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ABSTRACT

It is a common practice 1in Bangladesh to design
buildings in reinforced concrete frame ignoring the
composite actions of wall-beam. Due to the ignorance of this
composite action of Qa11-beam a consiqerab1e waste of
materials result in building through under—-utilazation.
Although the concept is used exteﬁsive1y in many countries
of the world, its optimum utilazation has been restrained to
some extent due to the lack of proper investigations in the
area. The previous investigations were mainly confined in
the laboratory and very limited theoretical inveétigation
based on finite element method was performed considering the
brickwork as homogeneous material. This type of macro level
model is suitable for the macro study but incapable of
modeling 1oca1lbehaviour at the region qf beam and wall ends

where the stress gradients are very high and the fracture

process is complex.

. A project therefore has been undertakén in the Dept. of
01911 Engineering , which involves both experimental and
theoretical investigatios of the problem. The present study
is a part of this on-going study which 1nvo1ves' the

deve]ophent of linear elestic finite element model to study

the composite action of wall-beam structures. Isoparametric




elements have been used to model the bricks, mortar joints,
supporting beams, and the 1n£érface elements in between the
wall and the beam. The brickﬁdrk has been modeled both as a
homogeneous material or nonhomogeneous material (Bricks _and
joints as different materia]s).The-mode1 is very useful 1in
predicting .the. Toca1 behaviour of the regions where the

stress gradients are very high.

A series of analyses of a number of wall-beam
structures with different height to span ratios, sizes of
the beam, different stiffness parémgters | and different
modular ratios have been made in this study. Particular
emphasis has been given to the variation of shear stress,
vertical stress, and the bending moment in the beam of the
wall-beam sﬁructures. From this parametric study it has been
found that the maxiﬁum moment in the beam occurs at about
1/15th of the span from the supports rather than at midspan.
Whereas the tension attains its maximum value at or near the
midspan. It was also found that the shear stress along the
wall-beam interface 1is parabolic for lower values of

relative stiffness parameter and the spread of the shear

stress along the length of the beam is twice that df the

vertical stress.
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CHAPTER 1
INTRODUCTION

11 GENERAL

The brick-wall on beam is one of the most frequently
used structural system, yet its behaviour is often
misunderstood. Out of numerous applications of wall-beam
type structure, foundation beams, strip footings, 1lintels
supporting the brick-walls with or without openings , grade
beams etc are common examples. Whether a 1lintel over a
window or a massive transfer beam at the base of a tall
building, the composite interaction of a beam with the wall

it supports is complex.

Masonry walls constructed above beams spanning betweén
two supports acts compositely with the beams and distribute
the major loads to thé supports due to their high in plane
rigid{ties as a result of arching action. The beams are thus
required‘ to tie the arch and hence, axial force are more
predominant than the flexural forces that are generally
expected in beams. Consideration of the composite behaviour
will not only lead to a rational design of beahs and walls,
but also ensure satisfactory performance with respect to
cracking. Desian of beams for the composite behaviour will

‘also result in a significant saving in concrete and steel,.




Prior to 1952, it was common.practice to assume the
brick wall as a dead load on the beam and act as a filler
and as a result their inherent strength was ignored. Later

the beam was designed to support the load of an equilateral

triangular .area of brick wall, the span of the beam being

the base of the triangle.

In the pervious years, the research work in this field
was confined mainly 1in the laboratory and from these
research works, many design recommendations emerged out
which varies from country to country. Due to the inherent
complexity involved in the composite action of the problem,

theoretical work on the above field is almost nonexistent.

A-  program .has been therefore undertaken in the Dept.
of Civil Engg, which involves both theoretical and
experimental works. The present study has been limited to
inplane Jloading, both concentrated and distributed. The
effects of loading history and time dependent deformation
and other effects of similar type have not been considered.
Two different finife elements, one four noded element (using
linear displacement function) and the other one is eight
noded element (using parabolic displacement function) are

used to develop the program but the present study is based

on the analysis wusing only four noded finite element.

.-"'-\__}




Different techniques have been applied to make the program

very efficient and versatile so that a real size wall-beam.

pane]l can be analyzed and it can be used for the
investigations of composite behaviour of similar other types
of structures with 1ittle or no modificatioﬁ of the program.
The wall-beam structures are modeled as two different
materials with an interface element in between. The wa11- is
treated both as homogeneous material (considering the
average properties of the brickwork) and a nonhomogeneous
material (considering the brick and mortar as two different
materials). The propefties of the material needed to define
this model haQe been obtained from results and t;sts,
performed at different universities,and institutions. The
finite element model has then been used to carry out a
parametric study of the composite actions of wa])-beam of
standard sizes. The study illustrates the potential of the
model both as a subsequent tool and as a means of preparing

design procedures for practical purposes.

1.2 OUTLINE OF THESIS
The structure of this thesis can be summarized as

follows:

i. A review of the state of art of the composite

behaviour of the wall-beam structures with particular

-~




emphasis on the areas significant to this study.

ii. To present the analytical background for
establishing the basis of calculation required for the
study of composite behaviour of wall-beam with the
introduction of interface element 1in between . the

brickwork and the Supporting beam.

iii. Development and description of two dimensional
finite element model and verification of proposed
finite element mode1 with the results of test on brick
prisms under concentrated and distributed load on the

wall-beam structure.

iv. 'Description of different aspects of wall-beam
interaction and different assumptions made 1in the
analysis.

V. ‘Fina11y, the application of the finite element
model to a parametric study of the behaviour of the
wall-beam structure subjected to both concentrated and

distributed load is presented.

ey




CHAPTER 2

REVIEW OF LITERATURE

2.1 INTRODUCTION

If a wall and the beam on which it is supported act as

a composite unit then the proportion of the load carried by
the supporting beam must be determined. Prior to 1952,it was
common practice to assume that the supported load is due to
a triangu]ar area of brickwork in which the span of the beam
represented the base of the equilateral triangle. Sincé then
experimental and theoretical studies have resulted 1in a

better understanding of the problem.

The action of the load on the wall produces horizontal
forces in the beam which partially restrain the supports so
that arching actﬁon resu1ts in the panel. The degree of the
arching action depends on the re]ative stiffness of wall and
beam and in general, the stiffer the beam, the greater the
beam bending moment since a large proportion of the load

will be transmitted to the beam.

The above concept of composite action of wall and
supporting beams has been used in many countries of the
world. A number of studies have been carried out all over

the world but most of them are experimental providing

™
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different results and recommendations which vary from
country to country. A few numerical models have been
developed 1in the past with limited use for research

purposes.

This chapter reviews the literature which have been
published on various aspects of this problem in different

countries of the world.

+

2.2. BRICK MASONRY WALLS IN COMPOSITE ACTION
2.2.1 Wall-Beams

Beams are provided to carry masohry walls over opening
such as doors, windows and as grade beams. Such structures
comprising beams and masonry above are called wa11—béams.
The behaviour of wall-beam structures are more complex than
the designer expects in general.The high in plane rigidity
of the wall makes it to act as an arch or deep Dbeam,
spanning across the opening. Additional vertica?l loadings on
the- wall are not transmitted Qertica11y down to the beam
below but are carried towards the stiff ends of the beam.
The 'composité action can be described to be a tied arch in
which the wall serves as the arch and the beam as the tie

which prevents the arch from spreading. The uniformly

distributed vertical 1load applied on the top of the wall




will be redistributed by the arching action so that high
vertical compressive stresses and horizontal shear stresses
are induced in the bottom corners of the wall. The
distribution of vertical stresses on the beaﬁ causes bending
moment in the beam to be substantially less than if the toad
would have been applied with uniform distribution on the

beam itself.

2.2.2 Structural Action of wall-beams

It has long been recognized that structural interaction
takes place between a masonry wall and a supporting steel or
concrete beam. In simplest term this has been represented by
assuming that the beam supports only part of the brickwork
represented by a triangular load intensity diagram with zero
ordinates at the supports and maximﬁm loading at midspan.
The loading from the remainder of the brickwork was assumed
to be transmitted to the support pojnts by arching

action(22) as shown in figure 2.1,

A number of experimental studies (5,25,26,30,31)and a
very limited theoretical studies (7,8,13,14,17,27,32) of the
problem have shown that the vertical and shear stresses at
wall-beam interface are concentrated towardé the supports as

shown in figure 2.2.
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FIG 2.1 ARCHING FORCES IN WALL[HENDRY)

VERTICAL STRESS DISTRIBUTION

SHEAR STRESS DISTRIBUTION
!

o !

FIG, 2.2 YERTICAL AND SHEAR STRESSES IN THE BEAM (HENDRY)




Both the shear stresses and vertical stresses can be
approximately represented by triangular diagram and the more
flexible the beam, the more concentrated these stresses are
towards the support. The shear force tries to counteract the
downward deflection of the beam. Still, there is a tendéncy
of this element to deflect downward i.e. away from the wall;
with the poséib1e development of cracks between the top of
the beam and the bottom of the wall. The shear forces also

induce tensi]é force in the beam.

Typical illustration of the vertical stresses along the
wall-beam interface and horizontal stresses along the
vertical centre 1line are as shown in figure 2.3. The

distribution shows that
i. Maximum vertical stresses occur at the support.

ii. The maximum horizontal stress in the beam 1is at
midspan, may be tensile, throughout the depth of the

beam, i.e. it acts as a tie member.

.Experiment also shows that composite action can not
take place unless there is sufficient bond at the wall-beam
interface to support thé required shear stresses. The Jlarge
compressive - stresses near the supports result in Jlarge
frictional forces along the interface and it has been shown

that 1if the depth/span (H/L) ratio of the wall is greater
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FI1G. 2.3 DISTRIBUTION OF VERTICAL STRESSES ALONG THE
INTEREACE AND HORIZONTAL STRESSES.ALONG THE VERTICAL
CENTRE LINE OF WALL BEAM STRUCTURE. {HENDRY)
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than 0.6 then the friction forces developed are sufficient

to supply the required shear capacity(31).

From different experimental investigations it was
concluded that the degree of arching action depends mainly

on the following parameters:
i. The relative stiffness of the wall and beam.
ii. Type of loading.
iii. Span of the ya]I—beam.
iv. Wall height and thickness.

V. The modular ratic of wall and beam.
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2.3. EXPERIMENTAL STUDY
2.3.1. General

Due to the complexity of the problem and
nonavailability of the proper computing facilities in the-
past, the experimental studies were preferred. Those who are
pioneer in this study are Wood, Simms, Smith, Riddington,
Burhouse etc. In this section these studies will be reviewed

and examined carefully.

2.3.2 Wood and Simms

In 1969, Wood and Simms (30) proposed a method which
was based on the assumption that the vertical stresses 1in
the vicinity of the supports form a rectangular stress block
which extends at a distance of ’X’ in to the span from the
ends of the beam as shown in figure 2.4 instead of
triangular distribution of load as described in the previous

chapter. The bending moment coefficent, ki was ﬁntroduced.

M=WL/kt and
C=L/2X
where,

C=8Stress concentration factor; that is ¢ is the

ratio of maximum to average stress.




W/UNIT LENGHY .
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FIG. 2.4 ASSUMED EQUIVALENT BEAM 'LOADINGS { WOOD & SIMMS)
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From figure 2.4,

M=WX/4.

WX/4 = WL/k1 or X/L = 4/k1 and

C=k1/8, i.e. bending moment coefficient,

k1=8C. Pe s s aan .(2.2)

where,

W=Total distributed load on wall,

L=Span of the beam.

This means that the bending moment coefficient, ‘the
stress block and the stress conentration factor have typical
values (31).

Their investigations reveal that for composite action
to be possible, the average compressive stress in the wall
must be relatively smaiI. On the basis of these values of C,

the values of k1 may be determined.

Let the desigh strength pef unit area of a wall
= ﬁlfk/rm

where,

ﬁ&: Reduction factor

fk Characteristic strength

rm Partial factor of safety.
Now if the average stress in the wall is less than the
design stress by a factor of F, and if the design strength

may be increased by 50% in the region of concentrated stress
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at the support, then, CxFx B, *fk/rm ¥ 1.5 fk/rm but since
C=ki1/8. This equation leads to the bending moment factor for
the beam,.k1 » 12(F*ﬁ,), when M=WL/ki1. This simple analysis
has been elaborated by Wood and Simms to allow for the axial
tension in the beam on the assumption that a parabo1{c line

of thrust is developed in the wall.

wood (31) based on the test results gave the following
theoretical formulae td calculate the bending moment and the
moment arm; the later being based on the elastic analysis of
homogeneous deep walls. He recommended the depth of the beam
to vary from i/15 to 1/20 of the span; and bending moments,
he recommended for door and window openings near the
supports of walls to be WL/30 and WL/100 for plain walls
with door or window openings at the centre. For freely
supported deep wéTTs a‘moment arm of 0.67 x depth of the
wall with a 1imit of 0.70 times the span may be assumed. But
in case of continuous beams the limiting moment‘arm at the
centre is about 0.47 times the span and at the sﬁpports 0.34

times the span.

2.3.3. P. Burhouse

Burhouse (5) showed that for the majority of the cases

of failure take place by crushing at the lower corners of
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the panels, followed by failure of the supporting beam and
similar results were reported by Smith and Riddington
et.al.(27,28) for structures having 1ightl to  medium
supporting beam. With a very heavy support beam, 1local
damage. of the brickwork in the vicinity of the support was
much less severe and at the ultimate load, failure was
initiated from the support. In most cases the critical
_condition for failure will be concentrated vertical stress
distrubition around the support. If the beam is
exceptionally heavy, the stress concentration will be
greatly reduced and 1in such caées overall compressive
failure "may be critical. Burhouse (5) presented a study of
different parameters for the investigations of wall-beam 1in
comparison with the investigations made by others. Method
- proposed by Davies and Ahmed (13, 14) appeared to give the
most consistent agreement with thé experimental results
while the formula given by Smith and Riddington (27) gave a
very high results for these beams. It is to be noted that
the for the above study reinforced concrete beams were

considered.

From a number of experiments Burhouse concluded that
when load is applied on the top of a load bearing brickwork
built on a beam, which spans between supports composite

action between the walls and the beam significantly affects
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the distribution of load transmitted through‘the wa11-to the
beam. The composite action approximates 1in certain cases to
that of a tied arch, the arch forming in the wall with the
beam acting as a tie. From the tests carried out by Burhouse

the following points was observed:

i. In all tests, except one, primary failure occurred
as a result of crushing of the brickwork at lower
corner of the panel and followed by failure of the

beam.

