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ABSTRACT

Two dimensional steady, mixed convection heat transfer in a trapezoidal cavity
with constant heat flux from the bottom wall while the isothermal moving top wall in the
horizontal direction has been studied numerically. Firstly the problem is defined as a two
dimensional enclosure .Control Volume based finite volume method (FVM) has been
used to discretize the governing differential equations. The pressure- velocity coupling in
the governing equations is obtained using the well known SIMPLE method for numerical
computations. The set of governing equations are solved sequentially. A second order
upwind differencing scheme is used for the formulation of the coefficients in the finite-
volume equations. All computations are done for a range of Richardson number, Ri from
0.1 to 10 and the aspect ratio, 4 has been changed from 0.5 to 2 for a fluid having Prandtl
number equal to 0.71 (air). First the optimum configuration of the trapezoidal cavity has
been obtained by changing the inclination angle, y of the side walls. Then the effect of
Richardson number, aspect ratio, and Rotation angle, @ (30°,45 and 60°) of the optimum
trapezoidal cavity has been studied by changing the desired parameter. Results have been
presented in the form of streamline and isotherm plots as well as the variation of the
Nusselt number at the heat source surface under different conditions. The results shows
that with increasing Ri, the heat transfer rate increases as natural convection dominates.
The rotational angle of the trapezoidal cavity and the direction of the lid motion affect the
heat transfer rate significantly. Optimum heat transfer rate is obtained for aiding flow

condition having higher values of Ri.
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NOMENCLATURE

convective heat transfer coefficient (W/m” K)
Heat Flux (W/m?)

specific heat at constant pressure (J/kg K)
gravitational acceleration (m/s%)

thermal conductivity of the fluid (W/m K)
Nusselt number, AWk

Prandtl number, v/a

Grashof number, gBATHA*

Reynolds number, U, #A

Richardson number, Gr/Re’

Aspect Ratio, H/'W

length of the inclined sidewalls (m)
temperature of the fluid, (°C)

velocity component at x-direction (m/s)
dimensionless velocity component at X-direction
velocity component at y-direction (m/s)
dimensionless velocity component at Y-direction
length of the cavity, (m) |
distance along the x-coordinate

distance along the non-dimensional x-coordinate

distance along the non-dimensionat y-coordinate

thermal diffusivity of the fluid (m%/s)

volumetric coefficient of thermal expansion (K™)
inclination angle of the sidewalls of the cavity
dimensionless temperature ,(Tg-T)/AT

dynamic viscosity of the fluid (Pa s)

kinematic viscosity of the fluid (m%/s)

density of the fluid (kg/m°)

rotational angle of the cavity
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CHAPTER 1
INTRODUCTION

‘1.1 GENERAL

Convection is the heat transfer mechanism affected by the flow of fluids. The amount of
energy and matter are conveyed by the fluid can be predicted through the convective heat
transfer. The convective heat transfer may be the natural convection or forced convection
or the combination of two. Forced convection is characterized by the heat transport by
iriduced fluid motioﬁ. This induced flow needs consistent mechanical power. Natural
convection differs from the forced convection as the driving force of fluid flow happens
naturally. The flows are driven by the buoyancy effect due to the presence of density
gradient and gravitational field. As the temperature distribution in the natural convection
depends on the intensity of the fluid currents which is dependent on the temperature
potential itself, the qualitative and quantitative analysis of natural convection heat
transfer is very difficult. Numerical investigation instead of theoretical analysis is more
needed in this field.

Two types of natural convection heat transfer phendmena can be observed in the nature.
One is that external free convection that is caused by the heat transfer interaction between
- asingle wall and a very large fluid reservoir adjacent to the wall. Another is that internal
free convection which befalls within an enclosure, Mathematically, the tendency of a

particular system towards natural convection relies on the Grashof number,

ATH i , :
(Gr= iﬁz—), which is the ratio of buoyancy force to viscous force. The parameter £
1%

is the rate of change of density with respect to the change in temperature (7) per unit
density, and v is kinematic viscosity. Thus, the Grashof number can be thought of as the
ratio of the upwards buoyancy of the heated fluid to the internal friction slowing it down.
In very sticky, viscous fluids, the fluid movement is restricted, along with natural
convection. In the extreme case of infinite viscosity, the fluid could not move and ail heat

transfer would be through conductive heat transfer.



Forced convection is often encountered by engineers designing or analyzing heat
exchangers, pipe flow, and flow over flat plate at a different temperature than the stream(
the case of a shuttle wing during re-entry, for example}. However, in any forced
convection situation, some amount of natural convection is always present. When the
natural convection is not negligible, such flows are typically referred to as mixed

convection.

When analyzing potentially mixed convection, a parameter called the Richardson number
(Ri= Gr/ Re’) parametizes the relative strength of free and forced convection. The
Richardson number is the ratio of Grashof number and the square of the Reynolds
number, which represents the ratio of buoyancy force and inertia force, and which stands

in for the contribution of natural convection. When Ri>>1, natural convection dominates

and when Ri<<l, forced convection dominates and when Ri=1, mixed convection

dominates.

The thermo-fluid fields developed inside the cavity depend on the orientation and the
geometry of the cavity. Reviewing the nature and the practical applications, the enclosure
phenomena can loosely be organized into two classes. One of these is enclosure heated
from the side which is found in solar collectors, double wall iﬂsulations, laptop cooling
system and air circulation inside the room and the another one is enclosure heated from
'below which 1is hai)pened m geophysical system like natural circulation in the

atmosphere, the hydrosphere and the molten core of the earth.



1.2 FLOW WITHIN AN ENCLOSURE

The flow wathin an enclosure consisting of two horzontal walls, at different
temperatures, is an important circumstance encountered quite frequently in practice. In all
the applications having this kind of situation, heat transfer occurs due to the temperature
difference across the fluid layer, one horizontal solid surface being at a temperature
higher than the other. If the upper plate is the hot surface, then the lower surface has
heavier fluid and by virtue of buoyancy the fluid would not come to the lower plate.
Because in this case the heat transfer mode is restricted to only conduction. But if the
fluid is enclosed between two horizontal surfaces of which the upper surface is at lower
temperature, there will be the existence of cellular natural convective currents which are
called as Benard cells. For fluids whose density decreases with increasing temperature,
this leads to an unstable situation. Benard [1] mentioned this instability as a “top heavy”
situation. In that case fluid is completely stationary and heat is transferred across the
layer by the conduction mechanism only. Rayleigh [2] recognized that this unstable
situation must break down at a certain value of Rayleigh number above which convective
motion must be generated. Jeffreys [3] calculated this limiting value of Ra to be 1708,

when air layer is bounded on both sides by solid walls.

1.3 TILTED ENCLOSURE

The tilted enclosure geometry has received considerable attention in the heat transfer
literature because of mostly growing interest of solar collector technology. The angle of
tilt has a dramatic impact on the flow housed by the enclosure. Consider an enclosure
heated from below is rotated about a reference axis. When the tilted angle becomes 90°,
the flow and thermal fields inside the enclosure experience the heating from side
condition. Thereby convective currents may pronounce over the diffusive currents. When
the enclosure rotates to 180°, the heat transfer mechanism switches to the diffusion

because the top wall is heated.

iy T 4
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1.4 LID DRIVEN ENCLOSURE

Flow and heat transfer analysis in lid-driven cavities is one of the most widely studied
problems in thermo-fluids area. Numerous investigations have been conducted in the past
on lid-dnven cavity flow and heat transfer considenng various combinations of the
imposed temperature gradients and cavity configurations. This is because the driven
cavity configuration is encountered in many practical engineering and industrial
applications. Such configurations can be idealized by the simple rectangular geometry
with regular boundary conditions yielding a well-posed problem. Combined forced-free
convection flow in lid-driven cavities or enclosures occurs as a result of two competing
mechanisms. The first is due to shear flow caused by the movement of one of the walls of
the cavity while the second is due to buoyancy flow produced by thermal non
homogeneity of the cavity boundaries. Understanding these mechanisms is of great

significance from technical and engineering standpoints.

