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ABSTRACT

Hydrodynamic and thermal characteristics are investigated numerically in the prescnt

research work. The integral forms of governing equations are descretized using control

volumc based Finite Volume method with collocated variable arrangement. Simple

algorithm is used and TDMA solver is applied IIJr solution of system of equations. Bolh

axisymmetirc and plane geometry are taken for study. Effect of surface waviness,

determined by wavelength-amplitudc ratio lJa (=L\ on flow and thermal field is

extensively studied in the prescnt investigation. The simulation work has bcen carried out

for L'=II.O, 13.0, 15.0, 17.0, 19.0,21.0,23.0,25.0,30.0 for a Reynolds number range 50

to 2000 for axisymmetric geomctry. Steady-laminar flow condition is assumed throughout

the simulation. Results are prescnted in the form of streamlllllction, isothermal lines,

velocity & vorticity profiles, change of mcan friction factor, variation in skin li-ieti"n.

local and average Nusselt number with Rcynolds number, wavc number and L'. For a

particular geometry, lengths of cireulation zone incrcasc with Reynolds IllIl11ber and

approach a limiting value lor higher Reynolds number. Wall shear stress in the bulgc part

of the channcl shows smaller valucs that affcct largely hcat transfer and Nusselt number

shows minimum values in this region. This circulation zone dramatically inereascs with

the increase of surface waviness showing high mean friction factor pCI' wavelcngth. Mean

friction factor shows linear variation with Reynolds number. A correlation is proposed f(1I'

calculating friction factor in thc form f=C/(Re)"', where C and m represcnts two

polynomials of degree 4 and 2 rcspectively with independent variable lor L'. This shows

good results with :t6% accuracy. Lower waviness of the surface show thc higher heat

transfcr than higher wavincss. Variation in Nusselt number with Reynolds number become

independent like circular pipe with lower waviness of the surface. I-Icat transfer rale "lils

almost exponentially along the axial direetion with the increase of wave number.
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I.I GENERAL

CHAPTER I

INTRODUCTION

Quite often we encounter fluid now and heat transfer over nat plat or cylindrical

objects at different orientations. These classical problems have some analytical and hugc

numerical solutions along with many cxpcrimcntal verifications. Results li'om thcsc

research works are widely used in many engineering applications for prcdicting their

pcrformanec, designing of many cquipmcnt, machinc parts likc small microchips to largc

nuclear reactor. l3ut things uscd in practical purposc are much more complicated in design

and prediction of thcir performance using results from simple geometry cause huge error.

For this complexity, in recent years, attention has been given to study hydrodynamic and

thermal characteristics of complex geometry. Among them corrugated and wavy passages

and surtilees are given special attention due to their widc application in computer

hardware, heat cxchanger. solar heat collector, some air-conditioning equipment. open

channel flow etc. Mathematical models uscd to prcdict flow and thcrmal behavior arc

mainly of coupled partial diffcrential equations of non-linear in nature and their solution is

quite impossible analytically except some special cases. Experimental works arc too much

costly and in some cases impossible. Computational fluid dynamics (CFD) plays dominant

role here and it gives too much luxury to go inside many complex problems. Duc to

increasing rate of computer performance nowadays even a pcrsonal computcr can solvc a

complex problcm within a minute which was a matter of day 1'01' somc supcrcomputcrs at

early in thc '70s.

1.2 BACKGROUND

A tube with periodically converging-diverging cross-section is one of thc several dcviccs

employed 1'01' enhancing the heat and mass translcr cfliciency. The nuid now. in thc now

passages with a periodically varying cross-section, attains a fully dcveloped regimc that

differs fundamcntally from that 1'01' a conventional constant-area flow channel. In thc

periodically varying cross-sections, thc fully developed velocity field repeats itself at



corresponding axial stations in successive cycles. The change of flow pattern with changcs

in duct dimensions is a special feature of the complex corrugated-duct geometry that is not

cncountcred in convcntional ducts such as circular and annular tuhes and rectangular

ducts. Flow through wavy or corrugated channel serves as a simplc example of separated

flow. in which the complex interactions of separated vortices. li'ee shear layers. driving

wall-bounded shear flows and the resulting heat and mass transfer can be examincd In

some details. These types of channcl are widely used for heat transfer augmentation 111

recent years. Geometrical complexity of such channel or ducts affects largely thc flo\\'

pattern and heat transfer characteristics. Their fabrication depends on many paramcters

like amplitude. wavelength. phase angle. inter-wall spacing. corrugation anglc. sharpness

or roundness of successive peaks and valleys of the wall elc. and cach of the paramcter

significantly affects the hydrodynamic and thermal behavior of nuid now through this

channel. This geometric not idealities and its elrcct on flow phenomenon motivates many

researchers to perform experimental or analytical work on this topic.

1.3 APPLICATION

Wavy and corrugated passages or surfaces are widely used in small to large electrical or

electronic devices such as processor of computer. transformer. Recently many of the

industrial heat exchangers are made of corrugated surl~lces for compactness along with

tube banks. In fossil fuel power plant. rotary air preheater of regenerative type are widely

used for heat recovery and increase efficiency of the plant and most of them arc made of

cross corrugated geometry. It is also used in solar heat collector that increases heat transfer

area and give compactness to the device. In some cases it is used for heat transfer

augmentation is case of ribbed surface that cause large pressure drop. These type surillces

have some application in catalytic reactor ill]. chemical reactor and gas turbine 141.

Conjugate heat transfer finds many applications in daily life. Examples representative of

this class of problems are air-conditioning maehines. air heaters. power station. Varity of

wavy surfaces are widely used in such cases. Various types of roof design include

corrugated surface of different orientations.
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1.4 MOTIVATION OF PRESENT RESEARCH WORK

Some applications of wavy or corrugated surfaces are bricfly discusscd in prcvwus

section. In recent years major attention has been given to the compactness of equipment.

machine parts. deviccs etc. Onc of the excellent examples of compact channel is

corrugated gcomctry that has large surface area compared to the conventional circular llI'

rectangular straight duct. But in 'many cascs it causes large pressure drop and thus

frictional loss occurs that causcs large pumping powcr. At thc same timc this type of

gcometry proves itself as high performance heat transfer device compared to the

conventional one. For the complexity of such geometry. there are many parameters that

can be studied for checking their influence and seek the optimum design of corrugated

duet or wavy channel. Fewer numbers of literatures is availablc on such topic (these arc

diseusscd in Chaptcr 2). Nishimura et. al. [IOJ and Goldstein et. al. [31 have done loIs of

work on wavy and corrugated channel. but their work is limited to mainly on a single set

of geomctry and mass transfcr. Still so many things len behind for studying. In this

rescarch work some of the extended work of prcvious rcscareh works have been given

attention along with some new aspect of corrugated geometry that will be helpful I()r many

of thc fabrication and design work.

1.5 OBJECTIVES

Thc present rescarch work is donc lor the prcdiction of l1uid l10w and heat transrer

characteristics of two-dimcnsional corrugated surfaces at laminar and turbulent nO\\'

condition using computational l1uid dynamic technique. The study has the following

objecli ves:

a) To test thc capability ofthc compuler code CAFFA (Computer aided l1uid 11011'

analysis) for solving problem associatcd with complex gcometry

b) To compare available numerical and some cxpcrimcntal data with present

simulaled dala

c) To study thc effect of, amplitude and wavelength of the corrugated surl~lce on

fluid flow. frictional loss and heat transfer
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d) To study the effect of Reynolds number, corrugation geometry and

asymmetric heating of corrugated surfacc on fluid flow, lj'ietional loss and heat

transfer

e) To lind the distance bctween the separation and reattachment point with the

variation of corrugated geometry and flow parameters at different wave

f) To find the mathematical relation between differcnt parameters, correlation

li'OI11 available simulatcd data.

1.6 ORDER OF' PRESENT AnON

For convenience of presentation, the total contents of this research paper arc divided into

several chapters. In this chaptcr a brief introduction has been presented with aim and

objective and application. Therc is nothing new to say about it. Chapter-2 consists of brief

discussion of availablc litcratures rclatcd to the present invcstigation along with their

limitations and scope of further work. In Chapter-3 mathematical model has been

presentcd along with discretization technique. Specialty of Finitc Volumc mcthod is

briefly discussed. Detail discretization of general coordinate-free generic conservation

equation has been presented along with solution algorithm, boundary condition and

handling procedure of instability, oscillatory solution etc. Chapter-4 consists of result and

brief discussion of simulated data from present investigation.

Finally. the conclusions drawn Irom the present investigation arc given in Chapter-5. This

chapter also includes suggcstions for furthcr rcscareh in this field.
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CHAPTIW.2

LITERATURE REVIEW

2.1 GENERAL

Flow through corrugated channel or a wavy passage has not been investigated to a grcat

extent becausc of geometric complcxity and varicty of influcntial paramctcrs. Some or thc

problcms. associated with it. are discussed in previous ehapter. Researehcrs put emphasis

on a partieular geometry and restricted to one set of geometrieal parameter and mass

transfCr; not to heat transfer and fluid flow at a great extent. However. ror eonvenience.

this type of geometry can be divided into two broad categorics according to Nishimura

[10]. One is axisymmetric. that is /low passage is convcrging-diverging and symmetrical

about an axis passing through the center of the channel. The second type of gcometry

having constant cross sectional area and centroidal axis undergoes a periodical change.

Different investigators investigate both types of problems. For convenience or present

investigation. literature related to these two geometrical configurations have bccn

presented briefly in this chaptcr.

2.2 PREVIOUS WORK

Flow and hcat transfer through wavy channel associated with boundary layer formation.

/low separation. frictional loss and thcre is no rcason to discuss about such things here.

because thcse are well known phenomcnon and already published.

