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ABSTRACT

The hydaostalic plasiic foaming of a melal diaphragm
has Been considened from 1he Ltheorelical poini of view,
Hydrosietic bulging of diaphrnagm {4 of gaeal value since the
wonk-hardening characteristics of matenials can fe olitained
upto bange plasiic sirains, Woo's genencl melhod of sofuilion
using L{ncaemenital strains hoes feen chosen since Lthis appeans
to be the mosit siralighil foarwand approach fon a cincufban
diaphnagm, In his paper oo presenied numenical nresulis only
ioﬁ a totaul strain theony Aizce this neduced COmeizn time,
Also Lhene w'aA some difficully in satisfying the Loundany
condilion €4g7 0, ut Zhe clamped edge (when using incremenial
stnain theoay). In the present work, Lhe computational meilhod
of Ilahi et al.(14) has feen followed as. it does not suffen from
lalenr difficullies, The analysis La‘cadaéed oul foa Lhe case
of commencial punity s0ft aluminium and s0ft 70/30 Lrass
diaphragms of 10 inch diameten, In this Lheoaelical analysis
the matenial has Reen assumed 1o possess aniscolropy in the

thickness direction i.e noamal andisolnrcpy.

Fon the lasi thinty years the anisotropic yield caitenion
of Hill (17) has been used 2o analyse differend foaming processesd
incéuaihg batlanced fiaxial tension of sheel melals, The pnediciéd
values Lased on this critenion, did not acgree veay closely wilh

the experimental nesubts fon all values of anisotropy, butl had
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CHAPTER 1

INTRODUCTION

The circular hydrostatic bulge test is often used in
the studies of sheet metal forming to obtain the work harde-
ning characteristics of materials upto large plastic strains.
Considerable attention has been paid to the deformation of
a circular metal diaphragm under uniform lateral pressure.
fhis gives rise to a biaxial tensile stress and it is one
of the best methods of investigating plastic flow in sheet
metal. This deformation process - has been related:
to diaphragms subjected to underwater explosion and to the
design of safety diaphragms or bursting discs of pressure

vessels.

Several theories have been put forward to predict the
stress and strain distribution, the shape of the diaphragm
and the plastic unstable condition. Most of the analysis are
based on yield criterion for isotropic materials and used
total strain theory. Only a few are based on the anisotropic

yieid function and used incremental strain theory.

1.1 Literature Review

Hill (1) developed a more general theoretical model

for small strains based on Von-Mises theory, but his method

of successive approximation is only valid for sufficiently



work hardened materials. Of greater practical interest is a
special solution obtained by Hill on the assumption that the
typical section of the bulge and particle flow path form a
bipolar co-ordinate system. He put forw%rd a simple expression
which relates the gblar thickness strain with hardening
exponent at instability. g = %T (2n + 1) clearly shows the

superiority of‘diaphragm test in determining the work harde-

ning characteristics of materials at large strain values.

Woo (2) has described an iterative method of solution
to determine the stress and strain distribution for axisy-
mmetric problems in plane stress. Basically the solution was
obtained by successive approximation of stresses and strains
according to work hardening characteristics of material, the
geometry of the process and plasticity theory. The stresses
and strains so determined are correct when the equilib?ium
equation and boundary condition are satisfied. In his paper
-he extended the general method of analysis for the a%isymme-
tric forming process to the case of hydrostatic bulging of
circular diaphragms. He used total strain theory in numerical
solution since it reduced computer time. Also there was some
difficulty (when using incremental strain theory) in attaininé

"the boundary condition Eg % O at the clamped edge.

In the appendix of their paper Chakrabarty and Alexander
(3) gave the governing equations and the boundary conditions.

According to the boundary conditions, either y{(angle between

|
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stress vector and line of pure shear) or ¢ (generalized
strain rate) at the edge must be zero. In obtaining a numeri-
cal solution it was difficult to satisfy the two point mixed

boundary conditions,

Bramley and Mellor (4} carried out experiments to assess
the degree of anisotropy in stabilized sheet steels. The
measured R-values were used to predict the plastic flow
behaviour at the centre of a circular diaphragm subjected to
fluid pressure. The macroscopic theory of anisotropic plastic
flow (Hill (17)) gave some qualitative agreement with experi-
mental results. For the simple case of plastic flow at the
centre of a circular diaphragm they found that taking an

average R-value (from the equation R = 1/4(Ry + 2R, s + R

45 90))

was a satisfactory approach. Because the average R value
calculated from the area under the experimental curve was
not widely different from that was calculated from the above
formula.

Bramley and Mellor (5) made an attempt to predict the
deformation behaviour of titanium and zinc sheet when subjected
to a biaxial stress system inlthe plane of the sheet. Corre-
lation_between theory and experiment was good for titanium

but was poor for zinc.

Wang and Shammamy (6) analysed hydrostatic bulging of
a circular sheet clamped at the periphery, based on incremental

strain theory and the total strain theory. The material of
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the sheet was assumed to have strain hardéning capacity and
to be anisotropic in thickness direction. They found that

as the polar strain was increased, pressure reached a maximum
and then decreased, whereas the total strain theory gave
unsatisfactory results. They found that the differential
equations assoc;ated with total strain theory, possessed
singularity which had the effect of restricting the range

of calculation to a certain value of polar strain.

Pearce (7) determined stress and strain curves of
various sheet metals in uniaxial and balanced biaxial tension.
He concluded that Hill's (17) theory of yielding satisfactorily
predicts the plastic behaviocur of materials whose anisotropy
is described with R » 1, but fail to predict the same for

the materials R < 1.

It is evident that from the previous works anisotropic
plasticity theory does not hold good for all materials. One
of these is aiuminium. The anomalous behaviour of aluminium
sheet was further studied by Woodthorpe and Pearce (8) for
the case of circular diaphragm. Correlation between theory

and experiment confirmed the previous findings.