S, Assuming that the resultant tensile force in the
beam acts at the centre of the reinforcement, the
internal moment arm, the value of which varied with the
applied 1load. Values . of internal moment arm are
expressed as a proportion of span and alsc compared
calculated values of tensile force in the reinforcement

and that measured in the test.

iii. In the majority of the tests the ratio of
calculated and the measured tensile force 1is greater
than one. This may be partly due to both concrete and
brickwork carrying tensile stresses at the section at
which the steel stresses 1is measured and hence giving a

lower value.




1%

iv. Assuming a limiting relationship between stresses
and strains, it is possible to calculate the ratio of
maximum strsses to the average applied strsses. The
ratio varied with the applied 1cad and the range

together with an average’values

2.3.4 Saky Rosenhaupt et.al.

Rosenhaupt et.al. (25,26) in his experimental study of
masonry walls on beam tested a number of masonry walls under
uniformly distributed load. The results were compared with a
proposed theory. In his experimental study, he found the
beam to behave Tike a tie taking all the tensicen and the
compressive force being distributed to wall along the
height. The ratio of the interior moment arm to height 1is

approximately 0.6.

Twelve experiments were performed. A typical test
specimen and the Toading arrangement is shown in figure 2;5.
The walls were simply supported and subjected to uniformly

distributed load on the upper edge.

From the tests it was observed that the vertical Toad
is uniformly distributed along the upper edge of the wall
and then 'transmitted through the masonry to the beam

supports. Vertical stresses 1in the bottom layer of the
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masonry wall reaches a value approximately 2 to 4 times
higher than the external load. When this stress exceeds the
crushing strength of masonry, failure sets 1in through
crushing of the building block near the edge. Another cause
of failure is the vertical shear near the supports. Shear
cracks appear in the vertical joints or between tﬁe vertical
co]umn (if any) and the masonry. It depends on the strength
of the vertical joints and strength of the masonry, the
height of the wall, inclusion or non inclusion of vertical

ties etc,

The different factors influencing the behaviour of wall
beams were also examined among which the H/L ratio and
masonry materials are important. The height of the wall
determines the moment of inertia and thereforé the magnitude
of the deflection as shown in figure 2.6. The first cracking
load is also affected by height. In the composite cross
section, the masonry constitutes the major part of the
vertical dimension (about 90%). It is to be expected,
therefore, that the masonry will have a major effect on the
characteristics of the structures. Therefore it was
concluded that these test program confirms the basic
assumptions of the composite action that the beam acts as a

tension tie and the wall as a compressive zone. The moment

arm is approximately equal to one half the height.
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2.3.5 G. Annamalan, R. Jayaraman & A.G Madhaba Rao

Extensive experiments (1) were also carried out on the
composite behaviour of reinforced brickwork in India. Their

findings are described in the following paragraphs:

Ultimate load: Most of the tested specimens failed by
crushing at the supports followed by final shear
failure. In all the reinforced brickwork lintels, the
cracks appeared along the major Jjoints vertically
between bricks in the beams and a horizontal separation
was visible mostly along the second course of the wall,
The compressive strength of the brickwork was found to
have considerable influence on the strength of the
composite structures. Reinforced brickwork thin lintels
were found 1in general to have comparable ultimate
strength with those of the reinforced concrete thin
lintels considering the composite action with the same

type of brick walls.

Vertical Strain Distribution: The effect of arch
action is clearly brought out in the concentration of
strain near the supports. The variation of compressive
strains is found to be approkimate?y triangular

satisfying the theoretical assumptions. The theoretical
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contact lengths on the average are abdut 20% less than

that determined experimentally.

Max imum Masonry Compressive Stress: From the
compressive strain the compressive stress near the
supports were calculated. The theoretical and
experimental values have a close correlation. The
experimental stresses were found to be much lower than
| the allowable stresses (calculated from the crushing
strength of brickwork prism with safety factor of 4)
thus indicating the satisfactory working load

behaviour.

Tensile force in Beams: The tensile force in the beam
was determined by multiplying the average tensile
strain by the axial rigidity of the beam.  The
experimental values have good correlation with that
calculated from empirical formula, i.e. from the

formula (30).

T=W/3.4. .......,...;(2.3)
Where,

T= Maximum tension in the beam,

W= Total distributed load on the wall.

< 4

£
‘at
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Bending Moment : The bending moment as found from
these tests were found to vary from WL/30 to WL/50. The
difference between the theoretical and experimenta]
values of moment coefficients confirms ~the
conservativeness of the assumptions ‘made in the
theoretical analysis and hence can be used for the safe

design of lintels or other foundation beams.

Deflection: Deflection at service 1load was very
insignificant. Actual midspan deflection at service
loads are about span/1485 for -specimen made with wire
cut bricks and About span/2380 for special chamber
brickworks. The 1load deflection behaviour indicates

that the failure takes place by crushing of masonry

walls rather than by flexure.
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2.4 THEORETICAL INVESTIGATIONS
2.4.1. General

In comparison to the experimental studies, the
theoretical studies in this area are very few and Timited.
Due to the complexity of the problem and non-availability of
the proper computing facilities 1in those days, the
theoretical studies especially finite e]ement method of
analysis could not advance properly.  However, a few
potential researchersA took the courage to initiate the
theoretical studies in this area. They developed numerical
models to find the stresses, moments and displacements in
the structure. In these section these studﬁes will be

reviewed and examined carefully.

2.4.2. §. Smith and Riddington.

Simth and Riddington (27) developed a four noded
finite element program for the stress analysis. They used
linearly varying displacement functions. The brickwork was
modeled as a homogemeous material considering the average
propértiés of brick and mortar , thus relatively coarser
finite elements were choosen. The model although predicts
the global behaviour of the structure quite

satisfactorily,the ané]ysis was handicapped due to the
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selection of improper element sizes and improper
representation of the material properties of the
constituents. Thus the author considered the brickwork as a
nonhomogeneous material, completely ignoring the orthotropy

of the material.

From the analysis the compressive stress and horizontal
shear stress distribution over the contact Jlengths were
found to be approximated reasonably well to be triangular
diagram. Their study covers a wide range of wall beam
combinations and the results are summarized as in figure

2.7.

They perfomed a parametric study by choosing parameter
like Poison’s ratio, H/L ratio, modular ratio of brickwork
and beam. From this parametric study they introduced a

relative stiffness parameter, K.

The results of the parametric study also revealed that
for wall height greater ;han 0.7L, the structural behaviour
of a wall on beam 1is independent of height. Earlier
experimental work of Wood and Simms (30) recommended this
value to be 0.6L. Their investigation pointed out that the
composite. wall-beam is the same type of problem as beam on

elastic foundation as shown in figure 2.10.

Also in these problems separation of the element is
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possible. The 1length remaining in contact, after the
separation has taken Place due to the 1loading, bring a
function of the relative stiffness. Let & L = Contact
length, then

a OC ((E*IxL/(Ewxt))*x0.25

where,
EI = Flexural rigidity of the beam
a = Ratio of the contact length to span

Ew = Elastic modulus of the wall material in

compression.

t= Thickness of the wall and
L = Span ofthe beam or length of the wall.

Then,

a/L=(E*I/(EwXt*L%xx3) )%**x0, 25

a/L=B/K

where K is the relative étiffness parameter and B is a
constant, to be deﬁermined from experiment. The average
value being unity and a = L/K. From this equation it is
seen that the stiffer the beam relative to the wall, the
longer wil1l be the tength of contact, in turn increasses the
bending moment in the beam and thereby reduce the stress 1in

the wall. From the theoretical investigation, they

introduced ,
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Oy(max)= 1.63 W((EwxtxLx*3)/ExI))xx 0.28/(Lxt)

where Oy is the maximum stress in the wall.

The effect of the axial stiffness of the beam was also
considered and the effect of increased axial stiffness was
to reduce the spread of the arch action. The principal
effect of reducing the flexural stiffness of the beam by
increasing K, is to increase the peak compressive stress at
ends of the beam and to reduce the beam bending moment. For
lower value of K (up to 5), reduction in the beam stiffness
significantly increases the tie force when full composite
action takes place. For values of K beyond 5, the reduction
in the stiffness of the beam allows the arch action to
spread slightly. They also conc]uded that the maximum beam
moment occurs wusually very close to the beam supbort and
maximum tie force around the~centre of the span. From the
analyses Smith and Riddington proposed formulae for beam

bending moment and tie force.

Maximum bending moments= (W*L)/(4(Ew*t*L**3/(ExI)**(1/3),_

Maximum tie force in the beam = W/3.4. .........0..... (2.5)

Here it may be noted that if H/L equals to 0.6 is put

in the = equation of tie force proposed by Wood (31)
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i.e. T= 3WL/16H, then, T=W/3.2, which is 6.26 percent higher

than the value proposed by Smith and Riddington,

2.4.3. bavies and Ahmed

In 1977, Ahmed (13,14) completed a 1linear elastic
finite e1emen£.study on the basis of which an approximate
solution for the composite wall-beam problem was made by
Ahmed and Davies (11,12,13).From the study they introduced a

relative stiffness parameter.

Rf =((Ewxt*Hx%*3/(ExI))*%0.25 et e (2.6)
where,

Rf = Relative stiffness parameter.

This parameter is similar to K introduced by
Smith and Riddington (27)}. This paramter is more
representative of the wall beam geometry than the parameter
suggested by Smith & Riddington. In order to calculate the
beam axial force, a relative axial stiffness parameter,
Ra = EwtH/EA was introduced, Where, A is the area of the

beam.

The basis of the method is that the vertical and shear
stress distribution along the contact surface is mainly

governed by flexural stiffness parameter, Rf in the

for F
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following manner
For Rf » 7 the stress distribution is_triangu1ar

For 5 < Rf ¢ 7 the stress distribution is parabolic

(quadratic)

For Rf < 5 the stress distribution 1is parabolic-

{cubic) as shown in figure 2.8.

The axial force in the beam which varies from zero at
the support and maxjmum at the centre, variation being

linear as shown in figure 2.9.

From the finite element study they proposed few

empirical formulae and these are

Oy(max)=( W/Lt)*C

T = W ( &-3Ra)

T(max)= W @-3Ra) (1+BRF) ..., (2.7)
Cc = 1+pr

Where,

Oy (max)= maximum vertical stress in the brickwork,
T = maximum tensile force in the beam,

Tf(hax): maximum shear stress along the interféce,
C = stress concentration factor.

c, G,‘J,p may be determined from 'prescribed graph

available at ref. (11,12).
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2.4.4 Green

Green et. al. (17) developed equations for composite
action of wall with height to width ratio greater than 1.5
and without openings. The equations were devoloped from a
parametric study. The structurai system consisting of

masonry wall and its supporting beam was regarded, for the
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design purpose, as a beam on elastic foundation. The

analysis of the wall-beam has been shown in figure 2.10. It
is assumed that the beam is loaded through support and that
the height of the wall is at least one third of the span.

Then the toad and the reaction may be expressed as

4 4 A
-EI d y /dx = =(P-@)  iiiaeees {(2.8)

The prerequisite for analysis of the beam as an elastic

foundation with the modulus of the subgrade reaction is that
the settlement 'y’ of any given point of a foundation does
not depend on the settlement of other points and is in
direct proportion to the pressure at that point i.e. @ = Ky
and hence the general equation for the settlement, Yy
becomes: y = P 7\"?! (cos Mx+sinh x)/2Es

From which

—“AX
PMe (cosAix+sinix)/2

Q

(Es/(4%EXI))*%*0.25

and from the boundary conditions:
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P= W/2 i.e. single load at support.

Subsequent simplification gives:
q (max) = 0.3W/2((Ew*t/(EI))** 0.33 and

Es
A

0.5184‘Hf*(1/3) where,  seseenen (2.9)

(Ew t)%%4 /(EXI)

1l

Contact length: The approximate force action 1in tHe

wall beam may be assumed as shown in figure 2.11.

For a triangular distribution of stress,. length of

contact, 1. =4/Mt

and a vertical force at support =WN;/4 ...(2.10)

For determining the tie force in the supporting
beam, it is assumed that centre of the compression is at mid
height of the wall. Then taking moment about peint '0’ of

figure 2.11.

T= w31where,

A= L(1-16/3NL) /4H e (2.11)

Horizontal Shear : For full composite action to develop
between the wall and its supporting beam, the shear

strength at beam and the interface should be adeguate
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to transfer the shear stress induced as a result of the
arch action,

From this,

T=(T /2%)( L/2)

or i (2.12)
T= 4AT/L
Bending Moment : The assumed bending moment is
calculated assuming the ends to be simply supported,
though a cerfain amount of fixity is created at the
supports due to the finite 1length of bearing 1in
practical condition. Bending mement is calculated from

the forces as shown in figure 2.11t.

2.4.5 Coull, Colbourne

Coull (8) presented a simple variational . analysis of
the problem by representing the stress in wall with
sufficient accuracy by a power series in the horizontal
coordinates, the coeffecient of the series beiﬁg the
function of the height of the wall only. The magnitude of
the wall stresses were found to be affected more by the wall
height to the beam span ratio (H/L) and the reilative walil to
beam stiffness rather than by the beam depth to wall height
ratio. Colbourne (7) has given theoretical solution for

wall-beam system based on elastic analysis technique.

37
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2.4.6. Gu Yisun

Gu Yisun et. al. (32) of China Central Engineering and
Research Incorporation of Iron and Steel Industry and for
Non-ferrous Metalurgy presented different formulae for
design on the basis of data from computer calculation, based
on engineering mechanics. Application of these for single
storey mill buildings, since 1979, has resulted good
technical and economic effects. After the first development
in 1979, the fbrmuIae have been improved and they are

discussed in the following paragraphs-

Determination of critical section for moment: In tHe
case of walls without openings and openings symmetrical
about the central 1line of beam span, the critical
section is at mid span (figure 2.12.a and figure 2.12.b)
and in the case of off-central openings, the section is
at the vertical sides of the opening, which is nearer
to the centre 1ine of the beam span (figure 2.13 a, and

figure 2.13 b).