Saidi ct. al. III studied laminar now past a sinusoidal cavity. They prcsented how incrcase

of !low velocity give birth vortex inside cavity and affect thermal perltlrlllance. Wang ,I<

Vanka 121 represented that steady Ilow did not provide any enhancement or heat transfer in

a periodic wavy passage bcltlre Re (based on average inter wall spacing) around IXO and

alier which self sustained oscillations lead to the destabilisation or laminar thermal

boundary layers. replenish thc ncar wall-nuid with fluid in the corc region. and thus

provide a natural mechanism of enhancement or heat transfer. Thcy also reported heat

transfer is 2.5 times higher in a corrugated wall channel than that of parallel wall channel.

Goldstein & Sparrow 131 studied laminar. transitional and low Reynolds number turbulent
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!low in a corrugated wall channel. They reported that heat transfer cocfficients slightly

higher than those for a parallel plate channel up to Re (based on average channel

height) I 000. In the case of turbulent !low. they found significant increase in heat transfer

coefIieient (2.5 to 3 times) at Re=1500 to Re=25000. Yao et. al. 151 reported and mixed

convection along a vertical wavy surface and found significant increase in heat transl"er

coefficicnt. Yang et. al. 161 carried out computation using low Reynolds number turbulent

model for three different inner wall spacing for 100<Re<2500 . 15" < 0 < ]0" in a

eorrugatcd wall channel and reported transitional Reynolds number is lowcr than thc valuc

for the parallel plate duct and it decrcases with increasing corrugation angle. Nishill1unl

et. al. 171 investigated !low characteristics such as !low pattern. pressure drop and wall

shear stress in channel with symmetric sinusoidal wavy wall. It was reported an increase in

Reynolds number (Re>350) caused turbulent flow to develop. owing to the onset of

unsteady vortex motion. Friction factor is inversely proportional to Re at laminar range and

independent of Re at turbulent region. Russ & Beer 181 found maximum Nusselt numbcr

ncar the reattachment point of the flow ncar the converging part of the wavy passage and

mean convective transport over one wave for fully developed !low is nearly the same as

that for straight pipe. Sparrow et. al. [20] performed experimental study to determine the

heat transfer, pressure drop, and flow field responses to the rounding of the peaks of a

corrugated wall duct at a Reynolds number range 2000 to 33000 based on inter wall

spacing. They reported that due to rounding of. friction factor decreases corresponding to a

given Reynolds number evcn more than did the Nusselt number. On the other hand. at

equal pumping power. the Nussell number was relatively insensitive to whether the peaks

were sharp or rounded. Asako & Faghri 1211 developed a finite volume method using Cll-

ordinate transformation for predicting !low and heat transfer perftll"lnance in a corrugated

duct. The basis of the method is an algebraic co-ordinate transformation. which maps the

complex fluid domain onto a reetanglc. They reported that !low pattern are highly complex

ineluding largc recalculation zones. The pressure drops and friction factor results arc higher

than the corresponding values lor a straight duct. From a performance analysis model. they

found that there are small differences in the heat transfer ratios under the different

constraints- fixed pumping power. fixed pressure drop. fixed mass !low rate. Sparnm 1'1.

al. [231 experimentally measured heat transfer and pressure drop and visualise !low in a

corrugated duct. Sparrow & Comb 1201 analyse the effect of interwall spacing and inlet

condition on fluid flow in a corrugated wall heat exchanger. Performance evaluations were
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carried out for thrcc differcnt constraints- fixcd pumping powcr. fixcd prcssurc drop. and

fixed mass flow. For all of these cases, the heat transfer coefficient for the largcr inerwall

spacing was slightly lower than that for the smaller interwall spacing. but thc pressurc drop

also lowcr. Faghri & Asalm 1221 used a IInite diffcrcnce scheme to predict periodic lilily

developed heat transfer and lluid llow characteristics in a converging-diverging flow

channel. The wall of the channel linearly diverges from minimum cross-section to its peak

then again linearly converges to its minimum cross-section. Represcntative results were

carried out for laminar flow, Prandtlnumber 01'0.7, in the Reynolds number range li'om <)()

to 1635. for various taper angles and for three ratios of maximum I minimum height of the

flow channel. They found a moderate enhancement in the Nusselt number at high values of

Reynolds number with a pressure drop penalty when compared with the corresponding

values for straight duct. Amano 113] performed numerical study to predict hydrodynamic

and heat transfer characteristics in a periodically corrugatcd wall channel for both laminar

and turbulent ('k- E turbulent modcl) flows. As a corrugatcd channel, a channel which has a

cyclically corrugated wall at a 90" angle is considered. The Reynolds number considered in

his study ranging from 10 to 25000 and step ratio (height I width) ranging Irom 2 to 4. It is

reported that the effect of the step ratio on the local Nusselt number is minor but skin

friction and heat transfer pattcrn change drastically from laminar to turbulcnt llows.

The present work will be undertaken to study the llow lIeid. friction 1~lctor.temperature

variation and heat transfer during laminar and turbulent llow over the two dimcnsional

corrugated surface
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CHAPTER 3

MATHEMATICAL MODEL & SOLUTION PROCEDURE

3.1 GENERAL

In this chapter method of numerical simulation, mathematical model wilh boundary

condition, discrctization tcchnique and solution of algorithm along witb solution

procedure linear equation systcm are briefly discussed. For convenicncc of prcsentation.

total chapter is divided into scveral subscctions.

Problcm studied in this investigation having computational domain of wavy-sur"lCe

consists of complex boundary. The trcatmcnt of complcx boundary is vcry diflieult one

and in many cases writing computer codc lor grid gencration of such gcomctry IS

sometime impossible. Boundary-fitted non-orthogonal grids are most olicn used to

calculate flows in complex gcometries (most commercial codcs use such grids). They can

be structured, block-structured, or unstructured. The advantage of such grids is that they

can be adapted to any geometry. and that optimum propcrtics are easier to achieve than

with orthogonal curvilinear grids. Since the grid lines follow the boundaries. the

boundary conditions are more easily implemented that with stepwise approximation of

curved boundaries. The grid can also be adapted to the flow. i.e. one set of grid lines can

be chosen to follow the streamlines (which enhances the accuracy) and the spacing can be

made smaller in regions of strong variable variation, especially if block-structured or

unstructured grids are used.

Non-orthogonal grids have also several disadvantages. The transformed equations contain

more terms thereby increasing both the difficulty of programming and the cost of solving

the equations. the grid non-orthogonality may cause unphysical solutions and the

arrangement of variables on the grid affects the accuracy and efficiency of the algorilhm.

Control volume based finite-volume method is best suited lor complex-geomctry

problem. This method uscs integral form of the conscrvation cquations as its starting

point. Thc solution domain is subdividcd into a finite numbcr of contiguous control

volumes (CYs). and the conservation equations are applied to each CY. At the centroid of
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each CV lies a computational node at which the variable values are to be calculated.

Computer coding for grid generation or flow solving is not too much difficult in this

method. Recently, many commercial codes use this method efficiently. Some important

features of Finite Volume method are discussed later sections.

3.2 GOVERNING EQUATIONS

Control volume based Finite Volume method uses integral form of conservation

equations as mentioned earlier for mass, momentum, and scalar quantity (temperature,

kinetic energy etc.). Considering an incompressible, steady flow with a Newtonian

constant viscosity fluid, the integral form governing equations are as follows:

1 pv.ndS=O

1 plliv.ndS= l"gradll,.ndS'-l pi,.ndS+ fph,dV,.

1 pili V • n dS = 1" grad II J • n dS - 1 p i i . n dS + f phi d V

"

1 p Tv. n dS = f k grad T , n dS
s

(3.1 )

(3.2 )

(3.3)

(3.4)

In these equations. p is the Iluid density. V is the control volume (CV) bounded bv a

closed sorfaee S. v is the Iluid velocity vector whose Cartesian components are Ui, fl is the

dynamic viscosity. T is the temperature. p is the pressure. n is the unit vector normal to S

and directed outwards and bi is the body force in the direction of the Cartesian coordinate

Xi The another part of the present study deals with an axisymmetric problem, The

governing equations, specialty, assumption and modification of same computer code to

handle the axisymmetric problem is discussed in section 3.8.

3.2.1 BOUNDARY CONDITION

Implementation of boundary condition for complex geometry is not so easy as regular

geometry. A separate section will present handling and implementation of boundary
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condition for complex geometry in general sense. Here, specially, what is used particularly

in present investigation, is discussed briclly.

a) INLET BOUNDARY:

At inlet fully developed velocity profile is assumed. The corresponding equation Il)r such

profile for circular pipe (axixynunetric geometry) shown in Eq.3.5a and for plane

geometry, velocity profile between two parallel plates (Eq.3.5b) is uscd.

!!J!l=2[1-( 2,. J'J
ll", D;'IV -2a

[ ( J' J
II(Y) =3. 1- 2y
um 3 Hav -2a

(3.5'1)

(3.5b)

Where Um is the mean velocity of Ilow equal to half of the centerline velocity, u (r) is the

velocity at different radial position measured li'om centerline.

b) OUTLET CONDITION:

The imposed exit boundary condition is a parallel outllow with the pressure gradient in the

direction perpendicular to the axis is set equal to zero and the vertical velocity component

set equal to zero as well.

c) SYMMETRY PLANE:

At the symmetry plane, the normal gradient is zero for all scalar quantities and velocity

components parallel to the plane; the velocity component normal to the plane is set to

zero.

d) SOLID WALL:

Wall is considered impermeable, convective fluxes of all quantities through wall arc kept

zero. No slip boundary condition is applied all wall except inlet, outlet i.e. Ui = Ui.",,11

3.3 GENERALIZED FORM OF GOVERNING EQUATIONS:

The governing integral equations, discussed above, can be expressed in general !lmn. The

integral form of this generic conservation is:
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This equation is independent of type of grid, i.e. coordinate free form. The first term of thc

equation stands for unsteady term, second for convective, third for diffusive and thc last

one is source term. For q>=1, this becomes mass conservation equation of (3.1): for 'P=II,.

u)' this becomes momentum equation of (3.2), (3.3), for <p=T, this bccomcs cncrgy

equation. For stcady !low, the first term is always equal to zero, becausc thcre is no changc

of variables with respect to time. Source term may be zero or may be givcn particular

value depending on the problcm being solved. In general. the thing discussed above can bc

summarized in a tabular form:

TABLE-3.1

Spccial cascs with sourcc tcrm of gcneral equation

Value of Velocity r Name of the equation Sourcc term

q> vector, v

1 v Jl Continuity 0

It; V ~, U-momentum ,\';

ilf \' ~l V-momentum .'>i
T \' k Energy 0

Where,

s, =-1 pi,.ndS+ fPb, dV
J'

Sj =-1 pi,.ndS+ fph, dV
J'

Thc sct of cquations prcscnted above has becn solvcd for two velocity componcnts 11,. II, .

l'or prcssurc p and for tempcrature T.