Yamada and Yokouchi (9) studied the hydrostatic forming
of axisymmetric diaphragms using incremental strain theory.
They assumed the material to be incompressible and anisotropic
in thickness direction only.'Their simple boundary condition

is that circumferential strain at the edge is zero. They



formulated 8 equations with 9 unknowns and suggested the use
of pressure as a parameter for solving the equations. Two
equations, one for circumferential stress distributionland
other for meridional strain distribution, gave rise to'some
problems. They extrapolated the results to obtain meridional
strain at the edge. The expression for circumferential stress
contains square root term which sometimes becomes zero duriné
subsequent stages. However they gave a complete solution for
the diaphragm problem. But the stress ratio (oelor) obtained
by them at fhe edge is not acceptable.The correct. ratio is 3 (for a
isotropic material) and R/R+1 (for anisotrobic materials).

This was the main drawback of their diaphragm theory.

"Ilahi (10) studied the diaphragm problem both éxperi—
mentally and theoretically., He showed that the theoretical
predictions based on Hill's original theory for the case of
soft aluminium and soft 70/30 brass, which have R value
less than unity, does not give satisfactory correlation with
experimental‘values. Moreover he also used Yamada and Yokouchis'
anisotropic diaphragm theory and shows that the results are
underestimated in comparison with the result-obtainéd by

Woo's theory.

Parmar and Mellor (11) studied the plastic expansion
of a circular hole in sheet metal, subjected to biaxial
stress to predict the plastic stress and strain distribution

with the new yield function proposed by Hill (12). The
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theoretical predictions show good correlation with experimental
strain distributions for sheets of aluminium killed steel,
soft 70/30 brass and soft aluminium. They concluded that the
new yield function has greater generality than his original
criterion. In their work no attempt was made experimentally
to determine the value of the parameter m in yield function,
Instead the values of m which gave the best fit between
theofetical and experimentalresults were r determined. It

is thought that this approach is justified if, for a given
strain level, the theoretical curves follow the experimental
results closely over the range from simple tension to balanced
biaxial tension and provided good correlation persists at
different strain levels. They showed that for aluminium
killed steel m = 2, for soft 70/30 brass m = 1.82 and for
soft aluminium m = 1.7 gave good correlation between theory

and experiment,

Hill and Storakers (13) studied further the mechanics
of bulge test on a clamped sheet for small deflections. They
assumeﬁ material to be isotropic and considered both creep
and time iﬁdependent plasticity. They did not compare their

results with any experimental values.

Ilahi et al. (1) presented a numerical method of
solution for the plastic deformation of a circular diaphragm.
The analysis was applied to the bulging of soft commercial

purity aluminium sheet, Woo's general method of soclution was



L0

adopted since this appeared to be the most straight forward
approach for a circular diaphragm. The analysis_was based on
the new anisotropic yield function of Hill which was of the
same form as used by Parmar and Mellor (11). VWoo presented
numerical resulfs only for a total strain theory since it
reduced computer time but also because there was some diffi-
culty in using incremental strain theory in satisfying the
boundary conditions €g = 0 at the,edge. The computational
method of Tlahi et al. overcomes this later difficulty. For
this soft aluminium (R <1),results.were correlated with

the experiment, it was shown that the correlation was good

for pressure, strain and geometrical relationships.

Chater and Neale (15,16} used finite element method to
compare results for diaphragm from flow theory and deformation
theory. fhey also considered the -~ ~"ew~ §train—rate effects
and strain-rate independent behaviour but did not compare

their theoretical results with any experimental results.

1.2 Plan for the Present Work

Experimental results of diaphragm test (obtained by
Ilahi (10)) for two materials, soft commercial purity aluminium

and soft 70/30 brass are available.

The objective of the present work is to predict the
plastic flow behaviour of the above two materials, by applying
the new yield function. Thus the work mainly deals with the

numerical solution of a modified diaphragm theory for predic-
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ting different variables of the deformation process.

Correlation between the theoretical results and the
experimental results will be made to see whether the latest
yield function can predict the actual behaviour of the above
two materials or not, For generating the theoretical results,

IBM 370/115 computer will be used.



CHAPTER 11

ANISOTRCPY IN SHEET METAL AND HILL'S THEORY

2.1 Anisotropy in sheet metals

Previously, theoretical analysis of sheet metals assumed
that the materials were isotropic i.e, the crystal grains are
randomly distributed and the strength is independent of the
direction, But during deformation process this random distri-
bution no longer exists. The distribution  of the grains has
one or more maxima. If such a maximum is well defined it is
referred to as a preferred orientatipn. If the orientation
of the individual crystals are not random, the yield stress
and the macroscopic stress and strain relations vary with
directions, this phenomenon is termed as anisotropy. Aniso-
tropy can be due to mechanical fibring, inclusions, porosity
etc.. Plastic anisotropy-&low stress, work hardening behavioure
which results from crystallographic preferred orientation,
giving the metal a 'texture' can be varied in a sheet metal
by altering the sequence and nature of the thermal and

mechanical treatments which are used in manufacture.

However measurements of the changes in width strain
and thickness strain during uniaxial plastic deformation
will indicate anisotropy, and their ratio R = dewldsZ is

called the strain ratio or commonly R value.

Variation of R with direction of testing in the sheet
plane is termed planar anisotropy, AR. For isotropic materials,

R =1 and AR = 0, The value of R in a biaxial situation is



10

defined by Pearce (7) as

R =(1/f+)(R0 + 2 R + R

45 90)

or -some variant on this respect.depending on .the number of
directions in which tests are made. Bramley and Mellor (%)
showed that the R value determined from the area under the
experimental curve was not widely different from that obtained
from the above formula and pointed out that the above formula

for R may be successfully used.

2.2 Hill's Original and New Theory of Yielding and its
Application to Sheet Metal Study
To study the .deformation of anisotropic sheet metals,
Hill's macroscopic anisotropic theory of - yielding has been
widely used. This theory is similar to that based on the
Von-Mises Qield criterion and its associated flow rule of

isotropic materials.