Bending Moment : It is now a established fact that a
wall- beam 1is a RCC member subjected to tension and
bending. Computer analysis showed max%mum tensile
stresses 1in the bottom extreme fibres of the beam and

small tensile stresses or compressive stress 1in the
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top extreme fibre.In addition to the tension, T, there
is bending moment in the normal cross section of the
wall-beam (figure 2.14). Computer analysis also made
clear that the bending moment in a wall-beam under the
action of external load is a function of the bending
moment M2 of the composite beam at the section under

consideration. Then

M= ai*M2

where,

ai= Moment distribution factor. If Mi be the bending
moment.in the case of multy storey building due to qi,

and Pi, from the'f1obr, then
M= M1 + ai*M2 e (2.13)

Axial Tension(T) 1in the wall beam: For brick wall
without openings, fhe axial tensioh,

T= M2(i-a1)/(a2%H1) o e (2.14)
where a2 is the moment arm factor. But for the wall
with opening

T=¥ (1- ai)M2/(a2*H1) e (2.15)
where ~ is the influenc factor for opening. For wall

without opening or central opening;Y_z unity.

Ht = Calculated height of moment arm, H1 = H + 0.5h but

if H>L, H1 =L + 0.5h.
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\
Moment Distribution Factor, at, for wall without
opening: As a result of regression ana1ysis,- the
following expression for X was obtained
al = h/H2 (0.82 + 0.3 E/Ew - 0.068L/h  ..... (2.16)

where,

L= span length of the beam, equal to the smaller value
of 1.05 L1 and (L1 + b) where L1 is the clear span and

b is the length of bearing on the support.

H2 = calculated height of cross section, to be used for
determining the value of X, H2 = 0.75L + h when H>»

0.75L and otherwise H2 = H + h.

al for Wall with Openings: a1 increases if the wall has
an opening located off the centre of the beam span. The

regression analysis gives the following relationship:

al = 0.33 + 2.8 R/L - 1.5 d1/L if d1/L <0.25 and

0.33 + 2.8 R/L - 0.78 > d1/L when d1/L > 0.25,

where d1 1is the distance from the support to the
vertical side of the opening nearer the support.

Moment Arm Factor,a2: From the regression analysis the
following equation was obtained-

a2 = 1-0.54 H1/L | . ce.(2.18)
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Influence Factor for Opening : Based on the data of
regression analysis the following relationship was

obtained

Y = 0.4 (14(2d-B)/L) . . . . . 0\ ... (2.17)

Shear Strength of Wall-Beam: On the basis of the
results from Computer-analysis, the maximum shear,

'v(max)z Sxgq2 + Q1 where,

S = shear distribution factor.
Q2 = Shear in the cross section at support due
loading q2

Q1 = Shear in the cross section at support due to
load from the floor supported by wall beam (g1 &

P1)
Shear Distribution Factor, S:

Wall without opending: S varies from 0.36 to 0.48.
But for practical purposes, recommended value is

0.42,

wall with Openings: The value of S to be

calculated from S= 0.4 [1.86 - 2.83B/d +3(B/d)**2]

to
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2.5, SUMMARY

In this chapter a comprehensive literature survey (both
experimental and theoretical)on composite behaviour of wall-
beam structurés have been made. From the survey it appears
thﬁt most of the investigators confined yheir research
activities in' the 1laboratory. They performed several
experiments with or without "openings in the wall from which
several design recommendations (empirical relations) have
been - emerged. The recommendations vary from country to
country due to the nature and size of the specimens selected
during their experimental investigations. The wide
variations 1in the design recommendations in different
countries reflect the importance of further 1nvest19ations
in this area. Some investigators proposed empirical formulae
for axial force, shear force and bending moment considering
the wall-beam as a beam on elastic foundation."Only Davis
and Ahmed (11,12) and Smith and Riddington (27) adopted
finite element method of analysis using linearly varying 4
noded element. They considered the brickwork as a
- homogeneous material thus relatively coarser fipite elements
were selected. With fhis model the local behaviour near the
support can not be modeled accurately where the stress
gradient is very high.

To model the high stress gradient and the fracture

process in the beam and the brickwork near the support finer
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finite element mesh is required. The main purpose of this
study 1is to develop such a finite element model which can -
treat all the materials of structure separately. With this
model the bricks and mortar joints can be modeled separately
thus providing very fine mesh near the support. In the
subsequent chapters the description of this model has been

presented.




CHAPTER 3
NUMERICAL REPRESENTATION
3.1 INTRODUCTION

The discussion in the previous Chapter has thrown light
oh the present state of art of analysis of wall-beam

structural analysis.

The study on this area starts in 1952, as for the first
time proposed by Woods. Since then the prob1em- has been
examined in different ways in accordance with the-anaTytica1
' too1s available at that time. Usually the magnitude of the
computational task has restricted the detail stress analysis
of the problem. Mdst of the formulations made in the past
are empirical and at the same time the Timitations of the
technique have also precluded considerations of thé physical
" separation which tends to occur between the wall and the

beam, an important factor in the total behaviour.

But now with the availability of the electronic
computational facilities and the finite element method of
analysis, it 1is possible to make a close study of such a
structure. However, the rea] problem 1is to develop a
numerical model that closely resembles actual field

condition and behaviour of the problem and at the same time
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a balance must be made between mechanics and engineering
simplicity. For the particular problem of wall- beam
composite behéviour, the main task is to develop structural
constitutive model for concrete, bricks, mortar and thel
interface elements between the wall and the bottom (or the
sjdes) beam of the wall-beam structures. In this study an
‘numerical que1‘has been choosen for the wall-beam system
incorporat{ngva11 the relevant aspects to be investigated by
. using fhe finite element tool. The 2-D finite element model
developed 1in this study is used to study the elastic
response of the wall-beam structure. The mode1l has the

following essential features:

a) 2-D isoparametric element having 2 degrees of
freedom (trans]étiona1 in X and Y directions) at each
node has been used for bricks and joints of the
brickwork. The material properties are kept constant

for a particular study.

b) 2-D isoparametric element having 2 degrees of
freedom at each node has been used to discretize the

bottom beam of the structure.

c) 2-D isoparametric element with 2-degrees of
freedom at each node has been used to represent the

thin tayer interface zone and their properties are kept




49

constant throughout the analysis.

d) A mesh generator has been provided to generate the
finite element mesh for brickwork and the supporting

members automatically.

e) Provision has been kept for selecting any type of

boundary condition used in practice.

f) Provision has been kept in the model for any type

of geometry of the wall-beam structure.

g) Provision has also been kept in the program to
check the equilibrium of the structure at any stages of

loading.

h) The load on the structure can be applied either in
the . form of prescribed load (distributed or

concentrated) or the prescribed displacements.

3.2 FINITE ELEMENT METHOD OF ANALYSIS.

The finite element method is a general method of
structural analysis by which the solution of a problem in a
continuum mechanics may be approximated by analyzing a

structure consisting of an assemblage of properly selected
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finite elements interconnected at finite number of Joints

(nodal points).

For the purpose of structural analysis a structure
(figure 3.1) can be idealized as a system of nodal points

inter connected by discrete elements (figure 3.2).

The objectives of the analyses, is to find the
resulting Jjoint displacements and internal stresses in the
structural elements given the joint loadings, the geometry
of the structure (location of the joints) and the stiffness

properties of the structural elements.

In this study two types of 2-D isoparamatric elements
(figure 3.3) with two translational degrees of freedom at
each node have been used. In the following section a brief
description of the stiffness calculation of the element is

represented.

3.2.1 Stiffness Calculation for Elements

stiffness is defined as the ratio of the force to the
displacements (9,24) and is represented by K. From

elementary mechanics:
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e = FiLi/(AiEi) for a bar i. The other notations are as

usual.

Ki=Fi/e
=ATEi/Li
or, [K] {DP}={F}
where, [K] is the structure stiffness matrix, {D} 1is
the nodal displacement vector (Global d.o.f), {F} is

the total load (force) onAstructure nodes.

{R} = {P} +Z{r}'where {P} is the vector of externally
applied loads on structure nodes and F{r} is the force

applied by elements to nodes.

The Jjth column of [K] is the vector of nodal forces
that must be applied to the nodes to maintain static
equilibrium when the jth d.o.f has unit displacement and all

other d.o.f have zero displacements.

For any continuum as shown in figure 3.2 the element
stiffness matrix for the individual finite elements can be
determined using an energy principle such as the principle
of virtual work. The derivation of element stiffness matrix,
[K] 1is a step by step procedure. The steps of the element
stiffness matrix formulation may be briefly reviewed for an

'n’ noded isoparametric elements as follows:-
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The 2-D stress strain vectors may be represented as:

T
Strains, E

H

{€x €y fxy}

’
Stress, 6

It

{6x 6y Txy} . They are related by the

elasticity matrix [D] as:

T
6 = DET where [D] for isoparametric material is given

as
E / 1 v 0 \
D= ~---—--- ! !
(1-vx%2) Y 1 0 !
H L e (3.2)
' 0 0 (1-v)/2!
1 1
] ]
\ /
for plane stress condition and
E /  1-v v 0 \
D : H
(1+v)(1-2v) . v 1-v 0 !
; b e (3.3)
! 0 0 (1-2v)/2!
\ /

for plane strain condition.

E Young's modulus

\Y Poisson’s ratio.
Here it is to be mentioned that temparature effects are
not considered and also assumed that the elements (the

structure as a whole) are free from initial stress and

strain.
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The global coordinates X,Y and the two trans1ationa1
degrees of freedom u,v along the coordinate directions are
interpolated 1in terms of the nodal values using the
relevent shape functions Ni(i= 1,2,3 , . -~ n) for the

n’ noded element as:

{3 = i} ana

y 1=1 yi
....... (3.4)
u N qui’ : e
{} = 2 Ni{ } f(\
v i=1 vi’ L
2

Where the dashed gquantities are 1in the local
coordinate system x’, y’'. Since the shape functions are
expressed 1in terms of the natural coqdinates E, n the
~derivations are related to the x. y derivative through the e 6

jacobian J.
tet @ be some function of x and y. The chain rule
yields (16):

O@/0& = d@/d% x/d& + 2@/2y Oy/2&
oo/, = dv/dx oxidn + dosdy 0Y/on




57

or, oo/ o2& 2B/ 2%
)~ P00
2/ 3n 2o/ 2y

or, {Ol 3&} = [7) {DIBx
o/ 2n of oY

i

Where [J] is the Jacobian matrix which is represented
as:

[J] X/ & 0y/ 0%

/2, ¥/ 2N,

Since, the strains are expressed in the cartesian
derivatives of the displacement, the inverse relation is

used to express the strains in terms of the displacements

as:

U v
{€}= [B] {2} ceea..(3.7)

It

wWhere [B] strain displacement matrix and

{® }= nodal displacement vector for the element

Now, from the principle of minimum potential energy of
an elastic body we can relate the variations of the work

done by the loads with the strain energy. The strain energy




58

density for a linear elastic body may be defined as:

du 1/2(strain) (stress) (total volume)

1/2 {€} {a} dv

1/2 {e} [D] {€} dv

1/2 {8} {&} [D] {B} {4} t dA
1/2 {8} (& [D] (B) {8} t da

Where from we get the stiffness matrix K as

k =/{B} (D] {B} t dA
A
+1 +14
=//BDB ¢t detivi{y] dg dq, = ..... (3.8)
~1-1
Where, [D] = Elasticity matrix.
For the purpose of integration a 2x2 Gaussian

quadrature 1is used to evaluate the integral and hence the

stiffness matrix.

3.2.2 The Isoparametric Formulation.

Isoparametric elements were first introduced in 1966
(23). Isoparametric elements are useful in modeling
structures with curved edges and in grading a mesh from

coarse to fine. Element nodes define two things:

1. Nodal d.o.f {d} dictate displacements {u v w} of a

point in the element. Symbolically,

fuv w} = [N} {0@}. L. (3.9)
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2. Nodal coordinates {c} define global coordinates
{x y z} of a point in the element. Symbolically,

xyz)=NI{ey. ...(3.10)

Matrices [N] and [N] are functions of E, n and f. An
element s isoparahetric if the node gets of item 1 and 2
are indentical and if {(N] and [ﬁ] are identicatl. More
elaborately, the isoparametric elements are those group of
elements, the geometry and displacements of the elements are
described in terms of the same parameters and are of the
Same order. If the shape functions in natural coordinates
fulfill the continuity of geometry and displacements both
within fhe elements énd between the adjacent elements, it
can be shown that the compatibility requirements is
satisfied in globa] coordinates also. For 2-p fsoparametric.
elements, the stiffness matrix in global coordinates can be

computed from the following relation:

H

T
(K] /[BJ [D] [B] t dA
A

= (8] [D] [B] t A. . (3.11)

Now the expression  for the displacement of

isoparametric element can be represented as follows:
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1. For the Four Noded aelements:

Definition of the global coordinates and

displacements are

X
f } =[N] {C} and

Y
......... (3.12)
u
f } =[N] {d}
v
where,
{C} = {x1 y1 x2 y2 x3 y3 x4 y4},
{d} = {ut wv1 u2 v2 u3 v3 u4 v4} and
N1 0O N2 0 N3 O N4 ©
[N] =
L0 N1 O N2 0 N3 0 N4
Here,
u = displacement of the nodes along x- direction
v = displacement of the nodes along y- direction
N = Shape function of the corresponding nodes that
means,
{u] [:1 O N2 O N3 0 N4 O :
v NT 0O N2 0 N3 O N4 |} . ..... (3.13)

fut v1 w2 v2 u3 v3 ud4 v4}
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In case of four noded element the shape functions in
natural coordinates system (g, q), as proposed by Irons and

Ahmed (24) are as follows:

N1 = 1/4 (1-& ) “""l.)

