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diaph~agm. In hi~ pape~ &00 p~e~ented nume~ical ~e~ult~ only
. ~

to~ a total ~t~ain theo~y ~ince thi~ ~educed compute~ time.

condition Ee= O. at the clamped edge (when u~ing inc~emental

~t~ain theo~y). In the p~e~ent wo~k. the computational method

ot comme~cial pu~ity ~ott aluminium and ~ott 70/30 g~a~J
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CHAPTER I

INTRODUCTION

The circular hydrostatic bulge test is often used in

the studies of sheet metal forming to obtain the work harde-

ning characteristics of materials upto large plastic strains.

Considl!rable atterltlon has been paid to the deformation of

a circular metal diaphragm under uniform lateral pressure.

This gives rise to a biaxial tensile stress and it is one

of the best methods of investigating plastic flow in sheet

metal. Jhi~ deformatibn ptocess has been related

to diaphragms subjected to underwater explosion and to the

design of safety diaphragms or bursting discs of pressure
vessels.

Several theories have been put forward to predict the

stress and strain distribution, the shape of the diaphragm

and the plastic unstable condition. Most of the analysis are

based on yield criterion for isotropic materials and used

total strain theory. Only a few are based on the anisotropic

yield function and used incremental strain theory.

1.1 Literature Review

Hill (1) developed a more general theoretical model

for small strains based on Von-Mises theory, but his method

of successive approximation is only valid for sufficiently

(F



work hardened materials. Of greater practical interest is a

special solution obtained by Hill on the assumption that the

typical section of the bulge and. particle flow path form a

bipolar co-ordinate system. He put forward a simple expression

which relates the polar thickness strain with hardening
4exponent at instability. Em = IT (2n + 1) clearly shows the

superiority of. diaphragm test in determining the work harde-

ning characteristics of materials at large strain values.

Woo (2) has described an iterative method of solution

to determine the stress and strain distribution for axisy-

mmetric problems in plane stress. Basically the solution was

obtained by successive approximation of stresses and strains

according to work hardening characteristics of material, the

geometry of the process and plasticity theory. The stresses

and strains so determined are correct when the equilibrium

equation and boundary condition are satisfied. In his paper

.he extended the general method of analysis for the axisymme-

tric forming process to the case of hydrostatic bulging of

circular diaphragms. He used total strain theory in numerical

solution since it reduced computer time. Also there was some

difficulty (when using incremental strain theory) in attaining

the boundary condition £8 = 0 , at the clamped edge.

In the appendix of their paper Chakrabarty and Alexander

{3) gave the governing equations and the boundary conditions.

According to the boundary conditions, either ~(angle between

r,-
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strcss vector and line of pure shear) or E (generalized

strain rate) at the edge must be zero. In obtaining a numeri-

cal solution it was difficult to satisfy the two point mixed

boundary conditions.

Bramley and Mellor (4) carried out experiments to assess

the degree of anisotropy in stabilized sheet steels. The

measured R-values were used to predict the plastic flow

behaviour at the centre of a circular diaphragm subjected to

fluid pressure. The macroscopic theory of anisotropic plastic

flow (Hill (17» gave some qualitative agreement with experi-

mental results. For the simple case of plastic flow at the

centre of a circular diaphragm they found that taking an

average R-value (from the equation R = 1/4(RO + 2R45 + R90»

was a satisfactory approach. Because the average R value

calculated from the area under the experimental curve was

not widely different from that was calculated from the above
formula.

Bramley and Mellor (5) made an attempt to predict the

deformation behaviour of titanium and zinc sheet when subjected

to a biaxial stress system in the plane of the sheet. Corre-

lation between theory and experiment was good for titanium

but was poor for zinc.

Wang and Shammamy (6) analysed hydrostatic bulging of

a circular sheet clamped at the periphery, based on incremental

strain theory and the total strain theory. The material of
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the si,eet was assumed to have strain hardening capacity and

to be anisotropic in thickness direction. They found that

as the polar strain was increased, pressure reached a maximum

and then decreased, whereas the total strain theory gave

unsatisfactory results. They found that the differential

equations associated with total strain theory, possessed

singularity which had the effect of restricting the range

of calculation to a certain value of polar strain.

Pearce (7) determined stress and strain curves of

various sheet metals in uniaxial and balanced biaxial tension.

He concluded that Hill's (17) theory of yielding satisfactorily

predicts the plastic behaviour of materials whose anisotropy

is described with R? 1, but fail to predict the same for

the materials R < 1.

It is evident that from the previous works anisotropic

plasticity theory does not hold good for all materials. One

of these is aluminium. TheanomalbuB behaviour of aluminium

sheet was further studied by Woodthorpe and Pearce (8) for

the case of circular diaphragm. Correlation between theory

and experiment confirmed the previous findings.

Yamada and Yokouchi (9) studied the hydrostatic forming

of axisymmetric diaphragms using incremental strain theory.

T~ey assumed the material to be incompressible and anisotropic

in thickness direction only. Their simple boundary condition

is that circumferential strain at the edge is zero. They
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formulated 8 equations with 9 un~nowns and suggested the use

of pressure as a parameter for solving the equations. Two

equations, one for circumferential stress distribution and

other for meridional strain distribution, gave rise tO'some

problems. They extrapolated the results to obtain meridional

strain at the edge. The expression for circumferential stress

contains square root term which sometimes becomes zero during

subsequent stages~ However they gave a complete solution for

the diaphragm problem. But the stress ratio {Oe/Or) ob~ained

by them at the edge is not acceptable,Jt,e totrect;r~tio is t(for a

isotropic material) and R/R+l (for anisotropic materials).

This was the main drawback of their diaphragm theory.

Ilahi (10) studied the diaphragm problem both experi-

mentally and theoretically. He showed that the theoretical

predictions based on HiLl's original theory for the case of

soft aluminium and soft 70/30 brass, which have R value

less than unity, does not give satisfactory correlation with

experimental ~alues. Moreover he also used Yamada and Yokouchis'

anisotropic diaphragm theory and shows that the results are

underestimated in comparison with the result obtained by

Woo's theory.

Parmar and Mellor (11) studied the plastic expansion

of a circular hole in sheet metal, subjected to biaxial

stress to predict the plastic stress and strain distribution

with the new yield function proposed by Hill (12). The
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theoretical predictions show good correlation with cxperimental.

strain distribut10ns for sheets of aluminium killed steel,

soft 70/30 brass and soft aluminium. They concluded that the

new yield function has greater generality than his original

criterion. In their work no attempt was made experimentally

to determine the value of the parameter m in yield function.

Instead the values of m which gave the best fit between

theoretical and experimentalresults were' determined. It

is thought that this approach is justified if, for a given

strain level, the theoretical curves follow the experimental

results closely over the range from simple tension to balanced

biaxial tension and provided good correlation persists at

different strain levels. They sh?wed that for aluminium

killed steel m = 2, for soft 70/30 brass m = 1.82 and for

soft aluminium m = 1.7 gave good correlation between theory

and experiment.

Hill and 5torakers (13) studied further the mechanics

of bulge test on a clamped sheet for small deflections. They

assumed material to be isotropic and considered both creep

and time independent plasticity. They did not compare their

results with any experimental values.

Ilah~ et al. (14) presented a numerical method of

solution for the plastic deformation of a circular diaphragm.

The analysis was applied to the bulging of soft commercial

purity aluminium sheet. Woo's general method of solution was
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adopted since tllis appeared to be the most straight forward

approach for a circular diaphragm. The analysis was based on

the new anisotropic yield function of Hill which was of the

same form as used by Parmar and Mellor (11). Woo presented

numerical results only for a total strain theory since it

reduced computer time but also because there was Some diffi-

culty in using incremental strain theory in satisfying the

boundary conditions Ee ~ 0 , at th~ edge. The computational

method of Ilahi et al. overcomes this later difficulty. For

this soft aluminium (A <1),results,were correlated .ith

the experiment, it was shown that the correlation was good

for pressure, strain and geometrical relationships.

Chater and Neale (15,16) used finite element method to

compare results for diaphragm from flow theory and deformation

theory. They also considered the ,'",,',," strain -rate effect s

and strain-rate independent behaviour but did not compare

their theoretical results with any experimental results.

1.2 Plan for the Present Work

Experimental results of diaphragm test (obtained by

Ilabi (0» for two materials, soft commercial purity aluminium

and soft 70/30 brass are available.

The objective of the present work is to predict the

plastic flow behaviour of the above two materials, by applying

the new yield function. Thus the work mainly deals with the

numerical solution of a modified diaphragm theory for predic-
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ting different variables of the deformation process.