Hill (17) extended the concept of plastic potential
to anisotropic materials which has the following quadratic

form.

26(%,.) = F(o, - 0 )7 2 2

i y + G(oZ - cx)

+ H(UX —Oy)

+ ZLTZ + 2M12 + 2NT2 =1 (1)
yz ZX . xy

where F, G, H, L,M, and N are constants dependent on the

current state of anisotropy.
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For load in the plane of the sheet (Tyz =T, = 0)

along the principal axes of anisotropy (Txy = 0) egn. (1)

reduces to

+ GFOZ ~ ox)z + H(ox - oy)z =1 (2)

V2
F(Oy - oz)
For plane stress (gz =0) and considering planar isotropy
(Ry = Ryg = Rgg = R) eqn. (2) may further be reduced to the
form

2(1+R)Y2 = (l+2R)(ox —Oy)2 + (ox +0y)

2 (3)

where Y is the uniaxial yield stress in the plane of the

sheet. In cylindrical co-ordinates

2(1+R)Y = (leR)]oe- o 12 lo,, o 2

r + (4)

6+ .|

>
(Mode sign is used since Oy < or).

Its associated flow rule from the standard normality hypothesis

.dgr. ‘ - L dae' de

L

“1(1+2R) [og= OJs+l0q+0 |
3! 0"y

Generalized stress from eqn.(4)

o =l(1/2(14R)) | (1+2R) [og -0_[% 4]0y T %

and generalized strain increment

-~

- 2 3
de = 1R (de, + %%R de_ deg + dsez)
V(1+2R)

(l+2R)I Oe—crl +Foe+0r| 2l05+01‘[
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For the last thirty years this anisotropic yield criterion
of Hill has been used to analyse different forming processeu
including balanced biaxial tension of sheet metals. The predicted
values based on this criterion, did not agree very closely with
the experimental results for all values of anisotropy, but had
limited success, Recently Hill (12) proposed a new yield
criterion for deformation under normal anisotropy which intro-

duces a new parameter 'm' dependent on the material property.

The newly proposed criterion is expressed as follows:

2(1+R)Y™ = (1+2R)] Ogq- O (™o Og+ O, ™ (5)

where Y is the uniaxial yield stress in the plane of the sheet
and m is an index, greater than or equal to one. When m = 2
the equation reduces to Hill's original yield criterion for
normal anisotropy (egn. 4). When m =2 and R = 1 the eguation
reduces to the Von-Mises expression for yielding under plane
stress for isotropic materials. The yield locus must be convex
and this is satisfied provided m 21. When m <2 the locus is
elongated in the direction of balanced biaxial tension. Normal

anisotropy is now defined by two parameters-R and m.

Associaled flow rule: A

The flow rule associated with the above new yield

function b& the standard normallty hypothesis is given by
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deg ) e
- m m
(l+2R)408_ i lm ,08 i Or,m - (l+2R)I “6 _Grl +IOB i Orj
(oe— r) (oe+ or) ' (o —or) (ce *+ o, )
det dg
= - - - — {(6)
?[0-8 + or] 2(1+R) 5
( ag * o, )

where dge , dgr and dgt are the increment of circumferential,
meridional and thickness strainsrespectively. 5 is the genera-

lised stress which is defined from the new yield function as

m- m 1/m

! vo | 1) (7)

G ={ ——= T (1+2R) - o
2(1+R) [ - IOB, o |

and generalised strain increment based on the work equivalence

hypothesis is expressed as

/m

1 |
. [2(1+R) ] i 1 | deg- de m/{m-1)
S 2 (1+2p)1/ (m-1) ' .
m/{m-1) 4 m-1"
+ ldegr de_ | = (6)
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CHAPTER IIX1

DIAPHRAGM THEORY AND NUMFRICAL SOLUTION

3.1 Diaphragm Theory

Modified diaphragm theory (based on Woo's general theory
of axisymmetric forming process) as adopted by Ilahi et al (14)

has been followed. Theoretical formulations are given here.

Equililnium Egualions:

From figure 3.1.1, ' - equilibrium in meridional direction
gives
d(tcr)_ log - o)y (1)
dr - r

Where t is the current thickness, r is the current radius
and oeand or are the circumferential and meridional stress

components respectively,

Forn Equilibnrium of Venlical Fonces:

20 S5inB
L (2)
t r

where P is the hydrostatic pressure and 6 is the bulge profile

angle.

Cquilibnium of Forces in Zhe Direction of P:

a o] ’ )
B = 6 + (3)




op+bayp

_ o'
F1G-31.1 Hydrostatic bulging—stressesin an element

“’?ﬁ?

v
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Where 04 and P, are the meridional and circumferential radii

of curvature respectively.

Yield Funcition:

The new yield function for normal anisotropy as described in

Art. 2.2 is

2(1+R)Y" = (1+2R) Jog = o | " #]og+ o | " (4)
Associated Flowrule:
dee . _ .dsn
. 2?)|c - o " Ioﬁ,fchT (La2r) Ioe'- o [T [oe+ or|m
L/ -~y + - {1+2R +
(0g- or) (0g + or) (og - o) (04+ o)
_ dey. ~ dg (5)
2o 4 o |T 2(1+R)5 ™1
B T

Where dee, der and det are the increments of circumferential,

meridional and thickness strainsrespectively. O is the

generalised stress which is found from the yield function as

- 1
2(1+R)

[ Qs2r)lo, - o |" +log + o "1™ (6)

e
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Genenalised Strain Incremenit:
dE = [2(1+R)]l/m [ 1. : | den. de ]m/(m-l)
2 1/(n-1) 0T
(1+2R) m-=
m-1
+ ldeg +d€rlm/(m"l)}T (7)

Work hardening characteristics is expressed with the following

empiricalcequétions=

G = ke M (8)

Where K and n are constants for the material.

