems and is_ used only for composite
shells. The value of *RC’, the ratio of the total length of the
shell meridian to the radius at the base of the shell, is read in
by this card. In case of a shell which is open at the top thq
length of the meridian should be measured from the center of the
open top ; so fhat the value_qf % at the edge of the open top is

different from zero. This 1s necessary because s = 0 1is

associated with the specialised equations valid only at the apex.

Card No, 44 : This card réads in the values of Poisson's

ratio 'AN'; normalized load ‘'EMO’ at the base (s = 1.,0),
meridional angle of the spherical cap *pHI1’ at the juncture the
semi—angle.‘ALP’ of the conical head, the ratio ‘FR’ of the minor
to major axes of the ellipsoidal head and £he ratio *XL' of the
radius at the juncture of the sperical tipping‘of conical head to
the radius of the cylindrical part. tEM2’ is the same as 'EMO’

for operation facilities only. The four quantities of this card,

namely ‘PHI’,'ALP’, "gr’, and ‘XL' are not needed for general
case of composite shells, and thus' can be assigned arbitrary
values.
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Card.-No.46 : This card reads in the thickness ratios Tk (I) for

the segments si , 1 = 1,2 ....;,...M

Card No. 50 : This card reads in the values of the independent
variables X{(J,1) and the initial values of the six fundamental
variables X (J, I}, I = 2,7) for the nodal points J, (J =1, M
+1), For the general case of composite shells the nodal 'point
" (J=1) coincides with the base of the shell where X (1,1) = 1.0
CArd No. 52 H The boundary values of any three of the six

fundamental variables at the starting boundary are accepted

through this card, Thesec are, for clampad edges
X (1,1) = H = 0.0
X (2,1) = B = 0.0 ... A-2
X (3,1) = w = 0.0
Card No. 54 : This card reads in the three prescribed boundary

conditibns at the final boundary. For the. general case of

composite shell with no hole at the apex, they are -

XY (1,1) = u = 0.0
XY (2,1) = ﬂ = 00 RO B R A A"‘3
XY (3,1) = vV = 0.0
Card No. 56 The values of the  boundary condition

indicators at the starting boundary are read in by this card. The
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appropriate values of the indicators ‘ISl1’, 'IS2’, and 'IS3’ are

given in the following table. "

Specified quantity Indicator and its value

u ISI = 0

A 1sz2 = 0

W Is3 = 0

v 1s3 = 1

H 1s1 = 1

Ms 182 = 1
Card _ No.58 : " Here the values of the boundary condition
indicators at the final boundary are read in. Their appropriate

values are given in the above table where the quantities ‘IS1’°,
'ISZ't and 'IS3’ should be replaced by iIFl’, *IF2’, and ‘IF3’,

respectively.

A-4 : OUTPUT OF THE PROGRAM

The first output will be the given initial nodal values of the

independent variable s and the six fundamental variables u, /3,'
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W V, E}' and Ma in their written order columnwise and in tabular
form. The second output gives the.value of number of of pass and
residue - the sum of the differences of the absolute values of

the  fundamental variables at the nodal points. of the two recent

consequtive passes.

The first out-put is then repeated for solution based on linear
theory. The next output presents the details of the solution
Eased on the linear thery. Here ‘the -following quantities are
printed out in tabular form and in the order of s, u, W, fﬁg)

— — — —

Ms, ﬁb , Ns , Bei, 5?0; _ Gai, Gao, P columnwise.

For each segment these quantities are printed out at twelve

equispaced points.

A-5, DEFINITION OF COMPUTER VARTIABLES

Variable Definiticn

EMO Po/E, normalized load at the bése

. EM P/E, normalized load at any point on the meridian
EM1 Incréasing step of EMO
SOB1 Number of desired loading step
M Number of segmentsldn the shell meridian
I1Z ‘ Indicator of the type of préblém(IZ=5, for composite
shell) |
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RC
AN

ER
Th{I)
X(I,1)
X(1,2)
X(1,3)
X(I,4)
X(I,5)
X(1,6)
X(1,7)
XX(1,1)
XX(2,1)
XX(3,1)
XY(1,1)
XY(2,1)

XY(3,1)

1s1,182,1IS83

IF1,IF2,IF3

NP
T7(N)
" T2Z(N)