1.5 APPLICATION

Air-cooling is one of the preferred methods for the cooling of computer systems and
other electronic equipments, due to its simplicity and low cost. It is very important that
such cooling systems should be designed in the most efficient way and the power
requirement for the cooling should be minimized. The electronic components are treated
as heat sources embedded on flat surfaces [4]. A small fan blows air at low speeds over
the heat sources. This gives rise to a situation where the forced convection due to shear
driven flow and the natural convection due to buoyancy driven flow are of comparable
magnitude and the resulting heat transfer process is categorized as mixed convection.
Mixed convection flow and heat transfer also occur frequently in other engineering
and natural situations. One important configuration is a lid-driven (or shear- driven)
ﬂow in a differentially heated/cooled cavity, which has applications in crystal
growth, flow and heat transfer in solar ponds [5], dynamics of lakes [6], thermal-
hydraulics of nuclear reactors [7], industnal processes such as foed processing, and
float glass production [8]. The interaction of the shear driven flow due to the lid motion

and natural convective flow due to the buoyancy effect is quite complex and warrants

an -



-

I

‘comprehensive analysis to understand the physics of the resulting flow and heat transfer

process.

1.6 SELECTION OF PROBLEM

Two dimensional steady, mixed convection heat transfers in a trapezoidal cavity with
constant heat flux from heated bottom wall while the isothermal moving top wall has
been studied numerically. The present study is based on the configuration of Aydin and
Yang [9] where the isothermal heat source at the bottom wall is replaced by a constant
flux heat source, which is physically more realistic. The main attribute for choosing the
trapezoidal shape cavity is to enhance the heat transfer rate as it could be said
intuitionally due to its extended cold top surface. The inclination angle,y of the sidewalls
of the trapezoid has been changed ( 30°, 45° and 60° ) to get the maximum heat transfer
in terms of maximum Nusselt number. Then the trapezoid has been rotated (30°, 45° and
60°) and the results have been studied. The tilted position of the enclosure shows a
significant influence on the heat transfer. Results are obtained for both the aiding and
opposing flow conditions by changing the direction of the lid motion. This study includes
additional computations for cavities at various aspect ratios, 4, ranging from 0.5 to 2 and
their effects on the heat transfer process is analyzed in terms of average Nusselt number.
Contextually the present study will focus on the cornputatiohal analysis of the influence
of inclination angle of the sidewalls of the cavity, rotational angle of the cavity, Aspect

ratio, direction of the lid motton and Richardson number



1.7 MAIN OBJECTIVES OF THE WORK

The investigation is carried out in a two dimensional lid driven trapezoidal enclosure
filled with air. The inclined side walls are kept adiabatic and the bottom wall of the cavity
is kept at uniform heat flux. The cooled top wall having constant temperature will move
with a constant velocity. The specific objectives of the present research work are as

follows:

(a) To study the variation of average heat transfer in terms of Nusselt number with the
variation of Richardson number of the rectangular enclosure and compare the results with
those earlier.

{(b) To find out the optimum configuration by changing the inclination angle of the side
walls of the trapezoidal cavity for maximum heat transfer.

(c) To study the variation of average heat transfer in terms of Nusselt number with the
variation of Richardson number of the optimum trapezoidal cavity.

(d) To study the variation of average heat transfer in terms of Nusselt number at different
aspect ratios of the optimum trapezoidal cavity.

(e} To study the variation of average heat transfer in terms of Nusselt number ‘with the
variation of Richardson number at different aspect ratios of the optimum trapezoidal
enclosure by changing the rotation angle for both aiding and opposing flow conditions..
(f) To analyze the flow pattern inside the trapezoidal enclosures in terms of Streamlines

and isotherms.




CHAPTER 2
REVIEW OF PREVIOUS WORKS

There have been many investigations in the past on mixed convective flow in lid-driven
cavities. Many different configurations and combinations of thermal boundary conditions
have been considered and analyzed by various investigators. Torrance et al. [10]
investigated mixed convection in driven cavities as early as in 1972. Papaniclaou and
Jaluria [11-14] carried out a series of numerical studies to investigate the combined
forced and natural convective cooling of heat dissipating electronic components, located
in rectangular enclosures, and cooled by an external through flow of air. The results
indicate that flow patterns generally consists of high of low velocity re-circulating cells
because of buoyancy forces induced by the heat source. Koseff and Street [15] studied
experimentally as well as numerically the recirculation flow patterns for a wide range of
Reynolds (Re) and Grashof (Gr) numbers. Their results showed that the three
dimensional features, such as corner eddies near the end walls, and Taylor- Gortler like
longitudinal vortices, have significant effects on the flow patterns for low Reynolds
numbers. Khanafer and Chamakha [16] examined numerically mixed convection flow in
a lid-driven enclosure filled with a fluid-saturated porous medium and reported on the
effects of the Darcy and Richardson numbers on the flow and heat transfer

characteristics.

G. A. Holtzman et. al [17] have studied laminar natural convection in isosceles triangular
enclosures heated from below and symmetrically cooled from above. This problem is
examined over aspect ratios ranging from 0.2 to 1.0 and Grashoff numbers from 10° to
10°. 1ts is found that a pitchfork bifurcation occurs at a critical Grashoff number for each
of the aspect ratios considered, above which the symmetric solutions are unstable to finite
perturbations and asymmetric solutions are instead obtained. Results are presented

detailing the occurance of the pitchfork bifurcation in each of the aspect ratios

considered, and the resulting flow patterns are described. A flow visualization study is



used to validate the numerical observations. Difference in local values of the Nusselt
number between asymmetric and symmetric solutions are found to be more than 500
percent due to the shifting of the buoyancy- driven cells. The phenomenon of natural
convection in trapezoidal enclosures where upper and lower walls are not parallel, in
particular a triangular geometry, is examined by H. Asan, 1.. Namli [18] over a parameter
domain in which the aspect ratio of the enclosure ranges from 0.1 to 1.0, the Rayleigh
number varies between 10% to 10° and Prandtl number correspond to air and water. It is
found that the numerical experiments verify the flow features that are known from
theoretical asymptotic analysis of this problem (valid for shallow spaces) only over a

certain range of the parametric domain.

Moallem: and Jang [19] numerically studied mixed convective flow in a bottom heated
square driven cavity and investigated the effect of Prandtl number on the flow and heat
transfer process. They found that the effects of buoyancy are rrllore pronounced for higher
values of Prandu number. They also derived a comrelation for the average Nusselt number
in terms of the Prandtl number, Reynolds number, and Richardson number. Mohammad
and Viskanta [20] performed numerical investigation and flow visualization study on two
and three-dimensional laminar mixed convection flow in a bottom heated shallow driven
cavity filled with water having a Prandil number of 5.84. They concluded that the lid
motion destroys all types of convective cells due to heating from below for finite size
cavities. They also implicated that the two-dimensional heat transfer results compare
favorably with those based on a three-dimensional model for Gr/Re< 1. Later,
Mohammad and Viskanta [21] experimentally and numerically studied mixed convection
_in shallow rectangular bottom heated cavities filled with liquid Gallium having a low
Prandtl number of 0.022. They found that the heat transfer rate is rather insensitive to the
lid velocity and an extremely thin shear layer exists along the major portion of the
moving lid. The flow structure consists of an elongated secondary circulation that

occupies a third of the cavity.



Mansour and Viskanta [22} studied mixed convective flow in a tall vertical cavity where
one of the vertical sidewalls, maintained at a colder temperature than the other, was
moving up or downward thus assisting or opposing the buoyancy. They observed that
when shear assisted the buoyancy a shear cell developed adjacent to the moving wall
while the buoyancy cell filled the rest of the cavity. When shear opposed buoyancy, the
heat transfer rate reduced below that for purely natural convection. Iwatsu et al. [23} and
Iwatsu and Hyun [24] conducted two-dimensional and three-dimensional numerical
simulation of mixed convection in square cavities heated from the top moving wall.
Mohammad and Viskanta [25] conducted three-dimensional numerical simulation of
mixed convection in a shallow driven cavity filled with a stably stratified fluid heated
from the top moving wall and cooled from below for a range of Rayleigh number and

Richardson number.

Prasad and Koseff [26] reported experimental results for mixed convection in deep lid-
driven cavities heated from below. In a series of experiments which were performed on
a cavity filled with water, the heat flux was measured at different locations over the
hot cavity floor for a range of Reand Gr. Their results indicated that the overall (i.e.
area-averaged) heat transfer rate was a very weak function of Gr for the range of Re
examined (2200 < Re < 12000). The data were comrelated by Nusselt number vs

Reynolds number, as well as Stanton number vs Reynolds number relations.