The strain increments are written from the flow rule

(5) as
lo, - Urlm m-1 de
deg =[ (1+2r) '———L'y (04 4 0 ) ] — (9)
(0g- 0.) 2(1+R) 5
: log- © lm m-1 =
de = [-(1+2R) ° L 4+ (05 + ©) ] de
0
r (G,-0 ) r — 1 (10)
07 r 2(1+R)0
m-1 dE
- _ : (11)
and dEt = (Oe + Or) m—R—)—(_jm_l

The above equations are valid for all values of Cg and O

for both 0g and o >0, From equation (9) and (11) the stress
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components can be derived in terms of strain increments to

give’
1/(m-1)
(gq + 0.) =G [~ (14R) —g;-:—] (12)
1/(m-1)
and (o, - 0.) =3 [é%%gg%T (dEerZEt/Z) ] when deg > de_
| (13)
or (o, - Oe) =G [ —%%%%%%" 'dse’zgdst/ZI l/(m-l)wh-en_de:a< de

Solving eqns. (12) and (13) expression for 0y and ¢ in terms

of strainincrements can be found.

Due  to the axial symmetry of the deformation, the relation
between €q and €, can be deduced from the consideration of

volume constancy of an elemental ring. If t0 is the initial

thickness, (ro)i and (ro)i+l are the initial radll.of an

elemental ring, then reffering to Fig. 3.1.1,it follows that

t. + t

2 2 _ i i+l
T((r )5, - (rg)]) to = X. ( ———222)
where X is the area between the current radii r; and Til and
the material thickness t. ang ti+l at r, and rel respectively.

The area X depends on the profile of the deformed metal which
may vary during the forming process as in the case of hydro-

.static bulging. The above equation may be written in the
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form as
2 o t. + t.
W[(ro)i+l - (ro)i] to oo (pl)i * (pl)i+l * —i—E"—£L£
_Zﬂ[ > ]
(pz)i + (02)i+l YyoF i
X [ 5 + l; ]
x[Cos(e); - Cos(a); ;] [(t; + t. ,)/2] (14)

Where p, and p, are the radii of curvature.
1 2

3.2 Numerical Solution

The unknowns are Ogr Ops o, Py bZ’ Egr Eps €, B8 and P.
The unknowns are found from the above equations (1) to (3),(7),
(8) and (12) to (1%} by considering (gt) pole as a monotonic
increasingrquantity and with the approximation of P, provided

the following initial and boundary conditions are satisfied.

(i) Initial conditions along the radius of the bulge,
O = 0.,= €,= €, = 0, t = t0 and P = 0

(ii) Boundary conditions

P

At the pole, O, = Ogs Eg = - et/2, Py = p, and § =0
(r = 0)

At the edge Circumferential strain €4 =0 at all stages
r = R '

a of deformation.
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The numerical method followed is same as that of
Ilahi et al (14). The method of solution is presented in the
Appendix-1. When satisfactory results for a stage is found
the height distribution is found from the egquation

dy . - X “r (ta)
ar— = - Sino e

Where y is the height of the bulge at an angle 8 measured
from the pole. Fquation (3.) is integrated using a finite
difference form, starting with the condition at the Tixed

edge r = Ra, y = 0.

3.3 Computer Programming

A computer prog¥amme was aeveIOped in Fértran IV language,
and was run on IBM 370/115 computer. The programme was developed
for a 10 inch diaphragm i.e, Ra = 5> inch, The initial radii
_interval were set out 0.1 inch apart,from the first radius
near to the pole which was 0.5. Hence corresponding to each
assumed incrémental_pressure, stresses and strains at 47 points
were computed., For each point the condition for.meridional
equilibridm (tor)/(tor)' = 1 + 0.00003 was set to be sat%sfied.
For a particular stage the solution was considered satisfactory
when the condition at the fixed edge was Eq € 0.0603;_(-gt)pole

was increased in steps of 0,02,
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The algorithm and the flow chart for the programme are
given in the Appendix-I1 and Appendix-I11 respectively. Computer
programme in Fortran IV is presented in the Appendix-1V,

3.4 Material Properties

In correlating the theoretical results with the experi-
mental results, the experimental value; of diaphragm test of
Ilahi (10) are taken. The uniaxial tensile test data and
empirical expression for work hardening characteristics for
the two materials (soft aluminium and soft 70/30 brass) are
taken from Ilahi (10) and Parmar and Mellor (11). Because
these two materials for the present analysis are the same with

those were considered by them.

The measuned R values anre:

Fon soft aluminium: Roo: 0.620, Rqso = 0.581 and R900 = 0.7?6

R (as in Art. 2.1) = 0.€35

work hardening characteristics

3= 19166 0-267 1bf/in2

thickness of the sheet to = 0.0349 inch

Fon so0ft 70/30 bniss: RQO = 0.817, Rys0 = 0.90, Rggo = 0.827

R = 0.86

work-hardening characteristics

G = 115330 (0.042 + £)0-62% .. 2

€ ¢ 0.111

1092408221 1p5/5n2

at
|

E >0.111

thickness of the sheet to = 0.0376 inch
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It may be mentioned here that at the point £= 0.111, the
two expressions for soft 70/30 brass nredict a little different

values which is not detrimental to the final soclution.

The value of the parameter m in the yield function are
taken from Parmar and Mellor (11).
For soft aluminimum = 1,7

For soft 70/30 brass m = 1.82

these work hardening expressions and R values were used by
"Parmar and Mellor (11) to predict the strain distribution in
an annulus of the same aluminium and soft 70/30 brass sheets
subjected to a radial tension at its outer periphery. Corre-
lation between theory and experiment showed that m e 1.7 for
soft aluminium and m = 1.82 for soft 70/30 brass were required
to give the best fit between theoretical and experimental

resylts.