Correlation between the theoretical results and the

experimental results will be made to see whether the latest

y~eld function can predict the actual behaviour of the above

two materials Or not. For generating the theoretical results,

IBM 370/115 computer will be used.
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CHAI'TER II

ANISOTROPY IN SHEET METAL AND HILL'S THEORY

2.1 Anisotropy in sheet metals

Previously, theoretical analysis of sheet metals assumed

that the materials were isotropic i.e, the crystal grains are

randomly distributed and the strength is independent of the

direction. But during deformation process this random distri-

bution no longer exists. The distributio~ of the grains has

one or more maxima. If such a maximum is well defined it is

referred to as a preferred orientation. If the orientation

of the individual crystals are not random, the yield stress

and the macroscopic stress and strain relations vary with

directions, this phenomenon is termed as anisotropy. Aniso-

tropy can be due to mechanical fibring, inclusions, porosity

etc •• Plastic anisotropy_flow stress, work hardening behaviour-

which results from crystailographic preferred orientation,

giving the metal a 'texture' can be varied in a sheet metal

by altering the sequence and nature of the thermal and

mechanical treatments which are used in manufacture.

However measurements of the changes in width strain

and thickness strain during uniaxial plastic deformation

will indicate anisotropy, and their ratio R = dE IdE isw z
called the strain ratio or commonly R value.

Variation of R with direction of testing in the sheet

plane is termed plannr anisotropy, bR. For isotropic materials,

R = I and bR = O. The value of R in a biaxial situation is
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defined by Pearce (7) as

or'some variant on this rp-spect, depending, on ,the number of

directions in which tests are made. Bramley and Mellor (4)

showed that the R value determined from the area under the

experimental curve was not widely different from that obtained

from the above formula and pointed out that the above formula

forR may be successfully used.

2.2 Hill's Original and New Theory of Yielding and its
Application to Sheet Metal Study

To study the deformation of anisotropic sheet metals,

Hill's, macroscopic anisotropic theory of yielding has been

widely used. This theory is similar to that based on the

Von-Mises yield criterion and its associated flow rule of

isotropic materials.

Hill (17) extended the concept of plastic potential

to anisotropic materials which has the following quadratic

form.

2f(0.,.) = F(o - ° )2 + G(o - ° )2 + H(O -0 )2
1 J Y z z x x y

+ 2LT2 + 2t1T2 + 2NT2 = 1yz zx xy (1)

where F, G, H, L,M, and N are constants dependent on the

current state of anisotropy.



For load in the plane

along the principal axes of

reduces to

].1

of the sheet h =T = 0)yz zx
anisotropy (T. = 0) eqn. 0)

xy

( 2)

For plane stress (0 =0) and considering planar isotropy
- z

(RO = R45 = R90 = R) eqn. (2) may further be reduced to the
form

2(I+R)y2 = (1+2R)(0
x

2 2
- 0) + (0 +Oy)Y x

(3)

where Y is the uniaxial yield stress,in the plane of the

sheet. In cylindrical co-ordinates

>(Mode sign is used since 0e < Or).

(4)

Its associated flow rule from the standard normality hypothesis

dE
r

-1 ( 1+2R) I °8- o~+ I 0e+or I =
dE.e dE

t-------------- = ----
210e+orl

Generalized stress from eqn.(4)

={ 0/20+R» I (1+2R) lee

and generalized strain increment

dE = I+R

!(1+2R)

2
(dE +

r
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For the last thirty years this anisotropic yield criterion

of Hill has been used to analyse different forming processe~

including balanced biaxial tension of sheet metals. The predicted

values based on this criterion, did not agree very closely with

the experimental results for all values of anisotropy, but had

limited success. Recently Hill (12) proposed a new yield

criterion for deformation under normal anisotropy which intro-

duces a new parameter 'm' dependent on the material property.

The newly proposed criterion is expressed as follows:

(5)

where Y is the uniaxial yield stress in the plane of the sheet

and m is an index, greater than or equal to one. When m = 2

the equation reduces to Hill's original yield criterion for

normal anisotropy (eqn. 4). When m =2 and R = 1 the equation

reduces to the Von-Mises expression for yielding under plane

stress for isotropic materials. The yield locus must be convex

and this is satisfied proviaed m ~l. When m < 2 the locus is

elongated in the direction of balanced biaxial tension. Normal

anisotropy is now defined by two parameters-R and m.

A~~oclat.d ttow 4Ut.: ,

The flow rule associated with the above new yield

function by the standard normality hypothesis is given by
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rl C e :.Ie
r=

~°e- 10e + Or 1m I °
m

10e Or I mOr 1m -Or I +(l+2R) ( Or) + Or) (l-t;2R)(oe -° ) + (°e )° - (°e+ + Ore e r

d Et dE
= = m-l (6 )

210e + or I m 2(l+R)(j
( °e + or )

where dEe' dEr and dEt are the increment of circumferential,
meridional and thickness strains respectively. a is the genera-
lised stress which is defined from the new yield function as

° = {
1

2(l+R)
m m lim

[ (l+2R) I 0e - or I + I 0e+ or J} (7)

and generalised strain increment based on the work equivalence
hypothesis is expressed as

[2(l+R)]
2

11m
[ 1

(l+2R)l/(m-l) •

m/(m-l)Jm-l.
+ IdEe+ dEr I Iil (8 )



CHAPTER III
DIAPHRAGM THEORY AND NUMERICAL SOLUTION

3.1 Diaphragm Theory

Modified diaphragm theory (based on Woo's general theory

of axisymmetric forming process) as adopted by Ilahi et al (14)

bas been followed. Theoretical formulations are given here.

EquZeZg~Zum EquatZon~:

From figure 3.1.1,

(Jives
equilibrium in meridional direction

d (to)--;rr r = (1)

Where t is the current thickness, r is the current radius

and 0eand Or are the circumferential and meridional stress
components respectively.

10~ Equieig~ium ot Ve~ticae 10~ce~:

P
t =

20 Sin e
l'

r (2 )

where P is the hydrostatic pressure and e is the bulge profile
an g1e •

Equieig~ium ot 10~ce~ in the Di~ection ot P:

+ (3)



. r l>[

e
l>8

f1 f)
,

I 6e
.~~r+l>~r

~8
Flu.''3.1.1 Hydrostatic bulging-stresses in an element
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Where PI and P2 ate the meridional and circumferential radii

of curvature respectively.

ljie.t.d 'function:

The new yield function for normal anisotropy as described in

Art. 2.2 is

A66ociate.d 'ft.ow~ut.e.:

a I m
r

(4)

=

- (1+2R)

= = dE
2 (1+R) a m-l

(5 )

Where dES' dEr and dEt are the increments of circumferential,

meridional and thickness strains respectively. 0 is the

generalised stress which is found from the yield function as

-a ={ 1

2(1+R)
(6)
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gene~aei~ed Si~airi Inc~emeni:

[ 1 ,

(1+2R)1/(m-l)

(7)

Work hardening ch~racteristics is expressed with the folloWing
empiri6al(.e~uation~c

a = KE: n

Where K and n are constants for the material.

The strain increments are written from the flow rule
(5) as

(8 )

10e - orlm m-l dE:
dEe = [ (1+2R) + (Oe + a ) ] m-l (9 )

(°e- a ) r 2(1+R)or

10e- a 1
m m-l J dE[-(1+2R) r (Oe a )dE = + + (10)r (Oe_Or)

r
2(l-+R)Om-l

m-l
+ a )

r
9E

O+RJ om-l (11 )

The above equations are valid for all values of 0e and or
for both 0e and a >0. From equation (9) and (11) the stressr
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components can be derived in terms of strain increments to

give
II (m-ll

J (lZ)

=0

(dce+ dEt/2J

dE ]
l/(m-ll

Z(l+R.)I
(l+ZR)

IdEe + dE IZ[ l/(m-ll
dE t ] when

(13 )

Solving eqns. (1Z) and (13) expression for 0e and

of straiJ~increments can be found.

° in termsr

Due.to the axial symmetry of the deformation, the relation

between Ee and Et can be deduced from the consideration of

volume constancy of an elemental ring. If t is the initialo

thickness, (ro)i and (ro)i+l are the initial radii of an

elemental ring, then reffering to Fig. 3.1.1,it follows that

where X is the area between the current radii r. and r. 1 and
1 1+

the material thickness ti and ti+l at ri and ri+l respectively.

The area X depends on the profile of the deformed metal which

may vary during the forming process as in the case of hydro-

static bulging. The above equation may be written in the



J8

form as

.. . [( PI ) 0 +
"Z7I 1

Z

() to+tolPI i+l + 1 1+]
4

x C
(PZ)i + (PZ)i+l

2 +

t1o+tol. 1+ ]
4

Where PI and Pz are the radii of curvature.

3.Z Numerical Solution

The unknowns are 0e' or' 0, PI' PZ' Ee, Et, E, e and P.

The unknowns are found from the above equations (1) to (3), (7),

(8) and (lZ) to (14) by considering (Et) pole as a monotonic

increasing quantity and with the approximation of P, provided

the following initial and boundar~ conditions are satisfied.