They observed that the heat transfer is rather insensitive to the Richardson number. Hsu
and Wang [27] investigated the mixed convective heat transfer where the heat source was
embedded on a board mounted vertically on the bottom wall at the middle in an
enclosure. The cooling air flow enters and exits the enclosure through the openings near
the top of the vertical sidewalls. The results show that both the thermal field and the
average Nusselt number depend strongly on the governing parameters, position of the

heat source, as well as the property of the heat-source-embedded board.

Aydin and Yang [28] numerically studied mixed convection heat transfer in a two-

dimensional square cavity having an aspect ratio of 1. In their configuration the
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1sothermal sidewalls of the cavity were moving downwards with uniform velocity while
the top wall was adiabatic. A symmetrical isothermal heat source was placed at the
otherwise adiabatic bottom wall. They investigated the effects of Richardson number and
the length of the heat source on the fluid flow and heat transfer. Shankar et al. [29]
presented analytical solution for mixed convection in cavities with very slow lid motion.
The convection process has been shown to be governed by an inhomogeneous
biharmonic eﬁuation for the stream function. QOztop and Dagtekin [30] performed
numerical analysis of mixed convection in a square cavity with moving and differentially
heated sidewalls. Shanf [31] investigates heat transfer in two-dimensional shallow
rectangular driven cavity of aspect ratio 10 and Prandt! number 6.0 with hot moving lid
on top and cooled from bottom. They investigated the effect of Richardson number and
inclination angle. G. Guo and M. A. R. Sharif [32] studied mixed convection in
rectangular cavities at various aspect ratios with moving isothermal! sidewalls and
constant heat source on the bottom wall. They plotted the streamlines and isotherms for
different values of Richardson number and also studied the variation of the average Nu
and maximum surface temperature at the heat source with Richardson number with
different heat source length. They simulated streamlines and isotherms for asymmetric
placements of the heat source and also the effects of asymmetry of the heating elements

on the average Nu and the maximum source length temperature.

K oA -
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CHAPTER 3
MATHEMATICAL MODELING

Two dimensional steady, mixed convection heat transfer in a lid driven trapezoidal cavity
with constant heat flux from heated bottomn wall while the isothermal moving top wall in
the honzontal direction has been studied numerically. Natural convection heat transfer
within such an enclosure is a function of the temperature difference between the hot and
cold walls, the boundary conditions, the inclination angle of the side walls of the cavity,
the rotational angle of the cavity and the direction of lid motion whether it is opposing

flow or aiding flow condition.

The generalized govemning equations are used based on the conservation laws of mass,
momentum and energy. As the heat transfer depends upon a number of factors, a
dimensional analysis is presented to show the important non-dimensional parameters

which will influence the dimensionless heat transfer parameter, i.e. Nusselt number.

3.1 PHYSICAL MODEL

The physical model considered here is shown in fig. 3.1 and fig. 3.2, along with the
important geometric parameters. It consists of a trapezoidal cavity filled with air, whose
bottom wall and top wall are subjected to hot 7y and cold T¢ temperatures respectively
while the side walls are kept adiabatic. Two cases of thermal boundary conditions for the .
top moving wall have been considered here. The first case is (fig. 3.1) when the moving
cold wall is moving in the positive x direction (opposing flow condition). In that case the
shear flow caused by moving top wall opposes the buoyancy driven flow caused by the
thermal nonhomogeneity of the cavity boundaries. The second case is (fig. 3.2) when the
moving cold wall is moving in the negative x direction (aiding flow condition). In that
case the shear flow assists the buoyancy flow. The cavity height is H, width of the
bottom hot wall is W, is inclined at angle & with the horizontal reference axis. y is the
inclination angle of the sidewalls of the cavity. The flow and heat transfer phenomena in
the cavity are investigated for inclination angle v, a series of Richardson numbers (Ri),

aspect ratio (4=H/W), rotation angle of the cavity @.
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Figure 3.1: Schematic diagram of the physical system considering opposing flow
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Figure 3.2: Schematic diagram of the physical system considering aiding flow condition
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Figure 3.3: 3D view of the cavity
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Natural convection flow of a thermal viscous fluid assumed to be Newtonian is
considered under the Oberbeck-Boussineq approximation in the presence of a
gravitationa! field. The Oberbeck-Boussineq approximation is based on the assumptions

that the temperature variations are small enough in order to consider the density pas a
constant except in the buoyancy term pE, where Eis the gravitational force and p is
given linearly by p=p, [l— ﬂ(T——i’;)] where 7 is the temperature and p, and 7, denote
reference density and temperature respectively. The density change due to changes in

pressure is neglected.. Fluid properties such as viscosity #, thermal

expansionﬂz—-—l—(-gwg—] , the thermal diffusivity & and the specific heat C, are
po P

assumed to be constants. Prandt! number is assumed to be (.71 for air.

13
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3.2.1 GOVERNING EQUATIONS IN DIMENSIONAL FORM

Using the Boussinesq approximation and neglecting the viscous dissipation effect and
compressibility effect the goveming equations for two dimensional Ilaminar

incompressible flow can be written as follows:
Continuity equation:

%+Q_O
ooy G

X- Momentum equation:

2 2
you. ou_ 1op (0w Ou 2)
¥y pax (& @
Y-momentum equation:
2 2
ug+vﬂ=—l@+ a—:+ o : +gp(I'-T}) 3)
x o pd \&x &
Energy equation:
or or k (o°T o°T
u +v = > + 2 (4)
ox dy pC,{x" oy
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3.2.2 DIMENSIONAL ANALYSIS

To. get the non dimensional form of the above governing equations, all distances are

normalized by the cavity width, # and all velocities are normalized by the 1id velocity Uy
and the pressure is normalized by pU; The goveming equation in the non dimensional

form can be written by using the following non dimensional variables and parameters:

X:—E_,Y;l,azTH—TC AT:q W}U:i’Vz—Y-— P: p2
W W AT k U, U, pU:
U, v _ ®
ox " or
2 2
U, y2U_ 0P 1 (U 5 ©
ox Y T ox TRe\ox® Tor
2 2
vy P LIOF OV, G ™
oxX oY 0Y ReloX*® oY Re
2 p
U%-i-V@z I 692+af ®
(7). ¢ oY RePr\oX*® oY

The dimensionless parameters, appearing in Egs. (6)-(8) are Reynolds number Re=

3
UoW+ , the Prandfl number Pr=v/a, the Grashof number Gr = M—A{H—/— The ratio of
%

Gr/Re’ is the mixed convection parameter and is called Richardson number Ri and is a
measure of the relative strength of the natural convection and forced convection for a
particular problem. If Ri<<l the forced convection is dominant while if Ri>> 1, then
natural convection is dominant. For problems with Ri~1 then the natural convection

effects are comparable to the forced convection effects.

15
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3.2.3 BOUNDARY CONDITIONS

The boundary conditions for the present problem are specified as follows:
Top wall: U=Up, V=0, 6=0
Bottom wall: U=}=0, #=1

Right and Left wall: U=}=0, g; =0

Convection heat transfer co-efficient k can be defined as the rate of heat transfer between
a solid surface and a fluid per unit surface area per unit temperature difference. Since, as
in the case, the flux is often variable over the surface, even for a uniform temperature
difference, the surface coefficient h varies over the surface. Mathematically the local

convection heat transfer coefficient can be written as:

h, = 9

T,(x)-T,
Here, T(x) is the local temperature on the base of trapezoid.
So, the convection heat transfer coefficient, in general, varies along the flow direction.
The average or mean convection heat transfer coefficient for a surface in such cases is
determined by properly averaging the local convection heat transfer coefficient over the

entire surface, which is:
l w
ho =7 Jhuc
W 0
In convection studies, it is common practice to nondimensionalize the governing
equations and combines the variables, which group together into dimensionless numbers

in order to reduce the number of total variables. It is also common practice to

nondimensionalize the heat transfer coefficient » with the Nusselt number, defined as

W
Nu _1 J-h(x)x _h W

"Wl ok ok
I 20
Nu, = J{—) dXx
J\OY J,_, -
It is viewed as the dimensionless convection heat transfer coefficient. R
16
SN
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CHAPTER 4
COMPUTATIONAL DETAILS

The goveming equations in fluid dynamics and heat transfer, including conservation
forms of the Navier-Stokes system of equations as derived from the first law of
thermodynamics, are expressed in terms of the control volume / surface integral
equations, which represent various physical phenomena. To visualize these thermo-fluid
flow scenarios, an approximate numerical solution is needed, which can be obtained by
the CFD (Computational Fluid Dynamics) code. It means predicting physical fluid flows
and heat transfer using computational methods. Over 40 years ago, this was an emerging
field that owed everything to the advent of the modern computer. Although the equations
describing fluid flow and heat transfer (i.e. conservation of mass, momentum and energy)
had been developed many years earlier, it required the fast automated processing of
mathematical instructions before it was considered to be a practical tool. Forty years later
on and computers that we carry around in briefcases and handbags are more than
powerful enough to perform the required calculations to get a CFD solution in a matter of
minutes! As computers get even more powerful in the future then the accessibility and

efficiency of CFD will become more and more commonplace.