CHAPTER 1V

RESULTS AND CONCLUSIONS

4,1 Theoretical Results and Comparison with Experiment

The theoretical results for the two materials (soft
aluminium and soft 70/30 brass) obtained by numerical solution
of the theory in the section 3.2 have been plotted and compared

with the experimental results obtained by Ilahi (10),

The comparison of the results for soft aluminium are
shown in Figs.4,1.3 to 4.1.11, The results for soft 70/30
brass are shown in Figs.4.,1,12 to 4,1,20. The theoretical
results based on the assumption that m = 2 have also been

presented in the figures.

In case of soft aluminium, the maximum pressure obtained
is 124.49 lbf/in2 which almost agrees with the experimental
value. Computation beyond the maximum pressure gives reduction
in pressure, this is in contrast to the finite element formulation
obtained by Kobayashi and Kim (18) where the solution diverged

at a point which they associated with pressure maximum.

4,2 Discussion

Soft aluminiunm
Condition at the pofe: The relation between the pressure
and polar thickness strain is shown in Fig. %4.1.3. The corre-

lation is very good with the experimental results when the
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analysis is based on m = 1,7 rather than the theory based on
the assumption m = 2. Between plane strain tension and balanced
biaxial tension a value m = 2 under estimates the yield stress
of. aluminium sheet and therefore it is to be expected that the
theoretical values of the forming pressure will be too low as

evident from the figure.

The relation between the polar radius of curwature and
polar thickness strain is shown in Fig. 4.1.4. Almost all the
experimental points lie on the theoretical curve, the agreement

was better than the old theory (m = 2).

Fig. 4.1.5 shows the relationship betwéen peclar height
and polar thickness strain. The correlation is found quite
satisfactory than that obtained by theory m = 2, Fig. 4.1.6
and 4.1.7 shows the relationship between polar radius of
curvature and polaf height, pressure and polar height respec-
tively and the correlation is better than the old theory,

m = 2. The values of polaf heights for a pa}ticular polar
radius of curvature p=l10 in, from experiment, predicted by old
and new theory are 1.35, 1.425 and 1.35 respectively. Experi-
mental value almost coincides with the value obtained by new
theory,value obtained by old theory deJiates 5.56% from the

experimental one.

‘From the pressure vs. polar height curve, for a parti-
cular polar height h = 1,133, the value of pressure obtained

by old theory and new theory deviates 25% and 10.9% (upto polar
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height y = 1.48) from the experimental value respectively.

The values of pressure obtained by new theory almost coincide .
with experimental values when polar height is greater than
1.75 in. This may be due-to the epxression for work hardening

characteristics.

Condi{tions along ithe menidian:

The distribution of circumferential strain and thickness
strain, along the meridian, are shown in Figs. 4,1,8 and 4.1.,9
respectively. The correlation with the experimental result is
very good, when the value of the index m is 1.7. The meridional
strain disfribution is satisfactory at lower strain level but
the data are scattered at higher values of strain as shown
in Fig..Fig. #.1.11 shows the distribution of height which
correlates very sétisfactorily with experimental results and

demonstrates the superiority of the new theory over the old one.

Soft 70730 Lrass

Conditions at Lthe pole: Fig. 4.1.12 shbws the relationship
between pressure and thicknesé strain. The curve obtained from
the new theory, m = 1.82 correlates with the experimental
results better than the old theory m = 2,'upto the pressure
661 psi. Beyond 661 psi, the solution becomes divergent and
did not agree with the experimental value. frOm the previous

works of Ilahi et. al (14), Kobayashi and Kim (18),when using
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incremental strain theory, the solution diverged at a point
where they noticed, the pressure is maximum, They also pointed
out that this rigid plastic formulation the theoretical results
were valid only upto the maximum pressure. Pressure 661 psi
which is close to.the fracture pressure 670 psi as obt ained

by Ilahi (10).

The relation between the polar height and polar thickness
strain is shown in Fig. 4.1.13., The agreement between the
experiment and theoretical results (m = 1.82) is good and it
is seen that for a given polar height m = 2 predicts too much

thinning at the pole of the bulge.

Curves of polar radius of curvature against polar thick-
ness strain are given in Fig. &#.1.14. Again it is clear
that there is good correlation between experiment and the

theoretical prediction based on m = 1.82.

. Polar height versus the polar radius of curvature curves
are shown in Fig. #4#.1.15 where the-prediction is better with

the new theory m = 1.82 than with the old theory.

The relation between polar-height and pressure is shown

in Fig. 4.1.16. Here the correlation is quite satisfactory.

Conditions along the menidian:

The distribution of the circumferential strain along the
meridian for different stages of deformation is shown in

Fig. 4.1.17, In the numerical solution the polar strain is one
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of the independent variables. The circumferential strain
distribution is shown for some given values of polar thickness
strain. Here the correlation is - : satisfactory. The discre-
pency between Hill's original (m = 2) and new theory (m = 1.82)
becomes less. from the Fig. %#.1.17 it is evident that the
circumferential strain depends on the geometry of the diaphragm

than the yield function.

Fig. %.1.18 shows the distribution of thickness strain
across the diaphragm. The theoretical curves have been compared
with some of the experimental curves for the same polar thick-
ness strain. The cofrelation between experiment and the new
theory {(m = 1.82) is very satisfactory. Near the pole and also
away from pole the correlation is found very good but the
original theory (m = 2) is unsatisfactory for predicting the
values well away from the pole. Fig. 4.1.18 demonstrates that
the thickness strain distribution is much dependent on the
yield function of the material and m = 1.82 is appropriate
to this soft brass sheet and leads to a more uniform distri-

bution of the thickness strain.

Curves for meridional strain distribution across the
diaphragm are shown in Fig. 4.1.19. The distribution found in
this case is not good. Throughout the diaphragm for low strain
level the correlation is good but it is found unsatisfactory

at higher strain values,

Fig. 4#.1.20 gives the distribution of height throughout

the diaphragm at different polar thickness strains. The « - /.
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correlation between the experimental and theoretical results
are'very satisfactory. The theoretical results are underesti-
mated in relation to the experimental results when the prediction
is based on m = 2. The values of heights at a particular position
across the diaphragm, r/a = 0.3, from experiment, the old and

new theory are 2.61, 2.4 and 2.6 respectively. Experimental

value almost coincides with the value obtained by the new

theory; value obtained by old theory deviates 8.04% from the

epxerimental value.