(i) Initial conditions along the radius of the bulge,

(ii) Boundary conditions

At the pole,
(r " 0)

PI "PZ and e ,,0

At the edge
r " Ra

Circumferential strain Ee ~o at all stages

of deformation.
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The numerical method followed is same as that of

Ilahi et al (14). The method of solution is presented in the

Appendix-I. When satisfactory results for a stage is found

the height distribution is found from the equation

dyerr ~
o

Sin e (a )

Where y is the height of the bulge at an angle e measured

from the pole. Equation (a) is integrated using a finite

difference fOrm, starting with the condition at the fixed
edge r = R , y = o.a

3.3 Computer Programming

A computer programme was developed in Fortran IV language,

and was run on IBM 370/115 computer. The programme ~as developed

for a 10 inch diaphragm i.e, Ra = 5 inch. The initial radii

interval were set out 0.1 inch apart,from the first radius

near to the pole which was 0.5. Hence corresponding to each

assumed incrementalyressure, stresses and strains at 47 points

were computed. For each point the condition for meridional

equilibrium (to )/(to ), = 1 + 0.00003 was set to be satisfied.r r

For a particular stage the solution was considered satisfactory

when the condition at the fixed edge was Ee ~ 0.0003: (-Et)pole
was increased in steps of 0.02.
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The algorithm and the flow chart for the programme are

given in the AppendIx-II and Appendix-III respectively. Computer

programme in Fortran IV is presented in the Appendix-IV.

3.4 Material Properties

In correlating the theoretical results with the experi-

mental results, the experimental values of diaphragm test of

Ilahi (10) are taken. The uniaxial tensile test data and

empirical expression for work hardening characteristics for

the two materials (soft aluminium and soft 70/30 brass) are

taken from Ilahi (10) and Parmar and Mellor (11). Because

these two materials for the present analysis are the same with
those were considered by them.

104 40tt aluminium: ROo= 0.620, R450 = 0.581 and R900 = 0.756

R (as in Art. 2.1) = 0.635

work hardening characteristics
0= 19166 EO.269 Ibf/in2
thickness of the ~heet t = 0.0349 inch. 0

104 40tt 70/30 g4Q44: Rna = 0.817, R450 = 0.90, R900 = 0.827

R = 0.86.

work-hardening characteristics

o = 115330 (0.042 + E)0.624 Ibf/in2

E ~ 0.111
a = 109240£0.51 Ibf/in2

E >0.111

thickness of ~he sheet t = 0.0376 incho
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It may be mentioned here that at the point c= 0.111, the

two expressions for soft 70/30 b~ass prpdict a little differe~t

values which is not detrimental to the final solution.

The value of the parameter m in the yield function are

taken from Parmar and Mellor (11).

For soft aluminimum = 1.7

For soft 70/30 brass m = 1.82

these work hardening expressions and R values were used by

Parmar and Mellor (11) to predict the strain distribution in

an annulus of the same aluminium and soft 70/30 brass sheets

subjected to a radial tension at its outer periphery. Corre-

lation between theory and experiment showed that m = 1.7 for

soft aluminium and m = 1.82 for soft 70/30 br?ss were required

to give the best fit between theoretical and experimental

results.,



CHAPTER IV

RESULTS AND CONCLUSIONS

4.1 Theoretical Results and Comparison with Experiment

The theoretical results for the two materials (soft

aluminium and soft 70/30 brass) obtained by numerical solution

of the theory in the section 3.2 have been plotted and compared

with the experimental results obtained by Ilahi (10).

The comparison of the results for soft aluminium are

shown in Figs.4.1.3 to 4.1.11. The results for soft 70/30

brass are shown in Figs.4.1.12 to 4.1.20. The theoretical

results based on the assumption that m = 2 have also been

presented in the figures.

In case of soft aluminium, the maximum pressure obtained

is 124.49 Ibf/in2 which almost agrees with the experimental

value. Computation beyond the maximum pressure gives reduction

in pressure, thi~ is in contrast to the finite element formulation

obtained by Kobayashi and Kim (18) where the solution diverged

at a point which they associated with pressure maximum.

4.2 Discussion

Solt aluminium

Cond~tion at the pole: The relation between the pressure

and polar thickness strain is shown i~ Fig. 4.1.3. The corre-

lation is very good with the experimental results when the
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analysis is based on m = 1.7 rather than the theory based on

the assumption m = 2. Between plane strain tension and balanced

biaxial tension a value m = 2 under estimates the yield stress

of aluminium sheet and therefore it is to be expected that the

theoretical values of the forming pressure will be too low as

evident from the figure.

The relation between the polar radius of curvature and

polar thickness strain is shown in Fig. 4.1.4. Almost all the

experimental points lie on the theoretical curve, the agreement

was better than the old theory (m = 2).

Fig. 4.1.5 shows the relationship between polar height

and polar thickness strain. The correlation is found quite

satisfactory than that obtained by theory m = 2. Fig. 4.1.6

and 4.1.7 shows the relationship between polar radius of

curvature and polar height, pressure and polar height respec-

tively and the correlation is better than the old theory,

m = 2. The values of polar heights for a particular polar

radius of curvature p=lO in,.from experiment, predicted by old

and new theory are 1.~5, 1.425 and 1.35 respectively. Experi-

mental value almost coincides with the value obtained by new

theory,value obtained by old theory deviates 5.56% from the

experimental one.

From the pressure vs. polar height curve, for a parti-

cular polar height h = 1.133, the value 6f pressure obtained

by old theory and new theory deviates 25% and 10.9% (upto polar
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height Y _ 1.48) from the experimental value respectively.

The values of pressure obtained by new theory almost coincide

with experimental values when polar height is greater than

1.75 in. This may be due-to the epxression for work hardening

characteristics.

Condition~ along the me~idian:

The distribution of circumferential strain and thickness

strain, along the meridian, are shown in Figs. 4.1.8 and 4.1.9

respectively. The correlation with the experimental result is

very good, when the value of the index m is 1.7. The meridional

strain distribution is satisfactory at lower strain' level but

the data are scattered at higher values of strain as shown

in Fig ••Fig. 4.1.11 shows the distribution of height which

correlates very satisfactorily with experimental results and

demonstrates the superiority of the new theory over the old one.

Solt 70/30 g~a~~

Condition~ at the pole: Fig. 4.1.12 shows the relationship

between pressure and thickness strain. The curve obtained from

the new theory, m = 1.82 correlates with the experimental

results better than the old theory m = 2, upto the pressure

661 psi. Beyond 661 psi, the solution becomes divergent and

did not agree with the experimental value. From the previous

works of Ilahi et. al (14), Kobayashi and Kim (18),when using
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incremental strain theory, the solution diverg~at a point

where they noticed, the pressure is maximum. They also pointed

out that this rigid plastic formulation ,the theoretical results

were valid only upto the maximum pressure. Pressure 661 psi

which is close to, the fracture pressure 670 psi as obt~ned

by Ilahi (10).

The relation between the polar height and polar thickness

strain is shown in Fig. 4.1.13. The agreement between the

experiment and theoretical results (m = 1.82) is good and it

is seen that for a given polar height m = 2 predicts too much

thinning at the pole of the bulge.

Curves of polar radius of curvature against polar thick-

ness strain are given in Fig. 4.1.14. Again it is clear

that there is good correlation between experiment and the

theoretical prediction based on m = 1.82.

Polar height versus the polar radius of curvature curves

are shown in Fig. 4.1.15 where the "prediction is better with

the new theory m = 1.82 than with the old theory.

The relation between pnl:ar"height and pressure is shown

in Fig. 4.1.16. Here the correlation is quite satisfactory.

Condiiion~ along ih~ m~~idian:

The distribution of the circumferential strain along the

meridian for different stages of deformation is shown in

Fig. 4.1.17. In the numerical solution the polar strain is one



GiO,

?G

of the independent variables. The circumferential strain

distribution is shown for some given values of polar thickness

strain. Here the correlation is satisfactory. The discre-

pency between Hill's original (m = 2) and new theory (m = 1.82)

becomes less. From the Fig. 4.1.17 it is evident that the

circumferential strain depends on the geometry of the diaphragm

than the yield function.

Fig. 4.1.18 shows the distribution of thickness strain

across the diaphragm. The theoretical curves have been compared

with some of the experimental curves for the same polar thick-

ness strain. The correlation between experiment and the new

theory (m = 1.82) is very satisfactory. Near the pole and also

away from pole the correlation is found very good but the

original theory (m = 2) is unsatisfactory for predicting the

values well away from the pole. Fig. 4.1.18 demonstrates that

the thickness strain distribution is much dependent on the

yield functlon of the material and m = 1.82 is appropriate

to this soft brass sheet and leads to a more uniform distri-

but ion of the thickness strain.

Curves for meridional strain distribution across the

diaphragm are shown in Fig.• 4.1.19. The distribution found in

this case is not good. Throughout the diaphragm for low strain

level the correlation is good but it is found unsatisfactory

at higher strain values.

Fig. 4.1.20 gives the distribution of height throughout

the diaphragm at different polar thickness strains. The', 1.-
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correlation between the experimental and theoretical results

are very satisfactory. The theoretical results are underesti-

mated in relation to the experimental results when the prediction

is based on m = 2. The values of heights at a particular position

across the diaphragm, ria = 0.3, from experiment, the old and

new theory are 2.61, 2.4 and 2.6 respectively. Experimental

value almost coincides with the value obtained by the new

theory; value obtained by old theory deviates 8.04% from the

epxerimental value.