3.4 NUMERICAL SOLUTION OF GOVERNING EQUATIONS:

As discussed earlier. the governlllg equations are the special forms of thc gcncrlc

conservation equation (3.6)
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There is no need to discuss the solution technique of the governing equations separately.

As they are the special cases of equation (3.6), any methodology of solution of equation

(3.6) can give total idea of solution procedure of special cascs. Equation (3.6) consists of

surface and volume integral. Convcctivc and diffusive terms need surt:lce integral and

source term needs volume integral.

The principles of discretization are described in later section. This is independent of the

type of grid used; however, as the geometry considered in this investigation is a complex

one. there are several speeial features have to be discussed that are absent in the regular

orthogonal grid.

3.4,1 NUMERICAL GRID AND J)ATA STRUCTURE:

The solution domain is first subdivided into a finite numher of contiguous control volullles

(CVs), and the conservation equations are applied to each CV. At the centroid of each CV

lies a computational node at which the variable values are to be calculated. The

computational node at which all unknowns are stored in one-dimensional (lD) arrays alld

sorted level-wise, start in).!with level I of grid (coarsest grid level).
11

y • • : CV center
o :Face center

Fig. 3.1: A typical CV and the notation used

The FV method can accommodate any type of grid, so it is suitable for complex

geometries. The grid defines only the control volume boundaries and need not be related

to a coordinate system. The method is conservative by construction, so long as surl:lce
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intcgrals are the same for the CVs sharing the boundary. A typical CV uscd in complcx

gcometry shown Fig. 3.1.

Both surface and volume integrals in the conservation equations (3.1) - (3.4). (3.6) arc

approximated here using midpoint rule. i.e. the value of thc integrand at the center of cell

face or CV is multiplied by the face area or CV volume. To make computations eflicient.

the geometrical parameters of each CV necded for integral approximations are computed

once upon grid generation and storcd. These quantities are:

• CV -volume. which is for plane geometries ealculatcd as:

(3.7)

Where rn< is the position vector of the cell corner 'nc'. cf. Fig.3.1. For axi-

symmetric geometries, the CV -volume is defined by the rotation of the li'ont

surface by one radian around the axis of symmetry and can be calculated as:

V=~I (XI+xIIXyl'+y'"I+J+ylyl,,)
6 1=1

Where x denotes thc axial and y the radial direction. and I denotes CV vcrticcs

numbered counter-clockwise.

• Components of the surlilce vector .'I n = .'I' i+ .'I' j

so. = (Y",. - y".k,. S"', = (x". -x",.),;.. ] (3.9)

where r< and rn are the distanccs of cell-face center from the axis of symmetry (lin

plane 2D problems, r is set to unity). It should bear in mind that (Sn)s f(lr a CV

centered around node P cquals - (Sn)n of the CV centered around node S: thus.

only surtilce vector components for the east and north faces are cOlllputed and

stored.

• Intcrpolation factors A<and An, which arc defined as:

. h-rl'l
",. = Ir, -r"I+lrF -r,.I'

Ir" -r,,1/.."-I Ir" -rl' +lr,... -rill
13
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The above quantities related to the east and north faces of a CY are calculated once and

stored at a location associated with that CY. However. this is done for inncr faccs only: iI'

the east or north side of a CY coincides with either a domain boundary. the memory

locations reserved for these quantitics remain empty. For the boundary a separate data

structure is introduced.

3.4.2 APPROXIMATION OF SURFACE AND VOLUME INTEGRALS

As already mentioned. both surface and volume integrals arc approximated using midpoint

rule (14). Since all unknowns and tluid properties arc calculated and stored at CY center.

there are no additional approximations involved in the evaluation of volume integrals: one

simply multiplies the CY -center value of the integrand with CY -volume. For the

calculation of surface integrals. further approximations are necessary since the values of

the integrand f = P rjJv in convective and f = r grad rjJin diffllsive fluxes (Eq. 3.4) arc not

known at the cell-face center. Therefore. interpolation and numerical differentiation have

to be used to express the cell-face values of variables and their derivatives through the

nodal values. Details on various options can be I(HlIld in Ferziger and I'erie [14 J: here only

the methods used in the present calculations will be brietly described.

Cell-face values of variables are approximated using linear interpolation:

(3.11)

where A, was introduced in Eq. (3.10). This is a second-order approximation at the

location 'e" on the straight line connecting nodes I' and E. If the cell-f:lee center 'e" docs

not coincide with the location 'e", as in Fig.3.1. the integral approximation

L f.11 dS '" I:'S,: + I:'S,: (3.12)

will not be second-order accurate. As long as 'e" is close to 'c". as is the case in Fig. I. the

first-order error term is small; however. if 'e" comes close to cell corners. the first-order
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term will dominate. Thus, the grid quality can be analyzed by comparing Irc-rc'i and Irnc-

r"l The second-order accuracy can be restored by adding a correction tcrm as follows:

rjJ,. '" rjJ,.. + (grad rjJ)... • (r, - r, ) (3.13 )

where the gradient at 'e" can be obtaincd by intcrpolating thc cell-ccntcr gradients using

Eq. (3.11)

Linear interpolation leads in a FV -mcthod to the same result as thc usc of ccntral

differences for thc first dcrivativcs in tinite-difference (FD) methods. which is why it is

usually referred to as central-differencing scheme (CDS).

It is advantageous to use the so eallcd deferred correction approach whcn implcmcnting

this scheme in implicit solution algorithms [15]. In that casc only the lirst-ordcr upwind

approximation (UDS: ~c '" ~I' if thc flow is from P to E, otherwisc ~c '" ~El is used 10

calculate the clements of thc coefficient matrix, while the explicitly calculated difference

bctwecn thc CDS-and UDS-approximation is addcd to the right-hand sidc of the equation

systcm:

'" = '" LJIlS + ('" CIlS _ '" CIlS)"IJV'e If.l(' Y If'e 'f'l' (3.14 )

Thc tcrm in brackcts is multiplicd by a factor 0 :0: Y :0: I, this is eallcd blcnding tilelo]',

Blcnding is ncccssary in ordcr to supprcss thc oscillations ncar discontinuitics.

In ordcr to calculatc the diffusive fluxcs, thc gradicnt vcctor at the cell i:1ce is requircd. To

this end one can use coordinate transformation, as is most often done in conjunction with

structurcd grids. However, a much simpler approach, developed by Muzaicrija ct. al. 1141.
is possible. Thc gradient is lirst cxplicitly calculatcd at CV centers using midpoint-rule

approximation bascd on thc Gauss-thcorcm:

(
arjJ ) L, 'l' k kS k
- '" ----, (k = e, w, n, s .... ).ax, I' v
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Here, r/JA is calculated in the same way as in convective Duxes (although one could usc a

different approximation; however, to preserve the accuracy of the gradicnt approximation.

the interpolation should be of at least second order).

The above approximation of the gradient is valid for CYs of arbitrary shape. Also, in thc

case of ax i-symmetric geometries, one has to take into account the contribution or thc

front and back face when calculating the derivative with respect to 1', since they do not

cancel out as in the case of plane geometries, The additional term to bc added on the right-

hand side of Eq. (3.15) is - r/J/" where ,~.is the area of the li'ont face.

The cell-center derivatives can now be interpolated to the cell-Illce centers using the same

interpolation technique as for convective terms. However oscillatory solutions may

develop in this case (for detailed [14]), Muzalcrija et. al. [15] suggested the I(lll()\\ing

approximation which prevents oscillations and retains the second-order accuracy:

""'l " - I'(grad r/J) " :: ,,.I'E -,,.1 (3.16)

The underlined term is calculated using prevailing valucs of the variables and treatcd as

another dcferrcd corrcction, scc above, If the line connecting nodes I' and F is orthogonal

to the cell face, the underlined term is zcro (since the vectors 1'" - "" and n, arc then (0-

linear) and the usual central-dilfercncc approximation of the derivativc is recovcred. Thc

explicitly calculated gradient at the cell {lice (denoted by over-bar in the above exprcssion

and obtained by linear interpolation) is used only to account for the cross dcrivativc. Thus,

the implicit part of the approximation involvcs only the nearest ncighhors, resulting in a

compact coefficient matrix. Note that in the momentum equations, not only the normal

derivative of the dominant velocity component. but also tangcntial dcrivatives of the other

components are needed at the cell-face center. These can be obtained by intcrpolating ccll-

center values, as they cause no problems.
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The convective fluxes are non-linear terms. so linearization is necessary. Here the simple

Picard iteration is employed: the mass flux through the cell face is taken li'om the previous

iteration:

f p ~ v . 11dS '" ~,. f p v . 11dS = ~,. Iii,.
So \.

(3.171

Source terms are also be non-linear; the same approach is used to linearize thel11.

3.5 ALGEBRAIC EQUATION SYSTEM

Upon separation of the terms involving unknown variables and the explicitly calculated

ones. an algebraic equation of the forl11

A,.~,.+ 'IA/~, = Q". 1= E. W. N.S .
I

(3.1 X)

is obtained for each CV. The coefticiellts AI'. Aw• AN. and As contain contributions rrol11

surface integrals over faces C0l111110nto the cell around node P and the corresponding

neighbor: AI' contains in addition li'om source terms (volume integrals). Q" contains all

terms. which are treated as known (source terms. parts of surrace integrals treated

explicitly as deferred corrections). These coefficients are stored as cell-data. i.e .. they arc

associated with the cell-index ..