TI(N)

Constant R = rSe/R

Poisson’s ratio,

Eflipticity ratio, B/A

R/h, Thickness ratio for segment 151

s at the nodal point I

‘u at the nodalpoint I

ﬁ at the nodal point I

W at the nodal point I

V‘ at the nodal point I

=

at the nodal point I
E; at the nodal peoint I

T or H at the starting boundary

/3 or Ms at the starting boundary

—

W or V at the starting boundary

——

U or H at the finishing boundary

ﬂ or Ma at the finishing boundar&

w or V at the finishing boundary
boundary

boundary

‘Number of pass; NP=1 indicates linear solutions,

Ng = Ng /(PeR)
E; = Nas/{PoR).
M, = Mg /(Po.R.h)
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Indicators of boundary Conditions at thestarting

Indicators of boundary Conditions at the finishing



y(1,N) El = s/se

v(2,N) o = uEh/{(Po.R2)

7(3,N). A = f

y{4,N) W = wEh/{Po.R2?)

y{(5,N) v = V/{Po.R)
y(6,N) H =  H/{(Po.R)

y(7,N) He. = Ma/(Po.R.h)

N Point in a segment at which the variables are

evaluated.
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APPENDIX -B

PROGRAM LISTING

COov0001

e B Mo dy e e B Ba e e e e e e b P A B Ry M A e A B e A e e S o e e e e b e e e Ar R e ol ke e A A sl ole Ar R A e e ke A A e e s R oEe A A e A

P AR Y rr R e s N N r T VM Y N N M N R N vy N N Ny r R N vy S P Y Y vy ey rryr rerr eSSy vyr
P e An R e T B e e e e o S A e A B S e s e e R e e A e e o e e Pr e e S e e e s s e te s e e e e e A b Ay A e WA A A R A A R R A e A A 2
P P R P r i AR RN M Ry A N R S Y S r vy r i r el v e v vy Ty Y S Y v Y w-»ru-bDHOOO_
>STIESSES AT THE JUNCTIDNS JF AXISYMMETRIC SHELLS UNDER COM0003
AXIALLY VAIYING LDAD. COwld04
) ) COv000s
FE TG A G BE AU SR A FU AC 40 #t P4 8 BU AU AL JU AT $4 b S AU 4L 3 M AL U AL S0 MOKL AL SCAE SE L L MO A S ST AT MM It R H RN f‘gqojas

T et A e b I I P P L P I A I 1o ar e Tr lr b te te ke be be Ar V= P dr Ir br W WP e ar b b W e I I Ie de e br tr de A6 A0 Pede darar pe dr b de ke dear e L 7

. cgMooCy
JIMENSTON I5{10) COv03503

R=ALES XOLL g7 e Y T2 02 {Te06)aYLiTs2L)pY2{11s3)e¥Y3(113),,F(Te2l) 20MOIC7?
TEALYE H{321 4A2H{10) o TKILOD) o XTILLeT) sAKI %) ¢ T22021)¢2213 1) +T5L caM0212
AFALEY AYI{341) ™Y (3e L} eEMI21)+FX{21)4H4(21)+2a(21)428(21} 20OMoolLl
EAL%ES TSL10243)9T52(3¢3)9TS3(393)sTS4{393)TFLI3v2)»TF2(3,3).7CL 20O4DI12
SALE8  TF3I{343)eTF4(33)sALG(VY91)sALS(39s1)sALl5{3y1)syALT(341),TSC COMDD13
REAL %S Al8(343),C01193+43)9a(1293)sE(1L19s393)43(1Ls3)sX1(391)eRA CavnNolea
TEZALES X2{39 1) 9CLL21)eC2(21gTT{2L)9T{21),T13(21}4A021L)PH{21} CTOMODILY