The partial differential equations of fluid mechanics and heat transfer are discretized in
order to obtain a system of approximate algebraic equations, which then can be solved on
a computer. The approximations are applied to small domains in space and / or time so
the numerical solution provides results at discrete locations in space and time. Much as
accuracy of experimental data depends on the duality of the tools used, the accuracy of

numerical solution is dependent on the quality of discretization used.

CFD computation involves the creation of a set numbers that constitutes a realistic
approximation of a real life system. The outcome of computation process improves the
understanding of the behavior of a system. Thereby, engineers need CFD codes that can
produce physically realistic results with good accuracy in simulations with finite grids.
Contained within the broad field of computational fluid dynamics are activities that cover

the range from the automation of well established engineering design methods to the use
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of detailed solutions of the Navier-Stokes equations as substitutes for experimental
research into the nature of complex flows. CFD have been used for solving wide range of
fluid dynamics problem. It is more frequently used in fields of engineering where the
geometry is complicated or some important feature that cannot be dealt with standard

methods.

The complete Navier-Stokes equations are considered to be the correct mathematical
description of the governing equations of fluid motion. The most accurate numerical
computations in fluid dynamics come from solving the Navier-Stokes equations. The

equations represent the conservation of mass and momentum.

As well as solving plain vanilla fluid flows (such as flows in pipes and around obstacles
such as cylinders), CFD can also include additional phenomena such as chemical
reactions, phase changes, acoustic noise and thermal madiation, etc. In fact, the speed at
which commercial and research codes are progressing means that virtually any kind of
real life industrial application, from high speed re-entry vehicles to macroscopic
electromagnetic effects can be studied using CFD. Heat transfer within and across solids
can also be included. This means that the analysis can include any combination of gas,
liquid and solid materials and all appropriate physical effects that would normally occur

in reality being included.

There are many different ways by which equations describing fluid flow and heat transfer
can be solved using computational methods (but note: the solutions obtained are only
approximate, whichever method is used!). Most commercial and research codes rely on

one of the following;

« Fmmte Difference Method (FDM)

+ Finite Element Method (FEM)

e Spectral Methods

» Macroscopic Fluid Modeling (Lattice Methods)
» Finite Volume Method (FVM)
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Each of these methods requires the definition of discrete points in space at which
vanables like velocity, pressure, temperature etc. will be computed. While the goveming
equations are always the same, the particular geometry with initial and boundary

conditions determines a unique solution for each particular problem.

Control Volume based finite volume method (FVM) has been used to discretize the
governing differential equations, as it is the method used by most of the popular
commercial CFD codes currently available. The pressure- velocity coupling in the
governing equations is achieved using the well known SIMPLE method for numerical
computations. The set of govemning equations are to be solved sequentially. A second
order upwind differencing scheme is to be used for the formulation of the coefficients in

the finite-volume equations.

4.1 CFD PROCESSES AT A GLANCE

The comerstone of computational fluid dynamics is the fundamental governing equations
of fluid dynamics—the continuity, momentum and energy equations. These equations
speak physics. They are the mathematical statements of three fundamental principles
upon which all of fluid dynamics is based:

1. Mass is conserved.

2. Momentum 1s conserved (Newton’s second law).

3. Energy is conserved.



20

OVERVIEW OF COMPUTATIONAL FLUID DYNAMICS

The total process of determining practical mnformation about problems involving fluid

motion can be represented schematically as below:

FOR EACH ELEMENT OF

Conservation of mass -> Continuity Equation
Conservation of momentum -> Euler Equations
(Newtons second law of motion) Navier-Stokes

-> Energy Equation

Equations

Conservation of Energy
Equation of state

Solve the equations plus the boundary
conditions

Velocity Distribution Ju(x,y,z,t), V(X,Y,Z1), w(x,y,z,t)
Pressure Distribution p(x.y,z 1)
Density Distribution p(X,y,2,t)

Temperature Distribution - T(x,y,2,1)

!

Deduce flow behavior: Flow separation
: Flow rates
: Heat transfer
: Forces on bodies (skin friction,
drag, and Lift)
: Efficiencies (turbine, diffuser)

-

Y
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4.2 THE FINITE VOLUME METHOD

The Finite Volume Method (or FVM as it will hereafter be known) starts with the integral
form of the governing equations, involving surface integrals (e.g. convective and
diffusive fluxes) and volume integrals {e.g. those describing sources and sinks). In case of
a transient flow (ie unsteady flow that changes over time), there is also a rate-of-change
term. One of the reason why FVM has succeeded over the other methods is that it is
inherently conservative: irrespective of errors in various approximations, the descretized
equations still fulfill the conservation laws exactly (e.g. mass entering solution domain
equals mass leaving through it). The FVM is also easier to understand by engineers than
some of the others, more mathematically involved equation, since the terms that need to

be computed have a clear physical meaning.

The FVM represents the integration of the governing equations over (a finite number of)
contiguous control volumes (CVs) representing the solution domain. Since variable
values are computed only at discrete points (usually centroids of control volumes),
approximations must be used to express the integrals in terms of unknowns at discrete

locations. Three kinds of approximations are involved:

¢ Approximation of integrals (usually midpoint rule),
» Interpolation is used to approximate variable values at locations other than the
discrete points at which they are computed,

» Finite differences are used to approximate gradients of variables.

In this way, one algebraic equation per CV is obtained, linking variable value at the
¢entroid of that CV with those at neighbor CVs. For the solution domain as a whole, a
large system of algebraic equations is obtained. To make things more complicated, one
such system is obtained for each governing equation (e.g. for three velocity components,
pressure, temperature etc.). Since these equations are in general non-linear and coupled,

the solution must be sought using iterative solution methods. Iteration means repeating a

21
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4.3 SOLUTION PROCESS OF A CFD ANALYSIS USING
FVM APPROACH

CFD analysis is stmctured around the numencal algonithms that can tackle fluid flow
problems. A CFD analysis mainly works through problems by three different activity
stages:

1. A pre-processor.

2. Asolverand

3. A post processor.
The activities at the pre-processor stages involve:

. Definition of the geometry of the region of interest: the computational domain.

Solution domain then havé o subdivided into a finite number of control

volumes or CVs (also called cells) using a suitable grid (also called a
mesh). The grid cani be composed o hexahedral, tetrahedral, prismatic,
pyramid. or polyhedral cells. Any of these cell -s}lﬁpes can be used to
construct gnids suitable for CFD domains,

. Selection of the physical and chemical phenomena that need to be modeled.
e  Definition of fluid properties.

. Specification of appropniate boundary conditions at cells which coincide with or

touch the domain boundary.

The activities at the solver stage involves
¢ Division of the domain into discrete control volumes using a computational grid.

¢ Integration of the governing equations on the individual control volumes of the

solution domain to construct algebraic equations for the discrete dependent
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vanables (unknowns) such as velocities, pressure, temperature and conserved

scalars.

e Discretization, which involves the substitution of a vanety of finite-difference-
type approximations for the terms in the integrated equation representing flow
processes such as convection, diffusion and sources. This converts the integral

equations into a system of algebraic equations.
¢ Linearization of the discretized equations.

e Solution of the algebric equations (resultant linear equation system) by an

iterative method in order to yield updated values of the dependent variables.