4.3 Conclusions

This theoretical analysis, based on Hill's new yield

function for anisotropic materials with values of m = 1.82

for soft 70/30 brass and m = 1.7 for soft aluminium gives

results for a deforming diaphragm which satisfactorily

agree with the experimental results. The pressure for a parti-

cular polar thickness strain is better predicted with the new

theory and is underestimated significantly when plastic yielding

is based on Hill's original theory (assuming m = 2).

Polar height versus polar thickness strain, polar radius

of curvature versus polar thickness strain, pressure versus

polar height and polar height versus polar radius of curvature

are in good agreement with the existing experimental results

when the analysis is based on the new theory.
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Circumferential strain and particularly thickness strain

distribution across the diaphragm (thickness strain distribution

is very dependent on the yield function as evident from the

analysis) can be accurately predicted with the new theory.

Only the prediction of meridional strain distribution

along the diaphragm, except at lower strain level, (upto

(-E) = 0.22) is not satisfactory. Yalue of IT) ,may;changet pole
with strain level.

Height distribution across the diaphragm (when predicted

by the new theory) is in good agreement with the existing

experimental results when compared with the agreement based

on original theory.

It may be concluded here that all the deformation

parameters can be accurately predicted for balanced biaxial

tension and plane stress tension by using Hill's new yield

function in case of bulging of circular diaphragms in sheet

met.al study. The new yield function is more general than his

original yield function for anisotropic materials.

The most direct method of checking the yield function

is of course, to determine experimental yield loci at various

strain levels. This is particularly difficult in the case of

sheet metals. More experimental work and corresponding theore-

tical analysis are needed to study further the applicability

of the new theory to different deformation processes for other

materials of different anisotropy.



Pressure Polar polar Polar Polar hoop Polar Stress ratiothickness thickness radius of stress height at the edgestrain curvature
p(lbf/in

2) t(in) -(£t) p(in) °e(lbf/in
2) h (in) °e/Orpole

0 0.0376 0 0 0
67.26 0.0368 -0.02 23.075 21056.17 0.566 0.5099

154.16 0.03!il -0.06 13.260 28864.33 1.029 0.5442
233.42 0.0340 -0.100 10.365 35556.68 1.360 0.5411
307.41 0.0326 ••0.14 8.900 41851.69 1.634 0.5509
375.01 0.,0314 -0.18 7.968 47574.80 1.874 0.5472
433.40 0.0301 -0.2l 7.338 52701.55 2.086 0.5470
483.30 0.0289 -0.26 6.885 .57388.43 2.278 0.5487
525.68 0.0278 .0.30 6.542 61733.33 2.455 0.5337
561. 79 0.0267 -0.34 6.269 65802.43 2.620 0.5382
592.12 0.0257 -0.38 6.048 69642.93 2.776 0.5398
617.34 0.0247 -0.42 5.865 73289.93 2.922 0.5418
637.88 0.0237 -0.46 5.713 76770.37 3.060 0.5396
654.73 0.0228 -0.50 5.580 80105.50 3.191 0.5372
661.83 0.0223 -0.52 5.520 81723.94 3.253 0.5383

Table 4;1.1 Theoretical results for soft 70/30 brass diaphragm of 10 inch diameter. <'
\r



Pressure Polar Pillar Polar Polar hoop Polar Stress ratiothickness thickness radius of stress height at the edgestrain curvature
p(lbf/in

2) t(in) -(E:t)pole p (in) aeObf/in2) h (in) aelar

21.00 0.0342 -0.02 21.905 6723.50 0.566 0.5437
46.14 0.0328 -0.06 12.872 9035.26 1.046 0.4708
64.09 0.0315 -0.10 10.214 10366.15 1.349 0.5559
78.07 0.0303 -0.14 8.820 11348.17 1.598 0.5154
89.09 0.0291 -0.18 7.945 12141.88 1.8 J. 3 0.5300
97.80 0.0280 -0.22 7.339 12815.31 2.003 0.5127

104.77 0.0269 -0.26" 6.885 13404.34 2.176 0.5203
110.26 0.0258 -0.30 6.532 13930.39 2.335 0.5244
114.56 0.0248 -0.3lf 6.248 14407.1fO 2.482 0.5260
117.88 0.0238 -0.38 6.0l0 14844.97 2.620 0.6407
120.38 0.0229 -0.42 5.809 15250.06 2.750 0.4757
122.18 0.0220 -0.46 5.635 15627.85 2.872 0.6246
123.48 0.0211 -0.50 5.479 15982.34 2.982 0.4284
124.13 0.0203 -0.5.4. 5.346 16316.67 3.078 0.8980

*124.48 0.0195 -0.58 5.221 16633.35 3.169 0.4097
124.48 0.0187 -0.62 5.107 16934.45 3.254 0.0859

•• 124.33 0.0180 -0.6 b 4.9?6 17221. '6 3.334 0.0380

Table 4.1. 2 Theoretical results for soft aluminium diaphragm of 10 inch diameter.
* The solution is valid only upto the maximum pressure 124.48. -4;'

"
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APPENDIX-l
NUMERICAL PROCEDURE

(i) Initial conditions: Along the radius of the bulge, r = 0
to r = Ra, initial conditions are

ii) Boundary conditions:

(15 )

a) the pole is assumed to strain under balanced biaxial
tension, hence the boundary conditions at the pole (ro = 0) are

(16 )

b) the circumferential strain,Ee is assumed to be zeso
at the edge.

E '" 0e. at r = Ra, for all stages of deformation

The procedure of solution is as follows:
At the pole,

iJ.A value of (Et) .. = /',Et(= 0.02) at the pole (i = 1, j =1, r=O)1,J
is assumed.

ii) For this polar thickness strain the pressure is increased
from O.to an assumed value Pj• Since, at the pole

( M )1 . is found from equation (dEe + dEr + dEt = 0)
. r ,J



(IlE )l,j from equation (7), hence (£ )l,j" «(j )1,; from

equation (8). (Oe)l . and ( a )1 . is computed from
oJ r oJ 1'-1

(0"&'6.) ""-
equations (Oe)l,j = ( 0r)l',jA= [Ui/2){ -(l+R) llf;tl llf:.}

and (t) l,j from eqn. (a). Since 0e and or are known,

(p )1 . = (P2)1 . from equation P = 2 a tiP.
1 ,J,J 2 "r

Now all the computations are completed at the pole.

For the element next to the pIe (i = 2) of initial radius

]'

(r ). l' the values (t). 1 . (p ). 1 . and01+ 1+,J,11+,J
assumed to be the same as that at the pole

(P2)' 1 . are1+ , J

(i = 1), fhen

e. 1 . is found1+ ,J
next to compute

from equation (14), e. 1 . is now known
1+ , J

current radius r. 1 .( = [~ + t/2] . 1 .Sine . l"~1+,J 21+,J 1+"

From the known values of current radius, (Ee)i+l,j(

(ro)i+l,J),and ( Et)i+l,j from ( = In [(t)i+l,j/{to)

are found out then the finite strain increments are

and (IlEt). l' "(Et). 1 . - (Et). l' I"" 1+,J 1+ ,J 1+ ,J-

=In[F-. 1 .1
1+ , J

. ] ),

(I 7)

(11'£)1 1 . (finite :generalized strain increment) is then" + ,J, " _
found from equation (7) and hence generalized strain, ( f)i+l,j

(18 )

(8 ). 1 . is found from equation (8) and the stresses ( a ). 1 .
1+ ,J . r 1+ ,J

and (oe)' 1 . are determined from combination of equation
. 1+ ,J

(12) and (13). For radial equilibrium, the equation (l) is

then integrated numerically following the trapezoidal rule,



gives a new value of (tOr): 1 . as
1+ , J

[
t (0e- Or)

= (t a ) .. + t { -- __
r 1,J r

}[ (r). 1 .- (r) .. ]1+ ,J 1,J (19)

New
(2)

values of (p ). 1 .
2 1+ ,J

and (3) as
and (P1)i+I,j are found from equation

(20)

I

Again (toe). 1 . is expressed as
1+ , J

(tOe)!l.1+ , J

then, 2 [Ctor)i+I,j]2

(Plj [2(tOr)i+I,j - ( tOe)l 1 .J1+ , J

(21 )

The new value of (t)! 1 . is found by substituting
1+ , J

(to) I • and., (toe)! 1 . into the following equationr l+l,J . l+,J
which is based on equation (11).

(,,' II (t)'] m-I(A_).coS'. 1 . + o. 1 . u£ • 1 .1+ ,J r 1+ ,J "1+ ,J
(to 1 . (1+R)+l,J '

(22)

From equation (17), with new value of ( 6£t)i+l,j' (£t)l+I,j
and

is found/hence (t)l 1 :. The next cycle of computation is ca-
1+ , J

rried out



(t). 1 . and continued ~ntil the radial equilibrium1+ , J

condition is satisfied i.e (t o)! 1 . is equal ,to
r 1+ ,J

Above iterative procedure is satisfactory only upto
the point next to the pole, when incremental strain,
(~£t)pole ~ 0.05 is considered. The solution becomes
divergent beyond the point next to the pole due to an
inappropriate assumptions of the initial values of (Pl)3 .