AEAL=) RIC21)eZ {31 )sALl({3339A2(3+¢3)10a3(393)+A45{3+3)446(3,3) ~04DJ15
IZAL=R QT(313),A8(3’3)1A9[3v1]'ﬁ13(3'1)vAll(3vl]7A12(311315H57Eq223!0317
LEALER XXI 391l eXY[391)sA8(393)3Ul5+6)+ZF{21)eHLILC)+2MOTH ' co4o21d
TIALER  PO2,30,AKLyELeNDRyFLeTOeTLs2ZZ 9FFeP3 40P yPHIS AL+ T34T21,TM,PRIDUIDILY
APINEUNTIT=3 " TLE="IN"«STATUS=*0LD"] cavoo22
AP TNIUNIT =2 FILE="0UT*»STATUS=*NEW") 2040221
NP=3 Z0M202?2
Iy=1 2340023
5332=0.2 : covpo2s
§5=1.0 cao4d0a2s
M2 5 covMones
N3=13 Zovpo27
232=1,572377532568 cMo329
B A A A e A S R G e S S R S N R SRR R e N R T SRS r R EREESRFRFTEREIIUD02 7
' PART-A : COMD030
READING I[N INFIRMATION zo4agoal
A RN N e N R S R S NG A RS E RS RN E TR RS S R ERSEE LA R EEEHIOM0032
READ(Z,110)EM1,5331 - ~0OM00331
ARTITE{9,110)=41,5081 CDM003 4t
TEAD({3,5F)M,I2Z COoMQ235!:
AXITE(I 594,12 _ . ' COM0035¢
IF{IZ-5}515+515¢516 ‘ COMD237
TEAD(3459)(ISTIYeI=1aU} <0Gy 38¢
ARTTE{I¢59)LIS{I) s I=1eM"} ) . "COv2039¢
READ{BylLID}{APHII)sI=1,M) COMD240¢
ARITE(9s L10Y{APHII) »I=1,4) COv0041:
TEAD(8+110)AC A 846 COMv0Dd42¢
WIITE{9s110)AW4RA+BHS : : COv0a43LC
TEAD{8,I10VANSEMOWPHISALPyERe XL eEM2 COM0044°
AAITE194110) 8N MO PHIsALP+ERyXLeEM2 CDM0O245¢
TEAD(S3+1100NITX{T)eI=1,M) ' ‘ _ COMDI45¢(
ARITE(92L1100)(TKII}yI=1¢M]) COM0247 ..
FIAVMAT{10FS.11} : : COvD248(
M=+l . COMD243¢
TAD(B9 4L 0IX (eI Yo I=1sT)pJS=1,40) COoM2J250¢
NAITE( o4 L) {IXTSel)aIzloeTieJd=1,,MD]) ' COMGIAS51¢
READI{Be4L)IXX{Is1l)I=1s3})" . COvM3052¢
WAITZ(Fe2L)(XX[T 91} eT=143] ’ : . 040353
REAJ(S8»41) (XY ({Is1)eI=1¢3]} COMOJ54%:
ARTITE(I941 0 {XY(L 1) sI=1,3) - CJ4DJ55¢
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R L T

21

23

2%

23
‘30
33
34
35
36
ar:
33

39

40

819’

B4

BT

83

READ(By57)I519I52,183 _ ' COv2256
CWRITE(9¢59)I51+sI52+1S3 o C0402357
READ{8¢59)IFLyIF2,IF3 , : : ‘ COv0058
WRITE[F¢59)IT14IF2,IF3 - £LO40259
AR R R R SR R R R R R e e R R n A RS S E RN ke R ET R TN ERELELIOMII6D
PART-A CDMD051