For the solution domain as a whole. the algebraic equation system can be written as:

Acp=Q (3. 1<))

Where A is a square N X N Cllefticient matrix. <p is the vector or unknowns. Q is the

vector or right-hand sides. and N is the number or CVs. The global matrix A is irregular:

however. since an iterative method is used to solve the linearized equation systems. the

irregularity can be easily dcalt with.

3.6 CALCULATION OF PRESSURE

The pressure-velocity coupling is achieved using the well-known SIMPLE algorithm II ()I.
The solution process starts with a guesscd pressure field. Each time the lineari/.ed
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momentum equations arc solved, the mass conservation is imposed on the new velocities

(to within a certain tolerance) by applying a velocity correction, which is proportional to

the gradient of thc pressure correction. The dependence of velocity on pressure gradient is

obvious from the momentum equation. Special care is needed in a co-located variable

arrangement to avoid pressure-velocity decoupling. Detailed discussion of this issue and

the method of solve the problem is available in [14]; here only the main steps will he

given.

The velocity lield obtained by solving the linearized momentum equations is denoted hy

I/'i. Superscript '.' indicates uncorrected variable of new solution. The normal velocity

component at the cell face 'e' is calculated by interpolating neighbor nodal values ami

subtracting a correction term which should detect oscillations and help smooth them out

[15]:

(v' .n) = ~ _(_V J [_p_" -_P_" __(gr_ad_p)_.(_1'>:_-1'_1' l]
, 'A" (1',.-I' ).n (1',.-I' ).11

l' • II . II

(3.20)

The over-bar denotes interpolation from neighbor nodal values (here linear; sec Lilek and

Perie [14] for details about using higher-order Interpolation and integration techniques);

double over-bar denotes arithmetic averaging. The correction term in square brackets

vanishes when the pressure variation is linear or quadratic; it is proportional to the square

of mesh spaeing and a third derivative of pressure [14]. Thus, this term is a second-order

correction that goes consistently towards zero as the rid is refined; it is large only when the

pressure variation is not smooth.

The normal velocity component is proportional to the normal derivative of pressure, which

can be approximated at the eell.face center by the following central-difference

approximation:

(
OJ') '" Pc - P/"o (1',.-I' ).n

"" . II

(3.21 )

Here. an approximation is made 111 that the pressure values at locations E' and P' arc

replaced by pressure values at E and P. This ncgleeting of the non-orthogonality docs not

affect the convergence of the procedure if the non-orthogonality is not severe (i.e. "hcll

the angle between veetors (rE - 1'1') and n is smaller than 45"). The usc of thc corn:cl
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normal derivative would complicate the resulting algebraic equation; the error can bc

eliminated by applying another correction, as described in [14].

The mass fluxes calculated using the above normal velocity do not - in general - satisfy the

mass conservation law. They need to be corrected by invoking a pressure-correction, in the

spirit of the SIMPLE method [16]. From the above equation one can derive a relation

between the corrections of the normal velocity and the pressure-derivative:

(v'.n). ",(~)
A" ,

I?' . -I)'I: I'

h: -1',.1
(3.22)

The mass flux is calculated using the above approximations as follows:

iii = p[(v' .n). +(v'.n), -1/,.]8,.
The detail procedure is available in ref. [15]

3.7 SOLUTION ALGORITHM

(3.23 )

The solution algorithm follows the well-known SIMPLE-pattern and can be summarized

as follows:

First, all variables arc assigned initial values. An iterative procedure is then started

in order to find solution of the coupled non-linear equations using the following

steps:

The momentum equations arc discretizcd and linearized, leading to

algebraic equation systems for each velocity componcnt, in which the

pressure, the other velocity components, temperature. and all fluid

properties are treated as known (values from previous iteration are used).

These linear equation systems arc solved iteratively in turn to obtain an

improved estimate of the velocity,u;. The iterations in the linear equation

solver are called inner iterations. There is no need to sol ve thcsc equation

systems very accurately, since the equations were linearized and de-

coupled; experience shows that it is enough to reduce the residual level by

an order of magnitude. Usually only few (one to jive depending on the type

of geometry) inner iterations arc necessary.
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The improved veloeity field is used to ealculate new mass fluxes throuc:h

CV faces and to invoke the mass-conservation equation: the result is thc

pressure-correction equation, which is solved using thc same linear

equation solver and to the same tolerance. Since the pressure-correction

equation converges much slower than other equations (it represents a

Poisson-equation with Neumann boundary conditions). more Inncr

iterations are necessary than for the momentum equations. The maximum

number is usually limited (here 15-20), but iterations are stopped earlicr if

the residual level drops by an order of magnitude. Upon solving I"H p'. the

mass !luxes, CV -center velocities, and pressure are corrected using

expressions given above. Only an a-fraction of p' is added to pressure,

where a '" (0.1 - 0.8); smaller values are used for large time steps in thc

case unsteady !low and highly non-orthogonal grids.

Additional transport equations are solved in the same manner to obtain

beller estimates of the new solution (Ilere temperaturc).

This completes one outer iteration; the ahove steps arc repeatcd until

residual level before the first inner iteration in each equation becomes

sufficiently small. Usually, a reduction by three to I"ll'" orders of mac:nitu(\c-

corresponds to a convergcnce error of the order of 0.1 'X,.

For further stabilization of the numerical algorithm, underrelaxation jlletors 01'0.55-0.9 arc

used for velocity components depending on the geometry, 0.2 I,,)r pressure and I.U fi,l'

temperature.

Both inner and outer iterations can be speeded up by multi-grid methods. For the inner

iterations. this is meaningful only for the pressure-correction equation and very line grids.

For the outer iterations. the multi-grid method increases the efficiency tremendously in

steady now calculations. In present study, three-grid level is chosen. Grid lcvel I is coarse.

2 is medium and grid level 3 is the tinest one and all results are presented lor the finest

level.
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3.8 AXISYMMETRIC PROBLEM

As discusscd carlier chapters, two separate types of geometry arc considering in prcscnt

study. The first one is plane geometry; two sinusoidally varied wavy surlilee having samc

cross-sectional area Irom inlet to outlet and the second one is axisymmetric gcometry; a

pipe with sinusoidally converging-diverging cross-sectional area li'om inlet to outlet.

Axisymmetric !lows are three-dimensional with respect to Cartesian coordinates i.c. the

velocity components arc functions of all three coordinates, but they arc only 1\\"0-

dimensional in a cylindrical coordinate system (all derivatives with rcspect to thc

circumferential direction are zero, and all three velocity components are functions of ollly

the axial and radial coordinates, z and 1'). In cases without swirl. the circumferential

velocity component is zero everywhere, As it is much easier to work with two independent

variables than three, for axisymmetric !lows, it makes sense to work in a cylindrical

coordinate system rather than a Cartesian one.

In differential form, the 20 conservation equations for mass and momentum, written in a

cylindrical coordinate system, read (Bird et aI., 1962):

a(pv, ) I a(prv )
--'-+- '-0 (3.24)

az r ar

2
a(pli,V,) la(prli,li,.) ap aT" la(rT,,) 1'"" PliO----+-----=--+--+-----+-+--+ ph (3.2(,)

a:: r ar azazrar r r '

a(pli,li"J I a(pru,.li(l) pli,.li" aT,t I ri(r'T,(I)----+- -----+--+-----+ph (3,27)
az r ar r az r' ar "

Where the non-zero stress tensor components arc:
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2 Oil. 2 j'
f._ = P--" +-P (IV U-- Jz 3

011 2
f,., = 2p--' + - p div Ua,. 3

2 II, 2 d'f"" = p-+-p IVU
r 3

f '" = f '" = p( _0_11_, + _0_11,_' )or 0::

o (II" )f". = f"" = pI' - --
01' I'

(3.2X)

(3.2'))

(3.30)

(3.3 I)

(3.32)

(' ")..L.:U
OliO

To: = r:o = 1-'--oz
The above equations contain two terms which have no analog in Cartcsian coordinates:

PI',; / I' in the equation for 11,-.which represents the apparent centrifugal Illl'ce. and I)\', \',/1'

in the equation for vo. which represents the apparent Corio lis force. These terms arise from

thc coordinate transformation should not be confused with the centrifugal and Coriolis

forces that apparent in a rotating coordinate li'amc. If the swirl velocity Vo is zero. thc

apparent forccs arc zcro and thc third equation bccomes rcdundant.

When a FD method is used, the derivatives with respect to both axial and radial

coordinates are approximated in the same way as in Cartesian coordinates; mcthod

described in carlier scetions can be uscd.

Finite volumc mcthods requires somc care. Thc eonscrvation cquation in intcgral

form given earlier (3.1 - 3.5) rcmain thc same. with the addition of apparcnt IlllTCS as

source terms. These are integrated over the volume as described in SecUA.2. The CV size

in thc 8.dircction is units i.e. one radian.

If the coordinates z and r of the cylindrical coordinate system arc replaced by x and y. the

analog with the equations in Cartesian coordinates becomes obvious. Indeed. if r is set to

unity and Voand '00 are set to zero. these equations become identical to those in Cartesian

coordinates. with 1': = IIx and 1',- = II •.. Thus the same computer code can be used Ill!"both
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planc and axisymmetric 20 flows; for axisymmctric problems, onc scts r = y and includes

'tHO and, if the swirl component is lIOn-zero, thc Vo cquation [15]
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 GENERAL

In previous chapter. computational tcchniquc along with detail discretization or govcrning

equations is presented. In this chapter. analysis or results f1'om prcsent numerical simulation

of laminar flow through wavy channel and its hydrodynamic and thermal charactcristic will

be discussed. For convenience of presentation, this chapter is subdivided into several

subsections. Howcver. the well known and classical phenomenon behind thc flow physics

related to present investigation have not been discussed details. Just a brier outline is

prescnted when neccssary but new phenomenon that is the outcome or prescnt numcrical

simulation has been presentcd dctails.