,J
and ( P )3 ., equal to the values of (p )2 . and (p )2 .

2 ,J l,J 2,J
respectively which leads (£e)3,j > (£e)2,j. In oruer to
overcome this situation, first approximation of (£e)' 1 .

1+ , J
is ~stimated directly using the equation for compatability
of strain, written in a finite difference form, the
equation (e) as

(£e)' 1 . =1+ , J (£e) •. +1,J
. .-1 ]1,J

It is pointed out that the above equation is only used
for the initial approximation of (£e). 1 . at each point

1+ , J
on the radius characteristics (r) ~ (r )o i,j 0 3,j"

The above procedure for stage j is continued along
the radius characteristics upto the fixetl edge of the
bulq~ radius Ra. the solution is considered correct
when (£e) ~ 0 at the fixed edge at radius Ra.



This condition is achieved only when the pressure

corresponding the polar strain is correctly assumed for that

particular stage j. Correct pressure is obtained by trial

and error. A method of successive approximation using linear

inter-polation or extra~olation has been used 'for this

present work which in details are given below.

First, with the assumed pressure (P)j all the defor-

mation parameters are computed, if the boundary conditions

are not satisfied, then a new pressure is assumed with

the formula

(23)

where 6P is a small increment in pressure, when two steps

of trial has been completed the next approximation is made

as follows.

let us suppose that in the first step pressure is

.Pj and circumferential strain, £8 a!-.the edge is £6 and

similarly for the second step, P~ and £" • Since we are
J 8

interpolating or extrapolating linearly

..
• •

Y = mx + c
we have

P" = m " + c (1)£8

P' = m , + c (ii)£8

Solving equation (1) and (ii) for c

c =
PilEI _ pi £11

8 8

• •

£' - £"
8 8
pll£' _ pi £11

P"' = e e
ro' ~II~e - ~e

(24)



To reduce the time required for calculation, the

approximation for pressure for every stage can be performed

with the above two equations (23) and (24).

When a satisfactory result for a stage is found

the height distribution is determined from the equation

(25)

where y is the height of the bulge at angle e measured from

the pole. The equation (25) is integrated using a finite

difference form, starting with the condition at the fixed

edge r = Ra, y = o.
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APPENDIX II.
ALGORITHM

1. Insert the values for R, M, n, k, to' increment of

£. , small increment of pressure and a approximate value
t

of pressure for the stage (2).

2. Divide ro = 0.0 to r = Ra with desired no. of points,o

(For this present analysis 47 points were considered, at the

pole r = 0.0 and first radius to the point next to the poleo

is 0.5 and then with increment of 0.1).

3. £, £t' £6 and £r = 0.0 for the stage j = 1 and
i = 1, KP.

4. rl. = 0.0 and 61 0 = 0.0, for all the J s.,J ,J
5. J = 2 to IP (start with first value of J)

6. At the pole: Calculate, £t(l,j)' d£t(1,j)' £60,j)

d£6(l,j)' d£r(l,j)' £r(l,j) dE, £ , ° , or' °6 ' PI' P
2

and t.

7. For the point next to the pole:

Initialize,

(t)2 . = t(l 0)., J , J

(p )2 . = (p )1 0'1.,J .l,J ( P )2 0 = (p )1 0'
2 ,J 2 ,J

Compute, 6 ,8.
-£ ,

-° , a. r'

£ , dE,
r

9. Check [<t*Or)f(tOr)3' ~ 1 + 0.00003,

if (yes) then to 13

if (no) then to 10



10. Compute (to~', p
2
', p, ,

I
lI£t ' and t'

':J. l--,

11. Initialize P2' PI and t with p',
2

and t'

12. Repeat 8-11 until, (9) is satisfied.

13. For the points beyond the point next to the pole:

I = 2, (KP-l), start with first value of I.

Initialize PI(I+l,j) = P1(i,j)

P2(i+l,j) = Pdi,j)

t(i+l,j) = t.(. ,)1 I,J

14. Compute £e from strain compatability eqn. and

current radius, r.

15. Compute e(itl,j)' £t(i+l,j)' d £t(i+l,'j),d£e(i+l,j),

d £r (i +1, j ) , E (i +1,j )' a( i +1, j )' or( i +1,j )' a e(i +1,j )

and (to )('. 1 ,)r 1+, J

16. Check [(t*Or)/(tor)'J (i+l,j ~ 1 + 0.00003

If (yes) then to 13 (for the next value of {)

and if (no) then to 17.

17.

18.

Compute, (toe)('. 1 ')' p'(" 1 ')' p;('. 1 ')' t('. 1 ,)1+,J 2 1+ ,J 1, .J, ' 1+ ,J

Initialize P (' 1 ')' P (' 1 ') and t(O 1 ,)21+,J 11+,J 1+,J
with new values.

19. Repeat 15-18 till 16 is satisfied.

20. Continue 13-19 for all values of i.



21. Check (Ee)edge , 0.0003 and ~ - 0.0003
If (yes) then to 25

If (no) then to 22

22. Find a new value of pressure either from P = P+ fiP

or from linear interpolation and extrapolation

formulae.

23. Repeat 6-21, until the condition 21 is satisfied.

24. Compute height for each point, h(o 0).J.,J

25. Write, i,j,e -, ro' r, a,E , t, Er, Ee'
(t*a )/(ta V and hr r
Check P{j) < P{j_I)'

If (yes) then to 27

If (no) then to 26

a ,
r

26. DO 5-23 for the next value of J, upto the last

value of j.

27. STOP



APPEllDIX-IIJ
FLOI'ICHAHT
Input •

Il,m,n,k,to,increment of
£t,small increment of
pressure,and approximate
value of pressure,p.

Choose the
number of pOints,with
desired interval of
radius along the original
radius characteristics. Such
that ro = 0 at pole ro=Ha
at the edge.

For I=l,KP J = 1
£=£t =£e = £r = 0.0
I continued

For J = 2, IP

r(l,j)=O.O,e(l,j)=O.O

J, continued

J = 2, IP (Start with first
val~e of J and LP = 1

At the pole: compute
£t , d£t'£e' dee' d£r' £ 0-r
d£, ~

°e' and£ , °r' t,Pl P .
2

••

For the point next to
(p )(2,j) = (p ) .. ,

1 1 1,J
!::2,j= tl,j
L = 1

the pole
(p )2 .=2 ,J



@

CD
Compute, e, r, £e'
d£t' d£ , £ , dE,Er r
0e' and (tor)'

Compute, (tEle); P2"
(lItt)'and (t)'
L = L +1

PI'
,

Yes

Initialized P T
2

Yes

-- p,
1 •

t = t'

For the points beyond the point
next to the pole. For, I =2,(KP-l)
P1(Itl,j) =p (I,j)

1
P (I+l,j) =p (I,j)
2 2

t(I+l,j) = t(I,j)
J5=1

Compute £e' from strain
compatability equation
and current radius, r

3

Compute, e ,
d -£r' £r' £ ,
and (to)'

£t, d£ t' dEe '
0, Or' (]e '

@



1 3

Yes

No

Compute, (toe);
(LH:: ); (t); ::JS

Yes

CD
2

No
Initialize

t =t'

Continue, for all values of I

Yes @

(V No

(~e) edge >,. 0.000 Yes ([)

Compute, or
all the oints

•
Write, I,::J,e , ro' r,
~ t,° , €C , or' °e ,

€Ct' €Cr, €Ce' (t*Or) /(t0;>
and h

@
•

Yes



o

No

Yes

@
P S (LP ) = P (J)
EK(LP)' = Ee

@
PB = P J
ES -E- Gedge

Write
E Peedge'

PS(LP) = P(J)
EK(LP) =Ee de ge
PS(J) = AC

P=P'Ee- PEe

£:' £: I,

LP ~ LP+IG

Yes

=

Yes

P (J) = P (J )+ DP
LP=LP+l

LP =
p(J)
P<J)

Yes

Yes

No



@ Sta'Jc J
CONTINUE

STOP



AP, [NDlX-IV

COMPUTER PROGRAMME

/~ JCE ~TGBSTft~ NIJf
// cpr IC" L II,I<.LI ST .LCG
// EXEC FHJRlf'AI\<: TI-IS P~CC;f;A!" 1-1\5 El;;Li jL,L~lrjcOJ IL 1-;1 L;cPll.LF '-.U:'HANIC\L lONG,;.
c .8Uf:1. F{j~ T-tE FJLt-=lLt....::r-,l dF Td:'::JJ.~ Jol-ir.. l::Y I'A...J;,H, KUi'1Ah. ,.JAJL Ut.;o
C "f; SUPEf'\Ib5IC.i Cf-ll. I-.t .!LAhl. It'< 1-1,:"11AL I-ULI ILiV.ci\T .=u, TI-E
C QEGF~tL LF iv1• .:iC.ENGG.{r-1cLJ:A-.JICALJ
C
C
C THIS THEGRITICAl AI,ALYjl':'" 15 AJ,3Ll':'..,i 1:" lJ-.2 ol.l....Glt\S ;JF 5JFT 70/30
C t..:'f'/ISS .• IS BAS'::C CI-, r1-::.- •.~:''Jl Ai"1j[~UTh~l-lL yteLl; :f.ITcn:I('I~ Fi,CPCSE:.J
L F,,[FESSCP HILL I" "'Alrlll'.Arl;:A_. CA'IbllL;GL P"ILJ5i.PrlICAL 5ULIEIY
L95. 17<;. (1,17'}),