QIUNDARY CONDITINN TREATMENT ' COMD052
"F*t.;::'rs-ﬁﬂit##:#3###*’:*:;#:1' Ml ke e S e ke e e ke mEk(JM0I5 3
73 21 I=1sN3 : COM3d5¢%
33 21 J=1.N3 CO4DI565
T511{I+4)=0.0 S2IM0355
T52(1,J120.0 COM00567
TS3(I4J)=240 £Ov0D58
TS*(I.J1=O 0 CO40069
4(I14J)=0.0 T040072
rF3(r,J;=o.o Ca402T71
2(1+J)=0.0. £0400 7?2
TF1(1,41=0.0 , CavpIT3
[FLISLY23,23926 : COMDD T4
TS1(1le11=1a0 ' £av007s
TS312,2)=140 _ COAMGITS
53 123 27 . CoM0377
TS2{1s2)=1eD . Cov0a7eY
TS3(2s11=1.0 cO42079
TFIIS2)2K428,29 . £3J40040
TSL1242)=1.7 . LT I ES!
T5%{343)=1.0 o "7 3403342
53 T3 32 . CaM2393
T52{2+3)1=1.0 _ oL RETA
STS3(3,2)=1.2 . . . CDvY0285
[F{IS53)33,33,3% 340245
TS1{3,3)=1.0 _ COvMD287
5%01lel)=1a2 . C04pog®
31 T 35 C040289
T52(3,1)=1.0 : : cgM23290
T53(143}=1.0 _ ZO43391:
IFLIF1)356,36,37 oMo 92:
TF201+s2)=1e2 : ) _ _ 2040293
TF3{2+1)=142 2JM0394
33 rJ 38 _ £O4Y2295
TZ1(1lylY=1lal : . : COM4Q295¢
TF50242)=1.0 : COMDI9T!
IF(IS2339,37+40 _ CO¥D093:
TF202431=140 ‘ ‘ ' . CDMI299!
T=3{3,2)=1.0 ' COM31 001
G3 T2 812 ' . COMOLlO1¢
TFL{242)=1.0 : ' ' -~ covotlo2
TF3(343)=1ad _ : ' ZOvM2103;
IFIIF3)84484,87 . CDM)10%
TF21(3,1)=1.0 COM0105!
T=3(1le3)=1ed . . COMO105:!
GJ T2 33 : ' CO40L10T:
TF103+3)=1.9 % o COo42109
TF3(1lylr=1.2 CO4210%

CONTINUZ \ : coMolld:
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o4 iF W

L4

401

402

406

407
405

521

522

%
N
w

Y]
o

&+ 4r 4>

k14

1

it

2D 31 J=1lsM
HHUJT=X1J+1l.,13-X{Je 1)

HEJY=IXIJ+1lo1)-X{Js11)%aD

it N

-
A
-~

LEEE RS 3 352 S50 2 -2 EETFERRRRER TR
. PART-C :
CALCULATION OF RC
53 TD (4019402+403+404¢405),12
RC=PHI/DOSIN{PHIY
3]0 T3 405
o= le

33 FJ 435 .
AT=(Le=XLY/DSINLALP)Y+(PBZ2-ALP)#XL/DCOS(ALP)
X(M,1}=(P32-ALPY=XL/DCISLALP)/RC

CL=1la
TL=ZLx{AL/3L) ¥+
FL=ZL=AL==T /AL
cL=CTL-FL
AL=AL+2,
3L=3L¢2.

=T+l
IFIDABST{ELY - lE-D8)40T¢4NT+406
IC=283250L

TINTIMUE

IF{IZ-5)521y522¢522

yP=pn2

31 T2 323

IP=aH{I}

IR=1./3C2

ap=>32

2

TI=140/112.0%TISEM2%T%T)
TL=3C/T/EM2 '
T21=5M2%T
TH=1.0/232%2235{APH(9))
TSL=4A(JL)=ISINTAPH(1))=3.0
TCL=AH(DI205(3H5)-DCNSTAPA{4))
TSCo=AH{JLIEDSIN{APH(T)1%2.0
TP=34%(J225(AP4(3))-DCOASTAPH(8)])
T2=23%(1.0-9225(APHI[9)))
TH=-TSL¢TCL-TSC+TP

AT TE(6,5)TSLyTCL» TP TH

140

CoMDLLL!
covMoLL12!
CO40113!
ZOM011%
COMOL15!
COMOL15:
COMOLLT:
ZoMD113
covoll Y
20M0120
2040121
cp4ll22
covol123
Cov0L26
23M0125
Co“o125
couniz7
ca4dl2s
coworzy
COM4G130
C0M0131
CD40132
20M0133
COMO134
C3M0135
COMD135
COMI137
COMO138
COuI139
ZO¥I140
ZOMIt4l
COMIL42
COM01%3
COMOL44
SOMO1%5
ZO0MO146
2040147

*L0OMI148

COv0149
COMO150
CO42151
COMD152
CO42153
ZOMOL5%
2OM2155
COvIL56:
COMO15T:
covol158
Co4315%
COov0152
CovD161
Cav01562
Z0Mo156%
“OM316%
CD4D155



32

312
313
309
305

306
301

302

303
323

307

304

311
3ls

3146
310

509

N= 1 : .
Dl 32 I= 1:7 -
YUIoN)=X(J1,1) '