4,3 Conclusions

This theoretical analysis, based on Hill's new yield
function for anisotropic materials with values of m = 1.82
for soft 70/30 brass and m = 1.7 for soft aluminium gives
results for a deforming diaphragm which satisfactorily
agree with the experimental resqlts. The pressure for a parti-
- cular polar thickness strain is bettér predicted with the new

theory and is underestimated significantly when plastic yielding

is based on Hill's original theory (assuming m = 2).

Polar heigﬂt versus polar thickness strain, polar radius
of curvature versus polar thickness strain, pressure versus
polar height and polar-height versus polar radius of curvature
are in good agreement with the existing experimental results

when the analysis is based on the new theory.



Circumferential strain and particularly thickness strain
distribution across the diaphragm (thickness strain distribution
is very dependent on the yield function as evident from the

analysis) can be accurately predicted with the new theory.

Only the prediction of meridional strain distribution
along the diaphragm, except at lower strain level, (upto
0.22) is not satisfactory. Yalue of m:may .change

(_Et)pole

with strain level.

Height distribution across the diaphragm (when predicted
by the new theory) is in good égreement with the existing
experimental results when compared with the agreement based

on original theory.

It may be concluded here that all the deformation
parameters can be accurately_predicted for balanced biaxial
tension and plane stress tension by using Hill's new yield
function in case of bulging ofAcircular diaphragms in sheet
metal study. The new yield function is more general than his

original yield function for anisotropic materials.

The most direct method of checking the yield function
is of course, to determine experimental yield loci at various
strain levels. This is particularly difficult in the case of
sheet metals. More experimental work and corresponding theore-
tical analysis are needed to study further the applicability
of the new theory to different deformation processes for other

materials of different anisotropy.



Pressure Polar polar Polar Polar hoop Polar Stress ratio

thickness thickness radius of stress height at the edge
strain curvature
p(1b,/in®)  t(in) ~(e,) o(in) Cog(lbg/in®)  h(in) Gg/0,
: pole

0 0.0376 0 ‘ 0 0

67.26 0.0368 -0.02 23.075 21056,17 0.566  0.5099
154,16 0.0351 -0.06 13,260 28864,33 1.029 t 0.5442
233.42 - 0,0340 - -0.100 10.365 35556.68 1.360 0.5411
307.41 . 0.0328 =0,14 8,900 41851.69 1l.634 0.5509
375.01 0.0314 -0.18 = 7.968 47574,.80 1.874 0.5472
433,40 0.0301 -0.22 7.338 52701.55 2,086 0.5470
483.30 0.0289 -0,26 6.885 57388.43 2,278 0.5487
525,68 0.0278 =0,30 6.542 61733.33 2.455 0.5337
561.79 0.0267 -0.34 6.269 65802.43 - 2,620 0.5382
592,12 0.0257 -0.38 6.048 69642,93 2.776 0.5398
617.34 0.0247 -0.42 5.865 . 73289,93 2.922 0.5418
637.88 0.0237 -G.46 ‘5.713 76770.,37 3.060 0.5396
654,73 0.0228 -0.50 5.580 80105.50 3.191 0.5372

661.83 0.0223 -0.52 5.520 81723.94 3.253 0.5383

Table 4,1.1 Theoretical results for soft 70/30 brass diaphragm of 10 inch diameter.

<4



Pressufe Polar Polar Polar Polar hoop Pelar Stress ratio

~ thickness thickness  radius of stress 7 height at the edge
strain curvature
p(lbe/in®)  t(in)  <(e) 1. plin) 0 (1b,/in?) h(in)  oglo
21.00 0.0342 -0,02 2).905 6723.50 0.566 0.5437
46.14 0.0328 -0.06 12,872 3035.26 1,046 0,.4708
64.09 0.0315 ~-0,.10 10,214 10366.15 1.349 | 0.5559
78.07 0.0303 -0.14 8.820 11348,17 1.598 : 0.5154
82.09 0.0291 -0.13 7.945 12141.88 1.813 0.5300
27.80 0.0280 -0,22 7.332 12815, 31 2,003 0.5127
104,77 0.0269 - =0.26° 6.885 13404,.34 2.176 , 0.5203
110.26 00,0258 -0.30 - 6.532 13930,39 2,335 0.5244
114.56 0.0248 -0;3# 6.248 14407.40 2.482 0.5260
117.88 0.0238 -0,38 6.010 14844,97 2.620 0.6407
120.38 0.0229 -0.42 : 5.809 15250.06 2.750 0.4757
122.18 0.0220 - -0, 46 5.635 15627.85 2.872 0.6246
123.48 0.0211 -0,50 5.479 15982.34 2.982 0.4284
124,13 _ 0.0203 -0.5% 5.346 16316.67 3.078 0.8980
*124.48 0.0195 -0.58 5.221 16633.35 3.167 0.4097
124,48 0.0187 -0.62 " 54107 16934, 45 3.254 ‘ 0.0859

w 124.33 0.0180 ' -0.658 4.996 17221.86 3.334 0.0380

Table 4.1.2 Theoretical results for soft aluminium diaphragm of 10 inch diameter.
¥ The solution is valid only upto the maximum pressure 124,48,

A4
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APPENDIX-1
NUMERTCAL PROCEDURE

(i) Initial conditions: Along the radius of the bulge, r = 0

to r = Ra, initial conditions are

Op = 0g = €5 = g = 0, t = t, and p = 0 (15)

ii) Boundary conditions:
a) the pole is assumed to strain under balanced biaxial

tension, hence the boundary conditions at the pole (r0 = 0) are

£

T o’

g = - Et/Z, Py = P, and & = 0 . (16)

b) the circumferential strain,c_, is assumed to be zero

0
at the -edge,.