N2 = 1/4 (1+ &) (1-1n)

....... (3.14)
N3 = 1/4 (1+ &) (1+n)
N4 = 1/4 (1-&) (1+ 1)

2. For the eight noded elements, the formulation is the

same as procedure (1) except:

{uj PH O N2 O N3 0 N4 O N5 O N6 O N7 O N8O }
8

v ONI O N2 O N3 0O N4 O N5 O N6 O N7 O N

{ul v2 w2 v2 u3 v3 ud4d v4 us v5 ué v6- u7 v7

ug va}
Where,
N1 = 1/4 (1-&) (1-9 ) - (N5+NB)/2
N2 = 1/4 (1+&) (1-1q) - (N5+N6)/2
N3 = 1/4 (1+&) (1+n) - (NB+N7)/2
Nd = 1/4 (1-&) (1+n) - (NT7+N8)/2

NS = 1/2 (1-&) (1-1n)
N6 = 1/2 (1+&) (1-nY)

N7 = 1/2 (1—&2) (L+n)
N8 = 1/2 (1-&) (1-1")
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Now combining strain displacement relationships:

{€} = [B) {d} i

wWhere,
ON1/ dx 0O ON2/ 3x O ON3/9dx O ©ONas/2x O

[B] = .
0 ON1/ Oy 0 ON2/ dy 0 ON3/Qdy OON4/ dy

i_JNS/ dx 0 ON6/0dx O ODN7/3dx O ON8sAdx O

0 ON5/dy O0ON6/2y O0ON7/dy O ON8/ QO ¥y

in case of 8 noded element and

ON1/ dx O ON2/dx O ON3/dx O ON4s2dx O

[B) = ‘
0O ON1/Qy OON2/dy O0ON3/dy O2Na/ Oy

in case of 4 noded element.

But the terms in [B] matrix contéins the derivatives in

the global cartesian coordinates (x,y) and  the shape
functicons are in terms of natural coordinate (E » N )

system, so trasformation of the derivatives are necessasry.
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Now, let @ be some function of x and y. Then the chain

rule of differentiation in matrix form may be written as:

[bxl o4& By/&&] {bal axJ
dx/on  ay/anl “@es 2y

0@/ 2&
{ao/anf

17} { o®/ ij

dorayd e (3.19)
Where [J] is the Jacobian matrix given by -
/ ON1/0& ON2/0& ON3/d& QN4/d& \ /ox1 oyt
W iam/aq, ON2/dn  ON3/3n DNa/dn / L x2 y2 |
i x3 y3 E
| x4 ya |
\ /
......... (3.20)
in case of 4 noded element and
/ ON1/0&  ON2/0& ON3/3& ON4/0& / x1y1
A L ON1/d0  DN2/dn ON3/dM, ON4/aN, | x2 y2 :
\ E X3 y3 {
; x4 y4 i
ON5/06 ON6/0E ONT/2& ONB/D& } g x5 y5 é ,
ON5/3n  DNG/ON ONT/IN bNe/aq_j { x6 y6 !
PXToyT
' x8 y8 !.(3.21)
\ /
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in case of 8 noded element.

[J]} thus obtained is inverted numerically giving

{0@/ a—xi_J-i {bw 3&.}
2@/ 0y - T eeson

and in particular the following array can be evaluated

Em/ A%  DN2/ DX enn...
Nt/ Oy ON2/ 0y .o

= I]-. [arwaa ON2/0&
ONt1/2n aN2/on

From knowing the Cartesian derivatives [B] matrix can

3

easily be evaluated and [K] matrix can be obtained from the

numerical integration of the expression for [K].

e

b v
L

-2

'y

g

3.3, CHARACTERIZATION OF INTERFACE BEHAVIOUR -
The need for an interactive analysis is appreciable but
a few comprehensive methods are only available. Most of
these simplify the behaviour of the brick wall or beam or
both and gives insufficient or inaccurate results, The
traditional concept attacks the problem as a two phase
materials system, the brickwork is one and the bottom beam
is the other. Attempts are then made to account for the
interaction between these two phases by simplified approach.

Either the brickwork is supported by a fictitious medium or
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the beam is analyzed with the brickwork being represented by

an artificial model.

In order to allow the interface behaviour (specially
separation of beam from the brickwork), the finite element
representation of the structure was asigned two separate
nodes along the wa11—beam interface; one set on the edge of
the beam and the other set on the brickwork. A 1ink1ng
matrix was then introduced directly into the stiffness
matrix,. tying each pair of vertically adjacent nodes
together. In effect the linking matrix represented a short,
very stiff . member connecting the two nodes, constraining
them to have identical displacements. After each analysis
extrapolation procedures were used perpendicular to and then
along the wall-beam interface. The first was to improve the
consistency of the stress results at fhe interface and the
second was to obtain stresses at the intermediate points.
Although the extrapolation procedure might appear
questionable with regards to the validity of separation
results alternative analysis of identical problems wusing

different element grids have very'consistent results (27).

Since the development of the concept of interaction of
brickwork with their supporting beams and the need - for
inclusion of the structural rigidity 1in calculating the

displacements and stress of the structures, this problem has
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undergone extensive attention of research work.

Under actual conditions, relative movements at the wall-
beam interface may occur causing slip and separation of the
beam from thelbrick wall, specially under heavy loads. This
takes place because of exceeding the 1imiting 1interface
shear stress and excessive'downward deflection of the bottbm
beam. In order to have a better simulation of the wa11—beaﬁ
interaction, it is desirable to incorporate techniques for

accomodating this interface behaviour.

Zienkiewicz et. al.(34,35) advocated the use of
continuous isoparametric elements with simple noenlinear
material property for shear and normal stresses, assuming
uniform strains in the thickness direction. 1In certain

cases, i1l conditions of the stiffness matrix takes place.

Goodman,Taylor and Brekke (19) developed an interface
element to account for relative movements between rock
Joints. The element consists of two lines, each with -two
nodal points., The two lines occupy the séme position before
deformation. Each node has two degrees of . freedom
(horizontal and vertical). To simulate slippage across an

interface, an arbitrary large normal stiffness and a very

small tangent stiffness would be specified.
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Desai et.al. (15) proposed a thin layer element. A
special constitutive model 1is used for these elements.
Various deformation modes suéh as stick, slip, debonding and
rebonding (figure 3.4) can be handlied with this element. It
is capable of providing improved definition of normal and
shear behaviour; hence, it can be computationaly more
retiable than the zero thickness element. The formulation of
this element is essentia11y the same as other elements. As
such it is easier to program and implement. Inc]usion of a
finite thickness for the interface is realistic since there
is thin 1layer of mortar joints which participiate. in the
interaction behaviour. The thin 1ayef element can easily be
intreduced in an interface having the same configuration as

‘the brickwork or the bottom beam.

In the finite element analysis of present work, the
interface element should be such that it can represent the
seats of the discontinuity and in absence of shear failure,
debonding system maintains its character as a continuum and
at the same time, when the limiting condition 1is reached,

the element simulate the phenomencon adequately.

In view of the merits in the use of thin layer element,

it is decided to use this element in the present study.
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-3.3.1 Thin Layer Element for Interfaces

The thin Tlayer interface, proposed by Desai et. al.
(15) for the twd dimesional idealization is shown figure
3.5 along with'the other elements used in the study. The
underlying idea of the thin 1ayef element is based on the
assumption that the behaviour near the interface involves a
finite thin zone as shown in figure 3.6 rather th;n a zero
thicknesé 'zone.The pbehaviour of this thin zone or layer or
1a}er can be significantly different from the surrounding
structural materials. However, the element may be treated
1ike any other element by adopting appropriate constitut%ve

Taws.

The thin layer interface element can be formuiated by
assuming it to be linear elastic. The stiffness matrix of

the interface element {K]i is written as

T
[K]i.:j[s] C[D]i {B) tdA eeeeeeenn .(3.23) -

where [D] is the constitutive matrix. Then the element

eguation can be written as

[K]i {q} = {Q} ' e beraes(3.24)
Where,
{g} = vector of nodal displacement and

{Q} = vector of nodal forces.

s

-

e
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For two dimensional idealization, the [D]i matrix is as

given 1in equation 3.2 and eqnuation 3.3.

Hooke’s 1law, for isotropic materials, is some times

expressed in terms of Lamis’ constant (18).
where,

E

The 1inverse relationship for E and v interms of A and & are

For the elastic behaviour of the materials the values
of E, G and v can be computed from the laboratory tests. The
shear modulus G represents the behaviouf of a material under
pure shearing stresses. To calculate the behaviour of
material as a result of volumetric stresses, the bulk

modulous K is given by(18):
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E
Ke=m—mm—————
3(1-2v)
E
e
(1+v)®2  aeeesasaen (3.27)
aK G
Ez—mr—=m——— and
(3K+G)
(3K~2G)
VE—m——
2x(3K+G)

So, for interface element it is_convenient to express
the constitutive matrix in terms of the bulk modulus and

shear modulus as :

/K+4G/3  K-2G/3 O\

[0]i =  1K-26/3  K+4G/3  Of  .eeeeue.. (3.28)
i o 0 G
\ /

Now since the behaviour of interface element —15
characterized by the relation between the relative
displacements of the surfaces in contact and shear and
normal stresses at the interface représented by Os and On

respectively then the relation can be expressed as :
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AT o

Where Ks and Kn are the interface stiffnesses,
tangential and normal to the interface respectively and aUs

and 4Un are displacements in the tangential and normal to

the interface respectively.

In this study X-direction is for the tangential
stiffness and Y-direction is for the normal stiffness. So
the constitutive matrix is modified accordingly to a new
form. Since the interface element is capable of transferring

only a normal stress and shear stress, the constitutive

matrix takes up the form—

/  4G/3 —2G6/3 O\

[D]i = | —2G/3  K+4G/3 0!  euenenns .(3.30)
‘o 0 G!
/

wheré K Bulk Modulus and

G = Shear Modulus of the interface element.

For the present study G is taken from the adjacent

concrete materials of the bottom beam.
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For the interface element of different wall-beam
structures some fixed values are taken for Ks and Kn.
According to Buragohain and Shah (6), for elastic cases
-Ks=Kn = 0 and Ks:Kﬁzto for smooth and rough surfaces of

contact repectively.

3.4 METHOD OF CALCULATION FOR BENDING

MOMENT OF BEAM

As mentioned in chapter 2 that the RCC beam of a wall -
beam structure acts as a tie beam. If the composite action
of the wall-beam is not considered, the moment in the beam
can be determ1ned from statics provided the structure is
statiéale determinate. But when the composite action is
considered the moment in the beam can not be determined from
statics. The normaj stress d1str1but10n in this case differs
quite s1gn1f1cant1y Once the stresses are known from finite
element analysis, the bending moment in the bean are

calculated as below:

Referring to the figure 3.7.a and figure 3.7.b. force
Fa and Fb balances each other. Only unbalanced force is Fc.
Here fb and ft represent the bottom fibre stress and the

top fibre stress respectively.




[b)
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Fc = (fb—ft) h b/2
Now taking moment about ;he neutral axis

M = (fb-ft)bhxx2/12 ceieaeeeaean (3.31)

i.e. when the stresses at the top and bottom fibres
(ft & fb) as well as the depth and width of the beam are

known, the moment can be calculated from the equation (3.31)

From the present finite element analysis, the
longitudinal stresses at the centre of each element and at
the Gauss points are known. By extrapolation of these values
the top and bottom fibre strsses can be found out but may be
time consuming in some cases. 50 to reduce the effort in the
ca1chation of moient, when stresses at any two points a}e

known, the following simplification can be made.

Referring to figure 3.8, let the top and bottom
stresses of any two points at a distance (y-dir) of hi be.

ft1 and fbl respectively. From the similar triangles:

(fb-ft)/h = (fbi1-ft1)/hi
or (fb-ft) = (fb1-ft1)x h/hi. From equation 3.4 (1)

M =((fb-ft)bh*xx2)/12. substituting the value of (fb-ft)
in equation 3.31

M =((fb1-ft1) bhxx2)x(h/hi)/12

or M= I(fbi1-ft1)/hi. ... (3.32)
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Therefore moment at any X-section of beam can be
calculated from equation(3.32) when stresses (Ox ) at any

two points and also their distance from each are known.




CHAPTER-4
FINITE ELEMENT PROGRAM

4.1 INTRODUCTION

In Chapter 3 the description of the tools used for the
model,has been provided. In this chapter the finite element
computer program using the above tools will be described.
The deve]opment of this program is a'part of on-going study
of the combosite behaviour of wall-beam structures,

undertaken at the Dept. of Civil Engineeriﬁg, of'B.U.E.T.

The program capable of reproducing thé linear behaviour
of the materials at the present state .Allowances have been
kept for the inclusion of the material nonlinearity and
progressive fracture of the materia]s. The program ' is
incremental in nature.Two types of finite elements have been
used for the present study. More simpler four noded noded
element has been used instead of more elaborate eight noded. .
isoparametric element. The selection of fhis simpler element
provided computing efficiency at the cost of Tittle
accuraﬁy. The program can model the brickwork of the wall-
beam structure either és homogeneous (considering the
average properties of the brickwork) or  nonhomogeneocus
(bonsidering the brickwork as consist of two different

materials, bricks and mortar Jjoints) material. The program
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has the option to check the stability of the solution at any
stage of loading. The following sections will provide more

abocut the model.

4.2 DESCRIPTION OF THE PROGRAM

A brief description of the the different subroutines of
the .program and the format of data are presented 1in
Appendix.1. Figure 4.1 shows the flow chart of the program
used for the present study. In this section a flow chart and

main modules ofmzhe pfogram are breseﬁted Briefiy.




FIX THE MAXIMUM VALUES FOR THE
DIMENSION OF DIFFERENT ARRAYS USED

IN THE PROGRAM

ACCEPTS THE DATA RELATED WITH THE

PROBL.EM TYPE.

DISCRETIZE THE TOTAL BLOCKS OF THE
"STRUCTURE IN TO A NUMBER OF SMALL
PIECES OF UNIT WITH EACH POINT OF
CONNECTION AS A NODE AND EACH

BOUNDED ZONE AS AN ELEMENT.

IDENTIFY THE DI;FERENT TYPES OF
MATERIALS OF THE WALL-BEAM
SfRUCTURE -BY GIVING THEM INTEGER
NUMBERS FOR THE PROCESS OofF

COMPUTATIONS.

4

CHOOSE A NUMBERING SCHEME FOR THE

NODES AS WELL AS THE ELEMENT AND
FOLLCW THE SEQUENCE FOR THE WHOLE

STRUCTURE.