The first step, the control volume integration distinguishes the finite volume method from
all other CFD techniques. The resulting statements express the (exact) conservation of
relevant properties for each finite size cell. This clear relationship between the numerical
algorithm and the underlying physical conservation principle forms one of the main
attractions of the finite volume method and makes its concepts much simpler to

understand by engineers than finite element and spectral methods.
The activities of post-processing stage involves
e Plotting of resulis.

* Analysis of results.
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4.4 NUMERICAL TOOLS/ STEPS FOR SOLVING THE
GIVEN PROBLEM USING FVM APPROACH

Grid/ Mesh generation

The first step, the control volume integration, distinguishes the finite volume method
from all other CFD techniques. The resulting statements express the (exact) conservation
of relevant properties for each finite size cell. This clear relationship between the
numerical algorithm and the underlying physical conservation principle forms one of the
main attractions of the finite volume method and makes its concepts much more simple to
understand by engineers than finite element and spectral methods. Cells are control
volumes into which domain is broken up. Computational domain is defined by mesh that
represents the fluid and solid regions of interest. Face is the boundary of a cell, edge is
the boundary of a face, and nodes are grid points. As the sides of the trapezoidal cavity
are not parallel, the present numerical techniques will descretize the computational

domain into unstructured triangular elements.

—¢ node
cell __1-o
center
face
cell

Figure 4.1: Finite Volume discretiztion of a domain
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Figure 4.2: Current mesh structure

4.5 GRID INDEPENDENCY TEST

In order to obtain the gnd independence solution, a grid refinement study is performed
for the rectangular and trapezoidal cavity (A=1) under constant heat flux condition
keeping, Re=400, Pr=0.71, Ri= 1.0. fig. 4.3 shows the convergence of the average
Nusselt number, Nu,,, at the heated surface with grid refinement. It is observed that grid
independence is achieved with 60x60 grid for the rectangular enclosure. This grid
resolution is therefore used for all subsequent computations for A<1. For taller cavities
with A>1, a proportionately large number of grids in the vertical direction is used while

keeping the number of grids in the horizontal direction fixed at 60.

Nuay

20 30 40 50 60 70 80 9% 100

Gnrid Resolution

Figure 4.3: Convergence of the Nu,, with grid refinement for rectangular cavity at
Ri=1.0, Re=400 and A=1
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For the trapezoidal cavity, test for the accuracy of grid fineness has been carried out to
find out the optimum grid number. It is found in fig. 4.4 that 5496 regular nodes are
sufficient to provide accurate results. This grid resolution is therefore used for all
subsequent computations for A<1. For taller cavities with A>1, a proportionately large

number of grids in the vertical direction is used.

9
8 -
;T T
Z
7 =
6 T T T 1 I
1000 2000 3000 4000 5000 6000 7000
Number of Nodes

Figure 4.4: Grid sensitivity test for Trapezoidal cavity at Ri=1.0, Re=400 and A=1

4.6 INITIALIZATION THE SIMULATION

Before stating the CFD simulation the solution flow field is initialized. In many cases, the
initial solution is provided so that it will allow the desired final solution to be attained.
There are two methods for initializing the solution:
s Initialize the entire flow field (in all cells)
e Patch values or functions for selected flow variables in selected cell zones or
register of cells. (Registers are created with the same functions that are used to

mark cells for adaptation.)
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4.7 SOLVER SETTING

For any given problem using FVM approach two types of solvers can be used.
¢ Segregated solver
¢ Coupled solver

The segregated solver traditionally has been used for incompressible and mildly
compressible flows. The segregated solver solves the governing integral equations for the
conservation of mass and momentum, and (when appropriate) for energy and other

scalars.

4.8 CONVERGENCE CRITERIA

Convergence 1s the property of a numerical method to produce a solution, which
approaches the exact solution as the grid spacing; control volume size of element size is
reduced to zero.

For the current problem, convergence is judged by examining residual levels to reach a
predestinated criterion. The convergence criterion was defined by the required scaled
residuals to decrease 107 for all equations except the energy equations, for which the
criterion is 107 .

4.9 CODE VALIDATION

The computational procedure is validated against the numerical results of Iwatsu et
el.[23] for a top heated moving lid and bottom cooled square cavity filled with air
(Pr=0.71). A 60%60 mesh is used and computations are done for six different Re and Gr
combinations. Comparisons of the average Nusselt number at the hot lid are shown in
Table 1. The general agreement between the present computation and that of Iwatsu et
el.{] is seen to be very well with a maximum discrepancy of about 3.9%.

Table 1: Comparison of the computed average Nusselt number at the hot plate

Re Gr=10" Gr=10" Gr=10°
Present | Iwatsuet | Diff | Present | Iwaisu | Diff Present | Iwatsu | Diff
al. %% etal % etal %
400 397 384 33 3.75 3.62 35 1.18 1.22 32
1000 | 6.25 6.33 1.2 632 6.29 047 1.70 1.77 39
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The computattonal procedure can also be validated against the numerical results of Guo

and M. A R Sharif [32] shown in the figure below.

10

w———=3. Guo at Ri=10

—~ 4 — Present computation at
Ri=10
—&— G. Gue at Ri=0.1

3 ]
- - @ - - Present computation at
2 Ri=0.1
1 4
0 T T
0.5 1 1.5 2

Figure 4.5: Vanation of the Average Nusselt number with different Aspect Ratio at
Ri=10, Re=100 and £ =0.6
Fig. 4.5, reveals that the Average Nusselt numbers in the present study have excellent
agreement with those obtained by Guo and M. A. R. Sharif [32] having a maximum
discrepancy of about 2.3% Therefore, it can be concluded that the numerical code used

in this analysis can solve the present problem with reasonable agreement.
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CHAPTER S
RESULTS AND DISCUSSION

Numerical results are presented in order to determine the effects of the inclination angle
of the side walls, Richardson number Ri, Reynolds number Re, Aspect ratio A, the
rotational angle of the cavity @ on mixed convection flow in trapezoidal enclosure. The
inclination angle of the sidewalls of the trapezoidal enclosure has been changed from 30°
to 60° with an interval of 15°. The values of Richardson number varies from 0.1 to 10,
Aspect ratio, 4 changes from 0.5 to 2.0 taking Rotational angle 30°, 45 °, 60° for two
different Reynolds numbers 400 and 600.

5.1 EFFECT OF INCLINATION ANGLE, y

In this study the effect of inclination angle of the adiabatic sidewalls has been observed
first. The inclination angle of the side walls has been changed to 30°, 45 ° and 60°. The
Richardson number has been changed from 0.1 to 10. The optimum inclination angle has
been selected based on the average Nusselt number which is a non dimensional parameter
that indicates the rate of heat transfer between the hot and cold walls. The results are
obtained both for Re=400 and Re=600.

Figure 5.1-5.3 reveals the impact of varying inclination angles of the sidewalls of the
trapezoidal cavity. These figures show the contours of streamlines and isotherms at
different Richardson numbers. For small values of Ri number, it can be seen that the
shear effect due to the movement of the top wall is dominant The fluid flow is
characterized by a primary recirculation of the size of the cavity generated by the
movement of the top lid. The isothermal contour maps are clustered near the bottom and
top walls resulting in steep temperature gradient there. In each case as the Richardson
number increases the convection current becomes more dominant resulting in stronger
flow field. Again at y=45° (fig. 5.2), the flow field is stronger than the y=30° and y=60°
(fig. 1 and fig. 3), which is an indication of better heat transfer. The isothermal plots also
complies with the flow field, showing minimum value of the maximum isotherms at
y=45°.
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From figure 5.4-5.5 the average value of the Nusselt number with respect to the
Richardson number has been plotted. Here it can be seen that Nusselt number at y=45°
dominates the other two cases i.e. »=30° and y=60°, showing better heat transfer. So it is
clearly visible that trapezoid having the inclination angle y=45° gives better heat transfer
and consequently it can be taken as the optimum inclination angle for the rest of the

analysis.