4.2 COMPUTATIONAL DOMAIN

The geometry of present investigation is shown in FigA.I. This is a wavy ehanncl consisting

of four cycles. Both axisymmetric and plane gcometry with wavy boundary is considered in

this invcstigation. Samc computcr codc is adaptcd and capablc or solving both problems. In

this section. computational domain along with geomctrical paramctcr is discussed Illr both

geometry together. but computational results are discussed later scparately 1'01' two gcomclry.

In FigA. J. dark-heavy lines show the physical boundary. Thc physical boundary IS

symmctrical about ccntroidal axis and is dcflncd by thc sinus runction:

[
. If ( 4 x)]r=a I-S1I1"2 I+T Axisymmctrie gcometry (4.1 )

[ . If( 4X)]y = a 1- S1I1"2 1+T ; Planc geometry (4.2 )

As the geometry is symmetrical about its ccntroidal aXIs. only one hal I' is taken as

computational domain. Light lines inside the physical boundary consist or computational
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domain showing inlct, outlct, symmctry and impcnncablc wall. Grid gcncration codc of

'CAFFA' [12] could produce straight line, circular arc and arbitrary linc scgmcnts. For

prcscnt invcstigation. a ncw subroutinc is introduccd that can producc wavy lincs of any

wavelcngth, amplitude and phasc anglc. A portion of thc subroutinc that introduccd thc wavy

line is presented in the appendix [A].

FigA.2a. and Fig.4.2b. show thc gcometrical parametcrs associ at cd with prcscnt invcstigation

for axisymmctric and planc gcomctry rcspcctively with coordinatc systcm.

4.3 STEPS OF SIMULATION

Aller setting a particular gcomctry (for constant Ala ratio), the simulation is startcd. A

systematic progression in Reynolds number was obtained by decreasing the tluid kinamatic

viscosity v. This also decreased the pressure drop through the channel appropriatcly to

simulatc a nearly linear decrease of friction factor with Reynolds numbcr. Bccausc thc

kinamatic viscosity was the indcpendent variable, the Reynolds numbcrs actually did not turn

out to be intcgcr values. The discrctizcd cquations arc solvcd using sufficicntly largc numbcr

of itcrations. For convcrgencc of field value, residual Icvels are monitored at prcviously

specilied monitoring location. Iterations wcrc continucd until dilTcrcncc bctwccn two last

solutions was lcss than 10.5 to 10-6 For thc furthcr stabilization of numcrical algorithm

underrclaxation factors werc uscd as shown:

TABLI~:4.1

Rangc of Undcr Relaxation Factor (URI') for different variables

Variable Rangc of URI' Rangc of Rc

0.85 - 0.90 300 ~ Rc

U-velocity 0.82 - 0.85 300 - 600

V-velocity 0.75 - 0.80 600 - 1200

0.65 - 0.76 1200 - 2000

Pressurc 0.2 100 - 2000

Tcmperature 0.9 - 1.0 100 - 2000
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4.4 GRID SENSITIVITY TEST

Numerical solution of any problem strongly depends on grid size. Effect of grid sil.e in!lucncc

the hydrodynamic and thermal paramcter of solution and sometime causc huge crror with

unfcasible solution. For present investigation. three-grid size is chosen:

TABLE: 4.2

Three grid levels with their sizes and namcs

Fincness of grid Grid size Name of thc levcl

Coarse 140*16 first level grid

Medium 280*32 second level grid

Fine 560*64 third level grid

Thc first numerical value indicates the number of control volume in axial direction and

second for radial direction. The code 'CAFFA' is a multi-grid !low solvcr. solves prl1bkm

f1"Omcoarse grid to fine grid level. For present simulation. axial velocity profile is choscn lor

sensitivity testing. For several A/a ratio and Reynolds number. axial velocity profiles fl11"three

grid level arc calculated and compared. The computed results of A/a= 15.0 and Reynolds

number 800 is presented in Fig.4.3a. Fig.4.3b and Fig.4.3c for first cycle at six axial positions

(X=0.0.0.14.0.28.0.42.0.71.0.85) calculated from the inlet. Up to X=0.42 there is no

considerable difference in three proliles of coarse. medium coarse and line grid level. Scc(lnd

and third level profiles almost overlaps each other. A considerable dilkrcnce is observcd at

first level profiles with second and third levels profiles at X=0.71.0.85. Though second bcl

and third Icvels profiles do not ovcrlap but shows good agrccment to each other. Second and

third levels profiles elearly show the negative velocity profile at upper side. Bccausc it is in

the separation region. but the thickness of ncgativc velocity profile is very small and it is

difficult to show this region by first level profile due to smaller number of grid at radial

direction (16 only). Fig.4.4a to Fig.4.4e show the velocity profiles fl)r plane geometry. I\nd

above discussion is also suitable for plane geometry. Proceeding simulation in grid si/.c liner
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than 560*64 is not possible due to lack of computer hardware facility. Thc whole simulation

work is done on three grid levels but result of third gird level (560*64) is stored it)r rlll'ther

calculations.

4.4 VALIDATION OF NUMERICAL MODEL

To validate the present numcrieal model, simulatcd data is tcstcd against availablc

experimental and numerical data of other investigator, deal with wavy channcl. For

axisymmetric geometry, mcan ti'iction coefficient (I) per wave Icngth (A) is ealculatcd I()I'

present simulated data using the equation [9] shown below:

f = 0;" t.P
L I ,

2PU~1

(4.3 )

Where t.P is the pressure differcnce betwccn inlct and outlet. Therc is a slight variation in

prcssurc value along the radial direction at inlet and outlet. For simplicity of calculation,

arithmetic mean of cell value or presslll'e at inlet and outlet is taken ttli' the calculation ol'I\P.

Here length of the channel L is calculated by wave length (A) times the no. of cyclc. In

present investigation the value ofL is '411.'. Mean fi'iction coefficient is calculated ttl[ 1:=19.0

for a range of Reynolds number 100 to 1000 based on average diameter of the channel.

Variation of friction coefficient 'I' ' with Reynolds number is shown in Fig.4.5. This is

compared with the experimental data of Russ & Beer [9], because they carried out thcir

experiment in a geometry exactly like the geometry used in prescnt investigation with

L' = 19.0. The only difference is they took 10 cycles and in present investigations 4 cycles arc

considered. Friction coefficient for straight pipe is also presented tt)r comparison. This is

calculated using relation:

f = 64
Re

(4.4)

Present prediction shows good agreement with experimental data. Only some deviation IS

observed between Reynolds number range 250 to 400. Pressure was measured by pressure

cell and they reported 1% error in their experiment. In this range of Re, flow separation starts

at the bulge part of the channel and separation bubble grows in size with large positive
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pressure gradient along the flow direction. Details of this phenomenon will be discussed in

later sections. as we will see there after Re=400 there is slight change in size in vortcx with

further increase in Re. Vortex formation and growing up in size may introducc sonle

unstability in !low field.

For the case of plane geometry. present prediction is compared against similar work done by

Nishimura et. al. [10] and Wang & Vanka [2]. In fig. 4.7, solid line indicates the position of

predicted separation and reattachment point at the wavy wall for Reynolds number range 10

to 1000. The region inside this profile indicates the separation rcgion. For this range of Re,

position of separation point show good agreement with the experimental data of Nishimura ct.

al. (10] and Wang & Vanka [2]. At low Re. positions of reattachment point do not agrcc with

present prcdiction. for plane gcometry, thc itcrative solution docs not convcrgc up to

prcscribcd accuracy. At third level grid, somc oscillation in numerical simulation is obscrvcd.

That's why some unccrtainty in calculation ariscs. But at higher Rc, prcsent prediction sbows

fair agreement with experimcntal data. Fig. 4.8. shows thc predictcd vorticity profile and

experimcntal data of Nishimura et. al. [11] at L'=8.0, Re=350 lor first cyele. The first and

second sharp edges of solid line that touch the zero vorticity line indicate separation and

reattachment point rcspectively. Present prediction shows good agrccmcnt with experimental

data except thc pick near reattachment point. This pick indicates the maximum axial velocity

gradicnt in scparation region. Numcrical calculation of Nishimura et. al. II II shows tbis

value is equal to 50 and in present prediction this is equal to 30. But the experimental v"lue is

'approximately 40. The reason is this is the critical Reynolds number (Rc=350) and actual

!low pattern becomes unstcady at this Re. In prcsent invcstigation. we do not consider thc

unsteady calculation. This may crcate discrepancy bctwcen expcrimcntal and numerical

prediction.

4.5 HYDRODYNAMIC CHARACTERISTIC

Throughout the whole simulation work, mainly two parameters, Reynolds number and

geomctric ratio L' (Ala) are varied. For axisymmetric geometry. tcn valucs of L' arc choscn.

They arc 11.0. 13.0, 15.0, 17.0, 19.0,21.0,23.0,25.0.30.0,40.0. One thing should be bornc
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in mind that higher the ratio L" smaller the waviness of the surltlcc. Because throughout the

investigation, the parameter A is constant and only amplitude (a) is varied. For straight pipe

there is no amplitude (a=O). So L." fiJr straight pipe is inlinity. ror each geometric ratio, flow

tield is solved for 13 Reynolds number. They are Re = 100, 150, 200, JOO, 400, ClOO. SOO,

1000, 1200, 1400, 1600, 1800, 2000. Inlet velocity profile is assumed the fully developed

velocity profile of straight pipe. Plane geometry is studied in different section I,)r

eonvelllenee.

The dependent variables arc friction factor (I) per wavelength, wall vorticity (~",), skin friction

coertieient (Cf). Parametric presentation of streamlines is also studied along with streamwise

axial velocity profiles. Positions of separation and reattachment points have also been given

special allention.

The following subsections present the brief discussion of intluenee of indepcndent variahles

on dependent variables for the convenience of presentation.