£g 0 at r = Ra, for all stages of deformation

The procedure of solution is as follows:

At the pole,

i). A value of (e ), ., = Ae_( = 0.02) at the pole (i =1, j =1, r=0)
t'i,] t

is assumed,

ii) For this polar thickness strain the pressure is increased

from 0 to an assumed value Pj' Since, at the pole

and (Ae

681,:[ :"(—Et)l,j_/z, hence (Ee)l,j, e )l’jo

Y

( éer)l,j is found from equation (de, + dEr + de, = 0)

0



¢4

(AE )l,j from equation (7), hence (% )l,j' (5 )l,é from

equation (8). (g_.), . and ( op )1 i is computed from
’

6" 1l,]
cquations (0, . = ( o)) (“‘““') [(5/2){ ~(1+R) ae,/ac)

s J
and (t)1 3 from egn. (a). Slnce g and g_ are known,
’

l1mn-1 ]
]

r

(pl)l,j = (O‘,_)l’j from equation p = 2,Ort/P‘
Mow all the computations are completed at the pole.
For the element next to the ple (i = 2) of initial radius

(r ) (p )

o’i+l? and (D )
assumed to be the same as that at the pole (i = 1), Then

the values (t) are

i+l, i, i+l, ] i+l,j

is found from equation (14), 6. is now known

0141, i+1,
next to compute current radius r1+l J [p + t/2J 141, J81n6 i+1;?
From the known values of current radius, (ee)1+l J( =In Pi+1,j/
(r,) i+l, 1), and ( £ )l+l from ( = 1n [(t), il J/(t ). 1),
are found out then the finite strain increments are
(begdiin,; = (Sediun,5 = (e0disn, .1
(17)
and C8ee)y0,5 = Bdiaa,y = Cediag,jor
(AE)1+1 (finite?géneralized strain increment) is then
: ’
found from equatlon (7) and hence generalized straln, ( €)1+l 3
?
(8 0550,5 = 8% =B )y 5u + (B8 )50 5 (18)
(0 )i+1,j is found from equation (8) and the stresses (,or)1+1,3

and'(0~). . are determined from combination of equation
: 071+41,3 7
(12) and (13). For rddial equilibrium; the equation (1) is

then integrated numerically following the trapezoidal rule,



£

gives a new value of (to )! as
ri+l,j
t(o,-0)
to)! = 1 9 r
ordiin,y = o)y y s *{[ — 1

r(o o) 3

T e By ;T Aa9)
New values of (p )l+l 3 and (pl)i+l i are found from equation
(2) and (3) as

2(to ) :
_ r'i+l,j
(P2 )ii1,5 = ap (20)

Again (to ) is.expressed as

D°i+l,jJ

(tog )£+l,j = (¢ O1)—1+l +[ t(o - gr)]fwl,j

2
2 [(to )l .
then, (p. ). . o= - [ °r 1+1’JJ
VI ey, Doy, - (¢

r'i+l,j

(21)

1+1,J]

The new value of (t)! is found by substituting

i+l,j]

(to ) and.- (toe)1+l ,§ into the following equation

i+1,
which is based'on equation (11).

' m-1, ..
(Aet)' _ [ (‘-'D.e l+1,J + (tor)l'f'l,J] (Agf)'i'i'l

. . = (22)
i+1,]
(to }+1,j (1+R?

> )‘

From equation (17), with new value of ( Aet)1+l’3 t 1+1’J

and
is found/hence (t)i+l %. The next cycle of computation is ca-
b

o

rried out with these new.values of (p ). (D,) and

17i+1,3? i+l1,j



(t)i+l ; and continued Gntil the radial equilibrium
»

. . . " . - o ] *
condition is satisfied i.e (t r)i+l,j is equal to

[(t)m,j. ( °r’i+1,j]-
Above iterative procedure is satisfactory only upto
the point next to the pole, when incremental strain,

( Ae.)

t'pole £ 0.05 is considered. The solution becomes

divergent beyond the point next to the poledue to an

inappropriate assumptions of the initial values of (01)3 3
. ?

and ( p2)3’j, equal to the values of (01)2,j and (02)2’j

reSpecﬁlvely which leads ( 56)3,j > | EB)Z,j' In order to

overcome this situation, first approximation of (86)i+1 5
?

is estimated directly using the equation for compatability

of strain, written in a finite difference form, the

equation (e) as

i} (s*) s -exp(er -se)i’jCose i,j'l
i+l,j 07i,j3

(ro)i

X [(ro)i+l - (ro)iJ

It is pointed out that the above equation is only used
for the initial approximation of (69)i+1 P at each point
. H

- . » >
.on the raélus characterlst%cs (ro)i, > (ro)B,j'

h|
The above procedure for stage J is continued along
the radius characteristics upto the fixed edge of the

2ulge radius Ra. the solution is considered correct

when (69) ® 0 at the fixed edge at radius Ra.
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This condition is achieved only when the pressure
corresponding the polar strain is correctly assumed for that
particular stage j. Correct pressure is obtained by trial
and error. A method of successive apprbximation using linear
inter~polation or extrapolation has been used!for this

present work which in details are given below,

First, with the assumed pressure (P)j all the defor-
mation parameters are computed, if the boundary conditions
are not satisfied, then a new pressure is assumed with

the formula
P). = (P), P ' : 23
()J ()J+A (23)

-where AP is a small increment in pressure, when two steps
of trial has been completed the next approximation is made

as follows.

Let us suppose that in the first step pressure is

'Pé and circumferential strain, ~at the edge is gé and

€g

similarly for the second step, P; and g% . Since we are

interpolating or extrapolating linearly

Y = mx + ¢
‘e

. = we have

P" =m " + ¢ - (1)

Pt

6

I+c .
™ oeq | (ii)
Solving equation (i) and (ii) for ¢

pPrer _ pPr_n
o = 0 i

€5 " €p
P"E:' - PIEH
e A £ 0 : (24)
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To reduce the time required for calculation, the
approximation for pressure for every stage can be performed

with the above two equations (23) and (24).