~EtBl M.I\"K
D 1,..,E:NS I G {~ f<. O( ~o )" P ( :;,0 J • L T ( 5,) , 4 ~ J ,0 L 1 {:"':':9 4 5 J • c.j (!",>(i. 4:> ) " ;) ~ c( 50 ~4 5 i •
*.) ER ( ::>0.45 ) , D:::::(! ~:),,4 ~ J • ...:.L is) ,,4 5J • ~ 1~ i..... ( .~.:l• 4 !;) "S 1.• t< ( 50 .4 5 J .:i J ~ G( 50 .•45* ) •T ( 50 • 4 ~) .,.~ ( 1 ( 5 C" 4 :> ,) • h l .i ( so .4 ,j ~.•1 h 1 ~ :: • it t) .,;,C{ so • -+ .:: J • c:~ ( ~ l) ,.4 5) .•
:* T 5 I (J ( 50 .•45) • r 5 I F { ~ C • --i t J t J u l?( SL'. -4- to) ., f.; Lc I- ( tu., 4- 51 .•u Ll P ( 50 •.•. 5) • P E 1"* { 50 ~45) .,? T( 5) ,.4 ~ J .Ae ( =..) ) • P ..:i 'J J) 'L.K ( ~ C,J. F-h L~ (~C, ,.L (~D , 45 ) • SUr T ('50 J
•• CCF'~Ol

C 1"'1IAL CCNDIIIG~~
«

iJ~=C.S
OT"=-O.O;;:
OC 440 1=1.41
EElloll=O.O
ET(I:tl~=O.aO
E[II.II=].O
Ef'II.JI=3.0

440 CL"lli\UE
f;.-=O.863
M=1.B20
T£=0. (,376
f'EftC! 1. 3J 1<.N

3 ~Cf'~AT«FIO.31
REftO( 1.<;451 lP1'3~1 1lJ I":,;.:;OJ

945 FCI'~ATlfI4.71
RClll=) .0
;:;C{2J:;:;0.5



23~
57

C

C
II 1

C
C
C
9

DC 57 1=2./ .•6
RDlI+ j)=~C( 1) +J 01
1C= 1+ 1

.WPITE(3.2;31 Ie. J;DIICI
FLR~,J\l (/. ~x .1.3. IOX,r 14.7 i
eCI\TINut
PII1=90.ClO
OC :'.7 J=2.30
LP=I
1F ( J. Gl • 2~ I (J Tell I
PI J I=PH1:5 (J 1(CIC <;.

PIJ1=PIJ-ll

EI( 1. J )='OT! I, J-IIH)1
DEI I I , J )= Er I 1 .J 1- E1 ( 1 • J - I )
Eel 1. JI.=-fT il.J 1/".
DEC I 1 • J 1= EJ ( I • J 1 - EU ( 1 • J - I 1
DEI' (1. J I=-'')ET (I .J j-t)."C( I. J 1
E f< I 1 • J J = l.l Ek ( 1 • J .1+ ER ( I • J - 1 1
C1=( ( 2 * ( 1+H j 1••* ( 1 ./ ~1) ) / L'
C 2= I ( A llS ( CLu( 1. J 1 -DEc/ ( l • .J 1 j h * (M/
.(~-I)I)/I 1+2*f')'*{)./le1-lj)
C2=IAdS(OHJII.J l+ClcRI I.J1I I*~ (,',/11.\-11
DEGll.JI=CI*1 (C,,+C31*",lt ..-ll/MII
E 8 I 1 • .J j = Llf" ( I oJ ) + f 31 I , j - 1 )
I F I Ed I 1 • J I. LE .0 • Ill) CJ 1u 7J 1
SIGBll.JI=K*( fBI I.J1".'.n



gl

GC T" 702
7 'l I S I G~!I • J J = 1 I l ~:>~.~.0(; , '( ( C. J i2 +'- '-'1 I. J I ) J' , (J. 6 C. 4

c
7J2 V.=-lI+RJ*I.)Ef(l .JI/u,oC.( I.J j j

~>I G I. 1 I. J j = ( S I G3 ( I • J ) / •.• I , ( "*" 1 1 • / (M - 1 j ) I
.31GC{.I, •.d=Sl"';~( I,Jj
T( I.J)=1lJ*[X,:>12Ill.J) I
:<C21 I,JI=12*( ,[ Gf« I,J;*1 1 1. J) )1/pIJ)
RClll.J)=kI2( I.J)

(
(

<.
C
c
.(

"-C
C

CFE~ATICN AT Tf~E FUL~ 1~

r.C(I • .JI='l.O
Thll.JJ='l.O
j.:( C 1 , 2 , J )-= h J 1( J. j J
"C212,J l=hQ21 I. J)
1 (2,) )=i( I. J.I
L = 1

~..ILl- 3TA<f~.

C
C
27

703

E 1= 1E U 1 1 I , J l+ r. J I( 2. J) )/ •• + ( r ( I. J j .•.1 1 " • J J I /'t • j
!22={~02{ 1 ,J )t-J:J~' 2,J) )/~ .• O-t(T Ll.J )+"1' L'.J) )/-i. (I
E 3.= t T ( 1 ••J )+ T.\ ~, •.•J )/.(::. (
t::4=(RD(,~)~*2-hJ(1 )**2J4-1L
Thl 2• .l1=AR C) 'I CCSITrlU .JI)-( 1[:4) /1 2*L1<'L2*C:3J))
Ret 2,J)=' Ri.J2( C'f .J' ...•T( 2,J,)/L. OJ *~IN{ Itlt..L' J J ,
E C ( Z, ..J ) = ALOG ( Fe ( 2.J ) / he) I ~ J J
DECI2.JI=EO(2,1 )-EOI2,j-11
ETI2.Jl.=ALO(;IT( •• JI/fLJ
DE112 .J J= ET l2 • J ) - ET ( 2 • J - 1 I
DE,t;(2~J)=-OET (2.J )-LYeLL ~,J)
ERI2. J)=DER(.2.J J+EI«2..J-IJ
C 1= { 1 2* 1 i +R IJ • * { 1 ./~1l j / 2.0
C 2 = ( 1 AtiS ( CELl ( •• J ) -0 E-.l ( 2. • .J II H*( '4/ 1w- 1 ) ) J / { 1+ 2 "f< 1'; .•. ( I. / 1 ,~- I) I
C 3= 1A8 S ( 0 EJ (.2 • J 1+ DE'" 1 2. J J ) J *" {,..\./1 M- i j .I
OEGI2. • .JI=CI *( (C2+(31**( I~.-II/MI I
EE(Z. JI=DEGI2..J I+EbL~.J-(1
IFIEtll 2,J I.Leo.O.lll I Cd 1.J 7J 3
S 1GB ( 2 11 J ) .:,( *~ (E E , 2. j ) J +- ~> t.. 1
GO ,0 704
5 [ Ge ( 2, J ) = ( 1\ ~3 .2 a .•GC ,~( ( (- • .J 42 +L:::b-L 2 • ..; ) ;) ~ :l\' -0. t;2.. 4



•

704 Q=- I I H, I""{DET (2 oJ J/DcU ~" .I J J
.H= I I 2 "I I" k I J / ( I • 2 "H I I '" I ILL J I 2.• .I I • I j ~1 (c .• .J J / 2.. 01 I / uL .;I 2. J II
H I = I I 2." ( I • k I) / I I" < "I< I H ( I..r. S I 1 J= 1..;( ". ~ I i I LJL 1 I 2. • ~ I /2. .0 ) ) /D E'J (2. • .I ) I
IFICC:CI<.JI.,1.CE~12.JII GG IG i7
IF(eEL{2.jt.Ll.CE~(2.jj) (,0 r~ 1b

17 SIG(jI<:.J)~(SI(.312.J)/2.vl"lu~*(I./(;'-iJHJ- **ll./C.l-Il))
.j I Gf; I 2. ~ I ~( SI (d ( 2 •J I / <: • l. 1* ( c..i'" * I I • / ( ;, - II I - h ••* II • / (,., -I ) I I
GC 11.• IS

I ':l 5 I Gr; I 2 • J I= I S I (.3 ( 2.• J I / " • () H 1J~ * I I. / ( ,,- I I I •. 1-.1.•." Ii • / (,.1-1 I I )
S I Gel 2 • .1.1.=1 S I GJ : 2 •.J I / .:. I I ,;,I i'" "( 1 • / I ,I.j - I I ) - HI" # II • / "~-I )) I