B2

CALLS SUBROUTINE

'DIMEN’

"PROBTP’

'INPUT'

INPUT’, ’COMP’
"DIFMAT’, 'MAT

-IDN’




PROVIDE THE CONNECTIVITY OF NODES
OF EACH ELEMENT AS WELL AS THE
COORDINATES OF EACH NODE FOR THE

WHOLE MESH.

Y
FOR™ THE PARTICULAR - TYPE OF THE

.ELEMENT SELECT THE TYPE OF
DISPLACEMENT FUNCTION AT EACH NODAL

- POINT.

FOR THE PARTICULAR DISPLACEMENT
FUNCTION SELECT THE CONSTITUTIVE

RELATIONSHIP.

FROM THE SHAPE FUNCTION AND USING
ITS DERIVATIVES FORM DIFFERENT

MATRICES E.G. [Bl, [J], [D].

+
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*INPUT’, "COMP’,

_ TMATIDN’,

"DIFMAT’

"BMATPS'

"DECSON’

'SFR2’, 'BMATP
-S’,JACOB2",
*DMATPS’




INTREGRATE NUMERICALLY TO OBTAIN
THE STIFFNESS MATRICES OF THE
ELEMENTS AND FORM STIFFNESS MATRIX
FOR ALL ELEMENT OF THE MESH ONE BY
ONE USING THE RESPECTIVE MATERIAL

PROPERTIES.

FORM THE GLOBAL STIFFNESS MATRIX
' ACCORDING TO THE CONNECTVITY OF THE
DIFFERENT ELEMENT OF THE MESH OF

THE SYSTEM.

p

ON THE BASIS OF THE NODAL

DISPLACEMENT VECTOR AND NODAL LOAD
VECTOR, FORM A GLOBAL SET OF
SIMULTANEOUS  EQUATION OF ° TOTAL
STIFFNESS MATRIX AND LOAD VECTOR

AND NODAL DISPLACEMENT OF ~ THE

ENTIRE BODY.

84

'GAUSSQ’, 'STIF
'BMATPS”, 'DMA

PS’,’DBE’, ’JA-

coB2’
'STIFFP’,’SF
R2’,'STIFP’
’ALGOR’ , ' FRO
NT’,'STIFFP’,
' LOADPS '
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- CHOOSE A SOLUTION PROCESS FOR THE RESIDU’, 'SFR
} -27,7JACOB2’,

SET OF SIMULTANEOUS EQUATIONS FOR "BMATPS', 'DMAT

, -PS’ ,"LINEAR’,

GETTING THE UNKNOWN VALUES ON THE 'REDUCT*, 'RED

-JON’, "PRINC’
BASIS OF BOUNDARY CONDITIONS.

FIG(4.1) FLOW CHART OF THE FINITE ELEMENT
PROGR
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The main modules of the program are:

a) Discretization of the continuum on the basis of
the type of elements and properties of elements
A(concrete, bricks, mortar Jjoints and interface

element).

b) Selection of the displacement model that closely
resembles the practical situation and at the same time
maintains the compatibi]ity with the type of element in

the idealization.

6) Derivations of the element stiffness matrix using
the virtual ‘work method that consists of  the
coefficieqts of the equilibrium equations derived from
the material and geometric properties'of the eiement

obtained by the principle of minimum potential energy.

dj Assembly of the algebraic egquations for the
~overall discretized continuum on the basis that the
nodal interconnections require the displacement at a
node to be the same for all element adjacent to that
node to form global set of simultaneous eguation
consisting of total stiffness matrix, total load vector

and the nodal displacement vector for the entire body.
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e) solution for the unknown displacements considering
the boundary conditions and consequent appropriate

modifications of the equations.

f) Computation of the element stresses( Ox, 0Oy, Txy )
strains  (€x, &y, fﬁr ) principal stresses(di,0;,6 ),

from the nodal displacemerts.

The present numer%ca1 procedure is based on the finite
element method. The application of this method has been very
common and many téxts have been writﬁen on the subject (20,
21, 24). In general,finite element method can be called as a
piece wise approximation and the solution of a problem in a
continuum mechanics may be approximated by analyzing a
structufe consisting of any assemblage of propér1y selected
finite e]ehents interconnected at a finite number of Jjoints
(nodal points). For the purpose of our present study, a
wall- beam structure has been idealized as a system of nodal
points interconnected by discrete elements (Ffigure S. 2).
Two dimensional finite element analysis of the wall- beam
subjected to dfstributed load (in the‘form of -concentrated
loads at the nodal pointé on the top surface/layer spaced
closely) has been performed 1in this study. Two types of
elastic finite element models have been used in the program.

One assumes masonry to be a homogeneous continuum with an
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average property of the brickwork, the other models the
bricks and mortar separately. The concrete and the interface
have been considered separately 1in both cases. For
homogeneous case, an elastic modulus (E) of 7484 Mpa and a
poison’'s ratio of 0.17 were assumed for the masonry. For the
nonhomogeheous case, the finite ejements corresponding to
bricks and mortar were assigned different values of modulus
of elasticity and poisonfs ratfo (8000 Mpa and 0.16.for the
bricks and 5000 Mpa and 0.20 for the mortar). In both the
cases four noded elements with 2%2 Gaussian integration have

been used.

There are mainly two types of solution methods
available in finite element analysis e.g. band solution and
frontal method of soluticn of which the later one 1is more
efficient andradaptab1e for a computer with moderate storage
capacity. Frontal method of solution of the equilibrium
equations has been adopted from the finite element program
of Owen and Hinton (20). In this program most of the data
can automatically be generated. The nodal displacement, the
reactions, the ‘strains, and the stresses at the Gauss points

of each element, as well as the average values at the centre

of the elements are calculated.
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4.3 IMPLEMENTATION OF THE PROGRAM
4.3.1. General

The program consists of 3124 lines (inc1ud1ng comment
statements). The finite element program of Ali (3) has been
modified to the current form. The.prbgram has been "modified
at different stages. At'every stage test runs are made and
cohpared with the published results and modifications are
done to obtain the desired results. Once the program was
erfor free it was readf to run. Aithough the program at this
stage is made for analysing wall-beam structures, but the
provision has also been kept for analyses of infilled
frames. . A simplied flow diagram of the program has been

shown in figure 4.2.

4.3.2 Automatic Data Generation Scheme

Large amount ‘of data is required to input for the
ana1ysfs of wall beam structure; which 1is required which is
cumbersome as well as error prone. TO reducé the manual
effort and also to reduce the error proneness an automatic
data generation scheme has been introduced. The main program

calls the subroutine 'INPUT’ which reads most of the data
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and generates the finite element mesh, selects the hoda]
number, é1ement number, nodal coordinates etc. If the number
of material 1is mcre than two it again caﬁ]s subroutine
'DIFMAT’ to provide the proper bosition and orientation of
the elements with different material properties. For these
extensive and Targe operation on1y'the-number of nodes- ih
the X and Y girections, the distance from the origin are
required. For the structdres having materials more than two,
the Tocation of different materials and the number of layers
in concrete are required._The brickwork can be considered
either as homogeneous or nonnomogenzous material through\the
counter 'IHGM' in the program..If 'IHOM' equals zero, the
brickwork Q111 be treated as homogeneous continuum and if
IHOM 1s greater ithzn 0 (zero) then the trickwork will be
considered as nonhomogeneous material and the position of
the interface and mortar joints will be selected as per the

data provided in the subroutine 'DIFMAT’.

For fixing up the boundary conditions certain codes are
used for nodes to be restrained against translation. The

support informations are as follows

01===> Restrained along Y-direction.

10===> Restrained along X-direction.

11===> Restrained along both X and Y direction.
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The program can tackle the case of symmetry along c¢he
or two axes of the problem which reduces the volume of
calcutation, requires less storage of the virtual storage
block and consequently less computaticnal time. For this .no
additional subroutines are required but need té modify the

boundary conditions of the centre 1line,

The elements ére numbered first along Xndirectfon, then
Y~d1}ect10n is followed in the incerasing order. Same 1is the
case with nodal numbers as shown in figure 4.3.a and 4.3.b.
Connectivity 1is given in the anticlockwise order and the
Gauss points are given first in the Y-direction, then in the
x—direction. The process of mesh generation is shown 1in

figure 4. 3(e) and 4. 3(f).

4.3.3 Checking of Input Data .

To check the correctness of data as provided 1in the
subroutine YINPUT?, a subroutine' called 'CHECK1® is
provided. The pﬁrpose of this subroutine is to check for any
error 1in the input of main control data. On meeting any
irrational input data, it again calls a subroutine 'ECHO®' to
provide the diagnostic message. But iflany data related with
finite element mesh generation is encountered, it is checked

by subroutine 'CHECK2’ and corresponding diagnostic message
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is given by subroutine ’ECHO’. The diagnostic messages are

listed in Table 1 of Appendix A1.
4.3.4 Storage of Stiffness Matrices.

To take the advantages of the backing : storage
facilities, so that on]y.a part of the stiffness is held 1in
the core at a time, a program module is developed. This is
attained by defining a specified buffer area and by opening
a few working scratch files fn the disk backing store. For
a very economic and efficeient use of the storage, only half
portion 'of the element stiffness matrix is computed and a
mirnimum buffer area is used for a temporary storage. When
the buffer' 1s filled up with the part of the stiffness
matrix, 1it. is | étored in seduentia] access file of the
backing up storage for later use. Again the same area of the
core space 1is used to store next part of the stiffness
matrix . Therefore, when the formulation of the global
stiffness matrix 1is in progress it deals mainly with the
buffer area and in case of neccesity it reads values from
those sequential access files. The étiffness matrix of the
dirrerent isoparametric elements are formed and fhe global

stiffness matrix is assembled by taking elements one by one.
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4.3.5 The Solution Technique.

As described in sections 4.2 thé frontal method of
solution of the equilibrium eguations is adopted from the
finite element program of Owen and Hinton (20). Since the
brogram can - generate most of the data automatically, the
nodal displacements, strains, and stresses- at the Gauss
points of each e]emenf and at the same time thé ‘average
va]ués of those are also calculated (i.e. at the centre of
each element). For this a subroutine fFRONT’ is called. 1In
its formation, provisions have been kept for choosing the
correct path to call the correct routiné which deals with

the specified materiaT type.

The operations in ’'FRONT’ has been done by specifying a
number Of scratch files where the temporary data are
preserved. The stiffness matrix is divided in to a number of
segments in such a way that each segment contains a number
of complete rows. The sequential access backing storage file
is also divided in to fixed length blocks in sucﬁ a way that

each complete segmént wholly or partially fills the blocks.
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4.3.6. Output of the Program.

The program calculates the stresses and strains at the
Gaussian integration points as well as the average values of
those at the centroid of each element. In addition to the
stresses and strains it calculates the reaction at the
restrained nodal points and also the displacements at the

nodal points.

It calculates the stresses at the centroid of each
element by ca}]ing the subroutine ’STRSAD’. For the
principal stresses at the Gaussiaﬁ-intregration points, the
subroutine 'PRINCP’ is called. The strains are calculated
at the subroutine ’LINEAR’. The displacements are provided
by calling the subroutine 'OQUTPUT’. various options of
output provided in the program is shown in the Table 2 of
Appendix A1. In addition there is a provision for selection
of different levels of the structures where the output is
neccessary. 'NVSEC’ and ’NHSEé' specifies the levels of the

vertical and horizontal sections where outputs are

neccessary.
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' 4.4 VERIFICATION OF THE MODEL

To verify the accuracy 6f the finite element model test
runs are made and results are compared w1£h published
results(2). The spliting test of brickwork specimen of
200mmx248mm size (figure 4.4) has been wused for this
comparison. Since the‘stress gradients are very hjgh near
the Joading region and fairly uniform stress at the central
region of the specimen, the specimen was considered more
appropriate for the verification of the model. The indirect
tensile strength of a homogeneous material can be determined

from the following relationship (2).

6 = K'.P/(d'.T) L (4.1)
T

wWhere, P = -app11ed load
t =  specimen thickness
d’ = equivalent diameter
= (H.L'/0.7854)%%0.50
H = specimen height
L’ = specimen width
K = constant

BY

Tensile bond strength

-
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The values of K is equal to 0.648 for a homSgeneous
material and for a brickwork -varies with Eb/Em and found to
be 0.65 to 0.71 as Eb/Em varied from 1 to 5 (2). To compare
0 two specimens were consiaered, one modeling bricks and
mzrtar joints as separate materials and the other treats

brickwork as homogenecus material. The finite element

discretization of the specimen is shown in figure 4.4,

From the equation 4.1 and from computer analysis the
following results were obtained. The comparisom of results of

the specimen is shown in table 4.1.

From table 4.1 it is observed that the results obtained
from the bresent " finite element aha1ysis are 1in close
agreement with those calculated from the aguation 4.1. Once
the program predicted the stress pattern 6f spliting test
(2) accurately, the program was made ready for the study of
composite action of wall-beam structures. The results of the
present finite element study will be presented in Chapter 6
in comparison with the existing results of experimental as
well as theoretical study made by many researchers of the

world (11,12,13,27,28).
4.5 SELECTION OF WALL-BEAM FOR PARAMETRIC STUDY

To minimize the amount of computation both in terms of

computing time and virtual storage requirements, it is
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TABLE 4.1

COMPARISON OF PREDICTED RESULTS (Giﬂpa)HITH THE PUBLISHED RESULTS

TEST RUN FINITE ELEMENT FROM EQN.4.1  VARIATION
ANALYSIS %

1.HOMOGENE 0.56065 ' 0.5505 1.81

~0Us

2 . NONHOMOGE

~NEQUS

0.6656 0.652 1,99
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. neccessary to find a relatively smaller size of wall-beam
which will reproduce the behaviour of a complete wall. The
wall-beam selected for the present study of composite
behaviour is shown in figure 4.5. The half wall and the

corresponding finite element mesh are shown in figure 3.2.

The analyses have been performed on half of the wall
(taking the éymmetry-at the vertical centre iine: of the
wa]]). A complete wall w{th one end hinged and the other end
roller can be represented by half of the wall with proper

boundary conditions at the vertical line of symmetry.