When a satisfactory result for a stage is found

+

the height distribution is determined from the equation

£
%%O = - Sing e T (25)

where y is the height of the bulge at angle & measured from
the pole. The equation (25) is integrated using a finite
difference form, starting with the condition at the fixed

edge r = Ra, y = 0,
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APPENDIX I1I1.
ALGORITHM

1. Insert the values for R, M, n, k, t increment of

0!

€, » Small increment of pressure and a approximate value
t -
of pressure for the stage (2).

2. Divide r, = 0.0 to r,= Ra with desired no. of points,
(For this present analysis 47 points were considered, at the
pole r, = 0.0 and first radius to the point next to the pole

is 0.5 and then with increment of 0.1).

3. £ Egr € and £p = 0.0 for the stage j = 1 and
i =1, KP. '
4, r{ . = 0.0 and 6, . = 0.0, for all the J s.
1,3 1,3
5. J =2 to IP (start with first value of J)
6. At the pole: Calculate, Et(l,j)’ det(l,j)’ 88(1,j)
dee(l’j), dEr(l’j), Er(l,j) dE’ .E s O ] _Or’ Ge H DI’ p2
and t. V
7. For the point next to the pole: ’

Initialize, (91)2,j = (pg)l,j" { 02)2,j = (p )l,j’

2,5 = ta,pe

8. Compute, 0 , - B, g, dEy, €, de

E, 0, 0., Tg and (t9)’

9. Check [(t*0)/(t0)]" ¢ 1 + 0.00003,
if (yes) then to 13

if (no) then to 10



10. -

11.

12.

13.

14,

15.

lé.

17.

18.

12,

20.

Compute (toé', 0oy p.os Agt' and t°
2 1
Initialize P,»  P1 and t with 5’ 7 and t~°
2 1
Repeat 8-11 until, (9) is satisfied.
For the points beyond the point next to the pole:

I =2, (KP-1), start with first value of I.

Initialize pl(I'l'l,j) = pl(i,j)

Po(i+l, i) = Pa(i,3)
Yi+1,3) T tia, )
Computé €q from strain compatability eqn. and

current radius, r.

Er(i+1,3)°'% (i+1,3) 9(i+1,3)’ Or(i+l,3)? Ogli+l,j)

and (tor)(i+l,j)

Check [(t*or)/(tcr)'J(i+1,j <1 + 0.00003

If (yes) then to 13 ( for the next value of i)

and if (no) then to 17.
Compute, (tog (1+1,5)7 P,o(i+l,$)? Pa(i,1,3)? S(i+l,3)

Initialize p and t

2(i+1,3)? Pi(i+l,3)

with new values.

(i+1,3)

Repeat 15-18 till 16 is satisfied.

Continue 13-19 for all values of i.



21.

22.

23.

24,

25.

26,

27.

>

Check (Ee)edge & 0.0003 and 3z - 0.0003
If (yes) then to 25

If (no) then to 22

Find a new value of pressure either from P = P+ AP
or from linear interpolation and extrapolation

formulae,
Repeat 6-21, until the condition 21 is satisfied.

Compute height for each point, h(i i)
: s

Write, i,3,6 , r r, G,e , t, .9 Egs E

0!
(t*cr)/(tor); anq h,
Check P(j) < P(j-l)’
If (yes) then to 27

If (no) then to 26

DO 5-23 for the next value of J, upto the last

value of j.

STOP
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FLOVW CHART

Input
R,m,n,k,to,increment of

Et,small increment of
pressure,and approximate

value of pressure,p.

1

Choose the - oo

number of points,with
desired interval of

radius along the original
radius characteristics. Such
that r = 0 at pole rozRa

) o}
at the edge.

It
et

For I=1,KP 3

€=Et :Ee = EI‘ = 0,0

I, continued

For 3 = 2, IP

. I‘(l,j)=0.0,e(l,j)=0.0

J, continued

..1

J =2, IP (Start with first
value of J) and LP =1

Y

At the pole: compute

€gs dE€g, dE_, € O

E dst,

d€, £ , 0, Og, t,p, and P .

|

For the point next to the pole

. = t
tZ,J 1,j
L =1




®@

,.i

Compute, 8, r, €g7 de
dey, de, €., dE,E ,0 , Or

o and ( tor)

e 4

g No
Compute, (tge); Pzes o1,
(Att)'and (t)’
L =L +1

Yes C)
L = 3 I
No ,

Initialized pz; p?-.' Pisy = p{
t =t°

7

For the points beyond the point
next to the pole. For, I =2, (KP-1)

0,(151,3) =p (I,)
QZ(I'*'laj) =DZ(I’j)
t(I+l,§) = t(I,3)

Js5=1

Compute ¢ from strain

e!
compatability equation

and current radius, r

4..{

Compute, 8 , ¢et, dc £ dee ’
dEr’ €r
and (tcr)’

s E 5 0 o Ur’ 06 ’

'

B

25



= A

Yes -— @

(t*cr)
——TL <4 1.00003
(to,) .

No
Compute, (tce); D; s P
(AEt)” (t), 35S = JIS+1

7
1

75=30 Yes w@®

No

Initialize
= ”, - ’ Et'
Dz pza Dl 01, [

—p—
> - 3
®-—— Continue, for all values of I

Compute, heights for

all the points

* '

Write, 1,J,0 , r

o? I»

B,E’ t,Orsoe!

b €pr Egr (E¥0 )/ (to))

and h

Yes

P(3) £ P(3-1)




PS(LP) = P(J)
EK(LP) = g,

/

'®

Y

PB
ES

|
P(3)"
EGedge

In il

/

'

PS(LP) = P(J)
EK(LP) =Egeqq0

PS(3) = AC

/

1

LP

- ’I '- ’
P=P €5 Pe

P(3) =
LP=LP+1

P(J)+DP

P(3)

P = LP
P(3) =

77
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Stage J
CONTINUE
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