5.2 EFFECT OF RICHARDSON NUMBER, Ri

The value of the Richardson number, Ri=Gr/Re’ provides a measure of the importance of
buoyancy driven natural convection relative to the lid driven forced convection. When
the Buoyancy effects are relatively small, Ri<1, the gross flow features of fig. 5.6-5.13
are similar to those of a conventional non-stratified fluid at comparable values of Re. In
general, the flow field is characterized by a primary clockwise recirculation where the
shear driven flow by the lid is impacted on the right adiabatic sidewall and is forced to
move downward. The flow then rises along the left side wall due to the buoyancy affect.
The main circulation fills the entire cavity of the size of the cavity generated by the
movement of the top wall. Minor cells may be visible near the bottom corners. The
streamlines and isotherms indicated that the hydrodynamic and thermal boundary layers
are not developed fully at low Richardson number. The isothermal lines are mostly
undistorted and horizontal lines except the large recirculating area inside the cavity at low
Richardson number. In the large recirculating zone temperature gradients are very weak.
This implies that, due to the vigorous actions of the mechanically driven circulations,
fluids are well mixed; consequently, temperature differences in much of this interior
region are very small.

When Ri>1, natural convection begins to dominate the forced convection. The Buoyancy
assists the core flow and thus the convection current becomes more and more strong with
- increasing Richardson number. As Richardson number increases, the main circulation
occupies the whole cavity and it become more symmetrical inside the cavity. If we see
the isothermal plots, we can see that as the Richardson number increases the isothermal
lines becomes more and more denser at the upper cold lid. The crowded streamlines and

isothermal lines indicate that the hydrodynamic and thermal boundary layers have been
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developed along the hot wall and cold wall, respectively, reflecting rigorous heat transfer
rate occurred. Consequently the maximum temperature reduces due to this large heat
transfer rate.

"I‘he average Nusselt number as a function of Richardson number has been plotted in fig.
5.14-5.15 for different Reynolds number. It can be observed that as the Richardson:
number increases the average Nusselt number increases accordingly for all the aspect
ratios. When Ri<1 , Nu,, grows only slightly with increasing Ri. After Ri is more than 1,
Nu,, is found to increase more rapidly. Since Re is kept constant the forced convection
effect remains invariant as R/ increases for a particular case. When Ri>1, the natural
convection aids more and more in the heat transfer process in addition to the forced

convection which results in more rapid increase of Nu,,

5.3 EFFECT OF ASPECT RATIO, 4
Changing the aspect ratio, A (A=H/W) causes a change in heat transfer characteristics

which can be visible in fig. 5.6-5.13. In order to investigate the- convection heat transfer
at different aspect ratios, computations were done for cavities at aspect ratios of 0.5, 1,
1.5 and 2.0: Keeping Reynolds number fixed at 400 and 600 the Richardson number has
been changed from 0.1 to 10. If we compare the flow fields at different aspect ratios from
0.5 to 2.0 (figure 5.6-5.13), it can be revealed that in the convection region adjacent to the
heat source, the isotherms become thinner and denser producing higher temperature
gradients with increasing aspect ratio. The streamlines become more and more stronger
as the aspect ratio increases. The isotherms are also adjusted according to the streamlines
and showing lower values as the aspect ratio increases at a particular Rs. This is due to the
fact that the cavity volume increases with aspect ratio and more volume of cooling air is
involved in cooling the heat source leading to better cooling effect. The thermal and
hydrodynamic boundary layers have been developed completely at high aspect ratios and
when natural convection dominates. The average Nusselt number at the heat source
surface has been plotted in fig. 5.16-5.17 for a range of R/ and aspect ratios. For a
particular aspect ratio, the Nua increases with increasing Ri: As a result, the maximum-
temperature decreases monotonously which can be recognized from the isothermal plots.
As the' aspect ratio increases from 0.5 to 2 the Nuax increases for a particular Ri. At higher
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Reynolds number i.e. Re=600, with mcreasing aspect ratio some secondary eddy at the
bottom surface of the cavity has been observed (fig.: 5.12-5.13). This is of frictional
losses and stagnation pressure. As the Ri increases, natural convection dominates more
and the bottom secondary eddies blends into the main primary flow. For A>1.5 the
variation is almost flat indicating that the aspect ratio does not play a dominant role on
the heat transfer process at that range. At high aspect ratios the convection is weak in the

upper parts of the taller cavities.

5.4 EFFECT OF REYNOLDS NUMBER, Re

This study has been done at two different Reynolds numbers. They are Re=400 and
Re=600. With a particular case keeping Ri and A constant, as the Reynolds number
increases the convective current becomes more and more stronger and the maximum
value of the isotherms reduces. As we know Ri=Gr/Re’. Gr is square proportional of Re
for a fixed Ri. So slight change of Re and Rf causes huge change of Gr. For lower Gr the
convection intensity in the cavity is very weak as evident from the stream function
values. In that case, viscous forces are more dominant than the buoyant forces at lower
Gr and diffusion is the principle mode of heat transfer. But for higher Gr the intensity of
convection increases significantly, as Gr increases the buoyancy force. As buoyancy
force is increased then heat transfer rate is tremendously high. So changes are very
visible to the change of Re. From fig. 5.14-5.15, it can be observed that as the Re

increases the average Nusselt number also increases for all the aspect ratios.
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3.5 EFFECT OF ROTATIONAL ANGLE, &

Next the effect of rotational angle, & has been studied. When studying the effect of
rotational angel, two distinct cases have been taken into consideration. They are aiding
and opposing flow condition. The first one is when the shear driven flow opposes the
convective flow and in that case the top moving lid is moving in the positive direction at
a specified rotational angle [fig. 3.1]. The second condition is the aiding flow condition
where the shear driven flow aids the natural convective flow and the moving top lid
moves in the opposite direction unlike the first case [fig. 3.2]. Both these cases have been
studied for a rotational angle for $=30°, 45° and 60° and their heat transfer characteristics
has been studied in terms of streamlines and isothermal plots.

Unlike ©=0°, when the buoyancy is acting only in the y direction, as the rotational angle
& changes, thé flow field changes significantly. In opposing flow condition the shear
driven flow opposes the natural convective flow, At low Richardson number (Ri<1)the
forced convection is dominating, creating a single circulation at the right comer of the top
moving lid [fig. 5.18-532] As the Richardson number increases (Ri>1), natural
convection becomes dominating creating a large circulation at the bottom of the cavity.
This large circulation causing by natural convection goes bigger and stronger as Ry
number increases as well as squeezes the upper circulation, resulting an opposing effect.
If we observe the isothermal plots, it changes accordingly with streamlines. As Ri number
increases, the isothermal lines changes significantly indicating that the convection is the
dominating heat transfer for the specified case. The shear driven circulation at the upper
right side becomes smaller and smaller as the Ri number increases because of dominating
natural convection.

In the case of aiding flow, condition when the forced convection aids the natural
convection a different scenario has been observed [fig. 5.33-5.47). In all the cases, a
single circulation of the size of the cavity has been observed. Unlike the opposing flow
condition, in that case the natural convection aids the shear driven flow from the smaller
value of Ri number, resulting a much stronger convective current. As the R/ number
increases, the convection flow fields become more and more stronger resulting better and
better heat transfer. The isotherms changes significantly as the Richardson number

increases and gives the minimum value at higher R number.
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As the aspect ratio, A increases the convective flow fields become more and more
stronger. As cavity volume increases with aspect ratio and more volume of cooling air is
involved in cooling the heat source leading to better cooling effect. Fig. 5.48-5.59 shows
the effect of aspect ratio at different rotational angle. In all the cases, it can be observed
that Nu,, increases with increasing aspect ratio for all rotational angles, leading to better
heat transfér. Fig. 5.60-5.67 shows a comparative analysis of aiding and opposing flow
conditions. There it can be seen that, the aiding flow condition always dominates the
opposing flow condition in terms of Nu, , which indicates better heat transfer at all
rotational angle. @=0° gives better heat transfer than the opposing flow conditions. The
aiding flow condition provides stronger convective currents which can be easily visible in
fig. 5.33-5.47, as the natural convection aids the shear driven flow. As a result the
maximum value of the isotherms is lower in case of aiding flow condition, indicating
lower temperature. But in opposing condition the natural convection opposes the shear
driven flow, providing weak convective currents. The Nug is also sensitive to rotational
angle, fig. 5.60-5.67 (Op for opposing flow condition and Ad for Aiding flow condition).
At Re=400 it can be seen that, Nusselt number decreases as the rotational angle, &
increases from 0° in case of opposing flow condition. But at aiding flow condition
Nusselt number increases until @=30° and then its starts decreasing. Nu,, increases
marginally at $=30° from @=45° but at $=60°, Nu,, drops significantly for all the aspect
ratios, fig. 5.60-5.63.The flow fields also changes accordingly. At Re=600, the maximum
heat transfer has been obtained at $=45°, in terms of average Nusselt number, fig. 5.64-
5.67. Nu,, increases marginally at $=45° from @$=30° but drops significantly at &=60°,
indicating poor heat transfer at @=60°.
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Figure 5.5: Average Nusselt number, Nu,, vs Richardson number at Re=600, A=1
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Figure 5.10: Contours of Streamlines and isotherms at Re=600, A=0.5 and ®=0°
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Figure 5.11: Contours of Streamlines and isotherms at Re=600, A=1 and ®=0°