The 1length of the wall-beam was taken in such a way
that twc or three full bricks are taken on either sides s¢c
that a minimum of one or two vertical joints are there on
ecither sides. The bricks size was taken to be 220 mm X 110
mm x 76 mm, whereas both the interface and mortar joints are

taken to be 10 mm in depth and 110 mm in width.
4.6 SCOPE OF THE PROGRAM

The program is generalized for any geometry of the
wall-beam structure. It can analyze the brickwork
considering the brickwork as a homogeneous continuum as well
as a nonhomogeneous material providing different properties

to the elements. The application of Joad may be

concentrated or distributed in the form of closely spaced
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concentrated ‘oad . consideration of ‘gravity load and
inclination of load can be imposed without any modification.
The same is applicable for wall-beam as well as for infilled
panel with any geometry. The program at this stage is
designed for linear elastic behaviour but can be used for
nonlinear analysis with cértain modifications. The program
is- thus capabie of modeling the behaviour of wail-beam,
infilled frame and masonry walls subjected to inplane
concentrated and distributed 1oads;,As the bficks, mortar
and concrete are modeled separately, the finite element

model 1is suitabtle . for - any brick, mortar and concrete

combination if the material parameters are Kknown.

The -program is written in FORTRAN 77 and it is mainiy
deve]oped to run on the IBM 4331-K02 mainframe at B.U.E.T.
computer centré. The prbgram uses several anci11ar;
subroutines for different tasks to .be performed. Those
subroutines were also written in FORTRAN 77 with the fortran
compiler of the vax 11/780 computer with VMS operating
system. To deal with the wall—-beam structures and also that
that the program-can be used for infilled frames a few
subroutines are introduced including making the provision
of interface element in between the concrete beam and
masonry walls. The program is also 'provided with the

provision of automatic mesh generation.
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4.7. WALL-BEAM AS TWO DIMENSIONAL STRUCTURE

in general ,the analysis of composite behaviour of wall
beam structurgs subjected to concentrated or distributed
load requires ihfee dimensional effects to be considered. If
the Tload is applied through a relatively small area of the
wall then the distribution of stress through the wall
thickness may Ee non—uhiform; However ,from the result of
three _dimensibna1 anaiysis(4),‘it may be concluded that a
two dimensional analysis of - the wall-beam - structure
subjected to conbentrated ok-’distributed load will be
representative if the load is applied over 75% of its
thickness.' The' findings of the two dimensional analyses
described in the subsequent chapters will. therefore be
applied to this type of loading only. Therefore the problem
may be jdealized as two dimensional one. Linear elastic
finite elment model has been used to study the behaviour of
the structure regarding the deflection ,strain
characteristics tensile stresses ,moment and stress pattern.
The characteristics of the analytical tool (finite element)
used for the present study has been described in the
preeceding bhapters.This chapter describes the application
of this tool in the analyses of composite behaviour of wall-

beam structures.
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4.8 MATERIAL PROPERTIES

fo develop a finite elemént model, for the composite
action of wall-beam structures, which coﬁsiders brickwork
as an assemblage of'briéks in the matrix of mortar and
brickwork to be connecﬁed with the beam by interface
'ie1éments, the properties of the bricks ,the mortar ,the
concrete and the bond.between the brickwork and tHe beam
must Abe determined ; %or‘this study the values of these
-parameters are taken from available 1iteratufe.In the
present case the modulus of elasticity (E) and Poisson's
ratio {(v) of concrete are taken to be 14700 Mpa and 0.16
respectivewT For mortar joints and the interface elements
the values are 5000 Mpa and 0.2 respectively. For bricks
the values are 8000 Mpa and 0.17 respectively. The shear and
bulk modulous (G and K) for interface elements are calcuted

from the values of E -and V.

4.9. ASSUMPTIONS

. The following assumptions have been made for the

analysis of composite action of wall-beam structures:

a) Vertical and horizontal middle plane of the wall is

continuous at every point before and after distortion

and there are no holes or discontnuity in it.
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b) Perfect bond exists at the Jjoints of various

components of the wall-beam structures.

c) Deformations are small 1in comparison to the wall

thickness.

e) Concrete, bricks and moirtar are homogenebus and

isotropic linear elastic material.

4.10. FINITE ELEMENT DISCRETIZATION AND BOUNDARY CONDITIONS

The wall-beam structure cons%dered in this theoretical
study 1is simply supported at its ends (see figure 4.5). In
practice this situation rarely exists . Usually the beam
has some rotational restraiqt in its supports, due eithef
to being built in to a wall or being connected , with some
degree of rigidity, to supporting columns. In other cases,
the wall is continuoué‘over the supports . The number of
factors affecting the rotational restraint and thereby
controlling the behaviour of the structures under these
conditions'are therefore large. When the beam 1is built in,
these factors ~include the extent of inbuilding and the
height i physical properties and horizontal restraint of

the-wé11 below the support. Whén the beam is connected to

the columns the influencing factors include the rigidity of
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the fixing and the properties and the Jlength of the
columns. Other parameters affecting the structura1'
behaviour include the length and height of the wall

'beyond the support.

A comprhensive study of these parameters is not only
beyond the scope of this inQestigation but also would
have produced too many results to allow | usefuil
interpretation . Instead simple and idealized wall-beam
structures are undertaken for ana1ysié. The idealized wall
~on beam structure used for tﬁis study is shown in figure
{3.2). The brickwork has been conside}ed either as a
homogeneous material or as an assemblage of bricks set in
mortar matrix (nonhomogeneous). The beam has been considered
to be simply supported. The length of wall is equal to the
span of the beam. Figure 3.2. shows the idealization of the

structure for the current analysis.

Although this basic wall on beam-structure represents
a hypothetical structure , the result for stresses and
~deflection from this analysis sHou]d exceed those from
practical cases. For examp]elwhere the ends of the beam
are built 1in should 1lead to a conservative design

approach.

One of the supports of the wall-beam structure 1is a

hinge and the other one is a rb11er. In case of roller it
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ijs free to move in X-direction and restrained in Y-
direction . But at the hinge both horizonfa] and vertical
movements ‘are restrained. Since the overall system is
symmetric with respect to loading and geometry, only
half of the structure has been discretized for the
present study(figure 3.2). The appropriate boundary
conditions . have beeh provided for the nodes at the centre

line of symmetry.

4.11. SUMMARY OF THE ANALYSIS SCHEME

For all the analyses perfofmed in this study the
overall dimensions of the wall-beam structure are taken
which. ére compatible with the requirementé of .composite
action of the structure. Different parameters have been
considered to see their influence on the composite behaviouf
of wall-beam structure. The size of the bricks, the depth
and thickness of the interface have been kept constant. The
dimensions of the brick are taken to be 220 mm x 110 mm X 76
mm. The width of the wall is 110 mm. The thickness of
interface element and morter joints are taken to be 10 mm.
The stresses and the deflections are obtained at the Gauss
points as well as at the centre of the elements and at the

nodal points resbective1y. From the analyses of wall-beam
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structure the following action in the R C C beam and wall

have been determined.

a)
b)
c)
d)
e)

)

factor

shear force / stress.

Tensile stress.

Moments and maximum mcment.

Moment coefficient
Tension coefficient .

vertical stress and stress concentration
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4.12 SUMMARY

The program is written in FORTRAN 77 mainly for the
IBM 4331-K02 mainframe computer of the  computer centre,
B.U.E.T. The program Used a few ancillary subroutines for
the purpose of different fixed work to be performed. To make
suitable for the present study a few new subroutines have
been introduced and a number of old subroutines modified.
The.status of the program can be changed from linear é1ast1c
analysis to nonlinear fracture analysis by introducing a few
additional subroutines. The program can also analyze

infilled panels.




CHAPTER-5
RESULTS AND DISCUSSION

5.1 INTRODUCTION

A summary of the analyses scheme undertaken 1in this
study has been presented in Chapter 4. Results of these
analyses are presented and examined in this chapter. The
influence of various parametérs on the distribution of
stresses, bending moment of the beam and tensile force of-

the beam are systematically discussed.

In all the cases the upward displacements were taken to
be positivé. Tensile stresses were taken to be positive and
moments causing bottom fibre tension is positive. Ail
negative stresse at sampling points were taken. to be

compressive.

5.2. BRICKWORK AS HOMOGENEUOUS AND NONHOMOGENEUQUS
MATERIAL. :

5.2.1 General.

In the .previous years almost all the finite element
models adopted to study the beheviour of wall-beam
structures considered the brickwork as a homogeneous
material. The modulus of elasticity of brickwork in these

cases were determined mainly from uniaxial compression test
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" of brick prisms. But for most of the cases , the results

are not accurate due to the nonuniformity of load
distribution on the top of the specimen . The complexity
involved in the determination of correct modulus of

elasticity of brickwork has been avoided in the present
investigation. The following section provides the procedure
adopted for the present. study to determine the modulus of

elasticity of homogeneous brickwork.

5.2.2 Determination of Combined Modulus of Elasticity of

Brickwork : . .
Normally the modulus of elasticity of brickwork 1is

determinad = from either uniaxial or biaxial tests. As

mentioned earlier, in most of the cases this type of test

procedure produce erroneocus results due to the artificial

constraint imposed on the ends of the specimen. However,

with the development of the present finite element modé1

which can model brickwork as nonhomogeneous material,the ideal

end conditions of the brickwork specimeﬁ could be

simulated.

The combined modulus of elasticity of brickwork
depends on the modulus of elasticity of bricks and mortar
joints as well as the thickness of the wall and pattern of

laying of bricks in the mortar matrix. In the current work ,
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the size of bricks are taken to be 220mm x 110mm x 76mm.The
thickness of.mortar and interface element are considered to
be 10mm. Qhereas the width of the brickwork is taken to be
.110mm.The modulus of elasticity of the bfick and mortér is

considered to be 8000 Mpa and 5000 Mpa respectively. Their

poisson’s ratio is taken to be 0,16 and 0.17.

For the determination of combined modulus of elasticity
of .brickwork, a brickwork'pahe1 of 680mm x 420mm has been
considered.Total number of nodes and e1emenﬁs are 120 and 99
respectively. A distributed load of 0.01 KN / mm was applied
on fhe top nodes of the structure. The.de£a11s' ;fe shown in

figure 5.1

From Lthe analysis of above panel,
6 =6.8/(680 x 110) =9.090909 x 10E-05 KN/sq mm

€ 50.512020833 x 10E-02 / 420=0.000012147

Since the program is developed for the linear elastic

analysis, the Hooke’s Law 1is applicable and hence
E{comb)=0 / E

= 9.090909 x 10 E-05 / 0.000012147

=7.48374 KN / sq mm.
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5.2;3. Finite Element Study Considering Brickwork as
Homogeneous and Nonhomogeneous Material

For the study of the behavicur of wali-beam
structure subjected to both distributed and concentrated
joad, three finite element models were used; the first one
assumed masonry to be a homogeneous continuum with coarse
finite e1ement.mesh so that one element will encompass at
1easf one header joint énd one bed Jjoint (fig.5.3), the
second one treated bricks and joints separately (fig.5.2)
and the the third one_considers brickwork as homogeneous

material tut used the same finite element mesh as the seconc

one (fig.5.2).

To dillustrate the differences amcna these three
ana{yses, a wall-beam structure of the type shown in figure
£ 2 and figure 5.3 have been considered. The brickwzrk has
been considered both as a homogeneous {considering the
average properties of the brickwork) and a nonhomogeneoué
" (modeling bricks and mortar separately) material . In the
last two cases the mesh has been géneréted giving due
consideration to the location of different joints ( figure
5.2 ). In the first case, the brickwork has been considered
tc be a homogeneous material but the element size has ©Deen
choosen 1in such a way that one element will encompass at

jeast one bed joint and a header joint ( see figure 5.3 ).
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The 1load applied on the structure is shown in figure 5.2
and figure 5.3. For most of thg analyses the wall-beam
structure selected is 1370mm of span SO that at least two
vertical Jjoints are there on either sides 6f the 1ine of
symmetry with a H/L ratio of 0.6.In other cases the span 1s
so selected that at least one vertical joint is there on
ecither sides of the vertical line of symmetry.' Wwhen the
brickwork is consideredrto be a homogeneous material the
modulus of elasticity 'was determined as described in
section 5.2;2. The maximum moment, maximum tension
developed 1in the beam and maximum stresses developed . for
the last two cases are shown in table 5.1. The distribution
of tension and moment along the length of the beam in ‘these
cases are shown in figure 5.4 and figure 5.5 respectively.
figure 5.6 and figure 5.7 show the distribution of vertical
stresses and shear stresses é1ong the interface for all the

three cases.

it can be seen from table 6.1 and figure 5.4, 5.5,
5.6,and 5.7 that the_maghitude of stresses are very similar
for the last two céses.ﬂhereas for the first case the
values diffef quite significant\y; In the wall-beam
structures the shear stress at the interface of beam and
brickwork plays a vital role in the composite action.

Therefore , it appears from the analyses that consideration




TABLE 5.1

COMPARISON OF MAXIMUM STRESSES, MOMENTS, AND TENSION

SL. ITEM
1 Gx Mpa
2. Oy Mpa

3. Txy Mpa

4. M N-mm

5 T N
6 k1
7 k2

# NH- NONHOMOGENEQUS CASE

NH{#)

4.960

6.82
1.78
2051156
39881
91.504

3.43

H(*)

4.963

6.83
1.796
2050372
39736
91.54

3.44

* H~ HOMOGENEOUS CASE WITH FINE MESH

VARIATION

.06045

.146

. 891

.038

. 364

.039

.291
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of brickwork as homogeneous material (encompassing bed
joints and header Jjoints) in the analysis of this type where

local behaviour is to be predicted may not be correct.

From figures it is seen that for the elastic analysis
fhe brickwork can be considered as a homogeneous material
provided the size of the finite e]emeht matches with the
'-size of the element used to calibrate materia1 properties of
the brickwork. It should be pointed out here that in the
previous years the brickwork was considered as a homogeneous
material using finite element mesh (size of the element)
which actually could not model the material properties
broper1y (i0,11,12, 13,14,27,28,29). Therefore , for the
subsegquent investigations,the brickwork has been modeled
as nonhomogeneous material (modeling bricks and mortar

separately).

5.3 PARAMETRIC STUDY OF WALL-BEAM STRUCTURES

5.3.1 General

_In the previous section the validity of the
consideration of brickwork as nonhomogeneous material for

the- present study has been examined. In the subsequent

sections a detailed study will be performed consider.ing

some of the 1important parameters of the wal 1-beam

structures.
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-In all the caseé the brickwork has been considered as
nonhomogeneous  materials (bricks and mortar as two
different materials). In these cases the 1locad has been
applied either over the entire area of the wall or over the

partial area of the wall (concentrated load ).