4.5.1 FLOW PATTERN

As mentioned earlier, the whole simulation is done for 10 geometric parameter L' and 13

Reynolds number (100 - 2000). Parametric presentation of flow field is given by constant

streamline contours. Here L"=11.0, 21.0. 30.0 arc chosen 1(1I' discussion. Calculated

streamlines are shown for Reynolds number range 100 - 2000 in FigA.I O. to Fig. 4.12. lhc'se

three values of L' actually represent high waviness (1:=11.0), medium waviness (1:=21.0)

and low waviness (L"=30.0) of the surface.

Stream function values arc calculated at CV corners [12] using mass tluxes through cell Itlees

[14]. since the mass tlow rate between two streamlines is constant. The licld value of stream

function is normalized using the relation:

N I
. I ". CV comer value of stream function

OI'ma Ize( streamlunetlon,<jJ = I,' (4.5)

L 111l.j
J=l
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Here the denominator represents the inlet mass tlux per unit width. For all caleulations. linc

grid size is taken as mcntioned carlier. So the 'j' index varies ti'om I to 64 in equation (4.5).

Effeet of He: FigA.II presents the streamlines of L'=21.0. At low Reynolds number.

streamlines are approximately symmetrieal about the maximum cross section of the channel.

This indicates that inertial effects are not important. The streamlines become asymmetrical

with increasing Reynolds number. First indication of circulatory vortcx is obscncd at

Reynolds number 200 upstream of the maximum cross scction of the channel. With furthcr

increase of Reynolds number. this vortex grows in size and its center shins towards

downstream. This growing-up tendency of vortex continucs up to Reynolds number XOO

shown in FigA.ll (c) - FigA.II (h). Atier Re=XOO. vortex size increases very slowly "ith

further increase of Reynolds number. In this range. shown in FigA.II (i) - 4.11 (k). vortex

shows large core towards downstream. From above discussion. three distinguishable range of

Reynolds number is observed:

TABLE: 4.3

Critical ranges of Reynolds number

Observation Range of Re Range name

No l'orlex/iJl'llllllioll 200> Re IJ()lI'er rU11).!.i'
-

f!orlex/iJl'llled & ral'id-gl'lJ\l'illg in size 200 :2: Re :2: XOO Middle !'lIng~;-

Large core (~(V(}rlex & sfoll'-growing ;n size
--_._-

800 > Re :2: 2000 1I1'I,er !'lIngl'
--

One reason may be concluded from such behavior of tlow licld that with increasing Reynolds

number. vortex changes Ii-OIn steady to unsteady motion. i.e. the vortex size varies with time.

Nishimura et. al. [IOJ reported that the unsteadiness is not periodical but is an intermillent

phenomenon.

Effeet of L'(A/a): In prevIous sub-section. elTect of Reynolds number is discussed I'll" a

constant geometric parameter (I.'=21.0). Observation is tabulated in TAIILE-4.3. It should he

bear in mind that this observation is only restricted for that particular geometry. Cieometrical

parameter strongly intluences the tlow pattern in wavy channel. The three ranges (T;\I\I.E:

4,3) are dramatically varied by the change on:. Because change of wavelength to amplitude
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ratio (L') increases or reduces the divergence of the waviness of the channel surfacc. For a

constant Reynolds number, more the divergence (smaller L'). carlicr will be thc changc of

sign (negative to positive) of axial prcssurc gradicnt (~). This is thc well known '<lilli/ser-

erleel' of flow physics [18]. This phenomcnon is graphically prescnt in Fig. 4.9 (b). Whcn

axial pressure-gradient profile touches the zero gradient line flow separation occurs.

Circulation bubblc continucs until this pronk touches again zero gradicnl line downstrcam

side. The second intcrsection point between axial pressure gradient linc and zero gradicnt line

indicates the reattachment of the separated streamline ('v= I) and end of separation bubblc.

All prcvious invcstigations were restricted to a particular L'. Gcomctrical complex ity.

problcm in convcrgcnce in iterative procedure and dramatic variation of different paramctcr is

the main reason for this restriction reportcd by Wang & Yanka [2].

Large separation bubble is observed at Re=200 for L'=II.O in Fig.4.12 (c). For L'=21.0 the

size of separation bubble shown in rig. 4.11 (c) is small and just start to grow-up but thcrc is

no flow separation hence no separation bubble at L' =30.0 at he same Reynolds number (200)

shown in Fig. 4.10. (c). The "ower-range' of Rcynolds number indicated in TABLE: 4.3 IS

now presented for different L' below:

TAIlLE: 4.4

Lower range of Reynolds nllll1ber at different L'

L Lower range of Re

11.0 100>Re

13.0 100>Re

15.0 130>Re

17.0 150>Re

19.0 180>Re

21.0 200>Re

23.0 250>Re

25.0 300>Re

30.0 400>Re
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These are not exact values oflower range ofRe for different L'. For a particular geometrical

ratio (L\ hundreds of Reynolds number should be chosen at lower range with close gap (e.g.

Re = ---, 99,100,101, ----) and also interpolation is needed to determine exact Reynolds

number where formation of vortex just started. This becomes an exhaustive job when L'

varies. But present investigation gives an approximate idea for the starting point of searching

'[ower range' of Reynolds number at di ITerent L'. The above discussion is true lill" other tlVO

ranges.

Effect of wave number n: For a particular L' and Re, the variation of flow pattern with wave

"number n is so small that is not distinguishable. At low Reynolds number (Re<200) almost

there is no variation. But for medium (800 ~ Re >200) and high (2000 ~ Re > 800) the vortex

size of first cycle (n=l) is slightly larger than the other three cycles (n=2-4). This is because

of entrance effect. Other three cycles show no variation in vortex size, only corc is shifted

slightly downstream with the increase of n at high Reynolds number. This is also reported by

Russ & Beer [8].

4.3.2 SEPARATION AND REATTACHMENT POINT

As discussed earlier, with the increase of Reynolds number flow separation occurs upstream

of the maximum cross section. Moving downstream into the diverging part of the pipe. the

axial pressure gradient change its sign (FigA.9b.) from negative to positive. which causes a

flow separation and the development of flow reversal in the bulge part of the pipe. In the

converging part the axial pressure gradient changes its sign again, causing the reattaehment of

the flow.

However. there are different ways of locating separation and reattachment point. Eaton &

Johnston [19] interpolate the near wall axial velocities for locating the distance (from inlet) of

zero axial velocity, Wang & Vanka [2] used the sign (negative to positive and positive to

negative) of axial pressure gradient (tiP) .. Nishimura et. al. [I OJ used the wall vorticity
tlx
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profile to locate the separation and reattachment point. In present investigation, streamline

IV=I is' chosen for locating separation and reattachment point. As it is seen in FigA.IOa,

streamline ~/=l follows the upper wall of the wavy channel and no formation of vortcx. At

FigA.lOe ~/=l line separates at some distance from the starting point of the wave, continues

and at last again touches the wall. The second point is the reattachment point. Theses two

regions are magnified 10 to 50 timcs using TECPLOT-7 softwarc and axial locations are

pointed out using 'Data-Probing' option up to 4 decimal places accuracy. FigA.13 - FigA.18

show the location of separation and rcattachmcnt point at diffcrcnt Rcynolds number and

geometric parameter L' for first cycle (n=l) only.

Effect of Re: FigA.13 shows the variation of positions of separation and rcattachmcnt point

with Rcynolds number for L' = 11.0. For convenience, separated streamlinc (11/=I) lor Re=800

is also shown below and separation and reattachment points arc indicatcd by down arrow.

With the increase of Reynolds number, separation point is shifted upstrcam around Rc'"700,

then show a little variation with further increase of Reynolds number. Reattachmcnt point is

also shifted downstream with high variation around Re""700 and show littlc variation with

further increase of Reynolds number. The region inside the separation and reattachment linc

indicates the circulation zone and it expands with Reynolds number and ncarly approachcs a

limiting value in laminar now condition. The distance betwccn a squarc and round symbol in

. the figure at any Reynolds number indicates the lcngth of vortex at axial direction. FigA.14

and Fig4.15 show thc same variation for L' =19 & 30 rcspcctively. It is casily concluded that.

increasc ofL' (i.c. rcduction of waviness ofsurl'lcc) rcduces the circulatory zonc.

Effect of L': FigA,I6 - Fig4.18 show the variation of separation and rcattachmcnt points with

L' at constant Reynolds number. FigA.16 shows this variation for Re=600. As it is sccn from

the figurc, separation and reattachment point approaches each other with thc increase of

L' .The rate of approaching reduces with incrcase of Rcynolds numbcr as shown in FigA.17 &

FigA.18.
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4.5.3 AXIAL VELOCITY

FigA.19 - FigA.21 show the axial velocity profiles with refcrence line at different Reynolds

number for L' =30.0. 21.0, 11.0. For the convenience of study pro!iles arc presented at their

original locations (indicated by reference lines). The original values of velocity arc reduced

by 50% for easy observation.

Effect of wave number n: FigA.19a shows the axial velocity profiles for L' =30.0 at different

Re=IOO for n=1 to 4. Each individual cycle consists of vclocity profiles at equal distance of

AI? As mentioned earlier. inlet condition is fully developed laminar flow condition lor

circular pipe. The profile in the narrowest cross section shows a larger velocity gradient

compared to the parabolic profile of the flow through a straight pipe. At !irst cycle with the

increase of axial distance velocity profile become flatter and up to the maximum cross section

then again velocity gradient increase due to gradual reduction of cross sectional area. This

pattcrn remains similar in second. third and fourth cycles. But only difference in later cycles is

reduction of magnitude of velocity.

Effcct of Rc: For high Reynolds number. velocity profile shows earlier inflection point than

low Reynolds numbers for a constant L' and the profiles become flatter at the diverging part

of the channel compared to low Reynolds number.

Effect of L': Effect of L' is too much distinguishable on velocity profile at a constant

Reynolds number. Lower the L' higher will be the waviness of the surface earlier will be the

appearance of negative velocity pro!ilc.