44




45

2620 15501
R £ a0 3 Bl
e 3.4000-01

211003 33041

1 00000 101

1 e 2810

1 1.1e-0D | e T2e-01

- = 2201
201
21301
104001
1.7%-01
13501
13501
1.168-0)
0,Me-03
7.Toe-22
S82e-03
1%
1 D02
0 L0n-00
Corbyum ol Swan Furcton g M 13, 2000 ||&m-ﬂ oterm -1 uhm
FLUENT §.2 (¢, dp, mpugead, an) FLUENT G2 2, dp, mgmpand, am)
1.00u-(3 20%-0
2 le-03 1020t
130 | Sde-01

262003 176001

7603 184001

221e0 1501

1 2,100 ; 1001

20100 1201

10200 1 2e-0%

1,70u-3 1,301

1.3 102»01

1.200-00 0.L2002

12200 &R0

100D 72

9 26004 8.1 022

11e-04 Stz

[ArL2 ] 4.100-02

A 5e-04 A07e-03

3.00e-04 20%-02

1.24-04 10202

0.00w-+00 0 L0e-+00

Conioyn ¢ Swwan Furcion (igh) i 13, 000 I Corioum o Imrterm War Ilh.m
FLUENT 6.5 24, &, mgmguind, hurt) FLUENT €2 24, dp, ympuud, k)

3, 10000 1.5Te-01

w0 1 el

287603 15001

271em 1. %01

2.3t} 1. 20w-01

120000 141001

253003 = g 131e-01

20000 1 2e-01

F 1.52e-00 [ 1.129-01

1.7%e-01 10001

150000 1702

1 dfe-03 940002

120003 T.30e-02

1,12-00 6.6

9. 3e-04 Sa2e-02

T b0 4 K02

8. 30n-0d 32

4. TonDd 281002

3. 10004 | STe-t22

¥ S0w0d 0XTe-t2

[F.. 2. ] 000000

|Conbum i Bwmrs Furrion igrs) M u‘m "Cemu-d otem M 1:hm
FLUEHT £ 2 (24, dp, segmpund, ) FLUENHT 6.2 (i, &, mgupund, an)

4.0 1dte-01

Iaien 124001

1rem 11Te-01

151003 1.20a-01

120001 11201

1 10900 ! 106e-01

280003 =4

| 258

.00

227

205000

1 863

1800

148000

124003

1 -0

0930

£.100-04

4.13e-04

2.050-04

0 .00u-+00

Conbum « Eman Furcion (ign) 1 "an Cortiim ol Motterm . uhm
FLUENT 6.2 (X, dp, s sgmtd, bur) FLUENT 8.2 [, dp, segmwgaied, brv)

Figure 5.12: Contours of Streamlines and isotherms at Re=600, A=1.5 and ®=0°
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Figure 5.13:

Contours of Streamlines and isotherms at Re=600, A=2.0 and ®=0°
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Figure 5.18: Contours of Streamlines and isotherms at Re=400, A=0.5 and ®=30°, Opposing Flow -
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Figure 5.19: Contours of Streamlines and isotherms at Re=400, A=1 and ®=30°, Opposing Flow
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Figure 5.20: Contours of Streamlines and isotherms at Re=400, A=1.5 and ®=30°, Opposing Flow
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Figure 5.21: Contours of Streamlines and isotherms at Re=400, A=2 and ®=30°, Opposing Flow
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Figure 5.22: Contours of Streamlines and isotherms at Re=400, A=0.5 and ®=45°, Opposing Flow
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Figure 5.23: Contours of Streamlines and isotherms at Re=400, A=1 and ®=45°, Opposing Flow
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Figure 5.24: Contours of Streamlines and isotherms at Re=400, A=1.5 and ®=45°, Opposing Flow
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Figure 5.25: Contours of Streamlines and isotherms at Re=400, A=2 and ®=45°, Opposing Flow
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Figure 5.27: Contours of Streamlines and isotherms at Re=400, A=1 and ®=60°, Opposing Flow
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Figure 5.28: Contours of Streamlines and isotherms at Re=400, A=1.5 and ®=60°, Opposing Flow
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Figure 5.29: Contours of Streamlines and isotherms at Re=400, A=2 and ®=60°, Opposing Flov{
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Figure 5.30: Contours of Streamlines and isotherms at Re=600, A=1 and ®=30°, Opposing Flo
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Figure 5.31: Contours of Streamlines and isotherms at Re=600, A=1 and ®=45°, Opposing Flow
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Figure 5.39: Contours of Streamlines and isotherms at Re=400, A=1.5 and ®=45°, Aiding Flow
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Figure 5.40: Contours of Streamlines and isotherms at Re=400, A=2 and ®=45°, Aiding Flow
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Figure 5.48: Variation of Nu,, with Ri at ®=30°, Re=400, Opposing Flow
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Figure 5.49: Variation of Nu,, with Ri at ®=30°, Re=600, Opposing Flow
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Figure 5.50: Vanation of Nu,y with Ri at ®=45°, Re=400, Opposing Flow
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Figure 5.51: Variation of Nu,y with Ri at ®=45°, Re=600, Opposing Flow
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Figure 5.52: Vanation of Nu,, with Ri at ®=60°, Re=400, Opposing Flow
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Figure 5.53: Variation of Nu,, with Ri at ®=60°, Re=600, Opposing Flow
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Figure 5.54: Varation of Nu,y, with Ri at ©=30°, Re=400, Aiding Flow
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Figure 5.55: Vanation of Nug, with Ri at ®=30°, Re=600, Aiding Flow
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Figure 5.56: Variation of Nu,, with Ri at $=45°, Re=400, Aiding Flow
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Figure 5.57: Variation of Nu,, with Ri at ®=45° Re=600, Aiding Flow
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Figure 5.58: Varation of Nu,y with Ri at ®=60°, Re=400, Aiding Flow
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Figure 5.59: Variation of Nu,, with Ri at ®=60°, Re=600, Aiding Flow
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Figure 5.65: Variation of Nu,, with Ri at A=1, Re=600
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CHAPTER 6
CONCLUSION

The conclusions that can be drawn form this study are listed below:

General Conclusions

1. As the Richardson number increases the Nu,y, increases accordingly at all Aspect ratios,
because at higher Richardson number natural convection dominates the forced
convection. |

2. As Aspect Ratio increases from 0.5 to 2.0, the heat transfer rate increases. This is due to
the fact that the cavity volume increases with aspect ratio and more volume of cooling air

is involved in cooling the heat source leading to better coolitig effect.

Specific Conclusions from This Study

3. The optimum configuration of the trapezoidal enclosure has been obtained at y=45°, as at
this configuration the Nu,, was maximum at all Richardson number.

4. The direction of the motion of the lid also affects the heat transfer phenomena. Aiding
flow condition always gives better heat transfer rate than opposing flow condition.
Because at aiding flow condition, the shear driven flow aids the natural convective flow,
resulting a much stronger convective current that leads to better heat transfer.

5. The MNu,, is also sensitive to rotational angle @. Nusselt number decreases as the
rotational angle, @ increases from 0° for opposing flow condition. For aiding flow
condition, Nu,, increases up to ¢$=30° and then it starts decreasing. Nu,, increases
marginally at &=30° from &=45° but at =60° Nu,, drops significantly for all the aspect
ratios.
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CHAPTER 7
FURTHER RECOMMANDATIONS

The following recommendation can be put forward for the further work on this present research.