"33 300 I=1,21

TZ0I-217312,313,313
Y{LsT+1)=Y(1yI)¢4d(J1)
IF(Y{1l,1}-1.1326,308,+305
I=(IZ-5)30643054305

PH(I)=P32

I1IY=1./RC

JN=FLIAT{I-1)
ZALD)=4AN=4(J1)#DSIN(PHII))
ZALI)=4N=RO( L) =2C0OS(PH{TI YY)
Z3(IY=2a(I}Y/TH ‘
SX({I)=1.2-23¢{I]
SM(I)=EMDEFX(I)
TM=EM[I)&T*T
PA=CMIINET

NRTTE(S5)CEMUI) THeS5IB2
33 T2J 320
33 TD (32143202530343044509),T17
OH{[)=Y[L,yI)=PH4I

ALY =05IN(PAL{T))/PHI
53 I 300
H{1)=0.
(L= (1,1}
3) T2 3232
IFLY (L, 1)-X{4,1))307,309,309
SH[ [)=P32-ALD ,
(1) =x_/_C v(Y{IpI)—X( e L)) SEDSINTALPR)
32 T2 322
PH{I) =Yl 1, I)%RC/XLEDCISIALPY
RIACII=XLEISIN(PHL{T I} /RC/DCOSTALPY
31 T2 390
PY{ I )=2P
10(1)=n1
ZZ=2H(I)
32 310 J=1+4

FF=C/ER%&2. * (EA#22,+aKL¥DSIN(ZZ)}#DS5INIZZ) )+

ACTI)=A0JL)&FF

33 T (311+31193145310)+J
=2

31 T3 315

V=1.0

ZZ=2H(I}eV¥ac(l)

CINTINUE

JP"*(I!*(A((ll*AK(Q)*Z-#(AK(B)*AK(L))}/6.
JT=ISIN{IPY/RC/LER==24 + AKL%=DSIN(DP)&DSIN(IPY)F=,

33 T3 302
[J=15(J1)

33 TD (510551193041 91JK
PHII)=APH{JL}

RI(I) =02

3= +4{J1IEDCOSIAPHIIL))
4N=SLIAT(I-1)
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COMD1565
COMoL AT
CoMOo158
CIOM01569
COM2170
Covol71l
COMO172
COMO1T73
CO¥D1L7%
CaMe175s
COM0175
L3491 77
042173
COvI179
CaMol14Dd
CoMO131
covMol132
CoM3133
COM21S4%
COMO1L RS
covYolL3s
20¥3137
COM3L 34
TQvn13?
COYvo1390
Ta40191
TQMoLY?
C340193
CIMOL9s
Z0v0195
CD¥3195
covar9v
£O0v0o192
COMILaI™
COM3200:
coMozZOL:
“aMo202:
T0MO203¢
£OM0204!1
TQMD205!
Cav0205:
CaM0207¢
COoM0208!¢
Z0M0209¢,
CaM0213{;
COvD211!
CoMa2121
20402131
cCov021 4!
£OM0215¢
Z040215!
coMozLT:
Z0MDp218B:
cpM021 3.
C0432201

KA%



359

358

757

511

-
-y

L) 4r 4k 4 42 4T
w
-
o

W
5%

544

i

17

0 4

ZATTIY=HNEHTIJLI®DSIN(PHII) )
IFIJ1-5)9572,B5B4+858

IML=FLIATLJL1-1)

ALEJL Y =THe (IMLEAR(JLIEDSINC(APALTILYY )
33 TJ 757

AMM=FLIAT(J1-5) -
ALES1)=THe(TSL-ToL*{ HMMSEHAH(JL) EDSINTAPHIT))) )
TINTINUE

IS EAYS SVAINEEN]

FX{I)=1.0+23(1I)

EM{I)=EuI=sX(])

THA=EM{I)%T

2=M(T)5T
AVITS(54%)EM(T),4L(J1}+5032

30 T2 322

IM=FLIAT(I-1)

2H(T)=A APH{JL1+2ME 401 5DSINIAPA(JL) ) /DR
RI(T)=DT=ISINIPHITIII/ISINCAPH(IL))
ZELDI=2CL)/ITANIPHITI))
7O(I)=D3/DTAN(DP)

ZZ(IY=ZS(1)-22(1)
Z=(I}=03205(34(1))-DCOS(IP))I=RA

50 T2 (252¢2529353+353,877+877+9875 9876c44“14@4)'J1

[FUJ1-3)Y252,353,444
INN==LOAT(JI-&)

AL(JLY=THAeTSL-HNNSRAE(DCIS(APA(S) ) -DCOS(APHI4) )]

Gl T2 333
MY =TLIAT(J1-8) ‘
JLLJL)=T4e(TSL-TTLs TSC) -4UNETP
ALLIL)=T?