I" S= ( 1 ( 2 • .I I ~ ( S I CJ I 2 • .I I-~, 1 C I. ( 2. • .III J / I<LI 2. • J )
T S I GI 2. • .I ) ~ ( l( 1 • .I I *5 I ,,'; ( J • .I ) Ii- (" / 2. • ) , (I ~ I <- .oJ 1- ,,_ ( I ,J I J
II l::J( 21 = ( T ( 2. J I ~ 0; I G ~ ( " • .I I I / 1 c> I u ( 2. • .I I
11'(lIbSIPBI2)-I.CCCC(JI.LI.O.OO.JO'>1 (,L iL L~
T SIP' 2. J ) =T ;:)1 G( £ • J) + T l ~ , ..J ) * , S I Gu' 2., j I - J 1 C h ( 2 it J J ,
R C 2 P I 2. • .I I =1 2" (T 0 I (( 2.. J) ) .)/" I .I I
Rei F ( 2.• .I ) = ( "" (T 5 I ({ 2. J I ) ..'" 2 ) / (" ( .I F , ",,; 1 " I (, I 2 • .I) - 1 5 I P ( " • .I) »)
F C=AS ~ ( (T S I a ( ~. J) .•r~I (; l 2 • J ) J / {T ( :.2. ., J j ¥- ~l L L, (2. J J 1 )
DE T P ( " • .I ,~ - (r (" q M- I I I 'n L L G ( "- oJ I / I 1 •. " I I
ET(2,JI=uEl;:>: <. J)~LT( <.J-1)
PT(2,J)=TC*EXP( c1(2,JII
T (2,.1 )=FlIZ,J)
RCI«.JI~~OI~(2.JI
Rli2(2.J )':::'~Ut.:,.:.t{:?J)
L ~L + I
IF(L.(u.Jl) ,;;( TC 29
GC TO 27

c
C FOI< THE ;JCINrS EEYC;~') IHI. 'wi tH "E>'T 1:' IJ-E PCL.o
c.

29 DC 36 1=2.46
~Clll"I,JI.=~Lli: 1• .1)
RC2(i+I.J)=~J« 1 • .1)
l(I~I,Jj=TlI • .II

•



",5= I
ELI I + I • J l = LO J 1 I. J ) • ( I ( U.I' ( c. ,Il I • J ) - El> I I , J) I I" Cv S( fl. (I. J) ) - I • a) /

• i,!J I I) ) * 1;1 C ( I" 1) - r; C I I I I
ReI 1+ ! • J I =i~iJ ( I" I I * I [ ~ I" ( l: l ( I + I • J i J I

54 I::1= O,C I ( I .J l+ I; J II HI. J 1./, '" • J •. I f ( I • J ) • 11 I + I .• J )1/ ,. 0
E 2= (H"'; 2 ( I • J I > r,0 , I 1+ I , J J J / L • 0+ ( J ( I ,.J ) + 1, I + I • J) ) / .•• (j
':03.= 11 I I • J ) + J I I" I • J ) ) / L • .:-
E 4 = I fi [) ( I •. I ) * * ,- r, J I I I ., • " ) , 1 J
r HI I •. I , J I =A R~ L:; (C L "I r h, J • J ) )- I, L 4 ) I ! <' , ~ I ~ L""..c 31 I )
iJ EG I I •. I • J )= Ed ( I •. I oJ) - LJ ( I" I • J -I i
ET I I + I • J I =ALO (I I I 1+1 • J I /1 LJJ
,j E T I J + I ,.J I= I:: r (I •. I • J J - E T ( 1 + ( • J -( I
o ER ( I + 1 • J ) = -.J Ef ( ( +l • J J - iJLLl ( 1+ I • .J )
ER( 1+1. JI=.l[;,U"I.J»LH l+l.J-jJ
C 1= (12 * I 1+11)1 ** (I ./M I )/ ~. G
C 2 = I ( AE5 ( [E 0 ( j + I , J ) - U to, ( I •. 1 • J II l*'d r.,/ ('\,-1 ) I ) / lL f-~ *'< )*" I I. / I "'.- I) I
C 3 = I Al3 5 I :l Eu I 1 + I • J ,+ u,," I I + 1 • J J II"" (;.\ / ( M- 1 1 )
lJEGII+I.JI=CI<l (C2+('J)*"'(.I-I)/I"))
E 8 I I •. I • .J I =J E"; ( I , I • J ) + L .j ( 1+ I • J -( )
IFlc[J(I+loJ).U::.J.llI1 (,l 'fJ 70.>
5 I Gl: ( I + I • J) =,< f ( (E Eli + I. J ) ) * '-,',)
GG TO 7e'3

7;)5 5IGE( 1+1, J)=( ll::::::;~.,){.j~L\ O.tJ42f-LiJi 1'#-1,,;) )).:;.*0 • .J24
7 J E (;= - ( I + R ) " I D2l ( I •. I • J J / LJE(, ( 1 + I, J I )

H= ( ( 2 *': 1+ q )/ (1 '2 *,,) Iq (L l:'J ( I H • .J )+ ( u LT I I + I • J .1/ .!. 01 1/ iJC G ( I + I • J) I
H 1= , ( 2'iC ( 1 +1-< J ) / { I*" 2t",.h: j J 4 L 1-.0 S ( ( u..:...J' 1+ 1 ~ ~ 1 .•..{ DE T , 1 t 1 , .J) /2 .0 J J /0 t:G { 1 +

.I.J)I)
IF(OEUtl+l.J).GT.I:EI,(HI.JII G.> Iv ~1
If- ( LiEu( l + 1• ,J J .L 1 • [ER ( 1.to 1 "' j » Gu 1G ~ L.

2 1 S I GC.( 1 + 1 , J J :::;;"•. S I .c E ( I + 1 ,.J J ,/ ..2.•a J :;;t. i \..l .••: * ( i •/ ( f'o. - 1) ) + H *' '* (l , / (1.1-1 » )
S I GR ( I + I • J)= ( 5 I (tJ I 1 •. I oJ I / " • 0) *( "" •.i j • /1 ~,- I) 1- H ". (I ./ (M -1 I J J
GC Te 2C .

22 5 I GI; ( I + I. J) = { 5 ICE ( I + I • J ) /2. • 0) *l "'" *' ( I ••••.( ,'. - 1 ) )+ HI "'* (I • / (M -I )) J
S I GUI I + I , J I = ( SIC tl ( I + ( • J 1/2. ,)j *l \1,. *( i • / I -, - l) ) -iiI 4. (I ./ ("1 -I I) )

20 ~ = ( IT ( I • J P (S I G( ( I, J 1-'; : u< ( T,J 1 l ; /f, L ( I, J ) 1+ ( r (I +1 • JI *' I 5 I (U ( I + I
.,JI-S1Gr,( I+I.J) lJ/fiC( I+I,JI
r S I G ( 1 + 1 • J J == ( ~ ( I. J) ~:.:»L.i h 1 1 • J) J + , S /~ • ( J * l r. c ( !+ 1., J J -ji \- i 1. J )
A 8 I I+ I 1= ( T( I •. I. J I*S I Gk( 1 •. I oJ Jl /1 S1(, ( 1i ! • .J)
IF(ABS(Atl!l+II-l.COOOOI.LLC.,J.OOC.03) GL 1L 3"
TSIP(I+l.JI=ISIC!I+I • .J)+I( 1+-I.JI*ISI,,'(lf-l.JI-jlLF!l+I.Jj 1
R0 I P ( I •. I • J)=( 2* ( T 5 I (, ( j + I • J ) 1* *2) / I? { J h , <c" T 51 GI I + I. J I - T 5 I P ( I + I •

• JIII
R 0 2P ( I + I. J 1.= ( 2'< (T S I ,,( 1 + I • J 1 ) 1 /1' ( J )
F C= ABS I {I S I '" ( It I • J )+ r S 1(" I + I • J 1 ) / I "I ( I + 1 • .J 1* S i G j ( I +l • JII )



L>Ell-' ( I + I. J I = - 0= (" " ( ~I~ U I' I J iCC; I I + I • J I ,/ ( 1 .• I- 1 j
EIl 1+ I.J1=DE1F( Ii I.J I +,c] (1+1. J-I)
PI ( I" ! .J j =T (* (c "p ( i= 1 ( I" 1 oJ] II
T ( I" 1 • J 1= FT i I .• 1 • J 1
Mel I 1 + 1 • J I = ~.J If' ( I .• I • J I
h L 2 ( I i. 1 0 J 1= F j 2;:> ( Iii • J )
rvS=rvS+l
IF (,~!..s • E G • (1 J (J 1 C: :3.J
G( TO ~4

31.> CCl\llNUE
c
<.
CALL THi= .'(I"T5 l"AVE 3b,,1 <"AL~U~i\lLu. I,_L JHL fk.5ULTS PRI'\TELJ
C FF:ESSUI<E APP~C>(!MATIJh

IF(J.GT.3Cl GC Ie 912
IF(i=C(47.)I.LE.[.C;)C3! LL l.J 901
GC Ie 9~2

-,,01 IF(EDl"7.)1 .Ll.-C.Je;);:,) Ui fJ "':'1<:
GC TG 9C3

903 l(47,J'=O.J
DC ocJv Lf~:::l ,4t
ID=47-LN
P r. = ( 5 I N ( I HI I,) oJ 1 1 "EX" k hi! J 0 J J) I + ( :. 1 :. ( j h ( I,)" 1 • JI J *t: >(0) ( c: iH 1CJ"I • J J JI.
GF = ( k [) ( I D .• I ) - F) ( I D) I
DH= U /2.0 l* Frl "j f
Z ( I D. ) I = Z ( I 0+ I. ) I .•DH