4.5.4 WALL SHEAR STRESS

The calculated wall vorticity profiles arc shown in FigA.22 - FigA.36. Wall vorticity IS

calculated and normalized according to Wang & Vanka [2]

e. = ~ Re C. (D "''' )s" 2 I D
av
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Where Cr and 1" are the skin friction coeflicient and wall shcar stress rcspcctivcly.

Effect of Rc: FigA.22 - FigA.29 show the absolute wall vortICIly profiles for constant

geometric parametcr L' at different Reynolds number. The first and sccond point that touch

the zero vorticity line are corresponding separation and rcattachmcnt point. At these two point

the axial velocity gradient au is zero. It is easily viewed Ii'om equation (4.6) to (4.8). Thear
zone between these two points actually indicates the separation bubble, sometime called

circulatory zone. FigA.22 presents the vorticity profiles of L'=I 1.0 for first and fourth cycle

at Re=200,GOO, I 000,1400,2000. Before studying the effect of Reynolds number on vorticity

profile, attention should be given to a single profile to understand thc physics behind such

profilc formation. FigA.9a shows an individual vorticity profile. As already discussed. at the

converging region of channel velocity gradient is high, as a result vorticity is also high in this

region. Downstream to the Oow, velocity gradient starting to rcduce due to the divergence of

the channel and magnitude of vorticity falls and becomes zero at separation point as there is

no velocity gradient present there. Flow reversal is observed from here (FigA.19, FigA.20.

and FigA.20) with small region of negative velocity profiles compared to positivc velocity

profiles. Just after separation point. a negative velocity profile shows a first maximum

I. d' au I . d d I I . '"ve ocIly gra lent a;' t len aga1l1 ecreases ue to approac 1 t le maximum diverSity oj the

channel. Magnitude of vorticity at the maximum cross section of the channel shows the

smaller value. When Oow approach further downstream side negative velocity gradicnt again

increases and somewhere before the reattachment point it shows the maximum negative

gradient. This phenomenon can easily be observed in velocity proliles in FigA.21 (c). FigA.21

(d), and FigA.21 (e).
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Now come to the discussion (influence of Reynolds number) again. At low Reynolds number

(e.g. Re=200) where viscous force dominates. there is no sharp peak as discussed carlier.

Increase of Reynolds number grows up this pick and shins it slightly towards the downstrcam

side. The gap between the two intersection points of vorticity profiles with zero vorticity linc

increases with the in crease of Reynolds number for constant L". This is obvious. bccansc

increase of Reynolds number increases the gap between separation and reattachmcnt point

discussed earlier. This is true for other L". Only differencc is the reduction of pcak valucs in

circulation zone with the increase ofL".

Effect of L': FigA.30 - FigA.36 show the wall vorticity profiles lor constant Rcynolds

number at different L" for first and fourth cycle. For comparison. vorticity of straight pipc is

indicated along with the wavy channcl. FigA.30 shows the vorticity proliles lor Rc=200 and

for L"=11.0.I 7.0.23.0.30.0. The vorticity for L"=23.0 & 30.0 show positive value everywhcre

indicating no separation zone and profiles are symmetrical concave shape about the maximum

"cross section. L = 11.0 & 17.0 shows smallcr circulatory zonc with no sharp pcak ncar

separation and reattachment point. So. at lowcr valuc of Reynolds number. curvaturc clrcct

(L") not too much dominating. FigA.36 shows the vorticity protiles lor same L" at Rc=2000.

Here effect of surface waviness or curvature effect dominates vorticity proliles. 1:=1 1.0

shows tbe highest peak near reattachmcnt point and this pcak decreases fiJr lowcr wavincss

(highcr L") ofthc surface.

4.5.5. SKIN FRICTION COEFFICIENT

FigA.37 - Fig.4A7 show the distribution skin friction coefficient along axial direction from

inlet to outlet at constant Reynolds numbers for L"=13.0. 17.0. 23.0. 30.0. Skin friction

coefficient (Cr) is calculated using equation (4.7) and (4.8). Cr is actually distribution of local

friction coefficient along the wall. For straight pipe. Cr is constant for particular Reynolds

numbcr and dccreases with the increase of Reynolds number as indicated in Fig.4J 7 tn

FigA.47. For wavy channel. Cr is almost periodic. and shows sharp peak at the minimum

cross section. At constant Reynolds number (e.g. FigA.37) this sharp peak increases with the
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incrcase of surface waviness (lower L\ This sharp peak amplified in magnitude downstream

to the axial direction due to pressure drop. At lower Reynolds number this amplification

occurs at smaller rate but at high Reynolds number (e.g. FigAA5) this ratc is largcr. This peak

values for any L' reduces for higher Reynolds number.

4.5.6 MEAN FRICTION COEFFICIENT

Thc calculation procedure of mean friction coefficient (I) is already described in equation

(4.3) according to Russ & Beer [9]. FigAA8a and FigAA8b present the variation of mcan

friction coefficient per wavelength (A.) with Reynolds number. For comparison, variation of

friction coefficient of straight pipe is also given for same Reynolds numbcrs range. In

logarithmic (log-log) plot, friction factor linearly decreases with the increase of Reynolds

number keeping a constant slope for a particular L'. For a constant Reynolds number. ii'iction

factor increases with the decrease of L' (increasing the waviness). Furthermorc thc slope of

the eurvcs are slightly reduced with thc dccrcasc of the geometric parameter L'.

The linear variation of friction factor with Reynolds numbcr in logarithmic plot enables to

make a correlation between Reynolds number and friction factor for differcnt I:. The

proposed correlation is in the form givcn below:

f=~
Rein

(<I.')

. Whcrc 'C' is a correlation constant and 'm' is the correlation exponent. TABLE: 4.5 shows

the values ofC and 111 for different L' calculated from FigAA8a and FigAA8b.

The tabulated values of 'C' and 'm' arc plotted against L' in FigAA9. Figurc shows the best-

fit curves. For curve fitting, a polynomial cquation (4.10) is choscn.

(4.10)

Where 'n' is the order of polynomial, 'z' is independent variable and A is polynomial

constant. For correlation constant "C' a fourth order polynomial and for correlation exponent

"m' a second order polynomial is proposed with ':t6 %' accuracy:
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C=0.016(~r -1.0136(~)' +22.21(i:J -182.61(~) +685.27

m = -0.0011 (~ r + 0.0529 (~) + 0.5216

TABLE: 4.5

Correlation constant (C) and exponent (m) as a function of L'

L' = A Correlation Correlation

a constant. C exponent. m

11.0 253.0 0.958
13.0 278.0 1.022
15.0 355.0 1.08
17.0 346.0 1.098
19.0 357.0 1.115
21.0 372.0 1.13
23.0 375.0 1.135
25.0 406.0 1.154
40.0 457.0 1.185

4.6 THERMAL CHARACTERISTIC

(4.11 )

(4.12)

The foregoing chapter gives detail discussion about hydrodynamic characteristic of wavy

axisymmetric channel for different L' and Reynolds number. However. for studying thcrmal

behavior of wavy channel. three geometrical parameter L' =11.0. 19.0. 30.0 arc choscn.

Actually these thrce L' represent the high. medium and low wavincss of thc surlilce. Results

are presented in the form of isothermal contour plots. average and local value of Nussclt

number.

4.6.1 THERMAL FIELD

Thermal field is presented by isothermal contours from Fig.4.5l to Fig.4.54. Temperature is

normalized using free stream temperature (Ta ) and wall temperature (1',,) using the relation:
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1'-1'
Normalized Temperature. (I = •

'I' -'I'W (f

(4,1:1)

Temperature of the wall is kept constant through out the simulation and it is assumed there is

no internal heat generation and wall temperature is higher than the free stream temperature,

Prandtl number (PI') is kept constant and equal to 0.7. FigA.51 (a)-FigA,51 (I) present the

isothermal eonto~rs for L' =19,0 for a Re=50 to 1000 and n=1 to 4. For low Reynolds number

(Re=50), near the inlet thermal boundary layer starting to form showing temperature gradient

in first cycle only (FigA.5Ie), With the increase of Reynolds number, isothermal lines

propagate towards the downstream because of higher convective current. Temperature

gradient is higher in converging section than diverging section.

The effect of waviness of the surface on thermal field is studied if Fig.4.52 & FigA,53 Ii,r two

constant Reynolds number 200 & 1000, It is easily observed form FigA.52 that temperature

gradient is higher at converging section for lower L', and gradient is lower at di vcrging cross

section for lower L', Because, lower the geometric parameter L', decrease inter wall spacing

in the converging part of the channel and increases the interwall spacing in thc diverging cross

section,

FigA.54 shows the combination of streamlines and isothermal lines for L'=II.O & I'I,D

Re=200 & n=1 for studying how velocity field affect the thermallicld. At Re=200. separation

bubble is already formed and grows in size for L' = 11.0, Convectivc transport is occurrcd in

this circulatory region compared to the channel with L'=19.0. That's why space betwcen

0=0,9 isothermal line and wall is larger for L' =11.0 than L' =19,0,

4.6.2 IIEAT TRANSFER

Heat transfer rate is measure by local and avcrage value of Nusselt number. Local Nussclt

number (Nu,) is calculated using the equations:

h DNu ,;:;; \ <1\

, K,.

h =~
, Sl'
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(4.16)-K dT -L dT
q, - r dr - Pr dr

The average value ofNusselt number is calculated by integrating the local value over the total

length of the channel using the relation:

(4.17)

FigA.55 - FigA.56 show thc distribution of local Nusselt number along the channel as a

function of channel length for L' =30.0, 11.0 respectively for Re=lOO, 500, 1000. 2000.