5.3.2 Shear Stress

For full composite action to develop between the WaT1
and its supporting béam, the shear strength at the wall-beam
boundary should be adequate to transfer the horizontal shear
stress along the interface as a result of thé arching
action. Therefore particular emphasis will be given on the

shear stress distribution accross interface of wall and

beam,

Distribution of Shear Stress along the Interface for

Uniformly Distributed Load:

Figure 5.8 shows the distribution of shear stress along
the interface for different values of Rf and K. Figure 5.9
shows that the shear stress at supports equals to zero and
the value increases sharply and then decreases very slowly.
The Figure also shows that for a value Rf = 7.0 or more the
shear stress distribution is almost linear and more the

value of Rf decreases the curve becomes more parabolic 1in
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nature. That is the stiffer the beam, the more is the

distribution of shear stress along the interface.

Figure 5.9 shows the distribution of verticai stress
and shear stress along the interface. From figufe it is seen
that the spread of shear stress along X-axis is almost twice

the vertical stress

Distribution of Shear Stréss for Concentrated Load:

To observe the effects of type of loading oh the shear
stress distribution along the intérface both Aconcentrated
load ( Joad through a smaller area of the wall ) and
distributed- load have beern applied on the top of the wall-
beam strdctures with four different values of Rf and K. 1In
case of distributed load 80 KN of load are diétributed on
the top of the wall. In case of conéentrated load the same
load is applied at the centre, distributed over 8.00% area

of the wall.

Figuré 5.10 and figure 5.11 show the comparison of
these two results. Figure §.10 shows that the distribution
of shear stress along the interface- differé from each
other. Figure 5.11 shows the magnitude 6f maximum shear
stress for different values of K. From the figure it can

be seen that the maximum shear stress for concentrated Jload
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‘is always higher than the corresponding distributed load.

In many practical situations the wa11—beamr structure
receives partial loading from beam spanning perpendicular to
the wall (fig b5.12). Ti1l today no work (either
experimenta1.or,theoret{cé1) has been done on the wall-beam
strucﬁure subjected to "concentrated loading. This is
possibly due to the complexity involved in the behaviour of
the structure for this type of loading.

Though the present study—is intended to develop an ejastic
finite element model for the wali-beam structure subjected
to uniformly distributed load but 1its applicability for
partially loaded wall-beam structure has also been explored
in this thesis. In the subsequent sectibns the results of
the present investigation have béeen compared with the
findings of the previous investigators. In all the cases

the uniformly distributed load has been considered.

Comparison of Maximum Shear Stress with the Previous
Results:.

As mentioned in Chapter 2 different investigators have.
proposed different formulae from their experimental and

theoretical investigations to determine the maximum shear
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force. Out of those, Davies and Ahmed (13,14) and Smith and
Riddington (27) are popular. In this section the maximum
shear stress determined from the present investigation- has
been compared with the previous results provided by tHose
investigators . The comparisons are given in table 5.2 in a

tabular form.

The table shows that the value of maximum shearl stress
(Txy found from the preseﬁt finite element study is in close
agreement with that determined by Davieé and Ahmed (13,14)
whereas the stress determined by Smith and Riddington (27)

is much higher.

5.3.3 Vertical Stress
Maximum Vertical Stress :

The vertical stress is maximum over the supports. Its
effects on the beam is to produce a bending moment which is
less than that would be obtained if the 1load was being

carried directly by the beam.

Figure 5.13 shows the variation of magnitude and
distribution of vertical stress (6y ) with their Rf values
along the interface. The figure indicates that the vertical

stress 1is maximum over the supports and then the values




TABLE 5.2

COMPARISON OF MAXIMUM SHEAR STRESS (Mpa)

SL RE D.A. (%) F.E.($)  S.S&R(@)
1 5.57 2.6 4.9 6.82

2. 5.94 1.42 1.443 3,68
3. 6.4 1.274 1.862 . 4.01
4. 7.39 1.038 2.81 4.218
5. 10.13 3.024 3.025 6.75

* - D.A. -Davies and Ahmed (11,12)
$ -~ F.E., - Present Finite Element Method

@ - S.S.&R - Smith and Riddington (29)
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decreases sharply for higher values of Rf and gradually for
Tower values of Rf é]ong the length of the beam. The figure
also indicates that the more is the value of Rf the more
triangular 1is the distribution of vértica] stress. In the
present case the limiting value of Rf in between triangular

and parabo1ic distribution may.be estimated to be 6.5 as
compared to this va]ue of 7.00 as proposed by Davies and

Ahmed (13,14).

Yertical Stress Concentration Factor.

The vertical stress concentration factor, C, may be
defined as the ratio of the maximum vertical stress
developed to the average vertical stress in the brickwork

i.e.
C= Omax/ 0Oav

where,
| 0av = load/X-sectional érea
Figure 5.14 1illustrates the variation of stress
concentration factor along X-axis and figure‘ 5.15
illustrates the variation of the same with Rf. From Figure
5.14 it 1is seen that the maximum vertical stress ié
developed over the supports and within a short distance the

vertical stress changes to a value almost equal to ¢ av

mn

i.e. Omax/ Oav 1. Figure 5.15 shows a linear correlation

of C with Rf i.e. the more is the value of Rf, the more 1is
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. the vertical stress concentration factor.

From above, 1t may be concluded that the vertical
stress distribution along the contact surface is mainly
governed by the stiffness parameter, Rf. For a very é1ender
beam, that 1is with a hfgher vaiues of Rf, the stress
distribution 1is triangular with large vertical stress over
the supports; in walls supported on relatively st%ff beam
with low values of Rf, tﬁe contact vertical stress spreads
towards_the centre of the span giving.rise to smaller stress
concentfation over the supports and the distribution may be

represented by a third degree parabola (13).

Comparison of Vertical Stress Concentration factor with
the results of previous investigators:.

Table 5.3 shows the comparison the stress concentration

factor as predicted by:
i) Smith and Riddington (27).
i1) Davies and Ahmed (13,14).
iii) The present finite element analysis.

Table 5.3 shows that the formulae proposed by Smith
and Riddington (27) overestimates the values where as the
values calculated by Davies and Ahmed (13,14) are on the

lower side,




TABLE 5.3

COMPARISON OF VERTICAL STRESS CONCENTRATION FACTOR

o142

SL D.A
1. 16.7
2. . 10.67
3. 11.535
4, _ 9.913
5. 9.35

13.72
12.815

12.55

D.A.- Davies aid Ahmed (13,14)

F.E.- Present 7inite Element Method

$.5.&R.~ Smith and Riddington (27)
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5.3.4 Bending Moment of the Supporting Beam

The bending moment at-any section in the supporting
beam of wall-beam structure resu1ts.frqm- vertical loading
and the horizontal shear stress at the interface, whi;h is
eccentric to the axis (fig 5.16). In the present study the
moment 1is determined from the Jongitudinal stress ( @ x:
as described iﬁ section 3.4.

i.e.

M=I (fbi1-ft1)/hi

"From the calculated moment the coefficient of moment,

k1, is calculated as ;

Ki= W.L/M

where,

W= Total load on the wali
L= Span of the beam

Maximum moment

X<
]

In the following paragraphs details of the findings
regarding moment and a few parameters affecting the moment

are discussed.

Maximum Moment and Distribution of moment in the Beam.
To ascertain the wvalues  of maximum moment and -

distribution of moments along X-axis, moments are calculated
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at each sampling poinﬁs along X-axis as well as at the
centre of each element of the beam. Fig 5.17 1illustrates
that the maximum moment occurs at a distance of about

1/15th of span from the supports.

The supporting beam 1is subjected to the vertical forces
and horizental shear forces at the wall-beam interface. Th«
horizontal shear force 1is thus eccentric with respeét to the
beam centroid. Tﬁis has fhe effect of causing substantial
reduction 1in - the beam bending moment produced by the
vertical force. Therefore the ultimate maximum moment is
less than wﬁat is expected. The maximum moment always occurs
near the supports. Distribution of beaﬁ moments are shown in
figure 5.17. | |

Influence of Relative Stiffness Parameter on Maximum
Moment in the Beam.

.For the study of influence of relative stiffness
parameter on maximum moment , analyses with different
relative stiffness parameters have been performed. The
results are compared with the maximum moments. The 1locad
applied wés 0.1 KN/mm length of the wall, the modular ratio
(Ec/Ew) was 2.0 and the details of the parameters used {n
the investigation are given in table 5.4. The parameters

were so arranged that the values of K were variable.
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TABLE 5.4

RELATIVE STIFFNESS VS COEFFICIENT OF MAXIMUM MOMENT

SsL H/L K(*) K1(#)
1 0.74 9.279 118
2. | 0.577 11.175 160
3. .. 0.514 - 12.18 178
4. 0.428 13.97 230
5. .0.40 | 15.61 236

(%)- K=({EwxtxL*%3/(E*I))**0,25

(#£)- ki=(WxL/Mmax)
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Figure 5.18 illustrates the relationship between "the
relative stiffness parameter, K and the coefficient of
maximum moment,k1. The table 5.4 and the figure 5.18 show
that the maximum moment is dependent on the value of K, The
relationship of ki1 and K is almost 1linear whjch is in good

agreement with the findings of Smith and Riddington (27).

Again. figufe 5.18 shows that with the increase of
values of K, the coefficient of moment increases, i.e. the
moment' deéreases. Conversely it may be concluded that the
stiffer ihe beam, the more is the bending moment developed
in the beam. The lesser the stiffness of the beam, the more

it behaves like a tension member.

Influence of Depth of Bottom Beam on Maximum
Moment. '

For studying the influence of depth of bottom beaﬁ on
the maximum moment developed in the beam, five different
sizes of the beam have been considered in this study. The
H/L ratio was kept constant to 0.6, E/Ew was kept
constant at 2.00, the width of the beam and width of the
wall was the same. Table 5.5 shows the details of the

analyses:

The variation of maximum moment and hence the

coefficient of moment (WL/Mmax) with K and depth of the
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TABLE 5.5

HAXIMUM MOMENTS FOR DIFFERENT BEAM SIZES

SL BEAM SIZE K Mmax WL ki
mmxmm : N-mm N-mm

1. 40x110 14.87 210320 64000000 304

2. ~ 50x110 12.58 309861 noo 206

3. 60x110 10.97 404464 " " 158

4.  70x110 9.?7 498380 " " 128

5. 80x110 8.84 586081 " " 109
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TABLE 5.4

RELATIVE STIFFNESS VS COEFFICIENT CF MAXIMUM MOMENT

SL H/L K(x*) ki1(#)
1 0.74 9.279 118
2 0.577 11.175 160
3. 0.514 12.18 178
4, 0.428 13.97 230
5. ' 0.40 15.61 236

(*}- K=((EwxtxLx%x3/(E*xI))*xx0,25

(#)~ kK1=(WxL/Mmax)
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bottom beam are presented in figure 5.19 and 5.20. The above
table and figures indicate that the maximum moment depends
on the depth of the bottom beam provided other parameters
are constant. Keeping other parameters constant; the more is
the depth of the beam the more the.beam behaves 1like ra
flexural member and the more is the magnitude of the maximum

moment.
Influence of Concentrated Load on Maximum Moment.

For this analysis the same wa11—beam structures as
described {n previcus article are considered with
ccncentrated load of same magnitude as 1in the case of
uniformly distributed 1load. The maximum mohent and the
coefficient of moment are compared with those obfained in
case of distribgted load application. Table 5.6 shows the
comparison. Fig 5;21 shows the magnitude and distribution of
bending moments for beam along X-axis. From figure and the
table it is seen that the maximum moment in the case of
distributed load and concentrated load is in close agreement
with each other. This is possibly duelto the depth of the
wall (H/L >0.8 ) which provides enouéh area Tfor the
dispersion of concentrated Ilcad through the wall. The
distribution of load near the beém in this case resembles
uniformly distributed load.Therefore, it may be said that

the magnitude of maximum moment is not dependent on the area
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TABLE 5.6

INFLUENCE OF CONCENTRATED LOAD ON MOMENT IN THE EEAM

SL BEAM SIZE MAX. MOMENT MOMENT COEFF.
mmXmm DISTR. LOAD CONC. LOAD DIST CONC
N—-mm N-mm N-mm N-mm

1. 40x110 203938 208032 304 307

2. 50x110 309868 307261 - 206 208

3. 60x110 404465 399316 : 158 160

4, 70x110 498373 - 491703 . 128 130

5. 80x110 586081 578072 109 110
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through which the load has been applied but the magnitude of
the applied 1load provided H/L is more than 0.6. Again the
figure and table indicate that the magnitude of maximum
moments in both the cases are very similar

Here it should ber mentioned that this particular
investigation was carried out on the basis of wall aspect
ratio of 0.6 or more. For shallow wali- beam structures
(aspect ratio<0.6) the agreement may be different since the
area through which the load dispersion of concentrated load
takes place decreases and as a result the distribution of

vertical stress on the beam will change.

Influence of Modular Ratio (E/Ew) on Maximum Moment.

For this study, five different wa]]—beamé have been
considered. In ail the cases H/L was 0.6; and the Toading
was 0.1 KN/mm. The size of the beam was 80 x 110 mm . The
ratio of modulus of elasticity of concrete and that of
brickwork were varied from 2 to 10. The results of the
analyses are given in table 5.7.

The variation of moment and hence ki with K and E/Ew

are shown figures 5.22 and 5.23 respectively.

Since the ratio of moduius of elasticity of brickwork
and that of concrete contributes to the relative stiffness
parameter, K, inversely it is evident that the ratio will

influence the magnitude of maximum moment and coefficient of
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TABLE 5.7

INFLUENCE OF MODULAR RATIO (E/Ew) OF WALL-BEAM

SL E/Ew K Mmax : k1

N-m
1. 2 8.80 . 585375 109
2, 3 7.95 632368 . 101
3. , A 7.40 672232 , 95.2
4, 5 7.00 706816 80.5

5. 10.286 5.84 839080 76.217
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moment inversely as K deces. Figure 5.23 indicates that with
the increase of the modular ratio,the magniﬁude of maximum
moment increases. That is the more is the relative stiffness
the 1lesser is the magnitude of maximum moment. That is the
stiffer 1is the beam relative to the brickwork, the more 1is

" the beam bending moment.