<iCC CCI\TII\UE
CCPi})=0.G
DC 762 ITT= 2. 47
CCP(I TI )=FC( I JT.) 1/5.0

702 C(I\TII\Uf
WRlTEI3.4CDI

400 F.o RMA T ( /,/./ / / / / / / • T 5." l' , 1 ..:.:.0,. • TH!:.:.1"A' • ". ~j •.• ll\iL. kA .J] u::i •• T~ ;j •• CU. J;/.•.O' ,...
.T75,"SIG="v1/J 3~F' ~TS9 .• JlP~1 .t3Ar<"-,.]1~4.'(..l.;.1'~///I) .oc 405 l~ i, 47

WkITE(3,401}J:,Tt-:(I •. )J,Ii:J{l J,kC(! .J',~lGi:HI .JJ.E:3CI .J) •
• r'II oj)



401

40 ~

4)2

42(;

2;)0

232
"304

33

43 ::

4J~
431

434
461

.(

t-=uRtJ.Af( /3"lX, IJ. {;Xt.Fl~.7t5X.FL..j-.7,t;X.=14 .•7.:jX.F14.7.5X,,:::lq.l .•2X.
.•F14.7J
CC~lJNUt
IddTEL;I.',G21
FORMAT(////,ff, 'l.,12C, '~,jG'~A. =-<'.14~, '~jtdJA u', rt.l'. 'L:.PS.T',T7~.
.'EP~.J<' .TSO ,t E:JS.IHLlA' ,111J, .Lv.Clf.i~f'~L.~:':'.f"{.kj.' ,//1 /i
. AE(I)=I.OCOO
DC 42.(;, 1:::], 47
"~ITt.'3.4():::Jl.SIGh'1 ,JJ.SIGO{I ,JJ,::..j'll ,JJ,ll::';(1 .• J} •

• EO( I • JJ .COP II I
F OFi tv,A1 { /, I~ x.. 13. 1OX • r 1,~.7. :;.x. F 14. 7 • .,)A .• :; 1,4..•7 • .5X. F 1 4. 7, 3 X •.F 14 ••7 ",3X •
•FI4.7l
CC~IINUe
wRITLIJ.2CJl
F u H1'-~A.T L / / / / / / /, E)C .' 1 , -J' _.ill X •• t-1~'" Gii 1 •.• 1 '- A , .• r-< hJ l' • 1 2X " RH C.2 .•• lOX.
•• T * ti I Gh /1 S I G' • / / / / J
DC .:W4 1=1.47
~ R IlL ( 3 • 2 22 J 1 , J , Z { I • ,J J , •. l. 1 ( 1. J' ,,, U,,- L .•. 'I'; J • AU ( i J
F {JR;-1t.. 1 ( / • 6X • I :3. 1 X • 1.J. 1J X • I: 1 .:.,. 7 .• oJ X .• f- 1 4 • 7 , ~ X, f 1 4. I • ..j.;";' ., F 1 4 • 7 ,
CCf\T"INJJE
,,1'1 H,(:; ,j~l J. PI J I
FDHt.~Al(.I/ .•5;( •• CGf~r~E('T t=>f..L...).,j.JK.':'; rl:h: iht-. ~TAG.t:.• .,!3.1,)X.F!4.7JGC lu .;-:
IF(LP.~T.~) ~C TO 434
IF(LP.'i:::C.3J 'i( -lD 4,j.j
GC 10 4::S
FS(LPI=FIJ)
AC=l-SILF I
EK(L~'=E;J~47f J)
GC hJ 424
IFiLP.EC.,1 GC 10 431
GO IC 424
PE=PI.Jl
ES=EUI 47. Jl
\;C TG 4~4
.,1'1 TE( 3.4<:1 leC( 47.J I.U"'. J.PlJ l
FeR fJ.J\ 1 , / / .:.l X-' •E EE •• t- 1~ ~7 f 2. I.J .•F 1 <.i-. 7}

IfCLP.GT • ..:} GC 10 436
IFILP.EC.~) ",C TC 4:>3
GG 10 432

432 P(Jl=PiJ)+UP
LF=LP+I

c
.(



(
(445

<:436
436

<.C4;;<;

912

915

917.

<:
35

<:
37

749

1 F I LP • "G. c I Gel'; <;
IF{L.:J.EG.:::j \iC lC S
LP=LP+l
" I J 1= ( I r- J IL P- 1) • E S I -I h.H I.K (L? -I I j )/ I ~,,- :. " (L P- II
VI.k [1 E { .3.,445 )J ,F' t..J }:I iJ.j (L. P-! , ,c. « l ;J -1 ; :I I :.:.• L ~ .••....?
FCRtJ.AI (// ~5X. 13 ,t(;14.7.~). 1])
G C TO)
It={LP.E(;.4.~'~S.J.El.i.lL_j CLi"(,J 3:.;
PS(LPI=FIJI
EKILPJ=EOI47. Jl
PSl'31=A(
PIJI=IPSIU'I*b«LP-1 j-.p~(LP-1 !"udL"J llll KILP-Il-L,,(LPJ
.•~~ ITt. ( 3 ~4 ~6 ) j ,L P , PS( L $-- j ••. .h {LP ), f:> ~ ( L ,.:.- 1) .,L k.( .:....;..> -1 ) • F{ J)

FCHfVAT(// .•5X, 21::.~Gl~.7J
LF=LP+I
IF1LP.EG.10.,.(JH.45<;
GC 10 9
If(EU(47.J} .•LE.:J.COOJ,> I0l I:J ;1:.;'
PIJJ=PIJI'v.SC
GC Ii] Y
[FIEU(47.JI.LT.-O.~'OL:J Lei rei -'II'
GC 1U 903
? I J 1= PI J J -0 • I CO
GC! .T G ")

CLI\TlhlUE
WFI1El3,749J
t":OPMAT(///, 5)( ,t J' ,YX, '?"f.~"';Uh.:E'. 7X,'E)JL .• TiiI-eK\l~S~t .,.3X.• '..lCL.TH • .51

.1~Alt\' ., jX, 'POL AR CUkV.\].JhL', 3X ,t ~l;L.ti0L:lSThE::;5',1I ':iX," ?uLAR HelGHT' •
•3X,'Sl-RESS RA1JC.EDG~ ••///~
DC 756 J=~, .:;J
SeFT I J ) =S 1GLa 47. J )/ ::;I (,i{{ ~ 7 , JJ ,
\'J R I T E { .3.750 J J ,;> ( J )_.T ( 1. J ) • 2: I_&. I, j ) t h. L 1 { 1 • J J, :::i 1 G,-< ( 1 11 J ). L { 1 , j) •

• SCFTlJI



750, F OR ~Ali / • ~X • 1 ~. : X .F I" • 7• ~,X • F I '•• 7. 3" • r 14 • 7 •S X. F 1 +. 7. JX .F I" .7 .d x •
• Fl~.7 • .3)< • .fl.~.1)

7S(j CU~ I I r,uc
wr.llt::(J.7.6:.>J

7(,5 FCt<MAT{/.II///I,~OX.'CL-1Pl.::.r,~ rrii.:.L..~iliL4.L Ahl.\LY.:..:i(~ FOk 5:1=1 EkA,:>S
• L:lAPH~AGjV CF l)I4~c1.'::h If l.>lCht:.::i. 'J
~hllE(3.7cO )

720 FeR r-.'A T ( /, 3\) X •• * * * ~* ~""* 'Tt.:(' ;,;' '* *":.,'<;* *"" '* \- *~,T ";'. "i:¥ -'i' ;,;. )1 *' *".>j' ** *' ~ ** **" ** ** ** '* * '* * * *:• -* ~.¥ ~t*"* :;:.:.•..;,;;* *'* .;: ~.*:( *" 4;:j .-i-;,;' .•. ,*:l". .;'<.;, *.•.4.:,;. +.:,. *li'';' )
4::;<; SlGF

E~D
/0
// EXEC Li'Ki::DI
// EXEC
109240.JJO a.51C

67. 260-~;354
111.98~184t
Ij4 .15~j30c
19' •.• f:5".:1067
233.41S.]422
..270.-62E-;'06:
~1)1.41CQG87
342.42.:1654":
275.01000t5~
4D~.34~214E
43~.4at"41~
45';.34,,853::
433.29SScJJ47
5)5.2::c.:33~C;:
525.6S9209G
~44.5a4dtl2~
561.7~:4102
::77.(5245117
592.1215820
(;')5.3 ;:9589 E
toI7.3427500
to2e.0480,,57
(';37.<:81103:
t46.7to75781
l54.}~77';',3C
661.8-39j55~
66B.•::3':).3:;j~
673.83<;3.5S!;
t7E.739257E

/*
/S.
.:4' :».1 cCJ

,I
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