1.

Numerical investigation can be carried out by incorporating different physics like
radiation effects, internal heat generation/ absorption.
Double diffusive natural convection can be analyzed through including the govemning

equation of concentration conservation.

. Investigation can be performed by using magnetic fluid or electrically conducting fluid

within the trapezoidal cavity and changing the boundary conditions of the cavity’s wall.
Investigation can be performed by moving the other lids of the enclosure and see the heat
transfer effect.

Investigation can be carried out by changing the Prandtl number of the fluid inside the
trapezoidal enclosure.

Investigation can be carried out by using a porous media inside the trapezoidal cavity

instead of air.
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APPENDIX
AVERAGE NUSSELT NUMBER FOR TRAPEZOIDAL
ENCLOSURE

Optimum Inclination Angle, y:

Table 1: Average Nusselt number, Nu,, at Different Reynolds number, Re and Richard

number, Ri
Ri 30° 45° 60°
Re=400 | Re=600 | Re=400 | Re=600 | Re=400 | Re=600
0.1 3.057 3.5 5.243 3.534 4.96 5.94
0.2 3.09 3.65 5.755 3.82 5.1 6.0654
0.5 5.01 5.75 6.426 7.646 5.52 6.41
\ 1 6.02 6.8 6.95 8.27 5.766 6.74
2 7.1 7.95 7.53 8.7 6.17 7.185
5 815 9.44 8.442 9.93 7.03 7.9489
10 9.05 10.23 9.32 10.89 7.839 8.6847
Table 2: Average Nusselt number, Nu,, at ®=0° and Re=400
Ri A=0.5 A=1.0 A=1.5 A=2.0
0.1 2.81 5.243 6.2 8.076
0.2 3.063 5.755 6.527 8.13
0.5 4.988 6.426 7.2 8.305
1 5.633 6.95 7.82 8.556
2 6.14 7.53 8.511 8.965
5 7.811 8.442 9.47 9.85
10 8 9.32 10.35 11.355
Table 3: Average Nusselt number, Nu,, at ®=0° and Re=600
Ri A=0.5 A=1 A=1.5 A=
0.1 3.57 3.534 6.66 8.47
0.2 3.925 3.82 7.25 8.76
0.5 4.42 7.646 8.33 9.065
1 6.245 8.27 9.274 9.44
2 6.94 8.7 10.12 10.2
5 7.986 9.93 11.3 11.344
10 8.98 10.89 -12.31 12.54
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Table 4. Average Nusselt number, Nu,, at ®=30° and Re=400, opposing flow condition

Ri A=0.5 A=1.0 A=1.5 A=2.0
0.1 2.8 3 3.197 3.23
0.2 3.01 3.243 3.568 3.568
0.5 3.3 3.97 4.07 4.099

1 3.7 4.5 4.493 4.5797

2 4.2 4.94 4.98 5.1348

5 4.9925 5.6 5.959 6.2845
10 6.06 6.55 7.11 7.437

Table 5: Average Nusselt number, Nu,, at ®=30° and Re=600, opposing flow condition

Ri A=0.5 A=1 A=1.5 A=2

0.1 3.5 3.8298 4.028 4.023

0.2 3.8 4.25 4.4 4.36

0.5 4.2 4.889 4.91 4.863
1 4.8 5.359 5.34 5.374
2 5.28 5.83 5.86 5.987
5 6.2 6.5 6.85 7.1
10 7.165 7.61 8.184 8.63

Table 6: Average Nusselt number, Nu,, at ®=45° and Re=400, opposing flow condition

Ri A=0.5 A=1 A=1.5 A=2

0.1 2.75 3.22 3.223 3.288

0.2 2.95 3.338 3.615 3.6358

0.5 3.2 3.98 4.13 412
1 3.6 4.44 4.53 4.536
2 4.1 4.876 4.97 5.05
5 5.02 5.62 5.7 6.05
10 6.05 6.62 6.94 7.316

Table 7. Average Nusselt number, Nu,, at ®=45° and Re=600, opposing flow condition

Ri A=0.5 A=1 A=1.5 A=2
0.1 3.4 3.85 3.96 3.916
0.2 3.7 4.25 4.31 4.265
0.5 4.01 4.845 4.84 4.81
1 4.76 5.297 5.35 5.46
2 5.3 5.77 5.9316 6.1175
3] 6.229 6.613 7.075 7.423
10 7.19677 7.766 8.395 8.71

96



Table 8: Average Nusselt number, Nu,, at @=60° and Re=400, opposing flow condition

Ri A=0.5 A=1 A=1.5 A=2

0.1 2.6 3.039 2.992¢9 2.974

0.2 2.8 3.2078 3.31 3.288

0.5 3.06 3.752 3.785 3.826
1 3.4 4.16 4.2 4.2945
2 3.9581 4.563 4.654 4.713
5 4.68 5.165 9.34 5.623
10 5.51 5.89 6.171 6.382

Table 9: Average Nusselt number, Nu,, at ©=60° and Re=600, opposing flow condition

Ri A=0.5 A=1 A=1.5 A=2
0.1 29 3.719 3.7 3.634
0.2 3.1 4.044 4.026 4.003
0.5 3.4 4.5698 4.563 4.63
1 3.8 4.98 5.0655 5.193
2 4.225 54713 5.614 5.79
5 5.82 6.145 6.383 6.5
10 6.627 6.93 7.289 7.54

Table 10: Average Nusselt number, Nu,, at ®=30° and Re=400, Aiding flow condition

Ri =0.5 A=1 A=1.5 A=2

0.1 4.44 5.75 6.518 8.1755

0.2 5.02 6.278 7.01 8.34

0.5 5.86 7 7.85 8.7
1 6.56 7.58 8.51 92
2 7.34 8.2 9.16 9.9169
5 8.46 9.09 9.9 10.95
10 9.63 10.1 10.533 11.72

Table 11: Average Nusselt number, Nu,, at ®=30° and Re=600, Aiding flow condition

Ri A=0.5 A=1 A=1.5 A=2

0.1 6.62 7.09 8.84

0.2 5 7.43 7.82 9.08

0.5 6.748 8.37 9.048 9.72
1 7.61 9.08 10.089 10.52
2 8.3 9.825 10.92 11.543
5 9.899 10.867 11.658 13.06
10 11.45 11.72 12.05 13.67




" Table 12: Average Nusseit number, Nu,y at $=45° and Re=400, Aiding flow condition

Ri A=0.5 A=1 A=1.5 A=2
0.1 3.91 5.237 8.177 8.112
0.2 . 4,543 573225 6.5051 8.225
0.5 5.357 8.43 7.1 8.497
1 6.05 6.991 7.835 8.88
2 .81 7.8 8.498 9.43
5 8.1 8.44 9.18 10.354
10 9.35 9.52 9.8639 11.057
Table 13: Average Nusselt number, Nu,y at ®=45° and Re=600, Aiding flow condition
Ri A=0.5 Az=1 A=1.5 A=2
0.1 35 5.5 6.606 8.75
0.2 38 6.57 7.7 8.94
0.5 52 7.63 8.24 8.42
1 7.016 8.38 9.25 10.3
2 7.96 9.11 10.255 10.859
5 9.44 10.15 11.169 12.437
10 11 T 11.37 11.7 13.283
Table 14: Average Nusselt number, Nu,, at $=60° and Re=400, Aiding flow condition
Ri A=0.5 A=1 A=1.5 A=2
0.1 26 3.039 2.9929 2.974
0.2 2.8 3.2078 3.31 3.288
0.5 3.06 3.752 3.785 3.826
1 34 416 4.2 4.2945
2 3.9581 4.563 4654 4713
5 4.68 5.155 5.34 5.523
10 5.51 5.89 6.171 6.382
Table 15: Average Nusselt number, Nu,, at ®=60° and Re=600, Aiding flow condition
Ri A=0.5 A=1 A=1.5 A=2
0.1 2.9 3.719 3.7 3.634
0.2 3.1 4.044 4.026 4,003
0.5 3.4 4.5698 4 563 4.63
1 3.8 498 5.0655 5.193
2 4,225 5.4713 5614 5.79
5 5.82 6.145 6.383 6.5
10 6.627 6.93 7.289 7.54
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