Average value of Nusselt number is also indicated in figure. FigA.57 - FigA.58 show the

rcsulting distribution of local Nusselt number for Re=300 & 1000 respectively at L' = 11.0,

19.0, 30.0. for first and third cycles. The increasing wall velocity gradient in the narrowest

cross section causes a very thin thermal boundary layer, resulting in growing Nussclt

numbers. Near to the reattachment point where high velocity components normal to thc wall

occur [9], boundary layer is additionally rcduced, lcading to a second maximum heat transfer

coefficient downstream of the reattachment point.

FigA.57 shows that Nusselt number increases with the increasc of L'. Only at the first cycle

the first sharp peak of Nusselt number is higher at lower value of I:. This is bceause.

increasing L' reduces the surface waviness and narrowing the circulatory zone and also

interwall spacing at maximum cross section is rcduced helping enhancement of heat translCr.

One most interesting characteristic of wavy channel is shown in FigA.59a - FigA.59b. The

local Nusselt number distribution show rise and fall in each cycle and this tendency

decreasing with the increase of wave number or axial distance. Russ & Beer [9.10] suggested

this tendency as 'exponenlial-decay'. They numerically and experimentally proved this

phenomenon. The upper peak and lower peak of local Nusselt number arc plotted as a

function of axial distance in FigA.59b. The two curves show the exponential-decay tendency.

FigA.60 shows the distribution of average Nusselt number as function of Reynolds number

for L' = 11.0, 19.0.30.0. For comparison, average Nusselt number distribution lill' straight pipe

is plotted in the same figure. For a particular Reynolds Number. average Nusselt number

increases with the increase of geometric parameter L'. Average Nusselt number distribution

40



curve shows a positive slopc at lower L' and this slope decreases with the increasc of I:

(reduction of waviness). L' ==30.0 almost shows no variation with changc in Reynolds

numbcr just like straight channcl.

Numerical calculation of Russ & Bccr [9] shows invariant average Nusselt number with the

change of Reynolds number shown in FigA.61. This is for L' =19.0. They actually calculated

Sherwood number from mass transfer coefficicnt and using analogy function 19.10].

converted it to Nusselt number. They found average value of Nussclt number slightly lower

than the straight pipe (Nuav=3.66, isothermal wall condition) shown in FigA.61. But thcir

expcrimental valuc [10] docs not agrec with numerical prediction. Prcsent prcdiction shows

fair agreement with their experimental data approximately at Rcynolds number lower than

700, but experimental results show 2 to 2.5 times higher average Nusselt number at higher

Reynolds number range. One reason may be concluded li'OInabove result that both Russ &

Becr [9] and prcsent investigation calculated Nuav using fully dcveloped laminar now

condition. Somewhere around Re=700 transition bcgins. That's why expcrimental valucs do

not agrec with numerical prediction after this rcgion.

4.8 PLANE GEOMETRY

Somc of the characteristic of plan gcometry has alrcady bcen mcntioncd during code

validation and grid scnsitivity tcst. In prcscnt invcstigation. simulation is carried out Illr

L' =8.0. 11.0. 15.0. 19.0. 25.0. 30.0 and Rcynolds number ranging from 50 to 600. It has

alrcady been published by Nishimura et. al. [10] and Wang & Yanka [2] that critical Rcynolds

number is 350. After which self sustained oscillatory vortcx gcncratc. Flow pattcrn. axial

velocity profile. vorticity variation have the similar pattcrn as discusscd for axisymmctric

geometry. So, these things are not cxtensively discussed here again. Only pressurc drop

characteristics are presented lar comparison of same characteristic in axisymmetric casc.

The mean friction coeflicient (I) per wavelength is calculated using thc equation suggcsted by

Nishimura et. al. [10]:

I' =.!-( I-~", J( 2L1:' J
4 A f) Ut.:: III
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Mean friction per wavelength as a function of Reynolds number is presented in Fig.4.61 for

different geometric parameter L'. For a particular Reynolds number, friction factor increases

with the increase of surface waviness (decrease of L\ The variation is smaller at higher I:.
Again for a fixed geometry, friction factors inversely proportional to thc Reynolds number. It

should bear in mind that all calculations have been carried out considering steady-laminar

(fully developed) flow condition. This assumption shows the linear variation of friction f~lctor

with Reynolds number. Nishimura et. al. [10] got invariant nature of friction factors with

Reynolds number after Re=350. The reason for this nature is starting of transition towards

turbulence, which is not studied in present research work. However, a correlation is proposed

in the form of equation (4.9) to determine friction factor (f) as a function of Reynolds numher

and geometric parameter L' using figure 4.61. The proposed correlation constant C and

correlation exponent m is summarized by a third order and a fourth order polynomial

calculated using Fig.4.61. These polynomials arc in the form:

c = 0.0652(~)' -3.387(~)' +4.347 (~)+615.36

m = 5. ](r' (~J+ 2.1O-tJ - 0.0029(~ r + 0.0671 C;J + 1.1038
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CHAPTER 5

CONCLUSIONS AND RECOMMI~NDATIONS

5.1. GENERAL

Hydrodynamic and thermal behavior of wavy channel have been studied in present

investigation numerically, This chapter summarizes the accuracy and reliability of the

present prediction, embodied in the computer code CAFFA [12] by comparing with the

experimental data and suggests the scope of further extension of the present study,

5.2 CONCLUSIONS

The important conclusions from present study are summarized below:

I) Surface waviness causes early separation of fluid from wavy surface and point

of separation shifts upstream with the increase of both Reynolds number and

amplitude of wave, Similar pattern is true for point of reattachment. which

shifts downstream for same condition,

2) Pressure drop and frictional loss are nearly linear and inversely proportional to

Reynolds number. For larger amplitude of the wavy surface pressure drop as

well as Iriction factor is higher at constant Reynolds number.

3) There is a significant range of Reynolds number where vortex is formed and

starting to grow up in size, This range is observed in lower Reynolds numbers

for high waviness of the surface,

4) Wall vorticity is negative and smaller in magnitude in separation region

compared to non separated zone, Negative vorticity show the highest peak near

the reattachment point for larger gradient in reverse flow,

5) Heat transfer rate falls exponentially along the axial direction 11'0111 inlet to

outlet of the channel. Separation bubble suppress the heat transfer rate and

narrowest cross section show higher local value of NusseIt number than the

bulge part of the channel.

6) Heat transfer increases with Reynolds number and this rate of increasing

decreases for lower amplitude of the wavy surface and almost become invariant

like circular pipe at very low waviness of the surface,
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5.3 RECOMMENDATION FOR FUTURE WORKS

Present research work can be extended further

a) to study the effect of phase shift between two opposite wall

b) to study the effect of divergence of wall

c) to determine the critical Reynolds number at different L'

d) to locate the range of transition

e) to study the effect of turbulence

f) to study the effect of asymmetric heating

Especially this works are recommended because these are capable of solving by CAFFA.

One need first adaptation with finite volume method and also with CAFF 1\ li)r

modification it to make it suitable for solving recommended problems.
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APPENDIX: A

The programme segment of the SUBROUTINE that creatc thc grid data for wavy
channel is presented here:

C. .... READ COORDINATES OF GRID POINTS ALONG THE LINE
print* ,'NO. OF PERIOD ,AMPLITUDE, PHASE ANGLE: •
read(6, *)mm,amp,pangie
write(5, *)mm,amp,pangJe,' NO.OF PERIOD,AMPLITUDE,PHASE-ANGLE'

* phase=(pangle/360.)
per=mm*I.O
xxx=sqrt( (xle-xls)* *2. +(y le-yls)* *2.)
thcta=atan( abs( (yls-yle )/(xls-xle)))
xiamda=xxx/per
x=xxx/nseg
xcount=O.O
xxcoun=O.O
yycoun=O.O
pie=(22.17.)

do i= I ,nscg+ I
xpt( i)=xls+xxcoun
ypt(i)=yls+yycoun
xcount=xcount+x

if(pangle .eg. 0.)
+ ycount=( amp-amp*cos( (xcount/xlamda) *pic*2.0))
if(panglc .eq. 180.)
+ ycount=O.O -(amp-amp*cos«xcount/xlamda)*pie*2.0))

xxco un =xco untOcos( theta)- yco unt *si n( theta)
yycoun =xcount *si n( theta )+ycoun t*cos( theta)

end do

C
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Fig.4.1 Computational domain with physical boundary of wavy channel
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Fig. 4.3a Grid sensitivity test with axial velocity profile at Re=800 & L*=15.0 for X=O.O& X=0.14 (axisymmetic case)
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Fig.4.39 Skin friction distribution along the wavy wall at Re=400 (axisymmeric case)



(

0.2
Re = 600

w
00

~
u

0.15

0.1

L'=13.0
L'=17.0
L'=23.0
L'=30.0 1/'.\

"/,

I. ,\\
".;
,;
,:'

/\'.;
Ii
'i..~

/\l:
. - ;,'
, " ~

.:
'l,
I"

/\
': ,~

0.05

00

',.
',\'.:',:..
\\
',:, ,
v.••.~.""

--~---_•.•-

<,
,k,
,j:i
"".

'I:u,
,i'
'::,:'

, j :
" j ", '

1

Straight pipe
,;
r.\.
',:\',,:.

\',& ..

<:.1
~"

,Jj
'f:,:.

,f:
,'!:
'f:':.

I' /:

2
X

',j,
":\',.,'",
:\ '
".\'.
" \ ,

~ v.,"':. ,,--.

.,1
If;

t
'f:':.

'f:':.
,'!:
'i:,: .

,'f:

3

,::-
:l'
::'
:\',
:l.
';\'.

~,

t-,,,
~~
.r
':.
,

J/
':', '.

f / :

': ,
, l :
, ! '

.::;.c.....,..
4

Fig.4.40 Skin friction distribution along the wavy wall at Re=600 (axisymmeric case)
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Fig.4.44 Skin friction distribution along the wavy wall at Re=1400 (axisymmeric case)
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Fig. 4.59 (a) Local Nusselt number distribution for 10 wave for L'=19.0. Re=300
(b) Decay of upper & lower peak values of Nussclt number along the channel

for each cycle for L' =19.0. Re=300
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