33 T2 3313

ANUZTLIAT(JIL-5)

L1 =T4-102 JS(AP4(5)J/DBZ}-4VH“(IDCDS(APH(BI)-DCDS(APH(S]!)/P%Zl

;J Tl 333
M= JAT{JL-T)

4L (J1)=TH-(D2 JS(AP4(7))/P3’)—4WMv((DCOS(APH(B)J*D OS{APH(T)))/P32)

CINTINJIE
EX{IV1=1.0-2F(I)/HL{J1}
EM{I)=EMI&FX(I)

TM=SM(T}*T

2A=TM{I}*T
dl[TE(5v'}EW(I)qu(JlivSDBZ
33 T2 302

YMNI=FLDJAT{JL-9)

AL CJ1)I=Z2F (1)
EX{I)=1.0-2FtI)/HLL{JL)
FX{I)=2.2

EMET T=2MI%EX(]I)
TM=ZM(I)&T*T

PR=IMLIFFT

ARITEL 6 5)EM{TI)  H4L{ L)} 450B2
31 T2 300
ALII)=T4+TSL-TCL+TSC-TP
EX(I)=1ad-2{I)/ZF(1])

EM{TI=EMI&EXTI)

142
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PART-G
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NI=J1
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3] % J=lgN3
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X2L Ly l)=X{NLyI+4&)
Y3I(NLel,I)=¥(I+1ls21)
Y2INL*el,I)=Y(D+%s21)

33 23 I=1yN3
AY{Is1)=Y3({N1+1,1)
3Y(Iyl)=Y2(NLel,I)

TALL MATHM[AL,XLeAT4N3yN3s1)
SALL MATM{AZXZ9Z214MN34M3e1)

IALL MATSI(A?Z1,M3,1)

Satll MATS3(21.,N3.1)

SALL MATS(AY.Z21,M3,.1)

CALL MATML AT XLleATeN34N3, 1)
CALL MATM[A%pX29Z224N34N3,1)

TZALL MATS(AZSZ24N3s1)

ALl MATS3(Z2,N3411
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IS(NL-Y)8,9,2

ZALL

"33 1

MATS{XY AlDyN341)
I=1'N3

2040505

. £O%0507

COM3603

CoM0s509

COoMos512

20OM0o511

Z0vas512

C240513

Cov0514

coMasls

COM0515

ZQuasly

C3MvD513.
Zav05109

Cavas20

Z3M0521¢
ZOMd522:
2J40523:
CO40524%:
Lovl525:
CaMDs525:
CIMds2T!
cavos29:
C0M3529°
cJ40530:
ZOMD531L!
caM3s32:c
CJIMI5331
CIM0D534:
23Mv9535¢
<cJM3535¢
ZIM0537C
2JaM0s538:¢
cOM0539¢0
COMO540C
CO40541¢
COM3542¢C
S0OM3543C
CaMO544(
COM2645<¢
£0OMI565TC
CoMos54TC
COMD543¢C
COMlI56437
CDM3550¢
CaMO0551C
CIv3552°7
20M2553¢C
2405547

"L 3M0555¢
-- 20OM2555°

COM3557¢C
CI40653°C
LOM0559¢<
COM25500

AN



117
718

10

12

39

11

17

93

98

16
13
18

15
115

J) 1 J=1sN3

E{NL+I¢J)=A5(T¢J)}
T{NLyIoJ)=AB{I4J)
A[NLyI)=A9(I,1)
3(NL»1)=A10(1,1)

CONTINMU=

EM])=5M2

[IS(NP-1) 117s11539117

51 T2 (T18.1208).1IN

AA=)].0D

37 15 Il=1+¥

NI=4-I1+1

J) 10 I=1,N3

J3 L0 J=1.N3
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