Comparison of Maximum Moment with the Results of other

Investigators. : )
Comparison of maximum moments as determined by Smith

and Riddington (27) and Davis and Ahmed (13,14) is shown

in table 5.8 with the results of the present investigation.

The table indicated that in both cases, the magnitude
of maximum moments are over estimated by a factor of 1.5
(approximately). From their results it may be mentioned
that the formulae are conservative to some extenﬁ. Moreover
it may so happen that, the magnitude of maxiﬁum moment is
greater because they have considered trianéu]ar distribution
of vertical stresses and shear stresses along the' interface
which is a mainly highly idealized case. In fact the

distribution is parabolic.

Smith and Riddington (27) has proposed formula for

calculating maximum moment as.:
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TABLE 5.8

COMPARISON OF MAXIMUM MOMENTS

SL  H/L K MAXIMUM MOMENT 'RATIO OF

N-mm 1/3 2/3

(1) (2) (3) -

. 0.6 10.97 656420 806663 404465  1.623 1.9
2. " 9.279 820525 890206 547017  1.50 1.60
3. " 8.09 1269260 2132540 1334227 1.47 1.59
4. " 8.84 875227 1010703 586080  1.49 1.72
5. " 7.474 2188067 2174553 1480325 1.478 1.47

(1)- Smith &Riddington (27)
(2)- Davies and Ahmed (13,14)

(3)- Present Finite Element study
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Mmax=(W*L )/ (FpxK**(4/3))

Where Fp=4.00. Ratio of maximum moment calculated from
formula proposed by Smith and Riddington (27) and that
calculated from the analysis is 1.5. Therefore, - maximum
moment may be calculated from the above formula with the
modified value of Fp. The new probosed'va1ue of Fp may,

therefore be cohsidered as 6.0.

§.3.5. Tensile Force of the Beam.

General:

As mentioned earlier a wall on beam structure subjected
to vertica1-1oadings acts compositely in a way similar to a
tied arch. The wall arches across the span and the beam
serves as a tie to prevent the arch from spreading. The
outward thrust of the wall is contained by the tying action
of the beam, which is subjected, therefore, to -additional
axial tensile forces.In the following sections the influence
of different parameters on tensile stresses are critically

examined.
Maximum Tensile Force in the Supporting Beam:

For the determination of maximum tensile force,
different beam sizes with different values of K and Rf are

examined. The details of the investigations are shown 1in
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figure 5.24. From figure it is seen that the tensile force
in the beam is zerb at the suppdrt and maximum at the centre
of the beam. The force increéses with the decrease of H/L
ratio. Here the figure shows close resemblance with the
distribution of tensile force as determined by lattice

analogy of Yettram & Hirst (33).

Figure 5.24 also shows that the maximum tensile force
occurs at or near the midspan of the beam irrespective of
the H/L ratio, value of K or value of Rf. It .is also
_revealed that upto a certain distance of about L/8 from the
support, the magnitude 1is directly proportional to the
distance from either support, then the curve flatens
according to the value of H/L or Rf. The more is the value
of Rf, the flatter is the curve and when the value of Rf
exceeds 6.669 (=7) the distribution is almost horizontal
i.e. for Rf = 7.0 the magnitude of tensile force remains
unchange with the distance after a certain distance. The
figure also indicates that the distribution of the tensile
force along the length is not triangular as proposed by
Ahmed and Davis (13,14) rather parabolic, the degree of

parabola heing dependent on the value of H/L.

The average value of maximum tensile force is 22,062

KK. Total applied load on the structure is 80.00 KN. Ratio

B ]
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of the apllied 1locad (W) and the maximum tensile force
developed is approximately 3.70. In mathematical

expresssion

T=W/3.70.
Therefore, maximum tensile force may, therefore, be

calculated from the above relationship.
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CHAPTER-6

CONCLUSIONS AND RECOMMENbATIONS FOR FURTHER STUDY.
6.1 GENERAL

A linear elastic finite element model has been
developed which can be used to analyze wall-beam structure
subjected to inplane load (both distributed and
concentrated). In  this model concrete beam, interface
element and brickwork have been modeled separately. The
brickwork has been modeled separately giving due
consideration to the bricks, mortars and their locations. In
this study materials are assigned with their own properties.
Provisions for both four and eight noded elements are kept
in the program. A 2x2 integration scheme is adopted to
evaluate element stiffness and load voctor. Automated nodal
coordinates as well as element connectivity data generations

are implemented in the program.

A parametric study of the behavjdur of wall-beam
structures has beeﬁ carried out in chapter 6. From the
results of this paramatric study the influence of different
parameters on the composite behaviour of wa11—beam_structure
has been studied. The results of the parametric study has
been compared with the results of previous investigations
and in most cases found to be conservative or

nonconservative .
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Although the model is efficient for the analysis of
combosite action of wall-beam structures, it has some
limitations. The material model has not 1incorporated time
dependent behaviour and the possibility of cyclic
loading.The results are applicable to wall-beam - structure
with solid brick masonry subjected to inplane loadings which
extends -over the complete thickness of the wall. The model
therefore can not predict the three dimensional effects when

the load on the wall does not occupy the whole thickness.

Despite the limitations, the proposed finite element
model appears to be more versatile, efficient and also more
representative of thg actual behaviour. of the wall-beam
structures, The present model can consider the brickwork
both as'homogeneous or nonhomogeneous material which is 1in
contrast to the previous models which have considered brick
masonry 1in the wall-beam structure as a cohtinuum with
average properties. The model can be used to prepare design
recommendations for any inplane probiems and can be used as
a substitute f&r many experimental investigations. Since the
material characteristics required for this finite element
model can be determined from relatively simple tests, it can
be readily adopted to any wall-beam structure buiit in any
pattern.

From the present 1inear finite element study the
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" foilowing conclusion can be drawn:

1) Finite element model of this type which treats the
materials of the structure separately is more
effective, since it reflects the influence of varying

stiffness of its constituents.

2) The distribution of shear stress aToHQ the

interface of the concrete beam and masonry is parabolic
for a value of re]ative_stiffness parameter (Rf) Tless
than 7.00 but for a value of 7.00 or more the

distribution of shear stress is 1inear.

3) Spread of the shear stress along the length of the

beam is twice that of the vertical strass.

4) Vertical stress (compressive) is maximum over the
supports and decreases gradually towards the centre of

the beam to a'va]ue of average stress.

5) Vertical stress concentration factor varies
linearly with the stiffness parameter (Rf). With the
increase of this parameter the stress concentration

factor increases.

6) Maximum moment occurs at a distance of about

1/15th of the span from either of the supports for a
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simply supported beam.

) The magnitude of the maximum moment depends on the
relative stiffness parameter (K). The Jlesser the
stiffness of the beam, the more it behaves like a tie

member.

.8) The maximum bending moment in the beam increases

with the increase oflthe size of the supporting beam.

. 8) Tensile force in a beam may be calculated from the
formula:

T = W/3.7 in stead of W/3.4 as proposed by Smith
and Riddington(Z?).'
10) Maximum moment may be calculated from

M=(WxL)/((Fp)x(Kx%x(1/3)))

where Fp=6.0
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6.2. RECOMMENDATION FOR FURTHER STUDY

The development of a linear elastic 2-D finite element
program for the ana]ysfs of the behaviour of wall- beam
structures could find . considerable interest in various
a]]ied fields. To increase the applicability of the program
developed for the present study, certain modifications can
be done. The. following recommendations can be imade for

further development of the present study:

1) The finite element computer program developed for
the study can also be applied to the analysis of
various other structural interaction problem with

little or no modifications.

2) To increase the efficiency of the program the half
band form of storing the stiffness matrix can be
replaced by a variable band storage scheme which will

provide considerable saving of core storage requirement

-
=

during execution.

3) Ih this 'study the constituent materials are
considered to be linearly elastic. But for a better
understanding of the actual situation, material non-
linearity and the progressive fracture of the materials

should be incorporated.
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45 In -this study the RCC beam is assigned with an
average property. But fpr a better representation of
stresses in different laysrs and moment of the concrete
beém, the reinforcement and the mass concrete may be

considered separately.

5) The model may also be modified for the time
dependent deformaﬁion due to the sustained load and for

the cyclic loading.

"6} This model may be developed ‘in the analysis and

design of reinforced masonry.
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APPENDIX 1

TABLE-1

ERROR CODE FOR CHECK ON THE INPUT DATA

ERROR CODE EXPLANATION

1 Total number of structure nodes less than

or equal to zero

.2, The possible maximum total number of nodal
paints in the structure is tess than the

specified number of structure nodes.

3. The numbers of rectrained nodes are less than

two or greater than the number of structure

nodes.

4, The total number of locad increament is Tless
than 1

5. The total number of nodes per element is less

than 4 or greater than 8

6. The numbers of degrees of freedom per node is

less than two.

7. ' The numbers of different materials 1is Jless

than 1 or greater than the number of elements




10.

11.

12.

13.

14

16.

17.

18.

175

The number of Gauss intregration points 1h
each direction is less than 2 or greater than

eight.
Two nodes have identical coordinates.

The material number of the element 1is less
than t or greater than the number of

different matéria]s.
Nodal number of thg element 1is zero.

Nodal number of the element is less than 1 or
greater than the total number of nodal

boints.
Repetition of a node number with an element

15. Coordinates of the unused nodes have not
. ' ,
been specified.

Unused node number is restrained node,

Required front width fs greater than the

front width available in the program.

Restrained node number is less than or equal

to zero or greater than the total number of

nodal points.




176

19. Restrained code 1is missing for restrained

nodes,.

20. Two identical restrained nodes.




TABLE-2

VARIOQUS OPTICN OF QUTPUT

QUTPUT CODE INTERPRETATION

No output neccesary

Print only the displacement of nodes (both X

& Y dir)

Print the displacement of the nodes and

reactions at support

Print the displacement of nodes and reactions
at the supports and stresses at

each sampling point of tha element.

LA

127




JABLE 3

BRIEF DESCRIPTION THE MAJOR SUBROUTINES

SUBROUTINE FUNTION OF THE SUBROQUTINE
PROBTP Accept the data related with problem type

CENTRE

DIMEN

NTYPE = O Represents Elastic solution without
fracture
NTYPE = 1 represents elastic fracture

NTYPE = 2 represents non linear (for mortar

only ) fracture

NTYPE = 3 represents nonlinear ( brick and

mortar) fracture

NRELS 0 represents brittle model

NRELS 1 represents inelastic collapse model

Finds the coordinate of the centre of the
element
Assigns maximum values for the dimensions of

arrays.

178
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INPUT Accepts most of the data for the problem.

DIFMAT, COMP, MATIDN Reassign the respective material

number for the e1ements;
CHECK1 ‘Checks the main control data -

CHECK?2 Checks the remainder of the input data(mesh

generation)

ECHO Echoes the error code and terminate the

execution process.
LOADPS Accepts the data on loading

DMATPS Evaluates [D]l matrix ({(elastic) for piane

stress or ptain strain elements.

INCREM Increments the applied loading.

ZERO Initiates the various arrays to zero. _’
PRINC . Evaluates the principal stress.

ALGOR Sets the equation resolution index.

STIFP Calculates the stiffness matrix.




DIFFEL

DECSON

STIFFP

GAUSSQ

BMATPS

DMATPS

JACOBZ2

SFR2

CONVER
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Stores the stiffness matrix of the
representative elements in a 3-D array for

further use.

Sets the type of constitutive relation to be

used for the materials.

Determines  the status of the elements for

stiffness calculation.

‘Sets the Gaussian Quadrature Rule.

Evaluates the [B] Matrix for the Plane Stress

and Plane Strin Problem.

Evaluates the [D] Matrix for the Plane Stress

and Plane Strain Problem.

A

Calculates the Jacobian Matrix,’

Determines -the Shape Functions.

Checks for the Convergence.
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¢ . DBE Carries out the Multiplication of the [D] and

[B] Matrices.

FRONT Undertakes equation solution by frontal
‘method.

RESIDU Evaluates the stresses according to the
constitutive relations prevailing in = the

element.

REDJON Evaluate the stresses Tor the joint element

on the basis of current deformation.
REDUCT Evaluate the stresses for the brick element

on the basis of current deformation.

WRITEL  Writes the failure code in addition to that

it writes the stresses and principal

stresses.
LINEAR Evaluate the stresses and strain'from stress
- strain relation and strain - displacement

relationship.

QUTPUT Outputé the results.

STROUT Gives the output for the elements at

particuiar level of the structure.
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TABLE-4
suB-— DATA FORMAT
ROUTINE
PROBTP’ IBND,NTYPE,NRELS,NEQ,NENAL, ’
ALPHA, REFAC,TOLNW. 5I5,3F10.4
AC(I) 6F10.4
XN , ‘F10.4
INPUT NPOIN,NPON,NPLEM,NVFIX,NNODE,

NMATS,NGAUS,NALGO,NCRIT,NINCS,

NX,NY,NIFLM, IPROB 1615

NPLTM . NXX,NYY,NFNOD, ISHER,

NELCV,NPFIX 1615
NLYRC,NLYRB,NLYRI,NLYRM 1615 -
NVSEC,NHSEC 1615
LYEVL(I) ‘ 1615 °
LXEVL(I) 1615
XCRD 7F10.3
YCRD 7F10.3

DIFMAT IHOM I5
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COMP INTR,ICOMP 215
DIFMAT N1,JD(1) 1515
ILXO,NXD(I) 1515
ILYO,NYL(J) ' 1515
ILYE ' 1515
NYL(J) 1515
ILXE,NXD(I) 1515
INPUT NOFIX,IFPRE,PRESC(IVFIX, 15,110,
IDOFN) 5F10.4
NUMAT I5
PROPS(NUMAT, IPROP) 5F10.5
LOADPS IPLOD, IGRAV, IEDGE 3110
LODPT, POINT( IDOFN) 15,2F10.4
INCREM FACTO, TOLFR, TOLDS , RESMX, 4F10.5,
MITER,MITFR : 215

NOUTP(2) ,NOUTP(3) 2I5
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